]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched/core.c
sched/uclamp: Fix rq->uclamp_max not set on first enqueue
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12
13 #include "sched.h"
14
15 #include <linux/nospec.h>
16
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26
27 #include "pelt.h"
28 #include "smp.h"
29
30 /*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49 * Debugging: various feature bits
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
54 */
55 #define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 0;
60 #undef SCHED_FEAT
61
62 /*
63 * Print a warning if need_resched is set for the given duration (if
64 * LATENCY_WARN is enabled).
65 *
66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
67 * per boot.
68 */
69 __read_mostly int sysctl_resched_latency_warn_ms = 100;
70 __read_mostly int sysctl_resched_latency_warn_once = 1;
71 #endif /* CONFIG_SCHED_DEBUG */
72
73 /*
74 * Number of tasks to iterate in a single balance run.
75 * Limited because this is done with IRQs disabled.
76 */
77 const_debug unsigned int sysctl_sched_nr_migrate = 32;
78
79 /*
80 * period over which we measure -rt task CPU usage in us.
81 * default: 1s
82 */
83 unsigned int sysctl_sched_rt_period = 1000000;
84
85 __read_mostly int scheduler_running;
86
87 #ifdef CONFIG_SCHED_CORE
88
89 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
90
91 /* kernel prio, less is more */
92 static inline int __task_prio(struct task_struct *p)
93 {
94 if (p->sched_class == &stop_sched_class) /* trumps deadline */
95 return -2;
96
97 if (rt_prio(p->prio)) /* includes deadline */
98 return p->prio; /* [-1, 99] */
99
100 if (p->sched_class == &idle_sched_class)
101 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
102
103 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
104 }
105
106 /*
107 * l(a,b)
108 * le(a,b) := !l(b,a)
109 * g(a,b) := l(b,a)
110 * ge(a,b) := !l(a,b)
111 */
112
113 /* real prio, less is less */
114 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
115 {
116
117 int pa = __task_prio(a), pb = __task_prio(b);
118
119 if (-pa < -pb)
120 return true;
121
122 if (-pb < -pa)
123 return false;
124
125 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
126 return !dl_time_before(a->dl.deadline, b->dl.deadline);
127
128 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
129 return cfs_prio_less(a, b, in_fi);
130
131 return false;
132 }
133
134 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
135 {
136 if (a->core_cookie < b->core_cookie)
137 return true;
138
139 if (a->core_cookie > b->core_cookie)
140 return false;
141
142 /* flip prio, so high prio is leftmost */
143 if (prio_less(b, a, task_rq(a)->core->core_forceidle))
144 return true;
145
146 return false;
147 }
148
149 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
150
151 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
152 {
153 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
154 }
155
156 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
157 {
158 const struct task_struct *p = __node_2_sc(node);
159 unsigned long cookie = (unsigned long)key;
160
161 if (cookie < p->core_cookie)
162 return -1;
163
164 if (cookie > p->core_cookie)
165 return 1;
166
167 return 0;
168 }
169
170 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
171 {
172 rq->core->core_task_seq++;
173
174 if (!p->core_cookie)
175 return;
176
177 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
178 }
179
180 void sched_core_dequeue(struct rq *rq, struct task_struct *p)
181 {
182 rq->core->core_task_seq++;
183
184 if (!sched_core_enqueued(p))
185 return;
186
187 rb_erase(&p->core_node, &rq->core_tree);
188 RB_CLEAR_NODE(&p->core_node);
189 }
190
191 /*
192 * Find left-most (aka, highest priority) task matching @cookie.
193 */
194 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
195 {
196 struct rb_node *node;
197
198 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
199 /*
200 * The idle task always matches any cookie!
201 */
202 if (!node)
203 return idle_sched_class.pick_task(rq);
204
205 return __node_2_sc(node);
206 }
207
208 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
209 {
210 struct rb_node *node = &p->core_node;
211
212 node = rb_next(node);
213 if (!node)
214 return NULL;
215
216 p = container_of(node, struct task_struct, core_node);
217 if (p->core_cookie != cookie)
218 return NULL;
219
220 return p;
221 }
222
223 /*
224 * Magic required such that:
225 *
226 * raw_spin_rq_lock(rq);
227 * ...
228 * raw_spin_rq_unlock(rq);
229 *
230 * ends up locking and unlocking the _same_ lock, and all CPUs
231 * always agree on what rq has what lock.
232 *
233 * XXX entirely possible to selectively enable cores, don't bother for now.
234 */
235
236 static DEFINE_MUTEX(sched_core_mutex);
237 static atomic_t sched_core_count;
238 static struct cpumask sched_core_mask;
239
240 static void sched_core_lock(int cpu, unsigned long *flags)
241 {
242 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
243 int t, i = 0;
244
245 local_irq_save(*flags);
246 for_each_cpu(t, smt_mask)
247 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
248 }
249
250 static void sched_core_unlock(int cpu, unsigned long *flags)
251 {
252 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
253 int t;
254
255 for_each_cpu(t, smt_mask)
256 raw_spin_unlock(&cpu_rq(t)->__lock);
257 local_irq_restore(*flags);
258 }
259
260 static void __sched_core_flip(bool enabled)
261 {
262 unsigned long flags;
263 int cpu, t;
264
265 cpus_read_lock();
266
267 /*
268 * Toggle the online cores, one by one.
269 */
270 cpumask_copy(&sched_core_mask, cpu_online_mask);
271 for_each_cpu(cpu, &sched_core_mask) {
272 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
273
274 sched_core_lock(cpu, &flags);
275
276 for_each_cpu(t, smt_mask)
277 cpu_rq(t)->core_enabled = enabled;
278
279 sched_core_unlock(cpu, &flags);
280
281 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
282 }
283
284 /*
285 * Toggle the offline CPUs.
286 */
287 cpumask_copy(&sched_core_mask, cpu_possible_mask);
288 cpumask_andnot(&sched_core_mask, &sched_core_mask, cpu_online_mask);
289
290 for_each_cpu(cpu, &sched_core_mask)
291 cpu_rq(cpu)->core_enabled = enabled;
292
293 cpus_read_unlock();
294 }
295
296 static void sched_core_assert_empty(void)
297 {
298 int cpu;
299
300 for_each_possible_cpu(cpu)
301 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
302 }
303
304 static void __sched_core_enable(void)
305 {
306 static_branch_enable(&__sched_core_enabled);
307 /*
308 * Ensure all previous instances of raw_spin_rq_*lock() have finished
309 * and future ones will observe !sched_core_disabled().
310 */
311 synchronize_rcu();
312 __sched_core_flip(true);
313 sched_core_assert_empty();
314 }
315
316 static void __sched_core_disable(void)
317 {
318 sched_core_assert_empty();
319 __sched_core_flip(false);
320 static_branch_disable(&__sched_core_enabled);
321 }
322
323 void sched_core_get(void)
324 {
325 if (atomic_inc_not_zero(&sched_core_count))
326 return;
327
328 mutex_lock(&sched_core_mutex);
329 if (!atomic_read(&sched_core_count))
330 __sched_core_enable();
331
332 smp_mb__before_atomic();
333 atomic_inc(&sched_core_count);
334 mutex_unlock(&sched_core_mutex);
335 }
336
337 static void __sched_core_put(struct work_struct *work)
338 {
339 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
340 __sched_core_disable();
341 mutex_unlock(&sched_core_mutex);
342 }
343 }
344
345 void sched_core_put(void)
346 {
347 static DECLARE_WORK(_work, __sched_core_put);
348
349 /*
350 * "There can be only one"
351 *
352 * Either this is the last one, or we don't actually need to do any
353 * 'work'. If it is the last *again*, we rely on
354 * WORK_STRUCT_PENDING_BIT.
355 */
356 if (!atomic_add_unless(&sched_core_count, -1, 1))
357 schedule_work(&_work);
358 }
359
360 #else /* !CONFIG_SCHED_CORE */
361
362 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
363 static inline void sched_core_dequeue(struct rq *rq, struct task_struct *p) { }
364
365 #endif /* CONFIG_SCHED_CORE */
366
367 /*
368 * part of the period that we allow rt tasks to run in us.
369 * default: 0.95s
370 */
371 int sysctl_sched_rt_runtime = 950000;
372
373
374 /*
375 * Serialization rules:
376 *
377 * Lock order:
378 *
379 * p->pi_lock
380 * rq->lock
381 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
382 *
383 * rq1->lock
384 * rq2->lock where: rq1 < rq2
385 *
386 * Regular state:
387 *
388 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
389 * local CPU's rq->lock, it optionally removes the task from the runqueue and
390 * always looks at the local rq data structures to find the most eligible task
391 * to run next.
392 *
393 * Task enqueue is also under rq->lock, possibly taken from another CPU.
394 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
395 * the local CPU to avoid bouncing the runqueue state around [ see
396 * ttwu_queue_wakelist() ]
397 *
398 * Task wakeup, specifically wakeups that involve migration, are horribly
399 * complicated to avoid having to take two rq->locks.
400 *
401 * Special state:
402 *
403 * System-calls and anything external will use task_rq_lock() which acquires
404 * both p->pi_lock and rq->lock. As a consequence the state they change is
405 * stable while holding either lock:
406 *
407 * - sched_setaffinity()/
408 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
409 * - set_user_nice(): p->se.load, p->*prio
410 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
411 * p->se.load, p->rt_priority,
412 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
413 * - sched_setnuma(): p->numa_preferred_nid
414 * - sched_move_task()/
415 * cpu_cgroup_fork(): p->sched_task_group
416 * - uclamp_update_active() p->uclamp*
417 *
418 * p->state <- TASK_*:
419 *
420 * is changed locklessly using set_current_state(), __set_current_state() or
421 * set_special_state(), see their respective comments, or by
422 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
423 * concurrent self.
424 *
425 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
426 *
427 * is set by activate_task() and cleared by deactivate_task(), under
428 * rq->lock. Non-zero indicates the task is runnable, the special
429 * ON_RQ_MIGRATING state is used for migration without holding both
430 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
431 *
432 * p->on_cpu <- { 0, 1 }:
433 *
434 * is set by prepare_task() and cleared by finish_task() such that it will be
435 * set before p is scheduled-in and cleared after p is scheduled-out, both
436 * under rq->lock. Non-zero indicates the task is running on its CPU.
437 *
438 * [ The astute reader will observe that it is possible for two tasks on one
439 * CPU to have ->on_cpu = 1 at the same time. ]
440 *
441 * task_cpu(p): is changed by set_task_cpu(), the rules are:
442 *
443 * - Don't call set_task_cpu() on a blocked task:
444 *
445 * We don't care what CPU we're not running on, this simplifies hotplug,
446 * the CPU assignment of blocked tasks isn't required to be valid.
447 *
448 * - for try_to_wake_up(), called under p->pi_lock:
449 *
450 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
451 *
452 * - for migration called under rq->lock:
453 * [ see task_on_rq_migrating() in task_rq_lock() ]
454 *
455 * o move_queued_task()
456 * o detach_task()
457 *
458 * - for migration called under double_rq_lock():
459 *
460 * o __migrate_swap_task()
461 * o push_rt_task() / pull_rt_task()
462 * o push_dl_task() / pull_dl_task()
463 * o dl_task_offline_migration()
464 *
465 */
466
467 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
468 {
469 raw_spinlock_t *lock;
470
471 /* Matches synchronize_rcu() in __sched_core_enable() */
472 preempt_disable();
473 if (sched_core_disabled()) {
474 raw_spin_lock_nested(&rq->__lock, subclass);
475 /* preempt_count *MUST* be > 1 */
476 preempt_enable_no_resched();
477 return;
478 }
479
480 for (;;) {
481 lock = __rq_lockp(rq);
482 raw_spin_lock_nested(lock, subclass);
483 if (likely(lock == __rq_lockp(rq))) {
484 /* preempt_count *MUST* be > 1 */
485 preempt_enable_no_resched();
486 return;
487 }
488 raw_spin_unlock(lock);
489 }
490 }
491
492 bool raw_spin_rq_trylock(struct rq *rq)
493 {
494 raw_spinlock_t *lock;
495 bool ret;
496
497 /* Matches synchronize_rcu() in __sched_core_enable() */
498 preempt_disable();
499 if (sched_core_disabled()) {
500 ret = raw_spin_trylock(&rq->__lock);
501 preempt_enable();
502 return ret;
503 }
504
505 for (;;) {
506 lock = __rq_lockp(rq);
507 ret = raw_spin_trylock(lock);
508 if (!ret || (likely(lock == __rq_lockp(rq)))) {
509 preempt_enable();
510 return ret;
511 }
512 raw_spin_unlock(lock);
513 }
514 }
515
516 void raw_spin_rq_unlock(struct rq *rq)
517 {
518 raw_spin_unlock(rq_lockp(rq));
519 }
520
521 #ifdef CONFIG_SMP
522 /*
523 * double_rq_lock - safely lock two runqueues
524 */
525 void double_rq_lock(struct rq *rq1, struct rq *rq2)
526 {
527 lockdep_assert_irqs_disabled();
528
529 if (rq_order_less(rq2, rq1))
530 swap(rq1, rq2);
531
532 raw_spin_rq_lock(rq1);
533 if (__rq_lockp(rq1) == __rq_lockp(rq2))
534 return;
535
536 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
537 }
538 #endif
539
540 /*
541 * __task_rq_lock - lock the rq @p resides on.
542 */
543 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
544 __acquires(rq->lock)
545 {
546 struct rq *rq;
547
548 lockdep_assert_held(&p->pi_lock);
549
550 for (;;) {
551 rq = task_rq(p);
552 raw_spin_rq_lock(rq);
553 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
554 rq_pin_lock(rq, rf);
555 return rq;
556 }
557 raw_spin_rq_unlock(rq);
558
559 while (unlikely(task_on_rq_migrating(p)))
560 cpu_relax();
561 }
562 }
563
564 /*
565 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
566 */
567 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
568 __acquires(p->pi_lock)
569 __acquires(rq->lock)
570 {
571 struct rq *rq;
572
573 for (;;) {
574 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
575 rq = task_rq(p);
576 raw_spin_rq_lock(rq);
577 /*
578 * move_queued_task() task_rq_lock()
579 *
580 * ACQUIRE (rq->lock)
581 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
582 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
583 * [S] ->cpu = new_cpu [L] task_rq()
584 * [L] ->on_rq
585 * RELEASE (rq->lock)
586 *
587 * If we observe the old CPU in task_rq_lock(), the acquire of
588 * the old rq->lock will fully serialize against the stores.
589 *
590 * If we observe the new CPU in task_rq_lock(), the address
591 * dependency headed by '[L] rq = task_rq()' and the acquire
592 * will pair with the WMB to ensure we then also see migrating.
593 */
594 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
595 rq_pin_lock(rq, rf);
596 return rq;
597 }
598 raw_spin_rq_unlock(rq);
599 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
600
601 while (unlikely(task_on_rq_migrating(p)))
602 cpu_relax();
603 }
604 }
605
606 /*
607 * RQ-clock updating methods:
608 */
609
610 static void update_rq_clock_task(struct rq *rq, s64 delta)
611 {
612 /*
613 * In theory, the compile should just see 0 here, and optimize out the call
614 * to sched_rt_avg_update. But I don't trust it...
615 */
616 s64 __maybe_unused steal = 0, irq_delta = 0;
617
618 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
619 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
620
621 /*
622 * Since irq_time is only updated on {soft,}irq_exit, we might run into
623 * this case when a previous update_rq_clock() happened inside a
624 * {soft,}irq region.
625 *
626 * When this happens, we stop ->clock_task and only update the
627 * prev_irq_time stamp to account for the part that fit, so that a next
628 * update will consume the rest. This ensures ->clock_task is
629 * monotonic.
630 *
631 * It does however cause some slight miss-attribution of {soft,}irq
632 * time, a more accurate solution would be to update the irq_time using
633 * the current rq->clock timestamp, except that would require using
634 * atomic ops.
635 */
636 if (irq_delta > delta)
637 irq_delta = delta;
638
639 rq->prev_irq_time += irq_delta;
640 delta -= irq_delta;
641 #endif
642 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
643 if (static_key_false((&paravirt_steal_rq_enabled))) {
644 steal = paravirt_steal_clock(cpu_of(rq));
645 steal -= rq->prev_steal_time_rq;
646
647 if (unlikely(steal > delta))
648 steal = delta;
649
650 rq->prev_steal_time_rq += steal;
651 delta -= steal;
652 }
653 #endif
654
655 rq->clock_task += delta;
656
657 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
658 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
659 update_irq_load_avg(rq, irq_delta + steal);
660 #endif
661 update_rq_clock_pelt(rq, delta);
662 }
663
664 void update_rq_clock(struct rq *rq)
665 {
666 s64 delta;
667
668 lockdep_assert_rq_held(rq);
669
670 if (rq->clock_update_flags & RQCF_ACT_SKIP)
671 return;
672
673 #ifdef CONFIG_SCHED_DEBUG
674 if (sched_feat(WARN_DOUBLE_CLOCK))
675 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
676 rq->clock_update_flags |= RQCF_UPDATED;
677 #endif
678
679 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
680 if (delta < 0)
681 return;
682 rq->clock += delta;
683 update_rq_clock_task(rq, delta);
684 }
685
686 #ifdef CONFIG_SCHED_HRTICK
687 /*
688 * Use HR-timers to deliver accurate preemption points.
689 */
690
691 static void hrtick_clear(struct rq *rq)
692 {
693 if (hrtimer_active(&rq->hrtick_timer))
694 hrtimer_cancel(&rq->hrtick_timer);
695 }
696
697 /*
698 * High-resolution timer tick.
699 * Runs from hardirq context with interrupts disabled.
700 */
701 static enum hrtimer_restart hrtick(struct hrtimer *timer)
702 {
703 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
704 struct rq_flags rf;
705
706 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
707
708 rq_lock(rq, &rf);
709 update_rq_clock(rq);
710 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
711 rq_unlock(rq, &rf);
712
713 return HRTIMER_NORESTART;
714 }
715
716 #ifdef CONFIG_SMP
717
718 static void __hrtick_restart(struct rq *rq)
719 {
720 struct hrtimer *timer = &rq->hrtick_timer;
721 ktime_t time = rq->hrtick_time;
722
723 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
724 }
725
726 /*
727 * called from hardirq (IPI) context
728 */
729 static void __hrtick_start(void *arg)
730 {
731 struct rq *rq = arg;
732 struct rq_flags rf;
733
734 rq_lock(rq, &rf);
735 __hrtick_restart(rq);
736 rq_unlock(rq, &rf);
737 }
738
739 /*
740 * Called to set the hrtick timer state.
741 *
742 * called with rq->lock held and irqs disabled
743 */
744 void hrtick_start(struct rq *rq, u64 delay)
745 {
746 struct hrtimer *timer = &rq->hrtick_timer;
747 s64 delta;
748
749 /*
750 * Don't schedule slices shorter than 10000ns, that just
751 * doesn't make sense and can cause timer DoS.
752 */
753 delta = max_t(s64, delay, 10000LL);
754 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
755
756 if (rq == this_rq())
757 __hrtick_restart(rq);
758 else
759 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
760 }
761
762 #else
763 /*
764 * Called to set the hrtick timer state.
765 *
766 * called with rq->lock held and irqs disabled
767 */
768 void hrtick_start(struct rq *rq, u64 delay)
769 {
770 /*
771 * Don't schedule slices shorter than 10000ns, that just
772 * doesn't make sense. Rely on vruntime for fairness.
773 */
774 delay = max_t(u64, delay, 10000LL);
775 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
776 HRTIMER_MODE_REL_PINNED_HARD);
777 }
778
779 #endif /* CONFIG_SMP */
780
781 static void hrtick_rq_init(struct rq *rq)
782 {
783 #ifdef CONFIG_SMP
784 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
785 #endif
786 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
787 rq->hrtick_timer.function = hrtick;
788 }
789 #else /* CONFIG_SCHED_HRTICK */
790 static inline void hrtick_clear(struct rq *rq)
791 {
792 }
793
794 static inline void hrtick_rq_init(struct rq *rq)
795 {
796 }
797 #endif /* CONFIG_SCHED_HRTICK */
798
799 /*
800 * cmpxchg based fetch_or, macro so it works for different integer types
801 */
802 #define fetch_or(ptr, mask) \
803 ({ \
804 typeof(ptr) _ptr = (ptr); \
805 typeof(mask) _mask = (mask); \
806 typeof(*_ptr) _old, _val = *_ptr; \
807 \
808 for (;;) { \
809 _old = cmpxchg(_ptr, _val, _val | _mask); \
810 if (_old == _val) \
811 break; \
812 _val = _old; \
813 } \
814 _old; \
815 })
816
817 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
818 /*
819 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
820 * this avoids any races wrt polling state changes and thereby avoids
821 * spurious IPIs.
822 */
823 static bool set_nr_and_not_polling(struct task_struct *p)
824 {
825 struct thread_info *ti = task_thread_info(p);
826 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
827 }
828
829 /*
830 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
831 *
832 * If this returns true, then the idle task promises to call
833 * sched_ttwu_pending() and reschedule soon.
834 */
835 static bool set_nr_if_polling(struct task_struct *p)
836 {
837 struct thread_info *ti = task_thread_info(p);
838 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
839
840 for (;;) {
841 if (!(val & _TIF_POLLING_NRFLAG))
842 return false;
843 if (val & _TIF_NEED_RESCHED)
844 return true;
845 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
846 if (old == val)
847 break;
848 val = old;
849 }
850 return true;
851 }
852
853 #else
854 static bool set_nr_and_not_polling(struct task_struct *p)
855 {
856 set_tsk_need_resched(p);
857 return true;
858 }
859
860 #ifdef CONFIG_SMP
861 static bool set_nr_if_polling(struct task_struct *p)
862 {
863 return false;
864 }
865 #endif
866 #endif
867
868 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
869 {
870 struct wake_q_node *node = &task->wake_q;
871
872 /*
873 * Atomically grab the task, if ->wake_q is !nil already it means
874 * it's already queued (either by us or someone else) and will get the
875 * wakeup due to that.
876 *
877 * In order to ensure that a pending wakeup will observe our pending
878 * state, even in the failed case, an explicit smp_mb() must be used.
879 */
880 smp_mb__before_atomic();
881 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
882 return false;
883
884 /*
885 * The head is context local, there can be no concurrency.
886 */
887 *head->lastp = node;
888 head->lastp = &node->next;
889 return true;
890 }
891
892 /**
893 * wake_q_add() - queue a wakeup for 'later' waking.
894 * @head: the wake_q_head to add @task to
895 * @task: the task to queue for 'later' wakeup
896 *
897 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
898 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
899 * instantly.
900 *
901 * This function must be used as-if it were wake_up_process(); IOW the task
902 * must be ready to be woken at this location.
903 */
904 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
905 {
906 if (__wake_q_add(head, task))
907 get_task_struct(task);
908 }
909
910 /**
911 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
912 * @head: the wake_q_head to add @task to
913 * @task: the task to queue for 'later' wakeup
914 *
915 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
916 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
917 * instantly.
918 *
919 * This function must be used as-if it were wake_up_process(); IOW the task
920 * must be ready to be woken at this location.
921 *
922 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
923 * that already hold reference to @task can call the 'safe' version and trust
924 * wake_q to do the right thing depending whether or not the @task is already
925 * queued for wakeup.
926 */
927 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
928 {
929 if (!__wake_q_add(head, task))
930 put_task_struct(task);
931 }
932
933 void wake_up_q(struct wake_q_head *head)
934 {
935 struct wake_q_node *node = head->first;
936
937 while (node != WAKE_Q_TAIL) {
938 struct task_struct *task;
939
940 task = container_of(node, struct task_struct, wake_q);
941 /* Task can safely be re-inserted now: */
942 node = node->next;
943 task->wake_q.next = NULL;
944
945 /*
946 * wake_up_process() executes a full barrier, which pairs with
947 * the queueing in wake_q_add() so as not to miss wakeups.
948 */
949 wake_up_process(task);
950 put_task_struct(task);
951 }
952 }
953
954 /*
955 * resched_curr - mark rq's current task 'to be rescheduled now'.
956 *
957 * On UP this means the setting of the need_resched flag, on SMP it
958 * might also involve a cross-CPU call to trigger the scheduler on
959 * the target CPU.
960 */
961 void resched_curr(struct rq *rq)
962 {
963 struct task_struct *curr = rq->curr;
964 int cpu;
965
966 lockdep_assert_rq_held(rq);
967
968 if (test_tsk_need_resched(curr))
969 return;
970
971 cpu = cpu_of(rq);
972
973 if (cpu == smp_processor_id()) {
974 set_tsk_need_resched(curr);
975 set_preempt_need_resched();
976 return;
977 }
978
979 if (set_nr_and_not_polling(curr))
980 smp_send_reschedule(cpu);
981 else
982 trace_sched_wake_idle_without_ipi(cpu);
983 }
984
985 void resched_cpu(int cpu)
986 {
987 struct rq *rq = cpu_rq(cpu);
988 unsigned long flags;
989
990 raw_spin_rq_lock_irqsave(rq, flags);
991 if (cpu_online(cpu) || cpu == smp_processor_id())
992 resched_curr(rq);
993 raw_spin_rq_unlock_irqrestore(rq, flags);
994 }
995
996 #ifdef CONFIG_SMP
997 #ifdef CONFIG_NO_HZ_COMMON
998 /*
999 * In the semi idle case, use the nearest busy CPU for migrating timers
1000 * from an idle CPU. This is good for power-savings.
1001 *
1002 * We don't do similar optimization for completely idle system, as
1003 * selecting an idle CPU will add more delays to the timers than intended
1004 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1005 */
1006 int get_nohz_timer_target(void)
1007 {
1008 int i, cpu = smp_processor_id(), default_cpu = -1;
1009 struct sched_domain *sd;
1010 const struct cpumask *hk_mask;
1011
1012 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
1013 if (!idle_cpu(cpu))
1014 return cpu;
1015 default_cpu = cpu;
1016 }
1017
1018 hk_mask = housekeeping_cpumask(HK_FLAG_TIMER);
1019
1020 rcu_read_lock();
1021 for_each_domain(cpu, sd) {
1022 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1023 if (cpu == i)
1024 continue;
1025
1026 if (!idle_cpu(i)) {
1027 cpu = i;
1028 goto unlock;
1029 }
1030 }
1031 }
1032
1033 if (default_cpu == -1)
1034 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
1035 cpu = default_cpu;
1036 unlock:
1037 rcu_read_unlock();
1038 return cpu;
1039 }
1040
1041 /*
1042 * When add_timer_on() enqueues a timer into the timer wheel of an
1043 * idle CPU then this timer might expire before the next timer event
1044 * which is scheduled to wake up that CPU. In case of a completely
1045 * idle system the next event might even be infinite time into the
1046 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1047 * leaves the inner idle loop so the newly added timer is taken into
1048 * account when the CPU goes back to idle and evaluates the timer
1049 * wheel for the next timer event.
1050 */
1051 static void wake_up_idle_cpu(int cpu)
1052 {
1053 struct rq *rq = cpu_rq(cpu);
1054
1055 if (cpu == smp_processor_id())
1056 return;
1057
1058 if (set_nr_and_not_polling(rq->idle))
1059 smp_send_reschedule(cpu);
1060 else
1061 trace_sched_wake_idle_without_ipi(cpu);
1062 }
1063
1064 static bool wake_up_full_nohz_cpu(int cpu)
1065 {
1066 /*
1067 * We just need the target to call irq_exit() and re-evaluate
1068 * the next tick. The nohz full kick at least implies that.
1069 * If needed we can still optimize that later with an
1070 * empty IRQ.
1071 */
1072 if (cpu_is_offline(cpu))
1073 return true; /* Don't try to wake offline CPUs. */
1074 if (tick_nohz_full_cpu(cpu)) {
1075 if (cpu != smp_processor_id() ||
1076 tick_nohz_tick_stopped())
1077 tick_nohz_full_kick_cpu(cpu);
1078 return true;
1079 }
1080
1081 return false;
1082 }
1083
1084 /*
1085 * Wake up the specified CPU. If the CPU is going offline, it is the
1086 * caller's responsibility to deal with the lost wakeup, for example,
1087 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1088 */
1089 void wake_up_nohz_cpu(int cpu)
1090 {
1091 if (!wake_up_full_nohz_cpu(cpu))
1092 wake_up_idle_cpu(cpu);
1093 }
1094
1095 static void nohz_csd_func(void *info)
1096 {
1097 struct rq *rq = info;
1098 int cpu = cpu_of(rq);
1099 unsigned int flags;
1100
1101 /*
1102 * Release the rq::nohz_csd.
1103 */
1104 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1105 WARN_ON(!(flags & NOHZ_KICK_MASK));
1106
1107 rq->idle_balance = idle_cpu(cpu);
1108 if (rq->idle_balance && !need_resched()) {
1109 rq->nohz_idle_balance = flags;
1110 raise_softirq_irqoff(SCHED_SOFTIRQ);
1111 }
1112 }
1113
1114 #endif /* CONFIG_NO_HZ_COMMON */
1115
1116 #ifdef CONFIG_NO_HZ_FULL
1117 bool sched_can_stop_tick(struct rq *rq)
1118 {
1119 int fifo_nr_running;
1120
1121 /* Deadline tasks, even if single, need the tick */
1122 if (rq->dl.dl_nr_running)
1123 return false;
1124
1125 /*
1126 * If there are more than one RR tasks, we need the tick to affect the
1127 * actual RR behaviour.
1128 */
1129 if (rq->rt.rr_nr_running) {
1130 if (rq->rt.rr_nr_running == 1)
1131 return true;
1132 else
1133 return false;
1134 }
1135
1136 /*
1137 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1138 * forced preemption between FIFO tasks.
1139 */
1140 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1141 if (fifo_nr_running)
1142 return true;
1143
1144 /*
1145 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1146 * if there's more than one we need the tick for involuntary
1147 * preemption.
1148 */
1149 if (rq->nr_running > 1)
1150 return false;
1151
1152 return true;
1153 }
1154 #endif /* CONFIG_NO_HZ_FULL */
1155 #endif /* CONFIG_SMP */
1156
1157 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1158 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1159 /*
1160 * Iterate task_group tree rooted at *from, calling @down when first entering a
1161 * node and @up when leaving it for the final time.
1162 *
1163 * Caller must hold rcu_lock or sufficient equivalent.
1164 */
1165 int walk_tg_tree_from(struct task_group *from,
1166 tg_visitor down, tg_visitor up, void *data)
1167 {
1168 struct task_group *parent, *child;
1169 int ret;
1170
1171 parent = from;
1172
1173 down:
1174 ret = (*down)(parent, data);
1175 if (ret)
1176 goto out;
1177 list_for_each_entry_rcu(child, &parent->children, siblings) {
1178 parent = child;
1179 goto down;
1180
1181 up:
1182 continue;
1183 }
1184 ret = (*up)(parent, data);
1185 if (ret || parent == from)
1186 goto out;
1187
1188 child = parent;
1189 parent = parent->parent;
1190 if (parent)
1191 goto up;
1192 out:
1193 return ret;
1194 }
1195
1196 int tg_nop(struct task_group *tg, void *data)
1197 {
1198 return 0;
1199 }
1200 #endif
1201
1202 static void set_load_weight(struct task_struct *p, bool update_load)
1203 {
1204 int prio = p->static_prio - MAX_RT_PRIO;
1205 struct load_weight *load = &p->se.load;
1206
1207 /*
1208 * SCHED_IDLE tasks get minimal weight:
1209 */
1210 if (task_has_idle_policy(p)) {
1211 load->weight = scale_load(WEIGHT_IDLEPRIO);
1212 load->inv_weight = WMULT_IDLEPRIO;
1213 return;
1214 }
1215
1216 /*
1217 * SCHED_OTHER tasks have to update their load when changing their
1218 * weight
1219 */
1220 if (update_load && p->sched_class == &fair_sched_class) {
1221 reweight_task(p, prio);
1222 } else {
1223 load->weight = scale_load(sched_prio_to_weight[prio]);
1224 load->inv_weight = sched_prio_to_wmult[prio];
1225 }
1226 }
1227
1228 #ifdef CONFIG_UCLAMP_TASK
1229 /*
1230 * Serializes updates of utilization clamp values
1231 *
1232 * The (slow-path) user-space triggers utilization clamp value updates which
1233 * can require updates on (fast-path) scheduler's data structures used to
1234 * support enqueue/dequeue operations.
1235 * While the per-CPU rq lock protects fast-path update operations, user-space
1236 * requests are serialized using a mutex to reduce the risk of conflicting
1237 * updates or API abuses.
1238 */
1239 static DEFINE_MUTEX(uclamp_mutex);
1240
1241 /* Max allowed minimum utilization */
1242 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1243
1244 /* Max allowed maximum utilization */
1245 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1246
1247 /*
1248 * By default RT tasks run at the maximum performance point/capacity of the
1249 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1250 * SCHED_CAPACITY_SCALE.
1251 *
1252 * This knob allows admins to change the default behavior when uclamp is being
1253 * used. In battery powered devices, particularly, running at the maximum
1254 * capacity and frequency will increase energy consumption and shorten the
1255 * battery life.
1256 *
1257 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1258 *
1259 * This knob will not override the system default sched_util_clamp_min defined
1260 * above.
1261 */
1262 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1263
1264 /* All clamps are required to be less or equal than these values */
1265 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1266
1267 /*
1268 * This static key is used to reduce the uclamp overhead in the fast path. It
1269 * primarily disables the call to uclamp_rq_{inc, dec}() in
1270 * enqueue/dequeue_task().
1271 *
1272 * This allows users to continue to enable uclamp in their kernel config with
1273 * minimum uclamp overhead in the fast path.
1274 *
1275 * As soon as userspace modifies any of the uclamp knobs, the static key is
1276 * enabled, since we have an actual users that make use of uclamp
1277 * functionality.
1278 *
1279 * The knobs that would enable this static key are:
1280 *
1281 * * A task modifying its uclamp value with sched_setattr().
1282 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1283 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1284 */
1285 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1286
1287 /* Integer rounded range for each bucket */
1288 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1289
1290 #define for_each_clamp_id(clamp_id) \
1291 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1292
1293 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1294 {
1295 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1296 }
1297
1298 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1299 {
1300 if (clamp_id == UCLAMP_MIN)
1301 return 0;
1302 return SCHED_CAPACITY_SCALE;
1303 }
1304
1305 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1306 unsigned int value, bool user_defined)
1307 {
1308 uc_se->value = value;
1309 uc_se->bucket_id = uclamp_bucket_id(value);
1310 uc_se->user_defined = user_defined;
1311 }
1312
1313 static inline unsigned int
1314 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1315 unsigned int clamp_value)
1316 {
1317 /*
1318 * Avoid blocked utilization pushing up the frequency when we go
1319 * idle (which drops the max-clamp) by retaining the last known
1320 * max-clamp.
1321 */
1322 if (clamp_id == UCLAMP_MAX) {
1323 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1324 return clamp_value;
1325 }
1326
1327 return uclamp_none(UCLAMP_MIN);
1328 }
1329
1330 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1331 unsigned int clamp_value)
1332 {
1333 /* Reset max-clamp retention only on idle exit */
1334 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1335 return;
1336
1337 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1338 }
1339
1340 static inline
1341 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1342 unsigned int clamp_value)
1343 {
1344 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1345 int bucket_id = UCLAMP_BUCKETS - 1;
1346
1347 /*
1348 * Since both min and max clamps are max aggregated, find the
1349 * top most bucket with tasks in.
1350 */
1351 for ( ; bucket_id >= 0; bucket_id--) {
1352 if (!bucket[bucket_id].tasks)
1353 continue;
1354 return bucket[bucket_id].value;
1355 }
1356
1357 /* No tasks -- default clamp values */
1358 return uclamp_idle_value(rq, clamp_id, clamp_value);
1359 }
1360
1361 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1362 {
1363 unsigned int default_util_min;
1364 struct uclamp_se *uc_se;
1365
1366 lockdep_assert_held(&p->pi_lock);
1367
1368 uc_se = &p->uclamp_req[UCLAMP_MIN];
1369
1370 /* Only sync if user didn't override the default */
1371 if (uc_se->user_defined)
1372 return;
1373
1374 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1375 uclamp_se_set(uc_se, default_util_min, false);
1376 }
1377
1378 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1379 {
1380 struct rq_flags rf;
1381 struct rq *rq;
1382
1383 if (!rt_task(p))
1384 return;
1385
1386 /* Protect updates to p->uclamp_* */
1387 rq = task_rq_lock(p, &rf);
1388 __uclamp_update_util_min_rt_default(p);
1389 task_rq_unlock(rq, p, &rf);
1390 }
1391
1392 static void uclamp_sync_util_min_rt_default(void)
1393 {
1394 struct task_struct *g, *p;
1395
1396 /*
1397 * copy_process() sysctl_uclamp
1398 * uclamp_min_rt = X;
1399 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1400 * // link thread smp_mb__after_spinlock()
1401 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1402 * sched_post_fork() for_each_process_thread()
1403 * __uclamp_sync_rt() __uclamp_sync_rt()
1404 *
1405 * Ensures that either sched_post_fork() will observe the new
1406 * uclamp_min_rt or for_each_process_thread() will observe the new
1407 * task.
1408 */
1409 read_lock(&tasklist_lock);
1410 smp_mb__after_spinlock();
1411 read_unlock(&tasklist_lock);
1412
1413 rcu_read_lock();
1414 for_each_process_thread(g, p)
1415 uclamp_update_util_min_rt_default(p);
1416 rcu_read_unlock();
1417 }
1418
1419 static inline struct uclamp_se
1420 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1421 {
1422 /* Copy by value as we could modify it */
1423 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1424 #ifdef CONFIG_UCLAMP_TASK_GROUP
1425 unsigned int tg_min, tg_max, value;
1426
1427 /*
1428 * Tasks in autogroups or root task group will be
1429 * restricted by system defaults.
1430 */
1431 if (task_group_is_autogroup(task_group(p)))
1432 return uc_req;
1433 if (task_group(p) == &root_task_group)
1434 return uc_req;
1435
1436 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1437 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1438 value = uc_req.value;
1439 value = clamp(value, tg_min, tg_max);
1440 uclamp_se_set(&uc_req, value, false);
1441 #endif
1442
1443 return uc_req;
1444 }
1445
1446 /*
1447 * The effective clamp bucket index of a task depends on, by increasing
1448 * priority:
1449 * - the task specific clamp value, when explicitly requested from userspace
1450 * - the task group effective clamp value, for tasks not either in the root
1451 * group or in an autogroup
1452 * - the system default clamp value, defined by the sysadmin
1453 */
1454 static inline struct uclamp_se
1455 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1456 {
1457 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1458 struct uclamp_se uc_max = uclamp_default[clamp_id];
1459
1460 /* System default restrictions always apply */
1461 if (unlikely(uc_req.value > uc_max.value))
1462 return uc_max;
1463
1464 return uc_req;
1465 }
1466
1467 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1468 {
1469 struct uclamp_se uc_eff;
1470
1471 /* Task currently refcounted: use back-annotated (effective) value */
1472 if (p->uclamp[clamp_id].active)
1473 return (unsigned long)p->uclamp[clamp_id].value;
1474
1475 uc_eff = uclamp_eff_get(p, clamp_id);
1476
1477 return (unsigned long)uc_eff.value;
1478 }
1479
1480 /*
1481 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1482 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1483 * updates the rq's clamp value if required.
1484 *
1485 * Tasks can have a task-specific value requested from user-space, track
1486 * within each bucket the maximum value for tasks refcounted in it.
1487 * This "local max aggregation" allows to track the exact "requested" value
1488 * for each bucket when all its RUNNABLE tasks require the same clamp.
1489 */
1490 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1491 enum uclamp_id clamp_id)
1492 {
1493 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1494 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1495 struct uclamp_bucket *bucket;
1496
1497 lockdep_assert_rq_held(rq);
1498
1499 /* Update task effective clamp */
1500 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1501
1502 bucket = &uc_rq->bucket[uc_se->bucket_id];
1503 bucket->tasks++;
1504 uc_se->active = true;
1505
1506 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1507
1508 /*
1509 * Local max aggregation: rq buckets always track the max
1510 * "requested" clamp value of its RUNNABLE tasks.
1511 */
1512 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1513 bucket->value = uc_se->value;
1514
1515 if (uc_se->value > READ_ONCE(uc_rq->value))
1516 WRITE_ONCE(uc_rq->value, uc_se->value);
1517 }
1518
1519 /*
1520 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1521 * is released. If this is the last task reference counting the rq's max
1522 * active clamp value, then the rq's clamp value is updated.
1523 *
1524 * Both refcounted tasks and rq's cached clamp values are expected to be
1525 * always valid. If it's detected they are not, as defensive programming,
1526 * enforce the expected state and warn.
1527 */
1528 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1529 enum uclamp_id clamp_id)
1530 {
1531 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1532 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1533 struct uclamp_bucket *bucket;
1534 unsigned int bkt_clamp;
1535 unsigned int rq_clamp;
1536
1537 lockdep_assert_rq_held(rq);
1538
1539 /*
1540 * If sched_uclamp_used was enabled after task @p was enqueued,
1541 * we could end up with unbalanced call to uclamp_rq_dec_id().
1542 *
1543 * In this case the uc_se->active flag should be false since no uclamp
1544 * accounting was performed at enqueue time and we can just return
1545 * here.
1546 *
1547 * Need to be careful of the following enqueue/dequeue ordering
1548 * problem too
1549 *
1550 * enqueue(taskA)
1551 * // sched_uclamp_used gets enabled
1552 * enqueue(taskB)
1553 * dequeue(taskA)
1554 * // Must not decrement bucket->tasks here
1555 * dequeue(taskB)
1556 *
1557 * where we could end up with stale data in uc_se and
1558 * bucket[uc_se->bucket_id].
1559 *
1560 * The following check here eliminates the possibility of such race.
1561 */
1562 if (unlikely(!uc_se->active))
1563 return;
1564
1565 bucket = &uc_rq->bucket[uc_se->bucket_id];
1566
1567 SCHED_WARN_ON(!bucket->tasks);
1568 if (likely(bucket->tasks))
1569 bucket->tasks--;
1570
1571 uc_se->active = false;
1572
1573 /*
1574 * Keep "local max aggregation" simple and accept to (possibly)
1575 * overboost some RUNNABLE tasks in the same bucket.
1576 * The rq clamp bucket value is reset to its base value whenever
1577 * there are no more RUNNABLE tasks refcounting it.
1578 */
1579 if (likely(bucket->tasks))
1580 return;
1581
1582 rq_clamp = READ_ONCE(uc_rq->value);
1583 /*
1584 * Defensive programming: this should never happen. If it happens,
1585 * e.g. due to future modification, warn and fixup the expected value.
1586 */
1587 SCHED_WARN_ON(bucket->value > rq_clamp);
1588 if (bucket->value >= rq_clamp) {
1589 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1590 WRITE_ONCE(uc_rq->value, bkt_clamp);
1591 }
1592 }
1593
1594 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1595 {
1596 enum uclamp_id clamp_id;
1597
1598 /*
1599 * Avoid any overhead until uclamp is actually used by the userspace.
1600 *
1601 * The condition is constructed such that a NOP is generated when
1602 * sched_uclamp_used is disabled.
1603 */
1604 if (!static_branch_unlikely(&sched_uclamp_used))
1605 return;
1606
1607 if (unlikely(!p->sched_class->uclamp_enabled))
1608 return;
1609
1610 for_each_clamp_id(clamp_id)
1611 uclamp_rq_inc_id(rq, p, clamp_id);
1612
1613 /* Reset clamp idle holding when there is one RUNNABLE task */
1614 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1615 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1616 }
1617
1618 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1619 {
1620 enum uclamp_id clamp_id;
1621
1622 /*
1623 * Avoid any overhead until uclamp is actually used by the userspace.
1624 *
1625 * The condition is constructed such that a NOP is generated when
1626 * sched_uclamp_used is disabled.
1627 */
1628 if (!static_branch_unlikely(&sched_uclamp_used))
1629 return;
1630
1631 if (unlikely(!p->sched_class->uclamp_enabled))
1632 return;
1633
1634 for_each_clamp_id(clamp_id)
1635 uclamp_rq_dec_id(rq, p, clamp_id);
1636 }
1637
1638 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1639 enum uclamp_id clamp_id)
1640 {
1641 if (!p->uclamp[clamp_id].active)
1642 return;
1643
1644 uclamp_rq_dec_id(rq, p, clamp_id);
1645 uclamp_rq_inc_id(rq, p, clamp_id);
1646
1647 /*
1648 * Make sure to clear the idle flag if we've transiently reached 0
1649 * active tasks on rq.
1650 */
1651 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1652 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1653 }
1654
1655 static inline void
1656 uclamp_update_active(struct task_struct *p)
1657 {
1658 enum uclamp_id clamp_id;
1659 struct rq_flags rf;
1660 struct rq *rq;
1661
1662 /*
1663 * Lock the task and the rq where the task is (or was) queued.
1664 *
1665 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1666 * price to pay to safely serialize util_{min,max} updates with
1667 * enqueues, dequeues and migration operations.
1668 * This is the same locking schema used by __set_cpus_allowed_ptr().
1669 */
1670 rq = task_rq_lock(p, &rf);
1671
1672 /*
1673 * Setting the clamp bucket is serialized by task_rq_lock().
1674 * If the task is not yet RUNNABLE and its task_struct is not
1675 * affecting a valid clamp bucket, the next time it's enqueued,
1676 * it will already see the updated clamp bucket value.
1677 */
1678 for_each_clamp_id(clamp_id)
1679 uclamp_rq_reinc_id(rq, p, clamp_id);
1680
1681 task_rq_unlock(rq, p, &rf);
1682 }
1683
1684 #ifdef CONFIG_UCLAMP_TASK_GROUP
1685 static inline void
1686 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1687 {
1688 struct css_task_iter it;
1689 struct task_struct *p;
1690
1691 css_task_iter_start(css, 0, &it);
1692 while ((p = css_task_iter_next(&it)))
1693 uclamp_update_active(p);
1694 css_task_iter_end(&it);
1695 }
1696
1697 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1698 static void uclamp_update_root_tg(void)
1699 {
1700 struct task_group *tg = &root_task_group;
1701
1702 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1703 sysctl_sched_uclamp_util_min, false);
1704 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1705 sysctl_sched_uclamp_util_max, false);
1706
1707 rcu_read_lock();
1708 cpu_util_update_eff(&root_task_group.css);
1709 rcu_read_unlock();
1710 }
1711 #else
1712 static void uclamp_update_root_tg(void) { }
1713 #endif
1714
1715 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1716 void *buffer, size_t *lenp, loff_t *ppos)
1717 {
1718 bool update_root_tg = false;
1719 int old_min, old_max, old_min_rt;
1720 int result;
1721
1722 mutex_lock(&uclamp_mutex);
1723 old_min = sysctl_sched_uclamp_util_min;
1724 old_max = sysctl_sched_uclamp_util_max;
1725 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1726
1727 result = proc_dointvec(table, write, buffer, lenp, ppos);
1728 if (result)
1729 goto undo;
1730 if (!write)
1731 goto done;
1732
1733 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1734 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1735 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1736
1737 result = -EINVAL;
1738 goto undo;
1739 }
1740
1741 if (old_min != sysctl_sched_uclamp_util_min) {
1742 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1743 sysctl_sched_uclamp_util_min, false);
1744 update_root_tg = true;
1745 }
1746 if (old_max != sysctl_sched_uclamp_util_max) {
1747 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1748 sysctl_sched_uclamp_util_max, false);
1749 update_root_tg = true;
1750 }
1751
1752 if (update_root_tg) {
1753 static_branch_enable(&sched_uclamp_used);
1754 uclamp_update_root_tg();
1755 }
1756
1757 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1758 static_branch_enable(&sched_uclamp_used);
1759 uclamp_sync_util_min_rt_default();
1760 }
1761
1762 /*
1763 * We update all RUNNABLE tasks only when task groups are in use.
1764 * Otherwise, keep it simple and do just a lazy update at each next
1765 * task enqueue time.
1766 */
1767
1768 goto done;
1769
1770 undo:
1771 sysctl_sched_uclamp_util_min = old_min;
1772 sysctl_sched_uclamp_util_max = old_max;
1773 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1774 done:
1775 mutex_unlock(&uclamp_mutex);
1776
1777 return result;
1778 }
1779
1780 static int uclamp_validate(struct task_struct *p,
1781 const struct sched_attr *attr)
1782 {
1783 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1784 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1785
1786 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1787 util_min = attr->sched_util_min;
1788
1789 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1790 return -EINVAL;
1791 }
1792
1793 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1794 util_max = attr->sched_util_max;
1795
1796 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1797 return -EINVAL;
1798 }
1799
1800 if (util_min != -1 && util_max != -1 && util_min > util_max)
1801 return -EINVAL;
1802
1803 /*
1804 * We have valid uclamp attributes; make sure uclamp is enabled.
1805 *
1806 * We need to do that here, because enabling static branches is a
1807 * blocking operation which obviously cannot be done while holding
1808 * scheduler locks.
1809 */
1810 static_branch_enable(&sched_uclamp_used);
1811
1812 return 0;
1813 }
1814
1815 static bool uclamp_reset(const struct sched_attr *attr,
1816 enum uclamp_id clamp_id,
1817 struct uclamp_se *uc_se)
1818 {
1819 /* Reset on sched class change for a non user-defined clamp value. */
1820 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1821 !uc_se->user_defined)
1822 return true;
1823
1824 /* Reset on sched_util_{min,max} == -1. */
1825 if (clamp_id == UCLAMP_MIN &&
1826 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1827 attr->sched_util_min == -1) {
1828 return true;
1829 }
1830
1831 if (clamp_id == UCLAMP_MAX &&
1832 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1833 attr->sched_util_max == -1) {
1834 return true;
1835 }
1836
1837 return false;
1838 }
1839
1840 static void __setscheduler_uclamp(struct task_struct *p,
1841 const struct sched_attr *attr)
1842 {
1843 enum uclamp_id clamp_id;
1844
1845 for_each_clamp_id(clamp_id) {
1846 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1847 unsigned int value;
1848
1849 if (!uclamp_reset(attr, clamp_id, uc_se))
1850 continue;
1851
1852 /*
1853 * RT by default have a 100% boost value that could be modified
1854 * at runtime.
1855 */
1856 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1857 value = sysctl_sched_uclamp_util_min_rt_default;
1858 else
1859 value = uclamp_none(clamp_id);
1860
1861 uclamp_se_set(uc_se, value, false);
1862
1863 }
1864
1865 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1866 return;
1867
1868 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1869 attr->sched_util_min != -1) {
1870 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1871 attr->sched_util_min, true);
1872 }
1873
1874 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1875 attr->sched_util_max != -1) {
1876 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1877 attr->sched_util_max, true);
1878 }
1879 }
1880
1881 static void uclamp_fork(struct task_struct *p)
1882 {
1883 enum uclamp_id clamp_id;
1884
1885 /*
1886 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1887 * as the task is still at its early fork stages.
1888 */
1889 for_each_clamp_id(clamp_id)
1890 p->uclamp[clamp_id].active = false;
1891
1892 if (likely(!p->sched_reset_on_fork))
1893 return;
1894
1895 for_each_clamp_id(clamp_id) {
1896 uclamp_se_set(&p->uclamp_req[clamp_id],
1897 uclamp_none(clamp_id), false);
1898 }
1899 }
1900
1901 static void uclamp_post_fork(struct task_struct *p)
1902 {
1903 uclamp_update_util_min_rt_default(p);
1904 }
1905
1906 static void __init init_uclamp_rq(struct rq *rq)
1907 {
1908 enum uclamp_id clamp_id;
1909 struct uclamp_rq *uc_rq = rq->uclamp;
1910
1911 for_each_clamp_id(clamp_id) {
1912 uc_rq[clamp_id] = (struct uclamp_rq) {
1913 .value = uclamp_none(clamp_id)
1914 };
1915 }
1916
1917 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1918 }
1919
1920 static void __init init_uclamp(void)
1921 {
1922 struct uclamp_se uc_max = {};
1923 enum uclamp_id clamp_id;
1924 int cpu;
1925
1926 for_each_possible_cpu(cpu)
1927 init_uclamp_rq(cpu_rq(cpu));
1928
1929 for_each_clamp_id(clamp_id) {
1930 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1931 uclamp_none(clamp_id), false);
1932 }
1933
1934 /* System defaults allow max clamp values for both indexes */
1935 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1936 for_each_clamp_id(clamp_id) {
1937 uclamp_default[clamp_id] = uc_max;
1938 #ifdef CONFIG_UCLAMP_TASK_GROUP
1939 root_task_group.uclamp_req[clamp_id] = uc_max;
1940 root_task_group.uclamp[clamp_id] = uc_max;
1941 #endif
1942 }
1943 }
1944
1945 #else /* CONFIG_UCLAMP_TASK */
1946 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1947 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1948 static inline int uclamp_validate(struct task_struct *p,
1949 const struct sched_attr *attr)
1950 {
1951 return -EOPNOTSUPP;
1952 }
1953 static void __setscheduler_uclamp(struct task_struct *p,
1954 const struct sched_attr *attr) { }
1955 static inline void uclamp_fork(struct task_struct *p) { }
1956 static inline void uclamp_post_fork(struct task_struct *p) { }
1957 static inline void init_uclamp(void) { }
1958 #endif /* CONFIG_UCLAMP_TASK */
1959
1960 bool sched_task_on_rq(struct task_struct *p)
1961 {
1962 return task_on_rq_queued(p);
1963 }
1964
1965 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1966 {
1967 if (!(flags & ENQUEUE_NOCLOCK))
1968 update_rq_clock(rq);
1969
1970 if (!(flags & ENQUEUE_RESTORE)) {
1971 sched_info_enqueue(rq, p);
1972 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1973 }
1974
1975 uclamp_rq_inc(rq, p);
1976 p->sched_class->enqueue_task(rq, p, flags);
1977
1978 if (sched_core_enabled(rq))
1979 sched_core_enqueue(rq, p);
1980 }
1981
1982 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1983 {
1984 if (sched_core_enabled(rq))
1985 sched_core_dequeue(rq, p);
1986
1987 if (!(flags & DEQUEUE_NOCLOCK))
1988 update_rq_clock(rq);
1989
1990 if (!(flags & DEQUEUE_SAVE)) {
1991 sched_info_dequeue(rq, p);
1992 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1993 }
1994
1995 uclamp_rq_dec(rq, p);
1996 p->sched_class->dequeue_task(rq, p, flags);
1997 }
1998
1999 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2000 {
2001 enqueue_task(rq, p, flags);
2002
2003 p->on_rq = TASK_ON_RQ_QUEUED;
2004 }
2005
2006 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2007 {
2008 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2009
2010 dequeue_task(rq, p, flags);
2011 }
2012
2013 static inline int __normal_prio(int policy, int rt_prio, int nice)
2014 {
2015 int prio;
2016
2017 if (dl_policy(policy))
2018 prio = MAX_DL_PRIO - 1;
2019 else if (rt_policy(policy))
2020 prio = MAX_RT_PRIO - 1 - rt_prio;
2021 else
2022 prio = NICE_TO_PRIO(nice);
2023
2024 return prio;
2025 }
2026
2027 /*
2028 * Calculate the expected normal priority: i.e. priority
2029 * without taking RT-inheritance into account. Might be
2030 * boosted by interactivity modifiers. Changes upon fork,
2031 * setprio syscalls, and whenever the interactivity
2032 * estimator recalculates.
2033 */
2034 static inline int normal_prio(struct task_struct *p)
2035 {
2036 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2037 }
2038
2039 /*
2040 * Calculate the current priority, i.e. the priority
2041 * taken into account by the scheduler. This value might
2042 * be boosted by RT tasks, or might be boosted by
2043 * interactivity modifiers. Will be RT if the task got
2044 * RT-boosted. If not then it returns p->normal_prio.
2045 */
2046 static int effective_prio(struct task_struct *p)
2047 {
2048 p->normal_prio = normal_prio(p);
2049 /*
2050 * If we are RT tasks or we were boosted to RT priority,
2051 * keep the priority unchanged. Otherwise, update priority
2052 * to the normal priority:
2053 */
2054 if (!rt_prio(p->prio))
2055 return p->normal_prio;
2056 return p->prio;
2057 }
2058
2059 /**
2060 * task_curr - is this task currently executing on a CPU?
2061 * @p: the task in question.
2062 *
2063 * Return: 1 if the task is currently executing. 0 otherwise.
2064 */
2065 inline int task_curr(const struct task_struct *p)
2066 {
2067 return cpu_curr(task_cpu(p)) == p;
2068 }
2069
2070 /*
2071 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2072 * use the balance_callback list if you want balancing.
2073 *
2074 * this means any call to check_class_changed() must be followed by a call to
2075 * balance_callback().
2076 */
2077 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2078 const struct sched_class *prev_class,
2079 int oldprio)
2080 {
2081 if (prev_class != p->sched_class) {
2082 if (prev_class->switched_from)
2083 prev_class->switched_from(rq, p);
2084
2085 p->sched_class->switched_to(rq, p);
2086 } else if (oldprio != p->prio || dl_task(p))
2087 p->sched_class->prio_changed(rq, p, oldprio);
2088 }
2089
2090 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2091 {
2092 if (p->sched_class == rq->curr->sched_class)
2093 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2094 else if (p->sched_class > rq->curr->sched_class)
2095 resched_curr(rq);
2096
2097 /*
2098 * A queue event has occurred, and we're going to schedule. In
2099 * this case, we can save a useless back to back clock update.
2100 */
2101 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2102 rq_clock_skip_update(rq);
2103 }
2104
2105 #ifdef CONFIG_SMP
2106
2107 static void
2108 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2109
2110 static int __set_cpus_allowed_ptr(struct task_struct *p,
2111 const struct cpumask *new_mask,
2112 u32 flags);
2113
2114 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2115 {
2116 if (likely(!p->migration_disabled))
2117 return;
2118
2119 if (p->cpus_ptr != &p->cpus_mask)
2120 return;
2121
2122 /*
2123 * Violates locking rules! see comment in __do_set_cpus_allowed().
2124 */
2125 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2126 }
2127
2128 void migrate_disable(void)
2129 {
2130 struct task_struct *p = current;
2131
2132 if (p->migration_disabled) {
2133 p->migration_disabled++;
2134 return;
2135 }
2136
2137 preempt_disable();
2138 this_rq()->nr_pinned++;
2139 p->migration_disabled = 1;
2140 preempt_enable();
2141 }
2142 EXPORT_SYMBOL_GPL(migrate_disable);
2143
2144 void migrate_enable(void)
2145 {
2146 struct task_struct *p = current;
2147
2148 if (p->migration_disabled > 1) {
2149 p->migration_disabled--;
2150 return;
2151 }
2152
2153 /*
2154 * Ensure stop_task runs either before or after this, and that
2155 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2156 */
2157 preempt_disable();
2158 if (p->cpus_ptr != &p->cpus_mask)
2159 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2160 /*
2161 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2162 * regular cpus_mask, otherwise things that race (eg.
2163 * select_fallback_rq) get confused.
2164 */
2165 barrier();
2166 p->migration_disabled = 0;
2167 this_rq()->nr_pinned--;
2168 preempt_enable();
2169 }
2170 EXPORT_SYMBOL_GPL(migrate_enable);
2171
2172 static inline bool rq_has_pinned_tasks(struct rq *rq)
2173 {
2174 return rq->nr_pinned;
2175 }
2176
2177 /*
2178 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2179 * __set_cpus_allowed_ptr() and select_fallback_rq().
2180 */
2181 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2182 {
2183 /* When not in the task's cpumask, no point in looking further. */
2184 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2185 return false;
2186
2187 /* migrate_disabled() must be allowed to finish. */
2188 if (is_migration_disabled(p))
2189 return cpu_online(cpu);
2190
2191 /* Non kernel threads are not allowed during either online or offline. */
2192 if (!(p->flags & PF_KTHREAD))
2193 return cpu_active(cpu) && task_cpu_possible(cpu, p);
2194
2195 /* KTHREAD_IS_PER_CPU is always allowed. */
2196 if (kthread_is_per_cpu(p))
2197 return cpu_online(cpu);
2198
2199 /* Regular kernel threads don't get to stay during offline. */
2200 if (cpu_dying(cpu))
2201 return false;
2202
2203 /* But are allowed during online. */
2204 return cpu_online(cpu);
2205 }
2206
2207 /*
2208 * This is how migration works:
2209 *
2210 * 1) we invoke migration_cpu_stop() on the target CPU using
2211 * stop_one_cpu().
2212 * 2) stopper starts to run (implicitly forcing the migrated thread
2213 * off the CPU)
2214 * 3) it checks whether the migrated task is still in the wrong runqueue.
2215 * 4) if it's in the wrong runqueue then the migration thread removes
2216 * it and puts it into the right queue.
2217 * 5) stopper completes and stop_one_cpu() returns and the migration
2218 * is done.
2219 */
2220
2221 /*
2222 * move_queued_task - move a queued task to new rq.
2223 *
2224 * Returns (locked) new rq. Old rq's lock is released.
2225 */
2226 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2227 struct task_struct *p, int new_cpu)
2228 {
2229 lockdep_assert_rq_held(rq);
2230
2231 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2232 set_task_cpu(p, new_cpu);
2233 rq_unlock(rq, rf);
2234
2235 rq = cpu_rq(new_cpu);
2236
2237 rq_lock(rq, rf);
2238 BUG_ON(task_cpu(p) != new_cpu);
2239 activate_task(rq, p, 0);
2240 check_preempt_curr(rq, p, 0);
2241
2242 return rq;
2243 }
2244
2245 struct migration_arg {
2246 struct task_struct *task;
2247 int dest_cpu;
2248 struct set_affinity_pending *pending;
2249 };
2250
2251 /*
2252 * @refs: number of wait_for_completion()
2253 * @stop_pending: is @stop_work in use
2254 */
2255 struct set_affinity_pending {
2256 refcount_t refs;
2257 unsigned int stop_pending;
2258 struct completion done;
2259 struct cpu_stop_work stop_work;
2260 struct migration_arg arg;
2261 };
2262
2263 /*
2264 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2265 * this because either it can't run here any more (set_cpus_allowed()
2266 * away from this CPU, or CPU going down), or because we're
2267 * attempting to rebalance this task on exec (sched_exec).
2268 *
2269 * So we race with normal scheduler movements, but that's OK, as long
2270 * as the task is no longer on this CPU.
2271 */
2272 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2273 struct task_struct *p, int dest_cpu)
2274 {
2275 /* Affinity changed (again). */
2276 if (!is_cpu_allowed(p, dest_cpu))
2277 return rq;
2278
2279 update_rq_clock(rq);
2280 rq = move_queued_task(rq, rf, p, dest_cpu);
2281
2282 return rq;
2283 }
2284
2285 /*
2286 * migration_cpu_stop - this will be executed by a highprio stopper thread
2287 * and performs thread migration by bumping thread off CPU then
2288 * 'pushing' onto another runqueue.
2289 */
2290 static int migration_cpu_stop(void *data)
2291 {
2292 struct migration_arg *arg = data;
2293 struct set_affinity_pending *pending = arg->pending;
2294 struct task_struct *p = arg->task;
2295 struct rq *rq = this_rq();
2296 bool complete = false;
2297 struct rq_flags rf;
2298
2299 /*
2300 * The original target CPU might have gone down and we might
2301 * be on another CPU but it doesn't matter.
2302 */
2303 local_irq_save(rf.flags);
2304 /*
2305 * We need to explicitly wake pending tasks before running
2306 * __migrate_task() such that we will not miss enforcing cpus_ptr
2307 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2308 */
2309 flush_smp_call_function_from_idle();
2310
2311 raw_spin_lock(&p->pi_lock);
2312 rq_lock(rq, &rf);
2313
2314 /*
2315 * If we were passed a pending, then ->stop_pending was set, thus
2316 * p->migration_pending must have remained stable.
2317 */
2318 WARN_ON_ONCE(pending && pending != p->migration_pending);
2319
2320 /*
2321 * If task_rq(p) != rq, it cannot be migrated here, because we're
2322 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2323 * we're holding p->pi_lock.
2324 */
2325 if (task_rq(p) == rq) {
2326 if (is_migration_disabled(p))
2327 goto out;
2328
2329 if (pending) {
2330 p->migration_pending = NULL;
2331 complete = true;
2332
2333 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2334 goto out;
2335 }
2336
2337 if (task_on_rq_queued(p))
2338 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2339 else
2340 p->wake_cpu = arg->dest_cpu;
2341
2342 /*
2343 * XXX __migrate_task() can fail, at which point we might end
2344 * up running on a dodgy CPU, AFAICT this can only happen
2345 * during CPU hotplug, at which point we'll get pushed out
2346 * anyway, so it's probably not a big deal.
2347 */
2348
2349 } else if (pending) {
2350 /*
2351 * This happens when we get migrated between migrate_enable()'s
2352 * preempt_enable() and scheduling the stopper task. At that
2353 * point we're a regular task again and not current anymore.
2354 *
2355 * A !PREEMPT kernel has a giant hole here, which makes it far
2356 * more likely.
2357 */
2358
2359 /*
2360 * The task moved before the stopper got to run. We're holding
2361 * ->pi_lock, so the allowed mask is stable - if it got
2362 * somewhere allowed, we're done.
2363 */
2364 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2365 p->migration_pending = NULL;
2366 complete = true;
2367 goto out;
2368 }
2369
2370 /*
2371 * When migrate_enable() hits a rq mis-match we can't reliably
2372 * determine is_migration_disabled() and so have to chase after
2373 * it.
2374 */
2375 WARN_ON_ONCE(!pending->stop_pending);
2376 task_rq_unlock(rq, p, &rf);
2377 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2378 &pending->arg, &pending->stop_work);
2379 return 0;
2380 }
2381 out:
2382 if (pending)
2383 pending->stop_pending = false;
2384 task_rq_unlock(rq, p, &rf);
2385
2386 if (complete)
2387 complete_all(&pending->done);
2388
2389 return 0;
2390 }
2391
2392 int push_cpu_stop(void *arg)
2393 {
2394 struct rq *lowest_rq = NULL, *rq = this_rq();
2395 struct task_struct *p = arg;
2396
2397 raw_spin_lock_irq(&p->pi_lock);
2398 raw_spin_rq_lock(rq);
2399
2400 if (task_rq(p) != rq)
2401 goto out_unlock;
2402
2403 if (is_migration_disabled(p)) {
2404 p->migration_flags |= MDF_PUSH;
2405 goto out_unlock;
2406 }
2407
2408 p->migration_flags &= ~MDF_PUSH;
2409
2410 if (p->sched_class->find_lock_rq)
2411 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2412
2413 if (!lowest_rq)
2414 goto out_unlock;
2415
2416 // XXX validate p is still the highest prio task
2417 if (task_rq(p) == rq) {
2418 deactivate_task(rq, p, 0);
2419 set_task_cpu(p, lowest_rq->cpu);
2420 activate_task(lowest_rq, p, 0);
2421 resched_curr(lowest_rq);
2422 }
2423
2424 double_unlock_balance(rq, lowest_rq);
2425
2426 out_unlock:
2427 rq->push_busy = false;
2428 raw_spin_rq_unlock(rq);
2429 raw_spin_unlock_irq(&p->pi_lock);
2430
2431 put_task_struct(p);
2432 return 0;
2433 }
2434
2435 /*
2436 * sched_class::set_cpus_allowed must do the below, but is not required to
2437 * actually call this function.
2438 */
2439 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2440 {
2441 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2442 p->cpus_ptr = new_mask;
2443 return;
2444 }
2445
2446 cpumask_copy(&p->cpus_mask, new_mask);
2447 p->nr_cpus_allowed = cpumask_weight(new_mask);
2448 }
2449
2450 static void
2451 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2452 {
2453 struct rq *rq = task_rq(p);
2454 bool queued, running;
2455
2456 /*
2457 * This here violates the locking rules for affinity, since we're only
2458 * supposed to change these variables while holding both rq->lock and
2459 * p->pi_lock.
2460 *
2461 * HOWEVER, it magically works, because ttwu() is the only code that
2462 * accesses these variables under p->pi_lock and only does so after
2463 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2464 * before finish_task().
2465 *
2466 * XXX do further audits, this smells like something putrid.
2467 */
2468 if (flags & SCA_MIGRATE_DISABLE)
2469 SCHED_WARN_ON(!p->on_cpu);
2470 else
2471 lockdep_assert_held(&p->pi_lock);
2472
2473 queued = task_on_rq_queued(p);
2474 running = task_current(rq, p);
2475
2476 if (queued) {
2477 /*
2478 * Because __kthread_bind() calls this on blocked tasks without
2479 * holding rq->lock.
2480 */
2481 lockdep_assert_rq_held(rq);
2482 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2483 }
2484 if (running)
2485 put_prev_task(rq, p);
2486
2487 p->sched_class->set_cpus_allowed(p, new_mask, flags);
2488
2489 if (queued)
2490 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2491 if (running)
2492 set_next_task(rq, p);
2493 }
2494
2495 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2496 {
2497 __do_set_cpus_allowed(p, new_mask, 0);
2498 }
2499
2500 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2501 int node)
2502 {
2503 if (!src->user_cpus_ptr)
2504 return 0;
2505
2506 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2507 if (!dst->user_cpus_ptr)
2508 return -ENOMEM;
2509
2510 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2511 return 0;
2512 }
2513
2514 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2515 {
2516 struct cpumask *user_mask = NULL;
2517
2518 swap(p->user_cpus_ptr, user_mask);
2519
2520 return user_mask;
2521 }
2522
2523 void release_user_cpus_ptr(struct task_struct *p)
2524 {
2525 kfree(clear_user_cpus_ptr(p));
2526 }
2527
2528 /*
2529 * This function is wildly self concurrent; here be dragons.
2530 *
2531 *
2532 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2533 * designated task is enqueued on an allowed CPU. If that task is currently
2534 * running, we have to kick it out using the CPU stopper.
2535 *
2536 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2537 * Consider:
2538 *
2539 * Initial conditions: P0->cpus_mask = [0, 1]
2540 *
2541 * P0@CPU0 P1
2542 *
2543 * migrate_disable();
2544 * <preempted>
2545 * set_cpus_allowed_ptr(P0, [1]);
2546 *
2547 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2548 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2549 * This means we need the following scheme:
2550 *
2551 * P0@CPU0 P1
2552 *
2553 * migrate_disable();
2554 * <preempted>
2555 * set_cpus_allowed_ptr(P0, [1]);
2556 * <blocks>
2557 * <resumes>
2558 * migrate_enable();
2559 * __set_cpus_allowed_ptr();
2560 * <wakes local stopper>
2561 * `--> <woken on migration completion>
2562 *
2563 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2564 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2565 * task p are serialized by p->pi_lock, which we can leverage: the one that
2566 * should come into effect at the end of the Migrate-Disable region is the last
2567 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2568 * but we still need to properly signal those waiting tasks at the appropriate
2569 * moment.
2570 *
2571 * This is implemented using struct set_affinity_pending. The first
2572 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2573 * setup an instance of that struct and install it on the targeted task_struct.
2574 * Any and all further callers will reuse that instance. Those then wait for
2575 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2576 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2577 *
2578 *
2579 * (1) In the cases covered above. There is one more where the completion is
2580 * signaled within affine_move_task() itself: when a subsequent affinity request
2581 * occurs after the stopper bailed out due to the targeted task still being
2582 * Migrate-Disable. Consider:
2583 *
2584 * Initial conditions: P0->cpus_mask = [0, 1]
2585 *
2586 * CPU0 P1 P2
2587 * <P0>
2588 * migrate_disable();
2589 * <preempted>
2590 * set_cpus_allowed_ptr(P0, [1]);
2591 * <blocks>
2592 * <migration/0>
2593 * migration_cpu_stop()
2594 * is_migration_disabled()
2595 * <bails>
2596 * set_cpus_allowed_ptr(P0, [0, 1]);
2597 * <signal completion>
2598 * <awakes>
2599 *
2600 * Note that the above is safe vs a concurrent migrate_enable(), as any
2601 * pending affinity completion is preceded by an uninstallation of
2602 * p->migration_pending done with p->pi_lock held.
2603 */
2604 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2605 int dest_cpu, unsigned int flags)
2606 {
2607 struct set_affinity_pending my_pending = { }, *pending = NULL;
2608 bool stop_pending, complete = false;
2609
2610 /* Can the task run on the task's current CPU? If so, we're done */
2611 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2612 struct task_struct *push_task = NULL;
2613
2614 if ((flags & SCA_MIGRATE_ENABLE) &&
2615 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2616 rq->push_busy = true;
2617 push_task = get_task_struct(p);
2618 }
2619
2620 /*
2621 * If there are pending waiters, but no pending stop_work,
2622 * then complete now.
2623 */
2624 pending = p->migration_pending;
2625 if (pending && !pending->stop_pending) {
2626 p->migration_pending = NULL;
2627 complete = true;
2628 }
2629
2630 task_rq_unlock(rq, p, rf);
2631
2632 if (push_task) {
2633 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2634 p, &rq->push_work);
2635 }
2636
2637 if (complete)
2638 complete_all(&pending->done);
2639
2640 return 0;
2641 }
2642
2643 if (!(flags & SCA_MIGRATE_ENABLE)) {
2644 /* serialized by p->pi_lock */
2645 if (!p->migration_pending) {
2646 /* Install the request */
2647 refcount_set(&my_pending.refs, 1);
2648 init_completion(&my_pending.done);
2649 my_pending.arg = (struct migration_arg) {
2650 .task = p,
2651 .dest_cpu = dest_cpu,
2652 .pending = &my_pending,
2653 };
2654
2655 p->migration_pending = &my_pending;
2656 } else {
2657 pending = p->migration_pending;
2658 refcount_inc(&pending->refs);
2659 /*
2660 * Affinity has changed, but we've already installed a
2661 * pending. migration_cpu_stop() *must* see this, else
2662 * we risk a completion of the pending despite having a
2663 * task on a disallowed CPU.
2664 *
2665 * Serialized by p->pi_lock, so this is safe.
2666 */
2667 pending->arg.dest_cpu = dest_cpu;
2668 }
2669 }
2670 pending = p->migration_pending;
2671 /*
2672 * - !MIGRATE_ENABLE:
2673 * we'll have installed a pending if there wasn't one already.
2674 *
2675 * - MIGRATE_ENABLE:
2676 * we're here because the current CPU isn't matching anymore,
2677 * the only way that can happen is because of a concurrent
2678 * set_cpus_allowed_ptr() call, which should then still be
2679 * pending completion.
2680 *
2681 * Either way, we really should have a @pending here.
2682 */
2683 if (WARN_ON_ONCE(!pending)) {
2684 task_rq_unlock(rq, p, rf);
2685 return -EINVAL;
2686 }
2687
2688 if (task_running(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2689 /*
2690 * MIGRATE_ENABLE gets here because 'p == current', but for
2691 * anything else we cannot do is_migration_disabled(), punt
2692 * and have the stopper function handle it all race-free.
2693 */
2694 stop_pending = pending->stop_pending;
2695 if (!stop_pending)
2696 pending->stop_pending = true;
2697
2698 if (flags & SCA_MIGRATE_ENABLE)
2699 p->migration_flags &= ~MDF_PUSH;
2700
2701 task_rq_unlock(rq, p, rf);
2702
2703 if (!stop_pending) {
2704 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2705 &pending->arg, &pending->stop_work);
2706 }
2707
2708 if (flags & SCA_MIGRATE_ENABLE)
2709 return 0;
2710 } else {
2711
2712 if (!is_migration_disabled(p)) {
2713 if (task_on_rq_queued(p))
2714 rq = move_queued_task(rq, rf, p, dest_cpu);
2715
2716 if (!pending->stop_pending) {
2717 p->migration_pending = NULL;
2718 complete = true;
2719 }
2720 }
2721 task_rq_unlock(rq, p, rf);
2722
2723 if (complete)
2724 complete_all(&pending->done);
2725 }
2726
2727 wait_for_completion(&pending->done);
2728
2729 if (refcount_dec_and_test(&pending->refs))
2730 wake_up_var(&pending->refs); /* No UaF, just an address */
2731
2732 /*
2733 * Block the original owner of &pending until all subsequent callers
2734 * have seen the completion and decremented the refcount
2735 */
2736 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2737
2738 /* ARGH */
2739 WARN_ON_ONCE(my_pending.stop_pending);
2740
2741 return 0;
2742 }
2743
2744 /*
2745 * Called with both p->pi_lock and rq->lock held; drops both before returning.
2746 */
2747 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2748 const struct cpumask *new_mask,
2749 u32 flags,
2750 struct rq *rq,
2751 struct rq_flags *rf)
2752 __releases(rq->lock)
2753 __releases(p->pi_lock)
2754 {
2755 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2756 const struct cpumask *cpu_valid_mask = cpu_active_mask;
2757 bool kthread = p->flags & PF_KTHREAD;
2758 struct cpumask *user_mask = NULL;
2759 unsigned int dest_cpu;
2760 int ret = 0;
2761
2762 update_rq_clock(rq);
2763
2764 if (kthread || is_migration_disabled(p)) {
2765 /*
2766 * Kernel threads are allowed on online && !active CPUs,
2767 * however, during cpu-hot-unplug, even these might get pushed
2768 * away if not KTHREAD_IS_PER_CPU.
2769 *
2770 * Specifically, migration_disabled() tasks must not fail the
2771 * cpumask_any_and_distribute() pick below, esp. so on
2772 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2773 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2774 */
2775 cpu_valid_mask = cpu_online_mask;
2776 }
2777
2778 if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2779 ret = -EINVAL;
2780 goto out;
2781 }
2782
2783 /*
2784 * Must re-check here, to close a race against __kthread_bind(),
2785 * sched_setaffinity() is not guaranteed to observe the flag.
2786 */
2787 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2788 ret = -EINVAL;
2789 goto out;
2790 }
2791
2792 if (!(flags & SCA_MIGRATE_ENABLE)) {
2793 if (cpumask_equal(&p->cpus_mask, new_mask))
2794 goto out;
2795
2796 if (WARN_ON_ONCE(p == current &&
2797 is_migration_disabled(p) &&
2798 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2799 ret = -EBUSY;
2800 goto out;
2801 }
2802 }
2803
2804 /*
2805 * Picking a ~random cpu helps in cases where we are changing affinity
2806 * for groups of tasks (ie. cpuset), so that load balancing is not
2807 * immediately required to distribute the tasks within their new mask.
2808 */
2809 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2810 if (dest_cpu >= nr_cpu_ids) {
2811 ret = -EINVAL;
2812 goto out;
2813 }
2814
2815 __do_set_cpus_allowed(p, new_mask, flags);
2816
2817 if (flags & SCA_USER)
2818 user_mask = clear_user_cpus_ptr(p);
2819
2820 ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2821
2822 kfree(user_mask);
2823
2824 return ret;
2825
2826 out:
2827 task_rq_unlock(rq, p, rf);
2828
2829 return ret;
2830 }
2831
2832 /*
2833 * Change a given task's CPU affinity. Migrate the thread to a
2834 * proper CPU and schedule it away if the CPU it's executing on
2835 * is removed from the allowed bitmask.
2836 *
2837 * NOTE: the caller must have a valid reference to the task, the
2838 * task must not exit() & deallocate itself prematurely. The
2839 * call is not atomic; no spinlocks may be held.
2840 */
2841 static int __set_cpus_allowed_ptr(struct task_struct *p,
2842 const struct cpumask *new_mask, u32 flags)
2843 {
2844 struct rq_flags rf;
2845 struct rq *rq;
2846
2847 rq = task_rq_lock(p, &rf);
2848 return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2849 }
2850
2851 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2852 {
2853 return __set_cpus_allowed_ptr(p, new_mask, 0);
2854 }
2855 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2856
2857 /*
2858 * Change a given task's CPU affinity to the intersection of its current
2859 * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2860 * and pointing @p->user_cpus_ptr to a copy of the old mask.
2861 * If the resulting mask is empty, leave the affinity unchanged and return
2862 * -EINVAL.
2863 */
2864 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2865 struct cpumask *new_mask,
2866 const struct cpumask *subset_mask)
2867 {
2868 struct cpumask *user_mask = NULL;
2869 struct rq_flags rf;
2870 struct rq *rq;
2871 int err;
2872
2873 if (!p->user_cpus_ptr) {
2874 user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2875 if (!user_mask)
2876 return -ENOMEM;
2877 }
2878
2879 rq = task_rq_lock(p, &rf);
2880
2881 /*
2882 * Forcefully restricting the affinity of a deadline task is
2883 * likely to cause problems, so fail and noisily override the
2884 * mask entirely.
2885 */
2886 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2887 err = -EPERM;
2888 goto err_unlock;
2889 }
2890
2891 if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2892 err = -EINVAL;
2893 goto err_unlock;
2894 }
2895
2896 /*
2897 * We're about to butcher the task affinity, so keep track of what
2898 * the user asked for in case we're able to restore it later on.
2899 */
2900 if (user_mask) {
2901 cpumask_copy(user_mask, p->cpus_ptr);
2902 p->user_cpus_ptr = user_mask;
2903 }
2904
2905 return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
2906
2907 err_unlock:
2908 task_rq_unlock(rq, p, &rf);
2909 kfree(user_mask);
2910 return err;
2911 }
2912
2913 /*
2914 * Restrict the CPU affinity of task @p so that it is a subset of
2915 * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
2916 * old affinity mask. If the resulting mask is empty, we warn and walk
2917 * up the cpuset hierarchy until we find a suitable mask.
2918 */
2919 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
2920 {
2921 cpumask_var_t new_mask;
2922 const struct cpumask *override_mask = task_cpu_possible_mask(p);
2923
2924 alloc_cpumask_var(&new_mask, GFP_KERNEL);
2925
2926 /*
2927 * __migrate_task() can fail silently in the face of concurrent
2928 * offlining of the chosen destination CPU, so take the hotplug
2929 * lock to ensure that the migration succeeds.
2930 */
2931 cpus_read_lock();
2932 if (!cpumask_available(new_mask))
2933 goto out_set_mask;
2934
2935 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
2936 goto out_free_mask;
2937
2938 /*
2939 * We failed to find a valid subset of the affinity mask for the
2940 * task, so override it based on its cpuset hierarchy.
2941 */
2942 cpuset_cpus_allowed(p, new_mask);
2943 override_mask = new_mask;
2944
2945 out_set_mask:
2946 if (printk_ratelimit()) {
2947 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
2948 task_pid_nr(p), p->comm,
2949 cpumask_pr_args(override_mask));
2950 }
2951
2952 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
2953 out_free_mask:
2954 cpus_read_unlock();
2955 free_cpumask_var(new_mask);
2956 }
2957
2958 static int
2959 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
2960
2961 /*
2962 * Restore the affinity of a task @p which was previously restricted by a
2963 * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
2964 * @p->user_cpus_ptr.
2965 *
2966 * It is the caller's responsibility to serialise this with any calls to
2967 * force_compatible_cpus_allowed_ptr(@p).
2968 */
2969 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
2970 {
2971 struct cpumask *user_mask = p->user_cpus_ptr;
2972 unsigned long flags;
2973
2974 /*
2975 * Try to restore the old affinity mask. If this fails, then
2976 * we free the mask explicitly to avoid it being inherited across
2977 * a subsequent fork().
2978 */
2979 if (!user_mask || !__sched_setaffinity(p, user_mask))
2980 return;
2981
2982 raw_spin_lock_irqsave(&p->pi_lock, flags);
2983 user_mask = clear_user_cpus_ptr(p);
2984 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2985
2986 kfree(user_mask);
2987 }
2988
2989 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2990 {
2991 #ifdef CONFIG_SCHED_DEBUG
2992 unsigned int state = READ_ONCE(p->__state);
2993
2994 /*
2995 * We should never call set_task_cpu() on a blocked task,
2996 * ttwu() will sort out the placement.
2997 */
2998 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
2999
3000 /*
3001 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3002 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3003 * time relying on p->on_rq.
3004 */
3005 WARN_ON_ONCE(state == TASK_RUNNING &&
3006 p->sched_class == &fair_sched_class &&
3007 (p->on_rq && !task_on_rq_migrating(p)));
3008
3009 #ifdef CONFIG_LOCKDEP
3010 /*
3011 * The caller should hold either p->pi_lock or rq->lock, when changing
3012 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3013 *
3014 * sched_move_task() holds both and thus holding either pins the cgroup,
3015 * see task_group().
3016 *
3017 * Furthermore, all task_rq users should acquire both locks, see
3018 * task_rq_lock().
3019 */
3020 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3021 lockdep_is_held(__rq_lockp(task_rq(p)))));
3022 #endif
3023 /*
3024 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3025 */
3026 WARN_ON_ONCE(!cpu_online(new_cpu));
3027
3028 WARN_ON_ONCE(is_migration_disabled(p));
3029 #endif
3030
3031 trace_sched_migrate_task(p, new_cpu);
3032
3033 if (task_cpu(p) != new_cpu) {
3034 if (p->sched_class->migrate_task_rq)
3035 p->sched_class->migrate_task_rq(p, new_cpu);
3036 p->se.nr_migrations++;
3037 rseq_migrate(p);
3038 perf_event_task_migrate(p);
3039 }
3040
3041 __set_task_cpu(p, new_cpu);
3042 }
3043
3044 #ifdef CONFIG_NUMA_BALANCING
3045 static void __migrate_swap_task(struct task_struct *p, int cpu)
3046 {
3047 if (task_on_rq_queued(p)) {
3048 struct rq *src_rq, *dst_rq;
3049 struct rq_flags srf, drf;
3050
3051 src_rq = task_rq(p);
3052 dst_rq = cpu_rq(cpu);
3053
3054 rq_pin_lock(src_rq, &srf);
3055 rq_pin_lock(dst_rq, &drf);
3056
3057 deactivate_task(src_rq, p, 0);
3058 set_task_cpu(p, cpu);
3059 activate_task(dst_rq, p, 0);
3060 check_preempt_curr(dst_rq, p, 0);
3061
3062 rq_unpin_lock(dst_rq, &drf);
3063 rq_unpin_lock(src_rq, &srf);
3064
3065 } else {
3066 /*
3067 * Task isn't running anymore; make it appear like we migrated
3068 * it before it went to sleep. This means on wakeup we make the
3069 * previous CPU our target instead of where it really is.
3070 */
3071 p->wake_cpu = cpu;
3072 }
3073 }
3074
3075 struct migration_swap_arg {
3076 struct task_struct *src_task, *dst_task;
3077 int src_cpu, dst_cpu;
3078 };
3079
3080 static int migrate_swap_stop(void *data)
3081 {
3082 struct migration_swap_arg *arg = data;
3083 struct rq *src_rq, *dst_rq;
3084 int ret = -EAGAIN;
3085
3086 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3087 return -EAGAIN;
3088
3089 src_rq = cpu_rq(arg->src_cpu);
3090 dst_rq = cpu_rq(arg->dst_cpu);
3091
3092 double_raw_lock(&arg->src_task->pi_lock,
3093 &arg->dst_task->pi_lock);
3094 double_rq_lock(src_rq, dst_rq);
3095
3096 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3097 goto unlock;
3098
3099 if (task_cpu(arg->src_task) != arg->src_cpu)
3100 goto unlock;
3101
3102 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3103 goto unlock;
3104
3105 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3106 goto unlock;
3107
3108 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3109 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3110
3111 ret = 0;
3112
3113 unlock:
3114 double_rq_unlock(src_rq, dst_rq);
3115 raw_spin_unlock(&arg->dst_task->pi_lock);
3116 raw_spin_unlock(&arg->src_task->pi_lock);
3117
3118 return ret;
3119 }
3120
3121 /*
3122 * Cross migrate two tasks
3123 */
3124 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3125 int target_cpu, int curr_cpu)
3126 {
3127 struct migration_swap_arg arg;
3128 int ret = -EINVAL;
3129
3130 arg = (struct migration_swap_arg){
3131 .src_task = cur,
3132 .src_cpu = curr_cpu,
3133 .dst_task = p,
3134 .dst_cpu = target_cpu,
3135 };
3136
3137 if (arg.src_cpu == arg.dst_cpu)
3138 goto out;
3139
3140 /*
3141 * These three tests are all lockless; this is OK since all of them
3142 * will be re-checked with proper locks held further down the line.
3143 */
3144 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3145 goto out;
3146
3147 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3148 goto out;
3149
3150 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3151 goto out;
3152
3153 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3154 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3155
3156 out:
3157 return ret;
3158 }
3159 #endif /* CONFIG_NUMA_BALANCING */
3160
3161 /*
3162 * wait_task_inactive - wait for a thread to unschedule.
3163 *
3164 * If @match_state is nonzero, it's the @p->state value just checked and
3165 * not expected to change. If it changes, i.e. @p might have woken up,
3166 * then return zero. When we succeed in waiting for @p to be off its CPU,
3167 * we return a positive number (its total switch count). If a second call
3168 * a short while later returns the same number, the caller can be sure that
3169 * @p has remained unscheduled the whole time.
3170 *
3171 * The caller must ensure that the task *will* unschedule sometime soon,
3172 * else this function might spin for a *long* time. This function can't
3173 * be called with interrupts off, or it may introduce deadlock with
3174 * smp_call_function() if an IPI is sent by the same process we are
3175 * waiting to become inactive.
3176 */
3177 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3178 {
3179 int running, queued;
3180 struct rq_flags rf;
3181 unsigned long ncsw;
3182 struct rq *rq;
3183
3184 for (;;) {
3185 /*
3186 * We do the initial early heuristics without holding
3187 * any task-queue locks at all. We'll only try to get
3188 * the runqueue lock when things look like they will
3189 * work out!
3190 */
3191 rq = task_rq(p);
3192
3193 /*
3194 * If the task is actively running on another CPU
3195 * still, just relax and busy-wait without holding
3196 * any locks.
3197 *
3198 * NOTE! Since we don't hold any locks, it's not
3199 * even sure that "rq" stays as the right runqueue!
3200 * But we don't care, since "task_running()" will
3201 * return false if the runqueue has changed and p
3202 * is actually now running somewhere else!
3203 */
3204 while (task_running(rq, p)) {
3205 if (match_state && unlikely(READ_ONCE(p->__state) != match_state))
3206 return 0;
3207 cpu_relax();
3208 }
3209
3210 /*
3211 * Ok, time to look more closely! We need the rq
3212 * lock now, to be *sure*. If we're wrong, we'll
3213 * just go back and repeat.
3214 */
3215 rq = task_rq_lock(p, &rf);
3216 trace_sched_wait_task(p);
3217 running = task_running(rq, p);
3218 queued = task_on_rq_queued(p);
3219 ncsw = 0;
3220 if (!match_state || READ_ONCE(p->__state) == match_state)
3221 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3222 task_rq_unlock(rq, p, &rf);
3223
3224 /*
3225 * If it changed from the expected state, bail out now.
3226 */
3227 if (unlikely(!ncsw))
3228 break;
3229
3230 /*
3231 * Was it really running after all now that we
3232 * checked with the proper locks actually held?
3233 *
3234 * Oops. Go back and try again..
3235 */
3236 if (unlikely(running)) {
3237 cpu_relax();
3238 continue;
3239 }
3240
3241 /*
3242 * It's not enough that it's not actively running,
3243 * it must be off the runqueue _entirely_, and not
3244 * preempted!
3245 *
3246 * So if it was still runnable (but just not actively
3247 * running right now), it's preempted, and we should
3248 * yield - it could be a while.
3249 */
3250 if (unlikely(queued)) {
3251 ktime_t to = NSEC_PER_SEC / HZ;
3252
3253 set_current_state(TASK_UNINTERRUPTIBLE);
3254 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3255 continue;
3256 }
3257
3258 /*
3259 * Ahh, all good. It wasn't running, and it wasn't
3260 * runnable, which means that it will never become
3261 * running in the future either. We're all done!
3262 */
3263 break;
3264 }
3265
3266 return ncsw;
3267 }
3268
3269 /***
3270 * kick_process - kick a running thread to enter/exit the kernel
3271 * @p: the to-be-kicked thread
3272 *
3273 * Cause a process which is running on another CPU to enter
3274 * kernel-mode, without any delay. (to get signals handled.)
3275 *
3276 * NOTE: this function doesn't have to take the runqueue lock,
3277 * because all it wants to ensure is that the remote task enters
3278 * the kernel. If the IPI races and the task has been migrated
3279 * to another CPU then no harm is done and the purpose has been
3280 * achieved as well.
3281 */
3282 void kick_process(struct task_struct *p)
3283 {
3284 int cpu;
3285
3286 preempt_disable();
3287 cpu = task_cpu(p);
3288 if ((cpu != smp_processor_id()) && task_curr(p))
3289 smp_send_reschedule(cpu);
3290 preempt_enable();
3291 }
3292 EXPORT_SYMBOL_GPL(kick_process);
3293
3294 /*
3295 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3296 *
3297 * A few notes on cpu_active vs cpu_online:
3298 *
3299 * - cpu_active must be a subset of cpu_online
3300 *
3301 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3302 * see __set_cpus_allowed_ptr(). At this point the newly online
3303 * CPU isn't yet part of the sched domains, and balancing will not
3304 * see it.
3305 *
3306 * - on CPU-down we clear cpu_active() to mask the sched domains and
3307 * avoid the load balancer to place new tasks on the to be removed
3308 * CPU. Existing tasks will remain running there and will be taken
3309 * off.
3310 *
3311 * This means that fallback selection must not select !active CPUs.
3312 * And can assume that any active CPU must be online. Conversely
3313 * select_task_rq() below may allow selection of !active CPUs in order
3314 * to satisfy the above rules.
3315 */
3316 static int select_fallback_rq(int cpu, struct task_struct *p)
3317 {
3318 int nid = cpu_to_node(cpu);
3319 const struct cpumask *nodemask = NULL;
3320 enum { cpuset, possible, fail } state = cpuset;
3321 int dest_cpu;
3322
3323 /*
3324 * If the node that the CPU is on has been offlined, cpu_to_node()
3325 * will return -1. There is no CPU on the node, and we should
3326 * select the CPU on the other node.
3327 */
3328 if (nid != -1) {
3329 nodemask = cpumask_of_node(nid);
3330
3331 /* Look for allowed, online CPU in same node. */
3332 for_each_cpu(dest_cpu, nodemask) {
3333 if (is_cpu_allowed(p, dest_cpu))
3334 return dest_cpu;
3335 }
3336 }
3337
3338 for (;;) {
3339 /* Any allowed, online CPU? */
3340 for_each_cpu(dest_cpu, p->cpus_ptr) {
3341 if (!is_cpu_allowed(p, dest_cpu))
3342 continue;
3343
3344 goto out;
3345 }
3346
3347 /* No more Mr. Nice Guy. */
3348 switch (state) {
3349 case cpuset:
3350 if (cpuset_cpus_allowed_fallback(p)) {
3351 state = possible;
3352 break;
3353 }
3354 fallthrough;
3355 case possible:
3356 /*
3357 * XXX When called from select_task_rq() we only
3358 * hold p->pi_lock and again violate locking order.
3359 *
3360 * More yuck to audit.
3361 */
3362 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3363 state = fail;
3364 break;
3365 case fail:
3366 BUG();
3367 break;
3368 }
3369 }
3370
3371 out:
3372 if (state != cpuset) {
3373 /*
3374 * Don't tell them about moving exiting tasks or
3375 * kernel threads (both mm NULL), since they never
3376 * leave kernel.
3377 */
3378 if (p->mm && printk_ratelimit()) {
3379 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3380 task_pid_nr(p), p->comm, cpu);
3381 }
3382 }
3383
3384 return dest_cpu;
3385 }
3386
3387 /*
3388 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3389 */
3390 static inline
3391 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3392 {
3393 lockdep_assert_held(&p->pi_lock);
3394
3395 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3396 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3397 else
3398 cpu = cpumask_any(p->cpus_ptr);
3399
3400 /*
3401 * In order not to call set_task_cpu() on a blocking task we need
3402 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3403 * CPU.
3404 *
3405 * Since this is common to all placement strategies, this lives here.
3406 *
3407 * [ this allows ->select_task() to simply return task_cpu(p) and
3408 * not worry about this generic constraint ]
3409 */
3410 if (unlikely(!is_cpu_allowed(p, cpu)))
3411 cpu = select_fallback_rq(task_cpu(p), p);
3412
3413 return cpu;
3414 }
3415
3416 void sched_set_stop_task(int cpu, struct task_struct *stop)
3417 {
3418 static struct lock_class_key stop_pi_lock;
3419 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3420 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3421
3422 if (stop) {
3423 /*
3424 * Make it appear like a SCHED_FIFO task, its something
3425 * userspace knows about and won't get confused about.
3426 *
3427 * Also, it will make PI more or less work without too
3428 * much confusion -- but then, stop work should not
3429 * rely on PI working anyway.
3430 */
3431 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3432
3433 stop->sched_class = &stop_sched_class;
3434
3435 /*
3436 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3437 * adjust the effective priority of a task. As a result,
3438 * rt_mutex_setprio() can trigger (RT) balancing operations,
3439 * which can then trigger wakeups of the stop thread to push
3440 * around the current task.
3441 *
3442 * The stop task itself will never be part of the PI-chain, it
3443 * never blocks, therefore that ->pi_lock recursion is safe.
3444 * Tell lockdep about this by placing the stop->pi_lock in its
3445 * own class.
3446 */
3447 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3448 }
3449
3450 cpu_rq(cpu)->stop = stop;
3451
3452 if (old_stop) {
3453 /*
3454 * Reset it back to a normal scheduling class so that
3455 * it can die in pieces.
3456 */
3457 old_stop->sched_class = &rt_sched_class;
3458 }
3459 }
3460
3461 #else /* CONFIG_SMP */
3462
3463 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3464 const struct cpumask *new_mask,
3465 u32 flags)
3466 {
3467 return set_cpus_allowed_ptr(p, new_mask);
3468 }
3469
3470 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3471
3472 static inline bool rq_has_pinned_tasks(struct rq *rq)
3473 {
3474 return false;
3475 }
3476
3477 #endif /* !CONFIG_SMP */
3478
3479 static void
3480 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3481 {
3482 struct rq *rq;
3483
3484 if (!schedstat_enabled())
3485 return;
3486
3487 rq = this_rq();
3488
3489 #ifdef CONFIG_SMP
3490 if (cpu == rq->cpu) {
3491 __schedstat_inc(rq->ttwu_local);
3492 __schedstat_inc(p->se.statistics.nr_wakeups_local);
3493 } else {
3494 struct sched_domain *sd;
3495
3496 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
3497 rcu_read_lock();
3498 for_each_domain(rq->cpu, sd) {
3499 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3500 __schedstat_inc(sd->ttwu_wake_remote);
3501 break;
3502 }
3503 }
3504 rcu_read_unlock();
3505 }
3506
3507 if (wake_flags & WF_MIGRATED)
3508 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
3509 #endif /* CONFIG_SMP */
3510
3511 __schedstat_inc(rq->ttwu_count);
3512 __schedstat_inc(p->se.statistics.nr_wakeups);
3513
3514 if (wake_flags & WF_SYNC)
3515 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
3516 }
3517
3518 /*
3519 * Mark the task runnable and perform wakeup-preemption.
3520 */
3521 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3522 struct rq_flags *rf)
3523 {
3524 check_preempt_curr(rq, p, wake_flags);
3525 WRITE_ONCE(p->__state, TASK_RUNNING);
3526 trace_sched_wakeup(p);
3527
3528 #ifdef CONFIG_SMP
3529 if (p->sched_class->task_woken) {
3530 /*
3531 * Our task @p is fully woken up and running; so it's safe to
3532 * drop the rq->lock, hereafter rq is only used for statistics.
3533 */
3534 rq_unpin_lock(rq, rf);
3535 p->sched_class->task_woken(rq, p);
3536 rq_repin_lock(rq, rf);
3537 }
3538
3539 if (rq->idle_stamp) {
3540 u64 delta = rq_clock(rq) - rq->idle_stamp;
3541 u64 max = 2*rq->max_idle_balance_cost;
3542
3543 update_avg(&rq->avg_idle, delta);
3544
3545 if (rq->avg_idle > max)
3546 rq->avg_idle = max;
3547
3548 rq->wake_stamp = jiffies;
3549 rq->wake_avg_idle = rq->avg_idle / 2;
3550
3551 rq->idle_stamp = 0;
3552 }
3553 #endif
3554 }
3555
3556 static void
3557 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3558 struct rq_flags *rf)
3559 {
3560 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3561
3562 lockdep_assert_rq_held(rq);
3563
3564 if (p->sched_contributes_to_load)
3565 rq->nr_uninterruptible--;
3566
3567 #ifdef CONFIG_SMP
3568 if (wake_flags & WF_MIGRATED)
3569 en_flags |= ENQUEUE_MIGRATED;
3570 else
3571 #endif
3572 if (p->in_iowait) {
3573 delayacct_blkio_end(p);
3574 atomic_dec(&task_rq(p)->nr_iowait);
3575 }
3576
3577 activate_task(rq, p, en_flags);
3578 ttwu_do_wakeup(rq, p, wake_flags, rf);
3579 }
3580
3581 /*
3582 * Consider @p being inside a wait loop:
3583 *
3584 * for (;;) {
3585 * set_current_state(TASK_UNINTERRUPTIBLE);
3586 *
3587 * if (CONDITION)
3588 * break;
3589 *
3590 * schedule();
3591 * }
3592 * __set_current_state(TASK_RUNNING);
3593 *
3594 * between set_current_state() and schedule(). In this case @p is still
3595 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3596 * an atomic manner.
3597 *
3598 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3599 * then schedule() must still happen and p->state can be changed to
3600 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3601 * need to do a full wakeup with enqueue.
3602 *
3603 * Returns: %true when the wakeup is done,
3604 * %false otherwise.
3605 */
3606 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3607 {
3608 struct rq_flags rf;
3609 struct rq *rq;
3610 int ret = 0;
3611
3612 rq = __task_rq_lock(p, &rf);
3613 if (task_on_rq_queued(p)) {
3614 /* check_preempt_curr() may use rq clock */
3615 update_rq_clock(rq);
3616 ttwu_do_wakeup(rq, p, wake_flags, &rf);
3617 ret = 1;
3618 }
3619 __task_rq_unlock(rq, &rf);
3620
3621 return ret;
3622 }
3623
3624 #ifdef CONFIG_SMP
3625 void sched_ttwu_pending(void *arg)
3626 {
3627 struct llist_node *llist = arg;
3628 struct rq *rq = this_rq();
3629 struct task_struct *p, *t;
3630 struct rq_flags rf;
3631
3632 if (!llist)
3633 return;
3634
3635 /*
3636 * rq::ttwu_pending racy indication of out-standing wakeups.
3637 * Races such that false-negatives are possible, since they
3638 * are shorter lived that false-positives would be.
3639 */
3640 WRITE_ONCE(rq->ttwu_pending, 0);
3641
3642 rq_lock_irqsave(rq, &rf);
3643 update_rq_clock(rq);
3644
3645 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3646 if (WARN_ON_ONCE(p->on_cpu))
3647 smp_cond_load_acquire(&p->on_cpu, !VAL);
3648
3649 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3650 set_task_cpu(p, cpu_of(rq));
3651
3652 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3653 }
3654
3655 rq_unlock_irqrestore(rq, &rf);
3656 }
3657
3658 void send_call_function_single_ipi(int cpu)
3659 {
3660 struct rq *rq = cpu_rq(cpu);
3661
3662 if (!set_nr_if_polling(rq->idle))
3663 arch_send_call_function_single_ipi(cpu);
3664 else
3665 trace_sched_wake_idle_without_ipi(cpu);
3666 }
3667
3668 /*
3669 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3670 * necessary. The wakee CPU on receipt of the IPI will queue the task
3671 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3672 * of the wakeup instead of the waker.
3673 */
3674 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3675 {
3676 struct rq *rq = cpu_rq(cpu);
3677
3678 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3679
3680 WRITE_ONCE(rq->ttwu_pending, 1);
3681 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3682 }
3683
3684 void wake_up_if_idle(int cpu)
3685 {
3686 struct rq *rq = cpu_rq(cpu);
3687 struct rq_flags rf;
3688
3689 rcu_read_lock();
3690
3691 if (!is_idle_task(rcu_dereference(rq->curr)))
3692 goto out;
3693
3694 if (set_nr_if_polling(rq->idle)) {
3695 trace_sched_wake_idle_without_ipi(cpu);
3696 } else {
3697 rq_lock_irqsave(rq, &rf);
3698 if (is_idle_task(rq->curr))
3699 smp_send_reschedule(cpu);
3700 /* Else CPU is not idle, do nothing here: */
3701 rq_unlock_irqrestore(rq, &rf);
3702 }
3703
3704 out:
3705 rcu_read_unlock();
3706 }
3707
3708 bool cpus_share_cache(int this_cpu, int that_cpu)
3709 {
3710 if (this_cpu == that_cpu)
3711 return true;
3712
3713 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3714 }
3715
3716 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3717 {
3718 /*
3719 * Do not complicate things with the async wake_list while the CPU is
3720 * in hotplug state.
3721 */
3722 if (!cpu_active(cpu))
3723 return false;
3724
3725 /*
3726 * If the CPU does not share cache, then queue the task on the
3727 * remote rqs wakelist to avoid accessing remote data.
3728 */
3729 if (!cpus_share_cache(smp_processor_id(), cpu))
3730 return true;
3731
3732 /*
3733 * If the task is descheduling and the only running task on the
3734 * CPU then use the wakelist to offload the task activation to
3735 * the soon-to-be-idle CPU as the current CPU is likely busy.
3736 * nr_running is checked to avoid unnecessary task stacking.
3737 */
3738 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3739 return true;
3740
3741 return false;
3742 }
3743
3744 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3745 {
3746 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3747 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3748 return false;
3749
3750 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3751 __ttwu_queue_wakelist(p, cpu, wake_flags);
3752 return true;
3753 }
3754
3755 return false;
3756 }
3757
3758 #else /* !CONFIG_SMP */
3759
3760 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3761 {
3762 return false;
3763 }
3764
3765 #endif /* CONFIG_SMP */
3766
3767 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3768 {
3769 struct rq *rq = cpu_rq(cpu);
3770 struct rq_flags rf;
3771
3772 if (ttwu_queue_wakelist(p, cpu, wake_flags))
3773 return;
3774
3775 rq_lock(rq, &rf);
3776 update_rq_clock(rq);
3777 ttwu_do_activate(rq, p, wake_flags, &rf);
3778 rq_unlock(rq, &rf);
3779 }
3780
3781 /*
3782 * Invoked from try_to_wake_up() to check whether the task can be woken up.
3783 *
3784 * The caller holds p::pi_lock if p != current or has preemption
3785 * disabled when p == current.
3786 *
3787 * The rules of PREEMPT_RT saved_state:
3788 *
3789 * The related locking code always holds p::pi_lock when updating
3790 * p::saved_state, which means the code is fully serialized in both cases.
3791 *
3792 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3793 * bits set. This allows to distinguish all wakeup scenarios.
3794 */
3795 static __always_inline
3796 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3797 {
3798 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3799 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3800 state != TASK_RTLOCK_WAIT);
3801 }
3802
3803 if (READ_ONCE(p->__state) & state) {
3804 *success = 1;
3805 return true;
3806 }
3807
3808 #ifdef CONFIG_PREEMPT_RT
3809 /*
3810 * Saved state preserves the task state across blocking on
3811 * an RT lock. If the state matches, set p::saved_state to
3812 * TASK_RUNNING, but do not wake the task because it waits
3813 * for a lock wakeup. Also indicate success because from
3814 * the regular waker's point of view this has succeeded.
3815 *
3816 * After acquiring the lock the task will restore p::__state
3817 * from p::saved_state which ensures that the regular
3818 * wakeup is not lost. The restore will also set
3819 * p::saved_state to TASK_RUNNING so any further tests will
3820 * not result in false positives vs. @success
3821 */
3822 if (p->saved_state & state) {
3823 p->saved_state = TASK_RUNNING;
3824 *success = 1;
3825 }
3826 #endif
3827 return false;
3828 }
3829
3830 /*
3831 * Notes on Program-Order guarantees on SMP systems.
3832 *
3833 * MIGRATION
3834 *
3835 * The basic program-order guarantee on SMP systems is that when a task [t]
3836 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3837 * execution on its new CPU [c1].
3838 *
3839 * For migration (of runnable tasks) this is provided by the following means:
3840 *
3841 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3842 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3843 * rq(c1)->lock (if not at the same time, then in that order).
3844 * C) LOCK of the rq(c1)->lock scheduling in task
3845 *
3846 * Release/acquire chaining guarantees that B happens after A and C after B.
3847 * Note: the CPU doing B need not be c0 or c1
3848 *
3849 * Example:
3850 *
3851 * CPU0 CPU1 CPU2
3852 *
3853 * LOCK rq(0)->lock
3854 * sched-out X
3855 * sched-in Y
3856 * UNLOCK rq(0)->lock
3857 *
3858 * LOCK rq(0)->lock // orders against CPU0
3859 * dequeue X
3860 * UNLOCK rq(0)->lock
3861 *
3862 * LOCK rq(1)->lock
3863 * enqueue X
3864 * UNLOCK rq(1)->lock
3865 *
3866 * LOCK rq(1)->lock // orders against CPU2
3867 * sched-out Z
3868 * sched-in X
3869 * UNLOCK rq(1)->lock
3870 *
3871 *
3872 * BLOCKING -- aka. SLEEP + WAKEUP
3873 *
3874 * For blocking we (obviously) need to provide the same guarantee as for
3875 * migration. However the means are completely different as there is no lock
3876 * chain to provide order. Instead we do:
3877 *
3878 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3879 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3880 *
3881 * Example:
3882 *
3883 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3884 *
3885 * LOCK rq(0)->lock LOCK X->pi_lock
3886 * dequeue X
3887 * sched-out X
3888 * smp_store_release(X->on_cpu, 0);
3889 *
3890 * smp_cond_load_acquire(&X->on_cpu, !VAL);
3891 * X->state = WAKING
3892 * set_task_cpu(X,2)
3893 *
3894 * LOCK rq(2)->lock
3895 * enqueue X
3896 * X->state = RUNNING
3897 * UNLOCK rq(2)->lock
3898 *
3899 * LOCK rq(2)->lock // orders against CPU1
3900 * sched-out Z
3901 * sched-in X
3902 * UNLOCK rq(2)->lock
3903 *
3904 * UNLOCK X->pi_lock
3905 * UNLOCK rq(0)->lock
3906 *
3907 *
3908 * However, for wakeups there is a second guarantee we must provide, namely we
3909 * must ensure that CONDITION=1 done by the caller can not be reordered with
3910 * accesses to the task state; see try_to_wake_up() and set_current_state().
3911 */
3912
3913 /**
3914 * try_to_wake_up - wake up a thread
3915 * @p: the thread to be awakened
3916 * @state: the mask of task states that can be woken
3917 * @wake_flags: wake modifier flags (WF_*)
3918 *
3919 * Conceptually does:
3920 *
3921 * If (@state & @p->state) @p->state = TASK_RUNNING.
3922 *
3923 * If the task was not queued/runnable, also place it back on a runqueue.
3924 *
3925 * This function is atomic against schedule() which would dequeue the task.
3926 *
3927 * It issues a full memory barrier before accessing @p->state, see the comment
3928 * with set_current_state().
3929 *
3930 * Uses p->pi_lock to serialize against concurrent wake-ups.
3931 *
3932 * Relies on p->pi_lock stabilizing:
3933 * - p->sched_class
3934 * - p->cpus_ptr
3935 * - p->sched_task_group
3936 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3937 *
3938 * Tries really hard to only take one task_rq(p)->lock for performance.
3939 * Takes rq->lock in:
3940 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3941 * - ttwu_queue() -- new rq, for enqueue of the task;
3942 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3943 *
3944 * As a consequence we race really badly with just about everything. See the
3945 * many memory barriers and their comments for details.
3946 *
3947 * Return: %true if @p->state changes (an actual wakeup was done),
3948 * %false otherwise.
3949 */
3950 static int
3951 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3952 {
3953 unsigned long flags;
3954 int cpu, success = 0;
3955
3956 preempt_disable();
3957 if (p == current) {
3958 /*
3959 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3960 * == smp_processor_id()'. Together this means we can special
3961 * case the whole 'p->on_rq && ttwu_runnable()' case below
3962 * without taking any locks.
3963 *
3964 * In particular:
3965 * - we rely on Program-Order guarantees for all the ordering,
3966 * - we're serialized against set_special_state() by virtue of
3967 * it disabling IRQs (this allows not taking ->pi_lock).
3968 */
3969 if (!ttwu_state_match(p, state, &success))
3970 goto out;
3971
3972 trace_sched_waking(p);
3973 WRITE_ONCE(p->__state, TASK_RUNNING);
3974 trace_sched_wakeup(p);
3975 goto out;
3976 }
3977
3978 /*
3979 * If we are going to wake up a thread waiting for CONDITION we
3980 * need to ensure that CONDITION=1 done by the caller can not be
3981 * reordered with p->state check below. This pairs with smp_store_mb()
3982 * in set_current_state() that the waiting thread does.
3983 */
3984 raw_spin_lock_irqsave(&p->pi_lock, flags);
3985 smp_mb__after_spinlock();
3986 if (!ttwu_state_match(p, state, &success))
3987 goto unlock;
3988
3989 trace_sched_waking(p);
3990
3991 /*
3992 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3993 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3994 * in smp_cond_load_acquire() below.
3995 *
3996 * sched_ttwu_pending() try_to_wake_up()
3997 * STORE p->on_rq = 1 LOAD p->state
3998 * UNLOCK rq->lock
3999 *
4000 * __schedule() (switch to task 'p')
4001 * LOCK rq->lock smp_rmb();
4002 * smp_mb__after_spinlock();
4003 * UNLOCK rq->lock
4004 *
4005 * [task p]
4006 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
4007 *
4008 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4009 * __schedule(). See the comment for smp_mb__after_spinlock().
4010 *
4011 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4012 */
4013 smp_rmb();
4014 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4015 goto unlock;
4016
4017 #ifdef CONFIG_SMP
4018 /*
4019 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4020 * possible to, falsely, observe p->on_cpu == 0.
4021 *
4022 * One must be running (->on_cpu == 1) in order to remove oneself
4023 * from the runqueue.
4024 *
4025 * __schedule() (switch to task 'p') try_to_wake_up()
4026 * STORE p->on_cpu = 1 LOAD p->on_rq
4027 * UNLOCK rq->lock
4028 *
4029 * __schedule() (put 'p' to sleep)
4030 * LOCK rq->lock smp_rmb();
4031 * smp_mb__after_spinlock();
4032 * STORE p->on_rq = 0 LOAD p->on_cpu
4033 *
4034 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4035 * __schedule(). See the comment for smp_mb__after_spinlock().
4036 *
4037 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4038 * schedule()'s deactivate_task() has 'happened' and p will no longer
4039 * care about it's own p->state. See the comment in __schedule().
4040 */
4041 smp_acquire__after_ctrl_dep();
4042
4043 /*
4044 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4045 * == 0), which means we need to do an enqueue, change p->state to
4046 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4047 * enqueue, such as ttwu_queue_wakelist().
4048 */
4049 WRITE_ONCE(p->__state, TASK_WAKING);
4050
4051 /*
4052 * If the owning (remote) CPU is still in the middle of schedule() with
4053 * this task as prev, considering queueing p on the remote CPUs wake_list
4054 * which potentially sends an IPI instead of spinning on p->on_cpu to
4055 * let the waker make forward progress. This is safe because IRQs are
4056 * disabled and the IPI will deliver after on_cpu is cleared.
4057 *
4058 * Ensure we load task_cpu(p) after p->on_cpu:
4059 *
4060 * set_task_cpu(p, cpu);
4061 * STORE p->cpu = @cpu
4062 * __schedule() (switch to task 'p')
4063 * LOCK rq->lock
4064 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4065 * STORE p->on_cpu = 1 LOAD p->cpu
4066 *
4067 * to ensure we observe the correct CPU on which the task is currently
4068 * scheduling.
4069 */
4070 if (smp_load_acquire(&p->on_cpu) &&
4071 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
4072 goto unlock;
4073
4074 /*
4075 * If the owning (remote) CPU is still in the middle of schedule() with
4076 * this task as prev, wait until it's done referencing the task.
4077 *
4078 * Pairs with the smp_store_release() in finish_task().
4079 *
4080 * This ensures that tasks getting woken will be fully ordered against
4081 * their previous state and preserve Program Order.
4082 */
4083 smp_cond_load_acquire(&p->on_cpu, !VAL);
4084
4085 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4086 if (task_cpu(p) != cpu) {
4087 if (p->in_iowait) {
4088 delayacct_blkio_end(p);
4089 atomic_dec(&task_rq(p)->nr_iowait);
4090 }
4091
4092 wake_flags |= WF_MIGRATED;
4093 psi_ttwu_dequeue(p);
4094 set_task_cpu(p, cpu);
4095 }
4096 #else
4097 cpu = task_cpu(p);
4098 #endif /* CONFIG_SMP */
4099
4100 ttwu_queue(p, cpu, wake_flags);
4101 unlock:
4102 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4103 out:
4104 if (success)
4105 ttwu_stat(p, task_cpu(p), wake_flags);
4106 preempt_enable();
4107
4108 return success;
4109 }
4110
4111 /**
4112 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
4113 * @p: Process for which the function is to be invoked, can be @current.
4114 * @func: Function to invoke.
4115 * @arg: Argument to function.
4116 *
4117 * If the specified task can be quickly locked into a definite state
4118 * (either sleeping or on a given runqueue), arrange to keep it in that
4119 * state while invoking @func(@arg). This function can use ->on_rq and
4120 * task_curr() to work out what the state is, if required. Given that
4121 * @func can be invoked with a runqueue lock held, it had better be quite
4122 * lightweight.
4123 *
4124 * Returns:
4125 * @false if the task slipped out from under the locks.
4126 * @true if the task was locked onto a runqueue or is sleeping.
4127 * However, @func can override this by returning @false.
4128 */
4129 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
4130 {
4131 struct rq_flags rf;
4132 bool ret = false;
4133 struct rq *rq;
4134
4135 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4136 if (p->on_rq) {
4137 rq = __task_rq_lock(p, &rf);
4138 if (task_rq(p) == rq)
4139 ret = func(p, arg);
4140 rq_unlock(rq, &rf);
4141 } else {
4142 switch (READ_ONCE(p->__state)) {
4143 case TASK_RUNNING:
4144 case TASK_WAKING:
4145 break;
4146 default:
4147 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
4148 if (!p->on_rq)
4149 ret = func(p, arg);
4150 }
4151 }
4152 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4153 return ret;
4154 }
4155
4156 /**
4157 * wake_up_process - Wake up a specific process
4158 * @p: The process to be woken up.
4159 *
4160 * Attempt to wake up the nominated process and move it to the set of runnable
4161 * processes.
4162 *
4163 * Return: 1 if the process was woken up, 0 if it was already running.
4164 *
4165 * This function executes a full memory barrier before accessing the task state.
4166 */
4167 int wake_up_process(struct task_struct *p)
4168 {
4169 return try_to_wake_up(p, TASK_NORMAL, 0);
4170 }
4171 EXPORT_SYMBOL(wake_up_process);
4172
4173 int wake_up_state(struct task_struct *p, unsigned int state)
4174 {
4175 return try_to_wake_up(p, state, 0);
4176 }
4177
4178 /*
4179 * Perform scheduler related setup for a newly forked process p.
4180 * p is forked by current.
4181 *
4182 * __sched_fork() is basic setup used by init_idle() too:
4183 */
4184 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4185 {
4186 p->on_rq = 0;
4187
4188 p->se.on_rq = 0;
4189 p->se.exec_start = 0;
4190 p->se.sum_exec_runtime = 0;
4191 p->se.prev_sum_exec_runtime = 0;
4192 p->se.nr_migrations = 0;
4193 p->se.vruntime = 0;
4194 INIT_LIST_HEAD(&p->se.group_node);
4195
4196 #ifdef CONFIG_FAIR_GROUP_SCHED
4197 p->se.cfs_rq = NULL;
4198 #endif
4199
4200 #ifdef CONFIG_SCHEDSTATS
4201 /* Even if schedstat is disabled, there should not be garbage */
4202 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
4203 #endif
4204
4205 RB_CLEAR_NODE(&p->dl.rb_node);
4206 init_dl_task_timer(&p->dl);
4207 init_dl_inactive_task_timer(&p->dl);
4208 __dl_clear_params(p);
4209
4210 INIT_LIST_HEAD(&p->rt.run_list);
4211 p->rt.timeout = 0;
4212 p->rt.time_slice = sched_rr_timeslice;
4213 p->rt.on_rq = 0;
4214 p->rt.on_list = 0;
4215
4216 #ifdef CONFIG_PREEMPT_NOTIFIERS
4217 INIT_HLIST_HEAD(&p->preempt_notifiers);
4218 #endif
4219
4220 #ifdef CONFIG_COMPACTION
4221 p->capture_control = NULL;
4222 #endif
4223 init_numa_balancing(clone_flags, p);
4224 #ifdef CONFIG_SMP
4225 p->wake_entry.u_flags = CSD_TYPE_TTWU;
4226 p->migration_pending = NULL;
4227 #endif
4228 }
4229
4230 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4231
4232 #ifdef CONFIG_NUMA_BALANCING
4233
4234 void set_numabalancing_state(bool enabled)
4235 {
4236 if (enabled)
4237 static_branch_enable(&sched_numa_balancing);
4238 else
4239 static_branch_disable(&sched_numa_balancing);
4240 }
4241
4242 #ifdef CONFIG_PROC_SYSCTL
4243 int sysctl_numa_balancing(struct ctl_table *table, int write,
4244 void *buffer, size_t *lenp, loff_t *ppos)
4245 {
4246 struct ctl_table t;
4247 int err;
4248 int state = static_branch_likely(&sched_numa_balancing);
4249
4250 if (write && !capable(CAP_SYS_ADMIN))
4251 return -EPERM;
4252
4253 t = *table;
4254 t.data = &state;
4255 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4256 if (err < 0)
4257 return err;
4258 if (write)
4259 set_numabalancing_state(state);
4260 return err;
4261 }
4262 #endif
4263 #endif
4264
4265 #ifdef CONFIG_SCHEDSTATS
4266
4267 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4268
4269 static void set_schedstats(bool enabled)
4270 {
4271 if (enabled)
4272 static_branch_enable(&sched_schedstats);
4273 else
4274 static_branch_disable(&sched_schedstats);
4275 }
4276
4277 void force_schedstat_enabled(void)
4278 {
4279 if (!schedstat_enabled()) {
4280 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4281 static_branch_enable(&sched_schedstats);
4282 }
4283 }
4284
4285 static int __init setup_schedstats(char *str)
4286 {
4287 int ret = 0;
4288 if (!str)
4289 goto out;
4290
4291 if (!strcmp(str, "enable")) {
4292 set_schedstats(true);
4293 ret = 1;
4294 } else if (!strcmp(str, "disable")) {
4295 set_schedstats(false);
4296 ret = 1;
4297 }
4298 out:
4299 if (!ret)
4300 pr_warn("Unable to parse schedstats=\n");
4301
4302 return ret;
4303 }
4304 __setup("schedstats=", setup_schedstats);
4305
4306 #ifdef CONFIG_PROC_SYSCTL
4307 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4308 size_t *lenp, loff_t *ppos)
4309 {
4310 struct ctl_table t;
4311 int err;
4312 int state = static_branch_likely(&sched_schedstats);
4313
4314 if (write && !capable(CAP_SYS_ADMIN))
4315 return -EPERM;
4316
4317 t = *table;
4318 t.data = &state;
4319 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4320 if (err < 0)
4321 return err;
4322 if (write)
4323 set_schedstats(state);
4324 return err;
4325 }
4326 #endif /* CONFIG_PROC_SYSCTL */
4327 #endif /* CONFIG_SCHEDSTATS */
4328
4329 /*
4330 * fork()/clone()-time setup:
4331 */
4332 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4333 {
4334 __sched_fork(clone_flags, p);
4335 /*
4336 * We mark the process as NEW here. This guarantees that
4337 * nobody will actually run it, and a signal or other external
4338 * event cannot wake it up and insert it on the runqueue either.
4339 */
4340 p->__state = TASK_NEW;
4341
4342 /*
4343 * Make sure we do not leak PI boosting priority to the child.
4344 */
4345 p->prio = current->normal_prio;
4346
4347 uclamp_fork(p);
4348
4349 /*
4350 * Revert to default priority/policy on fork if requested.
4351 */
4352 if (unlikely(p->sched_reset_on_fork)) {
4353 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4354 p->policy = SCHED_NORMAL;
4355 p->static_prio = NICE_TO_PRIO(0);
4356 p->rt_priority = 0;
4357 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4358 p->static_prio = NICE_TO_PRIO(0);
4359
4360 p->prio = p->normal_prio = p->static_prio;
4361 set_load_weight(p, false);
4362
4363 /*
4364 * We don't need the reset flag anymore after the fork. It has
4365 * fulfilled its duty:
4366 */
4367 p->sched_reset_on_fork = 0;
4368 }
4369
4370 if (dl_prio(p->prio))
4371 return -EAGAIN;
4372 else if (rt_prio(p->prio))
4373 p->sched_class = &rt_sched_class;
4374 else
4375 p->sched_class = &fair_sched_class;
4376
4377 init_entity_runnable_average(&p->se);
4378
4379 #ifdef CONFIG_SCHED_INFO
4380 if (likely(sched_info_on()))
4381 memset(&p->sched_info, 0, sizeof(p->sched_info));
4382 #endif
4383 #if defined(CONFIG_SMP)
4384 p->on_cpu = 0;
4385 #endif
4386 init_task_preempt_count(p);
4387 #ifdef CONFIG_SMP
4388 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4389 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4390 #endif
4391 return 0;
4392 }
4393
4394 void sched_post_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4395 {
4396 unsigned long flags;
4397 #ifdef CONFIG_CGROUP_SCHED
4398 struct task_group *tg;
4399 #endif
4400
4401 raw_spin_lock_irqsave(&p->pi_lock, flags);
4402 #ifdef CONFIG_CGROUP_SCHED
4403 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4404 struct task_group, css);
4405 p->sched_task_group = autogroup_task_group(p, tg);
4406 #endif
4407 rseq_migrate(p);
4408 /*
4409 * We're setting the CPU for the first time, we don't migrate,
4410 * so use __set_task_cpu().
4411 */
4412 __set_task_cpu(p, smp_processor_id());
4413 if (p->sched_class->task_fork)
4414 p->sched_class->task_fork(p);
4415 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4416
4417 uclamp_post_fork(p);
4418 }
4419
4420 unsigned long to_ratio(u64 period, u64 runtime)
4421 {
4422 if (runtime == RUNTIME_INF)
4423 return BW_UNIT;
4424
4425 /*
4426 * Doing this here saves a lot of checks in all
4427 * the calling paths, and returning zero seems
4428 * safe for them anyway.
4429 */
4430 if (period == 0)
4431 return 0;
4432
4433 return div64_u64(runtime << BW_SHIFT, period);
4434 }
4435
4436 /*
4437 * wake_up_new_task - wake up a newly created task for the first time.
4438 *
4439 * This function will do some initial scheduler statistics housekeeping
4440 * that must be done for every newly created context, then puts the task
4441 * on the runqueue and wakes it.
4442 */
4443 void wake_up_new_task(struct task_struct *p)
4444 {
4445 struct rq_flags rf;
4446 struct rq *rq;
4447
4448 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4449 WRITE_ONCE(p->__state, TASK_RUNNING);
4450 #ifdef CONFIG_SMP
4451 /*
4452 * Fork balancing, do it here and not earlier because:
4453 * - cpus_ptr can change in the fork path
4454 * - any previously selected CPU might disappear through hotplug
4455 *
4456 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4457 * as we're not fully set-up yet.
4458 */
4459 p->recent_used_cpu = task_cpu(p);
4460 rseq_migrate(p);
4461 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4462 #endif
4463 rq = __task_rq_lock(p, &rf);
4464 update_rq_clock(rq);
4465 post_init_entity_util_avg(p);
4466
4467 activate_task(rq, p, ENQUEUE_NOCLOCK);
4468 trace_sched_wakeup_new(p);
4469 check_preempt_curr(rq, p, WF_FORK);
4470 #ifdef CONFIG_SMP
4471 if (p->sched_class->task_woken) {
4472 /*
4473 * Nothing relies on rq->lock after this, so it's fine to
4474 * drop it.
4475 */
4476 rq_unpin_lock(rq, &rf);
4477 p->sched_class->task_woken(rq, p);
4478 rq_repin_lock(rq, &rf);
4479 }
4480 #endif
4481 task_rq_unlock(rq, p, &rf);
4482 }
4483
4484 #ifdef CONFIG_PREEMPT_NOTIFIERS
4485
4486 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4487
4488 void preempt_notifier_inc(void)
4489 {
4490 static_branch_inc(&preempt_notifier_key);
4491 }
4492 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4493
4494 void preempt_notifier_dec(void)
4495 {
4496 static_branch_dec(&preempt_notifier_key);
4497 }
4498 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4499
4500 /**
4501 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4502 * @notifier: notifier struct to register
4503 */
4504 void preempt_notifier_register(struct preempt_notifier *notifier)
4505 {
4506 if (!static_branch_unlikely(&preempt_notifier_key))
4507 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4508
4509 hlist_add_head(&notifier->link, &current->preempt_notifiers);
4510 }
4511 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4512
4513 /**
4514 * preempt_notifier_unregister - no longer interested in preemption notifications
4515 * @notifier: notifier struct to unregister
4516 *
4517 * This is *not* safe to call from within a preemption notifier.
4518 */
4519 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4520 {
4521 hlist_del(&notifier->link);
4522 }
4523 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4524
4525 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4526 {
4527 struct preempt_notifier *notifier;
4528
4529 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4530 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4531 }
4532
4533 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4534 {
4535 if (static_branch_unlikely(&preempt_notifier_key))
4536 __fire_sched_in_preempt_notifiers(curr);
4537 }
4538
4539 static void
4540 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4541 struct task_struct *next)
4542 {
4543 struct preempt_notifier *notifier;
4544
4545 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4546 notifier->ops->sched_out(notifier, next);
4547 }
4548
4549 static __always_inline void
4550 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4551 struct task_struct *next)
4552 {
4553 if (static_branch_unlikely(&preempt_notifier_key))
4554 __fire_sched_out_preempt_notifiers(curr, next);
4555 }
4556
4557 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4558
4559 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4560 {
4561 }
4562
4563 static inline void
4564 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4565 struct task_struct *next)
4566 {
4567 }
4568
4569 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4570
4571 static inline void prepare_task(struct task_struct *next)
4572 {
4573 #ifdef CONFIG_SMP
4574 /*
4575 * Claim the task as running, we do this before switching to it
4576 * such that any running task will have this set.
4577 *
4578 * See the ttwu() WF_ON_CPU case and its ordering comment.
4579 */
4580 WRITE_ONCE(next->on_cpu, 1);
4581 #endif
4582 }
4583
4584 static inline void finish_task(struct task_struct *prev)
4585 {
4586 #ifdef CONFIG_SMP
4587 /*
4588 * This must be the very last reference to @prev from this CPU. After
4589 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4590 * must ensure this doesn't happen until the switch is completely
4591 * finished.
4592 *
4593 * In particular, the load of prev->state in finish_task_switch() must
4594 * happen before this.
4595 *
4596 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4597 */
4598 smp_store_release(&prev->on_cpu, 0);
4599 #endif
4600 }
4601
4602 #ifdef CONFIG_SMP
4603
4604 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4605 {
4606 void (*func)(struct rq *rq);
4607 struct callback_head *next;
4608
4609 lockdep_assert_rq_held(rq);
4610
4611 while (head) {
4612 func = (void (*)(struct rq *))head->func;
4613 next = head->next;
4614 head->next = NULL;
4615 head = next;
4616
4617 func(rq);
4618 }
4619 }
4620
4621 static void balance_push(struct rq *rq);
4622
4623 struct callback_head balance_push_callback = {
4624 .next = NULL,
4625 .func = (void (*)(struct callback_head *))balance_push,
4626 };
4627
4628 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4629 {
4630 struct callback_head *head = rq->balance_callback;
4631
4632 lockdep_assert_rq_held(rq);
4633 if (head)
4634 rq->balance_callback = NULL;
4635
4636 return head;
4637 }
4638
4639 static void __balance_callbacks(struct rq *rq)
4640 {
4641 do_balance_callbacks(rq, splice_balance_callbacks(rq));
4642 }
4643
4644 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4645 {
4646 unsigned long flags;
4647
4648 if (unlikely(head)) {
4649 raw_spin_rq_lock_irqsave(rq, flags);
4650 do_balance_callbacks(rq, head);
4651 raw_spin_rq_unlock_irqrestore(rq, flags);
4652 }
4653 }
4654
4655 #else
4656
4657 static inline void __balance_callbacks(struct rq *rq)
4658 {
4659 }
4660
4661 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4662 {
4663 return NULL;
4664 }
4665
4666 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4667 {
4668 }
4669
4670 #endif
4671
4672 static inline void
4673 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4674 {
4675 /*
4676 * Since the runqueue lock will be released by the next
4677 * task (which is an invalid locking op but in the case
4678 * of the scheduler it's an obvious special-case), so we
4679 * do an early lockdep release here:
4680 */
4681 rq_unpin_lock(rq, rf);
4682 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4683 #ifdef CONFIG_DEBUG_SPINLOCK
4684 /* this is a valid case when another task releases the spinlock */
4685 rq_lockp(rq)->owner = next;
4686 #endif
4687 }
4688
4689 static inline void finish_lock_switch(struct rq *rq)
4690 {
4691 /*
4692 * If we are tracking spinlock dependencies then we have to
4693 * fix up the runqueue lock - which gets 'carried over' from
4694 * prev into current:
4695 */
4696 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4697 __balance_callbacks(rq);
4698 raw_spin_rq_unlock_irq(rq);
4699 }
4700
4701 /*
4702 * NOP if the arch has not defined these:
4703 */
4704
4705 #ifndef prepare_arch_switch
4706 # define prepare_arch_switch(next) do { } while (0)
4707 #endif
4708
4709 #ifndef finish_arch_post_lock_switch
4710 # define finish_arch_post_lock_switch() do { } while (0)
4711 #endif
4712
4713 static inline void kmap_local_sched_out(void)
4714 {
4715 #ifdef CONFIG_KMAP_LOCAL
4716 if (unlikely(current->kmap_ctrl.idx))
4717 __kmap_local_sched_out();
4718 #endif
4719 }
4720
4721 static inline void kmap_local_sched_in(void)
4722 {
4723 #ifdef CONFIG_KMAP_LOCAL
4724 if (unlikely(current->kmap_ctrl.idx))
4725 __kmap_local_sched_in();
4726 #endif
4727 }
4728
4729 /**
4730 * prepare_task_switch - prepare to switch tasks
4731 * @rq: the runqueue preparing to switch
4732 * @prev: the current task that is being switched out
4733 * @next: the task we are going to switch to.
4734 *
4735 * This is called with the rq lock held and interrupts off. It must
4736 * be paired with a subsequent finish_task_switch after the context
4737 * switch.
4738 *
4739 * prepare_task_switch sets up locking and calls architecture specific
4740 * hooks.
4741 */
4742 static inline void
4743 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4744 struct task_struct *next)
4745 {
4746 kcov_prepare_switch(prev);
4747 sched_info_switch(rq, prev, next);
4748 perf_event_task_sched_out(prev, next);
4749 rseq_preempt(prev);
4750 fire_sched_out_preempt_notifiers(prev, next);
4751 kmap_local_sched_out();
4752 prepare_task(next);
4753 prepare_arch_switch(next);
4754 }
4755
4756 /**
4757 * finish_task_switch - clean up after a task-switch
4758 * @prev: the thread we just switched away from.
4759 *
4760 * finish_task_switch must be called after the context switch, paired
4761 * with a prepare_task_switch call before the context switch.
4762 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4763 * and do any other architecture-specific cleanup actions.
4764 *
4765 * Note that we may have delayed dropping an mm in context_switch(). If
4766 * so, we finish that here outside of the runqueue lock. (Doing it
4767 * with the lock held can cause deadlocks; see schedule() for
4768 * details.)
4769 *
4770 * The context switch have flipped the stack from under us and restored the
4771 * local variables which were saved when this task called schedule() in the
4772 * past. prev == current is still correct but we need to recalculate this_rq
4773 * because prev may have moved to another CPU.
4774 */
4775 static struct rq *finish_task_switch(struct task_struct *prev)
4776 __releases(rq->lock)
4777 {
4778 struct rq *rq = this_rq();
4779 struct mm_struct *mm = rq->prev_mm;
4780 long prev_state;
4781
4782 /*
4783 * The previous task will have left us with a preempt_count of 2
4784 * because it left us after:
4785 *
4786 * schedule()
4787 * preempt_disable(); // 1
4788 * __schedule()
4789 * raw_spin_lock_irq(&rq->lock) // 2
4790 *
4791 * Also, see FORK_PREEMPT_COUNT.
4792 */
4793 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4794 "corrupted preempt_count: %s/%d/0x%x\n",
4795 current->comm, current->pid, preempt_count()))
4796 preempt_count_set(FORK_PREEMPT_COUNT);
4797
4798 rq->prev_mm = NULL;
4799
4800 /*
4801 * A task struct has one reference for the use as "current".
4802 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4803 * schedule one last time. The schedule call will never return, and
4804 * the scheduled task must drop that reference.
4805 *
4806 * We must observe prev->state before clearing prev->on_cpu (in
4807 * finish_task), otherwise a concurrent wakeup can get prev
4808 * running on another CPU and we could rave with its RUNNING -> DEAD
4809 * transition, resulting in a double drop.
4810 */
4811 prev_state = READ_ONCE(prev->__state);
4812 vtime_task_switch(prev);
4813 perf_event_task_sched_in(prev, current);
4814 finish_task(prev);
4815 tick_nohz_task_switch();
4816 finish_lock_switch(rq);
4817 finish_arch_post_lock_switch();
4818 kcov_finish_switch(current);
4819 /*
4820 * kmap_local_sched_out() is invoked with rq::lock held and
4821 * interrupts disabled. There is no requirement for that, but the
4822 * sched out code does not have an interrupt enabled section.
4823 * Restoring the maps on sched in does not require interrupts being
4824 * disabled either.
4825 */
4826 kmap_local_sched_in();
4827
4828 fire_sched_in_preempt_notifiers(current);
4829 /*
4830 * When switching through a kernel thread, the loop in
4831 * membarrier_{private,global}_expedited() may have observed that
4832 * kernel thread and not issued an IPI. It is therefore possible to
4833 * schedule between user->kernel->user threads without passing though
4834 * switch_mm(). Membarrier requires a barrier after storing to
4835 * rq->curr, before returning to userspace, so provide them here:
4836 *
4837 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4838 * provided by mmdrop(),
4839 * - a sync_core for SYNC_CORE.
4840 */
4841 if (mm) {
4842 membarrier_mm_sync_core_before_usermode(mm);
4843 mmdrop(mm);
4844 }
4845 if (unlikely(prev_state == TASK_DEAD)) {
4846 if (prev->sched_class->task_dead)
4847 prev->sched_class->task_dead(prev);
4848
4849 /*
4850 * Remove function-return probe instances associated with this
4851 * task and put them back on the free list.
4852 */
4853 kprobe_flush_task(prev);
4854
4855 /* Task is done with its stack. */
4856 put_task_stack(prev);
4857
4858 put_task_struct_rcu_user(prev);
4859 }
4860
4861 return rq;
4862 }
4863
4864 /**
4865 * schedule_tail - first thing a freshly forked thread must call.
4866 * @prev: the thread we just switched away from.
4867 */
4868 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4869 __releases(rq->lock)
4870 {
4871 /*
4872 * New tasks start with FORK_PREEMPT_COUNT, see there and
4873 * finish_task_switch() for details.
4874 *
4875 * finish_task_switch() will drop rq->lock() and lower preempt_count
4876 * and the preempt_enable() will end up enabling preemption (on
4877 * PREEMPT_COUNT kernels).
4878 */
4879
4880 finish_task_switch(prev);
4881 preempt_enable();
4882
4883 if (current->set_child_tid)
4884 put_user(task_pid_vnr(current), current->set_child_tid);
4885
4886 calculate_sigpending();
4887 }
4888
4889 /*
4890 * context_switch - switch to the new MM and the new thread's register state.
4891 */
4892 static __always_inline struct rq *
4893 context_switch(struct rq *rq, struct task_struct *prev,
4894 struct task_struct *next, struct rq_flags *rf)
4895 {
4896 prepare_task_switch(rq, prev, next);
4897
4898 /*
4899 * For paravirt, this is coupled with an exit in switch_to to
4900 * combine the page table reload and the switch backend into
4901 * one hypercall.
4902 */
4903 arch_start_context_switch(prev);
4904
4905 /*
4906 * kernel -> kernel lazy + transfer active
4907 * user -> kernel lazy + mmgrab() active
4908 *
4909 * kernel -> user switch + mmdrop() active
4910 * user -> user switch
4911 */
4912 if (!next->mm) { // to kernel
4913 enter_lazy_tlb(prev->active_mm, next);
4914
4915 next->active_mm = prev->active_mm;
4916 if (prev->mm) // from user
4917 mmgrab(prev->active_mm);
4918 else
4919 prev->active_mm = NULL;
4920 } else { // to user
4921 membarrier_switch_mm(rq, prev->active_mm, next->mm);
4922 /*
4923 * sys_membarrier() requires an smp_mb() between setting
4924 * rq->curr / membarrier_switch_mm() and returning to userspace.
4925 *
4926 * The below provides this either through switch_mm(), or in
4927 * case 'prev->active_mm == next->mm' through
4928 * finish_task_switch()'s mmdrop().
4929 */
4930 switch_mm_irqs_off(prev->active_mm, next->mm, next);
4931
4932 if (!prev->mm) { // from kernel
4933 /* will mmdrop() in finish_task_switch(). */
4934 rq->prev_mm = prev->active_mm;
4935 prev->active_mm = NULL;
4936 }
4937 }
4938
4939 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4940
4941 prepare_lock_switch(rq, next, rf);
4942
4943 /* Here we just switch the register state and the stack. */
4944 switch_to(prev, next, prev);
4945 barrier();
4946
4947 return finish_task_switch(prev);
4948 }
4949
4950 /*
4951 * nr_running and nr_context_switches:
4952 *
4953 * externally visible scheduler statistics: current number of runnable
4954 * threads, total number of context switches performed since bootup.
4955 */
4956 unsigned int nr_running(void)
4957 {
4958 unsigned int i, sum = 0;
4959
4960 for_each_online_cpu(i)
4961 sum += cpu_rq(i)->nr_running;
4962
4963 return sum;
4964 }
4965
4966 /*
4967 * Check if only the current task is running on the CPU.
4968 *
4969 * Caution: this function does not check that the caller has disabled
4970 * preemption, thus the result might have a time-of-check-to-time-of-use
4971 * race. The caller is responsible to use it correctly, for example:
4972 *
4973 * - from a non-preemptible section (of course)
4974 *
4975 * - from a thread that is bound to a single CPU
4976 *
4977 * - in a loop with very short iterations (e.g. a polling loop)
4978 */
4979 bool single_task_running(void)
4980 {
4981 return raw_rq()->nr_running == 1;
4982 }
4983 EXPORT_SYMBOL(single_task_running);
4984
4985 unsigned long long nr_context_switches(void)
4986 {
4987 int i;
4988 unsigned long long sum = 0;
4989
4990 for_each_possible_cpu(i)
4991 sum += cpu_rq(i)->nr_switches;
4992
4993 return sum;
4994 }
4995
4996 /*
4997 * Consumers of these two interfaces, like for example the cpuidle menu
4998 * governor, are using nonsensical data. Preferring shallow idle state selection
4999 * for a CPU that has IO-wait which might not even end up running the task when
5000 * it does become runnable.
5001 */
5002
5003 unsigned int nr_iowait_cpu(int cpu)
5004 {
5005 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5006 }
5007
5008 /*
5009 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5010 *
5011 * The idea behind IO-wait account is to account the idle time that we could
5012 * have spend running if it were not for IO. That is, if we were to improve the
5013 * storage performance, we'd have a proportional reduction in IO-wait time.
5014 *
5015 * This all works nicely on UP, where, when a task blocks on IO, we account
5016 * idle time as IO-wait, because if the storage were faster, it could've been
5017 * running and we'd not be idle.
5018 *
5019 * This has been extended to SMP, by doing the same for each CPU. This however
5020 * is broken.
5021 *
5022 * Imagine for instance the case where two tasks block on one CPU, only the one
5023 * CPU will have IO-wait accounted, while the other has regular idle. Even
5024 * though, if the storage were faster, both could've ran at the same time,
5025 * utilising both CPUs.
5026 *
5027 * This means, that when looking globally, the current IO-wait accounting on
5028 * SMP is a lower bound, by reason of under accounting.
5029 *
5030 * Worse, since the numbers are provided per CPU, they are sometimes
5031 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5032 * associated with any one particular CPU, it can wake to another CPU than it
5033 * blocked on. This means the per CPU IO-wait number is meaningless.
5034 *
5035 * Task CPU affinities can make all that even more 'interesting'.
5036 */
5037
5038 unsigned int nr_iowait(void)
5039 {
5040 unsigned int i, sum = 0;
5041
5042 for_each_possible_cpu(i)
5043 sum += nr_iowait_cpu(i);
5044
5045 return sum;
5046 }
5047
5048 #ifdef CONFIG_SMP
5049
5050 /*
5051 * sched_exec - execve() is a valuable balancing opportunity, because at
5052 * this point the task has the smallest effective memory and cache footprint.
5053 */
5054 void sched_exec(void)
5055 {
5056 struct task_struct *p = current;
5057 unsigned long flags;
5058 int dest_cpu;
5059
5060 raw_spin_lock_irqsave(&p->pi_lock, flags);
5061 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5062 if (dest_cpu == smp_processor_id())
5063 goto unlock;
5064
5065 if (likely(cpu_active(dest_cpu))) {
5066 struct migration_arg arg = { p, dest_cpu };
5067
5068 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5069 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5070 return;
5071 }
5072 unlock:
5073 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5074 }
5075
5076 #endif
5077
5078 DEFINE_PER_CPU(struct kernel_stat, kstat);
5079 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5080
5081 EXPORT_PER_CPU_SYMBOL(kstat);
5082 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5083
5084 /*
5085 * The function fair_sched_class.update_curr accesses the struct curr
5086 * and its field curr->exec_start; when called from task_sched_runtime(),
5087 * we observe a high rate of cache misses in practice.
5088 * Prefetching this data results in improved performance.
5089 */
5090 static inline void prefetch_curr_exec_start(struct task_struct *p)
5091 {
5092 #ifdef CONFIG_FAIR_GROUP_SCHED
5093 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5094 #else
5095 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5096 #endif
5097 prefetch(curr);
5098 prefetch(&curr->exec_start);
5099 }
5100
5101 /*
5102 * Return accounted runtime for the task.
5103 * In case the task is currently running, return the runtime plus current's
5104 * pending runtime that have not been accounted yet.
5105 */
5106 unsigned long long task_sched_runtime(struct task_struct *p)
5107 {
5108 struct rq_flags rf;
5109 struct rq *rq;
5110 u64 ns;
5111
5112 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5113 /*
5114 * 64-bit doesn't need locks to atomically read a 64-bit value.
5115 * So we have a optimization chance when the task's delta_exec is 0.
5116 * Reading ->on_cpu is racy, but this is ok.
5117 *
5118 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5119 * If we race with it entering CPU, unaccounted time is 0. This is
5120 * indistinguishable from the read occurring a few cycles earlier.
5121 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5122 * been accounted, so we're correct here as well.
5123 */
5124 if (!p->on_cpu || !task_on_rq_queued(p))
5125 return p->se.sum_exec_runtime;
5126 #endif
5127
5128 rq = task_rq_lock(p, &rf);
5129 /*
5130 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5131 * project cycles that may never be accounted to this
5132 * thread, breaking clock_gettime().
5133 */
5134 if (task_current(rq, p) && task_on_rq_queued(p)) {
5135 prefetch_curr_exec_start(p);
5136 update_rq_clock(rq);
5137 p->sched_class->update_curr(rq);
5138 }
5139 ns = p->se.sum_exec_runtime;
5140 task_rq_unlock(rq, p, &rf);
5141
5142 return ns;
5143 }
5144
5145 #ifdef CONFIG_SCHED_DEBUG
5146 static u64 cpu_resched_latency(struct rq *rq)
5147 {
5148 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5149 u64 resched_latency, now = rq_clock(rq);
5150 static bool warned_once;
5151
5152 if (sysctl_resched_latency_warn_once && warned_once)
5153 return 0;
5154
5155 if (!need_resched() || !latency_warn_ms)
5156 return 0;
5157
5158 if (system_state == SYSTEM_BOOTING)
5159 return 0;
5160
5161 if (!rq->last_seen_need_resched_ns) {
5162 rq->last_seen_need_resched_ns = now;
5163 rq->ticks_without_resched = 0;
5164 return 0;
5165 }
5166
5167 rq->ticks_without_resched++;
5168 resched_latency = now - rq->last_seen_need_resched_ns;
5169 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5170 return 0;
5171
5172 warned_once = true;
5173
5174 return resched_latency;
5175 }
5176
5177 static int __init setup_resched_latency_warn_ms(char *str)
5178 {
5179 long val;
5180
5181 if ((kstrtol(str, 0, &val))) {
5182 pr_warn("Unable to set resched_latency_warn_ms\n");
5183 return 1;
5184 }
5185
5186 sysctl_resched_latency_warn_ms = val;
5187 return 1;
5188 }
5189 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5190 #else
5191 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5192 #endif /* CONFIG_SCHED_DEBUG */
5193
5194 /*
5195 * This function gets called by the timer code, with HZ frequency.
5196 * We call it with interrupts disabled.
5197 */
5198 void scheduler_tick(void)
5199 {
5200 int cpu = smp_processor_id();
5201 struct rq *rq = cpu_rq(cpu);
5202 struct task_struct *curr = rq->curr;
5203 struct rq_flags rf;
5204 unsigned long thermal_pressure;
5205 u64 resched_latency;
5206
5207 arch_scale_freq_tick();
5208 sched_clock_tick();
5209
5210 rq_lock(rq, &rf);
5211
5212 update_rq_clock(rq);
5213 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5214 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5215 curr->sched_class->task_tick(rq, curr, 0);
5216 if (sched_feat(LATENCY_WARN))
5217 resched_latency = cpu_resched_latency(rq);
5218 calc_global_load_tick(rq);
5219
5220 rq_unlock(rq, &rf);
5221
5222 if (sched_feat(LATENCY_WARN) && resched_latency)
5223 resched_latency_warn(cpu, resched_latency);
5224
5225 perf_event_task_tick();
5226
5227 #ifdef CONFIG_SMP
5228 rq->idle_balance = idle_cpu(cpu);
5229 trigger_load_balance(rq);
5230 #endif
5231 }
5232
5233 #ifdef CONFIG_NO_HZ_FULL
5234
5235 struct tick_work {
5236 int cpu;
5237 atomic_t state;
5238 struct delayed_work work;
5239 };
5240 /* Values for ->state, see diagram below. */
5241 #define TICK_SCHED_REMOTE_OFFLINE 0
5242 #define TICK_SCHED_REMOTE_OFFLINING 1
5243 #define TICK_SCHED_REMOTE_RUNNING 2
5244
5245 /*
5246 * State diagram for ->state:
5247 *
5248 *
5249 * TICK_SCHED_REMOTE_OFFLINE
5250 * | ^
5251 * | |
5252 * | | sched_tick_remote()
5253 * | |
5254 * | |
5255 * +--TICK_SCHED_REMOTE_OFFLINING
5256 * | ^
5257 * | |
5258 * sched_tick_start() | | sched_tick_stop()
5259 * | |
5260 * V |
5261 * TICK_SCHED_REMOTE_RUNNING
5262 *
5263 *
5264 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5265 * and sched_tick_start() are happy to leave the state in RUNNING.
5266 */
5267
5268 static struct tick_work __percpu *tick_work_cpu;
5269
5270 static void sched_tick_remote(struct work_struct *work)
5271 {
5272 struct delayed_work *dwork = to_delayed_work(work);
5273 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5274 int cpu = twork->cpu;
5275 struct rq *rq = cpu_rq(cpu);
5276 struct task_struct *curr;
5277 struct rq_flags rf;
5278 u64 delta;
5279 int os;
5280
5281 /*
5282 * Handle the tick only if it appears the remote CPU is running in full
5283 * dynticks mode. The check is racy by nature, but missing a tick or
5284 * having one too much is no big deal because the scheduler tick updates
5285 * statistics and checks timeslices in a time-independent way, regardless
5286 * of when exactly it is running.
5287 */
5288 if (!tick_nohz_tick_stopped_cpu(cpu))
5289 goto out_requeue;
5290
5291 rq_lock_irq(rq, &rf);
5292 curr = rq->curr;
5293 if (cpu_is_offline(cpu))
5294 goto out_unlock;
5295
5296 update_rq_clock(rq);
5297
5298 if (!is_idle_task(curr)) {
5299 /*
5300 * Make sure the next tick runs within a reasonable
5301 * amount of time.
5302 */
5303 delta = rq_clock_task(rq) - curr->se.exec_start;
5304 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5305 }
5306 curr->sched_class->task_tick(rq, curr, 0);
5307
5308 calc_load_nohz_remote(rq);
5309 out_unlock:
5310 rq_unlock_irq(rq, &rf);
5311 out_requeue:
5312
5313 /*
5314 * Run the remote tick once per second (1Hz). This arbitrary
5315 * frequency is large enough to avoid overload but short enough
5316 * to keep scheduler internal stats reasonably up to date. But
5317 * first update state to reflect hotplug activity if required.
5318 */
5319 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5320 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5321 if (os == TICK_SCHED_REMOTE_RUNNING)
5322 queue_delayed_work(system_unbound_wq, dwork, HZ);
5323 }
5324
5325 static void sched_tick_start(int cpu)
5326 {
5327 int os;
5328 struct tick_work *twork;
5329
5330 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5331 return;
5332
5333 WARN_ON_ONCE(!tick_work_cpu);
5334
5335 twork = per_cpu_ptr(tick_work_cpu, cpu);
5336 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5337 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5338 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5339 twork->cpu = cpu;
5340 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5341 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5342 }
5343 }
5344
5345 #ifdef CONFIG_HOTPLUG_CPU
5346 static void sched_tick_stop(int cpu)
5347 {
5348 struct tick_work *twork;
5349 int os;
5350
5351 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
5352 return;
5353
5354 WARN_ON_ONCE(!tick_work_cpu);
5355
5356 twork = per_cpu_ptr(tick_work_cpu, cpu);
5357 /* There cannot be competing actions, but don't rely on stop-machine. */
5358 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5359 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5360 /* Don't cancel, as this would mess up the state machine. */
5361 }
5362 #endif /* CONFIG_HOTPLUG_CPU */
5363
5364 int __init sched_tick_offload_init(void)
5365 {
5366 tick_work_cpu = alloc_percpu(struct tick_work);
5367 BUG_ON(!tick_work_cpu);
5368 return 0;
5369 }
5370
5371 #else /* !CONFIG_NO_HZ_FULL */
5372 static inline void sched_tick_start(int cpu) { }
5373 static inline void sched_tick_stop(int cpu) { }
5374 #endif
5375
5376 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5377 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5378 /*
5379 * If the value passed in is equal to the current preempt count
5380 * then we just disabled preemption. Start timing the latency.
5381 */
5382 static inline void preempt_latency_start(int val)
5383 {
5384 if (preempt_count() == val) {
5385 unsigned long ip = get_lock_parent_ip();
5386 #ifdef CONFIG_DEBUG_PREEMPT
5387 current->preempt_disable_ip = ip;
5388 #endif
5389 trace_preempt_off(CALLER_ADDR0, ip);
5390 }
5391 }
5392
5393 void preempt_count_add(int val)
5394 {
5395 #ifdef CONFIG_DEBUG_PREEMPT
5396 /*
5397 * Underflow?
5398 */
5399 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5400 return;
5401 #endif
5402 __preempt_count_add(val);
5403 #ifdef CONFIG_DEBUG_PREEMPT
5404 /*
5405 * Spinlock count overflowing soon?
5406 */
5407 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5408 PREEMPT_MASK - 10);
5409 #endif
5410 preempt_latency_start(val);
5411 }
5412 EXPORT_SYMBOL(preempt_count_add);
5413 NOKPROBE_SYMBOL(preempt_count_add);
5414
5415 /*
5416 * If the value passed in equals to the current preempt count
5417 * then we just enabled preemption. Stop timing the latency.
5418 */
5419 static inline void preempt_latency_stop(int val)
5420 {
5421 if (preempt_count() == val)
5422 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5423 }
5424
5425 void preempt_count_sub(int val)
5426 {
5427 #ifdef CONFIG_DEBUG_PREEMPT
5428 /*
5429 * Underflow?
5430 */
5431 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5432 return;
5433 /*
5434 * Is the spinlock portion underflowing?
5435 */
5436 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5437 !(preempt_count() & PREEMPT_MASK)))
5438 return;
5439 #endif
5440
5441 preempt_latency_stop(val);
5442 __preempt_count_sub(val);
5443 }
5444 EXPORT_SYMBOL(preempt_count_sub);
5445 NOKPROBE_SYMBOL(preempt_count_sub);
5446
5447 #else
5448 static inline void preempt_latency_start(int val) { }
5449 static inline void preempt_latency_stop(int val) { }
5450 #endif
5451
5452 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5453 {
5454 #ifdef CONFIG_DEBUG_PREEMPT
5455 return p->preempt_disable_ip;
5456 #else
5457 return 0;
5458 #endif
5459 }
5460
5461 /*
5462 * Print scheduling while atomic bug:
5463 */
5464 static noinline void __schedule_bug(struct task_struct *prev)
5465 {
5466 /* Save this before calling printk(), since that will clobber it */
5467 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5468
5469 if (oops_in_progress)
5470 return;
5471
5472 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5473 prev->comm, prev->pid, preempt_count());
5474
5475 debug_show_held_locks(prev);
5476 print_modules();
5477 if (irqs_disabled())
5478 print_irqtrace_events(prev);
5479 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5480 && in_atomic_preempt_off()) {
5481 pr_err("Preemption disabled at:");
5482 print_ip_sym(KERN_ERR, preempt_disable_ip);
5483 }
5484 if (panic_on_warn)
5485 panic("scheduling while atomic\n");
5486
5487 dump_stack();
5488 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5489 }
5490
5491 /*
5492 * Various schedule()-time debugging checks and statistics:
5493 */
5494 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5495 {
5496 #ifdef CONFIG_SCHED_STACK_END_CHECK
5497 if (task_stack_end_corrupted(prev))
5498 panic("corrupted stack end detected inside scheduler\n");
5499
5500 if (task_scs_end_corrupted(prev))
5501 panic("corrupted shadow stack detected inside scheduler\n");
5502 #endif
5503
5504 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5505 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5506 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5507 prev->comm, prev->pid, prev->non_block_count);
5508 dump_stack();
5509 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5510 }
5511 #endif
5512
5513 if (unlikely(in_atomic_preempt_off())) {
5514 __schedule_bug(prev);
5515 preempt_count_set(PREEMPT_DISABLED);
5516 }
5517 rcu_sleep_check();
5518 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5519
5520 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5521
5522 schedstat_inc(this_rq()->sched_count);
5523 }
5524
5525 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5526 struct rq_flags *rf)
5527 {
5528 #ifdef CONFIG_SMP
5529 const struct sched_class *class;
5530 /*
5531 * We must do the balancing pass before put_prev_task(), such
5532 * that when we release the rq->lock the task is in the same
5533 * state as before we took rq->lock.
5534 *
5535 * We can terminate the balance pass as soon as we know there is
5536 * a runnable task of @class priority or higher.
5537 */
5538 for_class_range(class, prev->sched_class, &idle_sched_class) {
5539 if (class->balance(rq, prev, rf))
5540 break;
5541 }
5542 #endif
5543
5544 put_prev_task(rq, prev);
5545 }
5546
5547 /*
5548 * Pick up the highest-prio task:
5549 */
5550 static inline struct task_struct *
5551 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5552 {
5553 const struct sched_class *class;
5554 struct task_struct *p;
5555
5556 /*
5557 * Optimization: we know that if all tasks are in the fair class we can
5558 * call that function directly, but only if the @prev task wasn't of a
5559 * higher scheduling class, because otherwise those lose the
5560 * opportunity to pull in more work from other CPUs.
5561 */
5562 if (likely(prev->sched_class <= &fair_sched_class &&
5563 rq->nr_running == rq->cfs.h_nr_running)) {
5564
5565 p = pick_next_task_fair(rq, prev, rf);
5566 if (unlikely(p == RETRY_TASK))
5567 goto restart;
5568
5569 /* Assume the next prioritized class is idle_sched_class */
5570 if (!p) {
5571 put_prev_task(rq, prev);
5572 p = pick_next_task_idle(rq);
5573 }
5574
5575 return p;
5576 }
5577
5578 restart:
5579 put_prev_task_balance(rq, prev, rf);
5580
5581 for_each_class(class) {
5582 p = class->pick_next_task(rq);
5583 if (p)
5584 return p;
5585 }
5586
5587 /* The idle class should always have a runnable task: */
5588 BUG();
5589 }
5590
5591 #ifdef CONFIG_SCHED_CORE
5592 static inline bool is_task_rq_idle(struct task_struct *t)
5593 {
5594 return (task_rq(t)->idle == t);
5595 }
5596
5597 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5598 {
5599 return is_task_rq_idle(a) || (a->core_cookie == cookie);
5600 }
5601
5602 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5603 {
5604 if (is_task_rq_idle(a) || is_task_rq_idle(b))
5605 return true;
5606
5607 return a->core_cookie == b->core_cookie;
5608 }
5609
5610 // XXX fairness/fwd progress conditions
5611 /*
5612 * Returns
5613 * - NULL if there is no runnable task for this class.
5614 * - the highest priority task for this runqueue if it matches
5615 * rq->core->core_cookie or its priority is greater than max.
5616 * - Else returns idle_task.
5617 */
5618 static struct task_struct *
5619 pick_task(struct rq *rq, const struct sched_class *class, struct task_struct *max, bool in_fi)
5620 {
5621 struct task_struct *class_pick, *cookie_pick;
5622 unsigned long cookie = rq->core->core_cookie;
5623
5624 class_pick = class->pick_task(rq);
5625 if (!class_pick)
5626 return NULL;
5627
5628 if (!cookie) {
5629 /*
5630 * If class_pick is tagged, return it only if it has
5631 * higher priority than max.
5632 */
5633 if (max && class_pick->core_cookie &&
5634 prio_less(class_pick, max, in_fi))
5635 return idle_sched_class.pick_task(rq);
5636
5637 return class_pick;
5638 }
5639
5640 /*
5641 * If class_pick is idle or matches cookie, return early.
5642 */
5643 if (cookie_equals(class_pick, cookie))
5644 return class_pick;
5645
5646 cookie_pick = sched_core_find(rq, cookie);
5647
5648 /*
5649 * If class > max && class > cookie, it is the highest priority task on
5650 * the core (so far) and it must be selected, otherwise we must go with
5651 * the cookie pick in order to satisfy the constraint.
5652 */
5653 if (prio_less(cookie_pick, class_pick, in_fi) &&
5654 (!max || prio_less(max, class_pick, in_fi)))
5655 return class_pick;
5656
5657 return cookie_pick;
5658 }
5659
5660 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5661
5662 static struct task_struct *
5663 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5664 {
5665 struct task_struct *next, *max = NULL;
5666 const struct sched_class *class;
5667 const struct cpumask *smt_mask;
5668 bool fi_before = false;
5669 int i, j, cpu, occ = 0;
5670 bool need_sync;
5671
5672 if (!sched_core_enabled(rq))
5673 return __pick_next_task(rq, prev, rf);
5674
5675 cpu = cpu_of(rq);
5676
5677 /* Stopper task is switching into idle, no need core-wide selection. */
5678 if (cpu_is_offline(cpu)) {
5679 /*
5680 * Reset core_pick so that we don't enter the fastpath when
5681 * coming online. core_pick would already be migrated to
5682 * another cpu during offline.
5683 */
5684 rq->core_pick = NULL;
5685 return __pick_next_task(rq, prev, rf);
5686 }
5687
5688 /*
5689 * If there were no {en,de}queues since we picked (IOW, the task
5690 * pointers are all still valid), and we haven't scheduled the last
5691 * pick yet, do so now.
5692 *
5693 * rq->core_pick can be NULL if no selection was made for a CPU because
5694 * it was either offline or went offline during a sibling's core-wide
5695 * selection. In this case, do a core-wide selection.
5696 */
5697 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5698 rq->core->core_pick_seq != rq->core_sched_seq &&
5699 rq->core_pick) {
5700 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5701
5702 next = rq->core_pick;
5703 if (next != prev) {
5704 put_prev_task(rq, prev);
5705 set_next_task(rq, next);
5706 }
5707
5708 rq->core_pick = NULL;
5709 return next;
5710 }
5711
5712 put_prev_task_balance(rq, prev, rf);
5713
5714 smt_mask = cpu_smt_mask(cpu);
5715 need_sync = !!rq->core->core_cookie;
5716
5717 /* reset state */
5718 rq->core->core_cookie = 0UL;
5719 if (rq->core->core_forceidle) {
5720 need_sync = true;
5721 fi_before = true;
5722 rq->core->core_forceidle = false;
5723 }
5724
5725 /*
5726 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5727 *
5728 * @task_seq guards the task state ({en,de}queues)
5729 * @pick_seq is the @task_seq we did a selection on
5730 * @sched_seq is the @pick_seq we scheduled
5731 *
5732 * However, preemptions can cause multiple picks on the same task set.
5733 * 'Fix' this by also increasing @task_seq for every pick.
5734 */
5735 rq->core->core_task_seq++;
5736
5737 /*
5738 * Optimize for common case where this CPU has no cookies
5739 * and there are no cookied tasks running on siblings.
5740 */
5741 if (!need_sync) {
5742 for_each_class(class) {
5743 next = class->pick_task(rq);
5744 if (next)
5745 break;
5746 }
5747
5748 if (!next->core_cookie) {
5749 rq->core_pick = NULL;
5750 /*
5751 * For robustness, update the min_vruntime_fi for
5752 * unconstrained picks as well.
5753 */
5754 WARN_ON_ONCE(fi_before);
5755 task_vruntime_update(rq, next, false);
5756 goto done;
5757 }
5758 }
5759
5760 for_each_cpu(i, smt_mask) {
5761 struct rq *rq_i = cpu_rq(i);
5762
5763 rq_i->core_pick = NULL;
5764
5765 if (i != cpu)
5766 update_rq_clock(rq_i);
5767 }
5768
5769 /*
5770 * Try and select tasks for each sibling in descending sched_class
5771 * order.
5772 */
5773 for_each_class(class) {
5774 again:
5775 for_each_cpu_wrap(i, smt_mask, cpu) {
5776 struct rq *rq_i = cpu_rq(i);
5777 struct task_struct *p;
5778
5779 if (rq_i->core_pick)
5780 continue;
5781
5782 /*
5783 * If this sibling doesn't yet have a suitable task to
5784 * run; ask for the most eligible task, given the
5785 * highest priority task already selected for this
5786 * core.
5787 */
5788 p = pick_task(rq_i, class, max, fi_before);
5789 if (!p)
5790 continue;
5791
5792 if (!is_task_rq_idle(p))
5793 occ++;
5794
5795 rq_i->core_pick = p;
5796 if (rq_i->idle == p && rq_i->nr_running) {
5797 rq->core->core_forceidle = true;
5798 if (!fi_before)
5799 rq->core->core_forceidle_seq++;
5800 }
5801
5802 /*
5803 * If this new candidate is of higher priority than the
5804 * previous; and they're incompatible; we need to wipe
5805 * the slate and start over. pick_task makes sure that
5806 * p's priority is more than max if it doesn't match
5807 * max's cookie.
5808 *
5809 * NOTE: this is a linear max-filter and is thus bounded
5810 * in execution time.
5811 */
5812 if (!max || !cookie_match(max, p)) {
5813 struct task_struct *old_max = max;
5814
5815 rq->core->core_cookie = p->core_cookie;
5816 max = p;
5817
5818 if (old_max) {
5819 rq->core->core_forceidle = false;
5820 for_each_cpu(j, smt_mask) {
5821 if (j == i)
5822 continue;
5823
5824 cpu_rq(j)->core_pick = NULL;
5825 }
5826 occ = 1;
5827 goto again;
5828 }
5829 }
5830 }
5831 }
5832
5833 rq->core->core_pick_seq = rq->core->core_task_seq;
5834 next = rq->core_pick;
5835 rq->core_sched_seq = rq->core->core_pick_seq;
5836
5837 /* Something should have been selected for current CPU */
5838 WARN_ON_ONCE(!next);
5839
5840 /*
5841 * Reschedule siblings
5842 *
5843 * NOTE: L1TF -- at this point we're no longer running the old task and
5844 * sending an IPI (below) ensures the sibling will no longer be running
5845 * their task. This ensures there is no inter-sibling overlap between
5846 * non-matching user state.
5847 */
5848 for_each_cpu(i, smt_mask) {
5849 struct rq *rq_i = cpu_rq(i);
5850
5851 /*
5852 * An online sibling might have gone offline before a task
5853 * could be picked for it, or it might be offline but later
5854 * happen to come online, but its too late and nothing was
5855 * picked for it. That's Ok - it will pick tasks for itself,
5856 * so ignore it.
5857 */
5858 if (!rq_i->core_pick)
5859 continue;
5860
5861 /*
5862 * Update for new !FI->FI transitions, or if continuing to be in !FI:
5863 * fi_before fi update?
5864 * 0 0 1
5865 * 0 1 1
5866 * 1 0 1
5867 * 1 1 0
5868 */
5869 if (!(fi_before && rq->core->core_forceidle))
5870 task_vruntime_update(rq_i, rq_i->core_pick, rq->core->core_forceidle);
5871
5872 rq_i->core_pick->core_occupation = occ;
5873
5874 if (i == cpu) {
5875 rq_i->core_pick = NULL;
5876 continue;
5877 }
5878
5879 /* Did we break L1TF mitigation requirements? */
5880 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
5881
5882 if (rq_i->curr == rq_i->core_pick) {
5883 rq_i->core_pick = NULL;
5884 continue;
5885 }
5886
5887 resched_curr(rq_i);
5888 }
5889
5890 done:
5891 set_next_task(rq, next);
5892 return next;
5893 }
5894
5895 static bool try_steal_cookie(int this, int that)
5896 {
5897 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
5898 struct task_struct *p;
5899 unsigned long cookie;
5900 bool success = false;
5901
5902 local_irq_disable();
5903 double_rq_lock(dst, src);
5904
5905 cookie = dst->core->core_cookie;
5906 if (!cookie)
5907 goto unlock;
5908
5909 if (dst->curr != dst->idle)
5910 goto unlock;
5911
5912 p = sched_core_find(src, cookie);
5913 if (p == src->idle)
5914 goto unlock;
5915
5916 do {
5917 if (p == src->core_pick || p == src->curr)
5918 goto next;
5919
5920 if (!cpumask_test_cpu(this, &p->cpus_mask))
5921 goto next;
5922
5923 if (p->core_occupation > dst->idle->core_occupation)
5924 goto next;
5925
5926 deactivate_task(src, p, 0);
5927 set_task_cpu(p, this);
5928 activate_task(dst, p, 0);
5929
5930 resched_curr(dst);
5931
5932 success = true;
5933 break;
5934
5935 next:
5936 p = sched_core_next(p, cookie);
5937 } while (p);
5938
5939 unlock:
5940 double_rq_unlock(dst, src);
5941 local_irq_enable();
5942
5943 return success;
5944 }
5945
5946 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
5947 {
5948 int i;
5949
5950 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
5951 if (i == cpu)
5952 continue;
5953
5954 if (need_resched())
5955 break;
5956
5957 if (try_steal_cookie(cpu, i))
5958 return true;
5959 }
5960
5961 return false;
5962 }
5963
5964 static void sched_core_balance(struct rq *rq)
5965 {
5966 struct sched_domain *sd;
5967 int cpu = cpu_of(rq);
5968
5969 preempt_disable();
5970 rcu_read_lock();
5971 raw_spin_rq_unlock_irq(rq);
5972 for_each_domain(cpu, sd) {
5973 if (need_resched())
5974 break;
5975
5976 if (steal_cookie_task(cpu, sd))
5977 break;
5978 }
5979 raw_spin_rq_lock_irq(rq);
5980 rcu_read_unlock();
5981 preempt_enable();
5982 }
5983
5984 static DEFINE_PER_CPU(struct callback_head, core_balance_head);
5985
5986 void queue_core_balance(struct rq *rq)
5987 {
5988 if (!sched_core_enabled(rq))
5989 return;
5990
5991 if (!rq->core->core_cookie)
5992 return;
5993
5994 if (!rq->nr_running) /* not forced idle */
5995 return;
5996
5997 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
5998 }
5999
6000 static void sched_core_cpu_starting(unsigned int cpu)
6001 {
6002 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6003 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6004 unsigned long flags;
6005 int t;
6006
6007 sched_core_lock(cpu, &flags);
6008
6009 WARN_ON_ONCE(rq->core != rq);
6010
6011 /* if we're the first, we'll be our own leader */
6012 if (cpumask_weight(smt_mask) == 1)
6013 goto unlock;
6014
6015 /* find the leader */
6016 for_each_cpu(t, smt_mask) {
6017 if (t == cpu)
6018 continue;
6019 rq = cpu_rq(t);
6020 if (rq->core == rq) {
6021 core_rq = rq;
6022 break;
6023 }
6024 }
6025
6026 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6027 goto unlock;
6028
6029 /* install and validate core_rq */
6030 for_each_cpu(t, smt_mask) {
6031 rq = cpu_rq(t);
6032
6033 if (t == cpu)
6034 rq->core = core_rq;
6035
6036 WARN_ON_ONCE(rq->core != core_rq);
6037 }
6038
6039 unlock:
6040 sched_core_unlock(cpu, &flags);
6041 }
6042
6043 static void sched_core_cpu_deactivate(unsigned int cpu)
6044 {
6045 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6046 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6047 unsigned long flags;
6048 int t;
6049
6050 sched_core_lock(cpu, &flags);
6051
6052 /* if we're the last man standing, nothing to do */
6053 if (cpumask_weight(smt_mask) == 1) {
6054 WARN_ON_ONCE(rq->core != rq);
6055 goto unlock;
6056 }
6057
6058 /* if we're not the leader, nothing to do */
6059 if (rq->core != rq)
6060 goto unlock;
6061
6062 /* find a new leader */
6063 for_each_cpu(t, smt_mask) {
6064 if (t == cpu)
6065 continue;
6066 core_rq = cpu_rq(t);
6067 break;
6068 }
6069
6070 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6071 goto unlock;
6072
6073 /* copy the shared state to the new leader */
6074 core_rq->core_task_seq = rq->core_task_seq;
6075 core_rq->core_pick_seq = rq->core_pick_seq;
6076 core_rq->core_cookie = rq->core_cookie;
6077 core_rq->core_forceidle = rq->core_forceidle;
6078 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6079
6080 /* install new leader */
6081 for_each_cpu(t, smt_mask) {
6082 rq = cpu_rq(t);
6083 rq->core = core_rq;
6084 }
6085
6086 unlock:
6087 sched_core_unlock(cpu, &flags);
6088 }
6089
6090 static inline void sched_core_cpu_dying(unsigned int cpu)
6091 {
6092 struct rq *rq = cpu_rq(cpu);
6093
6094 if (rq->core != rq)
6095 rq->core = rq;
6096 }
6097
6098 #else /* !CONFIG_SCHED_CORE */
6099
6100 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6101 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6102 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6103
6104 static struct task_struct *
6105 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6106 {
6107 return __pick_next_task(rq, prev, rf);
6108 }
6109
6110 #endif /* CONFIG_SCHED_CORE */
6111
6112 /*
6113 * Constants for the sched_mode argument of __schedule().
6114 *
6115 * The mode argument allows RT enabled kernels to differentiate a
6116 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6117 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6118 * optimize the AND operation out and just check for zero.
6119 */
6120 #define SM_NONE 0x0
6121 #define SM_PREEMPT 0x1
6122 #define SM_RTLOCK_WAIT 0x2
6123
6124 #ifndef CONFIG_PREEMPT_RT
6125 # define SM_MASK_PREEMPT (~0U)
6126 #else
6127 # define SM_MASK_PREEMPT SM_PREEMPT
6128 #endif
6129
6130 /*
6131 * __schedule() is the main scheduler function.
6132 *
6133 * The main means of driving the scheduler and thus entering this function are:
6134 *
6135 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6136 *
6137 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6138 * paths. For example, see arch/x86/entry_64.S.
6139 *
6140 * To drive preemption between tasks, the scheduler sets the flag in timer
6141 * interrupt handler scheduler_tick().
6142 *
6143 * 3. Wakeups don't really cause entry into schedule(). They add a
6144 * task to the run-queue and that's it.
6145 *
6146 * Now, if the new task added to the run-queue preempts the current
6147 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6148 * called on the nearest possible occasion:
6149 *
6150 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6151 *
6152 * - in syscall or exception context, at the next outmost
6153 * preempt_enable(). (this might be as soon as the wake_up()'s
6154 * spin_unlock()!)
6155 *
6156 * - in IRQ context, return from interrupt-handler to
6157 * preemptible context
6158 *
6159 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6160 * then at the next:
6161 *
6162 * - cond_resched() call
6163 * - explicit schedule() call
6164 * - return from syscall or exception to user-space
6165 * - return from interrupt-handler to user-space
6166 *
6167 * WARNING: must be called with preemption disabled!
6168 */
6169 static void __sched notrace __schedule(unsigned int sched_mode)
6170 {
6171 struct task_struct *prev, *next;
6172 unsigned long *switch_count;
6173 unsigned long prev_state;
6174 struct rq_flags rf;
6175 struct rq *rq;
6176 int cpu;
6177
6178 cpu = smp_processor_id();
6179 rq = cpu_rq(cpu);
6180 prev = rq->curr;
6181
6182 schedule_debug(prev, !!sched_mode);
6183
6184 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6185 hrtick_clear(rq);
6186
6187 local_irq_disable();
6188 rcu_note_context_switch(!!sched_mode);
6189
6190 /*
6191 * Make sure that signal_pending_state()->signal_pending() below
6192 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6193 * done by the caller to avoid the race with signal_wake_up():
6194 *
6195 * __set_current_state(@state) signal_wake_up()
6196 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6197 * wake_up_state(p, state)
6198 * LOCK rq->lock LOCK p->pi_state
6199 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6200 * if (signal_pending_state()) if (p->state & @state)
6201 *
6202 * Also, the membarrier system call requires a full memory barrier
6203 * after coming from user-space, before storing to rq->curr.
6204 */
6205 rq_lock(rq, &rf);
6206 smp_mb__after_spinlock();
6207
6208 /* Promote REQ to ACT */
6209 rq->clock_update_flags <<= 1;
6210 update_rq_clock(rq);
6211
6212 switch_count = &prev->nivcsw;
6213
6214 /*
6215 * We must load prev->state once (task_struct::state is volatile), such
6216 * that:
6217 *
6218 * - we form a control dependency vs deactivate_task() below.
6219 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
6220 */
6221 prev_state = READ_ONCE(prev->__state);
6222 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6223 if (signal_pending_state(prev_state, prev)) {
6224 WRITE_ONCE(prev->__state, TASK_RUNNING);
6225 } else {
6226 prev->sched_contributes_to_load =
6227 (prev_state & TASK_UNINTERRUPTIBLE) &&
6228 !(prev_state & TASK_NOLOAD) &&
6229 !(prev->flags & PF_FROZEN);
6230
6231 if (prev->sched_contributes_to_load)
6232 rq->nr_uninterruptible++;
6233
6234 /*
6235 * __schedule() ttwu()
6236 * prev_state = prev->state; if (p->on_rq && ...)
6237 * if (prev_state) goto out;
6238 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6239 * p->state = TASK_WAKING
6240 *
6241 * Where __schedule() and ttwu() have matching control dependencies.
6242 *
6243 * After this, schedule() must not care about p->state any more.
6244 */
6245 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6246
6247 if (prev->in_iowait) {
6248 atomic_inc(&rq->nr_iowait);
6249 delayacct_blkio_start();
6250 }
6251 }
6252 switch_count = &prev->nvcsw;
6253 }
6254
6255 next = pick_next_task(rq, prev, &rf);
6256 clear_tsk_need_resched(prev);
6257 clear_preempt_need_resched();
6258 #ifdef CONFIG_SCHED_DEBUG
6259 rq->last_seen_need_resched_ns = 0;
6260 #endif
6261
6262 if (likely(prev != next)) {
6263 rq->nr_switches++;
6264 /*
6265 * RCU users of rcu_dereference(rq->curr) may not see
6266 * changes to task_struct made by pick_next_task().
6267 */
6268 RCU_INIT_POINTER(rq->curr, next);
6269 /*
6270 * The membarrier system call requires each architecture
6271 * to have a full memory barrier after updating
6272 * rq->curr, before returning to user-space.
6273 *
6274 * Here are the schemes providing that barrier on the
6275 * various architectures:
6276 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6277 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6278 * - finish_lock_switch() for weakly-ordered
6279 * architectures where spin_unlock is a full barrier,
6280 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6281 * is a RELEASE barrier),
6282 */
6283 ++*switch_count;
6284
6285 migrate_disable_switch(rq, prev);
6286 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6287
6288 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next);
6289
6290 /* Also unlocks the rq: */
6291 rq = context_switch(rq, prev, next, &rf);
6292 } else {
6293 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6294
6295 rq_unpin_lock(rq, &rf);
6296 __balance_callbacks(rq);
6297 raw_spin_rq_unlock_irq(rq);
6298 }
6299 }
6300
6301 void __noreturn do_task_dead(void)
6302 {
6303 /* Causes final put_task_struct in finish_task_switch(): */
6304 set_special_state(TASK_DEAD);
6305
6306 /* Tell freezer to ignore us: */
6307 current->flags |= PF_NOFREEZE;
6308
6309 __schedule(SM_NONE);
6310 BUG();
6311
6312 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6313 for (;;)
6314 cpu_relax();
6315 }
6316
6317 static inline void sched_submit_work(struct task_struct *tsk)
6318 {
6319 unsigned int task_flags;
6320
6321 if (task_is_running(tsk))
6322 return;
6323
6324 task_flags = tsk->flags;
6325 /*
6326 * If a worker went to sleep, notify and ask workqueue whether
6327 * it wants to wake up a task to maintain concurrency.
6328 * As this function is called inside the schedule() context,
6329 * we disable preemption to avoid it calling schedule() again
6330 * in the possible wakeup of a kworker and because wq_worker_sleeping()
6331 * requires it.
6332 */
6333 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6334 preempt_disable();
6335 if (task_flags & PF_WQ_WORKER)
6336 wq_worker_sleeping(tsk);
6337 else
6338 io_wq_worker_sleeping(tsk);
6339 preempt_enable_no_resched();
6340 }
6341
6342 if (tsk_is_pi_blocked(tsk))
6343 return;
6344
6345 /*
6346 * If we are going to sleep and we have plugged IO queued,
6347 * make sure to submit it to avoid deadlocks.
6348 */
6349 if (blk_needs_flush_plug(tsk))
6350 blk_schedule_flush_plug(tsk);
6351 }
6352
6353 static void sched_update_worker(struct task_struct *tsk)
6354 {
6355 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6356 if (tsk->flags & PF_WQ_WORKER)
6357 wq_worker_running(tsk);
6358 else
6359 io_wq_worker_running(tsk);
6360 }
6361 }
6362
6363 asmlinkage __visible void __sched schedule(void)
6364 {
6365 struct task_struct *tsk = current;
6366
6367 sched_submit_work(tsk);
6368 do {
6369 preempt_disable();
6370 __schedule(SM_NONE);
6371 sched_preempt_enable_no_resched();
6372 } while (need_resched());
6373 sched_update_worker(tsk);
6374 }
6375 EXPORT_SYMBOL(schedule);
6376
6377 /*
6378 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6379 * state (have scheduled out non-voluntarily) by making sure that all
6380 * tasks have either left the run queue or have gone into user space.
6381 * As idle tasks do not do either, they must not ever be preempted
6382 * (schedule out non-voluntarily).
6383 *
6384 * schedule_idle() is similar to schedule_preempt_disable() except that it
6385 * never enables preemption because it does not call sched_submit_work().
6386 */
6387 void __sched schedule_idle(void)
6388 {
6389 /*
6390 * As this skips calling sched_submit_work(), which the idle task does
6391 * regardless because that function is a nop when the task is in a
6392 * TASK_RUNNING state, make sure this isn't used someplace that the
6393 * current task can be in any other state. Note, idle is always in the
6394 * TASK_RUNNING state.
6395 */
6396 WARN_ON_ONCE(current->__state);
6397 do {
6398 __schedule(SM_NONE);
6399 } while (need_resched());
6400 }
6401
6402 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
6403 asmlinkage __visible void __sched schedule_user(void)
6404 {
6405 /*
6406 * If we come here after a random call to set_need_resched(),
6407 * or we have been woken up remotely but the IPI has not yet arrived,
6408 * we haven't yet exited the RCU idle mode. Do it here manually until
6409 * we find a better solution.
6410 *
6411 * NB: There are buggy callers of this function. Ideally we
6412 * should warn if prev_state != CONTEXT_USER, but that will trigger
6413 * too frequently to make sense yet.
6414 */
6415 enum ctx_state prev_state = exception_enter();
6416 schedule();
6417 exception_exit(prev_state);
6418 }
6419 #endif
6420
6421 /**
6422 * schedule_preempt_disabled - called with preemption disabled
6423 *
6424 * Returns with preemption disabled. Note: preempt_count must be 1
6425 */
6426 void __sched schedule_preempt_disabled(void)
6427 {
6428 sched_preempt_enable_no_resched();
6429 schedule();
6430 preempt_disable();
6431 }
6432
6433 #ifdef CONFIG_PREEMPT_RT
6434 void __sched notrace schedule_rtlock(void)
6435 {
6436 do {
6437 preempt_disable();
6438 __schedule(SM_RTLOCK_WAIT);
6439 sched_preempt_enable_no_resched();
6440 } while (need_resched());
6441 }
6442 NOKPROBE_SYMBOL(schedule_rtlock);
6443 #endif
6444
6445 static void __sched notrace preempt_schedule_common(void)
6446 {
6447 do {
6448 /*
6449 * Because the function tracer can trace preempt_count_sub()
6450 * and it also uses preempt_enable/disable_notrace(), if
6451 * NEED_RESCHED is set, the preempt_enable_notrace() called
6452 * by the function tracer will call this function again and
6453 * cause infinite recursion.
6454 *
6455 * Preemption must be disabled here before the function
6456 * tracer can trace. Break up preempt_disable() into two
6457 * calls. One to disable preemption without fear of being
6458 * traced. The other to still record the preemption latency,
6459 * which can also be traced by the function tracer.
6460 */
6461 preempt_disable_notrace();
6462 preempt_latency_start(1);
6463 __schedule(SM_PREEMPT);
6464 preempt_latency_stop(1);
6465 preempt_enable_no_resched_notrace();
6466
6467 /*
6468 * Check again in case we missed a preemption opportunity
6469 * between schedule and now.
6470 */
6471 } while (need_resched());
6472 }
6473
6474 #ifdef CONFIG_PREEMPTION
6475 /*
6476 * This is the entry point to schedule() from in-kernel preemption
6477 * off of preempt_enable.
6478 */
6479 asmlinkage __visible void __sched notrace preempt_schedule(void)
6480 {
6481 /*
6482 * If there is a non-zero preempt_count or interrupts are disabled,
6483 * we do not want to preempt the current task. Just return..
6484 */
6485 if (likely(!preemptible()))
6486 return;
6487
6488 preempt_schedule_common();
6489 }
6490 NOKPROBE_SYMBOL(preempt_schedule);
6491 EXPORT_SYMBOL(preempt_schedule);
6492
6493 #ifdef CONFIG_PREEMPT_DYNAMIC
6494 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
6495 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6496 #endif
6497
6498
6499 /**
6500 * preempt_schedule_notrace - preempt_schedule called by tracing
6501 *
6502 * The tracing infrastructure uses preempt_enable_notrace to prevent
6503 * recursion and tracing preempt enabling caused by the tracing
6504 * infrastructure itself. But as tracing can happen in areas coming
6505 * from userspace or just about to enter userspace, a preempt enable
6506 * can occur before user_exit() is called. This will cause the scheduler
6507 * to be called when the system is still in usermode.
6508 *
6509 * To prevent this, the preempt_enable_notrace will use this function
6510 * instead of preempt_schedule() to exit user context if needed before
6511 * calling the scheduler.
6512 */
6513 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6514 {
6515 enum ctx_state prev_ctx;
6516
6517 if (likely(!preemptible()))
6518 return;
6519
6520 do {
6521 /*
6522 * Because the function tracer can trace preempt_count_sub()
6523 * and it also uses preempt_enable/disable_notrace(), if
6524 * NEED_RESCHED is set, the preempt_enable_notrace() called
6525 * by the function tracer will call this function again and
6526 * cause infinite recursion.
6527 *
6528 * Preemption must be disabled here before the function
6529 * tracer can trace. Break up preempt_disable() into two
6530 * calls. One to disable preemption without fear of being
6531 * traced. The other to still record the preemption latency,
6532 * which can also be traced by the function tracer.
6533 */
6534 preempt_disable_notrace();
6535 preempt_latency_start(1);
6536 /*
6537 * Needs preempt disabled in case user_exit() is traced
6538 * and the tracer calls preempt_enable_notrace() causing
6539 * an infinite recursion.
6540 */
6541 prev_ctx = exception_enter();
6542 __schedule(SM_PREEMPT);
6543 exception_exit(prev_ctx);
6544
6545 preempt_latency_stop(1);
6546 preempt_enable_no_resched_notrace();
6547 } while (need_resched());
6548 }
6549 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6550
6551 #ifdef CONFIG_PREEMPT_DYNAMIC
6552 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6553 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6554 #endif
6555
6556 #endif /* CONFIG_PREEMPTION */
6557
6558 #ifdef CONFIG_PREEMPT_DYNAMIC
6559
6560 #include <linux/entry-common.h>
6561
6562 /*
6563 * SC:cond_resched
6564 * SC:might_resched
6565 * SC:preempt_schedule
6566 * SC:preempt_schedule_notrace
6567 * SC:irqentry_exit_cond_resched
6568 *
6569 *
6570 * NONE:
6571 * cond_resched <- __cond_resched
6572 * might_resched <- RET0
6573 * preempt_schedule <- NOP
6574 * preempt_schedule_notrace <- NOP
6575 * irqentry_exit_cond_resched <- NOP
6576 *
6577 * VOLUNTARY:
6578 * cond_resched <- __cond_resched
6579 * might_resched <- __cond_resched
6580 * preempt_schedule <- NOP
6581 * preempt_schedule_notrace <- NOP
6582 * irqentry_exit_cond_resched <- NOP
6583 *
6584 * FULL:
6585 * cond_resched <- RET0
6586 * might_resched <- RET0
6587 * preempt_schedule <- preempt_schedule
6588 * preempt_schedule_notrace <- preempt_schedule_notrace
6589 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
6590 */
6591
6592 enum {
6593 preempt_dynamic_none = 0,
6594 preempt_dynamic_voluntary,
6595 preempt_dynamic_full,
6596 };
6597
6598 int preempt_dynamic_mode = preempt_dynamic_full;
6599
6600 int sched_dynamic_mode(const char *str)
6601 {
6602 if (!strcmp(str, "none"))
6603 return preempt_dynamic_none;
6604
6605 if (!strcmp(str, "voluntary"))
6606 return preempt_dynamic_voluntary;
6607
6608 if (!strcmp(str, "full"))
6609 return preempt_dynamic_full;
6610
6611 return -EINVAL;
6612 }
6613
6614 void sched_dynamic_update(int mode)
6615 {
6616 /*
6617 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
6618 * the ZERO state, which is invalid.
6619 */
6620 static_call_update(cond_resched, __cond_resched);
6621 static_call_update(might_resched, __cond_resched);
6622 static_call_update(preempt_schedule, __preempt_schedule_func);
6623 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6624 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6625
6626 switch (mode) {
6627 case preempt_dynamic_none:
6628 static_call_update(cond_resched, __cond_resched);
6629 static_call_update(might_resched, (void *)&__static_call_return0);
6630 static_call_update(preempt_schedule, NULL);
6631 static_call_update(preempt_schedule_notrace, NULL);
6632 static_call_update(irqentry_exit_cond_resched, NULL);
6633 pr_info("Dynamic Preempt: none\n");
6634 break;
6635
6636 case preempt_dynamic_voluntary:
6637 static_call_update(cond_resched, __cond_resched);
6638 static_call_update(might_resched, __cond_resched);
6639 static_call_update(preempt_schedule, NULL);
6640 static_call_update(preempt_schedule_notrace, NULL);
6641 static_call_update(irqentry_exit_cond_resched, NULL);
6642 pr_info("Dynamic Preempt: voluntary\n");
6643 break;
6644
6645 case preempt_dynamic_full:
6646 static_call_update(cond_resched, (void *)&__static_call_return0);
6647 static_call_update(might_resched, (void *)&__static_call_return0);
6648 static_call_update(preempt_schedule, __preempt_schedule_func);
6649 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
6650 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
6651 pr_info("Dynamic Preempt: full\n");
6652 break;
6653 }
6654
6655 preempt_dynamic_mode = mode;
6656 }
6657
6658 static int __init setup_preempt_mode(char *str)
6659 {
6660 int mode = sched_dynamic_mode(str);
6661 if (mode < 0) {
6662 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
6663 return 0;
6664 }
6665
6666 sched_dynamic_update(mode);
6667 return 1;
6668 }
6669 __setup("preempt=", setup_preempt_mode);
6670
6671 #endif /* CONFIG_PREEMPT_DYNAMIC */
6672
6673 /*
6674 * This is the entry point to schedule() from kernel preemption
6675 * off of irq context.
6676 * Note, that this is called and return with irqs disabled. This will
6677 * protect us against recursive calling from irq.
6678 */
6679 asmlinkage __visible void __sched preempt_schedule_irq(void)
6680 {
6681 enum ctx_state prev_state;
6682
6683 /* Catch callers which need to be fixed */
6684 BUG_ON(preempt_count() || !irqs_disabled());
6685
6686 prev_state = exception_enter();
6687
6688 do {
6689 preempt_disable();
6690 local_irq_enable();
6691 __schedule(SM_PREEMPT);
6692 local_irq_disable();
6693 sched_preempt_enable_no_resched();
6694 } while (need_resched());
6695
6696 exception_exit(prev_state);
6697 }
6698
6699 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6700 void *key)
6701 {
6702 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6703 return try_to_wake_up(curr->private, mode, wake_flags);
6704 }
6705 EXPORT_SYMBOL(default_wake_function);
6706
6707 static void __setscheduler_prio(struct task_struct *p, int prio)
6708 {
6709 if (dl_prio(prio))
6710 p->sched_class = &dl_sched_class;
6711 else if (rt_prio(prio))
6712 p->sched_class = &rt_sched_class;
6713 else
6714 p->sched_class = &fair_sched_class;
6715
6716 p->prio = prio;
6717 }
6718
6719 #ifdef CONFIG_RT_MUTEXES
6720
6721 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6722 {
6723 if (pi_task)
6724 prio = min(prio, pi_task->prio);
6725
6726 return prio;
6727 }
6728
6729 static inline int rt_effective_prio(struct task_struct *p, int prio)
6730 {
6731 struct task_struct *pi_task = rt_mutex_get_top_task(p);
6732
6733 return __rt_effective_prio(pi_task, prio);
6734 }
6735
6736 /*
6737 * rt_mutex_setprio - set the current priority of a task
6738 * @p: task to boost
6739 * @pi_task: donor task
6740 *
6741 * This function changes the 'effective' priority of a task. It does
6742 * not touch ->normal_prio like __setscheduler().
6743 *
6744 * Used by the rt_mutex code to implement priority inheritance
6745 * logic. Call site only calls if the priority of the task changed.
6746 */
6747 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6748 {
6749 int prio, oldprio, queued, running, queue_flag =
6750 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6751 const struct sched_class *prev_class;
6752 struct rq_flags rf;
6753 struct rq *rq;
6754
6755 /* XXX used to be waiter->prio, not waiter->task->prio */
6756 prio = __rt_effective_prio(pi_task, p->normal_prio);
6757
6758 /*
6759 * If nothing changed; bail early.
6760 */
6761 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6762 return;
6763
6764 rq = __task_rq_lock(p, &rf);
6765 update_rq_clock(rq);
6766 /*
6767 * Set under pi_lock && rq->lock, such that the value can be used under
6768 * either lock.
6769 *
6770 * Note that there is loads of tricky to make this pointer cache work
6771 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6772 * ensure a task is de-boosted (pi_task is set to NULL) before the
6773 * task is allowed to run again (and can exit). This ensures the pointer
6774 * points to a blocked task -- which guarantees the task is present.
6775 */
6776 p->pi_top_task = pi_task;
6777
6778 /*
6779 * For FIFO/RR we only need to set prio, if that matches we're done.
6780 */
6781 if (prio == p->prio && !dl_prio(prio))
6782 goto out_unlock;
6783
6784 /*
6785 * Idle task boosting is a nono in general. There is one
6786 * exception, when PREEMPT_RT and NOHZ is active:
6787 *
6788 * The idle task calls get_next_timer_interrupt() and holds
6789 * the timer wheel base->lock on the CPU and another CPU wants
6790 * to access the timer (probably to cancel it). We can safely
6791 * ignore the boosting request, as the idle CPU runs this code
6792 * with interrupts disabled and will complete the lock
6793 * protected section without being interrupted. So there is no
6794 * real need to boost.
6795 */
6796 if (unlikely(p == rq->idle)) {
6797 WARN_ON(p != rq->curr);
6798 WARN_ON(p->pi_blocked_on);
6799 goto out_unlock;
6800 }
6801
6802 trace_sched_pi_setprio(p, pi_task);
6803 oldprio = p->prio;
6804
6805 if (oldprio == prio)
6806 queue_flag &= ~DEQUEUE_MOVE;
6807
6808 prev_class = p->sched_class;
6809 queued = task_on_rq_queued(p);
6810 running = task_current(rq, p);
6811 if (queued)
6812 dequeue_task(rq, p, queue_flag);
6813 if (running)
6814 put_prev_task(rq, p);
6815
6816 /*
6817 * Boosting condition are:
6818 * 1. -rt task is running and holds mutex A
6819 * --> -dl task blocks on mutex A
6820 *
6821 * 2. -dl task is running and holds mutex A
6822 * --> -dl task blocks on mutex A and could preempt the
6823 * running task
6824 */
6825 if (dl_prio(prio)) {
6826 if (!dl_prio(p->normal_prio) ||
6827 (pi_task && dl_prio(pi_task->prio) &&
6828 dl_entity_preempt(&pi_task->dl, &p->dl))) {
6829 p->dl.pi_se = pi_task->dl.pi_se;
6830 queue_flag |= ENQUEUE_REPLENISH;
6831 } else {
6832 p->dl.pi_se = &p->dl;
6833 }
6834 } else if (rt_prio(prio)) {
6835 if (dl_prio(oldprio))
6836 p->dl.pi_se = &p->dl;
6837 if (oldprio < prio)
6838 queue_flag |= ENQUEUE_HEAD;
6839 } else {
6840 if (dl_prio(oldprio))
6841 p->dl.pi_se = &p->dl;
6842 if (rt_prio(oldprio))
6843 p->rt.timeout = 0;
6844 }
6845
6846 __setscheduler_prio(p, prio);
6847
6848 if (queued)
6849 enqueue_task(rq, p, queue_flag);
6850 if (running)
6851 set_next_task(rq, p);
6852
6853 check_class_changed(rq, p, prev_class, oldprio);
6854 out_unlock:
6855 /* Avoid rq from going away on us: */
6856 preempt_disable();
6857
6858 rq_unpin_lock(rq, &rf);
6859 __balance_callbacks(rq);
6860 raw_spin_rq_unlock(rq);
6861
6862 preempt_enable();
6863 }
6864 #else
6865 static inline int rt_effective_prio(struct task_struct *p, int prio)
6866 {
6867 return prio;
6868 }
6869 #endif
6870
6871 void set_user_nice(struct task_struct *p, long nice)
6872 {
6873 bool queued, running;
6874 int old_prio;
6875 struct rq_flags rf;
6876 struct rq *rq;
6877
6878 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
6879 return;
6880 /*
6881 * We have to be careful, if called from sys_setpriority(),
6882 * the task might be in the middle of scheduling on another CPU.
6883 */
6884 rq = task_rq_lock(p, &rf);
6885 update_rq_clock(rq);
6886
6887 /*
6888 * The RT priorities are set via sched_setscheduler(), but we still
6889 * allow the 'normal' nice value to be set - but as expected
6890 * it won't have any effect on scheduling until the task is
6891 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
6892 */
6893 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
6894 p->static_prio = NICE_TO_PRIO(nice);
6895 goto out_unlock;
6896 }
6897 queued = task_on_rq_queued(p);
6898 running = task_current(rq, p);
6899 if (queued)
6900 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
6901 if (running)
6902 put_prev_task(rq, p);
6903
6904 p->static_prio = NICE_TO_PRIO(nice);
6905 set_load_weight(p, true);
6906 old_prio = p->prio;
6907 p->prio = effective_prio(p);
6908
6909 if (queued)
6910 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6911 if (running)
6912 set_next_task(rq, p);
6913
6914 /*
6915 * If the task increased its priority or is running and
6916 * lowered its priority, then reschedule its CPU:
6917 */
6918 p->sched_class->prio_changed(rq, p, old_prio);
6919
6920 out_unlock:
6921 task_rq_unlock(rq, p, &rf);
6922 }
6923 EXPORT_SYMBOL(set_user_nice);
6924
6925 /*
6926 * can_nice - check if a task can reduce its nice value
6927 * @p: task
6928 * @nice: nice value
6929 */
6930 int can_nice(const struct task_struct *p, const int nice)
6931 {
6932 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
6933 int nice_rlim = nice_to_rlimit(nice);
6934
6935 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
6936 capable(CAP_SYS_NICE));
6937 }
6938 EXPORT_SYMBOL(can_nice);
6939
6940 #ifdef __ARCH_WANT_SYS_NICE
6941
6942 /*
6943 * sys_nice - change the priority of the current process.
6944 * @increment: priority increment
6945 *
6946 * sys_setpriority is a more generic, but much slower function that
6947 * does similar things.
6948 */
6949 SYSCALL_DEFINE1(nice, int, increment)
6950 {
6951 long nice, retval;
6952
6953 /*
6954 * Setpriority might change our priority at the same moment.
6955 * We don't have to worry. Conceptually one call occurs first
6956 * and we have a single winner.
6957 */
6958 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
6959 nice = task_nice(current) + increment;
6960
6961 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
6962 if (increment < 0 && !can_nice(current, nice))
6963 return -EPERM;
6964
6965 retval = security_task_setnice(current, nice);
6966 if (retval)
6967 return retval;
6968
6969 set_user_nice(current, nice);
6970 return 0;
6971 }
6972
6973 #endif
6974
6975 /**
6976 * task_prio - return the priority value of a given task.
6977 * @p: the task in question.
6978 *
6979 * Return: The priority value as seen by users in /proc.
6980 *
6981 * sched policy return value kernel prio user prio/nice
6982 *
6983 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
6984 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
6985 * deadline -101 -1 0
6986 */
6987 int task_prio(const struct task_struct *p)
6988 {
6989 return p->prio - MAX_RT_PRIO;
6990 }
6991
6992 /**
6993 * idle_cpu - is a given CPU idle currently?
6994 * @cpu: the processor in question.
6995 *
6996 * Return: 1 if the CPU is currently idle. 0 otherwise.
6997 */
6998 int idle_cpu(int cpu)
6999 {
7000 struct rq *rq = cpu_rq(cpu);
7001
7002 if (rq->curr != rq->idle)
7003 return 0;
7004
7005 if (rq->nr_running)
7006 return 0;
7007
7008 #ifdef CONFIG_SMP
7009 if (rq->ttwu_pending)
7010 return 0;
7011 #endif
7012
7013 return 1;
7014 }
7015
7016 /**
7017 * available_idle_cpu - is a given CPU idle for enqueuing work.
7018 * @cpu: the CPU in question.
7019 *
7020 * Return: 1 if the CPU is currently idle. 0 otherwise.
7021 */
7022 int available_idle_cpu(int cpu)
7023 {
7024 if (!idle_cpu(cpu))
7025 return 0;
7026
7027 if (vcpu_is_preempted(cpu))
7028 return 0;
7029
7030 return 1;
7031 }
7032
7033 /**
7034 * idle_task - return the idle task for a given CPU.
7035 * @cpu: the processor in question.
7036 *
7037 * Return: The idle task for the CPU @cpu.
7038 */
7039 struct task_struct *idle_task(int cpu)
7040 {
7041 return cpu_rq(cpu)->idle;
7042 }
7043
7044 #ifdef CONFIG_SMP
7045 /*
7046 * This function computes an effective utilization for the given CPU, to be
7047 * used for frequency selection given the linear relation: f = u * f_max.
7048 *
7049 * The scheduler tracks the following metrics:
7050 *
7051 * cpu_util_{cfs,rt,dl,irq}()
7052 * cpu_bw_dl()
7053 *
7054 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7055 * synchronized windows and are thus directly comparable.
7056 *
7057 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7058 * which excludes things like IRQ and steal-time. These latter are then accrued
7059 * in the irq utilization.
7060 *
7061 * The DL bandwidth number otoh is not a measured metric but a value computed
7062 * based on the task model parameters and gives the minimal utilization
7063 * required to meet deadlines.
7064 */
7065 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7066 unsigned long max, enum cpu_util_type type,
7067 struct task_struct *p)
7068 {
7069 unsigned long dl_util, util, irq;
7070 struct rq *rq = cpu_rq(cpu);
7071
7072 if (!uclamp_is_used() &&
7073 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7074 return max;
7075 }
7076
7077 /*
7078 * Early check to see if IRQ/steal time saturates the CPU, can be
7079 * because of inaccuracies in how we track these -- see
7080 * update_irq_load_avg().
7081 */
7082 irq = cpu_util_irq(rq);
7083 if (unlikely(irq >= max))
7084 return max;
7085
7086 /*
7087 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7088 * CFS tasks and we use the same metric to track the effective
7089 * utilization (PELT windows are synchronized) we can directly add them
7090 * to obtain the CPU's actual utilization.
7091 *
7092 * CFS and RT utilization can be boosted or capped, depending on
7093 * utilization clamp constraints requested by currently RUNNABLE
7094 * tasks.
7095 * When there are no CFS RUNNABLE tasks, clamps are released and
7096 * frequency will be gracefully reduced with the utilization decay.
7097 */
7098 util = util_cfs + cpu_util_rt(rq);
7099 if (type == FREQUENCY_UTIL)
7100 util = uclamp_rq_util_with(rq, util, p);
7101
7102 dl_util = cpu_util_dl(rq);
7103
7104 /*
7105 * For frequency selection we do not make cpu_util_dl() a permanent part
7106 * of this sum because we want to use cpu_bw_dl() later on, but we need
7107 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7108 * that we select f_max when there is no idle time.
7109 *
7110 * NOTE: numerical errors or stop class might cause us to not quite hit
7111 * saturation when we should -- something for later.
7112 */
7113 if (util + dl_util >= max)
7114 return max;
7115
7116 /*
7117 * OTOH, for energy computation we need the estimated running time, so
7118 * include util_dl and ignore dl_bw.
7119 */
7120 if (type == ENERGY_UTIL)
7121 util += dl_util;
7122
7123 /*
7124 * There is still idle time; further improve the number by using the
7125 * irq metric. Because IRQ/steal time is hidden from the task clock we
7126 * need to scale the task numbers:
7127 *
7128 * max - irq
7129 * U' = irq + --------- * U
7130 * max
7131 */
7132 util = scale_irq_capacity(util, irq, max);
7133 util += irq;
7134
7135 /*
7136 * Bandwidth required by DEADLINE must always be granted while, for
7137 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7138 * to gracefully reduce the frequency when no tasks show up for longer
7139 * periods of time.
7140 *
7141 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7142 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7143 * an interface. So, we only do the latter for now.
7144 */
7145 if (type == FREQUENCY_UTIL)
7146 util += cpu_bw_dl(rq);
7147
7148 return min(max, util);
7149 }
7150
7151 unsigned long sched_cpu_util(int cpu, unsigned long max)
7152 {
7153 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
7154 ENERGY_UTIL, NULL);
7155 }
7156 #endif /* CONFIG_SMP */
7157
7158 /**
7159 * find_process_by_pid - find a process with a matching PID value.
7160 * @pid: the pid in question.
7161 *
7162 * The task of @pid, if found. %NULL otherwise.
7163 */
7164 static struct task_struct *find_process_by_pid(pid_t pid)
7165 {
7166 return pid ? find_task_by_vpid(pid) : current;
7167 }
7168
7169 /*
7170 * sched_setparam() passes in -1 for its policy, to let the functions
7171 * it calls know not to change it.
7172 */
7173 #define SETPARAM_POLICY -1
7174
7175 static void __setscheduler_params(struct task_struct *p,
7176 const struct sched_attr *attr)
7177 {
7178 int policy = attr->sched_policy;
7179
7180 if (policy == SETPARAM_POLICY)
7181 policy = p->policy;
7182
7183 p->policy = policy;
7184
7185 if (dl_policy(policy))
7186 __setparam_dl(p, attr);
7187 else if (fair_policy(policy))
7188 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7189
7190 /*
7191 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7192 * !rt_policy. Always setting this ensures that things like
7193 * getparam()/getattr() don't report silly values for !rt tasks.
7194 */
7195 p->rt_priority = attr->sched_priority;
7196 p->normal_prio = normal_prio(p);
7197 set_load_weight(p, true);
7198 }
7199
7200 /*
7201 * Check the target process has a UID that matches the current process's:
7202 */
7203 static bool check_same_owner(struct task_struct *p)
7204 {
7205 const struct cred *cred = current_cred(), *pcred;
7206 bool match;
7207
7208 rcu_read_lock();
7209 pcred = __task_cred(p);
7210 match = (uid_eq(cred->euid, pcred->euid) ||
7211 uid_eq(cred->euid, pcred->uid));
7212 rcu_read_unlock();
7213 return match;
7214 }
7215
7216 static int __sched_setscheduler(struct task_struct *p,
7217 const struct sched_attr *attr,
7218 bool user, bool pi)
7219 {
7220 int oldpolicy = -1, policy = attr->sched_policy;
7221 int retval, oldprio, newprio, queued, running;
7222 const struct sched_class *prev_class;
7223 struct callback_head *head;
7224 struct rq_flags rf;
7225 int reset_on_fork;
7226 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7227 struct rq *rq;
7228
7229 /* The pi code expects interrupts enabled */
7230 BUG_ON(pi && in_interrupt());
7231 recheck:
7232 /* Double check policy once rq lock held: */
7233 if (policy < 0) {
7234 reset_on_fork = p->sched_reset_on_fork;
7235 policy = oldpolicy = p->policy;
7236 } else {
7237 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7238
7239 if (!valid_policy(policy))
7240 return -EINVAL;
7241 }
7242
7243 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7244 return -EINVAL;
7245
7246 /*
7247 * Valid priorities for SCHED_FIFO and SCHED_RR are
7248 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7249 * SCHED_BATCH and SCHED_IDLE is 0.
7250 */
7251 if (attr->sched_priority > MAX_RT_PRIO-1)
7252 return -EINVAL;
7253 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7254 (rt_policy(policy) != (attr->sched_priority != 0)))
7255 return -EINVAL;
7256
7257 /*
7258 * Allow unprivileged RT tasks to decrease priority:
7259 */
7260 if (user && !capable(CAP_SYS_NICE)) {
7261 if (fair_policy(policy)) {
7262 if (attr->sched_nice < task_nice(p) &&
7263 !can_nice(p, attr->sched_nice))
7264 return -EPERM;
7265 }
7266
7267 if (rt_policy(policy)) {
7268 unsigned long rlim_rtprio =
7269 task_rlimit(p, RLIMIT_RTPRIO);
7270
7271 /* Can't set/change the rt policy: */
7272 if (policy != p->policy && !rlim_rtprio)
7273 return -EPERM;
7274
7275 /* Can't increase priority: */
7276 if (attr->sched_priority > p->rt_priority &&
7277 attr->sched_priority > rlim_rtprio)
7278 return -EPERM;
7279 }
7280
7281 /*
7282 * Can't set/change SCHED_DEADLINE policy at all for now
7283 * (safest behavior); in the future we would like to allow
7284 * unprivileged DL tasks to increase their relative deadline
7285 * or reduce their runtime (both ways reducing utilization)
7286 */
7287 if (dl_policy(policy))
7288 return -EPERM;
7289
7290 /*
7291 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7292 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7293 */
7294 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7295 if (!can_nice(p, task_nice(p)))
7296 return -EPERM;
7297 }
7298
7299 /* Can't change other user's priorities: */
7300 if (!check_same_owner(p))
7301 return -EPERM;
7302
7303 /* Normal users shall not reset the sched_reset_on_fork flag: */
7304 if (p->sched_reset_on_fork && !reset_on_fork)
7305 return -EPERM;
7306 }
7307
7308 if (user) {
7309 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7310 return -EINVAL;
7311
7312 retval = security_task_setscheduler(p);
7313 if (retval)
7314 return retval;
7315 }
7316
7317 /* Update task specific "requested" clamps */
7318 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7319 retval = uclamp_validate(p, attr);
7320 if (retval)
7321 return retval;
7322 }
7323
7324 if (pi)
7325 cpuset_read_lock();
7326
7327 /*
7328 * Make sure no PI-waiters arrive (or leave) while we are
7329 * changing the priority of the task:
7330 *
7331 * To be able to change p->policy safely, the appropriate
7332 * runqueue lock must be held.
7333 */
7334 rq = task_rq_lock(p, &rf);
7335 update_rq_clock(rq);
7336
7337 /*
7338 * Changing the policy of the stop threads its a very bad idea:
7339 */
7340 if (p == rq->stop) {
7341 retval = -EINVAL;
7342 goto unlock;
7343 }
7344
7345 /*
7346 * If not changing anything there's no need to proceed further,
7347 * but store a possible modification of reset_on_fork.
7348 */
7349 if (unlikely(policy == p->policy)) {
7350 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7351 goto change;
7352 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7353 goto change;
7354 if (dl_policy(policy) && dl_param_changed(p, attr))
7355 goto change;
7356 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7357 goto change;
7358
7359 p->sched_reset_on_fork = reset_on_fork;
7360 retval = 0;
7361 goto unlock;
7362 }
7363 change:
7364
7365 if (user) {
7366 #ifdef CONFIG_RT_GROUP_SCHED
7367 /*
7368 * Do not allow realtime tasks into groups that have no runtime
7369 * assigned.
7370 */
7371 if (rt_bandwidth_enabled() && rt_policy(policy) &&
7372 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7373 !task_group_is_autogroup(task_group(p))) {
7374 retval = -EPERM;
7375 goto unlock;
7376 }
7377 #endif
7378 #ifdef CONFIG_SMP
7379 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7380 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7381 cpumask_t *span = rq->rd->span;
7382
7383 /*
7384 * Don't allow tasks with an affinity mask smaller than
7385 * the entire root_domain to become SCHED_DEADLINE. We
7386 * will also fail if there's no bandwidth available.
7387 */
7388 if (!cpumask_subset(span, p->cpus_ptr) ||
7389 rq->rd->dl_bw.bw == 0) {
7390 retval = -EPERM;
7391 goto unlock;
7392 }
7393 }
7394 #endif
7395 }
7396
7397 /* Re-check policy now with rq lock held: */
7398 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7399 policy = oldpolicy = -1;
7400 task_rq_unlock(rq, p, &rf);
7401 if (pi)
7402 cpuset_read_unlock();
7403 goto recheck;
7404 }
7405
7406 /*
7407 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7408 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7409 * is available.
7410 */
7411 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7412 retval = -EBUSY;
7413 goto unlock;
7414 }
7415
7416 p->sched_reset_on_fork = reset_on_fork;
7417 oldprio = p->prio;
7418
7419 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7420 if (pi) {
7421 /*
7422 * Take priority boosted tasks into account. If the new
7423 * effective priority is unchanged, we just store the new
7424 * normal parameters and do not touch the scheduler class and
7425 * the runqueue. This will be done when the task deboost
7426 * itself.
7427 */
7428 newprio = rt_effective_prio(p, newprio);
7429 if (newprio == oldprio)
7430 queue_flags &= ~DEQUEUE_MOVE;
7431 }
7432
7433 queued = task_on_rq_queued(p);
7434 running = task_current(rq, p);
7435 if (queued)
7436 dequeue_task(rq, p, queue_flags);
7437 if (running)
7438 put_prev_task(rq, p);
7439
7440 prev_class = p->sched_class;
7441
7442 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7443 __setscheduler_params(p, attr);
7444 __setscheduler_prio(p, newprio);
7445 }
7446 __setscheduler_uclamp(p, attr);
7447
7448 if (queued) {
7449 /*
7450 * We enqueue to tail when the priority of a task is
7451 * increased (user space view).
7452 */
7453 if (oldprio < p->prio)
7454 queue_flags |= ENQUEUE_HEAD;
7455
7456 enqueue_task(rq, p, queue_flags);
7457 }
7458 if (running)
7459 set_next_task(rq, p);
7460
7461 check_class_changed(rq, p, prev_class, oldprio);
7462
7463 /* Avoid rq from going away on us: */
7464 preempt_disable();
7465 head = splice_balance_callbacks(rq);
7466 task_rq_unlock(rq, p, &rf);
7467
7468 if (pi) {
7469 cpuset_read_unlock();
7470 rt_mutex_adjust_pi(p);
7471 }
7472
7473 /* Run balance callbacks after we've adjusted the PI chain: */
7474 balance_callbacks(rq, head);
7475 preempt_enable();
7476
7477 return 0;
7478
7479 unlock:
7480 task_rq_unlock(rq, p, &rf);
7481 if (pi)
7482 cpuset_read_unlock();
7483 return retval;
7484 }
7485
7486 static int _sched_setscheduler(struct task_struct *p, int policy,
7487 const struct sched_param *param, bool check)
7488 {
7489 struct sched_attr attr = {
7490 .sched_policy = policy,
7491 .sched_priority = param->sched_priority,
7492 .sched_nice = PRIO_TO_NICE(p->static_prio),
7493 };
7494
7495 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7496 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7497 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7498 policy &= ~SCHED_RESET_ON_FORK;
7499 attr.sched_policy = policy;
7500 }
7501
7502 return __sched_setscheduler(p, &attr, check, true);
7503 }
7504 /**
7505 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7506 * @p: the task in question.
7507 * @policy: new policy.
7508 * @param: structure containing the new RT priority.
7509 *
7510 * Use sched_set_fifo(), read its comment.
7511 *
7512 * Return: 0 on success. An error code otherwise.
7513 *
7514 * NOTE that the task may be already dead.
7515 */
7516 int sched_setscheduler(struct task_struct *p, int policy,
7517 const struct sched_param *param)
7518 {
7519 return _sched_setscheduler(p, policy, param, true);
7520 }
7521
7522 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7523 {
7524 return __sched_setscheduler(p, attr, true, true);
7525 }
7526
7527 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7528 {
7529 return __sched_setscheduler(p, attr, false, true);
7530 }
7531 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7532
7533 /**
7534 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7535 * @p: the task in question.
7536 * @policy: new policy.
7537 * @param: structure containing the new RT priority.
7538 *
7539 * Just like sched_setscheduler, only don't bother checking if the
7540 * current context has permission. For example, this is needed in
7541 * stop_machine(): we create temporary high priority worker threads,
7542 * but our caller might not have that capability.
7543 *
7544 * Return: 0 on success. An error code otherwise.
7545 */
7546 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7547 const struct sched_param *param)
7548 {
7549 return _sched_setscheduler(p, policy, param, false);
7550 }
7551
7552 /*
7553 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7554 * incapable of resource management, which is the one thing an OS really should
7555 * be doing.
7556 *
7557 * This is of course the reason it is limited to privileged users only.
7558 *
7559 * Worse still; it is fundamentally impossible to compose static priority
7560 * workloads. You cannot take two correctly working static prio workloads
7561 * and smash them together and still expect them to work.
7562 *
7563 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7564 *
7565 * MAX_RT_PRIO / 2
7566 *
7567 * The administrator _MUST_ configure the system, the kernel simply doesn't
7568 * know enough information to make a sensible choice.
7569 */
7570 void sched_set_fifo(struct task_struct *p)
7571 {
7572 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7573 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7574 }
7575 EXPORT_SYMBOL_GPL(sched_set_fifo);
7576
7577 /*
7578 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7579 */
7580 void sched_set_fifo_low(struct task_struct *p)
7581 {
7582 struct sched_param sp = { .sched_priority = 1 };
7583 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7584 }
7585 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7586
7587 void sched_set_normal(struct task_struct *p, int nice)
7588 {
7589 struct sched_attr attr = {
7590 .sched_policy = SCHED_NORMAL,
7591 .sched_nice = nice,
7592 };
7593 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7594 }
7595 EXPORT_SYMBOL_GPL(sched_set_normal);
7596
7597 static int
7598 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7599 {
7600 struct sched_param lparam;
7601 struct task_struct *p;
7602 int retval;
7603
7604 if (!param || pid < 0)
7605 return -EINVAL;
7606 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7607 return -EFAULT;
7608
7609 rcu_read_lock();
7610 retval = -ESRCH;
7611 p = find_process_by_pid(pid);
7612 if (likely(p))
7613 get_task_struct(p);
7614 rcu_read_unlock();
7615
7616 if (likely(p)) {
7617 retval = sched_setscheduler(p, policy, &lparam);
7618 put_task_struct(p);
7619 }
7620
7621 return retval;
7622 }
7623
7624 /*
7625 * Mimics kernel/events/core.c perf_copy_attr().
7626 */
7627 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7628 {
7629 u32 size;
7630 int ret;
7631
7632 /* Zero the full structure, so that a short copy will be nice: */
7633 memset(attr, 0, sizeof(*attr));
7634
7635 ret = get_user(size, &uattr->size);
7636 if (ret)
7637 return ret;
7638
7639 /* ABI compatibility quirk: */
7640 if (!size)
7641 size = SCHED_ATTR_SIZE_VER0;
7642 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7643 goto err_size;
7644
7645 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7646 if (ret) {
7647 if (ret == -E2BIG)
7648 goto err_size;
7649 return ret;
7650 }
7651
7652 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7653 size < SCHED_ATTR_SIZE_VER1)
7654 return -EINVAL;
7655
7656 /*
7657 * XXX: Do we want to be lenient like existing syscalls; or do we want
7658 * to be strict and return an error on out-of-bounds values?
7659 */
7660 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7661
7662 return 0;
7663
7664 err_size:
7665 put_user(sizeof(*attr), &uattr->size);
7666 return -E2BIG;
7667 }
7668
7669 static void get_params(struct task_struct *p, struct sched_attr *attr)
7670 {
7671 if (task_has_dl_policy(p))
7672 __getparam_dl(p, attr);
7673 else if (task_has_rt_policy(p))
7674 attr->sched_priority = p->rt_priority;
7675 else
7676 attr->sched_nice = task_nice(p);
7677 }
7678
7679 /**
7680 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7681 * @pid: the pid in question.
7682 * @policy: new policy.
7683 * @param: structure containing the new RT priority.
7684 *
7685 * Return: 0 on success. An error code otherwise.
7686 */
7687 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7688 {
7689 if (policy < 0)
7690 return -EINVAL;
7691
7692 return do_sched_setscheduler(pid, policy, param);
7693 }
7694
7695 /**
7696 * sys_sched_setparam - set/change the RT priority of a thread
7697 * @pid: the pid in question.
7698 * @param: structure containing the new RT priority.
7699 *
7700 * Return: 0 on success. An error code otherwise.
7701 */
7702 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7703 {
7704 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7705 }
7706
7707 /**
7708 * sys_sched_setattr - same as above, but with extended sched_attr
7709 * @pid: the pid in question.
7710 * @uattr: structure containing the extended parameters.
7711 * @flags: for future extension.
7712 */
7713 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7714 unsigned int, flags)
7715 {
7716 struct sched_attr attr;
7717 struct task_struct *p;
7718 int retval;
7719
7720 if (!uattr || pid < 0 || flags)
7721 return -EINVAL;
7722
7723 retval = sched_copy_attr(uattr, &attr);
7724 if (retval)
7725 return retval;
7726
7727 if ((int)attr.sched_policy < 0)
7728 return -EINVAL;
7729 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7730 attr.sched_policy = SETPARAM_POLICY;
7731
7732 rcu_read_lock();
7733 retval = -ESRCH;
7734 p = find_process_by_pid(pid);
7735 if (likely(p))
7736 get_task_struct(p);
7737 rcu_read_unlock();
7738
7739 if (likely(p)) {
7740 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7741 get_params(p, &attr);
7742 retval = sched_setattr(p, &attr);
7743 put_task_struct(p);
7744 }
7745
7746 return retval;
7747 }
7748
7749 /**
7750 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7751 * @pid: the pid in question.
7752 *
7753 * Return: On success, the policy of the thread. Otherwise, a negative error
7754 * code.
7755 */
7756 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7757 {
7758 struct task_struct *p;
7759 int retval;
7760
7761 if (pid < 0)
7762 return -EINVAL;
7763
7764 retval = -ESRCH;
7765 rcu_read_lock();
7766 p = find_process_by_pid(pid);
7767 if (p) {
7768 retval = security_task_getscheduler(p);
7769 if (!retval)
7770 retval = p->policy
7771 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7772 }
7773 rcu_read_unlock();
7774 return retval;
7775 }
7776
7777 /**
7778 * sys_sched_getparam - get the RT priority of a thread
7779 * @pid: the pid in question.
7780 * @param: structure containing the RT priority.
7781 *
7782 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7783 * code.
7784 */
7785 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7786 {
7787 struct sched_param lp = { .sched_priority = 0 };
7788 struct task_struct *p;
7789 int retval;
7790
7791 if (!param || pid < 0)
7792 return -EINVAL;
7793
7794 rcu_read_lock();
7795 p = find_process_by_pid(pid);
7796 retval = -ESRCH;
7797 if (!p)
7798 goto out_unlock;
7799
7800 retval = security_task_getscheduler(p);
7801 if (retval)
7802 goto out_unlock;
7803
7804 if (task_has_rt_policy(p))
7805 lp.sched_priority = p->rt_priority;
7806 rcu_read_unlock();
7807
7808 /*
7809 * This one might sleep, we cannot do it with a spinlock held ...
7810 */
7811 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7812
7813 return retval;
7814
7815 out_unlock:
7816 rcu_read_unlock();
7817 return retval;
7818 }
7819
7820 /*
7821 * Copy the kernel size attribute structure (which might be larger
7822 * than what user-space knows about) to user-space.
7823 *
7824 * Note that all cases are valid: user-space buffer can be larger or
7825 * smaller than the kernel-space buffer. The usual case is that both
7826 * have the same size.
7827 */
7828 static int
7829 sched_attr_copy_to_user(struct sched_attr __user *uattr,
7830 struct sched_attr *kattr,
7831 unsigned int usize)
7832 {
7833 unsigned int ksize = sizeof(*kattr);
7834
7835 if (!access_ok(uattr, usize))
7836 return -EFAULT;
7837
7838 /*
7839 * sched_getattr() ABI forwards and backwards compatibility:
7840 *
7841 * If usize == ksize then we just copy everything to user-space and all is good.
7842 *
7843 * If usize < ksize then we only copy as much as user-space has space for,
7844 * this keeps ABI compatibility as well. We skip the rest.
7845 *
7846 * If usize > ksize then user-space is using a newer version of the ABI,
7847 * which part the kernel doesn't know about. Just ignore it - tooling can
7848 * detect the kernel's knowledge of attributes from the attr->size value
7849 * which is set to ksize in this case.
7850 */
7851 kattr->size = min(usize, ksize);
7852
7853 if (copy_to_user(uattr, kattr, kattr->size))
7854 return -EFAULT;
7855
7856 return 0;
7857 }
7858
7859 /**
7860 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
7861 * @pid: the pid in question.
7862 * @uattr: structure containing the extended parameters.
7863 * @usize: sizeof(attr) for fwd/bwd comp.
7864 * @flags: for future extension.
7865 */
7866 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
7867 unsigned int, usize, unsigned int, flags)
7868 {
7869 struct sched_attr kattr = { };
7870 struct task_struct *p;
7871 int retval;
7872
7873 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
7874 usize < SCHED_ATTR_SIZE_VER0 || flags)
7875 return -EINVAL;
7876
7877 rcu_read_lock();
7878 p = find_process_by_pid(pid);
7879 retval = -ESRCH;
7880 if (!p)
7881 goto out_unlock;
7882
7883 retval = security_task_getscheduler(p);
7884 if (retval)
7885 goto out_unlock;
7886
7887 kattr.sched_policy = p->policy;
7888 if (p->sched_reset_on_fork)
7889 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7890 get_params(p, &kattr);
7891 kattr.sched_flags &= SCHED_FLAG_ALL;
7892
7893 #ifdef CONFIG_UCLAMP_TASK
7894 /*
7895 * This could race with another potential updater, but this is fine
7896 * because it'll correctly read the old or the new value. We don't need
7897 * to guarantee who wins the race as long as it doesn't return garbage.
7898 */
7899 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
7900 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
7901 #endif
7902
7903 rcu_read_unlock();
7904
7905 return sched_attr_copy_to_user(uattr, &kattr, usize);
7906
7907 out_unlock:
7908 rcu_read_unlock();
7909 return retval;
7910 }
7911
7912 #ifdef CONFIG_SMP
7913 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
7914 {
7915 int ret = 0;
7916
7917 /*
7918 * If the task isn't a deadline task or admission control is
7919 * disabled then we don't care about affinity changes.
7920 */
7921 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
7922 return 0;
7923
7924 /*
7925 * Since bandwidth control happens on root_domain basis,
7926 * if admission test is enabled, we only admit -deadline
7927 * tasks allowed to run on all the CPUs in the task's
7928 * root_domain.
7929 */
7930 rcu_read_lock();
7931 if (!cpumask_subset(task_rq(p)->rd->span, mask))
7932 ret = -EBUSY;
7933 rcu_read_unlock();
7934 return ret;
7935 }
7936 #endif
7937
7938 static int
7939 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
7940 {
7941 int retval;
7942 cpumask_var_t cpus_allowed, new_mask;
7943
7944 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
7945 return -ENOMEM;
7946
7947 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
7948 retval = -ENOMEM;
7949 goto out_free_cpus_allowed;
7950 }
7951
7952 cpuset_cpus_allowed(p, cpus_allowed);
7953 cpumask_and(new_mask, mask, cpus_allowed);
7954
7955 retval = dl_task_check_affinity(p, new_mask);
7956 if (retval)
7957 goto out_free_new_mask;
7958 again:
7959 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
7960 if (retval)
7961 goto out_free_new_mask;
7962
7963 cpuset_cpus_allowed(p, cpus_allowed);
7964 if (!cpumask_subset(new_mask, cpus_allowed)) {
7965 /*
7966 * We must have raced with a concurrent cpuset update.
7967 * Just reset the cpumask to the cpuset's cpus_allowed.
7968 */
7969 cpumask_copy(new_mask, cpus_allowed);
7970 goto again;
7971 }
7972
7973 out_free_new_mask:
7974 free_cpumask_var(new_mask);
7975 out_free_cpus_allowed:
7976 free_cpumask_var(cpus_allowed);
7977 return retval;
7978 }
7979
7980 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
7981 {
7982 struct task_struct *p;
7983 int retval;
7984
7985 rcu_read_lock();
7986
7987 p = find_process_by_pid(pid);
7988 if (!p) {
7989 rcu_read_unlock();
7990 return -ESRCH;
7991 }
7992
7993 /* Prevent p going away */
7994 get_task_struct(p);
7995 rcu_read_unlock();
7996
7997 if (p->flags & PF_NO_SETAFFINITY) {
7998 retval = -EINVAL;
7999 goto out_put_task;
8000 }
8001
8002 if (!check_same_owner(p)) {
8003 rcu_read_lock();
8004 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8005 rcu_read_unlock();
8006 retval = -EPERM;
8007 goto out_put_task;
8008 }
8009 rcu_read_unlock();
8010 }
8011
8012 retval = security_task_setscheduler(p);
8013 if (retval)
8014 goto out_put_task;
8015
8016 retval = __sched_setaffinity(p, in_mask);
8017 out_put_task:
8018 put_task_struct(p);
8019 return retval;
8020 }
8021
8022 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8023 struct cpumask *new_mask)
8024 {
8025 if (len < cpumask_size())
8026 cpumask_clear(new_mask);
8027 else if (len > cpumask_size())
8028 len = cpumask_size();
8029
8030 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8031 }
8032
8033 /**
8034 * sys_sched_setaffinity - set the CPU affinity of a process
8035 * @pid: pid of the process
8036 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8037 * @user_mask_ptr: user-space pointer to the new CPU mask
8038 *
8039 * Return: 0 on success. An error code otherwise.
8040 */
8041 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8042 unsigned long __user *, user_mask_ptr)
8043 {
8044 cpumask_var_t new_mask;
8045 int retval;
8046
8047 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8048 return -ENOMEM;
8049
8050 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8051 if (retval == 0)
8052 retval = sched_setaffinity(pid, new_mask);
8053 free_cpumask_var(new_mask);
8054 return retval;
8055 }
8056
8057 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8058 {
8059 struct task_struct *p;
8060 unsigned long flags;
8061 int retval;
8062
8063 rcu_read_lock();
8064
8065 retval = -ESRCH;
8066 p = find_process_by_pid(pid);
8067 if (!p)
8068 goto out_unlock;
8069
8070 retval = security_task_getscheduler(p);
8071 if (retval)
8072 goto out_unlock;
8073
8074 raw_spin_lock_irqsave(&p->pi_lock, flags);
8075 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8076 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8077
8078 out_unlock:
8079 rcu_read_unlock();
8080
8081 return retval;
8082 }
8083
8084 /**
8085 * sys_sched_getaffinity - get the CPU affinity of a process
8086 * @pid: pid of the process
8087 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8088 * @user_mask_ptr: user-space pointer to hold the current CPU mask
8089 *
8090 * Return: size of CPU mask copied to user_mask_ptr on success. An
8091 * error code otherwise.
8092 */
8093 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8094 unsigned long __user *, user_mask_ptr)
8095 {
8096 int ret;
8097 cpumask_var_t mask;
8098
8099 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8100 return -EINVAL;
8101 if (len & (sizeof(unsigned long)-1))
8102 return -EINVAL;
8103
8104 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8105 return -ENOMEM;
8106
8107 ret = sched_getaffinity(pid, mask);
8108 if (ret == 0) {
8109 unsigned int retlen = min(len, cpumask_size());
8110
8111 if (copy_to_user(user_mask_ptr, mask, retlen))
8112 ret = -EFAULT;
8113 else
8114 ret = retlen;
8115 }
8116 free_cpumask_var(mask);
8117
8118 return ret;
8119 }
8120
8121 static void do_sched_yield(void)
8122 {
8123 struct rq_flags rf;
8124 struct rq *rq;
8125
8126 rq = this_rq_lock_irq(&rf);
8127
8128 schedstat_inc(rq->yld_count);
8129 current->sched_class->yield_task(rq);
8130
8131 preempt_disable();
8132 rq_unlock_irq(rq, &rf);
8133 sched_preempt_enable_no_resched();
8134
8135 schedule();
8136 }
8137
8138 /**
8139 * sys_sched_yield - yield the current processor to other threads.
8140 *
8141 * This function yields the current CPU to other tasks. If there are no
8142 * other threads running on this CPU then this function will return.
8143 *
8144 * Return: 0.
8145 */
8146 SYSCALL_DEFINE0(sched_yield)
8147 {
8148 do_sched_yield();
8149 return 0;
8150 }
8151
8152 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8153 int __sched __cond_resched(void)
8154 {
8155 if (should_resched(0)) {
8156 preempt_schedule_common();
8157 return 1;
8158 }
8159 /*
8160 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8161 * whether the current CPU is in an RCU read-side critical section,
8162 * so the tick can report quiescent states even for CPUs looping
8163 * in kernel context. In contrast, in non-preemptible kernels,
8164 * RCU readers leave no in-memory hints, which means that CPU-bound
8165 * processes executing in kernel context might never report an
8166 * RCU quiescent state. Therefore, the following code causes
8167 * cond_resched() to report a quiescent state, but only when RCU
8168 * is in urgent need of one.
8169 */
8170 #ifndef CONFIG_PREEMPT_RCU
8171 rcu_all_qs();
8172 #endif
8173 return 0;
8174 }
8175 EXPORT_SYMBOL(__cond_resched);
8176 #endif
8177
8178 #ifdef CONFIG_PREEMPT_DYNAMIC
8179 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8180 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8181
8182 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8183 EXPORT_STATIC_CALL_TRAMP(might_resched);
8184 #endif
8185
8186 /*
8187 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8188 * call schedule, and on return reacquire the lock.
8189 *
8190 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8191 * operations here to prevent schedule() from being called twice (once via
8192 * spin_unlock(), once by hand).
8193 */
8194 int __cond_resched_lock(spinlock_t *lock)
8195 {
8196 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8197 int ret = 0;
8198
8199 lockdep_assert_held(lock);
8200
8201 if (spin_needbreak(lock) || resched) {
8202 spin_unlock(lock);
8203 if (resched)
8204 preempt_schedule_common();
8205 else
8206 cpu_relax();
8207 ret = 1;
8208 spin_lock(lock);
8209 }
8210 return ret;
8211 }
8212 EXPORT_SYMBOL(__cond_resched_lock);
8213
8214 int __cond_resched_rwlock_read(rwlock_t *lock)
8215 {
8216 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8217 int ret = 0;
8218
8219 lockdep_assert_held_read(lock);
8220
8221 if (rwlock_needbreak(lock) || resched) {
8222 read_unlock(lock);
8223 if (resched)
8224 preempt_schedule_common();
8225 else
8226 cpu_relax();
8227 ret = 1;
8228 read_lock(lock);
8229 }
8230 return ret;
8231 }
8232 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8233
8234 int __cond_resched_rwlock_write(rwlock_t *lock)
8235 {
8236 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8237 int ret = 0;
8238
8239 lockdep_assert_held_write(lock);
8240
8241 if (rwlock_needbreak(lock) || resched) {
8242 write_unlock(lock);
8243 if (resched)
8244 preempt_schedule_common();
8245 else
8246 cpu_relax();
8247 ret = 1;
8248 write_lock(lock);
8249 }
8250 return ret;
8251 }
8252 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8253
8254 /**
8255 * yield - yield the current processor to other threads.
8256 *
8257 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8258 *
8259 * The scheduler is at all times free to pick the calling task as the most
8260 * eligible task to run, if removing the yield() call from your code breaks
8261 * it, it's already broken.
8262 *
8263 * Typical broken usage is:
8264 *
8265 * while (!event)
8266 * yield();
8267 *
8268 * where one assumes that yield() will let 'the other' process run that will
8269 * make event true. If the current task is a SCHED_FIFO task that will never
8270 * happen. Never use yield() as a progress guarantee!!
8271 *
8272 * If you want to use yield() to wait for something, use wait_event().
8273 * If you want to use yield() to be 'nice' for others, use cond_resched().
8274 * If you still want to use yield(), do not!
8275 */
8276 void __sched yield(void)
8277 {
8278 set_current_state(TASK_RUNNING);
8279 do_sched_yield();
8280 }
8281 EXPORT_SYMBOL(yield);
8282
8283 /**
8284 * yield_to - yield the current processor to another thread in
8285 * your thread group, or accelerate that thread toward the
8286 * processor it's on.
8287 * @p: target task
8288 * @preempt: whether task preemption is allowed or not
8289 *
8290 * It's the caller's job to ensure that the target task struct
8291 * can't go away on us before we can do any checks.
8292 *
8293 * Return:
8294 * true (>0) if we indeed boosted the target task.
8295 * false (0) if we failed to boost the target.
8296 * -ESRCH if there's no task to yield to.
8297 */
8298 int __sched yield_to(struct task_struct *p, bool preempt)
8299 {
8300 struct task_struct *curr = current;
8301 struct rq *rq, *p_rq;
8302 unsigned long flags;
8303 int yielded = 0;
8304
8305 local_irq_save(flags);
8306 rq = this_rq();
8307
8308 again:
8309 p_rq = task_rq(p);
8310 /*
8311 * If we're the only runnable task on the rq and target rq also
8312 * has only one task, there's absolutely no point in yielding.
8313 */
8314 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8315 yielded = -ESRCH;
8316 goto out_irq;
8317 }
8318
8319 double_rq_lock(rq, p_rq);
8320 if (task_rq(p) != p_rq) {
8321 double_rq_unlock(rq, p_rq);
8322 goto again;
8323 }
8324
8325 if (!curr->sched_class->yield_to_task)
8326 goto out_unlock;
8327
8328 if (curr->sched_class != p->sched_class)
8329 goto out_unlock;
8330
8331 if (task_running(p_rq, p) || !task_is_running(p))
8332 goto out_unlock;
8333
8334 yielded = curr->sched_class->yield_to_task(rq, p);
8335 if (yielded) {
8336 schedstat_inc(rq->yld_count);
8337 /*
8338 * Make p's CPU reschedule; pick_next_entity takes care of
8339 * fairness.
8340 */
8341 if (preempt && rq != p_rq)
8342 resched_curr(p_rq);
8343 }
8344
8345 out_unlock:
8346 double_rq_unlock(rq, p_rq);
8347 out_irq:
8348 local_irq_restore(flags);
8349
8350 if (yielded > 0)
8351 schedule();
8352
8353 return yielded;
8354 }
8355 EXPORT_SYMBOL_GPL(yield_to);
8356
8357 int io_schedule_prepare(void)
8358 {
8359 int old_iowait = current->in_iowait;
8360
8361 current->in_iowait = 1;
8362 blk_schedule_flush_plug(current);
8363
8364 return old_iowait;
8365 }
8366
8367 void io_schedule_finish(int token)
8368 {
8369 current->in_iowait = token;
8370 }
8371
8372 /*
8373 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8374 * that process accounting knows that this is a task in IO wait state.
8375 */
8376 long __sched io_schedule_timeout(long timeout)
8377 {
8378 int token;
8379 long ret;
8380
8381 token = io_schedule_prepare();
8382 ret = schedule_timeout(timeout);
8383 io_schedule_finish(token);
8384
8385 return ret;
8386 }
8387 EXPORT_SYMBOL(io_schedule_timeout);
8388
8389 void __sched io_schedule(void)
8390 {
8391 int token;
8392
8393 token = io_schedule_prepare();
8394 schedule();
8395 io_schedule_finish(token);
8396 }
8397 EXPORT_SYMBOL(io_schedule);
8398
8399 /**
8400 * sys_sched_get_priority_max - return maximum RT priority.
8401 * @policy: scheduling class.
8402 *
8403 * Return: On success, this syscall returns the maximum
8404 * rt_priority that can be used by a given scheduling class.
8405 * On failure, a negative error code is returned.
8406 */
8407 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8408 {
8409 int ret = -EINVAL;
8410
8411 switch (policy) {
8412 case SCHED_FIFO:
8413 case SCHED_RR:
8414 ret = MAX_RT_PRIO-1;
8415 break;
8416 case SCHED_DEADLINE:
8417 case SCHED_NORMAL:
8418 case SCHED_BATCH:
8419 case SCHED_IDLE:
8420 ret = 0;
8421 break;
8422 }
8423 return ret;
8424 }
8425
8426 /**
8427 * sys_sched_get_priority_min - return minimum RT priority.
8428 * @policy: scheduling class.
8429 *
8430 * Return: On success, this syscall returns the minimum
8431 * rt_priority that can be used by a given scheduling class.
8432 * On failure, a negative error code is returned.
8433 */
8434 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8435 {
8436 int ret = -EINVAL;
8437
8438 switch (policy) {
8439 case SCHED_FIFO:
8440 case SCHED_RR:
8441 ret = 1;
8442 break;
8443 case SCHED_DEADLINE:
8444 case SCHED_NORMAL:
8445 case SCHED_BATCH:
8446 case SCHED_IDLE:
8447 ret = 0;
8448 }
8449 return ret;
8450 }
8451
8452 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8453 {
8454 struct task_struct *p;
8455 unsigned int time_slice;
8456 struct rq_flags rf;
8457 struct rq *rq;
8458 int retval;
8459
8460 if (pid < 0)
8461 return -EINVAL;
8462
8463 retval = -ESRCH;
8464 rcu_read_lock();
8465 p = find_process_by_pid(pid);
8466 if (!p)
8467 goto out_unlock;
8468
8469 retval = security_task_getscheduler(p);
8470 if (retval)
8471 goto out_unlock;
8472
8473 rq = task_rq_lock(p, &rf);
8474 time_slice = 0;
8475 if (p->sched_class->get_rr_interval)
8476 time_slice = p->sched_class->get_rr_interval(rq, p);
8477 task_rq_unlock(rq, p, &rf);
8478
8479 rcu_read_unlock();
8480 jiffies_to_timespec64(time_slice, t);
8481 return 0;
8482
8483 out_unlock:
8484 rcu_read_unlock();
8485 return retval;
8486 }
8487
8488 /**
8489 * sys_sched_rr_get_interval - return the default timeslice of a process.
8490 * @pid: pid of the process.
8491 * @interval: userspace pointer to the timeslice value.
8492 *
8493 * this syscall writes the default timeslice value of a given process
8494 * into the user-space timespec buffer. A value of '0' means infinity.
8495 *
8496 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8497 * an error code.
8498 */
8499 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8500 struct __kernel_timespec __user *, interval)
8501 {
8502 struct timespec64 t;
8503 int retval = sched_rr_get_interval(pid, &t);
8504
8505 if (retval == 0)
8506 retval = put_timespec64(&t, interval);
8507
8508 return retval;
8509 }
8510
8511 #ifdef CONFIG_COMPAT_32BIT_TIME
8512 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8513 struct old_timespec32 __user *, interval)
8514 {
8515 struct timespec64 t;
8516 int retval = sched_rr_get_interval(pid, &t);
8517
8518 if (retval == 0)
8519 retval = put_old_timespec32(&t, interval);
8520 return retval;
8521 }
8522 #endif
8523
8524 void sched_show_task(struct task_struct *p)
8525 {
8526 unsigned long free = 0;
8527 int ppid;
8528
8529 if (!try_get_task_stack(p))
8530 return;
8531
8532 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8533
8534 if (task_is_running(p))
8535 pr_cont(" running task ");
8536 #ifdef CONFIG_DEBUG_STACK_USAGE
8537 free = stack_not_used(p);
8538 #endif
8539 ppid = 0;
8540 rcu_read_lock();
8541 if (pid_alive(p))
8542 ppid = task_pid_nr(rcu_dereference(p->real_parent));
8543 rcu_read_unlock();
8544 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
8545 free, task_pid_nr(p), ppid,
8546 (unsigned long)task_thread_info(p)->flags);
8547
8548 print_worker_info(KERN_INFO, p);
8549 print_stop_info(KERN_INFO, p);
8550 show_stack(p, NULL, KERN_INFO);
8551 put_task_stack(p);
8552 }
8553 EXPORT_SYMBOL_GPL(sched_show_task);
8554
8555 static inline bool
8556 state_filter_match(unsigned long state_filter, struct task_struct *p)
8557 {
8558 unsigned int state = READ_ONCE(p->__state);
8559
8560 /* no filter, everything matches */
8561 if (!state_filter)
8562 return true;
8563
8564 /* filter, but doesn't match */
8565 if (!(state & state_filter))
8566 return false;
8567
8568 /*
8569 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8570 * TASK_KILLABLE).
8571 */
8572 if (state_filter == TASK_UNINTERRUPTIBLE && state == TASK_IDLE)
8573 return false;
8574
8575 return true;
8576 }
8577
8578
8579 void show_state_filter(unsigned int state_filter)
8580 {
8581 struct task_struct *g, *p;
8582
8583 rcu_read_lock();
8584 for_each_process_thread(g, p) {
8585 /*
8586 * reset the NMI-timeout, listing all files on a slow
8587 * console might take a lot of time:
8588 * Also, reset softlockup watchdogs on all CPUs, because
8589 * another CPU might be blocked waiting for us to process
8590 * an IPI.
8591 */
8592 touch_nmi_watchdog();
8593 touch_all_softlockup_watchdogs();
8594 if (state_filter_match(state_filter, p))
8595 sched_show_task(p);
8596 }
8597
8598 #ifdef CONFIG_SCHED_DEBUG
8599 if (!state_filter)
8600 sysrq_sched_debug_show();
8601 #endif
8602 rcu_read_unlock();
8603 /*
8604 * Only show locks if all tasks are dumped:
8605 */
8606 if (!state_filter)
8607 debug_show_all_locks();
8608 }
8609
8610 /**
8611 * init_idle - set up an idle thread for a given CPU
8612 * @idle: task in question
8613 * @cpu: CPU the idle task belongs to
8614 *
8615 * NOTE: this function does not set the idle thread's NEED_RESCHED
8616 * flag, to make booting more robust.
8617 */
8618 void __init init_idle(struct task_struct *idle, int cpu)
8619 {
8620 struct rq *rq = cpu_rq(cpu);
8621 unsigned long flags;
8622
8623 __sched_fork(0, idle);
8624
8625 /*
8626 * The idle task doesn't need the kthread struct to function, but it
8627 * is dressed up as a per-CPU kthread and thus needs to play the part
8628 * if we want to avoid special-casing it in code that deals with per-CPU
8629 * kthreads.
8630 */
8631 set_kthread_struct(idle);
8632
8633 raw_spin_lock_irqsave(&idle->pi_lock, flags);
8634 raw_spin_rq_lock(rq);
8635
8636 idle->__state = TASK_RUNNING;
8637 idle->se.exec_start = sched_clock();
8638 /*
8639 * PF_KTHREAD should already be set at this point; regardless, make it
8640 * look like a proper per-CPU kthread.
8641 */
8642 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8643 kthread_set_per_cpu(idle, cpu);
8644
8645 #ifdef CONFIG_SMP
8646 /*
8647 * It's possible that init_idle() gets called multiple times on a task,
8648 * in that case do_set_cpus_allowed() will not do the right thing.
8649 *
8650 * And since this is boot we can forgo the serialization.
8651 */
8652 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8653 #endif
8654 /*
8655 * We're having a chicken and egg problem, even though we are
8656 * holding rq->lock, the CPU isn't yet set to this CPU so the
8657 * lockdep check in task_group() will fail.
8658 *
8659 * Similar case to sched_fork(). / Alternatively we could
8660 * use task_rq_lock() here and obtain the other rq->lock.
8661 *
8662 * Silence PROVE_RCU
8663 */
8664 rcu_read_lock();
8665 __set_task_cpu(idle, cpu);
8666 rcu_read_unlock();
8667
8668 rq->idle = idle;
8669 rcu_assign_pointer(rq->curr, idle);
8670 idle->on_rq = TASK_ON_RQ_QUEUED;
8671 #ifdef CONFIG_SMP
8672 idle->on_cpu = 1;
8673 #endif
8674 raw_spin_rq_unlock(rq);
8675 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
8676
8677 /* Set the preempt count _outside_ the spinlocks! */
8678 init_idle_preempt_count(idle, cpu);
8679
8680 /*
8681 * The idle tasks have their own, simple scheduling class:
8682 */
8683 idle->sched_class = &idle_sched_class;
8684 ftrace_graph_init_idle_task(idle, cpu);
8685 vtime_init_idle(idle, cpu);
8686 #ifdef CONFIG_SMP
8687 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
8688 #endif
8689 }
8690
8691 #ifdef CONFIG_SMP
8692
8693 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
8694 const struct cpumask *trial)
8695 {
8696 int ret = 1;
8697
8698 if (!cpumask_weight(cur))
8699 return ret;
8700
8701 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
8702
8703 return ret;
8704 }
8705
8706 int task_can_attach(struct task_struct *p,
8707 const struct cpumask *cs_cpus_allowed)
8708 {
8709 int ret = 0;
8710
8711 /*
8712 * Kthreads which disallow setaffinity shouldn't be moved
8713 * to a new cpuset; we don't want to change their CPU
8714 * affinity and isolating such threads by their set of
8715 * allowed nodes is unnecessary. Thus, cpusets are not
8716 * applicable for such threads. This prevents checking for
8717 * success of set_cpus_allowed_ptr() on all attached tasks
8718 * before cpus_mask may be changed.
8719 */
8720 if (p->flags & PF_NO_SETAFFINITY) {
8721 ret = -EINVAL;
8722 goto out;
8723 }
8724
8725 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
8726 cs_cpus_allowed))
8727 ret = dl_task_can_attach(p, cs_cpus_allowed);
8728
8729 out:
8730 return ret;
8731 }
8732
8733 bool sched_smp_initialized __read_mostly;
8734
8735 #ifdef CONFIG_NUMA_BALANCING
8736 /* Migrate current task p to target_cpu */
8737 int migrate_task_to(struct task_struct *p, int target_cpu)
8738 {
8739 struct migration_arg arg = { p, target_cpu };
8740 int curr_cpu = task_cpu(p);
8741
8742 if (curr_cpu == target_cpu)
8743 return 0;
8744
8745 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
8746 return -EINVAL;
8747
8748 /* TODO: This is not properly updating schedstats */
8749
8750 trace_sched_move_numa(p, curr_cpu, target_cpu);
8751 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
8752 }
8753
8754 /*
8755 * Requeue a task on a given node and accurately track the number of NUMA
8756 * tasks on the runqueues
8757 */
8758 void sched_setnuma(struct task_struct *p, int nid)
8759 {
8760 bool queued, running;
8761 struct rq_flags rf;
8762 struct rq *rq;
8763
8764 rq = task_rq_lock(p, &rf);
8765 queued = task_on_rq_queued(p);
8766 running = task_current(rq, p);
8767
8768 if (queued)
8769 dequeue_task(rq, p, DEQUEUE_SAVE);
8770 if (running)
8771 put_prev_task(rq, p);
8772
8773 p->numa_preferred_nid = nid;
8774
8775 if (queued)
8776 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
8777 if (running)
8778 set_next_task(rq, p);
8779 task_rq_unlock(rq, p, &rf);
8780 }
8781 #endif /* CONFIG_NUMA_BALANCING */
8782
8783 #ifdef CONFIG_HOTPLUG_CPU
8784 /*
8785 * Ensure that the idle task is using init_mm right before its CPU goes
8786 * offline.
8787 */
8788 void idle_task_exit(void)
8789 {
8790 struct mm_struct *mm = current->active_mm;
8791
8792 BUG_ON(cpu_online(smp_processor_id()));
8793 BUG_ON(current != this_rq()->idle);
8794
8795 if (mm != &init_mm) {
8796 switch_mm(mm, &init_mm, current);
8797 finish_arch_post_lock_switch();
8798 }
8799
8800 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
8801 }
8802
8803 static int __balance_push_cpu_stop(void *arg)
8804 {
8805 struct task_struct *p = arg;
8806 struct rq *rq = this_rq();
8807 struct rq_flags rf;
8808 int cpu;
8809
8810 raw_spin_lock_irq(&p->pi_lock);
8811 rq_lock(rq, &rf);
8812
8813 update_rq_clock(rq);
8814
8815 if (task_rq(p) == rq && task_on_rq_queued(p)) {
8816 cpu = select_fallback_rq(rq->cpu, p);
8817 rq = __migrate_task(rq, &rf, p, cpu);
8818 }
8819
8820 rq_unlock(rq, &rf);
8821 raw_spin_unlock_irq(&p->pi_lock);
8822
8823 put_task_struct(p);
8824
8825 return 0;
8826 }
8827
8828 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
8829
8830 /*
8831 * Ensure we only run per-cpu kthreads once the CPU goes !active.
8832 *
8833 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
8834 * effective when the hotplug motion is down.
8835 */
8836 static void balance_push(struct rq *rq)
8837 {
8838 struct task_struct *push_task = rq->curr;
8839
8840 lockdep_assert_rq_held(rq);
8841
8842 /*
8843 * Ensure the thing is persistent until balance_push_set(.on = false);
8844 */
8845 rq->balance_callback = &balance_push_callback;
8846
8847 /*
8848 * Only active while going offline and when invoked on the outgoing
8849 * CPU.
8850 */
8851 if (!cpu_dying(rq->cpu) || rq != this_rq())
8852 return;
8853
8854 /*
8855 * Both the cpu-hotplug and stop task are in this case and are
8856 * required to complete the hotplug process.
8857 */
8858 if (kthread_is_per_cpu(push_task) ||
8859 is_migration_disabled(push_task)) {
8860
8861 /*
8862 * If this is the idle task on the outgoing CPU try to wake
8863 * up the hotplug control thread which might wait for the
8864 * last task to vanish. The rcuwait_active() check is
8865 * accurate here because the waiter is pinned on this CPU
8866 * and can't obviously be running in parallel.
8867 *
8868 * On RT kernels this also has to check whether there are
8869 * pinned and scheduled out tasks on the runqueue. They
8870 * need to leave the migrate disabled section first.
8871 */
8872 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
8873 rcuwait_active(&rq->hotplug_wait)) {
8874 raw_spin_rq_unlock(rq);
8875 rcuwait_wake_up(&rq->hotplug_wait);
8876 raw_spin_rq_lock(rq);
8877 }
8878 return;
8879 }
8880
8881 get_task_struct(push_task);
8882 /*
8883 * Temporarily drop rq->lock such that we can wake-up the stop task.
8884 * Both preemption and IRQs are still disabled.
8885 */
8886 raw_spin_rq_unlock(rq);
8887 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
8888 this_cpu_ptr(&push_work));
8889 /*
8890 * At this point need_resched() is true and we'll take the loop in
8891 * schedule(). The next pick is obviously going to be the stop task
8892 * which kthread_is_per_cpu() and will push this task away.
8893 */
8894 raw_spin_rq_lock(rq);
8895 }
8896
8897 static void balance_push_set(int cpu, bool on)
8898 {
8899 struct rq *rq = cpu_rq(cpu);
8900 struct rq_flags rf;
8901
8902 rq_lock_irqsave(rq, &rf);
8903 if (on) {
8904 WARN_ON_ONCE(rq->balance_callback);
8905 rq->balance_callback = &balance_push_callback;
8906 } else if (rq->balance_callback == &balance_push_callback) {
8907 rq->balance_callback = NULL;
8908 }
8909 rq_unlock_irqrestore(rq, &rf);
8910 }
8911
8912 /*
8913 * Invoked from a CPUs hotplug control thread after the CPU has been marked
8914 * inactive. All tasks which are not per CPU kernel threads are either
8915 * pushed off this CPU now via balance_push() or placed on a different CPU
8916 * during wakeup. Wait until the CPU is quiescent.
8917 */
8918 static void balance_hotplug_wait(void)
8919 {
8920 struct rq *rq = this_rq();
8921
8922 rcuwait_wait_event(&rq->hotplug_wait,
8923 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
8924 TASK_UNINTERRUPTIBLE);
8925 }
8926
8927 #else
8928
8929 static inline void balance_push(struct rq *rq)
8930 {
8931 }
8932
8933 static inline void balance_push_set(int cpu, bool on)
8934 {
8935 }
8936
8937 static inline void balance_hotplug_wait(void)
8938 {
8939 }
8940
8941 #endif /* CONFIG_HOTPLUG_CPU */
8942
8943 void set_rq_online(struct rq *rq)
8944 {
8945 if (!rq->online) {
8946 const struct sched_class *class;
8947
8948 cpumask_set_cpu(rq->cpu, rq->rd->online);
8949 rq->online = 1;
8950
8951 for_each_class(class) {
8952 if (class->rq_online)
8953 class->rq_online(rq);
8954 }
8955 }
8956 }
8957
8958 void set_rq_offline(struct rq *rq)
8959 {
8960 if (rq->online) {
8961 const struct sched_class *class;
8962
8963 for_each_class(class) {
8964 if (class->rq_offline)
8965 class->rq_offline(rq);
8966 }
8967
8968 cpumask_clear_cpu(rq->cpu, rq->rd->online);
8969 rq->online = 0;
8970 }
8971 }
8972
8973 /*
8974 * used to mark begin/end of suspend/resume:
8975 */
8976 static int num_cpus_frozen;
8977
8978 /*
8979 * Update cpusets according to cpu_active mask. If cpusets are
8980 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8981 * around partition_sched_domains().
8982 *
8983 * If we come here as part of a suspend/resume, don't touch cpusets because we
8984 * want to restore it back to its original state upon resume anyway.
8985 */
8986 static void cpuset_cpu_active(void)
8987 {
8988 if (cpuhp_tasks_frozen) {
8989 /*
8990 * num_cpus_frozen tracks how many CPUs are involved in suspend
8991 * resume sequence. As long as this is not the last online
8992 * operation in the resume sequence, just build a single sched
8993 * domain, ignoring cpusets.
8994 */
8995 partition_sched_domains(1, NULL, NULL);
8996 if (--num_cpus_frozen)
8997 return;
8998 /*
8999 * This is the last CPU online operation. So fall through and
9000 * restore the original sched domains by considering the
9001 * cpuset configurations.
9002 */
9003 cpuset_force_rebuild();
9004 }
9005 cpuset_update_active_cpus();
9006 }
9007
9008 static int cpuset_cpu_inactive(unsigned int cpu)
9009 {
9010 if (!cpuhp_tasks_frozen) {
9011 if (dl_cpu_busy(cpu))
9012 return -EBUSY;
9013 cpuset_update_active_cpus();
9014 } else {
9015 num_cpus_frozen++;
9016 partition_sched_domains(1, NULL, NULL);
9017 }
9018 return 0;
9019 }
9020
9021 int sched_cpu_activate(unsigned int cpu)
9022 {
9023 struct rq *rq = cpu_rq(cpu);
9024 struct rq_flags rf;
9025
9026 /*
9027 * Clear the balance_push callback and prepare to schedule
9028 * regular tasks.
9029 */
9030 balance_push_set(cpu, false);
9031
9032 #ifdef CONFIG_SCHED_SMT
9033 /*
9034 * When going up, increment the number of cores with SMT present.
9035 */
9036 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9037 static_branch_inc_cpuslocked(&sched_smt_present);
9038 #endif
9039 set_cpu_active(cpu, true);
9040
9041 if (sched_smp_initialized) {
9042 sched_domains_numa_masks_set(cpu);
9043 cpuset_cpu_active();
9044 }
9045
9046 /*
9047 * Put the rq online, if not already. This happens:
9048 *
9049 * 1) In the early boot process, because we build the real domains
9050 * after all CPUs have been brought up.
9051 *
9052 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9053 * domains.
9054 */
9055 rq_lock_irqsave(rq, &rf);
9056 if (rq->rd) {
9057 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9058 set_rq_online(rq);
9059 }
9060 rq_unlock_irqrestore(rq, &rf);
9061
9062 return 0;
9063 }
9064
9065 int sched_cpu_deactivate(unsigned int cpu)
9066 {
9067 struct rq *rq = cpu_rq(cpu);
9068 struct rq_flags rf;
9069 int ret;
9070
9071 /*
9072 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9073 * load balancing when not active
9074 */
9075 nohz_balance_exit_idle(rq);
9076
9077 set_cpu_active(cpu, false);
9078
9079 /*
9080 * From this point forward, this CPU will refuse to run any task that
9081 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9082 * push those tasks away until this gets cleared, see
9083 * sched_cpu_dying().
9084 */
9085 balance_push_set(cpu, true);
9086
9087 /*
9088 * We've cleared cpu_active_mask / set balance_push, wait for all
9089 * preempt-disabled and RCU users of this state to go away such that
9090 * all new such users will observe it.
9091 *
9092 * Specifically, we rely on ttwu to no longer target this CPU, see
9093 * ttwu_queue_cond() and is_cpu_allowed().
9094 *
9095 * Do sync before park smpboot threads to take care the rcu boost case.
9096 */
9097 synchronize_rcu();
9098
9099 rq_lock_irqsave(rq, &rf);
9100 if (rq->rd) {
9101 update_rq_clock(rq);
9102 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9103 set_rq_offline(rq);
9104 }
9105 rq_unlock_irqrestore(rq, &rf);
9106
9107 #ifdef CONFIG_SCHED_SMT
9108 /*
9109 * When going down, decrement the number of cores with SMT present.
9110 */
9111 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9112 static_branch_dec_cpuslocked(&sched_smt_present);
9113
9114 sched_core_cpu_deactivate(cpu);
9115 #endif
9116
9117 if (!sched_smp_initialized)
9118 return 0;
9119
9120 ret = cpuset_cpu_inactive(cpu);
9121 if (ret) {
9122 balance_push_set(cpu, false);
9123 set_cpu_active(cpu, true);
9124 return ret;
9125 }
9126 sched_domains_numa_masks_clear(cpu);
9127 return 0;
9128 }
9129
9130 static void sched_rq_cpu_starting(unsigned int cpu)
9131 {
9132 struct rq *rq = cpu_rq(cpu);
9133
9134 rq->calc_load_update = calc_load_update;
9135 update_max_interval();
9136 }
9137
9138 int sched_cpu_starting(unsigned int cpu)
9139 {
9140 sched_core_cpu_starting(cpu);
9141 sched_rq_cpu_starting(cpu);
9142 sched_tick_start(cpu);
9143 return 0;
9144 }
9145
9146 #ifdef CONFIG_HOTPLUG_CPU
9147
9148 /*
9149 * Invoked immediately before the stopper thread is invoked to bring the
9150 * CPU down completely. At this point all per CPU kthreads except the
9151 * hotplug thread (current) and the stopper thread (inactive) have been
9152 * either parked or have been unbound from the outgoing CPU. Ensure that
9153 * any of those which might be on the way out are gone.
9154 *
9155 * If after this point a bound task is being woken on this CPU then the
9156 * responsible hotplug callback has failed to do it's job.
9157 * sched_cpu_dying() will catch it with the appropriate fireworks.
9158 */
9159 int sched_cpu_wait_empty(unsigned int cpu)
9160 {
9161 balance_hotplug_wait();
9162 return 0;
9163 }
9164
9165 /*
9166 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9167 * might have. Called from the CPU stopper task after ensuring that the
9168 * stopper is the last running task on the CPU, so nr_active count is
9169 * stable. We need to take the teardown thread which is calling this into
9170 * account, so we hand in adjust = 1 to the load calculation.
9171 *
9172 * Also see the comment "Global load-average calculations".
9173 */
9174 static void calc_load_migrate(struct rq *rq)
9175 {
9176 long delta = calc_load_fold_active(rq, 1);
9177
9178 if (delta)
9179 atomic_long_add(delta, &calc_load_tasks);
9180 }
9181
9182 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9183 {
9184 struct task_struct *g, *p;
9185 int cpu = cpu_of(rq);
9186
9187 lockdep_assert_rq_held(rq);
9188
9189 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9190 for_each_process_thread(g, p) {
9191 if (task_cpu(p) != cpu)
9192 continue;
9193
9194 if (!task_on_rq_queued(p))
9195 continue;
9196
9197 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9198 }
9199 }
9200
9201 int sched_cpu_dying(unsigned int cpu)
9202 {
9203 struct rq *rq = cpu_rq(cpu);
9204 struct rq_flags rf;
9205
9206 /* Handle pending wakeups and then migrate everything off */
9207 sched_tick_stop(cpu);
9208
9209 rq_lock_irqsave(rq, &rf);
9210 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9211 WARN(true, "Dying CPU not properly vacated!");
9212 dump_rq_tasks(rq, KERN_WARNING);
9213 }
9214 rq_unlock_irqrestore(rq, &rf);
9215
9216 calc_load_migrate(rq);
9217 update_max_interval();
9218 hrtick_clear(rq);
9219 sched_core_cpu_dying(cpu);
9220 return 0;
9221 }
9222 #endif
9223
9224 void __init sched_init_smp(void)
9225 {
9226 sched_init_numa();
9227
9228 /*
9229 * There's no userspace yet to cause hotplug operations; hence all the
9230 * CPU masks are stable and all blatant races in the below code cannot
9231 * happen.
9232 */
9233 mutex_lock(&sched_domains_mutex);
9234 sched_init_domains(cpu_active_mask);
9235 mutex_unlock(&sched_domains_mutex);
9236
9237 /* Move init over to a non-isolated CPU */
9238 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
9239 BUG();
9240 current->flags &= ~PF_NO_SETAFFINITY;
9241 sched_init_granularity();
9242
9243 init_sched_rt_class();
9244 init_sched_dl_class();
9245
9246 sched_smp_initialized = true;
9247 }
9248
9249 static int __init migration_init(void)
9250 {
9251 sched_cpu_starting(smp_processor_id());
9252 return 0;
9253 }
9254 early_initcall(migration_init);
9255
9256 #else
9257 void __init sched_init_smp(void)
9258 {
9259 sched_init_granularity();
9260 }
9261 #endif /* CONFIG_SMP */
9262
9263 int in_sched_functions(unsigned long addr)
9264 {
9265 return in_lock_functions(addr) ||
9266 (addr >= (unsigned long)__sched_text_start
9267 && addr < (unsigned long)__sched_text_end);
9268 }
9269
9270 #ifdef CONFIG_CGROUP_SCHED
9271 /*
9272 * Default task group.
9273 * Every task in system belongs to this group at bootup.
9274 */
9275 struct task_group root_task_group;
9276 LIST_HEAD(task_groups);
9277
9278 /* Cacheline aligned slab cache for task_group */
9279 static struct kmem_cache *task_group_cache __read_mostly;
9280 #endif
9281
9282 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
9283 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
9284
9285 void __init sched_init(void)
9286 {
9287 unsigned long ptr = 0;
9288 int i;
9289
9290 /* Make sure the linker didn't screw up */
9291 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
9292 &fair_sched_class + 1 != &rt_sched_class ||
9293 &rt_sched_class + 1 != &dl_sched_class);
9294 #ifdef CONFIG_SMP
9295 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
9296 #endif
9297
9298 wait_bit_init();
9299
9300 #ifdef CONFIG_FAIR_GROUP_SCHED
9301 ptr += 2 * nr_cpu_ids * sizeof(void **);
9302 #endif
9303 #ifdef CONFIG_RT_GROUP_SCHED
9304 ptr += 2 * nr_cpu_ids * sizeof(void **);
9305 #endif
9306 if (ptr) {
9307 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9308
9309 #ifdef CONFIG_FAIR_GROUP_SCHED
9310 root_task_group.se = (struct sched_entity **)ptr;
9311 ptr += nr_cpu_ids * sizeof(void **);
9312
9313 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9314 ptr += nr_cpu_ids * sizeof(void **);
9315
9316 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9317 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9318 #endif /* CONFIG_FAIR_GROUP_SCHED */
9319 #ifdef CONFIG_RT_GROUP_SCHED
9320 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9321 ptr += nr_cpu_ids * sizeof(void **);
9322
9323 root_task_group.rt_rq = (struct rt_rq **)ptr;
9324 ptr += nr_cpu_ids * sizeof(void **);
9325
9326 #endif /* CONFIG_RT_GROUP_SCHED */
9327 }
9328 #ifdef CONFIG_CPUMASK_OFFSTACK
9329 for_each_possible_cpu(i) {
9330 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
9331 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9332 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
9333 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
9334 }
9335 #endif /* CONFIG_CPUMASK_OFFSTACK */
9336
9337 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9338 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
9339
9340 #ifdef CONFIG_SMP
9341 init_defrootdomain();
9342 #endif
9343
9344 #ifdef CONFIG_RT_GROUP_SCHED
9345 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9346 global_rt_period(), global_rt_runtime());
9347 #endif /* CONFIG_RT_GROUP_SCHED */
9348
9349 #ifdef CONFIG_CGROUP_SCHED
9350 task_group_cache = KMEM_CACHE(task_group, 0);
9351
9352 list_add(&root_task_group.list, &task_groups);
9353 INIT_LIST_HEAD(&root_task_group.children);
9354 INIT_LIST_HEAD(&root_task_group.siblings);
9355 autogroup_init(&init_task);
9356 #endif /* CONFIG_CGROUP_SCHED */
9357
9358 for_each_possible_cpu(i) {
9359 struct rq *rq;
9360
9361 rq = cpu_rq(i);
9362 raw_spin_lock_init(&rq->__lock);
9363 rq->nr_running = 0;
9364 rq->calc_load_active = 0;
9365 rq->calc_load_update = jiffies + LOAD_FREQ;
9366 init_cfs_rq(&rq->cfs);
9367 init_rt_rq(&rq->rt);
9368 init_dl_rq(&rq->dl);
9369 #ifdef CONFIG_FAIR_GROUP_SCHED
9370 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9371 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9372 /*
9373 * How much CPU bandwidth does root_task_group get?
9374 *
9375 * In case of task-groups formed thr' the cgroup filesystem, it
9376 * gets 100% of the CPU resources in the system. This overall
9377 * system CPU resource is divided among the tasks of
9378 * root_task_group and its child task-groups in a fair manner,
9379 * based on each entity's (task or task-group's) weight
9380 * (se->load.weight).
9381 *
9382 * In other words, if root_task_group has 10 tasks of weight
9383 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9384 * then A0's share of the CPU resource is:
9385 *
9386 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9387 *
9388 * We achieve this by letting root_task_group's tasks sit
9389 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9390 */
9391 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9392 #endif /* CONFIG_FAIR_GROUP_SCHED */
9393
9394 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9395 #ifdef CONFIG_RT_GROUP_SCHED
9396 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9397 #endif
9398 #ifdef CONFIG_SMP
9399 rq->sd = NULL;
9400 rq->rd = NULL;
9401 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9402 rq->balance_callback = &balance_push_callback;
9403 rq->active_balance = 0;
9404 rq->next_balance = jiffies;
9405 rq->push_cpu = 0;
9406 rq->cpu = i;
9407 rq->online = 0;
9408 rq->idle_stamp = 0;
9409 rq->avg_idle = 2*sysctl_sched_migration_cost;
9410 rq->wake_stamp = jiffies;
9411 rq->wake_avg_idle = rq->avg_idle;
9412 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9413
9414 INIT_LIST_HEAD(&rq->cfs_tasks);
9415
9416 rq_attach_root(rq, &def_root_domain);
9417 #ifdef CONFIG_NO_HZ_COMMON
9418 rq->last_blocked_load_update_tick = jiffies;
9419 atomic_set(&rq->nohz_flags, 0);
9420
9421 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9422 #endif
9423 #ifdef CONFIG_HOTPLUG_CPU
9424 rcuwait_init(&rq->hotplug_wait);
9425 #endif
9426 #endif /* CONFIG_SMP */
9427 hrtick_rq_init(rq);
9428 atomic_set(&rq->nr_iowait, 0);
9429
9430 #ifdef CONFIG_SCHED_CORE
9431 rq->core = rq;
9432 rq->core_pick = NULL;
9433 rq->core_enabled = 0;
9434 rq->core_tree = RB_ROOT;
9435 rq->core_forceidle = false;
9436
9437 rq->core_cookie = 0UL;
9438 #endif
9439 }
9440
9441 set_load_weight(&init_task, false);
9442
9443 /*
9444 * The boot idle thread does lazy MMU switching as well:
9445 */
9446 mmgrab(&init_mm);
9447 enter_lazy_tlb(&init_mm, current);
9448
9449 /*
9450 * Make us the idle thread. Technically, schedule() should not be
9451 * called from this thread, however somewhere below it might be,
9452 * but because we are the idle thread, we just pick up running again
9453 * when this runqueue becomes "idle".
9454 */
9455 init_idle(current, smp_processor_id());
9456
9457 calc_load_update = jiffies + LOAD_FREQ;
9458
9459 #ifdef CONFIG_SMP
9460 idle_thread_set_boot_cpu();
9461 balance_push_set(smp_processor_id(), false);
9462 #endif
9463 init_sched_fair_class();
9464
9465 psi_init();
9466
9467 init_uclamp();
9468
9469 scheduler_running = 1;
9470 }
9471
9472 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9473 static inline int preempt_count_equals(int preempt_offset)
9474 {
9475 int nested = preempt_count() + rcu_preempt_depth();
9476
9477 return (nested == preempt_offset);
9478 }
9479
9480 void __might_sleep(const char *file, int line, int preempt_offset)
9481 {
9482 unsigned int state = get_current_state();
9483 /*
9484 * Blocking primitives will set (and therefore destroy) current->state,
9485 * since we will exit with TASK_RUNNING make sure we enter with it,
9486 * otherwise we will destroy state.
9487 */
9488 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9489 "do not call blocking ops when !TASK_RUNNING; "
9490 "state=%x set at [<%p>] %pS\n", state,
9491 (void *)current->task_state_change,
9492 (void *)current->task_state_change);
9493
9494 ___might_sleep(file, line, preempt_offset);
9495 }
9496 EXPORT_SYMBOL(__might_sleep);
9497
9498 void ___might_sleep(const char *file, int line, int preempt_offset)
9499 {
9500 /* Ratelimiting timestamp: */
9501 static unsigned long prev_jiffy;
9502
9503 unsigned long preempt_disable_ip;
9504
9505 /* WARN_ON_ONCE() by default, no rate limit required: */
9506 rcu_sleep_check();
9507
9508 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
9509 !is_idle_task(current) && !current->non_block_count) ||
9510 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9511 oops_in_progress)
9512 return;
9513
9514 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9515 return;
9516 prev_jiffy = jiffies;
9517
9518 /* Save this before calling printk(), since that will clobber it: */
9519 preempt_disable_ip = get_preempt_disable_ip(current);
9520
9521 printk(KERN_ERR
9522 "BUG: sleeping function called from invalid context at %s:%d\n",
9523 file, line);
9524 printk(KERN_ERR
9525 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9526 in_atomic(), irqs_disabled(), current->non_block_count,
9527 current->pid, current->comm);
9528
9529 if (task_stack_end_corrupted(current))
9530 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
9531
9532 debug_show_held_locks(current);
9533 if (irqs_disabled())
9534 print_irqtrace_events(current);
9535 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
9536 && !preempt_count_equals(preempt_offset)) {
9537 pr_err("Preemption disabled at:");
9538 print_ip_sym(KERN_ERR, preempt_disable_ip);
9539 }
9540 dump_stack();
9541 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9542 }
9543 EXPORT_SYMBOL(___might_sleep);
9544
9545 void __cant_sleep(const char *file, int line, int preempt_offset)
9546 {
9547 static unsigned long prev_jiffy;
9548
9549 if (irqs_disabled())
9550 return;
9551
9552 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9553 return;
9554
9555 if (preempt_count() > preempt_offset)
9556 return;
9557
9558 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9559 return;
9560 prev_jiffy = jiffies;
9561
9562 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9563 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9564 in_atomic(), irqs_disabled(),
9565 current->pid, current->comm);
9566
9567 debug_show_held_locks(current);
9568 dump_stack();
9569 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9570 }
9571 EXPORT_SYMBOL_GPL(__cant_sleep);
9572
9573 #ifdef CONFIG_SMP
9574 void __cant_migrate(const char *file, int line)
9575 {
9576 static unsigned long prev_jiffy;
9577
9578 if (irqs_disabled())
9579 return;
9580
9581 if (is_migration_disabled(current))
9582 return;
9583
9584 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9585 return;
9586
9587 if (preempt_count() > 0)
9588 return;
9589
9590 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9591 return;
9592 prev_jiffy = jiffies;
9593
9594 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9595 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9596 in_atomic(), irqs_disabled(), is_migration_disabled(current),
9597 current->pid, current->comm);
9598
9599 debug_show_held_locks(current);
9600 dump_stack();
9601 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9602 }
9603 EXPORT_SYMBOL_GPL(__cant_migrate);
9604 #endif
9605 #endif
9606
9607 #ifdef CONFIG_MAGIC_SYSRQ
9608 void normalize_rt_tasks(void)
9609 {
9610 struct task_struct *g, *p;
9611 struct sched_attr attr = {
9612 .sched_policy = SCHED_NORMAL,
9613 };
9614
9615 read_lock(&tasklist_lock);
9616 for_each_process_thread(g, p) {
9617 /*
9618 * Only normalize user tasks:
9619 */
9620 if (p->flags & PF_KTHREAD)
9621 continue;
9622
9623 p->se.exec_start = 0;
9624 schedstat_set(p->se.statistics.wait_start, 0);
9625 schedstat_set(p->se.statistics.sleep_start, 0);
9626 schedstat_set(p->se.statistics.block_start, 0);
9627
9628 if (!dl_task(p) && !rt_task(p)) {
9629 /*
9630 * Renice negative nice level userspace
9631 * tasks back to 0:
9632 */
9633 if (task_nice(p) < 0)
9634 set_user_nice(p, 0);
9635 continue;
9636 }
9637
9638 __sched_setscheduler(p, &attr, false, false);
9639 }
9640 read_unlock(&tasklist_lock);
9641 }
9642
9643 #endif /* CONFIG_MAGIC_SYSRQ */
9644
9645 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
9646 /*
9647 * These functions are only useful for the IA64 MCA handling, or kdb.
9648 *
9649 * They can only be called when the whole system has been
9650 * stopped - every CPU needs to be quiescent, and no scheduling
9651 * activity can take place. Using them for anything else would
9652 * be a serious bug, and as a result, they aren't even visible
9653 * under any other configuration.
9654 */
9655
9656 /**
9657 * curr_task - return the current task for a given CPU.
9658 * @cpu: the processor in question.
9659 *
9660 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9661 *
9662 * Return: The current task for @cpu.
9663 */
9664 struct task_struct *curr_task(int cpu)
9665 {
9666 return cpu_curr(cpu);
9667 }
9668
9669 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
9670
9671 #ifdef CONFIG_IA64
9672 /**
9673 * ia64_set_curr_task - set the current task for a given CPU.
9674 * @cpu: the processor in question.
9675 * @p: the task pointer to set.
9676 *
9677 * Description: This function must only be used when non-maskable interrupts
9678 * are serviced on a separate stack. It allows the architecture to switch the
9679 * notion of the current task on a CPU in a non-blocking manner. This function
9680 * must be called with all CPU's synchronized, and interrupts disabled, the
9681 * and caller must save the original value of the current task (see
9682 * curr_task() above) and restore that value before reenabling interrupts and
9683 * re-starting the system.
9684 *
9685 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9686 */
9687 void ia64_set_curr_task(int cpu, struct task_struct *p)
9688 {
9689 cpu_curr(cpu) = p;
9690 }
9691
9692 #endif
9693
9694 #ifdef CONFIG_CGROUP_SCHED
9695 /* task_group_lock serializes the addition/removal of task groups */
9696 static DEFINE_SPINLOCK(task_group_lock);
9697
9698 static inline void alloc_uclamp_sched_group(struct task_group *tg,
9699 struct task_group *parent)
9700 {
9701 #ifdef CONFIG_UCLAMP_TASK_GROUP
9702 enum uclamp_id clamp_id;
9703
9704 for_each_clamp_id(clamp_id) {
9705 uclamp_se_set(&tg->uclamp_req[clamp_id],
9706 uclamp_none(clamp_id), false);
9707 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
9708 }
9709 #endif
9710 }
9711
9712 static void sched_free_group(struct task_group *tg)
9713 {
9714 free_fair_sched_group(tg);
9715 free_rt_sched_group(tg);
9716 autogroup_free(tg);
9717 kmem_cache_free(task_group_cache, tg);
9718 }
9719
9720 static void sched_free_group_rcu(struct rcu_head *rcu)
9721 {
9722 sched_free_group(container_of(rcu, struct task_group, rcu));
9723 }
9724
9725 static void sched_unregister_group(struct task_group *tg)
9726 {
9727 unregister_fair_sched_group(tg);
9728 unregister_rt_sched_group(tg);
9729 /*
9730 * We have to wait for yet another RCU grace period to expire, as
9731 * print_cfs_stats() might run concurrently.
9732 */
9733 call_rcu(&tg->rcu, sched_free_group_rcu);
9734 }
9735
9736 /* allocate runqueue etc for a new task group */
9737 struct task_group *sched_create_group(struct task_group *parent)
9738 {
9739 struct task_group *tg;
9740
9741 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
9742 if (!tg)
9743 return ERR_PTR(-ENOMEM);
9744
9745 if (!alloc_fair_sched_group(tg, parent))
9746 goto err;
9747
9748 if (!alloc_rt_sched_group(tg, parent))
9749 goto err;
9750
9751 alloc_uclamp_sched_group(tg, parent);
9752
9753 return tg;
9754
9755 err:
9756 sched_free_group(tg);
9757 return ERR_PTR(-ENOMEM);
9758 }
9759
9760 void sched_online_group(struct task_group *tg, struct task_group *parent)
9761 {
9762 unsigned long flags;
9763
9764 spin_lock_irqsave(&task_group_lock, flags);
9765 list_add_rcu(&tg->list, &task_groups);
9766
9767 /* Root should already exist: */
9768 WARN_ON(!parent);
9769
9770 tg->parent = parent;
9771 INIT_LIST_HEAD(&tg->children);
9772 list_add_rcu(&tg->siblings, &parent->children);
9773 spin_unlock_irqrestore(&task_group_lock, flags);
9774
9775 online_fair_sched_group(tg);
9776 }
9777
9778 /* rcu callback to free various structures associated with a task group */
9779 static void sched_unregister_group_rcu(struct rcu_head *rhp)
9780 {
9781 /* Now it should be safe to free those cfs_rqs: */
9782 sched_unregister_group(container_of(rhp, struct task_group, rcu));
9783 }
9784
9785 void sched_destroy_group(struct task_group *tg)
9786 {
9787 /* Wait for possible concurrent references to cfs_rqs complete: */
9788 call_rcu(&tg->rcu, sched_unregister_group_rcu);
9789 }
9790
9791 void sched_release_group(struct task_group *tg)
9792 {
9793 unsigned long flags;
9794
9795 /*
9796 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
9797 * sched_cfs_period_timer()).
9798 *
9799 * For this to be effective, we have to wait for all pending users of
9800 * this task group to leave their RCU critical section to ensure no new
9801 * user will see our dying task group any more. Specifically ensure
9802 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
9803 *
9804 * We therefore defer calling unregister_fair_sched_group() to
9805 * sched_unregister_group() which is guarantied to get called only after the
9806 * current RCU grace period has expired.
9807 */
9808 spin_lock_irqsave(&task_group_lock, flags);
9809 list_del_rcu(&tg->list);
9810 list_del_rcu(&tg->siblings);
9811 spin_unlock_irqrestore(&task_group_lock, flags);
9812 }
9813
9814 static void sched_change_group(struct task_struct *tsk, int type)
9815 {
9816 struct task_group *tg;
9817
9818 /*
9819 * All callers are synchronized by task_rq_lock(); we do not use RCU
9820 * which is pointless here. Thus, we pass "true" to task_css_check()
9821 * to prevent lockdep warnings.
9822 */
9823 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
9824 struct task_group, css);
9825 tg = autogroup_task_group(tsk, tg);
9826 tsk->sched_task_group = tg;
9827
9828 #ifdef CONFIG_FAIR_GROUP_SCHED
9829 if (tsk->sched_class->task_change_group)
9830 tsk->sched_class->task_change_group(tsk, type);
9831 else
9832 #endif
9833 set_task_rq(tsk, task_cpu(tsk));
9834 }
9835
9836 /*
9837 * Change task's runqueue when it moves between groups.
9838 *
9839 * The caller of this function should have put the task in its new group by
9840 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
9841 * its new group.
9842 */
9843 void sched_move_task(struct task_struct *tsk)
9844 {
9845 int queued, running, queue_flags =
9846 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
9847 struct rq_flags rf;
9848 struct rq *rq;
9849
9850 rq = task_rq_lock(tsk, &rf);
9851 update_rq_clock(rq);
9852
9853 running = task_current(rq, tsk);
9854 queued = task_on_rq_queued(tsk);
9855
9856 if (queued)
9857 dequeue_task(rq, tsk, queue_flags);
9858 if (running)
9859 put_prev_task(rq, tsk);
9860
9861 sched_change_group(tsk, TASK_MOVE_GROUP);
9862
9863 if (queued)
9864 enqueue_task(rq, tsk, queue_flags);
9865 if (running) {
9866 set_next_task(rq, tsk);
9867 /*
9868 * After changing group, the running task may have joined a
9869 * throttled one but it's still the running task. Trigger a
9870 * resched to make sure that task can still run.
9871 */
9872 resched_curr(rq);
9873 }
9874
9875 task_rq_unlock(rq, tsk, &rf);
9876 }
9877
9878 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
9879 {
9880 return css ? container_of(css, struct task_group, css) : NULL;
9881 }
9882
9883 static struct cgroup_subsys_state *
9884 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9885 {
9886 struct task_group *parent = css_tg(parent_css);
9887 struct task_group *tg;
9888
9889 if (!parent) {
9890 /* This is early initialization for the top cgroup */
9891 return &root_task_group.css;
9892 }
9893
9894 tg = sched_create_group(parent);
9895 if (IS_ERR(tg))
9896 return ERR_PTR(-ENOMEM);
9897
9898 return &tg->css;
9899 }
9900
9901 /* Expose task group only after completing cgroup initialization */
9902 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
9903 {
9904 struct task_group *tg = css_tg(css);
9905 struct task_group *parent = css_tg(css->parent);
9906
9907 if (parent)
9908 sched_online_group(tg, parent);
9909
9910 #ifdef CONFIG_UCLAMP_TASK_GROUP
9911 /* Propagate the effective uclamp value for the new group */
9912 mutex_lock(&uclamp_mutex);
9913 rcu_read_lock();
9914 cpu_util_update_eff(css);
9915 rcu_read_unlock();
9916 mutex_unlock(&uclamp_mutex);
9917 #endif
9918
9919 return 0;
9920 }
9921
9922 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
9923 {
9924 struct task_group *tg = css_tg(css);
9925
9926 sched_release_group(tg);
9927 }
9928
9929 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
9930 {
9931 struct task_group *tg = css_tg(css);
9932
9933 /*
9934 * Relies on the RCU grace period between css_released() and this.
9935 */
9936 sched_unregister_group(tg);
9937 }
9938
9939 /*
9940 * This is called before wake_up_new_task(), therefore we really only
9941 * have to set its group bits, all the other stuff does not apply.
9942 */
9943 static void cpu_cgroup_fork(struct task_struct *task)
9944 {
9945 struct rq_flags rf;
9946 struct rq *rq;
9947
9948 rq = task_rq_lock(task, &rf);
9949
9950 update_rq_clock(rq);
9951 sched_change_group(task, TASK_SET_GROUP);
9952
9953 task_rq_unlock(rq, task, &rf);
9954 }
9955
9956 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
9957 {
9958 struct task_struct *task;
9959 struct cgroup_subsys_state *css;
9960 int ret = 0;
9961
9962 cgroup_taskset_for_each(task, css, tset) {
9963 #ifdef CONFIG_RT_GROUP_SCHED
9964 if (!sched_rt_can_attach(css_tg(css), task))
9965 return -EINVAL;
9966 #endif
9967 /*
9968 * Serialize against wake_up_new_task() such that if it's
9969 * running, we're sure to observe its full state.
9970 */
9971 raw_spin_lock_irq(&task->pi_lock);
9972 /*
9973 * Avoid calling sched_move_task() before wake_up_new_task()
9974 * has happened. This would lead to problems with PELT, due to
9975 * move wanting to detach+attach while we're not attached yet.
9976 */
9977 if (READ_ONCE(task->__state) == TASK_NEW)
9978 ret = -EINVAL;
9979 raw_spin_unlock_irq(&task->pi_lock);
9980
9981 if (ret)
9982 break;
9983 }
9984 return ret;
9985 }
9986
9987 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
9988 {
9989 struct task_struct *task;
9990 struct cgroup_subsys_state *css;
9991
9992 cgroup_taskset_for_each(task, css, tset)
9993 sched_move_task(task);
9994 }
9995
9996 #ifdef CONFIG_UCLAMP_TASK_GROUP
9997 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
9998 {
9999 struct cgroup_subsys_state *top_css = css;
10000 struct uclamp_se *uc_parent = NULL;
10001 struct uclamp_se *uc_se = NULL;
10002 unsigned int eff[UCLAMP_CNT];
10003 enum uclamp_id clamp_id;
10004 unsigned int clamps;
10005
10006 lockdep_assert_held(&uclamp_mutex);
10007 SCHED_WARN_ON(!rcu_read_lock_held());
10008
10009 css_for_each_descendant_pre(css, top_css) {
10010 uc_parent = css_tg(css)->parent
10011 ? css_tg(css)->parent->uclamp : NULL;
10012
10013 for_each_clamp_id(clamp_id) {
10014 /* Assume effective clamps matches requested clamps */
10015 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10016 /* Cap effective clamps with parent's effective clamps */
10017 if (uc_parent &&
10018 eff[clamp_id] > uc_parent[clamp_id].value) {
10019 eff[clamp_id] = uc_parent[clamp_id].value;
10020 }
10021 }
10022 /* Ensure protection is always capped by limit */
10023 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10024
10025 /* Propagate most restrictive effective clamps */
10026 clamps = 0x0;
10027 uc_se = css_tg(css)->uclamp;
10028 for_each_clamp_id(clamp_id) {
10029 if (eff[clamp_id] == uc_se[clamp_id].value)
10030 continue;
10031 uc_se[clamp_id].value = eff[clamp_id];
10032 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10033 clamps |= (0x1 << clamp_id);
10034 }
10035 if (!clamps) {
10036 css = css_rightmost_descendant(css);
10037 continue;
10038 }
10039
10040 /* Immediately update descendants RUNNABLE tasks */
10041 uclamp_update_active_tasks(css);
10042 }
10043 }
10044
10045 /*
10046 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10047 * C expression. Since there is no way to convert a macro argument (N) into a
10048 * character constant, use two levels of macros.
10049 */
10050 #define _POW10(exp) ((unsigned int)1e##exp)
10051 #define POW10(exp) _POW10(exp)
10052
10053 struct uclamp_request {
10054 #define UCLAMP_PERCENT_SHIFT 2
10055 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
10056 s64 percent;
10057 u64 util;
10058 int ret;
10059 };
10060
10061 static inline struct uclamp_request
10062 capacity_from_percent(char *buf)
10063 {
10064 struct uclamp_request req = {
10065 .percent = UCLAMP_PERCENT_SCALE,
10066 .util = SCHED_CAPACITY_SCALE,
10067 .ret = 0,
10068 };
10069
10070 buf = strim(buf);
10071 if (strcmp(buf, "max")) {
10072 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10073 &req.percent);
10074 if (req.ret)
10075 return req;
10076 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10077 req.ret = -ERANGE;
10078 return req;
10079 }
10080
10081 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10082 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10083 }
10084
10085 return req;
10086 }
10087
10088 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10089 size_t nbytes, loff_t off,
10090 enum uclamp_id clamp_id)
10091 {
10092 struct uclamp_request req;
10093 struct task_group *tg;
10094
10095 req = capacity_from_percent(buf);
10096 if (req.ret)
10097 return req.ret;
10098
10099 static_branch_enable(&sched_uclamp_used);
10100
10101 mutex_lock(&uclamp_mutex);
10102 rcu_read_lock();
10103
10104 tg = css_tg(of_css(of));
10105 if (tg->uclamp_req[clamp_id].value != req.util)
10106 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10107
10108 /*
10109 * Because of not recoverable conversion rounding we keep track of the
10110 * exact requested value
10111 */
10112 tg->uclamp_pct[clamp_id] = req.percent;
10113
10114 /* Update effective clamps to track the most restrictive value */
10115 cpu_util_update_eff(of_css(of));
10116
10117 rcu_read_unlock();
10118 mutex_unlock(&uclamp_mutex);
10119
10120 return nbytes;
10121 }
10122
10123 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10124 char *buf, size_t nbytes,
10125 loff_t off)
10126 {
10127 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10128 }
10129
10130 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10131 char *buf, size_t nbytes,
10132 loff_t off)
10133 {
10134 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10135 }
10136
10137 static inline void cpu_uclamp_print(struct seq_file *sf,
10138 enum uclamp_id clamp_id)
10139 {
10140 struct task_group *tg;
10141 u64 util_clamp;
10142 u64 percent;
10143 u32 rem;
10144
10145 rcu_read_lock();
10146 tg = css_tg(seq_css(sf));
10147 util_clamp = tg->uclamp_req[clamp_id].value;
10148 rcu_read_unlock();
10149
10150 if (util_clamp == SCHED_CAPACITY_SCALE) {
10151 seq_puts(sf, "max\n");
10152 return;
10153 }
10154
10155 percent = tg->uclamp_pct[clamp_id];
10156 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10157 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10158 }
10159
10160 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10161 {
10162 cpu_uclamp_print(sf, UCLAMP_MIN);
10163 return 0;
10164 }
10165
10166 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10167 {
10168 cpu_uclamp_print(sf, UCLAMP_MAX);
10169 return 0;
10170 }
10171 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10172
10173 #ifdef CONFIG_FAIR_GROUP_SCHED
10174 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10175 struct cftype *cftype, u64 shareval)
10176 {
10177 if (shareval > scale_load_down(ULONG_MAX))
10178 shareval = MAX_SHARES;
10179 return sched_group_set_shares(css_tg(css), scale_load(shareval));
10180 }
10181
10182 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10183 struct cftype *cft)
10184 {
10185 struct task_group *tg = css_tg(css);
10186
10187 return (u64) scale_load_down(tg->shares);
10188 }
10189
10190 #ifdef CONFIG_CFS_BANDWIDTH
10191 static DEFINE_MUTEX(cfs_constraints_mutex);
10192
10193 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10194 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10195 /* More than 203 days if BW_SHIFT equals 20. */
10196 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10197
10198 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10199
10200 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10201 u64 burst)
10202 {
10203 int i, ret = 0, runtime_enabled, runtime_was_enabled;
10204 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10205
10206 if (tg == &root_task_group)
10207 return -EINVAL;
10208
10209 /*
10210 * Ensure we have at some amount of bandwidth every period. This is
10211 * to prevent reaching a state of large arrears when throttled via
10212 * entity_tick() resulting in prolonged exit starvation.
10213 */
10214 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10215 return -EINVAL;
10216
10217 /*
10218 * Likewise, bound things on the other side by preventing insane quota
10219 * periods. This also allows us to normalize in computing quota
10220 * feasibility.
10221 */
10222 if (period > max_cfs_quota_period)
10223 return -EINVAL;
10224
10225 /*
10226 * Bound quota to defend quota against overflow during bandwidth shift.
10227 */
10228 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10229 return -EINVAL;
10230
10231 if (quota != RUNTIME_INF && (burst > quota ||
10232 burst + quota > max_cfs_runtime))
10233 return -EINVAL;
10234
10235 /*
10236 * Prevent race between setting of cfs_rq->runtime_enabled and
10237 * unthrottle_offline_cfs_rqs().
10238 */
10239 cpus_read_lock();
10240 mutex_lock(&cfs_constraints_mutex);
10241 ret = __cfs_schedulable(tg, period, quota);
10242 if (ret)
10243 goto out_unlock;
10244
10245 runtime_enabled = quota != RUNTIME_INF;
10246 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10247 /*
10248 * If we need to toggle cfs_bandwidth_used, off->on must occur
10249 * before making related changes, and on->off must occur afterwards
10250 */
10251 if (runtime_enabled && !runtime_was_enabled)
10252 cfs_bandwidth_usage_inc();
10253 raw_spin_lock_irq(&cfs_b->lock);
10254 cfs_b->period = ns_to_ktime(period);
10255 cfs_b->quota = quota;
10256 cfs_b->burst = burst;
10257
10258 __refill_cfs_bandwidth_runtime(cfs_b);
10259
10260 /* Restart the period timer (if active) to handle new period expiry: */
10261 if (runtime_enabled)
10262 start_cfs_bandwidth(cfs_b);
10263
10264 raw_spin_unlock_irq(&cfs_b->lock);
10265
10266 for_each_online_cpu(i) {
10267 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10268 struct rq *rq = cfs_rq->rq;
10269 struct rq_flags rf;
10270
10271 rq_lock_irq(rq, &rf);
10272 cfs_rq->runtime_enabled = runtime_enabled;
10273 cfs_rq->runtime_remaining = 0;
10274
10275 if (cfs_rq->throttled)
10276 unthrottle_cfs_rq(cfs_rq);
10277 rq_unlock_irq(rq, &rf);
10278 }
10279 if (runtime_was_enabled && !runtime_enabled)
10280 cfs_bandwidth_usage_dec();
10281 out_unlock:
10282 mutex_unlock(&cfs_constraints_mutex);
10283 cpus_read_unlock();
10284
10285 return ret;
10286 }
10287
10288 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10289 {
10290 u64 quota, period, burst;
10291
10292 period = ktime_to_ns(tg->cfs_bandwidth.period);
10293 burst = tg->cfs_bandwidth.burst;
10294 if (cfs_quota_us < 0)
10295 quota = RUNTIME_INF;
10296 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10297 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10298 else
10299 return -EINVAL;
10300
10301 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10302 }
10303
10304 static long tg_get_cfs_quota(struct task_group *tg)
10305 {
10306 u64 quota_us;
10307
10308 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10309 return -1;
10310
10311 quota_us = tg->cfs_bandwidth.quota;
10312 do_div(quota_us, NSEC_PER_USEC);
10313
10314 return quota_us;
10315 }
10316
10317 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10318 {
10319 u64 quota, period, burst;
10320
10321 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10322 return -EINVAL;
10323
10324 period = (u64)cfs_period_us * NSEC_PER_USEC;
10325 quota = tg->cfs_bandwidth.quota;
10326 burst = tg->cfs_bandwidth.burst;
10327
10328 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10329 }
10330
10331 static long tg_get_cfs_period(struct task_group *tg)
10332 {
10333 u64 cfs_period_us;
10334
10335 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10336 do_div(cfs_period_us, NSEC_PER_USEC);
10337
10338 return cfs_period_us;
10339 }
10340
10341 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10342 {
10343 u64 quota, period, burst;
10344
10345 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10346 return -EINVAL;
10347
10348 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10349 period = ktime_to_ns(tg->cfs_bandwidth.period);
10350 quota = tg->cfs_bandwidth.quota;
10351
10352 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10353 }
10354
10355 static long tg_get_cfs_burst(struct task_group *tg)
10356 {
10357 u64 burst_us;
10358
10359 burst_us = tg->cfs_bandwidth.burst;
10360 do_div(burst_us, NSEC_PER_USEC);
10361
10362 return burst_us;
10363 }
10364
10365 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10366 struct cftype *cft)
10367 {
10368 return tg_get_cfs_quota(css_tg(css));
10369 }
10370
10371 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10372 struct cftype *cftype, s64 cfs_quota_us)
10373 {
10374 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10375 }
10376
10377 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10378 struct cftype *cft)
10379 {
10380 return tg_get_cfs_period(css_tg(css));
10381 }
10382
10383 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10384 struct cftype *cftype, u64 cfs_period_us)
10385 {
10386 return tg_set_cfs_period(css_tg(css), cfs_period_us);
10387 }
10388
10389 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10390 struct cftype *cft)
10391 {
10392 return tg_get_cfs_burst(css_tg(css));
10393 }
10394
10395 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10396 struct cftype *cftype, u64 cfs_burst_us)
10397 {
10398 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10399 }
10400
10401 struct cfs_schedulable_data {
10402 struct task_group *tg;
10403 u64 period, quota;
10404 };
10405
10406 /*
10407 * normalize group quota/period to be quota/max_period
10408 * note: units are usecs
10409 */
10410 static u64 normalize_cfs_quota(struct task_group *tg,
10411 struct cfs_schedulable_data *d)
10412 {
10413 u64 quota, period;
10414
10415 if (tg == d->tg) {
10416 period = d->period;
10417 quota = d->quota;
10418 } else {
10419 period = tg_get_cfs_period(tg);
10420 quota = tg_get_cfs_quota(tg);
10421 }
10422
10423 /* note: these should typically be equivalent */
10424 if (quota == RUNTIME_INF || quota == -1)
10425 return RUNTIME_INF;
10426
10427 return to_ratio(period, quota);
10428 }
10429
10430 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10431 {
10432 struct cfs_schedulable_data *d = data;
10433 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10434 s64 quota = 0, parent_quota = -1;
10435
10436 if (!tg->parent) {
10437 quota = RUNTIME_INF;
10438 } else {
10439 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10440
10441 quota = normalize_cfs_quota(tg, d);
10442 parent_quota = parent_b->hierarchical_quota;
10443
10444 /*
10445 * Ensure max(child_quota) <= parent_quota. On cgroup2,
10446 * always take the min. On cgroup1, only inherit when no
10447 * limit is set:
10448 */
10449 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10450 quota = min(quota, parent_quota);
10451 } else {
10452 if (quota == RUNTIME_INF)
10453 quota = parent_quota;
10454 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10455 return -EINVAL;
10456 }
10457 }
10458 cfs_b->hierarchical_quota = quota;
10459
10460 return 0;
10461 }
10462
10463 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10464 {
10465 int ret;
10466 struct cfs_schedulable_data data = {
10467 .tg = tg,
10468 .period = period,
10469 .quota = quota,
10470 };
10471
10472 if (quota != RUNTIME_INF) {
10473 do_div(data.period, NSEC_PER_USEC);
10474 do_div(data.quota, NSEC_PER_USEC);
10475 }
10476
10477 rcu_read_lock();
10478 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10479 rcu_read_unlock();
10480
10481 return ret;
10482 }
10483
10484 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10485 {
10486 struct task_group *tg = css_tg(seq_css(sf));
10487 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10488
10489 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10490 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10491 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10492
10493 if (schedstat_enabled() && tg != &root_task_group) {
10494 u64 ws = 0;
10495 int i;
10496
10497 for_each_possible_cpu(i)
10498 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
10499
10500 seq_printf(sf, "wait_sum %llu\n", ws);
10501 }
10502
10503 return 0;
10504 }
10505 #endif /* CONFIG_CFS_BANDWIDTH */
10506 #endif /* CONFIG_FAIR_GROUP_SCHED */
10507
10508 #ifdef CONFIG_RT_GROUP_SCHED
10509 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10510 struct cftype *cft, s64 val)
10511 {
10512 return sched_group_set_rt_runtime(css_tg(css), val);
10513 }
10514
10515 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10516 struct cftype *cft)
10517 {
10518 return sched_group_rt_runtime(css_tg(css));
10519 }
10520
10521 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10522 struct cftype *cftype, u64 rt_period_us)
10523 {
10524 return sched_group_set_rt_period(css_tg(css), rt_period_us);
10525 }
10526
10527 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10528 struct cftype *cft)
10529 {
10530 return sched_group_rt_period(css_tg(css));
10531 }
10532 #endif /* CONFIG_RT_GROUP_SCHED */
10533
10534 #ifdef CONFIG_FAIR_GROUP_SCHED
10535 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10536 struct cftype *cft)
10537 {
10538 return css_tg(css)->idle;
10539 }
10540
10541 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10542 struct cftype *cft, s64 idle)
10543 {
10544 return sched_group_set_idle(css_tg(css), idle);
10545 }
10546 #endif
10547
10548 static struct cftype cpu_legacy_files[] = {
10549 #ifdef CONFIG_FAIR_GROUP_SCHED
10550 {
10551 .name = "shares",
10552 .read_u64 = cpu_shares_read_u64,
10553 .write_u64 = cpu_shares_write_u64,
10554 },
10555 {
10556 .name = "idle",
10557 .read_s64 = cpu_idle_read_s64,
10558 .write_s64 = cpu_idle_write_s64,
10559 },
10560 #endif
10561 #ifdef CONFIG_CFS_BANDWIDTH
10562 {
10563 .name = "cfs_quota_us",
10564 .read_s64 = cpu_cfs_quota_read_s64,
10565 .write_s64 = cpu_cfs_quota_write_s64,
10566 },
10567 {
10568 .name = "cfs_period_us",
10569 .read_u64 = cpu_cfs_period_read_u64,
10570 .write_u64 = cpu_cfs_period_write_u64,
10571 },
10572 {
10573 .name = "cfs_burst_us",
10574 .read_u64 = cpu_cfs_burst_read_u64,
10575 .write_u64 = cpu_cfs_burst_write_u64,
10576 },
10577 {
10578 .name = "stat",
10579 .seq_show = cpu_cfs_stat_show,
10580 },
10581 #endif
10582 #ifdef CONFIG_RT_GROUP_SCHED
10583 {
10584 .name = "rt_runtime_us",
10585 .read_s64 = cpu_rt_runtime_read,
10586 .write_s64 = cpu_rt_runtime_write,
10587 },
10588 {
10589 .name = "rt_period_us",
10590 .read_u64 = cpu_rt_period_read_uint,
10591 .write_u64 = cpu_rt_period_write_uint,
10592 },
10593 #endif
10594 #ifdef CONFIG_UCLAMP_TASK_GROUP
10595 {
10596 .name = "uclamp.min",
10597 .flags = CFTYPE_NOT_ON_ROOT,
10598 .seq_show = cpu_uclamp_min_show,
10599 .write = cpu_uclamp_min_write,
10600 },
10601 {
10602 .name = "uclamp.max",
10603 .flags = CFTYPE_NOT_ON_ROOT,
10604 .seq_show = cpu_uclamp_max_show,
10605 .write = cpu_uclamp_max_write,
10606 },
10607 #endif
10608 { } /* Terminate */
10609 };
10610
10611 static int cpu_extra_stat_show(struct seq_file *sf,
10612 struct cgroup_subsys_state *css)
10613 {
10614 #ifdef CONFIG_CFS_BANDWIDTH
10615 {
10616 struct task_group *tg = css_tg(css);
10617 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10618 u64 throttled_usec;
10619
10620 throttled_usec = cfs_b->throttled_time;
10621 do_div(throttled_usec, NSEC_PER_USEC);
10622
10623 seq_printf(sf, "nr_periods %d\n"
10624 "nr_throttled %d\n"
10625 "throttled_usec %llu\n",
10626 cfs_b->nr_periods, cfs_b->nr_throttled,
10627 throttled_usec);
10628 }
10629 #endif
10630 return 0;
10631 }
10632
10633 #ifdef CONFIG_FAIR_GROUP_SCHED
10634 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10635 struct cftype *cft)
10636 {
10637 struct task_group *tg = css_tg(css);
10638 u64 weight = scale_load_down(tg->shares);
10639
10640 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10641 }
10642
10643 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10644 struct cftype *cft, u64 weight)
10645 {
10646 /*
10647 * cgroup weight knobs should use the common MIN, DFL and MAX
10648 * values which are 1, 100 and 10000 respectively. While it loses
10649 * a bit of range on both ends, it maps pretty well onto the shares
10650 * value used by scheduler and the round-trip conversions preserve
10651 * the original value over the entire range.
10652 */
10653 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10654 return -ERANGE;
10655
10656 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
10657
10658 return sched_group_set_shares(css_tg(css), scale_load(weight));
10659 }
10660
10661 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
10662 struct cftype *cft)
10663 {
10664 unsigned long weight = scale_load_down(css_tg(css)->shares);
10665 int last_delta = INT_MAX;
10666 int prio, delta;
10667
10668 /* find the closest nice value to the current weight */
10669 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
10670 delta = abs(sched_prio_to_weight[prio] - weight);
10671 if (delta >= last_delta)
10672 break;
10673 last_delta = delta;
10674 }
10675
10676 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
10677 }
10678
10679 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
10680 struct cftype *cft, s64 nice)
10681 {
10682 unsigned long weight;
10683 int idx;
10684
10685 if (nice < MIN_NICE || nice > MAX_NICE)
10686 return -ERANGE;
10687
10688 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
10689 idx = array_index_nospec(idx, 40);
10690 weight = sched_prio_to_weight[idx];
10691
10692 return sched_group_set_shares(css_tg(css), scale_load(weight));
10693 }
10694 #endif
10695
10696 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
10697 long period, long quota)
10698 {
10699 if (quota < 0)
10700 seq_puts(sf, "max");
10701 else
10702 seq_printf(sf, "%ld", quota);
10703
10704 seq_printf(sf, " %ld\n", period);
10705 }
10706
10707 /* caller should put the current value in *@periodp before calling */
10708 static int __maybe_unused cpu_period_quota_parse(char *buf,
10709 u64 *periodp, u64 *quotap)
10710 {
10711 char tok[21]; /* U64_MAX */
10712
10713 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
10714 return -EINVAL;
10715
10716 *periodp *= NSEC_PER_USEC;
10717
10718 if (sscanf(tok, "%llu", quotap))
10719 *quotap *= NSEC_PER_USEC;
10720 else if (!strcmp(tok, "max"))
10721 *quotap = RUNTIME_INF;
10722 else
10723 return -EINVAL;
10724
10725 return 0;
10726 }
10727
10728 #ifdef CONFIG_CFS_BANDWIDTH
10729 static int cpu_max_show(struct seq_file *sf, void *v)
10730 {
10731 struct task_group *tg = css_tg(seq_css(sf));
10732
10733 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
10734 return 0;
10735 }
10736
10737 static ssize_t cpu_max_write(struct kernfs_open_file *of,
10738 char *buf, size_t nbytes, loff_t off)
10739 {
10740 struct task_group *tg = css_tg(of_css(of));
10741 u64 period = tg_get_cfs_period(tg);
10742 u64 burst = tg_get_cfs_burst(tg);
10743 u64 quota;
10744 int ret;
10745
10746 ret = cpu_period_quota_parse(buf, &period, &quota);
10747 if (!ret)
10748 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
10749 return ret ?: nbytes;
10750 }
10751 #endif
10752
10753 static struct cftype cpu_files[] = {
10754 #ifdef CONFIG_FAIR_GROUP_SCHED
10755 {
10756 .name = "weight",
10757 .flags = CFTYPE_NOT_ON_ROOT,
10758 .read_u64 = cpu_weight_read_u64,
10759 .write_u64 = cpu_weight_write_u64,
10760 },
10761 {
10762 .name = "weight.nice",
10763 .flags = CFTYPE_NOT_ON_ROOT,
10764 .read_s64 = cpu_weight_nice_read_s64,
10765 .write_s64 = cpu_weight_nice_write_s64,
10766 },
10767 {
10768 .name = "idle",
10769 .flags = CFTYPE_NOT_ON_ROOT,
10770 .read_s64 = cpu_idle_read_s64,
10771 .write_s64 = cpu_idle_write_s64,
10772 },
10773 #endif
10774 #ifdef CONFIG_CFS_BANDWIDTH
10775 {
10776 .name = "max",
10777 .flags = CFTYPE_NOT_ON_ROOT,
10778 .seq_show = cpu_max_show,
10779 .write = cpu_max_write,
10780 },
10781 {
10782 .name = "max.burst",
10783 .flags = CFTYPE_NOT_ON_ROOT,
10784 .read_u64 = cpu_cfs_burst_read_u64,
10785 .write_u64 = cpu_cfs_burst_write_u64,
10786 },
10787 #endif
10788 #ifdef CONFIG_UCLAMP_TASK_GROUP
10789 {
10790 .name = "uclamp.min",
10791 .flags = CFTYPE_NOT_ON_ROOT,
10792 .seq_show = cpu_uclamp_min_show,
10793 .write = cpu_uclamp_min_write,
10794 },
10795 {
10796 .name = "uclamp.max",
10797 .flags = CFTYPE_NOT_ON_ROOT,
10798 .seq_show = cpu_uclamp_max_show,
10799 .write = cpu_uclamp_max_write,
10800 },
10801 #endif
10802 { } /* terminate */
10803 };
10804
10805 struct cgroup_subsys cpu_cgrp_subsys = {
10806 .css_alloc = cpu_cgroup_css_alloc,
10807 .css_online = cpu_cgroup_css_online,
10808 .css_released = cpu_cgroup_css_released,
10809 .css_free = cpu_cgroup_css_free,
10810 .css_extra_stat_show = cpu_extra_stat_show,
10811 .fork = cpu_cgroup_fork,
10812 .can_attach = cpu_cgroup_can_attach,
10813 .attach = cpu_cgroup_attach,
10814 .legacy_cftypes = cpu_legacy_files,
10815 .dfl_cftypes = cpu_files,
10816 .early_init = true,
10817 .threaded = true,
10818 };
10819
10820 #endif /* CONFIG_CGROUP_SCHED */
10821
10822 void dump_cpu_task(int cpu)
10823 {
10824 pr_info("Task dump for CPU %d:\n", cpu);
10825 sched_show_task(cpu_curr(cpu));
10826 }
10827
10828 /*
10829 * Nice levels are multiplicative, with a gentle 10% change for every
10830 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
10831 * nice 1, it will get ~10% less CPU time than another CPU-bound task
10832 * that remained on nice 0.
10833 *
10834 * The "10% effect" is relative and cumulative: from _any_ nice level,
10835 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
10836 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
10837 * If a task goes up by ~10% and another task goes down by ~10% then
10838 * the relative distance between them is ~25%.)
10839 */
10840 const int sched_prio_to_weight[40] = {
10841 /* -20 */ 88761, 71755, 56483, 46273, 36291,
10842 /* -15 */ 29154, 23254, 18705, 14949, 11916,
10843 /* -10 */ 9548, 7620, 6100, 4904, 3906,
10844 /* -5 */ 3121, 2501, 1991, 1586, 1277,
10845 /* 0 */ 1024, 820, 655, 526, 423,
10846 /* 5 */ 335, 272, 215, 172, 137,
10847 /* 10 */ 110, 87, 70, 56, 45,
10848 /* 15 */ 36, 29, 23, 18, 15,
10849 };
10850
10851 /*
10852 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
10853 *
10854 * In cases where the weight does not change often, we can use the
10855 * precalculated inverse to speed up arithmetics by turning divisions
10856 * into multiplications:
10857 */
10858 const u32 sched_prio_to_wmult[40] = {
10859 /* -20 */ 48388, 59856, 76040, 92818, 118348,
10860 /* -15 */ 147320, 184698, 229616, 287308, 360437,
10861 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
10862 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
10863 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
10864 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
10865 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
10866 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
10867 };
10868
10869 void call_trace_sched_update_nr_running(struct rq *rq, int count)
10870 {
10871 trace_sched_update_nr_running_tp(rq, count);
10872 }