]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched/core.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/egtvedt...
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
80 #include <asm/mutex.h>
81 #ifdef CONFIG_PARAVIRT
82 #include <asm/paravirt.h>
83 #endif
84
85 #include "sched.h"
86 #include "../workqueue_internal.h"
87 #include "../smpboot.h"
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/sched.h>
91
92 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
93 {
94 unsigned long delta;
95 ktime_t soft, hard, now;
96
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
103
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110 }
111
112 DEFINE_MUTEX(sched_domains_mutex);
113 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
114
115 static void update_rq_clock_task(struct rq *rq, s64 delta);
116
117 void update_rq_clock(struct rq *rq)
118 {
119 s64 delta;
120
121 if (rq->skip_clock_update > 0)
122 return;
123
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
127 }
128
129 /*
130 * Debugging: various feature bits
131 */
132
133 #define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
136 const_debug unsigned int sysctl_sched_features =
137 #include "features.h"
138 0;
139
140 #undef SCHED_FEAT
141
142 #ifdef CONFIG_SCHED_DEBUG
143 #define SCHED_FEAT(name, enabled) \
144 #name ,
145
146 static const char * const sched_feat_names[] = {
147 #include "features.h"
148 };
149
150 #undef SCHED_FEAT
151
152 static int sched_feat_show(struct seq_file *m, void *v)
153 {
154 int i;
155
156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
160 }
161 seq_puts(m, "\n");
162
163 return 0;
164 }
165
166 #ifdef HAVE_JUMP_LABEL
167
168 #define jump_label_key__true STATIC_KEY_INIT_TRUE
169 #define jump_label_key__false STATIC_KEY_INIT_FALSE
170
171 #define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
174 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
175 #include "features.h"
176 };
177
178 #undef SCHED_FEAT
179
180 static void sched_feat_disable(int i)
181 {
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
184 }
185
186 static void sched_feat_enable(int i)
187 {
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
190 }
191 #else
192 static void sched_feat_disable(int i) { };
193 static void sched_feat_enable(int i) { };
194 #endif /* HAVE_JUMP_LABEL */
195
196 static int sched_feat_set(char *cmp)
197 {
198 int i;
199 int neg = 0;
200
201 if (strncmp(cmp, "NO_", 3) == 0) {
202 neg = 1;
203 cmp += 3;
204 }
205
206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
208 if (neg) {
209 sysctl_sched_features &= ~(1UL << i);
210 sched_feat_disable(i);
211 } else {
212 sysctl_sched_features |= (1UL << i);
213 sched_feat_enable(i);
214 }
215 break;
216 }
217 }
218
219 return i;
220 }
221
222 static ssize_t
223 sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225 {
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
240 if (i == __SCHED_FEAT_NR)
241 return -EINVAL;
242
243 *ppos += cnt;
244
245 return cnt;
246 }
247
248 static int sched_feat_open(struct inode *inode, struct file *filp)
249 {
250 return single_open(filp, sched_feat_show, NULL);
251 }
252
253 static const struct file_operations sched_feat_fops = {
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
259 };
260
261 static __init int sched_init_debug(void)
262 {
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267 }
268 late_initcall(sched_init_debug);
269 #endif /* CONFIG_SCHED_DEBUG */
270
271 /*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275 const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
277 /*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
285 /*
286 * period over which we measure -rt task cpu usage in us.
287 * default: 1s
288 */
289 unsigned int sysctl_sched_rt_period = 1000000;
290
291 __read_mostly int scheduler_running;
292
293 /*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297 int sysctl_sched_rt_runtime = 950000;
298
299 /*
300 * __task_rq_lock - lock the rq @p resides on.
301 */
302 static inline struct rq *__task_rq_lock(struct task_struct *p)
303 __acquires(rq->lock)
304 {
305 struct rq *rq;
306
307 lockdep_assert_held(&p->pi_lock);
308
309 for (;;) {
310 rq = task_rq(p);
311 raw_spin_lock(&rq->lock);
312 if (likely(rq == task_rq(p)))
313 return rq;
314 raw_spin_unlock(&rq->lock);
315 }
316 }
317
318 /*
319 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
320 */
321 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
322 __acquires(p->pi_lock)
323 __acquires(rq->lock)
324 {
325 struct rq *rq;
326
327 for (;;) {
328 raw_spin_lock_irqsave(&p->pi_lock, *flags);
329 rq = task_rq(p);
330 raw_spin_lock(&rq->lock);
331 if (likely(rq == task_rq(p)))
332 return rq;
333 raw_spin_unlock(&rq->lock);
334 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
335 }
336 }
337
338 static void __task_rq_unlock(struct rq *rq)
339 __releases(rq->lock)
340 {
341 raw_spin_unlock(&rq->lock);
342 }
343
344 static inline void
345 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
346 __releases(rq->lock)
347 __releases(p->pi_lock)
348 {
349 raw_spin_unlock(&rq->lock);
350 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
351 }
352
353 /*
354 * this_rq_lock - lock this runqueue and disable interrupts.
355 */
356 static struct rq *this_rq_lock(void)
357 __acquires(rq->lock)
358 {
359 struct rq *rq;
360
361 local_irq_disable();
362 rq = this_rq();
363 raw_spin_lock(&rq->lock);
364
365 return rq;
366 }
367
368 #ifdef CONFIG_SCHED_HRTICK
369 /*
370 * Use HR-timers to deliver accurate preemption points.
371 */
372
373 static void hrtick_clear(struct rq *rq)
374 {
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377 }
378
379 /*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
384 {
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389 raw_spin_lock(&rq->lock);
390 update_rq_clock(rq);
391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 raw_spin_unlock(&rq->lock);
393
394 return HRTIMER_NORESTART;
395 }
396
397 #ifdef CONFIG_SMP
398
399 static int __hrtick_restart(struct rq *rq)
400 {
401 struct hrtimer *timer = &rq->hrtick_timer;
402 ktime_t time = hrtimer_get_softexpires(timer);
403
404 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
405 }
406
407 /*
408 * called from hardirq (IPI) context
409 */
410 static void __hrtick_start(void *arg)
411 {
412 struct rq *rq = arg;
413
414 raw_spin_lock(&rq->lock);
415 __hrtick_restart(rq);
416 rq->hrtick_csd_pending = 0;
417 raw_spin_unlock(&rq->lock);
418 }
419
420 /*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
425 void hrtick_start(struct rq *rq, u64 delay)
426 {
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
429
430 hrtimer_set_expires(timer, time);
431
432 if (rq == this_rq()) {
433 __hrtick_restart(rq);
434 } else if (!rq->hrtick_csd_pending) {
435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
436 rq->hrtick_csd_pending = 1;
437 }
438 }
439
440 static int
441 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442 {
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
452 hrtick_clear(cpu_rq(cpu));
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457 }
458
459 static __init void init_hrtick(void)
460 {
461 hotcpu_notifier(hotplug_hrtick, 0);
462 }
463 #else
464 /*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
469 void hrtick_start(struct rq *rq, u64 delay)
470 {
471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
472 HRTIMER_MODE_REL_PINNED, 0);
473 }
474
475 static inline void init_hrtick(void)
476 {
477 }
478 #endif /* CONFIG_SMP */
479
480 static void init_rq_hrtick(struct rq *rq)
481 {
482 #ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
484
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488 #endif
489
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
492 }
493 #else /* CONFIG_SCHED_HRTICK */
494 static inline void hrtick_clear(struct rq *rq)
495 {
496 }
497
498 static inline void init_rq_hrtick(struct rq *rq)
499 {
500 }
501
502 static inline void init_hrtick(void)
503 {
504 }
505 #endif /* CONFIG_SCHED_HRTICK */
506
507 /*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514 void resched_task(struct task_struct *p)
515 {
516 int cpu;
517
518 lockdep_assert_held(&task_rq(p)->lock);
519
520 if (test_tsk_need_resched(p))
521 return;
522
523 set_tsk_need_resched(p);
524
525 cpu = task_cpu(p);
526 if (cpu == smp_processor_id()) {
527 set_preempt_need_resched();
528 return;
529 }
530
531 /* NEED_RESCHED must be visible before we test polling */
532 smp_mb();
533 if (!tsk_is_polling(p))
534 smp_send_reschedule(cpu);
535 }
536
537 void resched_cpu(int cpu)
538 {
539 struct rq *rq = cpu_rq(cpu);
540 unsigned long flags;
541
542 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
543 return;
544 resched_task(cpu_curr(cpu));
545 raw_spin_unlock_irqrestore(&rq->lock, flags);
546 }
547
548 #ifdef CONFIG_SMP
549 #ifdef CONFIG_NO_HZ_COMMON
550 /*
551 * In the semi idle case, use the nearest busy cpu for migrating timers
552 * from an idle cpu. This is good for power-savings.
553 *
554 * We don't do similar optimization for completely idle system, as
555 * selecting an idle cpu will add more delays to the timers than intended
556 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
557 */
558 int get_nohz_timer_target(void)
559 {
560 int cpu = smp_processor_id();
561 int i;
562 struct sched_domain *sd;
563
564 rcu_read_lock();
565 for_each_domain(cpu, sd) {
566 for_each_cpu(i, sched_domain_span(sd)) {
567 if (!idle_cpu(i)) {
568 cpu = i;
569 goto unlock;
570 }
571 }
572 }
573 unlock:
574 rcu_read_unlock();
575 return cpu;
576 }
577 /*
578 * When add_timer_on() enqueues a timer into the timer wheel of an
579 * idle CPU then this timer might expire before the next timer event
580 * which is scheduled to wake up that CPU. In case of a completely
581 * idle system the next event might even be infinite time into the
582 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
583 * leaves the inner idle loop so the newly added timer is taken into
584 * account when the CPU goes back to idle and evaluates the timer
585 * wheel for the next timer event.
586 */
587 static void wake_up_idle_cpu(int cpu)
588 {
589 struct rq *rq = cpu_rq(cpu);
590
591 if (cpu == smp_processor_id())
592 return;
593
594 /*
595 * This is safe, as this function is called with the timer
596 * wheel base lock of (cpu) held. When the CPU is on the way
597 * to idle and has not yet set rq->curr to idle then it will
598 * be serialized on the timer wheel base lock and take the new
599 * timer into account automatically.
600 */
601 if (rq->curr != rq->idle)
602 return;
603
604 /*
605 * We can set TIF_RESCHED on the idle task of the other CPU
606 * lockless. The worst case is that the other CPU runs the
607 * idle task through an additional NOOP schedule()
608 */
609 set_tsk_need_resched(rq->idle);
610
611 /* NEED_RESCHED must be visible before we test polling */
612 smp_mb();
613 if (!tsk_is_polling(rq->idle))
614 smp_send_reschedule(cpu);
615 }
616
617 static bool wake_up_full_nohz_cpu(int cpu)
618 {
619 if (tick_nohz_full_cpu(cpu)) {
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
622 smp_send_reschedule(cpu);
623 return true;
624 }
625
626 return false;
627 }
628
629 void wake_up_nohz_cpu(int cpu)
630 {
631 if (!wake_up_full_nohz_cpu(cpu))
632 wake_up_idle_cpu(cpu);
633 }
634
635 static inline bool got_nohz_idle_kick(void)
636 {
637 int cpu = smp_processor_id();
638
639 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
640 return false;
641
642 if (idle_cpu(cpu) && !need_resched())
643 return true;
644
645 /*
646 * We can't run Idle Load Balance on this CPU for this time so we
647 * cancel it and clear NOHZ_BALANCE_KICK
648 */
649 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
650 return false;
651 }
652
653 #else /* CONFIG_NO_HZ_COMMON */
654
655 static inline bool got_nohz_idle_kick(void)
656 {
657 return false;
658 }
659
660 #endif /* CONFIG_NO_HZ_COMMON */
661
662 #ifdef CONFIG_NO_HZ_FULL
663 bool sched_can_stop_tick(void)
664 {
665 struct rq *rq;
666
667 rq = this_rq();
668
669 /* Make sure rq->nr_running update is visible after the IPI */
670 smp_rmb();
671
672 /* More than one running task need preemption */
673 if (rq->nr_running > 1)
674 return false;
675
676 return true;
677 }
678 #endif /* CONFIG_NO_HZ_FULL */
679
680 void sched_avg_update(struct rq *rq)
681 {
682 s64 period = sched_avg_period();
683
684 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
685 /*
686 * Inline assembly required to prevent the compiler
687 * optimising this loop into a divmod call.
688 * See __iter_div_u64_rem() for another example of this.
689 */
690 asm("" : "+rm" (rq->age_stamp));
691 rq->age_stamp += period;
692 rq->rt_avg /= 2;
693 }
694 }
695
696 #endif /* CONFIG_SMP */
697
698 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
699 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
700 /*
701 * Iterate task_group tree rooted at *from, calling @down when first entering a
702 * node and @up when leaving it for the final time.
703 *
704 * Caller must hold rcu_lock or sufficient equivalent.
705 */
706 int walk_tg_tree_from(struct task_group *from,
707 tg_visitor down, tg_visitor up, void *data)
708 {
709 struct task_group *parent, *child;
710 int ret;
711
712 parent = from;
713
714 down:
715 ret = (*down)(parent, data);
716 if (ret)
717 goto out;
718 list_for_each_entry_rcu(child, &parent->children, siblings) {
719 parent = child;
720 goto down;
721
722 up:
723 continue;
724 }
725 ret = (*up)(parent, data);
726 if (ret || parent == from)
727 goto out;
728
729 child = parent;
730 parent = parent->parent;
731 if (parent)
732 goto up;
733 out:
734 return ret;
735 }
736
737 int tg_nop(struct task_group *tg, void *data)
738 {
739 return 0;
740 }
741 #endif
742
743 static void set_load_weight(struct task_struct *p)
744 {
745 int prio = p->static_prio - MAX_RT_PRIO;
746 struct load_weight *load = &p->se.load;
747
748 /*
749 * SCHED_IDLE tasks get minimal weight:
750 */
751 if (p->policy == SCHED_IDLE) {
752 load->weight = scale_load(WEIGHT_IDLEPRIO);
753 load->inv_weight = WMULT_IDLEPRIO;
754 return;
755 }
756
757 load->weight = scale_load(prio_to_weight[prio]);
758 load->inv_weight = prio_to_wmult[prio];
759 }
760
761 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
762 {
763 update_rq_clock(rq);
764 sched_info_queued(rq, p);
765 p->sched_class->enqueue_task(rq, p, flags);
766 }
767
768 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
769 {
770 update_rq_clock(rq);
771 sched_info_dequeued(rq, p);
772 p->sched_class->dequeue_task(rq, p, flags);
773 }
774
775 void activate_task(struct rq *rq, struct task_struct *p, int flags)
776 {
777 if (task_contributes_to_load(p))
778 rq->nr_uninterruptible--;
779
780 enqueue_task(rq, p, flags);
781 }
782
783 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
784 {
785 if (task_contributes_to_load(p))
786 rq->nr_uninterruptible++;
787
788 dequeue_task(rq, p, flags);
789 }
790
791 static void update_rq_clock_task(struct rq *rq, s64 delta)
792 {
793 /*
794 * In theory, the compile should just see 0 here, and optimize out the call
795 * to sched_rt_avg_update. But I don't trust it...
796 */
797 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 s64 steal = 0, irq_delta = 0;
799 #endif
800 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
801 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
802
803 /*
804 * Since irq_time is only updated on {soft,}irq_exit, we might run into
805 * this case when a previous update_rq_clock() happened inside a
806 * {soft,}irq region.
807 *
808 * When this happens, we stop ->clock_task and only update the
809 * prev_irq_time stamp to account for the part that fit, so that a next
810 * update will consume the rest. This ensures ->clock_task is
811 * monotonic.
812 *
813 * It does however cause some slight miss-attribution of {soft,}irq
814 * time, a more accurate solution would be to update the irq_time using
815 * the current rq->clock timestamp, except that would require using
816 * atomic ops.
817 */
818 if (irq_delta > delta)
819 irq_delta = delta;
820
821 rq->prev_irq_time += irq_delta;
822 delta -= irq_delta;
823 #endif
824 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
825 if (static_key_false((&paravirt_steal_rq_enabled))) {
826 u64 st;
827
828 steal = paravirt_steal_clock(cpu_of(rq));
829 steal -= rq->prev_steal_time_rq;
830
831 if (unlikely(steal > delta))
832 steal = delta;
833
834 st = steal_ticks(steal);
835 steal = st * TICK_NSEC;
836
837 rq->prev_steal_time_rq += steal;
838
839 delta -= steal;
840 }
841 #endif
842
843 rq->clock_task += delta;
844
845 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
846 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
847 sched_rt_avg_update(rq, irq_delta + steal);
848 #endif
849 }
850
851 void sched_set_stop_task(int cpu, struct task_struct *stop)
852 {
853 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
854 struct task_struct *old_stop = cpu_rq(cpu)->stop;
855
856 if (stop) {
857 /*
858 * Make it appear like a SCHED_FIFO task, its something
859 * userspace knows about and won't get confused about.
860 *
861 * Also, it will make PI more or less work without too
862 * much confusion -- but then, stop work should not
863 * rely on PI working anyway.
864 */
865 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
866
867 stop->sched_class = &stop_sched_class;
868 }
869
870 cpu_rq(cpu)->stop = stop;
871
872 if (old_stop) {
873 /*
874 * Reset it back to a normal scheduling class so that
875 * it can die in pieces.
876 */
877 old_stop->sched_class = &rt_sched_class;
878 }
879 }
880
881 /*
882 * __normal_prio - return the priority that is based on the static prio
883 */
884 static inline int __normal_prio(struct task_struct *p)
885 {
886 return p->static_prio;
887 }
888
889 /*
890 * Calculate the expected normal priority: i.e. priority
891 * without taking RT-inheritance into account. Might be
892 * boosted by interactivity modifiers. Changes upon fork,
893 * setprio syscalls, and whenever the interactivity
894 * estimator recalculates.
895 */
896 static inline int normal_prio(struct task_struct *p)
897 {
898 int prio;
899
900 if (task_has_dl_policy(p))
901 prio = MAX_DL_PRIO-1;
902 else if (task_has_rt_policy(p))
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907 }
908
909 /*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
916 static int effective_prio(struct task_struct *p)
917 {
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927 }
928
929 /**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
934 */
935 inline int task_curr(const struct task_struct *p)
936 {
937 return cpu_curr(task_cpu(p)) == p;
938 }
939
940 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
942 int oldprio)
943 {
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio || dl_task(p))
949 p->sched_class->prio_changed(rq, p, oldprio);
950 }
951
952 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
953 {
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
974 rq->skip_clock_update = 1;
975 }
976
977 #ifdef CONFIG_SMP
978 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979 {
980 #ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
987
988 #ifdef CONFIG_LOCKDEP
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
994 * see task_group().
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001 #endif
1002 #endif
1003
1004 trace_sched_migrate_task(p, new_cpu);
1005
1006 if (task_cpu(p) != new_cpu) {
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
1009 p->se.nr_migrations++;
1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1011 }
1012
1013 __set_task_cpu(p, new_cpu);
1014 }
1015
1016 static void __migrate_swap_task(struct task_struct *p, int cpu)
1017 {
1018 if (p->on_rq) {
1019 struct rq *src_rq, *dst_rq;
1020
1021 src_rq = task_rq(p);
1022 dst_rq = cpu_rq(cpu);
1023
1024 deactivate_task(src_rq, p, 0);
1025 set_task_cpu(p, cpu);
1026 activate_task(dst_rq, p, 0);
1027 check_preempt_curr(dst_rq, p, 0);
1028 } else {
1029 /*
1030 * Task isn't running anymore; make it appear like we migrated
1031 * it before it went to sleep. This means on wakeup we make the
1032 * previous cpu our targer instead of where it really is.
1033 */
1034 p->wake_cpu = cpu;
1035 }
1036 }
1037
1038 struct migration_swap_arg {
1039 struct task_struct *src_task, *dst_task;
1040 int src_cpu, dst_cpu;
1041 };
1042
1043 static int migrate_swap_stop(void *data)
1044 {
1045 struct migration_swap_arg *arg = data;
1046 struct rq *src_rq, *dst_rq;
1047 int ret = -EAGAIN;
1048
1049 src_rq = cpu_rq(arg->src_cpu);
1050 dst_rq = cpu_rq(arg->dst_cpu);
1051
1052 double_raw_lock(&arg->src_task->pi_lock,
1053 &arg->dst_task->pi_lock);
1054 double_rq_lock(src_rq, dst_rq);
1055 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1056 goto unlock;
1057
1058 if (task_cpu(arg->src_task) != arg->src_cpu)
1059 goto unlock;
1060
1061 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1062 goto unlock;
1063
1064 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1065 goto unlock;
1066
1067 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1068 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1069
1070 ret = 0;
1071
1072 unlock:
1073 double_rq_unlock(src_rq, dst_rq);
1074 raw_spin_unlock(&arg->dst_task->pi_lock);
1075 raw_spin_unlock(&arg->src_task->pi_lock);
1076
1077 return ret;
1078 }
1079
1080 /*
1081 * Cross migrate two tasks
1082 */
1083 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1084 {
1085 struct migration_swap_arg arg;
1086 int ret = -EINVAL;
1087
1088 arg = (struct migration_swap_arg){
1089 .src_task = cur,
1090 .src_cpu = task_cpu(cur),
1091 .dst_task = p,
1092 .dst_cpu = task_cpu(p),
1093 };
1094
1095 if (arg.src_cpu == arg.dst_cpu)
1096 goto out;
1097
1098 /*
1099 * These three tests are all lockless; this is OK since all of them
1100 * will be re-checked with proper locks held further down the line.
1101 */
1102 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1103 goto out;
1104
1105 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1106 goto out;
1107
1108 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1109 goto out;
1110
1111 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1112 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1113
1114 out:
1115 return ret;
1116 }
1117
1118 struct migration_arg {
1119 struct task_struct *task;
1120 int dest_cpu;
1121 };
1122
1123 static int migration_cpu_stop(void *data);
1124
1125 /*
1126 * wait_task_inactive - wait for a thread to unschedule.
1127 *
1128 * If @match_state is nonzero, it's the @p->state value just checked and
1129 * not expected to change. If it changes, i.e. @p might have woken up,
1130 * then return zero. When we succeed in waiting for @p to be off its CPU,
1131 * we return a positive number (its total switch count). If a second call
1132 * a short while later returns the same number, the caller can be sure that
1133 * @p has remained unscheduled the whole time.
1134 *
1135 * The caller must ensure that the task *will* unschedule sometime soon,
1136 * else this function might spin for a *long* time. This function can't
1137 * be called with interrupts off, or it may introduce deadlock with
1138 * smp_call_function() if an IPI is sent by the same process we are
1139 * waiting to become inactive.
1140 */
1141 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1142 {
1143 unsigned long flags;
1144 int running, on_rq;
1145 unsigned long ncsw;
1146 struct rq *rq;
1147
1148 for (;;) {
1149 /*
1150 * We do the initial early heuristics without holding
1151 * any task-queue locks at all. We'll only try to get
1152 * the runqueue lock when things look like they will
1153 * work out!
1154 */
1155 rq = task_rq(p);
1156
1157 /*
1158 * If the task is actively running on another CPU
1159 * still, just relax and busy-wait without holding
1160 * any locks.
1161 *
1162 * NOTE! Since we don't hold any locks, it's not
1163 * even sure that "rq" stays as the right runqueue!
1164 * But we don't care, since "task_running()" will
1165 * return false if the runqueue has changed and p
1166 * is actually now running somewhere else!
1167 */
1168 while (task_running(rq, p)) {
1169 if (match_state && unlikely(p->state != match_state))
1170 return 0;
1171 cpu_relax();
1172 }
1173
1174 /*
1175 * Ok, time to look more closely! We need the rq
1176 * lock now, to be *sure*. If we're wrong, we'll
1177 * just go back and repeat.
1178 */
1179 rq = task_rq_lock(p, &flags);
1180 trace_sched_wait_task(p);
1181 running = task_running(rq, p);
1182 on_rq = p->on_rq;
1183 ncsw = 0;
1184 if (!match_state || p->state == match_state)
1185 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1186 task_rq_unlock(rq, p, &flags);
1187
1188 /*
1189 * If it changed from the expected state, bail out now.
1190 */
1191 if (unlikely(!ncsw))
1192 break;
1193
1194 /*
1195 * Was it really running after all now that we
1196 * checked with the proper locks actually held?
1197 *
1198 * Oops. Go back and try again..
1199 */
1200 if (unlikely(running)) {
1201 cpu_relax();
1202 continue;
1203 }
1204
1205 /*
1206 * It's not enough that it's not actively running,
1207 * it must be off the runqueue _entirely_, and not
1208 * preempted!
1209 *
1210 * So if it was still runnable (but just not actively
1211 * running right now), it's preempted, and we should
1212 * yield - it could be a while.
1213 */
1214 if (unlikely(on_rq)) {
1215 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1216
1217 set_current_state(TASK_UNINTERRUPTIBLE);
1218 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1219 continue;
1220 }
1221
1222 /*
1223 * Ahh, all good. It wasn't running, and it wasn't
1224 * runnable, which means that it will never become
1225 * running in the future either. We're all done!
1226 */
1227 break;
1228 }
1229
1230 return ncsw;
1231 }
1232
1233 /***
1234 * kick_process - kick a running thread to enter/exit the kernel
1235 * @p: the to-be-kicked thread
1236 *
1237 * Cause a process which is running on another CPU to enter
1238 * kernel-mode, without any delay. (to get signals handled.)
1239 *
1240 * NOTE: this function doesn't have to take the runqueue lock,
1241 * because all it wants to ensure is that the remote task enters
1242 * the kernel. If the IPI races and the task has been migrated
1243 * to another CPU then no harm is done and the purpose has been
1244 * achieved as well.
1245 */
1246 void kick_process(struct task_struct *p)
1247 {
1248 int cpu;
1249
1250 preempt_disable();
1251 cpu = task_cpu(p);
1252 if ((cpu != smp_processor_id()) && task_curr(p))
1253 smp_send_reschedule(cpu);
1254 preempt_enable();
1255 }
1256 EXPORT_SYMBOL_GPL(kick_process);
1257 #endif /* CONFIG_SMP */
1258
1259 #ifdef CONFIG_SMP
1260 /*
1261 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1262 */
1263 static int select_fallback_rq(int cpu, struct task_struct *p)
1264 {
1265 int nid = cpu_to_node(cpu);
1266 const struct cpumask *nodemask = NULL;
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
1269
1270 /*
1271 * If the node that the cpu is on has been offlined, cpu_to_node()
1272 * will return -1. There is no cpu on the node, and we should
1273 * select the cpu on the other node.
1274 */
1275 if (nid != -1) {
1276 nodemask = cpumask_of_node(nid);
1277
1278 /* Look for allowed, online CPU in same node. */
1279 for_each_cpu(dest_cpu, nodemask) {
1280 if (!cpu_online(dest_cpu))
1281 continue;
1282 if (!cpu_active(dest_cpu))
1283 continue;
1284 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1285 return dest_cpu;
1286 }
1287 }
1288
1289 for (;;) {
1290 /* Any allowed, online CPU? */
1291 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1292 if (!cpu_online(dest_cpu))
1293 continue;
1294 if (!cpu_active(dest_cpu))
1295 continue;
1296 goto out;
1297 }
1298
1299 switch (state) {
1300 case cpuset:
1301 /* No more Mr. Nice Guy. */
1302 cpuset_cpus_allowed_fallback(p);
1303 state = possible;
1304 break;
1305
1306 case possible:
1307 do_set_cpus_allowed(p, cpu_possible_mask);
1308 state = fail;
1309 break;
1310
1311 case fail:
1312 BUG();
1313 break;
1314 }
1315 }
1316
1317 out:
1318 if (state != cpuset) {
1319 /*
1320 * Don't tell them about moving exiting tasks or
1321 * kernel threads (both mm NULL), since they never
1322 * leave kernel.
1323 */
1324 if (p->mm && printk_ratelimit()) {
1325 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1326 task_pid_nr(p), p->comm, cpu);
1327 }
1328 }
1329
1330 return dest_cpu;
1331 }
1332
1333 /*
1334 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1335 */
1336 static inline
1337 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1338 {
1339 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1340
1341 /*
1342 * In order not to call set_task_cpu() on a blocking task we need
1343 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1344 * cpu.
1345 *
1346 * Since this is common to all placement strategies, this lives here.
1347 *
1348 * [ this allows ->select_task() to simply return task_cpu(p) and
1349 * not worry about this generic constraint ]
1350 */
1351 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1352 !cpu_online(cpu)))
1353 cpu = select_fallback_rq(task_cpu(p), p);
1354
1355 return cpu;
1356 }
1357
1358 static void update_avg(u64 *avg, u64 sample)
1359 {
1360 s64 diff = sample - *avg;
1361 *avg += diff >> 3;
1362 }
1363 #endif
1364
1365 static void
1366 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1367 {
1368 #ifdef CONFIG_SCHEDSTATS
1369 struct rq *rq = this_rq();
1370
1371 #ifdef CONFIG_SMP
1372 int this_cpu = smp_processor_id();
1373
1374 if (cpu == this_cpu) {
1375 schedstat_inc(rq, ttwu_local);
1376 schedstat_inc(p, se.statistics.nr_wakeups_local);
1377 } else {
1378 struct sched_domain *sd;
1379
1380 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1381 rcu_read_lock();
1382 for_each_domain(this_cpu, sd) {
1383 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1384 schedstat_inc(sd, ttwu_wake_remote);
1385 break;
1386 }
1387 }
1388 rcu_read_unlock();
1389 }
1390
1391 if (wake_flags & WF_MIGRATED)
1392 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1393
1394 #endif /* CONFIG_SMP */
1395
1396 schedstat_inc(rq, ttwu_count);
1397 schedstat_inc(p, se.statistics.nr_wakeups);
1398
1399 if (wake_flags & WF_SYNC)
1400 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1401
1402 #endif /* CONFIG_SCHEDSTATS */
1403 }
1404
1405 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1406 {
1407 activate_task(rq, p, en_flags);
1408 p->on_rq = 1;
1409
1410 /* if a worker is waking up, notify workqueue */
1411 if (p->flags & PF_WQ_WORKER)
1412 wq_worker_waking_up(p, cpu_of(rq));
1413 }
1414
1415 /*
1416 * Mark the task runnable and perform wakeup-preemption.
1417 */
1418 static void
1419 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1420 {
1421 check_preempt_curr(rq, p, wake_flags);
1422 trace_sched_wakeup(p, true);
1423
1424 p->state = TASK_RUNNING;
1425 #ifdef CONFIG_SMP
1426 if (p->sched_class->task_woken)
1427 p->sched_class->task_woken(rq, p);
1428
1429 if (rq->idle_stamp) {
1430 u64 delta = rq_clock(rq) - rq->idle_stamp;
1431 u64 max = 2*rq->max_idle_balance_cost;
1432
1433 update_avg(&rq->avg_idle, delta);
1434
1435 if (rq->avg_idle > max)
1436 rq->avg_idle = max;
1437
1438 rq->idle_stamp = 0;
1439 }
1440 #endif
1441 }
1442
1443 static void
1444 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1445 {
1446 #ifdef CONFIG_SMP
1447 if (p->sched_contributes_to_load)
1448 rq->nr_uninterruptible--;
1449 #endif
1450
1451 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1452 ttwu_do_wakeup(rq, p, wake_flags);
1453 }
1454
1455 /*
1456 * Called in case the task @p isn't fully descheduled from its runqueue,
1457 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1458 * since all we need to do is flip p->state to TASK_RUNNING, since
1459 * the task is still ->on_rq.
1460 */
1461 static int ttwu_remote(struct task_struct *p, int wake_flags)
1462 {
1463 struct rq *rq;
1464 int ret = 0;
1465
1466 rq = __task_rq_lock(p);
1467 if (p->on_rq) {
1468 /* check_preempt_curr() may use rq clock */
1469 update_rq_clock(rq);
1470 ttwu_do_wakeup(rq, p, wake_flags);
1471 ret = 1;
1472 }
1473 __task_rq_unlock(rq);
1474
1475 return ret;
1476 }
1477
1478 #ifdef CONFIG_SMP
1479 static void sched_ttwu_pending(void)
1480 {
1481 struct rq *rq = this_rq();
1482 struct llist_node *llist = llist_del_all(&rq->wake_list);
1483 struct task_struct *p;
1484
1485 raw_spin_lock(&rq->lock);
1486
1487 while (llist) {
1488 p = llist_entry(llist, struct task_struct, wake_entry);
1489 llist = llist_next(llist);
1490 ttwu_do_activate(rq, p, 0);
1491 }
1492
1493 raw_spin_unlock(&rq->lock);
1494 }
1495
1496 void scheduler_ipi(void)
1497 {
1498 /*
1499 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1500 * TIF_NEED_RESCHED remotely (for the first time) will also send
1501 * this IPI.
1502 */
1503 preempt_fold_need_resched();
1504
1505 if (llist_empty(&this_rq()->wake_list)
1506 && !tick_nohz_full_cpu(smp_processor_id())
1507 && !got_nohz_idle_kick())
1508 return;
1509
1510 /*
1511 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1512 * traditionally all their work was done from the interrupt return
1513 * path. Now that we actually do some work, we need to make sure
1514 * we do call them.
1515 *
1516 * Some archs already do call them, luckily irq_enter/exit nest
1517 * properly.
1518 *
1519 * Arguably we should visit all archs and update all handlers,
1520 * however a fair share of IPIs are still resched only so this would
1521 * somewhat pessimize the simple resched case.
1522 */
1523 irq_enter();
1524 tick_nohz_full_check();
1525 sched_ttwu_pending();
1526
1527 /*
1528 * Check if someone kicked us for doing the nohz idle load balance.
1529 */
1530 if (unlikely(got_nohz_idle_kick())) {
1531 this_rq()->idle_balance = 1;
1532 raise_softirq_irqoff(SCHED_SOFTIRQ);
1533 }
1534 irq_exit();
1535 }
1536
1537 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1538 {
1539 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1540 smp_send_reschedule(cpu);
1541 }
1542
1543 bool cpus_share_cache(int this_cpu, int that_cpu)
1544 {
1545 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1546 }
1547 #endif /* CONFIG_SMP */
1548
1549 static void ttwu_queue(struct task_struct *p, int cpu)
1550 {
1551 struct rq *rq = cpu_rq(cpu);
1552
1553 #if defined(CONFIG_SMP)
1554 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1555 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1556 ttwu_queue_remote(p, cpu);
1557 return;
1558 }
1559 #endif
1560
1561 raw_spin_lock(&rq->lock);
1562 ttwu_do_activate(rq, p, 0);
1563 raw_spin_unlock(&rq->lock);
1564 }
1565
1566 /**
1567 * try_to_wake_up - wake up a thread
1568 * @p: the thread to be awakened
1569 * @state: the mask of task states that can be woken
1570 * @wake_flags: wake modifier flags (WF_*)
1571 *
1572 * Put it on the run-queue if it's not already there. The "current"
1573 * thread is always on the run-queue (except when the actual
1574 * re-schedule is in progress), and as such you're allowed to do
1575 * the simpler "current->state = TASK_RUNNING" to mark yourself
1576 * runnable without the overhead of this.
1577 *
1578 * Return: %true if @p was woken up, %false if it was already running.
1579 * or @state didn't match @p's state.
1580 */
1581 static int
1582 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1583 {
1584 unsigned long flags;
1585 int cpu, success = 0;
1586
1587 /*
1588 * If we are going to wake up a thread waiting for CONDITION we
1589 * need to ensure that CONDITION=1 done by the caller can not be
1590 * reordered with p->state check below. This pairs with mb() in
1591 * set_current_state() the waiting thread does.
1592 */
1593 smp_mb__before_spinlock();
1594 raw_spin_lock_irqsave(&p->pi_lock, flags);
1595 if (!(p->state & state))
1596 goto out;
1597
1598 success = 1; /* we're going to change ->state */
1599 cpu = task_cpu(p);
1600
1601 if (p->on_rq && ttwu_remote(p, wake_flags))
1602 goto stat;
1603
1604 #ifdef CONFIG_SMP
1605 /*
1606 * If the owning (remote) cpu is still in the middle of schedule() with
1607 * this task as prev, wait until its done referencing the task.
1608 */
1609 while (p->on_cpu)
1610 cpu_relax();
1611 /*
1612 * Pairs with the smp_wmb() in finish_lock_switch().
1613 */
1614 smp_rmb();
1615
1616 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1617 p->state = TASK_WAKING;
1618
1619 if (p->sched_class->task_waking)
1620 p->sched_class->task_waking(p);
1621
1622 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1623 if (task_cpu(p) != cpu) {
1624 wake_flags |= WF_MIGRATED;
1625 set_task_cpu(p, cpu);
1626 }
1627 #endif /* CONFIG_SMP */
1628
1629 ttwu_queue(p, cpu);
1630 stat:
1631 ttwu_stat(p, cpu, wake_flags);
1632 out:
1633 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1634
1635 return success;
1636 }
1637
1638 /**
1639 * try_to_wake_up_local - try to wake up a local task with rq lock held
1640 * @p: the thread to be awakened
1641 *
1642 * Put @p on the run-queue if it's not already there. The caller must
1643 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1644 * the current task.
1645 */
1646 static void try_to_wake_up_local(struct task_struct *p)
1647 {
1648 struct rq *rq = task_rq(p);
1649
1650 if (WARN_ON_ONCE(rq != this_rq()) ||
1651 WARN_ON_ONCE(p == current))
1652 return;
1653
1654 lockdep_assert_held(&rq->lock);
1655
1656 if (!raw_spin_trylock(&p->pi_lock)) {
1657 raw_spin_unlock(&rq->lock);
1658 raw_spin_lock(&p->pi_lock);
1659 raw_spin_lock(&rq->lock);
1660 }
1661
1662 if (!(p->state & TASK_NORMAL))
1663 goto out;
1664
1665 if (!p->on_rq)
1666 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1667
1668 ttwu_do_wakeup(rq, p, 0);
1669 ttwu_stat(p, smp_processor_id(), 0);
1670 out:
1671 raw_spin_unlock(&p->pi_lock);
1672 }
1673
1674 /**
1675 * wake_up_process - Wake up a specific process
1676 * @p: The process to be woken up.
1677 *
1678 * Attempt to wake up the nominated process and move it to the set of runnable
1679 * processes.
1680 *
1681 * Return: 1 if the process was woken up, 0 if it was already running.
1682 *
1683 * It may be assumed that this function implies a write memory barrier before
1684 * changing the task state if and only if any tasks are woken up.
1685 */
1686 int wake_up_process(struct task_struct *p)
1687 {
1688 WARN_ON(task_is_stopped_or_traced(p));
1689 return try_to_wake_up(p, TASK_NORMAL, 0);
1690 }
1691 EXPORT_SYMBOL(wake_up_process);
1692
1693 int wake_up_state(struct task_struct *p, unsigned int state)
1694 {
1695 return try_to_wake_up(p, state, 0);
1696 }
1697
1698 /*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1705 {
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
1711 p->se.prev_sum_exec_runtime = 0;
1712 p->se.nr_migrations = 0;
1713 p->se.vruntime = 0;
1714 INIT_LIST_HEAD(&p->se.group_node);
1715
1716 #ifdef CONFIG_SCHEDSTATS
1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1718 #endif
1719
1720 RB_CLEAR_NODE(&p->dl.rb_node);
1721 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1722 p->dl.dl_runtime = p->dl.runtime = 0;
1723 p->dl.dl_deadline = p->dl.deadline = 0;
1724 p->dl.dl_period = 0;
1725 p->dl.flags = 0;
1726
1727 INIT_LIST_HEAD(&p->rt.run_list);
1728
1729 #ifdef CONFIG_PREEMPT_NOTIFIERS
1730 INIT_HLIST_HEAD(&p->preempt_notifiers);
1731 #endif
1732
1733 #ifdef CONFIG_NUMA_BALANCING
1734 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1735 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1736 p->mm->numa_scan_seq = 0;
1737 }
1738
1739 if (clone_flags & CLONE_VM)
1740 p->numa_preferred_nid = current->numa_preferred_nid;
1741 else
1742 p->numa_preferred_nid = -1;
1743
1744 p->node_stamp = 0ULL;
1745 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1746 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1747 p->numa_work.next = &p->numa_work;
1748 p->numa_faults_memory = NULL;
1749 p->numa_faults_buffer_memory = NULL;
1750 p->last_task_numa_placement = 0;
1751 p->last_sum_exec_runtime = 0;
1752
1753 INIT_LIST_HEAD(&p->numa_entry);
1754 p->numa_group = NULL;
1755 #endif /* CONFIG_NUMA_BALANCING */
1756 }
1757
1758 #ifdef CONFIG_NUMA_BALANCING
1759 #ifdef CONFIG_SCHED_DEBUG
1760 void set_numabalancing_state(bool enabled)
1761 {
1762 if (enabled)
1763 sched_feat_set("NUMA");
1764 else
1765 sched_feat_set("NO_NUMA");
1766 }
1767 #else
1768 __read_mostly bool numabalancing_enabled;
1769
1770 void set_numabalancing_state(bool enabled)
1771 {
1772 numabalancing_enabled = enabled;
1773 }
1774 #endif /* CONFIG_SCHED_DEBUG */
1775
1776 #ifdef CONFIG_PROC_SYSCTL
1777 int sysctl_numa_balancing(struct ctl_table *table, int write,
1778 void __user *buffer, size_t *lenp, loff_t *ppos)
1779 {
1780 struct ctl_table t;
1781 int err;
1782 int state = numabalancing_enabled;
1783
1784 if (write && !capable(CAP_SYS_ADMIN))
1785 return -EPERM;
1786
1787 t = *table;
1788 t.data = &state;
1789 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1790 if (err < 0)
1791 return err;
1792 if (write)
1793 set_numabalancing_state(state);
1794 return err;
1795 }
1796 #endif
1797 #endif
1798
1799 /*
1800 * fork()/clone()-time setup:
1801 */
1802 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1803 {
1804 unsigned long flags;
1805 int cpu = get_cpu();
1806
1807 __sched_fork(clone_flags, p);
1808 /*
1809 * We mark the process as running here. This guarantees that
1810 * nobody will actually run it, and a signal or other external
1811 * event cannot wake it up and insert it on the runqueue either.
1812 */
1813 p->state = TASK_RUNNING;
1814
1815 /*
1816 * Make sure we do not leak PI boosting priority to the child.
1817 */
1818 p->prio = current->normal_prio;
1819
1820 /*
1821 * Revert to default priority/policy on fork if requested.
1822 */
1823 if (unlikely(p->sched_reset_on_fork)) {
1824 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1825 p->policy = SCHED_NORMAL;
1826 p->static_prio = NICE_TO_PRIO(0);
1827 p->rt_priority = 0;
1828 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1829 p->static_prio = NICE_TO_PRIO(0);
1830
1831 p->prio = p->normal_prio = __normal_prio(p);
1832 set_load_weight(p);
1833
1834 /*
1835 * We don't need the reset flag anymore after the fork. It has
1836 * fulfilled its duty:
1837 */
1838 p->sched_reset_on_fork = 0;
1839 }
1840
1841 if (dl_prio(p->prio)) {
1842 put_cpu();
1843 return -EAGAIN;
1844 } else if (rt_prio(p->prio)) {
1845 p->sched_class = &rt_sched_class;
1846 } else {
1847 p->sched_class = &fair_sched_class;
1848 }
1849
1850 if (p->sched_class->task_fork)
1851 p->sched_class->task_fork(p);
1852
1853 /*
1854 * The child is not yet in the pid-hash so no cgroup attach races,
1855 * and the cgroup is pinned to this child due to cgroup_fork()
1856 * is ran before sched_fork().
1857 *
1858 * Silence PROVE_RCU.
1859 */
1860 raw_spin_lock_irqsave(&p->pi_lock, flags);
1861 set_task_cpu(p, cpu);
1862 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1863
1864 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1865 if (likely(sched_info_on()))
1866 memset(&p->sched_info, 0, sizeof(p->sched_info));
1867 #endif
1868 #if defined(CONFIG_SMP)
1869 p->on_cpu = 0;
1870 #endif
1871 init_task_preempt_count(p);
1872 #ifdef CONFIG_SMP
1873 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1874 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1875 #endif
1876
1877 put_cpu();
1878 return 0;
1879 }
1880
1881 unsigned long to_ratio(u64 period, u64 runtime)
1882 {
1883 if (runtime == RUNTIME_INF)
1884 return 1ULL << 20;
1885
1886 /*
1887 * Doing this here saves a lot of checks in all
1888 * the calling paths, and returning zero seems
1889 * safe for them anyway.
1890 */
1891 if (period == 0)
1892 return 0;
1893
1894 return div64_u64(runtime << 20, period);
1895 }
1896
1897 #ifdef CONFIG_SMP
1898 inline struct dl_bw *dl_bw_of(int i)
1899 {
1900 return &cpu_rq(i)->rd->dl_bw;
1901 }
1902
1903 static inline int dl_bw_cpus(int i)
1904 {
1905 struct root_domain *rd = cpu_rq(i)->rd;
1906 int cpus = 0;
1907
1908 for_each_cpu_and(i, rd->span, cpu_active_mask)
1909 cpus++;
1910
1911 return cpus;
1912 }
1913 #else
1914 inline struct dl_bw *dl_bw_of(int i)
1915 {
1916 return &cpu_rq(i)->dl.dl_bw;
1917 }
1918
1919 static inline int dl_bw_cpus(int i)
1920 {
1921 return 1;
1922 }
1923 #endif
1924
1925 static inline
1926 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1927 {
1928 dl_b->total_bw -= tsk_bw;
1929 }
1930
1931 static inline
1932 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1933 {
1934 dl_b->total_bw += tsk_bw;
1935 }
1936
1937 static inline
1938 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1939 {
1940 return dl_b->bw != -1 &&
1941 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1942 }
1943
1944 /*
1945 * We must be sure that accepting a new task (or allowing changing the
1946 * parameters of an existing one) is consistent with the bandwidth
1947 * constraints. If yes, this function also accordingly updates the currently
1948 * allocated bandwidth to reflect the new situation.
1949 *
1950 * This function is called while holding p's rq->lock.
1951 */
1952 static int dl_overflow(struct task_struct *p, int policy,
1953 const struct sched_attr *attr)
1954 {
1955
1956 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1957 u64 period = attr->sched_period ?: attr->sched_deadline;
1958 u64 runtime = attr->sched_runtime;
1959 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1960 int cpus, err = -1;
1961
1962 if (new_bw == p->dl.dl_bw)
1963 return 0;
1964
1965 /*
1966 * Either if a task, enters, leave, or stays -deadline but changes
1967 * its parameters, we may need to update accordingly the total
1968 * allocated bandwidth of the container.
1969 */
1970 raw_spin_lock(&dl_b->lock);
1971 cpus = dl_bw_cpus(task_cpu(p));
1972 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1973 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1974 __dl_add(dl_b, new_bw);
1975 err = 0;
1976 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1977 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1978 __dl_clear(dl_b, p->dl.dl_bw);
1979 __dl_add(dl_b, new_bw);
1980 err = 0;
1981 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1982 __dl_clear(dl_b, p->dl.dl_bw);
1983 err = 0;
1984 }
1985 raw_spin_unlock(&dl_b->lock);
1986
1987 return err;
1988 }
1989
1990 extern void init_dl_bw(struct dl_bw *dl_b);
1991
1992 /*
1993 * wake_up_new_task - wake up a newly created task for the first time.
1994 *
1995 * This function will do some initial scheduler statistics housekeeping
1996 * that must be done for every newly created context, then puts the task
1997 * on the runqueue and wakes it.
1998 */
1999 void wake_up_new_task(struct task_struct *p)
2000 {
2001 unsigned long flags;
2002 struct rq *rq;
2003
2004 raw_spin_lock_irqsave(&p->pi_lock, flags);
2005 #ifdef CONFIG_SMP
2006 /*
2007 * Fork balancing, do it here and not earlier because:
2008 * - cpus_allowed can change in the fork path
2009 * - any previously selected cpu might disappear through hotplug
2010 */
2011 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2012 #endif
2013
2014 /* Initialize new task's runnable average */
2015 init_task_runnable_average(p);
2016 rq = __task_rq_lock(p);
2017 activate_task(rq, p, 0);
2018 p->on_rq = 1;
2019 trace_sched_wakeup_new(p, true);
2020 check_preempt_curr(rq, p, WF_FORK);
2021 #ifdef CONFIG_SMP
2022 if (p->sched_class->task_woken)
2023 p->sched_class->task_woken(rq, p);
2024 #endif
2025 task_rq_unlock(rq, p, &flags);
2026 }
2027
2028 #ifdef CONFIG_PREEMPT_NOTIFIERS
2029
2030 /**
2031 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2032 * @notifier: notifier struct to register
2033 */
2034 void preempt_notifier_register(struct preempt_notifier *notifier)
2035 {
2036 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2037 }
2038 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2039
2040 /**
2041 * preempt_notifier_unregister - no longer interested in preemption notifications
2042 * @notifier: notifier struct to unregister
2043 *
2044 * This is safe to call from within a preemption notifier.
2045 */
2046 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2047 {
2048 hlist_del(&notifier->link);
2049 }
2050 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2051
2052 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2053 {
2054 struct preempt_notifier *notifier;
2055
2056 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2057 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2058 }
2059
2060 static void
2061 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2062 struct task_struct *next)
2063 {
2064 struct preempt_notifier *notifier;
2065
2066 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2067 notifier->ops->sched_out(notifier, next);
2068 }
2069
2070 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2071
2072 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2073 {
2074 }
2075
2076 static void
2077 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2078 struct task_struct *next)
2079 {
2080 }
2081
2082 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2083
2084 /**
2085 * prepare_task_switch - prepare to switch tasks
2086 * @rq: the runqueue preparing to switch
2087 * @prev: the current task that is being switched out
2088 * @next: the task we are going to switch to.
2089 *
2090 * This is called with the rq lock held and interrupts off. It must
2091 * be paired with a subsequent finish_task_switch after the context
2092 * switch.
2093 *
2094 * prepare_task_switch sets up locking and calls architecture specific
2095 * hooks.
2096 */
2097 static inline void
2098 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2099 struct task_struct *next)
2100 {
2101 trace_sched_switch(prev, next);
2102 sched_info_switch(rq, prev, next);
2103 perf_event_task_sched_out(prev, next);
2104 fire_sched_out_preempt_notifiers(prev, next);
2105 prepare_lock_switch(rq, next);
2106 prepare_arch_switch(next);
2107 }
2108
2109 /**
2110 * finish_task_switch - clean up after a task-switch
2111 * @rq: runqueue associated with task-switch
2112 * @prev: the thread we just switched away from.
2113 *
2114 * finish_task_switch must be called after the context switch, paired
2115 * with a prepare_task_switch call before the context switch.
2116 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2117 * and do any other architecture-specific cleanup actions.
2118 *
2119 * Note that we may have delayed dropping an mm in context_switch(). If
2120 * so, we finish that here outside of the runqueue lock. (Doing it
2121 * with the lock held can cause deadlocks; see schedule() for
2122 * details.)
2123 */
2124 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2125 __releases(rq->lock)
2126 {
2127 struct mm_struct *mm = rq->prev_mm;
2128 long prev_state;
2129
2130 rq->prev_mm = NULL;
2131
2132 /*
2133 * A task struct has one reference for the use as "current".
2134 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2135 * schedule one last time. The schedule call will never return, and
2136 * the scheduled task must drop that reference.
2137 * The test for TASK_DEAD must occur while the runqueue locks are
2138 * still held, otherwise prev could be scheduled on another cpu, die
2139 * there before we look at prev->state, and then the reference would
2140 * be dropped twice.
2141 * Manfred Spraul <manfred@colorfullife.com>
2142 */
2143 prev_state = prev->state;
2144 vtime_task_switch(prev);
2145 finish_arch_switch(prev);
2146 perf_event_task_sched_in(prev, current);
2147 finish_lock_switch(rq, prev);
2148 finish_arch_post_lock_switch();
2149
2150 fire_sched_in_preempt_notifiers(current);
2151 if (mm)
2152 mmdrop(mm);
2153 if (unlikely(prev_state == TASK_DEAD)) {
2154 if (prev->sched_class->task_dead)
2155 prev->sched_class->task_dead(prev);
2156
2157 /*
2158 * Remove function-return probe instances associated with this
2159 * task and put them back on the free list.
2160 */
2161 kprobe_flush_task(prev);
2162 put_task_struct(prev);
2163 }
2164
2165 tick_nohz_task_switch(current);
2166 }
2167
2168 #ifdef CONFIG_SMP
2169
2170 /* rq->lock is NOT held, but preemption is disabled */
2171 static inline void post_schedule(struct rq *rq)
2172 {
2173 if (rq->post_schedule) {
2174 unsigned long flags;
2175
2176 raw_spin_lock_irqsave(&rq->lock, flags);
2177 if (rq->curr->sched_class->post_schedule)
2178 rq->curr->sched_class->post_schedule(rq);
2179 raw_spin_unlock_irqrestore(&rq->lock, flags);
2180
2181 rq->post_schedule = 0;
2182 }
2183 }
2184
2185 #else
2186
2187 static inline void post_schedule(struct rq *rq)
2188 {
2189 }
2190
2191 #endif
2192
2193 /**
2194 * schedule_tail - first thing a freshly forked thread must call.
2195 * @prev: the thread we just switched away from.
2196 */
2197 asmlinkage void schedule_tail(struct task_struct *prev)
2198 __releases(rq->lock)
2199 {
2200 struct rq *rq = this_rq();
2201
2202 finish_task_switch(rq, prev);
2203
2204 /*
2205 * FIXME: do we need to worry about rq being invalidated by the
2206 * task_switch?
2207 */
2208 post_schedule(rq);
2209
2210 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2211 /* In this case, finish_task_switch does not reenable preemption */
2212 preempt_enable();
2213 #endif
2214 if (current->set_child_tid)
2215 put_user(task_pid_vnr(current), current->set_child_tid);
2216 }
2217
2218 /*
2219 * context_switch - switch to the new MM and the new
2220 * thread's register state.
2221 */
2222 static inline void
2223 context_switch(struct rq *rq, struct task_struct *prev,
2224 struct task_struct *next)
2225 {
2226 struct mm_struct *mm, *oldmm;
2227
2228 prepare_task_switch(rq, prev, next);
2229
2230 mm = next->mm;
2231 oldmm = prev->active_mm;
2232 /*
2233 * For paravirt, this is coupled with an exit in switch_to to
2234 * combine the page table reload and the switch backend into
2235 * one hypercall.
2236 */
2237 arch_start_context_switch(prev);
2238
2239 if (!mm) {
2240 next->active_mm = oldmm;
2241 atomic_inc(&oldmm->mm_count);
2242 enter_lazy_tlb(oldmm, next);
2243 } else
2244 switch_mm(oldmm, mm, next);
2245
2246 if (!prev->mm) {
2247 prev->active_mm = NULL;
2248 rq->prev_mm = oldmm;
2249 }
2250 /*
2251 * Since the runqueue lock will be released by the next
2252 * task (which is an invalid locking op but in the case
2253 * of the scheduler it's an obvious special-case), so we
2254 * do an early lockdep release here:
2255 */
2256 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2257 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2258 #endif
2259
2260 context_tracking_task_switch(prev, next);
2261 /* Here we just switch the register state and the stack. */
2262 switch_to(prev, next, prev);
2263
2264 barrier();
2265 /*
2266 * this_rq must be evaluated again because prev may have moved
2267 * CPUs since it called schedule(), thus the 'rq' on its stack
2268 * frame will be invalid.
2269 */
2270 finish_task_switch(this_rq(), prev);
2271 }
2272
2273 /*
2274 * nr_running and nr_context_switches:
2275 *
2276 * externally visible scheduler statistics: current number of runnable
2277 * threads, total number of context switches performed since bootup.
2278 */
2279 unsigned long nr_running(void)
2280 {
2281 unsigned long i, sum = 0;
2282
2283 for_each_online_cpu(i)
2284 sum += cpu_rq(i)->nr_running;
2285
2286 return sum;
2287 }
2288
2289 unsigned long long nr_context_switches(void)
2290 {
2291 int i;
2292 unsigned long long sum = 0;
2293
2294 for_each_possible_cpu(i)
2295 sum += cpu_rq(i)->nr_switches;
2296
2297 return sum;
2298 }
2299
2300 unsigned long nr_iowait(void)
2301 {
2302 unsigned long i, sum = 0;
2303
2304 for_each_possible_cpu(i)
2305 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2306
2307 return sum;
2308 }
2309
2310 unsigned long nr_iowait_cpu(int cpu)
2311 {
2312 struct rq *this = cpu_rq(cpu);
2313 return atomic_read(&this->nr_iowait);
2314 }
2315
2316 #ifdef CONFIG_SMP
2317
2318 /*
2319 * sched_exec - execve() is a valuable balancing opportunity, because at
2320 * this point the task has the smallest effective memory and cache footprint.
2321 */
2322 void sched_exec(void)
2323 {
2324 struct task_struct *p = current;
2325 unsigned long flags;
2326 int dest_cpu;
2327
2328 raw_spin_lock_irqsave(&p->pi_lock, flags);
2329 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2330 if (dest_cpu == smp_processor_id())
2331 goto unlock;
2332
2333 if (likely(cpu_active(dest_cpu))) {
2334 struct migration_arg arg = { p, dest_cpu };
2335
2336 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2337 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2338 return;
2339 }
2340 unlock:
2341 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2342 }
2343
2344 #endif
2345
2346 DEFINE_PER_CPU(struct kernel_stat, kstat);
2347 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2348
2349 EXPORT_PER_CPU_SYMBOL(kstat);
2350 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2351
2352 /*
2353 * Return any ns on the sched_clock that have not yet been accounted in
2354 * @p in case that task is currently running.
2355 *
2356 * Called with task_rq_lock() held on @rq.
2357 */
2358 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2359 {
2360 u64 ns = 0;
2361
2362 if (task_current(rq, p)) {
2363 update_rq_clock(rq);
2364 ns = rq_clock_task(rq) - p->se.exec_start;
2365 if ((s64)ns < 0)
2366 ns = 0;
2367 }
2368
2369 return ns;
2370 }
2371
2372 unsigned long long task_delta_exec(struct task_struct *p)
2373 {
2374 unsigned long flags;
2375 struct rq *rq;
2376 u64 ns = 0;
2377
2378 rq = task_rq_lock(p, &flags);
2379 ns = do_task_delta_exec(p, rq);
2380 task_rq_unlock(rq, p, &flags);
2381
2382 return ns;
2383 }
2384
2385 /*
2386 * Return accounted runtime for the task.
2387 * In case the task is currently running, return the runtime plus current's
2388 * pending runtime that have not been accounted yet.
2389 */
2390 unsigned long long task_sched_runtime(struct task_struct *p)
2391 {
2392 unsigned long flags;
2393 struct rq *rq;
2394 u64 ns = 0;
2395
2396 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2397 /*
2398 * 64-bit doesn't need locks to atomically read a 64bit value.
2399 * So we have a optimization chance when the task's delta_exec is 0.
2400 * Reading ->on_cpu is racy, but this is ok.
2401 *
2402 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2403 * If we race with it entering cpu, unaccounted time is 0. This is
2404 * indistinguishable from the read occurring a few cycles earlier.
2405 */
2406 if (!p->on_cpu)
2407 return p->se.sum_exec_runtime;
2408 #endif
2409
2410 rq = task_rq_lock(p, &flags);
2411 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2412 task_rq_unlock(rq, p, &flags);
2413
2414 return ns;
2415 }
2416
2417 /*
2418 * This function gets called by the timer code, with HZ frequency.
2419 * We call it with interrupts disabled.
2420 */
2421 void scheduler_tick(void)
2422 {
2423 int cpu = smp_processor_id();
2424 struct rq *rq = cpu_rq(cpu);
2425 struct task_struct *curr = rq->curr;
2426
2427 sched_clock_tick();
2428
2429 raw_spin_lock(&rq->lock);
2430 update_rq_clock(rq);
2431 curr->sched_class->task_tick(rq, curr, 0);
2432 update_cpu_load_active(rq);
2433 raw_spin_unlock(&rq->lock);
2434
2435 perf_event_task_tick();
2436
2437 #ifdef CONFIG_SMP
2438 rq->idle_balance = idle_cpu(cpu);
2439 trigger_load_balance(rq);
2440 #endif
2441 rq_last_tick_reset(rq);
2442 }
2443
2444 #ifdef CONFIG_NO_HZ_FULL
2445 /**
2446 * scheduler_tick_max_deferment
2447 *
2448 * Keep at least one tick per second when a single
2449 * active task is running because the scheduler doesn't
2450 * yet completely support full dynticks environment.
2451 *
2452 * This makes sure that uptime, CFS vruntime, load
2453 * balancing, etc... continue to move forward, even
2454 * with a very low granularity.
2455 *
2456 * Return: Maximum deferment in nanoseconds.
2457 */
2458 u64 scheduler_tick_max_deferment(void)
2459 {
2460 struct rq *rq = this_rq();
2461 unsigned long next, now = ACCESS_ONCE(jiffies);
2462
2463 next = rq->last_sched_tick + HZ;
2464
2465 if (time_before_eq(next, now))
2466 return 0;
2467
2468 return jiffies_to_nsecs(next - now);
2469 }
2470 #endif
2471
2472 notrace unsigned long get_parent_ip(unsigned long addr)
2473 {
2474 if (in_lock_functions(addr)) {
2475 addr = CALLER_ADDR2;
2476 if (in_lock_functions(addr))
2477 addr = CALLER_ADDR3;
2478 }
2479 return addr;
2480 }
2481
2482 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2483 defined(CONFIG_PREEMPT_TRACER))
2484
2485 void __kprobes preempt_count_add(int val)
2486 {
2487 #ifdef CONFIG_DEBUG_PREEMPT
2488 /*
2489 * Underflow?
2490 */
2491 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2492 return;
2493 #endif
2494 __preempt_count_add(val);
2495 #ifdef CONFIG_DEBUG_PREEMPT
2496 /*
2497 * Spinlock count overflowing soon?
2498 */
2499 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2500 PREEMPT_MASK - 10);
2501 #endif
2502 if (preempt_count() == val) {
2503 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2504 #ifdef CONFIG_DEBUG_PREEMPT
2505 current->preempt_disable_ip = ip;
2506 #endif
2507 trace_preempt_off(CALLER_ADDR0, ip);
2508 }
2509 }
2510 EXPORT_SYMBOL(preempt_count_add);
2511
2512 void __kprobes preempt_count_sub(int val)
2513 {
2514 #ifdef CONFIG_DEBUG_PREEMPT
2515 /*
2516 * Underflow?
2517 */
2518 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2519 return;
2520 /*
2521 * Is the spinlock portion underflowing?
2522 */
2523 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2524 !(preempt_count() & PREEMPT_MASK)))
2525 return;
2526 #endif
2527
2528 if (preempt_count() == val)
2529 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2530 __preempt_count_sub(val);
2531 }
2532 EXPORT_SYMBOL(preempt_count_sub);
2533
2534 #endif
2535
2536 /*
2537 * Print scheduling while atomic bug:
2538 */
2539 static noinline void __schedule_bug(struct task_struct *prev)
2540 {
2541 if (oops_in_progress)
2542 return;
2543
2544 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2545 prev->comm, prev->pid, preempt_count());
2546
2547 debug_show_held_locks(prev);
2548 print_modules();
2549 if (irqs_disabled())
2550 print_irqtrace_events(prev);
2551 #ifdef CONFIG_DEBUG_PREEMPT
2552 if (in_atomic_preempt_off()) {
2553 pr_err("Preemption disabled at:");
2554 print_ip_sym(current->preempt_disable_ip);
2555 pr_cont("\n");
2556 }
2557 #endif
2558 dump_stack();
2559 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2560 }
2561
2562 /*
2563 * Various schedule()-time debugging checks and statistics:
2564 */
2565 static inline void schedule_debug(struct task_struct *prev)
2566 {
2567 /*
2568 * Test if we are atomic. Since do_exit() needs to call into
2569 * schedule() atomically, we ignore that path. Otherwise whine
2570 * if we are scheduling when we should not.
2571 */
2572 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2573 __schedule_bug(prev);
2574 rcu_sleep_check();
2575
2576 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2577
2578 schedstat_inc(this_rq(), sched_count);
2579 }
2580
2581 /*
2582 * Pick up the highest-prio task:
2583 */
2584 static inline struct task_struct *
2585 pick_next_task(struct rq *rq, struct task_struct *prev)
2586 {
2587 const struct sched_class *class = &fair_sched_class;
2588 struct task_struct *p;
2589
2590 /*
2591 * Optimization: we know that if all tasks are in
2592 * the fair class we can call that function directly:
2593 */
2594 if (likely(prev->sched_class == class &&
2595 rq->nr_running == rq->cfs.h_nr_running)) {
2596 p = fair_sched_class.pick_next_task(rq, prev);
2597 if (likely(p && p != RETRY_TASK))
2598 return p;
2599 }
2600
2601 again:
2602 for_each_class(class) {
2603 p = class->pick_next_task(rq, prev);
2604 if (p) {
2605 if (unlikely(p == RETRY_TASK))
2606 goto again;
2607 return p;
2608 }
2609 }
2610
2611 BUG(); /* the idle class will always have a runnable task */
2612 }
2613
2614 /*
2615 * __schedule() is the main scheduler function.
2616 *
2617 * The main means of driving the scheduler and thus entering this function are:
2618 *
2619 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2620 *
2621 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2622 * paths. For example, see arch/x86/entry_64.S.
2623 *
2624 * To drive preemption between tasks, the scheduler sets the flag in timer
2625 * interrupt handler scheduler_tick().
2626 *
2627 * 3. Wakeups don't really cause entry into schedule(). They add a
2628 * task to the run-queue and that's it.
2629 *
2630 * Now, if the new task added to the run-queue preempts the current
2631 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2632 * called on the nearest possible occasion:
2633 *
2634 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2635 *
2636 * - in syscall or exception context, at the next outmost
2637 * preempt_enable(). (this might be as soon as the wake_up()'s
2638 * spin_unlock()!)
2639 *
2640 * - in IRQ context, return from interrupt-handler to
2641 * preemptible context
2642 *
2643 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2644 * then at the next:
2645 *
2646 * - cond_resched() call
2647 * - explicit schedule() call
2648 * - return from syscall or exception to user-space
2649 * - return from interrupt-handler to user-space
2650 */
2651 static void __sched __schedule(void)
2652 {
2653 struct task_struct *prev, *next;
2654 unsigned long *switch_count;
2655 struct rq *rq;
2656 int cpu;
2657
2658 need_resched:
2659 preempt_disable();
2660 cpu = smp_processor_id();
2661 rq = cpu_rq(cpu);
2662 rcu_note_context_switch(cpu);
2663 prev = rq->curr;
2664
2665 schedule_debug(prev);
2666
2667 if (sched_feat(HRTICK))
2668 hrtick_clear(rq);
2669
2670 /*
2671 * Make sure that signal_pending_state()->signal_pending() below
2672 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2673 * done by the caller to avoid the race with signal_wake_up().
2674 */
2675 smp_mb__before_spinlock();
2676 raw_spin_lock_irq(&rq->lock);
2677
2678 switch_count = &prev->nivcsw;
2679 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2680 if (unlikely(signal_pending_state(prev->state, prev))) {
2681 prev->state = TASK_RUNNING;
2682 } else {
2683 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2684 prev->on_rq = 0;
2685
2686 /*
2687 * If a worker went to sleep, notify and ask workqueue
2688 * whether it wants to wake up a task to maintain
2689 * concurrency.
2690 */
2691 if (prev->flags & PF_WQ_WORKER) {
2692 struct task_struct *to_wakeup;
2693
2694 to_wakeup = wq_worker_sleeping(prev, cpu);
2695 if (to_wakeup)
2696 try_to_wake_up_local(to_wakeup);
2697 }
2698 }
2699 switch_count = &prev->nvcsw;
2700 }
2701
2702 if (prev->on_rq || rq->skip_clock_update < 0)
2703 update_rq_clock(rq);
2704
2705 next = pick_next_task(rq, prev);
2706 clear_tsk_need_resched(prev);
2707 clear_preempt_need_resched();
2708 rq->skip_clock_update = 0;
2709
2710 if (likely(prev != next)) {
2711 rq->nr_switches++;
2712 rq->curr = next;
2713 ++*switch_count;
2714
2715 context_switch(rq, prev, next); /* unlocks the rq */
2716 /*
2717 * The context switch have flipped the stack from under us
2718 * and restored the local variables which were saved when
2719 * this task called schedule() in the past. prev == current
2720 * is still correct, but it can be moved to another cpu/rq.
2721 */
2722 cpu = smp_processor_id();
2723 rq = cpu_rq(cpu);
2724 } else
2725 raw_spin_unlock_irq(&rq->lock);
2726
2727 post_schedule(rq);
2728
2729 sched_preempt_enable_no_resched();
2730 if (need_resched())
2731 goto need_resched;
2732 }
2733
2734 static inline void sched_submit_work(struct task_struct *tsk)
2735 {
2736 if (!tsk->state || tsk_is_pi_blocked(tsk))
2737 return;
2738 /*
2739 * If we are going to sleep and we have plugged IO queued,
2740 * make sure to submit it to avoid deadlocks.
2741 */
2742 if (blk_needs_flush_plug(tsk))
2743 blk_schedule_flush_plug(tsk);
2744 }
2745
2746 asmlinkage void __sched schedule(void)
2747 {
2748 struct task_struct *tsk = current;
2749
2750 sched_submit_work(tsk);
2751 __schedule();
2752 }
2753 EXPORT_SYMBOL(schedule);
2754
2755 #ifdef CONFIG_CONTEXT_TRACKING
2756 asmlinkage void __sched schedule_user(void)
2757 {
2758 /*
2759 * If we come here after a random call to set_need_resched(),
2760 * or we have been woken up remotely but the IPI has not yet arrived,
2761 * we haven't yet exited the RCU idle mode. Do it here manually until
2762 * we find a better solution.
2763 */
2764 user_exit();
2765 schedule();
2766 user_enter();
2767 }
2768 #endif
2769
2770 /**
2771 * schedule_preempt_disabled - called with preemption disabled
2772 *
2773 * Returns with preemption disabled. Note: preempt_count must be 1
2774 */
2775 void __sched schedule_preempt_disabled(void)
2776 {
2777 sched_preempt_enable_no_resched();
2778 schedule();
2779 preempt_disable();
2780 }
2781
2782 #ifdef CONFIG_PREEMPT
2783 /*
2784 * this is the entry point to schedule() from in-kernel preemption
2785 * off of preempt_enable. Kernel preemptions off return from interrupt
2786 * occur there and call schedule directly.
2787 */
2788 asmlinkage void __sched notrace preempt_schedule(void)
2789 {
2790 /*
2791 * If there is a non-zero preempt_count or interrupts are disabled,
2792 * we do not want to preempt the current task. Just return..
2793 */
2794 if (likely(!preemptible()))
2795 return;
2796
2797 do {
2798 __preempt_count_add(PREEMPT_ACTIVE);
2799 __schedule();
2800 __preempt_count_sub(PREEMPT_ACTIVE);
2801
2802 /*
2803 * Check again in case we missed a preemption opportunity
2804 * between schedule and now.
2805 */
2806 barrier();
2807 } while (need_resched());
2808 }
2809 EXPORT_SYMBOL(preempt_schedule);
2810 #endif /* CONFIG_PREEMPT */
2811
2812 /*
2813 * this is the entry point to schedule() from kernel preemption
2814 * off of irq context.
2815 * Note, that this is called and return with irqs disabled. This will
2816 * protect us against recursive calling from irq.
2817 */
2818 asmlinkage void __sched preempt_schedule_irq(void)
2819 {
2820 enum ctx_state prev_state;
2821
2822 /* Catch callers which need to be fixed */
2823 BUG_ON(preempt_count() || !irqs_disabled());
2824
2825 prev_state = exception_enter();
2826
2827 do {
2828 __preempt_count_add(PREEMPT_ACTIVE);
2829 local_irq_enable();
2830 __schedule();
2831 local_irq_disable();
2832 __preempt_count_sub(PREEMPT_ACTIVE);
2833
2834 /*
2835 * Check again in case we missed a preemption opportunity
2836 * between schedule and now.
2837 */
2838 barrier();
2839 } while (need_resched());
2840
2841 exception_exit(prev_state);
2842 }
2843
2844 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2845 void *key)
2846 {
2847 return try_to_wake_up(curr->private, mode, wake_flags);
2848 }
2849 EXPORT_SYMBOL(default_wake_function);
2850
2851 static long __sched
2852 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
2853 {
2854 unsigned long flags;
2855 wait_queue_t wait;
2856
2857 init_waitqueue_entry(&wait, current);
2858
2859 __set_current_state(state);
2860
2861 spin_lock_irqsave(&q->lock, flags);
2862 __add_wait_queue(q, &wait);
2863 spin_unlock(&q->lock);
2864 timeout = schedule_timeout(timeout);
2865 spin_lock_irq(&q->lock);
2866 __remove_wait_queue(q, &wait);
2867 spin_unlock_irqrestore(&q->lock, flags);
2868
2869 return timeout;
2870 }
2871
2872 void __sched interruptible_sleep_on(wait_queue_head_t *q)
2873 {
2874 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2875 }
2876 EXPORT_SYMBOL(interruptible_sleep_on);
2877
2878 long __sched
2879 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
2880 {
2881 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
2882 }
2883 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
2884
2885 void __sched sleep_on(wait_queue_head_t *q)
2886 {
2887 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
2888 }
2889 EXPORT_SYMBOL(sleep_on);
2890
2891 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
2892 {
2893 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
2894 }
2895 EXPORT_SYMBOL(sleep_on_timeout);
2896
2897 #ifdef CONFIG_RT_MUTEXES
2898
2899 /*
2900 * rt_mutex_setprio - set the current priority of a task
2901 * @p: task
2902 * @prio: prio value (kernel-internal form)
2903 *
2904 * This function changes the 'effective' priority of a task. It does
2905 * not touch ->normal_prio like __setscheduler().
2906 *
2907 * Used by the rt_mutex code to implement priority inheritance
2908 * logic. Call site only calls if the priority of the task changed.
2909 */
2910 void rt_mutex_setprio(struct task_struct *p, int prio)
2911 {
2912 int oldprio, on_rq, running, enqueue_flag = 0;
2913 struct rq *rq;
2914 const struct sched_class *prev_class;
2915
2916 BUG_ON(prio > MAX_PRIO);
2917
2918 rq = __task_rq_lock(p);
2919
2920 /*
2921 * Idle task boosting is a nono in general. There is one
2922 * exception, when PREEMPT_RT and NOHZ is active:
2923 *
2924 * The idle task calls get_next_timer_interrupt() and holds
2925 * the timer wheel base->lock on the CPU and another CPU wants
2926 * to access the timer (probably to cancel it). We can safely
2927 * ignore the boosting request, as the idle CPU runs this code
2928 * with interrupts disabled and will complete the lock
2929 * protected section without being interrupted. So there is no
2930 * real need to boost.
2931 */
2932 if (unlikely(p == rq->idle)) {
2933 WARN_ON(p != rq->curr);
2934 WARN_ON(p->pi_blocked_on);
2935 goto out_unlock;
2936 }
2937
2938 trace_sched_pi_setprio(p, prio);
2939 p->pi_top_task = rt_mutex_get_top_task(p);
2940 oldprio = p->prio;
2941 prev_class = p->sched_class;
2942 on_rq = p->on_rq;
2943 running = task_current(rq, p);
2944 if (on_rq)
2945 dequeue_task(rq, p, 0);
2946 if (running)
2947 p->sched_class->put_prev_task(rq, p);
2948
2949 /*
2950 * Boosting condition are:
2951 * 1. -rt task is running and holds mutex A
2952 * --> -dl task blocks on mutex A
2953 *
2954 * 2. -dl task is running and holds mutex A
2955 * --> -dl task blocks on mutex A and could preempt the
2956 * running task
2957 */
2958 if (dl_prio(prio)) {
2959 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2960 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2961 p->dl.dl_boosted = 1;
2962 p->dl.dl_throttled = 0;
2963 enqueue_flag = ENQUEUE_REPLENISH;
2964 } else
2965 p->dl.dl_boosted = 0;
2966 p->sched_class = &dl_sched_class;
2967 } else if (rt_prio(prio)) {
2968 if (dl_prio(oldprio))
2969 p->dl.dl_boosted = 0;
2970 if (oldprio < prio)
2971 enqueue_flag = ENQUEUE_HEAD;
2972 p->sched_class = &rt_sched_class;
2973 } else {
2974 if (dl_prio(oldprio))
2975 p->dl.dl_boosted = 0;
2976 p->sched_class = &fair_sched_class;
2977 }
2978
2979 p->prio = prio;
2980
2981 if (running)
2982 p->sched_class->set_curr_task(rq);
2983 if (on_rq)
2984 enqueue_task(rq, p, enqueue_flag);
2985
2986 check_class_changed(rq, p, prev_class, oldprio);
2987 out_unlock:
2988 __task_rq_unlock(rq);
2989 }
2990 #endif
2991
2992 void set_user_nice(struct task_struct *p, long nice)
2993 {
2994 int old_prio, delta, on_rq;
2995 unsigned long flags;
2996 struct rq *rq;
2997
2998 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
2999 return;
3000 /*
3001 * We have to be careful, if called from sys_setpriority(),
3002 * the task might be in the middle of scheduling on another CPU.
3003 */
3004 rq = task_rq_lock(p, &flags);
3005 /*
3006 * The RT priorities are set via sched_setscheduler(), but we still
3007 * allow the 'normal' nice value to be set - but as expected
3008 * it wont have any effect on scheduling until the task is
3009 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3010 */
3011 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3012 p->static_prio = NICE_TO_PRIO(nice);
3013 goto out_unlock;
3014 }
3015 on_rq = p->on_rq;
3016 if (on_rq)
3017 dequeue_task(rq, p, 0);
3018
3019 p->static_prio = NICE_TO_PRIO(nice);
3020 set_load_weight(p);
3021 old_prio = p->prio;
3022 p->prio = effective_prio(p);
3023 delta = p->prio - old_prio;
3024
3025 if (on_rq) {
3026 enqueue_task(rq, p, 0);
3027 /*
3028 * If the task increased its priority or is running and
3029 * lowered its priority, then reschedule its CPU:
3030 */
3031 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3032 resched_task(rq->curr);
3033 }
3034 out_unlock:
3035 task_rq_unlock(rq, p, &flags);
3036 }
3037 EXPORT_SYMBOL(set_user_nice);
3038
3039 /*
3040 * can_nice - check if a task can reduce its nice value
3041 * @p: task
3042 * @nice: nice value
3043 */
3044 int can_nice(const struct task_struct *p, const int nice)
3045 {
3046 /* convert nice value [19,-20] to rlimit style value [1,40] */
3047 int nice_rlim = 20 - nice;
3048
3049 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3050 capable(CAP_SYS_NICE));
3051 }
3052
3053 #ifdef __ARCH_WANT_SYS_NICE
3054
3055 /*
3056 * sys_nice - change the priority of the current process.
3057 * @increment: priority increment
3058 *
3059 * sys_setpriority is a more generic, but much slower function that
3060 * does similar things.
3061 */
3062 SYSCALL_DEFINE1(nice, int, increment)
3063 {
3064 long nice, retval;
3065
3066 /*
3067 * Setpriority might change our priority at the same moment.
3068 * We don't have to worry. Conceptually one call occurs first
3069 * and we have a single winner.
3070 */
3071 if (increment < -40)
3072 increment = -40;
3073 if (increment > 40)
3074 increment = 40;
3075
3076 nice = task_nice(current) + increment;
3077 if (nice < MIN_NICE)
3078 nice = MIN_NICE;
3079 if (nice > MAX_NICE)
3080 nice = MAX_NICE;
3081
3082 if (increment < 0 && !can_nice(current, nice))
3083 return -EPERM;
3084
3085 retval = security_task_setnice(current, nice);
3086 if (retval)
3087 return retval;
3088
3089 set_user_nice(current, nice);
3090 return 0;
3091 }
3092
3093 #endif
3094
3095 /**
3096 * task_prio - return the priority value of a given task.
3097 * @p: the task in question.
3098 *
3099 * Return: The priority value as seen by users in /proc.
3100 * RT tasks are offset by -200. Normal tasks are centered
3101 * around 0, value goes from -16 to +15.
3102 */
3103 int task_prio(const struct task_struct *p)
3104 {
3105 return p->prio - MAX_RT_PRIO;
3106 }
3107
3108 /**
3109 * idle_cpu - is a given cpu idle currently?
3110 * @cpu: the processor in question.
3111 *
3112 * Return: 1 if the CPU is currently idle. 0 otherwise.
3113 */
3114 int idle_cpu(int cpu)
3115 {
3116 struct rq *rq = cpu_rq(cpu);
3117
3118 if (rq->curr != rq->idle)
3119 return 0;
3120
3121 if (rq->nr_running)
3122 return 0;
3123
3124 #ifdef CONFIG_SMP
3125 if (!llist_empty(&rq->wake_list))
3126 return 0;
3127 #endif
3128
3129 return 1;
3130 }
3131
3132 /**
3133 * idle_task - return the idle task for a given cpu.
3134 * @cpu: the processor in question.
3135 *
3136 * Return: The idle task for the cpu @cpu.
3137 */
3138 struct task_struct *idle_task(int cpu)
3139 {
3140 return cpu_rq(cpu)->idle;
3141 }
3142
3143 /**
3144 * find_process_by_pid - find a process with a matching PID value.
3145 * @pid: the pid in question.
3146 *
3147 * The task of @pid, if found. %NULL otherwise.
3148 */
3149 static struct task_struct *find_process_by_pid(pid_t pid)
3150 {
3151 return pid ? find_task_by_vpid(pid) : current;
3152 }
3153
3154 /*
3155 * This function initializes the sched_dl_entity of a newly becoming
3156 * SCHED_DEADLINE task.
3157 *
3158 * Only the static values are considered here, the actual runtime and the
3159 * absolute deadline will be properly calculated when the task is enqueued
3160 * for the first time with its new policy.
3161 */
3162 static void
3163 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3164 {
3165 struct sched_dl_entity *dl_se = &p->dl;
3166
3167 init_dl_task_timer(dl_se);
3168 dl_se->dl_runtime = attr->sched_runtime;
3169 dl_se->dl_deadline = attr->sched_deadline;
3170 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3171 dl_se->flags = attr->sched_flags;
3172 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3173 dl_se->dl_throttled = 0;
3174 dl_se->dl_new = 1;
3175 }
3176
3177 static void __setscheduler_params(struct task_struct *p,
3178 const struct sched_attr *attr)
3179 {
3180 int policy = attr->sched_policy;
3181
3182 if (policy == -1) /* setparam */
3183 policy = p->policy;
3184
3185 p->policy = policy;
3186
3187 if (dl_policy(policy))
3188 __setparam_dl(p, attr);
3189 else if (fair_policy(policy))
3190 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3191
3192 /*
3193 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3194 * !rt_policy. Always setting this ensures that things like
3195 * getparam()/getattr() don't report silly values for !rt tasks.
3196 */
3197 p->rt_priority = attr->sched_priority;
3198 p->normal_prio = normal_prio(p);
3199 set_load_weight(p);
3200 }
3201
3202 /* Actually do priority change: must hold pi & rq lock. */
3203 static void __setscheduler(struct rq *rq, struct task_struct *p,
3204 const struct sched_attr *attr)
3205 {
3206 __setscheduler_params(p, attr);
3207
3208 /*
3209 * If we get here, there was no pi waiters boosting the
3210 * task. It is safe to use the normal prio.
3211 */
3212 p->prio = normal_prio(p);
3213
3214 if (dl_prio(p->prio))
3215 p->sched_class = &dl_sched_class;
3216 else if (rt_prio(p->prio))
3217 p->sched_class = &rt_sched_class;
3218 else
3219 p->sched_class = &fair_sched_class;
3220 }
3221
3222 static void
3223 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3224 {
3225 struct sched_dl_entity *dl_se = &p->dl;
3226
3227 attr->sched_priority = p->rt_priority;
3228 attr->sched_runtime = dl_se->dl_runtime;
3229 attr->sched_deadline = dl_se->dl_deadline;
3230 attr->sched_period = dl_se->dl_period;
3231 attr->sched_flags = dl_se->flags;
3232 }
3233
3234 /*
3235 * This function validates the new parameters of a -deadline task.
3236 * We ask for the deadline not being zero, and greater or equal
3237 * than the runtime, as well as the period of being zero or
3238 * greater than deadline. Furthermore, we have to be sure that
3239 * user parameters are above the internal resolution (1us); we
3240 * check sched_runtime only since it is always the smaller one.
3241 */
3242 static bool
3243 __checkparam_dl(const struct sched_attr *attr)
3244 {
3245 return attr && attr->sched_deadline != 0 &&
3246 (attr->sched_period == 0 ||
3247 (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
3248 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
3249 attr->sched_runtime >= (2 << (DL_SCALE - 1));
3250 }
3251
3252 /*
3253 * check the target process has a UID that matches the current process's
3254 */
3255 static bool check_same_owner(struct task_struct *p)
3256 {
3257 const struct cred *cred = current_cred(), *pcred;
3258 bool match;
3259
3260 rcu_read_lock();
3261 pcred = __task_cred(p);
3262 match = (uid_eq(cred->euid, pcred->euid) ||
3263 uid_eq(cred->euid, pcred->uid));
3264 rcu_read_unlock();
3265 return match;
3266 }
3267
3268 static int __sched_setscheduler(struct task_struct *p,
3269 const struct sched_attr *attr,
3270 bool user)
3271 {
3272 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3273 MAX_RT_PRIO - 1 - attr->sched_priority;
3274 int retval, oldprio, oldpolicy = -1, on_rq, running;
3275 int policy = attr->sched_policy;
3276 unsigned long flags;
3277 const struct sched_class *prev_class;
3278 struct rq *rq;
3279 int reset_on_fork;
3280
3281 /* may grab non-irq protected spin_locks */
3282 BUG_ON(in_interrupt());
3283 recheck:
3284 /* double check policy once rq lock held */
3285 if (policy < 0) {
3286 reset_on_fork = p->sched_reset_on_fork;
3287 policy = oldpolicy = p->policy;
3288 } else {
3289 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3290
3291 if (policy != SCHED_DEADLINE &&
3292 policy != SCHED_FIFO && policy != SCHED_RR &&
3293 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3294 policy != SCHED_IDLE)
3295 return -EINVAL;
3296 }
3297
3298 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3299 return -EINVAL;
3300
3301 /*
3302 * Valid priorities for SCHED_FIFO and SCHED_RR are
3303 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3304 * SCHED_BATCH and SCHED_IDLE is 0.
3305 */
3306 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3307 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3308 return -EINVAL;
3309 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3310 (rt_policy(policy) != (attr->sched_priority != 0)))
3311 return -EINVAL;
3312
3313 /*
3314 * Allow unprivileged RT tasks to decrease priority:
3315 */
3316 if (user && !capable(CAP_SYS_NICE)) {
3317 if (fair_policy(policy)) {
3318 if (attr->sched_nice < task_nice(p) &&
3319 !can_nice(p, attr->sched_nice))
3320 return -EPERM;
3321 }
3322
3323 if (rt_policy(policy)) {
3324 unsigned long rlim_rtprio =
3325 task_rlimit(p, RLIMIT_RTPRIO);
3326
3327 /* can't set/change the rt policy */
3328 if (policy != p->policy && !rlim_rtprio)
3329 return -EPERM;
3330
3331 /* can't increase priority */
3332 if (attr->sched_priority > p->rt_priority &&
3333 attr->sched_priority > rlim_rtprio)
3334 return -EPERM;
3335 }
3336
3337 /*
3338 * Can't set/change SCHED_DEADLINE policy at all for now
3339 * (safest behavior); in the future we would like to allow
3340 * unprivileged DL tasks to increase their relative deadline
3341 * or reduce their runtime (both ways reducing utilization)
3342 */
3343 if (dl_policy(policy))
3344 return -EPERM;
3345
3346 /*
3347 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3348 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3349 */
3350 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3351 if (!can_nice(p, task_nice(p)))
3352 return -EPERM;
3353 }
3354
3355 /* can't change other user's priorities */
3356 if (!check_same_owner(p))
3357 return -EPERM;
3358
3359 /* Normal users shall not reset the sched_reset_on_fork flag */
3360 if (p->sched_reset_on_fork && !reset_on_fork)
3361 return -EPERM;
3362 }
3363
3364 if (user) {
3365 retval = security_task_setscheduler(p);
3366 if (retval)
3367 return retval;
3368 }
3369
3370 /*
3371 * make sure no PI-waiters arrive (or leave) while we are
3372 * changing the priority of the task:
3373 *
3374 * To be able to change p->policy safely, the appropriate
3375 * runqueue lock must be held.
3376 */
3377 rq = task_rq_lock(p, &flags);
3378
3379 /*
3380 * Changing the policy of the stop threads its a very bad idea
3381 */
3382 if (p == rq->stop) {
3383 task_rq_unlock(rq, p, &flags);
3384 return -EINVAL;
3385 }
3386
3387 /*
3388 * If not changing anything there's no need to proceed further,
3389 * but store a possible modification of reset_on_fork.
3390 */
3391 if (unlikely(policy == p->policy)) {
3392 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3393 goto change;
3394 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3395 goto change;
3396 if (dl_policy(policy))
3397 goto change;
3398
3399 p->sched_reset_on_fork = reset_on_fork;
3400 task_rq_unlock(rq, p, &flags);
3401 return 0;
3402 }
3403 change:
3404
3405 if (user) {
3406 #ifdef CONFIG_RT_GROUP_SCHED
3407 /*
3408 * Do not allow realtime tasks into groups that have no runtime
3409 * assigned.
3410 */
3411 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3412 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3413 !task_group_is_autogroup(task_group(p))) {
3414 task_rq_unlock(rq, p, &flags);
3415 return -EPERM;
3416 }
3417 #endif
3418 #ifdef CONFIG_SMP
3419 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3420 cpumask_t *span = rq->rd->span;
3421
3422 /*
3423 * Don't allow tasks with an affinity mask smaller than
3424 * the entire root_domain to become SCHED_DEADLINE. We
3425 * will also fail if there's no bandwidth available.
3426 */
3427 if (!cpumask_subset(span, &p->cpus_allowed) ||
3428 rq->rd->dl_bw.bw == 0) {
3429 task_rq_unlock(rq, p, &flags);
3430 return -EPERM;
3431 }
3432 }
3433 #endif
3434 }
3435
3436 /* recheck policy now with rq lock held */
3437 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3438 policy = oldpolicy = -1;
3439 task_rq_unlock(rq, p, &flags);
3440 goto recheck;
3441 }
3442
3443 /*
3444 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3445 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3446 * is available.
3447 */
3448 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3449 task_rq_unlock(rq, p, &flags);
3450 return -EBUSY;
3451 }
3452
3453 p->sched_reset_on_fork = reset_on_fork;
3454 oldprio = p->prio;
3455
3456 /*
3457 * Special case for priority boosted tasks.
3458 *
3459 * If the new priority is lower or equal (user space view)
3460 * than the current (boosted) priority, we just store the new
3461 * normal parameters and do not touch the scheduler class and
3462 * the runqueue. This will be done when the task deboost
3463 * itself.
3464 */
3465 if (rt_mutex_check_prio(p, newprio)) {
3466 __setscheduler_params(p, attr);
3467 task_rq_unlock(rq, p, &flags);
3468 return 0;
3469 }
3470
3471 on_rq = p->on_rq;
3472 running = task_current(rq, p);
3473 if (on_rq)
3474 dequeue_task(rq, p, 0);
3475 if (running)
3476 p->sched_class->put_prev_task(rq, p);
3477
3478 prev_class = p->sched_class;
3479 __setscheduler(rq, p, attr);
3480
3481 if (running)
3482 p->sched_class->set_curr_task(rq);
3483 if (on_rq) {
3484 /*
3485 * We enqueue to tail when the priority of a task is
3486 * increased (user space view).
3487 */
3488 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3489 }
3490
3491 check_class_changed(rq, p, prev_class, oldprio);
3492 task_rq_unlock(rq, p, &flags);
3493
3494 rt_mutex_adjust_pi(p);
3495
3496 return 0;
3497 }
3498
3499 static int _sched_setscheduler(struct task_struct *p, int policy,
3500 const struct sched_param *param, bool check)
3501 {
3502 struct sched_attr attr = {
3503 .sched_policy = policy,
3504 .sched_priority = param->sched_priority,
3505 .sched_nice = PRIO_TO_NICE(p->static_prio),
3506 };
3507
3508 /*
3509 * Fixup the legacy SCHED_RESET_ON_FORK hack
3510 */
3511 if (policy & SCHED_RESET_ON_FORK) {
3512 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3513 policy &= ~SCHED_RESET_ON_FORK;
3514 attr.sched_policy = policy;
3515 }
3516
3517 return __sched_setscheduler(p, &attr, check);
3518 }
3519 /**
3520 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3521 * @p: the task in question.
3522 * @policy: new policy.
3523 * @param: structure containing the new RT priority.
3524 *
3525 * Return: 0 on success. An error code otherwise.
3526 *
3527 * NOTE that the task may be already dead.
3528 */
3529 int sched_setscheduler(struct task_struct *p, int policy,
3530 const struct sched_param *param)
3531 {
3532 return _sched_setscheduler(p, policy, param, true);
3533 }
3534 EXPORT_SYMBOL_GPL(sched_setscheduler);
3535
3536 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3537 {
3538 return __sched_setscheduler(p, attr, true);
3539 }
3540 EXPORT_SYMBOL_GPL(sched_setattr);
3541
3542 /**
3543 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3544 * @p: the task in question.
3545 * @policy: new policy.
3546 * @param: structure containing the new RT priority.
3547 *
3548 * Just like sched_setscheduler, only don't bother checking if the
3549 * current context has permission. For example, this is needed in
3550 * stop_machine(): we create temporary high priority worker threads,
3551 * but our caller might not have that capability.
3552 *
3553 * Return: 0 on success. An error code otherwise.
3554 */
3555 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3556 const struct sched_param *param)
3557 {
3558 return _sched_setscheduler(p, policy, param, false);
3559 }
3560
3561 static int
3562 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3563 {
3564 struct sched_param lparam;
3565 struct task_struct *p;
3566 int retval;
3567
3568 if (!param || pid < 0)
3569 return -EINVAL;
3570 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3571 return -EFAULT;
3572
3573 rcu_read_lock();
3574 retval = -ESRCH;
3575 p = find_process_by_pid(pid);
3576 if (p != NULL)
3577 retval = sched_setscheduler(p, policy, &lparam);
3578 rcu_read_unlock();
3579
3580 return retval;
3581 }
3582
3583 /*
3584 * Mimics kernel/events/core.c perf_copy_attr().
3585 */
3586 static int sched_copy_attr(struct sched_attr __user *uattr,
3587 struct sched_attr *attr)
3588 {
3589 u32 size;
3590 int ret;
3591
3592 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3593 return -EFAULT;
3594
3595 /*
3596 * zero the full structure, so that a short copy will be nice.
3597 */
3598 memset(attr, 0, sizeof(*attr));
3599
3600 ret = get_user(size, &uattr->size);
3601 if (ret)
3602 return ret;
3603
3604 if (size > PAGE_SIZE) /* silly large */
3605 goto err_size;
3606
3607 if (!size) /* abi compat */
3608 size = SCHED_ATTR_SIZE_VER0;
3609
3610 if (size < SCHED_ATTR_SIZE_VER0)
3611 goto err_size;
3612
3613 /*
3614 * If we're handed a bigger struct than we know of,
3615 * ensure all the unknown bits are 0 - i.e. new
3616 * user-space does not rely on any kernel feature
3617 * extensions we dont know about yet.
3618 */
3619 if (size > sizeof(*attr)) {
3620 unsigned char __user *addr;
3621 unsigned char __user *end;
3622 unsigned char val;
3623
3624 addr = (void __user *)uattr + sizeof(*attr);
3625 end = (void __user *)uattr + size;
3626
3627 for (; addr < end; addr++) {
3628 ret = get_user(val, addr);
3629 if (ret)
3630 return ret;
3631 if (val)
3632 goto err_size;
3633 }
3634 size = sizeof(*attr);
3635 }
3636
3637 ret = copy_from_user(attr, uattr, size);
3638 if (ret)
3639 return -EFAULT;
3640
3641 /*
3642 * XXX: do we want to be lenient like existing syscalls; or do we want
3643 * to be strict and return an error on out-of-bounds values?
3644 */
3645 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3646
3647 out:
3648 return ret;
3649
3650 err_size:
3651 put_user(sizeof(*attr), &uattr->size);
3652 ret = -E2BIG;
3653 goto out;
3654 }
3655
3656 /**
3657 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3658 * @pid: the pid in question.
3659 * @policy: new policy.
3660 * @param: structure containing the new RT priority.
3661 *
3662 * Return: 0 on success. An error code otherwise.
3663 */
3664 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3665 struct sched_param __user *, param)
3666 {
3667 /* negative values for policy are not valid */
3668 if (policy < 0)
3669 return -EINVAL;
3670
3671 return do_sched_setscheduler(pid, policy, param);
3672 }
3673
3674 /**
3675 * sys_sched_setparam - set/change the RT priority of a thread
3676 * @pid: the pid in question.
3677 * @param: structure containing the new RT priority.
3678 *
3679 * Return: 0 on success. An error code otherwise.
3680 */
3681 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3682 {
3683 return do_sched_setscheduler(pid, -1, param);
3684 }
3685
3686 /**
3687 * sys_sched_setattr - same as above, but with extended sched_attr
3688 * @pid: the pid in question.
3689 * @uattr: structure containing the extended parameters.
3690 */
3691 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3692 unsigned int, flags)
3693 {
3694 struct sched_attr attr;
3695 struct task_struct *p;
3696 int retval;
3697
3698 if (!uattr || pid < 0 || flags)
3699 return -EINVAL;
3700
3701 if (sched_copy_attr(uattr, &attr))
3702 return -EFAULT;
3703
3704 rcu_read_lock();
3705 retval = -ESRCH;
3706 p = find_process_by_pid(pid);
3707 if (p != NULL)
3708 retval = sched_setattr(p, &attr);
3709 rcu_read_unlock();
3710
3711 return retval;
3712 }
3713
3714 /**
3715 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3716 * @pid: the pid in question.
3717 *
3718 * Return: On success, the policy of the thread. Otherwise, a negative error
3719 * code.
3720 */
3721 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3722 {
3723 struct task_struct *p;
3724 int retval;
3725
3726 if (pid < 0)
3727 return -EINVAL;
3728
3729 retval = -ESRCH;
3730 rcu_read_lock();
3731 p = find_process_by_pid(pid);
3732 if (p) {
3733 retval = security_task_getscheduler(p);
3734 if (!retval)
3735 retval = p->policy
3736 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3737 }
3738 rcu_read_unlock();
3739 return retval;
3740 }
3741
3742 /**
3743 * sys_sched_getparam - get the RT priority of a thread
3744 * @pid: the pid in question.
3745 * @param: structure containing the RT priority.
3746 *
3747 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3748 * code.
3749 */
3750 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3751 {
3752 struct sched_param lp;
3753 struct task_struct *p;
3754 int retval;
3755
3756 if (!param || pid < 0)
3757 return -EINVAL;
3758
3759 rcu_read_lock();
3760 p = find_process_by_pid(pid);
3761 retval = -ESRCH;
3762 if (!p)
3763 goto out_unlock;
3764
3765 retval = security_task_getscheduler(p);
3766 if (retval)
3767 goto out_unlock;
3768
3769 if (task_has_dl_policy(p)) {
3770 retval = -EINVAL;
3771 goto out_unlock;
3772 }
3773 lp.sched_priority = p->rt_priority;
3774 rcu_read_unlock();
3775
3776 /*
3777 * This one might sleep, we cannot do it with a spinlock held ...
3778 */
3779 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3780
3781 return retval;
3782
3783 out_unlock:
3784 rcu_read_unlock();
3785 return retval;
3786 }
3787
3788 static int sched_read_attr(struct sched_attr __user *uattr,
3789 struct sched_attr *attr,
3790 unsigned int usize)
3791 {
3792 int ret;
3793
3794 if (!access_ok(VERIFY_WRITE, uattr, usize))
3795 return -EFAULT;
3796
3797 /*
3798 * If we're handed a smaller struct than we know of,
3799 * ensure all the unknown bits are 0 - i.e. old
3800 * user-space does not get uncomplete information.
3801 */
3802 if (usize < sizeof(*attr)) {
3803 unsigned char *addr;
3804 unsigned char *end;
3805
3806 addr = (void *)attr + usize;
3807 end = (void *)attr + sizeof(*attr);
3808
3809 for (; addr < end; addr++) {
3810 if (*addr)
3811 goto err_size;
3812 }
3813
3814 attr->size = usize;
3815 }
3816
3817 ret = copy_to_user(uattr, attr, attr->size);
3818 if (ret)
3819 return -EFAULT;
3820
3821 out:
3822 return ret;
3823
3824 err_size:
3825 ret = -E2BIG;
3826 goto out;
3827 }
3828
3829 /**
3830 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3831 * @pid: the pid in question.
3832 * @uattr: structure containing the extended parameters.
3833 * @size: sizeof(attr) for fwd/bwd comp.
3834 */
3835 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3836 unsigned int, size, unsigned int, flags)
3837 {
3838 struct sched_attr attr = {
3839 .size = sizeof(struct sched_attr),
3840 };
3841 struct task_struct *p;
3842 int retval;
3843
3844 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3845 size < SCHED_ATTR_SIZE_VER0 || flags)
3846 return -EINVAL;
3847
3848 rcu_read_lock();
3849 p = find_process_by_pid(pid);
3850 retval = -ESRCH;
3851 if (!p)
3852 goto out_unlock;
3853
3854 retval = security_task_getscheduler(p);
3855 if (retval)
3856 goto out_unlock;
3857
3858 attr.sched_policy = p->policy;
3859 if (p->sched_reset_on_fork)
3860 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3861 if (task_has_dl_policy(p))
3862 __getparam_dl(p, &attr);
3863 else if (task_has_rt_policy(p))
3864 attr.sched_priority = p->rt_priority;
3865 else
3866 attr.sched_nice = task_nice(p);
3867
3868 rcu_read_unlock();
3869
3870 retval = sched_read_attr(uattr, &attr, size);
3871 return retval;
3872
3873 out_unlock:
3874 rcu_read_unlock();
3875 return retval;
3876 }
3877
3878 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3879 {
3880 cpumask_var_t cpus_allowed, new_mask;
3881 struct task_struct *p;
3882 int retval;
3883
3884 rcu_read_lock();
3885
3886 p = find_process_by_pid(pid);
3887 if (!p) {
3888 rcu_read_unlock();
3889 return -ESRCH;
3890 }
3891
3892 /* Prevent p going away */
3893 get_task_struct(p);
3894 rcu_read_unlock();
3895
3896 if (p->flags & PF_NO_SETAFFINITY) {
3897 retval = -EINVAL;
3898 goto out_put_task;
3899 }
3900 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3901 retval = -ENOMEM;
3902 goto out_put_task;
3903 }
3904 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3905 retval = -ENOMEM;
3906 goto out_free_cpus_allowed;
3907 }
3908 retval = -EPERM;
3909 if (!check_same_owner(p)) {
3910 rcu_read_lock();
3911 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3912 rcu_read_unlock();
3913 goto out_unlock;
3914 }
3915 rcu_read_unlock();
3916 }
3917
3918 retval = security_task_setscheduler(p);
3919 if (retval)
3920 goto out_unlock;
3921
3922
3923 cpuset_cpus_allowed(p, cpus_allowed);
3924 cpumask_and(new_mask, in_mask, cpus_allowed);
3925
3926 /*
3927 * Since bandwidth control happens on root_domain basis,
3928 * if admission test is enabled, we only admit -deadline
3929 * tasks allowed to run on all the CPUs in the task's
3930 * root_domain.
3931 */
3932 #ifdef CONFIG_SMP
3933 if (task_has_dl_policy(p)) {
3934 const struct cpumask *span = task_rq(p)->rd->span;
3935
3936 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3937 retval = -EBUSY;
3938 goto out_unlock;
3939 }
3940 }
3941 #endif
3942 again:
3943 retval = set_cpus_allowed_ptr(p, new_mask);
3944
3945 if (!retval) {
3946 cpuset_cpus_allowed(p, cpus_allowed);
3947 if (!cpumask_subset(new_mask, cpus_allowed)) {
3948 /*
3949 * We must have raced with a concurrent cpuset
3950 * update. Just reset the cpus_allowed to the
3951 * cpuset's cpus_allowed
3952 */
3953 cpumask_copy(new_mask, cpus_allowed);
3954 goto again;
3955 }
3956 }
3957 out_unlock:
3958 free_cpumask_var(new_mask);
3959 out_free_cpus_allowed:
3960 free_cpumask_var(cpus_allowed);
3961 out_put_task:
3962 put_task_struct(p);
3963 return retval;
3964 }
3965
3966 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3967 struct cpumask *new_mask)
3968 {
3969 if (len < cpumask_size())
3970 cpumask_clear(new_mask);
3971 else if (len > cpumask_size())
3972 len = cpumask_size();
3973
3974 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3975 }
3976
3977 /**
3978 * sys_sched_setaffinity - set the cpu affinity of a process
3979 * @pid: pid of the process
3980 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3981 * @user_mask_ptr: user-space pointer to the new cpu mask
3982 *
3983 * Return: 0 on success. An error code otherwise.
3984 */
3985 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3986 unsigned long __user *, user_mask_ptr)
3987 {
3988 cpumask_var_t new_mask;
3989 int retval;
3990
3991 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3992 return -ENOMEM;
3993
3994 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3995 if (retval == 0)
3996 retval = sched_setaffinity(pid, new_mask);
3997 free_cpumask_var(new_mask);
3998 return retval;
3999 }
4000
4001 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4002 {
4003 struct task_struct *p;
4004 unsigned long flags;
4005 int retval;
4006
4007 rcu_read_lock();
4008
4009 retval = -ESRCH;
4010 p = find_process_by_pid(pid);
4011 if (!p)
4012 goto out_unlock;
4013
4014 retval = security_task_getscheduler(p);
4015 if (retval)
4016 goto out_unlock;
4017
4018 raw_spin_lock_irqsave(&p->pi_lock, flags);
4019 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4020 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4021
4022 out_unlock:
4023 rcu_read_unlock();
4024
4025 return retval;
4026 }
4027
4028 /**
4029 * sys_sched_getaffinity - get the cpu affinity of a process
4030 * @pid: pid of the process
4031 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4032 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4033 *
4034 * Return: 0 on success. An error code otherwise.
4035 */
4036 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4037 unsigned long __user *, user_mask_ptr)
4038 {
4039 int ret;
4040 cpumask_var_t mask;
4041
4042 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4043 return -EINVAL;
4044 if (len & (sizeof(unsigned long)-1))
4045 return -EINVAL;
4046
4047 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4048 return -ENOMEM;
4049
4050 ret = sched_getaffinity(pid, mask);
4051 if (ret == 0) {
4052 size_t retlen = min_t(size_t, len, cpumask_size());
4053
4054 if (copy_to_user(user_mask_ptr, mask, retlen))
4055 ret = -EFAULT;
4056 else
4057 ret = retlen;
4058 }
4059 free_cpumask_var(mask);
4060
4061 return ret;
4062 }
4063
4064 /**
4065 * sys_sched_yield - yield the current processor to other threads.
4066 *
4067 * This function yields the current CPU to other tasks. If there are no
4068 * other threads running on this CPU then this function will return.
4069 *
4070 * Return: 0.
4071 */
4072 SYSCALL_DEFINE0(sched_yield)
4073 {
4074 struct rq *rq = this_rq_lock();
4075
4076 schedstat_inc(rq, yld_count);
4077 current->sched_class->yield_task(rq);
4078
4079 /*
4080 * Since we are going to call schedule() anyway, there's
4081 * no need to preempt or enable interrupts:
4082 */
4083 __release(rq->lock);
4084 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4085 do_raw_spin_unlock(&rq->lock);
4086 sched_preempt_enable_no_resched();
4087
4088 schedule();
4089
4090 return 0;
4091 }
4092
4093 static void __cond_resched(void)
4094 {
4095 __preempt_count_add(PREEMPT_ACTIVE);
4096 __schedule();
4097 __preempt_count_sub(PREEMPT_ACTIVE);
4098 }
4099
4100 int __sched _cond_resched(void)
4101 {
4102 if (should_resched()) {
4103 __cond_resched();
4104 return 1;
4105 }
4106 return 0;
4107 }
4108 EXPORT_SYMBOL(_cond_resched);
4109
4110 /*
4111 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4112 * call schedule, and on return reacquire the lock.
4113 *
4114 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4115 * operations here to prevent schedule() from being called twice (once via
4116 * spin_unlock(), once by hand).
4117 */
4118 int __cond_resched_lock(spinlock_t *lock)
4119 {
4120 int resched = should_resched();
4121 int ret = 0;
4122
4123 lockdep_assert_held(lock);
4124
4125 if (spin_needbreak(lock) || resched) {
4126 spin_unlock(lock);
4127 if (resched)
4128 __cond_resched();
4129 else
4130 cpu_relax();
4131 ret = 1;
4132 spin_lock(lock);
4133 }
4134 return ret;
4135 }
4136 EXPORT_SYMBOL(__cond_resched_lock);
4137
4138 int __sched __cond_resched_softirq(void)
4139 {
4140 BUG_ON(!in_softirq());
4141
4142 if (should_resched()) {
4143 local_bh_enable();
4144 __cond_resched();
4145 local_bh_disable();
4146 return 1;
4147 }
4148 return 0;
4149 }
4150 EXPORT_SYMBOL(__cond_resched_softirq);
4151
4152 /**
4153 * yield - yield the current processor to other threads.
4154 *
4155 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4156 *
4157 * The scheduler is at all times free to pick the calling task as the most
4158 * eligible task to run, if removing the yield() call from your code breaks
4159 * it, its already broken.
4160 *
4161 * Typical broken usage is:
4162 *
4163 * while (!event)
4164 * yield();
4165 *
4166 * where one assumes that yield() will let 'the other' process run that will
4167 * make event true. If the current task is a SCHED_FIFO task that will never
4168 * happen. Never use yield() as a progress guarantee!!
4169 *
4170 * If you want to use yield() to wait for something, use wait_event().
4171 * If you want to use yield() to be 'nice' for others, use cond_resched().
4172 * If you still want to use yield(), do not!
4173 */
4174 void __sched yield(void)
4175 {
4176 set_current_state(TASK_RUNNING);
4177 sys_sched_yield();
4178 }
4179 EXPORT_SYMBOL(yield);
4180
4181 /**
4182 * yield_to - yield the current processor to another thread in
4183 * your thread group, or accelerate that thread toward the
4184 * processor it's on.
4185 * @p: target task
4186 * @preempt: whether task preemption is allowed or not
4187 *
4188 * It's the caller's job to ensure that the target task struct
4189 * can't go away on us before we can do any checks.
4190 *
4191 * Return:
4192 * true (>0) if we indeed boosted the target task.
4193 * false (0) if we failed to boost the target.
4194 * -ESRCH if there's no task to yield to.
4195 */
4196 bool __sched yield_to(struct task_struct *p, bool preempt)
4197 {
4198 struct task_struct *curr = current;
4199 struct rq *rq, *p_rq;
4200 unsigned long flags;
4201 int yielded = 0;
4202
4203 local_irq_save(flags);
4204 rq = this_rq();
4205
4206 again:
4207 p_rq = task_rq(p);
4208 /*
4209 * If we're the only runnable task on the rq and target rq also
4210 * has only one task, there's absolutely no point in yielding.
4211 */
4212 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4213 yielded = -ESRCH;
4214 goto out_irq;
4215 }
4216
4217 double_rq_lock(rq, p_rq);
4218 if (task_rq(p) != p_rq) {
4219 double_rq_unlock(rq, p_rq);
4220 goto again;
4221 }
4222
4223 if (!curr->sched_class->yield_to_task)
4224 goto out_unlock;
4225
4226 if (curr->sched_class != p->sched_class)
4227 goto out_unlock;
4228
4229 if (task_running(p_rq, p) || p->state)
4230 goto out_unlock;
4231
4232 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4233 if (yielded) {
4234 schedstat_inc(rq, yld_count);
4235 /*
4236 * Make p's CPU reschedule; pick_next_entity takes care of
4237 * fairness.
4238 */
4239 if (preempt && rq != p_rq)
4240 resched_task(p_rq->curr);
4241 }
4242
4243 out_unlock:
4244 double_rq_unlock(rq, p_rq);
4245 out_irq:
4246 local_irq_restore(flags);
4247
4248 if (yielded > 0)
4249 schedule();
4250
4251 return yielded;
4252 }
4253 EXPORT_SYMBOL_GPL(yield_to);
4254
4255 /*
4256 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4257 * that process accounting knows that this is a task in IO wait state.
4258 */
4259 void __sched io_schedule(void)
4260 {
4261 struct rq *rq = raw_rq();
4262
4263 delayacct_blkio_start();
4264 atomic_inc(&rq->nr_iowait);
4265 blk_flush_plug(current);
4266 current->in_iowait = 1;
4267 schedule();
4268 current->in_iowait = 0;
4269 atomic_dec(&rq->nr_iowait);
4270 delayacct_blkio_end();
4271 }
4272 EXPORT_SYMBOL(io_schedule);
4273
4274 long __sched io_schedule_timeout(long timeout)
4275 {
4276 struct rq *rq = raw_rq();
4277 long ret;
4278
4279 delayacct_blkio_start();
4280 atomic_inc(&rq->nr_iowait);
4281 blk_flush_plug(current);
4282 current->in_iowait = 1;
4283 ret = schedule_timeout(timeout);
4284 current->in_iowait = 0;
4285 atomic_dec(&rq->nr_iowait);
4286 delayacct_blkio_end();
4287 return ret;
4288 }
4289
4290 /**
4291 * sys_sched_get_priority_max - return maximum RT priority.
4292 * @policy: scheduling class.
4293 *
4294 * Return: On success, this syscall returns the maximum
4295 * rt_priority that can be used by a given scheduling class.
4296 * On failure, a negative error code is returned.
4297 */
4298 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4299 {
4300 int ret = -EINVAL;
4301
4302 switch (policy) {
4303 case SCHED_FIFO:
4304 case SCHED_RR:
4305 ret = MAX_USER_RT_PRIO-1;
4306 break;
4307 case SCHED_DEADLINE:
4308 case SCHED_NORMAL:
4309 case SCHED_BATCH:
4310 case SCHED_IDLE:
4311 ret = 0;
4312 break;
4313 }
4314 return ret;
4315 }
4316
4317 /**
4318 * sys_sched_get_priority_min - return minimum RT priority.
4319 * @policy: scheduling class.
4320 *
4321 * Return: On success, this syscall returns the minimum
4322 * rt_priority that can be used by a given scheduling class.
4323 * On failure, a negative error code is returned.
4324 */
4325 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4326 {
4327 int ret = -EINVAL;
4328
4329 switch (policy) {
4330 case SCHED_FIFO:
4331 case SCHED_RR:
4332 ret = 1;
4333 break;
4334 case SCHED_DEADLINE:
4335 case SCHED_NORMAL:
4336 case SCHED_BATCH:
4337 case SCHED_IDLE:
4338 ret = 0;
4339 }
4340 return ret;
4341 }
4342
4343 /**
4344 * sys_sched_rr_get_interval - return the default timeslice of a process.
4345 * @pid: pid of the process.
4346 * @interval: userspace pointer to the timeslice value.
4347 *
4348 * this syscall writes the default timeslice value of a given process
4349 * into the user-space timespec buffer. A value of '0' means infinity.
4350 *
4351 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4352 * an error code.
4353 */
4354 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4355 struct timespec __user *, interval)
4356 {
4357 struct task_struct *p;
4358 unsigned int time_slice;
4359 unsigned long flags;
4360 struct rq *rq;
4361 int retval;
4362 struct timespec t;
4363
4364 if (pid < 0)
4365 return -EINVAL;
4366
4367 retval = -ESRCH;
4368 rcu_read_lock();
4369 p = find_process_by_pid(pid);
4370 if (!p)
4371 goto out_unlock;
4372
4373 retval = security_task_getscheduler(p);
4374 if (retval)
4375 goto out_unlock;
4376
4377 rq = task_rq_lock(p, &flags);
4378 time_slice = 0;
4379 if (p->sched_class->get_rr_interval)
4380 time_slice = p->sched_class->get_rr_interval(rq, p);
4381 task_rq_unlock(rq, p, &flags);
4382
4383 rcu_read_unlock();
4384 jiffies_to_timespec(time_slice, &t);
4385 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4386 return retval;
4387
4388 out_unlock:
4389 rcu_read_unlock();
4390 return retval;
4391 }
4392
4393 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4394
4395 void sched_show_task(struct task_struct *p)
4396 {
4397 unsigned long free = 0;
4398 int ppid;
4399 unsigned state;
4400
4401 state = p->state ? __ffs(p->state) + 1 : 0;
4402 printk(KERN_INFO "%-15.15s %c", p->comm,
4403 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4404 #if BITS_PER_LONG == 32
4405 if (state == TASK_RUNNING)
4406 printk(KERN_CONT " running ");
4407 else
4408 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4409 #else
4410 if (state == TASK_RUNNING)
4411 printk(KERN_CONT " running task ");
4412 else
4413 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4414 #endif
4415 #ifdef CONFIG_DEBUG_STACK_USAGE
4416 free = stack_not_used(p);
4417 #endif
4418 rcu_read_lock();
4419 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4420 rcu_read_unlock();
4421 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4422 task_pid_nr(p), ppid,
4423 (unsigned long)task_thread_info(p)->flags);
4424
4425 print_worker_info(KERN_INFO, p);
4426 show_stack(p, NULL);
4427 }
4428
4429 void show_state_filter(unsigned long state_filter)
4430 {
4431 struct task_struct *g, *p;
4432
4433 #if BITS_PER_LONG == 32
4434 printk(KERN_INFO
4435 " task PC stack pid father\n");
4436 #else
4437 printk(KERN_INFO
4438 " task PC stack pid father\n");
4439 #endif
4440 rcu_read_lock();
4441 do_each_thread(g, p) {
4442 /*
4443 * reset the NMI-timeout, listing all files on a slow
4444 * console might take a lot of time:
4445 */
4446 touch_nmi_watchdog();
4447 if (!state_filter || (p->state & state_filter))
4448 sched_show_task(p);
4449 } while_each_thread(g, p);
4450
4451 touch_all_softlockup_watchdogs();
4452
4453 #ifdef CONFIG_SCHED_DEBUG
4454 sysrq_sched_debug_show();
4455 #endif
4456 rcu_read_unlock();
4457 /*
4458 * Only show locks if all tasks are dumped:
4459 */
4460 if (!state_filter)
4461 debug_show_all_locks();
4462 }
4463
4464 void init_idle_bootup_task(struct task_struct *idle)
4465 {
4466 idle->sched_class = &idle_sched_class;
4467 }
4468
4469 /**
4470 * init_idle - set up an idle thread for a given CPU
4471 * @idle: task in question
4472 * @cpu: cpu the idle task belongs to
4473 *
4474 * NOTE: this function does not set the idle thread's NEED_RESCHED
4475 * flag, to make booting more robust.
4476 */
4477 void init_idle(struct task_struct *idle, int cpu)
4478 {
4479 struct rq *rq = cpu_rq(cpu);
4480 unsigned long flags;
4481
4482 raw_spin_lock_irqsave(&rq->lock, flags);
4483
4484 __sched_fork(0, idle);
4485 idle->state = TASK_RUNNING;
4486 idle->se.exec_start = sched_clock();
4487
4488 do_set_cpus_allowed(idle, cpumask_of(cpu));
4489 /*
4490 * We're having a chicken and egg problem, even though we are
4491 * holding rq->lock, the cpu isn't yet set to this cpu so the
4492 * lockdep check in task_group() will fail.
4493 *
4494 * Similar case to sched_fork(). / Alternatively we could
4495 * use task_rq_lock() here and obtain the other rq->lock.
4496 *
4497 * Silence PROVE_RCU
4498 */
4499 rcu_read_lock();
4500 __set_task_cpu(idle, cpu);
4501 rcu_read_unlock();
4502
4503 rq->curr = rq->idle = idle;
4504 idle->on_rq = 1;
4505 #if defined(CONFIG_SMP)
4506 idle->on_cpu = 1;
4507 #endif
4508 raw_spin_unlock_irqrestore(&rq->lock, flags);
4509
4510 /* Set the preempt count _outside_ the spinlocks! */
4511 init_idle_preempt_count(idle, cpu);
4512
4513 /*
4514 * The idle tasks have their own, simple scheduling class:
4515 */
4516 idle->sched_class = &idle_sched_class;
4517 ftrace_graph_init_idle_task(idle, cpu);
4518 vtime_init_idle(idle, cpu);
4519 #if defined(CONFIG_SMP)
4520 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4521 #endif
4522 }
4523
4524 #ifdef CONFIG_SMP
4525 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4526 {
4527 if (p->sched_class && p->sched_class->set_cpus_allowed)
4528 p->sched_class->set_cpus_allowed(p, new_mask);
4529
4530 cpumask_copy(&p->cpus_allowed, new_mask);
4531 p->nr_cpus_allowed = cpumask_weight(new_mask);
4532 }
4533
4534 /*
4535 * This is how migration works:
4536 *
4537 * 1) we invoke migration_cpu_stop() on the target CPU using
4538 * stop_one_cpu().
4539 * 2) stopper starts to run (implicitly forcing the migrated thread
4540 * off the CPU)
4541 * 3) it checks whether the migrated task is still in the wrong runqueue.
4542 * 4) if it's in the wrong runqueue then the migration thread removes
4543 * it and puts it into the right queue.
4544 * 5) stopper completes and stop_one_cpu() returns and the migration
4545 * is done.
4546 */
4547
4548 /*
4549 * Change a given task's CPU affinity. Migrate the thread to a
4550 * proper CPU and schedule it away if the CPU it's executing on
4551 * is removed from the allowed bitmask.
4552 *
4553 * NOTE: the caller must have a valid reference to the task, the
4554 * task must not exit() & deallocate itself prematurely. The
4555 * call is not atomic; no spinlocks may be held.
4556 */
4557 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4558 {
4559 unsigned long flags;
4560 struct rq *rq;
4561 unsigned int dest_cpu;
4562 int ret = 0;
4563
4564 rq = task_rq_lock(p, &flags);
4565
4566 if (cpumask_equal(&p->cpus_allowed, new_mask))
4567 goto out;
4568
4569 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4570 ret = -EINVAL;
4571 goto out;
4572 }
4573
4574 do_set_cpus_allowed(p, new_mask);
4575
4576 /* Can the task run on the task's current CPU? If so, we're done */
4577 if (cpumask_test_cpu(task_cpu(p), new_mask))
4578 goto out;
4579
4580 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4581 if (p->on_rq) {
4582 struct migration_arg arg = { p, dest_cpu };
4583 /* Need help from migration thread: drop lock and wait. */
4584 task_rq_unlock(rq, p, &flags);
4585 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4586 tlb_migrate_finish(p->mm);
4587 return 0;
4588 }
4589 out:
4590 task_rq_unlock(rq, p, &flags);
4591
4592 return ret;
4593 }
4594 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4595
4596 /*
4597 * Move (not current) task off this cpu, onto dest cpu. We're doing
4598 * this because either it can't run here any more (set_cpus_allowed()
4599 * away from this CPU, or CPU going down), or because we're
4600 * attempting to rebalance this task on exec (sched_exec).
4601 *
4602 * So we race with normal scheduler movements, but that's OK, as long
4603 * as the task is no longer on this CPU.
4604 *
4605 * Returns non-zero if task was successfully migrated.
4606 */
4607 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4608 {
4609 struct rq *rq_dest, *rq_src;
4610 int ret = 0;
4611
4612 if (unlikely(!cpu_active(dest_cpu)))
4613 return ret;
4614
4615 rq_src = cpu_rq(src_cpu);
4616 rq_dest = cpu_rq(dest_cpu);
4617
4618 raw_spin_lock(&p->pi_lock);
4619 double_rq_lock(rq_src, rq_dest);
4620 /* Already moved. */
4621 if (task_cpu(p) != src_cpu)
4622 goto done;
4623 /* Affinity changed (again). */
4624 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4625 goto fail;
4626
4627 /*
4628 * If we're not on a rq, the next wake-up will ensure we're
4629 * placed properly.
4630 */
4631 if (p->on_rq) {
4632 dequeue_task(rq_src, p, 0);
4633 set_task_cpu(p, dest_cpu);
4634 enqueue_task(rq_dest, p, 0);
4635 check_preempt_curr(rq_dest, p, 0);
4636 }
4637 done:
4638 ret = 1;
4639 fail:
4640 double_rq_unlock(rq_src, rq_dest);
4641 raw_spin_unlock(&p->pi_lock);
4642 return ret;
4643 }
4644
4645 #ifdef CONFIG_NUMA_BALANCING
4646 /* Migrate current task p to target_cpu */
4647 int migrate_task_to(struct task_struct *p, int target_cpu)
4648 {
4649 struct migration_arg arg = { p, target_cpu };
4650 int curr_cpu = task_cpu(p);
4651
4652 if (curr_cpu == target_cpu)
4653 return 0;
4654
4655 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4656 return -EINVAL;
4657
4658 /* TODO: This is not properly updating schedstats */
4659
4660 trace_sched_move_numa(p, curr_cpu, target_cpu);
4661 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4662 }
4663
4664 /*
4665 * Requeue a task on a given node and accurately track the number of NUMA
4666 * tasks on the runqueues
4667 */
4668 void sched_setnuma(struct task_struct *p, int nid)
4669 {
4670 struct rq *rq;
4671 unsigned long flags;
4672 bool on_rq, running;
4673
4674 rq = task_rq_lock(p, &flags);
4675 on_rq = p->on_rq;
4676 running = task_current(rq, p);
4677
4678 if (on_rq)
4679 dequeue_task(rq, p, 0);
4680 if (running)
4681 p->sched_class->put_prev_task(rq, p);
4682
4683 p->numa_preferred_nid = nid;
4684
4685 if (running)
4686 p->sched_class->set_curr_task(rq);
4687 if (on_rq)
4688 enqueue_task(rq, p, 0);
4689 task_rq_unlock(rq, p, &flags);
4690 }
4691 #endif
4692
4693 /*
4694 * migration_cpu_stop - this will be executed by a highprio stopper thread
4695 * and performs thread migration by bumping thread off CPU then
4696 * 'pushing' onto another runqueue.
4697 */
4698 static int migration_cpu_stop(void *data)
4699 {
4700 struct migration_arg *arg = data;
4701
4702 /*
4703 * The original target cpu might have gone down and we might
4704 * be on another cpu but it doesn't matter.
4705 */
4706 local_irq_disable();
4707 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4708 local_irq_enable();
4709 return 0;
4710 }
4711
4712 #ifdef CONFIG_HOTPLUG_CPU
4713
4714 /*
4715 * Ensures that the idle task is using init_mm right before its cpu goes
4716 * offline.
4717 */
4718 void idle_task_exit(void)
4719 {
4720 struct mm_struct *mm = current->active_mm;
4721
4722 BUG_ON(cpu_online(smp_processor_id()));
4723
4724 if (mm != &init_mm) {
4725 switch_mm(mm, &init_mm, current);
4726 finish_arch_post_lock_switch();
4727 }
4728 mmdrop(mm);
4729 }
4730
4731 /*
4732 * Since this CPU is going 'away' for a while, fold any nr_active delta
4733 * we might have. Assumes we're called after migrate_tasks() so that the
4734 * nr_active count is stable.
4735 *
4736 * Also see the comment "Global load-average calculations".
4737 */
4738 static void calc_load_migrate(struct rq *rq)
4739 {
4740 long delta = calc_load_fold_active(rq);
4741 if (delta)
4742 atomic_long_add(delta, &calc_load_tasks);
4743 }
4744
4745 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4746 {
4747 }
4748
4749 static const struct sched_class fake_sched_class = {
4750 .put_prev_task = put_prev_task_fake,
4751 };
4752
4753 static struct task_struct fake_task = {
4754 /*
4755 * Avoid pull_{rt,dl}_task()
4756 */
4757 .prio = MAX_PRIO + 1,
4758 .sched_class = &fake_sched_class,
4759 };
4760
4761 /*
4762 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4763 * try_to_wake_up()->select_task_rq().
4764 *
4765 * Called with rq->lock held even though we'er in stop_machine() and
4766 * there's no concurrency possible, we hold the required locks anyway
4767 * because of lock validation efforts.
4768 */
4769 static void migrate_tasks(unsigned int dead_cpu)
4770 {
4771 struct rq *rq = cpu_rq(dead_cpu);
4772 struct task_struct *next, *stop = rq->stop;
4773 int dest_cpu;
4774
4775 /*
4776 * Fudge the rq selection such that the below task selection loop
4777 * doesn't get stuck on the currently eligible stop task.
4778 *
4779 * We're currently inside stop_machine() and the rq is either stuck
4780 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4781 * either way we should never end up calling schedule() until we're
4782 * done here.
4783 */
4784 rq->stop = NULL;
4785
4786 /*
4787 * put_prev_task() and pick_next_task() sched
4788 * class method both need to have an up-to-date
4789 * value of rq->clock[_task]
4790 */
4791 update_rq_clock(rq);
4792
4793 for ( ; ; ) {
4794 /*
4795 * There's this thread running, bail when that's the only
4796 * remaining thread.
4797 */
4798 if (rq->nr_running == 1)
4799 break;
4800
4801 next = pick_next_task(rq, &fake_task);
4802 BUG_ON(!next);
4803 next->sched_class->put_prev_task(rq, next);
4804
4805 /* Find suitable destination for @next, with force if needed. */
4806 dest_cpu = select_fallback_rq(dead_cpu, next);
4807 raw_spin_unlock(&rq->lock);
4808
4809 __migrate_task(next, dead_cpu, dest_cpu);
4810
4811 raw_spin_lock(&rq->lock);
4812 }
4813
4814 rq->stop = stop;
4815 }
4816
4817 #endif /* CONFIG_HOTPLUG_CPU */
4818
4819 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4820
4821 static struct ctl_table sd_ctl_dir[] = {
4822 {
4823 .procname = "sched_domain",
4824 .mode = 0555,
4825 },
4826 {}
4827 };
4828
4829 static struct ctl_table sd_ctl_root[] = {
4830 {
4831 .procname = "kernel",
4832 .mode = 0555,
4833 .child = sd_ctl_dir,
4834 },
4835 {}
4836 };
4837
4838 static struct ctl_table *sd_alloc_ctl_entry(int n)
4839 {
4840 struct ctl_table *entry =
4841 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4842
4843 return entry;
4844 }
4845
4846 static void sd_free_ctl_entry(struct ctl_table **tablep)
4847 {
4848 struct ctl_table *entry;
4849
4850 /*
4851 * In the intermediate directories, both the child directory and
4852 * procname are dynamically allocated and could fail but the mode
4853 * will always be set. In the lowest directory the names are
4854 * static strings and all have proc handlers.
4855 */
4856 for (entry = *tablep; entry->mode; entry++) {
4857 if (entry->child)
4858 sd_free_ctl_entry(&entry->child);
4859 if (entry->proc_handler == NULL)
4860 kfree(entry->procname);
4861 }
4862
4863 kfree(*tablep);
4864 *tablep = NULL;
4865 }
4866
4867 static int min_load_idx = 0;
4868 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4869
4870 static void
4871 set_table_entry(struct ctl_table *entry,
4872 const char *procname, void *data, int maxlen,
4873 umode_t mode, proc_handler *proc_handler,
4874 bool load_idx)
4875 {
4876 entry->procname = procname;
4877 entry->data = data;
4878 entry->maxlen = maxlen;
4879 entry->mode = mode;
4880 entry->proc_handler = proc_handler;
4881
4882 if (load_idx) {
4883 entry->extra1 = &min_load_idx;
4884 entry->extra2 = &max_load_idx;
4885 }
4886 }
4887
4888 static struct ctl_table *
4889 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4890 {
4891 struct ctl_table *table = sd_alloc_ctl_entry(14);
4892
4893 if (table == NULL)
4894 return NULL;
4895
4896 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4897 sizeof(long), 0644, proc_doulongvec_minmax, false);
4898 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4899 sizeof(long), 0644, proc_doulongvec_minmax, false);
4900 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4901 sizeof(int), 0644, proc_dointvec_minmax, true);
4902 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4903 sizeof(int), 0644, proc_dointvec_minmax, true);
4904 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4905 sizeof(int), 0644, proc_dointvec_minmax, true);
4906 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4907 sizeof(int), 0644, proc_dointvec_minmax, true);
4908 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4909 sizeof(int), 0644, proc_dointvec_minmax, true);
4910 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4911 sizeof(int), 0644, proc_dointvec_minmax, false);
4912 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4913 sizeof(int), 0644, proc_dointvec_minmax, false);
4914 set_table_entry(&table[9], "cache_nice_tries",
4915 &sd->cache_nice_tries,
4916 sizeof(int), 0644, proc_dointvec_minmax, false);
4917 set_table_entry(&table[10], "flags", &sd->flags,
4918 sizeof(int), 0644, proc_dointvec_minmax, false);
4919 set_table_entry(&table[11], "max_newidle_lb_cost",
4920 &sd->max_newidle_lb_cost,
4921 sizeof(long), 0644, proc_doulongvec_minmax, false);
4922 set_table_entry(&table[12], "name", sd->name,
4923 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4924 /* &table[13] is terminator */
4925
4926 return table;
4927 }
4928
4929 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4930 {
4931 struct ctl_table *entry, *table;
4932 struct sched_domain *sd;
4933 int domain_num = 0, i;
4934 char buf[32];
4935
4936 for_each_domain(cpu, sd)
4937 domain_num++;
4938 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4939 if (table == NULL)
4940 return NULL;
4941
4942 i = 0;
4943 for_each_domain(cpu, sd) {
4944 snprintf(buf, 32, "domain%d", i);
4945 entry->procname = kstrdup(buf, GFP_KERNEL);
4946 entry->mode = 0555;
4947 entry->child = sd_alloc_ctl_domain_table(sd);
4948 entry++;
4949 i++;
4950 }
4951 return table;
4952 }
4953
4954 static struct ctl_table_header *sd_sysctl_header;
4955 static void register_sched_domain_sysctl(void)
4956 {
4957 int i, cpu_num = num_possible_cpus();
4958 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4959 char buf[32];
4960
4961 WARN_ON(sd_ctl_dir[0].child);
4962 sd_ctl_dir[0].child = entry;
4963
4964 if (entry == NULL)
4965 return;
4966
4967 for_each_possible_cpu(i) {
4968 snprintf(buf, 32, "cpu%d", i);
4969 entry->procname = kstrdup(buf, GFP_KERNEL);
4970 entry->mode = 0555;
4971 entry->child = sd_alloc_ctl_cpu_table(i);
4972 entry++;
4973 }
4974
4975 WARN_ON(sd_sysctl_header);
4976 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4977 }
4978
4979 /* may be called multiple times per register */
4980 static void unregister_sched_domain_sysctl(void)
4981 {
4982 if (sd_sysctl_header)
4983 unregister_sysctl_table(sd_sysctl_header);
4984 sd_sysctl_header = NULL;
4985 if (sd_ctl_dir[0].child)
4986 sd_free_ctl_entry(&sd_ctl_dir[0].child);
4987 }
4988 #else
4989 static void register_sched_domain_sysctl(void)
4990 {
4991 }
4992 static void unregister_sched_domain_sysctl(void)
4993 {
4994 }
4995 #endif
4996
4997 static void set_rq_online(struct rq *rq)
4998 {
4999 if (!rq->online) {
5000 const struct sched_class *class;
5001
5002 cpumask_set_cpu(rq->cpu, rq->rd->online);
5003 rq->online = 1;
5004
5005 for_each_class(class) {
5006 if (class->rq_online)
5007 class->rq_online(rq);
5008 }
5009 }
5010 }
5011
5012 static void set_rq_offline(struct rq *rq)
5013 {
5014 if (rq->online) {
5015 const struct sched_class *class;
5016
5017 for_each_class(class) {
5018 if (class->rq_offline)
5019 class->rq_offline(rq);
5020 }
5021
5022 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5023 rq->online = 0;
5024 }
5025 }
5026
5027 /*
5028 * migration_call - callback that gets triggered when a CPU is added.
5029 * Here we can start up the necessary migration thread for the new CPU.
5030 */
5031 static int
5032 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5033 {
5034 int cpu = (long)hcpu;
5035 unsigned long flags;
5036 struct rq *rq = cpu_rq(cpu);
5037
5038 switch (action & ~CPU_TASKS_FROZEN) {
5039
5040 case CPU_UP_PREPARE:
5041 rq->calc_load_update = calc_load_update;
5042 break;
5043
5044 case CPU_ONLINE:
5045 /* Update our root-domain */
5046 raw_spin_lock_irqsave(&rq->lock, flags);
5047 if (rq->rd) {
5048 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5049
5050 set_rq_online(rq);
5051 }
5052 raw_spin_unlock_irqrestore(&rq->lock, flags);
5053 break;
5054
5055 #ifdef CONFIG_HOTPLUG_CPU
5056 case CPU_DYING:
5057 sched_ttwu_pending();
5058 /* Update our root-domain */
5059 raw_spin_lock_irqsave(&rq->lock, flags);
5060 if (rq->rd) {
5061 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5062 set_rq_offline(rq);
5063 }
5064 migrate_tasks(cpu);
5065 BUG_ON(rq->nr_running != 1); /* the migration thread */
5066 raw_spin_unlock_irqrestore(&rq->lock, flags);
5067 break;
5068
5069 case CPU_DEAD:
5070 calc_load_migrate(rq);
5071 break;
5072 #endif
5073 }
5074
5075 update_max_interval();
5076
5077 return NOTIFY_OK;
5078 }
5079
5080 /*
5081 * Register at high priority so that task migration (migrate_all_tasks)
5082 * happens before everything else. This has to be lower priority than
5083 * the notifier in the perf_event subsystem, though.
5084 */
5085 static struct notifier_block migration_notifier = {
5086 .notifier_call = migration_call,
5087 .priority = CPU_PRI_MIGRATION,
5088 };
5089
5090 static int sched_cpu_active(struct notifier_block *nfb,
5091 unsigned long action, void *hcpu)
5092 {
5093 switch (action & ~CPU_TASKS_FROZEN) {
5094 case CPU_STARTING:
5095 case CPU_DOWN_FAILED:
5096 set_cpu_active((long)hcpu, true);
5097 return NOTIFY_OK;
5098 default:
5099 return NOTIFY_DONE;
5100 }
5101 }
5102
5103 static int sched_cpu_inactive(struct notifier_block *nfb,
5104 unsigned long action, void *hcpu)
5105 {
5106 unsigned long flags;
5107 long cpu = (long)hcpu;
5108
5109 switch (action & ~CPU_TASKS_FROZEN) {
5110 case CPU_DOWN_PREPARE:
5111 set_cpu_active(cpu, false);
5112
5113 /* explicitly allow suspend */
5114 if (!(action & CPU_TASKS_FROZEN)) {
5115 struct dl_bw *dl_b = dl_bw_of(cpu);
5116 bool overflow;
5117 int cpus;
5118
5119 raw_spin_lock_irqsave(&dl_b->lock, flags);
5120 cpus = dl_bw_cpus(cpu);
5121 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5122 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5123
5124 if (overflow)
5125 return notifier_from_errno(-EBUSY);
5126 }
5127 return NOTIFY_OK;
5128 }
5129
5130 return NOTIFY_DONE;
5131 }
5132
5133 static int __init migration_init(void)
5134 {
5135 void *cpu = (void *)(long)smp_processor_id();
5136 int err;
5137
5138 /* Initialize migration for the boot CPU */
5139 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5140 BUG_ON(err == NOTIFY_BAD);
5141 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5142 register_cpu_notifier(&migration_notifier);
5143
5144 /* Register cpu active notifiers */
5145 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5146 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5147
5148 return 0;
5149 }
5150 early_initcall(migration_init);
5151 #endif
5152
5153 #ifdef CONFIG_SMP
5154
5155 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5156
5157 #ifdef CONFIG_SCHED_DEBUG
5158
5159 static __read_mostly int sched_debug_enabled;
5160
5161 static int __init sched_debug_setup(char *str)
5162 {
5163 sched_debug_enabled = 1;
5164
5165 return 0;
5166 }
5167 early_param("sched_debug", sched_debug_setup);
5168
5169 static inline bool sched_debug(void)
5170 {
5171 return sched_debug_enabled;
5172 }
5173
5174 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5175 struct cpumask *groupmask)
5176 {
5177 struct sched_group *group = sd->groups;
5178 char str[256];
5179
5180 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5181 cpumask_clear(groupmask);
5182
5183 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5184
5185 if (!(sd->flags & SD_LOAD_BALANCE)) {
5186 printk("does not load-balance\n");
5187 if (sd->parent)
5188 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5189 " has parent");
5190 return -1;
5191 }
5192
5193 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5194
5195 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5196 printk(KERN_ERR "ERROR: domain->span does not contain "
5197 "CPU%d\n", cpu);
5198 }
5199 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5200 printk(KERN_ERR "ERROR: domain->groups does not contain"
5201 " CPU%d\n", cpu);
5202 }
5203
5204 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5205 do {
5206 if (!group) {
5207 printk("\n");
5208 printk(KERN_ERR "ERROR: group is NULL\n");
5209 break;
5210 }
5211
5212 /*
5213 * Even though we initialize ->power to something semi-sane,
5214 * we leave power_orig unset. This allows us to detect if
5215 * domain iteration is still funny without causing /0 traps.
5216 */
5217 if (!group->sgp->power_orig) {
5218 printk(KERN_CONT "\n");
5219 printk(KERN_ERR "ERROR: domain->cpu_power not "
5220 "set\n");
5221 break;
5222 }
5223
5224 if (!cpumask_weight(sched_group_cpus(group))) {
5225 printk(KERN_CONT "\n");
5226 printk(KERN_ERR "ERROR: empty group\n");
5227 break;
5228 }
5229
5230 if (!(sd->flags & SD_OVERLAP) &&
5231 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5232 printk(KERN_CONT "\n");
5233 printk(KERN_ERR "ERROR: repeated CPUs\n");
5234 break;
5235 }
5236
5237 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5238
5239 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5240
5241 printk(KERN_CONT " %s", str);
5242 if (group->sgp->power != SCHED_POWER_SCALE) {
5243 printk(KERN_CONT " (cpu_power = %d)",
5244 group->sgp->power);
5245 }
5246
5247 group = group->next;
5248 } while (group != sd->groups);
5249 printk(KERN_CONT "\n");
5250
5251 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5252 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5253
5254 if (sd->parent &&
5255 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5256 printk(KERN_ERR "ERROR: parent span is not a superset "
5257 "of domain->span\n");
5258 return 0;
5259 }
5260
5261 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5262 {
5263 int level = 0;
5264
5265 if (!sched_debug_enabled)
5266 return;
5267
5268 if (!sd) {
5269 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5270 return;
5271 }
5272
5273 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5274
5275 for (;;) {
5276 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5277 break;
5278 level++;
5279 sd = sd->parent;
5280 if (!sd)
5281 break;
5282 }
5283 }
5284 #else /* !CONFIG_SCHED_DEBUG */
5285 # define sched_domain_debug(sd, cpu) do { } while (0)
5286 static inline bool sched_debug(void)
5287 {
5288 return false;
5289 }
5290 #endif /* CONFIG_SCHED_DEBUG */
5291
5292 static int sd_degenerate(struct sched_domain *sd)
5293 {
5294 if (cpumask_weight(sched_domain_span(sd)) == 1)
5295 return 1;
5296
5297 /* Following flags need at least 2 groups */
5298 if (sd->flags & (SD_LOAD_BALANCE |
5299 SD_BALANCE_NEWIDLE |
5300 SD_BALANCE_FORK |
5301 SD_BALANCE_EXEC |
5302 SD_SHARE_CPUPOWER |
5303 SD_SHARE_PKG_RESOURCES)) {
5304 if (sd->groups != sd->groups->next)
5305 return 0;
5306 }
5307
5308 /* Following flags don't use groups */
5309 if (sd->flags & (SD_WAKE_AFFINE))
5310 return 0;
5311
5312 return 1;
5313 }
5314
5315 static int
5316 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5317 {
5318 unsigned long cflags = sd->flags, pflags = parent->flags;
5319
5320 if (sd_degenerate(parent))
5321 return 1;
5322
5323 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5324 return 0;
5325
5326 /* Flags needing groups don't count if only 1 group in parent */
5327 if (parent->groups == parent->groups->next) {
5328 pflags &= ~(SD_LOAD_BALANCE |
5329 SD_BALANCE_NEWIDLE |
5330 SD_BALANCE_FORK |
5331 SD_BALANCE_EXEC |
5332 SD_SHARE_CPUPOWER |
5333 SD_SHARE_PKG_RESOURCES |
5334 SD_PREFER_SIBLING);
5335 if (nr_node_ids == 1)
5336 pflags &= ~SD_SERIALIZE;
5337 }
5338 if (~cflags & pflags)
5339 return 0;
5340
5341 return 1;
5342 }
5343
5344 static void free_rootdomain(struct rcu_head *rcu)
5345 {
5346 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5347
5348 cpupri_cleanup(&rd->cpupri);
5349 cpudl_cleanup(&rd->cpudl);
5350 free_cpumask_var(rd->dlo_mask);
5351 free_cpumask_var(rd->rto_mask);
5352 free_cpumask_var(rd->online);
5353 free_cpumask_var(rd->span);
5354 kfree(rd);
5355 }
5356
5357 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5358 {
5359 struct root_domain *old_rd = NULL;
5360 unsigned long flags;
5361
5362 raw_spin_lock_irqsave(&rq->lock, flags);
5363
5364 if (rq->rd) {
5365 old_rd = rq->rd;
5366
5367 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5368 set_rq_offline(rq);
5369
5370 cpumask_clear_cpu(rq->cpu, old_rd->span);
5371
5372 /*
5373 * If we dont want to free the old_rd yet then
5374 * set old_rd to NULL to skip the freeing later
5375 * in this function:
5376 */
5377 if (!atomic_dec_and_test(&old_rd->refcount))
5378 old_rd = NULL;
5379 }
5380
5381 atomic_inc(&rd->refcount);
5382 rq->rd = rd;
5383
5384 cpumask_set_cpu(rq->cpu, rd->span);
5385 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5386 set_rq_online(rq);
5387
5388 raw_spin_unlock_irqrestore(&rq->lock, flags);
5389
5390 if (old_rd)
5391 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5392 }
5393
5394 static int init_rootdomain(struct root_domain *rd)
5395 {
5396 memset(rd, 0, sizeof(*rd));
5397
5398 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5399 goto out;
5400 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5401 goto free_span;
5402 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5403 goto free_online;
5404 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5405 goto free_dlo_mask;
5406
5407 init_dl_bw(&rd->dl_bw);
5408 if (cpudl_init(&rd->cpudl) != 0)
5409 goto free_dlo_mask;
5410
5411 if (cpupri_init(&rd->cpupri) != 0)
5412 goto free_rto_mask;
5413 return 0;
5414
5415 free_rto_mask:
5416 free_cpumask_var(rd->rto_mask);
5417 free_dlo_mask:
5418 free_cpumask_var(rd->dlo_mask);
5419 free_online:
5420 free_cpumask_var(rd->online);
5421 free_span:
5422 free_cpumask_var(rd->span);
5423 out:
5424 return -ENOMEM;
5425 }
5426
5427 /*
5428 * By default the system creates a single root-domain with all cpus as
5429 * members (mimicking the global state we have today).
5430 */
5431 struct root_domain def_root_domain;
5432
5433 static void init_defrootdomain(void)
5434 {
5435 init_rootdomain(&def_root_domain);
5436
5437 atomic_set(&def_root_domain.refcount, 1);
5438 }
5439
5440 static struct root_domain *alloc_rootdomain(void)
5441 {
5442 struct root_domain *rd;
5443
5444 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5445 if (!rd)
5446 return NULL;
5447
5448 if (init_rootdomain(rd) != 0) {
5449 kfree(rd);
5450 return NULL;
5451 }
5452
5453 return rd;
5454 }
5455
5456 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5457 {
5458 struct sched_group *tmp, *first;
5459
5460 if (!sg)
5461 return;
5462
5463 first = sg;
5464 do {
5465 tmp = sg->next;
5466
5467 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5468 kfree(sg->sgp);
5469
5470 kfree(sg);
5471 sg = tmp;
5472 } while (sg != first);
5473 }
5474
5475 static void free_sched_domain(struct rcu_head *rcu)
5476 {
5477 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5478
5479 /*
5480 * If its an overlapping domain it has private groups, iterate and
5481 * nuke them all.
5482 */
5483 if (sd->flags & SD_OVERLAP) {
5484 free_sched_groups(sd->groups, 1);
5485 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5486 kfree(sd->groups->sgp);
5487 kfree(sd->groups);
5488 }
5489 kfree(sd);
5490 }
5491
5492 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5493 {
5494 call_rcu(&sd->rcu, free_sched_domain);
5495 }
5496
5497 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5498 {
5499 for (; sd; sd = sd->parent)
5500 destroy_sched_domain(sd, cpu);
5501 }
5502
5503 /*
5504 * Keep a special pointer to the highest sched_domain that has
5505 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5506 * allows us to avoid some pointer chasing select_idle_sibling().
5507 *
5508 * Also keep a unique ID per domain (we use the first cpu number in
5509 * the cpumask of the domain), this allows us to quickly tell if
5510 * two cpus are in the same cache domain, see cpus_share_cache().
5511 */
5512 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5513 DEFINE_PER_CPU(int, sd_llc_size);
5514 DEFINE_PER_CPU(int, sd_llc_id);
5515 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5516 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5517 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5518
5519 static void update_top_cache_domain(int cpu)
5520 {
5521 struct sched_domain *sd;
5522 struct sched_domain *busy_sd = NULL;
5523 int id = cpu;
5524 int size = 1;
5525
5526 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5527 if (sd) {
5528 id = cpumask_first(sched_domain_span(sd));
5529 size = cpumask_weight(sched_domain_span(sd));
5530 busy_sd = sd->parent; /* sd_busy */
5531 }
5532 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5533
5534 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5535 per_cpu(sd_llc_size, cpu) = size;
5536 per_cpu(sd_llc_id, cpu) = id;
5537
5538 sd = lowest_flag_domain(cpu, SD_NUMA);
5539 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5540
5541 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5542 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5543 }
5544
5545 /*
5546 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5547 * hold the hotplug lock.
5548 */
5549 static void
5550 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5551 {
5552 struct rq *rq = cpu_rq(cpu);
5553 struct sched_domain *tmp;
5554
5555 /* Remove the sched domains which do not contribute to scheduling. */
5556 for (tmp = sd; tmp; ) {
5557 struct sched_domain *parent = tmp->parent;
5558 if (!parent)
5559 break;
5560
5561 if (sd_parent_degenerate(tmp, parent)) {
5562 tmp->parent = parent->parent;
5563 if (parent->parent)
5564 parent->parent->child = tmp;
5565 /*
5566 * Transfer SD_PREFER_SIBLING down in case of a
5567 * degenerate parent; the spans match for this
5568 * so the property transfers.
5569 */
5570 if (parent->flags & SD_PREFER_SIBLING)
5571 tmp->flags |= SD_PREFER_SIBLING;
5572 destroy_sched_domain(parent, cpu);
5573 } else
5574 tmp = tmp->parent;
5575 }
5576
5577 if (sd && sd_degenerate(sd)) {
5578 tmp = sd;
5579 sd = sd->parent;
5580 destroy_sched_domain(tmp, cpu);
5581 if (sd)
5582 sd->child = NULL;
5583 }
5584
5585 sched_domain_debug(sd, cpu);
5586
5587 rq_attach_root(rq, rd);
5588 tmp = rq->sd;
5589 rcu_assign_pointer(rq->sd, sd);
5590 destroy_sched_domains(tmp, cpu);
5591
5592 update_top_cache_domain(cpu);
5593 }
5594
5595 /* cpus with isolated domains */
5596 static cpumask_var_t cpu_isolated_map;
5597
5598 /* Setup the mask of cpus configured for isolated domains */
5599 static int __init isolated_cpu_setup(char *str)
5600 {
5601 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5602 cpulist_parse(str, cpu_isolated_map);
5603 return 1;
5604 }
5605
5606 __setup("isolcpus=", isolated_cpu_setup);
5607
5608 static const struct cpumask *cpu_cpu_mask(int cpu)
5609 {
5610 return cpumask_of_node(cpu_to_node(cpu));
5611 }
5612
5613 struct sd_data {
5614 struct sched_domain **__percpu sd;
5615 struct sched_group **__percpu sg;
5616 struct sched_group_power **__percpu sgp;
5617 };
5618
5619 struct s_data {
5620 struct sched_domain ** __percpu sd;
5621 struct root_domain *rd;
5622 };
5623
5624 enum s_alloc {
5625 sa_rootdomain,
5626 sa_sd,
5627 sa_sd_storage,
5628 sa_none,
5629 };
5630
5631 struct sched_domain_topology_level;
5632
5633 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5634 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5635
5636 #define SDTL_OVERLAP 0x01
5637
5638 struct sched_domain_topology_level {
5639 sched_domain_init_f init;
5640 sched_domain_mask_f mask;
5641 int flags;
5642 int numa_level;
5643 struct sd_data data;
5644 };
5645
5646 /*
5647 * Build an iteration mask that can exclude certain CPUs from the upwards
5648 * domain traversal.
5649 *
5650 * Asymmetric node setups can result in situations where the domain tree is of
5651 * unequal depth, make sure to skip domains that already cover the entire
5652 * range.
5653 *
5654 * In that case build_sched_domains() will have terminated the iteration early
5655 * and our sibling sd spans will be empty. Domains should always include the
5656 * cpu they're built on, so check that.
5657 *
5658 */
5659 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5660 {
5661 const struct cpumask *span = sched_domain_span(sd);
5662 struct sd_data *sdd = sd->private;
5663 struct sched_domain *sibling;
5664 int i;
5665
5666 for_each_cpu(i, span) {
5667 sibling = *per_cpu_ptr(sdd->sd, i);
5668 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5669 continue;
5670
5671 cpumask_set_cpu(i, sched_group_mask(sg));
5672 }
5673 }
5674
5675 /*
5676 * Return the canonical balance cpu for this group, this is the first cpu
5677 * of this group that's also in the iteration mask.
5678 */
5679 int group_balance_cpu(struct sched_group *sg)
5680 {
5681 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5682 }
5683
5684 static int
5685 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5686 {
5687 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5688 const struct cpumask *span = sched_domain_span(sd);
5689 struct cpumask *covered = sched_domains_tmpmask;
5690 struct sd_data *sdd = sd->private;
5691 struct sched_domain *child;
5692 int i;
5693
5694 cpumask_clear(covered);
5695
5696 for_each_cpu(i, span) {
5697 struct cpumask *sg_span;
5698
5699 if (cpumask_test_cpu(i, covered))
5700 continue;
5701
5702 child = *per_cpu_ptr(sdd->sd, i);
5703
5704 /* See the comment near build_group_mask(). */
5705 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5706 continue;
5707
5708 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5709 GFP_KERNEL, cpu_to_node(cpu));
5710
5711 if (!sg)
5712 goto fail;
5713
5714 sg_span = sched_group_cpus(sg);
5715 if (child->child) {
5716 child = child->child;
5717 cpumask_copy(sg_span, sched_domain_span(child));
5718 } else
5719 cpumask_set_cpu(i, sg_span);
5720
5721 cpumask_or(covered, covered, sg_span);
5722
5723 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5724 if (atomic_inc_return(&sg->sgp->ref) == 1)
5725 build_group_mask(sd, sg);
5726
5727 /*
5728 * Initialize sgp->power such that even if we mess up the
5729 * domains and no possible iteration will get us here, we won't
5730 * die on a /0 trap.
5731 */
5732 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5733 sg->sgp->power_orig = sg->sgp->power;
5734
5735 /*
5736 * Make sure the first group of this domain contains the
5737 * canonical balance cpu. Otherwise the sched_domain iteration
5738 * breaks. See update_sg_lb_stats().
5739 */
5740 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5741 group_balance_cpu(sg) == cpu)
5742 groups = sg;
5743
5744 if (!first)
5745 first = sg;
5746 if (last)
5747 last->next = sg;
5748 last = sg;
5749 last->next = first;
5750 }
5751 sd->groups = groups;
5752
5753 return 0;
5754
5755 fail:
5756 free_sched_groups(first, 0);
5757
5758 return -ENOMEM;
5759 }
5760
5761 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5762 {
5763 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5764 struct sched_domain *child = sd->child;
5765
5766 if (child)
5767 cpu = cpumask_first(sched_domain_span(child));
5768
5769 if (sg) {
5770 *sg = *per_cpu_ptr(sdd->sg, cpu);
5771 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5772 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5773 }
5774
5775 return cpu;
5776 }
5777
5778 /*
5779 * build_sched_groups will build a circular linked list of the groups
5780 * covered by the given span, and will set each group's ->cpumask correctly,
5781 * and ->cpu_power to 0.
5782 *
5783 * Assumes the sched_domain tree is fully constructed
5784 */
5785 static int
5786 build_sched_groups(struct sched_domain *sd, int cpu)
5787 {
5788 struct sched_group *first = NULL, *last = NULL;
5789 struct sd_data *sdd = sd->private;
5790 const struct cpumask *span = sched_domain_span(sd);
5791 struct cpumask *covered;
5792 int i;
5793
5794 get_group(cpu, sdd, &sd->groups);
5795 atomic_inc(&sd->groups->ref);
5796
5797 if (cpu != cpumask_first(span))
5798 return 0;
5799
5800 lockdep_assert_held(&sched_domains_mutex);
5801 covered = sched_domains_tmpmask;
5802
5803 cpumask_clear(covered);
5804
5805 for_each_cpu(i, span) {
5806 struct sched_group *sg;
5807 int group, j;
5808
5809 if (cpumask_test_cpu(i, covered))
5810 continue;
5811
5812 group = get_group(i, sdd, &sg);
5813 cpumask_clear(sched_group_cpus(sg));
5814 sg->sgp->power = 0;
5815 cpumask_setall(sched_group_mask(sg));
5816
5817 for_each_cpu(j, span) {
5818 if (get_group(j, sdd, NULL) != group)
5819 continue;
5820
5821 cpumask_set_cpu(j, covered);
5822 cpumask_set_cpu(j, sched_group_cpus(sg));
5823 }
5824
5825 if (!first)
5826 first = sg;
5827 if (last)
5828 last->next = sg;
5829 last = sg;
5830 }
5831 last->next = first;
5832
5833 return 0;
5834 }
5835
5836 /*
5837 * Initialize sched groups cpu_power.
5838 *
5839 * cpu_power indicates the capacity of sched group, which is used while
5840 * distributing the load between different sched groups in a sched domain.
5841 * Typically cpu_power for all the groups in a sched domain will be same unless
5842 * there are asymmetries in the topology. If there are asymmetries, group
5843 * having more cpu_power will pickup more load compared to the group having
5844 * less cpu_power.
5845 */
5846 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5847 {
5848 struct sched_group *sg = sd->groups;
5849
5850 WARN_ON(!sg);
5851
5852 do {
5853 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5854 sg = sg->next;
5855 } while (sg != sd->groups);
5856
5857 if (cpu != group_balance_cpu(sg))
5858 return;
5859
5860 update_group_power(sd, cpu);
5861 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5862 }
5863
5864 int __weak arch_sd_sibling_asym_packing(void)
5865 {
5866 return 0*SD_ASYM_PACKING;
5867 }
5868
5869 /*
5870 * Initializers for schedule domains
5871 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5872 */
5873
5874 #ifdef CONFIG_SCHED_DEBUG
5875 # define SD_INIT_NAME(sd, type) sd->name = #type
5876 #else
5877 # define SD_INIT_NAME(sd, type) do { } while (0)
5878 #endif
5879
5880 #define SD_INIT_FUNC(type) \
5881 static noinline struct sched_domain * \
5882 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5883 { \
5884 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5885 *sd = SD_##type##_INIT; \
5886 SD_INIT_NAME(sd, type); \
5887 sd->private = &tl->data; \
5888 return sd; \
5889 }
5890
5891 SD_INIT_FUNC(CPU)
5892 #ifdef CONFIG_SCHED_SMT
5893 SD_INIT_FUNC(SIBLING)
5894 #endif
5895 #ifdef CONFIG_SCHED_MC
5896 SD_INIT_FUNC(MC)
5897 #endif
5898 #ifdef CONFIG_SCHED_BOOK
5899 SD_INIT_FUNC(BOOK)
5900 #endif
5901
5902 static int default_relax_domain_level = -1;
5903 int sched_domain_level_max;
5904
5905 static int __init setup_relax_domain_level(char *str)
5906 {
5907 if (kstrtoint(str, 0, &default_relax_domain_level))
5908 pr_warn("Unable to set relax_domain_level\n");
5909
5910 return 1;
5911 }
5912 __setup("relax_domain_level=", setup_relax_domain_level);
5913
5914 static void set_domain_attribute(struct sched_domain *sd,
5915 struct sched_domain_attr *attr)
5916 {
5917 int request;
5918
5919 if (!attr || attr->relax_domain_level < 0) {
5920 if (default_relax_domain_level < 0)
5921 return;
5922 else
5923 request = default_relax_domain_level;
5924 } else
5925 request = attr->relax_domain_level;
5926 if (request < sd->level) {
5927 /* turn off idle balance on this domain */
5928 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5929 } else {
5930 /* turn on idle balance on this domain */
5931 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5932 }
5933 }
5934
5935 static void __sdt_free(const struct cpumask *cpu_map);
5936 static int __sdt_alloc(const struct cpumask *cpu_map);
5937
5938 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5939 const struct cpumask *cpu_map)
5940 {
5941 switch (what) {
5942 case sa_rootdomain:
5943 if (!atomic_read(&d->rd->refcount))
5944 free_rootdomain(&d->rd->rcu); /* fall through */
5945 case sa_sd:
5946 free_percpu(d->sd); /* fall through */
5947 case sa_sd_storage:
5948 __sdt_free(cpu_map); /* fall through */
5949 case sa_none:
5950 break;
5951 }
5952 }
5953
5954 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5955 const struct cpumask *cpu_map)
5956 {
5957 memset(d, 0, sizeof(*d));
5958
5959 if (__sdt_alloc(cpu_map))
5960 return sa_sd_storage;
5961 d->sd = alloc_percpu(struct sched_domain *);
5962 if (!d->sd)
5963 return sa_sd_storage;
5964 d->rd = alloc_rootdomain();
5965 if (!d->rd)
5966 return sa_sd;
5967 return sa_rootdomain;
5968 }
5969
5970 /*
5971 * NULL the sd_data elements we've used to build the sched_domain and
5972 * sched_group structure so that the subsequent __free_domain_allocs()
5973 * will not free the data we're using.
5974 */
5975 static void claim_allocations(int cpu, struct sched_domain *sd)
5976 {
5977 struct sd_data *sdd = sd->private;
5978
5979 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5980 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5981
5982 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5983 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5984
5985 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5986 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5987 }
5988
5989 #ifdef CONFIG_SCHED_SMT
5990 static const struct cpumask *cpu_smt_mask(int cpu)
5991 {
5992 return topology_thread_cpumask(cpu);
5993 }
5994 #endif
5995
5996 /*
5997 * Topology list, bottom-up.
5998 */
5999 static struct sched_domain_topology_level default_topology[] = {
6000 #ifdef CONFIG_SCHED_SMT
6001 { sd_init_SIBLING, cpu_smt_mask, },
6002 #endif
6003 #ifdef CONFIG_SCHED_MC
6004 { sd_init_MC, cpu_coregroup_mask, },
6005 #endif
6006 #ifdef CONFIG_SCHED_BOOK
6007 { sd_init_BOOK, cpu_book_mask, },
6008 #endif
6009 { sd_init_CPU, cpu_cpu_mask, },
6010 { NULL, },
6011 };
6012
6013 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6014
6015 #define for_each_sd_topology(tl) \
6016 for (tl = sched_domain_topology; tl->init; tl++)
6017
6018 #ifdef CONFIG_NUMA
6019
6020 static int sched_domains_numa_levels;
6021 static int *sched_domains_numa_distance;
6022 static struct cpumask ***sched_domains_numa_masks;
6023 static int sched_domains_curr_level;
6024
6025 static inline int sd_local_flags(int level)
6026 {
6027 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
6028 return 0;
6029
6030 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6031 }
6032
6033 static struct sched_domain *
6034 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6035 {
6036 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6037 int level = tl->numa_level;
6038 int sd_weight = cpumask_weight(
6039 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6040
6041 *sd = (struct sched_domain){
6042 .min_interval = sd_weight,
6043 .max_interval = 2*sd_weight,
6044 .busy_factor = 32,
6045 .imbalance_pct = 125,
6046 .cache_nice_tries = 2,
6047 .busy_idx = 3,
6048 .idle_idx = 2,
6049 .newidle_idx = 0,
6050 .wake_idx = 0,
6051 .forkexec_idx = 0,
6052
6053 .flags = 1*SD_LOAD_BALANCE
6054 | 1*SD_BALANCE_NEWIDLE
6055 | 0*SD_BALANCE_EXEC
6056 | 0*SD_BALANCE_FORK
6057 | 0*SD_BALANCE_WAKE
6058 | 0*SD_WAKE_AFFINE
6059 | 0*SD_SHARE_CPUPOWER
6060 | 0*SD_SHARE_PKG_RESOURCES
6061 | 1*SD_SERIALIZE
6062 | 0*SD_PREFER_SIBLING
6063 | 1*SD_NUMA
6064 | sd_local_flags(level)
6065 ,
6066 .last_balance = jiffies,
6067 .balance_interval = sd_weight,
6068 };
6069 SD_INIT_NAME(sd, NUMA);
6070 sd->private = &tl->data;
6071
6072 /*
6073 * Ugly hack to pass state to sd_numa_mask()...
6074 */
6075 sched_domains_curr_level = tl->numa_level;
6076
6077 return sd;
6078 }
6079
6080 static const struct cpumask *sd_numa_mask(int cpu)
6081 {
6082 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6083 }
6084
6085 static void sched_numa_warn(const char *str)
6086 {
6087 static int done = false;
6088 int i,j;
6089
6090 if (done)
6091 return;
6092
6093 done = true;
6094
6095 printk(KERN_WARNING "ERROR: %s\n\n", str);
6096
6097 for (i = 0; i < nr_node_ids; i++) {
6098 printk(KERN_WARNING " ");
6099 for (j = 0; j < nr_node_ids; j++)
6100 printk(KERN_CONT "%02d ", node_distance(i,j));
6101 printk(KERN_CONT "\n");
6102 }
6103 printk(KERN_WARNING "\n");
6104 }
6105
6106 static bool find_numa_distance(int distance)
6107 {
6108 int i;
6109
6110 if (distance == node_distance(0, 0))
6111 return true;
6112
6113 for (i = 0; i < sched_domains_numa_levels; i++) {
6114 if (sched_domains_numa_distance[i] == distance)
6115 return true;
6116 }
6117
6118 return false;
6119 }
6120
6121 static void sched_init_numa(void)
6122 {
6123 int next_distance, curr_distance = node_distance(0, 0);
6124 struct sched_domain_topology_level *tl;
6125 int level = 0;
6126 int i, j, k;
6127
6128 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6129 if (!sched_domains_numa_distance)
6130 return;
6131
6132 /*
6133 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6134 * unique distances in the node_distance() table.
6135 *
6136 * Assumes node_distance(0,j) includes all distances in
6137 * node_distance(i,j) in order to avoid cubic time.
6138 */
6139 next_distance = curr_distance;
6140 for (i = 0; i < nr_node_ids; i++) {
6141 for (j = 0; j < nr_node_ids; j++) {
6142 for (k = 0; k < nr_node_ids; k++) {
6143 int distance = node_distance(i, k);
6144
6145 if (distance > curr_distance &&
6146 (distance < next_distance ||
6147 next_distance == curr_distance))
6148 next_distance = distance;
6149
6150 /*
6151 * While not a strong assumption it would be nice to know
6152 * about cases where if node A is connected to B, B is not
6153 * equally connected to A.
6154 */
6155 if (sched_debug() && node_distance(k, i) != distance)
6156 sched_numa_warn("Node-distance not symmetric");
6157
6158 if (sched_debug() && i && !find_numa_distance(distance))
6159 sched_numa_warn("Node-0 not representative");
6160 }
6161 if (next_distance != curr_distance) {
6162 sched_domains_numa_distance[level++] = next_distance;
6163 sched_domains_numa_levels = level;
6164 curr_distance = next_distance;
6165 } else break;
6166 }
6167
6168 /*
6169 * In case of sched_debug() we verify the above assumption.
6170 */
6171 if (!sched_debug())
6172 break;
6173 }
6174 /*
6175 * 'level' contains the number of unique distances, excluding the
6176 * identity distance node_distance(i,i).
6177 *
6178 * The sched_domains_numa_distance[] array includes the actual distance
6179 * numbers.
6180 */
6181
6182 /*
6183 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6184 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6185 * the array will contain less then 'level' members. This could be
6186 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6187 * in other functions.
6188 *
6189 * We reset it to 'level' at the end of this function.
6190 */
6191 sched_domains_numa_levels = 0;
6192
6193 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6194 if (!sched_domains_numa_masks)
6195 return;
6196
6197 /*
6198 * Now for each level, construct a mask per node which contains all
6199 * cpus of nodes that are that many hops away from us.
6200 */
6201 for (i = 0; i < level; i++) {
6202 sched_domains_numa_masks[i] =
6203 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6204 if (!sched_domains_numa_masks[i])
6205 return;
6206
6207 for (j = 0; j < nr_node_ids; j++) {
6208 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6209 if (!mask)
6210 return;
6211
6212 sched_domains_numa_masks[i][j] = mask;
6213
6214 for (k = 0; k < nr_node_ids; k++) {
6215 if (node_distance(j, k) > sched_domains_numa_distance[i])
6216 continue;
6217
6218 cpumask_or(mask, mask, cpumask_of_node(k));
6219 }
6220 }
6221 }
6222
6223 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6224 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6225 if (!tl)
6226 return;
6227
6228 /*
6229 * Copy the default topology bits..
6230 */
6231 for (i = 0; default_topology[i].init; i++)
6232 tl[i] = default_topology[i];
6233
6234 /*
6235 * .. and append 'j' levels of NUMA goodness.
6236 */
6237 for (j = 0; j < level; i++, j++) {
6238 tl[i] = (struct sched_domain_topology_level){
6239 .init = sd_numa_init,
6240 .mask = sd_numa_mask,
6241 .flags = SDTL_OVERLAP,
6242 .numa_level = j,
6243 };
6244 }
6245
6246 sched_domain_topology = tl;
6247
6248 sched_domains_numa_levels = level;
6249 }
6250
6251 static void sched_domains_numa_masks_set(int cpu)
6252 {
6253 int i, j;
6254 int node = cpu_to_node(cpu);
6255
6256 for (i = 0; i < sched_domains_numa_levels; i++) {
6257 for (j = 0; j < nr_node_ids; j++) {
6258 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6259 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6260 }
6261 }
6262 }
6263
6264 static void sched_domains_numa_masks_clear(int cpu)
6265 {
6266 int i, j;
6267 for (i = 0; i < sched_domains_numa_levels; i++) {
6268 for (j = 0; j < nr_node_ids; j++)
6269 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6270 }
6271 }
6272
6273 /*
6274 * Update sched_domains_numa_masks[level][node] array when new cpus
6275 * are onlined.
6276 */
6277 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6278 unsigned long action,
6279 void *hcpu)
6280 {
6281 int cpu = (long)hcpu;
6282
6283 switch (action & ~CPU_TASKS_FROZEN) {
6284 case CPU_ONLINE:
6285 sched_domains_numa_masks_set(cpu);
6286 break;
6287
6288 case CPU_DEAD:
6289 sched_domains_numa_masks_clear(cpu);
6290 break;
6291
6292 default:
6293 return NOTIFY_DONE;
6294 }
6295
6296 return NOTIFY_OK;
6297 }
6298 #else
6299 static inline void sched_init_numa(void)
6300 {
6301 }
6302
6303 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6304 unsigned long action,
6305 void *hcpu)
6306 {
6307 return 0;
6308 }
6309 #endif /* CONFIG_NUMA */
6310
6311 static int __sdt_alloc(const struct cpumask *cpu_map)
6312 {
6313 struct sched_domain_topology_level *tl;
6314 int j;
6315
6316 for_each_sd_topology(tl) {
6317 struct sd_data *sdd = &tl->data;
6318
6319 sdd->sd = alloc_percpu(struct sched_domain *);
6320 if (!sdd->sd)
6321 return -ENOMEM;
6322
6323 sdd->sg = alloc_percpu(struct sched_group *);
6324 if (!sdd->sg)
6325 return -ENOMEM;
6326
6327 sdd->sgp = alloc_percpu(struct sched_group_power *);
6328 if (!sdd->sgp)
6329 return -ENOMEM;
6330
6331 for_each_cpu(j, cpu_map) {
6332 struct sched_domain *sd;
6333 struct sched_group *sg;
6334 struct sched_group_power *sgp;
6335
6336 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6337 GFP_KERNEL, cpu_to_node(j));
6338 if (!sd)
6339 return -ENOMEM;
6340
6341 *per_cpu_ptr(sdd->sd, j) = sd;
6342
6343 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6344 GFP_KERNEL, cpu_to_node(j));
6345 if (!sg)
6346 return -ENOMEM;
6347
6348 sg->next = sg;
6349
6350 *per_cpu_ptr(sdd->sg, j) = sg;
6351
6352 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6353 GFP_KERNEL, cpu_to_node(j));
6354 if (!sgp)
6355 return -ENOMEM;
6356
6357 *per_cpu_ptr(sdd->sgp, j) = sgp;
6358 }
6359 }
6360
6361 return 0;
6362 }
6363
6364 static void __sdt_free(const struct cpumask *cpu_map)
6365 {
6366 struct sched_domain_topology_level *tl;
6367 int j;
6368
6369 for_each_sd_topology(tl) {
6370 struct sd_data *sdd = &tl->data;
6371
6372 for_each_cpu(j, cpu_map) {
6373 struct sched_domain *sd;
6374
6375 if (sdd->sd) {
6376 sd = *per_cpu_ptr(sdd->sd, j);
6377 if (sd && (sd->flags & SD_OVERLAP))
6378 free_sched_groups(sd->groups, 0);
6379 kfree(*per_cpu_ptr(sdd->sd, j));
6380 }
6381
6382 if (sdd->sg)
6383 kfree(*per_cpu_ptr(sdd->sg, j));
6384 if (sdd->sgp)
6385 kfree(*per_cpu_ptr(sdd->sgp, j));
6386 }
6387 free_percpu(sdd->sd);
6388 sdd->sd = NULL;
6389 free_percpu(sdd->sg);
6390 sdd->sg = NULL;
6391 free_percpu(sdd->sgp);
6392 sdd->sgp = NULL;
6393 }
6394 }
6395
6396 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6397 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6398 struct sched_domain *child, int cpu)
6399 {
6400 struct sched_domain *sd = tl->init(tl, cpu);
6401 if (!sd)
6402 return child;
6403
6404 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6405 if (child) {
6406 sd->level = child->level + 1;
6407 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6408 child->parent = sd;
6409 sd->child = child;
6410 }
6411 set_domain_attribute(sd, attr);
6412
6413 return sd;
6414 }
6415
6416 /*
6417 * Build sched domains for a given set of cpus and attach the sched domains
6418 * to the individual cpus
6419 */
6420 static int build_sched_domains(const struct cpumask *cpu_map,
6421 struct sched_domain_attr *attr)
6422 {
6423 enum s_alloc alloc_state;
6424 struct sched_domain *sd;
6425 struct s_data d;
6426 int i, ret = -ENOMEM;
6427
6428 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6429 if (alloc_state != sa_rootdomain)
6430 goto error;
6431
6432 /* Set up domains for cpus specified by the cpu_map. */
6433 for_each_cpu(i, cpu_map) {
6434 struct sched_domain_topology_level *tl;
6435
6436 sd = NULL;
6437 for_each_sd_topology(tl) {
6438 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6439 if (tl == sched_domain_topology)
6440 *per_cpu_ptr(d.sd, i) = sd;
6441 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6442 sd->flags |= SD_OVERLAP;
6443 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6444 break;
6445 }
6446 }
6447
6448 /* Build the groups for the domains */
6449 for_each_cpu(i, cpu_map) {
6450 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6451 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6452 if (sd->flags & SD_OVERLAP) {
6453 if (build_overlap_sched_groups(sd, i))
6454 goto error;
6455 } else {
6456 if (build_sched_groups(sd, i))
6457 goto error;
6458 }
6459 }
6460 }
6461
6462 /* Calculate CPU power for physical packages and nodes */
6463 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6464 if (!cpumask_test_cpu(i, cpu_map))
6465 continue;
6466
6467 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6468 claim_allocations(i, sd);
6469 init_sched_groups_power(i, sd);
6470 }
6471 }
6472
6473 /* Attach the domains */
6474 rcu_read_lock();
6475 for_each_cpu(i, cpu_map) {
6476 sd = *per_cpu_ptr(d.sd, i);
6477 cpu_attach_domain(sd, d.rd, i);
6478 }
6479 rcu_read_unlock();
6480
6481 ret = 0;
6482 error:
6483 __free_domain_allocs(&d, alloc_state, cpu_map);
6484 return ret;
6485 }
6486
6487 static cpumask_var_t *doms_cur; /* current sched domains */
6488 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6489 static struct sched_domain_attr *dattr_cur;
6490 /* attribues of custom domains in 'doms_cur' */
6491
6492 /*
6493 * Special case: If a kmalloc of a doms_cur partition (array of
6494 * cpumask) fails, then fallback to a single sched domain,
6495 * as determined by the single cpumask fallback_doms.
6496 */
6497 static cpumask_var_t fallback_doms;
6498
6499 /*
6500 * arch_update_cpu_topology lets virtualized architectures update the
6501 * cpu core maps. It is supposed to return 1 if the topology changed
6502 * or 0 if it stayed the same.
6503 */
6504 int __attribute__((weak)) arch_update_cpu_topology(void)
6505 {
6506 return 0;
6507 }
6508
6509 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6510 {
6511 int i;
6512 cpumask_var_t *doms;
6513
6514 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6515 if (!doms)
6516 return NULL;
6517 for (i = 0; i < ndoms; i++) {
6518 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6519 free_sched_domains(doms, i);
6520 return NULL;
6521 }
6522 }
6523 return doms;
6524 }
6525
6526 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6527 {
6528 unsigned int i;
6529 for (i = 0; i < ndoms; i++)
6530 free_cpumask_var(doms[i]);
6531 kfree(doms);
6532 }
6533
6534 /*
6535 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6536 * For now this just excludes isolated cpus, but could be used to
6537 * exclude other special cases in the future.
6538 */
6539 static int init_sched_domains(const struct cpumask *cpu_map)
6540 {
6541 int err;
6542
6543 arch_update_cpu_topology();
6544 ndoms_cur = 1;
6545 doms_cur = alloc_sched_domains(ndoms_cur);
6546 if (!doms_cur)
6547 doms_cur = &fallback_doms;
6548 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6549 err = build_sched_domains(doms_cur[0], NULL);
6550 register_sched_domain_sysctl();
6551
6552 return err;
6553 }
6554
6555 /*
6556 * Detach sched domains from a group of cpus specified in cpu_map
6557 * These cpus will now be attached to the NULL domain
6558 */
6559 static void detach_destroy_domains(const struct cpumask *cpu_map)
6560 {
6561 int i;
6562
6563 rcu_read_lock();
6564 for_each_cpu(i, cpu_map)
6565 cpu_attach_domain(NULL, &def_root_domain, i);
6566 rcu_read_unlock();
6567 }
6568
6569 /* handle null as "default" */
6570 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6571 struct sched_domain_attr *new, int idx_new)
6572 {
6573 struct sched_domain_attr tmp;
6574
6575 /* fast path */
6576 if (!new && !cur)
6577 return 1;
6578
6579 tmp = SD_ATTR_INIT;
6580 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6581 new ? (new + idx_new) : &tmp,
6582 sizeof(struct sched_domain_attr));
6583 }
6584
6585 /*
6586 * Partition sched domains as specified by the 'ndoms_new'
6587 * cpumasks in the array doms_new[] of cpumasks. This compares
6588 * doms_new[] to the current sched domain partitioning, doms_cur[].
6589 * It destroys each deleted domain and builds each new domain.
6590 *
6591 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6592 * The masks don't intersect (don't overlap.) We should setup one
6593 * sched domain for each mask. CPUs not in any of the cpumasks will
6594 * not be load balanced. If the same cpumask appears both in the
6595 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6596 * it as it is.
6597 *
6598 * The passed in 'doms_new' should be allocated using
6599 * alloc_sched_domains. This routine takes ownership of it and will
6600 * free_sched_domains it when done with it. If the caller failed the
6601 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6602 * and partition_sched_domains() will fallback to the single partition
6603 * 'fallback_doms', it also forces the domains to be rebuilt.
6604 *
6605 * If doms_new == NULL it will be replaced with cpu_online_mask.
6606 * ndoms_new == 0 is a special case for destroying existing domains,
6607 * and it will not create the default domain.
6608 *
6609 * Call with hotplug lock held
6610 */
6611 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6612 struct sched_domain_attr *dattr_new)
6613 {
6614 int i, j, n;
6615 int new_topology;
6616
6617 mutex_lock(&sched_domains_mutex);
6618
6619 /* always unregister in case we don't destroy any domains */
6620 unregister_sched_domain_sysctl();
6621
6622 /* Let architecture update cpu core mappings. */
6623 new_topology = arch_update_cpu_topology();
6624
6625 n = doms_new ? ndoms_new : 0;
6626
6627 /* Destroy deleted domains */
6628 for (i = 0; i < ndoms_cur; i++) {
6629 for (j = 0; j < n && !new_topology; j++) {
6630 if (cpumask_equal(doms_cur[i], doms_new[j])
6631 && dattrs_equal(dattr_cur, i, dattr_new, j))
6632 goto match1;
6633 }
6634 /* no match - a current sched domain not in new doms_new[] */
6635 detach_destroy_domains(doms_cur[i]);
6636 match1:
6637 ;
6638 }
6639
6640 n = ndoms_cur;
6641 if (doms_new == NULL) {
6642 n = 0;
6643 doms_new = &fallback_doms;
6644 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6645 WARN_ON_ONCE(dattr_new);
6646 }
6647
6648 /* Build new domains */
6649 for (i = 0; i < ndoms_new; i++) {
6650 for (j = 0; j < n && !new_topology; j++) {
6651 if (cpumask_equal(doms_new[i], doms_cur[j])
6652 && dattrs_equal(dattr_new, i, dattr_cur, j))
6653 goto match2;
6654 }
6655 /* no match - add a new doms_new */
6656 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6657 match2:
6658 ;
6659 }
6660
6661 /* Remember the new sched domains */
6662 if (doms_cur != &fallback_doms)
6663 free_sched_domains(doms_cur, ndoms_cur);
6664 kfree(dattr_cur); /* kfree(NULL) is safe */
6665 doms_cur = doms_new;
6666 dattr_cur = dattr_new;
6667 ndoms_cur = ndoms_new;
6668
6669 register_sched_domain_sysctl();
6670
6671 mutex_unlock(&sched_domains_mutex);
6672 }
6673
6674 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6675
6676 /*
6677 * Update cpusets according to cpu_active mask. If cpusets are
6678 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6679 * around partition_sched_domains().
6680 *
6681 * If we come here as part of a suspend/resume, don't touch cpusets because we
6682 * want to restore it back to its original state upon resume anyway.
6683 */
6684 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6685 void *hcpu)
6686 {
6687 switch (action) {
6688 case CPU_ONLINE_FROZEN:
6689 case CPU_DOWN_FAILED_FROZEN:
6690
6691 /*
6692 * num_cpus_frozen tracks how many CPUs are involved in suspend
6693 * resume sequence. As long as this is not the last online
6694 * operation in the resume sequence, just build a single sched
6695 * domain, ignoring cpusets.
6696 */
6697 num_cpus_frozen--;
6698 if (likely(num_cpus_frozen)) {
6699 partition_sched_domains(1, NULL, NULL);
6700 break;
6701 }
6702
6703 /*
6704 * This is the last CPU online operation. So fall through and
6705 * restore the original sched domains by considering the
6706 * cpuset configurations.
6707 */
6708
6709 case CPU_ONLINE:
6710 case CPU_DOWN_FAILED:
6711 cpuset_update_active_cpus(true);
6712 break;
6713 default:
6714 return NOTIFY_DONE;
6715 }
6716 return NOTIFY_OK;
6717 }
6718
6719 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6720 void *hcpu)
6721 {
6722 switch (action) {
6723 case CPU_DOWN_PREPARE:
6724 cpuset_update_active_cpus(false);
6725 break;
6726 case CPU_DOWN_PREPARE_FROZEN:
6727 num_cpus_frozen++;
6728 partition_sched_domains(1, NULL, NULL);
6729 break;
6730 default:
6731 return NOTIFY_DONE;
6732 }
6733 return NOTIFY_OK;
6734 }
6735
6736 void __init sched_init_smp(void)
6737 {
6738 cpumask_var_t non_isolated_cpus;
6739
6740 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6741 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6742
6743 sched_init_numa();
6744
6745 /*
6746 * There's no userspace yet to cause hotplug operations; hence all the
6747 * cpu masks are stable and all blatant races in the below code cannot
6748 * happen.
6749 */
6750 mutex_lock(&sched_domains_mutex);
6751 init_sched_domains(cpu_active_mask);
6752 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6753 if (cpumask_empty(non_isolated_cpus))
6754 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6755 mutex_unlock(&sched_domains_mutex);
6756
6757 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6758 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6759 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6760
6761 init_hrtick();
6762
6763 /* Move init over to a non-isolated CPU */
6764 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6765 BUG();
6766 sched_init_granularity();
6767 free_cpumask_var(non_isolated_cpus);
6768
6769 init_sched_rt_class();
6770 init_sched_dl_class();
6771 }
6772 #else
6773 void __init sched_init_smp(void)
6774 {
6775 sched_init_granularity();
6776 }
6777 #endif /* CONFIG_SMP */
6778
6779 const_debug unsigned int sysctl_timer_migration = 1;
6780
6781 int in_sched_functions(unsigned long addr)
6782 {
6783 return in_lock_functions(addr) ||
6784 (addr >= (unsigned long)__sched_text_start
6785 && addr < (unsigned long)__sched_text_end);
6786 }
6787
6788 #ifdef CONFIG_CGROUP_SCHED
6789 /*
6790 * Default task group.
6791 * Every task in system belongs to this group at bootup.
6792 */
6793 struct task_group root_task_group;
6794 LIST_HEAD(task_groups);
6795 #endif
6796
6797 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6798
6799 void __init sched_init(void)
6800 {
6801 int i, j;
6802 unsigned long alloc_size = 0, ptr;
6803
6804 #ifdef CONFIG_FAIR_GROUP_SCHED
6805 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6806 #endif
6807 #ifdef CONFIG_RT_GROUP_SCHED
6808 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6809 #endif
6810 #ifdef CONFIG_CPUMASK_OFFSTACK
6811 alloc_size += num_possible_cpus() * cpumask_size();
6812 #endif
6813 if (alloc_size) {
6814 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6815
6816 #ifdef CONFIG_FAIR_GROUP_SCHED
6817 root_task_group.se = (struct sched_entity **)ptr;
6818 ptr += nr_cpu_ids * sizeof(void **);
6819
6820 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6821 ptr += nr_cpu_ids * sizeof(void **);
6822
6823 #endif /* CONFIG_FAIR_GROUP_SCHED */
6824 #ifdef CONFIG_RT_GROUP_SCHED
6825 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6826 ptr += nr_cpu_ids * sizeof(void **);
6827
6828 root_task_group.rt_rq = (struct rt_rq **)ptr;
6829 ptr += nr_cpu_ids * sizeof(void **);
6830
6831 #endif /* CONFIG_RT_GROUP_SCHED */
6832 #ifdef CONFIG_CPUMASK_OFFSTACK
6833 for_each_possible_cpu(i) {
6834 per_cpu(load_balance_mask, i) = (void *)ptr;
6835 ptr += cpumask_size();
6836 }
6837 #endif /* CONFIG_CPUMASK_OFFSTACK */
6838 }
6839
6840 init_rt_bandwidth(&def_rt_bandwidth,
6841 global_rt_period(), global_rt_runtime());
6842 init_dl_bandwidth(&def_dl_bandwidth,
6843 global_rt_period(), global_rt_runtime());
6844
6845 #ifdef CONFIG_SMP
6846 init_defrootdomain();
6847 #endif
6848
6849 #ifdef CONFIG_RT_GROUP_SCHED
6850 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6851 global_rt_period(), global_rt_runtime());
6852 #endif /* CONFIG_RT_GROUP_SCHED */
6853
6854 #ifdef CONFIG_CGROUP_SCHED
6855 list_add(&root_task_group.list, &task_groups);
6856 INIT_LIST_HEAD(&root_task_group.children);
6857 INIT_LIST_HEAD(&root_task_group.siblings);
6858 autogroup_init(&init_task);
6859
6860 #endif /* CONFIG_CGROUP_SCHED */
6861
6862 for_each_possible_cpu(i) {
6863 struct rq *rq;
6864
6865 rq = cpu_rq(i);
6866 raw_spin_lock_init(&rq->lock);
6867 rq->nr_running = 0;
6868 rq->calc_load_active = 0;
6869 rq->calc_load_update = jiffies + LOAD_FREQ;
6870 init_cfs_rq(&rq->cfs);
6871 init_rt_rq(&rq->rt, rq);
6872 init_dl_rq(&rq->dl, rq);
6873 #ifdef CONFIG_FAIR_GROUP_SCHED
6874 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6875 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6876 /*
6877 * How much cpu bandwidth does root_task_group get?
6878 *
6879 * In case of task-groups formed thr' the cgroup filesystem, it
6880 * gets 100% of the cpu resources in the system. This overall
6881 * system cpu resource is divided among the tasks of
6882 * root_task_group and its child task-groups in a fair manner,
6883 * based on each entity's (task or task-group's) weight
6884 * (se->load.weight).
6885 *
6886 * In other words, if root_task_group has 10 tasks of weight
6887 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6888 * then A0's share of the cpu resource is:
6889 *
6890 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6891 *
6892 * We achieve this by letting root_task_group's tasks sit
6893 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6894 */
6895 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6896 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6897 #endif /* CONFIG_FAIR_GROUP_SCHED */
6898
6899 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6900 #ifdef CONFIG_RT_GROUP_SCHED
6901 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6902 #endif
6903
6904 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6905 rq->cpu_load[j] = 0;
6906
6907 rq->last_load_update_tick = jiffies;
6908
6909 #ifdef CONFIG_SMP
6910 rq->sd = NULL;
6911 rq->rd = NULL;
6912 rq->cpu_power = SCHED_POWER_SCALE;
6913 rq->post_schedule = 0;
6914 rq->active_balance = 0;
6915 rq->next_balance = jiffies;
6916 rq->push_cpu = 0;
6917 rq->cpu = i;
6918 rq->online = 0;
6919 rq->idle_stamp = 0;
6920 rq->avg_idle = 2*sysctl_sched_migration_cost;
6921 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6922
6923 INIT_LIST_HEAD(&rq->cfs_tasks);
6924
6925 rq_attach_root(rq, &def_root_domain);
6926 #ifdef CONFIG_NO_HZ_COMMON
6927 rq->nohz_flags = 0;
6928 #endif
6929 #ifdef CONFIG_NO_HZ_FULL
6930 rq->last_sched_tick = 0;
6931 #endif
6932 #endif
6933 init_rq_hrtick(rq);
6934 atomic_set(&rq->nr_iowait, 0);
6935 }
6936
6937 set_load_weight(&init_task);
6938
6939 #ifdef CONFIG_PREEMPT_NOTIFIERS
6940 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6941 #endif
6942
6943 /*
6944 * The boot idle thread does lazy MMU switching as well:
6945 */
6946 atomic_inc(&init_mm.mm_count);
6947 enter_lazy_tlb(&init_mm, current);
6948
6949 /*
6950 * Make us the idle thread. Technically, schedule() should not be
6951 * called from this thread, however somewhere below it might be,
6952 * but because we are the idle thread, we just pick up running again
6953 * when this runqueue becomes "idle".
6954 */
6955 init_idle(current, smp_processor_id());
6956
6957 calc_load_update = jiffies + LOAD_FREQ;
6958
6959 /*
6960 * During early bootup we pretend to be a normal task:
6961 */
6962 current->sched_class = &fair_sched_class;
6963
6964 #ifdef CONFIG_SMP
6965 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6966 /* May be allocated at isolcpus cmdline parse time */
6967 if (cpu_isolated_map == NULL)
6968 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6969 idle_thread_set_boot_cpu();
6970 #endif
6971 init_sched_fair_class();
6972
6973 scheduler_running = 1;
6974 }
6975
6976 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6977 static inline int preempt_count_equals(int preempt_offset)
6978 {
6979 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6980
6981 return (nested == preempt_offset);
6982 }
6983
6984 void __might_sleep(const char *file, int line, int preempt_offset)
6985 {
6986 static unsigned long prev_jiffy; /* ratelimiting */
6987
6988 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6989 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6990 !is_idle_task(current)) ||
6991 system_state != SYSTEM_RUNNING || oops_in_progress)
6992 return;
6993 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6994 return;
6995 prev_jiffy = jiffies;
6996
6997 printk(KERN_ERR
6998 "BUG: sleeping function called from invalid context at %s:%d\n",
6999 file, line);
7000 printk(KERN_ERR
7001 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7002 in_atomic(), irqs_disabled(),
7003 current->pid, current->comm);
7004
7005 debug_show_held_locks(current);
7006 if (irqs_disabled())
7007 print_irqtrace_events(current);
7008 #ifdef CONFIG_DEBUG_PREEMPT
7009 if (!preempt_count_equals(preempt_offset)) {
7010 pr_err("Preemption disabled at:");
7011 print_ip_sym(current->preempt_disable_ip);
7012 pr_cont("\n");
7013 }
7014 #endif
7015 dump_stack();
7016 }
7017 EXPORT_SYMBOL(__might_sleep);
7018 #endif
7019
7020 #ifdef CONFIG_MAGIC_SYSRQ
7021 static void normalize_task(struct rq *rq, struct task_struct *p)
7022 {
7023 const struct sched_class *prev_class = p->sched_class;
7024 struct sched_attr attr = {
7025 .sched_policy = SCHED_NORMAL,
7026 };
7027 int old_prio = p->prio;
7028 int on_rq;
7029
7030 on_rq = p->on_rq;
7031 if (on_rq)
7032 dequeue_task(rq, p, 0);
7033 __setscheduler(rq, p, &attr);
7034 if (on_rq) {
7035 enqueue_task(rq, p, 0);
7036 resched_task(rq->curr);
7037 }
7038
7039 check_class_changed(rq, p, prev_class, old_prio);
7040 }
7041
7042 void normalize_rt_tasks(void)
7043 {
7044 struct task_struct *g, *p;
7045 unsigned long flags;
7046 struct rq *rq;
7047
7048 read_lock_irqsave(&tasklist_lock, flags);
7049 do_each_thread(g, p) {
7050 /*
7051 * Only normalize user tasks:
7052 */
7053 if (!p->mm)
7054 continue;
7055
7056 p->se.exec_start = 0;
7057 #ifdef CONFIG_SCHEDSTATS
7058 p->se.statistics.wait_start = 0;
7059 p->se.statistics.sleep_start = 0;
7060 p->se.statistics.block_start = 0;
7061 #endif
7062
7063 if (!dl_task(p) && !rt_task(p)) {
7064 /*
7065 * Renice negative nice level userspace
7066 * tasks back to 0:
7067 */
7068 if (task_nice(p) < 0 && p->mm)
7069 set_user_nice(p, 0);
7070 continue;
7071 }
7072
7073 raw_spin_lock(&p->pi_lock);
7074 rq = __task_rq_lock(p);
7075
7076 normalize_task(rq, p);
7077
7078 __task_rq_unlock(rq);
7079 raw_spin_unlock(&p->pi_lock);
7080 } while_each_thread(g, p);
7081
7082 read_unlock_irqrestore(&tasklist_lock, flags);
7083 }
7084
7085 #endif /* CONFIG_MAGIC_SYSRQ */
7086
7087 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7088 /*
7089 * These functions are only useful for the IA64 MCA handling, or kdb.
7090 *
7091 * They can only be called when the whole system has been
7092 * stopped - every CPU needs to be quiescent, and no scheduling
7093 * activity can take place. Using them for anything else would
7094 * be a serious bug, and as a result, they aren't even visible
7095 * under any other configuration.
7096 */
7097
7098 /**
7099 * curr_task - return the current task for a given cpu.
7100 * @cpu: the processor in question.
7101 *
7102 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7103 *
7104 * Return: The current task for @cpu.
7105 */
7106 struct task_struct *curr_task(int cpu)
7107 {
7108 return cpu_curr(cpu);
7109 }
7110
7111 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7112
7113 #ifdef CONFIG_IA64
7114 /**
7115 * set_curr_task - set the current task for a given cpu.
7116 * @cpu: the processor in question.
7117 * @p: the task pointer to set.
7118 *
7119 * Description: This function must only be used when non-maskable interrupts
7120 * are serviced on a separate stack. It allows the architecture to switch the
7121 * notion of the current task on a cpu in a non-blocking manner. This function
7122 * must be called with all CPU's synchronized, and interrupts disabled, the
7123 * and caller must save the original value of the current task (see
7124 * curr_task() above) and restore that value before reenabling interrupts and
7125 * re-starting the system.
7126 *
7127 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7128 */
7129 void set_curr_task(int cpu, struct task_struct *p)
7130 {
7131 cpu_curr(cpu) = p;
7132 }
7133
7134 #endif
7135
7136 #ifdef CONFIG_CGROUP_SCHED
7137 /* task_group_lock serializes the addition/removal of task groups */
7138 static DEFINE_SPINLOCK(task_group_lock);
7139
7140 static void free_sched_group(struct task_group *tg)
7141 {
7142 free_fair_sched_group(tg);
7143 free_rt_sched_group(tg);
7144 autogroup_free(tg);
7145 kfree(tg);
7146 }
7147
7148 /* allocate runqueue etc for a new task group */
7149 struct task_group *sched_create_group(struct task_group *parent)
7150 {
7151 struct task_group *tg;
7152
7153 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7154 if (!tg)
7155 return ERR_PTR(-ENOMEM);
7156
7157 if (!alloc_fair_sched_group(tg, parent))
7158 goto err;
7159
7160 if (!alloc_rt_sched_group(tg, parent))
7161 goto err;
7162
7163 return tg;
7164
7165 err:
7166 free_sched_group(tg);
7167 return ERR_PTR(-ENOMEM);
7168 }
7169
7170 void sched_online_group(struct task_group *tg, struct task_group *parent)
7171 {
7172 unsigned long flags;
7173
7174 spin_lock_irqsave(&task_group_lock, flags);
7175 list_add_rcu(&tg->list, &task_groups);
7176
7177 WARN_ON(!parent); /* root should already exist */
7178
7179 tg->parent = parent;
7180 INIT_LIST_HEAD(&tg->children);
7181 list_add_rcu(&tg->siblings, &parent->children);
7182 spin_unlock_irqrestore(&task_group_lock, flags);
7183 }
7184
7185 /* rcu callback to free various structures associated with a task group */
7186 static void free_sched_group_rcu(struct rcu_head *rhp)
7187 {
7188 /* now it should be safe to free those cfs_rqs */
7189 free_sched_group(container_of(rhp, struct task_group, rcu));
7190 }
7191
7192 /* Destroy runqueue etc associated with a task group */
7193 void sched_destroy_group(struct task_group *tg)
7194 {
7195 /* wait for possible concurrent references to cfs_rqs complete */
7196 call_rcu(&tg->rcu, free_sched_group_rcu);
7197 }
7198
7199 void sched_offline_group(struct task_group *tg)
7200 {
7201 unsigned long flags;
7202 int i;
7203
7204 /* end participation in shares distribution */
7205 for_each_possible_cpu(i)
7206 unregister_fair_sched_group(tg, i);
7207
7208 spin_lock_irqsave(&task_group_lock, flags);
7209 list_del_rcu(&tg->list);
7210 list_del_rcu(&tg->siblings);
7211 spin_unlock_irqrestore(&task_group_lock, flags);
7212 }
7213
7214 /* change task's runqueue when it moves between groups.
7215 * The caller of this function should have put the task in its new group
7216 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7217 * reflect its new group.
7218 */
7219 void sched_move_task(struct task_struct *tsk)
7220 {
7221 struct task_group *tg;
7222 int on_rq, running;
7223 unsigned long flags;
7224 struct rq *rq;
7225
7226 rq = task_rq_lock(tsk, &flags);
7227
7228 running = task_current(rq, tsk);
7229 on_rq = tsk->on_rq;
7230
7231 if (on_rq)
7232 dequeue_task(rq, tsk, 0);
7233 if (unlikely(running))
7234 tsk->sched_class->put_prev_task(rq, tsk);
7235
7236 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
7237 lockdep_is_held(&tsk->sighand->siglock)),
7238 struct task_group, css);
7239 tg = autogroup_task_group(tsk, tg);
7240 tsk->sched_task_group = tg;
7241
7242 #ifdef CONFIG_FAIR_GROUP_SCHED
7243 if (tsk->sched_class->task_move_group)
7244 tsk->sched_class->task_move_group(tsk, on_rq);
7245 else
7246 #endif
7247 set_task_rq(tsk, task_cpu(tsk));
7248
7249 if (unlikely(running))
7250 tsk->sched_class->set_curr_task(rq);
7251 if (on_rq)
7252 enqueue_task(rq, tsk, 0);
7253
7254 task_rq_unlock(rq, tsk, &flags);
7255 }
7256 #endif /* CONFIG_CGROUP_SCHED */
7257
7258 #ifdef CONFIG_RT_GROUP_SCHED
7259 /*
7260 * Ensure that the real time constraints are schedulable.
7261 */
7262 static DEFINE_MUTEX(rt_constraints_mutex);
7263
7264 /* Must be called with tasklist_lock held */
7265 static inline int tg_has_rt_tasks(struct task_group *tg)
7266 {
7267 struct task_struct *g, *p;
7268
7269 do_each_thread(g, p) {
7270 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7271 return 1;
7272 } while_each_thread(g, p);
7273
7274 return 0;
7275 }
7276
7277 struct rt_schedulable_data {
7278 struct task_group *tg;
7279 u64 rt_period;
7280 u64 rt_runtime;
7281 };
7282
7283 static int tg_rt_schedulable(struct task_group *tg, void *data)
7284 {
7285 struct rt_schedulable_data *d = data;
7286 struct task_group *child;
7287 unsigned long total, sum = 0;
7288 u64 period, runtime;
7289
7290 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7291 runtime = tg->rt_bandwidth.rt_runtime;
7292
7293 if (tg == d->tg) {
7294 period = d->rt_period;
7295 runtime = d->rt_runtime;
7296 }
7297
7298 /*
7299 * Cannot have more runtime than the period.
7300 */
7301 if (runtime > period && runtime != RUNTIME_INF)
7302 return -EINVAL;
7303
7304 /*
7305 * Ensure we don't starve existing RT tasks.
7306 */
7307 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7308 return -EBUSY;
7309
7310 total = to_ratio(period, runtime);
7311
7312 /*
7313 * Nobody can have more than the global setting allows.
7314 */
7315 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7316 return -EINVAL;
7317
7318 /*
7319 * The sum of our children's runtime should not exceed our own.
7320 */
7321 list_for_each_entry_rcu(child, &tg->children, siblings) {
7322 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7323 runtime = child->rt_bandwidth.rt_runtime;
7324
7325 if (child == d->tg) {
7326 period = d->rt_period;
7327 runtime = d->rt_runtime;
7328 }
7329
7330 sum += to_ratio(period, runtime);
7331 }
7332
7333 if (sum > total)
7334 return -EINVAL;
7335
7336 return 0;
7337 }
7338
7339 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7340 {
7341 int ret;
7342
7343 struct rt_schedulable_data data = {
7344 .tg = tg,
7345 .rt_period = period,
7346 .rt_runtime = runtime,
7347 };
7348
7349 rcu_read_lock();
7350 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7351 rcu_read_unlock();
7352
7353 return ret;
7354 }
7355
7356 static int tg_set_rt_bandwidth(struct task_group *tg,
7357 u64 rt_period, u64 rt_runtime)
7358 {
7359 int i, err = 0;
7360
7361 mutex_lock(&rt_constraints_mutex);
7362 read_lock(&tasklist_lock);
7363 err = __rt_schedulable(tg, rt_period, rt_runtime);
7364 if (err)
7365 goto unlock;
7366
7367 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7368 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7369 tg->rt_bandwidth.rt_runtime = rt_runtime;
7370
7371 for_each_possible_cpu(i) {
7372 struct rt_rq *rt_rq = tg->rt_rq[i];
7373
7374 raw_spin_lock(&rt_rq->rt_runtime_lock);
7375 rt_rq->rt_runtime = rt_runtime;
7376 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7377 }
7378 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7379 unlock:
7380 read_unlock(&tasklist_lock);
7381 mutex_unlock(&rt_constraints_mutex);
7382
7383 return err;
7384 }
7385
7386 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7387 {
7388 u64 rt_runtime, rt_period;
7389
7390 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7391 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7392 if (rt_runtime_us < 0)
7393 rt_runtime = RUNTIME_INF;
7394
7395 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7396 }
7397
7398 static long sched_group_rt_runtime(struct task_group *tg)
7399 {
7400 u64 rt_runtime_us;
7401
7402 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7403 return -1;
7404
7405 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7406 do_div(rt_runtime_us, NSEC_PER_USEC);
7407 return rt_runtime_us;
7408 }
7409
7410 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7411 {
7412 u64 rt_runtime, rt_period;
7413
7414 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7415 rt_runtime = tg->rt_bandwidth.rt_runtime;
7416
7417 if (rt_period == 0)
7418 return -EINVAL;
7419
7420 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7421 }
7422
7423 static long sched_group_rt_period(struct task_group *tg)
7424 {
7425 u64 rt_period_us;
7426
7427 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7428 do_div(rt_period_us, NSEC_PER_USEC);
7429 return rt_period_us;
7430 }
7431 #endif /* CONFIG_RT_GROUP_SCHED */
7432
7433 #ifdef CONFIG_RT_GROUP_SCHED
7434 static int sched_rt_global_constraints(void)
7435 {
7436 int ret = 0;
7437
7438 mutex_lock(&rt_constraints_mutex);
7439 read_lock(&tasklist_lock);
7440 ret = __rt_schedulable(NULL, 0, 0);
7441 read_unlock(&tasklist_lock);
7442 mutex_unlock(&rt_constraints_mutex);
7443
7444 return ret;
7445 }
7446
7447 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7448 {
7449 /* Don't accept realtime tasks when there is no way for them to run */
7450 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7451 return 0;
7452
7453 return 1;
7454 }
7455
7456 #else /* !CONFIG_RT_GROUP_SCHED */
7457 static int sched_rt_global_constraints(void)
7458 {
7459 unsigned long flags;
7460 int i, ret = 0;
7461
7462 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7463 for_each_possible_cpu(i) {
7464 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7465
7466 raw_spin_lock(&rt_rq->rt_runtime_lock);
7467 rt_rq->rt_runtime = global_rt_runtime();
7468 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7469 }
7470 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7471
7472 return ret;
7473 }
7474 #endif /* CONFIG_RT_GROUP_SCHED */
7475
7476 static int sched_dl_global_constraints(void)
7477 {
7478 u64 runtime = global_rt_runtime();
7479 u64 period = global_rt_period();
7480 u64 new_bw = to_ratio(period, runtime);
7481 int cpu, ret = 0;
7482 unsigned long flags;
7483
7484 /*
7485 * Here we want to check the bandwidth not being set to some
7486 * value smaller than the currently allocated bandwidth in
7487 * any of the root_domains.
7488 *
7489 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7490 * cycling on root_domains... Discussion on different/better
7491 * solutions is welcome!
7492 */
7493 for_each_possible_cpu(cpu) {
7494 struct dl_bw *dl_b = dl_bw_of(cpu);
7495
7496 raw_spin_lock_irqsave(&dl_b->lock, flags);
7497 if (new_bw < dl_b->total_bw)
7498 ret = -EBUSY;
7499 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7500
7501 if (ret)
7502 break;
7503 }
7504
7505 return ret;
7506 }
7507
7508 static void sched_dl_do_global(void)
7509 {
7510 u64 new_bw = -1;
7511 int cpu;
7512 unsigned long flags;
7513
7514 def_dl_bandwidth.dl_period = global_rt_period();
7515 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7516
7517 if (global_rt_runtime() != RUNTIME_INF)
7518 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7519
7520 /*
7521 * FIXME: As above...
7522 */
7523 for_each_possible_cpu(cpu) {
7524 struct dl_bw *dl_b = dl_bw_of(cpu);
7525
7526 raw_spin_lock_irqsave(&dl_b->lock, flags);
7527 dl_b->bw = new_bw;
7528 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7529 }
7530 }
7531
7532 static int sched_rt_global_validate(void)
7533 {
7534 if (sysctl_sched_rt_period <= 0)
7535 return -EINVAL;
7536
7537 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7538 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7539 return -EINVAL;
7540
7541 return 0;
7542 }
7543
7544 static void sched_rt_do_global(void)
7545 {
7546 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7547 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7548 }
7549
7550 int sched_rt_handler(struct ctl_table *table, int write,
7551 void __user *buffer, size_t *lenp,
7552 loff_t *ppos)
7553 {
7554 int old_period, old_runtime;
7555 static DEFINE_MUTEX(mutex);
7556 int ret;
7557
7558 mutex_lock(&mutex);
7559 old_period = sysctl_sched_rt_period;
7560 old_runtime = sysctl_sched_rt_runtime;
7561
7562 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7563
7564 if (!ret && write) {
7565 ret = sched_rt_global_validate();
7566 if (ret)
7567 goto undo;
7568
7569 ret = sched_rt_global_constraints();
7570 if (ret)
7571 goto undo;
7572
7573 ret = sched_dl_global_constraints();
7574 if (ret)
7575 goto undo;
7576
7577 sched_rt_do_global();
7578 sched_dl_do_global();
7579 }
7580 if (0) {
7581 undo:
7582 sysctl_sched_rt_period = old_period;
7583 sysctl_sched_rt_runtime = old_runtime;
7584 }
7585 mutex_unlock(&mutex);
7586
7587 return ret;
7588 }
7589
7590 int sched_rr_handler(struct ctl_table *table, int write,
7591 void __user *buffer, size_t *lenp,
7592 loff_t *ppos)
7593 {
7594 int ret;
7595 static DEFINE_MUTEX(mutex);
7596
7597 mutex_lock(&mutex);
7598 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7599 /* make sure that internally we keep jiffies */
7600 /* also, writing zero resets timeslice to default */
7601 if (!ret && write) {
7602 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7603 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7604 }
7605 mutex_unlock(&mutex);
7606 return ret;
7607 }
7608
7609 #ifdef CONFIG_CGROUP_SCHED
7610
7611 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7612 {
7613 return css ? container_of(css, struct task_group, css) : NULL;
7614 }
7615
7616 static struct cgroup_subsys_state *
7617 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7618 {
7619 struct task_group *parent = css_tg(parent_css);
7620 struct task_group *tg;
7621
7622 if (!parent) {
7623 /* This is early initialization for the top cgroup */
7624 return &root_task_group.css;
7625 }
7626
7627 tg = sched_create_group(parent);
7628 if (IS_ERR(tg))
7629 return ERR_PTR(-ENOMEM);
7630
7631 return &tg->css;
7632 }
7633
7634 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7635 {
7636 struct task_group *tg = css_tg(css);
7637 struct task_group *parent = css_tg(css_parent(css));
7638
7639 if (parent)
7640 sched_online_group(tg, parent);
7641 return 0;
7642 }
7643
7644 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7645 {
7646 struct task_group *tg = css_tg(css);
7647
7648 sched_destroy_group(tg);
7649 }
7650
7651 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7652 {
7653 struct task_group *tg = css_tg(css);
7654
7655 sched_offline_group(tg);
7656 }
7657
7658 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7659 struct cgroup_taskset *tset)
7660 {
7661 struct task_struct *task;
7662
7663 cgroup_taskset_for_each(task, css, tset) {
7664 #ifdef CONFIG_RT_GROUP_SCHED
7665 if (!sched_rt_can_attach(css_tg(css), task))
7666 return -EINVAL;
7667 #else
7668 /* We don't support RT-tasks being in separate groups */
7669 if (task->sched_class != &fair_sched_class)
7670 return -EINVAL;
7671 #endif
7672 }
7673 return 0;
7674 }
7675
7676 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7677 struct cgroup_taskset *tset)
7678 {
7679 struct task_struct *task;
7680
7681 cgroup_taskset_for_each(task, css, tset)
7682 sched_move_task(task);
7683 }
7684
7685 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7686 struct cgroup_subsys_state *old_css,
7687 struct task_struct *task)
7688 {
7689 /*
7690 * cgroup_exit() is called in the copy_process() failure path.
7691 * Ignore this case since the task hasn't ran yet, this avoids
7692 * trying to poke a half freed task state from generic code.
7693 */
7694 if (!(task->flags & PF_EXITING))
7695 return;
7696
7697 sched_move_task(task);
7698 }
7699
7700 #ifdef CONFIG_FAIR_GROUP_SCHED
7701 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7702 struct cftype *cftype, u64 shareval)
7703 {
7704 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7705 }
7706
7707 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7708 struct cftype *cft)
7709 {
7710 struct task_group *tg = css_tg(css);
7711
7712 return (u64) scale_load_down(tg->shares);
7713 }
7714
7715 #ifdef CONFIG_CFS_BANDWIDTH
7716 static DEFINE_MUTEX(cfs_constraints_mutex);
7717
7718 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7719 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7720
7721 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7722
7723 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7724 {
7725 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7726 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7727
7728 if (tg == &root_task_group)
7729 return -EINVAL;
7730
7731 /*
7732 * Ensure we have at some amount of bandwidth every period. This is
7733 * to prevent reaching a state of large arrears when throttled via
7734 * entity_tick() resulting in prolonged exit starvation.
7735 */
7736 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7737 return -EINVAL;
7738
7739 /*
7740 * Likewise, bound things on the otherside by preventing insane quota
7741 * periods. This also allows us to normalize in computing quota
7742 * feasibility.
7743 */
7744 if (period > max_cfs_quota_period)
7745 return -EINVAL;
7746
7747 mutex_lock(&cfs_constraints_mutex);
7748 ret = __cfs_schedulable(tg, period, quota);
7749 if (ret)
7750 goto out_unlock;
7751
7752 runtime_enabled = quota != RUNTIME_INF;
7753 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7754 /*
7755 * If we need to toggle cfs_bandwidth_used, off->on must occur
7756 * before making related changes, and on->off must occur afterwards
7757 */
7758 if (runtime_enabled && !runtime_was_enabled)
7759 cfs_bandwidth_usage_inc();
7760 raw_spin_lock_irq(&cfs_b->lock);
7761 cfs_b->period = ns_to_ktime(period);
7762 cfs_b->quota = quota;
7763
7764 __refill_cfs_bandwidth_runtime(cfs_b);
7765 /* restart the period timer (if active) to handle new period expiry */
7766 if (runtime_enabled && cfs_b->timer_active) {
7767 /* force a reprogram */
7768 cfs_b->timer_active = 0;
7769 __start_cfs_bandwidth(cfs_b);
7770 }
7771 raw_spin_unlock_irq(&cfs_b->lock);
7772
7773 for_each_possible_cpu(i) {
7774 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7775 struct rq *rq = cfs_rq->rq;
7776
7777 raw_spin_lock_irq(&rq->lock);
7778 cfs_rq->runtime_enabled = runtime_enabled;
7779 cfs_rq->runtime_remaining = 0;
7780
7781 if (cfs_rq->throttled)
7782 unthrottle_cfs_rq(cfs_rq);
7783 raw_spin_unlock_irq(&rq->lock);
7784 }
7785 if (runtime_was_enabled && !runtime_enabled)
7786 cfs_bandwidth_usage_dec();
7787 out_unlock:
7788 mutex_unlock(&cfs_constraints_mutex);
7789
7790 return ret;
7791 }
7792
7793 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7794 {
7795 u64 quota, period;
7796
7797 period = ktime_to_ns(tg->cfs_bandwidth.period);
7798 if (cfs_quota_us < 0)
7799 quota = RUNTIME_INF;
7800 else
7801 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7802
7803 return tg_set_cfs_bandwidth(tg, period, quota);
7804 }
7805
7806 long tg_get_cfs_quota(struct task_group *tg)
7807 {
7808 u64 quota_us;
7809
7810 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7811 return -1;
7812
7813 quota_us = tg->cfs_bandwidth.quota;
7814 do_div(quota_us, NSEC_PER_USEC);
7815
7816 return quota_us;
7817 }
7818
7819 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7820 {
7821 u64 quota, period;
7822
7823 period = (u64)cfs_period_us * NSEC_PER_USEC;
7824 quota = tg->cfs_bandwidth.quota;
7825
7826 return tg_set_cfs_bandwidth(tg, period, quota);
7827 }
7828
7829 long tg_get_cfs_period(struct task_group *tg)
7830 {
7831 u64 cfs_period_us;
7832
7833 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7834 do_div(cfs_period_us, NSEC_PER_USEC);
7835
7836 return cfs_period_us;
7837 }
7838
7839 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7840 struct cftype *cft)
7841 {
7842 return tg_get_cfs_quota(css_tg(css));
7843 }
7844
7845 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7846 struct cftype *cftype, s64 cfs_quota_us)
7847 {
7848 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7849 }
7850
7851 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7852 struct cftype *cft)
7853 {
7854 return tg_get_cfs_period(css_tg(css));
7855 }
7856
7857 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7858 struct cftype *cftype, u64 cfs_period_us)
7859 {
7860 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7861 }
7862
7863 struct cfs_schedulable_data {
7864 struct task_group *tg;
7865 u64 period, quota;
7866 };
7867
7868 /*
7869 * normalize group quota/period to be quota/max_period
7870 * note: units are usecs
7871 */
7872 static u64 normalize_cfs_quota(struct task_group *tg,
7873 struct cfs_schedulable_data *d)
7874 {
7875 u64 quota, period;
7876
7877 if (tg == d->tg) {
7878 period = d->period;
7879 quota = d->quota;
7880 } else {
7881 period = tg_get_cfs_period(tg);
7882 quota = tg_get_cfs_quota(tg);
7883 }
7884
7885 /* note: these should typically be equivalent */
7886 if (quota == RUNTIME_INF || quota == -1)
7887 return RUNTIME_INF;
7888
7889 return to_ratio(period, quota);
7890 }
7891
7892 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7893 {
7894 struct cfs_schedulable_data *d = data;
7895 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7896 s64 quota = 0, parent_quota = -1;
7897
7898 if (!tg->parent) {
7899 quota = RUNTIME_INF;
7900 } else {
7901 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7902
7903 quota = normalize_cfs_quota(tg, d);
7904 parent_quota = parent_b->hierarchal_quota;
7905
7906 /*
7907 * ensure max(child_quota) <= parent_quota, inherit when no
7908 * limit is set
7909 */
7910 if (quota == RUNTIME_INF)
7911 quota = parent_quota;
7912 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7913 return -EINVAL;
7914 }
7915 cfs_b->hierarchal_quota = quota;
7916
7917 return 0;
7918 }
7919
7920 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7921 {
7922 int ret;
7923 struct cfs_schedulable_data data = {
7924 .tg = tg,
7925 .period = period,
7926 .quota = quota,
7927 };
7928
7929 if (quota != RUNTIME_INF) {
7930 do_div(data.period, NSEC_PER_USEC);
7931 do_div(data.quota, NSEC_PER_USEC);
7932 }
7933
7934 rcu_read_lock();
7935 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7936 rcu_read_unlock();
7937
7938 return ret;
7939 }
7940
7941 static int cpu_stats_show(struct seq_file *sf, void *v)
7942 {
7943 struct task_group *tg = css_tg(seq_css(sf));
7944 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7945
7946 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7947 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7948 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7949
7950 return 0;
7951 }
7952 #endif /* CONFIG_CFS_BANDWIDTH */
7953 #endif /* CONFIG_FAIR_GROUP_SCHED */
7954
7955 #ifdef CONFIG_RT_GROUP_SCHED
7956 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7957 struct cftype *cft, s64 val)
7958 {
7959 return sched_group_set_rt_runtime(css_tg(css), val);
7960 }
7961
7962 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7963 struct cftype *cft)
7964 {
7965 return sched_group_rt_runtime(css_tg(css));
7966 }
7967
7968 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7969 struct cftype *cftype, u64 rt_period_us)
7970 {
7971 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7972 }
7973
7974 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7975 struct cftype *cft)
7976 {
7977 return sched_group_rt_period(css_tg(css));
7978 }
7979 #endif /* CONFIG_RT_GROUP_SCHED */
7980
7981 static struct cftype cpu_files[] = {
7982 #ifdef CONFIG_FAIR_GROUP_SCHED
7983 {
7984 .name = "shares",
7985 .read_u64 = cpu_shares_read_u64,
7986 .write_u64 = cpu_shares_write_u64,
7987 },
7988 #endif
7989 #ifdef CONFIG_CFS_BANDWIDTH
7990 {
7991 .name = "cfs_quota_us",
7992 .read_s64 = cpu_cfs_quota_read_s64,
7993 .write_s64 = cpu_cfs_quota_write_s64,
7994 },
7995 {
7996 .name = "cfs_period_us",
7997 .read_u64 = cpu_cfs_period_read_u64,
7998 .write_u64 = cpu_cfs_period_write_u64,
7999 },
8000 {
8001 .name = "stat",
8002 .seq_show = cpu_stats_show,
8003 },
8004 #endif
8005 #ifdef CONFIG_RT_GROUP_SCHED
8006 {
8007 .name = "rt_runtime_us",
8008 .read_s64 = cpu_rt_runtime_read,
8009 .write_s64 = cpu_rt_runtime_write,
8010 },
8011 {
8012 .name = "rt_period_us",
8013 .read_u64 = cpu_rt_period_read_uint,
8014 .write_u64 = cpu_rt_period_write_uint,
8015 },
8016 #endif
8017 { } /* terminate */
8018 };
8019
8020 struct cgroup_subsys cpu_cgroup_subsys = {
8021 .name = "cpu",
8022 .css_alloc = cpu_cgroup_css_alloc,
8023 .css_free = cpu_cgroup_css_free,
8024 .css_online = cpu_cgroup_css_online,
8025 .css_offline = cpu_cgroup_css_offline,
8026 .can_attach = cpu_cgroup_can_attach,
8027 .attach = cpu_cgroup_attach,
8028 .exit = cpu_cgroup_exit,
8029 .subsys_id = cpu_cgroup_subsys_id,
8030 .base_cftypes = cpu_files,
8031 .early_init = 1,
8032 };
8033
8034 #endif /* CONFIG_CGROUP_SCHED */
8035
8036 void dump_cpu_task(int cpu)
8037 {
8038 pr_info("Task dump for CPU %d:\n", cpu);
8039 sched_show_task(cpu_curr(cpu));
8040 }