]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched/core.c
Merge branch 'patchwork' into v4l_for_linus
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 #include <linux/prefetch.h>
78 #include <linux/mutex.h>
79
80 #include <asm/switch_to.h>
81 #include <asm/tlb.h>
82 #include <asm/irq_regs.h>
83 #ifdef CONFIG_PARAVIRT
84 #include <asm/paravirt.h>
85 #endif
86
87 #include "sched.h"
88 #include "../workqueue_internal.h"
89 #include "../smpboot.h"
90
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/sched.h>
93
94 DEFINE_MUTEX(sched_domains_mutex);
95 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96
97 static void update_rq_clock_task(struct rq *rq, s64 delta);
98
99 void update_rq_clock(struct rq *rq)
100 {
101 s64 delta;
102
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
106 return;
107
108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 if (delta < 0)
110 return;
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
113 }
114
115 /*
116 * Debugging: various feature bits
117 */
118
119 #define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
122 const_debug unsigned int sysctl_sched_features =
123 #include "features.h"
124 0;
125
126 #undef SCHED_FEAT
127
128 /*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132 const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
134 /*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
142 /*
143 * period over which we measure -rt task cpu usage in us.
144 * default: 1s
145 */
146 unsigned int sysctl_sched_rt_period = 1000000;
147
148 __read_mostly int scheduler_running;
149
150 /*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154 int sysctl_sched_rt_runtime = 950000;
155
156 /* cpus with isolated domains */
157 cpumask_var_t cpu_isolated_map;
158
159 /*
160 * this_rq_lock - lock this runqueue and disable interrupts.
161 */
162 static struct rq *this_rq_lock(void)
163 __acquires(rq->lock)
164 {
165 struct rq *rq;
166
167 local_irq_disable();
168 rq = this_rq();
169 raw_spin_lock(&rq->lock);
170
171 return rq;
172 }
173
174 /*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
177 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
178 __acquires(rq->lock)
179 {
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
188 rf->cookie = lockdep_pin_lock(&rq->lock);
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196 }
197
198 /*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
201 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204 {
205 struct rq *rq;
206
207 for (;;) {
208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
228 rf->cookie = lockdep_pin_lock(&rq->lock);
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237 }
238
239 #ifdef CONFIG_SCHED_HRTICK
240 /*
241 * Use HR-timers to deliver accurate preemption points.
242 */
243
244 static void hrtick_clear(struct rq *rq)
245 {
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248 }
249
250 /*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254 static enum hrtimer_restart hrtick(struct hrtimer *timer)
255 {
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
260 raw_spin_lock(&rq->lock);
261 update_rq_clock(rq);
262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
263 raw_spin_unlock(&rq->lock);
264
265 return HRTIMER_NORESTART;
266 }
267
268 #ifdef CONFIG_SMP
269
270 static void __hrtick_restart(struct rq *rq)
271 {
272 struct hrtimer *timer = &rq->hrtick_timer;
273
274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
275 }
276
277 /*
278 * called from hardirq (IPI) context
279 */
280 static void __hrtick_start(void *arg)
281 {
282 struct rq *rq = arg;
283
284 raw_spin_lock(&rq->lock);
285 __hrtick_restart(rq);
286 rq->hrtick_csd_pending = 0;
287 raw_spin_unlock(&rq->lock);
288 }
289
290 /*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
295 void hrtick_start(struct rq *rq, u64 delay)
296 {
297 struct hrtimer *timer = &rq->hrtick_timer;
298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
307
308 hrtimer_set_expires(timer, time);
309
310 if (rq == this_rq()) {
311 __hrtick_restart(rq);
312 } else if (!rq->hrtick_csd_pending) {
313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 rq->hrtick_csd_pending = 1;
315 }
316 }
317
318 #else
319 /*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
324 void hrtick_start(struct rq *rq, u64 delay)
325 {
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
333 }
334 #endif /* CONFIG_SMP */
335
336 static void init_rq_hrtick(struct rq *rq)
337 {
338 #ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
340
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344 #endif
345
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
348 }
349 #else /* CONFIG_SCHED_HRTICK */
350 static inline void hrtick_clear(struct rq *rq)
351 {
352 }
353
354 static inline void init_rq_hrtick(struct rq *rq)
355 {
356 }
357 #endif /* CONFIG_SCHED_HRTICK */
358
359 /*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362 #define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375 })
376
377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 /*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383 static bool set_nr_and_not_polling(struct task_struct *p)
384 {
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387 }
388
389 /*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395 static bool set_nr_if_polling(struct task_struct *p)
396 {
397 struct thread_info *ti = task_thread_info(p);
398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411 }
412
413 #else
414 static bool set_nr_and_not_polling(struct task_struct *p)
415 {
416 set_tsk_need_resched(p);
417 return true;
418 }
419
420 #ifdef CONFIG_SMP
421 static bool set_nr_if_polling(struct task_struct *p)
422 {
423 return false;
424 }
425 #endif
426 #endif
427
428 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429 {
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
438 * barrier implied by the wakeup in wake_up_q().
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450 }
451
452 void wake_up_q(struct wake_q_head *head)
453 {
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472 }
473
474 /*
475 * resched_curr - mark rq's current task 'to be rescheduled now'.
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
481 void resched_curr(struct rq *rq)
482 {
483 struct task_struct *curr = rq->curr;
484 int cpu;
485
486 lockdep_assert_held(&rq->lock);
487
488 if (test_tsk_need_resched(curr))
489 return;
490
491 cpu = cpu_of(rq);
492
493 if (cpu == smp_processor_id()) {
494 set_tsk_need_resched(curr);
495 set_preempt_need_resched();
496 return;
497 }
498
499 if (set_nr_and_not_polling(curr))
500 smp_send_reschedule(cpu);
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
503 }
504
505 void resched_cpu(int cpu)
506 {
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
511 return;
512 resched_curr(rq);
513 raw_spin_unlock_irqrestore(&rq->lock, flags);
514 }
515
516 #ifdef CONFIG_SMP
517 #ifdef CONFIG_NO_HZ_COMMON
518 /*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
526 int get_nohz_timer_target(void)
527 {
528 int i, cpu = smp_processor_id();
529 struct sched_domain *sd;
530
531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
532 return cpu;
533
534 rcu_read_lock();
535 for_each_domain(cpu, sd) {
536 for_each_cpu(i, sched_domain_span(sd)) {
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
541 cpu = i;
542 goto unlock;
543 }
544 }
545 }
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
549 unlock:
550 rcu_read_unlock();
551 return cpu;
552 }
553 /*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
563 static void wake_up_idle_cpu(int cpu)
564 {
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
570 if (set_nr_and_not_polling(rq->idle))
571 smp_send_reschedule(cpu);
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
574 }
575
576 static bool wake_up_full_nohz_cpu(int cpu)
577 {
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
584 if (cpu_is_offline(cpu))
585 return true; /* Don't try to wake offline CPUs. */
586 if (tick_nohz_full_cpu(cpu)) {
587 if (cpu != smp_processor_id() ||
588 tick_nohz_tick_stopped())
589 tick_nohz_full_kick_cpu(cpu);
590 return true;
591 }
592
593 return false;
594 }
595
596 /*
597 * Wake up the specified CPU. If the CPU is going offline, it is the
598 * caller's responsibility to deal with the lost wakeup, for example,
599 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
600 */
601 void wake_up_nohz_cpu(int cpu)
602 {
603 if (!wake_up_full_nohz_cpu(cpu))
604 wake_up_idle_cpu(cpu);
605 }
606
607 static inline bool got_nohz_idle_kick(void)
608 {
609 int cpu = smp_processor_id();
610
611 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
612 return false;
613
614 if (idle_cpu(cpu) && !need_resched())
615 return true;
616
617 /*
618 * We can't run Idle Load Balance on this CPU for this time so we
619 * cancel it and clear NOHZ_BALANCE_KICK
620 */
621 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
622 return false;
623 }
624
625 #else /* CONFIG_NO_HZ_COMMON */
626
627 static inline bool got_nohz_idle_kick(void)
628 {
629 return false;
630 }
631
632 #endif /* CONFIG_NO_HZ_COMMON */
633
634 #ifdef CONFIG_NO_HZ_FULL
635 bool sched_can_stop_tick(struct rq *rq)
636 {
637 int fifo_nr_running;
638
639 /* Deadline tasks, even if single, need the tick */
640 if (rq->dl.dl_nr_running)
641 return false;
642
643 /*
644 * If there are more than one RR tasks, we need the tick to effect the
645 * actual RR behaviour.
646 */
647 if (rq->rt.rr_nr_running) {
648 if (rq->rt.rr_nr_running == 1)
649 return true;
650 else
651 return false;
652 }
653
654 /*
655 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
656 * forced preemption between FIFO tasks.
657 */
658 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
659 if (fifo_nr_running)
660 return true;
661
662 /*
663 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
664 * if there's more than one we need the tick for involuntary
665 * preemption.
666 */
667 if (rq->nr_running > 1)
668 return false;
669
670 return true;
671 }
672 #endif /* CONFIG_NO_HZ_FULL */
673
674 void sched_avg_update(struct rq *rq)
675 {
676 s64 period = sched_avg_period();
677
678 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
679 /*
680 * Inline assembly required to prevent the compiler
681 * optimising this loop into a divmod call.
682 * See __iter_div_u64_rem() for another example of this.
683 */
684 asm("" : "+rm" (rq->age_stamp));
685 rq->age_stamp += period;
686 rq->rt_avg /= 2;
687 }
688 }
689
690 #endif /* CONFIG_SMP */
691
692 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
693 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
694 /*
695 * Iterate task_group tree rooted at *from, calling @down when first entering a
696 * node and @up when leaving it for the final time.
697 *
698 * Caller must hold rcu_lock or sufficient equivalent.
699 */
700 int walk_tg_tree_from(struct task_group *from,
701 tg_visitor down, tg_visitor up, void *data)
702 {
703 struct task_group *parent, *child;
704 int ret;
705
706 parent = from;
707
708 down:
709 ret = (*down)(parent, data);
710 if (ret)
711 goto out;
712 list_for_each_entry_rcu(child, &parent->children, siblings) {
713 parent = child;
714 goto down;
715
716 up:
717 continue;
718 }
719 ret = (*up)(parent, data);
720 if (ret || parent == from)
721 goto out;
722
723 child = parent;
724 parent = parent->parent;
725 if (parent)
726 goto up;
727 out:
728 return ret;
729 }
730
731 int tg_nop(struct task_group *tg, void *data)
732 {
733 return 0;
734 }
735 #endif
736
737 static void set_load_weight(struct task_struct *p)
738 {
739 int prio = p->static_prio - MAX_RT_PRIO;
740 struct load_weight *load = &p->se.load;
741
742 /*
743 * SCHED_IDLE tasks get minimal weight:
744 */
745 if (idle_policy(p->policy)) {
746 load->weight = scale_load(WEIGHT_IDLEPRIO);
747 load->inv_weight = WMULT_IDLEPRIO;
748 return;
749 }
750
751 load->weight = scale_load(sched_prio_to_weight[prio]);
752 load->inv_weight = sched_prio_to_wmult[prio];
753 }
754
755 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
756 {
757 update_rq_clock(rq);
758 if (!(flags & ENQUEUE_RESTORE))
759 sched_info_queued(rq, p);
760 p->sched_class->enqueue_task(rq, p, flags);
761 }
762
763 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 update_rq_clock(rq);
766 if (!(flags & DEQUEUE_SAVE))
767 sched_info_dequeued(rq, p);
768 p->sched_class->dequeue_task(rq, p, flags);
769 }
770
771 void activate_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible--;
775
776 enqueue_task(rq, p, flags);
777 }
778
779 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
780 {
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible++;
783
784 dequeue_task(rq, p, flags);
785 }
786
787 static void update_rq_clock_task(struct rq *rq, s64 delta)
788 {
789 /*
790 * In theory, the compile should just see 0 here, and optimize out the call
791 * to sched_rt_avg_update. But I don't trust it...
792 */
793 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
794 s64 steal = 0, irq_delta = 0;
795 #endif
796 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
797 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
798
799 /*
800 * Since irq_time is only updated on {soft,}irq_exit, we might run into
801 * this case when a previous update_rq_clock() happened inside a
802 * {soft,}irq region.
803 *
804 * When this happens, we stop ->clock_task and only update the
805 * prev_irq_time stamp to account for the part that fit, so that a next
806 * update will consume the rest. This ensures ->clock_task is
807 * monotonic.
808 *
809 * It does however cause some slight miss-attribution of {soft,}irq
810 * time, a more accurate solution would be to update the irq_time using
811 * the current rq->clock timestamp, except that would require using
812 * atomic ops.
813 */
814 if (irq_delta > delta)
815 irq_delta = delta;
816
817 rq->prev_irq_time += irq_delta;
818 delta -= irq_delta;
819 #endif
820 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
821 if (static_key_false((&paravirt_steal_rq_enabled))) {
822 steal = paravirt_steal_clock(cpu_of(rq));
823 steal -= rq->prev_steal_time_rq;
824
825 if (unlikely(steal > delta))
826 steal = delta;
827
828 rq->prev_steal_time_rq += steal;
829 delta -= steal;
830 }
831 #endif
832
833 rq->clock_task += delta;
834
835 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
836 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
837 sched_rt_avg_update(rq, irq_delta + steal);
838 #endif
839 }
840
841 void sched_set_stop_task(int cpu, struct task_struct *stop)
842 {
843 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
844 struct task_struct *old_stop = cpu_rq(cpu)->stop;
845
846 if (stop) {
847 /*
848 * Make it appear like a SCHED_FIFO task, its something
849 * userspace knows about and won't get confused about.
850 *
851 * Also, it will make PI more or less work without too
852 * much confusion -- but then, stop work should not
853 * rely on PI working anyway.
854 */
855 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
856
857 stop->sched_class = &stop_sched_class;
858 }
859
860 cpu_rq(cpu)->stop = stop;
861
862 if (old_stop) {
863 /*
864 * Reset it back to a normal scheduling class so that
865 * it can die in pieces.
866 */
867 old_stop->sched_class = &rt_sched_class;
868 }
869 }
870
871 /*
872 * __normal_prio - return the priority that is based on the static prio
873 */
874 static inline int __normal_prio(struct task_struct *p)
875 {
876 return p->static_prio;
877 }
878
879 /*
880 * Calculate the expected normal priority: i.e. priority
881 * without taking RT-inheritance into account. Might be
882 * boosted by interactivity modifiers. Changes upon fork,
883 * setprio syscalls, and whenever the interactivity
884 * estimator recalculates.
885 */
886 static inline int normal_prio(struct task_struct *p)
887 {
888 int prio;
889
890 if (task_has_dl_policy(p))
891 prio = MAX_DL_PRIO-1;
892 else if (task_has_rt_policy(p))
893 prio = MAX_RT_PRIO-1 - p->rt_priority;
894 else
895 prio = __normal_prio(p);
896 return prio;
897 }
898
899 /*
900 * Calculate the current priority, i.e. the priority
901 * taken into account by the scheduler. This value might
902 * be boosted by RT tasks, or might be boosted by
903 * interactivity modifiers. Will be RT if the task got
904 * RT-boosted. If not then it returns p->normal_prio.
905 */
906 static int effective_prio(struct task_struct *p)
907 {
908 p->normal_prio = normal_prio(p);
909 /*
910 * If we are RT tasks or we were boosted to RT priority,
911 * keep the priority unchanged. Otherwise, update priority
912 * to the normal priority:
913 */
914 if (!rt_prio(p->prio))
915 return p->normal_prio;
916 return p->prio;
917 }
918
919 /**
920 * task_curr - is this task currently executing on a CPU?
921 * @p: the task in question.
922 *
923 * Return: 1 if the task is currently executing. 0 otherwise.
924 */
925 inline int task_curr(const struct task_struct *p)
926 {
927 return cpu_curr(task_cpu(p)) == p;
928 }
929
930 /*
931 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
932 * use the balance_callback list if you want balancing.
933 *
934 * this means any call to check_class_changed() must be followed by a call to
935 * balance_callback().
936 */
937 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
938 const struct sched_class *prev_class,
939 int oldprio)
940 {
941 if (prev_class != p->sched_class) {
942 if (prev_class->switched_from)
943 prev_class->switched_from(rq, p);
944
945 p->sched_class->switched_to(rq, p);
946 } else if (oldprio != p->prio || dl_task(p))
947 p->sched_class->prio_changed(rq, p, oldprio);
948 }
949
950 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951 {
952 const struct sched_class *class;
953
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
961 resched_curr(rq);
962 break;
963 }
964 }
965 }
966
967 /*
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
970 */
971 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
972 rq_clock_skip_update(rq, true);
973 }
974
975 #ifdef CONFIG_SMP
976 /*
977 * This is how migration works:
978 *
979 * 1) we invoke migration_cpu_stop() on the target CPU using
980 * stop_one_cpu().
981 * 2) stopper starts to run (implicitly forcing the migrated thread
982 * off the CPU)
983 * 3) it checks whether the migrated task is still in the wrong runqueue.
984 * 4) if it's in the wrong runqueue then the migration thread removes
985 * it and puts it into the right queue.
986 * 5) stopper completes and stop_one_cpu() returns and the migration
987 * is done.
988 */
989
990 /*
991 * move_queued_task - move a queued task to new rq.
992 *
993 * Returns (locked) new rq. Old rq's lock is released.
994 */
995 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
996 {
997 lockdep_assert_held(&rq->lock);
998
999 p->on_rq = TASK_ON_RQ_MIGRATING;
1000 dequeue_task(rq, p, 0);
1001 set_task_cpu(p, new_cpu);
1002 raw_spin_unlock(&rq->lock);
1003
1004 rq = cpu_rq(new_cpu);
1005
1006 raw_spin_lock(&rq->lock);
1007 BUG_ON(task_cpu(p) != new_cpu);
1008 enqueue_task(rq, p, 0);
1009 p->on_rq = TASK_ON_RQ_QUEUED;
1010 check_preempt_curr(rq, p, 0);
1011
1012 return rq;
1013 }
1014
1015 struct migration_arg {
1016 struct task_struct *task;
1017 int dest_cpu;
1018 };
1019
1020 /*
1021 * Move (not current) task off this cpu, onto dest cpu. We're doing
1022 * this because either it can't run here any more (set_cpus_allowed()
1023 * away from this CPU, or CPU going down), or because we're
1024 * attempting to rebalance this task on exec (sched_exec).
1025 *
1026 * So we race with normal scheduler movements, but that's OK, as long
1027 * as the task is no longer on this CPU.
1028 */
1029 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1030 {
1031 if (unlikely(!cpu_active(dest_cpu)))
1032 return rq;
1033
1034 /* Affinity changed (again). */
1035 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1036 return rq;
1037
1038 rq = move_queued_task(rq, p, dest_cpu);
1039
1040 return rq;
1041 }
1042
1043 /*
1044 * migration_cpu_stop - this will be executed by a highprio stopper thread
1045 * and performs thread migration by bumping thread off CPU then
1046 * 'pushing' onto another runqueue.
1047 */
1048 static int migration_cpu_stop(void *data)
1049 {
1050 struct migration_arg *arg = data;
1051 struct task_struct *p = arg->task;
1052 struct rq *rq = this_rq();
1053
1054 /*
1055 * The original target cpu might have gone down and we might
1056 * be on another cpu but it doesn't matter.
1057 */
1058 local_irq_disable();
1059 /*
1060 * We need to explicitly wake pending tasks before running
1061 * __migrate_task() such that we will not miss enforcing cpus_allowed
1062 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1063 */
1064 sched_ttwu_pending();
1065
1066 raw_spin_lock(&p->pi_lock);
1067 raw_spin_lock(&rq->lock);
1068 /*
1069 * If task_rq(p) != rq, it cannot be migrated here, because we're
1070 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1071 * we're holding p->pi_lock.
1072 */
1073 if (task_rq(p) == rq) {
1074 if (task_on_rq_queued(p))
1075 rq = __migrate_task(rq, p, arg->dest_cpu);
1076 else
1077 p->wake_cpu = arg->dest_cpu;
1078 }
1079 raw_spin_unlock(&rq->lock);
1080 raw_spin_unlock(&p->pi_lock);
1081
1082 local_irq_enable();
1083 return 0;
1084 }
1085
1086 /*
1087 * sched_class::set_cpus_allowed must do the below, but is not required to
1088 * actually call this function.
1089 */
1090 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1091 {
1092 cpumask_copy(&p->cpus_allowed, new_mask);
1093 p->nr_cpus_allowed = cpumask_weight(new_mask);
1094 }
1095
1096 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1097 {
1098 struct rq *rq = task_rq(p);
1099 bool queued, running;
1100
1101 lockdep_assert_held(&p->pi_lock);
1102
1103 queued = task_on_rq_queued(p);
1104 running = task_current(rq, p);
1105
1106 if (queued) {
1107 /*
1108 * Because __kthread_bind() calls this on blocked tasks without
1109 * holding rq->lock.
1110 */
1111 lockdep_assert_held(&rq->lock);
1112 dequeue_task(rq, p, DEQUEUE_SAVE);
1113 }
1114 if (running)
1115 put_prev_task(rq, p);
1116
1117 p->sched_class->set_cpus_allowed(p, new_mask);
1118
1119 if (queued)
1120 enqueue_task(rq, p, ENQUEUE_RESTORE);
1121 if (running)
1122 set_curr_task(rq, p);
1123 }
1124
1125 /*
1126 * Change a given task's CPU affinity. Migrate the thread to a
1127 * proper CPU and schedule it away if the CPU it's executing on
1128 * is removed from the allowed bitmask.
1129 *
1130 * NOTE: the caller must have a valid reference to the task, the
1131 * task must not exit() & deallocate itself prematurely. The
1132 * call is not atomic; no spinlocks may be held.
1133 */
1134 static int __set_cpus_allowed_ptr(struct task_struct *p,
1135 const struct cpumask *new_mask, bool check)
1136 {
1137 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1138 unsigned int dest_cpu;
1139 struct rq_flags rf;
1140 struct rq *rq;
1141 int ret = 0;
1142
1143 rq = task_rq_lock(p, &rf);
1144
1145 if (p->flags & PF_KTHREAD) {
1146 /*
1147 * Kernel threads are allowed on online && !active CPUs
1148 */
1149 cpu_valid_mask = cpu_online_mask;
1150 }
1151
1152 /*
1153 * Must re-check here, to close a race against __kthread_bind(),
1154 * sched_setaffinity() is not guaranteed to observe the flag.
1155 */
1156 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1157 ret = -EINVAL;
1158 goto out;
1159 }
1160
1161 if (cpumask_equal(&p->cpus_allowed, new_mask))
1162 goto out;
1163
1164 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1165 ret = -EINVAL;
1166 goto out;
1167 }
1168
1169 do_set_cpus_allowed(p, new_mask);
1170
1171 if (p->flags & PF_KTHREAD) {
1172 /*
1173 * For kernel threads that do indeed end up on online &&
1174 * !active we want to ensure they are strict per-cpu threads.
1175 */
1176 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1177 !cpumask_intersects(new_mask, cpu_active_mask) &&
1178 p->nr_cpus_allowed != 1);
1179 }
1180
1181 /* Can the task run on the task's current CPU? If so, we're done */
1182 if (cpumask_test_cpu(task_cpu(p), new_mask))
1183 goto out;
1184
1185 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1186 if (task_running(rq, p) || p->state == TASK_WAKING) {
1187 struct migration_arg arg = { p, dest_cpu };
1188 /* Need help from migration thread: drop lock and wait. */
1189 task_rq_unlock(rq, p, &rf);
1190 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1191 tlb_migrate_finish(p->mm);
1192 return 0;
1193 } else if (task_on_rq_queued(p)) {
1194 /*
1195 * OK, since we're going to drop the lock immediately
1196 * afterwards anyway.
1197 */
1198 lockdep_unpin_lock(&rq->lock, rf.cookie);
1199 rq = move_queued_task(rq, p, dest_cpu);
1200 lockdep_repin_lock(&rq->lock, rf.cookie);
1201 }
1202 out:
1203 task_rq_unlock(rq, p, &rf);
1204
1205 return ret;
1206 }
1207
1208 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1209 {
1210 return __set_cpus_allowed_ptr(p, new_mask, false);
1211 }
1212 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1213
1214 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1215 {
1216 #ifdef CONFIG_SCHED_DEBUG
1217 /*
1218 * We should never call set_task_cpu() on a blocked task,
1219 * ttwu() will sort out the placement.
1220 */
1221 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1222 !p->on_rq);
1223
1224 /*
1225 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1226 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1227 * time relying on p->on_rq.
1228 */
1229 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1230 p->sched_class == &fair_sched_class &&
1231 (p->on_rq && !task_on_rq_migrating(p)));
1232
1233 #ifdef CONFIG_LOCKDEP
1234 /*
1235 * The caller should hold either p->pi_lock or rq->lock, when changing
1236 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1237 *
1238 * sched_move_task() holds both and thus holding either pins the cgroup,
1239 * see task_group().
1240 *
1241 * Furthermore, all task_rq users should acquire both locks, see
1242 * task_rq_lock().
1243 */
1244 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1245 lockdep_is_held(&task_rq(p)->lock)));
1246 #endif
1247 #endif
1248
1249 trace_sched_migrate_task(p, new_cpu);
1250
1251 if (task_cpu(p) != new_cpu) {
1252 if (p->sched_class->migrate_task_rq)
1253 p->sched_class->migrate_task_rq(p);
1254 p->se.nr_migrations++;
1255 perf_event_task_migrate(p);
1256 }
1257
1258 __set_task_cpu(p, new_cpu);
1259 }
1260
1261 static void __migrate_swap_task(struct task_struct *p, int cpu)
1262 {
1263 if (task_on_rq_queued(p)) {
1264 struct rq *src_rq, *dst_rq;
1265
1266 src_rq = task_rq(p);
1267 dst_rq = cpu_rq(cpu);
1268
1269 p->on_rq = TASK_ON_RQ_MIGRATING;
1270 deactivate_task(src_rq, p, 0);
1271 set_task_cpu(p, cpu);
1272 activate_task(dst_rq, p, 0);
1273 p->on_rq = TASK_ON_RQ_QUEUED;
1274 check_preempt_curr(dst_rq, p, 0);
1275 } else {
1276 /*
1277 * Task isn't running anymore; make it appear like we migrated
1278 * it before it went to sleep. This means on wakeup we make the
1279 * previous cpu our target instead of where it really is.
1280 */
1281 p->wake_cpu = cpu;
1282 }
1283 }
1284
1285 struct migration_swap_arg {
1286 struct task_struct *src_task, *dst_task;
1287 int src_cpu, dst_cpu;
1288 };
1289
1290 static int migrate_swap_stop(void *data)
1291 {
1292 struct migration_swap_arg *arg = data;
1293 struct rq *src_rq, *dst_rq;
1294 int ret = -EAGAIN;
1295
1296 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1297 return -EAGAIN;
1298
1299 src_rq = cpu_rq(arg->src_cpu);
1300 dst_rq = cpu_rq(arg->dst_cpu);
1301
1302 double_raw_lock(&arg->src_task->pi_lock,
1303 &arg->dst_task->pi_lock);
1304 double_rq_lock(src_rq, dst_rq);
1305
1306 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1307 goto unlock;
1308
1309 if (task_cpu(arg->src_task) != arg->src_cpu)
1310 goto unlock;
1311
1312 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1313 goto unlock;
1314
1315 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1316 goto unlock;
1317
1318 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1319 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1320
1321 ret = 0;
1322
1323 unlock:
1324 double_rq_unlock(src_rq, dst_rq);
1325 raw_spin_unlock(&arg->dst_task->pi_lock);
1326 raw_spin_unlock(&arg->src_task->pi_lock);
1327
1328 return ret;
1329 }
1330
1331 /*
1332 * Cross migrate two tasks
1333 */
1334 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1335 {
1336 struct migration_swap_arg arg;
1337 int ret = -EINVAL;
1338
1339 arg = (struct migration_swap_arg){
1340 .src_task = cur,
1341 .src_cpu = task_cpu(cur),
1342 .dst_task = p,
1343 .dst_cpu = task_cpu(p),
1344 };
1345
1346 if (arg.src_cpu == arg.dst_cpu)
1347 goto out;
1348
1349 /*
1350 * These three tests are all lockless; this is OK since all of them
1351 * will be re-checked with proper locks held further down the line.
1352 */
1353 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1354 goto out;
1355
1356 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1357 goto out;
1358
1359 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1360 goto out;
1361
1362 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1363 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1364
1365 out:
1366 return ret;
1367 }
1368
1369 /*
1370 * wait_task_inactive - wait for a thread to unschedule.
1371 *
1372 * If @match_state is nonzero, it's the @p->state value just checked and
1373 * not expected to change. If it changes, i.e. @p might have woken up,
1374 * then return zero. When we succeed in waiting for @p to be off its CPU,
1375 * we return a positive number (its total switch count). If a second call
1376 * a short while later returns the same number, the caller can be sure that
1377 * @p has remained unscheduled the whole time.
1378 *
1379 * The caller must ensure that the task *will* unschedule sometime soon,
1380 * else this function might spin for a *long* time. This function can't
1381 * be called with interrupts off, or it may introduce deadlock with
1382 * smp_call_function() if an IPI is sent by the same process we are
1383 * waiting to become inactive.
1384 */
1385 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1386 {
1387 int running, queued;
1388 struct rq_flags rf;
1389 unsigned long ncsw;
1390 struct rq *rq;
1391
1392 for (;;) {
1393 /*
1394 * We do the initial early heuristics without holding
1395 * any task-queue locks at all. We'll only try to get
1396 * the runqueue lock when things look like they will
1397 * work out!
1398 */
1399 rq = task_rq(p);
1400
1401 /*
1402 * If the task is actively running on another CPU
1403 * still, just relax and busy-wait without holding
1404 * any locks.
1405 *
1406 * NOTE! Since we don't hold any locks, it's not
1407 * even sure that "rq" stays as the right runqueue!
1408 * But we don't care, since "task_running()" will
1409 * return false if the runqueue has changed and p
1410 * is actually now running somewhere else!
1411 */
1412 while (task_running(rq, p)) {
1413 if (match_state && unlikely(p->state != match_state))
1414 return 0;
1415 cpu_relax();
1416 }
1417
1418 /*
1419 * Ok, time to look more closely! We need the rq
1420 * lock now, to be *sure*. If we're wrong, we'll
1421 * just go back and repeat.
1422 */
1423 rq = task_rq_lock(p, &rf);
1424 trace_sched_wait_task(p);
1425 running = task_running(rq, p);
1426 queued = task_on_rq_queued(p);
1427 ncsw = 0;
1428 if (!match_state || p->state == match_state)
1429 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1430 task_rq_unlock(rq, p, &rf);
1431
1432 /*
1433 * If it changed from the expected state, bail out now.
1434 */
1435 if (unlikely(!ncsw))
1436 break;
1437
1438 /*
1439 * Was it really running after all now that we
1440 * checked with the proper locks actually held?
1441 *
1442 * Oops. Go back and try again..
1443 */
1444 if (unlikely(running)) {
1445 cpu_relax();
1446 continue;
1447 }
1448
1449 /*
1450 * It's not enough that it's not actively running,
1451 * it must be off the runqueue _entirely_, and not
1452 * preempted!
1453 *
1454 * So if it was still runnable (but just not actively
1455 * running right now), it's preempted, and we should
1456 * yield - it could be a while.
1457 */
1458 if (unlikely(queued)) {
1459 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1460
1461 set_current_state(TASK_UNINTERRUPTIBLE);
1462 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1463 continue;
1464 }
1465
1466 /*
1467 * Ahh, all good. It wasn't running, and it wasn't
1468 * runnable, which means that it will never become
1469 * running in the future either. We're all done!
1470 */
1471 break;
1472 }
1473
1474 return ncsw;
1475 }
1476
1477 /***
1478 * kick_process - kick a running thread to enter/exit the kernel
1479 * @p: the to-be-kicked thread
1480 *
1481 * Cause a process which is running on another CPU to enter
1482 * kernel-mode, without any delay. (to get signals handled.)
1483 *
1484 * NOTE: this function doesn't have to take the runqueue lock,
1485 * because all it wants to ensure is that the remote task enters
1486 * the kernel. If the IPI races and the task has been migrated
1487 * to another CPU then no harm is done and the purpose has been
1488 * achieved as well.
1489 */
1490 void kick_process(struct task_struct *p)
1491 {
1492 int cpu;
1493
1494 preempt_disable();
1495 cpu = task_cpu(p);
1496 if ((cpu != smp_processor_id()) && task_curr(p))
1497 smp_send_reschedule(cpu);
1498 preempt_enable();
1499 }
1500 EXPORT_SYMBOL_GPL(kick_process);
1501
1502 /*
1503 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1504 *
1505 * A few notes on cpu_active vs cpu_online:
1506 *
1507 * - cpu_active must be a subset of cpu_online
1508 *
1509 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1510 * see __set_cpus_allowed_ptr(). At this point the newly online
1511 * cpu isn't yet part of the sched domains, and balancing will not
1512 * see it.
1513 *
1514 * - on cpu-down we clear cpu_active() to mask the sched domains and
1515 * avoid the load balancer to place new tasks on the to be removed
1516 * cpu. Existing tasks will remain running there and will be taken
1517 * off.
1518 *
1519 * This means that fallback selection must not select !active CPUs.
1520 * And can assume that any active CPU must be online. Conversely
1521 * select_task_rq() below may allow selection of !active CPUs in order
1522 * to satisfy the above rules.
1523 */
1524 static int select_fallback_rq(int cpu, struct task_struct *p)
1525 {
1526 int nid = cpu_to_node(cpu);
1527 const struct cpumask *nodemask = NULL;
1528 enum { cpuset, possible, fail } state = cpuset;
1529 int dest_cpu;
1530
1531 /*
1532 * If the node that the cpu is on has been offlined, cpu_to_node()
1533 * will return -1. There is no cpu on the node, and we should
1534 * select the cpu on the other node.
1535 */
1536 if (nid != -1) {
1537 nodemask = cpumask_of_node(nid);
1538
1539 /* Look for allowed, online CPU in same node. */
1540 for_each_cpu(dest_cpu, nodemask) {
1541 if (!cpu_active(dest_cpu))
1542 continue;
1543 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1544 return dest_cpu;
1545 }
1546 }
1547
1548 for (;;) {
1549 /* Any allowed, online CPU? */
1550 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1551 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1552 continue;
1553 if (!cpu_online(dest_cpu))
1554 continue;
1555 goto out;
1556 }
1557
1558 /* No more Mr. Nice Guy. */
1559 switch (state) {
1560 case cpuset:
1561 if (IS_ENABLED(CONFIG_CPUSETS)) {
1562 cpuset_cpus_allowed_fallback(p);
1563 state = possible;
1564 break;
1565 }
1566 /* fall-through */
1567 case possible:
1568 do_set_cpus_allowed(p, cpu_possible_mask);
1569 state = fail;
1570 break;
1571
1572 case fail:
1573 BUG();
1574 break;
1575 }
1576 }
1577
1578 out:
1579 if (state != cpuset) {
1580 /*
1581 * Don't tell them about moving exiting tasks or
1582 * kernel threads (both mm NULL), since they never
1583 * leave kernel.
1584 */
1585 if (p->mm && printk_ratelimit()) {
1586 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1587 task_pid_nr(p), p->comm, cpu);
1588 }
1589 }
1590
1591 return dest_cpu;
1592 }
1593
1594 /*
1595 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1596 */
1597 static inline
1598 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1599 {
1600 lockdep_assert_held(&p->pi_lock);
1601
1602 if (tsk_nr_cpus_allowed(p) > 1)
1603 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1604 else
1605 cpu = cpumask_any(tsk_cpus_allowed(p));
1606
1607 /*
1608 * In order not to call set_task_cpu() on a blocking task we need
1609 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1610 * cpu.
1611 *
1612 * Since this is common to all placement strategies, this lives here.
1613 *
1614 * [ this allows ->select_task() to simply return task_cpu(p) and
1615 * not worry about this generic constraint ]
1616 */
1617 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1618 !cpu_online(cpu)))
1619 cpu = select_fallback_rq(task_cpu(p), p);
1620
1621 return cpu;
1622 }
1623
1624 static void update_avg(u64 *avg, u64 sample)
1625 {
1626 s64 diff = sample - *avg;
1627 *avg += diff >> 3;
1628 }
1629
1630 #else
1631
1632 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1633 const struct cpumask *new_mask, bool check)
1634 {
1635 return set_cpus_allowed_ptr(p, new_mask);
1636 }
1637
1638 #endif /* CONFIG_SMP */
1639
1640 static void
1641 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1642 {
1643 struct rq *rq;
1644
1645 if (!schedstat_enabled())
1646 return;
1647
1648 rq = this_rq();
1649
1650 #ifdef CONFIG_SMP
1651 if (cpu == rq->cpu) {
1652 schedstat_inc(rq->ttwu_local);
1653 schedstat_inc(p->se.statistics.nr_wakeups_local);
1654 } else {
1655 struct sched_domain *sd;
1656
1657 schedstat_inc(p->se.statistics.nr_wakeups_remote);
1658 rcu_read_lock();
1659 for_each_domain(rq->cpu, sd) {
1660 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1661 schedstat_inc(sd->ttwu_wake_remote);
1662 break;
1663 }
1664 }
1665 rcu_read_unlock();
1666 }
1667
1668 if (wake_flags & WF_MIGRATED)
1669 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1670 #endif /* CONFIG_SMP */
1671
1672 schedstat_inc(rq->ttwu_count);
1673 schedstat_inc(p->se.statistics.nr_wakeups);
1674
1675 if (wake_flags & WF_SYNC)
1676 schedstat_inc(p->se.statistics.nr_wakeups_sync);
1677 }
1678
1679 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1680 {
1681 activate_task(rq, p, en_flags);
1682 p->on_rq = TASK_ON_RQ_QUEUED;
1683
1684 /* if a worker is waking up, notify workqueue */
1685 if (p->flags & PF_WQ_WORKER)
1686 wq_worker_waking_up(p, cpu_of(rq));
1687 }
1688
1689 /*
1690 * Mark the task runnable and perform wakeup-preemption.
1691 */
1692 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1693 struct pin_cookie cookie)
1694 {
1695 check_preempt_curr(rq, p, wake_flags);
1696 p->state = TASK_RUNNING;
1697 trace_sched_wakeup(p);
1698
1699 #ifdef CONFIG_SMP
1700 if (p->sched_class->task_woken) {
1701 /*
1702 * Our task @p is fully woken up and running; so its safe to
1703 * drop the rq->lock, hereafter rq is only used for statistics.
1704 */
1705 lockdep_unpin_lock(&rq->lock, cookie);
1706 p->sched_class->task_woken(rq, p);
1707 lockdep_repin_lock(&rq->lock, cookie);
1708 }
1709
1710 if (rq->idle_stamp) {
1711 u64 delta = rq_clock(rq) - rq->idle_stamp;
1712 u64 max = 2*rq->max_idle_balance_cost;
1713
1714 update_avg(&rq->avg_idle, delta);
1715
1716 if (rq->avg_idle > max)
1717 rq->avg_idle = max;
1718
1719 rq->idle_stamp = 0;
1720 }
1721 #endif
1722 }
1723
1724 static void
1725 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1726 struct pin_cookie cookie)
1727 {
1728 int en_flags = ENQUEUE_WAKEUP;
1729
1730 lockdep_assert_held(&rq->lock);
1731
1732 #ifdef CONFIG_SMP
1733 if (p->sched_contributes_to_load)
1734 rq->nr_uninterruptible--;
1735
1736 if (wake_flags & WF_MIGRATED)
1737 en_flags |= ENQUEUE_MIGRATED;
1738 #endif
1739
1740 ttwu_activate(rq, p, en_flags);
1741 ttwu_do_wakeup(rq, p, wake_flags, cookie);
1742 }
1743
1744 /*
1745 * Called in case the task @p isn't fully descheduled from its runqueue,
1746 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1747 * since all we need to do is flip p->state to TASK_RUNNING, since
1748 * the task is still ->on_rq.
1749 */
1750 static int ttwu_remote(struct task_struct *p, int wake_flags)
1751 {
1752 struct rq_flags rf;
1753 struct rq *rq;
1754 int ret = 0;
1755
1756 rq = __task_rq_lock(p, &rf);
1757 if (task_on_rq_queued(p)) {
1758 /* check_preempt_curr() may use rq clock */
1759 update_rq_clock(rq);
1760 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1761 ret = 1;
1762 }
1763 __task_rq_unlock(rq, &rf);
1764
1765 return ret;
1766 }
1767
1768 #ifdef CONFIG_SMP
1769 void sched_ttwu_pending(void)
1770 {
1771 struct rq *rq = this_rq();
1772 struct llist_node *llist = llist_del_all(&rq->wake_list);
1773 struct pin_cookie cookie;
1774 struct task_struct *p;
1775 unsigned long flags;
1776
1777 if (!llist)
1778 return;
1779
1780 raw_spin_lock_irqsave(&rq->lock, flags);
1781 cookie = lockdep_pin_lock(&rq->lock);
1782
1783 while (llist) {
1784 int wake_flags = 0;
1785
1786 p = llist_entry(llist, struct task_struct, wake_entry);
1787 llist = llist_next(llist);
1788
1789 if (p->sched_remote_wakeup)
1790 wake_flags = WF_MIGRATED;
1791
1792 ttwu_do_activate(rq, p, wake_flags, cookie);
1793 }
1794
1795 lockdep_unpin_lock(&rq->lock, cookie);
1796 raw_spin_unlock_irqrestore(&rq->lock, flags);
1797 }
1798
1799 void scheduler_ipi(void)
1800 {
1801 /*
1802 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1803 * TIF_NEED_RESCHED remotely (for the first time) will also send
1804 * this IPI.
1805 */
1806 preempt_fold_need_resched();
1807
1808 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1809 return;
1810
1811 /*
1812 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1813 * traditionally all their work was done from the interrupt return
1814 * path. Now that we actually do some work, we need to make sure
1815 * we do call them.
1816 *
1817 * Some archs already do call them, luckily irq_enter/exit nest
1818 * properly.
1819 *
1820 * Arguably we should visit all archs and update all handlers,
1821 * however a fair share of IPIs are still resched only so this would
1822 * somewhat pessimize the simple resched case.
1823 */
1824 irq_enter();
1825 sched_ttwu_pending();
1826
1827 /*
1828 * Check if someone kicked us for doing the nohz idle load balance.
1829 */
1830 if (unlikely(got_nohz_idle_kick())) {
1831 this_rq()->idle_balance = 1;
1832 raise_softirq_irqoff(SCHED_SOFTIRQ);
1833 }
1834 irq_exit();
1835 }
1836
1837 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1838 {
1839 struct rq *rq = cpu_rq(cpu);
1840
1841 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1842
1843 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1844 if (!set_nr_if_polling(rq->idle))
1845 smp_send_reschedule(cpu);
1846 else
1847 trace_sched_wake_idle_without_ipi(cpu);
1848 }
1849 }
1850
1851 void wake_up_if_idle(int cpu)
1852 {
1853 struct rq *rq = cpu_rq(cpu);
1854 unsigned long flags;
1855
1856 rcu_read_lock();
1857
1858 if (!is_idle_task(rcu_dereference(rq->curr)))
1859 goto out;
1860
1861 if (set_nr_if_polling(rq->idle)) {
1862 trace_sched_wake_idle_without_ipi(cpu);
1863 } else {
1864 raw_spin_lock_irqsave(&rq->lock, flags);
1865 if (is_idle_task(rq->curr))
1866 smp_send_reschedule(cpu);
1867 /* Else cpu is not in idle, do nothing here */
1868 raw_spin_unlock_irqrestore(&rq->lock, flags);
1869 }
1870
1871 out:
1872 rcu_read_unlock();
1873 }
1874
1875 bool cpus_share_cache(int this_cpu, int that_cpu)
1876 {
1877 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878 }
1879 #endif /* CONFIG_SMP */
1880
1881 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1882 {
1883 struct rq *rq = cpu_rq(cpu);
1884 struct pin_cookie cookie;
1885
1886 #if defined(CONFIG_SMP)
1887 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1888 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1889 ttwu_queue_remote(p, cpu, wake_flags);
1890 return;
1891 }
1892 #endif
1893
1894 raw_spin_lock(&rq->lock);
1895 cookie = lockdep_pin_lock(&rq->lock);
1896 ttwu_do_activate(rq, p, wake_flags, cookie);
1897 lockdep_unpin_lock(&rq->lock, cookie);
1898 raw_spin_unlock(&rq->lock);
1899 }
1900
1901 /*
1902 * Notes on Program-Order guarantees on SMP systems.
1903 *
1904 * MIGRATION
1905 *
1906 * The basic program-order guarantee on SMP systems is that when a task [t]
1907 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1908 * execution on its new cpu [c1].
1909 *
1910 * For migration (of runnable tasks) this is provided by the following means:
1911 *
1912 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1913 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1914 * rq(c1)->lock (if not at the same time, then in that order).
1915 * C) LOCK of the rq(c1)->lock scheduling in task
1916 *
1917 * Transitivity guarantees that B happens after A and C after B.
1918 * Note: we only require RCpc transitivity.
1919 * Note: the cpu doing B need not be c0 or c1
1920 *
1921 * Example:
1922 *
1923 * CPU0 CPU1 CPU2
1924 *
1925 * LOCK rq(0)->lock
1926 * sched-out X
1927 * sched-in Y
1928 * UNLOCK rq(0)->lock
1929 *
1930 * LOCK rq(0)->lock // orders against CPU0
1931 * dequeue X
1932 * UNLOCK rq(0)->lock
1933 *
1934 * LOCK rq(1)->lock
1935 * enqueue X
1936 * UNLOCK rq(1)->lock
1937 *
1938 * LOCK rq(1)->lock // orders against CPU2
1939 * sched-out Z
1940 * sched-in X
1941 * UNLOCK rq(1)->lock
1942 *
1943 *
1944 * BLOCKING -- aka. SLEEP + WAKEUP
1945 *
1946 * For blocking we (obviously) need to provide the same guarantee as for
1947 * migration. However the means are completely different as there is no lock
1948 * chain to provide order. Instead we do:
1949 *
1950 * 1) smp_store_release(X->on_cpu, 0)
1951 * 2) smp_cond_load_acquire(!X->on_cpu)
1952 *
1953 * Example:
1954 *
1955 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1956 *
1957 * LOCK rq(0)->lock LOCK X->pi_lock
1958 * dequeue X
1959 * sched-out X
1960 * smp_store_release(X->on_cpu, 0);
1961 *
1962 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1963 * X->state = WAKING
1964 * set_task_cpu(X,2)
1965 *
1966 * LOCK rq(2)->lock
1967 * enqueue X
1968 * X->state = RUNNING
1969 * UNLOCK rq(2)->lock
1970 *
1971 * LOCK rq(2)->lock // orders against CPU1
1972 * sched-out Z
1973 * sched-in X
1974 * UNLOCK rq(2)->lock
1975 *
1976 * UNLOCK X->pi_lock
1977 * UNLOCK rq(0)->lock
1978 *
1979 *
1980 * However; for wakeups there is a second guarantee we must provide, namely we
1981 * must observe the state that lead to our wakeup. That is, not only must our
1982 * task observe its own prior state, it must also observe the stores prior to
1983 * its wakeup.
1984 *
1985 * This means that any means of doing remote wakeups must order the CPU doing
1986 * the wakeup against the CPU the task is going to end up running on. This,
1987 * however, is already required for the regular Program-Order guarantee above,
1988 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1989 *
1990 */
1991
1992 /**
1993 * try_to_wake_up - wake up a thread
1994 * @p: the thread to be awakened
1995 * @state: the mask of task states that can be woken
1996 * @wake_flags: wake modifier flags (WF_*)
1997 *
1998 * If (@state & @p->state) @p->state = TASK_RUNNING.
1999 *
2000 * If the task was not queued/runnable, also place it back on a runqueue.
2001 *
2002 * Atomic against schedule() which would dequeue a task, also see
2003 * set_current_state().
2004 *
2005 * Return: %true if @p->state changes (an actual wakeup was done),
2006 * %false otherwise.
2007 */
2008 static int
2009 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2010 {
2011 unsigned long flags;
2012 int cpu, success = 0;
2013
2014 /*
2015 * If we are going to wake up a thread waiting for CONDITION we
2016 * need to ensure that CONDITION=1 done by the caller can not be
2017 * reordered with p->state check below. This pairs with mb() in
2018 * set_current_state() the waiting thread does.
2019 */
2020 smp_mb__before_spinlock();
2021 raw_spin_lock_irqsave(&p->pi_lock, flags);
2022 if (!(p->state & state))
2023 goto out;
2024
2025 trace_sched_waking(p);
2026
2027 success = 1; /* we're going to change ->state */
2028 cpu = task_cpu(p);
2029
2030 /*
2031 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2032 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2033 * in smp_cond_load_acquire() below.
2034 *
2035 * sched_ttwu_pending() try_to_wake_up()
2036 * [S] p->on_rq = 1; [L] P->state
2037 * UNLOCK rq->lock -----.
2038 * \
2039 * +--- RMB
2040 * schedule() /
2041 * LOCK rq->lock -----'
2042 * UNLOCK rq->lock
2043 *
2044 * [task p]
2045 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2046 *
2047 * Pairs with the UNLOCK+LOCK on rq->lock from the
2048 * last wakeup of our task and the schedule that got our task
2049 * current.
2050 */
2051 smp_rmb();
2052 if (p->on_rq && ttwu_remote(p, wake_flags))
2053 goto stat;
2054
2055 #ifdef CONFIG_SMP
2056 /*
2057 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2058 * possible to, falsely, observe p->on_cpu == 0.
2059 *
2060 * One must be running (->on_cpu == 1) in order to remove oneself
2061 * from the runqueue.
2062 *
2063 * [S] ->on_cpu = 1; [L] ->on_rq
2064 * UNLOCK rq->lock
2065 * RMB
2066 * LOCK rq->lock
2067 * [S] ->on_rq = 0; [L] ->on_cpu
2068 *
2069 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2070 * from the consecutive calls to schedule(); the first switching to our
2071 * task, the second putting it to sleep.
2072 */
2073 smp_rmb();
2074
2075 /*
2076 * If the owning (remote) cpu is still in the middle of schedule() with
2077 * this task as prev, wait until its done referencing the task.
2078 *
2079 * Pairs with the smp_store_release() in finish_lock_switch().
2080 *
2081 * This ensures that tasks getting woken will be fully ordered against
2082 * their previous state and preserve Program Order.
2083 */
2084 smp_cond_load_acquire(&p->on_cpu, !VAL);
2085
2086 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2087 p->state = TASK_WAKING;
2088
2089 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2090 if (task_cpu(p) != cpu) {
2091 wake_flags |= WF_MIGRATED;
2092 set_task_cpu(p, cpu);
2093 }
2094 #endif /* CONFIG_SMP */
2095
2096 ttwu_queue(p, cpu, wake_flags);
2097 stat:
2098 ttwu_stat(p, cpu, wake_flags);
2099 out:
2100 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2101
2102 return success;
2103 }
2104
2105 /**
2106 * try_to_wake_up_local - try to wake up a local task with rq lock held
2107 * @p: the thread to be awakened
2108 * @cookie: context's cookie for pinning
2109 *
2110 * Put @p on the run-queue if it's not already there. The caller must
2111 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2112 * the current task.
2113 */
2114 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2115 {
2116 struct rq *rq = task_rq(p);
2117
2118 if (WARN_ON_ONCE(rq != this_rq()) ||
2119 WARN_ON_ONCE(p == current))
2120 return;
2121
2122 lockdep_assert_held(&rq->lock);
2123
2124 if (!raw_spin_trylock(&p->pi_lock)) {
2125 /*
2126 * This is OK, because current is on_cpu, which avoids it being
2127 * picked for load-balance and preemption/IRQs are still
2128 * disabled avoiding further scheduler activity on it and we've
2129 * not yet picked a replacement task.
2130 */
2131 lockdep_unpin_lock(&rq->lock, cookie);
2132 raw_spin_unlock(&rq->lock);
2133 raw_spin_lock(&p->pi_lock);
2134 raw_spin_lock(&rq->lock);
2135 lockdep_repin_lock(&rq->lock, cookie);
2136 }
2137
2138 if (!(p->state & TASK_NORMAL))
2139 goto out;
2140
2141 trace_sched_waking(p);
2142
2143 if (!task_on_rq_queued(p))
2144 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2145
2146 ttwu_do_wakeup(rq, p, 0, cookie);
2147 ttwu_stat(p, smp_processor_id(), 0);
2148 out:
2149 raw_spin_unlock(&p->pi_lock);
2150 }
2151
2152 /**
2153 * wake_up_process - Wake up a specific process
2154 * @p: The process to be woken up.
2155 *
2156 * Attempt to wake up the nominated process and move it to the set of runnable
2157 * processes.
2158 *
2159 * Return: 1 if the process was woken up, 0 if it was already running.
2160 *
2161 * It may be assumed that this function implies a write memory barrier before
2162 * changing the task state if and only if any tasks are woken up.
2163 */
2164 int wake_up_process(struct task_struct *p)
2165 {
2166 return try_to_wake_up(p, TASK_NORMAL, 0);
2167 }
2168 EXPORT_SYMBOL(wake_up_process);
2169
2170 int wake_up_state(struct task_struct *p, unsigned int state)
2171 {
2172 return try_to_wake_up(p, state, 0);
2173 }
2174
2175 /*
2176 * This function clears the sched_dl_entity static params.
2177 */
2178 void __dl_clear_params(struct task_struct *p)
2179 {
2180 struct sched_dl_entity *dl_se = &p->dl;
2181
2182 dl_se->dl_runtime = 0;
2183 dl_se->dl_deadline = 0;
2184 dl_se->dl_period = 0;
2185 dl_se->flags = 0;
2186 dl_se->dl_bw = 0;
2187
2188 dl_se->dl_throttled = 0;
2189 dl_se->dl_yielded = 0;
2190 }
2191
2192 /*
2193 * Perform scheduler related setup for a newly forked process p.
2194 * p is forked by current.
2195 *
2196 * __sched_fork() is basic setup used by init_idle() too:
2197 */
2198 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2199 {
2200 p->on_rq = 0;
2201
2202 p->se.on_rq = 0;
2203 p->se.exec_start = 0;
2204 p->se.sum_exec_runtime = 0;
2205 p->se.prev_sum_exec_runtime = 0;
2206 p->se.nr_migrations = 0;
2207 p->se.vruntime = 0;
2208 INIT_LIST_HEAD(&p->se.group_node);
2209
2210 #ifdef CONFIG_FAIR_GROUP_SCHED
2211 p->se.cfs_rq = NULL;
2212 #endif
2213
2214 #ifdef CONFIG_SCHEDSTATS
2215 /* Even if schedstat is disabled, there should not be garbage */
2216 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2217 #endif
2218
2219 RB_CLEAR_NODE(&p->dl.rb_node);
2220 init_dl_task_timer(&p->dl);
2221 __dl_clear_params(p);
2222
2223 INIT_LIST_HEAD(&p->rt.run_list);
2224 p->rt.timeout = 0;
2225 p->rt.time_slice = sched_rr_timeslice;
2226 p->rt.on_rq = 0;
2227 p->rt.on_list = 0;
2228
2229 #ifdef CONFIG_PREEMPT_NOTIFIERS
2230 INIT_HLIST_HEAD(&p->preempt_notifiers);
2231 #endif
2232
2233 #ifdef CONFIG_NUMA_BALANCING
2234 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2235 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2236 p->mm->numa_scan_seq = 0;
2237 }
2238
2239 if (clone_flags & CLONE_VM)
2240 p->numa_preferred_nid = current->numa_preferred_nid;
2241 else
2242 p->numa_preferred_nid = -1;
2243
2244 p->node_stamp = 0ULL;
2245 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2246 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2247 p->numa_work.next = &p->numa_work;
2248 p->numa_faults = NULL;
2249 p->last_task_numa_placement = 0;
2250 p->last_sum_exec_runtime = 0;
2251
2252 p->numa_group = NULL;
2253 #endif /* CONFIG_NUMA_BALANCING */
2254 }
2255
2256 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2257
2258 #ifdef CONFIG_NUMA_BALANCING
2259
2260 void set_numabalancing_state(bool enabled)
2261 {
2262 if (enabled)
2263 static_branch_enable(&sched_numa_balancing);
2264 else
2265 static_branch_disable(&sched_numa_balancing);
2266 }
2267
2268 #ifdef CONFIG_PROC_SYSCTL
2269 int sysctl_numa_balancing(struct ctl_table *table, int write,
2270 void __user *buffer, size_t *lenp, loff_t *ppos)
2271 {
2272 struct ctl_table t;
2273 int err;
2274 int state = static_branch_likely(&sched_numa_balancing);
2275
2276 if (write && !capable(CAP_SYS_ADMIN))
2277 return -EPERM;
2278
2279 t = *table;
2280 t.data = &state;
2281 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2282 if (err < 0)
2283 return err;
2284 if (write)
2285 set_numabalancing_state(state);
2286 return err;
2287 }
2288 #endif
2289 #endif
2290
2291 #ifdef CONFIG_SCHEDSTATS
2292
2293 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2294 static bool __initdata __sched_schedstats = false;
2295
2296 static void set_schedstats(bool enabled)
2297 {
2298 if (enabled)
2299 static_branch_enable(&sched_schedstats);
2300 else
2301 static_branch_disable(&sched_schedstats);
2302 }
2303
2304 void force_schedstat_enabled(void)
2305 {
2306 if (!schedstat_enabled()) {
2307 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2308 static_branch_enable(&sched_schedstats);
2309 }
2310 }
2311
2312 static int __init setup_schedstats(char *str)
2313 {
2314 int ret = 0;
2315 if (!str)
2316 goto out;
2317
2318 /*
2319 * This code is called before jump labels have been set up, so we can't
2320 * change the static branch directly just yet. Instead set a temporary
2321 * variable so init_schedstats() can do it later.
2322 */
2323 if (!strcmp(str, "enable")) {
2324 __sched_schedstats = true;
2325 ret = 1;
2326 } else if (!strcmp(str, "disable")) {
2327 __sched_schedstats = false;
2328 ret = 1;
2329 }
2330 out:
2331 if (!ret)
2332 pr_warn("Unable to parse schedstats=\n");
2333
2334 return ret;
2335 }
2336 __setup("schedstats=", setup_schedstats);
2337
2338 static void __init init_schedstats(void)
2339 {
2340 set_schedstats(__sched_schedstats);
2341 }
2342
2343 #ifdef CONFIG_PROC_SYSCTL
2344 int sysctl_schedstats(struct ctl_table *table, int write,
2345 void __user *buffer, size_t *lenp, loff_t *ppos)
2346 {
2347 struct ctl_table t;
2348 int err;
2349 int state = static_branch_likely(&sched_schedstats);
2350
2351 if (write && !capable(CAP_SYS_ADMIN))
2352 return -EPERM;
2353
2354 t = *table;
2355 t.data = &state;
2356 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2357 if (err < 0)
2358 return err;
2359 if (write)
2360 set_schedstats(state);
2361 return err;
2362 }
2363 #endif /* CONFIG_PROC_SYSCTL */
2364 #else /* !CONFIG_SCHEDSTATS */
2365 static inline void init_schedstats(void) {}
2366 #endif /* CONFIG_SCHEDSTATS */
2367
2368 /*
2369 * fork()/clone()-time setup:
2370 */
2371 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2372 {
2373 unsigned long flags;
2374 int cpu = get_cpu();
2375
2376 __sched_fork(clone_flags, p);
2377 /*
2378 * We mark the process as NEW here. This guarantees that
2379 * nobody will actually run it, and a signal or other external
2380 * event cannot wake it up and insert it on the runqueue either.
2381 */
2382 p->state = TASK_NEW;
2383
2384 /*
2385 * Make sure we do not leak PI boosting priority to the child.
2386 */
2387 p->prio = current->normal_prio;
2388
2389 /*
2390 * Revert to default priority/policy on fork if requested.
2391 */
2392 if (unlikely(p->sched_reset_on_fork)) {
2393 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2394 p->policy = SCHED_NORMAL;
2395 p->static_prio = NICE_TO_PRIO(0);
2396 p->rt_priority = 0;
2397 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2398 p->static_prio = NICE_TO_PRIO(0);
2399
2400 p->prio = p->normal_prio = __normal_prio(p);
2401 set_load_weight(p);
2402
2403 /*
2404 * We don't need the reset flag anymore after the fork. It has
2405 * fulfilled its duty:
2406 */
2407 p->sched_reset_on_fork = 0;
2408 }
2409
2410 if (dl_prio(p->prio)) {
2411 put_cpu();
2412 return -EAGAIN;
2413 } else if (rt_prio(p->prio)) {
2414 p->sched_class = &rt_sched_class;
2415 } else {
2416 p->sched_class = &fair_sched_class;
2417 }
2418
2419 init_entity_runnable_average(&p->se);
2420
2421 /*
2422 * The child is not yet in the pid-hash so no cgroup attach races,
2423 * and the cgroup is pinned to this child due to cgroup_fork()
2424 * is ran before sched_fork().
2425 *
2426 * Silence PROVE_RCU.
2427 */
2428 raw_spin_lock_irqsave(&p->pi_lock, flags);
2429 /*
2430 * We're setting the cpu for the first time, we don't migrate,
2431 * so use __set_task_cpu().
2432 */
2433 __set_task_cpu(p, cpu);
2434 if (p->sched_class->task_fork)
2435 p->sched_class->task_fork(p);
2436 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2437
2438 #ifdef CONFIG_SCHED_INFO
2439 if (likely(sched_info_on()))
2440 memset(&p->sched_info, 0, sizeof(p->sched_info));
2441 #endif
2442 #if defined(CONFIG_SMP)
2443 p->on_cpu = 0;
2444 #endif
2445 init_task_preempt_count(p);
2446 #ifdef CONFIG_SMP
2447 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2448 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2449 #endif
2450
2451 put_cpu();
2452 return 0;
2453 }
2454
2455 unsigned long to_ratio(u64 period, u64 runtime)
2456 {
2457 if (runtime == RUNTIME_INF)
2458 return 1ULL << 20;
2459
2460 /*
2461 * Doing this here saves a lot of checks in all
2462 * the calling paths, and returning zero seems
2463 * safe for them anyway.
2464 */
2465 if (period == 0)
2466 return 0;
2467
2468 return div64_u64(runtime << 20, period);
2469 }
2470
2471 #ifdef CONFIG_SMP
2472 inline struct dl_bw *dl_bw_of(int i)
2473 {
2474 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2475 "sched RCU must be held");
2476 return &cpu_rq(i)->rd->dl_bw;
2477 }
2478
2479 static inline int dl_bw_cpus(int i)
2480 {
2481 struct root_domain *rd = cpu_rq(i)->rd;
2482 int cpus = 0;
2483
2484 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2485 "sched RCU must be held");
2486 for_each_cpu_and(i, rd->span, cpu_active_mask)
2487 cpus++;
2488
2489 return cpus;
2490 }
2491 #else
2492 inline struct dl_bw *dl_bw_of(int i)
2493 {
2494 return &cpu_rq(i)->dl.dl_bw;
2495 }
2496
2497 static inline int dl_bw_cpus(int i)
2498 {
2499 return 1;
2500 }
2501 #endif
2502
2503 /*
2504 * We must be sure that accepting a new task (or allowing changing the
2505 * parameters of an existing one) is consistent with the bandwidth
2506 * constraints. If yes, this function also accordingly updates the currently
2507 * allocated bandwidth to reflect the new situation.
2508 *
2509 * This function is called while holding p's rq->lock.
2510 *
2511 * XXX we should delay bw change until the task's 0-lag point, see
2512 * __setparam_dl().
2513 */
2514 static int dl_overflow(struct task_struct *p, int policy,
2515 const struct sched_attr *attr)
2516 {
2517
2518 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2519 u64 period = attr->sched_period ?: attr->sched_deadline;
2520 u64 runtime = attr->sched_runtime;
2521 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2522 int cpus, err = -1;
2523
2524 /* !deadline task may carry old deadline bandwidth */
2525 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2526 return 0;
2527
2528 /*
2529 * Either if a task, enters, leave, or stays -deadline but changes
2530 * its parameters, we may need to update accordingly the total
2531 * allocated bandwidth of the container.
2532 */
2533 raw_spin_lock(&dl_b->lock);
2534 cpus = dl_bw_cpus(task_cpu(p));
2535 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2536 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2537 __dl_add(dl_b, new_bw);
2538 err = 0;
2539 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2540 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2541 __dl_clear(dl_b, p->dl.dl_bw);
2542 __dl_add(dl_b, new_bw);
2543 err = 0;
2544 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2545 __dl_clear(dl_b, p->dl.dl_bw);
2546 err = 0;
2547 }
2548 raw_spin_unlock(&dl_b->lock);
2549
2550 return err;
2551 }
2552
2553 extern void init_dl_bw(struct dl_bw *dl_b);
2554
2555 /*
2556 * wake_up_new_task - wake up a newly created task for the first time.
2557 *
2558 * This function will do some initial scheduler statistics housekeeping
2559 * that must be done for every newly created context, then puts the task
2560 * on the runqueue and wakes it.
2561 */
2562 void wake_up_new_task(struct task_struct *p)
2563 {
2564 struct rq_flags rf;
2565 struct rq *rq;
2566
2567 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2568 p->state = TASK_RUNNING;
2569 #ifdef CONFIG_SMP
2570 /*
2571 * Fork balancing, do it here and not earlier because:
2572 * - cpus_allowed can change in the fork path
2573 * - any previously selected cpu might disappear through hotplug
2574 *
2575 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2576 * as we're not fully set-up yet.
2577 */
2578 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2579 #endif
2580 rq = __task_rq_lock(p, &rf);
2581 post_init_entity_util_avg(&p->se);
2582
2583 activate_task(rq, p, 0);
2584 p->on_rq = TASK_ON_RQ_QUEUED;
2585 trace_sched_wakeup_new(p);
2586 check_preempt_curr(rq, p, WF_FORK);
2587 #ifdef CONFIG_SMP
2588 if (p->sched_class->task_woken) {
2589 /*
2590 * Nothing relies on rq->lock after this, so its fine to
2591 * drop it.
2592 */
2593 lockdep_unpin_lock(&rq->lock, rf.cookie);
2594 p->sched_class->task_woken(rq, p);
2595 lockdep_repin_lock(&rq->lock, rf.cookie);
2596 }
2597 #endif
2598 task_rq_unlock(rq, p, &rf);
2599 }
2600
2601 #ifdef CONFIG_PREEMPT_NOTIFIERS
2602
2603 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2604
2605 void preempt_notifier_inc(void)
2606 {
2607 static_key_slow_inc(&preempt_notifier_key);
2608 }
2609 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2610
2611 void preempt_notifier_dec(void)
2612 {
2613 static_key_slow_dec(&preempt_notifier_key);
2614 }
2615 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2616
2617 /**
2618 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2619 * @notifier: notifier struct to register
2620 */
2621 void preempt_notifier_register(struct preempt_notifier *notifier)
2622 {
2623 if (!static_key_false(&preempt_notifier_key))
2624 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2625
2626 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2627 }
2628 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2629
2630 /**
2631 * preempt_notifier_unregister - no longer interested in preemption notifications
2632 * @notifier: notifier struct to unregister
2633 *
2634 * This is *not* safe to call from within a preemption notifier.
2635 */
2636 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2637 {
2638 hlist_del(&notifier->link);
2639 }
2640 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2641
2642 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2643 {
2644 struct preempt_notifier *notifier;
2645
2646 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2647 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2648 }
2649
2650 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2651 {
2652 if (static_key_false(&preempt_notifier_key))
2653 __fire_sched_in_preempt_notifiers(curr);
2654 }
2655
2656 static void
2657 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2658 struct task_struct *next)
2659 {
2660 struct preempt_notifier *notifier;
2661
2662 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2663 notifier->ops->sched_out(notifier, next);
2664 }
2665
2666 static __always_inline void
2667 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2668 struct task_struct *next)
2669 {
2670 if (static_key_false(&preempt_notifier_key))
2671 __fire_sched_out_preempt_notifiers(curr, next);
2672 }
2673
2674 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2675
2676 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2677 {
2678 }
2679
2680 static inline void
2681 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2682 struct task_struct *next)
2683 {
2684 }
2685
2686 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2687
2688 /**
2689 * prepare_task_switch - prepare to switch tasks
2690 * @rq: the runqueue preparing to switch
2691 * @prev: the current task that is being switched out
2692 * @next: the task we are going to switch to.
2693 *
2694 * This is called with the rq lock held and interrupts off. It must
2695 * be paired with a subsequent finish_task_switch after the context
2696 * switch.
2697 *
2698 * prepare_task_switch sets up locking and calls architecture specific
2699 * hooks.
2700 */
2701 static inline void
2702 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2703 struct task_struct *next)
2704 {
2705 sched_info_switch(rq, prev, next);
2706 perf_event_task_sched_out(prev, next);
2707 fire_sched_out_preempt_notifiers(prev, next);
2708 prepare_lock_switch(rq, next);
2709 prepare_arch_switch(next);
2710 }
2711
2712 /**
2713 * finish_task_switch - clean up after a task-switch
2714 * @prev: the thread we just switched away from.
2715 *
2716 * finish_task_switch must be called after the context switch, paired
2717 * with a prepare_task_switch call before the context switch.
2718 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2719 * and do any other architecture-specific cleanup actions.
2720 *
2721 * Note that we may have delayed dropping an mm in context_switch(). If
2722 * so, we finish that here outside of the runqueue lock. (Doing it
2723 * with the lock held can cause deadlocks; see schedule() for
2724 * details.)
2725 *
2726 * The context switch have flipped the stack from under us and restored the
2727 * local variables which were saved when this task called schedule() in the
2728 * past. prev == current is still correct but we need to recalculate this_rq
2729 * because prev may have moved to another CPU.
2730 */
2731 static struct rq *finish_task_switch(struct task_struct *prev)
2732 __releases(rq->lock)
2733 {
2734 struct rq *rq = this_rq();
2735 struct mm_struct *mm = rq->prev_mm;
2736 long prev_state;
2737
2738 /*
2739 * The previous task will have left us with a preempt_count of 2
2740 * because it left us after:
2741 *
2742 * schedule()
2743 * preempt_disable(); // 1
2744 * __schedule()
2745 * raw_spin_lock_irq(&rq->lock) // 2
2746 *
2747 * Also, see FORK_PREEMPT_COUNT.
2748 */
2749 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2750 "corrupted preempt_count: %s/%d/0x%x\n",
2751 current->comm, current->pid, preempt_count()))
2752 preempt_count_set(FORK_PREEMPT_COUNT);
2753
2754 rq->prev_mm = NULL;
2755
2756 /*
2757 * A task struct has one reference for the use as "current".
2758 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2759 * schedule one last time. The schedule call will never return, and
2760 * the scheduled task must drop that reference.
2761 *
2762 * We must observe prev->state before clearing prev->on_cpu (in
2763 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2764 * running on another CPU and we could rave with its RUNNING -> DEAD
2765 * transition, resulting in a double drop.
2766 */
2767 prev_state = prev->state;
2768 vtime_task_switch(prev);
2769 perf_event_task_sched_in(prev, current);
2770 finish_lock_switch(rq, prev);
2771 finish_arch_post_lock_switch();
2772
2773 fire_sched_in_preempt_notifiers(current);
2774 if (mm)
2775 mmdrop(mm);
2776 if (unlikely(prev_state == TASK_DEAD)) {
2777 if (prev->sched_class->task_dead)
2778 prev->sched_class->task_dead(prev);
2779
2780 /*
2781 * Remove function-return probe instances associated with this
2782 * task and put them back on the free list.
2783 */
2784 kprobe_flush_task(prev);
2785
2786 /* Task is done with its stack. */
2787 put_task_stack(prev);
2788
2789 put_task_struct(prev);
2790 }
2791
2792 tick_nohz_task_switch();
2793 return rq;
2794 }
2795
2796 #ifdef CONFIG_SMP
2797
2798 /* rq->lock is NOT held, but preemption is disabled */
2799 static void __balance_callback(struct rq *rq)
2800 {
2801 struct callback_head *head, *next;
2802 void (*func)(struct rq *rq);
2803 unsigned long flags;
2804
2805 raw_spin_lock_irqsave(&rq->lock, flags);
2806 head = rq->balance_callback;
2807 rq->balance_callback = NULL;
2808 while (head) {
2809 func = (void (*)(struct rq *))head->func;
2810 next = head->next;
2811 head->next = NULL;
2812 head = next;
2813
2814 func(rq);
2815 }
2816 raw_spin_unlock_irqrestore(&rq->lock, flags);
2817 }
2818
2819 static inline void balance_callback(struct rq *rq)
2820 {
2821 if (unlikely(rq->balance_callback))
2822 __balance_callback(rq);
2823 }
2824
2825 #else
2826
2827 static inline void balance_callback(struct rq *rq)
2828 {
2829 }
2830
2831 #endif
2832
2833 /**
2834 * schedule_tail - first thing a freshly forked thread must call.
2835 * @prev: the thread we just switched away from.
2836 */
2837 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2838 __releases(rq->lock)
2839 {
2840 struct rq *rq;
2841
2842 /*
2843 * New tasks start with FORK_PREEMPT_COUNT, see there and
2844 * finish_task_switch() for details.
2845 *
2846 * finish_task_switch() will drop rq->lock() and lower preempt_count
2847 * and the preempt_enable() will end up enabling preemption (on
2848 * PREEMPT_COUNT kernels).
2849 */
2850
2851 rq = finish_task_switch(prev);
2852 balance_callback(rq);
2853 preempt_enable();
2854
2855 if (current->set_child_tid)
2856 put_user(task_pid_vnr(current), current->set_child_tid);
2857 }
2858
2859 /*
2860 * context_switch - switch to the new MM and the new thread's register state.
2861 */
2862 static __always_inline struct rq *
2863 context_switch(struct rq *rq, struct task_struct *prev,
2864 struct task_struct *next, struct pin_cookie cookie)
2865 {
2866 struct mm_struct *mm, *oldmm;
2867
2868 prepare_task_switch(rq, prev, next);
2869
2870 mm = next->mm;
2871 oldmm = prev->active_mm;
2872 /*
2873 * For paravirt, this is coupled with an exit in switch_to to
2874 * combine the page table reload and the switch backend into
2875 * one hypercall.
2876 */
2877 arch_start_context_switch(prev);
2878
2879 if (!mm) {
2880 next->active_mm = oldmm;
2881 atomic_inc(&oldmm->mm_count);
2882 enter_lazy_tlb(oldmm, next);
2883 } else
2884 switch_mm_irqs_off(oldmm, mm, next);
2885
2886 if (!prev->mm) {
2887 prev->active_mm = NULL;
2888 rq->prev_mm = oldmm;
2889 }
2890 /*
2891 * Since the runqueue lock will be released by the next
2892 * task (which is an invalid locking op but in the case
2893 * of the scheduler it's an obvious special-case), so we
2894 * do an early lockdep release here:
2895 */
2896 lockdep_unpin_lock(&rq->lock, cookie);
2897 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2898
2899 /* Here we just switch the register state and the stack. */
2900 switch_to(prev, next, prev);
2901 barrier();
2902
2903 return finish_task_switch(prev);
2904 }
2905
2906 /*
2907 * nr_running and nr_context_switches:
2908 *
2909 * externally visible scheduler statistics: current number of runnable
2910 * threads, total number of context switches performed since bootup.
2911 */
2912 unsigned long nr_running(void)
2913 {
2914 unsigned long i, sum = 0;
2915
2916 for_each_online_cpu(i)
2917 sum += cpu_rq(i)->nr_running;
2918
2919 return sum;
2920 }
2921
2922 /*
2923 * Check if only the current task is running on the cpu.
2924 *
2925 * Caution: this function does not check that the caller has disabled
2926 * preemption, thus the result might have a time-of-check-to-time-of-use
2927 * race. The caller is responsible to use it correctly, for example:
2928 *
2929 * - from a non-preemptable section (of course)
2930 *
2931 * - from a thread that is bound to a single CPU
2932 *
2933 * - in a loop with very short iterations (e.g. a polling loop)
2934 */
2935 bool single_task_running(void)
2936 {
2937 return raw_rq()->nr_running == 1;
2938 }
2939 EXPORT_SYMBOL(single_task_running);
2940
2941 unsigned long long nr_context_switches(void)
2942 {
2943 int i;
2944 unsigned long long sum = 0;
2945
2946 for_each_possible_cpu(i)
2947 sum += cpu_rq(i)->nr_switches;
2948
2949 return sum;
2950 }
2951
2952 unsigned long nr_iowait(void)
2953 {
2954 unsigned long i, sum = 0;
2955
2956 for_each_possible_cpu(i)
2957 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2958
2959 return sum;
2960 }
2961
2962 unsigned long nr_iowait_cpu(int cpu)
2963 {
2964 struct rq *this = cpu_rq(cpu);
2965 return atomic_read(&this->nr_iowait);
2966 }
2967
2968 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2969 {
2970 struct rq *rq = this_rq();
2971 *nr_waiters = atomic_read(&rq->nr_iowait);
2972 *load = rq->load.weight;
2973 }
2974
2975 #ifdef CONFIG_SMP
2976
2977 /*
2978 * sched_exec - execve() is a valuable balancing opportunity, because at
2979 * this point the task has the smallest effective memory and cache footprint.
2980 */
2981 void sched_exec(void)
2982 {
2983 struct task_struct *p = current;
2984 unsigned long flags;
2985 int dest_cpu;
2986
2987 raw_spin_lock_irqsave(&p->pi_lock, flags);
2988 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2989 if (dest_cpu == smp_processor_id())
2990 goto unlock;
2991
2992 if (likely(cpu_active(dest_cpu))) {
2993 struct migration_arg arg = { p, dest_cpu };
2994
2995 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2996 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2997 return;
2998 }
2999 unlock:
3000 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3001 }
3002
3003 #endif
3004
3005 DEFINE_PER_CPU(struct kernel_stat, kstat);
3006 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3007
3008 EXPORT_PER_CPU_SYMBOL(kstat);
3009 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3010
3011 /*
3012 * The function fair_sched_class.update_curr accesses the struct curr
3013 * and its field curr->exec_start; when called from task_sched_runtime(),
3014 * we observe a high rate of cache misses in practice.
3015 * Prefetching this data results in improved performance.
3016 */
3017 static inline void prefetch_curr_exec_start(struct task_struct *p)
3018 {
3019 #ifdef CONFIG_FAIR_GROUP_SCHED
3020 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3021 #else
3022 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3023 #endif
3024 prefetch(curr);
3025 prefetch(&curr->exec_start);
3026 }
3027
3028 /*
3029 * Return accounted runtime for the task.
3030 * In case the task is currently running, return the runtime plus current's
3031 * pending runtime that have not been accounted yet.
3032 */
3033 unsigned long long task_sched_runtime(struct task_struct *p)
3034 {
3035 struct rq_flags rf;
3036 struct rq *rq;
3037 u64 ns;
3038
3039 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3040 /*
3041 * 64-bit doesn't need locks to atomically read a 64bit value.
3042 * So we have a optimization chance when the task's delta_exec is 0.
3043 * Reading ->on_cpu is racy, but this is ok.
3044 *
3045 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3046 * If we race with it entering cpu, unaccounted time is 0. This is
3047 * indistinguishable from the read occurring a few cycles earlier.
3048 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3049 * been accounted, so we're correct here as well.
3050 */
3051 if (!p->on_cpu || !task_on_rq_queued(p))
3052 return p->se.sum_exec_runtime;
3053 #endif
3054
3055 rq = task_rq_lock(p, &rf);
3056 /*
3057 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3058 * project cycles that may never be accounted to this
3059 * thread, breaking clock_gettime().
3060 */
3061 if (task_current(rq, p) && task_on_rq_queued(p)) {
3062 prefetch_curr_exec_start(p);
3063 update_rq_clock(rq);
3064 p->sched_class->update_curr(rq);
3065 }
3066 ns = p->se.sum_exec_runtime;
3067 task_rq_unlock(rq, p, &rf);
3068
3069 return ns;
3070 }
3071
3072 /*
3073 * This function gets called by the timer code, with HZ frequency.
3074 * We call it with interrupts disabled.
3075 */
3076 void scheduler_tick(void)
3077 {
3078 int cpu = smp_processor_id();
3079 struct rq *rq = cpu_rq(cpu);
3080 struct task_struct *curr = rq->curr;
3081
3082 sched_clock_tick();
3083
3084 raw_spin_lock(&rq->lock);
3085 update_rq_clock(rq);
3086 curr->sched_class->task_tick(rq, curr, 0);
3087 cpu_load_update_active(rq);
3088 calc_global_load_tick(rq);
3089 raw_spin_unlock(&rq->lock);
3090
3091 perf_event_task_tick();
3092
3093 #ifdef CONFIG_SMP
3094 rq->idle_balance = idle_cpu(cpu);
3095 trigger_load_balance(rq);
3096 #endif
3097 rq_last_tick_reset(rq);
3098 }
3099
3100 #ifdef CONFIG_NO_HZ_FULL
3101 /**
3102 * scheduler_tick_max_deferment
3103 *
3104 * Keep at least one tick per second when a single
3105 * active task is running because the scheduler doesn't
3106 * yet completely support full dynticks environment.
3107 *
3108 * This makes sure that uptime, CFS vruntime, load
3109 * balancing, etc... continue to move forward, even
3110 * with a very low granularity.
3111 *
3112 * Return: Maximum deferment in nanoseconds.
3113 */
3114 u64 scheduler_tick_max_deferment(void)
3115 {
3116 struct rq *rq = this_rq();
3117 unsigned long next, now = READ_ONCE(jiffies);
3118
3119 next = rq->last_sched_tick + HZ;
3120
3121 if (time_before_eq(next, now))
3122 return 0;
3123
3124 return jiffies_to_nsecs(next - now);
3125 }
3126 #endif
3127
3128 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3129 defined(CONFIG_PREEMPT_TRACER))
3130 /*
3131 * If the value passed in is equal to the current preempt count
3132 * then we just disabled preemption. Start timing the latency.
3133 */
3134 static inline void preempt_latency_start(int val)
3135 {
3136 if (preempt_count() == val) {
3137 unsigned long ip = get_lock_parent_ip();
3138 #ifdef CONFIG_DEBUG_PREEMPT
3139 current->preempt_disable_ip = ip;
3140 #endif
3141 trace_preempt_off(CALLER_ADDR0, ip);
3142 }
3143 }
3144
3145 void preempt_count_add(int val)
3146 {
3147 #ifdef CONFIG_DEBUG_PREEMPT
3148 /*
3149 * Underflow?
3150 */
3151 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3152 return;
3153 #endif
3154 __preempt_count_add(val);
3155 #ifdef CONFIG_DEBUG_PREEMPT
3156 /*
3157 * Spinlock count overflowing soon?
3158 */
3159 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3160 PREEMPT_MASK - 10);
3161 #endif
3162 preempt_latency_start(val);
3163 }
3164 EXPORT_SYMBOL(preempt_count_add);
3165 NOKPROBE_SYMBOL(preempt_count_add);
3166
3167 /*
3168 * If the value passed in equals to the current preempt count
3169 * then we just enabled preemption. Stop timing the latency.
3170 */
3171 static inline void preempt_latency_stop(int val)
3172 {
3173 if (preempt_count() == val)
3174 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3175 }
3176
3177 void preempt_count_sub(int val)
3178 {
3179 #ifdef CONFIG_DEBUG_PREEMPT
3180 /*
3181 * Underflow?
3182 */
3183 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3184 return;
3185 /*
3186 * Is the spinlock portion underflowing?
3187 */
3188 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3189 !(preempt_count() & PREEMPT_MASK)))
3190 return;
3191 #endif
3192
3193 preempt_latency_stop(val);
3194 __preempt_count_sub(val);
3195 }
3196 EXPORT_SYMBOL(preempt_count_sub);
3197 NOKPROBE_SYMBOL(preempt_count_sub);
3198
3199 #else
3200 static inline void preempt_latency_start(int val) { }
3201 static inline void preempt_latency_stop(int val) { }
3202 #endif
3203
3204 /*
3205 * Print scheduling while atomic bug:
3206 */
3207 static noinline void __schedule_bug(struct task_struct *prev)
3208 {
3209 /* Save this before calling printk(), since that will clobber it */
3210 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3211
3212 if (oops_in_progress)
3213 return;
3214
3215 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3216 prev->comm, prev->pid, preempt_count());
3217
3218 debug_show_held_locks(prev);
3219 print_modules();
3220 if (irqs_disabled())
3221 print_irqtrace_events(prev);
3222 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3223 && in_atomic_preempt_off()) {
3224 pr_err("Preemption disabled at:");
3225 print_ip_sym(preempt_disable_ip);
3226 pr_cont("\n");
3227 }
3228 if (panic_on_warn)
3229 panic("scheduling while atomic\n");
3230
3231 dump_stack();
3232 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3233 }
3234
3235 /*
3236 * Various schedule()-time debugging checks and statistics:
3237 */
3238 static inline void schedule_debug(struct task_struct *prev)
3239 {
3240 #ifdef CONFIG_SCHED_STACK_END_CHECK
3241 if (task_stack_end_corrupted(prev))
3242 panic("corrupted stack end detected inside scheduler\n");
3243 #endif
3244
3245 if (unlikely(in_atomic_preempt_off())) {
3246 __schedule_bug(prev);
3247 preempt_count_set(PREEMPT_DISABLED);
3248 }
3249 rcu_sleep_check();
3250
3251 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3252
3253 schedstat_inc(this_rq()->sched_count);
3254 }
3255
3256 /*
3257 * Pick up the highest-prio task:
3258 */
3259 static inline struct task_struct *
3260 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3261 {
3262 const struct sched_class *class = &fair_sched_class;
3263 struct task_struct *p;
3264
3265 /*
3266 * Optimization: we know that if all tasks are in
3267 * the fair class we can call that function directly:
3268 */
3269 if (likely(prev->sched_class == class &&
3270 rq->nr_running == rq->cfs.h_nr_running)) {
3271 p = fair_sched_class.pick_next_task(rq, prev, cookie);
3272 if (unlikely(p == RETRY_TASK))
3273 goto again;
3274
3275 /* assumes fair_sched_class->next == idle_sched_class */
3276 if (unlikely(!p))
3277 p = idle_sched_class.pick_next_task(rq, prev, cookie);
3278
3279 return p;
3280 }
3281
3282 again:
3283 for_each_class(class) {
3284 p = class->pick_next_task(rq, prev, cookie);
3285 if (p) {
3286 if (unlikely(p == RETRY_TASK))
3287 goto again;
3288 return p;
3289 }
3290 }
3291
3292 BUG(); /* the idle class will always have a runnable task */
3293 }
3294
3295 /*
3296 * __schedule() is the main scheduler function.
3297 *
3298 * The main means of driving the scheduler and thus entering this function are:
3299 *
3300 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3301 *
3302 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3303 * paths. For example, see arch/x86/entry_64.S.
3304 *
3305 * To drive preemption between tasks, the scheduler sets the flag in timer
3306 * interrupt handler scheduler_tick().
3307 *
3308 * 3. Wakeups don't really cause entry into schedule(). They add a
3309 * task to the run-queue and that's it.
3310 *
3311 * Now, if the new task added to the run-queue preempts the current
3312 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3313 * called on the nearest possible occasion:
3314 *
3315 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3316 *
3317 * - in syscall or exception context, at the next outmost
3318 * preempt_enable(). (this might be as soon as the wake_up()'s
3319 * spin_unlock()!)
3320 *
3321 * - in IRQ context, return from interrupt-handler to
3322 * preemptible context
3323 *
3324 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3325 * then at the next:
3326 *
3327 * - cond_resched() call
3328 * - explicit schedule() call
3329 * - return from syscall or exception to user-space
3330 * - return from interrupt-handler to user-space
3331 *
3332 * WARNING: must be called with preemption disabled!
3333 */
3334 static void __sched notrace __schedule(bool preempt)
3335 {
3336 struct task_struct *prev, *next;
3337 unsigned long *switch_count;
3338 struct pin_cookie cookie;
3339 struct rq *rq;
3340 int cpu;
3341
3342 cpu = smp_processor_id();
3343 rq = cpu_rq(cpu);
3344 prev = rq->curr;
3345
3346 schedule_debug(prev);
3347
3348 if (sched_feat(HRTICK))
3349 hrtick_clear(rq);
3350
3351 local_irq_disable();
3352 rcu_note_context_switch();
3353
3354 /*
3355 * Make sure that signal_pending_state()->signal_pending() below
3356 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3357 * done by the caller to avoid the race with signal_wake_up().
3358 */
3359 smp_mb__before_spinlock();
3360 raw_spin_lock(&rq->lock);
3361 cookie = lockdep_pin_lock(&rq->lock);
3362
3363 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3364
3365 switch_count = &prev->nivcsw;
3366 if (!preempt && prev->state) {
3367 if (unlikely(signal_pending_state(prev->state, prev))) {
3368 prev->state = TASK_RUNNING;
3369 } else {
3370 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3371 prev->on_rq = 0;
3372
3373 /*
3374 * If a worker went to sleep, notify and ask workqueue
3375 * whether it wants to wake up a task to maintain
3376 * concurrency.
3377 */
3378 if (prev->flags & PF_WQ_WORKER) {
3379 struct task_struct *to_wakeup;
3380
3381 to_wakeup = wq_worker_sleeping(prev);
3382 if (to_wakeup)
3383 try_to_wake_up_local(to_wakeup, cookie);
3384 }
3385 }
3386 switch_count = &prev->nvcsw;
3387 }
3388
3389 if (task_on_rq_queued(prev))
3390 update_rq_clock(rq);
3391
3392 next = pick_next_task(rq, prev, cookie);
3393 clear_tsk_need_resched(prev);
3394 clear_preempt_need_resched();
3395 rq->clock_skip_update = 0;
3396
3397 if (likely(prev != next)) {
3398 rq->nr_switches++;
3399 rq->curr = next;
3400 ++*switch_count;
3401
3402 trace_sched_switch(preempt, prev, next);
3403 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3404 } else {
3405 lockdep_unpin_lock(&rq->lock, cookie);
3406 raw_spin_unlock_irq(&rq->lock);
3407 }
3408
3409 balance_callback(rq);
3410 }
3411
3412 void __noreturn do_task_dead(void)
3413 {
3414 /*
3415 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3416 * when the following two conditions become true.
3417 * - There is race condition of mmap_sem (It is acquired by
3418 * exit_mm()), and
3419 * - SMI occurs before setting TASK_RUNINNG.
3420 * (or hypervisor of virtual machine switches to other guest)
3421 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3422 *
3423 * To avoid it, we have to wait for releasing tsk->pi_lock which
3424 * is held by try_to_wake_up()
3425 */
3426 smp_mb();
3427 raw_spin_unlock_wait(&current->pi_lock);
3428
3429 /* causes final put_task_struct in finish_task_switch(). */
3430 __set_current_state(TASK_DEAD);
3431 current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
3432 __schedule(false);
3433 BUG();
3434 /* Avoid "noreturn function does return". */
3435 for (;;)
3436 cpu_relax(); /* For when BUG is null */
3437 }
3438
3439 static inline void sched_submit_work(struct task_struct *tsk)
3440 {
3441 if (!tsk->state || tsk_is_pi_blocked(tsk))
3442 return;
3443 /*
3444 * If we are going to sleep and we have plugged IO queued,
3445 * make sure to submit it to avoid deadlocks.
3446 */
3447 if (blk_needs_flush_plug(tsk))
3448 blk_schedule_flush_plug(tsk);
3449 }
3450
3451 asmlinkage __visible void __sched schedule(void)
3452 {
3453 struct task_struct *tsk = current;
3454
3455 sched_submit_work(tsk);
3456 do {
3457 preempt_disable();
3458 __schedule(false);
3459 sched_preempt_enable_no_resched();
3460 } while (need_resched());
3461 }
3462 EXPORT_SYMBOL(schedule);
3463
3464 #ifdef CONFIG_CONTEXT_TRACKING
3465 asmlinkage __visible void __sched schedule_user(void)
3466 {
3467 /*
3468 * If we come here after a random call to set_need_resched(),
3469 * or we have been woken up remotely but the IPI has not yet arrived,
3470 * we haven't yet exited the RCU idle mode. Do it here manually until
3471 * we find a better solution.
3472 *
3473 * NB: There are buggy callers of this function. Ideally we
3474 * should warn if prev_state != CONTEXT_USER, but that will trigger
3475 * too frequently to make sense yet.
3476 */
3477 enum ctx_state prev_state = exception_enter();
3478 schedule();
3479 exception_exit(prev_state);
3480 }
3481 #endif
3482
3483 /**
3484 * schedule_preempt_disabled - called with preemption disabled
3485 *
3486 * Returns with preemption disabled. Note: preempt_count must be 1
3487 */
3488 void __sched schedule_preempt_disabled(void)
3489 {
3490 sched_preempt_enable_no_resched();
3491 schedule();
3492 preempt_disable();
3493 }
3494
3495 static void __sched notrace preempt_schedule_common(void)
3496 {
3497 do {
3498 /*
3499 * Because the function tracer can trace preempt_count_sub()
3500 * and it also uses preempt_enable/disable_notrace(), if
3501 * NEED_RESCHED is set, the preempt_enable_notrace() called
3502 * by the function tracer will call this function again and
3503 * cause infinite recursion.
3504 *
3505 * Preemption must be disabled here before the function
3506 * tracer can trace. Break up preempt_disable() into two
3507 * calls. One to disable preemption without fear of being
3508 * traced. The other to still record the preemption latency,
3509 * which can also be traced by the function tracer.
3510 */
3511 preempt_disable_notrace();
3512 preempt_latency_start(1);
3513 __schedule(true);
3514 preempt_latency_stop(1);
3515 preempt_enable_no_resched_notrace();
3516
3517 /*
3518 * Check again in case we missed a preemption opportunity
3519 * between schedule and now.
3520 */
3521 } while (need_resched());
3522 }
3523
3524 #ifdef CONFIG_PREEMPT
3525 /*
3526 * this is the entry point to schedule() from in-kernel preemption
3527 * off of preempt_enable. Kernel preemptions off return from interrupt
3528 * occur there and call schedule directly.
3529 */
3530 asmlinkage __visible void __sched notrace preempt_schedule(void)
3531 {
3532 /*
3533 * If there is a non-zero preempt_count or interrupts are disabled,
3534 * we do not want to preempt the current task. Just return..
3535 */
3536 if (likely(!preemptible()))
3537 return;
3538
3539 preempt_schedule_common();
3540 }
3541 NOKPROBE_SYMBOL(preempt_schedule);
3542 EXPORT_SYMBOL(preempt_schedule);
3543
3544 /**
3545 * preempt_schedule_notrace - preempt_schedule called by tracing
3546 *
3547 * The tracing infrastructure uses preempt_enable_notrace to prevent
3548 * recursion and tracing preempt enabling caused by the tracing
3549 * infrastructure itself. But as tracing can happen in areas coming
3550 * from userspace or just about to enter userspace, a preempt enable
3551 * can occur before user_exit() is called. This will cause the scheduler
3552 * to be called when the system is still in usermode.
3553 *
3554 * To prevent this, the preempt_enable_notrace will use this function
3555 * instead of preempt_schedule() to exit user context if needed before
3556 * calling the scheduler.
3557 */
3558 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3559 {
3560 enum ctx_state prev_ctx;
3561
3562 if (likely(!preemptible()))
3563 return;
3564
3565 do {
3566 /*
3567 * Because the function tracer can trace preempt_count_sub()
3568 * and it also uses preempt_enable/disable_notrace(), if
3569 * NEED_RESCHED is set, the preempt_enable_notrace() called
3570 * by the function tracer will call this function again and
3571 * cause infinite recursion.
3572 *
3573 * Preemption must be disabled here before the function
3574 * tracer can trace. Break up preempt_disable() into two
3575 * calls. One to disable preemption without fear of being
3576 * traced. The other to still record the preemption latency,
3577 * which can also be traced by the function tracer.
3578 */
3579 preempt_disable_notrace();
3580 preempt_latency_start(1);
3581 /*
3582 * Needs preempt disabled in case user_exit() is traced
3583 * and the tracer calls preempt_enable_notrace() causing
3584 * an infinite recursion.
3585 */
3586 prev_ctx = exception_enter();
3587 __schedule(true);
3588 exception_exit(prev_ctx);
3589
3590 preempt_latency_stop(1);
3591 preempt_enable_no_resched_notrace();
3592 } while (need_resched());
3593 }
3594 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3595
3596 #endif /* CONFIG_PREEMPT */
3597
3598 /*
3599 * this is the entry point to schedule() from kernel preemption
3600 * off of irq context.
3601 * Note, that this is called and return with irqs disabled. This will
3602 * protect us against recursive calling from irq.
3603 */
3604 asmlinkage __visible void __sched preempt_schedule_irq(void)
3605 {
3606 enum ctx_state prev_state;
3607
3608 /* Catch callers which need to be fixed */
3609 BUG_ON(preempt_count() || !irqs_disabled());
3610
3611 prev_state = exception_enter();
3612
3613 do {
3614 preempt_disable();
3615 local_irq_enable();
3616 __schedule(true);
3617 local_irq_disable();
3618 sched_preempt_enable_no_resched();
3619 } while (need_resched());
3620
3621 exception_exit(prev_state);
3622 }
3623
3624 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3625 void *key)
3626 {
3627 return try_to_wake_up(curr->private, mode, wake_flags);
3628 }
3629 EXPORT_SYMBOL(default_wake_function);
3630
3631 #ifdef CONFIG_RT_MUTEXES
3632
3633 /*
3634 * rt_mutex_setprio - set the current priority of a task
3635 * @p: task
3636 * @prio: prio value (kernel-internal form)
3637 *
3638 * This function changes the 'effective' priority of a task. It does
3639 * not touch ->normal_prio like __setscheduler().
3640 *
3641 * Used by the rt_mutex code to implement priority inheritance
3642 * logic. Call site only calls if the priority of the task changed.
3643 */
3644 void rt_mutex_setprio(struct task_struct *p, int prio)
3645 {
3646 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3647 const struct sched_class *prev_class;
3648 struct rq_flags rf;
3649 struct rq *rq;
3650
3651 BUG_ON(prio > MAX_PRIO);
3652
3653 rq = __task_rq_lock(p, &rf);
3654
3655 /*
3656 * Idle task boosting is a nono in general. There is one
3657 * exception, when PREEMPT_RT and NOHZ is active:
3658 *
3659 * The idle task calls get_next_timer_interrupt() and holds
3660 * the timer wheel base->lock on the CPU and another CPU wants
3661 * to access the timer (probably to cancel it). We can safely
3662 * ignore the boosting request, as the idle CPU runs this code
3663 * with interrupts disabled and will complete the lock
3664 * protected section without being interrupted. So there is no
3665 * real need to boost.
3666 */
3667 if (unlikely(p == rq->idle)) {
3668 WARN_ON(p != rq->curr);
3669 WARN_ON(p->pi_blocked_on);
3670 goto out_unlock;
3671 }
3672
3673 trace_sched_pi_setprio(p, prio);
3674 oldprio = p->prio;
3675
3676 if (oldprio == prio)
3677 queue_flag &= ~DEQUEUE_MOVE;
3678
3679 prev_class = p->sched_class;
3680 queued = task_on_rq_queued(p);
3681 running = task_current(rq, p);
3682 if (queued)
3683 dequeue_task(rq, p, queue_flag);
3684 if (running)
3685 put_prev_task(rq, p);
3686
3687 /*
3688 * Boosting condition are:
3689 * 1. -rt task is running and holds mutex A
3690 * --> -dl task blocks on mutex A
3691 *
3692 * 2. -dl task is running and holds mutex A
3693 * --> -dl task blocks on mutex A and could preempt the
3694 * running task
3695 */
3696 if (dl_prio(prio)) {
3697 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3698 if (!dl_prio(p->normal_prio) ||
3699 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3700 p->dl.dl_boosted = 1;
3701 queue_flag |= ENQUEUE_REPLENISH;
3702 } else
3703 p->dl.dl_boosted = 0;
3704 p->sched_class = &dl_sched_class;
3705 } else if (rt_prio(prio)) {
3706 if (dl_prio(oldprio))
3707 p->dl.dl_boosted = 0;
3708 if (oldprio < prio)
3709 queue_flag |= ENQUEUE_HEAD;
3710 p->sched_class = &rt_sched_class;
3711 } else {
3712 if (dl_prio(oldprio))
3713 p->dl.dl_boosted = 0;
3714 if (rt_prio(oldprio))
3715 p->rt.timeout = 0;
3716 p->sched_class = &fair_sched_class;
3717 }
3718
3719 p->prio = prio;
3720
3721 if (queued)
3722 enqueue_task(rq, p, queue_flag);
3723 if (running)
3724 set_curr_task(rq, p);
3725
3726 check_class_changed(rq, p, prev_class, oldprio);
3727 out_unlock:
3728 preempt_disable(); /* avoid rq from going away on us */
3729 __task_rq_unlock(rq, &rf);
3730
3731 balance_callback(rq);
3732 preempt_enable();
3733 }
3734 #endif
3735
3736 void set_user_nice(struct task_struct *p, long nice)
3737 {
3738 bool queued, running;
3739 int old_prio, delta;
3740 struct rq_flags rf;
3741 struct rq *rq;
3742
3743 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3744 return;
3745 /*
3746 * We have to be careful, if called from sys_setpriority(),
3747 * the task might be in the middle of scheduling on another CPU.
3748 */
3749 rq = task_rq_lock(p, &rf);
3750 /*
3751 * The RT priorities are set via sched_setscheduler(), but we still
3752 * allow the 'normal' nice value to be set - but as expected
3753 * it wont have any effect on scheduling until the task is
3754 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3755 */
3756 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3757 p->static_prio = NICE_TO_PRIO(nice);
3758 goto out_unlock;
3759 }
3760 queued = task_on_rq_queued(p);
3761 running = task_current(rq, p);
3762 if (queued)
3763 dequeue_task(rq, p, DEQUEUE_SAVE);
3764 if (running)
3765 put_prev_task(rq, p);
3766
3767 p->static_prio = NICE_TO_PRIO(nice);
3768 set_load_weight(p);
3769 old_prio = p->prio;
3770 p->prio = effective_prio(p);
3771 delta = p->prio - old_prio;
3772
3773 if (queued) {
3774 enqueue_task(rq, p, ENQUEUE_RESTORE);
3775 /*
3776 * If the task increased its priority or is running and
3777 * lowered its priority, then reschedule its CPU:
3778 */
3779 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3780 resched_curr(rq);
3781 }
3782 if (running)
3783 set_curr_task(rq, p);
3784 out_unlock:
3785 task_rq_unlock(rq, p, &rf);
3786 }
3787 EXPORT_SYMBOL(set_user_nice);
3788
3789 /*
3790 * can_nice - check if a task can reduce its nice value
3791 * @p: task
3792 * @nice: nice value
3793 */
3794 int can_nice(const struct task_struct *p, const int nice)
3795 {
3796 /* convert nice value [19,-20] to rlimit style value [1,40] */
3797 int nice_rlim = nice_to_rlimit(nice);
3798
3799 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3800 capable(CAP_SYS_NICE));
3801 }
3802
3803 #ifdef __ARCH_WANT_SYS_NICE
3804
3805 /*
3806 * sys_nice - change the priority of the current process.
3807 * @increment: priority increment
3808 *
3809 * sys_setpriority is a more generic, but much slower function that
3810 * does similar things.
3811 */
3812 SYSCALL_DEFINE1(nice, int, increment)
3813 {
3814 long nice, retval;
3815
3816 /*
3817 * Setpriority might change our priority at the same moment.
3818 * We don't have to worry. Conceptually one call occurs first
3819 * and we have a single winner.
3820 */
3821 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3822 nice = task_nice(current) + increment;
3823
3824 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3825 if (increment < 0 && !can_nice(current, nice))
3826 return -EPERM;
3827
3828 retval = security_task_setnice(current, nice);
3829 if (retval)
3830 return retval;
3831
3832 set_user_nice(current, nice);
3833 return 0;
3834 }
3835
3836 #endif
3837
3838 /**
3839 * task_prio - return the priority value of a given task.
3840 * @p: the task in question.
3841 *
3842 * Return: The priority value as seen by users in /proc.
3843 * RT tasks are offset by -200. Normal tasks are centered
3844 * around 0, value goes from -16 to +15.
3845 */
3846 int task_prio(const struct task_struct *p)
3847 {
3848 return p->prio - MAX_RT_PRIO;
3849 }
3850
3851 /**
3852 * idle_cpu - is a given cpu idle currently?
3853 * @cpu: the processor in question.
3854 *
3855 * Return: 1 if the CPU is currently idle. 0 otherwise.
3856 */
3857 int idle_cpu(int cpu)
3858 {
3859 struct rq *rq = cpu_rq(cpu);
3860
3861 if (rq->curr != rq->idle)
3862 return 0;
3863
3864 if (rq->nr_running)
3865 return 0;
3866
3867 #ifdef CONFIG_SMP
3868 if (!llist_empty(&rq->wake_list))
3869 return 0;
3870 #endif
3871
3872 return 1;
3873 }
3874
3875 /**
3876 * idle_task - return the idle task for a given cpu.
3877 * @cpu: the processor in question.
3878 *
3879 * Return: The idle task for the cpu @cpu.
3880 */
3881 struct task_struct *idle_task(int cpu)
3882 {
3883 return cpu_rq(cpu)->idle;
3884 }
3885
3886 /**
3887 * find_process_by_pid - find a process with a matching PID value.
3888 * @pid: the pid in question.
3889 *
3890 * The task of @pid, if found. %NULL otherwise.
3891 */
3892 static struct task_struct *find_process_by_pid(pid_t pid)
3893 {
3894 return pid ? find_task_by_vpid(pid) : current;
3895 }
3896
3897 /*
3898 * This function initializes the sched_dl_entity of a newly becoming
3899 * SCHED_DEADLINE task.
3900 *
3901 * Only the static values are considered here, the actual runtime and the
3902 * absolute deadline will be properly calculated when the task is enqueued
3903 * for the first time with its new policy.
3904 */
3905 static void
3906 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3907 {
3908 struct sched_dl_entity *dl_se = &p->dl;
3909
3910 dl_se->dl_runtime = attr->sched_runtime;
3911 dl_se->dl_deadline = attr->sched_deadline;
3912 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3913 dl_se->flags = attr->sched_flags;
3914 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3915
3916 /*
3917 * Changing the parameters of a task is 'tricky' and we're not doing
3918 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3919 *
3920 * What we SHOULD do is delay the bandwidth release until the 0-lag
3921 * point. This would include retaining the task_struct until that time
3922 * and change dl_overflow() to not immediately decrement the current
3923 * amount.
3924 *
3925 * Instead we retain the current runtime/deadline and let the new
3926 * parameters take effect after the current reservation period lapses.
3927 * This is safe (albeit pessimistic) because the 0-lag point is always
3928 * before the current scheduling deadline.
3929 *
3930 * We can still have temporary overloads because we do not delay the
3931 * change in bandwidth until that time; so admission control is
3932 * not on the safe side. It does however guarantee tasks will never
3933 * consume more than promised.
3934 */
3935 }
3936
3937 /*
3938 * sched_setparam() passes in -1 for its policy, to let the functions
3939 * it calls know not to change it.
3940 */
3941 #define SETPARAM_POLICY -1
3942
3943 static void __setscheduler_params(struct task_struct *p,
3944 const struct sched_attr *attr)
3945 {
3946 int policy = attr->sched_policy;
3947
3948 if (policy == SETPARAM_POLICY)
3949 policy = p->policy;
3950
3951 p->policy = policy;
3952
3953 if (dl_policy(policy))
3954 __setparam_dl(p, attr);
3955 else if (fair_policy(policy))
3956 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3957
3958 /*
3959 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3960 * !rt_policy. Always setting this ensures that things like
3961 * getparam()/getattr() don't report silly values for !rt tasks.
3962 */
3963 p->rt_priority = attr->sched_priority;
3964 p->normal_prio = normal_prio(p);
3965 set_load_weight(p);
3966 }
3967
3968 /* Actually do priority change: must hold pi & rq lock. */
3969 static void __setscheduler(struct rq *rq, struct task_struct *p,
3970 const struct sched_attr *attr, bool keep_boost)
3971 {
3972 __setscheduler_params(p, attr);
3973
3974 /*
3975 * Keep a potential priority boosting if called from
3976 * sched_setscheduler().
3977 */
3978 if (keep_boost)
3979 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3980 else
3981 p->prio = normal_prio(p);
3982
3983 if (dl_prio(p->prio))
3984 p->sched_class = &dl_sched_class;
3985 else if (rt_prio(p->prio))
3986 p->sched_class = &rt_sched_class;
3987 else
3988 p->sched_class = &fair_sched_class;
3989 }
3990
3991 static void
3992 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3993 {
3994 struct sched_dl_entity *dl_se = &p->dl;
3995
3996 attr->sched_priority = p->rt_priority;
3997 attr->sched_runtime = dl_se->dl_runtime;
3998 attr->sched_deadline = dl_se->dl_deadline;
3999 attr->sched_period = dl_se->dl_period;
4000 attr->sched_flags = dl_se->flags;
4001 }
4002
4003 /*
4004 * This function validates the new parameters of a -deadline task.
4005 * We ask for the deadline not being zero, and greater or equal
4006 * than the runtime, as well as the period of being zero or
4007 * greater than deadline. Furthermore, we have to be sure that
4008 * user parameters are above the internal resolution of 1us (we
4009 * check sched_runtime only since it is always the smaller one) and
4010 * below 2^63 ns (we have to check both sched_deadline and
4011 * sched_period, as the latter can be zero).
4012 */
4013 static bool
4014 __checkparam_dl(const struct sched_attr *attr)
4015 {
4016 /* deadline != 0 */
4017 if (attr->sched_deadline == 0)
4018 return false;
4019
4020 /*
4021 * Since we truncate DL_SCALE bits, make sure we're at least
4022 * that big.
4023 */
4024 if (attr->sched_runtime < (1ULL << DL_SCALE))
4025 return false;
4026
4027 /*
4028 * Since we use the MSB for wrap-around and sign issues, make
4029 * sure it's not set (mind that period can be equal to zero).
4030 */
4031 if (attr->sched_deadline & (1ULL << 63) ||
4032 attr->sched_period & (1ULL << 63))
4033 return false;
4034
4035 /* runtime <= deadline <= period (if period != 0) */
4036 if ((attr->sched_period != 0 &&
4037 attr->sched_period < attr->sched_deadline) ||
4038 attr->sched_deadline < attr->sched_runtime)
4039 return false;
4040
4041 return true;
4042 }
4043
4044 /*
4045 * check the target process has a UID that matches the current process's
4046 */
4047 static bool check_same_owner(struct task_struct *p)
4048 {
4049 const struct cred *cred = current_cred(), *pcred;
4050 bool match;
4051
4052 rcu_read_lock();
4053 pcred = __task_cred(p);
4054 match = (uid_eq(cred->euid, pcred->euid) ||
4055 uid_eq(cred->euid, pcred->uid));
4056 rcu_read_unlock();
4057 return match;
4058 }
4059
4060 static bool dl_param_changed(struct task_struct *p,
4061 const struct sched_attr *attr)
4062 {
4063 struct sched_dl_entity *dl_se = &p->dl;
4064
4065 if (dl_se->dl_runtime != attr->sched_runtime ||
4066 dl_se->dl_deadline != attr->sched_deadline ||
4067 dl_se->dl_period != attr->sched_period ||
4068 dl_se->flags != attr->sched_flags)
4069 return true;
4070
4071 return false;
4072 }
4073
4074 static int __sched_setscheduler(struct task_struct *p,
4075 const struct sched_attr *attr,
4076 bool user, bool pi)
4077 {
4078 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4079 MAX_RT_PRIO - 1 - attr->sched_priority;
4080 int retval, oldprio, oldpolicy = -1, queued, running;
4081 int new_effective_prio, policy = attr->sched_policy;
4082 const struct sched_class *prev_class;
4083 struct rq_flags rf;
4084 int reset_on_fork;
4085 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4086 struct rq *rq;
4087
4088 /* may grab non-irq protected spin_locks */
4089 BUG_ON(in_interrupt());
4090 recheck:
4091 /* double check policy once rq lock held */
4092 if (policy < 0) {
4093 reset_on_fork = p->sched_reset_on_fork;
4094 policy = oldpolicy = p->policy;
4095 } else {
4096 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4097
4098 if (!valid_policy(policy))
4099 return -EINVAL;
4100 }
4101
4102 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4103 return -EINVAL;
4104
4105 /*
4106 * Valid priorities for SCHED_FIFO and SCHED_RR are
4107 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4108 * SCHED_BATCH and SCHED_IDLE is 0.
4109 */
4110 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4111 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4112 return -EINVAL;
4113 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4114 (rt_policy(policy) != (attr->sched_priority != 0)))
4115 return -EINVAL;
4116
4117 /*
4118 * Allow unprivileged RT tasks to decrease priority:
4119 */
4120 if (user && !capable(CAP_SYS_NICE)) {
4121 if (fair_policy(policy)) {
4122 if (attr->sched_nice < task_nice(p) &&
4123 !can_nice(p, attr->sched_nice))
4124 return -EPERM;
4125 }
4126
4127 if (rt_policy(policy)) {
4128 unsigned long rlim_rtprio =
4129 task_rlimit(p, RLIMIT_RTPRIO);
4130
4131 /* can't set/change the rt policy */
4132 if (policy != p->policy && !rlim_rtprio)
4133 return -EPERM;
4134
4135 /* can't increase priority */
4136 if (attr->sched_priority > p->rt_priority &&
4137 attr->sched_priority > rlim_rtprio)
4138 return -EPERM;
4139 }
4140
4141 /*
4142 * Can't set/change SCHED_DEADLINE policy at all for now
4143 * (safest behavior); in the future we would like to allow
4144 * unprivileged DL tasks to increase their relative deadline
4145 * or reduce their runtime (both ways reducing utilization)
4146 */
4147 if (dl_policy(policy))
4148 return -EPERM;
4149
4150 /*
4151 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4152 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4153 */
4154 if (idle_policy(p->policy) && !idle_policy(policy)) {
4155 if (!can_nice(p, task_nice(p)))
4156 return -EPERM;
4157 }
4158
4159 /* can't change other user's priorities */
4160 if (!check_same_owner(p))
4161 return -EPERM;
4162
4163 /* Normal users shall not reset the sched_reset_on_fork flag */
4164 if (p->sched_reset_on_fork && !reset_on_fork)
4165 return -EPERM;
4166 }
4167
4168 if (user) {
4169 retval = security_task_setscheduler(p);
4170 if (retval)
4171 return retval;
4172 }
4173
4174 /*
4175 * make sure no PI-waiters arrive (or leave) while we are
4176 * changing the priority of the task:
4177 *
4178 * To be able to change p->policy safely, the appropriate
4179 * runqueue lock must be held.
4180 */
4181 rq = task_rq_lock(p, &rf);
4182
4183 /*
4184 * Changing the policy of the stop threads its a very bad idea
4185 */
4186 if (p == rq->stop) {
4187 task_rq_unlock(rq, p, &rf);
4188 return -EINVAL;
4189 }
4190
4191 /*
4192 * If not changing anything there's no need to proceed further,
4193 * but store a possible modification of reset_on_fork.
4194 */
4195 if (unlikely(policy == p->policy)) {
4196 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4197 goto change;
4198 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4199 goto change;
4200 if (dl_policy(policy) && dl_param_changed(p, attr))
4201 goto change;
4202
4203 p->sched_reset_on_fork = reset_on_fork;
4204 task_rq_unlock(rq, p, &rf);
4205 return 0;
4206 }
4207 change:
4208
4209 if (user) {
4210 #ifdef CONFIG_RT_GROUP_SCHED
4211 /*
4212 * Do not allow realtime tasks into groups that have no runtime
4213 * assigned.
4214 */
4215 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4216 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4217 !task_group_is_autogroup(task_group(p))) {
4218 task_rq_unlock(rq, p, &rf);
4219 return -EPERM;
4220 }
4221 #endif
4222 #ifdef CONFIG_SMP
4223 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4224 cpumask_t *span = rq->rd->span;
4225
4226 /*
4227 * Don't allow tasks with an affinity mask smaller than
4228 * the entire root_domain to become SCHED_DEADLINE. We
4229 * will also fail if there's no bandwidth available.
4230 */
4231 if (!cpumask_subset(span, &p->cpus_allowed) ||
4232 rq->rd->dl_bw.bw == 0) {
4233 task_rq_unlock(rq, p, &rf);
4234 return -EPERM;
4235 }
4236 }
4237 #endif
4238 }
4239
4240 /* recheck policy now with rq lock held */
4241 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4242 policy = oldpolicy = -1;
4243 task_rq_unlock(rq, p, &rf);
4244 goto recheck;
4245 }
4246
4247 /*
4248 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4249 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4250 * is available.
4251 */
4252 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4253 task_rq_unlock(rq, p, &rf);
4254 return -EBUSY;
4255 }
4256
4257 p->sched_reset_on_fork = reset_on_fork;
4258 oldprio = p->prio;
4259
4260 if (pi) {
4261 /*
4262 * Take priority boosted tasks into account. If the new
4263 * effective priority is unchanged, we just store the new
4264 * normal parameters and do not touch the scheduler class and
4265 * the runqueue. This will be done when the task deboost
4266 * itself.
4267 */
4268 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4269 if (new_effective_prio == oldprio)
4270 queue_flags &= ~DEQUEUE_MOVE;
4271 }
4272
4273 queued = task_on_rq_queued(p);
4274 running = task_current(rq, p);
4275 if (queued)
4276 dequeue_task(rq, p, queue_flags);
4277 if (running)
4278 put_prev_task(rq, p);
4279
4280 prev_class = p->sched_class;
4281 __setscheduler(rq, p, attr, pi);
4282
4283 if (queued) {
4284 /*
4285 * We enqueue to tail when the priority of a task is
4286 * increased (user space view).
4287 */
4288 if (oldprio < p->prio)
4289 queue_flags |= ENQUEUE_HEAD;
4290
4291 enqueue_task(rq, p, queue_flags);
4292 }
4293 if (running)
4294 set_curr_task(rq, p);
4295
4296 check_class_changed(rq, p, prev_class, oldprio);
4297 preempt_disable(); /* avoid rq from going away on us */
4298 task_rq_unlock(rq, p, &rf);
4299
4300 if (pi)
4301 rt_mutex_adjust_pi(p);
4302
4303 /*
4304 * Run balance callbacks after we've adjusted the PI chain.
4305 */
4306 balance_callback(rq);
4307 preempt_enable();
4308
4309 return 0;
4310 }
4311
4312 static int _sched_setscheduler(struct task_struct *p, int policy,
4313 const struct sched_param *param, bool check)
4314 {
4315 struct sched_attr attr = {
4316 .sched_policy = policy,
4317 .sched_priority = param->sched_priority,
4318 .sched_nice = PRIO_TO_NICE(p->static_prio),
4319 };
4320
4321 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4322 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4323 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4324 policy &= ~SCHED_RESET_ON_FORK;
4325 attr.sched_policy = policy;
4326 }
4327
4328 return __sched_setscheduler(p, &attr, check, true);
4329 }
4330 /**
4331 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4332 * @p: the task in question.
4333 * @policy: new policy.
4334 * @param: structure containing the new RT priority.
4335 *
4336 * Return: 0 on success. An error code otherwise.
4337 *
4338 * NOTE that the task may be already dead.
4339 */
4340 int sched_setscheduler(struct task_struct *p, int policy,
4341 const struct sched_param *param)
4342 {
4343 return _sched_setscheduler(p, policy, param, true);
4344 }
4345 EXPORT_SYMBOL_GPL(sched_setscheduler);
4346
4347 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4348 {
4349 return __sched_setscheduler(p, attr, true, true);
4350 }
4351 EXPORT_SYMBOL_GPL(sched_setattr);
4352
4353 /**
4354 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4355 * @p: the task in question.
4356 * @policy: new policy.
4357 * @param: structure containing the new RT priority.
4358 *
4359 * Just like sched_setscheduler, only don't bother checking if the
4360 * current context has permission. For example, this is needed in
4361 * stop_machine(): we create temporary high priority worker threads,
4362 * but our caller might not have that capability.
4363 *
4364 * Return: 0 on success. An error code otherwise.
4365 */
4366 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4367 const struct sched_param *param)
4368 {
4369 return _sched_setscheduler(p, policy, param, false);
4370 }
4371 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4372
4373 static int
4374 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4375 {
4376 struct sched_param lparam;
4377 struct task_struct *p;
4378 int retval;
4379
4380 if (!param || pid < 0)
4381 return -EINVAL;
4382 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4383 return -EFAULT;
4384
4385 rcu_read_lock();
4386 retval = -ESRCH;
4387 p = find_process_by_pid(pid);
4388 if (p != NULL)
4389 retval = sched_setscheduler(p, policy, &lparam);
4390 rcu_read_unlock();
4391
4392 return retval;
4393 }
4394
4395 /*
4396 * Mimics kernel/events/core.c perf_copy_attr().
4397 */
4398 static int sched_copy_attr(struct sched_attr __user *uattr,
4399 struct sched_attr *attr)
4400 {
4401 u32 size;
4402 int ret;
4403
4404 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4405 return -EFAULT;
4406
4407 /*
4408 * zero the full structure, so that a short copy will be nice.
4409 */
4410 memset(attr, 0, sizeof(*attr));
4411
4412 ret = get_user(size, &uattr->size);
4413 if (ret)
4414 return ret;
4415
4416 if (size > PAGE_SIZE) /* silly large */
4417 goto err_size;
4418
4419 if (!size) /* abi compat */
4420 size = SCHED_ATTR_SIZE_VER0;
4421
4422 if (size < SCHED_ATTR_SIZE_VER0)
4423 goto err_size;
4424
4425 /*
4426 * If we're handed a bigger struct than we know of,
4427 * ensure all the unknown bits are 0 - i.e. new
4428 * user-space does not rely on any kernel feature
4429 * extensions we dont know about yet.
4430 */
4431 if (size > sizeof(*attr)) {
4432 unsigned char __user *addr;
4433 unsigned char __user *end;
4434 unsigned char val;
4435
4436 addr = (void __user *)uattr + sizeof(*attr);
4437 end = (void __user *)uattr + size;
4438
4439 for (; addr < end; addr++) {
4440 ret = get_user(val, addr);
4441 if (ret)
4442 return ret;
4443 if (val)
4444 goto err_size;
4445 }
4446 size = sizeof(*attr);
4447 }
4448
4449 ret = copy_from_user(attr, uattr, size);
4450 if (ret)
4451 return -EFAULT;
4452
4453 /*
4454 * XXX: do we want to be lenient like existing syscalls; or do we want
4455 * to be strict and return an error on out-of-bounds values?
4456 */
4457 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4458
4459 return 0;
4460
4461 err_size:
4462 put_user(sizeof(*attr), &uattr->size);
4463 return -E2BIG;
4464 }
4465
4466 /**
4467 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4468 * @pid: the pid in question.
4469 * @policy: new policy.
4470 * @param: structure containing the new RT priority.
4471 *
4472 * Return: 0 on success. An error code otherwise.
4473 */
4474 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4475 struct sched_param __user *, param)
4476 {
4477 /* negative values for policy are not valid */
4478 if (policy < 0)
4479 return -EINVAL;
4480
4481 return do_sched_setscheduler(pid, policy, param);
4482 }
4483
4484 /**
4485 * sys_sched_setparam - set/change the RT priority of a thread
4486 * @pid: the pid in question.
4487 * @param: structure containing the new RT priority.
4488 *
4489 * Return: 0 on success. An error code otherwise.
4490 */
4491 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4492 {
4493 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4494 }
4495
4496 /**
4497 * sys_sched_setattr - same as above, but with extended sched_attr
4498 * @pid: the pid in question.
4499 * @uattr: structure containing the extended parameters.
4500 * @flags: for future extension.
4501 */
4502 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4503 unsigned int, flags)
4504 {
4505 struct sched_attr attr;
4506 struct task_struct *p;
4507 int retval;
4508
4509 if (!uattr || pid < 0 || flags)
4510 return -EINVAL;
4511
4512 retval = sched_copy_attr(uattr, &attr);
4513 if (retval)
4514 return retval;
4515
4516 if ((int)attr.sched_policy < 0)
4517 return -EINVAL;
4518
4519 rcu_read_lock();
4520 retval = -ESRCH;
4521 p = find_process_by_pid(pid);
4522 if (p != NULL)
4523 retval = sched_setattr(p, &attr);
4524 rcu_read_unlock();
4525
4526 return retval;
4527 }
4528
4529 /**
4530 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4531 * @pid: the pid in question.
4532 *
4533 * Return: On success, the policy of the thread. Otherwise, a negative error
4534 * code.
4535 */
4536 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4537 {
4538 struct task_struct *p;
4539 int retval;
4540
4541 if (pid < 0)
4542 return -EINVAL;
4543
4544 retval = -ESRCH;
4545 rcu_read_lock();
4546 p = find_process_by_pid(pid);
4547 if (p) {
4548 retval = security_task_getscheduler(p);
4549 if (!retval)
4550 retval = p->policy
4551 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4552 }
4553 rcu_read_unlock();
4554 return retval;
4555 }
4556
4557 /**
4558 * sys_sched_getparam - get the RT priority of a thread
4559 * @pid: the pid in question.
4560 * @param: structure containing the RT priority.
4561 *
4562 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4563 * code.
4564 */
4565 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4566 {
4567 struct sched_param lp = { .sched_priority = 0 };
4568 struct task_struct *p;
4569 int retval;
4570
4571 if (!param || pid < 0)
4572 return -EINVAL;
4573
4574 rcu_read_lock();
4575 p = find_process_by_pid(pid);
4576 retval = -ESRCH;
4577 if (!p)
4578 goto out_unlock;
4579
4580 retval = security_task_getscheduler(p);
4581 if (retval)
4582 goto out_unlock;
4583
4584 if (task_has_rt_policy(p))
4585 lp.sched_priority = p->rt_priority;
4586 rcu_read_unlock();
4587
4588 /*
4589 * This one might sleep, we cannot do it with a spinlock held ...
4590 */
4591 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4592
4593 return retval;
4594
4595 out_unlock:
4596 rcu_read_unlock();
4597 return retval;
4598 }
4599
4600 static int sched_read_attr(struct sched_attr __user *uattr,
4601 struct sched_attr *attr,
4602 unsigned int usize)
4603 {
4604 int ret;
4605
4606 if (!access_ok(VERIFY_WRITE, uattr, usize))
4607 return -EFAULT;
4608
4609 /*
4610 * If we're handed a smaller struct than we know of,
4611 * ensure all the unknown bits are 0 - i.e. old
4612 * user-space does not get uncomplete information.
4613 */
4614 if (usize < sizeof(*attr)) {
4615 unsigned char *addr;
4616 unsigned char *end;
4617
4618 addr = (void *)attr + usize;
4619 end = (void *)attr + sizeof(*attr);
4620
4621 for (; addr < end; addr++) {
4622 if (*addr)
4623 return -EFBIG;
4624 }
4625
4626 attr->size = usize;
4627 }
4628
4629 ret = copy_to_user(uattr, attr, attr->size);
4630 if (ret)
4631 return -EFAULT;
4632
4633 return 0;
4634 }
4635
4636 /**
4637 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4638 * @pid: the pid in question.
4639 * @uattr: structure containing the extended parameters.
4640 * @size: sizeof(attr) for fwd/bwd comp.
4641 * @flags: for future extension.
4642 */
4643 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4644 unsigned int, size, unsigned int, flags)
4645 {
4646 struct sched_attr attr = {
4647 .size = sizeof(struct sched_attr),
4648 };
4649 struct task_struct *p;
4650 int retval;
4651
4652 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4653 size < SCHED_ATTR_SIZE_VER0 || flags)
4654 return -EINVAL;
4655
4656 rcu_read_lock();
4657 p = find_process_by_pid(pid);
4658 retval = -ESRCH;
4659 if (!p)
4660 goto out_unlock;
4661
4662 retval = security_task_getscheduler(p);
4663 if (retval)
4664 goto out_unlock;
4665
4666 attr.sched_policy = p->policy;
4667 if (p->sched_reset_on_fork)
4668 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4669 if (task_has_dl_policy(p))
4670 __getparam_dl(p, &attr);
4671 else if (task_has_rt_policy(p))
4672 attr.sched_priority = p->rt_priority;
4673 else
4674 attr.sched_nice = task_nice(p);
4675
4676 rcu_read_unlock();
4677
4678 retval = sched_read_attr(uattr, &attr, size);
4679 return retval;
4680
4681 out_unlock:
4682 rcu_read_unlock();
4683 return retval;
4684 }
4685
4686 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4687 {
4688 cpumask_var_t cpus_allowed, new_mask;
4689 struct task_struct *p;
4690 int retval;
4691
4692 rcu_read_lock();
4693
4694 p = find_process_by_pid(pid);
4695 if (!p) {
4696 rcu_read_unlock();
4697 return -ESRCH;
4698 }
4699
4700 /* Prevent p going away */
4701 get_task_struct(p);
4702 rcu_read_unlock();
4703
4704 if (p->flags & PF_NO_SETAFFINITY) {
4705 retval = -EINVAL;
4706 goto out_put_task;
4707 }
4708 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4709 retval = -ENOMEM;
4710 goto out_put_task;
4711 }
4712 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4713 retval = -ENOMEM;
4714 goto out_free_cpus_allowed;
4715 }
4716 retval = -EPERM;
4717 if (!check_same_owner(p)) {
4718 rcu_read_lock();
4719 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4720 rcu_read_unlock();
4721 goto out_free_new_mask;
4722 }
4723 rcu_read_unlock();
4724 }
4725
4726 retval = security_task_setscheduler(p);
4727 if (retval)
4728 goto out_free_new_mask;
4729
4730
4731 cpuset_cpus_allowed(p, cpus_allowed);
4732 cpumask_and(new_mask, in_mask, cpus_allowed);
4733
4734 /*
4735 * Since bandwidth control happens on root_domain basis,
4736 * if admission test is enabled, we only admit -deadline
4737 * tasks allowed to run on all the CPUs in the task's
4738 * root_domain.
4739 */
4740 #ifdef CONFIG_SMP
4741 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4742 rcu_read_lock();
4743 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4744 retval = -EBUSY;
4745 rcu_read_unlock();
4746 goto out_free_new_mask;
4747 }
4748 rcu_read_unlock();
4749 }
4750 #endif
4751 again:
4752 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4753
4754 if (!retval) {
4755 cpuset_cpus_allowed(p, cpus_allowed);
4756 if (!cpumask_subset(new_mask, cpus_allowed)) {
4757 /*
4758 * We must have raced with a concurrent cpuset
4759 * update. Just reset the cpus_allowed to the
4760 * cpuset's cpus_allowed
4761 */
4762 cpumask_copy(new_mask, cpus_allowed);
4763 goto again;
4764 }
4765 }
4766 out_free_new_mask:
4767 free_cpumask_var(new_mask);
4768 out_free_cpus_allowed:
4769 free_cpumask_var(cpus_allowed);
4770 out_put_task:
4771 put_task_struct(p);
4772 return retval;
4773 }
4774
4775 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4776 struct cpumask *new_mask)
4777 {
4778 if (len < cpumask_size())
4779 cpumask_clear(new_mask);
4780 else if (len > cpumask_size())
4781 len = cpumask_size();
4782
4783 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4784 }
4785
4786 /**
4787 * sys_sched_setaffinity - set the cpu affinity of a process
4788 * @pid: pid of the process
4789 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4790 * @user_mask_ptr: user-space pointer to the new cpu mask
4791 *
4792 * Return: 0 on success. An error code otherwise.
4793 */
4794 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4795 unsigned long __user *, user_mask_ptr)
4796 {
4797 cpumask_var_t new_mask;
4798 int retval;
4799
4800 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4801 return -ENOMEM;
4802
4803 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4804 if (retval == 0)
4805 retval = sched_setaffinity(pid, new_mask);
4806 free_cpumask_var(new_mask);
4807 return retval;
4808 }
4809
4810 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4811 {
4812 struct task_struct *p;
4813 unsigned long flags;
4814 int retval;
4815
4816 rcu_read_lock();
4817
4818 retval = -ESRCH;
4819 p = find_process_by_pid(pid);
4820 if (!p)
4821 goto out_unlock;
4822
4823 retval = security_task_getscheduler(p);
4824 if (retval)
4825 goto out_unlock;
4826
4827 raw_spin_lock_irqsave(&p->pi_lock, flags);
4828 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4829 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4830
4831 out_unlock:
4832 rcu_read_unlock();
4833
4834 return retval;
4835 }
4836
4837 /**
4838 * sys_sched_getaffinity - get the cpu affinity of a process
4839 * @pid: pid of the process
4840 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4841 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4842 *
4843 * Return: size of CPU mask copied to user_mask_ptr on success. An
4844 * error code otherwise.
4845 */
4846 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4847 unsigned long __user *, user_mask_ptr)
4848 {
4849 int ret;
4850 cpumask_var_t mask;
4851
4852 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4853 return -EINVAL;
4854 if (len & (sizeof(unsigned long)-1))
4855 return -EINVAL;
4856
4857 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4858 return -ENOMEM;
4859
4860 ret = sched_getaffinity(pid, mask);
4861 if (ret == 0) {
4862 size_t retlen = min_t(size_t, len, cpumask_size());
4863
4864 if (copy_to_user(user_mask_ptr, mask, retlen))
4865 ret = -EFAULT;
4866 else
4867 ret = retlen;
4868 }
4869 free_cpumask_var(mask);
4870
4871 return ret;
4872 }
4873
4874 /**
4875 * sys_sched_yield - yield the current processor to other threads.
4876 *
4877 * This function yields the current CPU to other tasks. If there are no
4878 * other threads running on this CPU then this function will return.
4879 *
4880 * Return: 0.
4881 */
4882 SYSCALL_DEFINE0(sched_yield)
4883 {
4884 struct rq *rq = this_rq_lock();
4885
4886 schedstat_inc(rq->yld_count);
4887 current->sched_class->yield_task(rq);
4888
4889 /*
4890 * Since we are going to call schedule() anyway, there's
4891 * no need to preempt or enable interrupts:
4892 */
4893 __release(rq->lock);
4894 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4895 do_raw_spin_unlock(&rq->lock);
4896 sched_preempt_enable_no_resched();
4897
4898 schedule();
4899
4900 return 0;
4901 }
4902
4903 #ifndef CONFIG_PREEMPT
4904 int __sched _cond_resched(void)
4905 {
4906 if (should_resched(0)) {
4907 preempt_schedule_common();
4908 return 1;
4909 }
4910 return 0;
4911 }
4912 EXPORT_SYMBOL(_cond_resched);
4913 #endif
4914
4915 /*
4916 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4917 * call schedule, and on return reacquire the lock.
4918 *
4919 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4920 * operations here to prevent schedule() from being called twice (once via
4921 * spin_unlock(), once by hand).
4922 */
4923 int __cond_resched_lock(spinlock_t *lock)
4924 {
4925 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4926 int ret = 0;
4927
4928 lockdep_assert_held(lock);
4929
4930 if (spin_needbreak(lock) || resched) {
4931 spin_unlock(lock);
4932 if (resched)
4933 preempt_schedule_common();
4934 else
4935 cpu_relax();
4936 ret = 1;
4937 spin_lock(lock);
4938 }
4939 return ret;
4940 }
4941 EXPORT_SYMBOL(__cond_resched_lock);
4942
4943 int __sched __cond_resched_softirq(void)
4944 {
4945 BUG_ON(!in_softirq());
4946
4947 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4948 local_bh_enable();
4949 preempt_schedule_common();
4950 local_bh_disable();
4951 return 1;
4952 }
4953 return 0;
4954 }
4955 EXPORT_SYMBOL(__cond_resched_softirq);
4956
4957 /**
4958 * yield - yield the current processor to other threads.
4959 *
4960 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4961 *
4962 * The scheduler is at all times free to pick the calling task as the most
4963 * eligible task to run, if removing the yield() call from your code breaks
4964 * it, its already broken.
4965 *
4966 * Typical broken usage is:
4967 *
4968 * while (!event)
4969 * yield();
4970 *
4971 * where one assumes that yield() will let 'the other' process run that will
4972 * make event true. If the current task is a SCHED_FIFO task that will never
4973 * happen. Never use yield() as a progress guarantee!!
4974 *
4975 * If you want to use yield() to wait for something, use wait_event().
4976 * If you want to use yield() to be 'nice' for others, use cond_resched().
4977 * If you still want to use yield(), do not!
4978 */
4979 void __sched yield(void)
4980 {
4981 set_current_state(TASK_RUNNING);
4982 sys_sched_yield();
4983 }
4984 EXPORT_SYMBOL(yield);
4985
4986 /**
4987 * yield_to - yield the current processor to another thread in
4988 * your thread group, or accelerate that thread toward the
4989 * processor it's on.
4990 * @p: target task
4991 * @preempt: whether task preemption is allowed or not
4992 *
4993 * It's the caller's job to ensure that the target task struct
4994 * can't go away on us before we can do any checks.
4995 *
4996 * Return:
4997 * true (>0) if we indeed boosted the target task.
4998 * false (0) if we failed to boost the target.
4999 * -ESRCH if there's no task to yield to.
5000 */
5001 int __sched yield_to(struct task_struct *p, bool preempt)
5002 {
5003 struct task_struct *curr = current;
5004 struct rq *rq, *p_rq;
5005 unsigned long flags;
5006 int yielded = 0;
5007
5008 local_irq_save(flags);
5009 rq = this_rq();
5010
5011 again:
5012 p_rq = task_rq(p);
5013 /*
5014 * If we're the only runnable task on the rq and target rq also
5015 * has only one task, there's absolutely no point in yielding.
5016 */
5017 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5018 yielded = -ESRCH;
5019 goto out_irq;
5020 }
5021
5022 double_rq_lock(rq, p_rq);
5023 if (task_rq(p) != p_rq) {
5024 double_rq_unlock(rq, p_rq);
5025 goto again;
5026 }
5027
5028 if (!curr->sched_class->yield_to_task)
5029 goto out_unlock;
5030
5031 if (curr->sched_class != p->sched_class)
5032 goto out_unlock;
5033
5034 if (task_running(p_rq, p) || p->state)
5035 goto out_unlock;
5036
5037 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5038 if (yielded) {
5039 schedstat_inc(rq->yld_count);
5040 /*
5041 * Make p's CPU reschedule; pick_next_entity takes care of
5042 * fairness.
5043 */
5044 if (preempt && rq != p_rq)
5045 resched_curr(p_rq);
5046 }
5047
5048 out_unlock:
5049 double_rq_unlock(rq, p_rq);
5050 out_irq:
5051 local_irq_restore(flags);
5052
5053 if (yielded > 0)
5054 schedule();
5055
5056 return yielded;
5057 }
5058 EXPORT_SYMBOL_GPL(yield_to);
5059
5060 /*
5061 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5062 * that process accounting knows that this is a task in IO wait state.
5063 */
5064 long __sched io_schedule_timeout(long timeout)
5065 {
5066 int old_iowait = current->in_iowait;
5067 struct rq *rq;
5068 long ret;
5069
5070 current->in_iowait = 1;
5071 blk_schedule_flush_plug(current);
5072
5073 delayacct_blkio_start();
5074 rq = raw_rq();
5075 atomic_inc(&rq->nr_iowait);
5076 ret = schedule_timeout(timeout);
5077 current->in_iowait = old_iowait;
5078 atomic_dec(&rq->nr_iowait);
5079 delayacct_blkio_end();
5080
5081 return ret;
5082 }
5083 EXPORT_SYMBOL(io_schedule_timeout);
5084
5085 /**
5086 * sys_sched_get_priority_max - return maximum RT priority.
5087 * @policy: scheduling class.
5088 *
5089 * Return: On success, this syscall returns the maximum
5090 * rt_priority that can be used by a given scheduling class.
5091 * On failure, a negative error code is returned.
5092 */
5093 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5094 {
5095 int ret = -EINVAL;
5096
5097 switch (policy) {
5098 case SCHED_FIFO:
5099 case SCHED_RR:
5100 ret = MAX_USER_RT_PRIO-1;
5101 break;
5102 case SCHED_DEADLINE:
5103 case SCHED_NORMAL:
5104 case SCHED_BATCH:
5105 case SCHED_IDLE:
5106 ret = 0;
5107 break;
5108 }
5109 return ret;
5110 }
5111
5112 /**
5113 * sys_sched_get_priority_min - return minimum RT priority.
5114 * @policy: scheduling class.
5115 *
5116 * Return: On success, this syscall returns the minimum
5117 * rt_priority that can be used by a given scheduling class.
5118 * On failure, a negative error code is returned.
5119 */
5120 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5121 {
5122 int ret = -EINVAL;
5123
5124 switch (policy) {
5125 case SCHED_FIFO:
5126 case SCHED_RR:
5127 ret = 1;
5128 break;
5129 case SCHED_DEADLINE:
5130 case SCHED_NORMAL:
5131 case SCHED_BATCH:
5132 case SCHED_IDLE:
5133 ret = 0;
5134 }
5135 return ret;
5136 }
5137
5138 /**
5139 * sys_sched_rr_get_interval - return the default timeslice of a process.
5140 * @pid: pid of the process.
5141 * @interval: userspace pointer to the timeslice value.
5142 *
5143 * this syscall writes the default timeslice value of a given process
5144 * into the user-space timespec buffer. A value of '0' means infinity.
5145 *
5146 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5147 * an error code.
5148 */
5149 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5150 struct timespec __user *, interval)
5151 {
5152 struct task_struct *p;
5153 unsigned int time_slice;
5154 struct rq_flags rf;
5155 struct timespec t;
5156 struct rq *rq;
5157 int retval;
5158
5159 if (pid < 0)
5160 return -EINVAL;
5161
5162 retval = -ESRCH;
5163 rcu_read_lock();
5164 p = find_process_by_pid(pid);
5165 if (!p)
5166 goto out_unlock;
5167
5168 retval = security_task_getscheduler(p);
5169 if (retval)
5170 goto out_unlock;
5171
5172 rq = task_rq_lock(p, &rf);
5173 time_slice = 0;
5174 if (p->sched_class->get_rr_interval)
5175 time_slice = p->sched_class->get_rr_interval(rq, p);
5176 task_rq_unlock(rq, p, &rf);
5177
5178 rcu_read_unlock();
5179 jiffies_to_timespec(time_slice, &t);
5180 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5181 return retval;
5182
5183 out_unlock:
5184 rcu_read_unlock();
5185 return retval;
5186 }
5187
5188 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5189
5190 void sched_show_task(struct task_struct *p)
5191 {
5192 unsigned long free = 0;
5193 int ppid;
5194 unsigned long state = p->state;
5195
5196 if (!try_get_task_stack(p))
5197 return;
5198 if (state)
5199 state = __ffs(state) + 1;
5200 printk(KERN_INFO "%-15.15s %c", p->comm,
5201 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5202 if (state == TASK_RUNNING)
5203 printk(KERN_CONT " running task ");
5204 #ifdef CONFIG_DEBUG_STACK_USAGE
5205 free = stack_not_used(p);
5206 #endif
5207 ppid = 0;
5208 rcu_read_lock();
5209 if (pid_alive(p))
5210 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5211 rcu_read_unlock();
5212 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5213 task_pid_nr(p), ppid,
5214 (unsigned long)task_thread_info(p)->flags);
5215
5216 print_worker_info(KERN_INFO, p);
5217 show_stack(p, NULL);
5218 put_task_stack(p);
5219 }
5220
5221 void show_state_filter(unsigned long state_filter)
5222 {
5223 struct task_struct *g, *p;
5224
5225 #if BITS_PER_LONG == 32
5226 printk(KERN_INFO
5227 " task PC stack pid father\n");
5228 #else
5229 printk(KERN_INFO
5230 " task PC stack pid father\n");
5231 #endif
5232 rcu_read_lock();
5233 for_each_process_thread(g, p) {
5234 /*
5235 * reset the NMI-timeout, listing all files on a slow
5236 * console might take a lot of time:
5237 * Also, reset softlockup watchdogs on all CPUs, because
5238 * another CPU might be blocked waiting for us to process
5239 * an IPI.
5240 */
5241 touch_nmi_watchdog();
5242 touch_all_softlockup_watchdogs();
5243 if (!state_filter || (p->state & state_filter))
5244 sched_show_task(p);
5245 }
5246
5247 #ifdef CONFIG_SCHED_DEBUG
5248 if (!state_filter)
5249 sysrq_sched_debug_show();
5250 #endif
5251 rcu_read_unlock();
5252 /*
5253 * Only show locks if all tasks are dumped:
5254 */
5255 if (!state_filter)
5256 debug_show_all_locks();
5257 }
5258
5259 void init_idle_bootup_task(struct task_struct *idle)
5260 {
5261 idle->sched_class = &idle_sched_class;
5262 }
5263
5264 /**
5265 * init_idle - set up an idle thread for a given CPU
5266 * @idle: task in question
5267 * @cpu: cpu the idle task belongs to
5268 *
5269 * NOTE: this function does not set the idle thread's NEED_RESCHED
5270 * flag, to make booting more robust.
5271 */
5272 void init_idle(struct task_struct *idle, int cpu)
5273 {
5274 struct rq *rq = cpu_rq(cpu);
5275 unsigned long flags;
5276
5277 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5278 raw_spin_lock(&rq->lock);
5279
5280 __sched_fork(0, idle);
5281 idle->state = TASK_RUNNING;
5282 idle->se.exec_start = sched_clock();
5283
5284 kasan_unpoison_task_stack(idle);
5285
5286 #ifdef CONFIG_SMP
5287 /*
5288 * Its possible that init_idle() gets called multiple times on a task,
5289 * in that case do_set_cpus_allowed() will not do the right thing.
5290 *
5291 * And since this is boot we can forgo the serialization.
5292 */
5293 set_cpus_allowed_common(idle, cpumask_of(cpu));
5294 #endif
5295 /*
5296 * We're having a chicken and egg problem, even though we are
5297 * holding rq->lock, the cpu isn't yet set to this cpu so the
5298 * lockdep check in task_group() will fail.
5299 *
5300 * Similar case to sched_fork(). / Alternatively we could
5301 * use task_rq_lock() here and obtain the other rq->lock.
5302 *
5303 * Silence PROVE_RCU
5304 */
5305 rcu_read_lock();
5306 __set_task_cpu(idle, cpu);
5307 rcu_read_unlock();
5308
5309 rq->curr = rq->idle = idle;
5310 idle->on_rq = TASK_ON_RQ_QUEUED;
5311 #ifdef CONFIG_SMP
5312 idle->on_cpu = 1;
5313 #endif
5314 raw_spin_unlock(&rq->lock);
5315 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5316
5317 /* Set the preempt count _outside_ the spinlocks! */
5318 init_idle_preempt_count(idle, cpu);
5319
5320 /*
5321 * The idle tasks have their own, simple scheduling class:
5322 */
5323 idle->sched_class = &idle_sched_class;
5324 ftrace_graph_init_idle_task(idle, cpu);
5325 vtime_init_idle(idle, cpu);
5326 #ifdef CONFIG_SMP
5327 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5328 #endif
5329 }
5330
5331 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5332 const struct cpumask *trial)
5333 {
5334 int ret = 1, trial_cpus;
5335 struct dl_bw *cur_dl_b;
5336 unsigned long flags;
5337
5338 if (!cpumask_weight(cur))
5339 return ret;
5340
5341 rcu_read_lock_sched();
5342 cur_dl_b = dl_bw_of(cpumask_any(cur));
5343 trial_cpus = cpumask_weight(trial);
5344
5345 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5346 if (cur_dl_b->bw != -1 &&
5347 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5348 ret = 0;
5349 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5350 rcu_read_unlock_sched();
5351
5352 return ret;
5353 }
5354
5355 int task_can_attach(struct task_struct *p,
5356 const struct cpumask *cs_cpus_allowed)
5357 {
5358 int ret = 0;
5359
5360 /*
5361 * Kthreads which disallow setaffinity shouldn't be moved
5362 * to a new cpuset; we don't want to change their cpu
5363 * affinity and isolating such threads by their set of
5364 * allowed nodes is unnecessary. Thus, cpusets are not
5365 * applicable for such threads. This prevents checking for
5366 * success of set_cpus_allowed_ptr() on all attached tasks
5367 * before cpus_allowed may be changed.
5368 */
5369 if (p->flags & PF_NO_SETAFFINITY) {
5370 ret = -EINVAL;
5371 goto out;
5372 }
5373
5374 #ifdef CONFIG_SMP
5375 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5376 cs_cpus_allowed)) {
5377 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5378 cs_cpus_allowed);
5379 struct dl_bw *dl_b;
5380 bool overflow;
5381 int cpus;
5382 unsigned long flags;
5383
5384 rcu_read_lock_sched();
5385 dl_b = dl_bw_of(dest_cpu);
5386 raw_spin_lock_irqsave(&dl_b->lock, flags);
5387 cpus = dl_bw_cpus(dest_cpu);
5388 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5389 if (overflow)
5390 ret = -EBUSY;
5391 else {
5392 /*
5393 * We reserve space for this task in the destination
5394 * root_domain, as we can't fail after this point.
5395 * We will free resources in the source root_domain
5396 * later on (see set_cpus_allowed_dl()).
5397 */
5398 __dl_add(dl_b, p->dl.dl_bw);
5399 }
5400 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5401 rcu_read_unlock_sched();
5402
5403 }
5404 #endif
5405 out:
5406 return ret;
5407 }
5408
5409 #ifdef CONFIG_SMP
5410
5411 static bool sched_smp_initialized __read_mostly;
5412
5413 #ifdef CONFIG_NUMA_BALANCING
5414 /* Migrate current task p to target_cpu */
5415 int migrate_task_to(struct task_struct *p, int target_cpu)
5416 {
5417 struct migration_arg arg = { p, target_cpu };
5418 int curr_cpu = task_cpu(p);
5419
5420 if (curr_cpu == target_cpu)
5421 return 0;
5422
5423 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5424 return -EINVAL;
5425
5426 /* TODO: This is not properly updating schedstats */
5427
5428 trace_sched_move_numa(p, curr_cpu, target_cpu);
5429 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5430 }
5431
5432 /*
5433 * Requeue a task on a given node and accurately track the number of NUMA
5434 * tasks on the runqueues
5435 */
5436 void sched_setnuma(struct task_struct *p, int nid)
5437 {
5438 bool queued, running;
5439 struct rq_flags rf;
5440 struct rq *rq;
5441
5442 rq = task_rq_lock(p, &rf);
5443 queued = task_on_rq_queued(p);
5444 running = task_current(rq, p);
5445
5446 if (queued)
5447 dequeue_task(rq, p, DEQUEUE_SAVE);
5448 if (running)
5449 put_prev_task(rq, p);
5450
5451 p->numa_preferred_nid = nid;
5452
5453 if (queued)
5454 enqueue_task(rq, p, ENQUEUE_RESTORE);
5455 if (running)
5456 set_curr_task(rq, p);
5457 task_rq_unlock(rq, p, &rf);
5458 }
5459 #endif /* CONFIG_NUMA_BALANCING */
5460
5461 #ifdef CONFIG_HOTPLUG_CPU
5462 /*
5463 * Ensures that the idle task is using init_mm right before its cpu goes
5464 * offline.
5465 */
5466 void idle_task_exit(void)
5467 {
5468 struct mm_struct *mm = current->active_mm;
5469
5470 BUG_ON(cpu_online(smp_processor_id()));
5471
5472 if (mm != &init_mm) {
5473 switch_mm_irqs_off(mm, &init_mm, current);
5474 finish_arch_post_lock_switch();
5475 }
5476 mmdrop(mm);
5477 }
5478
5479 /*
5480 * Since this CPU is going 'away' for a while, fold any nr_active delta
5481 * we might have. Assumes we're called after migrate_tasks() so that the
5482 * nr_active count is stable. We need to take the teardown thread which
5483 * is calling this into account, so we hand in adjust = 1 to the load
5484 * calculation.
5485 *
5486 * Also see the comment "Global load-average calculations".
5487 */
5488 static void calc_load_migrate(struct rq *rq)
5489 {
5490 long delta = calc_load_fold_active(rq, 1);
5491 if (delta)
5492 atomic_long_add(delta, &calc_load_tasks);
5493 }
5494
5495 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5496 {
5497 }
5498
5499 static const struct sched_class fake_sched_class = {
5500 .put_prev_task = put_prev_task_fake,
5501 };
5502
5503 static struct task_struct fake_task = {
5504 /*
5505 * Avoid pull_{rt,dl}_task()
5506 */
5507 .prio = MAX_PRIO + 1,
5508 .sched_class = &fake_sched_class,
5509 };
5510
5511 /*
5512 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5513 * try_to_wake_up()->select_task_rq().
5514 *
5515 * Called with rq->lock held even though we'er in stop_machine() and
5516 * there's no concurrency possible, we hold the required locks anyway
5517 * because of lock validation efforts.
5518 */
5519 static void migrate_tasks(struct rq *dead_rq)
5520 {
5521 struct rq *rq = dead_rq;
5522 struct task_struct *next, *stop = rq->stop;
5523 struct pin_cookie cookie;
5524 int dest_cpu;
5525
5526 /*
5527 * Fudge the rq selection such that the below task selection loop
5528 * doesn't get stuck on the currently eligible stop task.
5529 *
5530 * We're currently inside stop_machine() and the rq is either stuck
5531 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5532 * either way we should never end up calling schedule() until we're
5533 * done here.
5534 */
5535 rq->stop = NULL;
5536
5537 /*
5538 * put_prev_task() and pick_next_task() sched
5539 * class method both need to have an up-to-date
5540 * value of rq->clock[_task]
5541 */
5542 update_rq_clock(rq);
5543
5544 for (;;) {
5545 /*
5546 * There's this thread running, bail when that's the only
5547 * remaining thread.
5548 */
5549 if (rq->nr_running == 1)
5550 break;
5551
5552 /*
5553 * pick_next_task assumes pinned rq->lock.
5554 */
5555 cookie = lockdep_pin_lock(&rq->lock);
5556 next = pick_next_task(rq, &fake_task, cookie);
5557 BUG_ON(!next);
5558 next->sched_class->put_prev_task(rq, next);
5559
5560 /*
5561 * Rules for changing task_struct::cpus_allowed are holding
5562 * both pi_lock and rq->lock, such that holding either
5563 * stabilizes the mask.
5564 *
5565 * Drop rq->lock is not quite as disastrous as it usually is
5566 * because !cpu_active at this point, which means load-balance
5567 * will not interfere. Also, stop-machine.
5568 */
5569 lockdep_unpin_lock(&rq->lock, cookie);
5570 raw_spin_unlock(&rq->lock);
5571 raw_spin_lock(&next->pi_lock);
5572 raw_spin_lock(&rq->lock);
5573
5574 /*
5575 * Since we're inside stop-machine, _nothing_ should have
5576 * changed the task, WARN if weird stuff happened, because in
5577 * that case the above rq->lock drop is a fail too.
5578 */
5579 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5580 raw_spin_unlock(&next->pi_lock);
5581 continue;
5582 }
5583
5584 /* Find suitable destination for @next, with force if needed. */
5585 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5586
5587 rq = __migrate_task(rq, next, dest_cpu);
5588 if (rq != dead_rq) {
5589 raw_spin_unlock(&rq->lock);
5590 rq = dead_rq;
5591 raw_spin_lock(&rq->lock);
5592 }
5593 raw_spin_unlock(&next->pi_lock);
5594 }
5595
5596 rq->stop = stop;
5597 }
5598 #endif /* CONFIG_HOTPLUG_CPU */
5599
5600 static void set_rq_online(struct rq *rq)
5601 {
5602 if (!rq->online) {
5603 const struct sched_class *class;
5604
5605 cpumask_set_cpu(rq->cpu, rq->rd->online);
5606 rq->online = 1;
5607
5608 for_each_class(class) {
5609 if (class->rq_online)
5610 class->rq_online(rq);
5611 }
5612 }
5613 }
5614
5615 static void set_rq_offline(struct rq *rq)
5616 {
5617 if (rq->online) {
5618 const struct sched_class *class;
5619
5620 for_each_class(class) {
5621 if (class->rq_offline)
5622 class->rq_offline(rq);
5623 }
5624
5625 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5626 rq->online = 0;
5627 }
5628 }
5629
5630 static void set_cpu_rq_start_time(unsigned int cpu)
5631 {
5632 struct rq *rq = cpu_rq(cpu);
5633
5634 rq->age_stamp = sched_clock_cpu(cpu);
5635 }
5636
5637 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5638
5639 #ifdef CONFIG_SCHED_DEBUG
5640
5641 static __read_mostly int sched_debug_enabled;
5642
5643 static int __init sched_debug_setup(char *str)
5644 {
5645 sched_debug_enabled = 1;
5646
5647 return 0;
5648 }
5649 early_param("sched_debug", sched_debug_setup);
5650
5651 static inline bool sched_debug(void)
5652 {
5653 return sched_debug_enabled;
5654 }
5655
5656 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5657 struct cpumask *groupmask)
5658 {
5659 struct sched_group *group = sd->groups;
5660
5661 cpumask_clear(groupmask);
5662
5663 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5664
5665 if (!(sd->flags & SD_LOAD_BALANCE)) {
5666 printk("does not load-balance\n");
5667 if (sd->parent)
5668 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5669 " has parent");
5670 return -1;
5671 }
5672
5673 printk(KERN_CONT "span %*pbl level %s\n",
5674 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5675
5676 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5677 printk(KERN_ERR "ERROR: domain->span does not contain "
5678 "CPU%d\n", cpu);
5679 }
5680 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5681 printk(KERN_ERR "ERROR: domain->groups does not contain"
5682 " CPU%d\n", cpu);
5683 }
5684
5685 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5686 do {
5687 if (!group) {
5688 printk("\n");
5689 printk(KERN_ERR "ERROR: group is NULL\n");
5690 break;
5691 }
5692
5693 if (!cpumask_weight(sched_group_cpus(group))) {
5694 printk(KERN_CONT "\n");
5695 printk(KERN_ERR "ERROR: empty group\n");
5696 break;
5697 }
5698
5699 if (!(sd->flags & SD_OVERLAP) &&
5700 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5701 printk(KERN_CONT "\n");
5702 printk(KERN_ERR "ERROR: repeated CPUs\n");
5703 break;
5704 }
5705
5706 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5707
5708 printk(KERN_CONT " %*pbl",
5709 cpumask_pr_args(sched_group_cpus(group)));
5710 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5711 printk(KERN_CONT " (cpu_capacity = %lu)",
5712 group->sgc->capacity);
5713 }
5714
5715 group = group->next;
5716 } while (group != sd->groups);
5717 printk(KERN_CONT "\n");
5718
5719 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5720 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5721
5722 if (sd->parent &&
5723 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5724 printk(KERN_ERR "ERROR: parent span is not a superset "
5725 "of domain->span\n");
5726 return 0;
5727 }
5728
5729 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5730 {
5731 int level = 0;
5732
5733 if (!sched_debug_enabled)
5734 return;
5735
5736 if (!sd) {
5737 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5738 return;
5739 }
5740
5741 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5742
5743 for (;;) {
5744 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5745 break;
5746 level++;
5747 sd = sd->parent;
5748 if (!sd)
5749 break;
5750 }
5751 }
5752 #else /* !CONFIG_SCHED_DEBUG */
5753
5754 # define sched_debug_enabled 0
5755 # define sched_domain_debug(sd, cpu) do { } while (0)
5756 static inline bool sched_debug(void)
5757 {
5758 return false;
5759 }
5760 #endif /* CONFIG_SCHED_DEBUG */
5761
5762 static int sd_degenerate(struct sched_domain *sd)
5763 {
5764 if (cpumask_weight(sched_domain_span(sd)) == 1)
5765 return 1;
5766
5767 /* Following flags need at least 2 groups */
5768 if (sd->flags & (SD_LOAD_BALANCE |
5769 SD_BALANCE_NEWIDLE |
5770 SD_BALANCE_FORK |
5771 SD_BALANCE_EXEC |
5772 SD_SHARE_CPUCAPACITY |
5773 SD_ASYM_CPUCAPACITY |
5774 SD_SHARE_PKG_RESOURCES |
5775 SD_SHARE_POWERDOMAIN)) {
5776 if (sd->groups != sd->groups->next)
5777 return 0;
5778 }
5779
5780 /* Following flags don't use groups */
5781 if (sd->flags & (SD_WAKE_AFFINE))
5782 return 0;
5783
5784 return 1;
5785 }
5786
5787 static int
5788 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5789 {
5790 unsigned long cflags = sd->flags, pflags = parent->flags;
5791
5792 if (sd_degenerate(parent))
5793 return 1;
5794
5795 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5796 return 0;
5797
5798 /* Flags needing groups don't count if only 1 group in parent */
5799 if (parent->groups == parent->groups->next) {
5800 pflags &= ~(SD_LOAD_BALANCE |
5801 SD_BALANCE_NEWIDLE |
5802 SD_BALANCE_FORK |
5803 SD_BALANCE_EXEC |
5804 SD_ASYM_CPUCAPACITY |
5805 SD_SHARE_CPUCAPACITY |
5806 SD_SHARE_PKG_RESOURCES |
5807 SD_PREFER_SIBLING |
5808 SD_SHARE_POWERDOMAIN);
5809 if (nr_node_ids == 1)
5810 pflags &= ~SD_SERIALIZE;
5811 }
5812 if (~cflags & pflags)
5813 return 0;
5814
5815 return 1;
5816 }
5817
5818 static void free_rootdomain(struct rcu_head *rcu)
5819 {
5820 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5821
5822 cpupri_cleanup(&rd->cpupri);
5823 cpudl_cleanup(&rd->cpudl);
5824 free_cpumask_var(rd->dlo_mask);
5825 free_cpumask_var(rd->rto_mask);
5826 free_cpumask_var(rd->online);
5827 free_cpumask_var(rd->span);
5828 kfree(rd);
5829 }
5830
5831 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5832 {
5833 struct root_domain *old_rd = NULL;
5834 unsigned long flags;
5835
5836 raw_spin_lock_irqsave(&rq->lock, flags);
5837
5838 if (rq->rd) {
5839 old_rd = rq->rd;
5840
5841 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5842 set_rq_offline(rq);
5843
5844 cpumask_clear_cpu(rq->cpu, old_rd->span);
5845
5846 /*
5847 * If we dont want to free the old_rd yet then
5848 * set old_rd to NULL to skip the freeing later
5849 * in this function:
5850 */
5851 if (!atomic_dec_and_test(&old_rd->refcount))
5852 old_rd = NULL;
5853 }
5854
5855 atomic_inc(&rd->refcount);
5856 rq->rd = rd;
5857
5858 cpumask_set_cpu(rq->cpu, rd->span);
5859 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5860 set_rq_online(rq);
5861
5862 raw_spin_unlock_irqrestore(&rq->lock, flags);
5863
5864 if (old_rd)
5865 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5866 }
5867
5868 static int init_rootdomain(struct root_domain *rd)
5869 {
5870 memset(rd, 0, sizeof(*rd));
5871
5872 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5873 goto out;
5874 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5875 goto free_span;
5876 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5877 goto free_online;
5878 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5879 goto free_dlo_mask;
5880
5881 init_dl_bw(&rd->dl_bw);
5882 if (cpudl_init(&rd->cpudl) != 0)
5883 goto free_dlo_mask;
5884
5885 if (cpupri_init(&rd->cpupri) != 0)
5886 goto free_rto_mask;
5887 return 0;
5888
5889 free_rto_mask:
5890 free_cpumask_var(rd->rto_mask);
5891 free_dlo_mask:
5892 free_cpumask_var(rd->dlo_mask);
5893 free_online:
5894 free_cpumask_var(rd->online);
5895 free_span:
5896 free_cpumask_var(rd->span);
5897 out:
5898 return -ENOMEM;
5899 }
5900
5901 /*
5902 * By default the system creates a single root-domain with all cpus as
5903 * members (mimicking the global state we have today).
5904 */
5905 struct root_domain def_root_domain;
5906
5907 static void init_defrootdomain(void)
5908 {
5909 init_rootdomain(&def_root_domain);
5910
5911 atomic_set(&def_root_domain.refcount, 1);
5912 }
5913
5914 static struct root_domain *alloc_rootdomain(void)
5915 {
5916 struct root_domain *rd;
5917
5918 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5919 if (!rd)
5920 return NULL;
5921
5922 if (init_rootdomain(rd) != 0) {
5923 kfree(rd);
5924 return NULL;
5925 }
5926
5927 return rd;
5928 }
5929
5930 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5931 {
5932 struct sched_group *tmp, *first;
5933
5934 if (!sg)
5935 return;
5936
5937 first = sg;
5938 do {
5939 tmp = sg->next;
5940
5941 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5942 kfree(sg->sgc);
5943
5944 kfree(sg);
5945 sg = tmp;
5946 } while (sg != first);
5947 }
5948
5949 static void destroy_sched_domain(struct sched_domain *sd)
5950 {
5951 /*
5952 * If its an overlapping domain it has private groups, iterate and
5953 * nuke them all.
5954 */
5955 if (sd->flags & SD_OVERLAP) {
5956 free_sched_groups(sd->groups, 1);
5957 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5958 kfree(sd->groups->sgc);
5959 kfree(sd->groups);
5960 }
5961 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
5962 kfree(sd->shared);
5963 kfree(sd);
5964 }
5965
5966 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
5967 {
5968 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5969
5970 while (sd) {
5971 struct sched_domain *parent = sd->parent;
5972 destroy_sched_domain(sd);
5973 sd = parent;
5974 }
5975 }
5976
5977 static void destroy_sched_domains(struct sched_domain *sd)
5978 {
5979 if (sd)
5980 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
5981 }
5982
5983 /*
5984 * Keep a special pointer to the highest sched_domain that has
5985 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5986 * allows us to avoid some pointer chasing select_idle_sibling().
5987 *
5988 * Also keep a unique ID per domain (we use the first cpu number in
5989 * the cpumask of the domain), this allows us to quickly tell if
5990 * two cpus are in the same cache domain, see cpus_share_cache().
5991 */
5992 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5993 DEFINE_PER_CPU(int, sd_llc_size);
5994 DEFINE_PER_CPU(int, sd_llc_id);
5995 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
5996 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5997 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5998
5999 static void update_top_cache_domain(int cpu)
6000 {
6001 struct sched_domain_shared *sds = NULL;
6002 struct sched_domain *sd;
6003 int id = cpu;
6004 int size = 1;
6005
6006 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6007 if (sd) {
6008 id = cpumask_first(sched_domain_span(sd));
6009 size = cpumask_weight(sched_domain_span(sd));
6010 sds = sd->shared;
6011 }
6012
6013 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6014 per_cpu(sd_llc_size, cpu) = size;
6015 per_cpu(sd_llc_id, cpu) = id;
6016 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
6017
6018 sd = lowest_flag_domain(cpu, SD_NUMA);
6019 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6020
6021 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6022 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6023 }
6024
6025 /*
6026 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6027 * hold the hotplug lock.
6028 */
6029 static void
6030 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6031 {
6032 struct rq *rq = cpu_rq(cpu);
6033 struct sched_domain *tmp;
6034
6035 /* Remove the sched domains which do not contribute to scheduling. */
6036 for (tmp = sd; tmp; ) {
6037 struct sched_domain *parent = tmp->parent;
6038 if (!parent)
6039 break;
6040
6041 if (sd_parent_degenerate(tmp, parent)) {
6042 tmp->parent = parent->parent;
6043 if (parent->parent)
6044 parent->parent->child = tmp;
6045 /*
6046 * Transfer SD_PREFER_SIBLING down in case of a
6047 * degenerate parent; the spans match for this
6048 * so the property transfers.
6049 */
6050 if (parent->flags & SD_PREFER_SIBLING)
6051 tmp->flags |= SD_PREFER_SIBLING;
6052 destroy_sched_domain(parent);
6053 } else
6054 tmp = tmp->parent;
6055 }
6056
6057 if (sd && sd_degenerate(sd)) {
6058 tmp = sd;
6059 sd = sd->parent;
6060 destroy_sched_domain(tmp);
6061 if (sd)
6062 sd->child = NULL;
6063 }
6064
6065 sched_domain_debug(sd, cpu);
6066
6067 rq_attach_root(rq, rd);
6068 tmp = rq->sd;
6069 rcu_assign_pointer(rq->sd, sd);
6070 destroy_sched_domains(tmp);
6071
6072 update_top_cache_domain(cpu);
6073 }
6074
6075 /* Setup the mask of cpus configured for isolated domains */
6076 static int __init isolated_cpu_setup(char *str)
6077 {
6078 int ret;
6079
6080 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6081 ret = cpulist_parse(str, cpu_isolated_map);
6082 if (ret) {
6083 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6084 return 0;
6085 }
6086 return 1;
6087 }
6088 __setup("isolcpus=", isolated_cpu_setup);
6089
6090 struct s_data {
6091 struct sched_domain ** __percpu sd;
6092 struct root_domain *rd;
6093 };
6094
6095 enum s_alloc {
6096 sa_rootdomain,
6097 sa_sd,
6098 sa_sd_storage,
6099 sa_none,
6100 };
6101
6102 /*
6103 * Build an iteration mask that can exclude certain CPUs from the upwards
6104 * domain traversal.
6105 *
6106 * Asymmetric node setups can result in situations where the domain tree is of
6107 * unequal depth, make sure to skip domains that already cover the entire
6108 * range.
6109 *
6110 * In that case build_sched_domains() will have terminated the iteration early
6111 * and our sibling sd spans will be empty. Domains should always include the
6112 * cpu they're built on, so check that.
6113 *
6114 */
6115 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6116 {
6117 const struct cpumask *span = sched_domain_span(sd);
6118 struct sd_data *sdd = sd->private;
6119 struct sched_domain *sibling;
6120 int i;
6121
6122 for_each_cpu(i, span) {
6123 sibling = *per_cpu_ptr(sdd->sd, i);
6124 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6125 continue;
6126
6127 cpumask_set_cpu(i, sched_group_mask(sg));
6128 }
6129 }
6130
6131 /*
6132 * Return the canonical balance cpu for this group, this is the first cpu
6133 * of this group that's also in the iteration mask.
6134 */
6135 int group_balance_cpu(struct sched_group *sg)
6136 {
6137 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6138 }
6139
6140 static int
6141 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6142 {
6143 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6144 const struct cpumask *span = sched_domain_span(sd);
6145 struct cpumask *covered = sched_domains_tmpmask;
6146 struct sd_data *sdd = sd->private;
6147 struct sched_domain *sibling;
6148 int i;
6149
6150 cpumask_clear(covered);
6151
6152 for_each_cpu(i, span) {
6153 struct cpumask *sg_span;
6154
6155 if (cpumask_test_cpu(i, covered))
6156 continue;
6157
6158 sibling = *per_cpu_ptr(sdd->sd, i);
6159
6160 /* See the comment near build_group_mask(). */
6161 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6162 continue;
6163
6164 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6165 GFP_KERNEL, cpu_to_node(cpu));
6166
6167 if (!sg)
6168 goto fail;
6169
6170 sg_span = sched_group_cpus(sg);
6171 if (sibling->child)
6172 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6173 else
6174 cpumask_set_cpu(i, sg_span);
6175
6176 cpumask_or(covered, covered, sg_span);
6177
6178 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6179 if (atomic_inc_return(&sg->sgc->ref) == 1)
6180 build_group_mask(sd, sg);
6181
6182 /*
6183 * Initialize sgc->capacity such that even if we mess up the
6184 * domains and no possible iteration will get us here, we won't
6185 * die on a /0 trap.
6186 */
6187 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6188 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
6189
6190 /*
6191 * Make sure the first group of this domain contains the
6192 * canonical balance cpu. Otherwise the sched_domain iteration
6193 * breaks. See update_sg_lb_stats().
6194 */
6195 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6196 group_balance_cpu(sg) == cpu)
6197 groups = sg;
6198
6199 if (!first)
6200 first = sg;
6201 if (last)
6202 last->next = sg;
6203 last = sg;
6204 last->next = first;
6205 }
6206 sd->groups = groups;
6207
6208 return 0;
6209
6210 fail:
6211 free_sched_groups(first, 0);
6212
6213 return -ENOMEM;
6214 }
6215
6216 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6217 {
6218 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6219 struct sched_domain *child = sd->child;
6220
6221 if (child)
6222 cpu = cpumask_first(sched_domain_span(child));
6223
6224 if (sg) {
6225 *sg = *per_cpu_ptr(sdd->sg, cpu);
6226 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6227 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6228 }
6229
6230 return cpu;
6231 }
6232
6233 /*
6234 * build_sched_groups will build a circular linked list of the groups
6235 * covered by the given span, and will set each group's ->cpumask correctly,
6236 * and ->cpu_capacity to 0.
6237 *
6238 * Assumes the sched_domain tree is fully constructed
6239 */
6240 static int
6241 build_sched_groups(struct sched_domain *sd, int cpu)
6242 {
6243 struct sched_group *first = NULL, *last = NULL;
6244 struct sd_data *sdd = sd->private;
6245 const struct cpumask *span = sched_domain_span(sd);
6246 struct cpumask *covered;
6247 int i;
6248
6249 get_group(cpu, sdd, &sd->groups);
6250 atomic_inc(&sd->groups->ref);
6251
6252 if (cpu != cpumask_first(span))
6253 return 0;
6254
6255 lockdep_assert_held(&sched_domains_mutex);
6256 covered = sched_domains_tmpmask;
6257
6258 cpumask_clear(covered);
6259
6260 for_each_cpu(i, span) {
6261 struct sched_group *sg;
6262 int group, j;
6263
6264 if (cpumask_test_cpu(i, covered))
6265 continue;
6266
6267 group = get_group(i, sdd, &sg);
6268 cpumask_setall(sched_group_mask(sg));
6269
6270 for_each_cpu(j, span) {
6271 if (get_group(j, sdd, NULL) != group)
6272 continue;
6273
6274 cpumask_set_cpu(j, covered);
6275 cpumask_set_cpu(j, sched_group_cpus(sg));
6276 }
6277
6278 if (!first)
6279 first = sg;
6280 if (last)
6281 last->next = sg;
6282 last = sg;
6283 }
6284 last->next = first;
6285
6286 return 0;
6287 }
6288
6289 /*
6290 * Initialize sched groups cpu_capacity.
6291 *
6292 * cpu_capacity indicates the capacity of sched group, which is used while
6293 * distributing the load between different sched groups in a sched domain.
6294 * Typically cpu_capacity for all the groups in a sched domain will be same
6295 * unless there are asymmetries in the topology. If there are asymmetries,
6296 * group having more cpu_capacity will pickup more load compared to the
6297 * group having less cpu_capacity.
6298 */
6299 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6300 {
6301 struct sched_group *sg = sd->groups;
6302
6303 WARN_ON(!sg);
6304
6305 do {
6306 int cpu, max_cpu = -1;
6307
6308 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6309
6310 if (!(sd->flags & SD_ASYM_PACKING))
6311 goto next;
6312
6313 for_each_cpu(cpu, sched_group_cpus(sg)) {
6314 if (max_cpu < 0)
6315 max_cpu = cpu;
6316 else if (sched_asym_prefer(cpu, max_cpu))
6317 max_cpu = cpu;
6318 }
6319 sg->asym_prefer_cpu = max_cpu;
6320
6321 next:
6322 sg = sg->next;
6323 } while (sg != sd->groups);
6324
6325 if (cpu != group_balance_cpu(sg))
6326 return;
6327
6328 update_group_capacity(sd, cpu);
6329 }
6330
6331 /*
6332 * Initializers for schedule domains
6333 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6334 */
6335
6336 static int default_relax_domain_level = -1;
6337 int sched_domain_level_max;
6338
6339 static int __init setup_relax_domain_level(char *str)
6340 {
6341 if (kstrtoint(str, 0, &default_relax_domain_level))
6342 pr_warn("Unable to set relax_domain_level\n");
6343
6344 return 1;
6345 }
6346 __setup("relax_domain_level=", setup_relax_domain_level);
6347
6348 static void set_domain_attribute(struct sched_domain *sd,
6349 struct sched_domain_attr *attr)
6350 {
6351 int request;
6352
6353 if (!attr || attr->relax_domain_level < 0) {
6354 if (default_relax_domain_level < 0)
6355 return;
6356 else
6357 request = default_relax_domain_level;
6358 } else
6359 request = attr->relax_domain_level;
6360 if (request < sd->level) {
6361 /* turn off idle balance on this domain */
6362 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6363 } else {
6364 /* turn on idle balance on this domain */
6365 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6366 }
6367 }
6368
6369 static void __sdt_free(const struct cpumask *cpu_map);
6370 static int __sdt_alloc(const struct cpumask *cpu_map);
6371
6372 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6373 const struct cpumask *cpu_map)
6374 {
6375 switch (what) {
6376 case sa_rootdomain:
6377 if (!atomic_read(&d->rd->refcount))
6378 free_rootdomain(&d->rd->rcu); /* fall through */
6379 case sa_sd:
6380 free_percpu(d->sd); /* fall through */
6381 case sa_sd_storage:
6382 __sdt_free(cpu_map); /* fall through */
6383 case sa_none:
6384 break;
6385 }
6386 }
6387
6388 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6389 const struct cpumask *cpu_map)
6390 {
6391 memset(d, 0, sizeof(*d));
6392
6393 if (__sdt_alloc(cpu_map))
6394 return sa_sd_storage;
6395 d->sd = alloc_percpu(struct sched_domain *);
6396 if (!d->sd)
6397 return sa_sd_storage;
6398 d->rd = alloc_rootdomain();
6399 if (!d->rd)
6400 return sa_sd;
6401 return sa_rootdomain;
6402 }
6403
6404 /*
6405 * NULL the sd_data elements we've used to build the sched_domain and
6406 * sched_group structure so that the subsequent __free_domain_allocs()
6407 * will not free the data we're using.
6408 */
6409 static void claim_allocations(int cpu, struct sched_domain *sd)
6410 {
6411 struct sd_data *sdd = sd->private;
6412
6413 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6414 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6415
6416 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
6417 *per_cpu_ptr(sdd->sds, cpu) = NULL;
6418
6419 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6420 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6421
6422 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6423 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6424 }
6425
6426 #ifdef CONFIG_NUMA
6427 static int sched_domains_numa_levels;
6428 enum numa_topology_type sched_numa_topology_type;
6429 static int *sched_domains_numa_distance;
6430 int sched_max_numa_distance;
6431 static struct cpumask ***sched_domains_numa_masks;
6432 static int sched_domains_curr_level;
6433 #endif
6434
6435 /*
6436 * SD_flags allowed in topology descriptions.
6437 *
6438 * These flags are purely descriptive of the topology and do not prescribe
6439 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6440 * function:
6441 *
6442 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6443 * SD_SHARE_PKG_RESOURCES - describes shared caches
6444 * SD_NUMA - describes NUMA topologies
6445 * SD_SHARE_POWERDOMAIN - describes shared power domain
6446 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
6447 *
6448 * Odd one out, which beside describing the topology has a quirk also
6449 * prescribes the desired behaviour that goes along with it:
6450 *
6451 * SD_ASYM_PACKING - describes SMT quirks
6452 */
6453 #define TOPOLOGY_SD_FLAGS \
6454 (SD_SHARE_CPUCAPACITY | \
6455 SD_SHARE_PKG_RESOURCES | \
6456 SD_NUMA | \
6457 SD_ASYM_PACKING | \
6458 SD_ASYM_CPUCAPACITY | \
6459 SD_SHARE_POWERDOMAIN)
6460
6461 static struct sched_domain *
6462 sd_init(struct sched_domain_topology_level *tl,
6463 const struct cpumask *cpu_map,
6464 struct sched_domain *child, int cpu)
6465 {
6466 struct sd_data *sdd = &tl->data;
6467 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6468 int sd_id, sd_weight, sd_flags = 0;
6469
6470 #ifdef CONFIG_NUMA
6471 /*
6472 * Ugly hack to pass state to sd_numa_mask()...
6473 */
6474 sched_domains_curr_level = tl->numa_level;
6475 #endif
6476
6477 sd_weight = cpumask_weight(tl->mask(cpu));
6478
6479 if (tl->sd_flags)
6480 sd_flags = (*tl->sd_flags)();
6481 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6482 "wrong sd_flags in topology description\n"))
6483 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6484
6485 *sd = (struct sched_domain){
6486 .min_interval = sd_weight,
6487 .max_interval = 2*sd_weight,
6488 .busy_factor = 32,
6489 .imbalance_pct = 125,
6490
6491 .cache_nice_tries = 0,
6492 .busy_idx = 0,
6493 .idle_idx = 0,
6494 .newidle_idx = 0,
6495 .wake_idx = 0,
6496 .forkexec_idx = 0,
6497
6498 .flags = 1*SD_LOAD_BALANCE
6499 | 1*SD_BALANCE_NEWIDLE
6500 | 1*SD_BALANCE_EXEC
6501 | 1*SD_BALANCE_FORK
6502 | 0*SD_BALANCE_WAKE
6503 | 1*SD_WAKE_AFFINE
6504 | 0*SD_SHARE_CPUCAPACITY
6505 | 0*SD_SHARE_PKG_RESOURCES
6506 | 0*SD_SERIALIZE
6507 | 0*SD_PREFER_SIBLING
6508 | 0*SD_NUMA
6509 | sd_flags
6510 ,
6511
6512 .last_balance = jiffies,
6513 .balance_interval = sd_weight,
6514 .smt_gain = 0,
6515 .max_newidle_lb_cost = 0,
6516 .next_decay_max_lb_cost = jiffies,
6517 .child = child,
6518 #ifdef CONFIG_SCHED_DEBUG
6519 .name = tl->name,
6520 #endif
6521 };
6522
6523 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6524 sd_id = cpumask_first(sched_domain_span(sd));
6525
6526 /*
6527 * Convert topological properties into behaviour.
6528 */
6529
6530 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6531 struct sched_domain *t = sd;
6532
6533 for_each_lower_domain(t)
6534 t->flags |= SD_BALANCE_WAKE;
6535 }
6536
6537 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6538 sd->flags |= SD_PREFER_SIBLING;
6539 sd->imbalance_pct = 110;
6540 sd->smt_gain = 1178; /* ~15% */
6541
6542 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6543 sd->imbalance_pct = 117;
6544 sd->cache_nice_tries = 1;
6545 sd->busy_idx = 2;
6546
6547 #ifdef CONFIG_NUMA
6548 } else if (sd->flags & SD_NUMA) {
6549 sd->cache_nice_tries = 2;
6550 sd->busy_idx = 3;
6551 sd->idle_idx = 2;
6552
6553 sd->flags |= SD_SERIALIZE;
6554 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6555 sd->flags &= ~(SD_BALANCE_EXEC |
6556 SD_BALANCE_FORK |
6557 SD_WAKE_AFFINE);
6558 }
6559
6560 #endif
6561 } else {
6562 sd->flags |= SD_PREFER_SIBLING;
6563 sd->cache_nice_tries = 1;
6564 sd->busy_idx = 2;
6565 sd->idle_idx = 1;
6566 }
6567
6568 /*
6569 * For all levels sharing cache; connect a sched_domain_shared
6570 * instance.
6571 */
6572 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6573 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
6574 atomic_inc(&sd->shared->ref);
6575 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
6576 }
6577
6578 sd->private = sdd;
6579
6580 return sd;
6581 }
6582
6583 /*
6584 * Topology list, bottom-up.
6585 */
6586 static struct sched_domain_topology_level default_topology[] = {
6587 #ifdef CONFIG_SCHED_SMT
6588 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6589 #endif
6590 #ifdef CONFIG_SCHED_MC
6591 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6592 #endif
6593 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6594 { NULL, },
6595 };
6596
6597 static struct sched_domain_topology_level *sched_domain_topology =
6598 default_topology;
6599
6600 #define for_each_sd_topology(tl) \
6601 for (tl = sched_domain_topology; tl->mask; tl++)
6602
6603 void set_sched_topology(struct sched_domain_topology_level *tl)
6604 {
6605 if (WARN_ON_ONCE(sched_smp_initialized))
6606 return;
6607
6608 sched_domain_topology = tl;
6609 }
6610
6611 #ifdef CONFIG_NUMA
6612
6613 static const struct cpumask *sd_numa_mask(int cpu)
6614 {
6615 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6616 }
6617
6618 static void sched_numa_warn(const char *str)
6619 {
6620 static int done = false;
6621 int i,j;
6622
6623 if (done)
6624 return;
6625
6626 done = true;
6627
6628 printk(KERN_WARNING "ERROR: %s\n\n", str);
6629
6630 for (i = 0; i < nr_node_ids; i++) {
6631 printk(KERN_WARNING " ");
6632 for (j = 0; j < nr_node_ids; j++)
6633 printk(KERN_CONT "%02d ", node_distance(i,j));
6634 printk(KERN_CONT "\n");
6635 }
6636 printk(KERN_WARNING "\n");
6637 }
6638
6639 bool find_numa_distance(int distance)
6640 {
6641 int i;
6642
6643 if (distance == node_distance(0, 0))
6644 return true;
6645
6646 for (i = 0; i < sched_domains_numa_levels; i++) {
6647 if (sched_domains_numa_distance[i] == distance)
6648 return true;
6649 }
6650
6651 return false;
6652 }
6653
6654 /*
6655 * A system can have three types of NUMA topology:
6656 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6657 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6658 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6659 *
6660 * The difference between a glueless mesh topology and a backplane
6661 * topology lies in whether communication between not directly
6662 * connected nodes goes through intermediary nodes (where programs
6663 * could run), or through backplane controllers. This affects
6664 * placement of programs.
6665 *
6666 * The type of topology can be discerned with the following tests:
6667 * - If the maximum distance between any nodes is 1 hop, the system
6668 * is directly connected.
6669 * - If for two nodes A and B, located N > 1 hops away from each other,
6670 * there is an intermediary node C, which is < N hops away from both
6671 * nodes A and B, the system is a glueless mesh.
6672 */
6673 static void init_numa_topology_type(void)
6674 {
6675 int a, b, c, n;
6676
6677 n = sched_max_numa_distance;
6678
6679 if (sched_domains_numa_levels <= 1) {
6680 sched_numa_topology_type = NUMA_DIRECT;
6681 return;
6682 }
6683
6684 for_each_online_node(a) {
6685 for_each_online_node(b) {
6686 /* Find two nodes furthest removed from each other. */
6687 if (node_distance(a, b) < n)
6688 continue;
6689
6690 /* Is there an intermediary node between a and b? */
6691 for_each_online_node(c) {
6692 if (node_distance(a, c) < n &&
6693 node_distance(b, c) < n) {
6694 sched_numa_topology_type =
6695 NUMA_GLUELESS_MESH;
6696 return;
6697 }
6698 }
6699
6700 sched_numa_topology_type = NUMA_BACKPLANE;
6701 return;
6702 }
6703 }
6704 }
6705
6706 static void sched_init_numa(void)
6707 {
6708 int next_distance, curr_distance = node_distance(0, 0);
6709 struct sched_domain_topology_level *tl;
6710 int level = 0;
6711 int i, j, k;
6712
6713 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6714 if (!sched_domains_numa_distance)
6715 return;
6716
6717 /*
6718 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6719 * unique distances in the node_distance() table.
6720 *
6721 * Assumes node_distance(0,j) includes all distances in
6722 * node_distance(i,j) in order to avoid cubic time.
6723 */
6724 next_distance = curr_distance;
6725 for (i = 0; i < nr_node_ids; i++) {
6726 for (j = 0; j < nr_node_ids; j++) {
6727 for (k = 0; k < nr_node_ids; k++) {
6728 int distance = node_distance(i, k);
6729
6730 if (distance > curr_distance &&
6731 (distance < next_distance ||
6732 next_distance == curr_distance))
6733 next_distance = distance;
6734
6735 /*
6736 * While not a strong assumption it would be nice to know
6737 * about cases where if node A is connected to B, B is not
6738 * equally connected to A.
6739 */
6740 if (sched_debug() && node_distance(k, i) != distance)
6741 sched_numa_warn("Node-distance not symmetric");
6742
6743 if (sched_debug() && i && !find_numa_distance(distance))
6744 sched_numa_warn("Node-0 not representative");
6745 }
6746 if (next_distance != curr_distance) {
6747 sched_domains_numa_distance[level++] = next_distance;
6748 sched_domains_numa_levels = level;
6749 curr_distance = next_distance;
6750 } else break;
6751 }
6752
6753 /*
6754 * In case of sched_debug() we verify the above assumption.
6755 */
6756 if (!sched_debug())
6757 break;
6758 }
6759
6760 if (!level)
6761 return;
6762
6763 /*
6764 * 'level' contains the number of unique distances, excluding the
6765 * identity distance node_distance(i,i).
6766 *
6767 * The sched_domains_numa_distance[] array includes the actual distance
6768 * numbers.
6769 */
6770
6771 /*
6772 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6773 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6774 * the array will contain less then 'level' members. This could be
6775 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6776 * in other functions.
6777 *
6778 * We reset it to 'level' at the end of this function.
6779 */
6780 sched_domains_numa_levels = 0;
6781
6782 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6783 if (!sched_domains_numa_masks)
6784 return;
6785
6786 /*
6787 * Now for each level, construct a mask per node which contains all
6788 * cpus of nodes that are that many hops away from us.
6789 */
6790 for (i = 0; i < level; i++) {
6791 sched_domains_numa_masks[i] =
6792 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6793 if (!sched_domains_numa_masks[i])
6794 return;
6795
6796 for (j = 0; j < nr_node_ids; j++) {
6797 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6798 if (!mask)
6799 return;
6800
6801 sched_domains_numa_masks[i][j] = mask;
6802
6803 for_each_node(k) {
6804 if (node_distance(j, k) > sched_domains_numa_distance[i])
6805 continue;
6806
6807 cpumask_or(mask, mask, cpumask_of_node(k));
6808 }
6809 }
6810 }
6811
6812 /* Compute default topology size */
6813 for (i = 0; sched_domain_topology[i].mask; i++);
6814
6815 tl = kzalloc((i + level + 1) *
6816 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6817 if (!tl)
6818 return;
6819
6820 /*
6821 * Copy the default topology bits..
6822 */
6823 for (i = 0; sched_domain_topology[i].mask; i++)
6824 tl[i] = sched_domain_topology[i];
6825
6826 /*
6827 * .. and append 'j' levels of NUMA goodness.
6828 */
6829 for (j = 0; j < level; i++, j++) {
6830 tl[i] = (struct sched_domain_topology_level){
6831 .mask = sd_numa_mask,
6832 .sd_flags = cpu_numa_flags,
6833 .flags = SDTL_OVERLAP,
6834 .numa_level = j,
6835 SD_INIT_NAME(NUMA)
6836 };
6837 }
6838
6839 sched_domain_topology = tl;
6840
6841 sched_domains_numa_levels = level;
6842 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6843
6844 init_numa_topology_type();
6845 }
6846
6847 static void sched_domains_numa_masks_set(unsigned int cpu)
6848 {
6849 int node = cpu_to_node(cpu);
6850 int i, j;
6851
6852 for (i = 0; i < sched_domains_numa_levels; i++) {
6853 for (j = 0; j < nr_node_ids; j++) {
6854 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6855 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6856 }
6857 }
6858 }
6859
6860 static void sched_domains_numa_masks_clear(unsigned int cpu)
6861 {
6862 int i, j;
6863
6864 for (i = 0; i < sched_domains_numa_levels; i++) {
6865 for (j = 0; j < nr_node_ids; j++)
6866 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6867 }
6868 }
6869
6870 #else
6871 static inline void sched_init_numa(void) { }
6872 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6873 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6874 #endif /* CONFIG_NUMA */
6875
6876 static int __sdt_alloc(const struct cpumask *cpu_map)
6877 {
6878 struct sched_domain_topology_level *tl;
6879 int j;
6880
6881 for_each_sd_topology(tl) {
6882 struct sd_data *sdd = &tl->data;
6883
6884 sdd->sd = alloc_percpu(struct sched_domain *);
6885 if (!sdd->sd)
6886 return -ENOMEM;
6887
6888 sdd->sds = alloc_percpu(struct sched_domain_shared *);
6889 if (!sdd->sds)
6890 return -ENOMEM;
6891
6892 sdd->sg = alloc_percpu(struct sched_group *);
6893 if (!sdd->sg)
6894 return -ENOMEM;
6895
6896 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6897 if (!sdd->sgc)
6898 return -ENOMEM;
6899
6900 for_each_cpu(j, cpu_map) {
6901 struct sched_domain *sd;
6902 struct sched_domain_shared *sds;
6903 struct sched_group *sg;
6904 struct sched_group_capacity *sgc;
6905
6906 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6907 GFP_KERNEL, cpu_to_node(j));
6908 if (!sd)
6909 return -ENOMEM;
6910
6911 *per_cpu_ptr(sdd->sd, j) = sd;
6912
6913 sds = kzalloc_node(sizeof(struct sched_domain_shared),
6914 GFP_KERNEL, cpu_to_node(j));
6915 if (!sds)
6916 return -ENOMEM;
6917
6918 *per_cpu_ptr(sdd->sds, j) = sds;
6919
6920 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6921 GFP_KERNEL, cpu_to_node(j));
6922 if (!sg)
6923 return -ENOMEM;
6924
6925 sg->next = sg;
6926
6927 *per_cpu_ptr(sdd->sg, j) = sg;
6928
6929 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6930 GFP_KERNEL, cpu_to_node(j));
6931 if (!sgc)
6932 return -ENOMEM;
6933
6934 *per_cpu_ptr(sdd->sgc, j) = sgc;
6935 }
6936 }
6937
6938 return 0;
6939 }
6940
6941 static void __sdt_free(const struct cpumask *cpu_map)
6942 {
6943 struct sched_domain_topology_level *tl;
6944 int j;
6945
6946 for_each_sd_topology(tl) {
6947 struct sd_data *sdd = &tl->data;
6948
6949 for_each_cpu(j, cpu_map) {
6950 struct sched_domain *sd;
6951
6952 if (sdd->sd) {
6953 sd = *per_cpu_ptr(sdd->sd, j);
6954 if (sd && (sd->flags & SD_OVERLAP))
6955 free_sched_groups(sd->groups, 0);
6956 kfree(*per_cpu_ptr(sdd->sd, j));
6957 }
6958
6959 if (sdd->sds)
6960 kfree(*per_cpu_ptr(sdd->sds, j));
6961 if (sdd->sg)
6962 kfree(*per_cpu_ptr(sdd->sg, j));
6963 if (sdd->sgc)
6964 kfree(*per_cpu_ptr(sdd->sgc, j));
6965 }
6966 free_percpu(sdd->sd);
6967 sdd->sd = NULL;
6968 free_percpu(sdd->sds);
6969 sdd->sds = NULL;
6970 free_percpu(sdd->sg);
6971 sdd->sg = NULL;
6972 free_percpu(sdd->sgc);
6973 sdd->sgc = NULL;
6974 }
6975 }
6976
6977 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6978 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6979 struct sched_domain *child, int cpu)
6980 {
6981 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
6982
6983 if (child) {
6984 sd->level = child->level + 1;
6985 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6986 child->parent = sd;
6987
6988 if (!cpumask_subset(sched_domain_span(child),
6989 sched_domain_span(sd))) {
6990 pr_err("BUG: arch topology borken\n");
6991 #ifdef CONFIG_SCHED_DEBUG
6992 pr_err(" the %s domain not a subset of the %s domain\n",
6993 child->name, sd->name);
6994 #endif
6995 /* Fixup, ensure @sd has at least @child cpus. */
6996 cpumask_or(sched_domain_span(sd),
6997 sched_domain_span(sd),
6998 sched_domain_span(child));
6999 }
7000
7001 }
7002 set_domain_attribute(sd, attr);
7003
7004 return sd;
7005 }
7006
7007 /*
7008 * Build sched domains for a given set of cpus and attach the sched domains
7009 * to the individual cpus
7010 */
7011 static int build_sched_domains(const struct cpumask *cpu_map,
7012 struct sched_domain_attr *attr)
7013 {
7014 enum s_alloc alloc_state;
7015 struct sched_domain *sd;
7016 struct s_data d;
7017 struct rq *rq = NULL;
7018 int i, ret = -ENOMEM;
7019
7020 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7021 if (alloc_state != sa_rootdomain)
7022 goto error;
7023
7024 /* Set up domains for cpus specified by the cpu_map. */
7025 for_each_cpu(i, cpu_map) {
7026 struct sched_domain_topology_level *tl;
7027
7028 sd = NULL;
7029 for_each_sd_topology(tl) {
7030 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7031 if (tl == sched_domain_topology)
7032 *per_cpu_ptr(d.sd, i) = sd;
7033 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7034 sd->flags |= SD_OVERLAP;
7035 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7036 break;
7037 }
7038 }
7039
7040 /* Build the groups for the domains */
7041 for_each_cpu(i, cpu_map) {
7042 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7043 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7044 if (sd->flags & SD_OVERLAP) {
7045 if (build_overlap_sched_groups(sd, i))
7046 goto error;
7047 } else {
7048 if (build_sched_groups(sd, i))
7049 goto error;
7050 }
7051 }
7052 }
7053
7054 /* Calculate CPU capacity for physical packages and nodes */
7055 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7056 if (!cpumask_test_cpu(i, cpu_map))
7057 continue;
7058
7059 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7060 claim_allocations(i, sd);
7061 init_sched_groups_capacity(i, sd);
7062 }
7063 }
7064
7065 /* Attach the domains */
7066 rcu_read_lock();
7067 for_each_cpu(i, cpu_map) {
7068 rq = cpu_rq(i);
7069 sd = *per_cpu_ptr(d.sd, i);
7070
7071 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
7072 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
7073 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
7074
7075 cpu_attach_domain(sd, d.rd, i);
7076 }
7077 rcu_read_unlock();
7078
7079 if (rq && sched_debug_enabled) {
7080 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
7081 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
7082 }
7083
7084 ret = 0;
7085 error:
7086 __free_domain_allocs(&d, alloc_state, cpu_map);
7087 return ret;
7088 }
7089
7090 static cpumask_var_t *doms_cur; /* current sched domains */
7091 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7092 static struct sched_domain_attr *dattr_cur;
7093 /* attribues of custom domains in 'doms_cur' */
7094
7095 /*
7096 * Special case: If a kmalloc of a doms_cur partition (array of
7097 * cpumask) fails, then fallback to a single sched domain,
7098 * as determined by the single cpumask fallback_doms.
7099 */
7100 static cpumask_var_t fallback_doms;
7101
7102 /*
7103 * arch_update_cpu_topology lets virtualized architectures update the
7104 * cpu core maps. It is supposed to return 1 if the topology changed
7105 * or 0 if it stayed the same.
7106 */
7107 int __weak arch_update_cpu_topology(void)
7108 {
7109 return 0;
7110 }
7111
7112 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7113 {
7114 int i;
7115 cpumask_var_t *doms;
7116
7117 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7118 if (!doms)
7119 return NULL;
7120 for (i = 0; i < ndoms; i++) {
7121 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7122 free_sched_domains(doms, i);
7123 return NULL;
7124 }
7125 }
7126 return doms;
7127 }
7128
7129 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7130 {
7131 unsigned int i;
7132 for (i = 0; i < ndoms; i++)
7133 free_cpumask_var(doms[i]);
7134 kfree(doms);
7135 }
7136
7137 /*
7138 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7139 * For now this just excludes isolated cpus, but could be used to
7140 * exclude other special cases in the future.
7141 */
7142 static int init_sched_domains(const struct cpumask *cpu_map)
7143 {
7144 int err;
7145
7146 arch_update_cpu_topology();
7147 ndoms_cur = 1;
7148 doms_cur = alloc_sched_domains(ndoms_cur);
7149 if (!doms_cur)
7150 doms_cur = &fallback_doms;
7151 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7152 err = build_sched_domains(doms_cur[0], NULL);
7153 register_sched_domain_sysctl();
7154
7155 return err;
7156 }
7157
7158 /*
7159 * Detach sched domains from a group of cpus specified in cpu_map
7160 * These cpus will now be attached to the NULL domain
7161 */
7162 static void detach_destroy_domains(const struct cpumask *cpu_map)
7163 {
7164 int i;
7165
7166 rcu_read_lock();
7167 for_each_cpu(i, cpu_map)
7168 cpu_attach_domain(NULL, &def_root_domain, i);
7169 rcu_read_unlock();
7170 }
7171
7172 /* handle null as "default" */
7173 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7174 struct sched_domain_attr *new, int idx_new)
7175 {
7176 struct sched_domain_attr tmp;
7177
7178 /* fast path */
7179 if (!new && !cur)
7180 return 1;
7181
7182 tmp = SD_ATTR_INIT;
7183 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7184 new ? (new + idx_new) : &tmp,
7185 sizeof(struct sched_domain_attr));
7186 }
7187
7188 /*
7189 * Partition sched domains as specified by the 'ndoms_new'
7190 * cpumasks in the array doms_new[] of cpumasks. This compares
7191 * doms_new[] to the current sched domain partitioning, doms_cur[].
7192 * It destroys each deleted domain and builds each new domain.
7193 *
7194 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7195 * The masks don't intersect (don't overlap.) We should setup one
7196 * sched domain for each mask. CPUs not in any of the cpumasks will
7197 * not be load balanced. If the same cpumask appears both in the
7198 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7199 * it as it is.
7200 *
7201 * The passed in 'doms_new' should be allocated using
7202 * alloc_sched_domains. This routine takes ownership of it and will
7203 * free_sched_domains it when done with it. If the caller failed the
7204 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7205 * and partition_sched_domains() will fallback to the single partition
7206 * 'fallback_doms', it also forces the domains to be rebuilt.
7207 *
7208 * If doms_new == NULL it will be replaced with cpu_online_mask.
7209 * ndoms_new == 0 is a special case for destroying existing domains,
7210 * and it will not create the default domain.
7211 *
7212 * Call with hotplug lock held
7213 */
7214 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7215 struct sched_domain_attr *dattr_new)
7216 {
7217 int i, j, n;
7218 int new_topology;
7219
7220 mutex_lock(&sched_domains_mutex);
7221
7222 /* always unregister in case we don't destroy any domains */
7223 unregister_sched_domain_sysctl();
7224
7225 /* Let architecture update cpu core mappings. */
7226 new_topology = arch_update_cpu_topology();
7227
7228 n = doms_new ? ndoms_new : 0;
7229
7230 /* Destroy deleted domains */
7231 for (i = 0; i < ndoms_cur; i++) {
7232 for (j = 0; j < n && !new_topology; j++) {
7233 if (cpumask_equal(doms_cur[i], doms_new[j])
7234 && dattrs_equal(dattr_cur, i, dattr_new, j))
7235 goto match1;
7236 }
7237 /* no match - a current sched domain not in new doms_new[] */
7238 detach_destroy_domains(doms_cur[i]);
7239 match1:
7240 ;
7241 }
7242
7243 n = ndoms_cur;
7244 if (doms_new == NULL) {
7245 n = 0;
7246 doms_new = &fallback_doms;
7247 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7248 WARN_ON_ONCE(dattr_new);
7249 }
7250
7251 /* Build new domains */
7252 for (i = 0; i < ndoms_new; i++) {
7253 for (j = 0; j < n && !new_topology; j++) {
7254 if (cpumask_equal(doms_new[i], doms_cur[j])
7255 && dattrs_equal(dattr_new, i, dattr_cur, j))
7256 goto match2;
7257 }
7258 /* no match - add a new doms_new */
7259 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7260 match2:
7261 ;
7262 }
7263
7264 /* Remember the new sched domains */
7265 if (doms_cur != &fallback_doms)
7266 free_sched_domains(doms_cur, ndoms_cur);
7267 kfree(dattr_cur); /* kfree(NULL) is safe */
7268 doms_cur = doms_new;
7269 dattr_cur = dattr_new;
7270 ndoms_cur = ndoms_new;
7271
7272 register_sched_domain_sysctl();
7273
7274 mutex_unlock(&sched_domains_mutex);
7275 }
7276
7277 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7278
7279 /*
7280 * Update cpusets according to cpu_active mask. If cpusets are
7281 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7282 * around partition_sched_domains().
7283 *
7284 * If we come here as part of a suspend/resume, don't touch cpusets because we
7285 * want to restore it back to its original state upon resume anyway.
7286 */
7287 static void cpuset_cpu_active(void)
7288 {
7289 if (cpuhp_tasks_frozen) {
7290 /*
7291 * num_cpus_frozen tracks how many CPUs are involved in suspend
7292 * resume sequence. As long as this is not the last online
7293 * operation in the resume sequence, just build a single sched
7294 * domain, ignoring cpusets.
7295 */
7296 num_cpus_frozen--;
7297 if (likely(num_cpus_frozen)) {
7298 partition_sched_domains(1, NULL, NULL);
7299 return;
7300 }
7301 /*
7302 * This is the last CPU online operation. So fall through and
7303 * restore the original sched domains by considering the
7304 * cpuset configurations.
7305 */
7306 }
7307 cpuset_update_active_cpus(true);
7308 }
7309
7310 static int cpuset_cpu_inactive(unsigned int cpu)
7311 {
7312 unsigned long flags;
7313 struct dl_bw *dl_b;
7314 bool overflow;
7315 int cpus;
7316
7317 if (!cpuhp_tasks_frozen) {
7318 rcu_read_lock_sched();
7319 dl_b = dl_bw_of(cpu);
7320
7321 raw_spin_lock_irqsave(&dl_b->lock, flags);
7322 cpus = dl_bw_cpus(cpu);
7323 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7324 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7325
7326 rcu_read_unlock_sched();
7327
7328 if (overflow)
7329 return -EBUSY;
7330 cpuset_update_active_cpus(false);
7331 } else {
7332 num_cpus_frozen++;
7333 partition_sched_domains(1, NULL, NULL);
7334 }
7335 return 0;
7336 }
7337
7338 int sched_cpu_activate(unsigned int cpu)
7339 {
7340 struct rq *rq = cpu_rq(cpu);
7341 unsigned long flags;
7342
7343 set_cpu_active(cpu, true);
7344
7345 if (sched_smp_initialized) {
7346 sched_domains_numa_masks_set(cpu);
7347 cpuset_cpu_active();
7348 }
7349
7350 /*
7351 * Put the rq online, if not already. This happens:
7352 *
7353 * 1) In the early boot process, because we build the real domains
7354 * after all cpus have been brought up.
7355 *
7356 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7357 * domains.
7358 */
7359 raw_spin_lock_irqsave(&rq->lock, flags);
7360 if (rq->rd) {
7361 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7362 set_rq_online(rq);
7363 }
7364 raw_spin_unlock_irqrestore(&rq->lock, flags);
7365
7366 update_max_interval();
7367
7368 return 0;
7369 }
7370
7371 int sched_cpu_deactivate(unsigned int cpu)
7372 {
7373 int ret;
7374
7375 set_cpu_active(cpu, false);
7376 /*
7377 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7378 * users of this state to go away such that all new such users will
7379 * observe it.
7380 *
7381 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7382 * not imply sync_sched(), so wait for both.
7383 *
7384 * Do sync before park smpboot threads to take care the rcu boost case.
7385 */
7386 if (IS_ENABLED(CONFIG_PREEMPT))
7387 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7388 else
7389 synchronize_rcu();
7390
7391 if (!sched_smp_initialized)
7392 return 0;
7393
7394 ret = cpuset_cpu_inactive(cpu);
7395 if (ret) {
7396 set_cpu_active(cpu, true);
7397 return ret;
7398 }
7399 sched_domains_numa_masks_clear(cpu);
7400 return 0;
7401 }
7402
7403 static void sched_rq_cpu_starting(unsigned int cpu)
7404 {
7405 struct rq *rq = cpu_rq(cpu);
7406
7407 rq->calc_load_update = calc_load_update;
7408 update_max_interval();
7409 }
7410
7411 int sched_cpu_starting(unsigned int cpu)
7412 {
7413 set_cpu_rq_start_time(cpu);
7414 sched_rq_cpu_starting(cpu);
7415 return 0;
7416 }
7417
7418 #ifdef CONFIG_HOTPLUG_CPU
7419 int sched_cpu_dying(unsigned int cpu)
7420 {
7421 struct rq *rq = cpu_rq(cpu);
7422 unsigned long flags;
7423
7424 /* Handle pending wakeups and then migrate everything off */
7425 sched_ttwu_pending();
7426 raw_spin_lock_irqsave(&rq->lock, flags);
7427 if (rq->rd) {
7428 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7429 set_rq_offline(rq);
7430 }
7431 migrate_tasks(rq);
7432 BUG_ON(rq->nr_running != 1);
7433 raw_spin_unlock_irqrestore(&rq->lock, flags);
7434 calc_load_migrate(rq);
7435 update_max_interval();
7436 nohz_balance_exit_idle(cpu);
7437 hrtick_clear(rq);
7438 return 0;
7439 }
7440 #endif
7441
7442 #ifdef CONFIG_SCHED_SMT
7443 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7444
7445 static void sched_init_smt(void)
7446 {
7447 /*
7448 * We've enumerated all CPUs and will assume that if any CPU
7449 * has SMT siblings, CPU0 will too.
7450 */
7451 if (cpumask_weight(cpu_smt_mask(0)) > 1)
7452 static_branch_enable(&sched_smt_present);
7453 }
7454 #else
7455 static inline void sched_init_smt(void) { }
7456 #endif
7457
7458 void __init sched_init_smp(void)
7459 {
7460 cpumask_var_t non_isolated_cpus;
7461
7462 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7463 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7464
7465 sched_init_numa();
7466
7467 /*
7468 * There's no userspace yet to cause hotplug operations; hence all the
7469 * cpu masks are stable and all blatant races in the below code cannot
7470 * happen.
7471 */
7472 mutex_lock(&sched_domains_mutex);
7473 init_sched_domains(cpu_active_mask);
7474 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7475 if (cpumask_empty(non_isolated_cpus))
7476 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7477 mutex_unlock(&sched_domains_mutex);
7478
7479 /* Move init over to a non-isolated CPU */
7480 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7481 BUG();
7482 sched_init_granularity();
7483 free_cpumask_var(non_isolated_cpus);
7484
7485 init_sched_rt_class();
7486 init_sched_dl_class();
7487
7488 sched_init_smt();
7489
7490 sched_smp_initialized = true;
7491 }
7492
7493 static int __init migration_init(void)
7494 {
7495 sched_rq_cpu_starting(smp_processor_id());
7496 return 0;
7497 }
7498 early_initcall(migration_init);
7499
7500 #else
7501 void __init sched_init_smp(void)
7502 {
7503 sched_init_granularity();
7504 }
7505 #endif /* CONFIG_SMP */
7506
7507 int in_sched_functions(unsigned long addr)
7508 {
7509 return in_lock_functions(addr) ||
7510 (addr >= (unsigned long)__sched_text_start
7511 && addr < (unsigned long)__sched_text_end);
7512 }
7513
7514 #ifdef CONFIG_CGROUP_SCHED
7515 /*
7516 * Default task group.
7517 * Every task in system belongs to this group at bootup.
7518 */
7519 struct task_group root_task_group;
7520 LIST_HEAD(task_groups);
7521
7522 /* Cacheline aligned slab cache for task_group */
7523 static struct kmem_cache *task_group_cache __read_mostly;
7524 #endif
7525
7526 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7527 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7528
7529 #define WAIT_TABLE_BITS 8
7530 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
7531 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
7532
7533 wait_queue_head_t *bit_waitqueue(void *word, int bit)
7534 {
7535 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
7536 unsigned long val = (unsigned long)word << shift | bit;
7537
7538 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
7539 }
7540 EXPORT_SYMBOL(bit_waitqueue);
7541
7542 void __init sched_init(void)
7543 {
7544 int i, j;
7545 unsigned long alloc_size = 0, ptr;
7546
7547 for (i = 0; i < WAIT_TABLE_SIZE; i++)
7548 init_waitqueue_head(bit_wait_table + i);
7549
7550 #ifdef CONFIG_FAIR_GROUP_SCHED
7551 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7552 #endif
7553 #ifdef CONFIG_RT_GROUP_SCHED
7554 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7555 #endif
7556 if (alloc_size) {
7557 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7558
7559 #ifdef CONFIG_FAIR_GROUP_SCHED
7560 root_task_group.se = (struct sched_entity **)ptr;
7561 ptr += nr_cpu_ids * sizeof(void **);
7562
7563 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7564 ptr += nr_cpu_ids * sizeof(void **);
7565
7566 #endif /* CONFIG_FAIR_GROUP_SCHED */
7567 #ifdef CONFIG_RT_GROUP_SCHED
7568 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7569 ptr += nr_cpu_ids * sizeof(void **);
7570
7571 root_task_group.rt_rq = (struct rt_rq **)ptr;
7572 ptr += nr_cpu_ids * sizeof(void **);
7573
7574 #endif /* CONFIG_RT_GROUP_SCHED */
7575 }
7576 #ifdef CONFIG_CPUMASK_OFFSTACK
7577 for_each_possible_cpu(i) {
7578 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7579 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7580 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7581 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7582 }
7583 #endif /* CONFIG_CPUMASK_OFFSTACK */
7584
7585 init_rt_bandwidth(&def_rt_bandwidth,
7586 global_rt_period(), global_rt_runtime());
7587 init_dl_bandwidth(&def_dl_bandwidth,
7588 global_rt_period(), global_rt_runtime());
7589
7590 #ifdef CONFIG_SMP
7591 init_defrootdomain();
7592 #endif
7593
7594 #ifdef CONFIG_RT_GROUP_SCHED
7595 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7596 global_rt_period(), global_rt_runtime());
7597 #endif /* CONFIG_RT_GROUP_SCHED */
7598
7599 #ifdef CONFIG_CGROUP_SCHED
7600 task_group_cache = KMEM_CACHE(task_group, 0);
7601
7602 list_add(&root_task_group.list, &task_groups);
7603 INIT_LIST_HEAD(&root_task_group.children);
7604 INIT_LIST_HEAD(&root_task_group.siblings);
7605 autogroup_init(&init_task);
7606 #endif /* CONFIG_CGROUP_SCHED */
7607
7608 for_each_possible_cpu(i) {
7609 struct rq *rq;
7610
7611 rq = cpu_rq(i);
7612 raw_spin_lock_init(&rq->lock);
7613 rq->nr_running = 0;
7614 rq->calc_load_active = 0;
7615 rq->calc_load_update = jiffies + LOAD_FREQ;
7616 init_cfs_rq(&rq->cfs);
7617 init_rt_rq(&rq->rt);
7618 init_dl_rq(&rq->dl);
7619 #ifdef CONFIG_FAIR_GROUP_SCHED
7620 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7621 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7622 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7623 /*
7624 * How much cpu bandwidth does root_task_group get?
7625 *
7626 * In case of task-groups formed thr' the cgroup filesystem, it
7627 * gets 100% of the cpu resources in the system. This overall
7628 * system cpu resource is divided among the tasks of
7629 * root_task_group and its child task-groups in a fair manner,
7630 * based on each entity's (task or task-group's) weight
7631 * (se->load.weight).
7632 *
7633 * In other words, if root_task_group has 10 tasks of weight
7634 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7635 * then A0's share of the cpu resource is:
7636 *
7637 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7638 *
7639 * We achieve this by letting root_task_group's tasks sit
7640 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7641 */
7642 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7643 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7644 #endif /* CONFIG_FAIR_GROUP_SCHED */
7645
7646 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7647 #ifdef CONFIG_RT_GROUP_SCHED
7648 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7649 #endif
7650
7651 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7652 rq->cpu_load[j] = 0;
7653
7654 #ifdef CONFIG_SMP
7655 rq->sd = NULL;
7656 rq->rd = NULL;
7657 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7658 rq->balance_callback = NULL;
7659 rq->active_balance = 0;
7660 rq->next_balance = jiffies;
7661 rq->push_cpu = 0;
7662 rq->cpu = i;
7663 rq->online = 0;
7664 rq->idle_stamp = 0;
7665 rq->avg_idle = 2*sysctl_sched_migration_cost;
7666 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7667
7668 INIT_LIST_HEAD(&rq->cfs_tasks);
7669
7670 rq_attach_root(rq, &def_root_domain);
7671 #ifdef CONFIG_NO_HZ_COMMON
7672 rq->last_load_update_tick = jiffies;
7673 rq->nohz_flags = 0;
7674 #endif
7675 #ifdef CONFIG_NO_HZ_FULL
7676 rq->last_sched_tick = 0;
7677 #endif
7678 #endif /* CONFIG_SMP */
7679 init_rq_hrtick(rq);
7680 atomic_set(&rq->nr_iowait, 0);
7681 }
7682
7683 set_load_weight(&init_task);
7684
7685 /*
7686 * The boot idle thread does lazy MMU switching as well:
7687 */
7688 atomic_inc(&init_mm.mm_count);
7689 enter_lazy_tlb(&init_mm, current);
7690
7691 /*
7692 * Make us the idle thread. Technically, schedule() should not be
7693 * called from this thread, however somewhere below it might be,
7694 * but because we are the idle thread, we just pick up running again
7695 * when this runqueue becomes "idle".
7696 */
7697 init_idle(current, smp_processor_id());
7698
7699 calc_load_update = jiffies + LOAD_FREQ;
7700
7701 #ifdef CONFIG_SMP
7702 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7703 /* May be allocated at isolcpus cmdline parse time */
7704 if (cpu_isolated_map == NULL)
7705 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7706 idle_thread_set_boot_cpu();
7707 set_cpu_rq_start_time(smp_processor_id());
7708 #endif
7709 init_sched_fair_class();
7710
7711 init_schedstats();
7712
7713 scheduler_running = 1;
7714 }
7715
7716 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7717 static inline int preempt_count_equals(int preempt_offset)
7718 {
7719 int nested = preempt_count() + rcu_preempt_depth();
7720
7721 return (nested == preempt_offset);
7722 }
7723
7724 void __might_sleep(const char *file, int line, int preempt_offset)
7725 {
7726 /*
7727 * Blocking primitives will set (and therefore destroy) current->state,
7728 * since we will exit with TASK_RUNNING make sure we enter with it,
7729 * otherwise we will destroy state.
7730 */
7731 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7732 "do not call blocking ops when !TASK_RUNNING; "
7733 "state=%lx set at [<%p>] %pS\n",
7734 current->state,
7735 (void *)current->task_state_change,
7736 (void *)current->task_state_change);
7737
7738 ___might_sleep(file, line, preempt_offset);
7739 }
7740 EXPORT_SYMBOL(__might_sleep);
7741
7742 void ___might_sleep(const char *file, int line, int preempt_offset)
7743 {
7744 static unsigned long prev_jiffy; /* ratelimiting */
7745 unsigned long preempt_disable_ip;
7746
7747 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7748 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7749 !is_idle_task(current)) ||
7750 system_state != SYSTEM_RUNNING || oops_in_progress)
7751 return;
7752 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7753 return;
7754 prev_jiffy = jiffies;
7755
7756 /* Save this before calling printk(), since that will clobber it */
7757 preempt_disable_ip = get_preempt_disable_ip(current);
7758
7759 printk(KERN_ERR
7760 "BUG: sleeping function called from invalid context at %s:%d\n",
7761 file, line);
7762 printk(KERN_ERR
7763 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7764 in_atomic(), irqs_disabled(),
7765 current->pid, current->comm);
7766
7767 if (task_stack_end_corrupted(current))
7768 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7769
7770 debug_show_held_locks(current);
7771 if (irqs_disabled())
7772 print_irqtrace_events(current);
7773 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7774 && !preempt_count_equals(preempt_offset)) {
7775 pr_err("Preemption disabled at:");
7776 print_ip_sym(preempt_disable_ip);
7777 pr_cont("\n");
7778 }
7779 dump_stack();
7780 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7781 }
7782 EXPORT_SYMBOL(___might_sleep);
7783 #endif
7784
7785 #ifdef CONFIG_MAGIC_SYSRQ
7786 void normalize_rt_tasks(void)
7787 {
7788 struct task_struct *g, *p;
7789 struct sched_attr attr = {
7790 .sched_policy = SCHED_NORMAL,
7791 };
7792
7793 read_lock(&tasklist_lock);
7794 for_each_process_thread(g, p) {
7795 /*
7796 * Only normalize user tasks:
7797 */
7798 if (p->flags & PF_KTHREAD)
7799 continue;
7800
7801 p->se.exec_start = 0;
7802 schedstat_set(p->se.statistics.wait_start, 0);
7803 schedstat_set(p->se.statistics.sleep_start, 0);
7804 schedstat_set(p->se.statistics.block_start, 0);
7805
7806 if (!dl_task(p) && !rt_task(p)) {
7807 /*
7808 * Renice negative nice level userspace
7809 * tasks back to 0:
7810 */
7811 if (task_nice(p) < 0)
7812 set_user_nice(p, 0);
7813 continue;
7814 }
7815
7816 __sched_setscheduler(p, &attr, false, false);
7817 }
7818 read_unlock(&tasklist_lock);
7819 }
7820
7821 #endif /* CONFIG_MAGIC_SYSRQ */
7822
7823 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7824 /*
7825 * These functions are only useful for the IA64 MCA handling, or kdb.
7826 *
7827 * They can only be called when the whole system has been
7828 * stopped - every CPU needs to be quiescent, and no scheduling
7829 * activity can take place. Using them for anything else would
7830 * be a serious bug, and as a result, they aren't even visible
7831 * under any other configuration.
7832 */
7833
7834 /**
7835 * curr_task - return the current task for a given cpu.
7836 * @cpu: the processor in question.
7837 *
7838 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7839 *
7840 * Return: The current task for @cpu.
7841 */
7842 struct task_struct *curr_task(int cpu)
7843 {
7844 return cpu_curr(cpu);
7845 }
7846
7847 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7848
7849 #ifdef CONFIG_IA64
7850 /**
7851 * set_curr_task - set the current task for a given cpu.
7852 * @cpu: the processor in question.
7853 * @p: the task pointer to set.
7854 *
7855 * Description: This function must only be used when non-maskable interrupts
7856 * are serviced on a separate stack. It allows the architecture to switch the
7857 * notion of the current task on a cpu in a non-blocking manner. This function
7858 * must be called with all CPU's synchronized, and interrupts disabled, the
7859 * and caller must save the original value of the current task (see
7860 * curr_task() above) and restore that value before reenabling interrupts and
7861 * re-starting the system.
7862 *
7863 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7864 */
7865 void ia64_set_curr_task(int cpu, struct task_struct *p)
7866 {
7867 cpu_curr(cpu) = p;
7868 }
7869
7870 #endif
7871
7872 #ifdef CONFIG_CGROUP_SCHED
7873 /* task_group_lock serializes the addition/removal of task groups */
7874 static DEFINE_SPINLOCK(task_group_lock);
7875
7876 static void sched_free_group(struct task_group *tg)
7877 {
7878 free_fair_sched_group(tg);
7879 free_rt_sched_group(tg);
7880 autogroup_free(tg);
7881 kmem_cache_free(task_group_cache, tg);
7882 }
7883
7884 /* allocate runqueue etc for a new task group */
7885 struct task_group *sched_create_group(struct task_group *parent)
7886 {
7887 struct task_group *tg;
7888
7889 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7890 if (!tg)
7891 return ERR_PTR(-ENOMEM);
7892
7893 if (!alloc_fair_sched_group(tg, parent))
7894 goto err;
7895
7896 if (!alloc_rt_sched_group(tg, parent))
7897 goto err;
7898
7899 return tg;
7900
7901 err:
7902 sched_free_group(tg);
7903 return ERR_PTR(-ENOMEM);
7904 }
7905
7906 void sched_online_group(struct task_group *tg, struct task_group *parent)
7907 {
7908 unsigned long flags;
7909
7910 spin_lock_irqsave(&task_group_lock, flags);
7911 list_add_rcu(&tg->list, &task_groups);
7912
7913 WARN_ON(!parent); /* root should already exist */
7914
7915 tg->parent = parent;
7916 INIT_LIST_HEAD(&tg->children);
7917 list_add_rcu(&tg->siblings, &parent->children);
7918 spin_unlock_irqrestore(&task_group_lock, flags);
7919
7920 online_fair_sched_group(tg);
7921 }
7922
7923 /* rcu callback to free various structures associated with a task group */
7924 static void sched_free_group_rcu(struct rcu_head *rhp)
7925 {
7926 /* now it should be safe to free those cfs_rqs */
7927 sched_free_group(container_of(rhp, struct task_group, rcu));
7928 }
7929
7930 void sched_destroy_group(struct task_group *tg)
7931 {
7932 /* wait for possible concurrent references to cfs_rqs complete */
7933 call_rcu(&tg->rcu, sched_free_group_rcu);
7934 }
7935
7936 void sched_offline_group(struct task_group *tg)
7937 {
7938 unsigned long flags;
7939
7940 /* end participation in shares distribution */
7941 unregister_fair_sched_group(tg);
7942
7943 spin_lock_irqsave(&task_group_lock, flags);
7944 list_del_rcu(&tg->list);
7945 list_del_rcu(&tg->siblings);
7946 spin_unlock_irqrestore(&task_group_lock, flags);
7947 }
7948
7949 static void sched_change_group(struct task_struct *tsk, int type)
7950 {
7951 struct task_group *tg;
7952
7953 /*
7954 * All callers are synchronized by task_rq_lock(); we do not use RCU
7955 * which is pointless here. Thus, we pass "true" to task_css_check()
7956 * to prevent lockdep warnings.
7957 */
7958 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7959 struct task_group, css);
7960 tg = autogroup_task_group(tsk, tg);
7961 tsk->sched_task_group = tg;
7962
7963 #ifdef CONFIG_FAIR_GROUP_SCHED
7964 if (tsk->sched_class->task_change_group)
7965 tsk->sched_class->task_change_group(tsk, type);
7966 else
7967 #endif
7968 set_task_rq(tsk, task_cpu(tsk));
7969 }
7970
7971 /*
7972 * Change task's runqueue when it moves between groups.
7973 *
7974 * The caller of this function should have put the task in its new group by
7975 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7976 * its new group.
7977 */
7978 void sched_move_task(struct task_struct *tsk)
7979 {
7980 int queued, running;
7981 struct rq_flags rf;
7982 struct rq *rq;
7983
7984 rq = task_rq_lock(tsk, &rf);
7985
7986 running = task_current(rq, tsk);
7987 queued = task_on_rq_queued(tsk);
7988
7989 if (queued)
7990 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7991 if (unlikely(running))
7992 put_prev_task(rq, tsk);
7993
7994 sched_change_group(tsk, TASK_MOVE_GROUP);
7995
7996 if (queued)
7997 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7998 if (unlikely(running))
7999 set_curr_task(rq, tsk);
8000
8001 task_rq_unlock(rq, tsk, &rf);
8002 }
8003 #endif /* CONFIG_CGROUP_SCHED */
8004
8005 #ifdef CONFIG_RT_GROUP_SCHED
8006 /*
8007 * Ensure that the real time constraints are schedulable.
8008 */
8009 static DEFINE_MUTEX(rt_constraints_mutex);
8010
8011 /* Must be called with tasklist_lock held */
8012 static inline int tg_has_rt_tasks(struct task_group *tg)
8013 {
8014 struct task_struct *g, *p;
8015
8016 /*
8017 * Autogroups do not have RT tasks; see autogroup_create().
8018 */
8019 if (task_group_is_autogroup(tg))
8020 return 0;
8021
8022 for_each_process_thread(g, p) {
8023 if (rt_task(p) && task_group(p) == tg)
8024 return 1;
8025 }
8026
8027 return 0;
8028 }
8029
8030 struct rt_schedulable_data {
8031 struct task_group *tg;
8032 u64 rt_period;
8033 u64 rt_runtime;
8034 };
8035
8036 static int tg_rt_schedulable(struct task_group *tg, void *data)
8037 {
8038 struct rt_schedulable_data *d = data;
8039 struct task_group *child;
8040 unsigned long total, sum = 0;
8041 u64 period, runtime;
8042
8043 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8044 runtime = tg->rt_bandwidth.rt_runtime;
8045
8046 if (tg == d->tg) {
8047 period = d->rt_period;
8048 runtime = d->rt_runtime;
8049 }
8050
8051 /*
8052 * Cannot have more runtime than the period.
8053 */
8054 if (runtime > period && runtime != RUNTIME_INF)
8055 return -EINVAL;
8056
8057 /*
8058 * Ensure we don't starve existing RT tasks.
8059 */
8060 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8061 return -EBUSY;
8062
8063 total = to_ratio(period, runtime);
8064
8065 /*
8066 * Nobody can have more than the global setting allows.
8067 */
8068 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8069 return -EINVAL;
8070
8071 /*
8072 * The sum of our children's runtime should not exceed our own.
8073 */
8074 list_for_each_entry_rcu(child, &tg->children, siblings) {
8075 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8076 runtime = child->rt_bandwidth.rt_runtime;
8077
8078 if (child == d->tg) {
8079 period = d->rt_period;
8080 runtime = d->rt_runtime;
8081 }
8082
8083 sum += to_ratio(period, runtime);
8084 }
8085
8086 if (sum > total)
8087 return -EINVAL;
8088
8089 return 0;
8090 }
8091
8092 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8093 {
8094 int ret;
8095
8096 struct rt_schedulable_data data = {
8097 .tg = tg,
8098 .rt_period = period,
8099 .rt_runtime = runtime,
8100 };
8101
8102 rcu_read_lock();
8103 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8104 rcu_read_unlock();
8105
8106 return ret;
8107 }
8108
8109 static int tg_set_rt_bandwidth(struct task_group *tg,
8110 u64 rt_period, u64 rt_runtime)
8111 {
8112 int i, err = 0;
8113
8114 /*
8115 * Disallowing the root group RT runtime is BAD, it would disallow the
8116 * kernel creating (and or operating) RT threads.
8117 */
8118 if (tg == &root_task_group && rt_runtime == 0)
8119 return -EINVAL;
8120
8121 /* No period doesn't make any sense. */
8122 if (rt_period == 0)
8123 return -EINVAL;
8124
8125 mutex_lock(&rt_constraints_mutex);
8126 read_lock(&tasklist_lock);
8127 err = __rt_schedulable(tg, rt_period, rt_runtime);
8128 if (err)
8129 goto unlock;
8130
8131 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8132 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8133 tg->rt_bandwidth.rt_runtime = rt_runtime;
8134
8135 for_each_possible_cpu(i) {
8136 struct rt_rq *rt_rq = tg->rt_rq[i];
8137
8138 raw_spin_lock(&rt_rq->rt_runtime_lock);
8139 rt_rq->rt_runtime = rt_runtime;
8140 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8141 }
8142 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8143 unlock:
8144 read_unlock(&tasklist_lock);
8145 mutex_unlock(&rt_constraints_mutex);
8146
8147 return err;
8148 }
8149
8150 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8151 {
8152 u64 rt_runtime, rt_period;
8153
8154 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8155 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8156 if (rt_runtime_us < 0)
8157 rt_runtime = RUNTIME_INF;
8158
8159 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8160 }
8161
8162 static long sched_group_rt_runtime(struct task_group *tg)
8163 {
8164 u64 rt_runtime_us;
8165
8166 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8167 return -1;
8168
8169 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8170 do_div(rt_runtime_us, NSEC_PER_USEC);
8171 return rt_runtime_us;
8172 }
8173
8174 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8175 {
8176 u64 rt_runtime, rt_period;
8177
8178 rt_period = rt_period_us * NSEC_PER_USEC;
8179 rt_runtime = tg->rt_bandwidth.rt_runtime;
8180
8181 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8182 }
8183
8184 static long sched_group_rt_period(struct task_group *tg)
8185 {
8186 u64 rt_period_us;
8187
8188 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8189 do_div(rt_period_us, NSEC_PER_USEC);
8190 return rt_period_us;
8191 }
8192 #endif /* CONFIG_RT_GROUP_SCHED */
8193
8194 #ifdef CONFIG_RT_GROUP_SCHED
8195 static int sched_rt_global_constraints(void)
8196 {
8197 int ret = 0;
8198
8199 mutex_lock(&rt_constraints_mutex);
8200 read_lock(&tasklist_lock);
8201 ret = __rt_schedulable(NULL, 0, 0);
8202 read_unlock(&tasklist_lock);
8203 mutex_unlock(&rt_constraints_mutex);
8204
8205 return ret;
8206 }
8207
8208 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8209 {
8210 /* Don't accept realtime tasks when there is no way for them to run */
8211 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8212 return 0;
8213
8214 return 1;
8215 }
8216
8217 #else /* !CONFIG_RT_GROUP_SCHED */
8218 static int sched_rt_global_constraints(void)
8219 {
8220 unsigned long flags;
8221 int i;
8222
8223 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8224 for_each_possible_cpu(i) {
8225 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8226
8227 raw_spin_lock(&rt_rq->rt_runtime_lock);
8228 rt_rq->rt_runtime = global_rt_runtime();
8229 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8230 }
8231 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8232
8233 return 0;
8234 }
8235 #endif /* CONFIG_RT_GROUP_SCHED */
8236
8237 static int sched_dl_global_validate(void)
8238 {
8239 u64 runtime = global_rt_runtime();
8240 u64 period = global_rt_period();
8241 u64 new_bw = to_ratio(period, runtime);
8242 struct dl_bw *dl_b;
8243 int cpu, ret = 0;
8244 unsigned long flags;
8245
8246 /*
8247 * Here we want to check the bandwidth not being set to some
8248 * value smaller than the currently allocated bandwidth in
8249 * any of the root_domains.
8250 *
8251 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8252 * cycling on root_domains... Discussion on different/better
8253 * solutions is welcome!
8254 */
8255 for_each_possible_cpu(cpu) {
8256 rcu_read_lock_sched();
8257 dl_b = dl_bw_of(cpu);
8258
8259 raw_spin_lock_irqsave(&dl_b->lock, flags);
8260 if (new_bw < dl_b->total_bw)
8261 ret = -EBUSY;
8262 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8263
8264 rcu_read_unlock_sched();
8265
8266 if (ret)
8267 break;
8268 }
8269
8270 return ret;
8271 }
8272
8273 static void sched_dl_do_global(void)
8274 {
8275 u64 new_bw = -1;
8276 struct dl_bw *dl_b;
8277 int cpu;
8278 unsigned long flags;
8279
8280 def_dl_bandwidth.dl_period = global_rt_period();
8281 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8282
8283 if (global_rt_runtime() != RUNTIME_INF)
8284 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8285
8286 /*
8287 * FIXME: As above...
8288 */
8289 for_each_possible_cpu(cpu) {
8290 rcu_read_lock_sched();
8291 dl_b = dl_bw_of(cpu);
8292
8293 raw_spin_lock_irqsave(&dl_b->lock, flags);
8294 dl_b->bw = new_bw;
8295 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8296
8297 rcu_read_unlock_sched();
8298 }
8299 }
8300
8301 static int sched_rt_global_validate(void)
8302 {
8303 if (sysctl_sched_rt_period <= 0)
8304 return -EINVAL;
8305
8306 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8307 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8308 return -EINVAL;
8309
8310 return 0;
8311 }
8312
8313 static void sched_rt_do_global(void)
8314 {
8315 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8316 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8317 }
8318
8319 int sched_rt_handler(struct ctl_table *table, int write,
8320 void __user *buffer, size_t *lenp,
8321 loff_t *ppos)
8322 {
8323 int old_period, old_runtime;
8324 static DEFINE_MUTEX(mutex);
8325 int ret;
8326
8327 mutex_lock(&mutex);
8328 old_period = sysctl_sched_rt_period;
8329 old_runtime = sysctl_sched_rt_runtime;
8330
8331 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8332
8333 if (!ret && write) {
8334 ret = sched_rt_global_validate();
8335 if (ret)
8336 goto undo;
8337
8338 ret = sched_dl_global_validate();
8339 if (ret)
8340 goto undo;
8341
8342 ret = sched_rt_global_constraints();
8343 if (ret)
8344 goto undo;
8345
8346 sched_rt_do_global();
8347 sched_dl_do_global();
8348 }
8349 if (0) {
8350 undo:
8351 sysctl_sched_rt_period = old_period;
8352 sysctl_sched_rt_runtime = old_runtime;
8353 }
8354 mutex_unlock(&mutex);
8355
8356 return ret;
8357 }
8358
8359 int sched_rr_handler(struct ctl_table *table, int write,
8360 void __user *buffer, size_t *lenp,
8361 loff_t *ppos)
8362 {
8363 int ret;
8364 static DEFINE_MUTEX(mutex);
8365
8366 mutex_lock(&mutex);
8367 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8368 /* make sure that internally we keep jiffies */
8369 /* also, writing zero resets timeslice to default */
8370 if (!ret && write) {
8371 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8372 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8373 }
8374 mutex_unlock(&mutex);
8375 return ret;
8376 }
8377
8378 #ifdef CONFIG_CGROUP_SCHED
8379
8380 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8381 {
8382 return css ? container_of(css, struct task_group, css) : NULL;
8383 }
8384
8385 static struct cgroup_subsys_state *
8386 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8387 {
8388 struct task_group *parent = css_tg(parent_css);
8389 struct task_group *tg;
8390
8391 if (!parent) {
8392 /* This is early initialization for the top cgroup */
8393 return &root_task_group.css;
8394 }
8395
8396 tg = sched_create_group(parent);
8397 if (IS_ERR(tg))
8398 return ERR_PTR(-ENOMEM);
8399
8400 sched_online_group(tg, parent);
8401
8402 return &tg->css;
8403 }
8404
8405 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8406 {
8407 struct task_group *tg = css_tg(css);
8408
8409 sched_offline_group(tg);
8410 }
8411
8412 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8413 {
8414 struct task_group *tg = css_tg(css);
8415
8416 /*
8417 * Relies on the RCU grace period between css_released() and this.
8418 */
8419 sched_free_group(tg);
8420 }
8421
8422 /*
8423 * This is called before wake_up_new_task(), therefore we really only
8424 * have to set its group bits, all the other stuff does not apply.
8425 */
8426 static void cpu_cgroup_fork(struct task_struct *task)
8427 {
8428 struct rq_flags rf;
8429 struct rq *rq;
8430
8431 rq = task_rq_lock(task, &rf);
8432
8433 sched_change_group(task, TASK_SET_GROUP);
8434
8435 task_rq_unlock(rq, task, &rf);
8436 }
8437
8438 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8439 {
8440 struct task_struct *task;
8441 struct cgroup_subsys_state *css;
8442 int ret = 0;
8443
8444 cgroup_taskset_for_each(task, css, tset) {
8445 #ifdef CONFIG_RT_GROUP_SCHED
8446 if (!sched_rt_can_attach(css_tg(css), task))
8447 return -EINVAL;
8448 #else
8449 /* We don't support RT-tasks being in separate groups */
8450 if (task->sched_class != &fair_sched_class)
8451 return -EINVAL;
8452 #endif
8453 /*
8454 * Serialize against wake_up_new_task() such that if its
8455 * running, we're sure to observe its full state.
8456 */
8457 raw_spin_lock_irq(&task->pi_lock);
8458 /*
8459 * Avoid calling sched_move_task() before wake_up_new_task()
8460 * has happened. This would lead to problems with PELT, due to
8461 * move wanting to detach+attach while we're not attached yet.
8462 */
8463 if (task->state == TASK_NEW)
8464 ret = -EINVAL;
8465 raw_spin_unlock_irq(&task->pi_lock);
8466
8467 if (ret)
8468 break;
8469 }
8470 return ret;
8471 }
8472
8473 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8474 {
8475 struct task_struct *task;
8476 struct cgroup_subsys_state *css;
8477
8478 cgroup_taskset_for_each(task, css, tset)
8479 sched_move_task(task);
8480 }
8481
8482 #ifdef CONFIG_FAIR_GROUP_SCHED
8483 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8484 struct cftype *cftype, u64 shareval)
8485 {
8486 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8487 }
8488
8489 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8490 struct cftype *cft)
8491 {
8492 struct task_group *tg = css_tg(css);
8493
8494 return (u64) scale_load_down(tg->shares);
8495 }
8496
8497 #ifdef CONFIG_CFS_BANDWIDTH
8498 static DEFINE_MUTEX(cfs_constraints_mutex);
8499
8500 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8501 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8502
8503 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8504
8505 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8506 {
8507 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8508 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8509
8510 if (tg == &root_task_group)
8511 return -EINVAL;
8512
8513 /*
8514 * Ensure we have at some amount of bandwidth every period. This is
8515 * to prevent reaching a state of large arrears when throttled via
8516 * entity_tick() resulting in prolonged exit starvation.
8517 */
8518 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8519 return -EINVAL;
8520
8521 /*
8522 * Likewise, bound things on the otherside by preventing insane quota
8523 * periods. This also allows us to normalize in computing quota
8524 * feasibility.
8525 */
8526 if (period > max_cfs_quota_period)
8527 return -EINVAL;
8528
8529 /*
8530 * Prevent race between setting of cfs_rq->runtime_enabled and
8531 * unthrottle_offline_cfs_rqs().
8532 */
8533 get_online_cpus();
8534 mutex_lock(&cfs_constraints_mutex);
8535 ret = __cfs_schedulable(tg, period, quota);
8536 if (ret)
8537 goto out_unlock;
8538
8539 runtime_enabled = quota != RUNTIME_INF;
8540 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8541 /*
8542 * If we need to toggle cfs_bandwidth_used, off->on must occur
8543 * before making related changes, and on->off must occur afterwards
8544 */
8545 if (runtime_enabled && !runtime_was_enabled)
8546 cfs_bandwidth_usage_inc();
8547 raw_spin_lock_irq(&cfs_b->lock);
8548 cfs_b->period = ns_to_ktime(period);
8549 cfs_b->quota = quota;
8550
8551 __refill_cfs_bandwidth_runtime(cfs_b);
8552 /* restart the period timer (if active) to handle new period expiry */
8553 if (runtime_enabled)
8554 start_cfs_bandwidth(cfs_b);
8555 raw_spin_unlock_irq(&cfs_b->lock);
8556
8557 for_each_online_cpu(i) {
8558 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8559 struct rq *rq = cfs_rq->rq;
8560
8561 raw_spin_lock_irq(&rq->lock);
8562 cfs_rq->runtime_enabled = runtime_enabled;
8563 cfs_rq->runtime_remaining = 0;
8564
8565 if (cfs_rq->throttled)
8566 unthrottle_cfs_rq(cfs_rq);
8567 raw_spin_unlock_irq(&rq->lock);
8568 }
8569 if (runtime_was_enabled && !runtime_enabled)
8570 cfs_bandwidth_usage_dec();
8571 out_unlock:
8572 mutex_unlock(&cfs_constraints_mutex);
8573 put_online_cpus();
8574
8575 return ret;
8576 }
8577
8578 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8579 {
8580 u64 quota, period;
8581
8582 period = ktime_to_ns(tg->cfs_bandwidth.period);
8583 if (cfs_quota_us < 0)
8584 quota = RUNTIME_INF;
8585 else
8586 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8587
8588 return tg_set_cfs_bandwidth(tg, period, quota);
8589 }
8590
8591 long tg_get_cfs_quota(struct task_group *tg)
8592 {
8593 u64 quota_us;
8594
8595 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8596 return -1;
8597
8598 quota_us = tg->cfs_bandwidth.quota;
8599 do_div(quota_us, NSEC_PER_USEC);
8600
8601 return quota_us;
8602 }
8603
8604 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8605 {
8606 u64 quota, period;
8607
8608 period = (u64)cfs_period_us * NSEC_PER_USEC;
8609 quota = tg->cfs_bandwidth.quota;
8610
8611 return tg_set_cfs_bandwidth(tg, period, quota);
8612 }
8613
8614 long tg_get_cfs_period(struct task_group *tg)
8615 {
8616 u64 cfs_period_us;
8617
8618 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8619 do_div(cfs_period_us, NSEC_PER_USEC);
8620
8621 return cfs_period_us;
8622 }
8623
8624 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8625 struct cftype *cft)
8626 {
8627 return tg_get_cfs_quota(css_tg(css));
8628 }
8629
8630 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8631 struct cftype *cftype, s64 cfs_quota_us)
8632 {
8633 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8634 }
8635
8636 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8637 struct cftype *cft)
8638 {
8639 return tg_get_cfs_period(css_tg(css));
8640 }
8641
8642 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8643 struct cftype *cftype, u64 cfs_period_us)
8644 {
8645 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8646 }
8647
8648 struct cfs_schedulable_data {
8649 struct task_group *tg;
8650 u64 period, quota;
8651 };
8652
8653 /*
8654 * normalize group quota/period to be quota/max_period
8655 * note: units are usecs
8656 */
8657 static u64 normalize_cfs_quota(struct task_group *tg,
8658 struct cfs_schedulable_data *d)
8659 {
8660 u64 quota, period;
8661
8662 if (tg == d->tg) {
8663 period = d->period;
8664 quota = d->quota;
8665 } else {
8666 period = tg_get_cfs_period(tg);
8667 quota = tg_get_cfs_quota(tg);
8668 }
8669
8670 /* note: these should typically be equivalent */
8671 if (quota == RUNTIME_INF || quota == -1)
8672 return RUNTIME_INF;
8673
8674 return to_ratio(period, quota);
8675 }
8676
8677 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8678 {
8679 struct cfs_schedulable_data *d = data;
8680 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8681 s64 quota = 0, parent_quota = -1;
8682
8683 if (!tg->parent) {
8684 quota = RUNTIME_INF;
8685 } else {
8686 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8687
8688 quota = normalize_cfs_quota(tg, d);
8689 parent_quota = parent_b->hierarchical_quota;
8690
8691 /*
8692 * ensure max(child_quota) <= parent_quota, inherit when no
8693 * limit is set
8694 */
8695 if (quota == RUNTIME_INF)
8696 quota = parent_quota;
8697 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8698 return -EINVAL;
8699 }
8700 cfs_b->hierarchical_quota = quota;
8701
8702 return 0;
8703 }
8704
8705 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8706 {
8707 int ret;
8708 struct cfs_schedulable_data data = {
8709 .tg = tg,
8710 .period = period,
8711 .quota = quota,
8712 };
8713
8714 if (quota != RUNTIME_INF) {
8715 do_div(data.period, NSEC_PER_USEC);
8716 do_div(data.quota, NSEC_PER_USEC);
8717 }
8718
8719 rcu_read_lock();
8720 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8721 rcu_read_unlock();
8722
8723 return ret;
8724 }
8725
8726 static int cpu_stats_show(struct seq_file *sf, void *v)
8727 {
8728 struct task_group *tg = css_tg(seq_css(sf));
8729 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8730
8731 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8732 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8733 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8734
8735 return 0;
8736 }
8737 #endif /* CONFIG_CFS_BANDWIDTH */
8738 #endif /* CONFIG_FAIR_GROUP_SCHED */
8739
8740 #ifdef CONFIG_RT_GROUP_SCHED
8741 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8742 struct cftype *cft, s64 val)
8743 {
8744 return sched_group_set_rt_runtime(css_tg(css), val);
8745 }
8746
8747 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8748 struct cftype *cft)
8749 {
8750 return sched_group_rt_runtime(css_tg(css));
8751 }
8752
8753 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8754 struct cftype *cftype, u64 rt_period_us)
8755 {
8756 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8757 }
8758
8759 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8760 struct cftype *cft)
8761 {
8762 return sched_group_rt_period(css_tg(css));
8763 }
8764 #endif /* CONFIG_RT_GROUP_SCHED */
8765
8766 static struct cftype cpu_files[] = {
8767 #ifdef CONFIG_FAIR_GROUP_SCHED
8768 {
8769 .name = "shares",
8770 .read_u64 = cpu_shares_read_u64,
8771 .write_u64 = cpu_shares_write_u64,
8772 },
8773 #endif
8774 #ifdef CONFIG_CFS_BANDWIDTH
8775 {
8776 .name = "cfs_quota_us",
8777 .read_s64 = cpu_cfs_quota_read_s64,
8778 .write_s64 = cpu_cfs_quota_write_s64,
8779 },
8780 {
8781 .name = "cfs_period_us",
8782 .read_u64 = cpu_cfs_period_read_u64,
8783 .write_u64 = cpu_cfs_period_write_u64,
8784 },
8785 {
8786 .name = "stat",
8787 .seq_show = cpu_stats_show,
8788 },
8789 #endif
8790 #ifdef CONFIG_RT_GROUP_SCHED
8791 {
8792 .name = "rt_runtime_us",
8793 .read_s64 = cpu_rt_runtime_read,
8794 .write_s64 = cpu_rt_runtime_write,
8795 },
8796 {
8797 .name = "rt_period_us",
8798 .read_u64 = cpu_rt_period_read_uint,
8799 .write_u64 = cpu_rt_period_write_uint,
8800 },
8801 #endif
8802 { } /* terminate */
8803 };
8804
8805 struct cgroup_subsys cpu_cgrp_subsys = {
8806 .css_alloc = cpu_cgroup_css_alloc,
8807 .css_released = cpu_cgroup_css_released,
8808 .css_free = cpu_cgroup_css_free,
8809 .fork = cpu_cgroup_fork,
8810 .can_attach = cpu_cgroup_can_attach,
8811 .attach = cpu_cgroup_attach,
8812 .legacy_cftypes = cpu_files,
8813 .early_init = true,
8814 };
8815
8816 #endif /* CONFIG_CGROUP_SCHED */
8817
8818 void dump_cpu_task(int cpu)
8819 {
8820 pr_info("Task dump for CPU %d:\n", cpu);
8821 sched_show_task(cpu_curr(cpu));
8822 }
8823
8824 /*
8825 * Nice levels are multiplicative, with a gentle 10% change for every
8826 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8827 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8828 * that remained on nice 0.
8829 *
8830 * The "10% effect" is relative and cumulative: from _any_ nice level,
8831 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8832 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8833 * If a task goes up by ~10% and another task goes down by ~10% then
8834 * the relative distance between them is ~25%.)
8835 */
8836 const int sched_prio_to_weight[40] = {
8837 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8838 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8839 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8840 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8841 /* 0 */ 1024, 820, 655, 526, 423,
8842 /* 5 */ 335, 272, 215, 172, 137,
8843 /* 10 */ 110, 87, 70, 56, 45,
8844 /* 15 */ 36, 29, 23, 18, 15,
8845 };
8846
8847 /*
8848 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8849 *
8850 * In cases where the weight does not change often, we can use the
8851 * precalculated inverse to speed up arithmetics by turning divisions
8852 * into multiplications:
8853 */
8854 const u32 sched_prio_to_wmult[40] = {
8855 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8856 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8857 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8858 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8859 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8860 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8861 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8862 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8863 };