]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched/core.c
cgroup/cpuset: Free DL BW in case can_attach() fails
[mirror_ubuntu-kernels.git] / kernel / sched / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 # include <linux/entry-common.h>
71 # endif
72 #endif
73
74 #include <uapi/linux/sched/types.h>
75
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #include <trace/events/ipi.h>
84 #undef CREATE_TRACE_POINTS
85
86 #include "sched.h"
87 #include "stats.h"
88 #include "autogroup.h"
89
90 #include "autogroup.h"
91 #include "pelt.h"
92 #include "smp.h"
93 #include "stats.h"
94
95 #include "../workqueue_internal.h"
96 #include "../../io_uring/io-wq.h"
97 #include "../smpboot.h"
98
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101
102 /*
103 * Export tracepoints that act as a bare tracehook (ie: have no trace event
104 * associated with them) to allow external modules to probe them.
105 */
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117
118 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
119
120 #ifdef CONFIG_SCHED_DEBUG
121 /*
122 * Debugging: various feature bits
123 *
124 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
125 * sysctl_sched_features, defined in sched.h, to allow constants propagation
126 * at compile time and compiler optimization based on features default.
127 */
128 #define SCHED_FEAT(name, enabled) \
129 (1UL << __SCHED_FEAT_##name) * enabled |
130 const_debug unsigned int sysctl_sched_features =
131 #include "features.h"
132 0;
133 #undef SCHED_FEAT
134
135 /*
136 * Print a warning if need_resched is set for the given duration (if
137 * LATENCY_WARN is enabled).
138 *
139 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
140 * per boot.
141 */
142 __read_mostly int sysctl_resched_latency_warn_ms = 100;
143 __read_mostly int sysctl_resched_latency_warn_once = 1;
144 #endif /* CONFIG_SCHED_DEBUG */
145
146 /*
147 * Number of tasks to iterate in a single balance run.
148 * Limited because this is done with IRQs disabled.
149 */
150 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151
152 __read_mostly int scheduler_running;
153
154 #ifdef CONFIG_SCHED_CORE
155
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157
158 /* kernel prio, less is more */
159 static inline int __task_prio(const struct task_struct *p)
160 {
161 if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 return -2;
163
164 if (rt_prio(p->prio)) /* includes deadline */
165 return p->prio; /* [-1, 99] */
166
167 if (p->sched_class == &idle_sched_class)
168 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
169
170 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
171 }
172
173 /*
174 * l(a,b)
175 * le(a,b) := !l(b,a)
176 * g(a,b) := l(b,a)
177 * ge(a,b) := !l(a,b)
178 */
179
180 /* real prio, less is less */
181 static inline bool prio_less(const struct task_struct *a,
182 const struct task_struct *b, bool in_fi)
183 {
184
185 int pa = __task_prio(a), pb = __task_prio(b);
186
187 if (-pa < -pb)
188 return true;
189
190 if (-pb < -pa)
191 return false;
192
193 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
194 return !dl_time_before(a->dl.deadline, b->dl.deadline);
195
196 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
197 return cfs_prio_less(a, b, in_fi);
198
199 return false;
200 }
201
202 static inline bool __sched_core_less(const struct task_struct *a,
203 const struct task_struct *b)
204 {
205 if (a->core_cookie < b->core_cookie)
206 return true;
207
208 if (a->core_cookie > b->core_cookie)
209 return false;
210
211 /* flip prio, so high prio is leftmost */
212 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
213 return true;
214
215 return false;
216 }
217
218 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
219
220 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
221 {
222 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
223 }
224
225 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
226 {
227 const struct task_struct *p = __node_2_sc(node);
228 unsigned long cookie = (unsigned long)key;
229
230 if (cookie < p->core_cookie)
231 return -1;
232
233 if (cookie > p->core_cookie)
234 return 1;
235
236 return 0;
237 }
238
239 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
240 {
241 rq->core->core_task_seq++;
242
243 if (!p->core_cookie)
244 return;
245
246 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
247 }
248
249 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
250 {
251 rq->core->core_task_seq++;
252
253 if (sched_core_enqueued(p)) {
254 rb_erase(&p->core_node, &rq->core_tree);
255 RB_CLEAR_NODE(&p->core_node);
256 }
257
258 /*
259 * Migrating the last task off the cpu, with the cpu in forced idle
260 * state. Reschedule to create an accounting edge for forced idle,
261 * and re-examine whether the core is still in forced idle state.
262 */
263 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
264 rq->core->core_forceidle_count && rq->curr == rq->idle)
265 resched_curr(rq);
266 }
267
268 static int sched_task_is_throttled(struct task_struct *p, int cpu)
269 {
270 if (p->sched_class->task_is_throttled)
271 return p->sched_class->task_is_throttled(p, cpu);
272
273 return 0;
274 }
275
276 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
277 {
278 struct rb_node *node = &p->core_node;
279 int cpu = task_cpu(p);
280
281 do {
282 node = rb_next(node);
283 if (!node)
284 return NULL;
285
286 p = __node_2_sc(node);
287 if (p->core_cookie != cookie)
288 return NULL;
289
290 } while (sched_task_is_throttled(p, cpu));
291
292 return p;
293 }
294
295 /*
296 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
297 * If no suitable task is found, NULL will be returned.
298 */
299 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
300 {
301 struct task_struct *p;
302 struct rb_node *node;
303
304 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
305 if (!node)
306 return NULL;
307
308 p = __node_2_sc(node);
309 if (!sched_task_is_throttled(p, rq->cpu))
310 return p;
311
312 return sched_core_next(p, cookie);
313 }
314
315 /*
316 * Magic required such that:
317 *
318 * raw_spin_rq_lock(rq);
319 * ...
320 * raw_spin_rq_unlock(rq);
321 *
322 * ends up locking and unlocking the _same_ lock, and all CPUs
323 * always agree on what rq has what lock.
324 *
325 * XXX entirely possible to selectively enable cores, don't bother for now.
326 */
327
328 static DEFINE_MUTEX(sched_core_mutex);
329 static atomic_t sched_core_count;
330 static struct cpumask sched_core_mask;
331
332 static void sched_core_lock(int cpu, unsigned long *flags)
333 {
334 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
335 int t, i = 0;
336
337 local_irq_save(*flags);
338 for_each_cpu(t, smt_mask)
339 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
340 }
341
342 static void sched_core_unlock(int cpu, unsigned long *flags)
343 {
344 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
345 int t;
346
347 for_each_cpu(t, smt_mask)
348 raw_spin_unlock(&cpu_rq(t)->__lock);
349 local_irq_restore(*flags);
350 }
351
352 static void __sched_core_flip(bool enabled)
353 {
354 unsigned long flags;
355 int cpu, t;
356
357 cpus_read_lock();
358
359 /*
360 * Toggle the online cores, one by one.
361 */
362 cpumask_copy(&sched_core_mask, cpu_online_mask);
363 for_each_cpu(cpu, &sched_core_mask) {
364 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
365
366 sched_core_lock(cpu, &flags);
367
368 for_each_cpu(t, smt_mask)
369 cpu_rq(t)->core_enabled = enabled;
370
371 cpu_rq(cpu)->core->core_forceidle_start = 0;
372
373 sched_core_unlock(cpu, &flags);
374
375 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
376 }
377
378 /*
379 * Toggle the offline CPUs.
380 */
381 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
382 cpu_rq(cpu)->core_enabled = enabled;
383
384 cpus_read_unlock();
385 }
386
387 static void sched_core_assert_empty(void)
388 {
389 int cpu;
390
391 for_each_possible_cpu(cpu)
392 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
393 }
394
395 static void __sched_core_enable(void)
396 {
397 static_branch_enable(&__sched_core_enabled);
398 /*
399 * Ensure all previous instances of raw_spin_rq_*lock() have finished
400 * and future ones will observe !sched_core_disabled().
401 */
402 synchronize_rcu();
403 __sched_core_flip(true);
404 sched_core_assert_empty();
405 }
406
407 static void __sched_core_disable(void)
408 {
409 sched_core_assert_empty();
410 __sched_core_flip(false);
411 static_branch_disable(&__sched_core_enabled);
412 }
413
414 void sched_core_get(void)
415 {
416 if (atomic_inc_not_zero(&sched_core_count))
417 return;
418
419 mutex_lock(&sched_core_mutex);
420 if (!atomic_read(&sched_core_count))
421 __sched_core_enable();
422
423 smp_mb__before_atomic();
424 atomic_inc(&sched_core_count);
425 mutex_unlock(&sched_core_mutex);
426 }
427
428 static void __sched_core_put(struct work_struct *work)
429 {
430 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
431 __sched_core_disable();
432 mutex_unlock(&sched_core_mutex);
433 }
434 }
435
436 void sched_core_put(void)
437 {
438 static DECLARE_WORK(_work, __sched_core_put);
439
440 /*
441 * "There can be only one"
442 *
443 * Either this is the last one, or we don't actually need to do any
444 * 'work'. If it is the last *again*, we rely on
445 * WORK_STRUCT_PENDING_BIT.
446 */
447 if (!atomic_add_unless(&sched_core_count, -1, 1))
448 schedule_work(&_work);
449 }
450
451 #else /* !CONFIG_SCHED_CORE */
452
453 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
454 static inline void
455 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
456
457 #endif /* CONFIG_SCHED_CORE */
458
459 /*
460 * Serialization rules:
461 *
462 * Lock order:
463 *
464 * p->pi_lock
465 * rq->lock
466 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
467 *
468 * rq1->lock
469 * rq2->lock where: rq1 < rq2
470 *
471 * Regular state:
472 *
473 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
474 * local CPU's rq->lock, it optionally removes the task from the runqueue and
475 * always looks at the local rq data structures to find the most eligible task
476 * to run next.
477 *
478 * Task enqueue is also under rq->lock, possibly taken from another CPU.
479 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
480 * the local CPU to avoid bouncing the runqueue state around [ see
481 * ttwu_queue_wakelist() ]
482 *
483 * Task wakeup, specifically wakeups that involve migration, are horribly
484 * complicated to avoid having to take two rq->locks.
485 *
486 * Special state:
487 *
488 * System-calls and anything external will use task_rq_lock() which acquires
489 * both p->pi_lock and rq->lock. As a consequence the state they change is
490 * stable while holding either lock:
491 *
492 * - sched_setaffinity()/
493 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
494 * - set_user_nice(): p->se.load, p->*prio
495 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
496 * p->se.load, p->rt_priority,
497 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
498 * - sched_setnuma(): p->numa_preferred_nid
499 * - sched_move_task(): p->sched_task_group
500 * - uclamp_update_active() p->uclamp*
501 *
502 * p->state <- TASK_*:
503 *
504 * is changed locklessly using set_current_state(), __set_current_state() or
505 * set_special_state(), see their respective comments, or by
506 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
507 * concurrent self.
508 *
509 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
510 *
511 * is set by activate_task() and cleared by deactivate_task(), under
512 * rq->lock. Non-zero indicates the task is runnable, the special
513 * ON_RQ_MIGRATING state is used for migration without holding both
514 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
515 *
516 * p->on_cpu <- { 0, 1 }:
517 *
518 * is set by prepare_task() and cleared by finish_task() such that it will be
519 * set before p is scheduled-in and cleared after p is scheduled-out, both
520 * under rq->lock. Non-zero indicates the task is running on its CPU.
521 *
522 * [ The astute reader will observe that it is possible for two tasks on one
523 * CPU to have ->on_cpu = 1 at the same time. ]
524 *
525 * task_cpu(p): is changed by set_task_cpu(), the rules are:
526 *
527 * - Don't call set_task_cpu() on a blocked task:
528 *
529 * We don't care what CPU we're not running on, this simplifies hotplug,
530 * the CPU assignment of blocked tasks isn't required to be valid.
531 *
532 * - for try_to_wake_up(), called under p->pi_lock:
533 *
534 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
535 *
536 * - for migration called under rq->lock:
537 * [ see task_on_rq_migrating() in task_rq_lock() ]
538 *
539 * o move_queued_task()
540 * o detach_task()
541 *
542 * - for migration called under double_rq_lock():
543 *
544 * o __migrate_swap_task()
545 * o push_rt_task() / pull_rt_task()
546 * o push_dl_task() / pull_dl_task()
547 * o dl_task_offline_migration()
548 *
549 */
550
551 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
552 {
553 raw_spinlock_t *lock;
554
555 /* Matches synchronize_rcu() in __sched_core_enable() */
556 preempt_disable();
557 if (sched_core_disabled()) {
558 raw_spin_lock_nested(&rq->__lock, subclass);
559 /* preempt_count *MUST* be > 1 */
560 preempt_enable_no_resched();
561 return;
562 }
563
564 for (;;) {
565 lock = __rq_lockp(rq);
566 raw_spin_lock_nested(lock, subclass);
567 if (likely(lock == __rq_lockp(rq))) {
568 /* preempt_count *MUST* be > 1 */
569 preempt_enable_no_resched();
570 return;
571 }
572 raw_spin_unlock(lock);
573 }
574 }
575
576 bool raw_spin_rq_trylock(struct rq *rq)
577 {
578 raw_spinlock_t *lock;
579 bool ret;
580
581 /* Matches synchronize_rcu() in __sched_core_enable() */
582 preempt_disable();
583 if (sched_core_disabled()) {
584 ret = raw_spin_trylock(&rq->__lock);
585 preempt_enable();
586 return ret;
587 }
588
589 for (;;) {
590 lock = __rq_lockp(rq);
591 ret = raw_spin_trylock(lock);
592 if (!ret || (likely(lock == __rq_lockp(rq)))) {
593 preempt_enable();
594 return ret;
595 }
596 raw_spin_unlock(lock);
597 }
598 }
599
600 void raw_spin_rq_unlock(struct rq *rq)
601 {
602 raw_spin_unlock(rq_lockp(rq));
603 }
604
605 #ifdef CONFIG_SMP
606 /*
607 * double_rq_lock - safely lock two runqueues
608 */
609 void double_rq_lock(struct rq *rq1, struct rq *rq2)
610 {
611 lockdep_assert_irqs_disabled();
612
613 if (rq_order_less(rq2, rq1))
614 swap(rq1, rq2);
615
616 raw_spin_rq_lock(rq1);
617 if (__rq_lockp(rq1) != __rq_lockp(rq2))
618 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
619
620 double_rq_clock_clear_update(rq1, rq2);
621 }
622 #endif
623
624 /*
625 * __task_rq_lock - lock the rq @p resides on.
626 */
627 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
628 __acquires(rq->lock)
629 {
630 struct rq *rq;
631
632 lockdep_assert_held(&p->pi_lock);
633
634 for (;;) {
635 rq = task_rq(p);
636 raw_spin_rq_lock(rq);
637 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
638 rq_pin_lock(rq, rf);
639 return rq;
640 }
641 raw_spin_rq_unlock(rq);
642
643 while (unlikely(task_on_rq_migrating(p)))
644 cpu_relax();
645 }
646 }
647
648 /*
649 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
650 */
651 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
652 __acquires(p->pi_lock)
653 __acquires(rq->lock)
654 {
655 struct rq *rq;
656
657 for (;;) {
658 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
659 rq = task_rq(p);
660 raw_spin_rq_lock(rq);
661 /*
662 * move_queued_task() task_rq_lock()
663 *
664 * ACQUIRE (rq->lock)
665 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
666 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
667 * [S] ->cpu = new_cpu [L] task_rq()
668 * [L] ->on_rq
669 * RELEASE (rq->lock)
670 *
671 * If we observe the old CPU in task_rq_lock(), the acquire of
672 * the old rq->lock will fully serialize against the stores.
673 *
674 * If we observe the new CPU in task_rq_lock(), the address
675 * dependency headed by '[L] rq = task_rq()' and the acquire
676 * will pair with the WMB to ensure we then also see migrating.
677 */
678 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
679 rq_pin_lock(rq, rf);
680 return rq;
681 }
682 raw_spin_rq_unlock(rq);
683 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
684
685 while (unlikely(task_on_rq_migrating(p)))
686 cpu_relax();
687 }
688 }
689
690 /*
691 * RQ-clock updating methods:
692 */
693
694 static void update_rq_clock_task(struct rq *rq, s64 delta)
695 {
696 /*
697 * In theory, the compile should just see 0 here, and optimize out the call
698 * to sched_rt_avg_update. But I don't trust it...
699 */
700 s64 __maybe_unused steal = 0, irq_delta = 0;
701
702 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
703 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
704
705 /*
706 * Since irq_time is only updated on {soft,}irq_exit, we might run into
707 * this case when a previous update_rq_clock() happened inside a
708 * {soft,}irq region.
709 *
710 * When this happens, we stop ->clock_task and only update the
711 * prev_irq_time stamp to account for the part that fit, so that a next
712 * update will consume the rest. This ensures ->clock_task is
713 * monotonic.
714 *
715 * It does however cause some slight miss-attribution of {soft,}irq
716 * time, a more accurate solution would be to update the irq_time using
717 * the current rq->clock timestamp, except that would require using
718 * atomic ops.
719 */
720 if (irq_delta > delta)
721 irq_delta = delta;
722
723 rq->prev_irq_time += irq_delta;
724 delta -= irq_delta;
725 psi_account_irqtime(rq->curr, irq_delta);
726 delayacct_irq(rq->curr, irq_delta);
727 #endif
728 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
729 if (static_key_false((&paravirt_steal_rq_enabled))) {
730 steal = paravirt_steal_clock(cpu_of(rq));
731 steal -= rq->prev_steal_time_rq;
732
733 if (unlikely(steal > delta))
734 steal = delta;
735
736 rq->prev_steal_time_rq += steal;
737 delta -= steal;
738 }
739 #endif
740
741 rq->clock_task += delta;
742
743 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
744 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
745 update_irq_load_avg(rq, irq_delta + steal);
746 #endif
747 update_rq_clock_pelt(rq, delta);
748 }
749
750 void update_rq_clock(struct rq *rq)
751 {
752 s64 delta;
753
754 lockdep_assert_rq_held(rq);
755
756 if (rq->clock_update_flags & RQCF_ACT_SKIP)
757 return;
758
759 #ifdef CONFIG_SCHED_DEBUG
760 if (sched_feat(WARN_DOUBLE_CLOCK))
761 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
762 rq->clock_update_flags |= RQCF_UPDATED;
763 #endif
764
765 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
766 if (delta < 0)
767 return;
768 rq->clock += delta;
769 update_rq_clock_task(rq, delta);
770 }
771
772 #ifdef CONFIG_SCHED_HRTICK
773 /*
774 * Use HR-timers to deliver accurate preemption points.
775 */
776
777 static void hrtick_clear(struct rq *rq)
778 {
779 if (hrtimer_active(&rq->hrtick_timer))
780 hrtimer_cancel(&rq->hrtick_timer);
781 }
782
783 /*
784 * High-resolution timer tick.
785 * Runs from hardirq context with interrupts disabled.
786 */
787 static enum hrtimer_restart hrtick(struct hrtimer *timer)
788 {
789 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
790 struct rq_flags rf;
791
792 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
793
794 rq_lock(rq, &rf);
795 update_rq_clock(rq);
796 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
797 rq_unlock(rq, &rf);
798
799 return HRTIMER_NORESTART;
800 }
801
802 #ifdef CONFIG_SMP
803
804 static void __hrtick_restart(struct rq *rq)
805 {
806 struct hrtimer *timer = &rq->hrtick_timer;
807 ktime_t time = rq->hrtick_time;
808
809 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
810 }
811
812 /*
813 * called from hardirq (IPI) context
814 */
815 static void __hrtick_start(void *arg)
816 {
817 struct rq *rq = arg;
818 struct rq_flags rf;
819
820 rq_lock(rq, &rf);
821 __hrtick_restart(rq);
822 rq_unlock(rq, &rf);
823 }
824
825 /*
826 * Called to set the hrtick timer state.
827 *
828 * called with rq->lock held and irqs disabled
829 */
830 void hrtick_start(struct rq *rq, u64 delay)
831 {
832 struct hrtimer *timer = &rq->hrtick_timer;
833 s64 delta;
834
835 /*
836 * Don't schedule slices shorter than 10000ns, that just
837 * doesn't make sense and can cause timer DoS.
838 */
839 delta = max_t(s64, delay, 10000LL);
840 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
841
842 if (rq == this_rq())
843 __hrtick_restart(rq);
844 else
845 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
846 }
847
848 #else
849 /*
850 * Called to set the hrtick timer state.
851 *
852 * called with rq->lock held and irqs disabled
853 */
854 void hrtick_start(struct rq *rq, u64 delay)
855 {
856 /*
857 * Don't schedule slices shorter than 10000ns, that just
858 * doesn't make sense. Rely on vruntime for fairness.
859 */
860 delay = max_t(u64, delay, 10000LL);
861 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
862 HRTIMER_MODE_REL_PINNED_HARD);
863 }
864
865 #endif /* CONFIG_SMP */
866
867 static void hrtick_rq_init(struct rq *rq)
868 {
869 #ifdef CONFIG_SMP
870 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
871 #endif
872 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
873 rq->hrtick_timer.function = hrtick;
874 }
875 #else /* CONFIG_SCHED_HRTICK */
876 static inline void hrtick_clear(struct rq *rq)
877 {
878 }
879
880 static inline void hrtick_rq_init(struct rq *rq)
881 {
882 }
883 #endif /* CONFIG_SCHED_HRTICK */
884
885 /*
886 * cmpxchg based fetch_or, macro so it works for different integer types
887 */
888 #define fetch_or(ptr, mask) \
889 ({ \
890 typeof(ptr) _ptr = (ptr); \
891 typeof(mask) _mask = (mask); \
892 typeof(*_ptr) _val = *_ptr; \
893 \
894 do { \
895 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
896 _val; \
897 })
898
899 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
900 /*
901 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
902 * this avoids any races wrt polling state changes and thereby avoids
903 * spurious IPIs.
904 */
905 static inline bool set_nr_and_not_polling(struct task_struct *p)
906 {
907 struct thread_info *ti = task_thread_info(p);
908 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
909 }
910
911 /*
912 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
913 *
914 * If this returns true, then the idle task promises to call
915 * sched_ttwu_pending() and reschedule soon.
916 */
917 static bool set_nr_if_polling(struct task_struct *p)
918 {
919 struct thread_info *ti = task_thread_info(p);
920 typeof(ti->flags) val = READ_ONCE(ti->flags);
921
922 for (;;) {
923 if (!(val & _TIF_POLLING_NRFLAG))
924 return false;
925 if (val & _TIF_NEED_RESCHED)
926 return true;
927 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
928 break;
929 }
930 return true;
931 }
932
933 #else
934 static inline bool set_nr_and_not_polling(struct task_struct *p)
935 {
936 set_tsk_need_resched(p);
937 return true;
938 }
939
940 #ifdef CONFIG_SMP
941 static inline bool set_nr_if_polling(struct task_struct *p)
942 {
943 return false;
944 }
945 #endif
946 #endif
947
948 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
949 {
950 struct wake_q_node *node = &task->wake_q;
951
952 /*
953 * Atomically grab the task, if ->wake_q is !nil already it means
954 * it's already queued (either by us or someone else) and will get the
955 * wakeup due to that.
956 *
957 * In order to ensure that a pending wakeup will observe our pending
958 * state, even in the failed case, an explicit smp_mb() must be used.
959 */
960 smp_mb__before_atomic();
961 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
962 return false;
963
964 /*
965 * The head is context local, there can be no concurrency.
966 */
967 *head->lastp = node;
968 head->lastp = &node->next;
969 return true;
970 }
971
972 /**
973 * wake_q_add() - queue a wakeup for 'later' waking.
974 * @head: the wake_q_head to add @task to
975 * @task: the task to queue for 'later' wakeup
976 *
977 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
978 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
979 * instantly.
980 *
981 * This function must be used as-if it were wake_up_process(); IOW the task
982 * must be ready to be woken at this location.
983 */
984 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
985 {
986 if (__wake_q_add(head, task))
987 get_task_struct(task);
988 }
989
990 /**
991 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
992 * @head: the wake_q_head to add @task to
993 * @task: the task to queue for 'later' wakeup
994 *
995 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
996 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
997 * instantly.
998 *
999 * This function must be used as-if it were wake_up_process(); IOW the task
1000 * must be ready to be woken at this location.
1001 *
1002 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1003 * that already hold reference to @task can call the 'safe' version and trust
1004 * wake_q to do the right thing depending whether or not the @task is already
1005 * queued for wakeup.
1006 */
1007 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1008 {
1009 if (!__wake_q_add(head, task))
1010 put_task_struct(task);
1011 }
1012
1013 void wake_up_q(struct wake_q_head *head)
1014 {
1015 struct wake_q_node *node = head->first;
1016
1017 while (node != WAKE_Q_TAIL) {
1018 struct task_struct *task;
1019
1020 task = container_of(node, struct task_struct, wake_q);
1021 /* Task can safely be re-inserted now: */
1022 node = node->next;
1023 task->wake_q.next = NULL;
1024
1025 /*
1026 * wake_up_process() executes a full barrier, which pairs with
1027 * the queueing in wake_q_add() so as not to miss wakeups.
1028 */
1029 wake_up_process(task);
1030 put_task_struct(task);
1031 }
1032 }
1033
1034 /*
1035 * resched_curr - mark rq's current task 'to be rescheduled now'.
1036 *
1037 * On UP this means the setting of the need_resched flag, on SMP it
1038 * might also involve a cross-CPU call to trigger the scheduler on
1039 * the target CPU.
1040 */
1041 void resched_curr(struct rq *rq)
1042 {
1043 struct task_struct *curr = rq->curr;
1044 int cpu;
1045
1046 lockdep_assert_rq_held(rq);
1047
1048 if (test_tsk_need_resched(curr))
1049 return;
1050
1051 cpu = cpu_of(rq);
1052
1053 if (cpu == smp_processor_id()) {
1054 set_tsk_need_resched(curr);
1055 set_preempt_need_resched();
1056 return;
1057 }
1058
1059 if (set_nr_and_not_polling(curr))
1060 smp_send_reschedule(cpu);
1061 else
1062 trace_sched_wake_idle_without_ipi(cpu);
1063 }
1064
1065 void resched_cpu(int cpu)
1066 {
1067 struct rq *rq = cpu_rq(cpu);
1068 unsigned long flags;
1069
1070 raw_spin_rq_lock_irqsave(rq, flags);
1071 if (cpu_online(cpu) || cpu == smp_processor_id())
1072 resched_curr(rq);
1073 raw_spin_rq_unlock_irqrestore(rq, flags);
1074 }
1075
1076 #ifdef CONFIG_SMP
1077 #ifdef CONFIG_NO_HZ_COMMON
1078 /*
1079 * In the semi idle case, use the nearest busy CPU for migrating timers
1080 * from an idle CPU. This is good for power-savings.
1081 *
1082 * We don't do similar optimization for completely idle system, as
1083 * selecting an idle CPU will add more delays to the timers than intended
1084 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1085 */
1086 int get_nohz_timer_target(void)
1087 {
1088 int i, cpu = smp_processor_id(), default_cpu = -1;
1089 struct sched_domain *sd;
1090 const struct cpumask *hk_mask;
1091
1092 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1093 if (!idle_cpu(cpu))
1094 return cpu;
1095 default_cpu = cpu;
1096 }
1097
1098 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1099
1100 rcu_read_lock();
1101 for_each_domain(cpu, sd) {
1102 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1103 if (cpu == i)
1104 continue;
1105
1106 if (!idle_cpu(i)) {
1107 cpu = i;
1108 goto unlock;
1109 }
1110 }
1111 }
1112
1113 if (default_cpu == -1)
1114 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1115 cpu = default_cpu;
1116 unlock:
1117 rcu_read_unlock();
1118 return cpu;
1119 }
1120
1121 /*
1122 * When add_timer_on() enqueues a timer into the timer wheel of an
1123 * idle CPU then this timer might expire before the next timer event
1124 * which is scheduled to wake up that CPU. In case of a completely
1125 * idle system the next event might even be infinite time into the
1126 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1127 * leaves the inner idle loop so the newly added timer is taken into
1128 * account when the CPU goes back to idle and evaluates the timer
1129 * wheel for the next timer event.
1130 */
1131 static void wake_up_idle_cpu(int cpu)
1132 {
1133 struct rq *rq = cpu_rq(cpu);
1134
1135 if (cpu == smp_processor_id())
1136 return;
1137
1138 if (set_nr_and_not_polling(rq->idle))
1139 smp_send_reschedule(cpu);
1140 else
1141 trace_sched_wake_idle_without_ipi(cpu);
1142 }
1143
1144 static bool wake_up_full_nohz_cpu(int cpu)
1145 {
1146 /*
1147 * We just need the target to call irq_exit() and re-evaluate
1148 * the next tick. The nohz full kick at least implies that.
1149 * If needed we can still optimize that later with an
1150 * empty IRQ.
1151 */
1152 if (cpu_is_offline(cpu))
1153 return true; /* Don't try to wake offline CPUs. */
1154 if (tick_nohz_full_cpu(cpu)) {
1155 if (cpu != smp_processor_id() ||
1156 tick_nohz_tick_stopped())
1157 tick_nohz_full_kick_cpu(cpu);
1158 return true;
1159 }
1160
1161 return false;
1162 }
1163
1164 /*
1165 * Wake up the specified CPU. If the CPU is going offline, it is the
1166 * caller's responsibility to deal with the lost wakeup, for example,
1167 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1168 */
1169 void wake_up_nohz_cpu(int cpu)
1170 {
1171 if (!wake_up_full_nohz_cpu(cpu))
1172 wake_up_idle_cpu(cpu);
1173 }
1174
1175 static void nohz_csd_func(void *info)
1176 {
1177 struct rq *rq = info;
1178 int cpu = cpu_of(rq);
1179 unsigned int flags;
1180
1181 /*
1182 * Release the rq::nohz_csd.
1183 */
1184 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1185 WARN_ON(!(flags & NOHZ_KICK_MASK));
1186
1187 rq->idle_balance = idle_cpu(cpu);
1188 if (rq->idle_balance && !need_resched()) {
1189 rq->nohz_idle_balance = flags;
1190 raise_softirq_irqoff(SCHED_SOFTIRQ);
1191 }
1192 }
1193
1194 #endif /* CONFIG_NO_HZ_COMMON */
1195
1196 #ifdef CONFIG_NO_HZ_FULL
1197 bool sched_can_stop_tick(struct rq *rq)
1198 {
1199 int fifo_nr_running;
1200
1201 /* Deadline tasks, even if single, need the tick */
1202 if (rq->dl.dl_nr_running)
1203 return false;
1204
1205 /*
1206 * If there are more than one RR tasks, we need the tick to affect the
1207 * actual RR behaviour.
1208 */
1209 if (rq->rt.rr_nr_running) {
1210 if (rq->rt.rr_nr_running == 1)
1211 return true;
1212 else
1213 return false;
1214 }
1215
1216 /*
1217 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1218 * forced preemption between FIFO tasks.
1219 */
1220 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1221 if (fifo_nr_running)
1222 return true;
1223
1224 /*
1225 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1226 * if there's more than one we need the tick for involuntary
1227 * preemption.
1228 */
1229 if (rq->nr_running > 1)
1230 return false;
1231
1232 return true;
1233 }
1234 #endif /* CONFIG_NO_HZ_FULL */
1235 #endif /* CONFIG_SMP */
1236
1237 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1238 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1239 /*
1240 * Iterate task_group tree rooted at *from, calling @down when first entering a
1241 * node and @up when leaving it for the final time.
1242 *
1243 * Caller must hold rcu_lock or sufficient equivalent.
1244 */
1245 int walk_tg_tree_from(struct task_group *from,
1246 tg_visitor down, tg_visitor up, void *data)
1247 {
1248 struct task_group *parent, *child;
1249 int ret;
1250
1251 parent = from;
1252
1253 down:
1254 ret = (*down)(parent, data);
1255 if (ret)
1256 goto out;
1257 list_for_each_entry_rcu(child, &parent->children, siblings) {
1258 parent = child;
1259 goto down;
1260
1261 up:
1262 continue;
1263 }
1264 ret = (*up)(parent, data);
1265 if (ret || parent == from)
1266 goto out;
1267
1268 child = parent;
1269 parent = parent->parent;
1270 if (parent)
1271 goto up;
1272 out:
1273 return ret;
1274 }
1275
1276 int tg_nop(struct task_group *tg, void *data)
1277 {
1278 return 0;
1279 }
1280 #endif
1281
1282 static void set_load_weight(struct task_struct *p, bool update_load)
1283 {
1284 int prio = p->static_prio - MAX_RT_PRIO;
1285 struct load_weight *load = &p->se.load;
1286
1287 /*
1288 * SCHED_IDLE tasks get minimal weight:
1289 */
1290 if (task_has_idle_policy(p)) {
1291 load->weight = scale_load(WEIGHT_IDLEPRIO);
1292 load->inv_weight = WMULT_IDLEPRIO;
1293 return;
1294 }
1295
1296 /*
1297 * SCHED_OTHER tasks have to update their load when changing their
1298 * weight
1299 */
1300 if (update_load && p->sched_class == &fair_sched_class) {
1301 reweight_task(p, prio);
1302 } else {
1303 load->weight = scale_load(sched_prio_to_weight[prio]);
1304 load->inv_weight = sched_prio_to_wmult[prio];
1305 }
1306 }
1307
1308 #ifdef CONFIG_UCLAMP_TASK
1309 /*
1310 * Serializes updates of utilization clamp values
1311 *
1312 * The (slow-path) user-space triggers utilization clamp value updates which
1313 * can require updates on (fast-path) scheduler's data structures used to
1314 * support enqueue/dequeue operations.
1315 * While the per-CPU rq lock protects fast-path update operations, user-space
1316 * requests are serialized using a mutex to reduce the risk of conflicting
1317 * updates or API abuses.
1318 */
1319 static DEFINE_MUTEX(uclamp_mutex);
1320
1321 /* Max allowed minimum utilization */
1322 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1323
1324 /* Max allowed maximum utilization */
1325 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1326
1327 /*
1328 * By default RT tasks run at the maximum performance point/capacity of the
1329 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1330 * SCHED_CAPACITY_SCALE.
1331 *
1332 * This knob allows admins to change the default behavior when uclamp is being
1333 * used. In battery powered devices, particularly, running at the maximum
1334 * capacity and frequency will increase energy consumption and shorten the
1335 * battery life.
1336 *
1337 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1338 *
1339 * This knob will not override the system default sched_util_clamp_min defined
1340 * above.
1341 */
1342 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1343
1344 /* All clamps are required to be less or equal than these values */
1345 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1346
1347 /*
1348 * This static key is used to reduce the uclamp overhead in the fast path. It
1349 * primarily disables the call to uclamp_rq_{inc, dec}() in
1350 * enqueue/dequeue_task().
1351 *
1352 * This allows users to continue to enable uclamp in their kernel config with
1353 * minimum uclamp overhead in the fast path.
1354 *
1355 * As soon as userspace modifies any of the uclamp knobs, the static key is
1356 * enabled, since we have an actual users that make use of uclamp
1357 * functionality.
1358 *
1359 * The knobs that would enable this static key are:
1360 *
1361 * * A task modifying its uclamp value with sched_setattr().
1362 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1363 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1364 */
1365 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1366
1367 /* Integer rounded range for each bucket */
1368 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1369
1370 #define for_each_clamp_id(clamp_id) \
1371 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1372
1373 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1374 {
1375 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1376 }
1377
1378 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1379 {
1380 if (clamp_id == UCLAMP_MIN)
1381 return 0;
1382 return SCHED_CAPACITY_SCALE;
1383 }
1384
1385 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1386 unsigned int value, bool user_defined)
1387 {
1388 uc_se->value = value;
1389 uc_se->bucket_id = uclamp_bucket_id(value);
1390 uc_se->user_defined = user_defined;
1391 }
1392
1393 static inline unsigned int
1394 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1395 unsigned int clamp_value)
1396 {
1397 /*
1398 * Avoid blocked utilization pushing up the frequency when we go
1399 * idle (which drops the max-clamp) by retaining the last known
1400 * max-clamp.
1401 */
1402 if (clamp_id == UCLAMP_MAX) {
1403 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1404 return clamp_value;
1405 }
1406
1407 return uclamp_none(UCLAMP_MIN);
1408 }
1409
1410 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1411 unsigned int clamp_value)
1412 {
1413 /* Reset max-clamp retention only on idle exit */
1414 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1415 return;
1416
1417 uclamp_rq_set(rq, clamp_id, clamp_value);
1418 }
1419
1420 static inline
1421 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1422 unsigned int clamp_value)
1423 {
1424 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1425 int bucket_id = UCLAMP_BUCKETS - 1;
1426
1427 /*
1428 * Since both min and max clamps are max aggregated, find the
1429 * top most bucket with tasks in.
1430 */
1431 for ( ; bucket_id >= 0; bucket_id--) {
1432 if (!bucket[bucket_id].tasks)
1433 continue;
1434 return bucket[bucket_id].value;
1435 }
1436
1437 /* No tasks -- default clamp values */
1438 return uclamp_idle_value(rq, clamp_id, clamp_value);
1439 }
1440
1441 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1442 {
1443 unsigned int default_util_min;
1444 struct uclamp_se *uc_se;
1445
1446 lockdep_assert_held(&p->pi_lock);
1447
1448 uc_se = &p->uclamp_req[UCLAMP_MIN];
1449
1450 /* Only sync if user didn't override the default */
1451 if (uc_se->user_defined)
1452 return;
1453
1454 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1455 uclamp_se_set(uc_se, default_util_min, false);
1456 }
1457
1458 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1459 {
1460 struct rq_flags rf;
1461 struct rq *rq;
1462
1463 if (!rt_task(p))
1464 return;
1465
1466 /* Protect updates to p->uclamp_* */
1467 rq = task_rq_lock(p, &rf);
1468 __uclamp_update_util_min_rt_default(p);
1469 task_rq_unlock(rq, p, &rf);
1470 }
1471
1472 static inline struct uclamp_se
1473 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1474 {
1475 /* Copy by value as we could modify it */
1476 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1477 #ifdef CONFIG_UCLAMP_TASK_GROUP
1478 unsigned int tg_min, tg_max, value;
1479
1480 /*
1481 * Tasks in autogroups or root task group will be
1482 * restricted by system defaults.
1483 */
1484 if (task_group_is_autogroup(task_group(p)))
1485 return uc_req;
1486 if (task_group(p) == &root_task_group)
1487 return uc_req;
1488
1489 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1490 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1491 value = uc_req.value;
1492 value = clamp(value, tg_min, tg_max);
1493 uclamp_se_set(&uc_req, value, false);
1494 #endif
1495
1496 return uc_req;
1497 }
1498
1499 /*
1500 * The effective clamp bucket index of a task depends on, by increasing
1501 * priority:
1502 * - the task specific clamp value, when explicitly requested from userspace
1503 * - the task group effective clamp value, for tasks not either in the root
1504 * group or in an autogroup
1505 * - the system default clamp value, defined by the sysadmin
1506 */
1507 static inline struct uclamp_se
1508 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1509 {
1510 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1511 struct uclamp_se uc_max = uclamp_default[clamp_id];
1512
1513 /* System default restrictions always apply */
1514 if (unlikely(uc_req.value > uc_max.value))
1515 return uc_max;
1516
1517 return uc_req;
1518 }
1519
1520 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1521 {
1522 struct uclamp_se uc_eff;
1523
1524 /* Task currently refcounted: use back-annotated (effective) value */
1525 if (p->uclamp[clamp_id].active)
1526 return (unsigned long)p->uclamp[clamp_id].value;
1527
1528 uc_eff = uclamp_eff_get(p, clamp_id);
1529
1530 return (unsigned long)uc_eff.value;
1531 }
1532
1533 /*
1534 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1535 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1536 * updates the rq's clamp value if required.
1537 *
1538 * Tasks can have a task-specific value requested from user-space, track
1539 * within each bucket the maximum value for tasks refcounted in it.
1540 * This "local max aggregation" allows to track the exact "requested" value
1541 * for each bucket when all its RUNNABLE tasks require the same clamp.
1542 */
1543 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1544 enum uclamp_id clamp_id)
1545 {
1546 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1547 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1548 struct uclamp_bucket *bucket;
1549
1550 lockdep_assert_rq_held(rq);
1551
1552 /* Update task effective clamp */
1553 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1554
1555 bucket = &uc_rq->bucket[uc_se->bucket_id];
1556 bucket->tasks++;
1557 uc_se->active = true;
1558
1559 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1560
1561 /*
1562 * Local max aggregation: rq buckets always track the max
1563 * "requested" clamp value of its RUNNABLE tasks.
1564 */
1565 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1566 bucket->value = uc_se->value;
1567
1568 if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1569 uclamp_rq_set(rq, clamp_id, uc_se->value);
1570 }
1571
1572 /*
1573 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1574 * is released. If this is the last task reference counting the rq's max
1575 * active clamp value, then the rq's clamp value is updated.
1576 *
1577 * Both refcounted tasks and rq's cached clamp values are expected to be
1578 * always valid. If it's detected they are not, as defensive programming,
1579 * enforce the expected state and warn.
1580 */
1581 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1582 enum uclamp_id clamp_id)
1583 {
1584 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1585 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1586 struct uclamp_bucket *bucket;
1587 unsigned int bkt_clamp;
1588 unsigned int rq_clamp;
1589
1590 lockdep_assert_rq_held(rq);
1591
1592 /*
1593 * If sched_uclamp_used was enabled after task @p was enqueued,
1594 * we could end up with unbalanced call to uclamp_rq_dec_id().
1595 *
1596 * In this case the uc_se->active flag should be false since no uclamp
1597 * accounting was performed at enqueue time and we can just return
1598 * here.
1599 *
1600 * Need to be careful of the following enqueue/dequeue ordering
1601 * problem too
1602 *
1603 * enqueue(taskA)
1604 * // sched_uclamp_used gets enabled
1605 * enqueue(taskB)
1606 * dequeue(taskA)
1607 * // Must not decrement bucket->tasks here
1608 * dequeue(taskB)
1609 *
1610 * where we could end up with stale data in uc_se and
1611 * bucket[uc_se->bucket_id].
1612 *
1613 * The following check here eliminates the possibility of such race.
1614 */
1615 if (unlikely(!uc_se->active))
1616 return;
1617
1618 bucket = &uc_rq->bucket[uc_se->bucket_id];
1619
1620 SCHED_WARN_ON(!bucket->tasks);
1621 if (likely(bucket->tasks))
1622 bucket->tasks--;
1623
1624 uc_se->active = false;
1625
1626 /*
1627 * Keep "local max aggregation" simple and accept to (possibly)
1628 * overboost some RUNNABLE tasks in the same bucket.
1629 * The rq clamp bucket value is reset to its base value whenever
1630 * there are no more RUNNABLE tasks refcounting it.
1631 */
1632 if (likely(bucket->tasks))
1633 return;
1634
1635 rq_clamp = uclamp_rq_get(rq, clamp_id);
1636 /*
1637 * Defensive programming: this should never happen. If it happens,
1638 * e.g. due to future modification, warn and fixup the expected value.
1639 */
1640 SCHED_WARN_ON(bucket->value > rq_clamp);
1641 if (bucket->value >= rq_clamp) {
1642 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1643 uclamp_rq_set(rq, clamp_id, bkt_clamp);
1644 }
1645 }
1646
1647 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1648 {
1649 enum uclamp_id clamp_id;
1650
1651 /*
1652 * Avoid any overhead until uclamp is actually used by the userspace.
1653 *
1654 * The condition is constructed such that a NOP is generated when
1655 * sched_uclamp_used is disabled.
1656 */
1657 if (!static_branch_unlikely(&sched_uclamp_used))
1658 return;
1659
1660 if (unlikely(!p->sched_class->uclamp_enabled))
1661 return;
1662
1663 for_each_clamp_id(clamp_id)
1664 uclamp_rq_inc_id(rq, p, clamp_id);
1665
1666 /* Reset clamp idle holding when there is one RUNNABLE task */
1667 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1668 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1669 }
1670
1671 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1672 {
1673 enum uclamp_id clamp_id;
1674
1675 /*
1676 * Avoid any overhead until uclamp is actually used by the userspace.
1677 *
1678 * The condition is constructed such that a NOP is generated when
1679 * sched_uclamp_used is disabled.
1680 */
1681 if (!static_branch_unlikely(&sched_uclamp_used))
1682 return;
1683
1684 if (unlikely(!p->sched_class->uclamp_enabled))
1685 return;
1686
1687 for_each_clamp_id(clamp_id)
1688 uclamp_rq_dec_id(rq, p, clamp_id);
1689 }
1690
1691 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1692 enum uclamp_id clamp_id)
1693 {
1694 if (!p->uclamp[clamp_id].active)
1695 return;
1696
1697 uclamp_rq_dec_id(rq, p, clamp_id);
1698 uclamp_rq_inc_id(rq, p, clamp_id);
1699
1700 /*
1701 * Make sure to clear the idle flag if we've transiently reached 0
1702 * active tasks on rq.
1703 */
1704 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1705 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1706 }
1707
1708 static inline void
1709 uclamp_update_active(struct task_struct *p)
1710 {
1711 enum uclamp_id clamp_id;
1712 struct rq_flags rf;
1713 struct rq *rq;
1714
1715 /*
1716 * Lock the task and the rq where the task is (or was) queued.
1717 *
1718 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1719 * price to pay to safely serialize util_{min,max} updates with
1720 * enqueues, dequeues and migration operations.
1721 * This is the same locking schema used by __set_cpus_allowed_ptr().
1722 */
1723 rq = task_rq_lock(p, &rf);
1724
1725 /*
1726 * Setting the clamp bucket is serialized by task_rq_lock().
1727 * If the task is not yet RUNNABLE and its task_struct is not
1728 * affecting a valid clamp bucket, the next time it's enqueued,
1729 * it will already see the updated clamp bucket value.
1730 */
1731 for_each_clamp_id(clamp_id)
1732 uclamp_rq_reinc_id(rq, p, clamp_id);
1733
1734 task_rq_unlock(rq, p, &rf);
1735 }
1736
1737 #ifdef CONFIG_UCLAMP_TASK_GROUP
1738 static inline void
1739 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1740 {
1741 struct css_task_iter it;
1742 struct task_struct *p;
1743
1744 css_task_iter_start(css, 0, &it);
1745 while ((p = css_task_iter_next(&it)))
1746 uclamp_update_active(p);
1747 css_task_iter_end(&it);
1748 }
1749
1750 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1751 #endif
1752
1753 #ifdef CONFIG_SYSCTL
1754 #ifdef CONFIG_UCLAMP_TASK
1755 #ifdef CONFIG_UCLAMP_TASK_GROUP
1756 static void uclamp_update_root_tg(void)
1757 {
1758 struct task_group *tg = &root_task_group;
1759
1760 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1761 sysctl_sched_uclamp_util_min, false);
1762 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1763 sysctl_sched_uclamp_util_max, false);
1764
1765 rcu_read_lock();
1766 cpu_util_update_eff(&root_task_group.css);
1767 rcu_read_unlock();
1768 }
1769 #else
1770 static void uclamp_update_root_tg(void) { }
1771 #endif
1772
1773 static void uclamp_sync_util_min_rt_default(void)
1774 {
1775 struct task_struct *g, *p;
1776
1777 /*
1778 * copy_process() sysctl_uclamp
1779 * uclamp_min_rt = X;
1780 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1781 * // link thread smp_mb__after_spinlock()
1782 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1783 * sched_post_fork() for_each_process_thread()
1784 * __uclamp_sync_rt() __uclamp_sync_rt()
1785 *
1786 * Ensures that either sched_post_fork() will observe the new
1787 * uclamp_min_rt or for_each_process_thread() will observe the new
1788 * task.
1789 */
1790 read_lock(&tasklist_lock);
1791 smp_mb__after_spinlock();
1792 read_unlock(&tasklist_lock);
1793
1794 rcu_read_lock();
1795 for_each_process_thread(g, p)
1796 uclamp_update_util_min_rt_default(p);
1797 rcu_read_unlock();
1798 }
1799
1800 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1801 void *buffer, size_t *lenp, loff_t *ppos)
1802 {
1803 bool update_root_tg = false;
1804 int old_min, old_max, old_min_rt;
1805 int result;
1806
1807 mutex_lock(&uclamp_mutex);
1808 old_min = sysctl_sched_uclamp_util_min;
1809 old_max = sysctl_sched_uclamp_util_max;
1810 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1811
1812 result = proc_dointvec(table, write, buffer, lenp, ppos);
1813 if (result)
1814 goto undo;
1815 if (!write)
1816 goto done;
1817
1818 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1819 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1820 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1821
1822 result = -EINVAL;
1823 goto undo;
1824 }
1825
1826 if (old_min != sysctl_sched_uclamp_util_min) {
1827 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1828 sysctl_sched_uclamp_util_min, false);
1829 update_root_tg = true;
1830 }
1831 if (old_max != sysctl_sched_uclamp_util_max) {
1832 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1833 sysctl_sched_uclamp_util_max, false);
1834 update_root_tg = true;
1835 }
1836
1837 if (update_root_tg) {
1838 static_branch_enable(&sched_uclamp_used);
1839 uclamp_update_root_tg();
1840 }
1841
1842 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1843 static_branch_enable(&sched_uclamp_used);
1844 uclamp_sync_util_min_rt_default();
1845 }
1846
1847 /*
1848 * We update all RUNNABLE tasks only when task groups are in use.
1849 * Otherwise, keep it simple and do just a lazy update at each next
1850 * task enqueue time.
1851 */
1852
1853 goto done;
1854
1855 undo:
1856 sysctl_sched_uclamp_util_min = old_min;
1857 sysctl_sched_uclamp_util_max = old_max;
1858 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1859 done:
1860 mutex_unlock(&uclamp_mutex);
1861
1862 return result;
1863 }
1864 #endif
1865 #endif
1866
1867 static int uclamp_validate(struct task_struct *p,
1868 const struct sched_attr *attr)
1869 {
1870 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1871 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1872
1873 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1874 util_min = attr->sched_util_min;
1875
1876 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1877 return -EINVAL;
1878 }
1879
1880 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1881 util_max = attr->sched_util_max;
1882
1883 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1884 return -EINVAL;
1885 }
1886
1887 if (util_min != -1 && util_max != -1 && util_min > util_max)
1888 return -EINVAL;
1889
1890 /*
1891 * We have valid uclamp attributes; make sure uclamp is enabled.
1892 *
1893 * We need to do that here, because enabling static branches is a
1894 * blocking operation which obviously cannot be done while holding
1895 * scheduler locks.
1896 */
1897 static_branch_enable(&sched_uclamp_used);
1898
1899 return 0;
1900 }
1901
1902 static bool uclamp_reset(const struct sched_attr *attr,
1903 enum uclamp_id clamp_id,
1904 struct uclamp_se *uc_se)
1905 {
1906 /* Reset on sched class change for a non user-defined clamp value. */
1907 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1908 !uc_se->user_defined)
1909 return true;
1910
1911 /* Reset on sched_util_{min,max} == -1. */
1912 if (clamp_id == UCLAMP_MIN &&
1913 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1914 attr->sched_util_min == -1) {
1915 return true;
1916 }
1917
1918 if (clamp_id == UCLAMP_MAX &&
1919 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1920 attr->sched_util_max == -1) {
1921 return true;
1922 }
1923
1924 return false;
1925 }
1926
1927 static void __setscheduler_uclamp(struct task_struct *p,
1928 const struct sched_attr *attr)
1929 {
1930 enum uclamp_id clamp_id;
1931
1932 for_each_clamp_id(clamp_id) {
1933 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1934 unsigned int value;
1935
1936 if (!uclamp_reset(attr, clamp_id, uc_se))
1937 continue;
1938
1939 /*
1940 * RT by default have a 100% boost value that could be modified
1941 * at runtime.
1942 */
1943 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1944 value = sysctl_sched_uclamp_util_min_rt_default;
1945 else
1946 value = uclamp_none(clamp_id);
1947
1948 uclamp_se_set(uc_se, value, false);
1949
1950 }
1951
1952 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1953 return;
1954
1955 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1956 attr->sched_util_min != -1) {
1957 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1958 attr->sched_util_min, true);
1959 }
1960
1961 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1962 attr->sched_util_max != -1) {
1963 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1964 attr->sched_util_max, true);
1965 }
1966 }
1967
1968 static void uclamp_fork(struct task_struct *p)
1969 {
1970 enum uclamp_id clamp_id;
1971
1972 /*
1973 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1974 * as the task is still at its early fork stages.
1975 */
1976 for_each_clamp_id(clamp_id)
1977 p->uclamp[clamp_id].active = false;
1978
1979 if (likely(!p->sched_reset_on_fork))
1980 return;
1981
1982 for_each_clamp_id(clamp_id) {
1983 uclamp_se_set(&p->uclamp_req[clamp_id],
1984 uclamp_none(clamp_id), false);
1985 }
1986 }
1987
1988 static void uclamp_post_fork(struct task_struct *p)
1989 {
1990 uclamp_update_util_min_rt_default(p);
1991 }
1992
1993 static void __init init_uclamp_rq(struct rq *rq)
1994 {
1995 enum uclamp_id clamp_id;
1996 struct uclamp_rq *uc_rq = rq->uclamp;
1997
1998 for_each_clamp_id(clamp_id) {
1999 uc_rq[clamp_id] = (struct uclamp_rq) {
2000 .value = uclamp_none(clamp_id)
2001 };
2002 }
2003
2004 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2005 }
2006
2007 static void __init init_uclamp(void)
2008 {
2009 struct uclamp_se uc_max = {};
2010 enum uclamp_id clamp_id;
2011 int cpu;
2012
2013 for_each_possible_cpu(cpu)
2014 init_uclamp_rq(cpu_rq(cpu));
2015
2016 for_each_clamp_id(clamp_id) {
2017 uclamp_se_set(&init_task.uclamp_req[clamp_id],
2018 uclamp_none(clamp_id), false);
2019 }
2020
2021 /* System defaults allow max clamp values for both indexes */
2022 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2023 for_each_clamp_id(clamp_id) {
2024 uclamp_default[clamp_id] = uc_max;
2025 #ifdef CONFIG_UCLAMP_TASK_GROUP
2026 root_task_group.uclamp_req[clamp_id] = uc_max;
2027 root_task_group.uclamp[clamp_id] = uc_max;
2028 #endif
2029 }
2030 }
2031
2032 #else /* CONFIG_UCLAMP_TASK */
2033 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2034 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2035 static inline int uclamp_validate(struct task_struct *p,
2036 const struct sched_attr *attr)
2037 {
2038 return -EOPNOTSUPP;
2039 }
2040 static void __setscheduler_uclamp(struct task_struct *p,
2041 const struct sched_attr *attr) { }
2042 static inline void uclamp_fork(struct task_struct *p) { }
2043 static inline void uclamp_post_fork(struct task_struct *p) { }
2044 static inline void init_uclamp(void) { }
2045 #endif /* CONFIG_UCLAMP_TASK */
2046
2047 bool sched_task_on_rq(struct task_struct *p)
2048 {
2049 return task_on_rq_queued(p);
2050 }
2051
2052 unsigned long get_wchan(struct task_struct *p)
2053 {
2054 unsigned long ip = 0;
2055 unsigned int state;
2056
2057 if (!p || p == current)
2058 return 0;
2059
2060 /* Only get wchan if task is blocked and we can keep it that way. */
2061 raw_spin_lock_irq(&p->pi_lock);
2062 state = READ_ONCE(p->__state);
2063 smp_rmb(); /* see try_to_wake_up() */
2064 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2065 ip = __get_wchan(p);
2066 raw_spin_unlock_irq(&p->pi_lock);
2067
2068 return ip;
2069 }
2070
2071 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2072 {
2073 if (!(flags & ENQUEUE_NOCLOCK))
2074 update_rq_clock(rq);
2075
2076 if (!(flags & ENQUEUE_RESTORE)) {
2077 sched_info_enqueue(rq, p);
2078 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2079 }
2080
2081 uclamp_rq_inc(rq, p);
2082 p->sched_class->enqueue_task(rq, p, flags);
2083
2084 if (sched_core_enabled(rq))
2085 sched_core_enqueue(rq, p);
2086 }
2087
2088 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2089 {
2090 if (sched_core_enabled(rq))
2091 sched_core_dequeue(rq, p, flags);
2092
2093 if (!(flags & DEQUEUE_NOCLOCK))
2094 update_rq_clock(rq);
2095
2096 if (!(flags & DEQUEUE_SAVE)) {
2097 sched_info_dequeue(rq, p);
2098 psi_dequeue(p, flags & DEQUEUE_SLEEP);
2099 }
2100
2101 uclamp_rq_dec(rq, p);
2102 p->sched_class->dequeue_task(rq, p, flags);
2103 }
2104
2105 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2106 {
2107 if (task_on_rq_migrating(p))
2108 flags |= ENQUEUE_MIGRATED;
2109 if (flags & ENQUEUE_MIGRATED)
2110 sched_mm_cid_migrate_to(rq, p);
2111
2112 enqueue_task(rq, p, flags);
2113
2114 p->on_rq = TASK_ON_RQ_QUEUED;
2115 }
2116
2117 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2118 {
2119 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2120
2121 dequeue_task(rq, p, flags);
2122 }
2123
2124 static inline int __normal_prio(int policy, int rt_prio, int nice)
2125 {
2126 int prio;
2127
2128 if (dl_policy(policy))
2129 prio = MAX_DL_PRIO - 1;
2130 else if (rt_policy(policy))
2131 prio = MAX_RT_PRIO - 1 - rt_prio;
2132 else
2133 prio = NICE_TO_PRIO(nice);
2134
2135 return prio;
2136 }
2137
2138 /*
2139 * Calculate the expected normal priority: i.e. priority
2140 * without taking RT-inheritance into account. Might be
2141 * boosted by interactivity modifiers. Changes upon fork,
2142 * setprio syscalls, and whenever the interactivity
2143 * estimator recalculates.
2144 */
2145 static inline int normal_prio(struct task_struct *p)
2146 {
2147 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2148 }
2149
2150 /*
2151 * Calculate the current priority, i.e. the priority
2152 * taken into account by the scheduler. This value might
2153 * be boosted by RT tasks, or might be boosted by
2154 * interactivity modifiers. Will be RT if the task got
2155 * RT-boosted. If not then it returns p->normal_prio.
2156 */
2157 static int effective_prio(struct task_struct *p)
2158 {
2159 p->normal_prio = normal_prio(p);
2160 /*
2161 * If we are RT tasks or we were boosted to RT priority,
2162 * keep the priority unchanged. Otherwise, update priority
2163 * to the normal priority:
2164 */
2165 if (!rt_prio(p->prio))
2166 return p->normal_prio;
2167 return p->prio;
2168 }
2169
2170 /**
2171 * task_curr - is this task currently executing on a CPU?
2172 * @p: the task in question.
2173 *
2174 * Return: 1 if the task is currently executing. 0 otherwise.
2175 */
2176 inline int task_curr(const struct task_struct *p)
2177 {
2178 return cpu_curr(task_cpu(p)) == p;
2179 }
2180
2181 /*
2182 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2183 * use the balance_callback list if you want balancing.
2184 *
2185 * this means any call to check_class_changed() must be followed by a call to
2186 * balance_callback().
2187 */
2188 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2189 const struct sched_class *prev_class,
2190 int oldprio)
2191 {
2192 if (prev_class != p->sched_class) {
2193 if (prev_class->switched_from)
2194 prev_class->switched_from(rq, p);
2195
2196 p->sched_class->switched_to(rq, p);
2197 } else if (oldprio != p->prio || dl_task(p))
2198 p->sched_class->prio_changed(rq, p, oldprio);
2199 }
2200
2201 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2202 {
2203 if (p->sched_class == rq->curr->sched_class)
2204 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2205 else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2206 resched_curr(rq);
2207
2208 /*
2209 * A queue event has occurred, and we're going to schedule. In
2210 * this case, we can save a useless back to back clock update.
2211 */
2212 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2213 rq_clock_skip_update(rq);
2214 }
2215
2216 #ifdef CONFIG_SMP
2217
2218 static void
2219 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2220
2221 static int __set_cpus_allowed_ptr(struct task_struct *p,
2222 struct affinity_context *ctx);
2223
2224 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2225 {
2226 struct affinity_context ac = {
2227 .new_mask = cpumask_of(rq->cpu),
2228 .flags = SCA_MIGRATE_DISABLE,
2229 };
2230
2231 if (likely(!p->migration_disabled))
2232 return;
2233
2234 if (p->cpus_ptr != &p->cpus_mask)
2235 return;
2236
2237 /*
2238 * Violates locking rules! see comment in __do_set_cpus_allowed().
2239 */
2240 __do_set_cpus_allowed(p, &ac);
2241 }
2242
2243 void migrate_disable(void)
2244 {
2245 struct task_struct *p = current;
2246
2247 if (p->migration_disabled) {
2248 p->migration_disabled++;
2249 return;
2250 }
2251
2252 preempt_disable();
2253 this_rq()->nr_pinned++;
2254 p->migration_disabled = 1;
2255 preempt_enable();
2256 }
2257 EXPORT_SYMBOL_GPL(migrate_disable);
2258
2259 void migrate_enable(void)
2260 {
2261 struct task_struct *p = current;
2262 struct affinity_context ac = {
2263 .new_mask = &p->cpus_mask,
2264 .flags = SCA_MIGRATE_ENABLE,
2265 };
2266
2267 if (p->migration_disabled > 1) {
2268 p->migration_disabled--;
2269 return;
2270 }
2271
2272 if (WARN_ON_ONCE(!p->migration_disabled))
2273 return;
2274
2275 /*
2276 * Ensure stop_task runs either before or after this, and that
2277 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2278 */
2279 preempt_disable();
2280 if (p->cpus_ptr != &p->cpus_mask)
2281 __set_cpus_allowed_ptr(p, &ac);
2282 /*
2283 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2284 * regular cpus_mask, otherwise things that race (eg.
2285 * select_fallback_rq) get confused.
2286 */
2287 barrier();
2288 p->migration_disabled = 0;
2289 this_rq()->nr_pinned--;
2290 preempt_enable();
2291 }
2292 EXPORT_SYMBOL_GPL(migrate_enable);
2293
2294 static inline bool rq_has_pinned_tasks(struct rq *rq)
2295 {
2296 return rq->nr_pinned;
2297 }
2298
2299 /*
2300 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2301 * __set_cpus_allowed_ptr() and select_fallback_rq().
2302 */
2303 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2304 {
2305 /* When not in the task's cpumask, no point in looking further. */
2306 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2307 return false;
2308
2309 /* migrate_disabled() must be allowed to finish. */
2310 if (is_migration_disabled(p))
2311 return cpu_online(cpu);
2312
2313 /* Non kernel threads are not allowed during either online or offline. */
2314 if (!(p->flags & PF_KTHREAD))
2315 return cpu_active(cpu) && task_cpu_possible(cpu, p);
2316
2317 /* KTHREAD_IS_PER_CPU is always allowed. */
2318 if (kthread_is_per_cpu(p))
2319 return cpu_online(cpu);
2320
2321 /* Regular kernel threads don't get to stay during offline. */
2322 if (cpu_dying(cpu))
2323 return false;
2324
2325 /* But are allowed during online. */
2326 return cpu_online(cpu);
2327 }
2328
2329 /*
2330 * This is how migration works:
2331 *
2332 * 1) we invoke migration_cpu_stop() on the target CPU using
2333 * stop_one_cpu().
2334 * 2) stopper starts to run (implicitly forcing the migrated thread
2335 * off the CPU)
2336 * 3) it checks whether the migrated task is still in the wrong runqueue.
2337 * 4) if it's in the wrong runqueue then the migration thread removes
2338 * it and puts it into the right queue.
2339 * 5) stopper completes and stop_one_cpu() returns and the migration
2340 * is done.
2341 */
2342
2343 /*
2344 * move_queued_task - move a queued task to new rq.
2345 *
2346 * Returns (locked) new rq. Old rq's lock is released.
2347 */
2348 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2349 struct task_struct *p, int new_cpu)
2350 {
2351 lockdep_assert_rq_held(rq);
2352
2353 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2354 set_task_cpu(p, new_cpu);
2355 rq_unlock(rq, rf);
2356
2357 rq = cpu_rq(new_cpu);
2358
2359 rq_lock(rq, rf);
2360 WARN_ON_ONCE(task_cpu(p) != new_cpu);
2361 activate_task(rq, p, 0);
2362 check_preempt_curr(rq, p, 0);
2363
2364 return rq;
2365 }
2366
2367 struct migration_arg {
2368 struct task_struct *task;
2369 int dest_cpu;
2370 struct set_affinity_pending *pending;
2371 };
2372
2373 /*
2374 * @refs: number of wait_for_completion()
2375 * @stop_pending: is @stop_work in use
2376 */
2377 struct set_affinity_pending {
2378 refcount_t refs;
2379 unsigned int stop_pending;
2380 struct completion done;
2381 struct cpu_stop_work stop_work;
2382 struct migration_arg arg;
2383 };
2384
2385 /*
2386 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2387 * this because either it can't run here any more (set_cpus_allowed()
2388 * away from this CPU, or CPU going down), or because we're
2389 * attempting to rebalance this task on exec (sched_exec).
2390 *
2391 * So we race with normal scheduler movements, but that's OK, as long
2392 * as the task is no longer on this CPU.
2393 */
2394 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2395 struct task_struct *p, int dest_cpu)
2396 {
2397 /* Affinity changed (again). */
2398 if (!is_cpu_allowed(p, dest_cpu))
2399 return rq;
2400
2401 update_rq_clock(rq);
2402 rq = move_queued_task(rq, rf, p, dest_cpu);
2403
2404 return rq;
2405 }
2406
2407 /*
2408 * migration_cpu_stop - this will be executed by a highprio stopper thread
2409 * and performs thread migration by bumping thread off CPU then
2410 * 'pushing' onto another runqueue.
2411 */
2412 static int migration_cpu_stop(void *data)
2413 {
2414 struct migration_arg *arg = data;
2415 struct set_affinity_pending *pending = arg->pending;
2416 struct task_struct *p = arg->task;
2417 struct rq *rq = this_rq();
2418 bool complete = false;
2419 struct rq_flags rf;
2420
2421 /*
2422 * The original target CPU might have gone down and we might
2423 * be on another CPU but it doesn't matter.
2424 */
2425 local_irq_save(rf.flags);
2426 /*
2427 * We need to explicitly wake pending tasks before running
2428 * __migrate_task() such that we will not miss enforcing cpus_ptr
2429 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2430 */
2431 flush_smp_call_function_queue();
2432
2433 raw_spin_lock(&p->pi_lock);
2434 rq_lock(rq, &rf);
2435
2436 /*
2437 * If we were passed a pending, then ->stop_pending was set, thus
2438 * p->migration_pending must have remained stable.
2439 */
2440 WARN_ON_ONCE(pending && pending != p->migration_pending);
2441
2442 /*
2443 * If task_rq(p) != rq, it cannot be migrated here, because we're
2444 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2445 * we're holding p->pi_lock.
2446 */
2447 if (task_rq(p) == rq) {
2448 if (is_migration_disabled(p))
2449 goto out;
2450
2451 if (pending) {
2452 p->migration_pending = NULL;
2453 complete = true;
2454
2455 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2456 goto out;
2457 }
2458
2459 if (task_on_rq_queued(p))
2460 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2461 else
2462 p->wake_cpu = arg->dest_cpu;
2463
2464 /*
2465 * XXX __migrate_task() can fail, at which point we might end
2466 * up running on a dodgy CPU, AFAICT this can only happen
2467 * during CPU hotplug, at which point we'll get pushed out
2468 * anyway, so it's probably not a big deal.
2469 */
2470
2471 } else if (pending) {
2472 /*
2473 * This happens when we get migrated between migrate_enable()'s
2474 * preempt_enable() and scheduling the stopper task. At that
2475 * point we're a regular task again and not current anymore.
2476 *
2477 * A !PREEMPT kernel has a giant hole here, which makes it far
2478 * more likely.
2479 */
2480
2481 /*
2482 * The task moved before the stopper got to run. We're holding
2483 * ->pi_lock, so the allowed mask is stable - if it got
2484 * somewhere allowed, we're done.
2485 */
2486 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2487 p->migration_pending = NULL;
2488 complete = true;
2489 goto out;
2490 }
2491
2492 /*
2493 * When migrate_enable() hits a rq mis-match we can't reliably
2494 * determine is_migration_disabled() and so have to chase after
2495 * it.
2496 */
2497 WARN_ON_ONCE(!pending->stop_pending);
2498 task_rq_unlock(rq, p, &rf);
2499 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2500 &pending->arg, &pending->stop_work);
2501 return 0;
2502 }
2503 out:
2504 if (pending)
2505 pending->stop_pending = false;
2506 task_rq_unlock(rq, p, &rf);
2507
2508 if (complete)
2509 complete_all(&pending->done);
2510
2511 return 0;
2512 }
2513
2514 int push_cpu_stop(void *arg)
2515 {
2516 struct rq *lowest_rq = NULL, *rq = this_rq();
2517 struct task_struct *p = arg;
2518
2519 raw_spin_lock_irq(&p->pi_lock);
2520 raw_spin_rq_lock(rq);
2521
2522 if (task_rq(p) != rq)
2523 goto out_unlock;
2524
2525 if (is_migration_disabled(p)) {
2526 p->migration_flags |= MDF_PUSH;
2527 goto out_unlock;
2528 }
2529
2530 p->migration_flags &= ~MDF_PUSH;
2531
2532 if (p->sched_class->find_lock_rq)
2533 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2534
2535 if (!lowest_rq)
2536 goto out_unlock;
2537
2538 // XXX validate p is still the highest prio task
2539 if (task_rq(p) == rq) {
2540 deactivate_task(rq, p, 0);
2541 set_task_cpu(p, lowest_rq->cpu);
2542 activate_task(lowest_rq, p, 0);
2543 resched_curr(lowest_rq);
2544 }
2545
2546 double_unlock_balance(rq, lowest_rq);
2547
2548 out_unlock:
2549 rq->push_busy = false;
2550 raw_spin_rq_unlock(rq);
2551 raw_spin_unlock_irq(&p->pi_lock);
2552
2553 put_task_struct(p);
2554 return 0;
2555 }
2556
2557 /*
2558 * sched_class::set_cpus_allowed must do the below, but is not required to
2559 * actually call this function.
2560 */
2561 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2562 {
2563 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2564 p->cpus_ptr = ctx->new_mask;
2565 return;
2566 }
2567
2568 cpumask_copy(&p->cpus_mask, ctx->new_mask);
2569 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2570
2571 /*
2572 * Swap in a new user_cpus_ptr if SCA_USER flag set
2573 */
2574 if (ctx->flags & SCA_USER)
2575 swap(p->user_cpus_ptr, ctx->user_mask);
2576 }
2577
2578 static void
2579 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2580 {
2581 struct rq *rq = task_rq(p);
2582 bool queued, running;
2583
2584 /*
2585 * This here violates the locking rules for affinity, since we're only
2586 * supposed to change these variables while holding both rq->lock and
2587 * p->pi_lock.
2588 *
2589 * HOWEVER, it magically works, because ttwu() is the only code that
2590 * accesses these variables under p->pi_lock and only does so after
2591 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2592 * before finish_task().
2593 *
2594 * XXX do further audits, this smells like something putrid.
2595 */
2596 if (ctx->flags & SCA_MIGRATE_DISABLE)
2597 SCHED_WARN_ON(!p->on_cpu);
2598 else
2599 lockdep_assert_held(&p->pi_lock);
2600
2601 queued = task_on_rq_queued(p);
2602 running = task_current(rq, p);
2603
2604 if (queued) {
2605 /*
2606 * Because __kthread_bind() calls this on blocked tasks without
2607 * holding rq->lock.
2608 */
2609 lockdep_assert_rq_held(rq);
2610 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2611 }
2612 if (running)
2613 put_prev_task(rq, p);
2614
2615 p->sched_class->set_cpus_allowed(p, ctx);
2616
2617 if (queued)
2618 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2619 if (running)
2620 set_next_task(rq, p);
2621 }
2622
2623 /*
2624 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2625 * affinity (if any) should be destroyed too.
2626 */
2627 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2628 {
2629 struct affinity_context ac = {
2630 .new_mask = new_mask,
2631 .user_mask = NULL,
2632 .flags = SCA_USER, /* clear the user requested mask */
2633 };
2634 union cpumask_rcuhead {
2635 cpumask_t cpumask;
2636 struct rcu_head rcu;
2637 };
2638
2639 __do_set_cpus_allowed(p, &ac);
2640
2641 /*
2642 * Because this is called with p->pi_lock held, it is not possible
2643 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2644 * kfree_rcu().
2645 */
2646 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2647 }
2648
2649 static cpumask_t *alloc_user_cpus_ptr(int node)
2650 {
2651 /*
2652 * See do_set_cpus_allowed() above for the rcu_head usage.
2653 */
2654 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2655
2656 return kmalloc_node(size, GFP_KERNEL, node);
2657 }
2658
2659 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2660 int node)
2661 {
2662 cpumask_t *user_mask;
2663 unsigned long flags;
2664
2665 /*
2666 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2667 * may differ by now due to racing.
2668 */
2669 dst->user_cpus_ptr = NULL;
2670
2671 /*
2672 * This check is racy and losing the race is a valid situation.
2673 * It is not worth the extra overhead of taking the pi_lock on
2674 * every fork/clone.
2675 */
2676 if (data_race(!src->user_cpus_ptr))
2677 return 0;
2678
2679 user_mask = alloc_user_cpus_ptr(node);
2680 if (!user_mask)
2681 return -ENOMEM;
2682
2683 /*
2684 * Use pi_lock to protect content of user_cpus_ptr
2685 *
2686 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2687 * do_set_cpus_allowed().
2688 */
2689 raw_spin_lock_irqsave(&src->pi_lock, flags);
2690 if (src->user_cpus_ptr) {
2691 swap(dst->user_cpus_ptr, user_mask);
2692 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2693 }
2694 raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2695
2696 if (unlikely(user_mask))
2697 kfree(user_mask);
2698
2699 return 0;
2700 }
2701
2702 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2703 {
2704 struct cpumask *user_mask = NULL;
2705
2706 swap(p->user_cpus_ptr, user_mask);
2707
2708 return user_mask;
2709 }
2710
2711 void release_user_cpus_ptr(struct task_struct *p)
2712 {
2713 kfree(clear_user_cpus_ptr(p));
2714 }
2715
2716 /*
2717 * This function is wildly self concurrent; here be dragons.
2718 *
2719 *
2720 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2721 * designated task is enqueued on an allowed CPU. If that task is currently
2722 * running, we have to kick it out using the CPU stopper.
2723 *
2724 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2725 * Consider:
2726 *
2727 * Initial conditions: P0->cpus_mask = [0, 1]
2728 *
2729 * P0@CPU0 P1
2730 *
2731 * migrate_disable();
2732 * <preempted>
2733 * set_cpus_allowed_ptr(P0, [1]);
2734 *
2735 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2736 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2737 * This means we need the following scheme:
2738 *
2739 * P0@CPU0 P1
2740 *
2741 * migrate_disable();
2742 * <preempted>
2743 * set_cpus_allowed_ptr(P0, [1]);
2744 * <blocks>
2745 * <resumes>
2746 * migrate_enable();
2747 * __set_cpus_allowed_ptr();
2748 * <wakes local stopper>
2749 * `--> <woken on migration completion>
2750 *
2751 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2752 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2753 * task p are serialized by p->pi_lock, which we can leverage: the one that
2754 * should come into effect at the end of the Migrate-Disable region is the last
2755 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2756 * but we still need to properly signal those waiting tasks at the appropriate
2757 * moment.
2758 *
2759 * This is implemented using struct set_affinity_pending. The first
2760 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2761 * setup an instance of that struct and install it on the targeted task_struct.
2762 * Any and all further callers will reuse that instance. Those then wait for
2763 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2764 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2765 *
2766 *
2767 * (1) In the cases covered above. There is one more where the completion is
2768 * signaled within affine_move_task() itself: when a subsequent affinity request
2769 * occurs after the stopper bailed out due to the targeted task still being
2770 * Migrate-Disable. Consider:
2771 *
2772 * Initial conditions: P0->cpus_mask = [0, 1]
2773 *
2774 * CPU0 P1 P2
2775 * <P0>
2776 * migrate_disable();
2777 * <preempted>
2778 * set_cpus_allowed_ptr(P0, [1]);
2779 * <blocks>
2780 * <migration/0>
2781 * migration_cpu_stop()
2782 * is_migration_disabled()
2783 * <bails>
2784 * set_cpus_allowed_ptr(P0, [0, 1]);
2785 * <signal completion>
2786 * <awakes>
2787 *
2788 * Note that the above is safe vs a concurrent migrate_enable(), as any
2789 * pending affinity completion is preceded by an uninstallation of
2790 * p->migration_pending done with p->pi_lock held.
2791 */
2792 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2793 int dest_cpu, unsigned int flags)
2794 __releases(rq->lock)
2795 __releases(p->pi_lock)
2796 {
2797 struct set_affinity_pending my_pending = { }, *pending = NULL;
2798 bool stop_pending, complete = false;
2799
2800 /* Can the task run on the task's current CPU? If so, we're done */
2801 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2802 struct task_struct *push_task = NULL;
2803
2804 if ((flags & SCA_MIGRATE_ENABLE) &&
2805 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2806 rq->push_busy = true;
2807 push_task = get_task_struct(p);
2808 }
2809
2810 /*
2811 * If there are pending waiters, but no pending stop_work,
2812 * then complete now.
2813 */
2814 pending = p->migration_pending;
2815 if (pending && !pending->stop_pending) {
2816 p->migration_pending = NULL;
2817 complete = true;
2818 }
2819
2820 task_rq_unlock(rq, p, rf);
2821
2822 if (push_task) {
2823 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2824 p, &rq->push_work);
2825 }
2826
2827 if (complete)
2828 complete_all(&pending->done);
2829
2830 return 0;
2831 }
2832
2833 if (!(flags & SCA_MIGRATE_ENABLE)) {
2834 /* serialized by p->pi_lock */
2835 if (!p->migration_pending) {
2836 /* Install the request */
2837 refcount_set(&my_pending.refs, 1);
2838 init_completion(&my_pending.done);
2839 my_pending.arg = (struct migration_arg) {
2840 .task = p,
2841 .dest_cpu = dest_cpu,
2842 .pending = &my_pending,
2843 };
2844
2845 p->migration_pending = &my_pending;
2846 } else {
2847 pending = p->migration_pending;
2848 refcount_inc(&pending->refs);
2849 /*
2850 * Affinity has changed, but we've already installed a
2851 * pending. migration_cpu_stop() *must* see this, else
2852 * we risk a completion of the pending despite having a
2853 * task on a disallowed CPU.
2854 *
2855 * Serialized by p->pi_lock, so this is safe.
2856 */
2857 pending->arg.dest_cpu = dest_cpu;
2858 }
2859 }
2860 pending = p->migration_pending;
2861 /*
2862 * - !MIGRATE_ENABLE:
2863 * we'll have installed a pending if there wasn't one already.
2864 *
2865 * - MIGRATE_ENABLE:
2866 * we're here because the current CPU isn't matching anymore,
2867 * the only way that can happen is because of a concurrent
2868 * set_cpus_allowed_ptr() call, which should then still be
2869 * pending completion.
2870 *
2871 * Either way, we really should have a @pending here.
2872 */
2873 if (WARN_ON_ONCE(!pending)) {
2874 task_rq_unlock(rq, p, rf);
2875 return -EINVAL;
2876 }
2877
2878 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2879 /*
2880 * MIGRATE_ENABLE gets here because 'p == current', but for
2881 * anything else we cannot do is_migration_disabled(), punt
2882 * and have the stopper function handle it all race-free.
2883 */
2884 stop_pending = pending->stop_pending;
2885 if (!stop_pending)
2886 pending->stop_pending = true;
2887
2888 if (flags & SCA_MIGRATE_ENABLE)
2889 p->migration_flags &= ~MDF_PUSH;
2890
2891 task_rq_unlock(rq, p, rf);
2892
2893 if (!stop_pending) {
2894 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2895 &pending->arg, &pending->stop_work);
2896 }
2897
2898 if (flags & SCA_MIGRATE_ENABLE)
2899 return 0;
2900 } else {
2901
2902 if (!is_migration_disabled(p)) {
2903 if (task_on_rq_queued(p))
2904 rq = move_queued_task(rq, rf, p, dest_cpu);
2905
2906 if (!pending->stop_pending) {
2907 p->migration_pending = NULL;
2908 complete = true;
2909 }
2910 }
2911 task_rq_unlock(rq, p, rf);
2912
2913 if (complete)
2914 complete_all(&pending->done);
2915 }
2916
2917 wait_for_completion(&pending->done);
2918
2919 if (refcount_dec_and_test(&pending->refs))
2920 wake_up_var(&pending->refs); /* No UaF, just an address */
2921
2922 /*
2923 * Block the original owner of &pending until all subsequent callers
2924 * have seen the completion and decremented the refcount
2925 */
2926 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2927
2928 /* ARGH */
2929 WARN_ON_ONCE(my_pending.stop_pending);
2930
2931 return 0;
2932 }
2933
2934 /*
2935 * Called with both p->pi_lock and rq->lock held; drops both before returning.
2936 */
2937 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2938 struct affinity_context *ctx,
2939 struct rq *rq,
2940 struct rq_flags *rf)
2941 __releases(rq->lock)
2942 __releases(p->pi_lock)
2943 {
2944 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2945 const struct cpumask *cpu_valid_mask = cpu_active_mask;
2946 bool kthread = p->flags & PF_KTHREAD;
2947 unsigned int dest_cpu;
2948 int ret = 0;
2949
2950 update_rq_clock(rq);
2951
2952 if (kthread || is_migration_disabled(p)) {
2953 /*
2954 * Kernel threads are allowed on online && !active CPUs,
2955 * however, during cpu-hot-unplug, even these might get pushed
2956 * away if not KTHREAD_IS_PER_CPU.
2957 *
2958 * Specifically, migration_disabled() tasks must not fail the
2959 * cpumask_any_and_distribute() pick below, esp. so on
2960 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2961 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2962 */
2963 cpu_valid_mask = cpu_online_mask;
2964 }
2965
2966 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
2967 ret = -EINVAL;
2968 goto out;
2969 }
2970
2971 /*
2972 * Must re-check here, to close a race against __kthread_bind(),
2973 * sched_setaffinity() is not guaranteed to observe the flag.
2974 */
2975 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2976 ret = -EINVAL;
2977 goto out;
2978 }
2979
2980 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
2981 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
2982 if (ctx->flags & SCA_USER)
2983 swap(p->user_cpus_ptr, ctx->user_mask);
2984 goto out;
2985 }
2986
2987 if (WARN_ON_ONCE(p == current &&
2988 is_migration_disabled(p) &&
2989 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
2990 ret = -EBUSY;
2991 goto out;
2992 }
2993 }
2994
2995 /*
2996 * Picking a ~random cpu helps in cases where we are changing affinity
2997 * for groups of tasks (ie. cpuset), so that load balancing is not
2998 * immediately required to distribute the tasks within their new mask.
2999 */
3000 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3001 if (dest_cpu >= nr_cpu_ids) {
3002 ret = -EINVAL;
3003 goto out;
3004 }
3005
3006 __do_set_cpus_allowed(p, ctx);
3007
3008 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3009
3010 out:
3011 task_rq_unlock(rq, p, rf);
3012
3013 return ret;
3014 }
3015
3016 /*
3017 * Change a given task's CPU affinity. Migrate the thread to a
3018 * proper CPU and schedule it away if the CPU it's executing on
3019 * is removed from the allowed bitmask.
3020 *
3021 * NOTE: the caller must have a valid reference to the task, the
3022 * task must not exit() & deallocate itself prematurely. The
3023 * call is not atomic; no spinlocks may be held.
3024 */
3025 static int __set_cpus_allowed_ptr(struct task_struct *p,
3026 struct affinity_context *ctx)
3027 {
3028 struct rq_flags rf;
3029 struct rq *rq;
3030
3031 rq = task_rq_lock(p, &rf);
3032 /*
3033 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3034 * flags are set.
3035 */
3036 if (p->user_cpus_ptr &&
3037 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3038 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3039 ctx->new_mask = rq->scratch_mask;
3040
3041 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3042 }
3043
3044 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3045 {
3046 struct affinity_context ac = {
3047 .new_mask = new_mask,
3048 .flags = 0,
3049 };
3050
3051 return __set_cpus_allowed_ptr(p, &ac);
3052 }
3053 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3054
3055 /*
3056 * Change a given task's CPU affinity to the intersection of its current
3057 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3058 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3059 * affinity or use cpu_online_mask instead.
3060 *
3061 * If the resulting mask is empty, leave the affinity unchanged and return
3062 * -EINVAL.
3063 */
3064 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3065 struct cpumask *new_mask,
3066 const struct cpumask *subset_mask)
3067 {
3068 struct affinity_context ac = {
3069 .new_mask = new_mask,
3070 .flags = 0,
3071 };
3072 struct rq_flags rf;
3073 struct rq *rq;
3074 int err;
3075
3076 rq = task_rq_lock(p, &rf);
3077
3078 /*
3079 * Forcefully restricting the affinity of a deadline task is
3080 * likely to cause problems, so fail and noisily override the
3081 * mask entirely.
3082 */
3083 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3084 err = -EPERM;
3085 goto err_unlock;
3086 }
3087
3088 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3089 err = -EINVAL;
3090 goto err_unlock;
3091 }
3092
3093 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3094
3095 err_unlock:
3096 task_rq_unlock(rq, p, &rf);
3097 return err;
3098 }
3099
3100 /*
3101 * Restrict the CPU affinity of task @p so that it is a subset of
3102 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3103 * old affinity mask. If the resulting mask is empty, we warn and walk
3104 * up the cpuset hierarchy until we find a suitable mask.
3105 */
3106 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3107 {
3108 cpumask_var_t new_mask;
3109 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3110
3111 alloc_cpumask_var(&new_mask, GFP_KERNEL);
3112
3113 /*
3114 * __migrate_task() can fail silently in the face of concurrent
3115 * offlining of the chosen destination CPU, so take the hotplug
3116 * lock to ensure that the migration succeeds.
3117 */
3118 cpus_read_lock();
3119 if (!cpumask_available(new_mask))
3120 goto out_set_mask;
3121
3122 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3123 goto out_free_mask;
3124
3125 /*
3126 * We failed to find a valid subset of the affinity mask for the
3127 * task, so override it based on its cpuset hierarchy.
3128 */
3129 cpuset_cpus_allowed(p, new_mask);
3130 override_mask = new_mask;
3131
3132 out_set_mask:
3133 if (printk_ratelimit()) {
3134 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3135 task_pid_nr(p), p->comm,
3136 cpumask_pr_args(override_mask));
3137 }
3138
3139 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3140 out_free_mask:
3141 cpus_read_unlock();
3142 free_cpumask_var(new_mask);
3143 }
3144
3145 static int
3146 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3147
3148 /*
3149 * Restore the affinity of a task @p which was previously restricted by a
3150 * call to force_compatible_cpus_allowed_ptr().
3151 *
3152 * It is the caller's responsibility to serialise this with any calls to
3153 * force_compatible_cpus_allowed_ptr(@p).
3154 */
3155 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3156 {
3157 struct affinity_context ac = {
3158 .new_mask = task_user_cpus(p),
3159 .flags = 0,
3160 };
3161 int ret;
3162
3163 /*
3164 * Try to restore the old affinity mask with __sched_setaffinity().
3165 * Cpuset masking will be done there too.
3166 */
3167 ret = __sched_setaffinity(p, &ac);
3168 WARN_ON_ONCE(ret);
3169 }
3170
3171 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3172 {
3173 #ifdef CONFIG_SCHED_DEBUG
3174 unsigned int state = READ_ONCE(p->__state);
3175
3176 /*
3177 * We should never call set_task_cpu() on a blocked task,
3178 * ttwu() will sort out the placement.
3179 */
3180 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3181
3182 /*
3183 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3184 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3185 * time relying on p->on_rq.
3186 */
3187 WARN_ON_ONCE(state == TASK_RUNNING &&
3188 p->sched_class == &fair_sched_class &&
3189 (p->on_rq && !task_on_rq_migrating(p)));
3190
3191 #ifdef CONFIG_LOCKDEP
3192 /*
3193 * The caller should hold either p->pi_lock or rq->lock, when changing
3194 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3195 *
3196 * sched_move_task() holds both and thus holding either pins the cgroup,
3197 * see task_group().
3198 *
3199 * Furthermore, all task_rq users should acquire both locks, see
3200 * task_rq_lock().
3201 */
3202 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3203 lockdep_is_held(__rq_lockp(task_rq(p)))));
3204 #endif
3205 /*
3206 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3207 */
3208 WARN_ON_ONCE(!cpu_online(new_cpu));
3209
3210 WARN_ON_ONCE(is_migration_disabled(p));
3211 #endif
3212
3213 trace_sched_migrate_task(p, new_cpu);
3214
3215 if (task_cpu(p) != new_cpu) {
3216 if (p->sched_class->migrate_task_rq)
3217 p->sched_class->migrate_task_rq(p, new_cpu);
3218 p->se.nr_migrations++;
3219 rseq_migrate(p);
3220 sched_mm_cid_migrate_from(p);
3221 perf_event_task_migrate(p);
3222 }
3223
3224 __set_task_cpu(p, new_cpu);
3225 }
3226
3227 #ifdef CONFIG_NUMA_BALANCING
3228 static void __migrate_swap_task(struct task_struct *p, int cpu)
3229 {
3230 if (task_on_rq_queued(p)) {
3231 struct rq *src_rq, *dst_rq;
3232 struct rq_flags srf, drf;
3233
3234 src_rq = task_rq(p);
3235 dst_rq = cpu_rq(cpu);
3236
3237 rq_pin_lock(src_rq, &srf);
3238 rq_pin_lock(dst_rq, &drf);
3239
3240 deactivate_task(src_rq, p, 0);
3241 set_task_cpu(p, cpu);
3242 activate_task(dst_rq, p, 0);
3243 check_preempt_curr(dst_rq, p, 0);
3244
3245 rq_unpin_lock(dst_rq, &drf);
3246 rq_unpin_lock(src_rq, &srf);
3247
3248 } else {
3249 /*
3250 * Task isn't running anymore; make it appear like we migrated
3251 * it before it went to sleep. This means on wakeup we make the
3252 * previous CPU our target instead of where it really is.
3253 */
3254 p->wake_cpu = cpu;
3255 }
3256 }
3257
3258 struct migration_swap_arg {
3259 struct task_struct *src_task, *dst_task;
3260 int src_cpu, dst_cpu;
3261 };
3262
3263 static int migrate_swap_stop(void *data)
3264 {
3265 struct migration_swap_arg *arg = data;
3266 struct rq *src_rq, *dst_rq;
3267 int ret = -EAGAIN;
3268
3269 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3270 return -EAGAIN;
3271
3272 src_rq = cpu_rq(arg->src_cpu);
3273 dst_rq = cpu_rq(arg->dst_cpu);
3274
3275 double_raw_lock(&arg->src_task->pi_lock,
3276 &arg->dst_task->pi_lock);
3277 double_rq_lock(src_rq, dst_rq);
3278
3279 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3280 goto unlock;
3281
3282 if (task_cpu(arg->src_task) != arg->src_cpu)
3283 goto unlock;
3284
3285 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3286 goto unlock;
3287
3288 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3289 goto unlock;
3290
3291 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3292 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3293
3294 ret = 0;
3295
3296 unlock:
3297 double_rq_unlock(src_rq, dst_rq);
3298 raw_spin_unlock(&arg->dst_task->pi_lock);
3299 raw_spin_unlock(&arg->src_task->pi_lock);
3300
3301 return ret;
3302 }
3303
3304 /*
3305 * Cross migrate two tasks
3306 */
3307 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3308 int target_cpu, int curr_cpu)
3309 {
3310 struct migration_swap_arg arg;
3311 int ret = -EINVAL;
3312
3313 arg = (struct migration_swap_arg){
3314 .src_task = cur,
3315 .src_cpu = curr_cpu,
3316 .dst_task = p,
3317 .dst_cpu = target_cpu,
3318 };
3319
3320 if (arg.src_cpu == arg.dst_cpu)
3321 goto out;
3322
3323 /*
3324 * These three tests are all lockless; this is OK since all of them
3325 * will be re-checked with proper locks held further down the line.
3326 */
3327 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3328 goto out;
3329
3330 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3331 goto out;
3332
3333 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3334 goto out;
3335
3336 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3337 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3338
3339 out:
3340 return ret;
3341 }
3342 #endif /* CONFIG_NUMA_BALANCING */
3343
3344 /*
3345 * wait_task_inactive - wait for a thread to unschedule.
3346 *
3347 * Wait for the thread to block in any of the states set in @match_state.
3348 * If it changes, i.e. @p might have woken up, then return zero. When we
3349 * succeed in waiting for @p to be off its CPU, we return a positive number
3350 * (its total switch count). If a second call a short while later returns the
3351 * same number, the caller can be sure that @p has remained unscheduled the
3352 * whole time.
3353 *
3354 * The caller must ensure that the task *will* unschedule sometime soon,
3355 * else this function might spin for a *long* time. This function can't
3356 * be called with interrupts off, or it may introduce deadlock with
3357 * smp_call_function() if an IPI is sent by the same process we are
3358 * waiting to become inactive.
3359 */
3360 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3361 {
3362 int running, queued;
3363 struct rq_flags rf;
3364 unsigned long ncsw;
3365 struct rq *rq;
3366
3367 for (;;) {
3368 /*
3369 * We do the initial early heuristics without holding
3370 * any task-queue locks at all. We'll only try to get
3371 * the runqueue lock when things look like they will
3372 * work out!
3373 */
3374 rq = task_rq(p);
3375
3376 /*
3377 * If the task is actively running on another CPU
3378 * still, just relax and busy-wait without holding
3379 * any locks.
3380 *
3381 * NOTE! Since we don't hold any locks, it's not
3382 * even sure that "rq" stays as the right runqueue!
3383 * But we don't care, since "task_on_cpu()" will
3384 * return false if the runqueue has changed and p
3385 * is actually now running somewhere else!
3386 */
3387 while (task_on_cpu(rq, p)) {
3388 if (!(READ_ONCE(p->__state) & match_state))
3389 return 0;
3390 cpu_relax();
3391 }
3392
3393 /*
3394 * Ok, time to look more closely! We need the rq
3395 * lock now, to be *sure*. If we're wrong, we'll
3396 * just go back and repeat.
3397 */
3398 rq = task_rq_lock(p, &rf);
3399 trace_sched_wait_task(p);
3400 running = task_on_cpu(rq, p);
3401 queued = task_on_rq_queued(p);
3402 ncsw = 0;
3403 if (READ_ONCE(p->__state) & match_state)
3404 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3405 task_rq_unlock(rq, p, &rf);
3406
3407 /*
3408 * If it changed from the expected state, bail out now.
3409 */
3410 if (unlikely(!ncsw))
3411 break;
3412
3413 /*
3414 * Was it really running after all now that we
3415 * checked with the proper locks actually held?
3416 *
3417 * Oops. Go back and try again..
3418 */
3419 if (unlikely(running)) {
3420 cpu_relax();
3421 continue;
3422 }
3423
3424 /*
3425 * It's not enough that it's not actively running,
3426 * it must be off the runqueue _entirely_, and not
3427 * preempted!
3428 *
3429 * So if it was still runnable (but just not actively
3430 * running right now), it's preempted, and we should
3431 * yield - it could be a while.
3432 */
3433 if (unlikely(queued)) {
3434 ktime_t to = NSEC_PER_SEC / HZ;
3435
3436 set_current_state(TASK_UNINTERRUPTIBLE);
3437 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3438 continue;
3439 }
3440
3441 /*
3442 * Ahh, all good. It wasn't running, and it wasn't
3443 * runnable, which means that it will never become
3444 * running in the future either. We're all done!
3445 */
3446 break;
3447 }
3448
3449 return ncsw;
3450 }
3451
3452 /***
3453 * kick_process - kick a running thread to enter/exit the kernel
3454 * @p: the to-be-kicked thread
3455 *
3456 * Cause a process which is running on another CPU to enter
3457 * kernel-mode, without any delay. (to get signals handled.)
3458 *
3459 * NOTE: this function doesn't have to take the runqueue lock,
3460 * because all it wants to ensure is that the remote task enters
3461 * the kernel. If the IPI races and the task has been migrated
3462 * to another CPU then no harm is done and the purpose has been
3463 * achieved as well.
3464 */
3465 void kick_process(struct task_struct *p)
3466 {
3467 int cpu;
3468
3469 preempt_disable();
3470 cpu = task_cpu(p);
3471 if ((cpu != smp_processor_id()) && task_curr(p))
3472 smp_send_reschedule(cpu);
3473 preempt_enable();
3474 }
3475 EXPORT_SYMBOL_GPL(kick_process);
3476
3477 /*
3478 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3479 *
3480 * A few notes on cpu_active vs cpu_online:
3481 *
3482 * - cpu_active must be a subset of cpu_online
3483 *
3484 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3485 * see __set_cpus_allowed_ptr(). At this point the newly online
3486 * CPU isn't yet part of the sched domains, and balancing will not
3487 * see it.
3488 *
3489 * - on CPU-down we clear cpu_active() to mask the sched domains and
3490 * avoid the load balancer to place new tasks on the to be removed
3491 * CPU. Existing tasks will remain running there and will be taken
3492 * off.
3493 *
3494 * This means that fallback selection must not select !active CPUs.
3495 * And can assume that any active CPU must be online. Conversely
3496 * select_task_rq() below may allow selection of !active CPUs in order
3497 * to satisfy the above rules.
3498 */
3499 static int select_fallback_rq(int cpu, struct task_struct *p)
3500 {
3501 int nid = cpu_to_node(cpu);
3502 const struct cpumask *nodemask = NULL;
3503 enum { cpuset, possible, fail } state = cpuset;
3504 int dest_cpu;
3505
3506 /*
3507 * If the node that the CPU is on has been offlined, cpu_to_node()
3508 * will return -1. There is no CPU on the node, and we should
3509 * select the CPU on the other node.
3510 */
3511 if (nid != -1) {
3512 nodemask = cpumask_of_node(nid);
3513
3514 /* Look for allowed, online CPU in same node. */
3515 for_each_cpu(dest_cpu, nodemask) {
3516 if (is_cpu_allowed(p, dest_cpu))
3517 return dest_cpu;
3518 }
3519 }
3520
3521 for (;;) {
3522 /* Any allowed, online CPU? */
3523 for_each_cpu(dest_cpu, p->cpus_ptr) {
3524 if (!is_cpu_allowed(p, dest_cpu))
3525 continue;
3526
3527 goto out;
3528 }
3529
3530 /* No more Mr. Nice Guy. */
3531 switch (state) {
3532 case cpuset:
3533 if (cpuset_cpus_allowed_fallback(p)) {
3534 state = possible;
3535 break;
3536 }
3537 fallthrough;
3538 case possible:
3539 /*
3540 * XXX When called from select_task_rq() we only
3541 * hold p->pi_lock and again violate locking order.
3542 *
3543 * More yuck to audit.
3544 */
3545 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3546 state = fail;
3547 break;
3548 case fail:
3549 BUG();
3550 break;
3551 }
3552 }
3553
3554 out:
3555 if (state != cpuset) {
3556 /*
3557 * Don't tell them about moving exiting tasks or
3558 * kernel threads (both mm NULL), since they never
3559 * leave kernel.
3560 */
3561 if (p->mm && printk_ratelimit()) {
3562 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3563 task_pid_nr(p), p->comm, cpu);
3564 }
3565 }
3566
3567 return dest_cpu;
3568 }
3569
3570 /*
3571 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3572 */
3573 static inline
3574 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3575 {
3576 lockdep_assert_held(&p->pi_lock);
3577
3578 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3579 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3580 else
3581 cpu = cpumask_any(p->cpus_ptr);
3582
3583 /*
3584 * In order not to call set_task_cpu() on a blocking task we need
3585 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3586 * CPU.
3587 *
3588 * Since this is common to all placement strategies, this lives here.
3589 *
3590 * [ this allows ->select_task() to simply return task_cpu(p) and
3591 * not worry about this generic constraint ]
3592 */
3593 if (unlikely(!is_cpu_allowed(p, cpu)))
3594 cpu = select_fallback_rq(task_cpu(p), p);
3595
3596 return cpu;
3597 }
3598
3599 void sched_set_stop_task(int cpu, struct task_struct *stop)
3600 {
3601 static struct lock_class_key stop_pi_lock;
3602 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3603 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3604
3605 if (stop) {
3606 /*
3607 * Make it appear like a SCHED_FIFO task, its something
3608 * userspace knows about and won't get confused about.
3609 *
3610 * Also, it will make PI more or less work without too
3611 * much confusion -- but then, stop work should not
3612 * rely on PI working anyway.
3613 */
3614 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3615
3616 stop->sched_class = &stop_sched_class;
3617
3618 /*
3619 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3620 * adjust the effective priority of a task. As a result,
3621 * rt_mutex_setprio() can trigger (RT) balancing operations,
3622 * which can then trigger wakeups of the stop thread to push
3623 * around the current task.
3624 *
3625 * The stop task itself will never be part of the PI-chain, it
3626 * never blocks, therefore that ->pi_lock recursion is safe.
3627 * Tell lockdep about this by placing the stop->pi_lock in its
3628 * own class.
3629 */
3630 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3631 }
3632
3633 cpu_rq(cpu)->stop = stop;
3634
3635 if (old_stop) {
3636 /*
3637 * Reset it back to a normal scheduling class so that
3638 * it can die in pieces.
3639 */
3640 old_stop->sched_class = &rt_sched_class;
3641 }
3642 }
3643
3644 #else /* CONFIG_SMP */
3645
3646 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3647 struct affinity_context *ctx)
3648 {
3649 return set_cpus_allowed_ptr(p, ctx->new_mask);
3650 }
3651
3652 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3653
3654 static inline bool rq_has_pinned_tasks(struct rq *rq)
3655 {
3656 return false;
3657 }
3658
3659 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3660 {
3661 return NULL;
3662 }
3663
3664 #endif /* !CONFIG_SMP */
3665
3666 static void
3667 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3668 {
3669 struct rq *rq;
3670
3671 if (!schedstat_enabled())
3672 return;
3673
3674 rq = this_rq();
3675
3676 #ifdef CONFIG_SMP
3677 if (cpu == rq->cpu) {
3678 __schedstat_inc(rq->ttwu_local);
3679 __schedstat_inc(p->stats.nr_wakeups_local);
3680 } else {
3681 struct sched_domain *sd;
3682
3683 __schedstat_inc(p->stats.nr_wakeups_remote);
3684 rcu_read_lock();
3685 for_each_domain(rq->cpu, sd) {
3686 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3687 __schedstat_inc(sd->ttwu_wake_remote);
3688 break;
3689 }
3690 }
3691 rcu_read_unlock();
3692 }
3693
3694 if (wake_flags & WF_MIGRATED)
3695 __schedstat_inc(p->stats.nr_wakeups_migrate);
3696 #endif /* CONFIG_SMP */
3697
3698 __schedstat_inc(rq->ttwu_count);
3699 __schedstat_inc(p->stats.nr_wakeups);
3700
3701 if (wake_flags & WF_SYNC)
3702 __schedstat_inc(p->stats.nr_wakeups_sync);
3703 }
3704
3705 /*
3706 * Mark the task runnable.
3707 */
3708 static inline void ttwu_do_wakeup(struct task_struct *p)
3709 {
3710 WRITE_ONCE(p->__state, TASK_RUNNING);
3711 trace_sched_wakeup(p);
3712 }
3713
3714 static void
3715 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3716 struct rq_flags *rf)
3717 {
3718 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3719
3720 lockdep_assert_rq_held(rq);
3721
3722 if (p->sched_contributes_to_load)
3723 rq->nr_uninterruptible--;
3724
3725 #ifdef CONFIG_SMP
3726 if (wake_flags & WF_MIGRATED)
3727 en_flags |= ENQUEUE_MIGRATED;
3728 else
3729 #endif
3730 if (p->in_iowait) {
3731 delayacct_blkio_end(p);
3732 atomic_dec(&task_rq(p)->nr_iowait);
3733 }
3734
3735 activate_task(rq, p, en_flags);
3736 check_preempt_curr(rq, p, wake_flags);
3737
3738 ttwu_do_wakeup(p);
3739
3740 #ifdef CONFIG_SMP
3741 if (p->sched_class->task_woken) {
3742 /*
3743 * Our task @p is fully woken up and running; so it's safe to
3744 * drop the rq->lock, hereafter rq is only used for statistics.
3745 */
3746 rq_unpin_lock(rq, rf);
3747 p->sched_class->task_woken(rq, p);
3748 rq_repin_lock(rq, rf);
3749 }
3750
3751 if (rq->idle_stamp) {
3752 u64 delta = rq_clock(rq) - rq->idle_stamp;
3753 u64 max = 2*rq->max_idle_balance_cost;
3754
3755 update_avg(&rq->avg_idle, delta);
3756
3757 if (rq->avg_idle > max)
3758 rq->avg_idle = max;
3759
3760 rq->wake_stamp = jiffies;
3761 rq->wake_avg_idle = rq->avg_idle / 2;
3762
3763 rq->idle_stamp = 0;
3764 }
3765 #endif
3766 }
3767
3768 /*
3769 * Consider @p being inside a wait loop:
3770 *
3771 * for (;;) {
3772 * set_current_state(TASK_UNINTERRUPTIBLE);
3773 *
3774 * if (CONDITION)
3775 * break;
3776 *
3777 * schedule();
3778 * }
3779 * __set_current_state(TASK_RUNNING);
3780 *
3781 * between set_current_state() and schedule(). In this case @p is still
3782 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3783 * an atomic manner.
3784 *
3785 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3786 * then schedule() must still happen and p->state can be changed to
3787 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3788 * need to do a full wakeup with enqueue.
3789 *
3790 * Returns: %true when the wakeup is done,
3791 * %false otherwise.
3792 */
3793 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3794 {
3795 struct rq_flags rf;
3796 struct rq *rq;
3797 int ret = 0;
3798
3799 rq = __task_rq_lock(p, &rf);
3800 if (task_on_rq_queued(p)) {
3801 if (!task_on_cpu(rq, p)) {
3802 /*
3803 * When on_rq && !on_cpu the task is preempted, see if
3804 * it should preempt the task that is current now.
3805 */
3806 update_rq_clock(rq);
3807 check_preempt_curr(rq, p, wake_flags);
3808 }
3809 ttwu_do_wakeup(p);
3810 ret = 1;
3811 }
3812 __task_rq_unlock(rq, &rf);
3813
3814 return ret;
3815 }
3816
3817 #ifdef CONFIG_SMP
3818 void sched_ttwu_pending(void *arg)
3819 {
3820 struct llist_node *llist = arg;
3821 struct rq *rq = this_rq();
3822 struct task_struct *p, *t;
3823 struct rq_flags rf;
3824
3825 if (!llist)
3826 return;
3827
3828 rq_lock_irqsave(rq, &rf);
3829 update_rq_clock(rq);
3830
3831 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3832 if (WARN_ON_ONCE(p->on_cpu))
3833 smp_cond_load_acquire(&p->on_cpu, !VAL);
3834
3835 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3836 set_task_cpu(p, cpu_of(rq));
3837
3838 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3839 }
3840
3841 /*
3842 * Must be after enqueueing at least once task such that
3843 * idle_cpu() does not observe a false-negative -- if it does,
3844 * it is possible for select_idle_siblings() to stack a number
3845 * of tasks on this CPU during that window.
3846 *
3847 * It is ok to clear ttwu_pending when another task pending.
3848 * We will receive IPI after local irq enabled and then enqueue it.
3849 * Since now nr_running > 0, idle_cpu() will always get correct result.
3850 */
3851 WRITE_ONCE(rq->ttwu_pending, 0);
3852 rq_unlock_irqrestore(rq, &rf);
3853 }
3854
3855 /*
3856 * Prepare the scene for sending an IPI for a remote smp_call
3857 *
3858 * Returns true if the caller can proceed with sending the IPI.
3859 * Returns false otherwise.
3860 */
3861 bool call_function_single_prep_ipi(int cpu)
3862 {
3863 if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3864 trace_sched_wake_idle_without_ipi(cpu);
3865 return false;
3866 }
3867
3868 return true;
3869 }
3870
3871 /*
3872 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3873 * necessary. The wakee CPU on receipt of the IPI will queue the task
3874 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3875 * of the wakeup instead of the waker.
3876 */
3877 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3878 {
3879 struct rq *rq = cpu_rq(cpu);
3880
3881 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3882
3883 WRITE_ONCE(rq->ttwu_pending, 1);
3884 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3885 }
3886
3887 void wake_up_if_idle(int cpu)
3888 {
3889 struct rq *rq = cpu_rq(cpu);
3890 struct rq_flags rf;
3891
3892 rcu_read_lock();
3893
3894 if (!is_idle_task(rcu_dereference(rq->curr)))
3895 goto out;
3896
3897 rq_lock_irqsave(rq, &rf);
3898 if (is_idle_task(rq->curr))
3899 resched_curr(rq);
3900 /* Else CPU is not idle, do nothing here: */
3901 rq_unlock_irqrestore(rq, &rf);
3902
3903 out:
3904 rcu_read_unlock();
3905 }
3906
3907 bool cpus_share_cache(int this_cpu, int that_cpu)
3908 {
3909 if (this_cpu == that_cpu)
3910 return true;
3911
3912 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3913 }
3914
3915 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3916 {
3917 /*
3918 * Do not complicate things with the async wake_list while the CPU is
3919 * in hotplug state.
3920 */
3921 if (!cpu_active(cpu))
3922 return false;
3923
3924 /* Ensure the task will still be allowed to run on the CPU. */
3925 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3926 return false;
3927
3928 /*
3929 * If the CPU does not share cache, then queue the task on the
3930 * remote rqs wakelist to avoid accessing remote data.
3931 */
3932 if (!cpus_share_cache(smp_processor_id(), cpu))
3933 return true;
3934
3935 if (cpu == smp_processor_id())
3936 return false;
3937
3938 /*
3939 * If the wakee cpu is idle, or the task is descheduling and the
3940 * only running task on the CPU, then use the wakelist to offload
3941 * the task activation to the idle (or soon-to-be-idle) CPU as
3942 * the current CPU is likely busy. nr_running is checked to
3943 * avoid unnecessary task stacking.
3944 *
3945 * Note that we can only get here with (wakee) p->on_rq=0,
3946 * p->on_cpu can be whatever, we've done the dequeue, so
3947 * the wakee has been accounted out of ->nr_running.
3948 */
3949 if (!cpu_rq(cpu)->nr_running)
3950 return true;
3951
3952 return false;
3953 }
3954
3955 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3956 {
3957 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3958 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3959 __ttwu_queue_wakelist(p, cpu, wake_flags);
3960 return true;
3961 }
3962
3963 return false;
3964 }
3965
3966 #else /* !CONFIG_SMP */
3967
3968 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3969 {
3970 return false;
3971 }
3972
3973 #endif /* CONFIG_SMP */
3974
3975 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3976 {
3977 struct rq *rq = cpu_rq(cpu);
3978 struct rq_flags rf;
3979
3980 if (ttwu_queue_wakelist(p, cpu, wake_flags))
3981 return;
3982
3983 rq_lock(rq, &rf);
3984 update_rq_clock(rq);
3985 ttwu_do_activate(rq, p, wake_flags, &rf);
3986 rq_unlock(rq, &rf);
3987 }
3988
3989 /*
3990 * Invoked from try_to_wake_up() to check whether the task can be woken up.
3991 *
3992 * The caller holds p::pi_lock if p != current or has preemption
3993 * disabled when p == current.
3994 *
3995 * The rules of PREEMPT_RT saved_state:
3996 *
3997 * The related locking code always holds p::pi_lock when updating
3998 * p::saved_state, which means the code is fully serialized in both cases.
3999 *
4000 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
4001 * bits set. This allows to distinguish all wakeup scenarios.
4002 */
4003 static __always_inline
4004 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4005 {
4006 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4007 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4008 state != TASK_RTLOCK_WAIT);
4009 }
4010
4011 if (READ_ONCE(p->__state) & state) {
4012 *success = 1;
4013 return true;
4014 }
4015
4016 #ifdef CONFIG_PREEMPT_RT
4017 /*
4018 * Saved state preserves the task state across blocking on
4019 * an RT lock. If the state matches, set p::saved_state to
4020 * TASK_RUNNING, but do not wake the task because it waits
4021 * for a lock wakeup. Also indicate success because from
4022 * the regular waker's point of view this has succeeded.
4023 *
4024 * After acquiring the lock the task will restore p::__state
4025 * from p::saved_state which ensures that the regular
4026 * wakeup is not lost. The restore will also set
4027 * p::saved_state to TASK_RUNNING so any further tests will
4028 * not result in false positives vs. @success
4029 */
4030 if (p->saved_state & state) {
4031 p->saved_state = TASK_RUNNING;
4032 *success = 1;
4033 }
4034 #endif
4035 return false;
4036 }
4037
4038 /*
4039 * Notes on Program-Order guarantees on SMP systems.
4040 *
4041 * MIGRATION
4042 *
4043 * The basic program-order guarantee on SMP systems is that when a task [t]
4044 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4045 * execution on its new CPU [c1].
4046 *
4047 * For migration (of runnable tasks) this is provided by the following means:
4048 *
4049 * A) UNLOCK of the rq(c0)->lock scheduling out task t
4050 * B) migration for t is required to synchronize *both* rq(c0)->lock and
4051 * rq(c1)->lock (if not at the same time, then in that order).
4052 * C) LOCK of the rq(c1)->lock scheduling in task
4053 *
4054 * Release/acquire chaining guarantees that B happens after A and C after B.
4055 * Note: the CPU doing B need not be c0 or c1
4056 *
4057 * Example:
4058 *
4059 * CPU0 CPU1 CPU2
4060 *
4061 * LOCK rq(0)->lock
4062 * sched-out X
4063 * sched-in Y
4064 * UNLOCK rq(0)->lock
4065 *
4066 * LOCK rq(0)->lock // orders against CPU0
4067 * dequeue X
4068 * UNLOCK rq(0)->lock
4069 *
4070 * LOCK rq(1)->lock
4071 * enqueue X
4072 * UNLOCK rq(1)->lock
4073 *
4074 * LOCK rq(1)->lock // orders against CPU2
4075 * sched-out Z
4076 * sched-in X
4077 * UNLOCK rq(1)->lock
4078 *
4079 *
4080 * BLOCKING -- aka. SLEEP + WAKEUP
4081 *
4082 * For blocking we (obviously) need to provide the same guarantee as for
4083 * migration. However the means are completely different as there is no lock
4084 * chain to provide order. Instead we do:
4085 *
4086 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
4087 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4088 *
4089 * Example:
4090 *
4091 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
4092 *
4093 * LOCK rq(0)->lock LOCK X->pi_lock
4094 * dequeue X
4095 * sched-out X
4096 * smp_store_release(X->on_cpu, 0);
4097 *
4098 * smp_cond_load_acquire(&X->on_cpu, !VAL);
4099 * X->state = WAKING
4100 * set_task_cpu(X,2)
4101 *
4102 * LOCK rq(2)->lock
4103 * enqueue X
4104 * X->state = RUNNING
4105 * UNLOCK rq(2)->lock
4106 *
4107 * LOCK rq(2)->lock // orders against CPU1
4108 * sched-out Z
4109 * sched-in X
4110 * UNLOCK rq(2)->lock
4111 *
4112 * UNLOCK X->pi_lock
4113 * UNLOCK rq(0)->lock
4114 *
4115 *
4116 * However, for wakeups there is a second guarantee we must provide, namely we
4117 * must ensure that CONDITION=1 done by the caller can not be reordered with
4118 * accesses to the task state; see try_to_wake_up() and set_current_state().
4119 */
4120
4121 /**
4122 * try_to_wake_up - wake up a thread
4123 * @p: the thread to be awakened
4124 * @state: the mask of task states that can be woken
4125 * @wake_flags: wake modifier flags (WF_*)
4126 *
4127 * Conceptually does:
4128 *
4129 * If (@state & @p->state) @p->state = TASK_RUNNING.
4130 *
4131 * If the task was not queued/runnable, also place it back on a runqueue.
4132 *
4133 * This function is atomic against schedule() which would dequeue the task.
4134 *
4135 * It issues a full memory barrier before accessing @p->state, see the comment
4136 * with set_current_state().
4137 *
4138 * Uses p->pi_lock to serialize against concurrent wake-ups.
4139 *
4140 * Relies on p->pi_lock stabilizing:
4141 * - p->sched_class
4142 * - p->cpus_ptr
4143 * - p->sched_task_group
4144 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4145 *
4146 * Tries really hard to only take one task_rq(p)->lock for performance.
4147 * Takes rq->lock in:
4148 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4149 * - ttwu_queue() -- new rq, for enqueue of the task;
4150 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4151 *
4152 * As a consequence we race really badly with just about everything. See the
4153 * many memory barriers and their comments for details.
4154 *
4155 * Return: %true if @p->state changes (an actual wakeup was done),
4156 * %false otherwise.
4157 */
4158 static int
4159 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4160 {
4161 unsigned long flags;
4162 int cpu, success = 0;
4163
4164 preempt_disable();
4165 if (p == current) {
4166 /*
4167 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4168 * == smp_processor_id()'. Together this means we can special
4169 * case the whole 'p->on_rq && ttwu_runnable()' case below
4170 * without taking any locks.
4171 *
4172 * In particular:
4173 * - we rely on Program-Order guarantees for all the ordering,
4174 * - we're serialized against set_special_state() by virtue of
4175 * it disabling IRQs (this allows not taking ->pi_lock).
4176 */
4177 if (!ttwu_state_match(p, state, &success))
4178 goto out;
4179
4180 trace_sched_waking(p);
4181 ttwu_do_wakeup(p);
4182 goto out;
4183 }
4184
4185 /*
4186 * If we are going to wake up a thread waiting for CONDITION we
4187 * need to ensure that CONDITION=1 done by the caller can not be
4188 * reordered with p->state check below. This pairs with smp_store_mb()
4189 * in set_current_state() that the waiting thread does.
4190 */
4191 raw_spin_lock_irqsave(&p->pi_lock, flags);
4192 smp_mb__after_spinlock();
4193 if (!ttwu_state_match(p, state, &success))
4194 goto unlock;
4195
4196 trace_sched_waking(p);
4197
4198 /*
4199 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4200 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4201 * in smp_cond_load_acquire() below.
4202 *
4203 * sched_ttwu_pending() try_to_wake_up()
4204 * STORE p->on_rq = 1 LOAD p->state
4205 * UNLOCK rq->lock
4206 *
4207 * __schedule() (switch to task 'p')
4208 * LOCK rq->lock smp_rmb();
4209 * smp_mb__after_spinlock();
4210 * UNLOCK rq->lock
4211 *
4212 * [task p]
4213 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
4214 *
4215 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4216 * __schedule(). See the comment for smp_mb__after_spinlock().
4217 *
4218 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4219 */
4220 smp_rmb();
4221 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4222 goto unlock;
4223
4224 #ifdef CONFIG_SMP
4225 /*
4226 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4227 * possible to, falsely, observe p->on_cpu == 0.
4228 *
4229 * One must be running (->on_cpu == 1) in order to remove oneself
4230 * from the runqueue.
4231 *
4232 * __schedule() (switch to task 'p') try_to_wake_up()
4233 * STORE p->on_cpu = 1 LOAD p->on_rq
4234 * UNLOCK rq->lock
4235 *
4236 * __schedule() (put 'p' to sleep)
4237 * LOCK rq->lock smp_rmb();
4238 * smp_mb__after_spinlock();
4239 * STORE p->on_rq = 0 LOAD p->on_cpu
4240 *
4241 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4242 * __schedule(). See the comment for smp_mb__after_spinlock().
4243 *
4244 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4245 * schedule()'s deactivate_task() has 'happened' and p will no longer
4246 * care about it's own p->state. See the comment in __schedule().
4247 */
4248 smp_acquire__after_ctrl_dep();
4249
4250 /*
4251 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4252 * == 0), which means we need to do an enqueue, change p->state to
4253 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4254 * enqueue, such as ttwu_queue_wakelist().
4255 */
4256 WRITE_ONCE(p->__state, TASK_WAKING);
4257
4258 /*
4259 * If the owning (remote) CPU is still in the middle of schedule() with
4260 * this task as prev, considering queueing p on the remote CPUs wake_list
4261 * which potentially sends an IPI instead of spinning on p->on_cpu to
4262 * let the waker make forward progress. This is safe because IRQs are
4263 * disabled and the IPI will deliver after on_cpu is cleared.
4264 *
4265 * Ensure we load task_cpu(p) after p->on_cpu:
4266 *
4267 * set_task_cpu(p, cpu);
4268 * STORE p->cpu = @cpu
4269 * __schedule() (switch to task 'p')
4270 * LOCK rq->lock
4271 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4272 * STORE p->on_cpu = 1 LOAD p->cpu
4273 *
4274 * to ensure we observe the correct CPU on which the task is currently
4275 * scheduling.
4276 */
4277 if (smp_load_acquire(&p->on_cpu) &&
4278 ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4279 goto unlock;
4280
4281 /*
4282 * If the owning (remote) CPU is still in the middle of schedule() with
4283 * this task as prev, wait until it's done referencing the task.
4284 *
4285 * Pairs with the smp_store_release() in finish_task().
4286 *
4287 * This ensures that tasks getting woken will be fully ordered against
4288 * their previous state and preserve Program Order.
4289 */
4290 smp_cond_load_acquire(&p->on_cpu, !VAL);
4291
4292 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4293 if (task_cpu(p) != cpu) {
4294 if (p->in_iowait) {
4295 delayacct_blkio_end(p);
4296 atomic_dec(&task_rq(p)->nr_iowait);
4297 }
4298
4299 wake_flags |= WF_MIGRATED;
4300 psi_ttwu_dequeue(p);
4301 set_task_cpu(p, cpu);
4302 }
4303 #else
4304 cpu = task_cpu(p);
4305 #endif /* CONFIG_SMP */
4306
4307 ttwu_queue(p, cpu, wake_flags);
4308 unlock:
4309 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4310 out:
4311 if (success)
4312 ttwu_stat(p, task_cpu(p), wake_flags);
4313 preempt_enable();
4314
4315 return success;
4316 }
4317
4318 static bool __task_needs_rq_lock(struct task_struct *p)
4319 {
4320 unsigned int state = READ_ONCE(p->__state);
4321
4322 /*
4323 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4324 * the task is blocked. Make sure to check @state since ttwu() can drop
4325 * locks at the end, see ttwu_queue_wakelist().
4326 */
4327 if (state == TASK_RUNNING || state == TASK_WAKING)
4328 return true;
4329
4330 /*
4331 * Ensure we load p->on_rq after p->__state, otherwise it would be
4332 * possible to, falsely, observe p->on_rq == 0.
4333 *
4334 * See try_to_wake_up() for a longer comment.
4335 */
4336 smp_rmb();
4337 if (p->on_rq)
4338 return true;
4339
4340 #ifdef CONFIG_SMP
4341 /*
4342 * Ensure the task has finished __schedule() and will not be referenced
4343 * anymore. Again, see try_to_wake_up() for a longer comment.
4344 */
4345 smp_rmb();
4346 smp_cond_load_acquire(&p->on_cpu, !VAL);
4347 #endif
4348
4349 return false;
4350 }
4351
4352 /**
4353 * task_call_func - Invoke a function on task in fixed state
4354 * @p: Process for which the function is to be invoked, can be @current.
4355 * @func: Function to invoke.
4356 * @arg: Argument to function.
4357 *
4358 * Fix the task in it's current state by avoiding wakeups and or rq operations
4359 * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
4360 * to work out what the state is, if required. Given that @func can be invoked
4361 * with a runqueue lock held, it had better be quite lightweight.
4362 *
4363 * Returns:
4364 * Whatever @func returns
4365 */
4366 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4367 {
4368 struct rq *rq = NULL;
4369 struct rq_flags rf;
4370 int ret;
4371
4372 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4373
4374 if (__task_needs_rq_lock(p))
4375 rq = __task_rq_lock(p, &rf);
4376
4377 /*
4378 * At this point the task is pinned; either:
4379 * - blocked and we're holding off wakeups (pi->lock)
4380 * - woken, and we're holding off enqueue (rq->lock)
4381 * - queued, and we're holding off schedule (rq->lock)
4382 * - running, and we're holding off de-schedule (rq->lock)
4383 *
4384 * The called function (@func) can use: task_curr(), p->on_rq and
4385 * p->__state to differentiate between these states.
4386 */
4387 ret = func(p, arg);
4388
4389 if (rq)
4390 rq_unlock(rq, &rf);
4391
4392 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4393 return ret;
4394 }
4395
4396 /**
4397 * cpu_curr_snapshot - Return a snapshot of the currently running task
4398 * @cpu: The CPU on which to snapshot the task.
4399 *
4400 * Returns the task_struct pointer of the task "currently" running on
4401 * the specified CPU. If the same task is running on that CPU throughout,
4402 * the return value will be a pointer to that task's task_struct structure.
4403 * If the CPU did any context switches even vaguely concurrently with the
4404 * execution of this function, the return value will be a pointer to the
4405 * task_struct structure of a randomly chosen task that was running on
4406 * that CPU somewhere around the time that this function was executing.
4407 *
4408 * If the specified CPU was offline, the return value is whatever it
4409 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4410 * task, but there is no guarantee. Callers wishing a useful return
4411 * value must take some action to ensure that the specified CPU remains
4412 * online throughout.
4413 *
4414 * This function executes full memory barriers before and after fetching
4415 * the pointer, which permits the caller to confine this function's fetch
4416 * with respect to the caller's accesses to other shared variables.
4417 */
4418 struct task_struct *cpu_curr_snapshot(int cpu)
4419 {
4420 struct task_struct *t;
4421
4422 smp_mb(); /* Pairing determined by caller's synchronization design. */
4423 t = rcu_dereference(cpu_curr(cpu));
4424 smp_mb(); /* Pairing determined by caller's synchronization design. */
4425 return t;
4426 }
4427
4428 /**
4429 * wake_up_process - Wake up a specific process
4430 * @p: The process to be woken up.
4431 *
4432 * Attempt to wake up the nominated process and move it to the set of runnable
4433 * processes.
4434 *
4435 * Return: 1 if the process was woken up, 0 if it was already running.
4436 *
4437 * This function executes a full memory barrier before accessing the task state.
4438 */
4439 int wake_up_process(struct task_struct *p)
4440 {
4441 return try_to_wake_up(p, TASK_NORMAL, 0);
4442 }
4443 EXPORT_SYMBOL(wake_up_process);
4444
4445 int wake_up_state(struct task_struct *p, unsigned int state)
4446 {
4447 return try_to_wake_up(p, state, 0);
4448 }
4449
4450 /*
4451 * Perform scheduler related setup for a newly forked process p.
4452 * p is forked by current.
4453 *
4454 * __sched_fork() is basic setup used by init_idle() too:
4455 */
4456 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4457 {
4458 p->on_rq = 0;
4459
4460 p->se.on_rq = 0;
4461 p->se.exec_start = 0;
4462 p->se.sum_exec_runtime = 0;
4463 p->se.prev_sum_exec_runtime = 0;
4464 p->se.nr_migrations = 0;
4465 p->se.vruntime = 0;
4466 INIT_LIST_HEAD(&p->se.group_node);
4467
4468 #ifdef CONFIG_FAIR_GROUP_SCHED
4469 p->se.cfs_rq = NULL;
4470 #endif
4471
4472 #ifdef CONFIG_SCHEDSTATS
4473 /* Even if schedstat is disabled, there should not be garbage */
4474 memset(&p->stats, 0, sizeof(p->stats));
4475 #endif
4476
4477 RB_CLEAR_NODE(&p->dl.rb_node);
4478 init_dl_task_timer(&p->dl);
4479 init_dl_inactive_task_timer(&p->dl);
4480 __dl_clear_params(p);
4481
4482 INIT_LIST_HEAD(&p->rt.run_list);
4483 p->rt.timeout = 0;
4484 p->rt.time_slice = sched_rr_timeslice;
4485 p->rt.on_rq = 0;
4486 p->rt.on_list = 0;
4487
4488 #ifdef CONFIG_PREEMPT_NOTIFIERS
4489 INIT_HLIST_HEAD(&p->preempt_notifiers);
4490 #endif
4491
4492 #ifdef CONFIG_COMPACTION
4493 p->capture_control = NULL;
4494 #endif
4495 init_numa_balancing(clone_flags, p);
4496 #ifdef CONFIG_SMP
4497 p->wake_entry.u_flags = CSD_TYPE_TTWU;
4498 p->migration_pending = NULL;
4499 #endif
4500 init_sched_mm_cid(p);
4501 }
4502
4503 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4504
4505 #ifdef CONFIG_NUMA_BALANCING
4506
4507 int sysctl_numa_balancing_mode;
4508
4509 static void __set_numabalancing_state(bool enabled)
4510 {
4511 if (enabled)
4512 static_branch_enable(&sched_numa_balancing);
4513 else
4514 static_branch_disable(&sched_numa_balancing);
4515 }
4516
4517 void set_numabalancing_state(bool enabled)
4518 {
4519 if (enabled)
4520 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4521 else
4522 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4523 __set_numabalancing_state(enabled);
4524 }
4525
4526 #ifdef CONFIG_PROC_SYSCTL
4527 static void reset_memory_tiering(void)
4528 {
4529 struct pglist_data *pgdat;
4530
4531 for_each_online_pgdat(pgdat) {
4532 pgdat->nbp_threshold = 0;
4533 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4534 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4535 }
4536 }
4537
4538 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4539 void *buffer, size_t *lenp, loff_t *ppos)
4540 {
4541 struct ctl_table t;
4542 int err;
4543 int state = sysctl_numa_balancing_mode;
4544
4545 if (write && !capable(CAP_SYS_ADMIN))
4546 return -EPERM;
4547
4548 t = *table;
4549 t.data = &state;
4550 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4551 if (err < 0)
4552 return err;
4553 if (write) {
4554 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4555 (state & NUMA_BALANCING_MEMORY_TIERING))
4556 reset_memory_tiering();
4557 sysctl_numa_balancing_mode = state;
4558 __set_numabalancing_state(state);
4559 }
4560 return err;
4561 }
4562 #endif
4563 #endif
4564
4565 #ifdef CONFIG_SCHEDSTATS
4566
4567 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4568
4569 static void set_schedstats(bool enabled)
4570 {
4571 if (enabled)
4572 static_branch_enable(&sched_schedstats);
4573 else
4574 static_branch_disable(&sched_schedstats);
4575 }
4576
4577 void force_schedstat_enabled(void)
4578 {
4579 if (!schedstat_enabled()) {
4580 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4581 static_branch_enable(&sched_schedstats);
4582 }
4583 }
4584
4585 static int __init setup_schedstats(char *str)
4586 {
4587 int ret = 0;
4588 if (!str)
4589 goto out;
4590
4591 if (!strcmp(str, "enable")) {
4592 set_schedstats(true);
4593 ret = 1;
4594 } else if (!strcmp(str, "disable")) {
4595 set_schedstats(false);
4596 ret = 1;
4597 }
4598 out:
4599 if (!ret)
4600 pr_warn("Unable to parse schedstats=\n");
4601
4602 return ret;
4603 }
4604 __setup("schedstats=", setup_schedstats);
4605
4606 #ifdef CONFIG_PROC_SYSCTL
4607 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4608 size_t *lenp, loff_t *ppos)
4609 {
4610 struct ctl_table t;
4611 int err;
4612 int state = static_branch_likely(&sched_schedstats);
4613
4614 if (write && !capable(CAP_SYS_ADMIN))
4615 return -EPERM;
4616
4617 t = *table;
4618 t.data = &state;
4619 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4620 if (err < 0)
4621 return err;
4622 if (write)
4623 set_schedstats(state);
4624 return err;
4625 }
4626 #endif /* CONFIG_PROC_SYSCTL */
4627 #endif /* CONFIG_SCHEDSTATS */
4628
4629 #ifdef CONFIG_SYSCTL
4630 static struct ctl_table sched_core_sysctls[] = {
4631 #ifdef CONFIG_SCHEDSTATS
4632 {
4633 .procname = "sched_schedstats",
4634 .data = NULL,
4635 .maxlen = sizeof(unsigned int),
4636 .mode = 0644,
4637 .proc_handler = sysctl_schedstats,
4638 .extra1 = SYSCTL_ZERO,
4639 .extra2 = SYSCTL_ONE,
4640 },
4641 #endif /* CONFIG_SCHEDSTATS */
4642 #ifdef CONFIG_UCLAMP_TASK
4643 {
4644 .procname = "sched_util_clamp_min",
4645 .data = &sysctl_sched_uclamp_util_min,
4646 .maxlen = sizeof(unsigned int),
4647 .mode = 0644,
4648 .proc_handler = sysctl_sched_uclamp_handler,
4649 },
4650 {
4651 .procname = "sched_util_clamp_max",
4652 .data = &sysctl_sched_uclamp_util_max,
4653 .maxlen = sizeof(unsigned int),
4654 .mode = 0644,
4655 .proc_handler = sysctl_sched_uclamp_handler,
4656 },
4657 {
4658 .procname = "sched_util_clamp_min_rt_default",
4659 .data = &sysctl_sched_uclamp_util_min_rt_default,
4660 .maxlen = sizeof(unsigned int),
4661 .mode = 0644,
4662 .proc_handler = sysctl_sched_uclamp_handler,
4663 },
4664 #endif /* CONFIG_UCLAMP_TASK */
4665 #ifdef CONFIG_NUMA_BALANCING
4666 {
4667 .procname = "numa_balancing",
4668 .data = NULL, /* filled in by handler */
4669 .maxlen = sizeof(unsigned int),
4670 .mode = 0644,
4671 .proc_handler = sysctl_numa_balancing,
4672 .extra1 = SYSCTL_ZERO,
4673 .extra2 = SYSCTL_FOUR,
4674 },
4675 #endif /* CONFIG_NUMA_BALANCING */
4676 {}
4677 };
4678 static int __init sched_core_sysctl_init(void)
4679 {
4680 register_sysctl_init("kernel", sched_core_sysctls);
4681 return 0;
4682 }
4683 late_initcall(sched_core_sysctl_init);
4684 #endif /* CONFIG_SYSCTL */
4685
4686 /*
4687 * fork()/clone()-time setup:
4688 */
4689 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4690 {
4691 __sched_fork(clone_flags, p);
4692 /*
4693 * We mark the process as NEW here. This guarantees that
4694 * nobody will actually run it, and a signal or other external
4695 * event cannot wake it up and insert it on the runqueue either.
4696 */
4697 p->__state = TASK_NEW;
4698
4699 /*
4700 * Make sure we do not leak PI boosting priority to the child.
4701 */
4702 p->prio = current->normal_prio;
4703
4704 uclamp_fork(p);
4705
4706 /*
4707 * Revert to default priority/policy on fork if requested.
4708 */
4709 if (unlikely(p->sched_reset_on_fork)) {
4710 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4711 p->policy = SCHED_NORMAL;
4712 p->static_prio = NICE_TO_PRIO(0);
4713 p->rt_priority = 0;
4714 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4715 p->static_prio = NICE_TO_PRIO(0);
4716
4717 p->prio = p->normal_prio = p->static_prio;
4718 set_load_weight(p, false);
4719
4720 /*
4721 * We don't need the reset flag anymore after the fork. It has
4722 * fulfilled its duty:
4723 */
4724 p->sched_reset_on_fork = 0;
4725 }
4726
4727 if (dl_prio(p->prio))
4728 return -EAGAIN;
4729 else if (rt_prio(p->prio))
4730 p->sched_class = &rt_sched_class;
4731 else
4732 p->sched_class = &fair_sched_class;
4733
4734 init_entity_runnable_average(&p->se);
4735
4736
4737 #ifdef CONFIG_SCHED_INFO
4738 if (likely(sched_info_on()))
4739 memset(&p->sched_info, 0, sizeof(p->sched_info));
4740 #endif
4741 #if defined(CONFIG_SMP)
4742 p->on_cpu = 0;
4743 #endif
4744 init_task_preempt_count(p);
4745 #ifdef CONFIG_SMP
4746 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4747 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4748 #endif
4749 return 0;
4750 }
4751
4752 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4753 {
4754 unsigned long flags;
4755
4756 /*
4757 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4758 * required yet, but lockdep gets upset if rules are violated.
4759 */
4760 raw_spin_lock_irqsave(&p->pi_lock, flags);
4761 #ifdef CONFIG_CGROUP_SCHED
4762 if (1) {
4763 struct task_group *tg;
4764 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4765 struct task_group, css);
4766 tg = autogroup_task_group(p, tg);
4767 p->sched_task_group = tg;
4768 }
4769 #endif
4770 rseq_migrate(p);
4771 /*
4772 * We're setting the CPU for the first time, we don't migrate,
4773 * so use __set_task_cpu().
4774 */
4775 __set_task_cpu(p, smp_processor_id());
4776 if (p->sched_class->task_fork)
4777 p->sched_class->task_fork(p);
4778 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4779 }
4780
4781 void sched_post_fork(struct task_struct *p)
4782 {
4783 uclamp_post_fork(p);
4784 }
4785
4786 unsigned long to_ratio(u64 period, u64 runtime)
4787 {
4788 if (runtime == RUNTIME_INF)
4789 return BW_UNIT;
4790
4791 /*
4792 * Doing this here saves a lot of checks in all
4793 * the calling paths, and returning zero seems
4794 * safe for them anyway.
4795 */
4796 if (period == 0)
4797 return 0;
4798
4799 return div64_u64(runtime << BW_SHIFT, period);
4800 }
4801
4802 /*
4803 * wake_up_new_task - wake up a newly created task for the first time.
4804 *
4805 * This function will do some initial scheduler statistics housekeeping
4806 * that must be done for every newly created context, then puts the task
4807 * on the runqueue and wakes it.
4808 */
4809 void wake_up_new_task(struct task_struct *p)
4810 {
4811 struct rq_flags rf;
4812 struct rq *rq;
4813
4814 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4815 WRITE_ONCE(p->__state, TASK_RUNNING);
4816 #ifdef CONFIG_SMP
4817 /*
4818 * Fork balancing, do it here and not earlier because:
4819 * - cpus_ptr can change in the fork path
4820 * - any previously selected CPU might disappear through hotplug
4821 *
4822 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4823 * as we're not fully set-up yet.
4824 */
4825 p->recent_used_cpu = task_cpu(p);
4826 rseq_migrate(p);
4827 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4828 #endif
4829 rq = __task_rq_lock(p, &rf);
4830 update_rq_clock(rq);
4831 post_init_entity_util_avg(p);
4832
4833 activate_task(rq, p, ENQUEUE_NOCLOCK);
4834 trace_sched_wakeup_new(p);
4835 check_preempt_curr(rq, p, WF_FORK);
4836 #ifdef CONFIG_SMP
4837 if (p->sched_class->task_woken) {
4838 /*
4839 * Nothing relies on rq->lock after this, so it's fine to
4840 * drop it.
4841 */
4842 rq_unpin_lock(rq, &rf);
4843 p->sched_class->task_woken(rq, p);
4844 rq_repin_lock(rq, &rf);
4845 }
4846 #endif
4847 task_rq_unlock(rq, p, &rf);
4848 }
4849
4850 #ifdef CONFIG_PREEMPT_NOTIFIERS
4851
4852 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4853
4854 void preempt_notifier_inc(void)
4855 {
4856 static_branch_inc(&preempt_notifier_key);
4857 }
4858 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4859
4860 void preempt_notifier_dec(void)
4861 {
4862 static_branch_dec(&preempt_notifier_key);
4863 }
4864 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4865
4866 /**
4867 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4868 * @notifier: notifier struct to register
4869 */
4870 void preempt_notifier_register(struct preempt_notifier *notifier)
4871 {
4872 if (!static_branch_unlikely(&preempt_notifier_key))
4873 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4874
4875 hlist_add_head(&notifier->link, &current->preempt_notifiers);
4876 }
4877 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4878
4879 /**
4880 * preempt_notifier_unregister - no longer interested in preemption notifications
4881 * @notifier: notifier struct to unregister
4882 *
4883 * This is *not* safe to call from within a preemption notifier.
4884 */
4885 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4886 {
4887 hlist_del(&notifier->link);
4888 }
4889 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4890
4891 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4892 {
4893 struct preempt_notifier *notifier;
4894
4895 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4896 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4897 }
4898
4899 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4900 {
4901 if (static_branch_unlikely(&preempt_notifier_key))
4902 __fire_sched_in_preempt_notifiers(curr);
4903 }
4904
4905 static void
4906 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4907 struct task_struct *next)
4908 {
4909 struct preempt_notifier *notifier;
4910
4911 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4912 notifier->ops->sched_out(notifier, next);
4913 }
4914
4915 static __always_inline void
4916 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4917 struct task_struct *next)
4918 {
4919 if (static_branch_unlikely(&preempt_notifier_key))
4920 __fire_sched_out_preempt_notifiers(curr, next);
4921 }
4922
4923 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4924
4925 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4926 {
4927 }
4928
4929 static inline void
4930 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4931 struct task_struct *next)
4932 {
4933 }
4934
4935 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4936
4937 static inline void prepare_task(struct task_struct *next)
4938 {
4939 #ifdef CONFIG_SMP
4940 /*
4941 * Claim the task as running, we do this before switching to it
4942 * such that any running task will have this set.
4943 *
4944 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4945 * its ordering comment.
4946 */
4947 WRITE_ONCE(next->on_cpu, 1);
4948 #endif
4949 }
4950
4951 static inline void finish_task(struct task_struct *prev)
4952 {
4953 #ifdef CONFIG_SMP
4954 /*
4955 * This must be the very last reference to @prev from this CPU. After
4956 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4957 * must ensure this doesn't happen until the switch is completely
4958 * finished.
4959 *
4960 * In particular, the load of prev->state in finish_task_switch() must
4961 * happen before this.
4962 *
4963 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4964 */
4965 smp_store_release(&prev->on_cpu, 0);
4966 #endif
4967 }
4968
4969 #ifdef CONFIG_SMP
4970
4971 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
4972 {
4973 void (*func)(struct rq *rq);
4974 struct balance_callback *next;
4975
4976 lockdep_assert_rq_held(rq);
4977
4978 while (head) {
4979 func = (void (*)(struct rq *))head->func;
4980 next = head->next;
4981 head->next = NULL;
4982 head = next;
4983
4984 func(rq);
4985 }
4986 }
4987
4988 static void balance_push(struct rq *rq);
4989
4990 /*
4991 * balance_push_callback is a right abuse of the callback interface and plays
4992 * by significantly different rules.
4993 *
4994 * Where the normal balance_callback's purpose is to be ran in the same context
4995 * that queued it (only later, when it's safe to drop rq->lock again),
4996 * balance_push_callback is specifically targeted at __schedule().
4997 *
4998 * This abuse is tolerated because it places all the unlikely/odd cases behind
4999 * a single test, namely: rq->balance_callback == NULL.
5000 */
5001 struct balance_callback balance_push_callback = {
5002 .next = NULL,
5003 .func = balance_push,
5004 };
5005
5006 static inline struct balance_callback *
5007 __splice_balance_callbacks(struct rq *rq, bool split)
5008 {
5009 struct balance_callback *head = rq->balance_callback;
5010
5011 if (likely(!head))
5012 return NULL;
5013
5014 lockdep_assert_rq_held(rq);
5015 /*
5016 * Must not take balance_push_callback off the list when
5017 * splice_balance_callbacks() and balance_callbacks() are not
5018 * in the same rq->lock section.
5019 *
5020 * In that case it would be possible for __schedule() to interleave
5021 * and observe the list empty.
5022 */
5023 if (split && head == &balance_push_callback)
5024 head = NULL;
5025 else
5026 rq->balance_callback = NULL;
5027
5028 return head;
5029 }
5030
5031 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5032 {
5033 return __splice_balance_callbacks(rq, true);
5034 }
5035
5036 static void __balance_callbacks(struct rq *rq)
5037 {
5038 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5039 }
5040
5041 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5042 {
5043 unsigned long flags;
5044
5045 if (unlikely(head)) {
5046 raw_spin_rq_lock_irqsave(rq, flags);
5047 do_balance_callbacks(rq, head);
5048 raw_spin_rq_unlock_irqrestore(rq, flags);
5049 }
5050 }
5051
5052 #else
5053
5054 static inline void __balance_callbacks(struct rq *rq)
5055 {
5056 }
5057
5058 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5059 {
5060 return NULL;
5061 }
5062
5063 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5064 {
5065 }
5066
5067 #endif
5068
5069 static inline void
5070 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5071 {
5072 /*
5073 * Since the runqueue lock will be released by the next
5074 * task (which is an invalid locking op but in the case
5075 * of the scheduler it's an obvious special-case), so we
5076 * do an early lockdep release here:
5077 */
5078 rq_unpin_lock(rq, rf);
5079 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5080 #ifdef CONFIG_DEBUG_SPINLOCK
5081 /* this is a valid case when another task releases the spinlock */
5082 rq_lockp(rq)->owner = next;
5083 #endif
5084 }
5085
5086 static inline void finish_lock_switch(struct rq *rq)
5087 {
5088 /*
5089 * If we are tracking spinlock dependencies then we have to
5090 * fix up the runqueue lock - which gets 'carried over' from
5091 * prev into current:
5092 */
5093 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5094 __balance_callbacks(rq);
5095 raw_spin_rq_unlock_irq(rq);
5096 }
5097
5098 /*
5099 * NOP if the arch has not defined these:
5100 */
5101
5102 #ifndef prepare_arch_switch
5103 # define prepare_arch_switch(next) do { } while (0)
5104 #endif
5105
5106 #ifndef finish_arch_post_lock_switch
5107 # define finish_arch_post_lock_switch() do { } while (0)
5108 #endif
5109
5110 static inline void kmap_local_sched_out(void)
5111 {
5112 #ifdef CONFIG_KMAP_LOCAL
5113 if (unlikely(current->kmap_ctrl.idx))
5114 __kmap_local_sched_out();
5115 #endif
5116 }
5117
5118 static inline void kmap_local_sched_in(void)
5119 {
5120 #ifdef CONFIG_KMAP_LOCAL
5121 if (unlikely(current->kmap_ctrl.idx))
5122 __kmap_local_sched_in();
5123 #endif
5124 }
5125
5126 /**
5127 * prepare_task_switch - prepare to switch tasks
5128 * @rq: the runqueue preparing to switch
5129 * @prev: the current task that is being switched out
5130 * @next: the task we are going to switch to.
5131 *
5132 * This is called with the rq lock held and interrupts off. It must
5133 * be paired with a subsequent finish_task_switch after the context
5134 * switch.
5135 *
5136 * prepare_task_switch sets up locking and calls architecture specific
5137 * hooks.
5138 */
5139 static inline void
5140 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5141 struct task_struct *next)
5142 {
5143 kcov_prepare_switch(prev);
5144 sched_info_switch(rq, prev, next);
5145 perf_event_task_sched_out(prev, next);
5146 rseq_preempt(prev);
5147 fire_sched_out_preempt_notifiers(prev, next);
5148 kmap_local_sched_out();
5149 prepare_task(next);
5150 prepare_arch_switch(next);
5151 }
5152
5153 /**
5154 * finish_task_switch - clean up after a task-switch
5155 * @prev: the thread we just switched away from.
5156 *
5157 * finish_task_switch must be called after the context switch, paired
5158 * with a prepare_task_switch call before the context switch.
5159 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5160 * and do any other architecture-specific cleanup actions.
5161 *
5162 * Note that we may have delayed dropping an mm in context_switch(). If
5163 * so, we finish that here outside of the runqueue lock. (Doing it
5164 * with the lock held can cause deadlocks; see schedule() for
5165 * details.)
5166 *
5167 * The context switch have flipped the stack from under us and restored the
5168 * local variables which were saved when this task called schedule() in the
5169 * past. prev == current is still correct but we need to recalculate this_rq
5170 * because prev may have moved to another CPU.
5171 */
5172 static struct rq *finish_task_switch(struct task_struct *prev)
5173 __releases(rq->lock)
5174 {
5175 struct rq *rq = this_rq();
5176 struct mm_struct *mm = rq->prev_mm;
5177 unsigned int prev_state;
5178
5179 /*
5180 * The previous task will have left us with a preempt_count of 2
5181 * because it left us after:
5182 *
5183 * schedule()
5184 * preempt_disable(); // 1
5185 * __schedule()
5186 * raw_spin_lock_irq(&rq->lock) // 2
5187 *
5188 * Also, see FORK_PREEMPT_COUNT.
5189 */
5190 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5191 "corrupted preempt_count: %s/%d/0x%x\n",
5192 current->comm, current->pid, preempt_count()))
5193 preempt_count_set(FORK_PREEMPT_COUNT);
5194
5195 rq->prev_mm = NULL;
5196
5197 /*
5198 * A task struct has one reference for the use as "current".
5199 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5200 * schedule one last time. The schedule call will never return, and
5201 * the scheduled task must drop that reference.
5202 *
5203 * We must observe prev->state before clearing prev->on_cpu (in
5204 * finish_task), otherwise a concurrent wakeup can get prev
5205 * running on another CPU and we could rave with its RUNNING -> DEAD
5206 * transition, resulting in a double drop.
5207 */
5208 prev_state = READ_ONCE(prev->__state);
5209 vtime_task_switch(prev);
5210 perf_event_task_sched_in(prev, current);
5211 finish_task(prev);
5212 tick_nohz_task_switch();
5213 finish_lock_switch(rq);
5214 finish_arch_post_lock_switch();
5215 kcov_finish_switch(current);
5216 /*
5217 * kmap_local_sched_out() is invoked with rq::lock held and
5218 * interrupts disabled. There is no requirement for that, but the
5219 * sched out code does not have an interrupt enabled section.
5220 * Restoring the maps on sched in does not require interrupts being
5221 * disabled either.
5222 */
5223 kmap_local_sched_in();
5224
5225 fire_sched_in_preempt_notifiers(current);
5226 /*
5227 * When switching through a kernel thread, the loop in
5228 * membarrier_{private,global}_expedited() may have observed that
5229 * kernel thread and not issued an IPI. It is therefore possible to
5230 * schedule between user->kernel->user threads without passing though
5231 * switch_mm(). Membarrier requires a barrier after storing to
5232 * rq->curr, before returning to userspace, so provide them here:
5233 *
5234 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5235 * provided by mmdrop_lazy_tlb(),
5236 * - a sync_core for SYNC_CORE.
5237 */
5238 if (mm) {
5239 membarrier_mm_sync_core_before_usermode(mm);
5240 mmdrop_lazy_tlb_sched(mm);
5241 }
5242
5243 if (unlikely(prev_state == TASK_DEAD)) {
5244 if (prev->sched_class->task_dead)
5245 prev->sched_class->task_dead(prev);
5246
5247 /* Task is done with its stack. */
5248 put_task_stack(prev);
5249
5250 put_task_struct_rcu_user(prev);
5251 }
5252
5253 return rq;
5254 }
5255
5256 /**
5257 * schedule_tail - first thing a freshly forked thread must call.
5258 * @prev: the thread we just switched away from.
5259 */
5260 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5261 __releases(rq->lock)
5262 {
5263 /*
5264 * New tasks start with FORK_PREEMPT_COUNT, see there and
5265 * finish_task_switch() for details.
5266 *
5267 * finish_task_switch() will drop rq->lock() and lower preempt_count
5268 * and the preempt_enable() will end up enabling preemption (on
5269 * PREEMPT_COUNT kernels).
5270 */
5271
5272 finish_task_switch(prev);
5273 preempt_enable();
5274
5275 if (current->set_child_tid)
5276 put_user(task_pid_vnr(current), current->set_child_tid);
5277
5278 calculate_sigpending();
5279 }
5280
5281 /*
5282 * context_switch - switch to the new MM and the new thread's register state.
5283 */
5284 static __always_inline struct rq *
5285 context_switch(struct rq *rq, struct task_struct *prev,
5286 struct task_struct *next, struct rq_flags *rf)
5287 {
5288 prepare_task_switch(rq, prev, next);
5289
5290 /*
5291 * For paravirt, this is coupled with an exit in switch_to to
5292 * combine the page table reload and the switch backend into
5293 * one hypercall.
5294 */
5295 arch_start_context_switch(prev);
5296
5297 /*
5298 * kernel -> kernel lazy + transfer active
5299 * user -> kernel lazy + mmgrab_lazy_tlb() active
5300 *
5301 * kernel -> user switch + mmdrop_lazy_tlb() active
5302 * user -> user switch
5303 *
5304 * switch_mm_cid() needs to be updated if the barriers provided
5305 * by context_switch() are modified.
5306 */
5307 if (!next->mm) { // to kernel
5308 enter_lazy_tlb(prev->active_mm, next);
5309
5310 next->active_mm = prev->active_mm;
5311 if (prev->mm) // from user
5312 mmgrab_lazy_tlb(prev->active_mm);
5313 else
5314 prev->active_mm = NULL;
5315 } else { // to user
5316 membarrier_switch_mm(rq, prev->active_mm, next->mm);
5317 /*
5318 * sys_membarrier() requires an smp_mb() between setting
5319 * rq->curr / membarrier_switch_mm() and returning to userspace.
5320 *
5321 * The below provides this either through switch_mm(), or in
5322 * case 'prev->active_mm == next->mm' through
5323 * finish_task_switch()'s mmdrop().
5324 */
5325 switch_mm_irqs_off(prev->active_mm, next->mm, next);
5326 lru_gen_use_mm(next->mm);
5327
5328 if (!prev->mm) { // from kernel
5329 /* will mmdrop_lazy_tlb() in finish_task_switch(). */
5330 rq->prev_mm = prev->active_mm;
5331 prev->active_mm = NULL;
5332 }
5333 }
5334
5335 /* switch_mm_cid() requires the memory barriers above. */
5336 switch_mm_cid(rq, prev, next);
5337
5338 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5339
5340 prepare_lock_switch(rq, next, rf);
5341
5342 /* Here we just switch the register state and the stack. */
5343 switch_to(prev, next, prev);
5344 barrier();
5345
5346 return finish_task_switch(prev);
5347 }
5348
5349 /*
5350 * nr_running and nr_context_switches:
5351 *
5352 * externally visible scheduler statistics: current number of runnable
5353 * threads, total number of context switches performed since bootup.
5354 */
5355 unsigned int nr_running(void)
5356 {
5357 unsigned int i, sum = 0;
5358
5359 for_each_online_cpu(i)
5360 sum += cpu_rq(i)->nr_running;
5361
5362 return sum;
5363 }
5364
5365 /*
5366 * Check if only the current task is running on the CPU.
5367 *
5368 * Caution: this function does not check that the caller has disabled
5369 * preemption, thus the result might have a time-of-check-to-time-of-use
5370 * race. The caller is responsible to use it correctly, for example:
5371 *
5372 * - from a non-preemptible section (of course)
5373 *
5374 * - from a thread that is bound to a single CPU
5375 *
5376 * - in a loop with very short iterations (e.g. a polling loop)
5377 */
5378 bool single_task_running(void)
5379 {
5380 return raw_rq()->nr_running == 1;
5381 }
5382 EXPORT_SYMBOL(single_task_running);
5383
5384 unsigned long long nr_context_switches_cpu(int cpu)
5385 {
5386 return cpu_rq(cpu)->nr_switches;
5387 }
5388
5389 unsigned long long nr_context_switches(void)
5390 {
5391 int i;
5392 unsigned long long sum = 0;
5393
5394 for_each_possible_cpu(i)
5395 sum += cpu_rq(i)->nr_switches;
5396
5397 return sum;
5398 }
5399
5400 /*
5401 * Consumers of these two interfaces, like for example the cpuidle menu
5402 * governor, are using nonsensical data. Preferring shallow idle state selection
5403 * for a CPU that has IO-wait which might not even end up running the task when
5404 * it does become runnable.
5405 */
5406
5407 unsigned int nr_iowait_cpu(int cpu)
5408 {
5409 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5410 }
5411
5412 /*
5413 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5414 *
5415 * The idea behind IO-wait account is to account the idle time that we could
5416 * have spend running if it were not for IO. That is, if we were to improve the
5417 * storage performance, we'd have a proportional reduction in IO-wait time.
5418 *
5419 * This all works nicely on UP, where, when a task blocks on IO, we account
5420 * idle time as IO-wait, because if the storage were faster, it could've been
5421 * running and we'd not be idle.
5422 *
5423 * This has been extended to SMP, by doing the same for each CPU. This however
5424 * is broken.
5425 *
5426 * Imagine for instance the case where two tasks block on one CPU, only the one
5427 * CPU will have IO-wait accounted, while the other has regular idle. Even
5428 * though, if the storage were faster, both could've ran at the same time,
5429 * utilising both CPUs.
5430 *
5431 * This means, that when looking globally, the current IO-wait accounting on
5432 * SMP is a lower bound, by reason of under accounting.
5433 *
5434 * Worse, since the numbers are provided per CPU, they are sometimes
5435 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5436 * associated with any one particular CPU, it can wake to another CPU than it
5437 * blocked on. This means the per CPU IO-wait number is meaningless.
5438 *
5439 * Task CPU affinities can make all that even more 'interesting'.
5440 */
5441
5442 unsigned int nr_iowait(void)
5443 {
5444 unsigned int i, sum = 0;
5445
5446 for_each_possible_cpu(i)
5447 sum += nr_iowait_cpu(i);
5448
5449 return sum;
5450 }
5451
5452 #ifdef CONFIG_SMP
5453
5454 /*
5455 * sched_exec - execve() is a valuable balancing opportunity, because at
5456 * this point the task has the smallest effective memory and cache footprint.
5457 */
5458 void sched_exec(void)
5459 {
5460 struct task_struct *p = current;
5461 unsigned long flags;
5462 int dest_cpu;
5463
5464 raw_spin_lock_irqsave(&p->pi_lock, flags);
5465 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5466 if (dest_cpu == smp_processor_id())
5467 goto unlock;
5468
5469 if (likely(cpu_active(dest_cpu))) {
5470 struct migration_arg arg = { p, dest_cpu };
5471
5472 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5473 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5474 return;
5475 }
5476 unlock:
5477 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5478 }
5479
5480 #endif
5481
5482 DEFINE_PER_CPU(struct kernel_stat, kstat);
5483 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5484
5485 EXPORT_PER_CPU_SYMBOL(kstat);
5486 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5487
5488 /*
5489 * The function fair_sched_class.update_curr accesses the struct curr
5490 * and its field curr->exec_start; when called from task_sched_runtime(),
5491 * we observe a high rate of cache misses in practice.
5492 * Prefetching this data results in improved performance.
5493 */
5494 static inline void prefetch_curr_exec_start(struct task_struct *p)
5495 {
5496 #ifdef CONFIG_FAIR_GROUP_SCHED
5497 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5498 #else
5499 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5500 #endif
5501 prefetch(curr);
5502 prefetch(&curr->exec_start);
5503 }
5504
5505 /*
5506 * Return accounted runtime for the task.
5507 * In case the task is currently running, return the runtime plus current's
5508 * pending runtime that have not been accounted yet.
5509 */
5510 unsigned long long task_sched_runtime(struct task_struct *p)
5511 {
5512 struct rq_flags rf;
5513 struct rq *rq;
5514 u64 ns;
5515
5516 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5517 /*
5518 * 64-bit doesn't need locks to atomically read a 64-bit value.
5519 * So we have a optimization chance when the task's delta_exec is 0.
5520 * Reading ->on_cpu is racy, but this is ok.
5521 *
5522 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5523 * If we race with it entering CPU, unaccounted time is 0. This is
5524 * indistinguishable from the read occurring a few cycles earlier.
5525 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5526 * been accounted, so we're correct here as well.
5527 */
5528 if (!p->on_cpu || !task_on_rq_queued(p))
5529 return p->se.sum_exec_runtime;
5530 #endif
5531
5532 rq = task_rq_lock(p, &rf);
5533 /*
5534 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5535 * project cycles that may never be accounted to this
5536 * thread, breaking clock_gettime().
5537 */
5538 if (task_current(rq, p) && task_on_rq_queued(p)) {
5539 prefetch_curr_exec_start(p);
5540 update_rq_clock(rq);
5541 p->sched_class->update_curr(rq);
5542 }
5543 ns = p->se.sum_exec_runtime;
5544 task_rq_unlock(rq, p, &rf);
5545
5546 return ns;
5547 }
5548
5549 #ifdef CONFIG_SCHED_DEBUG
5550 static u64 cpu_resched_latency(struct rq *rq)
5551 {
5552 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5553 u64 resched_latency, now = rq_clock(rq);
5554 static bool warned_once;
5555
5556 if (sysctl_resched_latency_warn_once && warned_once)
5557 return 0;
5558
5559 if (!need_resched() || !latency_warn_ms)
5560 return 0;
5561
5562 if (system_state == SYSTEM_BOOTING)
5563 return 0;
5564
5565 if (!rq->last_seen_need_resched_ns) {
5566 rq->last_seen_need_resched_ns = now;
5567 rq->ticks_without_resched = 0;
5568 return 0;
5569 }
5570
5571 rq->ticks_without_resched++;
5572 resched_latency = now - rq->last_seen_need_resched_ns;
5573 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5574 return 0;
5575
5576 warned_once = true;
5577
5578 return resched_latency;
5579 }
5580
5581 static int __init setup_resched_latency_warn_ms(char *str)
5582 {
5583 long val;
5584
5585 if ((kstrtol(str, 0, &val))) {
5586 pr_warn("Unable to set resched_latency_warn_ms\n");
5587 return 1;
5588 }
5589
5590 sysctl_resched_latency_warn_ms = val;
5591 return 1;
5592 }
5593 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5594 #else
5595 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5596 #endif /* CONFIG_SCHED_DEBUG */
5597
5598 /*
5599 * This function gets called by the timer code, with HZ frequency.
5600 * We call it with interrupts disabled.
5601 */
5602 void scheduler_tick(void)
5603 {
5604 int cpu = smp_processor_id();
5605 struct rq *rq = cpu_rq(cpu);
5606 struct task_struct *curr = rq->curr;
5607 struct rq_flags rf;
5608 unsigned long thermal_pressure;
5609 u64 resched_latency;
5610
5611 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5612 arch_scale_freq_tick();
5613
5614 sched_clock_tick();
5615
5616 rq_lock(rq, &rf);
5617
5618 update_rq_clock(rq);
5619 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5620 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5621 curr->sched_class->task_tick(rq, curr, 0);
5622 if (sched_feat(LATENCY_WARN))
5623 resched_latency = cpu_resched_latency(rq);
5624 calc_global_load_tick(rq);
5625 sched_core_tick(rq);
5626 task_tick_mm_cid(rq, curr);
5627
5628 rq_unlock(rq, &rf);
5629
5630 if (sched_feat(LATENCY_WARN) && resched_latency)
5631 resched_latency_warn(cpu, resched_latency);
5632
5633 perf_event_task_tick();
5634
5635 #ifdef CONFIG_SMP
5636 rq->idle_balance = idle_cpu(cpu);
5637 trigger_load_balance(rq);
5638 #endif
5639 }
5640
5641 #ifdef CONFIG_NO_HZ_FULL
5642
5643 struct tick_work {
5644 int cpu;
5645 atomic_t state;
5646 struct delayed_work work;
5647 };
5648 /* Values for ->state, see diagram below. */
5649 #define TICK_SCHED_REMOTE_OFFLINE 0
5650 #define TICK_SCHED_REMOTE_OFFLINING 1
5651 #define TICK_SCHED_REMOTE_RUNNING 2
5652
5653 /*
5654 * State diagram for ->state:
5655 *
5656 *
5657 * TICK_SCHED_REMOTE_OFFLINE
5658 * | ^
5659 * | |
5660 * | | sched_tick_remote()
5661 * | |
5662 * | |
5663 * +--TICK_SCHED_REMOTE_OFFLINING
5664 * | ^
5665 * | |
5666 * sched_tick_start() | | sched_tick_stop()
5667 * | |
5668 * V |
5669 * TICK_SCHED_REMOTE_RUNNING
5670 *
5671 *
5672 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5673 * and sched_tick_start() are happy to leave the state in RUNNING.
5674 */
5675
5676 static struct tick_work __percpu *tick_work_cpu;
5677
5678 static void sched_tick_remote(struct work_struct *work)
5679 {
5680 struct delayed_work *dwork = to_delayed_work(work);
5681 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5682 int cpu = twork->cpu;
5683 struct rq *rq = cpu_rq(cpu);
5684 struct task_struct *curr;
5685 struct rq_flags rf;
5686 u64 delta;
5687 int os;
5688
5689 /*
5690 * Handle the tick only if it appears the remote CPU is running in full
5691 * dynticks mode. The check is racy by nature, but missing a tick or
5692 * having one too much is no big deal because the scheduler tick updates
5693 * statistics and checks timeslices in a time-independent way, regardless
5694 * of when exactly it is running.
5695 */
5696 if (!tick_nohz_tick_stopped_cpu(cpu))
5697 goto out_requeue;
5698
5699 rq_lock_irq(rq, &rf);
5700 curr = rq->curr;
5701 if (cpu_is_offline(cpu))
5702 goto out_unlock;
5703
5704 update_rq_clock(rq);
5705
5706 if (!is_idle_task(curr)) {
5707 /*
5708 * Make sure the next tick runs within a reasonable
5709 * amount of time.
5710 */
5711 delta = rq_clock_task(rq) - curr->se.exec_start;
5712 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5713 }
5714 curr->sched_class->task_tick(rq, curr, 0);
5715
5716 calc_load_nohz_remote(rq);
5717 out_unlock:
5718 rq_unlock_irq(rq, &rf);
5719 out_requeue:
5720
5721 /*
5722 * Run the remote tick once per second (1Hz). This arbitrary
5723 * frequency is large enough to avoid overload but short enough
5724 * to keep scheduler internal stats reasonably up to date. But
5725 * first update state to reflect hotplug activity if required.
5726 */
5727 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5728 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5729 if (os == TICK_SCHED_REMOTE_RUNNING)
5730 queue_delayed_work(system_unbound_wq, dwork, HZ);
5731 }
5732
5733 static void sched_tick_start(int cpu)
5734 {
5735 int os;
5736 struct tick_work *twork;
5737
5738 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5739 return;
5740
5741 WARN_ON_ONCE(!tick_work_cpu);
5742
5743 twork = per_cpu_ptr(tick_work_cpu, cpu);
5744 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5745 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5746 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5747 twork->cpu = cpu;
5748 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5749 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5750 }
5751 }
5752
5753 #ifdef CONFIG_HOTPLUG_CPU
5754 static void sched_tick_stop(int cpu)
5755 {
5756 struct tick_work *twork;
5757 int os;
5758
5759 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5760 return;
5761
5762 WARN_ON_ONCE(!tick_work_cpu);
5763
5764 twork = per_cpu_ptr(tick_work_cpu, cpu);
5765 /* There cannot be competing actions, but don't rely on stop-machine. */
5766 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5767 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5768 /* Don't cancel, as this would mess up the state machine. */
5769 }
5770 #endif /* CONFIG_HOTPLUG_CPU */
5771
5772 int __init sched_tick_offload_init(void)
5773 {
5774 tick_work_cpu = alloc_percpu(struct tick_work);
5775 BUG_ON(!tick_work_cpu);
5776 return 0;
5777 }
5778
5779 #else /* !CONFIG_NO_HZ_FULL */
5780 static inline void sched_tick_start(int cpu) { }
5781 static inline void sched_tick_stop(int cpu) { }
5782 #endif
5783
5784 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5785 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5786 /*
5787 * If the value passed in is equal to the current preempt count
5788 * then we just disabled preemption. Start timing the latency.
5789 */
5790 static inline void preempt_latency_start(int val)
5791 {
5792 if (preempt_count() == val) {
5793 unsigned long ip = get_lock_parent_ip();
5794 #ifdef CONFIG_DEBUG_PREEMPT
5795 current->preempt_disable_ip = ip;
5796 #endif
5797 trace_preempt_off(CALLER_ADDR0, ip);
5798 }
5799 }
5800
5801 void preempt_count_add(int val)
5802 {
5803 #ifdef CONFIG_DEBUG_PREEMPT
5804 /*
5805 * Underflow?
5806 */
5807 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5808 return;
5809 #endif
5810 __preempt_count_add(val);
5811 #ifdef CONFIG_DEBUG_PREEMPT
5812 /*
5813 * Spinlock count overflowing soon?
5814 */
5815 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5816 PREEMPT_MASK - 10);
5817 #endif
5818 preempt_latency_start(val);
5819 }
5820 EXPORT_SYMBOL(preempt_count_add);
5821 NOKPROBE_SYMBOL(preempt_count_add);
5822
5823 /*
5824 * If the value passed in equals to the current preempt count
5825 * then we just enabled preemption. Stop timing the latency.
5826 */
5827 static inline void preempt_latency_stop(int val)
5828 {
5829 if (preempt_count() == val)
5830 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5831 }
5832
5833 void preempt_count_sub(int val)
5834 {
5835 #ifdef CONFIG_DEBUG_PREEMPT
5836 /*
5837 * Underflow?
5838 */
5839 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5840 return;
5841 /*
5842 * Is the spinlock portion underflowing?
5843 */
5844 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5845 !(preempt_count() & PREEMPT_MASK)))
5846 return;
5847 #endif
5848
5849 preempt_latency_stop(val);
5850 __preempt_count_sub(val);
5851 }
5852 EXPORT_SYMBOL(preempt_count_sub);
5853 NOKPROBE_SYMBOL(preempt_count_sub);
5854
5855 #else
5856 static inline void preempt_latency_start(int val) { }
5857 static inline void preempt_latency_stop(int val) { }
5858 #endif
5859
5860 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5861 {
5862 #ifdef CONFIG_DEBUG_PREEMPT
5863 return p->preempt_disable_ip;
5864 #else
5865 return 0;
5866 #endif
5867 }
5868
5869 /*
5870 * Print scheduling while atomic bug:
5871 */
5872 static noinline void __schedule_bug(struct task_struct *prev)
5873 {
5874 /* Save this before calling printk(), since that will clobber it */
5875 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5876
5877 if (oops_in_progress)
5878 return;
5879
5880 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5881 prev->comm, prev->pid, preempt_count());
5882
5883 debug_show_held_locks(prev);
5884 print_modules();
5885 if (irqs_disabled())
5886 print_irqtrace_events(prev);
5887 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5888 && in_atomic_preempt_off()) {
5889 pr_err("Preemption disabled at:");
5890 print_ip_sym(KERN_ERR, preempt_disable_ip);
5891 }
5892 check_panic_on_warn("scheduling while atomic");
5893
5894 dump_stack();
5895 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5896 }
5897
5898 /*
5899 * Various schedule()-time debugging checks and statistics:
5900 */
5901 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5902 {
5903 #ifdef CONFIG_SCHED_STACK_END_CHECK
5904 if (task_stack_end_corrupted(prev))
5905 panic("corrupted stack end detected inside scheduler\n");
5906
5907 if (task_scs_end_corrupted(prev))
5908 panic("corrupted shadow stack detected inside scheduler\n");
5909 #endif
5910
5911 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5912 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5913 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5914 prev->comm, prev->pid, prev->non_block_count);
5915 dump_stack();
5916 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5917 }
5918 #endif
5919
5920 if (unlikely(in_atomic_preempt_off())) {
5921 __schedule_bug(prev);
5922 preempt_count_set(PREEMPT_DISABLED);
5923 }
5924 rcu_sleep_check();
5925 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5926
5927 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5928
5929 schedstat_inc(this_rq()->sched_count);
5930 }
5931
5932 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5933 struct rq_flags *rf)
5934 {
5935 #ifdef CONFIG_SMP
5936 const struct sched_class *class;
5937 /*
5938 * We must do the balancing pass before put_prev_task(), such
5939 * that when we release the rq->lock the task is in the same
5940 * state as before we took rq->lock.
5941 *
5942 * We can terminate the balance pass as soon as we know there is
5943 * a runnable task of @class priority or higher.
5944 */
5945 for_class_range(class, prev->sched_class, &idle_sched_class) {
5946 if (class->balance(rq, prev, rf))
5947 break;
5948 }
5949 #endif
5950
5951 put_prev_task(rq, prev);
5952 }
5953
5954 /*
5955 * Pick up the highest-prio task:
5956 */
5957 static inline struct task_struct *
5958 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5959 {
5960 const struct sched_class *class;
5961 struct task_struct *p;
5962
5963 /*
5964 * Optimization: we know that if all tasks are in the fair class we can
5965 * call that function directly, but only if the @prev task wasn't of a
5966 * higher scheduling class, because otherwise those lose the
5967 * opportunity to pull in more work from other CPUs.
5968 */
5969 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5970 rq->nr_running == rq->cfs.h_nr_running)) {
5971
5972 p = pick_next_task_fair(rq, prev, rf);
5973 if (unlikely(p == RETRY_TASK))
5974 goto restart;
5975
5976 /* Assume the next prioritized class is idle_sched_class */
5977 if (!p) {
5978 put_prev_task(rq, prev);
5979 p = pick_next_task_idle(rq);
5980 }
5981
5982 return p;
5983 }
5984
5985 restart:
5986 put_prev_task_balance(rq, prev, rf);
5987
5988 for_each_class(class) {
5989 p = class->pick_next_task(rq);
5990 if (p)
5991 return p;
5992 }
5993
5994 BUG(); /* The idle class should always have a runnable task. */
5995 }
5996
5997 #ifdef CONFIG_SCHED_CORE
5998 static inline bool is_task_rq_idle(struct task_struct *t)
5999 {
6000 return (task_rq(t)->idle == t);
6001 }
6002
6003 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6004 {
6005 return is_task_rq_idle(a) || (a->core_cookie == cookie);
6006 }
6007
6008 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6009 {
6010 if (is_task_rq_idle(a) || is_task_rq_idle(b))
6011 return true;
6012
6013 return a->core_cookie == b->core_cookie;
6014 }
6015
6016 static inline struct task_struct *pick_task(struct rq *rq)
6017 {
6018 const struct sched_class *class;
6019 struct task_struct *p;
6020
6021 for_each_class(class) {
6022 p = class->pick_task(rq);
6023 if (p)
6024 return p;
6025 }
6026
6027 BUG(); /* The idle class should always have a runnable task. */
6028 }
6029
6030 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6031
6032 static void queue_core_balance(struct rq *rq);
6033
6034 static struct task_struct *
6035 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6036 {
6037 struct task_struct *next, *p, *max = NULL;
6038 const struct cpumask *smt_mask;
6039 bool fi_before = false;
6040 bool core_clock_updated = (rq == rq->core);
6041 unsigned long cookie;
6042 int i, cpu, occ = 0;
6043 struct rq *rq_i;
6044 bool need_sync;
6045
6046 if (!sched_core_enabled(rq))
6047 return __pick_next_task(rq, prev, rf);
6048
6049 cpu = cpu_of(rq);
6050
6051 /* Stopper task is switching into idle, no need core-wide selection. */
6052 if (cpu_is_offline(cpu)) {
6053 /*
6054 * Reset core_pick so that we don't enter the fastpath when
6055 * coming online. core_pick would already be migrated to
6056 * another cpu during offline.
6057 */
6058 rq->core_pick = NULL;
6059 return __pick_next_task(rq, prev, rf);
6060 }
6061
6062 /*
6063 * If there were no {en,de}queues since we picked (IOW, the task
6064 * pointers are all still valid), and we haven't scheduled the last
6065 * pick yet, do so now.
6066 *
6067 * rq->core_pick can be NULL if no selection was made for a CPU because
6068 * it was either offline or went offline during a sibling's core-wide
6069 * selection. In this case, do a core-wide selection.
6070 */
6071 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6072 rq->core->core_pick_seq != rq->core_sched_seq &&
6073 rq->core_pick) {
6074 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6075
6076 next = rq->core_pick;
6077 if (next != prev) {
6078 put_prev_task(rq, prev);
6079 set_next_task(rq, next);
6080 }
6081
6082 rq->core_pick = NULL;
6083 goto out;
6084 }
6085
6086 put_prev_task_balance(rq, prev, rf);
6087
6088 smt_mask = cpu_smt_mask(cpu);
6089 need_sync = !!rq->core->core_cookie;
6090
6091 /* reset state */
6092 rq->core->core_cookie = 0UL;
6093 if (rq->core->core_forceidle_count) {
6094 if (!core_clock_updated) {
6095 update_rq_clock(rq->core);
6096 core_clock_updated = true;
6097 }
6098 sched_core_account_forceidle(rq);
6099 /* reset after accounting force idle */
6100 rq->core->core_forceidle_start = 0;
6101 rq->core->core_forceidle_count = 0;
6102 rq->core->core_forceidle_occupation = 0;
6103 need_sync = true;
6104 fi_before = true;
6105 }
6106
6107 /*
6108 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6109 *
6110 * @task_seq guards the task state ({en,de}queues)
6111 * @pick_seq is the @task_seq we did a selection on
6112 * @sched_seq is the @pick_seq we scheduled
6113 *
6114 * However, preemptions can cause multiple picks on the same task set.
6115 * 'Fix' this by also increasing @task_seq for every pick.
6116 */
6117 rq->core->core_task_seq++;
6118
6119 /*
6120 * Optimize for common case where this CPU has no cookies
6121 * and there are no cookied tasks running on siblings.
6122 */
6123 if (!need_sync) {
6124 next = pick_task(rq);
6125 if (!next->core_cookie) {
6126 rq->core_pick = NULL;
6127 /*
6128 * For robustness, update the min_vruntime_fi for
6129 * unconstrained picks as well.
6130 */
6131 WARN_ON_ONCE(fi_before);
6132 task_vruntime_update(rq, next, false);
6133 goto out_set_next;
6134 }
6135 }
6136
6137 /*
6138 * For each thread: do the regular task pick and find the max prio task
6139 * amongst them.
6140 *
6141 * Tie-break prio towards the current CPU
6142 */
6143 for_each_cpu_wrap(i, smt_mask, cpu) {
6144 rq_i = cpu_rq(i);
6145
6146 /*
6147 * Current cpu always has its clock updated on entrance to
6148 * pick_next_task(). If the current cpu is not the core,
6149 * the core may also have been updated above.
6150 */
6151 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6152 update_rq_clock(rq_i);
6153
6154 p = rq_i->core_pick = pick_task(rq_i);
6155 if (!max || prio_less(max, p, fi_before))
6156 max = p;
6157 }
6158
6159 cookie = rq->core->core_cookie = max->core_cookie;
6160
6161 /*
6162 * For each thread: try and find a runnable task that matches @max or
6163 * force idle.
6164 */
6165 for_each_cpu(i, smt_mask) {
6166 rq_i = cpu_rq(i);
6167 p = rq_i->core_pick;
6168
6169 if (!cookie_equals(p, cookie)) {
6170 p = NULL;
6171 if (cookie)
6172 p = sched_core_find(rq_i, cookie);
6173 if (!p)
6174 p = idle_sched_class.pick_task(rq_i);
6175 }
6176
6177 rq_i->core_pick = p;
6178
6179 if (p == rq_i->idle) {
6180 if (rq_i->nr_running) {
6181 rq->core->core_forceidle_count++;
6182 if (!fi_before)
6183 rq->core->core_forceidle_seq++;
6184 }
6185 } else {
6186 occ++;
6187 }
6188 }
6189
6190 if (schedstat_enabled() && rq->core->core_forceidle_count) {
6191 rq->core->core_forceidle_start = rq_clock(rq->core);
6192 rq->core->core_forceidle_occupation = occ;
6193 }
6194
6195 rq->core->core_pick_seq = rq->core->core_task_seq;
6196 next = rq->core_pick;
6197 rq->core_sched_seq = rq->core->core_pick_seq;
6198
6199 /* Something should have been selected for current CPU */
6200 WARN_ON_ONCE(!next);
6201
6202 /*
6203 * Reschedule siblings
6204 *
6205 * NOTE: L1TF -- at this point we're no longer running the old task and
6206 * sending an IPI (below) ensures the sibling will no longer be running
6207 * their task. This ensures there is no inter-sibling overlap between
6208 * non-matching user state.
6209 */
6210 for_each_cpu(i, smt_mask) {
6211 rq_i = cpu_rq(i);
6212
6213 /*
6214 * An online sibling might have gone offline before a task
6215 * could be picked for it, or it might be offline but later
6216 * happen to come online, but its too late and nothing was
6217 * picked for it. That's Ok - it will pick tasks for itself,
6218 * so ignore it.
6219 */
6220 if (!rq_i->core_pick)
6221 continue;
6222
6223 /*
6224 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6225 * fi_before fi update?
6226 * 0 0 1
6227 * 0 1 1
6228 * 1 0 1
6229 * 1 1 0
6230 */
6231 if (!(fi_before && rq->core->core_forceidle_count))
6232 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6233
6234 rq_i->core_pick->core_occupation = occ;
6235
6236 if (i == cpu) {
6237 rq_i->core_pick = NULL;
6238 continue;
6239 }
6240
6241 /* Did we break L1TF mitigation requirements? */
6242 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6243
6244 if (rq_i->curr == rq_i->core_pick) {
6245 rq_i->core_pick = NULL;
6246 continue;
6247 }
6248
6249 resched_curr(rq_i);
6250 }
6251
6252 out_set_next:
6253 set_next_task(rq, next);
6254 out:
6255 if (rq->core->core_forceidle_count && next == rq->idle)
6256 queue_core_balance(rq);
6257
6258 return next;
6259 }
6260
6261 static bool try_steal_cookie(int this, int that)
6262 {
6263 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6264 struct task_struct *p;
6265 unsigned long cookie;
6266 bool success = false;
6267
6268 local_irq_disable();
6269 double_rq_lock(dst, src);
6270
6271 cookie = dst->core->core_cookie;
6272 if (!cookie)
6273 goto unlock;
6274
6275 if (dst->curr != dst->idle)
6276 goto unlock;
6277
6278 p = sched_core_find(src, cookie);
6279 if (!p)
6280 goto unlock;
6281
6282 do {
6283 if (p == src->core_pick || p == src->curr)
6284 goto next;
6285
6286 if (!is_cpu_allowed(p, this))
6287 goto next;
6288
6289 if (p->core_occupation > dst->idle->core_occupation)
6290 goto next;
6291 /*
6292 * sched_core_find() and sched_core_next() will ensure that task @p
6293 * is not throttled now, we also need to check whether the runqueue
6294 * of the destination CPU is being throttled.
6295 */
6296 if (sched_task_is_throttled(p, this))
6297 goto next;
6298
6299 deactivate_task(src, p, 0);
6300 set_task_cpu(p, this);
6301 activate_task(dst, p, 0);
6302
6303 resched_curr(dst);
6304
6305 success = true;
6306 break;
6307
6308 next:
6309 p = sched_core_next(p, cookie);
6310 } while (p);
6311
6312 unlock:
6313 double_rq_unlock(dst, src);
6314 local_irq_enable();
6315
6316 return success;
6317 }
6318
6319 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6320 {
6321 int i;
6322
6323 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6324 if (i == cpu)
6325 continue;
6326
6327 if (need_resched())
6328 break;
6329
6330 if (try_steal_cookie(cpu, i))
6331 return true;
6332 }
6333
6334 return false;
6335 }
6336
6337 static void sched_core_balance(struct rq *rq)
6338 {
6339 struct sched_domain *sd;
6340 int cpu = cpu_of(rq);
6341
6342 preempt_disable();
6343 rcu_read_lock();
6344 raw_spin_rq_unlock_irq(rq);
6345 for_each_domain(cpu, sd) {
6346 if (need_resched())
6347 break;
6348
6349 if (steal_cookie_task(cpu, sd))
6350 break;
6351 }
6352 raw_spin_rq_lock_irq(rq);
6353 rcu_read_unlock();
6354 preempt_enable();
6355 }
6356
6357 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6358
6359 static void queue_core_balance(struct rq *rq)
6360 {
6361 if (!sched_core_enabled(rq))
6362 return;
6363
6364 if (!rq->core->core_cookie)
6365 return;
6366
6367 if (!rq->nr_running) /* not forced idle */
6368 return;
6369
6370 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6371 }
6372
6373 static void sched_core_cpu_starting(unsigned int cpu)
6374 {
6375 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6376 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6377 unsigned long flags;
6378 int t;
6379
6380 sched_core_lock(cpu, &flags);
6381
6382 WARN_ON_ONCE(rq->core != rq);
6383
6384 /* if we're the first, we'll be our own leader */
6385 if (cpumask_weight(smt_mask) == 1)
6386 goto unlock;
6387
6388 /* find the leader */
6389 for_each_cpu(t, smt_mask) {
6390 if (t == cpu)
6391 continue;
6392 rq = cpu_rq(t);
6393 if (rq->core == rq) {
6394 core_rq = rq;
6395 break;
6396 }
6397 }
6398
6399 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6400 goto unlock;
6401
6402 /* install and validate core_rq */
6403 for_each_cpu(t, smt_mask) {
6404 rq = cpu_rq(t);
6405
6406 if (t == cpu)
6407 rq->core = core_rq;
6408
6409 WARN_ON_ONCE(rq->core != core_rq);
6410 }
6411
6412 unlock:
6413 sched_core_unlock(cpu, &flags);
6414 }
6415
6416 static void sched_core_cpu_deactivate(unsigned int cpu)
6417 {
6418 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6419 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6420 unsigned long flags;
6421 int t;
6422
6423 sched_core_lock(cpu, &flags);
6424
6425 /* if we're the last man standing, nothing to do */
6426 if (cpumask_weight(smt_mask) == 1) {
6427 WARN_ON_ONCE(rq->core != rq);
6428 goto unlock;
6429 }
6430
6431 /* if we're not the leader, nothing to do */
6432 if (rq->core != rq)
6433 goto unlock;
6434
6435 /* find a new leader */
6436 for_each_cpu(t, smt_mask) {
6437 if (t == cpu)
6438 continue;
6439 core_rq = cpu_rq(t);
6440 break;
6441 }
6442
6443 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6444 goto unlock;
6445
6446 /* copy the shared state to the new leader */
6447 core_rq->core_task_seq = rq->core_task_seq;
6448 core_rq->core_pick_seq = rq->core_pick_seq;
6449 core_rq->core_cookie = rq->core_cookie;
6450 core_rq->core_forceidle_count = rq->core_forceidle_count;
6451 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6452 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6453
6454 /*
6455 * Accounting edge for forced idle is handled in pick_next_task().
6456 * Don't need another one here, since the hotplug thread shouldn't
6457 * have a cookie.
6458 */
6459 core_rq->core_forceidle_start = 0;
6460
6461 /* install new leader */
6462 for_each_cpu(t, smt_mask) {
6463 rq = cpu_rq(t);
6464 rq->core = core_rq;
6465 }
6466
6467 unlock:
6468 sched_core_unlock(cpu, &flags);
6469 }
6470
6471 static inline void sched_core_cpu_dying(unsigned int cpu)
6472 {
6473 struct rq *rq = cpu_rq(cpu);
6474
6475 if (rq->core != rq)
6476 rq->core = rq;
6477 }
6478
6479 #else /* !CONFIG_SCHED_CORE */
6480
6481 static inline void sched_core_cpu_starting(unsigned int cpu) {}
6482 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6483 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6484
6485 static struct task_struct *
6486 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6487 {
6488 return __pick_next_task(rq, prev, rf);
6489 }
6490
6491 #endif /* CONFIG_SCHED_CORE */
6492
6493 /*
6494 * Constants for the sched_mode argument of __schedule().
6495 *
6496 * The mode argument allows RT enabled kernels to differentiate a
6497 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6498 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6499 * optimize the AND operation out and just check for zero.
6500 */
6501 #define SM_NONE 0x0
6502 #define SM_PREEMPT 0x1
6503 #define SM_RTLOCK_WAIT 0x2
6504
6505 #ifndef CONFIG_PREEMPT_RT
6506 # define SM_MASK_PREEMPT (~0U)
6507 #else
6508 # define SM_MASK_PREEMPT SM_PREEMPT
6509 #endif
6510
6511 /*
6512 * __schedule() is the main scheduler function.
6513 *
6514 * The main means of driving the scheduler and thus entering this function are:
6515 *
6516 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6517 *
6518 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6519 * paths. For example, see arch/x86/entry_64.S.
6520 *
6521 * To drive preemption between tasks, the scheduler sets the flag in timer
6522 * interrupt handler scheduler_tick().
6523 *
6524 * 3. Wakeups don't really cause entry into schedule(). They add a
6525 * task to the run-queue and that's it.
6526 *
6527 * Now, if the new task added to the run-queue preempts the current
6528 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6529 * called on the nearest possible occasion:
6530 *
6531 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6532 *
6533 * - in syscall or exception context, at the next outmost
6534 * preempt_enable(). (this might be as soon as the wake_up()'s
6535 * spin_unlock()!)
6536 *
6537 * - in IRQ context, return from interrupt-handler to
6538 * preemptible context
6539 *
6540 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6541 * then at the next:
6542 *
6543 * - cond_resched() call
6544 * - explicit schedule() call
6545 * - return from syscall or exception to user-space
6546 * - return from interrupt-handler to user-space
6547 *
6548 * WARNING: must be called with preemption disabled!
6549 */
6550 static void __sched notrace __schedule(unsigned int sched_mode)
6551 {
6552 struct task_struct *prev, *next;
6553 unsigned long *switch_count;
6554 unsigned long prev_state;
6555 struct rq_flags rf;
6556 struct rq *rq;
6557 int cpu;
6558
6559 cpu = smp_processor_id();
6560 rq = cpu_rq(cpu);
6561 prev = rq->curr;
6562
6563 schedule_debug(prev, !!sched_mode);
6564
6565 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6566 hrtick_clear(rq);
6567
6568 local_irq_disable();
6569 rcu_note_context_switch(!!sched_mode);
6570
6571 /*
6572 * Make sure that signal_pending_state()->signal_pending() below
6573 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6574 * done by the caller to avoid the race with signal_wake_up():
6575 *
6576 * __set_current_state(@state) signal_wake_up()
6577 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6578 * wake_up_state(p, state)
6579 * LOCK rq->lock LOCK p->pi_state
6580 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6581 * if (signal_pending_state()) if (p->state & @state)
6582 *
6583 * Also, the membarrier system call requires a full memory barrier
6584 * after coming from user-space, before storing to rq->curr.
6585 */
6586 rq_lock(rq, &rf);
6587 smp_mb__after_spinlock();
6588
6589 /* Promote REQ to ACT */
6590 rq->clock_update_flags <<= 1;
6591 update_rq_clock(rq);
6592
6593 switch_count = &prev->nivcsw;
6594
6595 /*
6596 * We must load prev->state once (task_struct::state is volatile), such
6597 * that we form a control dependency vs deactivate_task() below.
6598 */
6599 prev_state = READ_ONCE(prev->__state);
6600 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6601 if (signal_pending_state(prev_state, prev)) {
6602 WRITE_ONCE(prev->__state, TASK_RUNNING);
6603 } else {
6604 prev->sched_contributes_to_load =
6605 (prev_state & TASK_UNINTERRUPTIBLE) &&
6606 !(prev_state & TASK_NOLOAD) &&
6607 !(prev_state & TASK_FROZEN);
6608
6609 if (prev->sched_contributes_to_load)
6610 rq->nr_uninterruptible++;
6611
6612 /*
6613 * __schedule() ttwu()
6614 * prev_state = prev->state; if (p->on_rq && ...)
6615 * if (prev_state) goto out;
6616 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6617 * p->state = TASK_WAKING
6618 *
6619 * Where __schedule() and ttwu() have matching control dependencies.
6620 *
6621 * After this, schedule() must not care about p->state any more.
6622 */
6623 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6624
6625 if (prev->in_iowait) {
6626 atomic_inc(&rq->nr_iowait);
6627 delayacct_blkio_start();
6628 }
6629 }
6630 switch_count = &prev->nvcsw;
6631 }
6632
6633 next = pick_next_task(rq, prev, &rf);
6634 clear_tsk_need_resched(prev);
6635 clear_preempt_need_resched();
6636 #ifdef CONFIG_SCHED_DEBUG
6637 rq->last_seen_need_resched_ns = 0;
6638 #endif
6639
6640 if (likely(prev != next)) {
6641 rq->nr_switches++;
6642 /*
6643 * RCU users of rcu_dereference(rq->curr) may not see
6644 * changes to task_struct made by pick_next_task().
6645 */
6646 RCU_INIT_POINTER(rq->curr, next);
6647 /*
6648 * The membarrier system call requires each architecture
6649 * to have a full memory barrier after updating
6650 * rq->curr, before returning to user-space.
6651 *
6652 * Here are the schemes providing that barrier on the
6653 * various architectures:
6654 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6655 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6656 * - finish_lock_switch() for weakly-ordered
6657 * architectures where spin_unlock is a full barrier,
6658 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6659 * is a RELEASE barrier),
6660 */
6661 ++*switch_count;
6662
6663 migrate_disable_switch(rq, prev);
6664 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6665
6666 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6667
6668 /* Also unlocks the rq: */
6669 rq = context_switch(rq, prev, next, &rf);
6670 } else {
6671 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6672
6673 rq_unpin_lock(rq, &rf);
6674 __balance_callbacks(rq);
6675 raw_spin_rq_unlock_irq(rq);
6676 }
6677 }
6678
6679 void __noreturn do_task_dead(void)
6680 {
6681 /* Causes final put_task_struct in finish_task_switch(): */
6682 set_special_state(TASK_DEAD);
6683
6684 /* Tell freezer to ignore us: */
6685 current->flags |= PF_NOFREEZE;
6686
6687 __schedule(SM_NONE);
6688 BUG();
6689
6690 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6691 for (;;)
6692 cpu_relax();
6693 }
6694
6695 static inline void sched_submit_work(struct task_struct *tsk)
6696 {
6697 unsigned int task_flags;
6698
6699 if (task_is_running(tsk))
6700 return;
6701
6702 task_flags = tsk->flags;
6703 /*
6704 * If a worker goes to sleep, notify and ask workqueue whether it
6705 * wants to wake up a task to maintain concurrency.
6706 */
6707 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6708 if (task_flags & PF_WQ_WORKER)
6709 wq_worker_sleeping(tsk);
6710 else
6711 io_wq_worker_sleeping(tsk);
6712 }
6713
6714 /*
6715 * spinlock and rwlock must not flush block requests. This will
6716 * deadlock if the callback attempts to acquire a lock which is
6717 * already acquired.
6718 */
6719 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6720
6721 /*
6722 * If we are going to sleep and we have plugged IO queued,
6723 * make sure to submit it to avoid deadlocks.
6724 */
6725 blk_flush_plug(tsk->plug, true);
6726 }
6727
6728 static void sched_update_worker(struct task_struct *tsk)
6729 {
6730 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6731 if (tsk->flags & PF_WQ_WORKER)
6732 wq_worker_running(tsk);
6733 else
6734 io_wq_worker_running(tsk);
6735 }
6736 }
6737
6738 asmlinkage __visible void __sched schedule(void)
6739 {
6740 struct task_struct *tsk = current;
6741
6742 sched_submit_work(tsk);
6743 do {
6744 preempt_disable();
6745 __schedule(SM_NONE);
6746 sched_preempt_enable_no_resched();
6747 } while (need_resched());
6748 sched_update_worker(tsk);
6749 }
6750 EXPORT_SYMBOL(schedule);
6751
6752 /*
6753 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6754 * state (have scheduled out non-voluntarily) by making sure that all
6755 * tasks have either left the run queue or have gone into user space.
6756 * As idle tasks do not do either, they must not ever be preempted
6757 * (schedule out non-voluntarily).
6758 *
6759 * schedule_idle() is similar to schedule_preempt_disable() except that it
6760 * never enables preemption because it does not call sched_submit_work().
6761 */
6762 void __sched schedule_idle(void)
6763 {
6764 /*
6765 * As this skips calling sched_submit_work(), which the idle task does
6766 * regardless because that function is a nop when the task is in a
6767 * TASK_RUNNING state, make sure this isn't used someplace that the
6768 * current task can be in any other state. Note, idle is always in the
6769 * TASK_RUNNING state.
6770 */
6771 WARN_ON_ONCE(current->__state);
6772 do {
6773 __schedule(SM_NONE);
6774 } while (need_resched());
6775 }
6776
6777 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6778 asmlinkage __visible void __sched schedule_user(void)
6779 {
6780 /*
6781 * If we come here after a random call to set_need_resched(),
6782 * or we have been woken up remotely but the IPI has not yet arrived,
6783 * we haven't yet exited the RCU idle mode. Do it here manually until
6784 * we find a better solution.
6785 *
6786 * NB: There are buggy callers of this function. Ideally we
6787 * should warn if prev_state != CONTEXT_USER, but that will trigger
6788 * too frequently to make sense yet.
6789 */
6790 enum ctx_state prev_state = exception_enter();
6791 schedule();
6792 exception_exit(prev_state);
6793 }
6794 #endif
6795
6796 /**
6797 * schedule_preempt_disabled - called with preemption disabled
6798 *
6799 * Returns with preemption disabled. Note: preempt_count must be 1
6800 */
6801 void __sched schedule_preempt_disabled(void)
6802 {
6803 sched_preempt_enable_no_resched();
6804 schedule();
6805 preempt_disable();
6806 }
6807
6808 #ifdef CONFIG_PREEMPT_RT
6809 void __sched notrace schedule_rtlock(void)
6810 {
6811 do {
6812 preempt_disable();
6813 __schedule(SM_RTLOCK_WAIT);
6814 sched_preempt_enable_no_resched();
6815 } while (need_resched());
6816 }
6817 NOKPROBE_SYMBOL(schedule_rtlock);
6818 #endif
6819
6820 static void __sched notrace preempt_schedule_common(void)
6821 {
6822 do {
6823 /*
6824 * Because the function tracer can trace preempt_count_sub()
6825 * and it also uses preempt_enable/disable_notrace(), if
6826 * NEED_RESCHED is set, the preempt_enable_notrace() called
6827 * by the function tracer will call this function again and
6828 * cause infinite recursion.
6829 *
6830 * Preemption must be disabled here before the function
6831 * tracer can trace. Break up preempt_disable() into two
6832 * calls. One to disable preemption without fear of being
6833 * traced. The other to still record the preemption latency,
6834 * which can also be traced by the function tracer.
6835 */
6836 preempt_disable_notrace();
6837 preempt_latency_start(1);
6838 __schedule(SM_PREEMPT);
6839 preempt_latency_stop(1);
6840 preempt_enable_no_resched_notrace();
6841
6842 /*
6843 * Check again in case we missed a preemption opportunity
6844 * between schedule and now.
6845 */
6846 } while (need_resched());
6847 }
6848
6849 #ifdef CONFIG_PREEMPTION
6850 /*
6851 * This is the entry point to schedule() from in-kernel preemption
6852 * off of preempt_enable.
6853 */
6854 asmlinkage __visible void __sched notrace preempt_schedule(void)
6855 {
6856 /*
6857 * If there is a non-zero preempt_count or interrupts are disabled,
6858 * we do not want to preempt the current task. Just return..
6859 */
6860 if (likely(!preemptible()))
6861 return;
6862 preempt_schedule_common();
6863 }
6864 NOKPROBE_SYMBOL(preempt_schedule);
6865 EXPORT_SYMBOL(preempt_schedule);
6866
6867 #ifdef CONFIG_PREEMPT_DYNAMIC
6868 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6869 #ifndef preempt_schedule_dynamic_enabled
6870 #define preempt_schedule_dynamic_enabled preempt_schedule
6871 #define preempt_schedule_dynamic_disabled NULL
6872 #endif
6873 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6874 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6875 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6876 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6877 void __sched notrace dynamic_preempt_schedule(void)
6878 {
6879 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6880 return;
6881 preempt_schedule();
6882 }
6883 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6884 EXPORT_SYMBOL(dynamic_preempt_schedule);
6885 #endif
6886 #endif
6887
6888 /**
6889 * preempt_schedule_notrace - preempt_schedule called by tracing
6890 *
6891 * The tracing infrastructure uses preempt_enable_notrace to prevent
6892 * recursion and tracing preempt enabling caused by the tracing
6893 * infrastructure itself. But as tracing can happen in areas coming
6894 * from userspace or just about to enter userspace, a preempt enable
6895 * can occur before user_exit() is called. This will cause the scheduler
6896 * to be called when the system is still in usermode.
6897 *
6898 * To prevent this, the preempt_enable_notrace will use this function
6899 * instead of preempt_schedule() to exit user context if needed before
6900 * calling the scheduler.
6901 */
6902 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6903 {
6904 enum ctx_state prev_ctx;
6905
6906 if (likely(!preemptible()))
6907 return;
6908
6909 do {
6910 /*
6911 * Because the function tracer can trace preempt_count_sub()
6912 * and it also uses preempt_enable/disable_notrace(), if
6913 * NEED_RESCHED is set, the preempt_enable_notrace() called
6914 * by the function tracer will call this function again and
6915 * cause infinite recursion.
6916 *
6917 * Preemption must be disabled here before the function
6918 * tracer can trace. Break up preempt_disable() into two
6919 * calls. One to disable preemption without fear of being
6920 * traced. The other to still record the preemption latency,
6921 * which can also be traced by the function tracer.
6922 */
6923 preempt_disable_notrace();
6924 preempt_latency_start(1);
6925 /*
6926 * Needs preempt disabled in case user_exit() is traced
6927 * and the tracer calls preempt_enable_notrace() causing
6928 * an infinite recursion.
6929 */
6930 prev_ctx = exception_enter();
6931 __schedule(SM_PREEMPT);
6932 exception_exit(prev_ctx);
6933
6934 preempt_latency_stop(1);
6935 preempt_enable_no_resched_notrace();
6936 } while (need_resched());
6937 }
6938 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6939
6940 #ifdef CONFIG_PREEMPT_DYNAMIC
6941 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6942 #ifndef preempt_schedule_notrace_dynamic_enabled
6943 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
6944 #define preempt_schedule_notrace_dynamic_disabled NULL
6945 #endif
6946 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6947 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6948 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6949 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6950 void __sched notrace dynamic_preempt_schedule_notrace(void)
6951 {
6952 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6953 return;
6954 preempt_schedule_notrace();
6955 }
6956 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6957 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6958 #endif
6959 #endif
6960
6961 #endif /* CONFIG_PREEMPTION */
6962
6963 /*
6964 * This is the entry point to schedule() from kernel preemption
6965 * off of irq context.
6966 * Note, that this is called and return with irqs disabled. This will
6967 * protect us against recursive calling from irq.
6968 */
6969 asmlinkage __visible void __sched preempt_schedule_irq(void)
6970 {
6971 enum ctx_state prev_state;
6972
6973 /* Catch callers which need to be fixed */
6974 BUG_ON(preempt_count() || !irqs_disabled());
6975
6976 prev_state = exception_enter();
6977
6978 do {
6979 preempt_disable();
6980 local_irq_enable();
6981 __schedule(SM_PREEMPT);
6982 local_irq_disable();
6983 sched_preempt_enable_no_resched();
6984 } while (need_resched());
6985
6986 exception_exit(prev_state);
6987 }
6988
6989 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6990 void *key)
6991 {
6992 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6993 return try_to_wake_up(curr->private, mode, wake_flags);
6994 }
6995 EXPORT_SYMBOL(default_wake_function);
6996
6997 static void __setscheduler_prio(struct task_struct *p, int prio)
6998 {
6999 if (dl_prio(prio))
7000 p->sched_class = &dl_sched_class;
7001 else if (rt_prio(prio))
7002 p->sched_class = &rt_sched_class;
7003 else
7004 p->sched_class = &fair_sched_class;
7005
7006 p->prio = prio;
7007 }
7008
7009 #ifdef CONFIG_RT_MUTEXES
7010
7011 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7012 {
7013 if (pi_task)
7014 prio = min(prio, pi_task->prio);
7015
7016 return prio;
7017 }
7018
7019 static inline int rt_effective_prio(struct task_struct *p, int prio)
7020 {
7021 struct task_struct *pi_task = rt_mutex_get_top_task(p);
7022
7023 return __rt_effective_prio(pi_task, prio);
7024 }
7025
7026 /*
7027 * rt_mutex_setprio - set the current priority of a task
7028 * @p: task to boost
7029 * @pi_task: donor task
7030 *
7031 * This function changes the 'effective' priority of a task. It does
7032 * not touch ->normal_prio like __setscheduler().
7033 *
7034 * Used by the rt_mutex code to implement priority inheritance
7035 * logic. Call site only calls if the priority of the task changed.
7036 */
7037 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7038 {
7039 int prio, oldprio, queued, running, queue_flag =
7040 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7041 const struct sched_class *prev_class;
7042 struct rq_flags rf;
7043 struct rq *rq;
7044
7045 /* XXX used to be waiter->prio, not waiter->task->prio */
7046 prio = __rt_effective_prio(pi_task, p->normal_prio);
7047
7048 /*
7049 * If nothing changed; bail early.
7050 */
7051 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7052 return;
7053
7054 rq = __task_rq_lock(p, &rf);
7055 update_rq_clock(rq);
7056 /*
7057 * Set under pi_lock && rq->lock, such that the value can be used under
7058 * either lock.
7059 *
7060 * Note that there is loads of tricky to make this pointer cache work
7061 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7062 * ensure a task is de-boosted (pi_task is set to NULL) before the
7063 * task is allowed to run again (and can exit). This ensures the pointer
7064 * points to a blocked task -- which guarantees the task is present.
7065 */
7066 p->pi_top_task = pi_task;
7067
7068 /*
7069 * For FIFO/RR we only need to set prio, if that matches we're done.
7070 */
7071 if (prio == p->prio && !dl_prio(prio))
7072 goto out_unlock;
7073
7074 /*
7075 * Idle task boosting is a nono in general. There is one
7076 * exception, when PREEMPT_RT and NOHZ is active:
7077 *
7078 * The idle task calls get_next_timer_interrupt() and holds
7079 * the timer wheel base->lock on the CPU and another CPU wants
7080 * to access the timer (probably to cancel it). We can safely
7081 * ignore the boosting request, as the idle CPU runs this code
7082 * with interrupts disabled and will complete the lock
7083 * protected section without being interrupted. So there is no
7084 * real need to boost.
7085 */
7086 if (unlikely(p == rq->idle)) {
7087 WARN_ON(p != rq->curr);
7088 WARN_ON(p->pi_blocked_on);
7089 goto out_unlock;
7090 }
7091
7092 trace_sched_pi_setprio(p, pi_task);
7093 oldprio = p->prio;
7094
7095 if (oldprio == prio)
7096 queue_flag &= ~DEQUEUE_MOVE;
7097
7098 prev_class = p->sched_class;
7099 queued = task_on_rq_queued(p);
7100 running = task_current(rq, p);
7101 if (queued)
7102 dequeue_task(rq, p, queue_flag);
7103 if (running)
7104 put_prev_task(rq, p);
7105
7106 /*
7107 * Boosting condition are:
7108 * 1. -rt task is running and holds mutex A
7109 * --> -dl task blocks on mutex A
7110 *
7111 * 2. -dl task is running and holds mutex A
7112 * --> -dl task blocks on mutex A and could preempt the
7113 * running task
7114 */
7115 if (dl_prio(prio)) {
7116 if (!dl_prio(p->normal_prio) ||
7117 (pi_task && dl_prio(pi_task->prio) &&
7118 dl_entity_preempt(&pi_task->dl, &p->dl))) {
7119 p->dl.pi_se = pi_task->dl.pi_se;
7120 queue_flag |= ENQUEUE_REPLENISH;
7121 } else {
7122 p->dl.pi_se = &p->dl;
7123 }
7124 } else if (rt_prio(prio)) {
7125 if (dl_prio(oldprio))
7126 p->dl.pi_se = &p->dl;
7127 if (oldprio < prio)
7128 queue_flag |= ENQUEUE_HEAD;
7129 } else {
7130 if (dl_prio(oldprio))
7131 p->dl.pi_se = &p->dl;
7132 if (rt_prio(oldprio))
7133 p->rt.timeout = 0;
7134 }
7135
7136 __setscheduler_prio(p, prio);
7137
7138 if (queued)
7139 enqueue_task(rq, p, queue_flag);
7140 if (running)
7141 set_next_task(rq, p);
7142
7143 check_class_changed(rq, p, prev_class, oldprio);
7144 out_unlock:
7145 /* Avoid rq from going away on us: */
7146 preempt_disable();
7147
7148 rq_unpin_lock(rq, &rf);
7149 __balance_callbacks(rq);
7150 raw_spin_rq_unlock(rq);
7151
7152 preempt_enable();
7153 }
7154 #else
7155 static inline int rt_effective_prio(struct task_struct *p, int prio)
7156 {
7157 return prio;
7158 }
7159 #endif
7160
7161 void set_user_nice(struct task_struct *p, long nice)
7162 {
7163 bool queued, running;
7164 int old_prio;
7165 struct rq_flags rf;
7166 struct rq *rq;
7167
7168 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7169 return;
7170 /*
7171 * We have to be careful, if called from sys_setpriority(),
7172 * the task might be in the middle of scheduling on another CPU.
7173 */
7174 rq = task_rq_lock(p, &rf);
7175 update_rq_clock(rq);
7176
7177 /*
7178 * The RT priorities are set via sched_setscheduler(), but we still
7179 * allow the 'normal' nice value to be set - but as expected
7180 * it won't have any effect on scheduling until the task is
7181 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7182 */
7183 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7184 p->static_prio = NICE_TO_PRIO(nice);
7185 goto out_unlock;
7186 }
7187 queued = task_on_rq_queued(p);
7188 running = task_current(rq, p);
7189 if (queued)
7190 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7191 if (running)
7192 put_prev_task(rq, p);
7193
7194 p->static_prio = NICE_TO_PRIO(nice);
7195 set_load_weight(p, true);
7196 old_prio = p->prio;
7197 p->prio = effective_prio(p);
7198
7199 if (queued)
7200 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7201 if (running)
7202 set_next_task(rq, p);
7203
7204 /*
7205 * If the task increased its priority or is running and
7206 * lowered its priority, then reschedule its CPU:
7207 */
7208 p->sched_class->prio_changed(rq, p, old_prio);
7209
7210 out_unlock:
7211 task_rq_unlock(rq, p, &rf);
7212 }
7213 EXPORT_SYMBOL(set_user_nice);
7214
7215 /*
7216 * is_nice_reduction - check if nice value is an actual reduction
7217 *
7218 * Similar to can_nice() but does not perform a capability check.
7219 *
7220 * @p: task
7221 * @nice: nice value
7222 */
7223 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7224 {
7225 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7226 int nice_rlim = nice_to_rlimit(nice);
7227
7228 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7229 }
7230
7231 /*
7232 * can_nice - check if a task can reduce its nice value
7233 * @p: task
7234 * @nice: nice value
7235 */
7236 int can_nice(const struct task_struct *p, const int nice)
7237 {
7238 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7239 }
7240
7241 #ifdef __ARCH_WANT_SYS_NICE
7242
7243 /*
7244 * sys_nice - change the priority of the current process.
7245 * @increment: priority increment
7246 *
7247 * sys_setpriority is a more generic, but much slower function that
7248 * does similar things.
7249 */
7250 SYSCALL_DEFINE1(nice, int, increment)
7251 {
7252 long nice, retval;
7253
7254 /*
7255 * Setpriority might change our priority at the same moment.
7256 * We don't have to worry. Conceptually one call occurs first
7257 * and we have a single winner.
7258 */
7259 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7260 nice = task_nice(current) + increment;
7261
7262 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7263 if (increment < 0 && !can_nice(current, nice))
7264 return -EPERM;
7265
7266 retval = security_task_setnice(current, nice);
7267 if (retval)
7268 return retval;
7269
7270 set_user_nice(current, nice);
7271 return 0;
7272 }
7273
7274 #endif
7275
7276 /**
7277 * task_prio - return the priority value of a given task.
7278 * @p: the task in question.
7279 *
7280 * Return: The priority value as seen by users in /proc.
7281 *
7282 * sched policy return value kernel prio user prio/nice
7283 *
7284 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
7285 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
7286 * deadline -101 -1 0
7287 */
7288 int task_prio(const struct task_struct *p)
7289 {
7290 return p->prio - MAX_RT_PRIO;
7291 }
7292
7293 /**
7294 * idle_cpu - is a given CPU idle currently?
7295 * @cpu: the processor in question.
7296 *
7297 * Return: 1 if the CPU is currently idle. 0 otherwise.
7298 */
7299 int idle_cpu(int cpu)
7300 {
7301 struct rq *rq = cpu_rq(cpu);
7302
7303 if (rq->curr != rq->idle)
7304 return 0;
7305
7306 if (rq->nr_running)
7307 return 0;
7308
7309 #ifdef CONFIG_SMP
7310 if (rq->ttwu_pending)
7311 return 0;
7312 #endif
7313
7314 return 1;
7315 }
7316
7317 /**
7318 * available_idle_cpu - is a given CPU idle for enqueuing work.
7319 * @cpu: the CPU in question.
7320 *
7321 * Return: 1 if the CPU is currently idle. 0 otherwise.
7322 */
7323 int available_idle_cpu(int cpu)
7324 {
7325 if (!idle_cpu(cpu))
7326 return 0;
7327
7328 if (vcpu_is_preempted(cpu))
7329 return 0;
7330
7331 return 1;
7332 }
7333
7334 /**
7335 * idle_task - return the idle task for a given CPU.
7336 * @cpu: the processor in question.
7337 *
7338 * Return: The idle task for the CPU @cpu.
7339 */
7340 struct task_struct *idle_task(int cpu)
7341 {
7342 return cpu_rq(cpu)->idle;
7343 }
7344
7345 #ifdef CONFIG_SMP
7346 /*
7347 * This function computes an effective utilization for the given CPU, to be
7348 * used for frequency selection given the linear relation: f = u * f_max.
7349 *
7350 * The scheduler tracks the following metrics:
7351 *
7352 * cpu_util_{cfs,rt,dl,irq}()
7353 * cpu_bw_dl()
7354 *
7355 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7356 * synchronized windows and are thus directly comparable.
7357 *
7358 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7359 * which excludes things like IRQ and steal-time. These latter are then accrued
7360 * in the irq utilization.
7361 *
7362 * The DL bandwidth number otoh is not a measured metric but a value computed
7363 * based on the task model parameters and gives the minimal utilization
7364 * required to meet deadlines.
7365 */
7366 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7367 enum cpu_util_type type,
7368 struct task_struct *p)
7369 {
7370 unsigned long dl_util, util, irq, max;
7371 struct rq *rq = cpu_rq(cpu);
7372
7373 max = arch_scale_cpu_capacity(cpu);
7374
7375 if (!uclamp_is_used() &&
7376 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7377 return max;
7378 }
7379
7380 /*
7381 * Early check to see if IRQ/steal time saturates the CPU, can be
7382 * because of inaccuracies in how we track these -- see
7383 * update_irq_load_avg().
7384 */
7385 irq = cpu_util_irq(rq);
7386 if (unlikely(irq >= max))
7387 return max;
7388
7389 /*
7390 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7391 * CFS tasks and we use the same metric to track the effective
7392 * utilization (PELT windows are synchronized) we can directly add them
7393 * to obtain the CPU's actual utilization.
7394 *
7395 * CFS and RT utilization can be boosted or capped, depending on
7396 * utilization clamp constraints requested by currently RUNNABLE
7397 * tasks.
7398 * When there are no CFS RUNNABLE tasks, clamps are released and
7399 * frequency will be gracefully reduced with the utilization decay.
7400 */
7401 util = util_cfs + cpu_util_rt(rq);
7402 if (type == FREQUENCY_UTIL)
7403 util = uclamp_rq_util_with(rq, util, p);
7404
7405 dl_util = cpu_util_dl(rq);
7406
7407 /*
7408 * For frequency selection we do not make cpu_util_dl() a permanent part
7409 * of this sum because we want to use cpu_bw_dl() later on, but we need
7410 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7411 * that we select f_max when there is no idle time.
7412 *
7413 * NOTE: numerical errors or stop class might cause us to not quite hit
7414 * saturation when we should -- something for later.
7415 */
7416 if (util + dl_util >= max)
7417 return max;
7418
7419 /*
7420 * OTOH, for energy computation we need the estimated running time, so
7421 * include util_dl and ignore dl_bw.
7422 */
7423 if (type == ENERGY_UTIL)
7424 util += dl_util;
7425
7426 /*
7427 * There is still idle time; further improve the number by using the
7428 * irq metric. Because IRQ/steal time is hidden from the task clock we
7429 * need to scale the task numbers:
7430 *
7431 * max - irq
7432 * U' = irq + --------- * U
7433 * max
7434 */
7435 util = scale_irq_capacity(util, irq, max);
7436 util += irq;
7437
7438 /*
7439 * Bandwidth required by DEADLINE must always be granted while, for
7440 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7441 * to gracefully reduce the frequency when no tasks show up for longer
7442 * periods of time.
7443 *
7444 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7445 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7446 * an interface. So, we only do the latter for now.
7447 */
7448 if (type == FREQUENCY_UTIL)
7449 util += cpu_bw_dl(rq);
7450
7451 return min(max, util);
7452 }
7453
7454 unsigned long sched_cpu_util(int cpu)
7455 {
7456 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7457 }
7458 #endif /* CONFIG_SMP */
7459
7460 /**
7461 * find_process_by_pid - find a process with a matching PID value.
7462 * @pid: the pid in question.
7463 *
7464 * The task of @pid, if found. %NULL otherwise.
7465 */
7466 static struct task_struct *find_process_by_pid(pid_t pid)
7467 {
7468 return pid ? find_task_by_vpid(pid) : current;
7469 }
7470
7471 /*
7472 * sched_setparam() passes in -1 for its policy, to let the functions
7473 * it calls know not to change it.
7474 */
7475 #define SETPARAM_POLICY -1
7476
7477 static void __setscheduler_params(struct task_struct *p,
7478 const struct sched_attr *attr)
7479 {
7480 int policy = attr->sched_policy;
7481
7482 if (policy == SETPARAM_POLICY)
7483 policy = p->policy;
7484
7485 p->policy = policy;
7486
7487 if (dl_policy(policy))
7488 __setparam_dl(p, attr);
7489 else if (fair_policy(policy))
7490 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7491
7492 /*
7493 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7494 * !rt_policy. Always setting this ensures that things like
7495 * getparam()/getattr() don't report silly values for !rt tasks.
7496 */
7497 p->rt_priority = attr->sched_priority;
7498 p->normal_prio = normal_prio(p);
7499 set_load_weight(p, true);
7500 }
7501
7502 /*
7503 * Check the target process has a UID that matches the current process's:
7504 */
7505 static bool check_same_owner(struct task_struct *p)
7506 {
7507 const struct cred *cred = current_cred(), *pcred;
7508 bool match;
7509
7510 rcu_read_lock();
7511 pcred = __task_cred(p);
7512 match = (uid_eq(cred->euid, pcred->euid) ||
7513 uid_eq(cred->euid, pcred->uid));
7514 rcu_read_unlock();
7515 return match;
7516 }
7517
7518 /*
7519 * Allow unprivileged RT tasks to decrease priority.
7520 * Only issue a capable test if needed and only once to avoid an audit
7521 * event on permitted non-privileged operations:
7522 */
7523 static int user_check_sched_setscheduler(struct task_struct *p,
7524 const struct sched_attr *attr,
7525 int policy, int reset_on_fork)
7526 {
7527 if (fair_policy(policy)) {
7528 if (attr->sched_nice < task_nice(p) &&
7529 !is_nice_reduction(p, attr->sched_nice))
7530 goto req_priv;
7531 }
7532
7533 if (rt_policy(policy)) {
7534 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7535
7536 /* Can't set/change the rt policy: */
7537 if (policy != p->policy && !rlim_rtprio)
7538 goto req_priv;
7539
7540 /* Can't increase priority: */
7541 if (attr->sched_priority > p->rt_priority &&
7542 attr->sched_priority > rlim_rtprio)
7543 goto req_priv;
7544 }
7545
7546 /*
7547 * Can't set/change SCHED_DEADLINE policy at all for now
7548 * (safest behavior); in the future we would like to allow
7549 * unprivileged DL tasks to increase their relative deadline
7550 * or reduce their runtime (both ways reducing utilization)
7551 */
7552 if (dl_policy(policy))
7553 goto req_priv;
7554
7555 /*
7556 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7557 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7558 */
7559 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7560 if (!is_nice_reduction(p, task_nice(p)))
7561 goto req_priv;
7562 }
7563
7564 /* Can't change other user's priorities: */
7565 if (!check_same_owner(p))
7566 goto req_priv;
7567
7568 /* Normal users shall not reset the sched_reset_on_fork flag: */
7569 if (p->sched_reset_on_fork && !reset_on_fork)
7570 goto req_priv;
7571
7572 return 0;
7573
7574 req_priv:
7575 if (!capable(CAP_SYS_NICE))
7576 return -EPERM;
7577
7578 return 0;
7579 }
7580
7581 static int __sched_setscheduler(struct task_struct *p,
7582 const struct sched_attr *attr,
7583 bool user, bool pi)
7584 {
7585 int oldpolicy = -1, policy = attr->sched_policy;
7586 int retval, oldprio, newprio, queued, running;
7587 const struct sched_class *prev_class;
7588 struct balance_callback *head;
7589 struct rq_flags rf;
7590 int reset_on_fork;
7591 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7592 struct rq *rq;
7593 bool cpuset_locked = false;
7594
7595 /* The pi code expects interrupts enabled */
7596 BUG_ON(pi && in_interrupt());
7597 recheck:
7598 /* Double check policy once rq lock held: */
7599 if (policy < 0) {
7600 reset_on_fork = p->sched_reset_on_fork;
7601 policy = oldpolicy = p->policy;
7602 } else {
7603 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7604
7605 if (!valid_policy(policy))
7606 return -EINVAL;
7607 }
7608
7609 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7610 return -EINVAL;
7611
7612 /*
7613 * Valid priorities for SCHED_FIFO and SCHED_RR are
7614 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7615 * SCHED_BATCH and SCHED_IDLE is 0.
7616 */
7617 if (attr->sched_priority > MAX_RT_PRIO-1)
7618 return -EINVAL;
7619 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7620 (rt_policy(policy) != (attr->sched_priority != 0)))
7621 return -EINVAL;
7622
7623 if (user) {
7624 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7625 if (retval)
7626 return retval;
7627
7628 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7629 return -EINVAL;
7630
7631 retval = security_task_setscheduler(p);
7632 if (retval)
7633 return retval;
7634 }
7635
7636 /* Update task specific "requested" clamps */
7637 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7638 retval = uclamp_validate(p, attr);
7639 if (retval)
7640 return retval;
7641 }
7642
7643 /*
7644 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7645 * information.
7646 */
7647 if (dl_policy(policy) || dl_policy(p->policy)) {
7648 cpuset_locked = true;
7649 cpuset_lock();
7650 }
7651
7652 /*
7653 * Make sure no PI-waiters arrive (or leave) while we are
7654 * changing the priority of the task:
7655 *
7656 * To be able to change p->policy safely, the appropriate
7657 * runqueue lock must be held.
7658 */
7659 rq = task_rq_lock(p, &rf);
7660 update_rq_clock(rq);
7661
7662 /*
7663 * Changing the policy of the stop threads its a very bad idea:
7664 */
7665 if (p == rq->stop) {
7666 retval = -EINVAL;
7667 goto unlock;
7668 }
7669
7670 /*
7671 * If not changing anything there's no need to proceed further,
7672 * but store a possible modification of reset_on_fork.
7673 */
7674 if (unlikely(policy == p->policy)) {
7675 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7676 goto change;
7677 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7678 goto change;
7679 if (dl_policy(policy) && dl_param_changed(p, attr))
7680 goto change;
7681 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7682 goto change;
7683
7684 p->sched_reset_on_fork = reset_on_fork;
7685 retval = 0;
7686 goto unlock;
7687 }
7688 change:
7689
7690 if (user) {
7691 #ifdef CONFIG_RT_GROUP_SCHED
7692 /*
7693 * Do not allow realtime tasks into groups that have no runtime
7694 * assigned.
7695 */
7696 if (rt_bandwidth_enabled() && rt_policy(policy) &&
7697 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7698 !task_group_is_autogroup(task_group(p))) {
7699 retval = -EPERM;
7700 goto unlock;
7701 }
7702 #endif
7703 #ifdef CONFIG_SMP
7704 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7705 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7706 cpumask_t *span = rq->rd->span;
7707
7708 /*
7709 * Don't allow tasks with an affinity mask smaller than
7710 * the entire root_domain to become SCHED_DEADLINE. We
7711 * will also fail if there's no bandwidth available.
7712 */
7713 if (!cpumask_subset(span, p->cpus_ptr) ||
7714 rq->rd->dl_bw.bw == 0) {
7715 retval = -EPERM;
7716 goto unlock;
7717 }
7718 }
7719 #endif
7720 }
7721
7722 /* Re-check policy now with rq lock held: */
7723 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7724 policy = oldpolicy = -1;
7725 task_rq_unlock(rq, p, &rf);
7726 if (cpuset_locked)
7727 cpuset_unlock();
7728 goto recheck;
7729 }
7730
7731 /*
7732 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7733 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7734 * is available.
7735 */
7736 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7737 retval = -EBUSY;
7738 goto unlock;
7739 }
7740
7741 p->sched_reset_on_fork = reset_on_fork;
7742 oldprio = p->prio;
7743
7744 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7745 if (pi) {
7746 /*
7747 * Take priority boosted tasks into account. If the new
7748 * effective priority is unchanged, we just store the new
7749 * normal parameters and do not touch the scheduler class and
7750 * the runqueue. This will be done when the task deboost
7751 * itself.
7752 */
7753 newprio = rt_effective_prio(p, newprio);
7754 if (newprio == oldprio)
7755 queue_flags &= ~DEQUEUE_MOVE;
7756 }
7757
7758 queued = task_on_rq_queued(p);
7759 running = task_current(rq, p);
7760 if (queued)
7761 dequeue_task(rq, p, queue_flags);
7762 if (running)
7763 put_prev_task(rq, p);
7764
7765 prev_class = p->sched_class;
7766
7767 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7768 __setscheduler_params(p, attr);
7769 __setscheduler_prio(p, newprio);
7770 }
7771 __setscheduler_uclamp(p, attr);
7772
7773 if (queued) {
7774 /*
7775 * We enqueue to tail when the priority of a task is
7776 * increased (user space view).
7777 */
7778 if (oldprio < p->prio)
7779 queue_flags |= ENQUEUE_HEAD;
7780
7781 enqueue_task(rq, p, queue_flags);
7782 }
7783 if (running)
7784 set_next_task(rq, p);
7785
7786 check_class_changed(rq, p, prev_class, oldprio);
7787
7788 /* Avoid rq from going away on us: */
7789 preempt_disable();
7790 head = splice_balance_callbacks(rq);
7791 task_rq_unlock(rq, p, &rf);
7792
7793 if (pi) {
7794 if (cpuset_locked)
7795 cpuset_unlock();
7796 rt_mutex_adjust_pi(p);
7797 }
7798
7799 /* Run balance callbacks after we've adjusted the PI chain: */
7800 balance_callbacks(rq, head);
7801 preempt_enable();
7802
7803 return 0;
7804
7805 unlock:
7806 task_rq_unlock(rq, p, &rf);
7807 if (cpuset_locked)
7808 cpuset_unlock();
7809 return retval;
7810 }
7811
7812 static int _sched_setscheduler(struct task_struct *p, int policy,
7813 const struct sched_param *param, bool check)
7814 {
7815 struct sched_attr attr = {
7816 .sched_policy = policy,
7817 .sched_priority = param->sched_priority,
7818 .sched_nice = PRIO_TO_NICE(p->static_prio),
7819 };
7820
7821 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7822 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7823 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7824 policy &= ~SCHED_RESET_ON_FORK;
7825 attr.sched_policy = policy;
7826 }
7827
7828 return __sched_setscheduler(p, &attr, check, true);
7829 }
7830 /**
7831 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7832 * @p: the task in question.
7833 * @policy: new policy.
7834 * @param: structure containing the new RT priority.
7835 *
7836 * Use sched_set_fifo(), read its comment.
7837 *
7838 * Return: 0 on success. An error code otherwise.
7839 *
7840 * NOTE that the task may be already dead.
7841 */
7842 int sched_setscheduler(struct task_struct *p, int policy,
7843 const struct sched_param *param)
7844 {
7845 return _sched_setscheduler(p, policy, param, true);
7846 }
7847
7848 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7849 {
7850 return __sched_setscheduler(p, attr, true, true);
7851 }
7852
7853 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7854 {
7855 return __sched_setscheduler(p, attr, false, true);
7856 }
7857 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7858
7859 /**
7860 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7861 * @p: the task in question.
7862 * @policy: new policy.
7863 * @param: structure containing the new RT priority.
7864 *
7865 * Just like sched_setscheduler, only don't bother checking if the
7866 * current context has permission. For example, this is needed in
7867 * stop_machine(): we create temporary high priority worker threads,
7868 * but our caller might not have that capability.
7869 *
7870 * Return: 0 on success. An error code otherwise.
7871 */
7872 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7873 const struct sched_param *param)
7874 {
7875 return _sched_setscheduler(p, policy, param, false);
7876 }
7877
7878 /*
7879 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7880 * incapable of resource management, which is the one thing an OS really should
7881 * be doing.
7882 *
7883 * This is of course the reason it is limited to privileged users only.
7884 *
7885 * Worse still; it is fundamentally impossible to compose static priority
7886 * workloads. You cannot take two correctly working static prio workloads
7887 * and smash them together and still expect them to work.
7888 *
7889 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7890 *
7891 * MAX_RT_PRIO / 2
7892 *
7893 * The administrator _MUST_ configure the system, the kernel simply doesn't
7894 * know enough information to make a sensible choice.
7895 */
7896 void sched_set_fifo(struct task_struct *p)
7897 {
7898 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7899 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7900 }
7901 EXPORT_SYMBOL_GPL(sched_set_fifo);
7902
7903 /*
7904 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7905 */
7906 void sched_set_fifo_low(struct task_struct *p)
7907 {
7908 struct sched_param sp = { .sched_priority = 1 };
7909 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7910 }
7911 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7912
7913 void sched_set_normal(struct task_struct *p, int nice)
7914 {
7915 struct sched_attr attr = {
7916 .sched_policy = SCHED_NORMAL,
7917 .sched_nice = nice,
7918 };
7919 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7920 }
7921 EXPORT_SYMBOL_GPL(sched_set_normal);
7922
7923 static int
7924 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7925 {
7926 struct sched_param lparam;
7927 struct task_struct *p;
7928 int retval;
7929
7930 if (!param || pid < 0)
7931 return -EINVAL;
7932 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7933 return -EFAULT;
7934
7935 rcu_read_lock();
7936 retval = -ESRCH;
7937 p = find_process_by_pid(pid);
7938 if (likely(p))
7939 get_task_struct(p);
7940 rcu_read_unlock();
7941
7942 if (likely(p)) {
7943 retval = sched_setscheduler(p, policy, &lparam);
7944 put_task_struct(p);
7945 }
7946
7947 return retval;
7948 }
7949
7950 /*
7951 * Mimics kernel/events/core.c perf_copy_attr().
7952 */
7953 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7954 {
7955 u32 size;
7956 int ret;
7957
7958 /* Zero the full structure, so that a short copy will be nice: */
7959 memset(attr, 0, sizeof(*attr));
7960
7961 ret = get_user(size, &uattr->size);
7962 if (ret)
7963 return ret;
7964
7965 /* ABI compatibility quirk: */
7966 if (!size)
7967 size = SCHED_ATTR_SIZE_VER0;
7968 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7969 goto err_size;
7970
7971 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7972 if (ret) {
7973 if (ret == -E2BIG)
7974 goto err_size;
7975 return ret;
7976 }
7977
7978 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7979 size < SCHED_ATTR_SIZE_VER1)
7980 return -EINVAL;
7981
7982 /*
7983 * XXX: Do we want to be lenient like existing syscalls; or do we want
7984 * to be strict and return an error on out-of-bounds values?
7985 */
7986 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7987
7988 return 0;
7989
7990 err_size:
7991 put_user(sizeof(*attr), &uattr->size);
7992 return -E2BIG;
7993 }
7994
7995 static void get_params(struct task_struct *p, struct sched_attr *attr)
7996 {
7997 if (task_has_dl_policy(p))
7998 __getparam_dl(p, attr);
7999 else if (task_has_rt_policy(p))
8000 attr->sched_priority = p->rt_priority;
8001 else
8002 attr->sched_nice = task_nice(p);
8003 }
8004
8005 /**
8006 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8007 * @pid: the pid in question.
8008 * @policy: new policy.
8009 * @param: structure containing the new RT priority.
8010 *
8011 * Return: 0 on success. An error code otherwise.
8012 */
8013 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8014 {
8015 if (policy < 0)
8016 return -EINVAL;
8017
8018 return do_sched_setscheduler(pid, policy, param);
8019 }
8020
8021 /**
8022 * sys_sched_setparam - set/change the RT priority of a thread
8023 * @pid: the pid in question.
8024 * @param: structure containing the new RT priority.
8025 *
8026 * Return: 0 on success. An error code otherwise.
8027 */
8028 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8029 {
8030 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8031 }
8032
8033 /**
8034 * sys_sched_setattr - same as above, but with extended sched_attr
8035 * @pid: the pid in question.
8036 * @uattr: structure containing the extended parameters.
8037 * @flags: for future extension.
8038 */
8039 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8040 unsigned int, flags)
8041 {
8042 struct sched_attr attr;
8043 struct task_struct *p;
8044 int retval;
8045
8046 if (!uattr || pid < 0 || flags)
8047 return -EINVAL;
8048
8049 retval = sched_copy_attr(uattr, &attr);
8050 if (retval)
8051 return retval;
8052
8053 if ((int)attr.sched_policy < 0)
8054 return -EINVAL;
8055 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8056 attr.sched_policy = SETPARAM_POLICY;
8057
8058 rcu_read_lock();
8059 retval = -ESRCH;
8060 p = find_process_by_pid(pid);
8061 if (likely(p))
8062 get_task_struct(p);
8063 rcu_read_unlock();
8064
8065 if (likely(p)) {
8066 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8067 get_params(p, &attr);
8068 retval = sched_setattr(p, &attr);
8069 put_task_struct(p);
8070 }
8071
8072 return retval;
8073 }
8074
8075 /**
8076 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8077 * @pid: the pid in question.
8078 *
8079 * Return: On success, the policy of the thread. Otherwise, a negative error
8080 * code.
8081 */
8082 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8083 {
8084 struct task_struct *p;
8085 int retval;
8086
8087 if (pid < 0)
8088 return -EINVAL;
8089
8090 retval = -ESRCH;
8091 rcu_read_lock();
8092 p = find_process_by_pid(pid);
8093 if (p) {
8094 retval = security_task_getscheduler(p);
8095 if (!retval)
8096 retval = p->policy
8097 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
8098 }
8099 rcu_read_unlock();
8100 return retval;
8101 }
8102
8103 /**
8104 * sys_sched_getparam - get the RT priority of a thread
8105 * @pid: the pid in question.
8106 * @param: structure containing the RT priority.
8107 *
8108 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8109 * code.
8110 */
8111 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8112 {
8113 struct sched_param lp = { .sched_priority = 0 };
8114 struct task_struct *p;
8115 int retval;
8116
8117 if (!param || pid < 0)
8118 return -EINVAL;
8119
8120 rcu_read_lock();
8121 p = find_process_by_pid(pid);
8122 retval = -ESRCH;
8123 if (!p)
8124 goto out_unlock;
8125
8126 retval = security_task_getscheduler(p);
8127 if (retval)
8128 goto out_unlock;
8129
8130 if (task_has_rt_policy(p))
8131 lp.sched_priority = p->rt_priority;
8132 rcu_read_unlock();
8133
8134 /*
8135 * This one might sleep, we cannot do it with a spinlock held ...
8136 */
8137 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8138
8139 return retval;
8140
8141 out_unlock:
8142 rcu_read_unlock();
8143 return retval;
8144 }
8145
8146 /*
8147 * Copy the kernel size attribute structure (which might be larger
8148 * than what user-space knows about) to user-space.
8149 *
8150 * Note that all cases are valid: user-space buffer can be larger or
8151 * smaller than the kernel-space buffer. The usual case is that both
8152 * have the same size.
8153 */
8154 static int
8155 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8156 struct sched_attr *kattr,
8157 unsigned int usize)
8158 {
8159 unsigned int ksize = sizeof(*kattr);
8160
8161 if (!access_ok(uattr, usize))
8162 return -EFAULT;
8163
8164 /*
8165 * sched_getattr() ABI forwards and backwards compatibility:
8166 *
8167 * If usize == ksize then we just copy everything to user-space and all is good.
8168 *
8169 * If usize < ksize then we only copy as much as user-space has space for,
8170 * this keeps ABI compatibility as well. We skip the rest.
8171 *
8172 * If usize > ksize then user-space is using a newer version of the ABI,
8173 * which part the kernel doesn't know about. Just ignore it - tooling can
8174 * detect the kernel's knowledge of attributes from the attr->size value
8175 * which is set to ksize in this case.
8176 */
8177 kattr->size = min(usize, ksize);
8178
8179 if (copy_to_user(uattr, kattr, kattr->size))
8180 return -EFAULT;
8181
8182 return 0;
8183 }
8184
8185 /**
8186 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8187 * @pid: the pid in question.
8188 * @uattr: structure containing the extended parameters.
8189 * @usize: sizeof(attr) for fwd/bwd comp.
8190 * @flags: for future extension.
8191 */
8192 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8193 unsigned int, usize, unsigned int, flags)
8194 {
8195 struct sched_attr kattr = { };
8196 struct task_struct *p;
8197 int retval;
8198
8199 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8200 usize < SCHED_ATTR_SIZE_VER0 || flags)
8201 return -EINVAL;
8202
8203 rcu_read_lock();
8204 p = find_process_by_pid(pid);
8205 retval = -ESRCH;
8206 if (!p)
8207 goto out_unlock;
8208
8209 retval = security_task_getscheduler(p);
8210 if (retval)
8211 goto out_unlock;
8212
8213 kattr.sched_policy = p->policy;
8214 if (p->sched_reset_on_fork)
8215 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8216 get_params(p, &kattr);
8217 kattr.sched_flags &= SCHED_FLAG_ALL;
8218
8219 #ifdef CONFIG_UCLAMP_TASK
8220 /*
8221 * This could race with another potential updater, but this is fine
8222 * because it'll correctly read the old or the new value. We don't need
8223 * to guarantee who wins the race as long as it doesn't return garbage.
8224 */
8225 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8226 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8227 #endif
8228
8229 rcu_read_unlock();
8230
8231 return sched_attr_copy_to_user(uattr, &kattr, usize);
8232
8233 out_unlock:
8234 rcu_read_unlock();
8235 return retval;
8236 }
8237
8238 #ifdef CONFIG_SMP
8239 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8240 {
8241 int ret = 0;
8242
8243 /*
8244 * If the task isn't a deadline task or admission control is
8245 * disabled then we don't care about affinity changes.
8246 */
8247 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8248 return 0;
8249
8250 /*
8251 * Since bandwidth control happens on root_domain basis,
8252 * if admission test is enabled, we only admit -deadline
8253 * tasks allowed to run on all the CPUs in the task's
8254 * root_domain.
8255 */
8256 rcu_read_lock();
8257 if (!cpumask_subset(task_rq(p)->rd->span, mask))
8258 ret = -EBUSY;
8259 rcu_read_unlock();
8260 return ret;
8261 }
8262 #endif
8263
8264 static int
8265 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8266 {
8267 int retval;
8268 cpumask_var_t cpus_allowed, new_mask;
8269
8270 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8271 return -ENOMEM;
8272
8273 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8274 retval = -ENOMEM;
8275 goto out_free_cpus_allowed;
8276 }
8277
8278 cpuset_cpus_allowed(p, cpus_allowed);
8279 cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8280
8281 ctx->new_mask = new_mask;
8282 ctx->flags |= SCA_CHECK;
8283
8284 retval = dl_task_check_affinity(p, new_mask);
8285 if (retval)
8286 goto out_free_new_mask;
8287
8288 retval = __set_cpus_allowed_ptr(p, ctx);
8289 if (retval)
8290 goto out_free_new_mask;
8291
8292 cpuset_cpus_allowed(p, cpus_allowed);
8293 if (!cpumask_subset(new_mask, cpus_allowed)) {
8294 /*
8295 * We must have raced with a concurrent cpuset update.
8296 * Just reset the cpumask to the cpuset's cpus_allowed.
8297 */
8298 cpumask_copy(new_mask, cpus_allowed);
8299
8300 /*
8301 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8302 * will restore the previous user_cpus_ptr value.
8303 *
8304 * In the unlikely event a previous user_cpus_ptr exists,
8305 * we need to further restrict the mask to what is allowed
8306 * by that old user_cpus_ptr.
8307 */
8308 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8309 bool empty = !cpumask_and(new_mask, new_mask,
8310 ctx->user_mask);
8311
8312 if (WARN_ON_ONCE(empty))
8313 cpumask_copy(new_mask, cpus_allowed);
8314 }
8315 __set_cpus_allowed_ptr(p, ctx);
8316 retval = -EINVAL;
8317 }
8318
8319 out_free_new_mask:
8320 free_cpumask_var(new_mask);
8321 out_free_cpus_allowed:
8322 free_cpumask_var(cpus_allowed);
8323 return retval;
8324 }
8325
8326 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8327 {
8328 struct affinity_context ac;
8329 struct cpumask *user_mask;
8330 struct task_struct *p;
8331 int retval;
8332
8333 rcu_read_lock();
8334
8335 p = find_process_by_pid(pid);
8336 if (!p) {
8337 rcu_read_unlock();
8338 return -ESRCH;
8339 }
8340
8341 /* Prevent p going away */
8342 get_task_struct(p);
8343 rcu_read_unlock();
8344
8345 if (p->flags & PF_NO_SETAFFINITY) {
8346 retval = -EINVAL;
8347 goto out_put_task;
8348 }
8349
8350 if (!check_same_owner(p)) {
8351 rcu_read_lock();
8352 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8353 rcu_read_unlock();
8354 retval = -EPERM;
8355 goto out_put_task;
8356 }
8357 rcu_read_unlock();
8358 }
8359
8360 retval = security_task_setscheduler(p);
8361 if (retval)
8362 goto out_put_task;
8363
8364 /*
8365 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8366 * alloc_user_cpus_ptr() returns NULL.
8367 */
8368 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8369 if (user_mask) {
8370 cpumask_copy(user_mask, in_mask);
8371 } else if (IS_ENABLED(CONFIG_SMP)) {
8372 retval = -ENOMEM;
8373 goto out_put_task;
8374 }
8375
8376 ac = (struct affinity_context){
8377 .new_mask = in_mask,
8378 .user_mask = user_mask,
8379 .flags = SCA_USER,
8380 };
8381
8382 retval = __sched_setaffinity(p, &ac);
8383 kfree(ac.user_mask);
8384
8385 out_put_task:
8386 put_task_struct(p);
8387 return retval;
8388 }
8389
8390 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8391 struct cpumask *new_mask)
8392 {
8393 if (len < cpumask_size())
8394 cpumask_clear(new_mask);
8395 else if (len > cpumask_size())
8396 len = cpumask_size();
8397
8398 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8399 }
8400
8401 /**
8402 * sys_sched_setaffinity - set the CPU affinity of a process
8403 * @pid: pid of the process
8404 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8405 * @user_mask_ptr: user-space pointer to the new CPU mask
8406 *
8407 * Return: 0 on success. An error code otherwise.
8408 */
8409 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8410 unsigned long __user *, user_mask_ptr)
8411 {
8412 cpumask_var_t new_mask;
8413 int retval;
8414
8415 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8416 return -ENOMEM;
8417
8418 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8419 if (retval == 0)
8420 retval = sched_setaffinity(pid, new_mask);
8421 free_cpumask_var(new_mask);
8422 return retval;
8423 }
8424
8425 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8426 {
8427 struct task_struct *p;
8428 unsigned long flags;
8429 int retval;
8430
8431 rcu_read_lock();
8432
8433 retval = -ESRCH;
8434 p = find_process_by_pid(pid);
8435 if (!p)
8436 goto out_unlock;
8437
8438 retval = security_task_getscheduler(p);
8439 if (retval)
8440 goto out_unlock;
8441
8442 raw_spin_lock_irqsave(&p->pi_lock, flags);
8443 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8444 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8445
8446 out_unlock:
8447 rcu_read_unlock();
8448
8449 return retval;
8450 }
8451
8452 /**
8453 * sys_sched_getaffinity - get the CPU affinity of a process
8454 * @pid: pid of the process
8455 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8456 * @user_mask_ptr: user-space pointer to hold the current CPU mask
8457 *
8458 * Return: size of CPU mask copied to user_mask_ptr on success. An
8459 * error code otherwise.
8460 */
8461 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8462 unsigned long __user *, user_mask_ptr)
8463 {
8464 int ret;
8465 cpumask_var_t mask;
8466
8467 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8468 return -EINVAL;
8469 if (len & (sizeof(unsigned long)-1))
8470 return -EINVAL;
8471
8472 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8473 return -ENOMEM;
8474
8475 ret = sched_getaffinity(pid, mask);
8476 if (ret == 0) {
8477 unsigned int retlen = min(len, cpumask_size());
8478
8479 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8480 ret = -EFAULT;
8481 else
8482 ret = retlen;
8483 }
8484 free_cpumask_var(mask);
8485
8486 return ret;
8487 }
8488
8489 static void do_sched_yield(void)
8490 {
8491 struct rq_flags rf;
8492 struct rq *rq;
8493
8494 rq = this_rq_lock_irq(&rf);
8495
8496 schedstat_inc(rq->yld_count);
8497 current->sched_class->yield_task(rq);
8498
8499 preempt_disable();
8500 rq_unlock_irq(rq, &rf);
8501 sched_preempt_enable_no_resched();
8502
8503 schedule();
8504 }
8505
8506 /**
8507 * sys_sched_yield - yield the current processor to other threads.
8508 *
8509 * This function yields the current CPU to other tasks. If there are no
8510 * other threads running on this CPU then this function will return.
8511 *
8512 * Return: 0.
8513 */
8514 SYSCALL_DEFINE0(sched_yield)
8515 {
8516 do_sched_yield();
8517 return 0;
8518 }
8519
8520 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8521 int __sched __cond_resched(void)
8522 {
8523 if (should_resched(0)) {
8524 preempt_schedule_common();
8525 return 1;
8526 }
8527 /*
8528 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8529 * whether the current CPU is in an RCU read-side critical section,
8530 * so the tick can report quiescent states even for CPUs looping
8531 * in kernel context. In contrast, in non-preemptible kernels,
8532 * RCU readers leave no in-memory hints, which means that CPU-bound
8533 * processes executing in kernel context might never report an
8534 * RCU quiescent state. Therefore, the following code causes
8535 * cond_resched() to report a quiescent state, but only when RCU
8536 * is in urgent need of one.
8537 */
8538 #ifndef CONFIG_PREEMPT_RCU
8539 rcu_all_qs();
8540 #endif
8541 return 0;
8542 }
8543 EXPORT_SYMBOL(__cond_resched);
8544 #endif
8545
8546 #ifdef CONFIG_PREEMPT_DYNAMIC
8547 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8548 #define cond_resched_dynamic_enabled __cond_resched
8549 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
8550 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8551 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8552
8553 #define might_resched_dynamic_enabled __cond_resched
8554 #define might_resched_dynamic_disabled ((void *)&__static_call_return0)
8555 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8556 EXPORT_STATIC_CALL_TRAMP(might_resched);
8557 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8558 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8559 int __sched dynamic_cond_resched(void)
8560 {
8561 klp_sched_try_switch();
8562 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8563 return 0;
8564 return __cond_resched();
8565 }
8566 EXPORT_SYMBOL(dynamic_cond_resched);
8567
8568 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8569 int __sched dynamic_might_resched(void)
8570 {
8571 if (!static_branch_unlikely(&sk_dynamic_might_resched))
8572 return 0;
8573 return __cond_resched();
8574 }
8575 EXPORT_SYMBOL(dynamic_might_resched);
8576 #endif
8577 #endif
8578
8579 /*
8580 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8581 * call schedule, and on return reacquire the lock.
8582 *
8583 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8584 * operations here to prevent schedule() from being called twice (once via
8585 * spin_unlock(), once by hand).
8586 */
8587 int __cond_resched_lock(spinlock_t *lock)
8588 {
8589 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8590 int ret = 0;
8591
8592 lockdep_assert_held(lock);
8593
8594 if (spin_needbreak(lock) || resched) {
8595 spin_unlock(lock);
8596 if (!_cond_resched())
8597 cpu_relax();
8598 ret = 1;
8599 spin_lock(lock);
8600 }
8601 return ret;
8602 }
8603 EXPORT_SYMBOL(__cond_resched_lock);
8604
8605 int __cond_resched_rwlock_read(rwlock_t *lock)
8606 {
8607 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8608 int ret = 0;
8609
8610 lockdep_assert_held_read(lock);
8611
8612 if (rwlock_needbreak(lock) || resched) {
8613 read_unlock(lock);
8614 if (!_cond_resched())
8615 cpu_relax();
8616 ret = 1;
8617 read_lock(lock);
8618 }
8619 return ret;
8620 }
8621 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8622
8623 int __cond_resched_rwlock_write(rwlock_t *lock)
8624 {
8625 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8626 int ret = 0;
8627
8628 lockdep_assert_held_write(lock);
8629
8630 if (rwlock_needbreak(lock) || resched) {
8631 write_unlock(lock);
8632 if (!_cond_resched())
8633 cpu_relax();
8634 ret = 1;
8635 write_lock(lock);
8636 }
8637 return ret;
8638 }
8639 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8640
8641 #ifdef CONFIG_PREEMPT_DYNAMIC
8642
8643 #ifdef CONFIG_GENERIC_ENTRY
8644 #include <linux/entry-common.h>
8645 #endif
8646
8647 /*
8648 * SC:cond_resched
8649 * SC:might_resched
8650 * SC:preempt_schedule
8651 * SC:preempt_schedule_notrace
8652 * SC:irqentry_exit_cond_resched
8653 *
8654 *
8655 * NONE:
8656 * cond_resched <- __cond_resched
8657 * might_resched <- RET0
8658 * preempt_schedule <- NOP
8659 * preempt_schedule_notrace <- NOP
8660 * irqentry_exit_cond_resched <- NOP
8661 *
8662 * VOLUNTARY:
8663 * cond_resched <- __cond_resched
8664 * might_resched <- __cond_resched
8665 * preempt_schedule <- NOP
8666 * preempt_schedule_notrace <- NOP
8667 * irqentry_exit_cond_resched <- NOP
8668 *
8669 * FULL:
8670 * cond_resched <- RET0
8671 * might_resched <- RET0
8672 * preempt_schedule <- preempt_schedule
8673 * preempt_schedule_notrace <- preempt_schedule_notrace
8674 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8675 */
8676
8677 enum {
8678 preempt_dynamic_undefined = -1,
8679 preempt_dynamic_none,
8680 preempt_dynamic_voluntary,
8681 preempt_dynamic_full,
8682 };
8683
8684 int preempt_dynamic_mode = preempt_dynamic_undefined;
8685
8686 int sched_dynamic_mode(const char *str)
8687 {
8688 if (!strcmp(str, "none"))
8689 return preempt_dynamic_none;
8690
8691 if (!strcmp(str, "voluntary"))
8692 return preempt_dynamic_voluntary;
8693
8694 if (!strcmp(str, "full"))
8695 return preempt_dynamic_full;
8696
8697 return -EINVAL;
8698 }
8699
8700 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8701 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
8702 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
8703 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8704 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
8705 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
8706 #else
8707 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8708 #endif
8709
8710 static DEFINE_MUTEX(sched_dynamic_mutex);
8711 static bool klp_override;
8712
8713 static void __sched_dynamic_update(int mode)
8714 {
8715 /*
8716 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8717 * the ZERO state, which is invalid.
8718 */
8719 if (!klp_override)
8720 preempt_dynamic_enable(cond_resched);
8721 preempt_dynamic_enable(might_resched);
8722 preempt_dynamic_enable(preempt_schedule);
8723 preempt_dynamic_enable(preempt_schedule_notrace);
8724 preempt_dynamic_enable(irqentry_exit_cond_resched);
8725
8726 switch (mode) {
8727 case preempt_dynamic_none:
8728 if (!klp_override)
8729 preempt_dynamic_enable(cond_resched);
8730 preempt_dynamic_disable(might_resched);
8731 preempt_dynamic_disable(preempt_schedule);
8732 preempt_dynamic_disable(preempt_schedule_notrace);
8733 preempt_dynamic_disable(irqentry_exit_cond_resched);
8734 if (mode != preempt_dynamic_mode)
8735 pr_info("Dynamic Preempt: none\n");
8736 break;
8737
8738 case preempt_dynamic_voluntary:
8739 if (!klp_override)
8740 preempt_dynamic_enable(cond_resched);
8741 preempt_dynamic_enable(might_resched);
8742 preempt_dynamic_disable(preempt_schedule);
8743 preempt_dynamic_disable(preempt_schedule_notrace);
8744 preempt_dynamic_disable(irqentry_exit_cond_resched);
8745 if (mode != preempt_dynamic_mode)
8746 pr_info("Dynamic Preempt: voluntary\n");
8747 break;
8748
8749 case preempt_dynamic_full:
8750 if (!klp_override)
8751 preempt_dynamic_disable(cond_resched);
8752 preempt_dynamic_disable(might_resched);
8753 preempt_dynamic_enable(preempt_schedule);
8754 preempt_dynamic_enable(preempt_schedule_notrace);
8755 preempt_dynamic_enable(irqentry_exit_cond_resched);
8756 if (mode != preempt_dynamic_mode)
8757 pr_info("Dynamic Preempt: full\n");
8758 break;
8759 }
8760
8761 preempt_dynamic_mode = mode;
8762 }
8763
8764 void sched_dynamic_update(int mode)
8765 {
8766 mutex_lock(&sched_dynamic_mutex);
8767 __sched_dynamic_update(mode);
8768 mutex_unlock(&sched_dynamic_mutex);
8769 }
8770
8771 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8772
8773 static int klp_cond_resched(void)
8774 {
8775 __klp_sched_try_switch();
8776 return __cond_resched();
8777 }
8778
8779 void sched_dynamic_klp_enable(void)
8780 {
8781 mutex_lock(&sched_dynamic_mutex);
8782
8783 klp_override = true;
8784 static_call_update(cond_resched, klp_cond_resched);
8785
8786 mutex_unlock(&sched_dynamic_mutex);
8787 }
8788
8789 void sched_dynamic_klp_disable(void)
8790 {
8791 mutex_lock(&sched_dynamic_mutex);
8792
8793 klp_override = false;
8794 __sched_dynamic_update(preempt_dynamic_mode);
8795
8796 mutex_unlock(&sched_dynamic_mutex);
8797 }
8798
8799 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8800
8801 static int __init setup_preempt_mode(char *str)
8802 {
8803 int mode = sched_dynamic_mode(str);
8804 if (mode < 0) {
8805 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8806 return 0;
8807 }
8808
8809 sched_dynamic_update(mode);
8810 return 1;
8811 }
8812 __setup("preempt=", setup_preempt_mode);
8813
8814 static void __init preempt_dynamic_init(void)
8815 {
8816 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8817 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8818 sched_dynamic_update(preempt_dynamic_none);
8819 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8820 sched_dynamic_update(preempt_dynamic_voluntary);
8821 } else {
8822 /* Default static call setting, nothing to do */
8823 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8824 preempt_dynamic_mode = preempt_dynamic_full;
8825 pr_info("Dynamic Preempt: full\n");
8826 }
8827 }
8828 }
8829
8830 #define PREEMPT_MODEL_ACCESSOR(mode) \
8831 bool preempt_model_##mode(void) \
8832 { \
8833 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8834 return preempt_dynamic_mode == preempt_dynamic_##mode; \
8835 } \
8836 EXPORT_SYMBOL_GPL(preempt_model_##mode)
8837
8838 PREEMPT_MODEL_ACCESSOR(none);
8839 PREEMPT_MODEL_ACCESSOR(voluntary);
8840 PREEMPT_MODEL_ACCESSOR(full);
8841
8842 #else /* !CONFIG_PREEMPT_DYNAMIC */
8843
8844 static inline void preempt_dynamic_init(void) { }
8845
8846 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8847
8848 /**
8849 * yield - yield the current processor to other threads.
8850 *
8851 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8852 *
8853 * The scheduler is at all times free to pick the calling task as the most
8854 * eligible task to run, if removing the yield() call from your code breaks
8855 * it, it's already broken.
8856 *
8857 * Typical broken usage is:
8858 *
8859 * while (!event)
8860 * yield();
8861 *
8862 * where one assumes that yield() will let 'the other' process run that will
8863 * make event true. If the current task is a SCHED_FIFO task that will never
8864 * happen. Never use yield() as a progress guarantee!!
8865 *
8866 * If you want to use yield() to wait for something, use wait_event().
8867 * If you want to use yield() to be 'nice' for others, use cond_resched().
8868 * If you still want to use yield(), do not!
8869 */
8870 void __sched yield(void)
8871 {
8872 set_current_state(TASK_RUNNING);
8873 do_sched_yield();
8874 }
8875 EXPORT_SYMBOL(yield);
8876
8877 /**
8878 * yield_to - yield the current processor to another thread in
8879 * your thread group, or accelerate that thread toward the
8880 * processor it's on.
8881 * @p: target task
8882 * @preempt: whether task preemption is allowed or not
8883 *
8884 * It's the caller's job to ensure that the target task struct
8885 * can't go away on us before we can do any checks.
8886 *
8887 * Return:
8888 * true (>0) if we indeed boosted the target task.
8889 * false (0) if we failed to boost the target.
8890 * -ESRCH if there's no task to yield to.
8891 */
8892 int __sched yield_to(struct task_struct *p, bool preempt)
8893 {
8894 struct task_struct *curr = current;
8895 struct rq *rq, *p_rq;
8896 unsigned long flags;
8897 int yielded = 0;
8898
8899 local_irq_save(flags);
8900 rq = this_rq();
8901
8902 again:
8903 p_rq = task_rq(p);
8904 /*
8905 * If we're the only runnable task on the rq and target rq also
8906 * has only one task, there's absolutely no point in yielding.
8907 */
8908 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8909 yielded = -ESRCH;
8910 goto out_irq;
8911 }
8912
8913 double_rq_lock(rq, p_rq);
8914 if (task_rq(p) != p_rq) {
8915 double_rq_unlock(rq, p_rq);
8916 goto again;
8917 }
8918
8919 if (!curr->sched_class->yield_to_task)
8920 goto out_unlock;
8921
8922 if (curr->sched_class != p->sched_class)
8923 goto out_unlock;
8924
8925 if (task_on_cpu(p_rq, p) || !task_is_running(p))
8926 goto out_unlock;
8927
8928 yielded = curr->sched_class->yield_to_task(rq, p);
8929 if (yielded) {
8930 schedstat_inc(rq->yld_count);
8931 /*
8932 * Make p's CPU reschedule; pick_next_entity takes care of
8933 * fairness.
8934 */
8935 if (preempt && rq != p_rq)
8936 resched_curr(p_rq);
8937 }
8938
8939 out_unlock:
8940 double_rq_unlock(rq, p_rq);
8941 out_irq:
8942 local_irq_restore(flags);
8943
8944 if (yielded > 0)
8945 schedule();
8946
8947 return yielded;
8948 }
8949 EXPORT_SYMBOL_GPL(yield_to);
8950
8951 int io_schedule_prepare(void)
8952 {
8953 int old_iowait = current->in_iowait;
8954
8955 current->in_iowait = 1;
8956 blk_flush_plug(current->plug, true);
8957 return old_iowait;
8958 }
8959
8960 void io_schedule_finish(int token)
8961 {
8962 current->in_iowait = token;
8963 }
8964
8965 /*
8966 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8967 * that process accounting knows that this is a task in IO wait state.
8968 */
8969 long __sched io_schedule_timeout(long timeout)
8970 {
8971 int token;
8972 long ret;
8973
8974 token = io_schedule_prepare();
8975 ret = schedule_timeout(timeout);
8976 io_schedule_finish(token);
8977
8978 return ret;
8979 }
8980 EXPORT_SYMBOL(io_schedule_timeout);
8981
8982 void __sched io_schedule(void)
8983 {
8984 int token;
8985
8986 token = io_schedule_prepare();
8987 schedule();
8988 io_schedule_finish(token);
8989 }
8990 EXPORT_SYMBOL(io_schedule);
8991
8992 /**
8993 * sys_sched_get_priority_max - return maximum RT priority.
8994 * @policy: scheduling class.
8995 *
8996 * Return: On success, this syscall returns the maximum
8997 * rt_priority that can be used by a given scheduling class.
8998 * On failure, a negative error code is returned.
8999 */
9000 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9001 {
9002 int ret = -EINVAL;
9003
9004 switch (policy) {
9005 case SCHED_FIFO:
9006 case SCHED_RR:
9007 ret = MAX_RT_PRIO-1;
9008 break;
9009 case SCHED_DEADLINE:
9010 case SCHED_NORMAL:
9011 case SCHED_BATCH:
9012 case SCHED_IDLE:
9013 ret = 0;
9014 break;
9015 }
9016 return ret;
9017 }
9018
9019 /**
9020 * sys_sched_get_priority_min - return minimum RT priority.
9021 * @policy: scheduling class.
9022 *
9023 * Return: On success, this syscall returns the minimum
9024 * rt_priority that can be used by a given scheduling class.
9025 * On failure, a negative error code is returned.
9026 */
9027 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9028 {
9029 int ret = -EINVAL;
9030
9031 switch (policy) {
9032 case SCHED_FIFO:
9033 case SCHED_RR:
9034 ret = 1;
9035 break;
9036 case SCHED_DEADLINE:
9037 case SCHED_NORMAL:
9038 case SCHED_BATCH:
9039 case SCHED_IDLE:
9040 ret = 0;
9041 }
9042 return ret;
9043 }
9044
9045 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9046 {
9047 struct task_struct *p;
9048 unsigned int time_slice;
9049 struct rq_flags rf;
9050 struct rq *rq;
9051 int retval;
9052
9053 if (pid < 0)
9054 return -EINVAL;
9055
9056 retval = -ESRCH;
9057 rcu_read_lock();
9058 p = find_process_by_pid(pid);
9059 if (!p)
9060 goto out_unlock;
9061
9062 retval = security_task_getscheduler(p);
9063 if (retval)
9064 goto out_unlock;
9065
9066 rq = task_rq_lock(p, &rf);
9067 time_slice = 0;
9068 if (p->sched_class->get_rr_interval)
9069 time_slice = p->sched_class->get_rr_interval(rq, p);
9070 task_rq_unlock(rq, p, &rf);
9071
9072 rcu_read_unlock();
9073 jiffies_to_timespec64(time_slice, t);
9074 return 0;
9075
9076 out_unlock:
9077 rcu_read_unlock();
9078 return retval;
9079 }
9080
9081 /**
9082 * sys_sched_rr_get_interval - return the default timeslice of a process.
9083 * @pid: pid of the process.
9084 * @interval: userspace pointer to the timeslice value.
9085 *
9086 * this syscall writes the default timeslice value of a given process
9087 * into the user-space timespec buffer. A value of '0' means infinity.
9088 *
9089 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9090 * an error code.
9091 */
9092 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9093 struct __kernel_timespec __user *, interval)
9094 {
9095 struct timespec64 t;
9096 int retval = sched_rr_get_interval(pid, &t);
9097
9098 if (retval == 0)
9099 retval = put_timespec64(&t, interval);
9100
9101 return retval;
9102 }
9103
9104 #ifdef CONFIG_COMPAT_32BIT_TIME
9105 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9106 struct old_timespec32 __user *, interval)
9107 {
9108 struct timespec64 t;
9109 int retval = sched_rr_get_interval(pid, &t);
9110
9111 if (retval == 0)
9112 retval = put_old_timespec32(&t, interval);
9113 return retval;
9114 }
9115 #endif
9116
9117 void sched_show_task(struct task_struct *p)
9118 {
9119 unsigned long free = 0;
9120 int ppid;
9121
9122 if (!try_get_task_stack(p))
9123 return;
9124
9125 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9126
9127 if (task_is_running(p))
9128 pr_cont(" running task ");
9129 #ifdef CONFIG_DEBUG_STACK_USAGE
9130 free = stack_not_used(p);
9131 #endif
9132 ppid = 0;
9133 rcu_read_lock();
9134 if (pid_alive(p))
9135 ppid = task_pid_nr(rcu_dereference(p->real_parent));
9136 rcu_read_unlock();
9137 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
9138 free, task_pid_nr(p), ppid,
9139 read_task_thread_flags(p));
9140
9141 print_worker_info(KERN_INFO, p);
9142 print_stop_info(KERN_INFO, p);
9143 show_stack(p, NULL, KERN_INFO);
9144 put_task_stack(p);
9145 }
9146 EXPORT_SYMBOL_GPL(sched_show_task);
9147
9148 static inline bool
9149 state_filter_match(unsigned long state_filter, struct task_struct *p)
9150 {
9151 unsigned int state = READ_ONCE(p->__state);
9152
9153 /* no filter, everything matches */
9154 if (!state_filter)
9155 return true;
9156
9157 /* filter, but doesn't match */
9158 if (!(state & state_filter))
9159 return false;
9160
9161 /*
9162 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9163 * TASK_KILLABLE).
9164 */
9165 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9166 return false;
9167
9168 return true;
9169 }
9170
9171
9172 void show_state_filter(unsigned int state_filter)
9173 {
9174 struct task_struct *g, *p;
9175
9176 rcu_read_lock();
9177 for_each_process_thread(g, p) {
9178 /*
9179 * reset the NMI-timeout, listing all files on a slow
9180 * console might take a lot of time:
9181 * Also, reset softlockup watchdogs on all CPUs, because
9182 * another CPU might be blocked waiting for us to process
9183 * an IPI.
9184 */
9185 touch_nmi_watchdog();
9186 touch_all_softlockup_watchdogs();
9187 if (state_filter_match(state_filter, p))
9188 sched_show_task(p);
9189 }
9190
9191 #ifdef CONFIG_SCHED_DEBUG
9192 if (!state_filter)
9193 sysrq_sched_debug_show();
9194 #endif
9195 rcu_read_unlock();
9196 /*
9197 * Only show locks if all tasks are dumped:
9198 */
9199 if (!state_filter)
9200 debug_show_all_locks();
9201 }
9202
9203 /**
9204 * init_idle - set up an idle thread for a given CPU
9205 * @idle: task in question
9206 * @cpu: CPU the idle task belongs to
9207 *
9208 * NOTE: this function does not set the idle thread's NEED_RESCHED
9209 * flag, to make booting more robust.
9210 */
9211 void __init init_idle(struct task_struct *idle, int cpu)
9212 {
9213 #ifdef CONFIG_SMP
9214 struct affinity_context ac = (struct affinity_context) {
9215 .new_mask = cpumask_of(cpu),
9216 .flags = 0,
9217 };
9218 #endif
9219 struct rq *rq = cpu_rq(cpu);
9220 unsigned long flags;
9221
9222 __sched_fork(0, idle);
9223
9224 raw_spin_lock_irqsave(&idle->pi_lock, flags);
9225 raw_spin_rq_lock(rq);
9226
9227 idle->__state = TASK_RUNNING;
9228 idle->se.exec_start = sched_clock();
9229 /*
9230 * PF_KTHREAD should already be set at this point; regardless, make it
9231 * look like a proper per-CPU kthread.
9232 */
9233 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
9234 kthread_set_per_cpu(idle, cpu);
9235
9236 #ifdef CONFIG_SMP
9237 /*
9238 * It's possible that init_idle() gets called multiple times on a task,
9239 * in that case do_set_cpus_allowed() will not do the right thing.
9240 *
9241 * And since this is boot we can forgo the serialization.
9242 */
9243 set_cpus_allowed_common(idle, &ac);
9244 #endif
9245 /*
9246 * We're having a chicken and egg problem, even though we are
9247 * holding rq->lock, the CPU isn't yet set to this CPU so the
9248 * lockdep check in task_group() will fail.
9249 *
9250 * Similar case to sched_fork(). / Alternatively we could
9251 * use task_rq_lock() here and obtain the other rq->lock.
9252 *
9253 * Silence PROVE_RCU
9254 */
9255 rcu_read_lock();
9256 __set_task_cpu(idle, cpu);
9257 rcu_read_unlock();
9258
9259 rq->idle = idle;
9260 rcu_assign_pointer(rq->curr, idle);
9261 idle->on_rq = TASK_ON_RQ_QUEUED;
9262 #ifdef CONFIG_SMP
9263 idle->on_cpu = 1;
9264 #endif
9265 raw_spin_rq_unlock(rq);
9266 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9267
9268 /* Set the preempt count _outside_ the spinlocks! */
9269 init_idle_preempt_count(idle, cpu);
9270
9271 /*
9272 * The idle tasks have their own, simple scheduling class:
9273 */
9274 idle->sched_class = &idle_sched_class;
9275 ftrace_graph_init_idle_task(idle, cpu);
9276 vtime_init_idle(idle, cpu);
9277 #ifdef CONFIG_SMP
9278 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9279 #endif
9280 }
9281
9282 #ifdef CONFIG_SMP
9283
9284 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9285 const struct cpumask *trial)
9286 {
9287 int ret = 1;
9288
9289 if (cpumask_empty(cur))
9290 return ret;
9291
9292 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9293
9294 return ret;
9295 }
9296
9297 int task_can_attach(struct task_struct *p)
9298 {
9299 int ret = 0;
9300
9301 /*
9302 * Kthreads which disallow setaffinity shouldn't be moved
9303 * to a new cpuset; we don't want to change their CPU
9304 * affinity and isolating such threads by their set of
9305 * allowed nodes is unnecessary. Thus, cpusets are not
9306 * applicable for such threads. This prevents checking for
9307 * success of set_cpus_allowed_ptr() on all attached tasks
9308 * before cpus_mask may be changed.
9309 */
9310 if (p->flags & PF_NO_SETAFFINITY)
9311 ret = -EINVAL;
9312
9313 return ret;
9314 }
9315
9316 bool sched_smp_initialized __read_mostly;
9317
9318 #ifdef CONFIG_NUMA_BALANCING
9319 /* Migrate current task p to target_cpu */
9320 int migrate_task_to(struct task_struct *p, int target_cpu)
9321 {
9322 struct migration_arg arg = { p, target_cpu };
9323 int curr_cpu = task_cpu(p);
9324
9325 if (curr_cpu == target_cpu)
9326 return 0;
9327
9328 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9329 return -EINVAL;
9330
9331 /* TODO: This is not properly updating schedstats */
9332
9333 trace_sched_move_numa(p, curr_cpu, target_cpu);
9334 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9335 }
9336
9337 /*
9338 * Requeue a task on a given node and accurately track the number of NUMA
9339 * tasks on the runqueues
9340 */
9341 void sched_setnuma(struct task_struct *p, int nid)
9342 {
9343 bool queued, running;
9344 struct rq_flags rf;
9345 struct rq *rq;
9346
9347 rq = task_rq_lock(p, &rf);
9348 queued = task_on_rq_queued(p);
9349 running = task_current(rq, p);
9350
9351 if (queued)
9352 dequeue_task(rq, p, DEQUEUE_SAVE);
9353 if (running)
9354 put_prev_task(rq, p);
9355
9356 p->numa_preferred_nid = nid;
9357
9358 if (queued)
9359 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9360 if (running)
9361 set_next_task(rq, p);
9362 task_rq_unlock(rq, p, &rf);
9363 }
9364 #endif /* CONFIG_NUMA_BALANCING */
9365
9366 #ifdef CONFIG_HOTPLUG_CPU
9367 /*
9368 * Ensure that the idle task is using init_mm right before its CPU goes
9369 * offline.
9370 */
9371 void idle_task_exit(void)
9372 {
9373 struct mm_struct *mm = current->active_mm;
9374
9375 BUG_ON(cpu_online(smp_processor_id()));
9376 BUG_ON(current != this_rq()->idle);
9377
9378 if (mm != &init_mm) {
9379 switch_mm(mm, &init_mm, current);
9380 finish_arch_post_lock_switch();
9381 }
9382
9383 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9384 }
9385
9386 static int __balance_push_cpu_stop(void *arg)
9387 {
9388 struct task_struct *p = arg;
9389 struct rq *rq = this_rq();
9390 struct rq_flags rf;
9391 int cpu;
9392
9393 raw_spin_lock_irq(&p->pi_lock);
9394 rq_lock(rq, &rf);
9395
9396 update_rq_clock(rq);
9397
9398 if (task_rq(p) == rq && task_on_rq_queued(p)) {
9399 cpu = select_fallback_rq(rq->cpu, p);
9400 rq = __migrate_task(rq, &rf, p, cpu);
9401 }
9402
9403 rq_unlock(rq, &rf);
9404 raw_spin_unlock_irq(&p->pi_lock);
9405
9406 put_task_struct(p);
9407
9408 return 0;
9409 }
9410
9411 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9412
9413 /*
9414 * Ensure we only run per-cpu kthreads once the CPU goes !active.
9415 *
9416 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9417 * effective when the hotplug motion is down.
9418 */
9419 static void balance_push(struct rq *rq)
9420 {
9421 struct task_struct *push_task = rq->curr;
9422
9423 lockdep_assert_rq_held(rq);
9424
9425 /*
9426 * Ensure the thing is persistent until balance_push_set(.on = false);
9427 */
9428 rq->balance_callback = &balance_push_callback;
9429
9430 /*
9431 * Only active while going offline and when invoked on the outgoing
9432 * CPU.
9433 */
9434 if (!cpu_dying(rq->cpu) || rq != this_rq())
9435 return;
9436
9437 /*
9438 * Both the cpu-hotplug and stop task are in this case and are
9439 * required to complete the hotplug process.
9440 */
9441 if (kthread_is_per_cpu(push_task) ||
9442 is_migration_disabled(push_task)) {
9443
9444 /*
9445 * If this is the idle task on the outgoing CPU try to wake
9446 * up the hotplug control thread which might wait for the
9447 * last task to vanish. The rcuwait_active() check is
9448 * accurate here because the waiter is pinned on this CPU
9449 * and can't obviously be running in parallel.
9450 *
9451 * On RT kernels this also has to check whether there are
9452 * pinned and scheduled out tasks on the runqueue. They
9453 * need to leave the migrate disabled section first.
9454 */
9455 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9456 rcuwait_active(&rq->hotplug_wait)) {
9457 raw_spin_rq_unlock(rq);
9458 rcuwait_wake_up(&rq->hotplug_wait);
9459 raw_spin_rq_lock(rq);
9460 }
9461 return;
9462 }
9463
9464 get_task_struct(push_task);
9465 /*
9466 * Temporarily drop rq->lock such that we can wake-up the stop task.
9467 * Both preemption and IRQs are still disabled.
9468 */
9469 raw_spin_rq_unlock(rq);
9470 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9471 this_cpu_ptr(&push_work));
9472 /*
9473 * At this point need_resched() is true and we'll take the loop in
9474 * schedule(). The next pick is obviously going to be the stop task
9475 * which kthread_is_per_cpu() and will push this task away.
9476 */
9477 raw_spin_rq_lock(rq);
9478 }
9479
9480 static void balance_push_set(int cpu, bool on)
9481 {
9482 struct rq *rq = cpu_rq(cpu);
9483 struct rq_flags rf;
9484
9485 rq_lock_irqsave(rq, &rf);
9486 if (on) {
9487 WARN_ON_ONCE(rq->balance_callback);
9488 rq->balance_callback = &balance_push_callback;
9489 } else if (rq->balance_callback == &balance_push_callback) {
9490 rq->balance_callback = NULL;
9491 }
9492 rq_unlock_irqrestore(rq, &rf);
9493 }
9494
9495 /*
9496 * Invoked from a CPUs hotplug control thread after the CPU has been marked
9497 * inactive. All tasks which are not per CPU kernel threads are either
9498 * pushed off this CPU now via balance_push() or placed on a different CPU
9499 * during wakeup. Wait until the CPU is quiescent.
9500 */
9501 static void balance_hotplug_wait(void)
9502 {
9503 struct rq *rq = this_rq();
9504
9505 rcuwait_wait_event(&rq->hotplug_wait,
9506 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9507 TASK_UNINTERRUPTIBLE);
9508 }
9509
9510 #else
9511
9512 static inline void balance_push(struct rq *rq)
9513 {
9514 }
9515
9516 static inline void balance_push_set(int cpu, bool on)
9517 {
9518 }
9519
9520 static inline void balance_hotplug_wait(void)
9521 {
9522 }
9523
9524 #endif /* CONFIG_HOTPLUG_CPU */
9525
9526 void set_rq_online(struct rq *rq)
9527 {
9528 if (!rq->online) {
9529 const struct sched_class *class;
9530
9531 cpumask_set_cpu(rq->cpu, rq->rd->online);
9532 rq->online = 1;
9533
9534 for_each_class(class) {
9535 if (class->rq_online)
9536 class->rq_online(rq);
9537 }
9538 }
9539 }
9540
9541 void set_rq_offline(struct rq *rq)
9542 {
9543 if (rq->online) {
9544 const struct sched_class *class;
9545
9546 for_each_class(class) {
9547 if (class->rq_offline)
9548 class->rq_offline(rq);
9549 }
9550
9551 cpumask_clear_cpu(rq->cpu, rq->rd->online);
9552 rq->online = 0;
9553 }
9554 }
9555
9556 /*
9557 * used to mark begin/end of suspend/resume:
9558 */
9559 static int num_cpus_frozen;
9560
9561 /*
9562 * Update cpusets according to cpu_active mask. If cpusets are
9563 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9564 * around partition_sched_domains().
9565 *
9566 * If we come here as part of a suspend/resume, don't touch cpusets because we
9567 * want to restore it back to its original state upon resume anyway.
9568 */
9569 static void cpuset_cpu_active(void)
9570 {
9571 if (cpuhp_tasks_frozen) {
9572 /*
9573 * num_cpus_frozen tracks how many CPUs are involved in suspend
9574 * resume sequence. As long as this is not the last online
9575 * operation in the resume sequence, just build a single sched
9576 * domain, ignoring cpusets.
9577 */
9578 partition_sched_domains(1, NULL, NULL);
9579 if (--num_cpus_frozen)
9580 return;
9581 /*
9582 * This is the last CPU online operation. So fall through and
9583 * restore the original sched domains by considering the
9584 * cpuset configurations.
9585 */
9586 cpuset_force_rebuild();
9587 }
9588 cpuset_update_active_cpus();
9589 }
9590
9591 static int cpuset_cpu_inactive(unsigned int cpu)
9592 {
9593 if (!cpuhp_tasks_frozen) {
9594 int ret = dl_bw_check_overflow(cpu);
9595
9596 if (ret)
9597 return ret;
9598 cpuset_update_active_cpus();
9599 } else {
9600 num_cpus_frozen++;
9601 partition_sched_domains(1, NULL, NULL);
9602 }
9603 return 0;
9604 }
9605
9606 int sched_cpu_activate(unsigned int cpu)
9607 {
9608 struct rq *rq = cpu_rq(cpu);
9609 struct rq_flags rf;
9610
9611 /*
9612 * Clear the balance_push callback and prepare to schedule
9613 * regular tasks.
9614 */
9615 balance_push_set(cpu, false);
9616
9617 #ifdef CONFIG_SCHED_SMT
9618 /*
9619 * When going up, increment the number of cores with SMT present.
9620 */
9621 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9622 static_branch_inc_cpuslocked(&sched_smt_present);
9623 #endif
9624 set_cpu_active(cpu, true);
9625
9626 if (sched_smp_initialized) {
9627 sched_update_numa(cpu, true);
9628 sched_domains_numa_masks_set(cpu);
9629 cpuset_cpu_active();
9630 }
9631
9632 /*
9633 * Put the rq online, if not already. This happens:
9634 *
9635 * 1) In the early boot process, because we build the real domains
9636 * after all CPUs have been brought up.
9637 *
9638 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9639 * domains.
9640 */
9641 rq_lock_irqsave(rq, &rf);
9642 if (rq->rd) {
9643 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9644 set_rq_online(rq);
9645 }
9646 rq_unlock_irqrestore(rq, &rf);
9647
9648 return 0;
9649 }
9650
9651 int sched_cpu_deactivate(unsigned int cpu)
9652 {
9653 struct rq *rq = cpu_rq(cpu);
9654 struct rq_flags rf;
9655 int ret;
9656
9657 /*
9658 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9659 * load balancing when not active
9660 */
9661 nohz_balance_exit_idle(rq);
9662
9663 set_cpu_active(cpu, false);
9664
9665 /*
9666 * From this point forward, this CPU will refuse to run any task that
9667 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9668 * push those tasks away until this gets cleared, see
9669 * sched_cpu_dying().
9670 */
9671 balance_push_set(cpu, true);
9672
9673 /*
9674 * We've cleared cpu_active_mask / set balance_push, wait for all
9675 * preempt-disabled and RCU users of this state to go away such that
9676 * all new such users will observe it.
9677 *
9678 * Specifically, we rely on ttwu to no longer target this CPU, see
9679 * ttwu_queue_cond() and is_cpu_allowed().
9680 *
9681 * Do sync before park smpboot threads to take care the rcu boost case.
9682 */
9683 synchronize_rcu();
9684
9685 rq_lock_irqsave(rq, &rf);
9686 if (rq->rd) {
9687 update_rq_clock(rq);
9688 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9689 set_rq_offline(rq);
9690 }
9691 rq_unlock_irqrestore(rq, &rf);
9692
9693 #ifdef CONFIG_SCHED_SMT
9694 /*
9695 * When going down, decrement the number of cores with SMT present.
9696 */
9697 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9698 static_branch_dec_cpuslocked(&sched_smt_present);
9699
9700 sched_core_cpu_deactivate(cpu);
9701 #endif
9702
9703 if (!sched_smp_initialized)
9704 return 0;
9705
9706 sched_update_numa(cpu, false);
9707 ret = cpuset_cpu_inactive(cpu);
9708 if (ret) {
9709 balance_push_set(cpu, false);
9710 set_cpu_active(cpu, true);
9711 sched_update_numa(cpu, true);
9712 return ret;
9713 }
9714 sched_domains_numa_masks_clear(cpu);
9715 return 0;
9716 }
9717
9718 static void sched_rq_cpu_starting(unsigned int cpu)
9719 {
9720 struct rq *rq = cpu_rq(cpu);
9721
9722 rq->calc_load_update = calc_load_update;
9723 update_max_interval();
9724 }
9725
9726 int sched_cpu_starting(unsigned int cpu)
9727 {
9728 sched_core_cpu_starting(cpu);
9729 sched_rq_cpu_starting(cpu);
9730 sched_tick_start(cpu);
9731 return 0;
9732 }
9733
9734 #ifdef CONFIG_HOTPLUG_CPU
9735
9736 /*
9737 * Invoked immediately before the stopper thread is invoked to bring the
9738 * CPU down completely. At this point all per CPU kthreads except the
9739 * hotplug thread (current) and the stopper thread (inactive) have been
9740 * either parked or have been unbound from the outgoing CPU. Ensure that
9741 * any of those which might be on the way out are gone.
9742 *
9743 * If after this point a bound task is being woken on this CPU then the
9744 * responsible hotplug callback has failed to do it's job.
9745 * sched_cpu_dying() will catch it with the appropriate fireworks.
9746 */
9747 int sched_cpu_wait_empty(unsigned int cpu)
9748 {
9749 balance_hotplug_wait();
9750 return 0;
9751 }
9752
9753 /*
9754 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9755 * might have. Called from the CPU stopper task after ensuring that the
9756 * stopper is the last running task on the CPU, so nr_active count is
9757 * stable. We need to take the teardown thread which is calling this into
9758 * account, so we hand in adjust = 1 to the load calculation.
9759 *
9760 * Also see the comment "Global load-average calculations".
9761 */
9762 static void calc_load_migrate(struct rq *rq)
9763 {
9764 long delta = calc_load_fold_active(rq, 1);
9765
9766 if (delta)
9767 atomic_long_add(delta, &calc_load_tasks);
9768 }
9769
9770 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9771 {
9772 struct task_struct *g, *p;
9773 int cpu = cpu_of(rq);
9774
9775 lockdep_assert_rq_held(rq);
9776
9777 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9778 for_each_process_thread(g, p) {
9779 if (task_cpu(p) != cpu)
9780 continue;
9781
9782 if (!task_on_rq_queued(p))
9783 continue;
9784
9785 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9786 }
9787 }
9788
9789 int sched_cpu_dying(unsigned int cpu)
9790 {
9791 struct rq *rq = cpu_rq(cpu);
9792 struct rq_flags rf;
9793
9794 /* Handle pending wakeups and then migrate everything off */
9795 sched_tick_stop(cpu);
9796
9797 rq_lock_irqsave(rq, &rf);
9798 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9799 WARN(true, "Dying CPU not properly vacated!");
9800 dump_rq_tasks(rq, KERN_WARNING);
9801 }
9802 rq_unlock_irqrestore(rq, &rf);
9803
9804 calc_load_migrate(rq);
9805 update_max_interval();
9806 hrtick_clear(rq);
9807 sched_core_cpu_dying(cpu);
9808 return 0;
9809 }
9810 #endif
9811
9812 void __init sched_init_smp(void)
9813 {
9814 sched_init_numa(NUMA_NO_NODE);
9815
9816 /*
9817 * There's no userspace yet to cause hotplug operations; hence all the
9818 * CPU masks are stable and all blatant races in the below code cannot
9819 * happen.
9820 */
9821 mutex_lock(&sched_domains_mutex);
9822 sched_init_domains(cpu_active_mask);
9823 mutex_unlock(&sched_domains_mutex);
9824
9825 /* Move init over to a non-isolated CPU */
9826 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9827 BUG();
9828 current->flags &= ~PF_NO_SETAFFINITY;
9829 sched_init_granularity();
9830
9831 init_sched_rt_class();
9832 init_sched_dl_class();
9833
9834 sched_smp_initialized = true;
9835 }
9836
9837 static int __init migration_init(void)
9838 {
9839 sched_cpu_starting(smp_processor_id());
9840 return 0;
9841 }
9842 early_initcall(migration_init);
9843
9844 #else
9845 void __init sched_init_smp(void)
9846 {
9847 sched_init_granularity();
9848 }
9849 #endif /* CONFIG_SMP */
9850
9851 int in_sched_functions(unsigned long addr)
9852 {
9853 return in_lock_functions(addr) ||
9854 (addr >= (unsigned long)__sched_text_start
9855 && addr < (unsigned long)__sched_text_end);
9856 }
9857
9858 #ifdef CONFIG_CGROUP_SCHED
9859 /*
9860 * Default task group.
9861 * Every task in system belongs to this group at bootup.
9862 */
9863 struct task_group root_task_group;
9864 LIST_HEAD(task_groups);
9865
9866 /* Cacheline aligned slab cache for task_group */
9867 static struct kmem_cache *task_group_cache __read_mostly;
9868 #endif
9869
9870 void __init sched_init(void)
9871 {
9872 unsigned long ptr = 0;
9873 int i;
9874
9875 /* Make sure the linker didn't screw up */
9876 BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9877 &fair_sched_class != &rt_sched_class + 1 ||
9878 &rt_sched_class != &dl_sched_class + 1);
9879 #ifdef CONFIG_SMP
9880 BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9881 #endif
9882
9883 wait_bit_init();
9884
9885 #ifdef CONFIG_FAIR_GROUP_SCHED
9886 ptr += 2 * nr_cpu_ids * sizeof(void **);
9887 #endif
9888 #ifdef CONFIG_RT_GROUP_SCHED
9889 ptr += 2 * nr_cpu_ids * sizeof(void **);
9890 #endif
9891 if (ptr) {
9892 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9893
9894 #ifdef CONFIG_FAIR_GROUP_SCHED
9895 root_task_group.se = (struct sched_entity **)ptr;
9896 ptr += nr_cpu_ids * sizeof(void **);
9897
9898 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9899 ptr += nr_cpu_ids * sizeof(void **);
9900
9901 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9902 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9903 #endif /* CONFIG_FAIR_GROUP_SCHED */
9904 #ifdef CONFIG_RT_GROUP_SCHED
9905 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9906 ptr += nr_cpu_ids * sizeof(void **);
9907
9908 root_task_group.rt_rq = (struct rt_rq **)ptr;
9909 ptr += nr_cpu_ids * sizeof(void **);
9910
9911 #endif /* CONFIG_RT_GROUP_SCHED */
9912 }
9913
9914 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9915
9916 #ifdef CONFIG_SMP
9917 init_defrootdomain();
9918 #endif
9919
9920 #ifdef CONFIG_RT_GROUP_SCHED
9921 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9922 global_rt_period(), global_rt_runtime());
9923 #endif /* CONFIG_RT_GROUP_SCHED */
9924
9925 #ifdef CONFIG_CGROUP_SCHED
9926 task_group_cache = KMEM_CACHE(task_group, 0);
9927
9928 list_add(&root_task_group.list, &task_groups);
9929 INIT_LIST_HEAD(&root_task_group.children);
9930 INIT_LIST_HEAD(&root_task_group.siblings);
9931 autogroup_init(&init_task);
9932 #endif /* CONFIG_CGROUP_SCHED */
9933
9934 for_each_possible_cpu(i) {
9935 struct rq *rq;
9936
9937 rq = cpu_rq(i);
9938 raw_spin_lock_init(&rq->__lock);
9939 rq->nr_running = 0;
9940 rq->calc_load_active = 0;
9941 rq->calc_load_update = jiffies + LOAD_FREQ;
9942 init_cfs_rq(&rq->cfs);
9943 init_rt_rq(&rq->rt);
9944 init_dl_rq(&rq->dl);
9945 #ifdef CONFIG_FAIR_GROUP_SCHED
9946 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9947 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9948 /*
9949 * How much CPU bandwidth does root_task_group get?
9950 *
9951 * In case of task-groups formed thr' the cgroup filesystem, it
9952 * gets 100% of the CPU resources in the system. This overall
9953 * system CPU resource is divided among the tasks of
9954 * root_task_group and its child task-groups in a fair manner,
9955 * based on each entity's (task or task-group's) weight
9956 * (se->load.weight).
9957 *
9958 * In other words, if root_task_group has 10 tasks of weight
9959 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9960 * then A0's share of the CPU resource is:
9961 *
9962 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9963 *
9964 * We achieve this by letting root_task_group's tasks sit
9965 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9966 */
9967 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9968 #endif /* CONFIG_FAIR_GROUP_SCHED */
9969
9970 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9971 #ifdef CONFIG_RT_GROUP_SCHED
9972 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9973 #endif
9974 #ifdef CONFIG_SMP
9975 rq->sd = NULL;
9976 rq->rd = NULL;
9977 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9978 rq->balance_callback = &balance_push_callback;
9979 rq->active_balance = 0;
9980 rq->next_balance = jiffies;
9981 rq->push_cpu = 0;
9982 rq->cpu = i;
9983 rq->online = 0;
9984 rq->idle_stamp = 0;
9985 rq->avg_idle = 2*sysctl_sched_migration_cost;
9986 rq->wake_stamp = jiffies;
9987 rq->wake_avg_idle = rq->avg_idle;
9988 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9989
9990 INIT_LIST_HEAD(&rq->cfs_tasks);
9991
9992 rq_attach_root(rq, &def_root_domain);
9993 #ifdef CONFIG_NO_HZ_COMMON
9994 rq->last_blocked_load_update_tick = jiffies;
9995 atomic_set(&rq->nohz_flags, 0);
9996
9997 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9998 #endif
9999 #ifdef CONFIG_HOTPLUG_CPU
10000 rcuwait_init(&rq->hotplug_wait);
10001 #endif
10002 #endif /* CONFIG_SMP */
10003 hrtick_rq_init(rq);
10004 atomic_set(&rq->nr_iowait, 0);
10005
10006 #ifdef CONFIG_SCHED_CORE
10007 rq->core = rq;
10008 rq->core_pick = NULL;
10009 rq->core_enabled = 0;
10010 rq->core_tree = RB_ROOT;
10011 rq->core_forceidle_count = 0;
10012 rq->core_forceidle_occupation = 0;
10013 rq->core_forceidle_start = 0;
10014
10015 rq->core_cookie = 0UL;
10016 #endif
10017 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10018 }
10019
10020 set_load_weight(&init_task, false);
10021
10022 /*
10023 * The boot idle thread does lazy MMU switching as well:
10024 */
10025 mmgrab_lazy_tlb(&init_mm);
10026 enter_lazy_tlb(&init_mm, current);
10027
10028 /*
10029 * The idle task doesn't need the kthread struct to function, but it
10030 * is dressed up as a per-CPU kthread and thus needs to play the part
10031 * if we want to avoid special-casing it in code that deals with per-CPU
10032 * kthreads.
10033 */
10034 WARN_ON(!set_kthread_struct(current));
10035
10036 /*
10037 * Make us the idle thread. Technically, schedule() should not be
10038 * called from this thread, however somewhere below it might be,
10039 * but because we are the idle thread, we just pick up running again
10040 * when this runqueue becomes "idle".
10041 */
10042 init_idle(current, smp_processor_id());
10043
10044 calc_load_update = jiffies + LOAD_FREQ;
10045
10046 #ifdef CONFIG_SMP
10047 idle_thread_set_boot_cpu();
10048 balance_push_set(smp_processor_id(), false);
10049 #endif
10050 init_sched_fair_class();
10051
10052 psi_init();
10053
10054 init_uclamp();
10055
10056 preempt_dynamic_init();
10057
10058 scheduler_running = 1;
10059 }
10060
10061 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10062
10063 void __might_sleep(const char *file, int line)
10064 {
10065 unsigned int state = get_current_state();
10066 /*
10067 * Blocking primitives will set (and therefore destroy) current->state,
10068 * since we will exit with TASK_RUNNING make sure we enter with it,
10069 * otherwise we will destroy state.
10070 */
10071 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10072 "do not call blocking ops when !TASK_RUNNING; "
10073 "state=%x set at [<%p>] %pS\n", state,
10074 (void *)current->task_state_change,
10075 (void *)current->task_state_change);
10076
10077 __might_resched(file, line, 0);
10078 }
10079 EXPORT_SYMBOL(__might_sleep);
10080
10081 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10082 {
10083 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10084 return;
10085
10086 if (preempt_count() == preempt_offset)
10087 return;
10088
10089 pr_err("Preemption disabled at:");
10090 print_ip_sym(KERN_ERR, ip);
10091 }
10092
10093 static inline bool resched_offsets_ok(unsigned int offsets)
10094 {
10095 unsigned int nested = preempt_count();
10096
10097 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10098
10099 return nested == offsets;
10100 }
10101
10102 void __might_resched(const char *file, int line, unsigned int offsets)
10103 {
10104 /* Ratelimiting timestamp: */
10105 static unsigned long prev_jiffy;
10106
10107 unsigned long preempt_disable_ip;
10108
10109 /* WARN_ON_ONCE() by default, no rate limit required: */
10110 rcu_sleep_check();
10111
10112 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10113 !is_idle_task(current) && !current->non_block_count) ||
10114 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10115 oops_in_progress)
10116 return;
10117
10118 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10119 return;
10120 prev_jiffy = jiffies;
10121
10122 /* Save this before calling printk(), since that will clobber it: */
10123 preempt_disable_ip = get_preempt_disable_ip(current);
10124
10125 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10126 file, line);
10127 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10128 in_atomic(), irqs_disabled(), current->non_block_count,
10129 current->pid, current->comm);
10130 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10131 offsets & MIGHT_RESCHED_PREEMPT_MASK);
10132
10133 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10134 pr_err("RCU nest depth: %d, expected: %u\n",
10135 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10136 }
10137
10138 if (task_stack_end_corrupted(current))
10139 pr_emerg("Thread overran stack, or stack corrupted\n");
10140
10141 debug_show_held_locks(current);
10142 if (irqs_disabled())
10143 print_irqtrace_events(current);
10144
10145 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10146 preempt_disable_ip);
10147
10148 dump_stack();
10149 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10150 }
10151 EXPORT_SYMBOL(__might_resched);
10152
10153 void __cant_sleep(const char *file, int line, int preempt_offset)
10154 {
10155 static unsigned long prev_jiffy;
10156
10157 if (irqs_disabled())
10158 return;
10159
10160 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10161 return;
10162
10163 if (preempt_count() > preempt_offset)
10164 return;
10165
10166 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10167 return;
10168 prev_jiffy = jiffies;
10169
10170 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10171 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10172 in_atomic(), irqs_disabled(),
10173 current->pid, current->comm);
10174
10175 debug_show_held_locks(current);
10176 dump_stack();
10177 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10178 }
10179 EXPORT_SYMBOL_GPL(__cant_sleep);
10180
10181 #ifdef CONFIG_SMP
10182 void __cant_migrate(const char *file, int line)
10183 {
10184 static unsigned long prev_jiffy;
10185
10186 if (irqs_disabled())
10187 return;
10188
10189 if (is_migration_disabled(current))
10190 return;
10191
10192 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10193 return;
10194
10195 if (preempt_count() > 0)
10196 return;
10197
10198 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10199 return;
10200 prev_jiffy = jiffies;
10201
10202 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10203 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10204 in_atomic(), irqs_disabled(), is_migration_disabled(current),
10205 current->pid, current->comm);
10206
10207 debug_show_held_locks(current);
10208 dump_stack();
10209 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10210 }
10211 EXPORT_SYMBOL_GPL(__cant_migrate);
10212 #endif
10213 #endif
10214
10215 #ifdef CONFIG_MAGIC_SYSRQ
10216 void normalize_rt_tasks(void)
10217 {
10218 struct task_struct *g, *p;
10219 struct sched_attr attr = {
10220 .sched_policy = SCHED_NORMAL,
10221 };
10222
10223 read_lock(&tasklist_lock);
10224 for_each_process_thread(g, p) {
10225 /*
10226 * Only normalize user tasks:
10227 */
10228 if (p->flags & PF_KTHREAD)
10229 continue;
10230
10231 p->se.exec_start = 0;
10232 schedstat_set(p->stats.wait_start, 0);
10233 schedstat_set(p->stats.sleep_start, 0);
10234 schedstat_set(p->stats.block_start, 0);
10235
10236 if (!dl_task(p) && !rt_task(p)) {
10237 /*
10238 * Renice negative nice level userspace
10239 * tasks back to 0:
10240 */
10241 if (task_nice(p) < 0)
10242 set_user_nice(p, 0);
10243 continue;
10244 }
10245
10246 __sched_setscheduler(p, &attr, false, false);
10247 }
10248 read_unlock(&tasklist_lock);
10249 }
10250
10251 #endif /* CONFIG_MAGIC_SYSRQ */
10252
10253 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10254 /*
10255 * These functions are only useful for the IA64 MCA handling, or kdb.
10256 *
10257 * They can only be called when the whole system has been
10258 * stopped - every CPU needs to be quiescent, and no scheduling
10259 * activity can take place. Using them for anything else would
10260 * be a serious bug, and as a result, they aren't even visible
10261 * under any other configuration.
10262 */
10263
10264 /**
10265 * curr_task - return the current task for a given CPU.
10266 * @cpu: the processor in question.
10267 *
10268 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10269 *
10270 * Return: The current task for @cpu.
10271 */
10272 struct task_struct *curr_task(int cpu)
10273 {
10274 return cpu_curr(cpu);
10275 }
10276
10277 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10278
10279 #ifdef CONFIG_IA64
10280 /**
10281 * ia64_set_curr_task - set the current task for a given CPU.
10282 * @cpu: the processor in question.
10283 * @p: the task pointer to set.
10284 *
10285 * Description: This function must only be used when non-maskable interrupts
10286 * are serviced on a separate stack. It allows the architecture to switch the
10287 * notion of the current task on a CPU in a non-blocking manner. This function
10288 * must be called with all CPU's synchronized, and interrupts disabled, the
10289 * and caller must save the original value of the current task (see
10290 * curr_task() above) and restore that value before reenabling interrupts and
10291 * re-starting the system.
10292 *
10293 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10294 */
10295 void ia64_set_curr_task(int cpu, struct task_struct *p)
10296 {
10297 cpu_curr(cpu) = p;
10298 }
10299
10300 #endif
10301
10302 #ifdef CONFIG_CGROUP_SCHED
10303 /* task_group_lock serializes the addition/removal of task groups */
10304 static DEFINE_SPINLOCK(task_group_lock);
10305
10306 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10307 struct task_group *parent)
10308 {
10309 #ifdef CONFIG_UCLAMP_TASK_GROUP
10310 enum uclamp_id clamp_id;
10311
10312 for_each_clamp_id(clamp_id) {
10313 uclamp_se_set(&tg->uclamp_req[clamp_id],
10314 uclamp_none(clamp_id), false);
10315 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10316 }
10317 #endif
10318 }
10319
10320 static void sched_free_group(struct task_group *tg)
10321 {
10322 free_fair_sched_group(tg);
10323 free_rt_sched_group(tg);
10324 autogroup_free(tg);
10325 kmem_cache_free(task_group_cache, tg);
10326 }
10327
10328 static void sched_free_group_rcu(struct rcu_head *rcu)
10329 {
10330 sched_free_group(container_of(rcu, struct task_group, rcu));
10331 }
10332
10333 static void sched_unregister_group(struct task_group *tg)
10334 {
10335 unregister_fair_sched_group(tg);
10336 unregister_rt_sched_group(tg);
10337 /*
10338 * We have to wait for yet another RCU grace period to expire, as
10339 * print_cfs_stats() might run concurrently.
10340 */
10341 call_rcu(&tg->rcu, sched_free_group_rcu);
10342 }
10343
10344 /* allocate runqueue etc for a new task group */
10345 struct task_group *sched_create_group(struct task_group *parent)
10346 {
10347 struct task_group *tg;
10348
10349 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10350 if (!tg)
10351 return ERR_PTR(-ENOMEM);
10352
10353 if (!alloc_fair_sched_group(tg, parent))
10354 goto err;
10355
10356 if (!alloc_rt_sched_group(tg, parent))
10357 goto err;
10358
10359 alloc_uclamp_sched_group(tg, parent);
10360
10361 return tg;
10362
10363 err:
10364 sched_free_group(tg);
10365 return ERR_PTR(-ENOMEM);
10366 }
10367
10368 void sched_online_group(struct task_group *tg, struct task_group *parent)
10369 {
10370 unsigned long flags;
10371
10372 spin_lock_irqsave(&task_group_lock, flags);
10373 list_add_rcu(&tg->list, &task_groups);
10374
10375 /* Root should already exist: */
10376 WARN_ON(!parent);
10377
10378 tg->parent = parent;
10379 INIT_LIST_HEAD(&tg->children);
10380 list_add_rcu(&tg->siblings, &parent->children);
10381 spin_unlock_irqrestore(&task_group_lock, flags);
10382
10383 online_fair_sched_group(tg);
10384 }
10385
10386 /* rcu callback to free various structures associated with a task group */
10387 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10388 {
10389 /* Now it should be safe to free those cfs_rqs: */
10390 sched_unregister_group(container_of(rhp, struct task_group, rcu));
10391 }
10392
10393 void sched_destroy_group(struct task_group *tg)
10394 {
10395 /* Wait for possible concurrent references to cfs_rqs complete: */
10396 call_rcu(&tg->rcu, sched_unregister_group_rcu);
10397 }
10398
10399 void sched_release_group(struct task_group *tg)
10400 {
10401 unsigned long flags;
10402
10403 /*
10404 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10405 * sched_cfs_period_timer()).
10406 *
10407 * For this to be effective, we have to wait for all pending users of
10408 * this task group to leave their RCU critical section to ensure no new
10409 * user will see our dying task group any more. Specifically ensure
10410 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10411 *
10412 * We therefore defer calling unregister_fair_sched_group() to
10413 * sched_unregister_group() which is guarantied to get called only after the
10414 * current RCU grace period has expired.
10415 */
10416 spin_lock_irqsave(&task_group_lock, flags);
10417 list_del_rcu(&tg->list);
10418 list_del_rcu(&tg->siblings);
10419 spin_unlock_irqrestore(&task_group_lock, flags);
10420 }
10421
10422 static struct task_group *sched_get_task_group(struct task_struct *tsk)
10423 {
10424 struct task_group *tg;
10425
10426 /*
10427 * All callers are synchronized by task_rq_lock(); we do not use RCU
10428 * which is pointless here. Thus, we pass "true" to task_css_check()
10429 * to prevent lockdep warnings.
10430 */
10431 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10432 struct task_group, css);
10433 tg = autogroup_task_group(tsk, tg);
10434
10435 return tg;
10436 }
10437
10438 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10439 {
10440 tsk->sched_task_group = group;
10441
10442 #ifdef CONFIG_FAIR_GROUP_SCHED
10443 if (tsk->sched_class->task_change_group)
10444 tsk->sched_class->task_change_group(tsk);
10445 else
10446 #endif
10447 set_task_rq(tsk, task_cpu(tsk));
10448 }
10449
10450 /*
10451 * Change task's runqueue when it moves between groups.
10452 *
10453 * The caller of this function should have put the task in its new group by
10454 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10455 * its new group.
10456 */
10457 void sched_move_task(struct task_struct *tsk)
10458 {
10459 int queued, running, queue_flags =
10460 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10461 struct task_group *group;
10462 struct rq_flags rf;
10463 struct rq *rq;
10464
10465 rq = task_rq_lock(tsk, &rf);
10466 /*
10467 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10468 * group changes.
10469 */
10470 group = sched_get_task_group(tsk);
10471 if (group == tsk->sched_task_group)
10472 goto unlock;
10473
10474 update_rq_clock(rq);
10475
10476 running = task_current(rq, tsk);
10477 queued = task_on_rq_queued(tsk);
10478
10479 if (queued)
10480 dequeue_task(rq, tsk, queue_flags);
10481 if (running)
10482 put_prev_task(rq, tsk);
10483
10484 sched_change_group(tsk, group);
10485
10486 if (queued)
10487 enqueue_task(rq, tsk, queue_flags);
10488 if (running) {
10489 set_next_task(rq, tsk);
10490 /*
10491 * After changing group, the running task may have joined a
10492 * throttled one but it's still the running task. Trigger a
10493 * resched to make sure that task can still run.
10494 */
10495 resched_curr(rq);
10496 }
10497
10498 unlock:
10499 task_rq_unlock(rq, tsk, &rf);
10500 }
10501
10502 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10503 {
10504 return css ? container_of(css, struct task_group, css) : NULL;
10505 }
10506
10507 static struct cgroup_subsys_state *
10508 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10509 {
10510 struct task_group *parent = css_tg(parent_css);
10511 struct task_group *tg;
10512
10513 if (!parent) {
10514 /* This is early initialization for the top cgroup */
10515 return &root_task_group.css;
10516 }
10517
10518 tg = sched_create_group(parent);
10519 if (IS_ERR(tg))
10520 return ERR_PTR(-ENOMEM);
10521
10522 return &tg->css;
10523 }
10524
10525 /* Expose task group only after completing cgroup initialization */
10526 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10527 {
10528 struct task_group *tg = css_tg(css);
10529 struct task_group *parent = css_tg(css->parent);
10530
10531 if (parent)
10532 sched_online_group(tg, parent);
10533
10534 #ifdef CONFIG_UCLAMP_TASK_GROUP
10535 /* Propagate the effective uclamp value for the new group */
10536 mutex_lock(&uclamp_mutex);
10537 rcu_read_lock();
10538 cpu_util_update_eff(css);
10539 rcu_read_unlock();
10540 mutex_unlock(&uclamp_mutex);
10541 #endif
10542
10543 return 0;
10544 }
10545
10546 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10547 {
10548 struct task_group *tg = css_tg(css);
10549
10550 sched_release_group(tg);
10551 }
10552
10553 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10554 {
10555 struct task_group *tg = css_tg(css);
10556
10557 /*
10558 * Relies on the RCU grace period between css_released() and this.
10559 */
10560 sched_unregister_group(tg);
10561 }
10562
10563 #ifdef CONFIG_RT_GROUP_SCHED
10564 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10565 {
10566 struct task_struct *task;
10567 struct cgroup_subsys_state *css;
10568
10569 cgroup_taskset_for_each(task, css, tset) {
10570 if (!sched_rt_can_attach(css_tg(css), task))
10571 return -EINVAL;
10572 }
10573 return 0;
10574 }
10575 #endif
10576
10577 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10578 {
10579 struct task_struct *task;
10580 struct cgroup_subsys_state *css;
10581
10582 cgroup_taskset_for_each(task, css, tset)
10583 sched_move_task(task);
10584 }
10585
10586 #ifdef CONFIG_UCLAMP_TASK_GROUP
10587 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10588 {
10589 struct cgroup_subsys_state *top_css = css;
10590 struct uclamp_se *uc_parent = NULL;
10591 struct uclamp_se *uc_se = NULL;
10592 unsigned int eff[UCLAMP_CNT];
10593 enum uclamp_id clamp_id;
10594 unsigned int clamps;
10595
10596 lockdep_assert_held(&uclamp_mutex);
10597 SCHED_WARN_ON(!rcu_read_lock_held());
10598
10599 css_for_each_descendant_pre(css, top_css) {
10600 uc_parent = css_tg(css)->parent
10601 ? css_tg(css)->parent->uclamp : NULL;
10602
10603 for_each_clamp_id(clamp_id) {
10604 /* Assume effective clamps matches requested clamps */
10605 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10606 /* Cap effective clamps with parent's effective clamps */
10607 if (uc_parent &&
10608 eff[clamp_id] > uc_parent[clamp_id].value) {
10609 eff[clamp_id] = uc_parent[clamp_id].value;
10610 }
10611 }
10612 /* Ensure protection is always capped by limit */
10613 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10614
10615 /* Propagate most restrictive effective clamps */
10616 clamps = 0x0;
10617 uc_se = css_tg(css)->uclamp;
10618 for_each_clamp_id(clamp_id) {
10619 if (eff[clamp_id] == uc_se[clamp_id].value)
10620 continue;
10621 uc_se[clamp_id].value = eff[clamp_id];
10622 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10623 clamps |= (0x1 << clamp_id);
10624 }
10625 if (!clamps) {
10626 css = css_rightmost_descendant(css);
10627 continue;
10628 }
10629
10630 /* Immediately update descendants RUNNABLE tasks */
10631 uclamp_update_active_tasks(css);
10632 }
10633 }
10634
10635 /*
10636 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10637 * C expression. Since there is no way to convert a macro argument (N) into a
10638 * character constant, use two levels of macros.
10639 */
10640 #define _POW10(exp) ((unsigned int)1e##exp)
10641 #define POW10(exp) _POW10(exp)
10642
10643 struct uclamp_request {
10644 #define UCLAMP_PERCENT_SHIFT 2
10645 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
10646 s64 percent;
10647 u64 util;
10648 int ret;
10649 };
10650
10651 static inline struct uclamp_request
10652 capacity_from_percent(char *buf)
10653 {
10654 struct uclamp_request req = {
10655 .percent = UCLAMP_PERCENT_SCALE,
10656 .util = SCHED_CAPACITY_SCALE,
10657 .ret = 0,
10658 };
10659
10660 buf = strim(buf);
10661 if (strcmp(buf, "max")) {
10662 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10663 &req.percent);
10664 if (req.ret)
10665 return req;
10666 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10667 req.ret = -ERANGE;
10668 return req;
10669 }
10670
10671 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10672 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10673 }
10674
10675 return req;
10676 }
10677
10678 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10679 size_t nbytes, loff_t off,
10680 enum uclamp_id clamp_id)
10681 {
10682 struct uclamp_request req;
10683 struct task_group *tg;
10684
10685 req = capacity_from_percent(buf);
10686 if (req.ret)
10687 return req.ret;
10688
10689 static_branch_enable(&sched_uclamp_used);
10690
10691 mutex_lock(&uclamp_mutex);
10692 rcu_read_lock();
10693
10694 tg = css_tg(of_css(of));
10695 if (tg->uclamp_req[clamp_id].value != req.util)
10696 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10697
10698 /*
10699 * Because of not recoverable conversion rounding we keep track of the
10700 * exact requested value
10701 */
10702 tg->uclamp_pct[clamp_id] = req.percent;
10703
10704 /* Update effective clamps to track the most restrictive value */
10705 cpu_util_update_eff(of_css(of));
10706
10707 rcu_read_unlock();
10708 mutex_unlock(&uclamp_mutex);
10709
10710 return nbytes;
10711 }
10712
10713 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10714 char *buf, size_t nbytes,
10715 loff_t off)
10716 {
10717 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10718 }
10719
10720 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10721 char *buf, size_t nbytes,
10722 loff_t off)
10723 {
10724 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10725 }
10726
10727 static inline void cpu_uclamp_print(struct seq_file *sf,
10728 enum uclamp_id clamp_id)
10729 {
10730 struct task_group *tg;
10731 u64 util_clamp;
10732 u64 percent;
10733 u32 rem;
10734
10735 rcu_read_lock();
10736 tg = css_tg(seq_css(sf));
10737 util_clamp = tg->uclamp_req[clamp_id].value;
10738 rcu_read_unlock();
10739
10740 if (util_clamp == SCHED_CAPACITY_SCALE) {
10741 seq_puts(sf, "max\n");
10742 return;
10743 }
10744
10745 percent = tg->uclamp_pct[clamp_id];
10746 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10747 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10748 }
10749
10750 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10751 {
10752 cpu_uclamp_print(sf, UCLAMP_MIN);
10753 return 0;
10754 }
10755
10756 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10757 {
10758 cpu_uclamp_print(sf, UCLAMP_MAX);
10759 return 0;
10760 }
10761 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10762
10763 #ifdef CONFIG_FAIR_GROUP_SCHED
10764 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10765 struct cftype *cftype, u64 shareval)
10766 {
10767 if (shareval > scale_load_down(ULONG_MAX))
10768 shareval = MAX_SHARES;
10769 return sched_group_set_shares(css_tg(css), scale_load(shareval));
10770 }
10771
10772 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10773 struct cftype *cft)
10774 {
10775 struct task_group *tg = css_tg(css);
10776
10777 return (u64) scale_load_down(tg->shares);
10778 }
10779
10780 #ifdef CONFIG_CFS_BANDWIDTH
10781 static DEFINE_MUTEX(cfs_constraints_mutex);
10782
10783 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10784 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10785 /* More than 203 days if BW_SHIFT equals 20. */
10786 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10787
10788 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10789
10790 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10791 u64 burst)
10792 {
10793 int i, ret = 0, runtime_enabled, runtime_was_enabled;
10794 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10795
10796 if (tg == &root_task_group)
10797 return -EINVAL;
10798
10799 /*
10800 * Ensure we have at some amount of bandwidth every period. This is
10801 * to prevent reaching a state of large arrears when throttled via
10802 * entity_tick() resulting in prolonged exit starvation.
10803 */
10804 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10805 return -EINVAL;
10806
10807 /*
10808 * Likewise, bound things on the other side by preventing insane quota
10809 * periods. This also allows us to normalize in computing quota
10810 * feasibility.
10811 */
10812 if (period > max_cfs_quota_period)
10813 return -EINVAL;
10814
10815 /*
10816 * Bound quota to defend quota against overflow during bandwidth shift.
10817 */
10818 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10819 return -EINVAL;
10820
10821 if (quota != RUNTIME_INF && (burst > quota ||
10822 burst + quota > max_cfs_runtime))
10823 return -EINVAL;
10824
10825 /*
10826 * Prevent race between setting of cfs_rq->runtime_enabled and
10827 * unthrottle_offline_cfs_rqs().
10828 */
10829 cpus_read_lock();
10830 mutex_lock(&cfs_constraints_mutex);
10831 ret = __cfs_schedulable(tg, period, quota);
10832 if (ret)
10833 goto out_unlock;
10834
10835 runtime_enabled = quota != RUNTIME_INF;
10836 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10837 /*
10838 * If we need to toggle cfs_bandwidth_used, off->on must occur
10839 * before making related changes, and on->off must occur afterwards
10840 */
10841 if (runtime_enabled && !runtime_was_enabled)
10842 cfs_bandwidth_usage_inc();
10843 raw_spin_lock_irq(&cfs_b->lock);
10844 cfs_b->period = ns_to_ktime(period);
10845 cfs_b->quota = quota;
10846 cfs_b->burst = burst;
10847
10848 __refill_cfs_bandwidth_runtime(cfs_b);
10849
10850 /* Restart the period timer (if active) to handle new period expiry: */
10851 if (runtime_enabled)
10852 start_cfs_bandwidth(cfs_b);
10853
10854 raw_spin_unlock_irq(&cfs_b->lock);
10855
10856 for_each_online_cpu(i) {
10857 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10858 struct rq *rq = cfs_rq->rq;
10859 struct rq_flags rf;
10860
10861 rq_lock_irq(rq, &rf);
10862 cfs_rq->runtime_enabled = runtime_enabled;
10863 cfs_rq->runtime_remaining = 0;
10864
10865 if (cfs_rq->throttled)
10866 unthrottle_cfs_rq(cfs_rq);
10867 rq_unlock_irq(rq, &rf);
10868 }
10869 if (runtime_was_enabled && !runtime_enabled)
10870 cfs_bandwidth_usage_dec();
10871 out_unlock:
10872 mutex_unlock(&cfs_constraints_mutex);
10873 cpus_read_unlock();
10874
10875 return ret;
10876 }
10877
10878 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10879 {
10880 u64 quota, period, burst;
10881
10882 period = ktime_to_ns(tg->cfs_bandwidth.period);
10883 burst = tg->cfs_bandwidth.burst;
10884 if (cfs_quota_us < 0)
10885 quota = RUNTIME_INF;
10886 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10887 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10888 else
10889 return -EINVAL;
10890
10891 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10892 }
10893
10894 static long tg_get_cfs_quota(struct task_group *tg)
10895 {
10896 u64 quota_us;
10897
10898 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10899 return -1;
10900
10901 quota_us = tg->cfs_bandwidth.quota;
10902 do_div(quota_us, NSEC_PER_USEC);
10903
10904 return quota_us;
10905 }
10906
10907 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10908 {
10909 u64 quota, period, burst;
10910
10911 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10912 return -EINVAL;
10913
10914 period = (u64)cfs_period_us * NSEC_PER_USEC;
10915 quota = tg->cfs_bandwidth.quota;
10916 burst = tg->cfs_bandwidth.burst;
10917
10918 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10919 }
10920
10921 static long tg_get_cfs_period(struct task_group *tg)
10922 {
10923 u64 cfs_period_us;
10924
10925 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10926 do_div(cfs_period_us, NSEC_PER_USEC);
10927
10928 return cfs_period_us;
10929 }
10930
10931 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10932 {
10933 u64 quota, period, burst;
10934
10935 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10936 return -EINVAL;
10937
10938 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10939 period = ktime_to_ns(tg->cfs_bandwidth.period);
10940 quota = tg->cfs_bandwidth.quota;
10941
10942 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10943 }
10944
10945 static long tg_get_cfs_burst(struct task_group *tg)
10946 {
10947 u64 burst_us;
10948
10949 burst_us = tg->cfs_bandwidth.burst;
10950 do_div(burst_us, NSEC_PER_USEC);
10951
10952 return burst_us;
10953 }
10954
10955 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10956 struct cftype *cft)
10957 {
10958 return tg_get_cfs_quota(css_tg(css));
10959 }
10960
10961 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10962 struct cftype *cftype, s64 cfs_quota_us)
10963 {
10964 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10965 }
10966
10967 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10968 struct cftype *cft)
10969 {
10970 return tg_get_cfs_period(css_tg(css));
10971 }
10972
10973 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10974 struct cftype *cftype, u64 cfs_period_us)
10975 {
10976 return tg_set_cfs_period(css_tg(css), cfs_period_us);
10977 }
10978
10979 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10980 struct cftype *cft)
10981 {
10982 return tg_get_cfs_burst(css_tg(css));
10983 }
10984
10985 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10986 struct cftype *cftype, u64 cfs_burst_us)
10987 {
10988 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10989 }
10990
10991 struct cfs_schedulable_data {
10992 struct task_group *tg;
10993 u64 period, quota;
10994 };
10995
10996 /*
10997 * normalize group quota/period to be quota/max_period
10998 * note: units are usecs
10999 */
11000 static u64 normalize_cfs_quota(struct task_group *tg,
11001 struct cfs_schedulable_data *d)
11002 {
11003 u64 quota, period;
11004
11005 if (tg == d->tg) {
11006 period = d->period;
11007 quota = d->quota;
11008 } else {
11009 period = tg_get_cfs_period(tg);
11010 quota = tg_get_cfs_quota(tg);
11011 }
11012
11013 /* note: these should typically be equivalent */
11014 if (quota == RUNTIME_INF || quota == -1)
11015 return RUNTIME_INF;
11016
11017 return to_ratio(period, quota);
11018 }
11019
11020 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11021 {
11022 struct cfs_schedulable_data *d = data;
11023 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11024 s64 quota = 0, parent_quota = -1;
11025
11026 if (!tg->parent) {
11027 quota = RUNTIME_INF;
11028 } else {
11029 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11030
11031 quota = normalize_cfs_quota(tg, d);
11032 parent_quota = parent_b->hierarchical_quota;
11033
11034 /*
11035 * Ensure max(child_quota) <= parent_quota. On cgroup2,
11036 * always take the min. On cgroup1, only inherit when no
11037 * limit is set:
11038 */
11039 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11040 quota = min(quota, parent_quota);
11041 } else {
11042 if (quota == RUNTIME_INF)
11043 quota = parent_quota;
11044 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11045 return -EINVAL;
11046 }
11047 }
11048 cfs_b->hierarchical_quota = quota;
11049
11050 return 0;
11051 }
11052
11053 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11054 {
11055 int ret;
11056 struct cfs_schedulable_data data = {
11057 .tg = tg,
11058 .period = period,
11059 .quota = quota,
11060 };
11061
11062 if (quota != RUNTIME_INF) {
11063 do_div(data.period, NSEC_PER_USEC);
11064 do_div(data.quota, NSEC_PER_USEC);
11065 }
11066
11067 rcu_read_lock();
11068 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11069 rcu_read_unlock();
11070
11071 return ret;
11072 }
11073
11074 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11075 {
11076 struct task_group *tg = css_tg(seq_css(sf));
11077 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11078
11079 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11080 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11081 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11082
11083 if (schedstat_enabled() && tg != &root_task_group) {
11084 struct sched_statistics *stats;
11085 u64 ws = 0;
11086 int i;
11087
11088 for_each_possible_cpu(i) {
11089 stats = __schedstats_from_se(tg->se[i]);
11090 ws += schedstat_val(stats->wait_sum);
11091 }
11092
11093 seq_printf(sf, "wait_sum %llu\n", ws);
11094 }
11095
11096 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11097 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11098
11099 return 0;
11100 }
11101 #endif /* CONFIG_CFS_BANDWIDTH */
11102 #endif /* CONFIG_FAIR_GROUP_SCHED */
11103
11104 #ifdef CONFIG_RT_GROUP_SCHED
11105 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11106 struct cftype *cft, s64 val)
11107 {
11108 return sched_group_set_rt_runtime(css_tg(css), val);
11109 }
11110
11111 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11112 struct cftype *cft)
11113 {
11114 return sched_group_rt_runtime(css_tg(css));
11115 }
11116
11117 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11118 struct cftype *cftype, u64 rt_period_us)
11119 {
11120 return sched_group_set_rt_period(css_tg(css), rt_period_us);
11121 }
11122
11123 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11124 struct cftype *cft)
11125 {
11126 return sched_group_rt_period(css_tg(css));
11127 }
11128 #endif /* CONFIG_RT_GROUP_SCHED */
11129
11130 #ifdef CONFIG_FAIR_GROUP_SCHED
11131 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11132 struct cftype *cft)
11133 {
11134 return css_tg(css)->idle;
11135 }
11136
11137 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11138 struct cftype *cft, s64 idle)
11139 {
11140 return sched_group_set_idle(css_tg(css), idle);
11141 }
11142 #endif
11143
11144 static struct cftype cpu_legacy_files[] = {
11145 #ifdef CONFIG_FAIR_GROUP_SCHED
11146 {
11147 .name = "shares",
11148 .read_u64 = cpu_shares_read_u64,
11149 .write_u64 = cpu_shares_write_u64,
11150 },
11151 {
11152 .name = "idle",
11153 .read_s64 = cpu_idle_read_s64,
11154 .write_s64 = cpu_idle_write_s64,
11155 },
11156 #endif
11157 #ifdef CONFIG_CFS_BANDWIDTH
11158 {
11159 .name = "cfs_quota_us",
11160 .read_s64 = cpu_cfs_quota_read_s64,
11161 .write_s64 = cpu_cfs_quota_write_s64,
11162 },
11163 {
11164 .name = "cfs_period_us",
11165 .read_u64 = cpu_cfs_period_read_u64,
11166 .write_u64 = cpu_cfs_period_write_u64,
11167 },
11168 {
11169 .name = "cfs_burst_us",
11170 .read_u64 = cpu_cfs_burst_read_u64,
11171 .write_u64 = cpu_cfs_burst_write_u64,
11172 },
11173 {
11174 .name = "stat",
11175 .seq_show = cpu_cfs_stat_show,
11176 },
11177 #endif
11178 #ifdef CONFIG_RT_GROUP_SCHED
11179 {
11180 .name = "rt_runtime_us",
11181 .read_s64 = cpu_rt_runtime_read,
11182 .write_s64 = cpu_rt_runtime_write,
11183 },
11184 {
11185 .name = "rt_period_us",
11186 .read_u64 = cpu_rt_period_read_uint,
11187 .write_u64 = cpu_rt_period_write_uint,
11188 },
11189 #endif
11190 #ifdef CONFIG_UCLAMP_TASK_GROUP
11191 {
11192 .name = "uclamp.min",
11193 .flags = CFTYPE_NOT_ON_ROOT,
11194 .seq_show = cpu_uclamp_min_show,
11195 .write = cpu_uclamp_min_write,
11196 },
11197 {
11198 .name = "uclamp.max",
11199 .flags = CFTYPE_NOT_ON_ROOT,
11200 .seq_show = cpu_uclamp_max_show,
11201 .write = cpu_uclamp_max_write,
11202 },
11203 #endif
11204 { } /* Terminate */
11205 };
11206
11207 static int cpu_extra_stat_show(struct seq_file *sf,
11208 struct cgroup_subsys_state *css)
11209 {
11210 #ifdef CONFIG_CFS_BANDWIDTH
11211 {
11212 struct task_group *tg = css_tg(css);
11213 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11214 u64 throttled_usec, burst_usec;
11215
11216 throttled_usec = cfs_b->throttled_time;
11217 do_div(throttled_usec, NSEC_PER_USEC);
11218 burst_usec = cfs_b->burst_time;
11219 do_div(burst_usec, NSEC_PER_USEC);
11220
11221 seq_printf(sf, "nr_periods %d\n"
11222 "nr_throttled %d\n"
11223 "throttled_usec %llu\n"
11224 "nr_bursts %d\n"
11225 "burst_usec %llu\n",
11226 cfs_b->nr_periods, cfs_b->nr_throttled,
11227 throttled_usec, cfs_b->nr_burst, burst_usec);
11228 }
11229 #endif
11230 return 0;
11231 }
11232
11233 #ifdef CONFIG_FAIR_GROUP_SCHED
11234 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11235 struct cftype *cft)
11236 {
11237 struct task_group *tg = css_tg(css);
11238 u64 weight = scale_load_down(tg->shares);
11239
11240 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11241 }
11242
11243 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11244 struct cftype *cft, u64 weight)
11245 {
11246 /*
11247 * cgroup weight knobs should use the common MIN, DFL and MAX
11248 * values which are 1, 100 and 10000 respectively. While it loses
11249 * a bit of range on both ends, it maps pretty well onto the shares
11250 * value used by scheduler and the round-trip conversions preserve
11251 * the original value over the entire range.
11252 */
11253 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11254 return -ERANGE;
11255
11256 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11257
11258 return sched_group_set_shares(css_tg(css), scale_load(weight));
11259 }
11260
11261 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11262 struct cftype *cft)
11263 {
11264 unsigned long weight = scale_load_down(css_tg(css)->shares);
11265 int last_delta = INT_MAX;
11266 int prio, delta;
11267
11268 /* find the closest nice value to the current weight */
11269 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11270 delta = abs(sched_prio_to_weight[prio] - weight);
11271 if (delta >= last_delta)
11272 break;
11273 last_delta = delta;
11274 }
11275
11276 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11277 }
11278
11279 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11280 struct cftype *cft, s64 nice)
11281 {
11282 unsigned long weight;
11283 int idx;
11284
11285 if (nice < MIN_NICE || nice > MAX_NICE)
11286 return -ERANGE;
11287
11288 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11289 idx = array_index_nospec(idx, 40);
11290 weight = sched_prio_to_weight[idx];
11291
11292 return sched_group_set_shares(css_tg(css), scale_load(weight));
11293 }
11294 #endif
11295
11296 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11297 long period, long quota)
11298 {
11299 if (quota < 0)
11300 seq_puts(sf, "max");
11301 else
11302 seq_printf(sf, "%ld", quota);
11303
11304 seq_printf(sf, " %ld\n", period);
11305 }
11306
11307 /* caller should put the current value in *@periodp before calling */
11308 static int __maybe_unused cpu_period_quota_parse(char *buf,
11309 u64 *periodp, u64 *quotap)
11310 {
11311 char tok[21]; /* U64_MAX */
11312
11313 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11314 return -EINVAL;
11315
11316 *periodp *= NSEC_PER_USEC;
11317
11318 if (sscanf(tok, "%llu", quotap))
11319 *quotap *= NSEC_PER_USEC;
11320 else if (!strcmp(tok, "max"))
11321 *quotap = RUNTIME_INF;
11322 else
11323 return -EINVAL;
11324
11325 return 0;
11326 }
11327
11328 #ifdef CONFIG_CFS_BANDWIDTH
11329 static int cpu_max_show(struct seq_file *sf, void *v)
11330 {
11331 struct task_group *tg = css_tg(seq_css(sf));
11332
11333 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11334 return 0;
11335 }
11336
11337 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11338 char *buf, size_t nbytes, loff_t off)
11339 {
11340 struct task_group *tg = css_tg(of_css(of));
11341 u64 period = tg_get_cfs_period(tg);
11342 u64 burst = tg_get_cfs_burst(tg);
11343 u64 quota;
11344 int ret;
11345
11346 ret = cpu_period_quota_parse(buf, &period, &quota);
11347 if (!ret)
11348 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11349 return ret ?: nbytes;
11350 }
11351 #endif
11352
11353 static struct cftype cpu_files[] = {
11354 #ifdef CONFIG_FAIR_GROUP_SCHED
11355 {
11356 .name = "weight",
11357 .flags = CFTYPE_NOT_ON_ROOT,
11358 .read_u64 = cpu_weight_read_u64,
11359 .write_u64 = cpu_weight_write_u64,
11360 },
11361 {
11362 .name = "weight.nice",
11363 .flags = CFTYPE_NOT_ON_ROOT,
11364 .read_s64 = cpu_weight_nice_read_s64,
11365 .write_s64 = cpu_weight_nice_write_s64,
11366 },
11367 {
11368 .name = "idle",
11369 .flags = CFTYPE_NOT_ON_ROOT,
11370 .read_s64 = cpu_idle_read_s64,
11371 .write_s64 = cpu_idle_write_s64,
11372 },
11373 #endif
11374 #ifdef CONFIG_CFS_BANDWIDTH
11375 {
11376 .name = "max",
11377 .flags = CFTYPE_NOT_ON_ROOT,
11378 .seq_show = cpu_max_show,
11379 .write = cpu_max_write,
11380 },
11381 {
11382 .name = "max.burst",
11383 .flags = CFTYPE_NOT_ON_ROOT,
11384 .read_u64 = cpu_cfs_burst_read_u64,
11385 .write_u64 = cpu_cfs_burst_write_u64,
11386 },
11387 #endif
11388 #ifdef CONFIG_UCLAMP_TASK_GROUP
11389 {
11390 .name = "uclamp.min",
11391 .flags = CFTYPE_NOT_ON_ROOT,
11392 .seq_show = cpu_uclamp_min_show,
11393 .write = cpu_uclamp_min_write,
11394 },
11395 {
11396 .name = "uclamp.max",
11397 .flags = CFTYPE_NOT_ON_ROOT,
11398 .seq_show = cpu_uclamp_max_show,
11399 .write = cpu_uclamp_max_write,
11400 },
11401 #endif
11402 { } /* terminate */
11403 };
11404
11405 struct cgroup_subsys cpu_cgrp_subsys = {
11406 .css_alloc = cpu_cgroup_css_alloc,
11407 .css_online = cpu_cgroup_css_online,
11408 .css_released = cpu_cgroup_css_released,
11409 .css_free = cpu_cgroup_css_free,
11410 .css_extra_stat_show = cpu_extra_stat_show,
11411 #ifdef CONFIG_RT_GROUP_SCHED
11412 .can_attach = cpu_cgroup_can_attach,
11413 #endif
11414 .attach = cpu_cgroup_attach,
11415 .legacy_cftypes = cpu_legacy_files,
11416 .dfl_cftypes = cpu_files,
11417 .early_init = true,
11418 .threaded = true,
11419 };
11420
11421 #endif /* CONFIG_CGROUP_SCHED */
11422
11423 void dump_cpu_task(int cpu)
11424 {
11425 if (cpu == smp_processor_id() && in_hardirq()) {
11426 struct pt_regs *regs;
11427
11428 regs = get_irq_regs();
11429 if (regs) {
11430 show_regs(regs);
11431 return;
11432 }
11433 }
11434
11435 if (trigger_single_cpu_backtrace(cpu))
11436 return;
11437
11438 pr_info("Task dump for CPU %d:\n", cpu);
11439 sched_show_task(cpu_curr(cpu));
11440 }
11441
11442 /*
11443 * Nice levels are multiplicative, with a gentle 10% change for every
11444 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11445 * nice 1, it will get ~10% less CPU time than another CPU-bound task
11446 * that remained on nice 0.
11447 *
11448 * The "10% effect" is relative and cumulative: from _any_ nice level,
11449 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11450 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11451 * If a task goes up by ~10% and another task goes down by ~10% then
11452 * the relative distance between them is ~25%.)
11453 */
11454 const int sched_prio_to_weight[40] = {
11455 /* -20 */ 88761, 71755, 56483, 46273, 36291,
11456 /* -15 */ 29154, 23254, 18705, 14949, 11916,
11457 /* -10 */ 9548, 7620, 6100, 4904, 3906,
11458 /* -5 */ 3121, 2501, 1991, 1586, 1277,
11459 /* 0 */ 1024, 820, 655, 526, 423,
11460 /* 5 */ 335, 272, 215, 172, 137,
11461 /* 10 */ 110, 87, 70, 56, 45,
11462 /* 15 */ 36, 29, 23, 18, 15,
11463 };
11464
11465 /*
11466 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11467 *
11468 * In cases where the weight does not change often, we can use the
11469 * precalculated inverse to speed up arithmetics by turning divisions
11470 * into multiplications:
11471 */
11472 const u32 sched_prio_to_wmult[40] = {
11473 /* -20 */ 48388, 59856, 76040, 92818, 118348,
11474 /* -15 */ 147320, 184698, 229616, 287308, 360437,
11475 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
11476 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
11477 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
11478 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
11479 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
11480 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11481 };
11482
11483 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11484 {
11485 trace_sched_update_nr_running_tp(rq, count);
11486 }
11487
11488 #ifdef CONFIG_SCHED_MM_CID
11489
11490 /**
11491 * @cid_lock: Guarantee forward-progress of cid allocation.
11492 *
11493 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11494 * is only used when contention is detected by the lock-free allocation so
11495 * forward progress can be guaranteed.
11496 */
11497 DEFINE_RAW_SPINLOCK(cid_lock);
11498
11499 /**
11500 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11501 *
11502 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11503 * detected, it is set to 1 to ensure that all newly coming allocations are
11504 * serialized by @cid_lock until the allocation which detected contention
11505 * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11506 * of a cid allocation.
11507 */
11508 int use_cid_lock;
11509
11510 /*
11511 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11512 * concurrently with respect to the execution of the source runqueue context
11513 * switch.
11514 *
11515 * There is one basic properties we want to guarantee here:
11516 *
11517 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11518 * used by a task. That would lead to concurrent allocation of the cid and
11519 * userspace corruption.
11520 *
11521 * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11522 * that a pair of loads observe at least one of a pair of stores, which can be
11523 * shown as:
11524 *
11525 * X = Y = 0
11526 *
11527 * w[X]=1 w[Y]=1
11528 * MB MB
11529 * r[Y]=y r[X]=x
11530 *
11531 * Which guarantees that x==0 && y==0 is impossible. But rather than using
11532 * values 0 and 1, this algorithm cares about specific state transitions of the
11533 * runqueue current task (as updated by the scheduler context switch), and the
11534 * per-mm/cpu cid value.
11535 *
11536 * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11537 * task->mm != mm for the rest of the discussion. There are two scheduler state
11538 * transitions on context switch we care about:
11539 *
11540 * (TSA) Store to rq->curr with transition from (N) to (Y)
11541 *
11542 * (TSB) Store to rq->curr with transition from (Y) to (N)
11543 *
11544 * On the remote-clear side, there is one transition we care about:
11545 *
11546 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11547 *
11548 * There is also a transition to UNSET state which can be performed from all
11549 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11550 * guarantees that only a single thread will succeed:
11551 *
11552 * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11553 *
11554 * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11555 * when a thread is actively using the cid (property (1)).
11556 *
11557 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11558 *
11559 * Scenario A) (TSA)+(TMA) (from next task perspective)
11560 *
11561 * CPU0 CPU1
11562 *
11563 * Context switch CS-1 Remote-clear
11564 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA)
11565 * (implied barrier after cmpxchg)
11566 * - switch_mm_cid()
11567 * - memory barrier (see switch_mm_cid()
11568 * comment explaining how this barrier
11569 * is combined with other scheduler
11570 * barriers)
11571 * - mm_cid_get (next)
11572 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr)
11573 *
11574 * This Dekker ensures that either task (Y) is observed by the
11575 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11576 * observed.
11577 *
11578 * If task (Y) store is observed by rcu_dereference(), it means that there is
11579 * still an active task on the cpu. Remote-clear will therefore not transition
11580 * to UNSET, which fulfills property (1).
11581 *
11582 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11583 * it will move its state to UNSET, which clears the percpu cid perhaps
11584 * uselessly (which is not an issue for correctness). Because task (Y) is not
11585 * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11586 * state to UNSET is done with a cmpxchg expecting that the old state has the
11587 * LAZY flag set, only one thread will successfully UNSET.
11588 *
11589 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11590 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11591 * CPU1 will observe task (Y) and do nothing more, which is fine.
11592 *
11593 * What we are effectively preventing with this Dekker is a scenario where
11594 * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11595 * because this would UNSET a cid which is actively used.
11596 */
11597
11598 void sched_mm_cid_migrate_from(struct task_struct *t)
11599 {
11600 t->migrate_from_cpu = task_cpu(t);
11601 }
11602
11603 static
11604 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11605 struct task_struct *t,
11606 struct mm_cid *src_pcpu_cid)
11607 {
11608 struct mm_struct *mm = t->mm;
11609 struct task_struct *src_task;
11610 int src_cid, last_mm_cid;
11611
11612 if (!mm)
11613 return -1;
11614
11615 last_mm_cid = t->last_mm_cid;
11616 /*
11617 * If the migrated task has no last cid, or if the current
11618 * task on src rq uses the cid, it means the source cid does not need
11619 * to be moved to the destination cpu.
11620 */
11621 if (last_mm_cid == -1)
11622 return -1;
11623 src_cid = READ_ONCE(src_pcpu_cid->cid);
11624 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11625 return -1;
11626
11627 /*
11628 * If we observe an active task using the mm on this rq, it means we
11629 * are not the last task to be migrated from this cpu for this mm, so
11630 * there is no need to move src_cid to the destination cpu.
11631 */
11632 rcu_read_lock();
11633 src_task = rcu_dereference(src_rq->curr);
11634 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11635 rcu_read_unlock();
11636 t->last_mm_cid = -1;
11637 return -1;
11638 }
11639 rcu_read_unlock();
11640
11641 return src_cid;
11642 }
11643
11644 static
11645 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11646 struct task_struct *t,
11647 struct mm_cid *src_pcpu_cid,
11648 int src_cid)
11649 {
11650 struct task_struct *src_task;
11651 struct mm_struct *mm = t->mm;
11652 int lazy_cid;
11653
11654 if (src_cid == -1)
11655 return -1;
11656
11657 /*
11658 * Attempt to clear the source cpu cid to move it to the destination
11659 * cpu.
11660 */
11661 lazy_cid = mm_cid_set_lazy_put(src_cid);
11662 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11663 return -1;
11664
11665 /*
11666 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11667 * rq->curr->mm matches the scheduler barrier in context_switch()
11668 * between store to rq->curr and load of prev and next task's
11669 * per-mm/cpu cid.
11670 *
11671 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11672 * rq->curr->mm_cid_active matches the barrier in
11673 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11674 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11675 * load of per-mm/cpu cid.
11676 */
11677
11678 /*
11679 * If we observe an active task using the mm on this rq after setting
11680 * the lazy-put flag, this task will be responsible for transitioning
11681 * from lazy-put flag set to MM_CID_UNSET.
11682 */
11683 rcu_read_lock();
11684 src_task = rcu_dereference(src_rq->curr);
11685 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11686 rcu_read_unlock();
11687 /*
11688 * We observed an active task for this mm, there is therefore
11689 * no point in moving this cid to the destination cpu.
11690 */
11691 t->last_mm_cid = -1;
11692 return -1;
11693 }
11694 rcu_read_unlock();
11695
11696 /*
11697 * The src_cid is unused, so it can be unset.
11698 */
11699 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11700 return -1;
11701 return src_cid;
11702 }
11703
11704 /*
11705 * Migration to dst cpu. Called with dst_rq lock held.
11706 * Interrupts are disabled, which keeps the window of cid ownership without the
11707 * source rq lock held small.
11708 */
11709 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11710 {
11711 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11712 struct mm_struct *mm = t->mm;
11713 int src_cid, dst_cid, src_cpu;
11714 struct rq *src_rq;
11715
11716 lockdep_assert_rq_held(dst_rq);
11717
11718 if (!mm)
11719 return;
11720 src_cpu = t->migrate_from_cpu;
11721 if (src_cpu == -1) {
11722 t->last_mm_cid = -1;
11723 return;
11724 }
11725 /*
11726 * Move the src cid if the dst cid is unset. This keeps id
11727 * allocation closest to 0 in cases where few threads migrate around
11728 * many cpus.
11729 *
11730 * If destination cid is already set, we may have to just clear
11731 * the src cid to ensure compactness in frequent migrations
11732 * scenarios.
11733 *
11734 * It is not useful to clear the src cid when the number of threads is
11735 * greater or equal to the number of allowed cpus, because user-space
11736 * can expect that the number of allowed cids can reach the number of
11737 * allowed cpus.
11738 */
11739 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11740 dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11741 if (!mm_cid_is_unset(dst_cid) &&
11742 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11743 return;
11744 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11745 src_rq = cpu_rq(src_cpu);
11746 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11747 if (src_cid == -1)
11748 return;
11749 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11750 src_cid);
11751 if (src_cid == -1)
11752 return;
11753 if (!mm_cid_is_unset(dst_cid)) {
11754 __mm_cid_put(mm, src_cid);
11755 return;
11756 }
11757 /* Move src_cid to dst cpu. */
11758 mm_cid_snapshot_time(dst_rq, mm);
11759 WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11760 }
11761
11762 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11763 int cpu)
11764 {
11765 struct rq *rq = cpu_rq(cpu);
11766 struct task_struct *t;
11767 unsigned long flags;
11768 int cid, lazy_cid;
11769
11770 cid = READ_ONCE(pcpu_cid->cid);
11771 if (!mm_cid_is_valid(cid))
11772 return;
11773
11774 /*
11775 * Clear the cpu cid if it is set to keep cid allocation compact. If
11776 * there happens to be other tasks left on the source cpu using this
11777 * mm, the next task using this mm will reallocate its cid on context
11778 * switch.
11779 */
11780 lazy_cid = mm_cid_set_lazy_put(cid);
11781 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11782 return;
11783
11784 /*
11785 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11786 * rq->curr->mm matches the scheduler barrier in context_switch()
11787 * between store to rq->curr and load of prev and next task's
11788 * per-mm/cpu cid.
11789 *
11790 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11791 * rq->curr->mm_cid_active matches the barrier in
11792 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11793 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11794 * load of per-mm/cpu cid.
11795 */
11796
11797 /*
11798 * If we observe an active task using the mm on this rq after setting
11799 * the lazy-put flag, that task will be responsible for transitioning
11800 * from lazy-put flag set to MM_CID_UNSET.
11801 */
11802 rcu_read_lock();
11803 t = rcu_dereference(rq->curr);
11804 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) {
11805 rcu_read_unlock();
11806 return;
11807 }
11808 rcu_read_unlock();
11809
11810 /*
11811 * The cid is unused, so it can be unset.
11812 * Disable interrupts to keep the window of cid ownership without rq
11813 * lock small.
11814 */
11815 local_irq_save(flags);
11816 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11817 __mm_cid_put(mm, cid);
11818 local_irq_restore(flags);
11819 }
11820
11821 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11822 {
11823 struct rq *rq = cpu_rq(cpu);
11824 struct mm_cid *pcpu_cid;
11825 struct task_struct *curr;
11826 u64 rq_clock;
11827
11828 /*
11829 * rq->clock load is racy on 32-bit but one spurious clear once in a
11830 * while is irrelevant.
11831 */
11832 rq_clock = READ_ONCE(rq->clock);
11833 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11834
11835 /*
11836 * In order to take care of infrequently scheduled tasks, bump the time
11837 * snapshot associated with this cid if an active task using the mm is
11838 * observed on this rq.
11839 */
11840 rcu_read_lock();
11841 curr = rcu_dereference(rq->curr);
11842 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11843 WRITE_ONCE(pcpu_cid->time, rq_clock);
11844 rcu_read_unlock();
11845 return;
11846 }
11847 rcu_read_unlock();
11848
11849 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11850 return;
11851 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11852 }
11853
11854 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11855 int weight)
11856 {
11857 struct mm_cid *pcpu_cid;
11858 int cid;
11859
11860 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11861 cid = READ_ONCE(pcpu_cid->cid);
11862 if (!mm_cid_is_valid(cid) || cid < weight)
11863 return;
11864 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11865 }
11866
11867 static void task_mm_cid_work(struct callback_head *work)
11868 {
11869 unsigned long now = jiffies, old_scan, next_scan;
11870 struct task_struct *t = current;
11871 struct cpumask *cidmask;
11872 struct mm_struct *mm;
11873 int weight, cpu;
11874
11875 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11876
11877 work->next = work; /* Prevent double-add */
11878 if (t->flags & PF_EXITING)
11879 return;
11880 mm = t->mm;
11881 if (!mm)
11882 return;
11883 old_scan = READ_ONCE(mm->mm_cid_next_scan);
11884 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11885 if (!old_scan) {
11886 unsigned long res;
11887
11888 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
11889 if (res != old_scan)
11890 old_scan = res;
11891 else
11892 old_scan = next_scan;
11893 }
11894 if (time_before(now, old_scan))
11895 return;
11896 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
11897 return;
11898 cidmask = mm_cidmask(mm);
11899 /* Clear cids that were not recently used. */
11900 for_each_possible_cpu(cpu)
11901 sched_mm_cid_remote_clear_old(mm, cpu);
11902 weight = cpumask_weight(cidmask);
11903 /*
11904 * Clear cids that are greater or equal to the cidmask weight to
11905 * recompact it.
11906 */
11907 for_each_possible_cpu(cpu)
11908 sched_mm_cid_remote_clear_weight(mm, cpu, weight);
11909 }
11910
11911 void init_sched_mm_cid(struct task_struct *t)
11912 {
11913 struct mm_struct *mm = t->mm;
11914 int mm_users = 0;
11915
11916 if (mm) {
11917 mm_users = atomic_read(&mm->mm_users);
11918 if (mm_users == 1)
11919 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11920 }
11921 t->cid_work.next = &t->cid_work; /* Protect against double add */
11922 init_task_work(&t->cid_work, task_mm_cid_work);
11923 }
11924
11925 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
11926 {
11927 struct callback_head *work = &curr->cid_work;
11928 unsigned long now = jiffies;
11929
11930 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
11931 work->next != work)
11932 return;
11933 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
11934 return;
11935 task_work_add(curr, work, TWA_RESUME);
11936 }
11937
11938 void sched_mm_cid_exit_signals(struct task_struct *t)
11939 {
11940 struct mm_struct *mm = t->mm;
11941 struct rq_flags rf;
11942 struct rq *rq;
11943
11944 if (!mm)
11945 return;
11946
11947 preempt_disable();
11948 rq = this_rq();
11949 rq_lock_irqsave(rq, &rf);
11950 preempt_enable_no_resched(); /* holding spinlock */
11951 WRITE_ONCE(t->mm_cid_active, 0);
11952 /*
11953 * Store t->mm_cid_active before loading per-mm/cpu cid.
11954 * Matches barrier in sched_mm_cid_remote_clear_old().
11955 */
11956 smp_mb();
11957 mm_cid_put(mm);
11958 t->last_mm_cid = t->mm_cid = -1;
11959 rq_unlock_irqrestore(rq, &rf);
11960 }
11961
11962 void sched_mm_cid_before_execve(struct task_struct *t)
11963 {
11964 struct mm_struct *mm = t->mm;
11965 struct rq_flags rf;
11966 struct rq *rq;
11967
11968 if (!mm)
11969 return;
11970
11971 preempt_disable();
11972 rq = this_rq();
11973 rq_lock_irqsave(rq, &rf);
11974 preempt_enable_no_resched(); /* holding spinlock */
11975 WRITE_ONCE(t->mm_cid_active, 0);
11976 /*
11977 * Store t->mm_cid_active before loading per-mm/cpu cid.
11978 * Matches barrier in sched_mm_cid_remote_clear_old().
11979 */
11980 smp_mb();
11981 mm_cid_put(mm);
11982 t->last_mm_cid = t->mm_cid = -1;
11983 rq_unlock_irqrestore(rq, &rf);
11984 }
11985
11986 void sched_mm_cid_after_execve(struct task_struct *t)
11987 {
11988 struct mm_struct *mm = t->mm;
11989 struct rq_flags rf;
11990 struct rq *rq;
11991
11992 if (!mm)
11993 return;
11994
11995 preempt_disable();
11996 rq = this_rq();
11997 rq_lock_irqsave(rq, &rf);
11998 preempt_enable_no_resched(); /* holding spinlock */
11999 WRITE_ONCE(t->mm_cid_active, 1);
12000 /*
12001 * Store t->mm_cid_active before loading per-mm/cpu cid.
12002 * Matches barrier in sched_mm_cid_remote_clear_old().
12003 */
12004 smp_mb();
12005 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12006 rq_unlock_irqrestore(rq, &rf);
12007 rseq_set_notify_resume(t);
12008 }
12009
12010 void sched_mm_cid_fork(struct task_struct *t)
12011 {
12012 WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12013 t->mm_cid_active = 1;
12014 }
12015 #endif