]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/core.c
Merge branch 'linus' into timers/core
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98 void update_rq_clock(struct rq *rq)
99 {
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112 }
113
114 /*
115 * Debugging: various feature bits
116 */
117
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 0;
124
125 #undef SCHED_FEAT
126
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled) \
129 #name ,
130
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
133 };
134
135 #undef SCHED_FEAT
136
137 static int sched_feat_show(struct seq_file *m, void *v)
138 {
139 int i;
140
141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
145 }
146 seq_puts(m, "\n");
147
148 return 0;
149 }
150
151 #ifdef HAVE_JUMP_LABEL
152
153 #define jump_label_key__true STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
155
156 #define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
161 };
162
163 #undef SCHED_FEAT
164
165 static void sched_feat_disable(int i)
166 {
167 if (static_key_enabled(&sched_feat_keys[i]))
168 static_key_slow_dec(&sched_feat_keys[i]);
169 }
170
171 static void sched_feat_enable(int i)
172 {
173 if (!static_key_enabled(&sched_feat_keys[i]))
174 static_key_slow_inc(&sched_feat_keys[i]);
175 }
176 #else
177 static void sched_feat_disable(int i) { };
178 static void sched_feat_enable(int i) { };
179 #endif /* HAVE_JUMP_LABEL */
180
181 static int sched_feat_set(char *cmp)
182 {
183 int i;
184 int neg = 0;
185
186 if (strncmp(cmp, "NO_", 3) == 0) {
187 neg = 1;
188 cmp += 3;
189 }
190
191 for (i = 0; i < __SCHED_FEAT_NR; i++) {
192 if (strcmp(cmp, sched_feat_names[i]) == 0) {
193 if (neg) {
194 sysctl_sched_features &= ~(1UL << i);
195 sched_feat_disable(i);
196 } else {
197 sysctl_sched_features |= (1UL << i);
198 sched_feat_enable(i);
199 }
200 break;
201 }
202 }
203
204 return i;
205 }
206
207 static ssize_t
208 sched_feat_write(struct file *filp, const char __user *ubuf,
209 size_t cnt, loff_t *ppos)
210 {
211 char buf[64];
212 char *cmp;
213 int i;
214 struct inode *inode;
215
216 if (cnt > 63)
217 cnt = 63;
218
219 if (copy_from_user(&buf, ubuf, cnt))
220 return -EFAULT;
221
222 buf[cnt] = 0;
223 cmp = strstrip(buf);
224
225 /* Ensure the static_key remains in a consistent state */
226 inode = file_inode(filp);
227 mutex_lock(&inode->i_mutex);
228 i = sched_feat_set(cmp);
229 mutex_unlock(&inode->i_mutex);
230 if (i == __SCHED_FEAT_NR)
231 return -EINVAL;
232
233 *ppos += cnt;
234
235 return cnt;
236 }
237
238 static int sched_feat_open(struct inode *inode, struct file *filp)
239 {
240 return single_open(filp, sched_feat_show, NULL);
241 }
242
243 static const struct file_operations sched_feat_fops = {
244 .open = sched_feat_open,
245 .write = sched_feat_write,
246 .read = seq_read,
247 .llseek = seq_lseek,
248 .release = single_release,
249 };
250
251 static __init int sched_init_debug(void)
252 {
253 debugfs_create_file("sched_features", 0644, NULL, NULL,
254 &sched_feat_fops);
255
256 return 0;
257 }
258 late_initcall(sched_init_debug);
259 #endif /* CONFIG_SCHED_DEBUG */
260
261 /*
262 * Number of tasks to iterate in a single balance run.
263 * Limited because this is done with IRQs disabled.
264 */
265 const_debug unsigned int sysctl_sched_nr_migrate = 32;
266
267 /*
268 * period over which we average the RT time consumption, measured
269 * in ms.
270 *
271 * default: 1s
272 */
273 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274
275 /*
276 * period over which we measure -rt task cpu usage in us.
277 * default: 1s
278 */
279 unsigned int sysctl_sched_rt_period = 1000000;
280
281 __read_mostly int scheduler_running;
282
283 /*
284 * part of the period that we allow rt tasks to run in us.
285 * default: 0.95s
286 */
287 int sysctl_sched_rt_runtime = 950000;
288
289 /* cpus with isolated domains */
290 cpumask_var_t cpu_isolated_map;
291
292 /*
293 * this_rq_lock - lock this runqueue and disable interrupts.
294 */
295 static struct rq *this_rq_lock(void)
296 __acquires(rq->lock)
297 {
298 struct rq *rq;
299
300 local_irq_disable();
301 rq = this_rq();
302 raw_spin_lock(&rq->lock);
303
304 return rq;
305 }
306
307 #ifdef CONFIG_SCHED_HRTICK
308 /*
309 * Use HR-timers to deliver accurate preemption points.
310 */
311
312 static void hrtick_clear(struct rq *rq)
313 {
314 if (hrtimer_active(&rq->hrtick_timer))
315 hrtimer_cancel(&rq->hrtick_timer);
316 }
317
318 /*
319 * High-resolution timer tick.
320 * Runs from hardirq context with interrupts disabled.
321 */
322 static enum hrtimer_restart hrtick(struct hrtimer *timer)
323 {
324 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
325
326 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
327
328 raw_spin_lock(&rq->lock);
329 update_rq_clock(rq);
330 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
331 raw_spin_unlock(&rq->lock);
332
333 return HRTIMER_NORESTART;
334 }
335
336 #ifdef CONFIG_SMP
337
338 static void __hrtick_restart(struct rq *rq)
339 {
340 struct hrtimer *timer = &rq->hrtick_timer;
341
342 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
343 }
344
345 /*
346 * called from hardirq (IPI) context
347 */
348 static void __hrtick_start(void *arg)
349 {
350 struct rq *rq = arg;
351
352 raw_spin_lock(&rq->lock);
353 __hrtick_restart(rq);
354 rq->hrtick_csd_pending = 0;
355 raw_spin_unlock(&rq->lock);
356 }
357
358 /*
359 * Called to set the hrtick timer state.
360 *
361 * called with rq->lock held and irqs disabled
362 */
363 void hrtick_start(struct rq *rq, u64 delay)
364 {
365 struct hrtimer *timer = &rq->hrtick_timer;
366 ktime_t time;
367 s64 delta;
368
369 /*
370 * Don't schedule slices shorter than 10000ns, that just
371 * doesn't make sense and can cause timer DoS.
372 */
373 delta = max_t(s64, delay, 10000LL);
374 time = ktime_add_ns(timer->base->get_time(), delta);
375
376 hrtimer_set_expires(timer, time);
377
378 if (rq == this_rq()) {
379 __hrtick_restart(rq);
380 } else if (!rq->hrtick_csd_pending) {
381 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
382 rq->hrtick_csd_pending = 1;
383 }
384 }
385
386 static int
387 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
388 {
389 int cpu = (int)(long)hcpu;
390
391 switch (action) {
392 case CPU_UP_CANCELED:
393 case CPU_UP_CANCELED_FROZEN:
394 case CPU_DOWN_PREPARE:
395 case CPU_DOWN_PREPARE_FROZEN:
396 case CPU_DEAD:
397 case CPU_DEAD_FROZEN:
398 hrtick_clear(cpu_rq(cpu));
399 return NOTIFY_OK;
400 }
401
402 return NOTIFY_DONE;
403 }
404
405 static __init void init_hrtick(void)
406 {
407 hotcpu_notifier(hotplug_hrtick, 0);
408 }
409 #else
410 /*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
415 void hrtick_start(struct rq *rq, u64 delay)
416 {
417 /*
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
420 */
421 delay = max_t(u64, delay, 10000LL);
422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 HRTIMER_MODE_REL_PINNED);
424 }
425
426 static inline void init_hrtick(void)
427 {
428 }
429 #endif /* CONFIG_SMP */
430
431 static void init_rq_hrtick(struct rq *rq)
432 {
433 #ifdef CONFIG_SMP
434 rq->hrtick_csd_pending = 0;
435
436 rq->hrtick_csd.flags = 0;
437 rq->hrtick_csd.func = __hrtick_start;
438 rq->hrtick_csd.info = rq;
439 #endif
440
441 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
442 rq->hrtick_timer.function = hrtick;
443 }
444 #else /* CONFIG_SCHED_HRTICK */
445 static inline void hrtick_clear(struct rq *rq)
446 {
447 }
448
449 static inline void init_rq_hrtick(struct rq *rq)
450 {
451 }
452
453 static inline void init_hrtick(void)
454 {
455 }
456 #endif /* CONFIG_SCHED_HRTICK */
457
458 /*
459 * cmpxchg based fetch_or, macro so it works for different integer types
460 */
461 #define fetch_or(ptr, val) \
462 ({ typeof(*(ptr)) __old, __val = *(ptr); \
463 for (;;) { \
464 __old = cmpxchg((ptr), __val, __val | (val)); \
465 if (__old == __val) \
466 break; \
467 __val = __old; \
468 } \
469 __old; \
470 })
471
472 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
473 /*
474 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
475 * this avoids any races wrt polling state changes and thereby avoids
476 * spurious IPIs.
477 */
478 static bool set_nr_and_not_polling(struct task_struct *p)
479 {
480 struct thread_info *ti = task_thread_info(p);
481 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
482 }
483
484 /*
485 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
486 *
487 * If this returns true, then the idle task promises to call
488 * sched_ttwu_pending() and reschedule soon.
489 */
490 static bool set_nr_if_polling(struct task_struct *p)
491 {
492 struct thread_info *ti = task_thread_info(p);
493 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
494
495 for (;;) {
496 if (!(val & _TIF_POLLING_NRFLAG))
497 return false;
498 if (val & _TIF_NEED_RESCHED)
499 return true;
500 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
501 if (old == val)
502 break;
503 val = old;
504 }
505 return true;
506 }
507
508 #else
509 static bool set_nr_and_not_polling(struct task_struct *p)
510 {
511 set_tsk_need_resched(p);
512 return true;
513 }
514
515 #ifdef CONFIG_SMP
516 static bool set_nr_if_polling(struct task_struct *p)
517 {
518 return false;
519 }
520 #endif
521 #endif
522
523 /*
524 * resched_curr - mark rq's current task 'to be rescheduled now'.
525 *
526 * On UP this means the setting of the need_resched flag, on SMP it
527 * might also involve a cross-CPU call to trigger the scheduler on
528 * the target CPU.
529 */
530 void resched_curr(struct rq *rq)
531 {
532 struct task_struct *curr = rq->curr;
533 int cpu;
534
535 lockdep_assert_held(&rq->lock);
536
537 if (test_tsk_need_resched(curr))
538 return;
539
540 cpu = cpu_of(rq);
541
542 if (cpu == smp_processor_id()) {
543 set_tsk_need_resched(curr);
544 set_preempt_need_resched();
545 return;
546 }
547
548 if (set_nr_and_not_polling(curr))
549 smp_send_reschedule(cpu);
550 else
551 trace_sched_wake_idle_without_ipi(cpu);
552 }
553
554 void resched_cpu(int cpu)
555 {
556 struct rq *rq = cpu_rq(cpu);
557 unsigned long flags;
558
559 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
560 return;
561 resched_curr(rq);
562 raw_spin_unlock_irqrestore(&rq->lock, flags);
563 }
564
565 #ifdef CONFIG_SMP
566 #ifdef CONFIG_NO_HZ_COMMON
567 /*
568 * In the semi idle case, use the nearest busy cpu for migrating timers
569 * from an idle cpu. This is good for power-savings.
570 *
571 * We don't do similar optimization for completely idle system, as
572 * selecting an idle cpu will add more delays to the timers than intended
573 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
574 */
575 int get_nohz_timer_target(int pinned)
576 {
577 int cpu = smp_processor_id();
578 int i;
579 struct sched_domain *sd;
580
581 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
582 return cpu;
583
584 rcu_read_lock();
585 for_each_domain(cpu, sd) {
586 for_each_cpu(i, sched_domain_span(sd)) {
587 if (!idle_cpu(i)) {
588 cpu = i;
589 goto unlock;
590 }
591 }
592 }
593 unlock:
594 rcu_read_unlock();
595 return cpu;
596 }
597 /*
598 * When add_timer_on() enqueues a timer into the timer wheel of an
599 * idle CPU then this timer might expire before the next timer event
600 * which is scheduled to wake up that CPU. In case of a completely
601 * idle system the next event might even be infinite time into the
602 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
603 * leaves the inner idle loop so the newly added timer is taken into
604 * account when the CPU goes back to idle and evaluates the timer
605 * wheel for the next timer event.
606 */
607 static void wake_up_idle_cpu(int cpu)
608 {
609 struct rq *rq = cpu_rq(cpu);
610
611 if (cpu == smp_processor_id())
612 return;
613
614 if (set_nr_and_not_polling(rq->idle))
615 smp_send_reschedule(cpu);
616 else
617 trace_sched_wake_idle_without_ipi(cpu);
618 }
619
620 static bool wake_up_full_nohz_cpu(int cpu)
621 {
622 /*
623 * We just need the target to call irq_exit() and re-evaluate
624 * the next tick. The nohz full kick at least implies that.
625 * If needed we can still optimize that later with an
626 * empty IRQ.
627 */
628 if (tick_nohz_full_cpu(cpu)) {
629 if (cpu != smp_processor_id() ||
630 tick_nohz_tick_stopped())
631 tick_nohz_full_kick_cpu(cpu);
632 return true;
633 }
634
635 return false;
636 }
637
638 void wake_up_nohz_cpu(int cpu)
639 {
640 if (!wake_up_full_nohz_cpu(cpu))
641 wake_up_idle_cpu(cpu);
642 }
643
644 static inline bool got_nohz_idle_kick(void)
645 {
646 int cpu = smp_processor_id();
647
648 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
649 return false;
650
651 if (idle_cpu(cpu) && !need_resched())
652 return true;
653
654 /*
655 * We can't run Idle Load Balance on this CPU for this time so we
656 * cancel it and clear NOHZ_BALANCE_KICK
657 */
658 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
659 return false;
660 }
661
662 #else /* CONFIG_NO_HZ_COMMON */
663
664 static inline bool got_nohz_idle_kick(void)
665 {
666 return false;
667 }
668
669 #endif /* CONFIG_NO_HZ_COMMON */
670
671 #ifdef CONFIG_NO_HZ_FULL
672 bool sched_can_stop_tick(void)
673 {
674 /*
675 * FIFO realtime policy runs the highest priority task. Other runnable
676 * tasks are of a lower priority. The scheduler tick does nothing.
677 */
678 if (current->policy == SCHED_FIFO)
679 return true;
680
681 /*
682 * Round-robin realtime tasks time slice with other tasks at the same
683 * realtime priority. Is this task the only one at this priority?
684 */
685 if (current->policy == SCHED_RR) {
686 struct sched_rt_entity *rt_se = &current->rt;
687
688 return rt_se->run_list.prev == rt_se->run_list.next;
689 }
690
691 /*
692 * More than one running task need preemption.
693 * nr_running update is assumed to be visible
694 * after IPI is sent from wakers.
695 */
696 if (this_rq()->nr_running > 1)
697 return false;
698
699 return true;
700 }
701 #endif /* CONFIG_NO_HZ_FULL */
702
703 void sched_avg_update(struct rq *rq)
704 {
705 s64 period = sched_avg_period();
706
707 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
708 /*
709 * Inline assembly required to prevent the compiler
710 * optimising this loop into a divmod call.
711 * See __iter_div_u64_rem() for another example of this.
712 */
713 asm("" : "+rm" (rq->age_stamp));
714 rq->age_stamp += period;
715 rq->rt_avg /= 2;
716 }
717 }
718
719 #endif /* CONFIG_SMP */
720
721 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
722 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
723 /*
724 * Iterate task_group tree rooted at *from, calling @down when first entering a
725 * node and @up when leaving it for the final time.
726 *
727 * Caller must hold rcu_lock or sufficient equivalent.
728 */
729 int walk_tg_tree_from(struct task_group *from,
730 tg_visitor down, tg_visitor up, void *data)
731 {
732 struct task_group *parent, *child;
733 int ret;
734
735 parent = from;
736
737 down:
738 ret = (*down)(parent, data);
739 if (ret)
740 goto out;
741 list_for_each_entry_rcu(child, &parent->children, siblings) {
742 parent = child;
743 goto down;
744
745 up:
746 continue;
747 }
748 ret = (*up)(parent, data);
749 if (ret || parent == from)
750 goto out;
751
752 child = parent;
753 parent = parent->parent;
754 if (parent)
755 goto up;
756 out:
757 return ret;
758 }
759
760 int tg_nop(struct task_group *tg, void *data)
761 {
762 return 0;
763 }
764 #endif
765
766 static void set_load_weight(struct task_struct *p)
767 {
768 int prio = p->static_prio - MAX_RT_PRIO;
769 struct load_weight *load = &p->se.load;
770
771 /*
772 * SCHED_IDLE tasks get minimal weight:
773 */
774 if (p->policy == SCHED_IDLE) {
775 load->weight = scale_load(WEIGHT_IDLEPRIO);
776 load->inv_weight = WMULT_IDLEPRIO;
777 return;
778 }
779
780 load->weight = scale_load(prio_to_weight[prio]);
781 load->inv_weight = prio_to_wmult[prio];
782 }
783
784 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
785 {
786 update_rq_clock(rq);
787 sched_info_queued(rq, p);
788 p->sched_class->enqueue_task(rq, p, flags);
789 }
790
791 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
792 {
793 update_rq_clock(rq);
794 sched_info_dequeued(rq, p);
795 p->sched_class->dequeue_task(rq, p, flags);
796 }
797
798 void activate_task(struct rq *rq, struct task_struct *p, int flags)
799 {
800 if (task_contributes_to_load(p))
801 rq->nr_uninterruptible--;
802
803 enqueue_task(rq, p, flags);
804 }
805
806 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
807 {
808 if (task_contributes_to_load(p))
809 rq->nr_uninterruptible++;
810
811 dequeue_task(rq, p, flags);
812 }
813
814 static void update_rq_clock_task(struct rq *rq, s64 delta)
815 {
816 /*
817 * In theory, the compile should just see 0 here, and optimize out the call
818 * to sched_rt_avg_update. But I don't trust it...
819 */
820 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
821 s64 steal = 0, irq_delta = 0;
822 #endif
823 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
824 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
825
826 /*
827 * Since irq_time is only updated on {soft,}irq_exit, we might run into
828 * this case when a previous update_rq_clock() happened inside a
829 * {soft,}irq region.
830 *
831 * When this happens, we stop ->clock_task and only update the
832 * prev_irq_time stamp to account for the part that fit, so that a next
833 * update will consume the rest. This ensures ->clock_task is
834 * monotonic.
835 *
836 * It does however cause some slight miss-attribution of {soft,}irq
837 * time, a more accurate solution would be to update the irq_time using
838 * the current rq->clock timestamp, except that would require using
839 * atomic ops.
840 */
841 if (irq_delta > delta)
842 irq_delta = delta;
843
844 rq->prev_irq_time += irq_delta;
845 delta -= irq_delta;
846 #endif
847 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
848 if (static_key_false((&paravirt_steal_rq_enabled))) {
849 steal = paravirt_steal_clock(cpu_of(rq));
850 steal -= rq->prev_steal_time_rq;
851
852 if (unlikely(steal > delta))
853 steal = delta;
854
855 rq->prev_steal_time_rq += steal;
856 delta -= steal;
857 }
858 #endif
859
860 rq->clock_task += delta;
861
862 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
863 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
864 sched_rt_avg_update(rq, irq_delta + steal);
865 #endif
866 }
867
868 void sched_set_stop_task(int cpu, struct task_struct *stop)
869 {
870 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
871 struct task_struct *old_stop = cpu_rq(cpu)->stop;
872
873 if (stop) {
874 /*
875 * Make it appear like a SCHED_FIFO task, its something
876 * userspace knows about and won't get confused about.
877 *
878 * Also, it will make PI more or less work without too
879 * much confusion -- but then, stop work should not
880 * rely on PI working anyway.
881 */
882 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
883
884 stop->sched_class = &stop_sched_class;
885 }
886
887 cpu_rq(cpu)->stop = stop;
888
889 if (old_stop) {
890 /*
891 * Reset it back to a normal scheduling class so that
892 * it can die in pieces.
893 */
894 old_stop->sched_class = &rt_sched_class;
895 }
896 }
897
898 /*
899 * __normal_prio - return the priority that is based on the static prio
900 */
901 static inline int __normal_prio(struct task_struct *p)
902 {
903 return p->static_prio;
904 }
905
906 /*
907 * Calculate the expected normal priority: i.e. priority
908 * without taking RT-inheritance into account. Might be
909 * boosted by interactivity modifiers. Changes upon fork,
910 * setprio syscalls, and whenever the interactivity
911 * estimator recalculates.
912 */
913 static inline int normal_prio(struct task_struct *p)
914 {
915 int prio;
916
917 if (task_has_dl_policy(p))
918 prio = MAX_DL_PRIO-1;
919 else if (task_has_rt_policy(p))
920 prio = MAX_RT_PRIO-1 - p->rt_priority;
921 else
922 prio = __normal_prio(p);
923 return prio;
924 }
925
926 /*
927 * Calculate the current priority, i.e. the priority
928 * taken into account by the scheduler. This value might
929 * be boosted by RT tasks, or might be boosted by
930 * interactivity modifiers. Will be RT if the task got
931 * RT-boosted. If not then it returns p->normal_prio.
932 */
933 static int effective_prio(struct task_struct *p)
934 {
935 p->normal_prio = normal_prio(p);
936 /*
937 * If we are RT tasks or we were boosted to RT priority,
938 * keep the priority unchanged. Otherwise, update priority
939 * to the normal priority:
940 */
941 if (!rt_prio(p->prio))
942 return p->normal_prio;
943 return p->prio;
944 }
945
946 /**
947 * task_curr - is this task currently executing on a CPU?
948 * @p: the task in question.
949 *
950 * Return: 1 if the task is currently executing. 0 otherwise.
951 */
952 inline int task_curr(const struct task_struct *p)
953 {
954 return cpu_curr(task_cpu(p)) == p;
955 }
956
957 /*
958 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
959 */
960 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
961 const struct sched_class *prev_class,
962 int oldprio)
963 {
964 if (prev_class != p->sched_class) {
965 if (prev_class->switched_from)
966 prev_class->switched_from(rq, p);
967 /* Possble rq->lock 'hole'. */
968 p->sched_class->switched_to(rq, p);
969 } else if (oldprio != p->prio || dl_task(p))
970 p->sched_class->prio_changed(rq, p, oldprio);
971 }
972
973 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
974 {
975 const struct sched_class *class;
976
977 if (p->sched_class == rq->curr->sched_class) {
978 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
979 } else {
980 for_each_class(class) {
981 if (class == rq->curr->sched_class)
982 break;
983 if (class == p->sched_class) {
984 resched_curr(rq);
985 break;
986 }
987 }
988 }
989
990 /*
991 * A queue event has occurred, and we're going to schedule. In
992 * this case, we can save a useless back to back clock update.
993 */
994 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
995 rq_clock_skip_update(rq, true);
996 }
997
998 #ifdef CONFIG_SMP
999 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1000 {
1001 #ifdef CONFIG_SCHED_DEBUG
1002 /*
1003 * We should never call set_task_cpu() on a blocked task,
1004 * ttwu() will sort out the placement.
1005 */
1006 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1007 !p->on_rq);
1008
1009 #ifdef CONFIG_LOCKDEP
1010 /*
1011 * The caller should hold either p->pi_lock or rq->lock, when changing
1012 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1013 *
1014 * sched_move_task() holds both and thus holding either pins the cgroup,
1015 * see task_group().
1016 *
1017 * Furthermore, all task_rq users should acquire both locks, see
1018 * task_rq_lock().
1019 */
1020 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1021 lockdep_is_held(&task_rq(p)->lock)));
1022 #endif
1023 #endif
1024
1025 trace_sched_migrate_task(p, new_cpu);
1026
1027 if (task_cpu(p) != new_cpu) {
1028 if (p->sched_class->migrate_task_rq)
1029 p->sched_class->migrate_task_rq(p, new_cpu);
1030 p->se.nr_migrations++;
1031 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1032 }
1033
1034 __set_task_cpu(p, new_cpu);
1035 }
1036
1037 static void __migrate_swap_task(struct task_struct *p, int cpu)
1038 {
1039 if (task_on_rq_queued(p)) {
1040 struct rq *src_rq, *dst_rq;
1041
1042 src_rq = task_rq(p);
1043 dst_rq = cpu_rq(cpu);
1044
1045 deactivate_task(src_rq, p, 0);
1046 set_task_cpu(p, cpu);
1047 activate_task(dst_rq, p, 0);
1048 check_preempt_curr(dst_rq, p, 0);
1049 } else {
1050 /*
1051 * Task isn't running anymore; make it appear like we migrated
1052 * it before it went to sleep. This means on wakeup we make the
1053 * previous cpu our targer instead of where it really is.
1054 */
1055 p->wake_cpu = cpu;
1056 }
1057 }
1058
1059 struct migration_swap_arg {
1060 struct task_struct *src_task, *dst_task;
1061 int src_cpu, dst_cpu;
1062 };
1063
1064 static int migrate_swap_stop(void *data)
1065 {
1066 struct migration_swap_arg *arg = data;
1067 struct rq *src_rq, *dst_rq;
1068 int ret = -EAGAIN;
1069
1070 src_rq = cpu_rq(arg->src_cpu);
1071 dst_rq = cpu_rq(arg->dst_cpu);
1072
1073 double_raw_lock(&arg->src_task->pi_lock,
1074 &arg->dst_task->pi_lock);
1075 double_rq_lock(src_rq, dst_rq);
1076 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1077 goto unlock;
1078
1079 if (task_cpu(arg->src_task) != arg->src_cpu)
1080 goto unlock;
1081
1082 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1083 goto unlock;
1084
1085 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1086 goto unlock;
1087
1088 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1089 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1090
1091 ret = 0;
1092
1093 unlock:
1094 double_rq_unlock(src_rq, dst_rq);
1095 raw_spin_unlock(&arg->dst_task->pi_lock);
1096 raw_spin_unlock(&arg->src_task->pi_lock);
1097
1098 return ret;
1099 }
1100
1101 /*
1102 * Cross migrate two tasks
1103 */
1104 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1105 {
1106 struct migration_swap_arg arg;
1107 int ret = -EINVAL;
1108
1109 arg = (struct migration_swap_arg){
1110 .src_task = cur,
1111 .src_cpu = task_cpu(cur),
1112 .dst_task = p,
1113 .dst_cpu = task_cpu(p),
1114 };
1115
1116 if (arg.src_cpu == arg.dst_cpu)
1117 goto out;
1118
1119 /*
1120 * These three tests are all lockless; this is OK since all of them
1121 * will be re-checked with proper locks held further down the line.
1122 */
1123 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1124 goto out;
1125
1126 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1127 goto out;
1128
1129 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1130 goto out;
1131
1132 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1133 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1134
1135 out:
1136 return ret;
1137 }
1138
1139 struct migration_arg {
1140 struct task_struct *task;
1141 int dest_cpu;
1142 };
1143
1144 static int migration_cpu_stop(void *data);
1145
1146 /*
1147 * wait_task_inactive - wait for a thread to unschedule.
1148 *
1149 * If @match_state is nonzero, it's the @p->state value just checked and
1150 * not expected to change. If it changes, i.e. @p might have woken up,
1151 * then return zero. When we succeed in waiting for @p to be off its CPU,
1152 * we return a positive number (its total switch count). If a second call
1153 * a short while later returns the same number, the caller can be sure that
1154 * @p has remained unscheduled the whole time.
1155 *
1156 * The caller must ensure that the task *will* unschedule sometime soon,
1157 * else this function might spin for a *long* time. This function can't
1158 * be called with interrupts off, or it may introduce deadlock with
1159 * smp_call_function() if an IPI is sent by the same process we are
1160 * waiting to become inactive.
1161 */
1162 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1163 {
1164 unsigned long flags;
1165 int running, queued;
1166 unsigned long ncsw;
1167 struct rq *rq;
1168
1169 for (;;) {
1170 /*
1171 * We do the initial early heuristics without holding
1172 * any task-queue locks at all. We'll only try to get
1173 * the runqueue lock when things look like they will
1174 * work out!
1175 */
1176 rq = task_rq(p);
1177
1178 /*
1179 * If the task is actively running on another CPU
1180 * still, just relax and busy-wait without holding
1181 * any locks.
1182 *
1183 * NOTE! Since we don't hold any locks, it's not
1184 * even sure that "rq" stays as the right runqueue!
1185 * But we don't care, since "task_running()" will
1186 * return false if the runqueue has changed and p
1187 * is actually now running somewhere else!
1188 */
1189 while (task_running(rq, p)) {
1190 if (match_state && unlikely(p->state != match_state))
1191 return 0;
1192 cpu_relax();
1193 }
1194
1195 /*
1196 * Ok, time to look more closely! We need the rq
1197 * lock now, to be *sure*. If we're wrong, we'll
1198 * just go back and repeat.
1199 */
1200 rq = task_rq_lock(p, &flags);
1201 trace_sched_wait_task(p);
1202 running = task_running(rq, p);
1203 queued = task_on_rq_queued(p);
1204 ncsw = 0;
1205 if (!match_state || p->state == match_state)
1206 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1207 task_rq_unlock(rq, p, &flags);
1208
1209 /*
1210 * If it changed from the expected state, bail out now.
1211 */
1212 if (unlikely(!ncsw))
1213 break;
1214
1215 /*
1216 * Was it really running after all now that we
1217 * checked with the proper locks actually held?
1218 *
1219 * Oops. Go back and try again..
1220 */
1221 if (unlikely(running)) {
1222 cpu_relax();
1223 continue;
1224 }
1225
1226 /*
1227 * It's not enough that it's not actively running,
1228 * it must be off the runqueue _entirely_, and not
1229 * preempted!
1230 *
1231 * So if it was still runnable (but just not actively
1232 * running right now), it's preempted, and we should
1233 * yield - it could be a while.
1234 */
1235 if (unlikely(queued)) {
1236 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1237
1238 set_current_state(TASK_UNINTERRUPTIBLE);
1239 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1240 continue;
1241 }
1242
1243 /*
1244 * Ahh, all good. It wasn't running, and it wasn't
1245 * runnable, which means that it will never become
1246 * running in the future either. We're all done!
1247 */
1248 break;
1249 }
1250
1251 return ncsw;
1252 }
1253
1254 /***
1255 * kick_process - kick a running thread to enter/exit the kernel
1256 * @p: the to-be-kicked thread
1257 *
1258 * Cause a process which is running on another CPU to enter
1259 * kernel-mode, without any delay. (to get signals handled.)
1260 *
1261 * NOTE: this function doesn't have to take the runqueue lock,
1262 * because all it wants to ensure is that the remote task enters
1263 * the kernel. If the IPI races and the task has been migrated
1264 * to another CPU then no harm is done and the purpose has been
1265 * achieved as well.
1266 */
1267 void kick_process(struct task_struct *p)
1268 {
1269 int cpu;
1270
1271 preempt_disable();
1272 cpu = task_cpu(p);
1273 if ((cpu != smp_processor_id()) && task_curr(p))
1274 smp_send_reschedule(cpu);
1275 preempt_enable();
1276 }
1277 EXPORT_SYMBOL_GPL(kick_process);
1278 #endif /* CONFIG_SMP */
1279
1280 #ifdef CONFIG_SMP
1281 /*
1282 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1283 */
1284 static int select_fallback_rq(int cpu, struct task_struct *p)
1285 {
1286 int nid = cpu_to_node(cpu);
1287 const struct cpumask *nodemask = NULL;
1288 enum { cpuset, possible, fail } state = cpuset;
1289 int dest_cpu;
1290
1291 /*
1292 * If the node that the cpu is on has been offlined, cpu_to_node()
1293 * will return -1. There is no cpu on the node, and we should
1294 * select the cpu on the other node.
1295 */
1296 if (nid != -1) {
1297 nodemask = cpumask_of_node(nid);
1298
1299 /* Look for allowed, online CPU in same node. */
1300 for_each_cpu(dest_cpu, nodemask) {
1301 if (!cpu_online(dest_cpu))
1302 continue;
1303 if (!cpu_active(dest_cpu))
1304 continue;
1305 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1306 return dest_cpu;
1307 }
1308 }
1309
1310 for (;;) {
1311 /* Any allowed, online CPU? */
1312 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1313 if (!cpu_online(dest_cpu))
1314 continue;
1315 if (!cpu_active(dest_cpu))
1316 continue;
1317 goto out;
1318 }
1319
1320 switch (state) {
1321 case cpuset:
1322 /* No more Mr. Nice Guy. */
1323 cpuset_cpus_allowed_fallback(p);
1324 state = possible;
1325 break;
1326
1327 case possible:
1328 do_set_cpus_allowed(p, cpu_possible_mask);
1329 state = fail;
1330 break;
1331
1332 case fail:
1333 BUG();
1334 break;
1335 }
1336 }
1337
1338 out:
1339 if (state != cpuset) {
1340 /*
1341 * Don't tell them about moving exiting tasks or
1342 * kernel threads (both mm NULL), since they never
1343 * leave kernel.
1344 */
1345 if (p->mm && printk_ratelimit()) {
1346 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1347 task_pid_nr(p), p->comm, cpu);
1348 }
1349 }
1350
1351 return dest_cpu;
1352 }
1353
1354 /*
1355 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1356 */
1357 static inline
1358 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1359 {
1360 if (p->nr_cpus_allowed > 1)
1361 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1362
1363 /*
1364 * In order not to call set_task_cpu() on a blocking task we need
1365 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1366 * cpu.
1367 *
1368 * Since this is common to all placement strategies, this lives here.
1369 *
1370 * [ this allows ->select_task() to simply return task_cpu(p) and
1371 * not worry about this generic constraint ]
1372 */
1373 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1374 !cpu_online(cpu)))
1375 cpu = select_fallback_rq(task_cpu(p), p);
1376
1377 return cpu;
1378 }
1379
1380 static void update_avg(u64 *avg, u64 sample)
1381 {
1382 s64 diff = sample - *avg;
1383 *avg += diff >> 3;
1384 }
1385 #endif
1386
1387 static void
1388 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1389 {
1390 #ifdef CONFIG_SCHEDSTATS
1391 struct rq *rq = this_rq();
1392
1393 #ifdef CONFIG_SMP
1394 int this_cpu = smp_processor_id();
1395
1396 if (cpu == this_cpu) {
1397 schedstat_inc(rq, ttwu_local);
1398 schedstat_inc(p, se.statistics.nr_wakeups_local);
1399 } else {
1400 struct sched_domain *sd;
1401
1402 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1403 rcu_read_lock();
1404 for_each_domain(this_cpu, sd) {
1405 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1406 schedstat_inc(sd, ttwu_wake_remote);
1407 break;
1408 }
1409 }
1410 rcu_read_unlock();
1411 }
1412
1413 if (wake_flags & WF_MIGRATED)
1414 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1415
1416 #endif /* CONFIG_SMP */
1417
1418 schedstat_inc(rq, ttwu_count);
1419 schedstat_inc(p, se.statistics.nr_wakeups);
1420
1421 if (wake_flags & WF_SYNC)
1422 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1423
1424 #endif /* CONFIG_SCHEDSTATS */
1425 }
1426
1427 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1428 {
1429 activate_task(rq, p, en_flags);
1430 p->on_rq = TASK_ON_RQ_QUEUED;
1431
1432 /* if a worker is waking up, notify workqueue */
1433 if (p->flags & PF_WQ_WORKER)
1434 wq_worker_waking_up(p, cpu_of(rq));
1435 }
1436
1437 /*
1438 * Mark the task runnable and perform wakeup-preemption.
1439 */
1440 static void
1441 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1442 {
1443 check_preempt_curr(rq, p, wake_flags);
1444 trace_sched_wakeup(p, true);
1445
1446 p->state = TASK_RUNNING;
1447 #ifdef CONFIG_SMP
1448 if (p->sched_class->task_woken)
1449 p->sched_class->task_woken(rq, p);
1450
1451 if (rq->idle_stamp) {
1452 u64 delta = rq_clock(rq) - rq->idle_stamp;
1453 u64 max = 2*rq->max_idle_balance_cost;
1454
1455 update_avg(&rq->avg_idle, delta);
1456
1457 if (rq->avg_idle > max)
1458 rq->avg_idle = max;
1459
1460 rq->idle_stamp = 0;
1461 }
1462 #endif
1463 }
1464
1465 static void
1466 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1467 {
1468 #ifdef CONFIG_SMP
1469 if (p->sched_contributes_to_load)
1470 rq->nr_uninterruptible--;
1471 #endif
1472
1473 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1474 ttwu_do_wakeup(rq, p, wake_flags);
1475 }
1476
1477 /*
1478 * Called in case the task @p isn't fully descheduled from its runqueue,
1479 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1480 * since all we need to do is flip p->state to TASK_RUNNING, since
1481 * the task is still ->on_rq.
1482 */
1483 static int ttwu_remote(struct task_struct *p, int wake_flags)
1484 {
1485 struct rq *rq;
1486 int ret = 0;
1487
1488 rq = __task_rq_lock(p);
1489 if (task_on_rq_queued(p)) {
1490 /* check_preempt_curr() may use rq clock */
1491 update_rq_clock(rq);
1492 ttwu_do_wakeup(rq, p, wake_flags);
1493 ret = 1;
1494 }
1495 __task_rq_unlock(rq);
1496
1497 return ret;
1498 }
1499
1500 #ifdef CONFIG_SMP
1501 void sched_ttwu_pending(void)
1502 {
1503 struct rq *rq = this_rq();
1504 struct llist_node *llist = llist_del_all(&rq->wake_list);
1505 struct task_struct *p;
1506 unsigned long flags;
1507
1508 if (!llist)
1509 return;
1510
1511 raw_spin_lock_irqsave(&rq->lock, flags);
1512
1513 while (llist) {
1514 p = llist_entry(llist, struct task_struct, wake_entry);
1515 llist = llist_next(llist);
1516 ttwu_do_activate(rq, p, 0);
1517 }
1518
1519 raw_spin_unlock_irqrestore(&rq->lock, flags);
1520 }
1521
1522 void scheduler_ipi(void)
1523 {
1524 /*
1525 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1526 * TIF_NEED_RESCHED remotely (for the first time) will also send
1527 * this IPI.
1528 */
1529 preempt_fold_need_resched();
1530
1531 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1532 return;
1533
1534 /*
1535 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1536 * traditionally all their work was done from the interrupt return
1537 * path. Now that we actually do some work, we need to make sure
1538 * we do call them.
1539 *
1540 * Some archs already do call them, luckily irq_enter/exit nest
1541 * properly.
1542 *
1543 * Arguably we should visit all archs and update all handlers,
1544 * however a fair share of IPIs are still resched only so this would
1545 * somewhat pessimize the simple resched case.
1546 */
1547 irq_enter();
1548 sched_ttwu_pending();
1549
1550 /*
1551 * Check if someone kicked us for doing the nohz idle load balance.
1552 */
1553 if (unlikely(got_nohz_idle_kick())) {
1554 this_rq()->idle_balance = 1;
1555 raise_softirq_irqoff(SCHED_SOFTIRQ);
1556 }
1557 irq_exit();
1558 }
1559
1560 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1561 {
1562 struct rq *rq = cpu_rq(cpu);
1563
1564 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1565 if (!set_nr_if_polling(rq->idle))
1566 smp_send_reschedule(cpu);
1567 else
1568 trace_sched_wake_idle_without_ipi(cpu);
1569 }
1570 }
1571
1572 void wake_up_if_idle(int cpu)
1573 {
1574 struct rq *rq = cpu_rq(cpu);
1575 unsigned long flags;
1576
1577 rcu_read_lock();
1578
1579 if (!is_idle_task(rcu_dereference(rq->curr)))
1580 goto out;
1581
1582 if (set_nr_if_polling(rq->idle)) {
1583 trace_sched_wake_idle_without_ipi(cpu);
1584 } else {
1585 raw_spin_lock_irqsave(&rq->lock, flags);
1586 if (is_idle_task(rq->curr))
1587 smp_send_reschedule(cpu);
1588 /* Else cpu is not in idle, do nothing here */
1589 raw_spin_unlock_irqrestore(&rq->lock, flags);
1590 }
1591
1592 out:
1593 rcu_read_unlock();
1594 }
1595
1596 bool cpus_share_cache(int this_cpu, int that_cpu)
1597 {
1598 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1599 }
1600 #endif /* CONFIG_SMP */
1601
1602 static void ttwu_queue(struct task_struct *p, int cpu)
1603 {
1604 struct rq *rq = cpu_rq(cpu);
1605
1606 #if defined(CONFIG_SMP)
1607 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1608 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1609 ttwu_queue_remote(p, cpu);
1610 return;
1611 }
1612 #endif
1613
1614 raw_spin_lock(&rq->lock);
1615 ttwu_do_activate(rq, p, 0);
1616 raw_spin_unlock(&rq->lock);
1617 }
1618
1619 /**
1620 * try_to_wake_up - wake up a thread
1621 * @p: the thread to be awakened
1622 * @state: the mask of task states that can be woken
1623 * @wake_flags: wake modifier flags (WF_*)
1624 *
1625 * Put it on the run-queue if it's not already there. The "current"
1626 * thread is always on the run-queue (except when the actual
1627 * re-schedule is in progress), and as such you're allowed to do
1628 * the simpler "current->state = TASK_RUNNING" to mark yourself
1629 * runnable without the overhead of this.
1630 *
1631 * Return: %true if @p was woken up, %false if it was already running.
1632 * or @state didn't match @p's state.
1633 */
1634 static int
1635 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1636 {
1637 unsigned long flags;
1638 int cpu, success = 0;
1639
1640 /*
1641 * If we are going to wake up a thread waiting for CONDITION we
1642 * need to ensure that CONDITION=1 done by the caller can not be
1643 * reordered with p->state check below. This pairs with mb() in
1644 * set_current_state() the waiting thread does.
1645 */
1646 smp_mb__before_spinlock();
1647 raw_spin_lock_irqsave(&p->pi_lock, flags);
1648 if (!(p->state & state))
1649 goto out;
1650
1651 success = 1; /* we're going to change ->state */
1652 cpu = task_cpu(p);
1653
1654 if (p->on_rq && ttwu_remote(p, wake_flags))
1655 goto stat;
1656
1657 #ifdef CONFIG_SMP
1658 /*
1659 * If the owning (remote) cpu is still in the middle of schedule() with
1660 * this task as prev, wait until its done referencing the task.
1661 */
1662 while (p->on_cpu)
1663 cpu_relax();
1664 /*
1665 * Pairs with the smp_wmb() in finish_lock_switch().
1666 */
1667 smp_rmb();
1668
1669 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1670 p->state = TASK_WAKING;
1671
1672 if (p->sched_class->task_waking)
1673 p->sched_class->task_waking(p);
1674
1675 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1676 if (task_cpu(p) != cpu) {
1677 wake_flags |= WF_MIGRATED;
1678 set_task_cpu(p, cpu);
1679 }
1680 #endif /* CONFIG_SMP */
1681
1682 ttwu_queue(p, cpu);
1683 stat:
1684 ttwu_stat(p, cpu, wake_flags);
1685 out:
1686 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1687
1688 return success;
1689 }
1690
1691 /**
1692 * try_to_wake_up_local - try to wake up a local task with rq lock held
1693 * @p: the thread to be awakened
1694 *
1695 * Put @p on the run-queue if it's not already there. The caller must
1696 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1697 * the current task.
1698 */
1699 static void try_to_wake_up_local(struct task_struct *p)
1700 {
1701 struct rq *rq = task_rq(p);
1702
1703 if (WARN_ON_ONCE(rq != this_rq()) ||
1704 WARN_ON_ONCE(p == current))
1705 return;
1706
1707 lockdep_assert_held(&rq->lock);
1708
1709 if (!raw_spin_trylock(&p->pi_lock)) {
1710 raw_spin_unlock(&rq->lock);
1711 raw_spin_lock(&p->pi_lock);
1712 raw_spin_lock(&rq->lock);
1713 }
1714
1715 if (!(p->state & TASK_NORMAL))
1716 goto out;
1717
1718 if (!task_on_rq_queued(p))
1719 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1720
1721 ttwu_do_wakeup(rq, p, 0);
1722 ttwu_stat(p, smp_processor_id(), 0);
1723 out:
1724 raw_spin_unlock(&p->pi_lock);
1725 }
1726
1727 /**
1728 * wake_up_process - Wake up a specific process
1729 * @p: The process to be woken up.
1730 *
1731 * Attempt to wake up the nominated process and move it to the set of runnable
1732 * processes.
1733 *
1734 * Return: 1 if the process was woken up, 0 if it was already running.
1735 *
1736 * It may be assumed that this function implies a write memory barrier before
1737 * changing the task state if and only if any tasks are woken up.
1738 */
1739 int wake_up_process(struct task_struct *p)
1740 {
1741 WARN_ON(task_is_stopped_or_traced(p));
1742 return try_to_wake_up(p, TASK_NORMAL, 0);
1743 }
1744 EXPORT_SYMBOL(wake_up_process);
1745
1746 int wake_up_state(struct task_struct *p, unsigned int state)
1747 {
1748 return try_to_wake_up(p, state, 0);
1749 }
1750
1751 /*
1752 * This function clears the sched_dl_entity static params.
1753 */
1754 void __dl_clear_params(struct task_struct *p)
1755 {
1756 struct sched_dl_entity *dl_se = &p->dl;
1757
1758 dl_se->dl_runtime = 0;
1759 dl_se->dl_deadline = 0;
1760 dl_se->dl_period = 0;
1761 dl_se->flags = 0;
1762 dl_se->dl_bw = 0;
1763
1764 dl_se->dl_throttled = 0;
1765 dl_se->dl_new = 1;
1766 dl_se->dl_yielded = 0;
1767 }
1768
1769 /*
1770 * Perform scheduler related setup for a newly forked process p.
1771 * p is forked by current.
1772 *
1773 * __sched_fork() is basic setup used by init_idle() too:
1774 */
1775 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1776 {
1777 p->on_rq = 0;
1778
1779 p->se.on_rq = 0;
1780 p->se.exec_start = 0;
1781 p->se.sum_exec_runtime = 0;
1782 p->se.prev_sum_exec_runtime = 0;
1783 p->se.nr_migrations = 0;
1784 p->se.vruntime = 0;
1785 #ifdef CONFIG_SMP
1786 p->se.avg.decay_count = 0;
1787 #endif
1788 INIT_LIST_HEAD(&p->se.group_node);
1789
1790 #ifdef CONFIG_SCHEDSTATS
1791 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1792 #endif
1793
1794 RB_CLEAR_NODE(&p->dl.rb_node);
1795 init_dl_task_timer(&p->dl);
1796 __dl_clear_params(p);
1797
1798 INIT_LIST_HEAD(&p->rt.run_list);
1799
1800 #ifdef CONFIG_PREEMPT_NOTIFIERS
1801 INIT_HLIST_HEAD(&p->preempt_notifiers);
1802 #endif
1803
1804 #ifdef CONFIG_NUMA_BALANCING
1805 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1806 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1807 p->mm->numa_scan_seq = 0;
1808 }
1809
1810 if (clone_flags & CLONE_VM)
1811 p->numa_preferred_nid = current->numa_preferred_nid;
1812 else
1813 p->numa_preferred_nid = -1;
1814
1815 p->node_stamp = 0ULL;
1816 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1817 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1818 p->numa_work.next = &p->numa_work;
1819 p->numa_faults = NULL;
1820 p->last_task_numa_placement = 0;
1821 p->last_sum_exec_runtime = 0;
1822
1823 p->numa_group = NULL;
1824 #endif /* CONFIG_NUMA_BALANCING */
1825 }
1826
1827 #ifdef CONFIG_NUMA_BALANCING
1828 #ifdef CONFIG_SCHED_DEBUG
1829 void set_numabalancing_state(bool enabled)
1830 {
1831 if (enabled)
1832 sched_feat_set("NUMA");
1833 else
1834 sched_feat_set("NO_NUMA");
1835 }
1836 #else
1837 __read_mostly bool numabalancing_enabled;
1838
1839 void set_numabalancing_state(bool enabled)
1840 {
1841 numabalancing_enabled = enabled;
1842 }
1843 #endif /* CONFIG_SCHED_DEBUG */
1844
1845 #ifdef CONFIG_PROC_SYSCTL
1846 int sysctl_numa_balancing(struct ctl_table *table, int write,
1847 void __user *buffer, size_t *lenp, loff_t *ppos)
1848 {
1849 struct ctl_table t;
1850 int err;
1851 int state = numabalancing_enabled;
1852
1853 if (write && !capable(CAP_SYS_ADMIN))
1854 return -EPERM;
1855
1856 t = *table;
1857 t.data = &state;
1858 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1859 if (err < 0)
1860 return err;
1861 if (write)
1862 set_numabalancing_state(state);
1863 return err;
1864 }
1865 #endif
1866 #endif
1867
1868 /*
1869 * fork()/clone()-time setup:
1870 */
1871 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1872 {
1873 unsigned long flags;
1874 int cpu = get_cpu();
1875
1876 __sched_fork(clone_flags, p);
1877 /*
1878 * We mark the process as running here. This guarantees that
1879 * nobody will actually run it, and a signal or other external
1880 * event cannot wake it up and insert it on the runqueue either.
1881 */
1882 p->state = TASK_RUNNING;
1883
1884 /*
1885 * Make sure we do not leak PI boosting priority to the child.
1886 */
1887 p->prio = current->normal_prio;
1888
1889 /*
1890 * Revert to default priority/policy on fork if requested.
1891 */
1892 if (unlikely(p->sched_reset_on_fork)) {
1893 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1894 p->policy = SCHED_NORMAL;
1895 p->static_prio = NICE_TO_PRIO(0);
1896 p->rt_priority = 0;
1897 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1898 p->static_prio = NICE_TO_PRIO(0);
1899
1900 p->prio = p->normal_prio = __normal_prio(p);
1901 set_load_weight(p);
1902
1903 /*
1904 * We don't need the reset flag anymore after the fork. It has
1905 * fulfilled its duty:
1906 */
1907 p->sched_reset_on_fork = 0;
1908 }
1909
1910 if (dl_prio(p->prio)) {
1911 put_cpu();
1912 return -EAGAIN;
1913 } else if (rt_prio(p->prio)) {
1914 p->sched_class = &rt_sched_class;
1915 } else {
1916 p->sched_class = &fair_sched_class;
1917 }
1918
1919 if (p->sched_class->task_fork)
1920 p->sched_class->task_fork(p);
1921
1922 /*
1923 * The child is not yet in the pid-hash so no cgroup attach races,
1924 * and the cgroup is pinned to this child due to cgroup_fork()
1925 * is ran before sched_fork().
1926 *
1927 * Silence PROVE_RCU.
1928 */
1929 raw_spin_lock_irqsave(&p->pi_lock, flags);
1930 set_task_cpu(p, cpu);
1931 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1932
1933 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1934 if (likely(sched_info_on()))
1935 memset(&p->sched_info, 0, sizeof(p->sched_info));
1936 #endif
1937 #if defined(CONFIG_SMP)
1938 p->on_cpu = 0;
1939 #endif
1940 init_task_preempt_count(p);
1941 #ifdef CONFIG_SMP
1942 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1943 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1944 #endif
1945
1946 put_cpu();
1947 return 0;
1948 }
1949
1950 unsigned long to_ratio(u64 period, u64 runtime)
1951 {
1952 if (runtime == RUNTIME_INF)
1953 return 1ULL << 20;
1954
1955 /*
1956 * Doing this here saves a lot of checks in all
1957 * the calling paths, and returning zero seems
1958 * safe for them anyway.
1959 */
1960 if (period == 0)
1961 return 0;
1962
1963 return div64_u64(runtime << 20, period);
1964 }
1965
1966 #ifdef CONFIG_SMP
1967 inline struct dl_bw *dl_bw_of(int i)
1968 {
1969 rcu_lockdep_assert(rcu_read_lock_sched_held(),
1970 "sched RCU must be held");
1971 return &cpu_rq(i)->rd->dl_bw;
1972 }
1973
1974 static inline int dl_bw_cpus(int i)
1975 {
1976 struct root_domain *rd = cpu_rq(i)->rd;
1977 int cpus = 0;
1978
1979 rcu_lockdep_assert(rcu_read_lock_sched_held(),
1980 "sched RCU must be held");
1981 for_each_cpu_and(i, rd->span, cpu_active_mask)
1982 cpus++;
1983
1984 return cpus;
1985 }
1986 #else
1987 inline struct dl_bw *dl_bw_of(int i)
1988 {
1989 return &cpu_rq(i)->dl.dl_bw;
1990 }
1991
1992 static inline int dl_bw_cpus(int i)
1993 {
1994 return 1;
1995 }
1996 #endif
1997
1998 /*
1999 * We must be sure that accepting a new task (or allowing changing the
2000 * parameters of an existing one) is consistent with the bandwidth
2001 * constraints. If yes, this function also accordingly updates the currently
2002 * allocated bandwidth to reflect the new situation.
2003 *
2004 * This function is called while holding p's rq->lock.
2005 *
2006 * XXX we should delay bw change until the task's 0-lag point, see
2007 * __setparam_dl().
2008 */
2009 static int dl_overflow(struct task_struct *p, int policy,
2010 const struct sched_attr *attr)
2011 {
2012
2013 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2014 u64 period = attr->sched_period ?: attr->sched_deadline;
2015 u64 runtime = attr->sched_runtime;
2016 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2017 int cpus, err = -1;
2018
2019 if (new_bw == p->dl.dl_bw)
2020 return 0;
2021
2022 /*
2023 * Either if a task, enters, leave, or stays -deadline but changes
2024 * its parameters, we may need to update accordingly the total
2025 * allocated bandwidth of the container.
2026 */
2027 raw_spin_lock(&dl_b->lock);
2028 cpus = dl_bw_cpus(task_cpu(p));
2029 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2030 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2031 __dl_add(dl_b, new_bw);
2032 err = 0;
2033 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2034 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2035 __dl_clear(dl_b, p->dl.dl_bw);
2036 __dl_add(dl_b, new_bw);
2037 err = 0;
2038 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2039 __dl_clear(dl_b, p->dl.dl_bw);
2040 err = 0;
2041 }
2042 raw_spin_unlock(&dl_b->lock);
2043
2044 return err;
2045 }
2046
2047 extern void init_dl_bw(struct dl_bw *dl_b);
2048
2049 /*
2050 * wake_up_new_task - wake up a newly created task for the first time.
2051 *
2052 * This function will do some initial scheduler statistics housekeeping
2053 * that must be done for every newly created context, then puts the task
2054 * on the runqueue and wakes it.
2055 */
2056 void wake_up_new_task(struct task_struct *p)
2057 {
2058 unsigned long flags;
2059 struct rq *rq;
2060
2061 raw_spin_lock_irqsave(&p->pi_lock, flags);
2062 #ifdef CONFIG_SMP
2063 /*
2064 * Fork balancing, do it here and not earlier because:
2065 * - cpus_allowed can change in the fork path
2066 * - any previously selected cpu might disappear through hotplug
2067 */
2068 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2069 #endif
2070
2071 /* Initialize new task's runnable average */
2072 init_task_runnable_average(p);
2073 rq = __task_rq_lock(p);
2074 activate_task(rq, p, 0);
2075 p->on_rq = TASK_ON_RQ_QUEUED;
2076 trace_sched_wakeup_new(p, true);
2077 check_preempt_curr(rq, p, WF_FORK);
2078 #ifdef CONFIG_SMP
2079 if (p->sched_class->task_woken)
2080 p->sched_class->task_woken(rq, p);
2081 #endif
2082 task_rq_unlock(rq, p, &flags);
2083 }
2084
2085 #ifdef CONFIG_PREEMPT_NOTIFIERS
2086
2087 /**
2088 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2089 * @notifier: notifier struct to register
2090 */
2091 void preempt_notifier_register(struct preempt_notifier *notifier)
2092 {
2093 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2094 }
2095 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2096
2097 /**
2098 * preempt_notifier_unregister - no longer interested in preemption notifications
2099 * @notifier: notifier struct to unregister
2100 *
2101 * This is safe to call from within a preemption notifier.
2102 */
2103 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2104 {
2105 hlist_del(&notifier->link);
2106 }
2107 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2108
2109 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2110 {
2111 struct preempt_notifier *notifier;
2112
2113 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2114 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2115 }
2116
2117 static void
2118 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2119 struct task_struct *next)
2120 {
2121 struct preempt_notifier *notifier;
2122
2123 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2124 notifier->ops->sched_out(notifier, next);
2125 }
2126
2127 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2128
2129 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2130 {
2131 }
2132
2133 static void
2134 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2135 struct task_struct *next)
2136 {
2137 }
2138
2139 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2140
2141 /**
2142 * prepare_task_switch - prepare to switch tasks
2143 * @rq: the runqueue preparing to switch
2144 * @prev: the current task that is being switched out
2145 * @next: the task we are going to switch to.
2146 *
2147 * This is called with the rq lock held and interrupts off. It must
2148 * be paired with a subsequent finish_task_switch after the context
2149 * switch.
2150 *
2151 * prepare_task_switch sets up locking and calls architecture specific
2152 * hooks.
2153 */
2154 static inline void
2155 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2156 struct task_struct *next)
2157 {
2158 trace_sched_switch(prev, next);
2159 sched_info_switch(rq, prev, next);
2160 perf_event_task_sched_out(prev, next);
2161 fire_sched_out_preempt_notifiers(prev, next);
2162 prepare_lock_switch(rq, next);
2163 prepare_arch_switch(next);
2164 }
2165
2166 /**
2167 * finish_task_switch - clean up after a task-switch
2168 * @prev: the thread we just switched away from.
2169 *
2170 * finish_task_switch must be called after the context switch, paired
2171 * with a prepare_task_switch call before the context switch.
2172 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2173 * and do any other architecture-specific cleanup actions.
2174 *
2175 * Note that we may have delayed dropping an mm in context_switch(). If
2176 * so, we finish that here outside of the runqueue lock. (Doing it
2177 * with the lock held can cause deadlocks; see schedule() for
2178 * details.)
2179 *
2180 * The context switch have flipped the stack from under us and restored the
2181 * local variables which were saved when this task called schedule() in the
2182 * past. prev == current is still correct but we need to recalculate this_rq
2183 * because prev may have moved to another CPU.
2184 */
2185 static struct rq *finish_task_switch(struct task_struct *prev)
2186 __releases(rq->lock)
2187 {
2188 struct rq *rq = this_rq();
2189 struct mm_struct *mm = rq->prev_mm;
2190 long prev_state;
2191
2192 rq->prev_mm = NULL;
2193
2194 /*
2195 * A task struct has one reference for the use as "current".
2196 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2197 * schedule one last time. The schedule call will never return, and
2198 * the scheduled task must drop that reference.
2199 * The test for TASK_DEAD must occur while the runqueue locks are
2200 * still held, otherwise prev could be scheduled on another cpu, die
2201 * there before we look at prev->state, and then the reference would
2202 * be dropped twice.
2203 * Manfred Spraul <manfred@colorfullife.com>
2204 */
2205 prev_state = prev->state;
2206 vtime_task_switch(prev);
2207 finish_arch_switch(prev);
2208 perf_event_task_sched_in(prev, current);
2209 finish_lock_switch(rq, prev);
2210 finish_arch_post_lock_switch();
2211
2212 fire_sched_in_preempt_notifiers(current);
2213 if (mm)
2214 mmdrop(mm);
2215 if (unlikely(prev_state == TASK_DEAD)) {
2216 if (prev->sched_class->task_dead)
2217 prev->sched_class->task_dead(prev);
2218
2219 /*
2220 * Remove function-return probe instances associated with this
2221 * task and put them back on the free list.
2222 */
2223 kprobe_flush_task(prev);
2224 put_task_struct(prev);
2225 }
2226
2227 tick_nohz_task_switch(current);
2228 return rq;
2229 }
2230
2231 #ifdef CONFIG_SMP
2232
2233 /* rq->lock is NOT held, but preemption is disabled */
2234 static inline void post_schedule(struct rq *rq)
2235 {
2236 if (rq->post_schedule) {
2237 unsigned long flags;
2238
2239 raw_spin_lock_irqsave(&rq->lock, flags);
2240 if (rq->curr->sched_class->post_schedule)
2241 rq->curr->sched_class->post_schedule(rq);
2242 raw_spin_unlock_irqrestore(&rq->lock, flags);
2243
2244 rq->post_schedule = 0;
2245 }
2246 }
2247
2248 #else
2249
2250 static inline void post_schedule(struct rq *rq)
2251 {
2252 }
2253
2254 #endif
2255
2256 /**
2257 * schedule_tail - first thing a freshly forked thread must call.
2258 * @prev: the thread we just switched away from.
2259 */
2260 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2261 __releases(rq->lock)
2262 {
2263 struct rq *rq;
2264
2265 /* finish_task_switch() drops rq->lock and enables preemtion */
2266 preempt_disable();
2267 rq = finish_task_switch(prev);
2268 post_schedule(rq);
2269 preempt_enable();
2270
2271 if (current->set_child_tid)
2272 put_user(task_pid_vnr(current), current->set_child_tid);
2273 }
2274
2275 /*
2276 * context_switch - switch to the new MM and the new thread's register state.
2277 */
2278 static inline struct rq *
2279 context_switch(struct rq *rq, struct task_struct *prev,
2280 struct task_struct *next)
2281 {
2282 struct mm_struct *mm, *oldmm;
2283
2284 prepare_task_switch(rq, prev, next);
2285
2286 mm = next->mm;
2287 oldmm = prev->active_mm;
2288 /*
2289 * For paravirt, this is coupled with an exit in switch_to to
2290 * combine the page table reload and the switch backend into
2291 * one hypercall.
2292 */
2293 arch_start_context_switch(prev);
2294
2295 if (!mm) {
2296 next->active_mm = oldmm;
2297 atomic_inc(&oldmm->mm_count);
2298 enter_lazy_tlb(oldmm, next);
2299 } else
2300 switch_mm(oldmm, mm, next);
2301
2302 if (!prev->mm) {
2303 prev->active_mm = NULL;
2304 rq->prev_mm = oldmm;
2305 }
2306 /*
2307 * Since the runqueue lock will be released by the next
2308 * task (which is an invalid locking op but in the case
2309 * of the scheduler it's an obvious special-case), so we
2310 * do an early lockdep release here:
2311 */
2312 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2313
2314 context_tracking_task_switch(prev, next);
2315 /* Here we just switch the register state and the stack. */
2316 switch_to(prev, next, prev);
2317 barrier();
2318
2319 return finish_task_switch(prev);
2320 }
2321
2322 /*
2323 * nr_running and nr_context_switches:
2324 *
2325 * externally visible scheduler statistics: current number of runnable
2326 * threads, total number of context switches performed since bootup.
2327 */
2328 unsigned long nr_running(void)
2329 {
2330 unsigned long i, sum = 0;
2331
2332 for_each_online_cpu(i)
2333 sum += cpu_rq(i)->nr_running;
2334
2335 return sum;
2336 }
2337
2338 /*
2339 * Check if only the current task is running on the cpu.
2340 */
2341 bool single_task_running(void)
2342 {
2343 if (cpu_rq(smp_processor_id())->nr_running == 1)
2344 return true;
2345 else
2346 return false;
2347 }
2348 EXPORT_SYMBOL(single_task_running);
2349
2350 unsigned long long nr_context_switches(void)
2351 {
2352 int i;
2353 unsigned long long sum = 0;
2354
2355 for_each_possible_cpu(i)
2356 sum += cpu_rq(i)->nr_switches;
2357
2358 return sum;
2359 }
2360
2361 unsigned long nr_iowait(void)
2362 {
2363 unsigned long i, sum = 0;
2364
2365 for_each_possible_cpu(i)
2366 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2367
2368 return sum;
2369 }
2370
2371 unsigned long nr_iowait_cpu(int cpu)
2372 {
2373 struct rq *this = cpu_rq(cpu);
2374 return atomic_read(&this->nr_iowait);
2375 }
2376
2377 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2378 {
2379 struct rq *this = this_rq();
2380 *nr_waiters = atomic_read(&this->nr_iowait);
2381 *load = this->cpu_load[0];
2382 }
2383
2384 #ifdef CONFIG_SMP
2385
2386 /*
2387 * sched_exec - execve() is a valuable balancing opportunity, because at
2388 * this point the task has the smallest effective memory and cache footprint.
2389 */
2390 void sched_exec(void)
2391 {
2392 struct task_struct *p = current;
2393 unsigned long flags;
2394 int dest_cpu;
2395
2396 raw_spin_lock_irqsave(&p->pi_lock, flags);
2397 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2398 if (dest_cpu == smp_processor_id())
2399 goto unlock;
2400
2401 if (likely(cpu_active(dest_cpu))) {
2402 struct migration_arg arg = { p, dest_cpu };
2403
2404 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2405 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2406 return;
2407 }
2408 unlock:
2409 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2410 }
2411
2412 #endif
2413
2414 DEFINE_PER_CPU(struct kernel_stat, kstat);
2415 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2416
2417 EXPORT_PER_CPU_SYMBOL(kstat);
2418 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2419
2420 /*
2421 * Return accounted runtime for the task.
2422 * In case the task is currently running, return the runtime plus current's
2423 * pending runtime that have not been accounted yet.
2424 */
2425 unsigned long long task_sched_runtime(struct task_struct *p)
2426 {
2427 unsigned long flags;
2428 struct rq *rq;
2429 u64 ns;
2430
2431 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2432 /*
2433 * 64-bit doesn't need locks to atomically read a 64bit value.
2434 * So we have a optimization chance when the task's delta_exec is 0.
2435 * Reading ->on_cpu is racy, but this is ok.
2436 *
2437 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2438 * If we race with it entering cpu, unaccounted time is 0. This is
2439 * indistinguishable from the read occurring a few cycles earlier.
2440 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2441 * been accounted, so we're correct here as well.
2442 */
2443 if (!p->on_cpu || !task_on_rq_queued(p))
2444 return p->se.sum_exec_runtime;
2445 #endif
2446
2447 rq = task_rq_lock(p, &flags);
2448 /*
2449 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2450 * project cycles that may never be accounted to this
2451 * thread, breaking clock_gettime().
2452 */
2453 if (task_current(rq, p) && task_on_rq_queued(p)) {
2454 update_rq_clock(rq);
2455 p->sched_class->update_curr(rq);
2456 }
2457 ns = p->se.sum_exec_runtime;
2458 task_rq_unlock(rq, p, &flags);
2459
2460 return ns;
2461 }
2462
2463 /*
2464 * This function gets called by the timer code, with HZ frequency.
2465 * We call it with interrupts disabled.
2466 */
2467 void scheduler_tick(void)
2468 {
2469 int cpu = smp_processor_id();
2470 struct rq *rq = cpu_rq(cpu);
2471 struct task_struct *curr = rq->curr;
2472
2473 sched_clock_tick();
2474
2475 raw_spin_lock(&rq->lock);
2476 update_rq_clock(rq);
2477 curr->sched_class->task_tick(rq, curr, 0);
2478 update_cpu_load_active(rq);
2479 raw_spin_unlock(&rq->lock);
2480
2481 perf_event_task_tick();
2482
2483 #ifdef CONFIG_SMP
2484 rq->idle_balance = idle_cpu(cpu);
2485 trigger_load_balance(rq);
2486 #endif
2487 rq_last_tick_reset(rq);
2488 }
2489
2490 #ifdef CONFIG_NO_HZ_FULL
2491 /**
2492 * scheduler_tick_max_deferment
2493 *
2494 * Keep at least one tick per second when a single
2495 * active task is running because the scheduler doesn't
2496 * yet completely support full dynticks environment.
2497 *
2498 * This makes sure that uptime, CFS vruntime, load
2499 * balancing, etc... continue to move forward, even
2500 * with a very low granularity.
2501 *
2502 * Return: Maximum deferment in nanoseconds.
2503 */
2504 u64 scheduler_tick_max_deferment(void)
2505 {
2506 struct rq *rq = this_rq();
2507 unsigned long next, now = ACCESS_ONCE(jiffies);
2508
2509 next = rq->last_sched_tick + HZ;
2510
2511 if (time_before_eq(next, now))
2512 return 0;
2513
2514 return jiffies_to_nsecs(next - now);
2515 }
2516 #endif
2517
2518 notrace unsigned long get_parent_ip(unsigned long addr)
2519 {
2520 if (in_lock_functions(addr)) {
2521 addr = CALLER_ADDR2;
2522 if (in_lock_functions(addr))
2523 addr = CALLER_ADDR3;
2524 }
2525 return addr;
2526 }
2527
2528 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2529 defined(CONFIG_PREEMPT_TRACER))
2530
2531 void preempt_count_add(int val)
2532 {
2533 #ifdef CONFIG_DEBUG_PREEMPT
2534 /*
2535 * Underflow?
2536 */
2537 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2538 return;
2539 #endif
2540 __preempt_count_add(val);
2541 #ifdef CONFIG_DEBUG_PREEMPT
2542 /*
2543 * Spinlock count overflowing soon?
2544 */
2545 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2546 PREEMPT_MASK - 10);
2547 #endif
2548 if (preempt_count() == val) {
2549 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2550 #ifdef CONFIG_DEBUG_PREEMPT
2551 current->preempt_disable_ip = ip;
2552 #endif
2553 trace_preempt_off(CALLER_ADDR0, ip);
2554 }
2555 }
2556 EXPORT_SYMBOL(preempt_count_add);
2557 NOKPROBE_SYMBOL(preempt_count_add);
2558
2559 void preempt_count_sub(int val)
2560 {
2561 #ifdef CONFIG_DEBUG_PREEMPT
2562 /*
2563 * Underflow?
2564 */
2565 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2566 return;
2567 /*
2568 * Is the spinlock portion underflowing?
2569 */
2570 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2571 !(preempt_count() & PREEMPT_MASK)))
2572 return;
2573 #endif
2574
2575 if (preempt_count() == val)
2576 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2577 __preempt_count_sub(val);
2578 }
2579 EXPORT_SYMBOL(preempt_count_sub);
2580 NOKPROBE_SYMBOL(preempt_count_sub);
2581
2582 #endif
2583
2584 /*
2585 * Print scheduling while atomic bug:
2586 */
2587 static noinline void __schedule_bug(struct task_struct *prev)
2588 {
2589 if (oops_in_progress)
2590 return;
2591
2592 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2593 prev->comm, prev->pid, preempt_count());
2594
2595 debug_show_held_locks(prev);
2596 print_modules();
2597 if (irqs_disabled())
2598 print_irqtrace_events(prev);
2599 #ifdef CONFIG_DEBUG_PREEMPT
2600 if (in_atomic_preempt_off()) {
2601 pr_err("Preemption disabled at:");
2602 print_ip_sym(current->preempt_disable_ip);
2603 pr_cont("\n");
2604 }
2605 #endif
2606 dump_stack();
2607 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2608 }
2609
2610 /*
2611 * Various schedule()-time debugging checks and statistics:
2612 */
2613 static inline void schedule_debug(struct task_struct *prev)
2614 {
2615 #ifdef CONFIG_SCHED_STACK_END_CHECK
2616 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2617 #endif
2618 /*
2619 * Test if we are atomic. Since do_exit() needs to call into
2620 * schedule() atomically, we ignore that path. Otherwise whine
2621 * if we are scheduling when we should not.
2622 */
2623 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2624 __schedule_bug(prev);
2625 rcu_sleep_check();
2626
2627 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2628
2629 schedstat_inc(this_rq(), sched_count);
2630 }
2631
2632 /*
2633 * Pick up the highest-prio task:
2634 */
2635 static inline struct task_struct *
2636 pick_next_task(struct rq *rq, struct task_struct *prev)
2637 {
2638 const struct sched_class *class = &fair_sched_class;
2639 struct task_struct *p;
2640
2641 /*
2642 * Optimization: we know that if all tasks are in
2643 * the fair class we can call that function directly:
2644 */
2645 if (likely(prev->sched_class == class &&
2646 rq->nr_running == rq->cfs.h_nr_running)) {
2647 p = fair_sched_class.pick_next_task(rq, prev);
2648 if (unlikely(p == RETRY_TASK))
2649 goto again;
2650
2651 /* assumes fair_sched_class->next == idle_sched_class */
2652 if (unlikely(!p))
2653 p = idle_sched_class.pick_next_task(rq, prev);
2654
2655 return p;
2656 }
2657
2658 again:
2659 for_each_class(class) {
2660 p = class->pick_next_task(rq, prev);
2661 if (p) {
2662 if (unlikely(p == RETRY_TASK))
2663 goto again;
2664 return p;
2665 }
2666 }
2667
2668 BUG(); /* the idle class will always have a runnable task */
2669 }
2670
2671 /*
2672 * __schedule() is the main scheduler function.
2673 *
2674 * The main means of driving the scheduler and thus entering this function are:
2675 *
2676 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2677 *
2678 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2679 * paths. For example, see arch/x86/entry_64.S.
2680 *
2681 * To drive preemption between tasks, the scheduler sets the flag in timer
2682 * interrupt handler scheduler_tick().
2683 *
2684 * 3. Wakeups don't really cause entry into schedule(). They add a
2685 * task to the run-queue and that's it.
2686 *
2687 * Now, if the new task added to the run-queue preempts the current
2688 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2689 * called on the nearest possible occasion:
2690 *
2691 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2692 *
2693 * - in syscall or exception context, at the next outmost
2694 * preempt_enable(). (this might be as soon as the wake_up()'s
2695 * spin_unlock()!)
2696 *
2697 * - in IRQ context, return from interrupt-handler to
2698 * preemptible context
2699 *
2700 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2701 * then at the next:
2702 *
2703 * - cond_resched() call
2704 * - explicit schedule() call
2705 * - return from syscall or exception to user-space
2706 * - return from interrupt-handler to user-space
2707 *
2708 * WARNING: all callers must re-check need_resched() afterward and reschedule
2709 * accordingly in case an event triggered the need for rescheduling (such as
2710 * an interrupt waking up a task) while preemption was disabled in __schedule().
2711 */
2712 static void __sched __schedule(void)
2713 {
2714 struct task_struct *prev, *next;
2715 unsigned long *switch_count;
2716 struct rq *rq;
2717 int cpu;
2718
2719 preempt_disable();
2720 cpu = smp_processor_id();
2721 rq = cpu_rq(cpu);
2722 rcu_note_context_switch();
2723 prev = rq->curr;
2724
2725 schedule_debug(prev);
2726
2727 if (sched_feat(HRTICK))
2728 hrtick_clear(rq);
2729
2730 /*
2731 * Make sure that signal_pending_state()->signal_pending() below
2732 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2733 * done by the caller to avoid the race with signal_wake_up().
2734 */
2735 smp_mb__before_spinlock();
2736 raw_spin_lock_irq(&rq->lock);
2737
2738 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2739
2740 switch_count = &prev->nivcsw;
2741 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2742 if (unlikely(signal_pending_state(prev->state, prev))) {
2743 prev->state = TASK_RUNNING;
2744 } else {
2745 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2746 prev->on_rq = 0;
2747
2748 /*
2749 * If a worker went to sleep, notify and ask workqueue
2750 * whether it wants to wake up a task to maintain
2751 * concurrency.
2752 */
2753 if (prev->flags & PF_WQ_WORKER) {
2754 struct task_struct *to_wakeup;
2755
2756 to_wakeup = wq_worker_sleeping(prev, cpu);
2757 if (to_wakeup)
2758 try_to_wake_up_local(to_wakeup);
2759 }
2760 }
2761 switch_count = &prev->nvcsw;
2762 }
2763
2764 if (task_on_rq_queued(prev))
2765 update_rq_clock(rq);
2766
2767 next = pick_next_task(rq, prev);
2768 clear_tsk_need_resched(prev);
2769 clear_preempt_need_resched();
2770 rq->clock_skip_update = 0;
2771
2772 if (likely(prev != next)) {
2773 rq->nr_switches++;
2774 rq->curr = next;
2775 ++*switch_count;
2776
2777 rq = context_switch(rq, prev, next); /* unlocks the rq */
2778 cpu = cpu_of(rq);
2779 } else
2780 raw_spin_unlock_irq(&rq->lock);
2781
2782 post_schedule(rq);
2783
2784 sched_preempt_enable_no_resched();
2785 }
2786
2787 static inline void sched_submit_work(struct task_struct *tsk)
2788 {
2789 if (!tsk->state || tsk_is_pi_blocked(tsk))
2790 return;
2791 /*
2792 * If we are going to sleep and we have plugged IO queued,
2793 * make sure to submit it to avoid deadlocks.
2794 */
2795 if (blk_needs_flush_plug(tsk))
2796 blk_schedule_flush_plug(tsk);
2797 }
2798
2799 asmlinkage __visible void __sched schedule(void)
2800 {
2801 struct task_struct *tsk = current;
2802
2803 sched_submit_work(tsk);
2804 do {
2805 __schedule();
2806 } while (need_resched());
2807 }
2808 EXPORT_SYMBOL(schedule);
2809
2810 #ifdef CONFIG_CONTEXT_TRACKING
2811 asmlinkage __visible void __sched schedule_user(void)
2812 {
2813 /*
2814 * If we come here after a random call to set_need_resched(),
2815 * or we have been woken up remotely but the IPI has not yet arrived,
2816 * we haven't yet exited the RCU idle mode. Do it here manually until
2817 * we find a better solution.
2818 *
2819 * NB: There are buggy callers of this function. Ideally we
2820 * should warn if prev_state != CONTEXT_USER, but that will trigger
2821 * too frequently to make sense yet.
2822 */
2823 enum ctx_state prev_state = exception_enter();
2824 schedule();
2825 exception_exit(prev_state);
2826 }
2827 #endif
2828
2829 /**
2830 * schedule_preempt_disabled - called with preemption disabled
2831 *
2832 * Returns with preemption disabled. Note: preempt_count must be 1
2833 */
2834 void __sched schedule_preempt_disabled(void)
2835 {
2836 sched_preempt_enable_no_resched();
2837 schedule();
2838 preempt_disable();
2839 }
2840
2841 static void __sched notrace preempt_schedule_common(void)
2842 {
2843 do {
2844 __preempt_count_add(PREEMPT_ACTIVE);
2845 __schedule();
2846 __preempt_count_sub(PREEMPT_ACTIVE);
2847
2848 /*
2849 * Check again in case we missed a preemption opportunity
2850 * between schedule and now.
2851 */
2852 barrier();
2853 } while (need_resched());
2854 }
2855
2856 #ifdef CONFIG_PREEMPT
2857 /*
2858 * this is the entry point to schedule() from in-kernel preemption
2859 * off of preempt_enable. Kernel preemptions off return from interrupt
2860 * occur there and call schedule directly.
2861 */
2862 asmlinkage __visible void __sched notrace preempt_schedule(void)
2863 {
2864 /*
2865 * If there is a non-zero preempt_count or interrupts are disabled,
2866 * we do not want to preempt the current task. Just return..
2867 */
2868 if (likely(!preemptible()))
2869 return;
2870
2871 preempt_schedule_common();
2872 }
2873 NOKPROBE_SYMBOL(preempt_schedule);
2874 EXPORT_SYMBOL(preempt_schedule);
2875
2876 #ifdef CONFIG_CONTEXT_TRACKING
2877 /**
2878 * preempt_schedule_context - preempt_schedule called by tracing
2879 *
2880 * The tracing infrastructure uses preempt_enable_notrace to prevent
2881 * recursion and tracing preempt enabling caused by the tracing
2882 * infrastructure itself. But as tracing can happen in areas coming
2883 * from userspace or just about to enter userspace, a preempt enable
2884 * can occur before user_exit() is called. This will cause the scheduler
2885 * to be called when the system is still in usermode.
2886 *
2887 * To prevent this, the preempt_enable_notrace will use this function
2888 * instead of preempt_schedule() to exit user context if needed before
2889 * calling the scheduler.
2890 */
2891 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2892 {
2893 enum ctx_state prev_ctx;
2894
2895 if (likely(!preemptible()))
2896 return;
2897
2898 do {
2899 __preempt_count_add(PREEMPT_ACTIVE);
2900 /*
2901 * Needs preempt disabled in case user_exit() is traced
2902 * and the tracer calls preempt_enable_notrace() causing
2903 * an infinite recursion.
2904 */
2905 prev_ctx = exception_enter();
2906 __schedule();
2907 exception_exit(prev_ctx);
2908
2909 __preempt_count_sub(PREEMPT_ACTIVE);
2910 barrier();
2911 } while (need_resched());
2912 }
2913 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2914 #endif /* CONFIG_CONTEXT_TRACKING */
2915
2916 #endif /* CONFIG_PREEMPT */
2917
2918 /*
2919 * this is the entry point to schedule() from kernel preemption
2920 * off of irq context.
2921 * Note, that this is called and return with irqs disabled. This will
2922 * protect us against recursive calling from irq.
2923 */
2924 asmlinkage __visible void __sched preempt_schedule_irq(void)
2925 {
2926 enum ctx_state prev_state;
2927
2928 /* Catch callers which need to be fixed */
2929 BUG_ON(preempt_count() || !irqs_disabled());
2930
2931 prev_state = exception_enter();
2932
2933 do {
2934 __preempt_count_add(PREEMPT_ACTIVE);
2935 local_irq_enable();
2936 __schedule();
2937 local_irq_disable();
2938 __preempt_count_sub(PREEMPT_ACTIVE);
2939
2940 /*
2941 * Check again in case we missed a preemption opportunity
2942 * between schedule and now.
2943 */
2944 barrier();
2945 } while (need_resched());
2946
2947 exception_exit(prev_state);
2948 }
2949
2950 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2951 void *key)
2952 {
2953 return try_to_wake_up(curr->private, mode, wake_flags);
2954 }
2955 EXPORT_SYMBOL(default_wake_function);
2956
2957 #ifdef CONFIG_RT_MUTEXES
2958
2959 /*
2960 * rt_mutex_setprio - set the current priority of a task
2961 * @p: task
2962 * @prio: prio value (kernel-internal form)
2963 *
2964 * This function changes the 'effective' priority of a task. It does
2965 * not touch ->normal_prio like __setscheduler().
2966 *
2967 * Used by the rt_mutex code to implement priority inheritance
2968 * logic. Call site only calls if the priority of the task changed.
2969 */
2970 void rt_mutex_setprio(struct task_struct *p, int prio)
2971 {
2972 int oldprio, queued, running, enqueue_flag = 0;
2973 struct rq *rq;
2974 const struct sched_class *prev_class;
2975
2976 BUG_ON(prio > MAX_PRIO);
2977
2978 rq = __task_rq_lock(p);
2979
2980 /*
2981 * Idle task boosting is a nono in general. There is one
2982 * exception, when PREEMPT_RT and NOHZ is active:
2983 *
2984 * The idle task calls get_next_timer_interrupt() and holds
2985 * the timer wheel base->lock on the CPU and another CPU wants
2986 * to access the timer (probably to cancel it). We can safely
2987 * ignore the boosting request, as the idle CPU runs this code
2988 * with interrupts disabled and will complete the lock
2989 * protected section without being interrupted. So there is no
2990 * real need to boost.
2991 */
2992 if (unlikely(p == rq->idle)) {
2993 WARN_ON(p != rq->curr);
2994 WARN_ON(p->pi_blocked_on);
2995 goto out_unlock;
2996 }
2997
2998 trace_sched_pi_setprio(p, prio);
2999 oldprio = p->prio;
3000 prev_class = p->sched_class;
3001 queued = task_on_rq_queued(p);
3002 running = task_current(rq, p);
3003 if (queued)
3004 dequeue_task(rq, p, 0);
3005 if (running)
3006 put_prev_task(rq, p);
3007
3008 /*
3009 * Boosting condition are:
3010 * 1. -rt task is running and holds mutex A
3011 * --> -dl task blocks on mutex A
3012 *
3013 * 2. -dl task is running and holds mutex A
3014 * --> -dl task blocks on mutex A and could preempt the
3015 * running task
3016 */
3017 if (dl_prio(prio)) {
3018 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3019 if (!dl_prio(p->normal_prio) ||
3020 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3021 p->dl.dl_boosted = 1;
3022 p->dl.dl_throttled = 0;
3023 enqueue_flag = ENQUEUE_REPLENISH;
3024 } else
3025 p->dl.dl_boosted = 0;
3026 p->sched_class = &dl_sched_class;
3027 } else if (rt_prio(prio)) {
3028 if (dl_prio(oldprio))
3029 p->dl.dl_boosted = 0;
3030 if (oldprio < prio)
3031 enqueue_flag = ENQUEUE_HEAD;
3032 p->sched_class = &rt_sched_class;
3033 } else {
3034 if (dl_prio(oldprio))
3035 p->dl.dl_boosted = 0;
3036 if (rt_prio(oldprio))
3037 p->rt.timeout = 0;
3038 p->sched_class = &fair_sched_class;
3039 }
3040
3041 p->prio = prio;
3042
3043 if (running)
3044 p->sched_class->set_curr_task(rq);
3045 if (queued)
3046 enqueue_task(rq, p, enqueue_flag);
3047
3048 check_class_changed(rq, p, prev_class, oldprio);
3049 out_unlock:
3050 __task_rq_unlock(rq);
3051 }
3052 #endif
3053
3054 void set_user_nice(struct task_struct *p, long nice)
3055 {
3056 int old_prio, delta, queued;
3057 unsigned long flags;
3058 struct rq *rq;
3059
3060 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3061 return;
3062 /*
3063 * We have to be careful, if called from sys_setpriority(),
3064 * the task might be in the middle of scheduling on another CPU.
3065 */
3066 rq = task_rq_lock(p, &flags);
3067 /*
3068 * The RT priorities are set via sched_setscheduler(), but we still
3069 * allow the 'normal' nice value to be set - but as expected
3070 * it wont have any effect on scheduling until the task is
3071 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3072 */
3073 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3074 p->static_prio = NICE_TO_PRIO(nice);
3075 goto out_unlock;
3076 }
3077 queued = task_on_rq_queued(p);
3078 if (queued)
3079 dequeue_task(rq, p, 0);
3080
3081 p->static_prio = NICE_TO_PRIO(nice);
3082 set_load_weight(p);
3083 old_prio = p->prio;
3084 p->prio = effective_prio(p);
3085 delta = p->prio - old_prio;
3086
3087 if (queued) {
3088 enqueue_task(rq, p, 0);
3089 /*
3090 * If the task increased its priority or is running and
3091 * lowered its priority, then reschedule its CPU:
3092 */
3093 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3094 resched_curr(rq);
3095 }
3096 out_unlock:
3097 task_rq_unlock(rq, p, &flags);
3098 }
3099 EXPORT_SYMBOL(set_user_nice);
3100
3101 /*
3102 * can_nice - check if a task can reduce its nice value
3103 * @p: task
3104 * @nice: nice value
3105 */
3106 int can_nice(const struct task_struct *p, const int nice)
3107 {
3108 /* convert nice value [19,-20] to rlimit style value [1,40] */
3109 int nice_rlim = nice_to_rlimit(nice);
3110
3111 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3112 capable(CAP_SYS_NICE));
3113 }
3114
3115 #ifdef __ARCH_WANT_SYS_NICE
3116
3117 /*
3118 * sys_nice - change the priority of the current process.
3119 * @increment: priority increment
3120 *
3121 * sys_setpriority is a more generic, but much slower function that
3122 * does similar things.
3123 */
3124 SYSCALL_DEFINE1(nice, int, increment)
3125 {
3126 long nice, retval;
3127
3128 /*
3129 * Setpriority might change our priority at the same moment.
3130 * We don't have to worry. Conceptually one call occurs first
3131 * and we have a single winner.
3132 */
3133 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3134 nice = task_nice(current) + increment;
3135
3136 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3137 if (increment < 0 && !can_nice(current, nice))
3138 return -EPERM;
3139
3140 retval = security_task_setnice(current, nice);
3141 if (retval)
3142 return retval;
3143
3144 set_user_nice(current, nice);
3145 return 0;
3146 }
3147
3148 #endif
3149
3150 /**
3151 * task_prio - return the priority value of a given task.
3152 * @p: the task in question.
3153 *
3154 * Return: The priority value as seen by users in /proc.
3155 * RT tasks are offset by -200. Normal tasks are centered
3156 * around 0, value goes from -16 to +15.
3157 */
3158 int task_prio(const struct task_struct *p)
3159 {
3160 return p->prio - MAX_RT_PRIO;
3161 }
3162
3163 /**
3164 * idle_cpu - is a given cpu idle currently?
3165 * @cpu: the processor in question.
3166 *
3167 * Return: 1 if the CPU is currently idle. 0 otherwise.
3168 */
3169 int idle_cpu(int cpu)
3170 {
3171 struct rq *rq = cpu_rq(cpu);
3172
3173 if (rq->curr != rq->idle)
3174 return 0;
3175
3176 if (rq->nr_running)
3177 return 0;
3178
3179 #ifdef CONFIG_SMP
3180 if (!llist_empty(&rq->wake_list))
3181 return 0;
3182 #endif
3183
3184 return 1;
3185 }
3186
3187 /**
3188 * idle_task - return the idle task for a given cpu.
3189 * @cpu: the processor in question.
3190 *
3191 * Return: The idle task for the cpu @cpu.
3192 */
3193 struct task_struct *idle_task(int cpu)
3194 {
3195 return cpu_rq(cpu)->idle;
3196 }
3197
3198 /**
3199 * find_process_by_pid - find a process with a matching PID value.
3200 * @pid: the pid in question.
3201 *
3202 * The task of @pid, if found. %NULL otherwise.
3203 */
3204 static struct task_struct *find_process_by_pid(pid_t pid)
3205 {
3206 return pid ? find_task_by_vpid(pid) : current;
3207 }
3208
3209 /*
3210 * This function initializes the sched_dl_entity of a newly becoming
3211 * SCHED_DEADLINE task.
3212 *
3213 * Only the static values are considered here, the actual runtime and the
3214 * absolute deadline will be properly calculated when the task is enqueued
3215 * for the first time with its new policy.
3216 */
3217 static void
3218 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3219 {
3220 struct sched_dl_entity *dl_se = &p->dl;
3221
3222 dl_se->dl_runtime = attr->sched_runtime;
3223 dl_se->dl_deadline = attr->sched_deadline;
3224 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3225 dl_se->flags = attr->sched_flags;
3226 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3227
3228 /*
3229 * Changing the parameters of a task is 'tricky' and we're not doing
3230 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3231 *
3232 * What we SHOULD do is delay the bandwidth release until the 0-lag
3233 * point. This would include retaining the task_struct until that time
3234 * and change dl_overflow() to not immediately decrement the current
3235 * amount.
3236 *
3237 * Instead we retain the current runtime/deadline and let the new
3238 * parameters take effect after the current reservation period lapses.
3239 * This is safe (albeit pessimistic) because the 0-lag point is always
3240 * before the current scheduling deadline.
3241 *
3242 * We can still have temporary overloads because we do not delay the
3243 * change in bandwidth until that time; so admission control is
3244 * not on the safe side. It does however guarantee tasks will never
3245 * consume more than promised.
3246 */
3247 }
3248
3249 /*
3250 * sched_setparam() passes in -1 for its policy, to let the functions
3251 * it calls know not to change it.
3252 */
3253 #define SETPARAM_POLICY -1
3254
3255 static void __setscheduler_params(struct task_struct *p,
3256 const struct sched_attr *attr)
3257 {
3258 int policy = attr->sched_policy;
3259
3260 if (policy == SETPARAM_POLICY)
3261 policy = p->policy;
3262
3263 p->policy = policy;
3264
3265 if (dl_policy(policy))
3266 __setparam_dl(p, attr);
3267 else if (fair_policy(policy))
3268 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3269
3270 /*
3271 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3272 * !rt_policy. Always setting this ensures that things like
3273 * getparam()/getattr() don't report silly values for !rt tasks.
3274 */
3275 p->rt_priority = attr->sched_priority;
3276 p->normal_prio = normal_prio(p);
3277 set_load_weight(p);
3278 }
3279
3280 /* Actually do priority change: must hold pi & rq lock. */
3281 static void __setscheduler(struct rq *rq, struct task_struct *p,
3282 const struct sched_attr *attr, bool keep_boost)
3283 {
3284 __setscheduler_params(p, attr);
3285
3286 /*
3287 * Keep a potential priority boosting if called from
3288 * sched_setscheduler().
3289 */
3290 if (keep_boost)
3291 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3292 else
3293 p->prio = normal_prio(p);
3294
3295 if (dl_prio(p->prio))
3296 p->sched_class = &dl_sched_class;
3297 else if (rt_prio(p->prio))
3298 p->sched_class = &rt_sched_class;
3299 else
3300 p->sched_class = &fair_sched_class;
3301 }
3302
3303 static void
3304 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3305 {
3306 struct sched_dl_entity *dl_se = &p->dl;
3307
3308 attr->sched_priority = p->rt_priority;
3309 attr->sched_runtime = dl_se->dl_runtime;
3310 attr->sched_deadline = dl_se->dl_deadline;
3311 attr->sched_period = dl_se->dl_period;
3312 attr->sched_flags = dl_se->flags;
3313 }
3314
3315 /*
3316 * This function validates the new parameters of a -deadline task.
3317 * We ask for the deadline not being zero, and greater or equal
3318 * than the runtime, as well as the period of being zero or
3319 * greater than deadline. Furthermore, we have to be sure that
3320 * user parameters are above the internal resolution of 1us (we
3321 * check sched_runtime only since it is always the smaller one) and
3322 * below 2^63 ns (we have to check both sched_deadline and
3323 * sched_period, as the latter can be zero).
3324 */
3325 static bool
3326 __checkparam_dl(const struct sched_attr *attr)
3327 {
3328 /* deadline != 0 */
3329 if (attr->sched_deadline == 0)
3330 return false;
3331
3332 /*
3333 * Since we truncate DL_SCALE bits, make sure we're at least
3334 * that big.
3335 */
3336 if (attr->sched_runtime < (1ULL << DL_SCALE))
3337 return false;
3338
3339 /*
3340 * Since we use the MSB for wrap-around and sign issues, make
3341 * sure it's not set (mind that period can be equal to zero).
3342 */
3343 if (attr->sched_deadline & (1ULL << 63) ||
3344 attr->sched_period & (1ULL << 63))
3345 return false;
3346
3347 /* runtime <= deadline <= period (if period != 0) */
3348 if ((attr->sched_period != 0 &&
3349 attr->sched_period < attr->sched_deadline) ||
3350 attr->sched_deadline < attr->sched_runtime)
3351 return false;
3352
3353 return true;
3354 }
3355
3356 /*
3357 * check the target process has a UID that matches the current process's
3358 */
3359 static bool check_same_owner(struct task_struct *p)
3360 {
3361 const struct cred *cred = current_cred(), *pcred;
3362 bool match;
3363
3364 rcu_read_lock();
3365 pcred = __task_cred(p);
3366 match = (uid_eq(cred->euid, pcred->euid) ||
3367 uid_eq(cred->euid, pcred->uid));
3368 rcu_read_unlock();
3369 return match;
3370 }
3371
3372 static bool dl_param_changed(struct task_struct *p,
3373 const struct sched_attr *attr)
3374 {
3375 struct sched_dl_entity *dl_se = &p->dl;
3376
3377 if (dl_se->dl_runtime != attr->sched_runtime ||
3378 dl_se->dl_deadline != attr->sched_deadline ||
3379 dl_se->dl_period != attr->sched_period ||
3380 dl_se->flags != attr->sched_flags)
3381 return true;
3382
3383 return false;
3384 }
3385
3386 static int __sched_setscheduler(struct task_struct *p,
3387 const struct sched_attr *attr,
3388 bool user)
3389 {
3390 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3391 MAX_RT_PRIO - 1 - attr->sched_priority;
3392 int retval, oldprio, oldpolicy = -1, queued, running;
3393 int new_effective_prio, policy = attr->sched_policy;
3394 unsigned long flags;
3395 const struct sched_class *prev_class;
3396 struct rq *rq;
3397 int reset_on_fork;
3398
3399 /* may grab non-irq protected spin_locks */
3400 BUG_ON(in_interrupt());
3401 recheck:
3402 /* double check policy once rq lock held */
3403 if (policy < 0) {
3404 reset_on_fork = p->sched_reset_on_fork;
3405 policy = oldpolicy = p->policy;
3406 } else {
3407 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3408
3409 if (policy != SCHED_DEADLINE &&
3410 policy != SCHED_FIFO && policy != SCHED_RR &&
3411 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3412 policy != SCHED_IDLE)
3413 return -EINVAL;
3414 }
3415
3416 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3417 return -EINVAL;
3418
3419 /*
3420 * Valid priorities for SCHED_FIFO and SCHED_RR are
3421 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3422 * SCHED_BATCH and SCHED_IDLE is 0.
3423 */
3424 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3425 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3426 return -EINVAL;
3427 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3428 (rt_policy(policy) != (attr->sched_priority != 0)))
3429 return -EINVAL;
3430
3431 /*
3432 * Allow unprivileged RT tasks to decrease priority:
3433 */
3434 if (user && !capable(CAP_SYS_NICE)) {
3435 if (fair_policy(policy)) {
3436 if (attr->sched_nice < task_nice(p) &&
3437 !can_nice(p, attr->sched_nice))
3438 return -EPERM;
3439 }
3440
3441 if (rt_policy(policy)) {
3442 unsigned long rlim_rtprio =
3443 task_rlimit(p, RLIMIT_RTPRIO);
3444
3445 /* can't set/change the rt policy */
3446 if (policy != p->policy && !rlim_rtprio)
3447 return -EPERM;
3448
3449 /* can't increase priority */
3450 if (attr->sched_priority > p->rt_priority &&
3451 attr->sched_priority > rlim_rtprio)
3452 return -EPERM;
3453 }
3454
3455 /*
3456 * Can't set/change SCHED_DEADLINE policy at all for now
3457 * (safest behavior); in the future we would like to allow
3458 * unprivileged DL tasks to increase their relative deadline
3459 * or reduce their runtime (both ways reducing utilization)
3460 */
3461 if (dl_policy(policy))
3462 return -EPERM;
3463
3464 /*
3465 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3466 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3467 */
3468 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3469 if (!can_nice(p, task_nice(p)))
3470 return -EPERM;
3471 }
3472
3473 /* can't change other user's priorities */
3474 if (!check_same_owner(p))
3475 return -EPERM;
3476
3477 /* Normal users shall not reset the sched_reset_on_fork flag */
3478 if (p->sched_reset_on_fork && !reset_on_fork)
3479 return -EPERM;
3480 }
3481
3482 if (user) {
3483 retval = security_task_setscheduler(p);
3484 if (retval)
3485 return retval;
3486 }
3487
3488 /*
3489 * make sure no PI-waiters arrive (or leave) while we are
3490 * changing the priority of the task:
3491 *
3492 * To be able to change p->policy safely, the appropriate
3493 * runqueue lock must be held.
3494 */
3495 rq = task_rq_lock(p, &flags);
3496
3497 /*
3498 * Changing the policy of the stop threads its a very bad idea
3499 */
3500 if (p == rq->stop) {
3501 task_rq_unlock(rq, p, &flags);
3502 return -EINVAL;
3503 }
3504
3505 /*
3506 * If not changing anything there's no need to proceed further,
3507 * but store a possible modification of reset_on_fork.
3508 */
3509 if (unlikely(policy == p->policy)) {
3510 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3511 goto change;
3512 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3513 goto change;
3514 if (dl_policy(policy) && dl_param_changed(p, attr))
3515 goto change;
3516
3517 p->sched_reset_on_fork = reset_on_fork;
3518 task_rq_unlock(rq, p, &flags);
3519 return 0;
3520 }
3521 change:
3522
3523 if (user) {
3524 #ifdef CONFIG_RT_GROUP_SCHED
3525 /*
3526 * Do not allow realtime tasks into groups that have no runtime
3527 * assigned.
3528 */
3529 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3530 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3531 !task_group_is_autogroup(task_group(p))) {
3532 task_rq_unlock(rq, p, &flags);
3533 return -EPERM;
3534 }
3535 #endif
3536 #ifdef CONFIG_SMP
3537 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3538 cpumask_t *span = rq->rd->span;
3539
3540 /*
3541 * Don't allow tasks with an affinity mask smaller than
3542 * the entire root_domain to become SCHED_DEADLINE. We
3543 * will also fail if there's no bandwidth available.
3544 */
3545 if (!cpumask_subset(span, &p->cpus_allowed) ||
3546 rq->rd->dl_bw.bw == 0) {
3547 task_rq_unlock(rq, p, &flags);
3548 return -EPERM;
3549 }
3550 }
3551 #endif
3552 }
3553
3554 /* recheck policy now with rq lock held */
3555 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3556 policy = oldpolicy = -1;
3557 task_rq_unlock(rq, p, &flags);
3558 goto recheck;
3559 }
3560
3561 /*
3562 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3563 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3564 * is available.
3565 */
3566 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3567 task_rq_unlock(rq, p, &flags);
3568 return -EBUSY;
3569 }
3570
3571 p->sched_reset_on_fork = reset_on_fork;
3572 oldprio = p->prio;
3573
3574 /*
3575 * Take priority boosted tasks into account. If the new
3576 * effective priority is unchanged, we just store the new
3577 * normal parameters and do not touch the scheduler class and
3578 * the runqueue. This will be done when the task deboost
3579 * itself.
3580 */
3581 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3582 if (new_effective_prio == oldprio) {
3583 __setscheduler_params(p, attr);
3584 task_rq_unlock(rq, p, &flags);
3585 return 0;
3586 }
3587
3588 queued = task_on_rq_queued(p);
3589 running = task_current(rq, p);
3590 if (queued)
3591 dequeue_task(rq, p, 0);
3592 if (running)
3593 put_prev_task(rq, p);
3594
3595 prev_class = p->sched_class;
3596 __setscheduler(rq, p, attr, true);
3597
3598 if (running)
3599 p->sched_class->set_curr_task(rq);
3600 if (queued) {
3601 /*
3602 * We enqueue to tail when the priority of a task is
3603 * increased (user space view).
3604 */
3605 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3606 }
3607
3608 check_class_changed(rq, p, prev_class, oldprio);
3609 task_rq_unlock(rq, p, &flags);
3610
3611 rt_mutex_adjust_pi(p);
3612
3613 return 0;
3614 }
3615
3616 static int _sched_setscheduler(struct task_struct *p, int policy,
3617 const struct sched_param *param, bool check)
3618 {
3619 struct sched_attr attr = {
3620 .sched_policy = policy,
3621 .sched_priority = param->sched_priority,
3622 .sched_nice = PRIO_TO_NICE(p->static_prio),
3623 };
3624
3625 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3626 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3627 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3628 policy &= ~SCHED_RESET_ON_FORK;
3629 attr.sched_policy = policy;
3630 }
3631
3632 return __sched_setscheduler(p, &attr, check);
3633 }
3634 /**
3635 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3636 * @p: the task in question.
3637 * @policy: new policy.
3638 * @param: structure containing the new RT priority.
3639 *
3640 * Return: 0 on success. An error code otherwise.
3641 *
3642 * NOTE that the task may be already dead.
3643 */
3644 int sched_setscheduler(struct task_struct *p, int policy,
3645 const struct sched_param *param)
3646 {
3647 return _sched_setscheduler(p, policy, param, true);
3648 }
3649 EXPORT_SYMBOL_GPL(sched_setscheduler);
3650
3651 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3652 {
3653 return __sched_setscheduler(p, attr, true);
3654 }
3655 EXPORT_SYMBOL_GPL(sched_setattr);
3656
3657 /**
3658 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3659 * @p: the task in question.
3660 * @policy: new policy.
3661 * @param: structure containing the new RT priority.
3662 *
3663 * Just like sched_setscheduler, only don't bother checking if the
3664 * current context has permission. For example, this is needed in
3665 * stop_machine(): we create temporary high priority worker threads,
3666 * but our caller might not have that capability.
3667 *
3668 * Return: 0 on success. An error code otherwise.
3669 */
3670 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3671 const struct sched_param *param)
3672 {
3673 return _sched_setscheduler(p, policy, param, false);
3674 }
3675
3676 static int
3677 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3678 {
3679 struct sched_param lparam;
3680 struct task_struct *p;
3681 int retval;
3682
3683 if (!param || pid < 0)
3684 return -EINVAL;
3685 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3686 return -EFAULT;
3687
3688 rcu_read_lock();
3689 retval = -ESRCH;
3690 p = find_process_by_pid(pid);
3691 if (p != NULL)
3692 retval = sched_setscheduler(p, policy, &lparam);
3693 rcu_read_unlock();
3694
3695 return retval;
3696 }
3697
3698 /*
3699 * Mimics kernel/events/core.c perf_copy_attr().
3700 */
3701 static int sched_copy_attr(struct sched_attr __user *uattr,
3702 struct sched_attr *attr)
3703 {
3704 u32 size;
3705 int ret;
3706
3707 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3708 return -EFAULT;
3709
3710 /*
3711 * zero the full structure, so that a short copy will be nice.
3712 */
3713 memset(attr, 0, sizeof(*attr));
3714
3715 ret = get_user(size, &uattr->size);
3716 if (ret)
3717 return ret;
3718
3719 if (size > PAGE_SIZE) /* silly large */
3720 goto err_size;
3721
3722 if (!size) /* abi compat */
3723 size = SCHED_ATTR_SIZE_VER0;
3724
3725 if (size < SCHED_ATTR_SIZE_VER0)
3726 goto err_size;
3727
3728 /*
3729 * If we're handed a bigger struct than we know of,
3730 * ensure all the unknown bits are 0 - i.e. new
3731 * user-space does not rely on any kernel feature
3732 * extensions we dont know about yet.
3733 */
3734 if (size > sizeof(*attr)) {
3735 unsigned char __user *addr;
3736 unsigned char __user *end;
3737 unsigned char val;
3738
3739 addr = (void __user *)uattr + sizeof(*attr);
3740 end = (void __user *)uattr + size;
3741
3742 for (; addr < end; addr++) {
3743 ret = get_user(val, addr);
3744 if (ret)
3745 return ret;
3746 if (val)
3747 goto err_size;
3748 }
3749 size = sizeof(*attr);
3750 }
3751
3752 ret = copy_from_user(attr, uattr, size);
3753 if (ret)
3754 return -EFAULT;
3755
3756 /*
3757 * XXX: do we want to be lenient like existing syscalls; or do we want
3758 * to be strict and return an error on out-of-bounds values?
3759 */
3760 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3761
3762 return 0;
3763
3764 err_size:
3765 put_user(sizeof(*attr), &uattr->size);
3766 return -E2BIG;
3767 }
3768
3769 /**
3770 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3771 * @pid: the pid in question.
3772 * @policy: new policy.
3773 * @param: structure containing the new RT priority.
3774 *
3775 * Return: 0 on success. An error code otherwise.
3776 */
3777 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3778 struct sched_param __user *, param)
3779 {
3780 /* negative values for policy are not valid */
3781 if (policy < 0)
3782 return -EINVAL;
3783
3784 return do_sched_setscheduler(pid, policy, param);
3785 }
3786
3787 /**
3788 * sys_sched_setparam - set/change the RT priority of a thread
3789 * @pid: the pid in question.
3790 * @param: structure containing the new RT priority.
3791 *
3792 * Return: 0 on success. An error code otherwise.
3793 */
3794 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3795 {
3796 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3797 }
3798
3799 /**
3800 * sys_sched_setattr - same as above, but with extended sched_attr
3801 * @pid: the pid in question.
3802 * @uattr: structure containing the extended parameters.
3803 * @flags: for future extension.
3804 */
3805 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3806 unsigned int, flags)
3807 {
3808 struct sched_attr attr;
3809 struct task_struct *p;
3810 int retval;
3811
3812 if (!uattr || pid < 0 || flags)
3813 return -EINVAL;
3814
3815 retval = sched_copy_attr(uattr, &attr);
3816 if (retval)
3817 return retval;
3818
3819 if ((int)attr.sched_policy < 0)
3820 return -EINVAL;
3821
3822 rcu_read_lock();
3823 retval = -ESRCH;
3824 p = find_process_by_pid(pid);
3825 if (p != NULL)
3826 retval = sched_setattr(p, &attr);
3827 rcu_read_unlock();
3828
3829 return retval;
3830 }
3831
3832 /**
3833 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3834 * @pid: the pid in question.
3835 *
3836 * Return: On success, the policy of the thread. Otherwise, a negative error
3837 * code.
3838 */
3839 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3840 {
3841 struct task_struct *p;
3842 int retval;
3843
3844 if (pid < 0)
3845 return -EINVAL;
3846
3847 retval = -ESRCH;
3848 rcu_read_lock();
3849 p = find_process_by_pid(pid);
3850 if (p) {
3851 retval = security_task_getscheduler(p);
3852 if (!retval)
3853 retval = p->policy
3854 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3855 }
3856 rcu_read_unlock();
3857 return retval;
3858 }
3859
3860 /**
3861 * sys_sched_getparam - get the RT priority of a thread
3862 * @pid: the pid in question.
3863 * @param: structure containing the RT priority.
3864 *
3865 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3866 * code.
3867 */
3868 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3869 {
3870 struct sched_param lp = { .sched_priority = 0 };
3871 struct task_struct *p;
3872 int retval;
3873
3874 if (!param || pid < 0)
3875 return -EINVAL;
3876
3877 rcu_read_lock();
3878 p = find_process_by_pid(pid);
3879 retval = -ESRCH;
3880 if (!p)
3881 goto out_unlock;
3882
3883 retval = security_task_getscheduler(p);
3884 if (retval)
3885 goto out_unlock;
3886
3887 if (task_has_rt_policy(p))
3888 lp.sched_priority = p->rt_priority;
3889 rcu_read_unlock();
3890
3891 /*
3892 * This one might sleep, we cannot do it with a spinlock held ...
3893 */
3894 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3895
3896 return retval;
3897
3898 out_unlock:
3899 rcu_read_unlock();
3900 return retval;
3901 }
3902
3903 static int sched_read_attr(struct sched_attr __user *uattr,
3904 struct sched_attr *attr,
3905 unsigned int usize)
3906 {
3907 int ret;
3908
3909 if (!access_ok(VERIFY_WRITE, uattr, usize))
3910 return -EFAULT;
3911
3912 /*
3913 * If we're handed a smaller struct than we know of,
3914 * ensure all the unknown bits are 0 - i.e. old
3915 * user-space does not get uncomplete information.
3916 */
3917 if (usize < sizeof(*attr)) {
3918 unsigned char *addr;
3919 unsigned char *end;
3920
3921 addr = (void *)attr + usize;
3922 end = (void *)attr + sizeof(*attr);
3923
3924 for (; addr < end; addr++) {
3925 if (*addr)
3926 return -EFBIG;
3927 }
3928
3929 attr->size = usize;
3930 }
3931
3932 ret = copy_to_user(uattr, attr, attr->size);
3933 if (ret)
3934 return -EFAULT;
3935
3936 return 0;
3937 }
3938
3939 /**
3940 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3941 * @pid: the pid in question.
3942 * @uattr: structure containing the extended parameters.
3943 * @size: sizeof(attr) for fwd/bwd comp.
3944 * @flags: for future extension.
3945 */
3946 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3947 unsigned int, size, unsigned int, flags)
3948 {
3949 struct sched_attr attr = {
3950 .size = sizeof(struct sched_attr),
3951 };
3952 struct task_struct *p;
3953 int retval;
3954
3955 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3956 size < SCHED_ATTR_SIZE_VER0 || flags)
3957 return -EINVAL;
3958
3959 rcu_read_lock();
3960 p = find_process_by_pid(pid);
3961 retval = -ESRCH;
3962 if (!p)
3963 goto out_unlock;
3964
3965 retval = security_task_getscheduler(p);
3966 if (retval)
3967 goto out_unlock;
3968
3969 attr.sched_policy = p->policy;
3970 if (p->sched_reset_on_fork)
3971 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3972 if (task_has_dl_policy(p))
3973 __getparam_dl(p, &attr);
3974 else if (task_has_rt_policy(p))
3975 attr.sched_priority = p->rt_priority;
3976 else
3977 attr.sched_nice = task_nice(p);
3978
3979 rcu_read_unlock();
3980
3981 retval = sched_read_attr(uattr, &attr, size);
3982 return retval;
3983
3984 out_unlock:
3985 rcu_read_unlock();
3986 return retval;
3987 }
3988
3989 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3990 {
3991 cpumask_var_t cpus_allowed, new_mask;
3992 struct task_struct *p;
3993 int retval;
3994
3995 rcu_read_lock();
3996
3997 p = find_process_by_pid(pid);
3998 if (!p) {
3999 rcu_read_unlock();
4000 return -ESRCH;
4001 }
4002
4003 /* Prevent p going away */
4004 get_task_struct(p);
4005 rcu_read_unlock();
4006
4007 if (p->flags & PF_NO_SETAFFINITY) {
4008 retval = -EINVAL;
4009 goto out_put_task;
4010 }
4011 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4012 retval = -ENOMEM;
4013 goto out_put_task;
4014 }
4015 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4016 retval = -ENOMEM;
4017 goto out_free_cpus_allowed;
4018 }
4019 retval = -EPERM;
4020 if (!check_same_owner(p)) {
4021 rcu_read_lock();
4022 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4023 rcu_read_unlock();
4024 goto out_free_new_mask;
4025 }
4026 rcu_read_unlock();
4027 }
4028
4029 retval = security_task_setscheduler(p);
4030 if (retval)
4031 goto out_free_new_mask;
4032
4033
4034 cpuset_cpus_allowed(p, cpus_allowed);
4035 cpumask_and(new_mask, in_mask, cpus_allowed);
4036
4037 /*
4038 * Since bandwidth control happens on root_domain basis,
4039 * if admission test is enabled, we only admit -deadline
4040 * tasks allowed to run on all the CPUs in the task's
4041 * root_domain.
4042 */
4043 #ifdef CONFIG_SMP
4044 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4045 rcu_read_lock();
4046 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4047 retval = -EBUSY;
4048 rcu_read_unlock();
4049 goto out_free_new_mask;
4050 }
4051 rcu_read_unlock();
4052 }
4053 #endif
4054 again:
4055 retval = set_cpus_allowed_ptr(p, new_mask);
4056
4057 if (!retval) {
4058 cpuset_cpus_allowed(p, cpus_allowed);
4059 if (!cpumask_subset(new_mask, cpus_allowed)) {
4060 /*
4061 * We must have raced with a concurrent cpuset
4062 * update. Just reset the cpus_allowed to the
4063 * cpuset's cpus_allowed
4064 */
4065 cpumask_copy(new_mask, cpus_allowed);
4066 goto again;
4067 }
4068 }
4069 out_free_new_mask:
4070 free_cpumask_var(new_mask);
4071 out_free_cpus_allowed:
4072 free_cpumask_var(cpus_allowed);
4073 out_put_task:
4074 put_task_struct(p);
4075 return retval;
4076 }
4077
4078 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4079 struct cpumask *new_mask)
4080 {
4081 if (len < cpumask_size())
4082 cpumask_clear(new_mask);
4083 else if (len > cpumask_size())
4084 len = cpumask_size();
4085
4086 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4087 }
4088
4089 /**
4090 * sys_sched_setaffinity - set the cpu affinity of a process
4091 * @pid: pid of the process
4092 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4093 * @user_mask_ptr: user-space pointer to the new cpu mask
4094 *
4095 * Return: 0 on success. An error code otherwise.
4096 */
4097 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4098 unsigned long __user *, user_mask_ptr)
4099 {
4100 cpumask_var_t new_mask;
4101 int retval;
4102
4103 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4104 return -ENOMEM;
4105
4106 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4107 if (retval == 0)
4108 retval = sched_setaffinity(pid, new_mask);
4109 free_cpumask_var(new_mask);
4110 return retval;
4111 }
4112
4113 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4114 {
4115 struct task_struct *p;
4116 unsigned long flags;
4117 int retval;
4118
4119 rcu_read_lock();
4120
4121 retval = -ESRCH;
4122 p = find_process_by_pid(pid);
4123 if (!p)
4124 goto out_unlock;
4125
4126 retval = security_task_getscheduler(p);
4127 if (retval)
4128 goto out_unlock;
4129
4130 raw_spin_lock_irqsave(&p->pi_lock, flags);
4131 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4132 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4133
4134 out_unlock:
4135 rcu_read_unlock();
4136
4137 return retval;
4138 }
4139
4140 /**
4141 * sys_sched_getaffinity - get the cpu affinity of a process
4142 * @pid: pid of the process
4143 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4144 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4145 *
4146 * Return: 0 on success. An error code otherwise.
4147 */
4148 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4149 unsigned long __user *, user_mask_ptr)
4150 {
4151 int ret;
4152 cpumask_var_t mask;
4153
4154 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4155 return -EINVAL;
4156 if (len & (sizeof(unsigned long)-1))
4157 return -EINVAL;
4158
4159 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4160 return -ENOMEM;
4161
4162 ret = sched_getaffinity(pid, mask);
4163 if (ret == 0) {
4164 size_t retlen = min_t(size_t, len, cpumask_size());
4165
4166 if (copy_to_user(user_mask_ptr, mask, retlen))
4167 ret = -EFAULT;
4168 else
4169 ret = retlen;
4170 }
4171 free_cpumask_var(mask);
4172
4173 return ret;
4174 }
4175
4176 /**
4177 * sys_sched_yield - yield the current processor to other threads.
4178 *
4179 * This function yields the current CPU to other tasks. If there are no
4180 * other threads running on this CPU then this function will return.
4181 *
4182 * Return: 0.
4183 */
4184 SYSCALL_DEFINE0(sched_yield)
4185 {
4186 struct rq *rq = this_rq_lock();
4187
4188 schedstat_inc(rq, yld_count);
4189 current->sched_class->yield_task(rq);
4190
4191 /*
4192 * Since we are going to call schedule() anyway, there's
4193 * no need to preempt or enable interrupts:
4194 */
4195 __release(rq->lock);
4196 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4197 do_raw_spin_unlock(&rq->lock);
4198 sched_preempt_enable_no_resched();
4199
4200 schedule();
4201
4202 return 0;
4203 }
4204
4205 int __sched _cond_resched(void)
4206 {
4207 if (should_resched()) {
4208 preempt_schedule_common();
4209 return 1;
4210 }
4211 return 0;
4212 }
4213 EXPORT_SYMBOL(_cond_resched);
4214
4215 /*
4216 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4217 * call schedule, and on return reacquire the lock.
4218 *
4219 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4220 * operations here to prevent schedule() from being called twice (once via
4221 * spin_unlock(), once by hand).
4222 */
4223 int __cond_resched_lock(spinlock_t *lock)
4224 {
4225 int resched = should_resched();
4226 int ret = 0;
4227
4228 lockdep_assert_held(lock);
4229
4230 if (spin_needbreak(lock) || resched) {
4231 spin_unlock(lock);
4232 if (resched)
4233 preempt_schedule_common();
4234 else
4235 cpu_relax();
4236 ret = 1;
4237 spin_lock(lock);
4238 }
4239 return ret;
4240 }
4241 EXPORT_SYMBOL(__cond_resched_lock);
4242
4243 int __sched __cond_resched_softirq(void)
4244 {
4245 BUG_ON(!in_softirq());
4246
4247 if (should_resched()) {
4248 local_bh_enable();
4249 preempt_schedule_common();
4250 local_bh_disable();
4251 return 1;
4252 }
4253 return 0;
4254 }
4255 EXPORT_SYMBOL(__cond_resched_softirq);
4256
4257 /**
4258 * yield - yield the current processor to other threads.
4259 *
4260 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4261 *
4262 * The scheduler is at all times free to pick the calling task as the most
4263 * eligible task to run, if removing the yield() call from your code breaks
4264 * it, its already broken.
4265 *
4266 * Typical broken usage is:
4267 *
4268 * while (!event)
4269 * yield();
4270 *
4271 * where one assumes that yield() will let 'the other' process run that will
4272 * make event true. If the current task is a SCHED_FIFO task that will never
4273 * happen. Never use yield() as a progress guarantee!!
4274 *
4275 * If you want to use yield() to wait for something, use wait_event().
4276 * If you want to use yield() to be 'nice' for others, use cond_resched().
4277 * If you still want to use yield(), do not!
4278 */
4279 void __sched yield(void)
4280 {
4281 set_current_state(TASK_RUNNING);
4282 sys_sched_yield();
4283 }
4284 EXPORT_SYMBOL(yield);
4285
4286 /**
4287 * yield_to - yield the current processor to another thread in
4288 * your thread group, or accelerate that thread toward the
4289 * processor it's on.
4290 * @p: target task
4291 * @preempt: whether task preemption is allowed or not
4292 *
4293 * It's the caller's job to ensure that the target task struct
4294 * can't go away on us before we can do any checks.
4295 *
4296 * Return:
4297 * true (>0) if we indeed boosted the target task.
4298 * false (0) if we failed to boost the target.
4299 * -ESRCH if there's no task to yield to.
4300 */
4301 int __sched yield_to(struct task_struct *p, bool preempt)
4302 {
4303 struct task_struct *curr = current;
4304 struct rq *rq, *p_rq;
4305 unsigned long flags;
4306 int yielded = 0;
4307
4308 local_irq_save(flags);
4309 rq = this_rq();
4310
4311 again:
4312 p_rq = task_rq(p);
4313 /*
4314 * If we're the only runnable task on the rq and target rq also
4315 * has only one task, there's absolutely no point in yielding.
4316 */
4317 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4318 yielded = -ESRCH;
4319 goto out_irq;
4320 }
4321
4322 double_rq_lock(rq, p_rq);
4323 if (task_rq(p) != p_rq) {
4324 double_rq_unlock(rq, p_rq);
4325 goto again;
4326 }
4327
4328 if (!curr->sched_class->yield_to_task)
4329 goto out_unlock;
4330
4331 if (curr->sched_class != p->sched_class)
4332 goto out_unlock;
4333
4334 if (task_running(p_rq, p) || p->state)
4335 goto out_unlock;
4336
4337 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4338 if (yielded) {
4339 schedstat_inc(rq, yld_count);
4340 /*
4341 * Make p's CPU reschedule; pick_next_entity takes care of
4342 * fairness.
4343 */
4344 if (preempt && rq != p_rq)
4345 resched_curr(p_rq);
4346 }
4347
4348 out_unlock:
4349 double_rq_unlock(rq, p_rq);
4350 out_irq:
4351 local_irq_restore(flags);
4352
4353 if (yielded > 0)
4354 schedule();
4355
4356 return yielded;
4357 }
4358 EXPORT_SYMBOL_GPL(yield_to);
4359
4360 /*
4361 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4362 * that process accounting knows that this is a task in IO wait state.
4363 */
4364 long __sched io_schedule_timeout(long timeout)
4365 {
4366 int old_iowait = current->in_iowait;
4367 struct rq *rq;
4368 long ret;
4369
4370 current->in_iowait = 1;
4371 if (old_iowait)
4372 blk_schedule_flush_plug(current);
4373 else
4374 blk_flush_plug(current);
4375
4376 delayacct_blkio_start();
4377 rq = raw_rq();
4378 atomic_inc(&rq->nr_iowait);
4379 ret = schedule_timeout(timeout);
4380 current->in_iowait = old_iowait;
4381 atomic_dec(&rq->nr_iowait);
4382 delayacct_blkio_end();
4383
4384 return ret;
4385 }
4386 EXPORT_SYMBOL(io_schedule_timeout);
4387
4388 /**
4389 * sys_sched_get_priority_max - return maximum RT priority.
4390 * @policy: scheduling class.
4391 *
4392 * Return: On success, this syscall returns the maximum
4393 * rt_priority that can be used by a given scheduling class.
4394 * On failure, a negative error code is returned.
4395 */
4396 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4397 {
4398 int ret = -EINVAL;
4399
4400 switch (policy) {
4401 case SCHED_FIFO:
4402 case SCHED_RR:
4403 ret = MAX_USER_RT_PRIO-1;
4404 break;
4405 case SCHED_DEADLINE:
4406 case SCHED_NORMAL:
4407 case SCHED_BATCH:
4408 case SCHED_IDLE:
4409 ret = 0;
4410 break;
4411 }
4412 return ret;
4413 }
4414
4415 /**
4416 * sys_sched_get_priority_min - return minimum RT priority.
4417 * @policy: scheduling class.
4418 *
4419 * Return: On success, this syscall returns the minimum
4420 * rt_priority that can be used by a given scheduling class.
4421 * On failure, a negative error code is returned.
4422 */
4423 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4424 {
4425 int ret = -EINVAL;
4426
4427 switch (policy) {
4428 case SCHED_FIFO:
4429 case SCHED_RR:
4430 ret = 1;
4431 break;
4432 case SCHED_DEADLINE:
4433 case SCHED_NORMAL:
4434 case SCHED_BATCH:
4435 case SCHED_IDLE:
4436 ret = 0;
4437 }
4438 return ret;
4439 }
4440
4441 /**
4442 * sys_sched_rr_get_interval - return the default timeslice of a process.
4443 * @pid: pid of the process.
4444 * @interval: userspace pointer to the timeslice value.
4445 *
4446 * this syscall writes the default timeslice value of a given process
4447 * into the user-space timespec buffer. A value of '0' means infinity.
4448 *
4449 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4450 * an error code.
4451 */
4452 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4453 struct timespec __user *, interval)
4454 {
4455 struct task_struct *p;
4456 unsigned int time_slice;
4457 unsigned long flags;
4458 struct rq *rq;
4459 int retval;
4460 struct timespec t;
4461
4462 if (pid < 0)
4463 return -EINVAL;
4464
4465 retval = -ESRCH;
4466 rcu_read_lock();
4467 p = find_process_by_pid(pid);
4468 if (!p)
4469 goto out_unlock;
4470
4471 retval = security_task_getscheduler(p);
4472 if (retval)
4473 goto out_unlock;
4474
4475 rq = task_rq_lock(p, &flags);
4476 time_slice = 0;
4477 if (p->sched_class->get_rr_interval)
4478 time_slice = p->sched_class->get_rr_interval(rq, p);
4479 task_rq_unlock(rq, p, &flags);
4480
4481 rcu_read_unlock();
4482 jiffies_to_timespec(time_slice, &t);
4483 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4484 return retval;
4485
4486 out_unlock:
4487 rcu_read_unlock();
4488 return retval;
4489 }
4490
4491 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4492
4493 void sched_show_task(struct task_struct *p)
4494 {
4495 unsigned long free = 0;
4496 int ppid;
4497 unsigned long state = p->state;
4498
4499 if (state)
4500 state = __ffs(state) + 1;
4501 printk(KERN_INFO "%-15.15s %c", p->comm,
4502 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4503 #if BITS_PER_LONG == 32
4504 if (state == TASK_RUNNING)
4505 printk(KERN_CONT " running ");
4506 else
4507 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4508 #else
4509 if (state == TASK_RUNNING)
4510 printk(KERN_CONT " running task ");
4511 else
4512 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4513 #endif
4514 #ifdef CONFIG_DEBUG_STACK_USAGE
4515 free = stack_not_used(p);
4516 #endif
4517 ppid = 0;
4518 rcu_read_lock();
4519 if (pid_alive(p))
4520 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4521 rcu_read_unlock();
4522 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4523 task_pid_nr(p), ppid,
4524 (unsigned long)task_thread_info(p)->flags);
4525
4526 print_worker_info(KERN_INFO, p);
4527 show_stack(p, NULL);
4528 }
4529
4530 void show_state_filter(unsigned long state_filter)
4531 {
4532 struct task_struct *g, *p;
4533
4534 #if BITS_PER_LONG == 32
4535 printk(KERN_INFO
4536 " task PC stack pid father\n");
4537 #else
4538 printk(KERN_INFO
4539 " task PC stack pid father\n");
4540 #endif
4541 rcu_read_lock();
4542 for_each_process_thread(g, p) {
4543 /*
4544 * reset the NMI-timeout, listing all files on a slow
4545 * console might take a lot of time:
4546 */
4547 touch_nmi_watchdog();
4548 if (!state_filter || (p->state & state_filter))
4549 sched_show_task(p);
4550 }
4551
4552 touch_all_softlockup_watchdogs();
4553
4554 #ifdef CONFIG_SCHED_DEBUG
4555 sysrq_sched_debug_show();
4556 #endif
4557 rcu_read_unlock();
4558 /*
4559 * Only show locks if all tasks are dumped:
4560 */
4561 if (!state_filter)
4562 debug_show_all_locks();
4563 }
4564
4565 void init_idle_bootup_task(struct task_struct *idle)
4566 {
4567 idle->sched_class = &idle_sched_class;
4568 }
4569
4570 /**
4571 * init_idle - set up an idle thread for a given CPU
4572 * @idle: task in question
4573 * @cpu: cpu the idle task belongs to
4574 *
4575 * NOTE: this function does not set the idle thread's NEED_RESCHED
4576 * flag, to make booting more robust.
4577 */
4578 void init_idle(struct task_struct *idle, int cpu)
4579 {
4580 struct rq *rq = cpu_rq(cpu);
4581 unsigned long flags;
4582
4583 raw_spin_lock_irqsave(&rq->lock, flags);
4584
4585 __sched_fork(0, idle);
4586 idle->state = TASK_RUNNING;
4587 idle->se.exec_start = sched_clock();
4588
4589 do_set_cpus_allowed(idle, cpumask_of(cpu));
4590 /*
4591 * We're having a chicken and egg problem, even though we are
4592 * holding rq->lock, the cpu isn't yet set to this cpu so the
4593 * lockdep check in task_group() will fail.
4594 *
4595 * Similar case to sched_fork(). / Alternatively we could
4596 * use task_rq_lock() here and obtain the other rq->lock.
4597 *
4598 * Silence PROVE_RCU
4599 */
4600 rcu_read_lock();
4601 __set_task_cpu(idle, cpu);
4602 rcu_read_unlock();
4603
4604 rq->curr = rq->idle = idle;
4605 idle->on_rq = TASK_ON_RQ_QUEUED;
4606 #if defined(CONFIG_SMP)
4607 idle->on_cpu = 1;
4608 #endif
4609 raw_spin_unlock_irqrestore(&rq->lock, flags);
4610
4611 /* Set the preempt count _outside_ the spinlocks! */
4612 init_idle_preempt_count(idle, cpu);
4613
4614 /*
4615 * The idle tasks have their own, simple scheduling class:
4616 */
4617 idle->sched_class = &idle_sched_class;
4618 ftrace_graph_init_idle_task(idle, cpu);
4619 vtime_init_idle(idle, cpu);
4620 #if defined(CONFIG_SMP)
4621 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4622 #endif
4623 }
4624
4625 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4626 const struct cpumask *trial)
4627 {
4628 int ret = 1, trial_cpus;
4629 struct dl_bw *cur_dl_b;
4630 unsigned long flags;
4631
4632 if (!cpumask_weight(cur))
4633 return ret;
4634
4635 rcu_read_lock_sched();
4636 cur_dl_b = dl_bw_of(cpumask_any(cur));
4637 trial_cpus = cpumask_weight(trial);
4638
4639 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4640 if (cur_dl_b->bw != -1 &&
4641 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4642 ret = 0;
4643 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4644 rcu_read_unlock_sched();
4645
4646 return ret;
4647 }
4648
4649 int task_can_attach(struct task_struct *p,
4650 const struct cpumask *cs_cpus_allowed)
4651 {
4652 int ret = 0;
4653
4654 /*
4655 * Kthreads which disallow setaffinity shouldn't be moved
4656 * to a new cpuset; we don't want to change their cpu
4657 * affinity and isolating such threads by their set of
4658 * allowed nodes is unnecessary. Thus, cpusets are not
4659 * applicable for such threads. This prevents checking for
4660 * success of set_cpus_allowed_ptr() on all attached tasks
4661 * before cpus_allowed may be changed.
4662 */
4663 if (p->flags & PF_NO_SETAFFINITY) {
4664 ret = -EINVAL;
4665 goto out;
4666 }
4667
4668 #ifdef CONFIG_SMP
4669 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4670 cs_cpus_allowed)) {
4671 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4672 cs_cpus_allowed);
4673 struct dl_bw *dl_b;
4674 bool overflow;
4675 int cpus;
4676 unsigned long flags;
4677
4678 rcu_read_lock_sched();
4679 dl_b = dl_bw_of(dest_cpu);
4680 raw_spin_lock_irqsave(&dl_b->lock, flags);
4681 cpus = dl_bw_cpus(dest_cpu);
4682 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4683 if (overflow)
4684 ret = -EBUSY;
4685 else {
4686 /*
4687 * We reserve space for this task in the destination
4688 * root_domain, as we can't fail after this point.
4689 * We will free resources in the source root_domain
4690 * later on (see set_cpus_allowed_dl()).
4691 */
4692 __dl_add(dl_b, p->dl.dl_bw);
4693 }
4694 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4695 rcu_read_unlock_sched();
4696
4697 }
4698 #endif
4699 out:
4700 return ret;
4701 }
4702
4703 #ifdef CONFIG_SMP
4704 /*
4705 * move_queued_task - move a queued task to new rq.
4706 *
4707 * Returns (locked) new rq. Old rq's lock is released.
4708 */
4709 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4710 {
4711 struct rq *rq = task_rq(p);
4712
4713 lockdep_assert_held(&rq->lock);
4714
4715 dequeue_task(rq, p, 0);
4716 p->on_rq = TASK_ON_RQ_MIGRATING;
4717 set_task_cpu(p, new_cpu);
4718 raw_spin_unlock(&rq->lock);
4719
4720 rq = cpu_rq(new_cpu);
4721
4722 raw_spin_lock(&rq->lock);
4723 BUG_ON(task_cpu(p) != new_cpu);
4724 p->on_rq = TASK_ON_RQ_QUEUED;
4725 enqueue_task(rq, p, 0);
4726 check_preempt_curr(rq, p, 0);
4727
4728 return rq;
4729 }
4730
4731 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4732 {
4733 if (p->sched_class->set_cpus_allowed)
4734 p->sched_class->set_cpus_allowed(p, new_mask);
4735
4736 cpumask_copy(&p->cpus_allowed, new_mask);
4737 p->nr_cpus_allowed = cpumask_weight(new_mask);
4738 }
4739
4740 /*
4741 * This is how migration works:
4742 *
4743 * 1) we invoke migration_cpu_stop() on the target CPU using
4744 * stop_one_cpu().
4745 * 2) stopper starts to run (implicitly forcing the migrated thread
4746 * off the CPU)
4747 * 3) it checks whether the migrated task is still in the wrong runqueue.
4748 * 4) if it's in the wrong runqueue then the migration thread removes
4749 * it and puts it into the right queue.
4750 * 5) stopper completes and stop_one_cpu() returns and the migration
4751 * is done.
4752 */
4753
4754 /*
4755 * Change a given task's CPU affinity. Migrate the thread to a
4756 * proper CPU and schedule it away if the CPU it's executing on
4757 * is removed from the allowed bitmask.
4758 *
4759 * NOTE: the caller must have a valid reference to the task, the
4760 * task must not exit() & deallocate itself prematurely. The
4761 * call is not atomic; no spinlocks may be held.
4762 */
4763 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4764 {
4765 unsigned long flags;
4766 struct rq *rq;
4767 unsigned int dest_cpu;
4768 int ret = 0;
4769
4770 rq = task_rq_lock(p, &flags);
4771
4772 if (cpumask_equal(&p->cpus_allowed, new_mask))
4773 goto out;
4774
4775 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4776 ret = -EINVAL;
4777 goto out;
4778 }
4779
4780 do_set_cpus_allowed(p, new_mask);
4781
4782 /* Can the task run on the task's current CPU? If so, we're done */
4783 if (cpumask_test_cpu(task_cpu(p), new_mask))
4784 goto out;
4785
4786 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4787 if (task_running(rq, p) || p->state == TASK_WAKING) {
4788 struct migration_arg arg = { p, dest_cpu };
4789 /* Need help from migration thread: drop lock and wait. */
4790 task_rq_unlock(rq, p, &flags);
4791 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4792 tlb_migrate_finish(p->mm);
4793 return 0;
4794 } else if (task_on_rq_queued(p))
4795 rq = move_queued_task(p, dest_cpu);
4796 out:
4797 task_rq_unlock(rq, p, &flags);
4798
4799 return ret;
4800 }
4801 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4802
4803 /*
4804 * Move (not current) task off this cpu, onto dest cpu. We're doing
4805 * this because either it can't run here any more (set_cpus_allowed()
4806 * away from this CPU, or CPU going down), or because we're
4807 * attempting to rebalance this task on exec (sched_exec).
4808 *
4809 * So we race with normal scheduler movements, but that's OK, as long
4810 * as the task is no longer on this CPU.
4811 *
4812 * Returns non-zero if task was successfully migrated.
4813 */
4814 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4815 {
4816 struct rq *rq;
4817 int ret = 0;
4818
4819 if (unlikely(!cpu_active(dest_cpu)))
4820 return ret;
4821
4822 rq = cpu_rq(src_cpu);
4823
4824 raw_spin_lock(&p->pi_lock);
4825 raw_spin_lock(&rq->lock);
4826 /* Already moved. */
4827 if (task_cpu(p) != src_cpu)
4828 goto done;
4829
4830 /* Affinity changed (again). */
4831 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4832 goto fail;
4833
4834 /*
4835 * If we're not on a rq, the next wake-up will ensure we're
4836 * placed properly.
4837 */
4838 if (task_on_rq_queued(p))
4839 rq = move_queued_task(p, dest_cpu);
4840 done:
4841 ret = 1;
4842 fail:
4843 raw_spin_unlock(&rq->lock);
4844 raw_spin_unlock(&p->pi_lock);
4845 return ret;
4846 }
4847
4848 #ifdef CONFIG_NUMA_BALANCING
4849 /* Migrate current task p to target_cpu */
4850 int migrate_task_to(struct task_struct *p, int target_cpu)
4851 {
4852 struct migration_arg arg = { p, target_cpu };
4853 int curr_cpu = task_cpu(p);
4854
4855 if (curr_cpu == target_cpu)
4856 return 0;
4857
4858 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4859 return -EINVAL;
4860
4861 /* TODO: This is not properly updating schedstats */
4862
4863 trace_sched_move_numa(p, curr_cpu, target_cpu);
4864 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4865 }
4866
4867 /*
4868 * Requeue a task on a given node and accurately track the number of NUMA
4869 * tasks on the runqueues
4870 */
4871 void sched_setnuma(struct task_struct *p, int nid)
4872 {
4873 struct rq *rq;
4874 unsigned long flags;
4875 bool queued, running;
4876
4877 rq = task_rq_lock(p, &flags);
4878 queued = task_on_rq_queued(p);
4879 running = task_current(rq, p);
4880
4881 if (queued)
4882 dequeue_task(rq, p, 0);
4883 if (running)
4884 put_prev_task(rq, p);
4885
4886 p->numa_preferred_nid = nid;
4887
4888 if (running)
4889 p->sched_class->set_curr_task(rq);
4890 if (queued)
4891 enqueue_task(rq, p, 0);
4892 task_rq_unlock(rq, p, &flags);
4893 }
4894 #endif
4895
4896 /*
4897 * migration_cpu_stop - this will be executed by a highprio stopper thread
4898 * and performs thread migration by bumping thread off CPU then
4899 * 'pushing' onto another runqueue.
4900 */
4901 static int migration_cpu_stop(void *data)
4902 {
4903 struct migration_arg *arg = data;
4904
4905 /*
4906 * The original target cpu might have gone down and we might
4907 * be on another cpu but it doesn't matter.
4908 */
4909 local_irq_disable();
4910 /*
4911 * We need to explicitly wake pending tasks before running
4912 * __migrate_task() such that we will not miss enforcing cpus_allowed
4913 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4914 */
4915 sched_ttwu_pending();
4916 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4917 local_irq_enable();
4918 return 0;
4919 }
4920
4921 #ifdef CONFIG_HOTPLUG_CPU
4922
4923 /*
4924 * Ensures that the idle task is using init_mm right before its cpu goes
4925 * offline.
4926 */
4927 void idle_task_exit(void)
4928 {
4929 struct mm_struct *mm = current->active_mm;
4930
4931 BUG_ON(cpu_online(smp_processor_id()));
4932
4933 if (mm != &init_mm) {
4934 switch_mm(mm, &init_mm, current);
4935 finish_arch_post_lock_switch();
4936 }
4937 mmdrop(mm);
4938 }
4939
4940 /*
4941 * Since this CPU is going 'away' for a while, fold any nr_active delta
4942 * we might have. Assumes we're called after migrate_tasks() so that the
4943 * nr_active count is stable.
4944 *
4945 * Also see the comment "Global load-average calculations".
4946 */
4947 static void calc_load_migrate(struct rq *rq)
4948 {
4949 long delta = calc_load_fold_active(rq);
4950 if (delta)
4951 atomic_long_add(delta, &calc_load_tasks);
4952 }
4953
4954 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4955 {
4956 }
4957
4958 static const struct sched_class fake_sched_class = {
4959 .put_prev_task = put_prev_task_fake,
4960 };
4961
4962 static struct task_struct fake_task = {
4963 /*
4964 * Avoid pull_{rt,dl}_task()
4965 */
4966 .prio = MAX_PRIO + 1,
4967 .sched_class = &fake_sched_class,
4968 };
4969
4970 /*
4971 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4972 * try_to_wake_up()->select_task_rq().
4973 *
4974 * Called with rq->lock held even though we'er in stop_machine() and
4975 * there's no concurrency possible, we hold the required locks anyway
4976 * because of lock validation efforts.
4977 */
4978 static void migrate_tasks(unsigned int dead_cpu)
4979 {
4980 struct rq *rq = cpu_rq(dead_cpu);
4981 struct task_struct *next, *stop = rq->stop;
4982 int dest_cpu;
4983
4984 /*
4985 * Fudge the rq selection such that the below task selection loop
4986 * doesn't get stuck on the currently eligible stop task.
4987 *
4988 * We're currently inside stop_machine() and the rq is either stuck
4989 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4990 * either way we should never end up calling schedule() until we're
4991 * done here.
4992 */
4993 rq->stop = NULL;
4994
4995 /*
4996 * put_prev_task() and pick_next_task() sched
4997 * class method both need to have an up-to-date
4998 * value of rq->clock[_task]
4999 */
5000 update_rq_clock(rq);
5001
5002 for ( ; ; ) {
5003 /*
5004 * There's this thread running, bail when that's the only
5005 * remaining thread.
5006 */
5007 if (rq->nr_running == 1)
5008 break;
5009
5010 next = pick_next_task(rq, &fake_task);
5011 BUG_ON(!next);
5012 next->sched_class->put_prev_task(rq, next);
5013
5014 /* Find suitable destination for @next, with force if needed. */
5015 dest_cpu = select_fallback_rq(dead_cpu, next);
5016 raw_spin_unlock(&rq->lock);
5017
5018 __migrate_task(next, dead_cpu, dest_cpu);
5019
5020 raw_spin_lock(&rq->lock);
5021 }
5022
5023 rq->stop = stop;
5024 }
5025
5026 #endif /* CONFIG_HOTPLUG_CPU */
5027
5028 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5029
5030 static struct ctl_table sd_ctl_dir[] = {
5031 {
5032 .procname = "sched_domain",
5033 .mode = 0555,
5034 },
5035 {}
5036 };
5037
5038 static struct ctl_table sd_ctl_root[] = {
5039 {
5040 .procname = "kernel",
5041 .mode = 0555,
5042 .child = sd_ctl_dir,
5043 },
5044 {}
5045 };
5046
5047 static struct ctl_table *sd_alloc_ctl_entry(int n)
5048 {
5049 struct ctl_table *entry =
5050 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5051
5052 return entry;
5053 }
5054
5055 static void sd_free_ctl_entry(struct ctl_table **tablep)
5056 {
5057 struct ctl_table *entry;
5058
5059 /*
5060 * In the intermediate directories, both the child directory and
5061 * procname are dynamically allocated and could fail but the mode
5062 * will always be set. In the lowest directory the names are
5063 * static strings and all have proc handlers.
5064 */
5065 for (entry = *tablep; entry->mode; entry++) {
5066 if (entry->child)
5067 sd_free_ctl_entry(&entry->child);
5068 if (entry->proc_handler == NULL)
5069 kfree(entry->procname);
5070 }
5071
5072 kfree(*tablep);
5073 *tablep = NULL;
5074 }
5075
5076 static int min_load_idx = 0;
5077 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5078
5079 static void
5080 set_table_entry(struct ctl_table *entry,
5081 const char *procname, void *data, int maxlen,
5082 umode_t mode, proc_handler *proc_handler,
5083 bool load_idx)
5084 {
5085 entry->procname = procname;
5086 entry->data = data;
5087 entry->maxlen = maxlen;
5088 entry->mode = mode;
5089 entry->proc_handler = proc_handler;
5090
5091 if (load_idx) {
5092 entry->extra1 = &min_load_idx;
5093 entry->extra2 = &max_load_idx;
5094 }
5095 }
5096
5097 static struct ctl_table *
5098 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5099 {
5100 struct ctl_table *table = sd_alloc_ctl_entry(14);
5101
5102 if (table == NULL)
5103 return NULL;
5104
5105 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5106 sizeof(long), 0644, proc_doulongvec_minmax, false);
5107 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5108 sizeof(long), 0644, proc_doulongvec_minmax, false);
5109 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5110 sizeof(int), 0644, proc_dointvec_minmax, true);
5111 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5112 sizeof(int), 0644, proc_dointvec_minmax, true);
5113 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5114 sizeof(int), 0644, proc_dointvec_minmax, true);
5115 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5116 sizeof(int), 0644, proc_dointvec_minmax, true);
5117 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5118 sizeof(int), 0644, proc_dointvec_minmax, true);
5119 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5120 sizeof(int), 0644, proc_dointvec_minmax, false);
5121 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5122 sizeof(int), 0644, proc_dointvec_minmax, false);
5123 set_table_entry(&table[9], "cache_nice_tries",
5124 &sd->cache_nice_tries,
5125 sizeof(int), 0644, proc_dointvec_minmax, false);
5126 set_table_entry(&table[10], "flags", &sd->flags,
5127 sizeof(int), 0644, proc_dointvec_minmax, false);
5128 set_table_entry(&table[11], "max_newidle_lb_cost",
5129 &sd->max_newidle_lb_cost,
5130 sizeof(long), 0644, proc_doulongvec_minmax, false);
5131 set_table_entry(&table[12], "name", sd->name,
5132 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5133 /* &table[13] is terminator */
5134
5135 return table;
5136 }
5137
5138 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5139 {
5140 struct ctl_table *entry, *table;
5141 struct sched_domain *sd;
5142 int domain_num = 0, i;
5143 char buf[32];
5144
5145 for_each_domain(cpu, sd)
5146 domain_num++;
5147 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5148 if (table == NULL)
5149 return NULL;
5150
5151 i = 0;
5152 for_each_domain(cpu, sd) {
5153 snprintf(buf, 32, "domain%d", i);
5154 entry->procname = kstrdup(buf, GFP_KERNEL);
5155 entry->mode = 0555;
5156 entry->child = sd_alloc_ctl_domain_table(sd);
5157 entry++;
5158 i++;
5159 }
5160 return table;
5161 }
5162
5163 static struct ctl_table_header *sd_sysctl_header;
5164 static void register_sched_domain_sysctl(void)
5165 {
5166 int i, cpu_num = num_possible_cpus();
5167 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5168 char buf[32];
5169
5170 WARN_ON(sd_ctl_dir[0].child);
5171 sd_ctl_dir[0].child = entry;
5172
5173 if (entry == NULL)
5174 return;
5175
5176 for_each_possible_cpu(i) {
5177 snprintf(buf, 32, "cpu%d", i);
5178 entry->procname = kstrdup(buf, GFP_KERNEL);
5179 entry->mode = 0555;
5180 entry->child = sd_alloc_ctl_cpu_table(i);
5181 entry++;
5182 }
5183
5184 WARN_ON(sd_sysctl_header);
5185 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5186 }
5187
5188 /* may be called multiple times per register */
5189 static void unregister_sched_domain_sysctl(void)
5190 {
5191 if (sd_sysctl_header)
5192 unregister_sysctl_table(sd_sysctl_header);
5193 sd_sysctl_header = NULL;
5194 if (sd_ctl_dir[0].child)
5195 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5196 }
5197 #else
5198 static void register_sched_domain_sysctl(void)
5199 {
5200 }
5201 static void unregister_sched_domain_sysctl(void)
5202 {
5203 }
5204 #endif
5205
5206 static void set_rq_online(struct rq *rq)
5207 {
5208 if (!rq->online) {
5209 const struct sched_class *class;
5210
5211 cpumask_set_cpu(rq->cpu, rq->rd->online);
5212 rq->online = 1;
5213
5214 for_each_class(class) {
5215 if (class->rq_online)
5216 class->rq_online(rq);
5217 }
5218 }
5219 }
5220
5221 static void set_rq_offline(struct rq *rq)
5222 {
5223 if (rq->online) {
5224 const struct sched_class *class;
5225
5226 for_each_class(class) {
5227 if (class->rq_offline)
5228 class->rq_offline(rq);
5229 }
5230
5231 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5232 rq->online = 0;
5233 }
5234 }
5235
5236 /*
5237 * migration_call - callback that gets triggered when a CPU is added.
5238 * Here we can start up the necessary migration thread for the new CPU.
5239 */
5240 static int
5241 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5242 {
5243 int cpu = (long)hcpu;
5244 unsigned long flags;
5245 struct rq *rq = cpu_rq(cpu);
5246
5247 switch (action & ~CPU_TASKS_FROZEN) {
5248
5249 case CPU_UP_PREPARE:
5250 rq->calc_load_update = calc_load_update;
5251 break;
5252
5253 case CPU_ONLINE:
5254 /* Update our root-domain */
5255 raw_spin_lock_irqsave(&rq->lock, flags);
5256 if (rq->rd) {
5257 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5258
5259 set_rq_online(rq);
5260 }
5261 raw_spin_unlock_irqrestore(&rq->lock, flags);
5262 break;
5263
5264 #ifdef CONFIG_HOTPLUG_CPU
5265 case CPU_DYING:
5266 sched_ttwu_pending();
5267 /* Update our root-domain */
5268 raw_spin_lock_irqsave(&rq->lock, flags);
5269 if (rq->rd) {
5270 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5271 set_rq_offline(rq);
5272 }
5273 migrate_tasks(cpu);
5274 BUG_ON(rq->nr_running != 1); /* the migration thread */
5275 raw_spin_unlock_irqrestore(&rq->lock, flags);
5276 break;
5277
5278 case CPU_DEAD:
5279 calc_load_migrate(rq);
5280 break;
5281 #endif
5282 }
5283
5284 update_max_interval();
5285
5286 return NOTIFY_OK;
5287 }
5288
5289 /*
5290 * Register at high priority so that task migration (migrate_all_tasks)
5291 * happens before everything else. This has to be lower priority than
5292 * the notifier in the perf_event subsystem, though.
5293 */
5294 static struct notifier_block migration_notifier = {
5295 .notifier_call = migration_call,
5296 .priority = CPU_PRI_MIGRATION,
5297 };
5298
5299 static void __cpuinit set_cpu_rq_start_time(void)
5300 {
5301 int cpu = smp_processor_id();
5302 struct rq *rq = cpu_rq(cpu);
5303 rq->age_stamp = sched_clock_cpu(cpu);
5304 }
5305
5306 static int sched_cpu_active(struct notifier_block *nfb,
5307 unsigned long action, void *hcpu)
5308 {
5309 switch (action & ~CPU_TASKS_FROZEN) {
5310 case CPU_STARTING:
5311 set_cpu_rq_start_time();
5312 return NOTIFY_OK;
5313 case CPU_DOWN_FAILED:
5314 set_cpu_active((long)hcpu, true);
5315 return NOTIFY_OK;
5316 default:
5317 return NOTIFY_DONE;
5318 }
5319 }
5320
5321 static int sched_cpu_inactive(struct notifier_block *nfb,
5322 unsigned long action, void *hcpu)
5323 {
5324 switch (action & ~CPU_TASKS_FROZEN) {
5325 case CPU_DOWN_PREPARE:
5326 set_cpu_active((long)hcpu, false);
5327 return NOTIFY_OK;
5328 default:
5329 return NOTIFY_DONE;
5330 }
5331 }
5332
5333 static int __init migration_init(void)
5334 {
5335 void *cpu = (void *)(long)smp_processor_id();
5336 int err;
5337
5338 /* Initialize migration for the boot CPU */
5339 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5340 BUG_ON(err == NOTIFY_BAD);
5341 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5342 register_cpu_notifier(&migration_notifier);
5343
5344 /* Register cpu active notifiers */
5345 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5346 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5347
5348 return 0;
5349 }
5350 early_initcall(migration_init);
5351 #endif
5352
5353 #ifdef CONFIG_SMP
5354
5355 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5356
5357 #ifdef CONFIG_SCHED_DEBUG
5358
5359 static __read_mostly int sched_debug_enabled;
5360
5361 static int __init sched_debug_setup(char *str)
5362 {
5363 sched_debug_enabled = 1;
5364
5365 return 0;
5366 }
5367 early_param("sched_debug", sched_debug_setup);
5368
5369 static inline bool sched_debug(void)
5370 {
5371 return sched_debug_enabled;
5372 }
5373
5374 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5375 struct cpumask *groupmask)
5376 {
5377 struct sched_group *group = sd->groups;
5378
5379 cpumask_clear(groupmask);
5380
5381 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5382
5383 if (!(sd->flags & SD_LOAD_BALANCE)) {
5384 printk("does not load-balance\n");
5385 if (sd->parent)
5386 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5387 " has parent");
5388 return -1;
5389 }
5390
5391 printk(KERN_CONT "span %*pbl level %s\n",
5392 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5393
5394 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5395 printk(KERN_ERR "ERROR: domain->span does not contain "
5396 "CPU%d\n", cpu);
5397 }
5398 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5399 printk(KERN_ERR "ERROR: domain->groups does not contain"
5400 " CPU%d\n", cpu);
5401 }
5402
5403 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5404 do {
5405 if (!group) {
5406 printk("\n");
5407 printk(KERN_ERR "ERROR: group is NULL\n");
5408 break;
5409 }
5410
5411 if (!cpumask_weight(sched_group_cpus(group))) {
5412 printk(KERN_CONT "\n");
5413 printk(KERN_ERR "ERROR: empty group\n");
5414 break;
5415 }
5416
5417 if (!(sd->flags & SD_OVERLAP) &&
5418 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5419 printk(KERN_CONT "\n");
5420 printk(KERN_ERR "ERROR: repeated CPUs\n");
5421 break;
5422 }
5423
5424 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5425
5426 printk(KERN_CONT " %*pbl",
5427 cpumask_pr_args(sched_group_cpus(group)));
5428 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5429 printk(KERN_CONT " (cpu_capacity = %d)",
5430 group->sgc->capacity);
5431 }
5432
5433 group = group->next;
5434 } while (group != sd->groups);
5435 printk(KERN_CONT "\n");
5436
5437 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5438 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5439
5440 if (sd->parent &&
5441 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5442 printk(KERN_ERR "ERROR: parent span is not a superset "
5443 "of domain->span\n");
5444 return 0;
5445 }
5446
5447 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5448 {
5449 int level = 0;
5450
5451 if (!sched_debug_enabled)
5452 return;
5453
5454 if (!sd) {
5455 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5456 return;
5457 }
5458
5459 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5460
5461 for (;;) {
5462 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5463 break;
5464 level++;
5465 sd = sd->parent;
5466 if (!sd)
5467 break;
5468 }
5469 }
5470 #else /* !CONFIG_SCHED_DEBUG */
5471 # define sched_domain_debug(sd, cpu) do { } while (0)
5472 static inline bool sched_debug(void)
5473 {
5474 return false;
5475 }
5476 #endif /* CONFIG_SCHED_DEBUG */
5477
5478 static int sd_degenerate(struct sched_domain *sd)
5479 {
5480 if (cpumask_weight(sched_domain_span(sd)) == 1)
5481 return 1;
5482
5483 /* Following flags need at least 2 groups */
5484 if (sd->flags & (SD_LOAD_BALANCE |
5485 SD_BALANCE_NEWIDLE |
5486 SD_BALANCE_FORK |
5487 SD_BALANCE_EXEC |
5488 SD_SHARE_CPUCAPACITY |
5489 SD_SHARE_PKG_RESOURCES |
5490 SD_SHARE_POWERDOMAIN)) {
5491 if (sd->groups != sd->groups->next)
5492 return 0;
5493 }
5494
5495 /* Following flags don't use groups */
5496 if (sd->flags & (SD_WAKE_AFFINE))
5497 return 0;
5498
5499 return 1;
5500 }
5501
5502 static int
5503 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5504 {
5505 unsigned long cflags = sd->flags, pflags = parent->flags;
5506
5507 if (sd_degenerate(parent))
5508 return 1;
5509
5510 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5511 return 0;
5512
5513 /* Flags needing groups don't count if only 1 group in parent */
5514 if (parent->groups == parent->groups->next) {
5515 pflags &= ~(SD_LOAD_BALANCE |
5516 SD_BALANCE_NEWIDLE |
5517 SD_BALANCE_FORK |
5518 SD_BALANCE_EXEC |
5519 SD_SHARE_CPUCAPACITY |
5520 SD_SHARE_PKG_RESOURCES |
5521 SD_PREFER_SIBLING |
5522 SD_SHARE_POWERDOMAIN);
5523 if (nr_node_ids == 1)
5524 pflags &= ~SD_SERIALIZE;
5525 }
5526 if (~cflags & pflags)
5527 return 0;
5528
5529 return 1;
5530 }
5531
5532 static void free_rootdomain(struct rcu_head *rcu)
5533 {
5534 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5535
5536 cpupri_cleanup(&rd->cpupri);
5537 cpudl_cleanup(&rd->cpudl);
5538 free_cpumask_var(rd->dlo_mask);
5539 free_cpumask_var(rd->rto_mask);
5540 free_cpumask_var(rd->online);
5541 free_cpumask_var(rd->span);
5542 kfree(rd);
5543 }
5544
5545 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5546 {
5547 struct root_domain *old_rd = NULL;
5548 unsigned long flags;
5549
5550 raw_spin_lock_irqsave(&rq->lock, flags);
5551
5552 if (rq->rd) {
5553 old_rd = rq->rd;
5554
5555 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5556 set_rq_offline(rq);
5557
5558 cpumask_clear_cpu(rq->cpu, old_rd->span);
5559
5560 /*
5561 * If we dont want to free the old_rd yet then
5562 * set old_rd to NULL to skip the freeing later
5563 * in this function:
5564 */
5565 if (!atomic_dec_and_test(&old_rd->refcount))
5566 old_rd = NULL;
5567 }
5568
5569 atomic_inc(&rd->refcount);
5570 rq->rd = rd;
5571
5572 cpumask_set_cpu(rq->cpu, rd->span);
5573 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5574 set_rq_online(rq);
5575
5576 raw_spin_unlock_irqrestore(&rq->lock, flags);
5577
5578 if (old_rd)
5579 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5580 }
5581
5582 static int init_rootdomain(struct root_domain *rd)
5583 {
5584 memset(rd, 0, sizeof(*rd));
5585
5586 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5587 goto out;
5588 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5589 goto free_span;
5590 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5591 goto free_online;
5592 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5593 goto free_dlo_mask;
5594
5595 init_dl_bw(&rd->dl_bw);
5596 if (cpudl_init(&rd->cpudl) != 0)
5597 goto free_dlo_mask;
5598
5599 if (cpupri_init(&rd->cpupri) != 0)
5600 goto free_rto_mask;
5601 return 0;
5602
5603 free_rto_mask:
5604 free_cpumask_var(rd->rto_mask);
5605 free_dlo_mask:
5606 free_cpumask_var(rd->dlo_mask);
5607 free_online:
5608 free_cpumask_var(rd->online);
5609 free_span:
5610 free_cpumask_var(rd->span);
5611 out:
5612 return -ENOMEM;
5613 }
5614
5615 /*
5616 * By default the system creates a single root-domain with all cpus as
5617 * members (mimicking the global state we have today).
5618 */
5619 struct root_domain def_root_domain;
5620
5621 static void init_defrootdomain(void)
5622 {
5623 init_rootdomain(&def_root_domain);
5624
5625 atomic_set(&def_root_domain.refcount, 1);
5626 }
5627
5628 static struct root_domain *alloc_rootdomain(void)
5629 {
5630 struct root_domain *rd;
5631
5632 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5633 if (!rd)
5634 return NULL;
5635
5636 if (init_rootdomain(rd) != 0) {
5637 kfree(rd);
5638 return NULL;
5639 }
5640
5641 return rd;
5642 }
5643
5644 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5645 {
5646 struct sched_group *tmp, *first;
5647
5648 if (!sg)
5649 return;
5650
5651 first = sg;
5652 do {
5653 tmp = sg->next;
5654
5655 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5656 kfree(sg->sgc);
5657
5658 kfree(sg);
5659 sg = tmp;
5660 } while (sg != first);
5661 }
5662
5663 static void free_sched_domain(struct rcu_head *rcu)
5664 {
5665 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5666
5667 /*
5668 * If its an overlapping domain it has private groups, iterate and
5669 * nuke them all.
5670 */
5671 if (sd->flags & SD_OVERLAP) {
5672 free_sched_groups(sd->groups, 1);
5673 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5674 kfree(sd->groups->sgc);
5675 kfree(sd->groups);
5676 }
5677 kfree(sd);
5678 }
5679
5680 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5681 {
5682 call_rcu(&sd->rcu, free_sched_domain);
5683 }
5684
5685 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5686 {
5687 for (; sd; sd = sd->parent)
5688 destroy_sched_domain(sd, cpu);
5689 }
5690
5691 /*
5692 * Keep a special pointer to the highest sched_domain that has
5693 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5694 * allows us to avoid some pointer chasing select_idle_sibling().
5695 *
5696 * Also keep a unique ID per domain (we use the first cpu number in
5697 * the cpumask of the domain), this allows us to quickly tell if
5698 * two cpus are in the same cache domain, see cpus_share_cache().
5699 */
5700 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5701 DEFINE_PER_CPU(int, sd_llc_size);
5702 DEFINE_PER_CPU(int, sd_llc_id);
5703 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5704 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5705 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5706
5707 static void update_top_cache_domain(int cpu)
5708 {
5709 struct sched_domain *sd;
5710 struct sched_domain *busy_sd = NULL;
5711 int id = cpu;
5712 int size = 1;
5713
5714 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5715 if (sd) {
5716 id = cpumask_first(sched_domain_span(sd));
5717 size = cpumask_weight(sched_domain_span(sd));
5718 busy_sd = sd->parent; /* sd_busy */
5719 }
5720 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5721
5722 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5723 per_cpu(sd_llc_size, cpu) = size;
5724 per_cpu(sd_llc_id, cpu) = id;
5725
5726 sd = lowest_flag_domain(cpu, SD_NUMA);
5727 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5728
5729 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5730 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5731 }
5732
5733 /*
5734 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5735 * hold the hotplug lock.
5736 */
5737 static void
5738 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5739 {
5740 struct rq *rq = cpu_rq(cpu);
5741 struct sched_domain *tmp;
5742
5743 /* Remove the sched domains which do not contribute to scheduling. */
5744 for (tmp = sd; tmp; ) {
5745 struct sched_domain *parent = tmp->parent;
5746 if (!parent)
5747 break;
5748
5749 if (sd_parent_degenerate(tmp, parent)) {
5750 tmp->parent = parent->parent;
5751 if (parent->parent)
5752 parent->parent->child = tmp;
5753 /*
5754 * Transfer SD_PREFER_SIBLING down in case of a
5755 * degenerate parent; the spans match for this
5756 * so the property transfers.
5757 */
5758 if (parent->flags & SD_PREFER_SIBLING)
5759 tmp->flags |= SD_PREFER_SIBLING;
5760 destroy_sched_domain(parent, cpu);
5761 } else
5762 tmp = tmp->parent;
5763 }
5764
5765 if (sd && sd_degenerate(sd)) {
5766 tmp = sd;
5767 sd = sd->parent;
5768 destroy_sched_domain(tmp, cpu);
5769 if (sd)
5770 sd->child = NULL;
5771 }
5772
5773 sched_domain_debug(sd, cpu);
5774
5775 rq_attach_root(rq, rd);
5776 tmp = rq->sd;
5777 rcu_assign_pointer(rq->sd, sd);
5778 destroy_sched_domains(tmp, cpu);
5779
5780 update_top_cache_domain(cpu);
5781 }
5782
5783 /* Setup the mask of cpus configured for isolated domains */
5784 static int __init isolated_cpu_setup(char *str)
5785 {
5786 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5787 cpulist_parse(str, cpu_isolated_map);
5788 return 1;
5789 }
5790
5791 __setup("isolcpus=", isolated_cpu_setup);
5792
5793 struct s_data {
5794 struct sched_domain ** __percpu sd;
5795 struct root_domain *rd;
5796 };
5797
5798 enum s_alloc {
5799 sa_rootdomain,
5800 sa_sd,
5801 sa_sd_storage,
5802 sa_none,
5803 };
5804
5805 /*
5806 * Build an iteration mask that can exclude certain CPUs from the upwards
5807 * domain traversal.
5808 *
5809 * Asymmetric node setups can result in situations where the domain tree is of
5810 * unequal depth, make sure to skip domains that already cover the entire
5811 * range.
5812 *
5813 * In that case build_sched_domains() will have terminated the iteration early
5814 * and our sibling sd spans will be empty. Domains should always include the
5815 * cpu they're built on, so check that.
5816 *
5817 */
5818 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5819 {
5820 const struct cpumask *span = sched_domain_span(sd);
5821 struct sd_data *sdd = sd->private;
5822 struct sched_domain *sibling;
5823 int i;
5824
5825 for_each_cpu(i, span) {
5826 sibling = *per_cpu_ptr(sdd->sd, i);
5827 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5828 continue;
5829
5830 cpumask_set_cpu(i, sched_group_mask(sg));
5831 }
5832 }
5833
5834 /*
5835 * Return the canonical balance cpu for this group, this is the first cpu
5836 * of this group that's also in the iteration mask.
5837 */
5838 int group_balance_cpu(struct sched_group *sg)
5839 {
5840 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5841 }
5842
5843 static int
5844 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5845 {
5846 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5847 const struct cpumask *span = sched_domain_span(sd);
5848 struct cpumask *covered = sched_domains_tmpmask;
5849 struct sd_data *sdd = sd->private;
5850 struct sched_domain *sibling;
5851 int i;
5852
5853 cpumask_clear(covered);
5854
5855 for_each_cpu(i, span) {
5856 struct cpumask *sg_span;
5857
5858 if (cpumask_test_cpu(i, covered))
5859 continue;
5860
5861 sibling = *per_cpu_ptr(sdd->sd, i);
5862
5863 /* See the comment near build_group_mask(). */
5864 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5865 continue;
5866
5867 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5868 GFP_KERNEL, cpu_to_node(cpu));
5869
5870 if (!sg)
5871 goto fail;
5872
5873 sg_span = sched_group_cpus(sg);
5874 if (sibling->child)
5875 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5876 else
5877 cpumask_set_cpu(i, sg_span);
5878
5879 cpumask_or(covered, covered, sg_span);
5880
5881 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5882 if (atomic_inc_return(&sg->sgc->ref) == 1)
5883 build_group_mask(sd, sg);
5884
5885 /*
5886 * Initialize sgc->capacity such that even if we mess up the
5887 * domains and no possible iteration will get us here, we won't
5888 * die on a /0 trap.
5889 */
5890 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5891
5892 /*
5893 * Make sure the first group of this domain contains the
5894 * canonical balance cpu. Otherwise the sched_domain iteration
5895 * breaks. See update_sg_lb_stats().
5896 */
5897 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5898 group_balance_cpu(sg) == cpu)
5899 groups = sg;
5900
5901 if (!first)
5902 first = sg;
5903 if (last)
5904 last->next = sg;
5905 last = sg;
5906 last->next = first;
5907 }
5908 sd->groups = groups;
5909
5910 return 0;
5911
5912 fail:
5913 free_sched_groups(first, 0);
5914
5915 return -ENOMEM;
5916 }
5917
5918 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5919 {
5920 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5921 struct sched_domain *child = sd->child;
5922
5923 if (child)
5924 cpu = cpumask_first(sched_domain_span(child));
5925
5926 if (sg) {
5927 *sg = *per_cpu_ptr(sdd->sg, cpu);
5928 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5929 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5930 }
5931
5932 return cpu;
5933 }
5934
5935 /*
5936 * build_sched_groups will build a circular linked list of the groups
5937 * covered by the given span, and will set each group's ->cpumask correctly,
5938 * and ->cpu_capacity to 0.
5939 *
5940 * Assumes the sched_domain tree is fully constructed
5941 */
5942 static int
5943 build_sched_groups(struct sched_domain *sd, int cpu)
5944 {
5945 struct sched_group *first = NULL, *last = NULL;
5946 struct sd_data *sdd = sd->private;
5947 const struct cpumask *span = sched_domain_span(sd);
5948 struct cpumask *covered;
5949 int i;
5950
5951 get_group(cpu, sdd, &sd->groups);
5952 atomic_inc(&sd->groups->ref);
5953
5954 if (cpu != cpumask_first(span))
5955 return 0;
5956
5957 lockdep_assert_held(&sched_domains_mutex);
5958 covered = sched_domains_tmpmask;
5959
5960 cpumask_clear(covered);
5961
5962 for_each_cpu(i, span) {
5963 struct sched_group *sg;
5964 int group, j;
5965
5966 if (cpumask_test_cpu(i, covered))
5967 continue;
5968
5969 group = get_group(i, sdd, &sg);
5970 cpumask_setall(sched_group_mask(sg));
5971
5972 for_each_cpu(j, span) {
5973 if (get_group(j, sdd, NULL) != group)
5974 continue;
5975
5976 cpumask_set_cpu(j, covered);
5977 cpumask_set_cpu(j, sched_group_cpus(sg));
5978 }
5979
5980 if (!first)
5981 first = sg;
5982 if (last)
5983 last->next = sg;
5984 last = sg;
5985 }
5986 last->next = first;
5987
5988 return 0;
5989 }
5990
5991 /*
5992 * Initialize sched groups cpu_capacity.
5993 *
5994 * cpu_capacity indicates the capacity of sched group, which is used while
5995 * distributing the load between different sched groups in a sched domain.
5996 * Typically cpu_capacity for all the groups in a sched domain will be same
5997 * unless there are asymmetries in the topology. If there are asymmetries,
5998 * group having more cpu_capacity will pickup more load compared to the
5999 * group having less cpu_capacity.
6000 */
6001 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6002 {
6003 struct sched_group *sg = sd->groups;
6004
6005 WARN_ON(!sg);
6006
6007 do {
6008 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6009 sg = sg->next;
6010 } while (sg != sd->groups);
6011
6012 if (cpu != group_balance_cpu(sg))
6013 return;
6014
6015 update_group_capacity(sd, cpu);
6016 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6017 }
6018
6019 /*
6020 * Initializers for schedule domains
6021 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6022 */
6023
6024 static int default_relax_domain_level = -1;
6025 int sched_domain_level_max;
6026
6027 static int __init setup_relax_domain_level(char *str)
6028 {
6029 if (kstrtoint(str, 0, &default_relax_domain_level))
6030 pr_warn("Unable to set relax_domain_level\n");
6031
6032 return 1;
6033 }
6034 __setup("relax_domain_level=", setup_relax_domain_level);
6035
6036 static void set_domain_attribute(struct sched_domain *sd,
6037 struct sched_domain_attr *attr)
6038 {
6039 int request;
6040
6041 if (!attr || attr->relax_domain_level < 0) {
6042 if (default_relax_domain_level < 0)
6043 return;
6044 else
6045 request = default_relax_domain_level;
6046 } else
6047 request = attr->relax_domain_level;
6048 if (request < sd->level) {
6049 /* turn off idle balance on this domain */
6050 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6051 } else {
6052 /* turn on idle balance on this domain */
6053 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6054 }
6055 }
6056
6057 static void __sdt_free(const struct cpumask *cpu_map);
6058 static int __sdt_alloc(const struct cpumask *cpu_map);
6059
6060 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6061 const struct cpumask *cpu_map)
6062 {
6063 switch (what) {
6064 case sa_rootdomain:
6065 if (!atomic_read(&d->rd->refcount))
6066 free_rootdomain(&d->rd->rcu); /* fall through */
6067 case sa_sd:
6068 free_percpu(d->sd); /* fall through */
6069 case sa_sd_storage:
6070 __sdt_free(cpu_map); /* fall through */
6071 case sa_none:
6072 break;
6073 }
6074 }
6075
6076 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6077 const struct cpumask *cpu_map)
6078 {
6079 memset(d, 0, sizeof(*d));
6080
6081 if (__sdt_alloc(cpu_map))
6082 return sa_sd_storage;
6083 d->sd = alloc_percpu(struct sched_domain *);
6084 if (!d->sd)
6085 return sa_sd_storage;
6086 d->rd = alloc_rootdomain();
6087 if (!d->rd)
6088 return sa_sd;
6089 return sa_rootdomain;
6090 }
6091
6092 /*
6093 * NULL the sd_data elements we've used to build the sched_domain and
6094 * sched_group structure so that the subsequent __free_domain_allocs()
6095 * will not free the data we're using.
6096 */
6097 static void claim_allocations(int cpu, struct sched_domain *sd)
6098 {
6099 struct sd_data *sdd = sd->private;
6100
6101 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6102 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6103
6104 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6105 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6106
6107 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6108 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6109 }
6110
6111 #ifdef CONFIG_NUMA
6112 static int sched_domains_numa_levels;
6113 enum numa_topology_type sched_numa_topology_type;
6114 static int *sched_domains_numa_distance;
6115 int sched_max_numa_distance;
6116 static struct cpumask ***sched_domains_numa_masks;
6117 static int sched_domains_curr_level;
6118 #endif
6119
6120 /*
6121 * SD_flags allowed in topology descriptions.
6122 *
6123 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6124 * SD_SHARE_PKG_RESOURCES - describes shared caches
6125 * SD_NUMA - describes NUMA topologies
6126 * SD_SHARE_POWERDOMAIN - describes shared power domain
6127 *
6128 * Odd one out:
6129 * SD_ASYM_PACKING - describes SMT quirks
6130 */
6131 #define TOPOLOGY_SD_FLAGS \
6132 (SD_SHARE_CPUCAPACITY | \
6133 SD_SHARE_PKG_RESOURCES | \
6134 SD_NUMA | \
6135 SD_ASYM_PACKING | \
6136 SD_SHARE_POWERDOMAIN)
6137
6138 static struct sched_domain *
6139 sd_init(struct sched_domain_topology_level *tl, int cpu)
6140 {
6141 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6142 int sd_weight, sd_flags = 0;
6143
6144 #ifdef CONFIG_NUMA
6145 /*
6146 * Ugly hack to pass state to sd_numa_mask()...
6147 */
6148 sched_domains_curr_level = tl->numa_level;
6149 #endif
6150
6151 sd_weight = cpumask_weight(tl->mask(cpu));
6152
6153 if (tl->sd_flags)
6154 sd_flags = (*tl->sd_flags)();
6155 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6156 "wrong sd_flags in topology description\n"))
6157 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6158
6159 *sd = (struct sched_domain){
6160 .min_interval = sd_weight,
6161 .max_interval = 2*sd_weight,
6162 .busy_factor = 32,
6163 .imbalance_pct = 125,
6164
6165 .cache_nice_tries = 0,
6166 .busy_idx = 0,
6167 .idle_idx = 0,
6168 .newidle_idx = 0,
6169 .wake_idx = 0,
6170 .forkexec_idx = 0,
6171
6172 .flags = 1*SD_LOAD_BALANCE
6173 | 1*SD_BALANCE_NEWIDLE
6174 | 1*SD_BALANCE_EXEC
6175 | 1*SD_BALANCE_FORK
6176 | 0*SD_BALANCE_WAKE
6177 | 1*SD_WAKE_AFFINE
6178 | 0*SD_SHARE_CPUCAPACITY
6179 | 0*SD_SHARE_PKG_RESOURCES
6180 | 0*SD_SERIALIZE
6181 | 0*SD_PREFER_SIBLING
6182 | 0*SD_NUMA
6183 | sd_flags
6184 ,
6185
6186 .last_balance = jiffies,
6187 .balance_interval = sd_weight,
6188 .smt_gain = 0,
6189 .max_newidle_lb_cost = 0,
6190 .next_decay_max_lb_cost = jiffies,
6191 #ifdef CONFIG_SCHED_DEBUG
6192 .name = tl->name,
6193 #endif
6194 };
6195
6196 /*
6197 * Convert topological properties into behaviour.
6198 */
6199
6200 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6201 sd->flags |= SD_PREFER_SIBLING;
6202 sd->imbalance_pct = 110;
6203 sd->smt_gain = 1178; /* ~15% */
6204
6205 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6206 sd->imbalance_pct = 117;
6207 sd->cache_nice_tries = 1;
6208 sd->busy_idx = 2;
6209
6210 #ifdef CONFIG_NUMA
6211 } else if (sd->flags & SD_NUMA) {
6212 sd->cache_nice_tries = 2;
6213 sd->busy_idx = 3;
6214 sd->idle_idx = 2;
6215
6216 sd->flags |= SD_SERIALIZE;
6217 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6218 sd->flags &= ~(SD_BALANCE_EXEC |
6219 SD_BALANCE_FORK |
6220 SD_WAKE_AFFINE);
6221 }
6222
6223 #endif
6224 } else {
6225 sd->flags |= SD_PREFER_SIBLING;
6226 sd->cache_nice_tries = 1;
6227 sd->busy_idx = 2;
6228 sd->idle_idx = 1;
6229 }
6230
6231 sd->private = &tl->data;
6232
6233 return sd;
6234 }
6235
6236 /*
6237 * Topology list, bottom-up.
6238 */
6239 static struct sched_domain_topology_level default_topology[] = {
6240 #ifdef CONFIG_SCHED_SMT
6241 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6242 #endif
6243 #ifdef CONFIG_SCHED_MC
6244 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6245 #endif
6246 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6247 { NULL, },
6248 };
6249
6250 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6251
6252 #define for_each_sd_topology(tl) \
6253 for (tl = sched_domain_topology; tl->mask; tl++)
6254
6255 void set_sched_topology(struct sched_domain_topology_level *tl)
6256 {
6257 sched_domain_topology = tl;
6258 }
6259
6260 #ifdef CONFIG_NUMA
6261
6262 static const struct cpumask *sd_numa_mask(int cpu)
6263 {
6264 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6265 }
6266
6267 static void sched_numa_warn(const char *str)
6268 {
6269 static int done = false;
6270 int i,j;
6271
6272 if (done)
6273 return;
6274
6275 done = true;
6276
6277 printk(KERN_WARNING "ERROR: %s\n\n", str);
6278
6279 for (i = 0; i < nr_node_ids; i++) {
6280 printk(KERN_WARNING " ");
6281 for (j = 0; j < nr_node_ids; j++)
6282 printk(KERN_CONT "%02d ", node_distance(i,j));
6283 printk(KERN_CONT "\n");
6284 }
6285 printk(KERN_WARNING "\n");
6286 }
6287
6288 bool find_numa_distance(int distance)
6289 {
6290 int i;
6291
6292 if (distance == node_distance(0, 0))
6293 return true;
6294
6295 for (i = 0; i < sched_domains_numa_levels; i++) {
6296 if (sched_domains_numa_distance[i] == distance)
6297 return true;
6298 }
6299
6300 return false;
6301 }
6302
6303 /*
6304 * A system can have three types of NUMA topology:
6305 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6306 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6307 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6308 *
6309 * The difference between a glueless mesh topology and a backplane
6310 * topology lies in whether communication between not directly
6311 * connected nodes goes through intermediary nodes (where programs
6312 * could run), or through backplane controllers. This affects
6313 * placement of programs.
6314 *
6315 * The type of topology can be discerned with the following tests:
6316 * - If the maximum distance between any nodes is 1 hop, the system
6317 * is directly connected.
6318 * - If for two nodes A and B, located N > 1 hops away from each other,
6319 * there is an intermediary node C, which is < N hops away from both
6320 * nodes A and B, the system is a glueless mesh.
6321 */
6322 static void init_numa_topology_type(void)
6323 {
6324 int a, b, c, n;
6325
6326 n = sched_max_numa_distance;
6327
6328 if (n <= 1)
6329 sched_numa_topology_type = NUMA_DIRECT;
6330
6331 for_each_online_node(a) {
6332 for_each_online_node(b) {
6333 /* Find two nodes furthest removed from each other. */
6334 if (node_distance(a, b) < n)
6335 continue;
6336
6337 /* Is there an intermediary node between a and b? */
6338 for_each_online_node(c) {
6339 if (node_distance(a, c) < n &&
6340 node_distance(b, c) < n) {
6341 sched_numa_topology_type =
6342 NUMA_GLUELESS_MESH;
6343 return;
6344 }
6345 }
6346
6347 sched_numa_topology_type = NUMA_BACKPLANE;
6348 return;
6349 }
6350 }
6351 }
6352
6353 static void sched_init_numa(void)
6354 {
6355 int next_distance, curr_distance = node_distance(0, 0);
6356 struct sched_domain_topology_level *tl;
6357 int level = 0;
6358 int i, j, k;
6359
6360 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6361 if (!sched_domains_numa_distance)
6362 return;
6363
6364 /*
6365 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6366 * unique distances in the node_distance() table.
6367 *
6368 * Assumes node_distance(0,j) includes all distances in
6369 * node_distance(i,j) in order to avoid cubic time.
6370 */
6371 next_distance = curr_distance;
6372 for (i = 0; i < nr_node_ids; i++) {
6373 for (j = 0; j < nr_node_ids; j++) {
6374 for (k = 0; k < nr_node_ids; k++) {
6375 int distance = node_distance(i, k);
6376
6377 if (distance > curr_distance &&
6378 (distance < next_distance ||
6379 next_distance == curr_distance))
6380 next_distance = distance;
6381
6382 /*
6383 * While not a strong assumption it would be nice to know
6384 * about cases where if node A is connected to B, B is not
6385 * equally connected to A.
6386 */
6387 if (sched_debug() && node_distance(k, i) != distance)
6388 sched_numa_warn("Node-distance not symmetric");
6389
6390 if (sched_debug() && i && !find_numa_distance(distance))
6391 sched_numa_warn("Node-0 not representative");
6392 }
6393 if (next_distance != curr_distance) {
6394 sched_domains_numa_distance[level++] = next_distance;
6395 sched_domains_numa_levels = level;
6396 curr_distance = next_distance;
6397 } else break;
6398 }
6399
6400 /*
6401 * In case of sched_debug() we verify the above assumption.
6402 */
6403 if (!sched_debug())
6404 break;
6405 }
6406
6407 if (!level)
6408 return;
6409
6410 /*
6411 * 'level' contains the number of unique distances, excluding the
6412 * identity distance node_distance(i,i).
6413 *
6414 * The sched_domains_numa_distance[] array includes the actual distance
6415 * numbers.
6416 */
6417
6418 /*
6419 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6420 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6421 * the array will contain less then 'level' members. This could be
6422 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6423 * in other functions.
6424 *
6425 * We reset it to 'level' at the end of this function.
6426 */
6427 sched_domains_numa_levels = 0;
6428
6429 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6430 if (!sched_domains_numa_masks)
6431 return;
6432
6433 /*
6434 * Now for each level, construct a mask per node which contains all
6435 * cpus of nodes that are that many hops away from us.
6436 */
6437 for (i = 0; i < level; i++) {
6438 sched_domains_numa_masks[i] =
6439 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6440 if (!sched_domains_numa_masks[i])
6441 return;
6442
6443 for (j = 0; j < nr_node_ids; j++) {
6444 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6445 if (!mask)
6446 return;
6447
6448 sched_domains_numa_masks[i][j] = mask;
6449
6450 for (k = 0; k < nr_node_ids; k++) {
6451 if (node_distance(j, k) > sched_domains_numa_distance[i])
6452 continue;
6453
6454 cpumask_or(mask, mask, cpumask_of_node(k));
6455 }
6456 }
6457 }
6458
6459 /* Compute default topology size */
6460 for (i = 0; sched_domain_topology[i].mask; i++);
6461
6462 tl = kzalloc((i + level + 1) *
6463 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6464 if (!tl)
6465 return;
6466
6467 /*
6468 * Copy the default topology bits..
6469 */
6470 for (i = 0; sched_domain_topology[i].mask; i++)
6471 tl[i] = sched_domain_topology[i];
6472
6473 /*
6474 * .. and append 'j' levels of NUMA goodness.
6475 */
6476 for (j = 0; j < level; i++, j++) {
6477 tl[i] = (struct sched_domain_topology_level){
6478 .mask = sd_numa_mask,
6479 .sd_flags = cpu_numa_flags,
6480 .flags = SDTL_OVERLAP,
6481 .numa_level = j,
6482 SD_INIT_NAME(NUMA)
6483 };
6484 }
6485
6486 sched_domain_topology = tl;
6487
6488 sched_domains_numa_levels = level;
6489 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6490
6491 init_numa_topology_type();
6492 }
6493
6494 static void sched_domains_numa_masks_set(int cpu)
6495 {
6496 int i, j;
6497 int node = cpu_to_node(cpu);
6498
6499 for (i = 0; i < sched_domains_numa_levels; i++) {
6500 for (j = 0; j < nr_node_ids; j++) {
6501 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6502 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6503 }
6504 }
6505 }
6506
6507 static void sched_domains_numa_masks_clear(int cpu)
6508 {
6509 int i, j;
6510 for (i = 0; i < sched_domains_numa_levels; i++) {
6511 for (j = 0; j < nr_node_ids; j++)
6512 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6513 }
6514 }
6515
6516 /*
6517 * Update sched_domains_numa_masks[level][node] array when new cpus
6518 * are onlined.
6519 */
6520 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6521 unsigned long action,
6522 void *hcpu)
6523 {
6524 int cpu = (long)hcpu;
6525
6526 switch (action & ~CPU_TASKS_FROZEN) {
6527 case CPU_ONLINE:
6528 sched_domains_numa_masks_set(cpu);
6529 break;
6530
6531 case CPU_DEAD:
6532 sched_domains_numa_masks_clear(cpu);
6533 break;
6534
6535 default:
6536 return NOTIFY_DONE;
6537 }
6538
6539 return NOTIFY_OK;
6540 }
6541 #else
6542 static inline void sched_init_numa(void)
6543 {
6544 }
6545
6546 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6547 unsigned long action,
6548 void *hcpu)
6549 {
6550 return 0;
6551 }
6552 #endif /* CONFIG_NUMA */
6553
6554 static int __sdt_alloc(const struct cpumask *cpu_map)
6555 {
6556 struct sched_domain_topology_level *tl;
6557 int j;
6558
6559 for_each_sd_topology(tl) {
6560 struct sd_data *sdd = &tl->data;
6561
6562 sdd->sd = alloc_percpu(struct sched_domain *);
6563 if (!sdd->sd)
6564 return -ENOMEM;
6565
6566 sdd->sg = alloc_percpu(struct sched_group *);
6567 if (!sdd->sg)
6568 return -ENOMEM;
6569
6570 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6571 if (!sdd->sgc)
6572 return -ENOMEM;
6573
6574 for_each_cpu(j, cpu_map) {
6575 struct sched_domain *sd;
6576 struct sched_group *sg;
6577 struct sched_group_capacity *sgc;
6578
6579 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6580 GFP_KERNEL, cpu_to_node(j));
6581 if (!sd)
6582 return -ENOMEM;
6583
6584 *per_cpu_ptr(sdd->sd, j) = sd;
6585
6586 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6587 GFP_KERNEL, cpu_to_node(j));
6588 if (!sg)
6589 return -ENOMEM;
6590
6591 sg->next = sg;
6592
6593 *per_cpu_ptr(sdd->sg, j) = sg;
6594
6595 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6596 GFP_KERNEL, cpu_to_node(j));
6597 if (!sgc)
6598 return -ENOMEM;
6599
6600 *per_cpu_ptr(sdd->sgc, j) = sgc;
6601 }
6602 }
6603
6604 return 0;
6605 }
6606
6607 static void __sdt_free(const struct cpumask *cpu_map)
6608 {
6609 struct sched_domain_topology_level *tl;
6610 int j;
6611
6612 for_each_sd_topology(tl) {
6613 struct sd_data *sdd = &tl->data;
6614
6615 for_each_cpu(j, cpu_map) {
6616 struct sched_domain *sd;
6617
6618 if (sdd->sd) {
6619 sd = *per_cpu_ptr(sdd->sd, j);
6620 if (sd && (sd->flags & SD_OVERLAP))
6621 free_sched_groups(sd->groups, 0);
6622 kfree(*per_cpu_ptr(sdd->sd, j));
6623 }
6624
6625 if (sdd->sg)
6626 kfree(*per_cpu_ptr(sdd->sg, j));
6627 if (sdd->sgc)
6628 kfree(*per_cpu_ptr(sdd->sgc, j));
6629 }
6630 free_percpu(sdd->sd);
6631 sdd->sd = NULL;
6632 free_percpu(sdd->sg);
6633 sdd->sg = NULL;
6634 free_percpu(sdd->sgc);
6635 sdd->sgc = NULL;
6636 }
6637 }
6638
6639 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6640 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6641 struct sched_domain *child, int cpu)
6642 {
6643 struct sched_domain *sd = sd_init(tl, cpu);
6644 if (!sd)
6645 return child;
6646
6647 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6648 if (child) {
6649 sd->level = child->level + 1;
6650 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6651 child->parent = sd;
6652 sd->child = child;
6653
6654 if (!cpumask_subset(sched_domain_span(child),
6655 sched_domain_span(sd))) {
6656 pr_err("BUG: arch topology borken\n");
6657 #ifdef CONFIG_SCHED_DEBUG
6658 pr_err(" the %s domain not a subset of the %s domain\n",
6659 child->name, sd->name);
6660 #endif
6661 /* Fixup, ensure @sd has at least @child cpus. */
6662 cpumask_or(sched_domain_span(sd),
6663 sched_domain_span(sd),
6664 sched_domain_span(child));
6665 }
6666
6667 }
6668 set_domain_attribute(sd, attr);
6669
6670 return sd;
6671 }
6672
6673 /*
6674 * Build sched domains for a given set of cpus and attach the sched domains
6675 * to the individual cpus
6676 */
6677 static int build_sched_domains(const struct cpumask *cpu_map,
6678 struct sched_domain_attr *attr)
6679 {
6680 enum s_alloc alloc_state;
6681 struct sched_domain *sd;
6682 struct s_data d;
6683 int i, ret = -ENOMEM;
6684
6685 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6686 if (alloc_state != sa_rootdomain)
6687 goto error;
6688
6689 /* Set up domains for cpus specified by the cpu_map. */
6690 for_each_cpu(i, cpu_map) {
6691 struct sched_domain_topology_level *tl;
6692
6693 sd = NULL;
6694 for_each_sd_topology(tl) {
6695 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6696 if (tl == sched_domain_topology)
6697 *per_cpu_ptr(d.sd, i) = sd;
6698 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6699 sd->flags |= SD_OVERLAP;
6700 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6701 break;
6702 }
6703 }
6704
6705 /* Build the groups for the domains */
6706 for_each_cpu(i, cpu_map) {
6707 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6708 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6709 if (sd->flags & SD_OVERLAP) {
6710 if (build_overlap_sched_groups(sd, i))
6711 goto error;
6712 } else {
6713 if (build_sched_groups(sd, i))
6714 goto error;
6715 }
6716 }
6717 }
6718
6719 /* Calculate CPU capacity for physical packages and nodes */
6720 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6721 if (!cpumask_test_cpu(i, cpu_map))
6722 continue;
6723
6724 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6725 claim_allocations(i, sd);
6726 init_sched_groups_capacity(i, sd);
6727 }
6728 }
6729
6730 /* Attach the domains */
6731 rcu_read_lock();
6732 for_each_cpu(i, cpu_map) {
6733 sd = *per_cpu_ptr(d.sd, i);
6734 cpu_attach_domain(sd, d.rd, i);
6735 }
6736 rcu_read_unlock();
6737
6738 ret = 0;
6739 error:
6740 __free_domain_allocs(&d, alloc_state, cpu_map);
6741 return ret;
6742 }
6743
6744 static cpumask_var_t *doms_cur; /* current sched domains */
6745 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6746 static struct sched_domain_attr *dattr_cur;
6747 /* attribues of custom domains in 'doms_cur' */
6748
6749 /*
6750 * Special case: If a kmalloc of a doms_cur partition (array of
6751 * cpumask) fails, then fallback to a single sched domain,
6752 * as determined by the single cpumask fallback_doms.
6753 */
6754 static cpumask_var_t fallback_doms;
6755
6756 /*
6757 * arch_update_cpu_topology lets virtualized architectures update the
6758 * cpu core maps. It is supposed to return 1 if the topology changed
6759 * or 0 if it stayed the same.
6760 */
6761 int __weak arch_update_cpu_topology(void)
6762 {
6763 return 0;
6764 }
6765
6766 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6767 {
6768 int i;
6769 cpumask_var_t *doms;
6770
6771 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6772 if (!doms)
6773 return NULL;
6774 for (i = 0; i < ndoms; i++) {
6775 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6776 free_sched_domains(doms, i);
6777 return NULL;
6778 }
6779 }
6780 return doms;
6781 }
6782
6783 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6784 {
6785 unsigned int i;
6786 for (i = 0; i < ndoms; i++)
6787 free_cpumask_var(doms[i]);
6788 kfree(doms);
6789 }
6790
6791 /*
6792 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6793 * For now this just excludes isolated cpus, but could be used to
6794 * exclude other special cases in the future.
6795 */
6796 static int init_sched_domains(const struct cpumask *cpu_map)
6797 {
6798 int err;
6799
6800 arch_update_cpu_topology();
6801 ndoms_cur = 1;
6802 doms_cur = alloc_sched_domains(ndoms_cur);
6803 if (!doms_cur)
6804 doms_cur = &fallback_doms;
6805 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6806 err = build_sched_domains(doms_cur[0], NULL);
6807 register_sched_domain_sysctl();
6808
6809 return err;
6810 }
6811
6812 /*
6813 * Detach sched domains from a group of cpus specified in cpu_map
6814 * These cpus will now be attached to the NULL domain
6815 */
6816 static void detach_destroy_domains(const struct cpumask *cpu_map)
6817 {
6818 int i;
6819
6820 rcu_read_lock();
6821 for_each_cpu(i, cpu_map)
6822 cpu_attach_domain(NULL, &def_root_domain, i);
6823 rcu_read_unlock();
6824 }
6825
6826 /* handle null as "default" */
6827 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6828 struct sched_domain_attr *new, int idx_new)
6829 {
6830 struct sched_domain_attr tmp;
6831
6832 /* fast path */
6833 if (!new && !cur)
6834 return 1;
6835
6836 tmp = SD_ATTR_INIT;
6837 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6838 new ? (new + idx_new) : &tmp,
6839 sizeof(struct sched_domain_attr));
6840 }
6841
6842 /*
6843 * Partition sched domains as specified by the 'ndoms_new'
6844 * cpumasks in the array doms_new[] of cpumasks. This compares
6845 * doms_new[] to the current sched domain partitioning, doms_cur[].
6846 * It destroys each deleted domain and builds each new domain.
6847 *
6848 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6849 * The masks don't intersect (don't overlap.) We should setup one
6850 * sched domain for each mask. CPUs not in any of the cpumasks will
6851 * not be load balanced. If the same cpumask appears both in the
6852 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6853 * it as it is.
6854 *
6855 * The passed in 'doms_new' should be allocated using
6856 * alloc_sched_domains. This routine takes ownership of it and will
6857 * free_sched_domains it when done with it. If the caller failed the
6858 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6859 * and partition_sched_domains() will fallback to the single partition
6860 * 'fallback_doms', it also forces the domains to be rebuilt.
6861 *
6862 * If doms_new == NULL it will be replaced with cpu_online_mask.
6863 * ndoms_new == 0 is a special case for destroying existing domains,
6864 * and it will not create the default domain.
6865 *
6866 * Call with hotplug lock held
6867 */
6868 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6869 struct sched_domain_attr *dattr_new)
6870 {
6871 int i, j, n;
6872 int new_topology;
6873
6874 mutex_lock(&sched_domains_mutex);
6875
6876 /* always unregister in case we don't destroy any domains */
6877 unregister_sched_domain_sysctl();
6878
6879 /* Let architecture update cpu core mappings. */
6880 new_topology = arch_update_cpu_topology();
6881
6882 n = doms_new ? ndoms_new : 0;
6883
6884 /* Destroy deleted domains */
6885 for (i = 0; i < ndoms_cur; i++) {
6886 for (j = 0; j < n && !new_topology; j++) {
6887 if (cpumask_equal(doms_cur[i], doms_new[j])
6888 && dattrs_equal(dattr_cur, i, dattr_new, j))
6889 goto match1;
6890 }
6891 /* no match - a current sched domain not in new doms_new[] */
6892 detach_destroy_domains(doms_cur[i]);
6893 match1:
6894 ;
6895 }
6896
6897 n = ndoms_cur;
6898 if (doms_new == NULL) {
6899 n = 0;
6900 doms_new = &fallback_doms;
6901 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6902 WARN_ON_ONCE(dattr_new);
6903 }
6904
6905 /* Build new domains */
6906 for (i = 0; i < ndoms_new; i++) {
6907 for (j = 0; j < n && !new_topology; j++) {
6908 if (cpumask_equal(doms_new[i], doms_cur[j])
6909 && dattrs_equal(dattr_new, i, dattr_cur, j))
6910 goto match2;
6911 }
6912 /* no match - add a new doms_new */
6913 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6914 match2:
6915 ;
6916 }
6917
6918 /* Remember the new sched domains */
6919 if (doms_cur != &fallback_doms)
6920 free_sched_domains(doms_cur, ndoms_cur);
6921 kfree(dattr_cur); /* kfree(NULL) is safe */
6922 doms_cur = doms_new;
6923 dattr_cur = dattr_new;
6924 ndoms_cur = ndoms_new;
6925
6926 register_sched_domain_sysctl();
6927
6928 mutex_unlock(&sched_domains_mutex);
6929 }
6930
6931 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6932
6933 /*
6934 * Update cpusets according to cpu_active mask. If cpusets are
6935 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6936 * around partition_sched_domains().
6937 *
6938 * If we come here as part of a suspend/resume, don't touch cpusets because we
6939 * want to restore it back to its original state upon resume anyway.
6940 */
6941 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6942 void *hcpu)
6943 {
6944 switch (action) {
6945 case CPU_ONLINE_FROZEN:
6946 case CPU_DOWN_FAILED_FROZEN:
6947
6948 /*
6949 * num_cpus_frozen tracks how many CPUs are involved in suspend
6950 * resume sequence. As long as this is not the last online
6951 * operation in the resume sequence, just build a single sched
6952 * domain, ignoring cpusets.
6953 */
6954 num_cpus_frozen--;
6955 if (likely(num_cpus_frozen)) {
6956 partition_sched_domains(1, NULL, NULL);
6957 break;
6958 }
6959
6960 /*
6961 * This is the last CPU online operation. So fall through and
6962 * restore the original sched domains by considering the
6963 * cpuset configurations.
6964 */
6965
6966 case CPU_ONLINE:
6967 cpuset_update_active_cpus(true);
6968 break;
6969 default:
6970 return NOTIFY_DONE;
6971 }
6972 return NOTIFY_OK;
6973 }
6974
6975 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6976 void *hcpu)
6977 {
6978 unsigned long flags;
6979 long cpu = (long)hcpu;
6980 struct dl_bw *dl_b;
6981 bool overflow;
6982 int cpus;
6983
6984 switch (action) {
6985 case CPU_DOWN_PREPARE:
6986 rcu_read_lock_sched();
6987 dl_b = dl_bw_of(cpu);
6988
6989 raw_spin_lock_irqsave(&dl_b->lock, flags);
6990 cpus = dl_bw_cpus(cpu);
6991 overflow = __dl_overflow(dl_b, cpus, 0, 0);
6992 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
6993
6994 rcu_read_unlock_sched();
6995
6996 if (overflow)
6997 return notifier_from_errno(-EBUSY);
6998 cpuset_update_active_cpus(false);
6999 break;
7000 case CPU_DOWN_PREPARE_FROZEN:
7001 num_cpus_frozen++;
7002 partition_sched_domains(1, NULL, NULL);
7003 break;
7004 default:
7005 return NOTIFY_DONE;
7006 }
7007 return NOTIFY_OK;
7008 }
7009
7010 void __init sched_init_smp(void)
7011 {
7012 cpumask_var_t non_isolated_cpus;
7013
7014 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7015 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7016
7017 sched_init_numa();
7018
7019 /*
7020 * There's no userspace yet to cause hotplug operations; hence all the
7021 * cpu masks are stable and all blatant races in the below code cannot
7022 * happen.
7023 */
7024 mutex_lock(&sched_domains_mutex);
7025 init_sched_domains(cpu_active_mask);
7026 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7027 if (cpumask_empty(non_isolated_cpus))
7028 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7029 mutex_unlock(&sched_domains_mutex);
7030
7031 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7032 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7033 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7034
7035 init_hrtick();
7036
7037 /* Move init over to a non-isolated CPU */
7038 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7039 BUG();
7040 sched_init_granularity();
7041 free_cpumask_var(non_isolated_cpus);
7042
7043 init_sched_rt_class();
7044 init_sched_dl_class();
7045 }
7046 #else
7047 void __init sched_init_smp(void)
7048 {
7049 sched_init_granularity();
7050 }
7051 #endif /* CONFIG_SMP */
7052
7053 const_debug unsigned int sysctl_timer_migration = 1;
7054
7055 int in_sched_functions(unsigned long addr)
7056 {
7057 return in_lock_functions(addr) ||
7058 (addr >= (unsigned long)__sched_text_start
7059 && addr < (unsigned long)__sched_text_end);
7060 }
7061
7062 #ifdef CONFIG_CGROUP_SCHED
7063 /*
7064 * Default task group.
7065 * Every task in system belongs to this group at bootup.
7066 */
7067 struct task_group root_task_group;
7068 LIST_HEAD(task_groups);
7069 #endif
7070
7071 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7072
7073 void __init sched_init(void)
7074 {
7075 int i, j;
7076 unsigned long alloc_size = 0, ptr;
7077
7078 #ifdef CONFIG_FAIR_GROUP_SCHED
7079 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7080 #endif
7081 #ifdef CONFIG_RT_GROUP_SCHED
7082 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7083 #endif
7084 if (alloc_size) {
7085 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7086
7087 #ifdef CONFIG_FAIR_GROUP_SCHED
7088 root_task_group.se = (struct sched_entity **)ptr;
7089 ptr += nr_cpu_ids * sizeof(void **);
7090
7091 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7092 ptr += nr_cpu_ids * sizeof(void **);
7093
7094 #endif /* CONFIG_FAIR_GROUP_SCHED */
7095 #ifdef CONFIG_RT_GROUP_SCHED
7096 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7097 ptr += nr_cpu_ids * sizeof(void **);
7098
7099 root_task_group.rt_rq = (struct rt_rq **)ptr;
7100 ptr += nr_cpu_ids * sizeof(void **);
7101
7102 #endif /* CONFIG_RT_GROUP_SCHED */
7103 }
7104 #ifdef CONFIG_CPUMASK_OFFSTACK
7105 for_each_possible_cpu(i) {
7106 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7107 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7108 }
7109 #endif /* CONFIG_CPUMASK_OFFSTACK */
7110
7111 init_rt_bandwidth(&def_rt_bandwidth,
7112 global_rt_period(), global_rt_runtime());
7113 init_dl_bandwidth(&def_dl_bandwidth,
7114 global_rt_period(), global_rt_runtime());
7115
7116 #ifdef CONFIG_SMP
7117 init_defrootdomain();
7118 #endif
7119
7120 #ifdef CONFIG_RT_GROUP_SCHED
7121 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7122 global_rt_period(), global_rt_runtime());
7123 #endif /* CONFIG_RT_GROUP_SCHED */
7124
7125 #ifdef CONFIG_CGROUP_SCHED
7126 list_add(&root_task_group.list, &task_groups);
7127 INIT_LIST_HEAD(&root_task_group.children);
7128 INIT_LIST_HEAD(&root_task_group.siblings);
7129 autogroup_init(&init_task);
7130
7131 #endif /* CONFIG_CGROUP_SCHED */
7132
7133 for_each_possible_cpu(i) {
7134 struct rq *rq;
7135
7136 rq = cpu_rq(i);
7137 raw_spin_lock_init(&rq->lock);
7138 rq->nr_running = 0;
7139 rq->calc_load_active = 0;
7140 rq->calc_load_update = jiffies + LOAD_FREQ;
7141 init_cfs_rq(&rq->cfs);
7142 init_rt_rq(&rq->rt);
7143 init_dl_rq(&rq->dl);
7144 #ifdef CONFIG_FAIR_GROUP_SCHED
7145 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7146 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7147 /*
7148 * How much cpu bandwidth does root_task_group get?
7149 *
7150 * In case of task-groups formed thr' the cgroup filesystem, it
7151 * gets 100% of the cpu resources in the system. This overall
7152 * system cpu resource is divided among the tasks of
7153 * root_task_group and its child task-groups in a fair manner,
7154 * based on each entity's (task or task-group's) weight
7155 * (se->load.weight).
7156 *
7157 * In other words, if root_task_group has 10 tasks of weight
7158 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7159 * then A0's share of the cpu resource is:
7160 *
7161 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7162 *
7163 * We achieve this by letting root_task_group's tasks sit
7164 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7165 */
7166 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7167 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7168 #endif /* CONFIG_FAIR_GROUP_SCHED */
7169
7170 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7171 #ifdef CONFIG_RT_GROUP_SCHED
7172 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7173 #endif
7174
7175 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7176 rq->cpu_load[j] = 0;
7177
7178 rq->last_load_update_tick = jiffies;
7179
7180 #ifdef CONFIG_SMP
7181 rq->sd = NULL;
7182 rq->rd = NULL;
7183 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7184 rq->post_schedule = 0;
7185 rq->active_balance = 0;
7186 rq->next_balance = jiffies;
7187 rq->push_cpu = 0;
7188 rq->cpu = i;
7189 rq->online = 0;
7190 rq->idle_stamp = 0;
7191 rq->avg_idle = 2*sysctl_sched_migration_cost;
7192 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7193
7194 INIT_LIST_HEAD(&rq->cfs_tasks);
7195
7196 rq_attach_root(rq, &def_root_domain);
7197 #ifdef CONFIG_NO_HZ_COMMON
7198 rq->nohz_flags = 0;
7199 #endif
7200 #ifdef CONFIG_NO_HZ_FULL
7201 rq->last_sched_tick = 0;
7202 #endif
7203 #endif
7204 init_rq_hrtick(rq);
7205 atomic_set(&rq->nr_iowait, 0);
7206 }
7207
7208 set_load_weight(&init_task);
7209
7210 #ifdef CONFIG_PREEMPT_NOTIFIERS
7211 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7212 #endif
7213
7214 /*
7215 * The boot idle thread does lazy MMU switching as well:
7216 */
7217 atomic_inc(&init_mm.mm_count);
7218 enter_lazy_tlb(&init_mm, current);
7219
7220 /*
7221 * During early bootup we pretend to be a normal task:
7222 */
7223 current->sched_class = &fair_sched_class;
7224
7225 /*
7226 * Make us the idle thread. Technically, schedule() should not be
7227 * called from this thread, however somewhere below it might be,
7228 * but because we are the idle thread, we just pick up running again
7229 * when this runqueue becomes "idle".
7230 */
7231 init_idle(current, smp_processor_id());
7232
7233 calc_load_update = jiffies + LOAD_FREQ;
7234
7235 #ifdef CONFIG_SMP
7236 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7237 /* May be allocated at isolcpus cmdline parse time */
7238 if (cpu_isolated_map == NULL)
7239 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7240 idle_thread_set_boot_cpu();
7241 set_cpu_rq_start_time();
7242 #endif
7243 init_sched_fair_class();
7244
7245 scheduler_running = 1;
7246 }
7247
7248 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7249 static inline int preempt_count_equals(int preempt_offset)
7250 {
7251 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7252
7253 return (nested == preempt_offset);
7254 }
7255
7256 void __might_sleep(const char *file, int line, int preempt_offset)
7257 {
7258 /*
7259 * Blocking primitives will set (and therefore destroy) current->state,
7260 * since we will exit with TASK_RUNNING make sure we enter with it,
7261 * otherwise we will destroy state.
7262 */
7263 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7264 "do not call blocking ops when !TASK_RUNNING; "
7265 "state=%lx set at [<%p>] %pS\n",
7266 current->state,
7267 (void *)current->task_state_change,
7268 (void *)current->task_state_change);
7269
7270 ___might_sleep(file, line, preempt_offset);
7271 }
7272 EXPORT_SYMBOL(__might_sleep);
7273
7274 void ___might_sleep(const char *file, int line, int preempt_offset)
7275 {
7276 static unsigned long prev_jiffy; /* ratelimiting */
7277
7278 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7279 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7280 !is_idle_task(current)) ||
7281 system_state != SYSTEM_RUNNING || oops_in_progress)
7282 return;
7283 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7284 return;
7285 prev_jiffy = jiffies;
7286
7287 printk(KERN_ERR
7288 "BUG: sleeping function called from invalid context at %s:%d\n",
7289 file, line);
7290 printk(KERN_ERR
7291 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7292 in_atomic(), irqs_disabled(),
7293 current->pid, current->comm);
7294
7295 if (task_stack_end_corrupted(current))
7296 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7297
7298 debug_show_held_locks(current);
7299 if (irqs_disabled())
7300 print_irqtrace_events(current);
7301 #ifdef CONFIG_DEBUG_PREEMPT
7302 if (!preempt_count_equals(preempt_offset)) {
7303 pr_err("Preemption disabled at:");
7304 print_ip_sym(current->preempt_disable_ip);
7305 pr_cont("\n");
7306 }
7307 #endif
7308 dump_stack();
7309 }
7310 EXPORT_SYMBOL(___might_sleep);
7311 #endif
7312
7313 #ifdef CONFIG_MAGIC_SYSRQ
7314 static void normalize_task(struct rq *rq, struct task_struct *p)
7315 {
7316 const struct sched_class *prev_class = p->sched_class;
7317 struct sched_attr attr = {
7318 .sched_policy = SCHED_NORMAL,
7319 };
7320 int old_prio = p->prio;
7321 int queued;
7322
7323 queued = task_on_rq_queued(p);
7324 if (queued)
7325 dequeue_task(rq, p, 0);
7326 __setscheduler(rq, p, &attr, false);
7327 if (queued) {
7328 enqueue_task(rq, p, 0);
7329 resched_curr(rq);
7330 }
7331
7332 check_class_changed(rq, p, prev_class, old_prio);
7333 }
7334
7335 void normalize_rt_tasks(void)
7336 {
7337 struct task_struct *g, *p;
7338 unsigned long flags;
7339 struct rq *rq;
7340
7341 read_lock(&tasklist_lock);
7342 for_each_process_thread(g, p) {
7343 /*
7344 * Only normalize user tasks:
7345 */
7346 if (p->flags & PF_KTHREAD)
7347 continue;
7348
7349 p->se.exec_start = 0;
7350 #ifdef CONFIG_SCHEDSTATS
7351 p->se.statistics.wait_start = 0;
7352 p->se.statistics.sleep_start = 0;
7353 p->se.statistics.block_start = 0;
7354 #endif
7355
7356 if (!dl_task(p) && !rt_task(p)) {
7357 /*
7358 * Renice negative nice level userspace
7359 * tasks back to 0:
7360 */
7361 if (task_nice(p) < 0)
7362 set_user_nice(p, 0);
7363 continue;
7364 }
7365
7366 rq = task_rq_lock(p, &flags);
7367 normalize_task(rq, p);
7368 task_rq_unlock(rq, p, &flags);
7369 }
7370 read_unlock(&tasklist_lock);
7371 }
7372
7373 #endif /* CONFIG_MAGIC_SYSRQ */
7374
7375 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7376 /*
7377 * These functions are only useful for the IA64 MCA handling, or kdb.
7378 *
7379 * They can only be called when the whole system has been
7380 * stopped - every CPU needs to be quiescent, and no scheduling
7381 * activity can take place. Using them for anything else would
7382 * be a serious bug, and as a result, they aren't even visible
7383 * under any other configuration.
7384 */
7385
7386 /**
7387 * curr_task - return the current task for a given cpu.
7388 * @cpu: the processor in question.
7389 *
7390 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7391 *
7392 * Return: The current task for @cpu.
7393 */
7394 struct task_struct *curr_task(int cpu)
7395 {
7396 return cpu_curr(cpu);
7397 }
7398
7399 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7400
7401 #ifdef CONFIG_IA64
7402 /**
7403 * set_curr_task - set the current task for a given cpu.
7404 * @cpu: the processor in question.
7405 * @p: the task pointer to set.
7406 *
7407 * Description: This function must only be used when non-maskable interrupts
7408 * are serviced on a separate stack. It allows the architecture to switch the
7409 * notion of the current task on a cpu in a non-blocking manner. This function
7410 * must be called with all CPU's synchronized, and interrupts disabled, the
7411 * and caller must save the original value of the current task (see
7412 * curr_task() above) and restore that value before reenabling interrupts and
7413 * re-starting the system.
7414 *
7415 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7416 */
7417 void set_curr_task(int cpu, struct task_struct *p)
7418 {
7419 cpu_curr(cpu) = p;
7420 }
7421
7422 #endif
7423
7424 #ifdef CONFIG_CGROUP_SCHED
7425 /* task_group_lock serializes the addition/removal of task groups */
7426 static DEFINE_SPINLOCK(task_group_lock);
7427
7428 static void free_sched_group(struct task_group *tg)
7429 {
7430 free_fair_sched_group(tg);
7431 free_rt_sched_group(tg);
7432 autogroup_free(tg);
7433 kfree(tg);
7434 }
7435
7436 /* allocate runqueue etc for a new task group */
7437 struct task_group *sched_create_group(struct task_group *parent)
7438 {
7439 struct task_group *tg;
7440
7441 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7442 if (!tg)
7443 return ERR_PTR(-ENOMEM);
7444
7445 if (!alloc_fair_sched_group(tg, parent))
7446 goto err;
7447
7448 if (!alloc_rt_sched_group(tg, parent))
7449 goto err;
7450
7451 return tg;
7452
7453 err:
7454 free_sched_group(tg);
7455 return ERR_PTR(-ENOMEM);
7456 }
7457
7458 void sched_online_group(struct task_group *tg, struct task_group *parent)
7459 {
7460 unsigned long flags;
7461
7462 spin_lock_irqsave(&task_group_lock, flags);
7463 list_add_rcu(&tg->list, &task_groups);
7464
7465 WARN_ON(!parent); /* root should already exist */
7466
7467 tg->parent = parent;
7468 INIT_LIST_HEAD(&tg->children);
7469 list_add_rcu(&tg->siblings, &parent->children);
7470 spin_unlock_irqrestore(&task_group_lock, flags);
7471 }
7472
7473 /* rcu callback to free various structures associated with a task group */
7474 static void free_sched_group_rcu(struct rcu_head *rhp)
7475 {
7476 /* now it should be safe to free those cfs_rqs */
7477 free_sched_group(container_of(rhp, struct task_group, rcu));
7478 }
7479
7480 /* Destroy runqueue etc associated with a task group */
7481 void sched_destroy_group(struct task_group *tg)
7482 {
7483 /* wait for possible concurrent references to cfs_rqs complete */
7484 call_rcu(&tg->rcu, free_sched_group_rcu);
7485 }
7486
7487 void sched_offline_group(struct task_group *tg)
7488 {
7489 unsigned long flags;
7490 int i;
7491
7492 /* end participation in shares distribution */
7493 for_each_possible_cpu(i)
7494 unregister_fair_sched_group(tg, i);
7495
7496 spin_lock_irqsave(&task_group_lock, flags);
7497 list_del_rcu(&tg->list);
7498 list_del_rcu(&tg->siblings);
7499 spin_unlock_irqrestore(&task_group_lock, flags);
7500 }
7501
7502 /* change task's runqueue when it moves between groups.
7503 * The caller of this function should have put the task in its new group
7504 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7505 * reflect its new group.
7506 */
7507 void sched_move_task(struct task_struct *tsk)
7508 {
7509 struct task_group *tg;
7510 int queued, running;
7511 unsigned long flags;
7512 struct rq *rq;
7513
7514 rq = task_rq_lock(tsk, &flags);
7515
7516 running = task_current(rq, tsk);
7517 queued = task_on_rq_queued(tsk);
7518
7519 if (queued)
7520 dequeue_task(rq, tsk, 0);
7521 if (unlikely(running))
7522 put_prev_task(rq, tsk);
7523
7524 /*
7525 * All callers are synchronized by task_rq_lock(); we do not use RCU
7526 * which is pointless here. Thus, we pass "true" to task_css_check()
7527 * to prevent lockdep warnings.
7528 */
7529 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7530 struct task_group, css);
7531 tg = autogroup_task_group(tsk, tg);
7532 tsk->sched_task_group = tg;
7533
7534 #ifdef CONFIG_FAIR_GROUP_SCHED
7535 if (tsk->sched_class->task_move_group)
7536 tsk->sched_class->task_move_group(tsk, queued);
7537 else
7538 #endif
7539 set_task_rq(tsk, task_cpu(tsk));
7540
7541 if (unlikely(running))
7542 tsk->sched_class->set_curr_task(rq);
7543 if (queued)
7544 enqueue_task(rq, tsk, 0);
7545
7546 task_rq_unlock(rq, tsk, &flags);
7547 }
7548 #endif /* CONFIG_CGROUP_SCHED */
7549
7550 #ifdef CONFIG_RT_GROUP_SCHED
7551 /*
7552 * Ensure that the real time constraints are schedulable.
7553 */
7554 static DEFINE_MUTEX(rt_constraints_mutex);
7555
7556 /* Must be called with tasklist_lock held */
7557 static inline int tg_has_rt_tasks(struct task_group *tg)
7558 {
7559 struct task_struct *g, *p;
7560
7561 /*
7562 * Autogroups do not have RT tasks; see autogroup_create().
7563 */
7564 if (task_group_is_autogroup(tg))
7565 return 0;
7566
7567 for_each_process_thread(g, p) {
7568 if (rt_task(p) && task_group(p) == tg)
7569 return 1;
7570 }
7571
7572 return 0;
7573 }
7574
7575 struct rt_schedulable_data {
7576 struct task_group *tg;
7577 u64 rt_period;
7578 u64 rt_runtime;
7579 };
7580
7581 static int tg_rt_schedulable(struct task_group *tg, void *data)
7582 {
7583 struct rt_schedulable_data *d = data;
7584 struct task_group *child;
7585 unsigned long total, sum = 0;
7586 u64 period, runtime;
7587
7588 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7589 runtime = tg->rt_bandwidth.rt_runtime;
7590
7591 if (tg == d->tg) {
7592 period = d->rt_period;
7593 runtime = d->rt_runtime;
7594 }
7595
7596 /*
7597 * Cannot have more runtime than the period.
7598 */
7599 if (runtime > period && runtime != RUNTIME_INF)
7600 return -EINVAL;
7601
7602 /*
7603 * Ensure we don't starve existing RT tasks.
7604 */
7605 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7606 return -EBUSY;
7607
7608 total = to_ratio(period, runtime);
7609
7610 /*
7611 * Nobody can have more than the global setting allows.
7612 */
7613 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7614 return -EINVAL;
7615
7616 /*
7617 * The sum of our children's runtime should not exceed our own.
7618 */
7619 list_for_each_entry_rcu(child, &tg->children, siblings) {
7620 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7621 runtime = child->rt_bandwidth.rt_runtime;
7622
7623 if (child == d->tg) {
7624 period = d->rt_period;
7625 runtime = d->rt_runtime;
7626 }
7627
7628 sum += to_ratio(period, runtime);
7629 }
7630
7631 if (sum > total)
7632 return -EINVAL;
7633
7634 return 0;
7635 }
7636
7637 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7638 {
7639 int ret;
7640
7641 struct rt_schedulable_data data = {
7642 .tg = tg,
7643 .rt_period = period,
7644 .rt_runtime = runtime,
7645 };
7646
7647 rcu_read_lock();
7648 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7649 rcu_read_unlock();
7650
7651 return ret;
7652 }
7653
7654 static int tg_set_rt_bandwidth(struct task_group *tg,
7655 u64 rt_period, u64 rt_runtime)
7656 {
7657 int i, err = 0;
7658
7659 /*
7660 * Disallowing the root group RT runtime is BAD, it would disallow the
7661 * kernel creating (and or operating) RT threads.
7662 */
7663 if (tg == &root_task_group && rt_runtime == 0)
7664 return -EINVAL;
7665
7666 /* No period doesn't make any sense. */
7667 if (rt_period == 0)
7668 return -EINVAL;
7669
7670 mutex_lock(&rt_constraints_mutex);
7671 read_lock(&tasklist_lock);
7672 err = __rt_schedulable(tg, rt_period, rt_runtime);
7673 if (err)
7674 goto unlock;
7675
7676 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7677 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7678 tg->rt_bandwidth.rt_runtime = rt_runtime;
7679
7680 for_each_possible_cpu(i) {
7681 struct rt_rq *rt_rq = tg->rt_rq[i];
7682
7683 raw_spin_lock(&rt_rq->rt_runtime_lock);
7684 rt_rq->rt_runtime = rt_runtime;
7685 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7686 }
7687 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7688 unlock:
7689 read_unlock(&tasklist_lock);
7690 mutex_unlock(&rt_constraints_mutex);
7691
7692 return err;
7693 }
7694
7695 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7696 {
7697 u64 rt_runtime, rt_period;
7698
7699 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7700 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7701 if (rt_runtime_us < 0)
7702 rt_runtime = RUNTIME_INF;
7703
7704 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7705 }
7706
7707 static long sched_group_rt_runtime(struct task_group *tg)
7708 {
7709 u64 rt_runtime_us;
7710
7711 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7712 return -1;
7713
7714 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7715 do_div(rt_runtime_us, NSEC_PER_USEC);
7716 return rt_runtime_us;
7717 }
7718
7719 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7720 {
7721 u64 rt_runtime, rt_period;
7722
7723 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7724 rt_runtime = tg->rt_bandwidth.rt_runtime;
7725
7726 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7727 }
7728
7729 static long sched_group_rt_period(struct task_group *tg)
7730 {
7731 u64 rt_period_us;
7732
7733 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7734 do_div(rt_period_us, NSEC_PER_USEC);
7735 return rt_period_us;
7736 }
7737 #endif /* CONFIG_RT_GROUP_SCHED */
7738
7739 #ifdef CONFIG_RT_GROUP_SCHED
7740 static int sched_rt_global_constraints(void)
7741 {
7742 int ret = 0;
7743
7744 mutex_lock(&rt_constraints_mutex);
7745 read_lock(&tasklist_lock);
7746 ret = __rt_schedulable(NULL, 0, 0);
7747 read_unlock(&tasklist_lock);
7748 mutex_unlock(&rt_constraints_mutex);
7749
7750 return ret;
7751 }
7752
7753 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7754 {
7755 /* Don't accept realtime tasks when there is no way for them to run */
7756 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7757 return 0;
7758
7759 return 1;
7760 }
7761
7762 #else /* !CONFIG_RT_GROUP_SCHED */
7763 static int sched_rt_global_constraints(void)
7764 {
7765 unsigned long flags;
7766 int i, ret = 0;
7767
7768 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7769 for_each_possible_cpu(i) {
7770 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7771
7772 raw_spin_lock(&rt_rq->rt_runtime_lock);
7773 rt_rq->rt_runtime = global_rt_runtime();
7774 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7775 }
7776 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7777
7778 return ret;
7779 }
7780 #endif /* CONFIG_RT_GROUP_SCHED */
7781
7782 static int sched_dl_global_validate(void)
7783 {
7784 u64 runtime = global_rt_runtime();
7785 u64 period = global_rt_period();
7786 u64 new_bw = to_ratio(period, runtime);
7787 struct dl_bw *dl_b;
7788 int cpu, ret = 0;
7789 unsigned long flags;
7790
7791 /*
7792 * Here we want to check the bandwidth not being set to some
7793 * value smaller than the currently allocated bandwidth in
7794 * any of the root_domains.
7795 *
7796 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7797 * cycling on root_domains... Discussion on different/better
7798 * solutions is welcome!
7799 */
7800 for_each_possible_cpu(cpu) {
7801 rcu_read_lock_sched();
7802 dl_b = dl_bw_of(cpu);
7803
7804 raw_spin_lock_irqsave(&dl_b->lock, flags);
7805 if (new_bw < dl_b->total_bw)
7806 ret = -EBUSY;
7807 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7808
7809 rcu_read_unlock_sched();
7810
7811 if (ret)
7812 break;
7813 }
7814
7815 return ret;
7816 }
7817
7818 static void sched_dl_do_global(void)
7819 {
7820 u64 new_bw = -1;
7821 struct dl_bw *dl_b;
7822 int cpu;
7823 unsigned long flags;
7824
7825 def_dl_bandwidth.dl_period = global_rt_period();
7826 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7827
7828 if (global_rt_runtime() != RUNTIME_INF)
7829 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7830
7831 /*
7832 * FIXME: As above...
7833 */
7834 for_each_possible_cpu(cpu) {
7835 rcu_read_lock_sched();
7836 dl_b = dl_bw_of(cpu);
7837
7838 raw_spin_lock_irqsave(&dl_b->lock, flags);
7839 dl_b->bw = new_bw;
7840 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7841
7842 rcu_read_unlock_sched();
7843 }
7844 }
7845
7846 static int sched_rt_global_validate(void)
7847 {
7848 if (sysctl_sched_rt_period <= 0)
7849 return -EINVAL;
7850
7851 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7852 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7853 return -EINVAL;
7854
7855 return 0;
7856 }
7857
7858 static void sched_rt_do_global(void)
7859 {
7860 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7861 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7862 }
7863
7864 int sched_rt_handler(struct ctl_table *table, int write,
7865 void __user *buffer, size_t *lenp,
7866 loff_t *ppos)
7867 {
7868 int old_period, old_runtime;
7869 static DEFINE_MUTEX(mutex);
7870 int ret;
7871
7872 mutex_lock(&mutex);
7873 old_period = sysctl_sched_rt_period;
7874 old_runtime = sysctl_sched_rt_runtime;
7875
7876 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7877
7878 if (!ret && write) {
7879 ret = sched_rt_global_validate();
7880 if (ret)
7881 goto undo;
7882
7883 ret = sched_dl_global_validate();
7884 if (ret)
7885 goto undo;
7886
7887 ret = sched_rt_global_constraints();
7888 if (ret)
7889 goto undo;
7890
7891 sched_rt_do_global();
7892 sched_dl_do_global();
7893 }
7894 if (0) {
7895 undo:
7896 sysctl_sched_rt_period = old_period;
7897 sysctl_sched_rt_runtime = old_runtime;
7898 }
7899 mutex_unlock(&mutex);
7900
7901 return ret;
7902 }
7903
7904 int sched_rr_handler(struct ctl_table *table, int write,
7905 void __user *buffer, size_t *lenp,
7906 loff_t *ppos)
7907 {
7908 int ret;
7909 static DEFINE_MUTEX(mutex);
7910
7911 mutex_lock(&mutex);
7912 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7913 /* make sure that internally we keep jiffies */
7914 /* also, writing zero resets timeslice to default */
7915 if (!ret && write) {
7916 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7917 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7918 }
7919 mutex_unlock(&mutex);
7920 return ret;
7921 }
7922
7923 #ifdef CONFIG_CGROUP_SCHED
7924
7925 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7926 {
7927 return css ? container_of(css, struct task_group, css) : NULL;
7928 }
7929
7930 static struct cgroup_subsys_state *
7931 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7932 {
7933 struct task_group *parent = css_tg(parent_css);
7934 struct task_group *tg;
7935
7936 if (!parent) {
7937 /* This is early initialization for the top cgroup */
7938 return &root_task_group.css;
7939 }
7940
7941 tg = sched_create_group(parent);
7942 if (IS_ERR(tg))
7943 return ERR_PTR(-ENOMEM);
7944
7945 return &tg->css;
7946 }
7947
7948 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7949 {
7950 struct task_group *tg = css_tg(css);
7951 struct task_group *parent = css_tg(css->parent);
7952
7953 if (parent)
7954 sched_online_group(tg, parent);
7955 return 0;
7956 }
7957
7958 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7959 {
7960 struct task_group *tg = css_tg(css);
7961
7962 sched_destroy_group(tg);
7963 }
7964
7965 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7966 {
7967 struct task_group *tg = css_tg(css);
7968
7969 sched_offline_group(tg);
7970 }
7971
7972 static void cpu_cgroup_fork(struct task_struct *task)
7973 {
7974 sched_move_task(task);
7975 }
7976
7977 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7978 struct cgroup_taskset *tset)
7979 {
7980 struct task_struct *task;
7981
7982 cgroup_taskset_for_each(task, tset) {
7983 #ifdef CONFIG_RT_GROUP_SCHED
7984 if (!sched_rt_can_attach(css_tg(css), task))
7985 return -EINVAL;
7986 #else
7987 /* We don't support RT-tasks being in separate groups */
7988 if (task->sched_class != &fair_sched_class)
7989 return -EINVAL;
7990 #endif
7991 }
7992 return 0;
7993 }
7994
7995 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7996 struct cgroup_taskset *tset)
7997 {
7998 struct task_struct *task;
7999
8000 cgroup_taskset_for_each(task, tset)
8001 sched_move_task(task);
8002 }
8003
8004 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8005 struct cgroup_subsys_state *old_css,
8006 struct task_struct *task)
8007 {
8008 /*
8009 * cgroup_exit() is called in the copy_process() failure path.
8010 * Ignore this case since the task hasn't ran yet, this avoids
8011 * trying to poke a half freed task state from generic code.
8012 */
8013 if (!(task->flags & PF_EXITING))
8014 return;
8015
8016 sched_move_task(task);
8017 }
8018
8019 #ifdef CONFIG_FAIR_GROUP_SCHED
8020 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8021 struct cftype *cftype, u64 shareval)
8022 {
8023 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8024 }
8025
8026 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8027 struct cftype *cft)
8028 {
8029 struct task_group *tg = css_tg(css);
8030
8031 return (u64) scale_load_down(tg->shares);
8032 }
8033
8034 #ifdef CONFIG_CFS_BANDWIDTH
8035 static DEFINE_MUTEX(cfs_constraints_mutex);
8036
8037 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8038 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8039
8040 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8041
8042 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8043 {
8044 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8045 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8046
8047 if (tg == &root_task_group)
8048 return -EINVAL;
8049
8050 /*
8051 * Ensure we have at some amount of bandwidth every period. This is
8052 * to prevent reaching a state of large arrears when throttled via
8053 * entity_tick() resulting in prolonged exit starvation.
8054 */
8055 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8056 return -EINVAL;
8057
8058 /*
8059 * Likewise, bound things on the otherside by preventing insane quota
8060 * periods. This also allows us to normalize in computing quota
8061 * feasibility.
8062 */
8063 if (period > max_cfs_quota_period)
8064 return -EINVAL;
8065
8066 /*
8067 * Prevent race between setting of cfs_rq->runtime_enabled and
8068 * unthrottle_offline_cfs_rqs().
8069 */
8070 get_online_cpus();
8071 mutex_lock(&cfs_constraints_mutex);
8072 ret = __cfs_schedulable(tg, period, quota);
8073 if (ret)
8074 goto out_unlock;
8075
8076 runtime_enabled = quota != RUNTIME_INF;
8077 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8078 /*
8079 * If we need to toggle cfs_bandwidth_used, off->on must occur
8080 * before making related changes, and on->off must occur afterwards
8081 */
8082 if (runtime_enabled && !runtime_was_enabled)
8083 cfs_bandwidth_usage_inc();
8084 raw_spin_lock_irq(&cfs_b->lock);
8085 cfs_b->period = ns_to_ktime(period);
8086 cfs_b->quota = quota;
8087
8088 __refill_cfs_bandwidth_runtime(cfs_b);
8089 /* restart the period timer (if active) to handle new period expiry */
8090 if (runtime_enabled)
8091 start_cfs_bandwidth(cfs_b);
8092 raw_spin_unlock_irq(&cfs_b->lock);
8093
8094 for_each_online_cpu(i) {
8095 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8096 struct rq *rq = cfs_rq->rq;
8097
8098 raw_spin_lock_irq(&rq->lock);
8099 cfs_rq->runtime_enabled = runtime_enabled;
8100 cfs_rq->runtime_remaining = 0;
8101
8102 if (cfs_rq->throttled)
8103 unthrottle_cfs_rq(cfs_rq);
8104 raw_spin_unlock_irq(&rq->lock);
8105 }
8106 if (runtime_was_enabled && !runtime_enabled)
8107 cfs_bandwidth_usage_dec();
8108 out_unlock:
8109 mutex_unlock(&cfs_constraints_mutex);
8110 put_online_cpus();
8111
8112 return ret;
8113 }
8114
8115 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8116 {
8117 u64 quota, period;
8118
8119 period = ktime_to_ns(tg->cfs_bandwidth.period);
8120 if (cfs_quota_us < 0)
8121 quota = RUNTIME_INF;
8122 else
8123 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8124
8125 return tg_set_cfs_bandwidth(tg, period, quota);
8126 }
8127
8128 long tg_get_cfs_quota(struct task_group *tg)
8129 {
8130 u64 quota_us;
8131
8132 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8133 return -1;
8134
8135 quota_us = tg->cfs_bandwidth.quota;
8136 do_div(quota_us, NSEC_PER_USEC);
8137
8138 return quota_us;
8139 }
8140
8141 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8142 {
8143 u64 quota, period;
8144
8145 period = (u64)cfs_period_us * NSEC_PER_USEC;
8146 quota = tg->cfs_bandwidth.quota;
8147
8148 return tg_set_cfs_bandwidth(tg, period, quota);
8149 }
8150
8151 long tg_get_cfs_period(struct task_group *tg)
8152 {
8153 u64 cfs_period_us;
8154
8155 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8156 do_div(cfs_period_us, NSEC_PER_USEC);
8157
8158 return cfs_period_us;
8159 }
8160
8161 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8162 struct cftype *cft)
8163 {
8164 return tg_get_cfs_quota(css_tg(css));
8165 }
8166
8167 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8168 struct cftype *cftype, s64 cfs_quota_us)
8169 {
8170 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8171 }
8172
8173 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8174 struct cftype *cft)
8175 {
8176 return tg_get_cfs_period(css_tg(css));
8177 }
8178
8179 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8180 struct cftype *cftype, u64 cfs_period_us)
8181 {
8182 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8183 }
8184
8185 struct cfs_schedulable_data {
8186 struct task_group *tg;
8187 u64 period, quota;
8188 };
8189
8190 /*
8191 * normalize group quota/period to be quota/max_period
8192 * note: units are usecs
8193 */
8194 static u64 normalize_cfs_quota(struct task_group *tg,
8195 struct cfs_schedulable_data *d)
8196 {
8197 u64 quota, period;
8198
8199 if (tg == d->tg) {
8200 period = d->period;
8201 quota = d->quota;
8202 } else {
8203 period = tg_get_cfs_period(tg);
8204 quota = tg_get_cfs_quota(tg);
8205 }
8206
8207 /* note: these should typically be equivalent */
8208 if (quota == RUNTIME_INF || quota == -1)
8209 return RUNTIME_INF;
8210
8211 return to_ratio(period, quota);
8212 }
8213
8214 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8215 {
8216 struct cfs_schedulable_data *d = data;
8217 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8218 s64 quota = 0, parent_quota = -1;
8219
8220 if (!tg->parent) {
8221 quota = RUNTIME_INF;
8222 } else {
8223 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8224
8225 quota = normalize_cfs_quota(tg, d);
8226 parent_quota = parent_b->hierarchical_quota;
8227
8228 /*
8229 * ensure max(child_quota) <= parent_quota, inherit when no
8230 * limit is set
8231 */
8232 if (quota == RUNTIME_INF)
8233 quota = parent_quota;
8234 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8235 return -EINVAL;
8236 }
8237 cfs_b->hierarchical_quota = quota;
8238
8239 return 0;
8240 }
8241
8242 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8243 {
8244 int ret;
8245 struct cfs_schedulable_data data = {
8246 .tg = tg,
8247 .period = period,
8248 .quota = quota,
8249 };
8250
8251 if (quota != RUNTIME_INF) {
8252 do_div(data.period, NSEC_PER_USEC);
8253 do_div(data.quota, NSEC_PER_USEC);
8254 }
8255
8256 rcu_read_lock();
8257 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8258 rcu_read_unlock();
8259
8260 return ret;
8261 }
8262
8263 static int cpu_stats_show(struct seq_file *sf, void *v)
8264 {
8265 struct task_group *tg = css_tg(seq_css(sf));
8266 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8267
8268 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8269 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8270 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8271
8272 return 0;
8273 }
8274 #endif /* CONFIG_CFS_BANDWIDTH */
8275 #endif /* CONFIG_FAIR_GROUP_SCHED */
8276
8277 #ifdef CONFIG_RT_GROUP_SCHED
8278 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8279 struct cftype *cft, s64 val)
8280 {
8281 return sched_group_set_rt_runtime(css_tg(css), val);
8282 }
8283
8284 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8285 struct cftype *cft)
8286 {
8287 return sched_group_rt_runtime(css_tg(css));
8288 }
8289
8290 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8291 struct cftype *cftype, u64 rt_period_us)
8292 {
8293 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8294 }
8295
8296 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8297 struct cftype *cft)
8298 {
8299 return sched_group_rt_period(css_tg(css));
8300 }
8301 #endif /* CONFIG_RT_GROUP_SCHED */
8302
8303 static struct cftype cpu_files[] = {
8304 #ifdef CONFIG_FAIR_GROUP_SCHED
8305 {
8306 .name = "shares",
8307 .read_u64 = cpu_shares_read_u64,
8308 .write_u64 = cpu_shares_write_u64,
8309 },
8310 #endif
8311 #ifdef CONFIG_CFS_BANDWIDTH
8312 {
8313 .name = "cfs_quota_us",
8314 .read_s64 = cpu_cfs_quota_read_s64,
8315 .write_s64 = cpu_cfs_quota_write_s64,
8316 },
8317 {
8318 .name = "cfs_period_us",
8319 .read_u64 = cpu_cfs_period_read_u64,
8320 .write_u64 = cpu_cfs_period_write_u64,
8321 },
8322 {
8323 .name = "stat",
8324 .seq_show = cpu_stats_show,
8325 },
8326 #endif
8327 #ifdef CONFIG_RT_GROUP_SCHED
8328 {
8329 .name = "rt_runtime_us",
8330 .read_s64 = cpu_rt_runtime_read,
8331 .write_s64 = cpu_rt_runtime_write,
8332 },
8333 {
8334 .name = "rt_period_us",
8335 .read_u64 = cpu_rt_period_read_uint,
8336 .write_u64 = cpu_rt_period_write_uint,
8337 },
8338 #endif
8339 { } /* terminate */
8340 };
8341
8342 struct cgroup_subsys cpu_cgrp_subsys = {
8343 .css_alloc = cpu_cgroup_css_alloc,
8344 .css_free = cpu_cgroup_css_free,
8345 .css_online = cpu_cgroup_css_online,
8346 .css_offline = cpu_cgroup_css_offline,
8347 .fork = cpu_cgroup_fork,
8348 .can_attach = cpu_cgroup_can_attach,
8349 .attach = cpu_cgroup_attach,
8350 .exit = cpu_cgroup_exit,
8351 .legacy_cftypes = cpu_files,
8352 .early_init = 1,
8353 };
8354
8355 #endif /* CONFIG_CGROUP_SCHED */
8356
8357 void dump_cpu_task(int cpu)
8358 {
8359 pr_info("Task dump for CPU %d:\n", cpu);
8360 sched_show_task(cpu_curr(cpu));
8361 }