]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched/core.c
sched/core: Remove unused argument from init_[rt|dl]_rq()
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 unsigned long delta;
96 ktime_t soft, hard, now;
97
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
104
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111 }
112
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118 void update_rq_clock(struct rq *rq)
119 {
120 s64 delta;
121
122 lockdep_assert_held(&rq->lock);
123
124 if (rq->clock_skip_update & RQCF_ACT_SKIP)
125 return;
126
127 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
128 if (delta < 0)
129 return;
130 rq->clock += delta;
131 update_rq_clock_task(rq, delta);
132 }
133
134 /*
135 * Debugging: various feature bits
136 */
137
138 #define SCHED_FEAT(name, enabled) \
139 (1UL << __SCHED_FEAT_##name) * enabled |
140
141 const_debug unsigned int sysctl_sched_features =
142 #include "features.h"
143 0;
144
145 #undef SCHED_FEAT
146
147 #ifdef CONFIG_SCHED_DEBUG
148 #define SCHED_FEAT(name, enabled) \
149 #name ,
150
151 static const char * const sched_feat_names[] = {
152 #include "features.h"
153 };
154
155 #undef SCHED_FEAT
156
157 static int sched_feat_show(struct seq_file *m, void *v)
158 {
159 int i;
160
161 for (i = 0; i < __SCHED_FEAT_NR; i++) {
162 if (!(sysctl_sched_features & (1UL << i)))
163 seq_puts(m, "NO_");
164 seq_printf(m, "%s ", sched_feat_names[i]);
165 }
166 seq_puts(m, "\n");
167
168 return 0;
169 }
170
171 #ifdef HAVE_JUMP_LABEL
172
173 #define jump_label_key__true STATIC_KEY_INIT_TRUE
174 #define jump_label_key__false STATIC_KEY_INIT_FALSE
175
176 #define SCHED_FEAT(name, enabled) \
177 jump_label_key__##enabled ,
178
179 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
180 #include "features.h"
181 };
182
183 #undef SCHED_FEAT
184
185 static void sched_feat_disable(int i)
186 {
187 if (static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_dec(&sched_feat_keys[i]);
189 }
190
191 static void sched_feat_enable(int i)
192 {
193 if (!static_key_enabled(&sched_feat_keys[i]))
194 static_key_slow_inc(&sched_feat_keys[i]);
195 }
196 #else
197 static void sched_feat_disable(int i) { };
198 static void sched_feat_enable(int i) { };
199 #endif /* HAVE_JUMP_LABEL */
200
201 static int sched_feat_set(char *cmp)
202 {
203 int i;
204 int neg = 0;
205
206 if (strncmp(cmp, "NO_", 3) == 0) {
207 neg = 1;
208 cmp += 3;
209 }
210
211 for (i = 0; i < __SCHED_FEAT_NR; i++) {
212 if (strcmp(cmp, sched_feat_names[i]) == 0) {
213 if (neg) {
214 sysctl_sched_features &= ~(1UL << i);
215 sched_feat_disable(i);
216 } else {
217 sysctl_sched_features |= (1UL << i);
218 sched_feat_enable(i);
219 }
220 break;
221 }
222 }
223
224 return i;
225 }
226
227 static ssize_t
228 sched_feat_write(struct file *filp, const char __user *ubuf,
229 size_t cnt, loff_t *ppos)
230 {
231 char buf[64];
232 char *cmp;
233 int i;
234 struct inode *inode;
235
236 if (cnt > 63)
237 cnt = 63;
238
239 if (copy_from_user(&buf, ubuf, cnt))
240 return -EFAULT;
241
242 buf[cnt] = 0;
243 cmp = strstrip(buf);
244
245 /* Ensure the static_key remains in a consistent state */
246 inode = file_inode(filp);
247 mutex_lock(&inode->i_mutex);
248 i = sched_feat_set(cmp);
249 mutex_unlock(&inode->i_mutex);
250 if (i == __SCHED_FEAT_NR)
251 return -EINVAL;
252
253 *ppos += cnt;
254
255 return cnt;
256 }
257
258 static int sched_feat_open(struct inode *inode, struct file *filp)
259 {
260 return single_open(filp, sched_feat_show, NULL);
261 }
262
263 static const struct file_operations sched_feat_fops = {
264 .open = sched_feat_open,
265 .write = sched_feat_write,
266 .read = seq_read,
267 .llseek = seq_lseek,
268 .release = single_release,
269 };
270
271 static __init int sched_init_debug(void)
272 {
273 debugfs_create_file("sched_features", 0644, NULL, NULL,
274 &sched_feat_fops);
275
276 return 0;
277 }
278 late_initcall(sched_init_debug);
279 #endif /* CONFIG_SCHED_DEBUG */
280
281 /*
282 * Number of tasks to iterate in a single balance run.
283 * Limited because this is done with IRQs disabled.
284 */
285 const_debug unsigned int sysctl_sched_nr_migrate = 32;
286
287 /*
288 * period over which we average the RT time consumption, measured
289 * in ms.
290 *
291 * default: 1s
292 */
293 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
294
295 /*
296 * period over which we measure -rt task cpu usage in us.
297 * default: 1s
298 */
299 unsigned int sysctl_sched_rt_period = 1000000;
300
301 __read_mostly int scheduler_running;
302
303 /*
304 * part of the period that we allow rt tasks to run in us.
305 * default: 0.95s
306 */
307 int sysctl_sched_rt_runtime = 950000;
308
309 /*
310 * this_rq_lock - lock this runqueue and disable interrupts.
311 */
312 static struct rq *this_rq_lock(void)
313 __acquires(rq->lock)
314 {
315 struct rq *rq;
316
317 local_irq_disable();
318 rq = this_rq();
319 raw_spin_lock(&rq->lock);
320
321 return rq;
322 }
323
324 #ifdef CONFIG_SCHED_HRTICK
325 /*
326 * Use HR-timers to deliver accurate preemption points.
327 */
328
329 static void hrtick_clear(struct rq *rq)
330 {
331 if (hrtimer_active(&rq->hrtick_timer))
332 hrtimer_cancel(&rq->hrtick_timer);
333 }
334
335 /*
336 * High-resolution timer tick.
337 * Runs from hardirq context with interrupts disabled.
338 */
339 static enum hrtimer_restart hrtick(struct hrtimer *timer)
340 {
341 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
342
343 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
344
345 raw_spin_lock(&rq->lock);
346 update_rq_clock(rq);
347 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
348 raw_spin_unlock(&rq->lock);
349
350 return HRTIMER_NORESTART;
351 }
352
353 #ifdef CONFIG_SMP
354
355 static int __hrtick_restart(struct rq *rq)
356 {
357 struct hrtimer *timer = &rq->hrtick_timer;
358 ktime_t time = hrtimer_get_softexpires(timer);
359
360 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
361 }
362
363 /*
364 * called from hardirq (IPI) context
365 */
366 static void __hrtick_start(void *arg)
367 {
368 struct rq *rq = arg;
369
370 raw_spin_lock(&rq->lock);
371 __hrtick_restart(rq);
372 rq->hrtick_csd_pending = 0;
373 raw_spin_unlock(&rq->lock);
374 }
375
376 /*
377 * Called to set the hrtick timer state.
378 *
379 * called with rq->lock held and irqs disabled
380 */
381 void hrtick_start(struct rq *rq, u64 delay)
382 {
383 struct hrtimer *timer = &rq->hrtick_timer;
384 ktime_t time;
385 s64 delta;
386
387 /*
388 * Don't schedule slices shorter than 10000ns, that just
389 * doesn't make sense and can cause timer DoS.
390 */
391 delta = max_t(s64, delay, 10000LL);
392 time = ktime_add_ns(timer->base->get_time(), delta);
393
394 hrtimer_set_expires(timer, time);
395
396 if (rq == this_rq()) {
397 __hrtick_restart(rq);
398 } else if (!rq->hrtick_csd_pending) {
399 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
400 rq->hrtick_csd_pending = 1;
401 }
402 }
403
404 static int
405 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
406 {
407 int cpu = (int)(long)hcpu;
408
409 switch (action) {
410 case CPU_UP_CANCELED:
411 case CPU_UP_CANCELED_FROZEN:
412 case CPU_DOWN_PREPARE:
413 case CPU_DOWN_PREPARE_FROZEN:
414 case CPU_DEAD:
415 case CPU_DEAD_FROZEN:
416 hrtick_clear(cpu_rq(cpu));
417 return NOTIFY_OK;
418 }
419
420 return NOTIFY_DONE;
421 }
422
423 static __init void init_hrtick(void)
424 {
425 hotcpu_notifier(hotplug_hrtick, 0);
426 }
427 #else
428 /*
429 * Called to set the hrtick timer state.
430 *
431 * called with rq->lock held and irqs disabled
432 */
433 void hrtick_start(struct rq *rq, u64 delay)
434 {
435 /*
436 * Don't schedule slices shorter than 10000ns, that just
437 * doesn't make sense. Rely on vruntime for fairness.
438 */
439 delay = max_t(u64, delay, 10000LL);
440 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
441 HRTIMER_MODE_REL_PINNED, 0);
442 }
443
444 static inline void init_hrtick(void)
445 {
446 }
447 #endif /* CONFIG_SMP */
448
449 static void init_rq_hrtick(struct rq *rq)
450 {
451 #ifdef CONFIG_SMP
452 rq->hrtick_csd_pending = 0;
453
454 rq->hrtick_csd.flags = 0;
455 rq->hrtick_csd.func = __hrtick_start;
456 rq->hrtick_csd.info = rq;
457 #endif
458
459 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
460 rq->hrtick_timer.function = hrtick;
461 }
462 #else /* CONFIG_SCHED_HRTICK */
463 static inline void hrtick_clear(struct rq *rq)
464 {
465 }
466
467 static inline void init_rq_hrtick(struct rq *rq)
468 {
469 }
470
471 static inline void init_hrtick(void)
472 {
473 }
474 #endif /* CONFIG_SCHED_HRTICK */
475
476 /*
477 * cmpxchg based fetch_or, macro so it works for different integer types
478 */
479 #define fetch_or(ptr, val) \
480 ({ typeof(*(ptr)) __old, __val = *(ptr); \
481 for (;;) { \
482 __old = cmpxchg((ptr), __val, __val | (val)); \
483 if (__old == __val) \
484 break; \
485 __val = __old; \
486 } \
487 __old; \
488 })
489
490 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
491 /*
492 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
493 * this avoids any races wrt polling state changes and thereby avoids
494 * spurious IPIs.
495 */
496 static bool set_nr_and_not_polling(struct task_struct *p)
497 {
498 struct thread_info *ti = task_thread_info(p);
499 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
500 }
501
502 /*
503 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
504 *
505 * If this returns true, then the idle task promises to call
506 * sched_ttwu_pending() and reschedule soon.
507 */
508 static bool set_nr_if_polling(struct task_struct *p)
509 {
510 struct thread_info *ti = task_thread_info(p);
511 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
512
513 for (;;) {
514 if (!(val & _TIF_POLLING_NRFLAG))
515 return false;
516 if (val & _TIF_NEED_RESCHED)
517 return true;
518 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
519 if (old == val)
520 break;
521 val = old;
522 }
523 return true;
524 }
525
526 #else
527 static bool set_nr_and_not_polling(struct task_struct *p)
528 {
529 set_tsk_need_resched(p);
530 return true;
531 }
532
533 #ifdef CONFIG_SMP
534 static bool set_nr_if_polling(struct task_struct *p)
535 {
536 return false;
537 }
538 #endif
539 #endif
540
541 /*
542 * resched_curr - mark rq's current task 'to be rescheduled now'.
543 *
544 * On UP this means the setting of the need_resched flag, on SMP it
545 * might also involve a cross-CPU call to trigger the scheduler on
546 * the target CPU.
547 */
548 void resched_curr(struct rq *rq)
549 {
550 struct task_struct *curr = rq->curr;
551 int cpu;
552
553 lockdep_assert_held(&rq->lock);
554
555 if (test_tsk_need_resched(curr))
556 return;
557
558 cpu = cpu_of(rq);
559
560 if (cpu == smp_processor_id()) {
561 set_tsk_need_resched(curr);
562 set_preempt_need_resched();
563 return;
564 }
565
566 if (set_nr_and_not_polling(curr))
567 smp_send_reschedule(cpu);
568 else
569 trace_sched_wake_idle_without_ipi(cpu);
570 }
571
572 void resched_cpu(int cpu)
573 {
574 struct rq *rq = cpu_rq(cpu);
575 unsigned long flags;
576
577 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
578 return;
579 resched_curr(rq);
580 raw_spin_unlock_irqrestore(&rq->lock, flags);
581 }
582
583 #ifdef CONFIG_SMP
584 #ifdef CONFIG_NO_HZ_COMMON
585 /*
586 * In the semi idle case, use the nearest busy cpu for migrating timers
587 * from an idle cpu. This is good for power-savings.
588 *
589 * We don't do similar optimization for completely idle system, as
590 * selecting an idle cpu will add more delays to the timers than intended
591 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
592 */
593 int get_nohz_timer_target(int pinned)
594 {
595 int cpu = smp_processor_id();
596 int i;
597 struct sched_domain *sd;
598
599 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
600 return cpu;
601
602 rcu_read_lock();
603 for_each_domain(cpu, sd) {
604 for_each_cpu(i, sched_domain_span(sd)) {
605 if (!idle_cpu(i)) {
606 cpu = i;
607 goto unlock;
608 }
609 }
610 }
611 unlock:
612 rcu_read_unlock();
613 return cpu;
614 }
615 /*
616 * When add_timer_on() enqueues a timer into the timer wheel of an
617 * idle CPU then this timer might expire before the next timer event
618 * which is scheduled to wake up that CPU. In case of a completely
619 * idle system the next event might even be infinite time into the
620 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
621 * leaves the inner idle loop so the newly added timer is taken into
622 * account when the CPU goes back to idle and evaluates the timer
623 * wheel for the next timer event.
624 */
625 static void wake_up_idle_cpu(int cpu)
626 {
627 struct rq *rq = cpu_rq(cpu);
628
629 if (cpu == smp_processor_id())
630 return;
631
632 if (set_nr_and_not_polling(rq->idle))
633 smp_send_reschedule(cpu);
634 else
635 trace_sched_wake_idle_without_ipi(cpu);
636 }
637
638 static bool wake_up_full_nohz_cpu(int cpu)
639 {
640 /*
641 * We just need the target to call irq_exit() and re-evaluate
642 * the next tick. The nohz full kick at least implies that.
643 * If needed we can still optimize that later with an
644 * empty IRQ.
645 */
646 if (tick_nohz_full_cpu(cpu)) {
647 if (cpu != smp_processor_id() ||
648 tick_nohz_tick_stopped())
649 tick_nohz_full_kick_cpu(cpu);
650 return true;
651 }
652
653 return false;
654 }
655
656 void wake_up_nohz_cpu(int cpu)
657 {
658 if (!wake_up_full_nohz_cpu(cpu))
659 wake_up_idle_cpu(cpu);
660 }
661
662 static inline bool got_nohz_idle_kick(void)
663 {
664 int cpu = smp_processor_id();
665
666 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
667 return false;
668
669 if (idle_cpu(cpu) && !need_resched())
670 return true;
671
672 /*
673 * We can't run Idle Load Balance on this CPU for this time so we
674 * cancel it and clear NOHZ_BALANCE_KICK
675 */
676 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
677 return false;
678 }
679
680 #else /* CONFIG_NO_HZ_COMMON */
681
682 static inline bool got_nohz_idle_kick(void)
683 {
684 return false;
685 }
686
687 #endif /* CONFIG_NO_HZ_COMMON */
688
689 #ifdef CONFIG_NO_HZ_FULL
690 bool sched_can_stop_tick(void)
691 {
692 /*
693 * FIFO realtime policy runs the highest priority task. Other runnable
694 * tasks are of a lower priority. The scheduler tick does nothing.
695 */
696 if (current->policy == SCHED_FIFO)
697 return true;
698
699 /*
700 * Round-robin realtime tasks time slice with other tasks at the same
701 * realtime priority. Is this task the only one at this priority?
702 */
703 if (current->policy == SCHED_RR) {
704 struct sched_rt_entity *rt_se = &current->rt;
705
706 return rt_se->run_list.prev == rt_se->run_list.next;
707 }
708
709 /*
710 * More than one running task need preemption.
711 * nr_running update is assumed to be visible
712 * after IPI is sent from wakers.
713 */
714 if (this_rq()->nr_running > 1)
715 return false;
716
717 return true;
718 }
719 #endif /* CONFIG_NO_HZ_FULL */
720
721 void sched_avg_update(struct rq *rq)
722 {
723 s64 period = sched_avg_period();
724
725 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
726 /*
727 * Inline assembly required to prevent the compiler
728 * optimising this loop into a divmod call.
729 * See __iter_div_u64_rem() for another example of this.
730 */
731 asm("" : "+rm" (rq->age_stamp));
732 rq->age_stamp += period;
733 rq->rt_avg /= 2;
734 }
735 }
736
737 #endif /* CONFIG_SMP */
738
739 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
740 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
741 /*
742 * Iterate task_group tree rooted at *from, calling @down when first entering a
743 * node and @up when leaving it for the final time.
744 *
745 * Caller must hold rcu_lock or sufficient equivalent.
746 */
747 int walk_tg_tree_from(struct task_group *from,
748 tg_visitor down, tg_visitor up, void *data)
749 {
750 struct task_group *parent, *child;
751 int ret;
752
753 parent = from;
754
755 down:
756 ret = (*down)(parent, data);
757 if (ret)
758 goto out;
759 list_for_each_entry_rcu(child, &parent->children, siblings) {
760 parent = child;
761 goto down;
762
763 up:
764 continue;
765 }
766 ret = (*up)(parent, data);
767 if (ret || parent == from)
768 goto out;
769
770 child = parent;
771 parent = parent->parent;
772 if (parent)
773 goto up;
774 out:
775 return ret;
776 }
777
778 int tg_nop(struct task_group *tg, void *data)
779 {
780 return 0;
781 }
782 #endif
783
784 static void set_load_weight(struct task_struct *p)
785 {
786 int prio = p->static_prio - MAX_RT_PRIO;
787 struct load_weight *load = &p->se.load;
788
789 /*
790 * SCHED_IDLE tasks get minimal weight:
791 */
792 if (p->policy == SCHED_IDLE) {
793 load->weight = scale_load(WEIGHT_IDLEPRIO);
794 load->inv_weight = WMULT_IDLEPRIO;
795 return;
796 }
797
798 load->weight = scale_load(prio_to_weight[prio]);
799 load->inv_weight = prio_to_wmult[prio];
800 }
801
802 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
803 {
804 update_rq_clock(rq);
805 sched_info_queued(rq, p);
806 p->sched_class->enqueue_task(rq, p, flags);
807 }
808
809 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
810 {
811 update_rq_clock(rq);
812 sched_info_dequeued(rq, p);
813 p->sched_class->dequeue_task(rq, p, flags);
814 }
815
816 void activate_task(struct rq *rq, struct task_struct *p, int flags)
817 {
818 if (task_contributes_to_load(p))
819 rq->nr_uninterruptible--;
820
821 enqueue_task(rq, p, flags);
822 }
823
824 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
825 {
826 if (task_contributes_to_load(p))
827 rq->nr_uninterruptible++;
828
829 dequeue_task(rq, p, flags);
830 }
831
832 static void update_rq_clock_task(struct rq *rq, s64 delta)
833 {
834 /*
835 * In theory, the compile should just see 0 here, and optimize out the call
836 * to sched_rt_avg_update. But I don't trust it...
837 */
838 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
839 s64 steal = 0, irq_delta = 0;
840 #endif
841 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
842 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
843
844 /*
845 * Since irq_time is only updated on {soft,}irq_exit, we might run into
846 * this case when a previous update_rq_clock() happened inside a
847 * {soft,}irq region.
848 *
849 * When this happens, we stop ->clock_task and only update the
850 * prev_irq_time stamp to account for the part that fit, so that a next
851 * update will consume the rest. This ensures ->clock_task is
852 * monotonic.
853 *
854 * It does however cause some slight miss-attribution of {soft,}irq
855 * time, a more accurate solution would be to update the irq_time using
856 * the current rq->clock timestamp, except that would require using
857 * atomic ops.
858 */
859 if (irq_delta > delta)
860 irq_delta = delta;
861
862 rq->prev_irq_time += irq_delta;
863 delta -= irq_delta;
864 #endif
865 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
866 if (static_key_false((&paravirt_steal_rq_enabled))) {
867 steal = paravirt_steal_clock(cpu_of(rq));
868 steal -= rq->prev_steal_time_rq;
869
870 if (unlikely(steal > delta))
871 steal = delta;
872
873 rq->prev_steal_time_rq += steal;
874 delta -= steal;
875 }
876 #endif
877
878 rq->clock_task += delta;
879
880 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
881 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
882 sched_rt_avg_update(rq, irq_delta + steal);
883 #endif
884 }
885
886 void sched_set_stop_task(int cpu, struct task_struct *stop)
887 {
888 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
889 struct task_struct *old_stop = cpu_rq(cpu)->stop;
890
891 if (stop) {
892 /*
893 * Make it appear like a SCHED_FIFO task, its something
894 * userspace knows about and won't get confused about.
895 *
896 * Also, it will make PI more or less work without too
897 * much confusion -- but then, stop work should not
898 * rely on PI working anyway.
899 */
900 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
901
902 stop->sched_class = &stop_sched_class;
903 }
904
905 cpu_rq(cpu)->stop = stop;
906
907 if (old_stop) {
908 /*
909 * Reset it back to a normal scheduling class so that
910 * it can die in pieces.
911 */
912 old_stop->sched_class = &rt_sched_class;
913 }
914 }
915
916 /*
917 * __normal_prio - return the priority that is based on the static prio
918 */
919 static inline int __normal_prio(struct task_struct *p)
920 {
921 return p->static_prio;
922 }
923
924 /*
925 * Calculate the expected normal priority: i.e. priority
926 * without taking RT-inheritance into account. Might be
927 * boosted by interactivity modifiers. Changes upon fork,
928 * setprio syscalls, and whenever the interactivity
929 * estimator recalculates.
930 */
931 static inline int normal_prio(struct task_struct *p)
932 {
933 int prio;
934
935 if (task_has_dl_policy(p))
936 prio = MAX_DL_PRIO-1;
937 else if (task_has_rt_policy(p))
938 prio = MAX_RT_PRIO-1 - p->rt_priority;
939 else
940 prio = __normal_prio(p);
941 return prio;
942 }
943
944 /*
945 * Calculate the current priority, i.e. the priority
946 * taken into account by the scheduler. This value might
947 * be boosted by RT tasks, or might be boosted by
948 * interactivity modifiers. Will be RT if the task got
949 * RT-boosted. If not then it returns p->normal_prio.
950 */
951 static int effective_prio(struct task_struct *p)
952 {
953 p->normal_prio = normal_prio(p);
954 /*
955 * If we are RT tasks or we were boosted to RT priority,
956 * keep the priority unchanged. Otherwise, update priority
957 * to the normal priority:
958 */
959 if (!rt_prio(p->prio))
960 return p->normal_prio;
961 return p->prio;
962 }
963
964 /**
965 * task_curr - is this task currently executing on a CPU?
966 * @p: the task in question.
967 *
968 * Return: 1 if the task is currently executing. 0 otherwise.
969 */
970 inline int task_curr(const struct task_struct *p)
971 {
972 return cpu_curr(task_cpu(p)) == p;
973 }
974
975 /*
976 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
977 */
978 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
979 const struct sched_class *prev_class,
980 int oldprio)
981 {
982 if (prev_class != p->sched_class) {
983 if (prev_class->switched_from)
984 prev_class->switched_from(rq, p);
985 /* Possble rq->lock 'hole'. */
986 p->sched_class->switched_to(rq, p);
987 } else if (oldprio != p->prio || dl_task(p))
988 p->sched_class->prio_changed(rq, p, oldprio);
989 }
990
991 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
992 {
993 const struct sched_class *class;
994
995 if (p->sched_class == rq->curr->sched_class) {
996 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
997 } else {
998 for_each_class(class) {
999 if (class == rq->curr->sched_class)
1000 break;
1001 if (class == p->sched_class) {
1002 resched_curr(rq);
1003 break;
1004 }
1005 }
1006 }
1007
1008 /*
1009 * A queue event has occurred, and we're going to schedule. In
1010 * this case, we can save a useless back to back clock update.
1011 */
1012 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1013 rq_clock_skip_update(rq, true);
1014 }
1015
1016 #ifdef CONFIG_SMP
1017 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1018 {
1019 #ifdef CONFIG_SCHED_DEBUG
1020 /*
1021 * We should never call set_task_cpu() on a blocked task,
1022 * ttwu() will sort out the placement.
1023 */
1024 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1025 !p->on_rq);
1026
1027 #ifdef CONFIG_LOCKDEP
1028 /*
1029 * The caller should hold either p->pi_lock or rq->lock, when changing
1030 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1031 *
1032 * sched_move_task() holds both and thus holding either pins the cgroup,
1033 * see task_group().
1034 *
1035 * Furthermore, all task_rq users should acquire both locks, see
1036 * task_rq_lock().
1037 */
1038 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1039 lockdep_is_held(&task_rq(p)->lock)));
1040 #endif
1041 #endif
1042
1043 trace_sched_migrate_task(p, new_cpu);
1044
1045 if (task_cpu(p) != new_cpu) {
1046 if (p->sched_class->migrate_task_rq)
1047 p->sched_class->migrate_task_rq(p, new_cpu);
1048 p->se.nr_migrations++;
1049 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1050 }
1051
1052 __set_task_cpu(p, new_cpu);
1053 }
1054
1055 static void __migrate_swap_task(struct task_struct *p, int cpu)
1056 {
1057 if (task_on_rq_queued(p)) {
1058 struct rq *src_rq, *dst_rq;
1059
1060 src_rq = task_rq(p);
1061 dst_rq = cpu_rq(cpu);
1062
1063 deactivate_task(src_rq, p, 0);
1064 set_task_cpu(p, cpu);
1065 activate_task(dst_rq, p, 0);
1066 check_preempt_curr(dst_rq, p, 0);
1067 } else {
1068 /*
1069 * Task isn't running anymore; make it appear like we migrated
1070 * it before it went to sleep. This means on wakeup we make the
1071 * previous cpu our targer instead of where it really is.
1072 */
1073 p->wake_cpu = cpu;
1074 }
1075 }
1076
1077 struct migration_swap_arg {
1078 struct task_struct *src_task, *dst_task;
1079 int src_cpu, dst_cpu;
1080 };
1081
1082 static int migrate_swap_stop(void *data)
1083 {
1084 struct migration_swap_arg *arg = data;
1085 struct rq *src_rq, *dst_rq;
1086 int ret = -EAGAIN;
1087
1088 src_rq = cpu_rq(arg->src_cpu);
1089 dst_rq = cpu_rq(arg->dst_cpu);
1090
1091 double_raw_lock(&arg->src_task->pi_lock,
1092 &arg->dst_task->pi_lock);
1093 double_rq_lock(src_rq, dst_rq);
1094 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1095 goto unlock;
1096
1097 if (task_cpu(arg->src_task) != arg->src_cpu)
1098 goto unlock;
1099
1100 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1101 goto unlock;
1102
1103 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1104 goto unlock;
1105
1106 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1107 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1108
1109 ret = 0;
1110
1111 unlock:
1112 double_rq_unlock(src_rq, dst_rq);
1113 raw_spin_unlock(&arg->dst_task->pi_lock);
1114 raw_spin_unlock(&arg->src_task->pi_lock);
1115
1116 return ret;
1117 }
1118
1119 /*
1120 * Cross migrate two tasks
1121 */
1122 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1123 {
1124 struct migration_swap_arg arg;
1125 int ret = -EINVAL;
1126
1127 arg = (struct migration_swap_arg){
1128 .src_task = cur,
1129 .src_cpu = task_cpu(cur),
1130 .dst_task = p,
1131 .dst_cpu = task_cpu(p),
1132 };
1133
1134 if (arg.src_cpu == arg.dst_cpu)
1135 goto out;
1136
1137 /*
1138 * These three tests are all lockless; this is OK since all of them
1139 * will be re-checked with proper locks held further down the line.
1140 */
1141 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1142 goto out;
1143
1144 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1145 goto out;
1146
1147 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1148 goto out;
1149
1150 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1151 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1152
1153 out:
1154 return ret;
1155 }
1156
1157 struct migration_arg {
1158 struct task_struct *task;
1159 int dest_cpu;
1160 };
1161
1162 static int migration_cpu_stop(void *data);
1163
1164 /*
1165 * wait_task_inactive - wait for a thread to unschedule.
1166 *
1167 * If @match_state is nonzero, it's the @p->state value just checked and
1168 * not expected to change. If it changes, i.e. @p might have woken up,
1169 * then return zero. When we succeed in waiting for @p to be off its CPU,
1170 * we return a positive number (its total switch count). If a second call
1171 * a short while later returns the same number, the caller can be sure that
1172 * @p has remained unscheduled the whole time.
1173 *
1174 * The caller must ensure that the task *will* unschedule sometime soon,
1175 * else this function might spin for a *long* time. This function can't
1176 * be called with interrupts off, or it may introduce deadlock with
1177 * smp_call_function() if an IPI is sent by the same process we are
1178 * waiting to become inactive.
1179 */
1180 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1181 {
1182 unsigned long flags;
1183 int running, queued;
1184 unsigned long ncsw;
1185 struct rq *rq;
1186
1187 for (;;) {
1188 /*
1189 * We do the initial early heuristics without holding
1190 * any task-queue locks at all. We'll only try to get
1191 * the runqueue lock when things look like they will
1192 * work out!
1193 */
1194 rq = task_rq(p);
1195
1196 /*
1197 * If the task is actively running on another CPU
1198 * still, just relax and busy-wait without holding
1199 * any locks.
1200 *
1201 * NOTE! Since we don't hold any locks, it's not
1202 * even sure that "rq" stays as the right runqueue!
1203 * But we don't care, since "task_running()" will
1204 * return false if the runqueue has changed and p
1205 * is actually now running somewhere else!
1206 */
1207 while (task_running(rq, p)) {
1208 if (match_state && unlikely(p->state != match_state))
1209 return 0;
1210 cpu_relax();
1211 }
1212
1213 /*
1214 * Ok, time to look more closely! We need the rq
1215 * lock now, to be *sure*. If we're wrong, we'll
1216 * just go back and repeat.
1217 */
1218 rq = task_rq_lock(p, &flags);
1219 trace_sched_wait_task(p);
1220 running = task_running(rq, p);
1221 queued = task_on_rq_queued(p);
1222 ncsw = 0;
1223 if (!match_state || p->state == match_state)
1224 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1225 task_rq_unlock(rq, p, &flags);
1226
1227 /*
1228 * If it changed from the expected state, bail out now.
1229 */
1230 if (unlikely(!ncsw))
1231 break;
1232
1233 /*
1234 * Was it really running after all now that we
1235 * checked with the proper locks actually held?
1236 *
1237 * Oops. Go back and try again..
1238 */
1239 if (unlikely(running)) {
1240 cpu_relax();
1241 continue;
1242 }
1243
1244 /*
1245 * It's not enough that it's not actively running,
1246 * it must be off the runqueue _entirely_, and not
1247 * preempted!
1248 *
1249 * So if it was still runnable (but just not actively
1250 * running right now), it's preempted, and we should
1251 * yield - it could be a while.
1252 */
1253 if (unlikely(queued)) {
1254 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1255
1256 set_current_state(TASK_UNINTERRUPTIBLE);
1257 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1258 continue;
1259 }
1260
1261 /*
1262 * Ahh, all good. It wasn't running, and it wasn't
1263 * runnable, which means that it will never become
1264 * running in the future either. We're all done!
1265 */
1266 break;
1267 }
1268
1269 return ncsw;
1270 }
1271
1272 /***
1273 * kick_process - kick a running thread to enter/exit the kernel
1274 * @p: the to-be-kicked thread
1275 *
1276 * Cause a process which is running on another CPU to enter
1277 * kernel-mode, without any delay. (to get signals handled.)
1278 *
1279 * NOTE: this function doesn't have to take the runqueue lock,
1280 * because all it wants to ensure is that the remote task enters
1281 * the kernel. If the IPI races and the task has been migrated
1282 * to another CPU then no harm is done and the purpose has been
1283 * achieved as well.
1284 */
1285 void kick_process(struct task_struct *p)
1286 {
1287 int cpu;
1288
1289 preempt_disable();
1290 cpu = task_cpu(p);
1291 if ((cpu != smp_processor_id()) && task_curr(p))
1292 smp_send_reschedule(cpu);
1293 preempt_enable();
1294 }
1295 EXPORT_SYMBOL_GPL(kick_process);
1296 #endif /* CONFIG_SMP */
1297
1298 #ifdef CONFIG_SMP
1299 /*
1300 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1301 */
1302 static int select_fallback_rq(int cpu, struct task_struct *p)
1303 {
1304 int nid = cpu_to_node(cpu);
1305 const struct cpumask *nodemask = NULL;
1306 enum { cpuset, possible, fail } state = cpuset;
1307 int dest_cpu;
1308
1309 /*
1310 * If the node that the cpu is on has been offlined, cpu_to_node()
1311 * will return -1. There is no cpu on the node, and we should
1312 * select the cpu on the other node.
1313 */
1314 if (nid != -1) {
1315 nodemask = cpumask_of_node(nid);
1316
1317 /* Look for allowed, online CPU in same node. */
1318 for_each_cpu(dest_cpu, nodemask) {
1319 if (!cpu_online(dest_cpu))
1320 continue;
1321 if (!cpu_active(dest_cpu))
1322 continue;
1323 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1324 return dest_cpu;
1325 }
1326 }
1327
1328 for (;;) {
1329 /* Any allowed, online CPU? */
1330 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1331 if (!cpu_online(dest_cpu))
1332 continue;
1333 if (!cpu_active(dest_cpu))
1334 continue;
1335 goto out;
1336 }
1337
1338 switch (state) {
1339 case cpuset:
1340 /* No more Mr. Nice Guy. */
1341 cpuset_cpus_allowed_fallback(p);
1342 state = possible;
1343 break;
1344
1345 case possible:
1346 do_set_cpus_allowed(p, cpu_possible_mask);
1347 state = fail;
1348 break;
1349
1350 case fail:
1351 BUG();
1352 break;
1353 }
1354 }
1355
1356 out:
1357 if (state != cpuset) {
1358 /*
1359 * Don't tell them about moving exiting tasks or
1360 * kernel threads (both mm NULL), since they never
1361 * leave kernel.
1362 */
1363 if (p->mm && printk_ratelimit()) {
1364 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1365 task_pid_nr(p), p->comm, cpu);
1366 }
1367 }
1368
1369 return dest_cpu;
1370 }
1371
1372 /*
1373 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1374 */
1375 static inline
1376 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1377 {
1378 if (p->nr_cpus_allowed > 1)
1379 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1380
1381 /*
1382 * In order not to call set_task_cpu() on a blocking task we need
1383 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1384 * cpu.
1385 *
1386 * Since this is common to all placement strategies, this lives here.
1387 *
1388 * [ this allows ->select_task() to simply return task_cpu(p) and
1389 * not worry about this generic constraint ]
1390 */
1391 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1392 !cpu_online(cpu)))
1393 cpu = select_fallback_rq(task_cpu(p), p);
1394
1395 return cpu;
1396 }
1397
1398 static void update_avg(u64 *avg, u64 sample)
1399 {
1400 s64 diff = sample - *avg;
1401 *avg += diff >> 3;
1402 }
1403 #endif
1404
1405 static void
1406 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1407 {
1408 #ifdef CONFIG_SCHEDSTATS
1409 struct rq *rq = this_rq();
1410
1411 #ifdef CONFIG_SMP
1412 int this_cpu = smp_processor_id();
1413
1414 if (cpu == this_cpu) {
1415 schedstat_inc(rq, ttwu_local);
1416 schedstat_inc(p, se.statistics.nr_wakeups_local);
1417 } else {
1418 struct sched_domain *sd;
1419
1420 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1421 rcu_read_lock();
1422 for_each_domain(this_cpu, sd) {
1423 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1424 schedstat_inc(sd, ttwu_wake_remote);
1425 break;
1426 }
1427 }
1428 rcu_read_unlock();
1429 }
1430
1431 if (wake_flags & WF_MIGRATED)
1432 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1433
1434 #endif /* CONFIG_SMP */
1435
1436 schedstat_inc(rq, ttwu_count);
1437 schedstat_inc(p, se.statistics.nr_wakeups);
1438
1439 if (wake_flags & WF_SYNC)
1440 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1441
1442 #endif /* CONFIG_SCHEDSTATS */
1443 }
1444
1445 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1446 {
1447 activate_task(rq, p, en_flags);
1448 p->on_rq = TASK_ON_RQ_QUEUED;
1449
1450 /* if a worker is waking up, notify workqueue */
1451 if (p->flags & PF_WQ_WORKER)
1452 wq_worker_waking_up(p, cpu_of(rq));
1453 }
1454
1455 /*
1456 * Mark the task runnable and perform wakeup-preemption.
1457 */
1458 static void
1459 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1460 {
1461 check_preempt_curr(rq, p, wake_flags);
1462 trace_sched_wakeup(p, true);
1463
1464 p->state = TASK_RUNNING;
1465 #ifdef CONFIG_SMP
1466 if (p->sched_class->task_woken)
1467 p->sched_class->task_woken(rq, p);
1468
1469 if (rq->idle_stamp) {
1470 u64 delta = rq_clock(rq) - rq->idle_stamp;
1471 u64 max = 2*rq->max_idle_balance_cost;
1472
1473 update_avg(&rq->avg_idle, delta);
1474
1475 if (rq->avg_idle > max)
1476 rq->avg_idle = max;
1477
1478 rq->idle_stamp = 0;
1479 }
1480 #endif
1481 }
1482
1483 static void
1484 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1485 {
1486 #ifdef CONFIG_SMP
1487 if (p->sched_contributes_to_load)
1488 rq->nr_uninterruptible--;
1489 #endif
1490
1491 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1492 ttwu_do_wakeup(rq, p, wake_flags);
1493 }
1494
1495 /*
1496 * Called in case the task @p isn't fully descheduled from its runqueue,
1497 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1498 * since all we need to do is flip p->state to TASK_RUNNING, since
1499 * the task is still ->on_rq.
1500 */
1501 static int ttwu_remote(struct task_struct *p, int wake_flags)
1502 {
1503 struct rq *rq;
1504 int ret = 0;
1505
1506 rq = __task_rq_lock(p);
1507 if (task_on_rq_queued(p)) {
1508 /* check_preempt_curr() may use rq clock */
1509 update_rq_clock(rq);
1510 ttwu_do_wakeup(rq, p, wake_flags);
1511 ret = 1;
1512 }
1513 __task_rq_unlock(rq);
1514
1515 return ret;
1516 }
1517
1518 #ifdef CONFIG_SMP
1519 void sched_ttwu_pending(void)
1520 {
1521 struct rq *rq = this_rq();
1522 struct llist_node *llist = llist_del_all(&rq->wake_list);
1523 struct task_struct *p;
1524 unsigned long flags;
1525
1526 if (!llist)
1527 return;
1528
1529 raw_spin_lock_irqsave(&rq->lock, flags);
1530
1531 while (llist) {
1532 p = llist_entry(llist, struct task_struct, wake_entry);
1533 llist = llist_next(llist);
1534 ttwu_do_activate(rq, p, 0);
1535 }
1536
1537 raw_spin_unlock_irqrestore(&rq->lock, flags);
1538 }
1539
1540 void scheduler_ipi(void)
1541 {
1542 /*
1543 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1544 * TIF_NEED_RESCHED remotely (for the first time) will also send
1545 * this IPI.
1546 */
1547 preempt_fold_need_resched();
1548
1549 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1550 return;
1551
1552 /*
1553 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1554 * traditionally all their work was done from the interrupt return
1555 * path. Now that we actually do some work, we need to make sure
1556 * we do call them.
1557 *
1558 * Some archs already do call them, luckily irq_enter/exit nest
1559 * properly.
1560 *
1561 * Arguably we should visit all archs and update all handlers,
1562 * however a fair share of IPIs are still resched only so this would
1563 * somewhat pessimize the simple resched case.
1564 */
1565 irq_enter();
1566 sched_ttwu_pending();
1567
1568 /*
1569 * Check if someone kicked us for doing the nohz idle load balance.
1570 */
1571 if (unlikely(got_nohz_idle_kick())) {
1572 this_rq()->idle_balance = 1;
1573 raise_softirq_irqoff(SCHED_SOFTIRQ);
1574 }
1575 irq_exit();
1576 }
1577
1578 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1579 {
1580 struct rq *rq = cpu_rq(cpu);
1581
1582 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1583 if (!set_nr_if_polling(rq->idle))
1584 smp_send_reschedule(cpu);
1585 else
1586 trace_sched_wake_idle_without_ipi(cpu);
1587 }
1588 }
1589
1590 void wake_up_if_idle(int cpu)
1591 {
1592 struct rq *rq = cpu_rq(cpu);
1593 unsigned long flags;
1594
1595 rcu_read_lock();
1596
1597 if (!is_idle_task(rcu_dereference(rq->curr)))
1598 goto out;
1599
1600 if (set_nr_if_polling(rq->idle)) {
1601 trace_sched_wake_idle_without_ipi(cpu);
1602 } else {
1603 raw_spin_lock_irqsave(&rq->lock, flags);
1604 if (is_idle_task(rq->curr))
1605 smp_send_reschedule(cpu);
1606 /* Else cpu is not in idle, do nothing here */
1607 raw_spin_unlock_irqrestore(&rq->lock, flags);
1608 }
1609
1610 out:
1611 rcu_read_unlock();
1612 }
1613
1614 bool cpus_share_cache(int this_cpu, int that_cpu)
1615 {
1616 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1617 }
1618 #endif /* CONFIG_SMP */
1619
1620 static void ttwu_queue(struct task_struct *p, int cpu)
1621 {
1622 struct rq *rq = cpu_rq(cpu);
1623
1624 #if defined(CONFIG_SMP)
1625 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1626 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1627 ttwu_queue_remote(p, cpu);
1628 return;
1629 }
1630 #endif
1631
1632 raw_spin_lock(&rq->lock);
1633 ttwu_do_activate(rq, p, 0);
1634 raw_spin_unlock(&rq->lock);
1635 }
1636
1637 /**
1638 * try_to_wake_up - wake up a thread
1639 * @p: the thread to be awakened
1640 * @state: the mask of task states that can be woken
1641 * @wake_flags: wake modifier flags (WF_*)
1642 *
1643 * Put it on the run-queue if it's not already there. The "current"
1644 * thread is always on the run-queue (except when the actual
1645 * re-schedule is in progress), and as such you're allowed to do
1646 * the simpler "current->state = TASK_RUNNING" to mark yourself
1647 * runnable without the overhead of this.
1648 *
1649 * Return: %true if @p was woken up, %false if it was already running.
1650 * or @state didn't match @p's state.
1651 */
1652 static int
1653 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1654 {
1655 unsigned long flags;
1656 int cpu, success = 0;
1657
1658 /*
1659 * If we are going to wake up a thread waiting for CONDITION we
1660 * need to ensure that CONDITION=1 done by the caller can not be
1661 * reordered with p->state check below. This pairs with mb() in
1662 * set_current_state() the waiting thread does.
1663 */
1664 smp_mb__before_spinlock();
1665 raw_spin_lock_irqsave(&p->pi_lock, flags);
1666 if (!(p->state & state))
1667 goto out;
1668
1669 success = 1; /* we're going to change ->state */
1670 cpu = task_cpu(p);
1671
1672 if (p->on_rq && ttwu_remote(p, wake_flags))
1673 goto stat;
1674
1675 #ifdef CONFIG_SMP
1676 /*
1677 * If the owning (remote) cpu is still in the middle of schedule() with
1678 * this task as prev, wait until its done referencing the task.
1679 */
1680 while (p->on_cpu)
1681 cpu_relax();
1682 /*
1683 * Pairs with the smp_wmb() in finish_lock_switch().
1684 */
1685 smp_rmb();
1686
1687 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1688 p->state = TASK_WAKING;
1689
1690 if (p->sched_class->task_waking)
1691 p->sched_class->task_waking(p);
1692
1693 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1694 if (task_cpu(p) != cpu) {
1695 wake_flags |= WF_MIGRATED;
1696 set_task_cpu(p, cpu);
1697 }
1698 #endif /* CONFIG_SMP */
1699
1700 ttwu_queue(p, cpu);
1701 stat:
1702 ttwu_stat(p, cpu, wake_flags);
1703 out:
1704 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1705
1706 return success;
1707 }
1708
1709 /**
1710 * try_to_wake_up_local - try to wake up a local task with rq lock held
1711 * @p: the thread to be awakened
1712 *
1713 * Put @p on the run-queue if it's not already there. The caller must
1714 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1715 * the current task.
1716 */
1717 static void try_to_wake_up_local(struct task_struct *p)
1718 {
1719 struct rq *rq = task_rq(p);
1720
1721 if (WARN_ON_ONCE(rq != this_rq()) ||
1722 WARN_ON_ONCE(p == current))
1723 return;
1724
1725 lockdep_assert_held(&rq->lock);
1726
1727 if (!raw_spin_trylock(&p->pi_lock)) {
1728 raw_spin_unlock(&rq->lock);
1729 raw_spin_lock(&p->pi_lock);
1730 raw_spin_lock(&rq->lock);
1731 }
1732
1733 if (!(p->state & TASK_NORMAL))
1734 goto out;
1735
1736 if (!task_on_rq_queued(p))
1737 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1738
1739 ttwu_do_wakeup(rq, p, 0);
1740 ttwu_stat(p, smp_processor_id(), 0);
1741 out:
1742 raw_spin_unlock(&p->pi_lock);
1743 }
1744
1745 /**
1746 * wake_up_process - Wake up a specific process
1747 * @p: The process to be woken up.
1748 *
1749 * Attempt to wake up the nominated process and move it to the set of runnable
1750 * processes.
1751 *
1752 * Return: 1 if the process was woken up, 0 if it was already running.
1753 *
1754 * It may be assumed that this function implies a write memory barrier before
1755 * changing the task state if and only if any tasks are woken up.
1756 */
1757 int wake_up_process(struct task_struct *p)
1758 {
1759 WARN_ON(task_is_stopped_or_traced(p));
1760 return try_to_wake_up(p, TASK_NORMAL, 0);
1761 }
1762 EXPORT_SYMBOL(wake_up_process);
1763
1764 int wake_up_state(struct task_struct *p, unsigned int state)
1765 {
1766 return try_to_wake_up(p, state, 0);
1767 }
1768
1769 /*
1770 * This function clears the sched_dl_entity static params.
1771 */
1772 void __dl_clear_params(struct task_struct *p)
1773 {
1774 struct sched_dl_entity *dl_se = &p->dl;
1775
1776 dl_se->dl_runtime = 0;
1777 dl_se->dl_deadline = 0;
1778 dl_se->dl_period = 0;
1779 dl_se->flags = 0;
1780 dl_se->dl_bw = 0;
1781
1782 dl_se->dl_throttled = 0;
1783 dl_se->dl_new = 1;
1784 dl_se->dl_yielded = 0;
1785 }
1786
1787 /*
1788 * Perform scheduler related setup for a newly forked process p.
1789 * p is forked by current.
1790 *
1791 * __sched_fork() is basic setup used by init_idle() too:
1792 */
1793 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1794 {
1795 p->on_rq = 0;
1796
1797 p->se.on_rq = 0;
1798 p->se.exec_start = 0;
1799 p->se.sum_exec_runtime = 0;
1800 p->se.prev_sum_exec_runtime = 0;
1801 p->se.nr_migrations = 0;
1802 p->se.vruntime = 0;
1803 #ifdef CONFIG_SMP
1804 p->se.avg.decay_count = 0;
1805 #endif
1806 INIT_LIST_HEAD(&p->se.group_node);
1807
1808 #ifdef CONFIG_SCHEDSTATS
1809 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1810 #endif
1811
1812 RB_CLEAR_NODE(&p->dl.rb_node);
1813 init_dl_task_timer(&p->dl);
1814 __dl_clear_params(p);
1815
1816 INIT_LIST_HEAD(&p->rt.run_list);
1817
1818 #ifdef CONFIG_PREEMPT_NOTIFIERS
1819 INIT_HLIST_HEAD(&p->preempt_notifiers);
1820 #endif
1821
1822 #ifdef CONFIG_NUMA_BALANCING
1823 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1824 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1825 p->mm->numa_scan_seq = 0;
1826 }
1827
1828 if (clone_flags & CLONE_VM)
1829 p->numa_preferred_nid = current->numa_preferred_nid;
1830 else
1831 p->numa_preferred_nid = -1;
1832
1833 p->node_stamp = 0ULL;
1834 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1835 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1836 p->numa_work.next = &p->numa_work;
1837 p->numa_faults = NULL;
1838 p->last_task_numa_placement = 0;
1839 p->last_sum_exec_runtime = 0;
1840
1841 p->numa_group = NULL;
1842 #endif /* CONFIG_NUMA_BALANCING */
1843 }
1844
1845 #ifdef CONFIG_NUMA_BALANCING
1846 #ifdef CONFIG_SCHED_DEBUG
1847 void set_numabalancing_state(bool enabled)
1848 {
1849 if (enabled)
1850 sched_feat_set("NUMA");
1851 else
1852 sched_feat_set("NO_NUMA");
1853 }
1854 #else
1855 __read_mostly bool numabalancing_enabled;
1856
1857 void set_numabalancing_state(bool enabled)
1858 {
1859 numabalancing_enabled = enabled;
1860 }
1861 #endif /* CONFIG_SCHED_DEBUG */
1862
1863 #ifdef CONFIG_PROC_SYSCTL
1864 int sysctl_numa_balancing(struct ctl_table *table, int write,
1865 void __user *buffer, size_t *lenp, loff_t *ppos)
1866 {
1867 struct ctl_table t;
1868 int err;
1869 int state = numabalancing_enabled;
1870
1871 if (write && !capable(CAP_SYS_ADMIN))
1872 return -EPERM;
1873
1874 t = *table;
1875 t.data = &state;
1876 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1877 if (err < 0)
1878 return err;
1879 if (write)
1880 set_numabalancing_state(state);
1881 return err;
1882 }
1883 #endif
1884 #endif
1885
1886 /*
1887 * fork()/clone()-time setup:
1888 */
1889 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1890 {
1891 unsigned long flags;
1892 int cpu = get_cpu();
1893
1894 __sched_fork(clone_flags, p);
1895 /*
1896 * We mark the process as running here. This guarantees that
1897 * nobody will actually run it, and a signal or other external
1898 * event cannot wake it up and insert it on the runqueue either.
1899 */
1900 p->state = TASK_RUNNING;
1901
1902 /*
1903 * Make sure we do not leak PI boosting priority to the child.
1904 */
1905 p->prio = current->normal_prio;
1906
1907 /*
1908 * Revert to default priority/policy on fork if requested.
1909 */
1910 if (unlikely(p->sched_reset_on_fork)) {
1911 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1912 p->policy = SCHED_NORMAL;
1913 p->static_prio = NICE_TO_PRIO(0);
1914 p->rt_priority = 0;
1915 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1916 p->static_prio = NICE_TO_PRIO(0);
1917
1918 p->prio = p->normal_prio = __normal_prio(p);
1919 set_load_weight(p);
1920
1921 /*
1922 * We don't need the reset flag anymore after the fork. It has
1923 * fulfilled its duty:
1924 */
1925 p->sched_reset_on_fork = 0;
1926 }
1927
1928 if (dl_prio(p->prio)) {
1929 put_cpu();
1930 return -EAGAIN;
1931 } else if (rt_prio(p->prio)) {
1932 p->sched_class = &rt_sched_class;
1933 } else {
1934 p->sched_class = &fair_sched_class;
1935 }
1936
1937 if (p->sched_class->task_fork)
1938 p->sched_class->task_fork(p);
1939
1940 /*
1941 * The child is not yet in the pid-hash so no cgroup attach races,
1942 * and the cgroup is pinned to this child due to cgroup_fork()
1943 * is ran before sched_fork().
1944 *
1945 * Silence PROVE_RCU.
1946 */
1947 raw_spin_lock_irqsave(&p->pi_lock, flags);
1948 set_task_cpu(p, cpu);
1949 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1950
1951 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1952 if (likely(sched_info_on()))
1953 memset(&p->sched_info, 0, sizeof(p->sched_info));
1954 #endif
1955 #if defined(CONFIG_SMP)
1956 p->on_cpu = 0;
1957 #endif
1958 init_task_preempt_count(p);
1959 #ifdef CONFIG_SMP
1960 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1961 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1962 #endif
1963
1964 put_cpu();
1965 return 0;
1966 }
1967
1968 unsigned long to_ratio(u64 period, u64 runtime)
1969 {
1970 if (runtime == RUNTIME_INF)
1971 return 1ULL << 20;
1972
1973 /*
1974 * Doing this here saves a lot of checks in all
1975 * the calling paths, and returning zero seems
1976 * safe for them anyway.
1977 */
1978 if (period == 0)
1979 return 0;
1980
1981 return div64_u64(runtime << 20, period);
1982 }
1983
1984 #ifdef CONFIG_SMP
1985 inline struct dl_bw *dl_bw_of(int i)
1986 {
1987 rcu_lockdep_assert(rcu_read_lock_sched_held(),
1988 "sched RCU must be held");
1989 return &cpu_rq(i)->rd->dl_bw;
1990 }
1991
1992 static inline int dl_bw_cpus(int i)
1993 {
1994 struct root_domain *rd = cpu_rq(i)->rd;
1995 int cpus = 0;
1996
1997 rcu_lockdep_assert(rcu_read_lock_sched_held(),
1998 "sched RCU must be held");
1999 for_each_cpu_and(i, rd->span, cpu_active_mask)
2000 cpus++;
2001
2002 return cpus;
2003 }
2004 #else
2005 inline struct dl_bw *dl_bw_of(int i)
2006 {
2007 return &cpu_rq(i)->dl.dl_bw;
2008 }
2009
2010 static inline int dl_bw_cpus(int i)
2011 {
2012 return 1;
2013 }
2014 #endif
2015
2016 /*
2017 * We must be sure that accepting a new task (or allowing changing the
2018 * parameters of an existing one) is consistent with the bandwidth
2019 * constraints. If yes, this function also accordingly updates the currently
2020 * allocated bandwidth to reflect the new situation.
2021 *
2022 * This function is called while holding p's rq->lock.
2023 *
2024 * XXX we should delay bw change until the task's 0-lag point, see
2025 * __setparam_dl().
2026 */
2027 static int dl_overflow(struct task_struct *p, int policy,
2028 const struct sched_attr *attr)
2029 {
2030
2031 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2032 u64 period = attr->sched_period ?: attr->sched_deadline;
2033 u64 runtime = attr->sched_runtime;
2034 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2035 int cpus, err = -1;
2036
2037 if (new_bw == p->dl.dl_bw)
2038 return 0;
2039
2040 /*
2041 * Either if a task, enters, leave, or stays -deadline but changes
2042 * its parameters, we may need to update accordingly the total
2043 * allocated bandwidth of the container.
2044 */
2045 raw_spin_lock(&dl_b->lock);
2046 cpus = dl_bw_cpus(task_cpu(p));
2047 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2048 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2049 __dl_add(dl_b, new_bw);
2050 err = 0;
2051 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2052 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2053 __dl_clear(dl_b, p->dl.dl_bw);
2054 __dl_add(dl_b, new_bw);
2055 err = 0;
2056 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2057 __dl_clear(dl_b, p->dl.dl_bw);
2058 err = 0;
2059 }
2060 raw_spin_unlock(&dl_b->lock);
2061
2062 return err;
2063 }
2064
2065 extern void init_dl_bw(struct dl_bw *dl_b);
2066
2067 /*
2068 * wake_up_new_task - wake up a newly created task for the first time.
2069 *
2070 * This function will do some initial scheduler statistics housekeeping
2071 * that must be done for every newly created context, then puts the task
2072 * on the runqueue and wakes it.
2073 */
2074 void wake_up_new_task(struct task_struct *p)
2075 {
2076 unsigned long flags;
2077 struct rq *rq;
2078
2079 raw_spin_lock_irqsave(&p->pi_lock, flags);
2080 #ifdef CONFIG_SMP
2081 /*
2082 * Fork balancing, do it here and not earlier because:
2083 * - cpus_allowed can change in the fork path
2084 * - any previously selected cpu might disappear through hotplug
2085 */
2086 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2087 #endif
2088
2089 /* Initialize new task's runnable average */
2090 init_task_runnable_average(p);
2091 rq = __task_rq_lock(p);
2092 activate_task(rq, p, 0);
2093 p->on_rq = TASK_ON_RQ_QUEUED;
2094 trace_sched_wakeup_new(p, true);
2095 check_preempt_curr(rq, p, WF_FORK);
2096 #ifdef CONFIG_SMP
2097 if (p->sched_class->task_woken)
2098 p->sched_class->task_woken(rq, p);
2099 #endif
2100 task_rq_unlock(rq, p, &flags);
2101 }
2102
2103 #ifdef CONFIG_PREEMPT_NOTIFIERS
2104
2105 /**
2106 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2107 * @notifier: notifier struct to register
2108 */
2109 void preempt_notifier_register(struct preempt_notifier *notifier)
2110 {
2111 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2112 }
2113 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2114
2115 /**
2116 * preempt_notifier_unregister - no longer interested in preemption notifications
2117 * @notifier: notifier struct to unregister
2118 *
2119 * This is safe to call from within a preemption notifier.
2120 */
2121 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2122 {
2123 hlist_del(&notifier->link);
2124 }
2125 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2126
2127 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2128 {
2129 struct preempt_notifier *notifier;
2130
2131 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2132 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2133 }
2134
2135 static void
2136 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2137 struct task_struct *next)
2138 {
2139 struct preempt_notifier *notifier;
2140
2141 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2142 notifier->ops->sched_out(notifier, next);
2143 }
2144
2145 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2146
2147 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2148 {
2149 }
2150
2151 static void
2152 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2153 struct task_struct *next)
2154 {
2155 }
2156
2157 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2158
2159 /**
2160 * prepare_task_switch - prepare to switch tasks
2161 * @rq: the runqueue preparing to switch
2162 * @prev: the current task that is being switched out
2163 * @next: the task we are going to switch to.
2164 *
2165 * This is called with the rq lock held and interrupts off. It must
2166 * be paired with a subsequent finish_task_switch after the context
2167 * switch.
2168 *
2169 * prepare_task_switch sets up locking and calls architecture specific
2170 * hooks.
2171 */
2172 static inline void
2173 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2174 struct task_struct *next)
2175 {
2176 trace_sched_switch(prev, next);
2177 sched_info_switch(rq, prev, next);
2178 perf_event_task_sched_out(prev, next);
2179 fire_sched_out_preempt_notifiers(prev, next);
2180 prepare_lock_switch(rq, next);
2181 prepare_arch_switch(next);
2182 }
2183
2184 /**
2185 * finish_task_switch - clean up after a task-switch
2186 * @prev: the thread we just switched away from.
2187 *
2188 * finish_task_switch must be called after the context switch, paired
2189 * with a prepare_task_switch call before the context switch.
2190 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2191 * and do any other architecture-specific cleanup actions.
2192 *
2193 * Note that we may have delayed dropping an mm in context_switch(). If
2194 * so, we finish that here outside of the runqueue lock. (Doing it
2195 * with the lock held can cause deadlocks; see schedule() for
2196 * details.)
2197 *
2198 * The context switch have flipped the stack from under us and restored the
2199 * local variables which were saved when this task called schedule() in the
2200 * past. prev == current is still correct but we need to recalculate this_rq
2201 * because prev may have moved to another CPU.
2202 */
2203 static struct rq *finish_task_switch(struct task_struct *prev)
2204 __releases(rq->lock)
2205 {
2206 struct rq *rq = this_rq();
2207 struct mm_struct *mm = rq->prev_mm;
2208 long prev_state;
2209
2210 rq->prev_mm = NULL;
2211
2212 /*
2213 * A task struct has one reference for the use as "current".
2214 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2215 * schedule one last time. The schedule call will never return, and
2216 * the scheduled task must drop that reference.
2217 * The test for TASK_DEAD must occur while the runqueue locks are
2218 * still held, otherwise prev could be scheduled on another cpu, die
2219 * there before we look at prev->state, and then the reference would
2220 * be dropped twice.
2221 * Manfred Spraul <manfred@colorfullife.com>
2222 */
2223 prev_state = prev->state;
2224 vtime_task_switch(prev);
2225 finish_arch_switch(prev);
2226 perf_event_task_sched_in(prev, current);
2227 finish_lock_switch(rq, prev);
2228 finish_arch_post_lock_switch();
2229
2230 fire_sched_in_preempt_notifiers(current);
2231 if (mm)
2232 mmdrop(mm);
2233 if (unlikely(prev_state == TASK_DEAD)) {
2234 if (prev->sched_class->task_dead)
2235 prev->sched_class->task_dead(prev);
2236
2237 /*
2238 * Remove function-return probe instances associated with this
2239 * task and put them back on the free list.
2240 */
2241 kprobe_flush_task(prev);
2242 put_task_struct(prev);
2243 }
2244
2245 tick_nohz_task_switch(current);
2246 return rq;
2247 }
2248
2249 #ifdef CONFIG_SMP
2250
2251 /* rq->lock is NOT held, but preemption is disabled */
2252 static inline void post_schedule(struct rq *rq)
2253 {
2254 if (rq->post_schedule) {
2255 unsigned long flags;
2256
2257 raw_spin_lock_irqsave(&rq->lock, flags);
2258 if (rq->curr->sched_class->post_schedule)
2259 rq->curr->sched_class->post_schedule(rq);
2260 raw_spin_unlock_irqrestore(&rq->lock, flags);
2261
2262 rq->post_schedule = 0;
2263 }
2264 }
2265
2266 #else
2267
2268 static inline void post_schedule(struct rq *rq)
2269 {
2270 }
2271
2272 #endif
2273
2274 /**
2275 * schedule_tail - first thing a freshly forked thread must call.
2276 * @prev: the thread we just switched away from.
2277 */
2278 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2279 __releases(rq->lock)
2280 {
2281 struct rq *rq;
2282
2283 /* finish_task_switch() drops rq->lock and enables preemtion */
2284 preempt_disable();
2285 rq = finish_task_switch(prev);
2286 post_schedule(rq);
2287 preempt_enable();
2288
2289 if (current->set_child_tid)
2290 put_user(task_pid_vnr(current), current->set_child_tid);
2291 }
2292
2293 /*
2294 * context_switch - switch to the new MM and the new thread's register state.
2295 */
2296 static inline struct rq *
2297 context_switch(struct rq *rq, struct task_struct *prev,
2298 struct task_struct *next)
2299 {
2300 struct mm_struct *mm, *oldmm;
2301
2302 prepare_task_switch(rq, prev, next);
2303
2304 mm = next->mm;
2305 oldmm = prev->active_mm;
2306 /*
2307 * For paravirt, this is coupled with an exit in switch_to to
2308 * combine the page table reload and the switch backend into
2309 * one hypercall.
2310 */
2311 arch_start_context_switch(prev);
2312
2313 if (!mm) {
2314 next->active_mm = oldmm;
2315 atomic_inc(&oldmm->mm_count);
2316 enter_lazy_tlb(oldmm, next);
2317 } else
2318 switch_mm(oldmm, mm, next);
2319
2320 if (!prev->mm) {
2321 prev->active_mm = NULL;
2322 rq->prev_mm = oldmm;
2323 }
2324 /*
2325 * Since the runqueue lock will be released by the next
2326 * task (which is an invalid locking op but in the case
2327 * of the scheduler it's an obvious special-case), so we
2328 * do an early lockdep release here:
2329 */
2330 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2331
2332 context_tracking_task_switch(prev, next);
2333 /* Here we just switch the register state and the stack. */
2334 switch_to(prev, next, prev);
2335 barrier();
2336
2337 return finish_task_switch(prev);
2338 }
2339
2340 /*
2341 * nr_running and nr_context_switches:
2342 *
2343 * externally visible scheduler statistics: current number of runnable
2344 * threads, total number of context switches performed since bootup.
2345 */
2346 unsigned long nr_running(void)
2347 {
2348 unsigned long i, sum = 0;
2349
2350 for_each_online_cpu(i)
2351 sum += cpu_rq(i)->nr_running;
2352
2353 return sum;
2354 }
2355
2356 /*
2357 * Check if only the current task is running on the cpu.
2358 */
2359 bool single_task_running(void)
2360 {
2361 if (cpu_rq(smp_processor_id())->nr_running == 1)
2362 return true;
2363 else
2364 return false;
2365 }
2366 EXPORT_SYMBOL(single_task_running);
2367
2368 unsigned long long nr_context_switches(void)
2369 {
2370 int i;
2371 unsigned long long sum = 0;
2372
2373 for_each_possible_cpu(i)
2374 sum += cpu_rq(i)->nr_switches;
2375
2376 return sum;
2377 }
2378
2379 unsigned long nr_iowait(void)
2380 {
2381 unsigned long i, sum = 0;
2382
2383 for_each_possible_cpu(i)
2384 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2385
2386 return sum;
2387 }
2388
2389 unsigned long nr_iowait_cpu(int cpu)
2390 {
2391 struct rq *this = cpu_rq(cpu);
2392 return atomic_read(&this->nr_iowait);
2393 }
2394
2395 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2396 {
2397 struct rq *this = this_rq();
2398 *nr_waiters = atomic_read(&this->nr_iowait);
2399 *load = this->cpu_load[0];
2400 }
2401
2402 #ifdef CONFIG_SMP
2403
2404 /*
2405 * sched_exec - execve() is a valuable balancing opportunity, because at
2406 * this point the task has the smallest effective memory and cache footprint.
2407 */
2408 void sched_exec(void)
2409 {
2410 struct task_struct *p = current;
2411 unsigned long flags;
2412 int dest_cpu;
2413
2414 raw_spin_lock_irqsave(&p->pi_lock, flags);
2415 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2416 if (dest_cpu == smp_processor_id())
2417 goto unlock;
2418
2419 if (likely(cpu_active(dest_cpu))) {
2420 struct migration_arg arg = { p, dest_cpu };
2421
2422 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2423 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2424 return;
2425 }
2426 unlock:
2427 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2428 }
2429
2430 #endif
2431
2432 DEFINE_PER_CPU(struct kernel_stat, kstat);
2433 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2434
2435 EXPORT_PER_CPU_SYMBOL(kstat);
2436 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2437
2438 /*
2439 * Return accounted runtime for the task.
2440 * In case the task is currently running, return the runtime plus current's
2441 * pending runtime that have not been accounted yet.
2442 */
2443 unsigned long long task_sched_runtime(struct task_struct *p)
2444 {
2445 unsigned long flags;
2446 struct rq *rq;
2447 u64 ns;
2448
2449 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2450 /*
2451 * 64-bit doesn't need locks to atomically read a 64bit value.
2452 * So we have a optimization chance when the task's delta_exec is 0.
2453 * Reading ->on_cpu is racy, but this is ok.
2454 *
2455 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2456 * If we race with it entering cpu, unaccounted time is 0. This is
2457 * indistinguishable from the read occurring a few cycles earlier.
2458 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2459 * been accounted, so we're correct here as well.
2460 */
2461 if (!p->on_cpu || !task_on_rq_queued(p))
2462 return p->se.sum_exec_runtime;
2463 #endif
2464
2465 rq = task_rq_lock(p, &flags);
2466 /*
2467 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2468 * project cycles that may never be accounted to this
2469 * thread, breaking clock_gettime().
2470 */
2471 if (task_current(rq, p) && task_on_rq_queued(p)) {
2472 update_rq_clock(rq);
2473 p->sched_class->update_curr(rq);
2474 }
2475 ns = p->se.sum_exec_runtime;
2476 task_rq_unlock(rq, p, &flags);
2477
2478 return ns;
2479 }
2480
2481 /*
2482 * This function gets called by the timer code, with HZ frequency.
2483 * We call it with interrupts disabled.
2484 */
2485 void scheduler_tick(void)
2486 {
2487 int cpu = smp_processor_id();
2488 struct rq *rq = cpu_rq(cpu);
2489 struct task_struct *curr = rq->curr;
2490
2491 sched_clock_tick();
2492
2493 raw_spin_lock(&rq->lock);
2494 update_rq_clock(rq);
2495 curr->sched_class->task_tick(rq, curr, 0);
2496 update_cpu_load_active(rq);
2497 raw_spin_unlock(&rq->lock);
2498
2499 perf_event_task_tick();
2500
2501 #ifdef CONFIG_SMP
2502 rq->idle_balance = idle_cpu(cpu);
2503 trigger_load_balance(rq);
2504 #endif
2505 rq_last_tick_reset(rq);
2506 }
2507
2508 #ifdef CONFIG_NO_HZ_FULL
2509 /**
2510 * scheduler_tick_max_deferment
2511 *
2512 * Keep at least one tick per second when a single
2513 * active task is running because the scheduler doesn't
2514 * yet completely support full dynticks environment.
2515 *
2516 * This makes sure that uptime, CFS vruntime, load
2517 * balancing, etc... continue to move forward, even
2518 * with a very low granularity.
2519 *
2520 * Return: Maximum deferment in nanoseconds.
2521 */
2522 u64 scheduler_tick_max_deferment(void)
2523 {
2524 struct rq *rq = this_rq();
2525 unsigned long next, now = ACCESS_ONCE(jiffies);
2526
2527 next = rq->last_sched_tick + HZ;
2528
2529 if (time_before_eq(next, now))
2530 return 0;
2531
2532 return jiffies_to_nsecs(next - now);
2533 }
2534 #endif
2535
2536 notrace unsigned long get_parent_ip(unsigned long addr)
2537 {
2538 if (in_lock_functions(addr)) {
2539 addr = CALLER_ADDR2;
2540 if (in_lock_functions(addr))
2541 addr = CALLER_ADDR3;
2542 }
2543 return addr;
2544 }
2545
2546 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2547 defined(CONFIG_PREEMPT_TRACER))
2548
2549 void preempt_count_add(int val)
2550 {
2551 #ifdef CONFIG_DEBUG_PREEMPT
2552 /*
2553 * Underflow?
2554 */
2555 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2556 return;
2557 #endif
2558 __preempt_count_add(val);
2559 #ifdef CONFIG_DEBUG_PREEMPT
2560 /*
2561 * Spinlock count overflowing soon?
2562 */
2563 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2564 PREEMPT_MASK - 10);
2565 #endif
2566 if (preempt_count() == val) {
2567 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2568 #ifdef CONFIG_DEBUG_PREEMPT
2569 current->preempt_disable_ip = ip;
2570 #endif
2571 trace_preempt_off(CALLER_ADDR0, ip);
2572 }
2573 }
2574 EXPORT_SYMBOL(preempt_count_add);
2575 NOKPROBE_SYMBOL(preempt_count_add);
2576
2577 void preempt_count_sub(int val)
2578 {
2579 #ifdef CONFIG_DEBUG_PREEMPT
2580 /*
2581 * Underflow?
2582 */
2583 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2584 return;
2585 /*
2586 * Is the spinlock portion underflowing?
2587 */
2588 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2589 !(preempt_count() & PREEMPT_MASK)))
2590 return;
2591 #endif
2592
2593 if (preempt_count() == val)
2594 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2595 __preempt_count_sub(val);
2596 }
2597 EXPORT_SYMBOL(preempt_count_sub);
2598 NOKPROBE_SYMBOL(preempt_count_sub);
2599
2600 #endif
2601
2602 /*
2603 * Print scheduling while atomic bug:
2604 */
2605 static noinline void __schedule_bug(struct task_struct *prev)
2606 {
2607 if (oops_in_progress)
2608 return;
2609
2610 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2611 prev->comm, prev->pid, preempt_count());
2612
2613 debug_show_held_locks(prev);
2614 print_modules();
2615 if (irqs_disabled())
2616 print_irqtrace_events(prev);
2617 #ifdef CONFIG_DEBUG_PREEMPT
2618 if (in_atomic_preempt_off()) {
2619 pr_err("Preemption disabled at:");
2620 print_ip_sym(current->preempt_disable_ip);
2621 pr_cont("\n");
2622 }
2623 #endif
2624 dump_stack();
2625 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2626 }
2627
2628 /*
2629 * Various schedule()-time debugging checks and statistics:
2630 */
2631 static inline void schedule_debug(struct task_struct *prev)
2632 {
2633 #ifdef CONFIG_SCHED_STACK_END_CHECK
2634 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2635 #endif
2636 /*
2637 * Test if we are atomic. Since do_exit() needs to call into
2638 * schedule() atomically, we ignore that path. Otherwise whine
2639 * if we are scheduling when we should not.
2640 */
2641 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2642 __schedule_bug(prev);
2643 rcu_sleep_check();
2644
2645 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2646
2647 schedstat_inc(this_rq(), sched_count);
2648 }
2649
2650 /*
2651 * Pick up the highest-prio task:
2652 */
2653 static inline struct task_struct *
2654 pick_next_task(struct rq *rq, struct task_struct *prev)
2655 {
2656 const struct sched_class *class = &fair_sched_class;
2657 struct task_struct *p;
2658
2659 /*
2660 * Optimization: we know that if all tasks are in
2661 * the fair class we can call that function directly:
2662 */
2663 if (likely(prev->sched_class == class &&
2664 rq->nr_running == rq->cfs.h_nr_running)) {
2665 p = fair_sched_class.pick_next_task(rq, prev);
2666 if (unlikely(p == RETRY_TASK))
2667 goto again;
2668
2669 /* assumes fair_sched_class->next == idle_sched_class */
2670 if (unlikely(!p))
2671 p = idle_sched_class.pick_next_task(rq, prev);
2672
2673 return p;
2674 }
2675
2676 again:
2677 for_each_class(class) {
2678 p = class->pick_next_task(rq, prev);
2679 if (p) {
2680 if (unlikely(p == RETRY_TASK))
2681 goto again;
2682 return p;
2683 }
2684 }
2685
2686 BUG(); /* the idle class will always have a runnable task */
2687 }
2688
2689 /*
2690 * __schedule() is the main scheduler function.
2691 *
2692 * The main means of driving the scheduler and thus entering this function are:
2693 *
2694 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2695 *
2696 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2697 * paths. For example, see arch/x86/entry_64.S.
2698 *
2699 * To drive preemption between tasks, the scheduler sets the flag in timer
2700 * interrupt handler scheduler_tick().
2701 *
2702 * 3. Wakeups don't really cause entry into schedule(). They add a
2703 * task to the run-queue and that's it.
2704 *
2705 * Now, if the new task added to the run-queue preempts the current
2706 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2707 * called on the nearest possible occasion:
2708 *
2709 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2710 *
2711 * - in syscall or exception context, at the next outmost
2712 * preempt_enable(). (this might be as soon as the wake_up()'s
2713 * spin_unlock()!)
2714 *
2715 * - in IRQ context, return from interrupt-handler to
2716 * preemptible context
2717 *
2718 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2719 * then at the next:
2720 *
2721 * - cond_resched() call
2722 * - explicit schedule() call
2723 * - return from syscall or exception to user-space
2724 * - return from interrupt-handler to user-space
2725 *
2726 * WARNING: all callers must re-check need_resched() afterward and reschedule
2727 * accordingly in case an event triggered the need for rescheduling (such as
2728 * an interrupt waking up a task) while preemption was disabled in __schedule().
2729 */
2730 static void __sched __schedule(void)
2731 {
2732 struct task_struct *prev, *next;
2733 unsigned long *switch_count;
2734 struct rq *rq;
2735 int cpu;
2736
2737 preempt_disable();
2738 cpu = smp_processor_id();
2739 rq = cpu_rq(cpu);
2740 rcu_note_context_switch();
2741 prev = rq->curr;
2742
2743 schedule_debug(prev);
2744
2745 if (sched_feat(HRTICK))
2746 hrtick_clear(rq);
2747
2748 /*
2749 * Make sure that signal_pending_state()->signal_pending() below
2750 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2751 * done by the caller to avoid the race with signal_wake_up().
2752 */
2753 smp_mb__before_spinlock();
2754 raw_spin_lock_irq(&rq->lock);
2755
2756 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2757
2758 switch_count = &prev->nivcsw;
2759 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2760 if (unlikely(signal_pending_state(prev->state, prev))) {
2761 prev->state = TASK_RUNNING;
2762 } else {
2763 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2764 prev->on_rq = 0;
2765
2766 /*
2767 * If a worker went to sleep, notify and ask workqueue
2768 * whether it wants to wake up a task to maintain
2769 * concurrency.
2770 */
2771 if (prev->flags & PF_WQ_WORKER) {
2772 struct task_struct *to_wakeup;
2773
2774 to_wakeup = wq_worker_sleeping(prev, cpu);
2775 if (to_wakeup)
2776 try_to_wake_up_local(to_wakeup);
2777 }
2778 }
2779 switch_count = &prev->nvcsw;
2780 }
2781
2782 if (task_on_rq_queued(prev))
2783 update_rq_clock(rq);
2784
2785 next = pick_next_task(rq, prev);
2786 clear_tsk_need_resched(prev);
2787 clear_preempt_need_resched();
2788 rq->clock_skip_update = 0;
2789
2790 if (likely(prev != next)) {
2791 rq->nr_switches++;
2792 rq->curr = next;
2793 ++*switch_count;
2794
2795 rq = context_switch(rq, prev, next); /* unlocks the rq */
2796 cpu = cpu_of(rq);
2797 } else
2798 raw_spin_unlock_irq(&rq->lock);
2799
2800 post_schedule(rq);
2801
2802 sched_preempt_enable_no_resched();
2803 }
2804
2805 static inline void sched_submit_work(struct task_struct *tsk)
2806 {
2807 if (!tsk->state || tsk_is_pi_blocked(tsk))
2808 return;
2809 /*
2810 * If we are going to sleep and we have plugged IO queued,
2811 * make sure to submit it to avoid deadlocks.
2812 */
2813 if (blk_needs_flush_plug(tsk))
2814 blk_schedule_flush_plug(tsk);
2815 }
2816
2817 asmlinkage __visible void __sched schedule(void)
2818 {
2819 struct task_struct *tsk = current;
2820
2821 sched_submit_work(tsk);
2822 do {
2823 __schedule();
2824 } while (need_resched());
2825 }
2826 EXPORT_SYMBOL(schedule);
2827
2828 #ifdef CONFIG_CONTEXT_TRACKING
2829 asmlinkage __visible void __sched schedule_user(void)
2830 {
2831 /*
2832 * If we come here after a random call to set_need_resched(),
2833 * or we have been woken up remotely but the IPI has not yet arrived,
2834 * we haven't yet exited the RCU idle mode. Do it here manually until
2835 * we find a better solution.
2836 *
2837 * NB: There are buggy callers of this function. Ideally we
2838 * should warn if prev_state != IN_USER, but that will trigger
2839 * too frequently to make sense yet.
2840 */
2841 enum ctx_state prev_state = exception_enter();
2842 schedule();
2843 exception_exit(prev_state);
2844 }
2845 #endif
2846
2847 /**
2848 * schedule_preempt_disabled - called with preemption disabled
2849 *
2850 * Returns with preemption disabled. Note: preempt_count must be 1
2851 */
2852 void __sched schedule_preempt_disabled(void)
2853 {
2854 sched_preempt_enable_no_resched();
2855 schedule();
2856 preempt_disable();
2857 }
2858
2859 static void __sched notrace preempt_schedule_common(void)
2860 {
2861 do {
2862 __preempt_count_add(PREEMPT_ACTIVE);
2863 __schedule();
2864 __preempt_count_sub(PREEMPT_ACTIVE);
2865
2866 /*
2867 * Check again in case we missed a preemption opportunity
2868 * between schedule and now.
2869 */
2870 barrier();
2871 } while (need_resched());
2872 }
2873
2874 #ifdef CONFIG_PREEMPT
2875 /*
2876 * this is the entry point to schedule() from in-kernel preemption
2877 * off of preempt_enable. Kernel preemptions off return from interrupt
2878 * occur there and call schedule directly.
2879 */
2880 asmlinkage __visible void __sched notrace preempt_schedule(void)
2881 {
2882 /*
2883 * If there is a non-zero preempt_count or interrupts are disabled,
2884 * we do not want to preempt the current task. Just return..
2885 */
2886 if (likely(!preemptible()))
2887 return;
2888
2889 preempt_schedule_common();
2890 }
2891 NOKPROBE_SYMBOL(preempt_schedule);
2892 EXPORT_SYMBOL(preempt_schedule);
2893
2894 #ifdef CONFIG_CONTEXT_TRACKING
2895 /**
2896 * preempt_schedule_context - preempt_schedule called by tracing
2897 *
2898 * The tracing infrastructure uses preempt_enable_notrace to prevent
2899 * recursion and tracing preempt enabling caused by the tracing
2900 * infrastructure itself. But as tracing can happen in areas coming
2901 * from userspace or just about to enter userspace, a preempt enable
2902 * can occur before user_exit() is called. This will cause the scheduler
2903 * to be called when the system is still in usermode.
2904 *
2905 * To prevent this, the preempt_enable_notrace will use this function
2906 * instead of preempt_schedule() to exit user context if needed before
2907 * calling the scheduler.
2908 */
2909 asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2910 {
2911 enum ctx_state prev_ctx;
2912
2913 if (likely(!preemptible()))
2914 return;
2915
2916 do {
2917 __preempt_count_add(PREEMPT_ACTIVE);
2918 /*
2919 * Needs preempt disabled in case user_exit() is traced
2920 * and the tracer calls preempt_enable_notrace() causing
2921 * an infinite recursion.
2922 */
2923 prev_ctx = exception_enter();
2924 __schedule();
2925 exception_exit(prev_ctx);
2926
2927 __preempt_count_sub(PREEMPT_ACTIVE);
2928 barrier();
2929 } while (need_resched());
2930 }
2931 EXPORT_SYMBOL_GPL(preempt_schedule_context);
2932 #endif /* CONFIG_CONTEXT_TRACKING */
2933
2934 #endif /* CONFIG_PREEMPT */
2935
2936 /*
2937 * this is the entry point to schedule() from kernel preemption
2938 * off of irq context.
2939 * Note, that this is called and return with irqs disabled. This will
2940 * protect us against recursive calling from irq.
2941 */
2942 asmlinkage __visible void __sched preempt_schedule_irq(void)
2943 {
2944 enum ctx_state prev_state;
2945
2946 /* Catch callers which need to be fixed */
2947 BUG_ON(preempt_count() || !irqs_disabled());
2948
2949 prev_state = exception_enter();
2950
2951 do {
2952 __preempt_count_add(PREEMPT_ACTIVE);
2953 local_irq_enable();
2954 __schedule();
2955 local_irq_disable();
2956 __preempt_count_sub(PREEMPT_ACTIVE);
2957
2958 /*
2959 * Check again in case we missed a preemption opportunity
2960 * between schedule and now.
2961 */
2962 barrier();
2963 } while (need_resched());
2964
2965 exception_exit(prev_state);
2966 }
2967
2968 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2969 void *key)
2970 {
2971 return try_to_wake_up(curr->private, mode, wake_flags);
2972 }
2973 EXPORT_SYMBOL(default_wake_function);
2974
2975 #ifdef CONFIG_RT_MUTEXES
2976
2977 /*
2978 * rt_mutex_setprio - set the current priority of a task
2979 * @p: task
2980 * @prio: prio value (kernel-internal form)
2981 *
2982 * This function changes the 'effective' priority of a task. It does
2983 * not touch ->normal_prio like __setscheduler().
2984 *
2985 * Used by the rt_mutex code to implement priority inheritance
2986 * logic. Call site only calls if the priority of the task changed.
2987 */
2988 void rt_mutex_setprio(struct task_struct *p, int prio)
2989 {
2990 int oldprio, queued, running, enqueue_flag = 0;
2991 struct rq *rq;
2992 const struct sched_class *prev_class;
2993
2994 BUG_ON(prio > MAX_PRIO);
2995
2996 rq = __task_rq_lock(p);
2997
2998 /*
2999 * Idle task boosting is a nono in general. There is one
3000 * exception, when PREEMPT_RT and NOHZ is active:
3001 *
3002 * The idle task calls get_next_timer_interrupt() and holds
3003 * the timer wheel base->lock on the CPU and another CPU wants
3004 * to access the timer (probably to cancel it). We can safely
3005 * ignore the boosting request, as the idle CPU runs this code
3006 * with interrupts disabled and will complete the lock
3007 * protected section without being interrupted. So there is no
3008 * real need to boost.
3009 */
3010 if (unlikely(p == rq->idle)) {
3011 WARN_ON(p != rq->curr);
3012 WARN_ON(p->pi_blocked_on);
3013 goto out_unlock;
3014 }
3015
3016 trace_sched_pi_setprio(p, prio);
3017 oldprio = p->prio;
3018 prev_class = p->sched_class;
3019 queued = task_on_rq_queued(p);
3020 running = task_current(rq, p);
3021 if (queued)
3022 dequeue_task(rq, p, 0);
3023 if (running)
3024 put_prev_task(rq, p);
3025
3026 /*
3027 * Boosting condition are:
3028 * 1. -rt task is running and holds mutex A
3029 * --> -dl task blocks on mutex A
3030 *
3031 * 2. -dl task is running and holds mutex A
3032 * --> -dl task blocks on mutex A and could preempt the
3033 * running task
3034 */
3035 if (dl_prio(prio)) {
3036 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3037 if (!dl_prio(p->normal_prio) ||
3038 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3039 p->dl.dl_boosted = 1;
3040 p->dl.dl_throttled = 0;
3041 enqueue_flag = ENQUEUE_REPLENISH;
3042 } else
3043 p->dl.dl_boosted = 0;
3044 p->sched_class = &dl_sched_class;
3045 } else if (rt_prio(prio)) {
3046 if (dl_prio(oldprio))
3047 p->dl.dl_boosted = 0;
3048 if (oldprio < prio)
3049 enqueue_flag = ENQUEUE_HEAD;
3050 p->sched_class = &rt_sched_class;
3051 } else {
3052 if (dl_prio(oldprio))
3053 p->dl.dl_boosted = 0;
3054 if (rt_prio(oldprio))
3055 p->rt.timeout = 0;
3056 p->sched_class = &fair_sched_class;
3057 }
3058
3059 p->prio = prio;
3060
3061 if (running)
3062 p->sched_class->set_curr_task(rq);
3063 if (queued)
3064 enqueue_task(rq, p, enqueue_flag);
3065
3066 check_class_changed(rq, p, prev_class, oldprio);
3067 out_unlock:
3068 __task_rq_unlock(rq);
3069 }
3070 #endif
3071
3072 void set_user_nice(struct task_struct *p, long nice)
3073 {
3074 int old_prio, delta, queued;
3075 unsigned long flags;
3076 struct rq *rq;
3077
3078 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3079 return;
3080 /*
3081 * We have to be careful, if called from sys_setpriority(),
3082 * the task might be in the middle of scheduling on another CPU.
3083 */
3084 rq = task_rq_lock(p, &flags);
3085 /*
3086 * The RT priorities are set via sched_setscheduler(), but we still
3087 * allow the 'normal' nice value to be set - but as expected
3088 * it wont have any effect on scheduling until the task is
3089 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3090 */
3091 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3092 p->static_prio = NICE_TO_PRIO(nice);
3093 goto out_unlock;
3094 }
3095 queued = task_on_rq_queued(p);
3096 if (queued)
3097 dequeue_task(rq, p, 0);
3098
3099 p->static_prio = NICE_TO_PRIO(nice);
3100 set_load_weight(p);
3101 old_prio = p->prio;
3102 p->prio = effective_prio(p);
3103 delta = p->prio - old_prio;
3104
3105 if (queued) {
3106 enqueue_task(rq, p, 0);
3107 /*
3108 * If the task increased its priority or is running and
3109 * lowered its priority, then reschedule its CPU:
3110 */
3111 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3112 resched_curr(rq);
3113 }
3114 out_unlock:
3115 task_rq_unlock(rq, p, &flags);
3116 }
3117 EXPORT_SYMBOL(set_user_nice);
3118
3119 /*
3120 * can_nice - check if a task can reduce its nice value
3121 * @p: task
3122 * @nice: nice value
3123 */
3124 int can_nice(const struct task_struct *p, const int nice)
3125 {
3126 /* convert nice value [19,-20] to rlimit style value [1,40] */
3127 int nice_rlim = nice_to_rlimit(nice);
3128
3129 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3130 capable(CAP_SYS_NICE));
3131 }
3132
3133 #ifdef __ARCH_WANT_SYS_NICE
3134
3135 /*
3136 * sys_nice - change the priority of the current process.
3137 * @increment: priority increment
3138 *
3139 * sys_setpriority is a more generic, but much slower function that
3140 * does similar things.
3141 */
3142 SYSCALL_DEFINE1(nice, int, increment)
3143 {
3144 long nice, retval;
3145
3146 /*
3147 * Setpriority might change our priority at the same moment.
3148 * We don't have to worry. Conceptually one call occurs first
3149 * and we have a single winner.
3150 */
3151 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3152 nice = task_nice(current) + increment;
3153
3154 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3155 if (increment < 0 && !can_nice(current, nice))
3156 return -EPERM;
3157
3158 retval = security_task_setnice(current, nice);
3159 if (retval)
3160 return retval;
3161
3162 set_user_nice(current, nice);
3163 return 0;
3164 }
3165
3166 #endif
3167
3168 /**
3169 * task_prio - return the priority value of a given task.
3170 * @p: the task in question.
3171 *
3172 * Return: The priority value as seen by users in /proc.
3173 * RT tasks are offset by -200. Normal tasks are centered
3174 * around 0, value goes from -16 to +15.
3175 */
3176 int task_prio(const struct task_struct *p)
3177 {
3178 return p->prio - MAX_RT_PRIO;
3179 }
3180
3181 /**
3182 * idle_cpu - is a given cpu idle currently?
3183 * @cpu: the processor in question.
3184 *
3185 * Return: 1 if the CPU is currently idle. 0 otherwise.
3186 */
3187 int idle_cpu(int cpu)
3188 {
3189 struct rq *rq = cpu_rq(cpu);
3190
3191 if (rq->curr != rq->idle)
3192 return 0;
3193
3194 if (rq->nr_running)
3195 return 0;
3196
3197 #ifdef CONFIG_SMP
3198 if (!llist_empty(&rq->wake_list))
3199 return 0;
3200 #endif
3201
3202 return 1;
3203 }
3204
3205 /**
3206 * idle_task - return the idle task for a given cpu.
3207 * @cpu: the processor in question.
3208 *
3209 * Return: The idle task for the cpu @cpu.
3210 */
3211 struct task_struct *idle_task(int cpu)
3212 {
3213 return cpu_rq(cpu)->idle;
3214 }
3215
3216 /**
3217 * find_process_by_pid - find a process with a matching PID value.
3218 * @pid: the pid in question.
3219 *
3220 * The task of @pid, if found. %NULL otherwise.
3221 */
3222 static struct task_struct *find_process_by_pid(pid_t pid)
3223 {
3224 return pid ? find_task_by_vpid(pid) : current;
3225 }
3226
3227 /*
3228 * This function initializes the sched_dl_entity of a newly becoming
3229 * SCHED_DEADLINE task.
3230 *
3231 * Only the static values are considered here, the actual runtime and the
3232 * absolute deadline will be properly calculated when the task is enqueued
3233 * for the first time with its new policy.
3234 */
3235 static void
3236 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3237 {
3238 struct sched_dl_entity *dl_se = &p->dl;
3239
3240 dl_se->dl_runtime = attr->sched_runtime;
3241 dl_se->dl_deadline = attr->sched_deadline;
3242 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3243 dl_se->flags = attr->sched_flags;
3244 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3245
3246 /*
3247 * Changing the parameters of a task is 'tricky' and we're not doing
3248 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3249 *
3250 * What we SHOULD do is delay the bandwidth release until the 0-lag
3251 * point. This would include retaining the task_struct until that time
3252 * and change dl_overflow() to not immediately decrement the current
3253 * amount.
3254 *
3255 * Instead we retain the current runtime/deadline and let the new
3256 * parameters take effect after the current reservation period lapses.
3257 * This is safe (albeit pessimistic) because the 0-lag point is always
3258 * before the current scheduling deadline.
3259 *
3260 * We can still have temporary overloads because we do not delay the
3261 * change in bandwidth until that time; so admission control is
3262 * not on the safe side. It does however guarantee tasks will never
3263 * consume more than promised.
3264 */
3265 }
3266
3267 /*
3268 * sched_setparam() passes in -1 for its policy, to let the functions
3269 * it calls know not to change it.
3270 */
3271 #define SETPARAM_POLICY -1
3272
3273 static void __setscheduler_params(struct task_struct *p,
3274 const struct sched_attr *attr)
3275 {
3276 int policy = attr->sched_policy;
3277
3278 if (policy == SETPARAM_POLICY)
3279 policy = p->policy;
3280
3281 p->policy = policy;
3282
3283 if (dl_policy(policy))
3284 __setparam_dl(p, attr);
3285 else if (fair_policy(policy))
3286 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3287
3288 /*
3289 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3290 * !rt_policy. Always setting this ensures that things like
3291 * getparam()/getattr() don't report silly values for !rt tasks.
3292 */
3293 p->rt_priority = attr->sched_priority;
3294 p->normal_prio = normal_prio(p);
3295 set_load_weight(p);
3296 }
3297
3298 /* Actually do priority change: must hold pi & rq lock. */
3299 static void __setscheduler(struct rq *rq, struct task_struct *p,
3300 const struct sched_attr *attr)
3301 {
3302 __setscheduler_params(p, attr);
3303
3304 /*
3305 * If we get here, there was no pi waiters boosting the
3306 * task. It is safe to use the normal prio.
3307 */
3308 p->prio = normal_prio(p);
3309
3310 if (dl_prio(p->prio))
3311 p->sched_class = &dl_sched_class;
3312 else if (rt_prio(p->prio))
3313 p->sched_class = &rt_sched_class;
3314 else
3315 p->sched_class = &fair_sched_class;
3316 }
3317
3318 static void
3319 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3320 {
3321 struct sched_dl_entity *dl_se = &p->dl;
3322
3323 attr->sched_priority = p->rt_priority;
3324 attr->sched_runtime = dl_se->dl_runtime;
3325 attr->sched_deadline = dl_se->dl_deadline;
3326 attr->sched_period = dl_se->dl_period;
3327 attr->sched_flags = dl_se->flags;
3328 }
3329
3330 /*
3331 * This function validates the new parameters of a -deadline task.
3332 * We ask for the deadline not being zero, and greater or equal
3333 * than the runtime, as well as the period of being zero or
3334 * greater than deadline. Furthermore, we have to be sure that
3335 * user parameters are above the internal resolution of 1us (we
3336 * check sched_runtime only since it is always the smaller one) and
3337 * below 2^63 ns (we have to check both sched_deadline and
3338 * sched_period, as the latter can be zero).
3339 */
3340 static bool
3341 __checkparam_dl(const struct sched_attr *attr)
3342 {
3343 /* deadline != 0 */
3344 if (attr->sched_deadline == 0)
3345 return false;
3346
3347 /*
3348 * Since we truncate DL_SCALE bits, make sure we're at least
3349 * that big.
3350 */
3351 if (attr->sched_runtime < (1ULL << DL_SCALE))
3352 return false;
3353
3354 /*
3355 * Since we use the MSB for wrap-around and sign issues, make
3356 * sure it's not set (mind that period can be equal to zero).
3357 */
3358 if (attr->sched_deadline & (1ULL << 63) ||
3359 attr->sched_period & (1ULL << 63))
3360 return false;
3361
3362 /* runtime <= deadline <= period (if period != 0) */
3363 if ((attr->sched_period != 0 &&
3364 attr->sched_period < attr->sched_deadline) ||
3365 attr->sched_deadline < attr->sched_runtime)
3366 return false;
3367
3368 return true;
3369 }
3370
3371 /*
3372 * check the target process has a UID that matches the current process's
3373 */
3374 static bool check_same_owner(struct task_struct *p)
3375 {
3376 const struct cred *cred = current_cred(), *pcred;
3377 bool match;
3378
3379 rcu_read_lock();
3380 pcred = __task_cred(p);
3381 match = (uid_eq(cred->euid, pcred->euid) ||
3382 uid_eq(cred->euid, pcred->uid));
3383 rcu_read_unlock();
3384 return match;
3385 }
3386
3387 static bool dl_param_changed(struct task_struct *p,
3388 const struct sched_attr *attr)
3389 {
3390 struct sched_dl_entity *dl_se = &p->dl;
3391
3392 if (dl_se->dl_runtime != attr->sched_runtime ||
3393 dl_se->dl_deadline != attr->sched_deadline ||
3394 dl_se->dl_period != attr->sched_period ||
3395 dl_se->flags != attr->sched_flags)
3396 return true;
3397
3398 return false;
3399 }
3400
3401 static int __sched_setscheduler(struct task_struct *p,
3402 const struct sched_attr *attr,
3403 bool user)
3404 {
3405 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3406 MAX_RT_PRIO - 1 - attr->sched_priority;
3407 int retval, oldprio, oldpolicy = -1, queued, running;
3408 int policy = attr->sched_policy;
3409 unsigned long flags;
3410 const struct sched_class *prev_class;
3411 struct rq *rq;
3412 int reset_on_fork;
3413
3414 /* may grab non-irq protected spin_locks */
3415 BUG_ON(in_interrupt());
3416 recheck:
3417 /* double check policy once rq lock held */
3418 if (policy < 0) {
3419 reset_on_fork = p->sched_reset_on_fork;
3420 policy = oldpolicy = p->policy;
3421 } else {
3422 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3423
3424 if (policy != SCHED_DEADLINE &&
3425 policy != SCHED_FIFO && policy != SCHED_RR &&
3426 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3427 policy != SCHED_IDLE)
3428 return -EINVAL;
3429 }
3430
3431 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3432 return -EINVAL;
3433
3434 /*
3435 * Valid priorities for SCHED_FIFO and SCHED_RR are
3436 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3437 * SCHED_BATCH and SCHED_IDLE is 0.
3438 */
3439 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3440 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3441 return -EINVAL;
3442 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3443 (rt_policy(policy) != (attr->sched_priority != 0)))
3444 return -EINVAL;
3445
3446 /*
3447 * Allow unprivileged RT tasks to decrease priority:
3448 */
3449 if (user && !capable(CAP_SYS_NICE)) {
3450 if (fair_policy(policy)) {
3451 if (attr->sched_nice < task_nice(p) &&
3452 !can_nice(p, attr->sched_nice))
3453 return -EPERM;
3454 }
3455
3456 if (rt_policy(policy)) {
3457 unsigned long rlim_rtprio =
3458 task_rlimit(p, RLIMIT_RTPRIO);
3459
3460 /* can't set/change the rt policy */
3461 if (policy != p->policy && !rlim_rtprio)
3462 return -EPERM;
3463
3464 /* can't increase priority */
3465 if (attr->sched_priority > p->rt_priority &&
3466 attr->sched_priority > rlim_rtprio)
3467 return -EPERM;
3468 }
3469
3470 /*
3471 * Can't set/change SCHED_DEADLINE policy at all for now
3472 * (safest behavior); in the future we would like to allow
3473 * unprivileged DL tasks to increase their relative deadline
3474 * or reduce their runtime (both ways reducing utilization)
3475 */
3476 if (dl_policy(policy))
3477 return -EPERM;
3478
3479 /*
3480 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3481 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3482 */
3483 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3484 if (!can_nice(p, task_nice(p)))
3485 return -EPERM;
3486 }
3487
3488 /* can't change other user's priorities */
3489 if (!check_same_owner(p))
3490 return -EPERM;
3491
3492 /* Normal users shall not reset the sched_reset_on_fork flag */
3493 if (p->sched_reset_on_fork && !reset_on_fork)
3494 return -EPERM;
3495 }
3496
3497 if (user) {
3498 retval = security_task_setscheduler(p);
3499 if (retval)
3500 return retval;
3501 }
3502
3503 /*
3504 * make sure no PI-waiters arrive (or leave) while we are
3505 * changing the priority of the task:
3506 *
3507 * To be able to change p->policy safely, the appropriate
3508 * runqueue lock must be held.
3509 */
3510 rq = task_rq_lock(p, &flags);
3511
3512 /*
3513 * Changing the policy of the stop threads its a very bad idea
3514 */
3515 if (p == rq->stop) {
3516 task_rq_unlock(rq, p, &flags);
3517 return -EINVAL;
3518 }
3519
3520 /*
3521 * If not changing anything there's no need to proceed further,
3522 * but store a possible modification of reset_on_fork.
3523 */
3524 if (unlikely(policy == p->policy)) {
3525 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3526 goto change;
3527 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3528 goto change;
3529 if (dl_policy(policy) && dl_param_changed(p, attr))
3530 goto change;
3531
3532 p->sched_reset_on_fork = reset_on_fork;
3533 task_rq_unlock(rq, p, &flags);
3534 return 0;
3535 }
3536 change:
3537
3538 if (user) {
3539 #ifdef CONFIG_RT_GROUP_SCHED
3540 /*
3541 * Do not allow realtime tasks into groups that have no runtime
3542 * assigned.
3543 */
3544 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3545 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3546 !task_group_is_autogroup(task_group(p))) {
3547 task_rq_unlock(rq, p, &flags);
3548 return -EPERM;
3549 }
3550 #endif
3551 #ifdef CONFIG_SMP
3552 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3553 cpumask_t *span = rq->rd->span;
3554
3555 /*
3556 * Don't allow tasks with an affinity mask smaller than
3557 * the entire root_domain to become SCHED_DEADLINE. We
3558 * will also fail if there's no bandwidth available.
3559 */
3560 if (!cpumask_subset(span, &p->cpus_allowed) ||
3561 rq->rd->dl_bw.bw == 0) {
3562 task_rq_unlock(rq, p, &flags);
3563 return -EPERM;
3564 }
3565 }
3566 #endif
3567 }
3568
3569 /* recheck policy now with rq lock held */
3570 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3571 policy = oldpolicy = -1;
3572 task_rq_unlock(rq, p, &flags);
3573 goto recheck;
3574 }
3575
3576 /*
3577 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3578 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3579 * is available.
3580 */
3581 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3582 task_rq_unlock(rq, p, &flags);
3583 return -EBUSY;
3584 }
3585
3586 p->sched_reset_on_fork = reset_on_fork;
3587 oldprio = p->prio;
3588
3589 /*
3590 * Special case for priority boosted tasks.
3591 *
3592 * If the new priority is lower or equal (user space view)
3593 * than the current (boosted) priority, we just store the new
3594 * normal parameters and do not touch the scheduler class and
3595 * the runqueue. This will be done when the task deboost
3596 * itself.
3597 */
3598 if (rt_mutex_check_prio(p, newprio)) {
3599 __setscheduler_params(p, attr);
3600 task_rq_unlock(rq, p, &flags);
3601 return 0;
3602 }
3603
3604 queued = task_on_rq_queued(p);
3605 running = task_current(rq, p);
3606 if (queued)
3607 dequeue_task(rq, p, 0);
3608 if (running)
3609 put_prev_task(rq, p);
3610
3611 prev_class = p->sched_class;
3612 __setscheduler(rq, p, attr);
3613
3614 if (running)
3615 p->sched_class->set_curr_task(rq);
3616 if (queued) {
3617 /*
3618 * We enqueue to tail when the priority of a task is
3619 * increased (user space view).
3620 */
3621 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3622 }
3623
3624 check_class_changed(rq, p, prev_class, oldprio);
3625 task_rq_unlock(rq, p, &flags);
3626
3627 rt_mutex_adjust_pi(p);
3628
3629 return 0;
3630 }
3631
3632 static int _sched_setscheduler(struct task_struct *p, int policy,
3633 const struct sched_param *param, bool check)
3634 {
3635 struct sched_attr attr = {
3636 .sched_policy = policy,
3637 .sched_priority = param->sched_priority,
3638 .sched_nice = PRIO_TO_NICE(p->static_prio),
3639 };
3640
3641 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3642 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3643 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3644 policy &= ~SCHED_RESET_ON_FORK;
3645 attr.sched_policy = policy;
3646 }
3647
3648 return __sched_setscheduler(p, &attr, check);
3649 }
3650 /**
3651 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3652 * @p: the task in question.
3653 * @policy: new policy.
3654 * @param: structure containing the new RT priority.
3655 *
3656 * Return: 0 on success. An error code otherwise.
3657 *
3658 * NOTE that the task may be already dead.
3659 */
3660 int sched_setscheduler(struct task_struct *p, int policy,
3661 const struct sched_param *param)
3662 {
3663 return _sched_setscheduler(p, policy, param, true);
3664 }
3665 EXPORT_SYMBOL_GPL(sched_setscheduler);
3666
3667 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3668 {
3669 return __sched_setscheduler(p, attr, true);
3670 }
3671 EXPORT_SYMBOL_GPL(sched_setattr);
3672
3673 /**
3674 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3675 * @p: the task in question.
3676 * @policy: new policy.
3677 * @param: structure containing the new RT priority.
3678 *
3679 * Just like sched_setscheduler, only don't bother checking if the
3680 * current context has permission. For example, this is needed in
3681 * stop_machine(): we create temporary high priority worker threads,
3682 * but our caller might not have that capability.
3683 *
3684 * Return: 0 on success. An error code otherwise.
3685 */
3686 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3687 const struct sched_param *param)
3688 {
3689 return _sched_setscheduler(p, policy, param, false);
3690 }
3691
3692 static int
3693 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3694 {
3695 struct sched_param lparam;
3696 struct task_struct *p;
3697 int retval;
3698
3699 if (!param || pid < 0)
3700 return -EINVAL;
3701 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3702 return -EFAULT;
3703
3704 rcu_read_lock();
3705 retval = -ESRCH;
3706 p = find_process_by_pid(pid);
3707 if (p != NULL)
3708 retval = sched_setscheduler(p, policy, &lparam);
3709 rcu_read_unlock();
3710
3711 return retval;
3712 }
3713
3714 /*
3715 * Mimics kernel/events/core.c perf_copy_attr().
3716 */
3717 static int sched_copy_attr(struct sched_attr __user *uattr,
3718 struct sched_attr *attr)
3719 {
3720 u32 size;
3721 int ret;
3722
3723 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3724 return -EFAULT;
3725
3726 /*
3727 * zero the full structure, so that a short copy will be nice.
3728 */
3729 memset(attr, 0, sizeof(*attr));
3730
3731 ret = get_user(size, &uattr->size);
3732 if (ret)
3733 return ret;
3734
3735 if (size > PAGE_SIZE) /* silly large */
3736 goto err_size;
3737
3738 if (!size) /* abi compat */
3739 size = SCHED_ATTR_SIZE_VER0;
3740
3741 if (size < SCHED_ATTR_SIZE_VER0)
3742 goto err_size;
3743
3744 /*
3745 * If we're handed a bigger struct than we know of,
3746 * ensure all the unknown bits are 0 - i.e. new
3747 * user-space does not rely on any kernel feature
3748 * extensions we dont know about yet.
3749 */
3750 if (size > sizeof(*attr)) {
3751 unsigned char __user *addr;
3752 unsigned char __user *end;
3753 unsigned char val;
3754
3755 addr = (void __user *)uattr + sizeof(*attr);
3756 end = (void __user *)uattr + size;
3757
3758 for (; addr < end; addr++) {
3759 ret = get_user(val, addr);
3760 if (ret)
3761 return ret;
3762 if (val)
3763 goto err_size;
3764 }
3765 size = sizeof(*attr);
3766 }
3767
3768 ret = copy_from_user(attr, uattr, size);
3769 if (ret)
3770 return -EFAULT;
3771
3772 /*
3773 * XXX: do we want to be lenient like existing syscalls; or do we want
3774 * to be strict and return an error on out-of-bounds values?
3775 */
3776 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3777
3778 return 0;
3779
3780 err_size:
3781 put_user(sizeof(*attr), &uattr->size);
3782 return -E2BIG;
3783 }
3784
3785 /**
3786 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3787 * @pid: the pid in question.
3788 * @policy: new policy.
3789 * @param: structure containing the new RT priority.
3790 *
3791 * Return: 0 on success. An error code otherwise.
3792 */
3793 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3794 struct sched_param __user *, param)
3795 {
3796 /* negative values for policy are not valid */
3797 if (policy < 0)
3798 return -EINVAL;
3799
3800 return do_sched_setscheduler(pid, policy, param);
3801 }
3802
3803 /**
3804 * sys_sched_setparam - set/change the RT priority of a thread
3805 * @pid: the pid in question.
3806 * @param: structure containing the new RT priority.
3807 *
3808 * Return: 0 on success. An error code otherwise.
3809 */
3810 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3811 {
3812 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3813 }
3814
3815 /**
3816 * sys_sched_setattr - same as above, but with extended sched_attr
3817 * @pid: the pid in question.
3818 * @uattr: structure containing the extended parameters.
3819 * @flags: for future extension.
3820 */
3821 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3822 unsigned int, flags)
3823 {
3824 struct sched_attr attr;
3825 struct task_struct *p;
3826 int retval;
3827
3828 if (!uattr || pid < 0 || flags)
3829 return -EINVAL;
3830
3831 retval = sched_copy_attr(uattr, &attr);
3832 if (retval)
3833 return retval;
3834
3835 if ((int)attr.sched_policy < 0)
3836 return -EINVAL;
3837
3838 rcu_read_lock();
3839 retval = -ESRCH;
3840 p = find_process_by_pid(pid);
3841 if (p != NULL)
3842 retval = sched_setattr(p, &attr);
3843 rcu_read_unlock();
3844
3845 return retval;
3846 }
3847
3848 /**
3849 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3850 * @pid: the pid in question.
3851 *
3852 * Return: On success, the policy of the thread. Otherwise, a negative error
3853 * code.
3854 */
3855 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3856 {
3857 struct task_struct *p;
3858 int retval;
3859
3860 if (pid < 0)
3861 return -EINVAL;
3862
3863 retval = -ESRCH;
3864 rcu_read_lock();
3865 p = find_process_by_pid(pid);
3866 if (p) {
3867 retval = security_task_getscheduler(p);
3868 if (!retval)
3869 retval = p->policy
3870 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3871 }
3872 rcu_read_unlock();
3873 return retval;
3874 }
3875
3876 /**
3877 * sys_sched_getparam - get the RT priority of a thread
3878 * @pid: the pid in question.
3879 * @param: structure containing the RT priority.
3880 *
3881 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3882 * code.
3883 */
3884 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3885 {
3886 struct sched_param lp = { .sched_priority = 0 };
3887 struct task_struct *p;
3888 int retval;
3889
3890 if (!param || pid < 0)
3891 return -EINVAL;
3892
3893 rcu_read_lock();
3894 p = find_process_by_pid(pid);
3895 retval = -ESRCH;
3896 if (!p)
3897 goto out_unlock;
3898
3899 retval = security_task_getscheduler(p);
3900 if (retval)
3901 goto out_unlock;
3902
3903 if (task_has_rt_policy(p))
3904 lp.sched_priority = p->rt_priority;
3905 rcu_read_unlock();
3906
3907 /*
3908 * This one might sleep, we cannot do it with a spinlock held ...
3909 */
3910 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3911
3912 return retval;
3913
3914 out_unlock:
3915 rcu_read_unlock();
3916 return retval;
3917 }
3918
3919 static int sched_read_attr(struct sched_attr __user *uattr,
3920 struct sched_attr *attr,
3921 unsigned int usize)
3922 {
3923 int ret;
3924
3925 if (!access_ok(VERIFY_WRITE, uattr, usize))
3926 return -EFAULT;
3927
3928 /*
3929 * If we're handed a smaller struct than we know of,
3930 * ensure all the unknown bits are 0 - i.e. old
3931 * user-space does not get uncomplete information.
3932 */
3933 if (usize < sizeof(*attr)) {
3934 unsigned char *addr;
3935 unsigned char *end;
3936
3937 addr = (void *)attr + usize;
3938 end = (void *)attr + sizeof(*attr);
3939
3940 for (; addr < end; addr++) {
3941 if (*addr)
3942 return -EFBIG;
3943 }
3944
3945 attr->size = usize;
3946 }
3947
3948 ret = copy_to_user(uattr, attr, attr->size);
3949 if (ret)
3950 return -EFAULT;
3951
3952 return 0;
3953 }
3954
3955 /**
3956 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3957 * @pid: the pid in question.
3958 * @uattr: structure containing the extended parameters.
3959 * @size: sizeof(attr) for fwd/bwd comp.
3960 * @flags: for future extension.
3961 */
3962 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3963 unsigned int, size, unsigned int, flags)
3964 {
3965 struct sched_attr attr = {
3966 .size = sizeof(struct sched_attr),
3967 };
3968 struct task_struct *p;
3969 int retval;
3970
3971 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3972 size < SCHED_ATTR_SIZE_VER0 || flags)
3973 return -EINVAL;
3974
3975 rcu_read_lock();
3976 p = find_process_by_pid(pid);
3977 retval = -ESRCH;
3978 if (!p)
3979 goto out_unlock;
3980
3981 retval = security_task_getscheduler(p);
3982 if (retval)
3983 goto out_unlock;
3984
3985 attr.sched_policy = p->policy;
3986 if (p->sched_reset_on_fork)
3987 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3988 if (task_has_dl_policy(p))
3989 __getparam_dl(p, &attr);
3990 else if (task_has_rt_policy(p))
3991 attr.sched_priority = p->rt_priority;
3992 else
3993 attr.sched_nice = task_nice(p);
3994
3995 rcu_read_unlock();
3996
3997 retval = sched_read_attr(uattr, &attr, size);
3998 return retval;
3999
4000 out_unlock:
4001 rcu_read_unlock();
4002 return retval;
4003 }
4004
4005 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4006 {
4007 cpumask_var_t cpus_allowed, new_mask;
4008 struct task_struct *p;
4009 int retval;
4010
4011 rcu_read_lock();
4012
4013 p = find_process_by_pid(pid);
4014 if (!p) {
4015 rcu_read_unlock();
4016 return -ESRCH;
4017 }
4018
4019 /* Prevent p going away */
4020 get_task_struct(p);
4021 rcu_read_unlock();
4022
4023 if (p->flags & PF_NO_SETAFFINITY) {
4024 retval = -EINVAL;
4025 goto out_put_task;
4026 }
4027 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4028 retval = -ENOMEM;
4029 goto out_put_task;
4030 }
4031 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4032 retval = -ENOMEM;
4033 goto out_free_cpus_allowed;
4034 }
4035 retval = -EPERM;
4036 if (!check_same_owner(p)) {
4037 rcu_read_lock();
4038 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4039 rcu_read_unlock();
4040 goto out_free_new_mask;
4041 }
4042 rcu_read_unlock();
4043 }
4044
4045 retval = security_task_setscheduler(p);
4046 if (retval)
4047 goto out_free_new_mask;
4048
4049
4050 cpuset_cpus_allowed(p, cpus_allowed);
4051 cpumask_and(new_mask, in_mask, cpus_allowed);
4052
4053 /*
4054 * Since bandwidth control happens on root_domain basis,
4055 * if admission test is enabled, we only admit -deadline
4056 * tasks allowed to run on all the CPUs in the task's
4057 * root_domain.
4058 */
4059 #ifdef CONFIG_SMP
4060 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4061 rcu_read_lock();
4062 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4063 retval = -EBUSY;
4064 rcu_read_unlock();
4065 goto out_free_new_mask;
4066 }
4067 rcu_read_unlock();
4068 }
4069 #endif
4070 again:
4071 retval = set_cpus_allowed_ptr(p, new_mask);
4072
4073 if (!retval) {
4074 cpuset_cpus_allowed(p, cpus_allowed);
4075 if (!cpumask_subset(new_mask, cpus_allowed)) {
4076 /*
4077 * We must have raced with a concurrent cpuset
4078 * update. Just reset the cpus_allowed to the
4079 * cpuset's cpus_allowed
4080 */
4081 cpumask_copy(new_mask, cpus_allowed);
4082 goto again;
4083 }
4084 }
4085 out_free_new_mask:
4086 free_cpumask_var(new_mask);
4087 out_free_cpus_allowed:
4088 free_cpumask_var(cpus_allowed);
4089 out_put_task:
4090 put_task_struct(p);
4091 return retval;
4092 }
4093
4094 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4095 struct cpumask *new_mask)
4096 {
4097 if (len < cpumask_size())
4098 cpumask_clear(new_mask);
4099 else if (len > cpumask_size())
4100 len = cpumask_size();
4101
4102 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4103 }
4104
4105 /**
4106 * sys_sched_setaffinity - set the cpu affinity of a process
4107 * @pid: pid of the process
4108 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4109 * @user_mask_ptr: user-space pointer to the new cpu mask
4110 *
4111 * Return: 0 on success. An error code otherwise.
4112 */
4113 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4114 unsigned long __user *, user_mask_ptr)
4115 {
4116 cpumask_var_t new_mask;
4117 int retval;
4118
4119 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4120 return -ENOMEM;
4121
4122 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4123 if (retval == 0)
4124 retval = sched_setaffinity(pid, new_mask);
4125 free_cpumask_var(new_mask);
4126 return retval;
4127 }
4128
4129 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4130 {
4131 struct task_struct *p;
4132 unsigned long flags;
4133 int retval;
4134
4135 rcu_read_lock();
4136
4137 retval = -ESRCH;
4138 p = find_process_by_pid(pid);
4139 if (!p)
4140 goto out_unlock;
4141
4142 retval = security_task_getscheduler(p);
4143 if (retval)
4144 goto out_unlock;
4145
4146 raw_spin_lock_irqsave(&p->pi_lock, flags);
4147 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4148 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4149
4150 out_unlock:
4151 rcu_read_unlock();
4152
4153 return retval;
4154 }
4155
4156 /**
4157 * sys_sched_getaffinity - get the cpu affinity of a process
4158 * @pid: pid of the process
4159 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4160 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4161 *
4162 * Return: 0 on success. An error code otherwise.
4163 */
4164 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4165 unsigned long __user *, user_mask_ptr)
4166 {
4167 int ret;
4168 cpumask_var_t mask;
4169
4170 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4171 return -EINVAL;
4172 if (len & (sizeof(unsigned long)-1))
4173 return -EINVAL;
4174
4175 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4176 return -ENOMEM;
4177
4178 ret = sched_getaffinity(pid, mask);
4179 if (ret == 0) {
4180 size_t retlen = min_t(size_t, len, cpumask_size());
4181
4182 if (copy_to_user(user_mask_ptr, mask, retlen))
4183 ret = -EFAULT;
4184 else
4185 ret = retlen;
4186 }
4187 free_cpumask_var(mask);
4188
4189 return ret;
4190 }
4191
4192 /**
4193 * sys_sched_yield - yield the current processor to other threads.
4194 *
4195 * This function yields the current CPU to other tasks. If there are no
4196 * other threads running on this CPU then this function will return.
4197 *
4198 * Return: 0.
4199 */
4200 SYSCALL_DEFINE0(sched_yield)
4201 {
4202 struct rq *rq = this_rq_lock();
4203
4204 schedstat_inc(rq, yld_count);
4205 current->sched_class->yield_task(rq);
4206
4207 /*
4208 * Since we are going to call schedule() anyway, there's
4209 * no need to preempt or enable interrupts:
4210 */
4211 __release(rq->lock);
4212 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4213 do_raw_spin_unlock(&rq->lock);
4214 sched_preempt_enable_no_resched();
4215
4216 schedule();
4217
4218 return 0;
4219 }
4220
4221 int __sched _cond_resched(void)
4222 {
4223 if (should_resched()) {
4224 preempt_schedule_common();
4225 return 1;
4226 }
4227 return 0;
4228 }
4229 EXPORT_SYMBOL(_cond_resched);
4230
4231 /*
4232 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4233 * call schedule, and on return reacquire the lock.
4234 *
4235 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4236 * operations here to prevent schedule() from being called twice (once via
4237 * spin_unlock(), once by hand).
4238 */
4239 int __cond_resched_lock(spinlock_t *lock)
4240 {
4241 int resched = should_resched();
4242 int ret = 0;
4243
4244 lockdep_assert_held(lock);
4245
4246 if (spin_needbreak(lock) || resched) {
4247 spin_unlock(lock);
4248 if (resched)
4249 preempt_schedule_common();
4250 else
4251 cpu_relax();
4252 ret = 1;
4253 spin_lock(lock);
4254 }
4255 return ret;
4256 }
4257 EXPORT_SYMBOL(__cond_resched_lock);
4258
4259 int __sched __cond_resched_softirq(void)
4260 {
4261 BUG_ON(!in_softirq());
4262
4263 if (should_resched()) {
4264 local_bh_enable();
4265 preempt_schedule_common();
4266 local_bh_disable();
4267 return 1;
4268 }
4269 return 0;
4270 }
4271 EXPORT_SYMBOL(__cond_resched_softirq);
4272
4273 /**
4274 * yield - yield the current processor to other threads.
4275 *
4276 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4277 *
4278 * The scheduler is at all times free to pick the calling task as the most
4279 * eligible task to run, if removing the yield() call from your code breaks
4280 * it, its already broken.
4281 *
4282 * Typical broken usage is:
4283 *
4284 * while (!event)
4285 * yield();
4286 *
4287 * where one assumes that yield() will let 'the other' process run that will
4288 * make event true. If the current task is a SCHED_FIFO task that will never
4289 * happen. Never use yield() as a progress guarantee!!
4290 *
4291 * If you want to use yield() to wait for something, use wait_event().
4292 * If you want to use yield() to be 'nice' for others, use cond_resched().
4293 * If you still want to use yield(), do not!
4294 */
4295 void __sched yield(void)
4296 {
4297 set_current_state(TASK_RUNNING);
4298 sys_sched_yield();
4299 }
4300 EXPORT_SYMBOL(yield);
4301
4302 /**
4303 * yield_to - yield the current processor to another thread in
4304 * your thread group, or accelerate that thread toward the
4305 * processor it's on.
4306 * @p: target task
4307 * @preempt: whether task preemption is allowed or not
4308 *
4309 * It's the caller's job to ensure that the target task struct
4310 * can't go away on us before we can do any checks.
4311 *
4312 * Return:
4313 * true (>0) if we indeed boosted the target task.
4314 * false (0) if we failed to boost the target.
4315 * -ESRCH if there's no task to yield to.
4316 */
4317 int __sched yield_to(struct task_struct *p, bool preempt)
4318 {
4319 struct task_struct *curr = current;
4320 struct rq *rq, *p_rq;
4321 unsigned long flags;
4322 int yielded = 0;
4323
4324 local_irq_save(flags);
4325 rq = this_rq();
4326
4327 again:
4328 p_rq = task_rq(p);
4329 /*
4330 * If we're the only runnable task on the rq and target rq also
4331 * has only one task, there's absolutely no point in yielding.
4332 */
4333 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4334 yielded = -ESRCH;
4335 goto out_irq;
4336 }
4337
4338 double_rq_lock(rq, p_rq);
4339 if (task_rq(p) != p_rq) {
4340 double_rq_unlock(rq, p_rq);
4341 goto again;
4342 }
4343
4344 if (!curr->sched_class->yield_to_task)
4345 goto out_unlock;
4346
4347 if (curr->sched_class != p->sched_class)
4348 goto out_unlock;
4349
4350 if (task_running(p_rq, p) || p->state)
4351 goto out_unlock;
4352
4353 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4354 if (yielded) {
4355 schedstat_inc(rq, yld_count);
4356 /*
4357 * Make p's CPU reschedule; pick_next_entity takes care of
4358 * fairness.
4359 */
4360 if (preempt && rq != p_rq)
4361 resched_curr(p_rq);
4362 }
4363
4364 out_unlock:
4365 double_rq_unlock(rq, p_rq);
4366 out_irq:
4367 local_irq_restore(flags);
4368
4369 if (yielded > 0)
4370 schedule();
4371
4372 return yielded;
4373 }
4374 EXPORT_SYMBOL_GPL(yield_to);
4375
4376 /*
4377 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4378 * that process accounting knows that this is a task in IO wait state.
4379 */
4380 long __sched io_schedule_timeout(long timeout)
4381 {
4382 int old_iowait = current->in_iowait;
4383 struct rq *rq;
4384 long ret;
4385
4386 current->in_iowait = 1;
4387 if (old_iowait)
4388 blk_schedule_flush_plug(current);
4389 else
4390 blk_flush_plug(current);
4391
4392 delayacct_blkio_start();
4393 rq = raw_rq();
4394 atomic_inc(&rq->nr_iowait);
4395 ret = schedule_timeout(timeout);
4396 current->in_iowait = old_iowait;
4397 atomic_dec(&rq->nr_iowait);
4398 delayacct_blkio_end();
4399
4400 return ret;
4401 }
4402 EXPORT_SYMBOL(io_schedule_timeout);
4403
4404 /**
4405 * sys_sched_get_priority_max - return maximum RT priority.
4406 * @policy: scheduling class.
4407 *
4408 * Return: On success, this syscall returns the maximum
4409 * rt_priority that can be used by a given scheduling class.
4410 * On failure, a negative error code is returned.
4411 */
4412 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4413 {
4414 int ret = -EINVAL;
4415
4416 switch (policy) {
4417 case SCHED_FIFO:
4418 case SCHED_RR:
4419 ret = MAX_USER_RT_PRIO-1;
4420 break;
4421 case SCHED_DEADLINE:
4422 case SCHED_NORMAL:
4423 case SCHED_BATCH:
4424 case SCHED_IDLE:
4425 ret = 0;
4426 break;
4427 }
4428 return ret;
4429 }
4430
4431 /**
4432 * sys_sched_get_priority_min - return minimum RT priority.
4433 * @policy: scheduling class.
4434 *
4435 * Return: On success, this syscall returns the minimum
4436 * rt_priority that can be used by a given scheduling class.
4437 * On failure, a negative error code is returned.
4438 */
4439 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4440 {
4441 int ret = -EINVAL;
4442
4443 switch (policy) {
4444 case SCHED_FIFO:
4445 case SCHED_RR:
4446 ret = 1;
4447 break;
4448 case SCHED_DEADLINE:
4449 case SCHED_NORMAL:
4450 case SCHED_BATCH:
4451 case SCHED_IDLE:
4452 ret = 0;
4453 }
4454 return ret;
4455 }
4456
4457 /**
4458 * sys_sched_rr_get_interval - return the default timeslice of a process.
4459 * @pid: pid of the process.
4460 * @interval: userspace pointer to the timeslice value.
4461 *
4462 * this syscall writes the default timeslice value of a given process
4463 * into the user-space timespec buffer. A value of '0' means infinity.
4464 *
4465 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4466 * an error code.
4467 */
4468 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4469 struct timespec __user *, interval)
4470 {
4471 struct task_struct *p;
4472 unsigned int time_slice;
4473 unsigned long flags;
4474 struct rq *rq;
4475 int retval;
4476 struct timespec t;
4477
4478 if (pid < 0)
4479 return -EINVAL;
4480
4481 retval = -ESRCH;
4482 rcu_read_lock();
4483 p = find_process_by_pid(pid);
4484 if (!p)
4485 goto out_unlock;
4486
4487 retval = security_task_getscheduler(p);
4488 if (retval)
4489 goto out_unlock;
4490
4491 rq = task_rq_lock(p, &flags);
4492 time_slice = 0;
4493 if (p->sched_class->get_rr_interval)
4494 time_slice = p->sched_class->get_rr_interval(rq, p);
4495 task_rq_unlock(rq, p, &flags);
4496
4497 rcu_read_unlock();
4498 jiffies_to_timespec(time_slice, &t);
4499 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4500 return retval;
4501
4502 out_unlock:
4503 rcu_read_unlock();
4504 return retval;
4505 }
4506
4507 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4508
4509 void sched_show_task(struct task_struct *p)
4510 {
4511 unsigned long free = 0;
4512 int ppid;
4513 unsigned long state = p->state;
4514
4515 if (state)
4516 state = __ffs(state) + 1;
4517 printk(KERN_INFO "%-15.15s %c", p->comm,
4518 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4519 #if BITS_PER_LONG == 32
4520 if (state == TASK_RUNNING)
4521 printk(KERN_CONT " running ");
4522 else
4523 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4524 #else
4525 if (state == TASK_RUNNING)
4526 printk(KERN_CONT " running task ");
4527 else
4528 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4529 #endif
4530 #ifdef CONFIG_DEBUG_STACK_USAGE
4531 free = stack_not_used(p);
4532 #endif
4533 ppid = 0;
4534 rcu_read_lock();
4535 if (pid_alive(p))
4536 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4537 rcu_read_unlock();
4538 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4539 task_pid_nr(p), ppid,
4540 (unsigned long)task_thread_info(p)->flags);
4541
4542 print_worker_info(KERN_INFO, p);
4543 show_stack(p, NULL);
4544 }
4545
4546 void show_state_filter(unsigned long state_filter)
4547 {
4548 struct task_struct *g, *p;
4549
4550 #if BITS_PER_LONG == 32
4551 printk(KERN_INFO
4552 " task PC stack pid father\n");
4553 #else
4554 printk(KERN_INFO
4555 " task PC stack pid father\n");
4556 #endif
4557 rcu_read_lock();
4558 for_each_process_thread(g, p) {
4559 /*
4560 * reset the NMI-timeout, listing all files on a slow
4561 * console might take a lot of time:
4562 */
4563 touch_nmi_watchdog();
4564 if (!state_filter || (p->state & state_filter))
4565 sched_show_task(p);
4566 }
4567
4568 touch_all_softlockup_watchdogs();
4569
4570 #ifdef CONFIG_SCHED_DEBUG
4571 sysrq_sched_debug_show();
4572 #endif
4573 rcu_read_unlock();
4574 /*
4575 * Only show locks if all tasks are dumped:
4576 */
4577 if (!state_filter)
4578 debug_show_all_locks();
4579 }
4580
4581 void init_idle_bootup_task(struct task_struct *idle)
4582 {
4583 idle->sched_class = &idle_sched_class;
4584 }
4585
4586 /**
4587 * init_idle - set up an idle thread for a given CPU
4588 * @idle: task in question
4589 * @cpu: cpu the idle task belongs to
4590 *
4591 * NOTE: this function does not set the idle thread's NEED_RESCHED
4592 * flag, to make booting more robust.
4593 */
4594 void init_idle(struct task_struct *idle, int cpu)
4595 {
4596 struct rq *rq = cpu_rq(cpu);
4597 unsigned long flags;
4598
4599 raw_spin_lock_irqsave(&rq->lock, flags);
4600
4601 __sched_fork(0, idle);
4602 idle->state = TASK_RUNNING;
4603 idle->se.exec_start = sched_clock();
4604
4605 do_set_cpus_allowed(idle, cpumask_of(cpu));
4606 /*
4607 * We're having a chicken and egg problem, even though we are
4608 * holding rq->lock, the cpu isn't yet set to this cpu so the
4609 * lockdep check in task_group() will fail.
4610 *
4611 * Similar case to sched_fork(). / Alternatively we could
4612 * use task_rq_lock() here and obtain the other rq->lock.
4613 *
4614 * Silence PROVE_RCU
4615 */
4616 rcu_read_lock();
4617 __set_task_cpu(idle, cpu);
4618 rcu_read_unlock();
4619
4620 rq->curr = rq->idle = idle;
4621 idle->on_rq = TASK_ON_RQ_QUEUED;
4622 #if defined(CONFIG_SMP)
4623 idle->on_cpu = 1;
4624 #endif
4625 raw_spin_unlock_irqrestore(&rq->lock, flags);
4626
4627 /* Set the preempt count _outside_ the spinlocks! */
4628 init_idle_preempt_count(idle, cpu);
4629
4630 /*
4631 * The idle tasks have their own, simple scheduling class:
4632 */
4633 idle->sched_class = &idle_sched_class;
4634 ftrace_graph_init_idle_task(idle, cpu);
4635 vtime_init_idle(idle, cpu);
4636 #if defined(CONFIG_SMP)
4637 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4638 #endif
4639 }
4640
4641 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4642 const struct cpumask *trial)
4643 {
4644 int ret = 1, trial_cpus;
4645 struct dl_bw *cur_dl_b;
4646 unsigned long flags;
4647
4648 if (!cpumask_weight(cur))
4649 return ret;
4650
4651 rcu_read_lock_sched();
4652 cur_dl_b = dl_bw_of(cpumask_any(cur));
4653 trial_cpus = cpumask_weight(trial);
4654
4655 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4656 if (cur_dl_b->bw != -1 &&
4657 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4658 ret = 0;
4659 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4660 rcu_read_unlock_sched();
4661
4662 return ret;
4663 }
4664
4665 int task_can_attach(struct task_struct *p,
4666 const struct cpumask *cs_cpus_allowed)
4667 {
4668 int ret = 0;
4669
4670 /*
4671 * Kthreads which disallow setaffinity shouldn't be moved
4672 * to a new cpuset; we don't want to change their cpu
4673 * affinity and isolating such threads by their set of
4674 * allowed nodes is unnecessary. Thus, cpusets are not
4675 * applicable for such threads. This prevents checking for
4676 * success of set_cpus_allowed_ptr() on all attached tasks
4677 * before cpus_allowed may be changed.
4678 */
4679 if (p->flags & PF_NO_SETAFFINITY) {
4680 ret = -EINVAL;
4681 goto out;
4682 }
4683
4684 #ifdef CONFIG_SMP
4685 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4686 cs_cpus_allowed)) {
4687 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4688 cs_cpus_allowed);
4689 struct dl_bw *dl_b;
4690 bool overflow;
4691 int cpus;
4692 unsigned long flags;
4693
4694 rcu_read_lock_sched();
4695 dl_b = dl_bw_of(dest_cpu);
4696 raw_spin_lock_irqsave(&dl_b->lock, flags);
4697 cpus = dl_bw_cpus(dest_cpu);
4698 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4699 if (overflow)
4700 ret = -EBUSY;
4701 else {
4702 /*
4703 * We reserve space for this task in the destination
4704 * root_domain, as we can't fail after this point.
4705 * We will free resources in the source root_domain
4706 * later on (see set_cpus_allowed_dl()).
4707 */
4708 __dl_add(dl_b, p->dl.dl_bw);
4709 }
4710 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4711 rcu_read_unlock_sched();
4712
4713 }
4714 #endif
4715 out:
4716 return ret;
4717 }
4718
4719 #ifdef CONFIG_SMP
4720 /*
4721 * move_queued_task - move a queued task to new rq.
4722 *
4723 * Returns (locked) new rq. Old rq's lock is released.
4724 */
4725 static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4726 {
4727 struct rq *rq = task_rq(p);
4728
4729 lockdep_assert_held(&rq->lock);
4730
4731 dequeue_task(rq, p, 0);
4732 p->on_rq = TASK_ON_RQ_MIGRATING;
4733 set_task_cpu(p, new_cpu);
4734 raw_spin_unlock(&rq->lock);
4735
4736 rq = cpu_rq(new_cpu);
4737
4738 raw_spin_lock(&rq->lock);
4739 BUG_ON(task_cpu(p) != new_cpu);
4740 p->on_rq = TASK_ON_RQ_QUEUED;
4741 enqueue_task(rq, p, 0);
4742 check_preempt_curr(rq, p, 0);
4743
4744 return rq;
4745 }
4746
4747 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4748 {
4749 if (p->sched_class->set_cpus_allowed)
4750 p->sched_class->set_cpus_allowed(p, new_mask);
4751
4752 cpumask_copy(&p->cpus_allowed, new_mask);
4753 p->nr_cpus_allowed = cpumask_weight(new_mask);
4754 }
4755
4756 /*
4757 * This is how migration works:
4758 *
4759 * 1) we invoke migration_cpu_stop() on the target CPU using
4760 * stop_one_cpu().
4761 * 2) stopper starts to run (implicitly forcing the migrated thread
4762 * off the CPU)
4763 * 3) it checks whether the migrated task is still in the wrong runqueue.
4764 * 4) if it's in the wrong runqueue then the migration thread removes
4765 * it and puts it into the right queue.
4766 * 5) stopper completes and stop_one_cpu() returns and the migration
4767 * is done.
4768 */
4769
4770 /*
4771 * Change a given task's CPU affinity. Migrate the thread to a
4772 * proper CPU and schedule it away if the CPU it's executing on
4773 * is removed from the allowed bitmask.
4774 *
4775 * NOTE: the caller must have a valid reference to the task, the
4776 * task must not exit() & deallocate itself prematurely. The
4777 * call is not atomic; no spinlocks may be held.
4778 */
4779 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4780 {
4781 unsigned long flags;
4782 struct rq *rq;
4783 unsigned int dest_cpu;
4784 int ret = 0;
4785
4786 rq = task_rq_lock(p, &flags);
4787
4788 if (cpumask_equal(&p->cpus_allowed, new_mask))
4789 goto out;
4790
4791 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4792 ret = -EINVAL;
4793 goto out;
4794 }
4795
4796 do_set_cpus_allowed(p, new_mask);
4797
4798 /* Can the task run on the task's current CPU? If so, we're done */
4799 if (cpumask_test_cpu(task_cpu(p), new_mask))
4800 goto out;
4801
4802 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4803 if (task_running(rq, p) || p->state == TASK_WAKING) {
4804 struct migration_arg arg = { p, dest_cpu };
4805 /* Need help from migration thread: drop lock and wait. */
4806 task_rq_unlock(rq, p, &flags);
4807 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4808 tlb_migrate_finish(p->mm);
4809 return 0;
4810 } else if (task_on_rq_queued(p))
4811 rq = move_queued_task(p, dest_cpu);
4812 out:
4813 task_rq_unlock(rq, p, &flags);
4814
4815 return ret;
4816 }
4817 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4818
4819 /*
4820 * Move (not current) task off this cpu, onto dest cpu. We're doing
4821 * this because either it can't run here any more (set_cpus_allowed()
4822 * away from this CPU, or CPU going down), or because we're
4823 * attempting to rebalance this task on exec (sched_exec).
4824 *
4825 * So we race with normal scheduler movements, but that's OK, as long
4826 * as the task is no longer on this CPU.
4827 *
4828 * Returns non-zero if task was successfully migrated.
4829 */
4830 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4831 {
4832 struct rq *rq;
4833 int ret = 0;
4834
4835 if (unlikely(!cpu_active(dest_cpu)))
4836 return ret;
4837
4838 rq = cpu_rq(src_cpu);
4839
4840 raw_spin_lock(&p->pi_lock);
4841 raw_spin_lock(&rq->lock);
4842 /* Already moved. */
4843 if (task_cpu(p) != src_cpu)
4844 goto done;
4845
4846 /* Affinity changed (again). */
4847 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4848 goto fail;
4849
4850 /*
4851 * If we're not on a rq, the next wake-up will ensure we're
4852 * placed properly.
4853 */
4854 if (task_on_rq_queued(p))
4855 rq = move_queued_task(p, dest_cpu);
4856 done:
4857 ret = 1;
4858 fail:
4859 raw_spin_unlock(&rq->lock);
4860 raw_spin_unlock(&p->pi_lock);
4861 return ret;
4862 }
4863
4864 #ifdef CONFIG_NUMA_BALANCING
4865 /* Migrate current task p to target_cpu */
4866 int migrate_task_to(struct task_struct *p, int target_cpu)
4867 {
4868 struct migration_arg arg = { p, target_cpu };
4869 int curr_cpu = task_cpu(p);
4870
4871 if (curr_cpu == target_cpu)
4872 return 0;
4873
4874 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4875 return -EINVAL;
4876
4877 /* TODO: This is not properly updating schedstats */
4878
4879 trace_sched_move_numa(p, curr_cpu, target_cpu);
4880 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4881 }
4882
4883 /*
4884 * Requeue a task on a given node and accurately track the number of NUMA
4885 * tasks on the runqueues
4886 */
4887 void sched_setnuma(struct task_struct *p, int nid)
4888 {
4889 struct rq *rq;
4890 unsigned long flags;
4891 bool queued, running;
4892
4893 rq = task_rq_lock(p, &flags);
4894 queued = task_on_rq_queued(p);
4895 running = task_current(rq, p);
4896
4897 if (queued)
4898 dequeue_task(rq, p, 0);
4899 if (running)
4900 put_prev_task(rq, p);
4901
4902 p->numa_preferred_nid = nid;
4903
4904 if (running)
4905 p->sched_class->set_curr_task(rq);
4906 if (queued)
4907 enqueue_task(rq, p, 0);
4908 task_rq_unlock(rq, p, &flags);
4909 }
4910 #endif
4911
4912 /*
4913 * migration_cpu_stop - this will be executed by a highprio stopper thread
4914 * and performs thread migration by bumping thread off CPU then
4915 * 'pushing' onto another runqueue.
4916 */
4917 static int migration_cpu_stop(void *data)
4918 {
4919 struct migration_arg *arg = data;
4920
4921 /*
4922 * The original target cpu might have gone down and we might
4923 * be on another cpu but it doesn't matter.
4924 */
4925 local_irq_disable();
4926 /*
4927 * We need to explicitly wake pending tasks before running
4928 * __migrate_task() such that we will not miss enforcing cpus_allowed
4929 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4930 */
4931 sched_ttwu_pending();
4932 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4933 local_irq_enable();
4934 return 0;
4935 }
4936
4937 #ifdef CONFIG_HOTPLUG_CPU
4938
4939 /*
4940 * Ensures that the idle task is using init_mm right before its cpu goes
4941 * offline.
4942 */
4943 void idle_task_exit(void)
4944 {
4945 struct mm_struct *mm = current->active_mm;
4946
4947 BUG_ON(cpu_online(smp_processor_id()));
4948
4949 if (mm != &init_mm) {
4950 switch_mm(mm, &init_mm, current);
4951 finish_arch_post_lock_switch();
4952 }
4953 mmdrop(mm);
4954 }
4955
4956 /*
4957 * Since this CPU is going 'away' for a while, fold any nr_active delta
4958 * we might have. Assumes we're called after migrate_tasks() so that the
4959 * nr_active count is stable.
4960 *
4961 * Also see the comment "Global load-average calculations".
4962 */
4963 static void calc_load_migrate(struct rq *rq)
4964 {
4965 long delta = calc_load_fold_active(rq);
4966 if (delta)
4967 atomic_long_add(delta, &calc_load_tasks);
4968 }
4969
4970 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4971 {
4972 }
4973
4974 static const struct sched_class fake_sched_class = {
4975 .put_prev_task = put_prev_task_fake,
4976 };
4977
4978 static struct task_struct fake_task = {
4979 /*
4980 * Avoid pull_{rt,dl}_task()
4981 */
4982 .prio = MAX_PRIO + 1,
4983 .sched_class = &fake_sched_class,
4984 };
4985
4986 /*
4987 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4988 * try_to_wake_up()->select_task_rq().
4989 *
4990 * Called with rq->lock held even though we'er in stop_machine() and
4991 * there's no concurrency possible, we hold the required locks anyway
4992 * because of lock validation efforts.
4993 */
4994 static void migrate_tasks(unsigned int dead_cpu)
4995 {
4996 struct rq *rq = cpu_rq(dead_cpu);
4997 struct task_struct *next, *stop = rq->stop;
4998 int dest_cpu;
4999
5000 /*
5001 * Fudge the rq selection such that the below task selection loop
5002 * doesn't get stuck on the currently eligible stop task.
5003 *
5004 * We're currently inside stop_machine() and the rq is either stuck
5005 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5006 * either way we should never end up calling schedule() until we're
5007 * done here.
5008 */
5009 rq->stop = NULL;
5010
5011 /*
5012 * put_prev_task() and pick_next_task() sched
5013 * class method both need to have an up-to-date
5014 * value of rq->clock[_task]
5015 */
5016 update_rq_clock(rq);
5017
5018 for ( ; ; ) {
5019 /*
5020 * There's this thread running, bail when that's the only
5021 * remaining thread.
5022 */
5023 if (rq->nr_running == 1)
5024 break;
5025
5026 next = pick_next_task(rq, &fake_task);
5027 BUG_ON(!next);
5028 next->sched_class->put_prev_task(rq, next);
5029
5030 /* Find suitable destination for @next, with force if needed. */
5031 dest_cpu = select_fallback_rq(dead_cpu, next);
5032 raw_spin_unlock(&rq->lock);
5033
5034 __migrate_task(next, dead_cpu, dest_cpu);
5035
5036 raw_spin_lock(&rq->lock);
5037 }
5038
5039 rq->stop = stop;
5040 }
5041
5042 #endif /* CONFIG_HOTPLUG_CPU */
5043
5044 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5045
5046 static struct ctl_table sd_ctl_dir[] = {
5047 {
5048 .procname = "sched_domain",
5049 .mode = 0555,
5050 },
5051 {}
5052 };
5053
5054 static struct ctl_table sd_ctl_root[] = {
5055 {
5056 .procname = "kernel",
5057 .mode = 0555,
5058 .child = sd_ctl_dir,
5059 },
5060 {}
5061 };
5062
5063 static struct ctl_table *sd_alloc_ctl_entry(int n)
5064 {
5065 struct ctl_table *entry =
5066 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5067
5068 return entry;
5069 }
5070
5071 static void sd_free_ctl_entry(struct ctl_table **tablep)
5072 {
5073 struct ctl_table *entry;
5074
5075 /*
5076 * In the intermediate directories, both the child directory and
5077 * procname are dynamically allocated and could fail but the mode
5078 * will always be set. In the lowest directory the names are
5079 * static strings and all have proc handlers.
5080 */
5081 for (entry = *tablep; entry->mode; entry++) {
5082 if (entry->child)
5083 sd_free_ctl_entry(&entry->child);
5084 if (entry->proc_handler == NULL)
5085 kfree(entry->procname);
5086 }
5087
5088 kfree(*tablep);
5089 *tablep = NULL;
5090 }
5091
5092 static int min_load_idx = 0;
5093 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5094
5095 static void
5096 set_table_entry(struct ctl_table *entry,
5097 const char *procname, void *data, int maxlen,
5098 umode_t mode, proc_handler *proc_handler,
5099 bool load_idx)
5100 {
5101 entry->procname = procname;
5102 entry->data = data;
5103 entry->maxlen = maxlen;
5104 entry->mode = mode;
5105 entry->proc_handler = proc_handler;
5106
5107 if (load_idx) {
5108 entry->extra1 = &min_load_idx;
5109 entry->extra2 = &max_load_idx;
5110 }
5111 }
5112
5113 static struct ctl_table *
5114 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5115 {
5116 struct ctl_table *table = sd_alloc_ctl_entry(14);
5117
5118 if (table == NULL)
5119 return NULL;
5120
5121 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5122 sizeof(long), 0644, proc_doulongvec_minmax, false);
5123 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5124 sizeof(long), 0644, proc_doulongvec_minmax, false);
5125 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5126 sizeof(int), 0644, proc_dointvec_minmax, true);
5127 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5128 sizeof(int), 0644, proc_dointvec_minmax, true);
5129 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5130 sizeof(int), 0644, proc_dointvec_minmax, true);
5131 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5132 sizeof(int), 0644, proc_dointvec_minmax, true);
5133 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5134 sizeof(int), 0644, proc_dointvec_minmax, true);
5135 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5136 sizeof(int), 0644, proc_dointvec_minmax, false);
5137 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5138 sizeof(int), 0644, proc_dointvec_minmax, false);
5139 set_table_entry(&table[9], "cache_nice_tries",
5140 &sd->cache_nice_tries,
5141 sizeof(int), 0644, proc_dointvec_minmax, false);
5142 set_table_entry(&table[10], "flags", &sd->flags,
5143 sizeof(int), 0644, proc_dointvec_minmax, false);
5144 set_table_entry(&table[11], "max_newidle_lb_cost",
5145 &sd->max_newidle_lb_cost,
5146 sizeof(long), 0644, proc_doulongvec_minmax, false);
5147 set_table_entry(&table[12], "name", sd->name,
5148 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5149 /* &table[13] is terminator */
5150
5151 return table;
5152 }
5153
5154 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5155 {
5156 struct ctl_table *entry, *table;
5157 struct sched_domain *sd;
5158 int domain_num = 0, i;
5159 char buf[32];
5160
5161 for_each_domain(cpu, sd)
5162 domain_num++;
5163 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5164 if (table == NULL)
5165 return NULL;
5166
5167 i = 0;
5168 for_each_domain(cpu, sd) {
5169 snprintf(buf, 32, "domain%d", i);
5170 entry->procname = kstrdup(buf, GFP_KERNEL);
5171 entry->mode = 0555;
5172 entry->child = sd_alloc_ctl_domain_table(sd);
5173 entry++;
5174 i++;
5175 }
5176 return table;
5177 }
5178
5179 static struct ctl_table_header *sd_sysctl_header;
5180 static void register_sched_domain_sysctl(void)
5181 {
5182 int i, cpu_num = num_possible_cpus();
5183 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5184 char buf[32];
5185
5186 WARN_ON(sd_ctl_dir[0].child);
5187 sd_ctl_dir[0].child = entry;
5188
5189 if (entry == NULL)
5190 return;
5191
5192 for_each_possible_cpu(i) {
5193 snprintf(buf, 32, "cpu%d", i);
5194 entry->procname = kstrdup(buf, GFP_KERNEL);
5195 entry->mode = 0555;
5196 entry->child = sd_alloc_ctl_cpu_table(i);
5197 entry++;
5198 }
5199
5200 WARN_ON(sd_sysctl_header);
5201 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5202 }
5203
5204 /* may be called multiple times per register */
5205 static void unregister_sched_domain_sysctl(void)
5206 {
5207 if (sd_sysctl_header)
5208 unregister_sysctl_table(sd_sysctl_header);
5209 sd_sysctl_header = NULL;
5210 if (sd_ctl_dir[0].child)
5211 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5212 }
5213 #else
5214 static void register_sched_domain_sysctl(void)
5215 {
5216 }
5217 static void unregister_sched_domain_sysctl(void)
5218 {
5219 }
5220 #endif
5221
5222 static void set_rq_online(struct rq *rq)
5223 {
5224 if (!rq->online) {
5225 const struct sched_class *class;
5226
5227 cpumask_set_cpu(rq->cpu, rq->rd->online);
5228 rq->online = 1;
5229
5230 for_each_class(class) {
5231 if (class->rq_online)
5232 class->rq_online(rq);
5233 }
5234 }
5235 }
5236
5237 static void set_rq_offline(struct rq *rq)
5238 {
5239 if (rq->online) {
5240 const struct sched_class *class;
5241
5242 for_each_class(class) {
5243 if (class->rq_offline)
5244 class->rq_offline(rq);
5245 }
5246
5247 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5248 rq->online = 0;
5249 }
5250 }
5251
5252 /*
5253 * migration_call - callback that gets triggered when a CPU is added.
5254 * Here we can start up the necessary migration thread for the new CPU.
5255 */
5256 static int
5257 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5258 {
5259 int cpu = (long)hcpu;
5260 unsigned long flags;
5261 struct rq *rq = cpu_rq(cpu);
5262
5263 switch (action & ~CPU_TASKS_FROZEN) {
5264
5265 case CPU_UP_PREPARE:
5266 rq->calc_load_update = calc_load_update;
5267 break;
5268
5269 case CPU_ONLINE:
5270 /* Update our root-domain */
5271 raw_spin_lock_irqsave(&rq->lock, flags);
5272 if (rq->rd) {
5273 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5274
5275 set_rq_online(rq);
5276 }
5277 raw_spin_unlock_irqrestore(&rq->lock, flags);
5278 break;
5279
5280 #ifdef CONFIG_HOTPLUG_CPU
5281 case CPU_DYING:
5282 sched_ttwu_pending();
5283 /* Update our root-domain */
5284 raw_spin_lock_irqsave(&rq->lock, flags);
5285 if (rq->rd) {
5286 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5287 set_rq_offline(rq);
5288 }
5289 migrate_tasks(cpu);
5290 BUG_ON(rq->nr_running != 1); /* the migration thread */
5291 raw_spin_unlock_irqrestore(&rq->lock, flags);
5292 break;
5293
5294 case CPU_DEAD:
5295 calc_load_migrate(rq);
5296 break;
5297 #endif
5298 }
5299
5300 update_max_interval();
5301
5302 return NOTIFY_OK;
5303 }
5304
5305 /*
5306 * Register at high priority so that task migration (migrate_all_tasks)
5307 * happens before everything else. This has to be lower priority than
5308 * the notifier in the perf_event subsystem, though.
5309 */
5310 static struct notifier_block migration_notifier = {
5311 .notifier_call = migration_call,
5312 .priority = CPU_PRI_MIGRATION,
5313 };
5314
5315 static void __cpuinit set_cpu_rq_start_time(void)
5316 {
5317 int cpu = smp_processor_id();
5318 struct rq *rq = cpu_rq(cpu);
5319 rq->age_stamp = sched_clock_cpu(cpu);
5320 }
5321
5322 static int sched_cpu_active(struct notifier_block *nfb,
5323 unsigned long action, void *hcpu)
5324 {
5325 switch (action & ~CPU_TASKS_FROZEN) {
5326 case CPU_STARTING:
5327 set_cpu_rq_start_time();
5328 return NOTIFY_OK;
5329 case CPU_DOWN_FAILED:
5330 set_cpu_active((long)hcpu, true);
5331 return NOTIFY_OK;
5332 default:
5333 return NOTIFY_DONE;
5334 }
5335 }
5336
5337 static int sched_cpu_inactive(struct notifier_block *nfb,
5338 unsigned long action, void *hcpu)
5339 {
5340 unsigned long flags;
5341 long cpu = (long)hcpu;
5342 struct dl_bw *dl_b;
5343
5344 switch (action & ~CPU_TASKS_FROZEN) {
5345 case CPU_DOWN_PREPARE:
5346 set_cpu_active(cpu, false);
5347
5348 /* explicitly allow suspend */
5349 if (!(action & CPU_TASKS_FROZEN)) {
5350 bool overflow;
5351 int cpus;
5352
5353 rcu_read_lock_sched();
5354 dl_b = dl_bw_of(cpu);
5355
5356 raw_spin_lock_irqsave(&dl_b->lock, flags);
5357 cpus = dl_bw_cpus(cpu);
5358 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5359 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5360
5361 rcu_read_unlock_sched();
5362
5363 if (overflow)
5364 return notifier_from_errno(-EBUSY);
5365 }
5366 return NOTIFY_OK;
5367 }
5368
5369 return NOTIFY_DONE;
5370 }
5371
5372 static int __init migration_init(void)
5373 {
5374 void *cpu = (void *)(long)smp_processor_id();
5375 int err;
5376
5377 /* Initialize migration for the boot CPU */
5378 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5379 BUG_ON(err == NOTIFY_BAD);
5380 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5381 register_cpu_notifier(&migration_notifier);
5382
5383 /* Register cpu active notifiers */
5384 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5385 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5386
5387 return 0;
5388 }
5389 early_initcall(migration_init);
5390 #endif
5391
5392 #ifdef CONFIG_SMP
5393
5394 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5395
5396 #ifdef CONFIG_SCHED_DEBUG
5397
5398 static __read_mostly int sched_debug_enabled;
5399
5400 static int __init sched_debug_setup(char *str)
5401 {
5402 sched_debug_enabled = 1;
5403
5404 return 0;
5405 }
5406 early_param("sched_debug", sched_debug_setup);
5407
5408 static inline bool sched_debug(void)
5409 {
5410 return sched_debug_enabled;
5411 }
5412
5413 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5414 struct cpumask *groupmask)
5415 {
5416 struct sched_group *group = sd->groups;
5417
5418 cpumask_clear(groupmask);
5419
5420 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5421
5422 if (!(sd->flags & SD_LOAD_BALANCE)) {
5423 printk("does not load-balance\n");
5424 if (sd->parent)
5425 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5426 " has parent");
5427 return -1;
5428 }
5429
5430 printk(KERN_CONT "span %*pbl level %s\n",
5431 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5432
5433 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5434 printk(KERN_ERR "ERROR: domain->span does not contain "
5435 "CPU%d\n", cpu);
5436 }
5437 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5438 printk(KERN_ERR "ERROR: domain->groups does not contain"
5439 " CPU%d\n", cpu);
5440 }
5441
5442 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5443 do {
5444 if (!group) {
5445 printk("\n");
5446 printk(KERN_ERR "ERROR: group is NULL\n");
5447 break;
5448 }
5449
5450 if (!cpumask_weight(sched_group_cpus(group))) {
5451 printk(KERN_CONT "\n");
5452 printk(KERN_ERR "ERROR: empty group\n");
5453 break;
5454 }
5455
5456 if (!(sd->flags & SD_OVERLAP) &&
5457 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5458 printk(KERN_CONT "\n");
5459 printk(KERN_ERR "ERROR: repeated CPUs\n");
5460 break;
5461 }
5462
5463 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5464
5465 printk(KERN_CONT " %*pbl",
5466 cpumask_pr_args(sched_group_cpus(group)));
5467 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5468 printk(KERN_CONT " (cpu_capacity = %d)",
5469 group->sgc->capacity);
5470 }
5471
5472 group = group->next;
5473 } while (group != sd->groups);
5474 printk(KERN_CONT "\n");
5475
5476 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5477 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5478
5479 if (sd->parent &&
5480 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5481 printk(KERN_ERR "ERROR: parent span is not a superset "
5482 "of domain->span\n");
5483 return 0;
5484 }
5485
5486 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5487 {
5488 int level = 0;
5489
5490 if (!sched_debug_enabled)
5491 return;
5492
5493 if (!sd) {
5494 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5495 return;
5496 }
5497
5498 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5499
5500 for (;;) {
5501 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5502 break;
5503 level++;
5504 sd = sd->parent;
5505 if (!sd)
5506 break;
5507 }
5508 }
5509 #else /* !CONFIG_SCHED_DEBUG */
5510 # define sched_domain_debug(sd, cpu) do { } while (0)
5511 static inline bool sched_debug(void)
5512 {
5513 return false;
5514 }
5515 #endif /* CONFIG_SCHED_DEBUG */
5516
5517 static int sd_degenerate(struct sched_domain *sd)
5518 {
5519 if (cpumask_weight(sched_domain_span(sd)) == 1)
5520 return 1;
5521
5522 /* Following flags need at least 2 groups */
5523 if (sd->flags & (SD_LOAD_BALANCE |
5524 SD_BALANCE_NEWIDLE |
5525 SD_BALANCE_FORK |
5526 SD_BALANCE_EXEC |
5527 SD_SHARE_CPUCAPACITY |
5528 SD_SHARE_PKG_RESOURCES |
5529 SD_SHARE_POWERDOMAIN)) {
5530 if (sd->groups != sd->groups->next)
5531 return 0;
5532 }
5533
5534 /* Following flags don't use groups */
5535 if (sd->flags & (SD_WAKE_AFFINE))
5536 return 0;
5537
5538 return 1;
5539 }
5540
5541 static int
5542 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5543 {
5544 unsigned long cflags = sd->flags, pflags = parent->flags;
5545
5546 if (sd_degenerate(parent))
5547 return 1;
5548
5549 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5550 return 0;
5551
5552 /* Flags needing groups don't count if only 1 group in parent */
5553 if (parent->groups == parent->groups->next) {
5554 pflags &= ~(SD_LOAD_BALANCE |
5555 SD_BALANCE_NEWIDLE |
5556 SD_BALANCE_FORK |
5557 SD_BALANCE_EXEC |
5558 SD_SHARE_CPUCAPACITY |
5559 SD_SHARE_PKG_RESOURCES |
5560 SD_PREFER_SIBLING |
5561 SD_SHARE_POWERDOMAIN);
5562 if (nr_node_ids == 1)
5563 pflags &= ~SD_SERIALIZE;
5564 }
5565 if (~cflags & pflags)
5566 return 0;
5567
5568 return 1;
5569 }
5570
5571 static void free_rootdomain(struct rcu_head *rcu)
5572 {
5573 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5574
5575 cpupri_cleanup(&rd->cpupri);
5576 cpudl_cleanup(&rd->cpudl);
5577 free_cpumask_var(rd->dlo_mask);
5578 free_cpumask_var(rd->rto_mask);
5579 free_cpumask_var(rd->online);
5580 free_cpumask_var(rd->span);
5581 kfree(rd);
5582 }
5583
5584 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5585 {
5586 struct root_domain *old_rd = NULL;
5587 unsigned long flags;
5588
5589 raw_spin_lock_irqsave(&rq->lock, flags);
5590
5591 if (rq->rd) {
5592 old_rd = rq->rd;
5593
5594 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5595 set_rq_offline(rq);
5596
5597 cpumask_clear_cpu(rq->cpu, old_rd->span);
5598
5599 /*
5600 * If we dont want to free the old_rd yet then
5601 * set old_rd to NULL to skip the freeing later
5602 * in this function:
5603 */
5604 if (!atomic_dec_and_test(&old_rd->refcount))
5605 old_rd = NULL;
5606 }
5607
5608 atomic_inc(&rd->refcount);
5609 rq->rd = rd;
5610
5611 cpumask_set_cpu(rq->cpu, rd->span);
5612 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5613 set_rq_online(rq);
5614
5615 raw_spin_unlock_irqrestore(&rq->lock, flags);
5616
5617 if (old_rd)
5618 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5619 }
5620
5621 static int init_rootdomain(struct root_domain *rd)
5622 {
5623 memset(rd, 0, sizeof(*rd));
5624
5625 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5626 goto out;
5627 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5628 goto free_span;
5629 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5630 goto free_online;
5631 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5632 goto free_dlo_mask;
5633
5634 init_dl_bw(&rd->dl_bw);
5635 if (cpudl_init(&rd->cpudl) != 0)
5636 goto free_dlo_mask;
5637
5638 if (cpupri_init(&rd->cpupri) != 0)
5639 goto free_rto_mask;
5640 return 0;
5641
5642 free_rto_mask:
5643 free_cpumask_var(rd->rto_mask);
5644 free_dlo_mask:
5645 free_cpumask_var(rd->dlo_mask);
5646 free_online:
5647 free_cpumask_var(rd->online);
5648 free_span:
5649 free_cpumask_var(rd->span);
5650 out:
5651 return -ENOMEM;
5652 }
5653
5654 /*
5655 * By default the system creates a single root-domain with all cpus as
5656 * members (mimicking the global state we have today).
5657 */
5658 struct root_domain def_root_domain;
5659
5660 static void init_defrootdomain(void)
5661 {
5662 init_rootdomain(&def_root_domain);
5663
5664 atomic_set(&def_root_domain.refcount, 1);
5665 }
5666
5667 static struct root_domain *alloc_rootdomain(void)
5668 {
5669 struct root_domain *rd;
5670
5671 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5672 if (!rd)
5673 return NULL;
5674
5675 if (init_rootdomain(rd) != 0) {
5676 kfree(rd);
5677 return NULL;
5678 }
5679
5680 return rd;
5681 }
5682
5683 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5684 {
5685 struct sched_group *tmp, *first;
5686
5687 if (!sg)
5688 return;
5689
5690 first = sg;
5691 do {
5692 tmp = sg->next;
5693
5694 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5695 kfree(sg->sgc);
5696
5697 kfree(sg);
5698 sg = tmp;
5699 } while (sg != first);
5700 }
5701
5702 static void free_sched_domain(struct rcu_head *rcu)
5703 {
5704 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5705
5706 /*
5707 * If its an overlapping domain it has private groups, iterate and
5708 * nuke them all.
5709 */
5710 if (sd->flags & SD_OVERLAP) {
5711 free_sched_groups(sd->groups, 1);
5712 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5713 kfree(sd->groups->sgc);
5714 kfree(sd->groups);
5715 }
5716 kfree(sd);
5717 }
5718
5719 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5720 {
5721 call_rcu(&sd->rcu, free_sched_domain);
5722 }
5723
5724 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5725 {
5726 for (; sd; sd = sd->parent)
5727 destroy_sched_domain(sd, cpu);
5728 }
5729
5730 /*
5731 * Keep a special pointer to the highest sched_domain that has
5732 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5733 * allows us to avoid some pointer chasing select_idle_sibling().
5734 *
5735 * Also keep a unique ID per domain (we use the first cpu number in
5736 * the cpumask of the domain), this allows us to quickly tell if
5737 * two cpus are in the same cache domain, see cpus_share_cache().
5738 */
5739 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5740 DEFINE_PER_CPU(int, sd_llc_size);
5741 DEFINE_PER_CPU(int, sd_llc_id);
5742 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5743 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5744 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5745
5746 static void update_top_cache_domain(int cpu)
5747 {
5748 struct sched_domain *sd;
5749 struct sched_domain *busy_sd = NULL;
5750 int id = cpu;
5751 int size = 1;
5752
5753 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5754 if (sd) {
5755 id = cpumask_first(sched_domain_span(sd));
5756 size = cpumask_weight(sched_domain_span(sd));
5757 busy_sd = sd->parent; /* sd_busy */
5758 }
5759 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5760
5761 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5762 per_cpu(sd_llc_size, cpu) = size;
5763 per_cpu(sd_llc_id, cpu) = id;
5764
5765 sd = lowest_flag_domain(cpu, SD_NUMA);
5766 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5767
5768 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5769 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5770 }
5771
5772 /*
5773 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5774 * hold the hotplug lock.
5775 */
5776 static void
5777 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5778 {
5779 struct rq *rq = cpu_rq(cpu);
5780 struct sched_domain *tmp;
5781
5782 /* Remove the sched domains which do not contribute to scheduling. */
5783 for (tmp = sd; tmp; ) {
5784 struct sched_domain *parent = tmp->parent;
5785 if (!parent)
5786 break;
5787
5788 if (sd_parent_degenerate(tmp, parent)) {
5789 tmp->parent = parent->parent;
5790 if (parent->parent)
5791 parent->parent->child = tmp;
5792 /*
5793 * Transfer SD_PREFER_SIBLING down in case of a
5794 * degenerate parent; the spans match for this
5795 * so the property transfers.
5796 */
5797 if (parent->flags & SD_PREFER_SIBLING)
5798 tmp->flags |= SD_PREFER_SIBLING;
5799 destroy_sched_domain(parent, cpu);
5800 } else
5801 tmp = tmp->parent;
5802 }
5803
5804 if (sd && sd_degenerate(sd)) {
5805 tmp = sd;
5806 sd = sd->parent;
5807 destroy_sched_domain(tmp, cpu);
5808 if (sd)
5809 sd->child = NULL;
5810 }
5811
5812 sched_domain_debug(sd, cpu);
5813
5814 rq_attach_root(rq, rd);
5815 tmp = rq->sd;
5816 rcu_assign_pointer(rq->sd, sd);
5817 destroy_sched_domains(tmp, cpu);
5818
5819 update_top_cache_domain(cpu);
5820 }
5821
5822 /* cpus with isolated domains */
5823 static cpumask_var_t cpu_isolated_map;
5824
5825 /* Setup the mask of cpus configured for isolated domains */
5826 static int __init isolated_cpu_setup(char *str)
5827 {
5828 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5829 cpulist_parse(str, cpu_isolated_map);
5830 return 1;
5831 }
5832
5833 __setup("isolcpus=", isolated_cpu_setup);
5834
5835 struct s_data {
5836 struct sched_domain ** __percpu sd;
5837 struct root_domain *rd;
5838 };
5839
5840 enum s_alloc {
5841 sa_rootdomain,
5842 sa_sd,
5843 sa_sd_storage,
5844 sa_none,
5845 };
5846
5847 /*
5848 * Build an iteration mask that can exclude certain CPUs from the upwards
5849 * domain traversal.
5850 *
5851 * Asymmetric node setups can result in situations where the domain tree is of
5852 * unequal depth, make sure to skip domains that already cover the entire
5853 * range.
5854 *
5855 * In that case build_sched_domains() will have terminated the iteration early
5856 * and our sibling sd spans will be empty. Domains should always include the
5857 * cpu they're built on, so check that.
5858 *
5859 */
5860 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5861 {
5862 const struct cpumask *span = sched_domain_span(sd);
5863 struct sd_data *sdd = sd->private;
5864 struct sched_domain *sibling;
5865 int i;
5866
5867 for_each_cpu(i, span) {
5868 sibling = *per_cpu_ptr(sdd->sd, i);
5869 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5870 continue;
5871
5872 cpumask_set_cpu(i, sched_group_mask(sg));
5873 }
5874 }
5875
5876 /*
5877 * Return the canonical balance cpu for this group, this is the first cpu
5878 * of this group that's also in the iteration mask.
5879 */
5880 int group_balance_cpu(struct sched_group *sg)
5881 {
5882 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5883 }
5884
5885 static int
5886 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5887 {
5888 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5889 const struct cpumask *span = sched_domain_span(sd);
5890 struct cpumask *covered = sched_domains_tmpmask;
5891 struct sd_data *sdd = sd->private;
5892 struct sched_domain *sibling;
5893 int i;
5894
5895 cpumask_clear(covered);
5896
5897 for_each_cpu(i, span) {
5898 struct cpumask *sg_span;
5899
5900 if (cpumask_test_cpu(i, covered))
5901 continue;
5902
5903 sibling = *per_cpu_ptr(sdd->sd, i);
5904
5905 /* See the comment near build_group_mask(). */
5906 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5907 continue;
5908
5909 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5910 GFP_KERNEL, cpu_to_node(cpu));
5911
5912 if (!sg)
5913 goto fail;
5914
5915 sg_span = sched_group_cpus(sg);
5916 if (sibling->child)
5917 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5918 else
5919 cpumask_set_cpu(i, sg_span);
5920
5921 cpumask_or(covered, covered, sg_span);
5922
5923 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5924 if (atomic_inc_return(&sg->sgc->ref) == 1)
5925 build_group_mask(sd, sg);
5926
5927 /*
5928 * Initialize sgc->capacity such that even if we mess up the
5929 * domains and no possible iteration will get us here, we won't
5930 * die on a /0 trap.
5931 */
5932 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5933
5934 /*
5935 * Make sure the first group of this domain contains the
5936 * canonical balance cpu. Otherwise the sched_domain iteration
5937 * breaks. See update_sg_lb_stats().
5938 */
5939 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5940 group_balance_cpu(sg) == cpu)
5941 groups = sg;
5942
5943 if (!first)
5944 first = sg;
5945 if (last)
5946 last->next = sg;
5947 last = sg;
5948 last->next = first;
5949 }
5950 sd->groups = groups;
5951
5952 return 0;
5953
5954 fail:
5955 free_sched_groups(first, 0);
5956
5957 return -ENOMEM;
5958 }
5959
5960 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5961 {
5962 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5963 struct sched_domain *child = sd->child;
5964
5965 if (child)
5966 cpu = cpumask_first(sched_domain_span(child));
5967
5968 if (sg) {
5969 *sg = *per_cpu_ptr(sdd->sg, cpu);
5970 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5971 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5972 }
5973
5974 return cpu;
5975 }
5976
5977 /*
5978 * build_sched_groups will build a circular linked list of the groups
5979 * covered by the given span, and will set each group's ->cpumask correctly,
5980 * and ->cpu_capacity to 0.
5981 *
5982 * Assumes the sched_domain tree is fully constructed
5983 */
5984 static int
5985 build_sched_groups(struct sched_domain *sd, int cpu)
5986 {
5987 struct sched_group *first = NULL, *last = NULL;
5988 struct sd_data *sdd = sd->private;
5989 const struct cpumask *span = sched_domain_span(sd);
5990 struct cpumask *covered;
5991 int i;
5992
5993 get_group(cpu, sdd, &sd->groups);
5994 atomic_inc(&sd->groups->ref);
5995
5996 if (cpu != cpumask_first(span))
5997 return 0;
5998
5999 lockdep_assert_held(&sched_domains_mutex);
6000 covered = sched_domains_tmpmask;
6001
6002 cpumask_clear(covered);
6003
6004 for_each_cpu(i, span) {
6005 struct sched_group *sg;
6006 int group, j;
6007
6008 if (cpumask_test_cpu(i, covered))
6009 continue;
6010
6011 group = get_group(i, sdd, &sg);
6012 cpumask_setall(sched_group_mask(sg));
6013
6014 for_each_cpu(j, span) {
6015 if (get_group(j, sdd, NULL) != group)
6016 continue;
6017
6018 cpumask_set_cpu(j, covered);
6019 cpumask_set_cpu(j, sched_group_cpus(sg));
6020 }
6021
6022 if (!first)
6023 first = sg;
6024 if (last)
6025 last->next = sg;
6026 last = sg;
6027 }
6028 last->next = first;
6029
6030 return 0;
6031 }
6032
6033 /*
6034 * Initialize sched groups cpu_capacity.
6035 *
6036 * cpu_capacity indicates the capacity of sched group, which is used while
6037 * distributing the load between different sched groups in a sched domain.
6038 * Typically cpu_capacity for all the groups in a sched domain will be same
6039 * unless there are asymmetries in the topology. If there are asymmetries,
6040 * group having more cpu_capacity will pickup more load compared to the
6041 * group having less cpu_capacity.
6042 */
6043 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6044 {
6045 struct sched_group *sg = sd->groups;
6046
6047 WARN_ON(!sg);
6048
6049 do {
6050 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6051 sg = sg->next;
6052 } while (sg != sd->groups);
6053
6054 if (cpu != group_balance_cpu(sg))
6055 return;
6056
6057 update_group_capacity(sd, cpu);
6058 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6059 }
6060
6061 /*
6062 * Initializers for schedule domains
6063 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6064 */
6065
6066 static int default_relax_domain_level = -1;
6067 int sched_domain_level_max;
6068
6069 static int __init setup_relax_domain_level(char *str)
6070 {
6071 if (kstrtoint(str, 0, &default_relax_domain_level))
6072 pr_warn("Unable to set relax_domain_level\n");
6073
6074 return 1;
6075 }
6076 __setup("relax_domain_level=", setup_relax_domain_level);
6077
6078 static void set_domain_attribute(struct sched_domain *sd,
6079 struct sched_domain_attr *attr)
6080 {
6081 int request;
6082
6083 if (!attr || attr->relax_domain_level < 0) {
6084 if (default_relax_domain_level < 0)
6085 return;
6086 else
6087 request = default_relax_domain_level;
6088 } else
6089 request = attr->relax_domain_level;
6090 if (request < sd->level) {
6091 /* turn off idle balance on this domain */
6092 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6093 } else {
6094 /* turn on idle balance on this domain */
6095 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6096 }
6097 }
6098
6099 static void __sdt_free(const struct cpumask *cpu_map);
6100 static int __sdt_alloc(const struct cpumask *cpu_map);
6101
6102 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6103 const struct cpumask *cpu_map)
6104 {
6105 switch (what) {
6106 case sa_rootdomain:
6107 if (!atomic_read(&d->rd->refcount))
6108 free_rootdomain(&d->rd->rcu); /* fall through */
6109 case sa_sd:
6110 free_percpu(d->sd); /* fall through */
6111 case sa_sd_storage:
6112 __sdt_free(cpu_map); /* fall through */
6113 case sa_none:
6114 break;
6115 }
6116 }
6117
6118 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6119 const struct cpumask *cpu_map)
6120 {
6121 memset(d, 0, sizeof(*d));
6122
6123 if (__sdt_alloc(cpu_map))
6124 return sa_sd_storage;
6125 d->sd = alloc_percpu(struct sched_domain *);
6126 if (!d->sd)
6127 return sa_sd_storage;
6128 d->rd = alloc_rootdomain();
6129 if (!d->rd)
6130 return sa_sd;
6131 return sa_rootdomain;
6132 }
6133
6134 /*
6135 * NULL the sd_data elements we've used to build the sched_domain and
6136 * sched_group structure so that the subsequent __free_domain_allocs()
6137 * will not free the data we're using.
6138 */
6139 static void claim_allocations(int cpu, struct sched_domain *sd)
6140 {
6141 struct sd_data *sdd = sd->private;
6142
6143 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6144 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6145
6146 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6147 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6148
6149 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6150 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6151 }
6152
6153 #ifdef CONFIG_NUMA
6154 static int sched_domains_numa_levels;
6155 enum numa_topology_type sched_numa_topology_type;
6156 static int *sched_domains_numa_distance;
6157 int sched_max_numa_distance;
6158 static struct cpumask ***sched_domains_numa_masks;
6159 static int sched_domains_curr_level;
6160 #endif
6161
6162 /*
6163 * SD_flags allowed in topology descriptions.
6164 *
6165 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6166 * SD_SHARE_PKG_RESOURCES - describes shared caches
6167 * SD_NUMA - describes NUMA topologies
6168 * SD_SHARE_POWERDOMAIN - describes shared power domain
6169 *
6170 * Odd one out:
6171 * SD_ASYM_PACKING - describes SMT quirks
6172 */
6173 #define TOPOLOGY_SD_FLAGS \
6174 (SD_SHARE_CPUCAPACITY | \
6175 SD_SHARE_PKG_RESOURCES | \
6176 SD_NUMA | \
6177 SD_ASYM_PACKING | \
6178 SD_SHARE_POWERDOMAIN)
6179
6180 static struct sched_domain *
6181 sd_init(struct sched_domain_topology_level *tl, int cpu)
6182 {
6183 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6184 int sd_weight, sd_flags = 0;
6185
6186 #ifdef CONFIG_NUMA
6187 /*
6188 * Ugly hack to pass state to sd_numa_mask()...
6189 */
6190 sched_domains_curr_level = tl->numa_level;
6191 #endif
6192
6193 sd_weight = cpumask_weight(tl->mask(cpu));
6194
6195 if (tl->sd_flags)
6196 sd_flags = (*tl->sd_flags)();
6197 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6198 "wrong sd_flags in topology description\n"))
6199 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6200
6201 *sd = (struct sched_domain){
6202 .min_interval = sd_weight,
6203 .max_interval = 2*sd_weight,
6204 .busy_factor = 32,
6205 .imbalance_pct = 125,
6206
6207 .cache_nice_tries = 0,
6208 .busy_idx = 0,
6209 .idle_idx = 0,
6210 .newidle_idx = 0,
6211 .wake_idx = 0,
6212 .forkexec_idx = 0,
6213
6214 .flags = 1*SD_LOAD_BALANCE
6215 | 1*SD_BALANCE_NEWIDLE
6216 | 1*SD_BALANCE_EXEC
6217 | 1*SD_BALANCE_FORK
6218 | 0*SD_BALANCE_WAKE
6219 | 1*SD_WAKE_AFFINE
6220 | 0*SD_SHARE_CPUCAPACITY
6221 | 0*SD_SHARE_PKG_RESOURCES
6222 | 0*SD_SERIALIZE
6223 | 0*SD_PREFER_SIBLING
6224 | 0*SD_NUMA
6225 | sd_flags
6226 ,
6227
6228 .last_balance = jiffies,
6229 .balance_interval = sd_weight,
6230 .smt_gain = 0,
6231 .max_newidle_lb_cost = 0,
6232 .next_decay_max_lb_cost = jiffies,
6233 #ifdef CONFIG_SCHED_DEBUG
6234 .name = tl->name,
6235 #endif
6236 };
6237
6238 /*
6239 * Convert topological properties into behaviour.
6240 */
6241
6242 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6243 sd->flags |= SD_PREFER_SIBLING;
6244 sd->imbalance_pct = 110;
6245 sd->smt_gain = 1178; /* ~15% */
6246
6247 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6248 sd->imbalance_pct = 117;
6249 sd->cache_nice_tries = 1;
6250 sd->busy_idx = 2;
6251
6252 #ifdef CONFIG_NUMA
6253 } else if (sd->flags & SD_NUMA) {
6254 sd->cache_nice_tries = 2;
6255 sd->busy_idx = 3;
6256 sd->idle_idx = 2;
6257
6258 sd->flags |= SD_SERIALIZE;
6259 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6260 sd->flags &= ~(SD_BALANCE_EXEC |
6261 SD_BALANCE_FORK |
6262 SD_WAKE_AFFINE);
6263 }
6264
6265 #endif
6266 } else {
6267 sd->flags |= SD_PREFER_SIBLING;
6268 sd->cache_nice_tries = 1;
6269 sd->busy_idx = 2;
6270 sd->idle_idx = 1;
6271 }
6272
6273 sd->private = &tl->data;
6274
6275 return sd;
6276 }
6277
6278 /*
6279 * Topology list, bottom-up.
6280 */
6281 static struct sched_domain_topology_level default_topology[] = {
6282 #ifdef CONFIG_SCHED_SMT
6283 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6284 #endif
6285 #ifdef CONFIG_SCHED_MC
6286 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6287 #endif
6288 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6289 { NULL, },
6290 };
6291
6292 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6293
6294 #define for_each_sd_topology(tl) \
6295 for (tl = sched_domain_topology; tl->mask; tl++)
6296
6297 void set_sched_topology(struct sched_domain_topology_level *tl)
6298 {
6299 sched_domain_topology = tl;
6300 }
6301
6302 #ifdef CONFIG_NUMA
6303
6304 static const struct cpumask *sd_numa_mask(int cpu)
6305 {
6306 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6307 }
6308
6309 static void sched_numa_warn(const char *str)
6310 {
6311 static int done = false;
6312 int i,j;
6313
6314 if (done)
6315 return;
6316
6317 done = true;
6318
6319 printk(KERN_WARNING "ERROR: %s\n\n", str);
6320
6321 for (i = 0; i < nr_node_ids; i++) {
6322 printk(KERN_WARNING " ");
6323 for (j = 0; j < nr_node_ids; j++)
6324 printk(KERN_CONT "%02d ", node_distance(i,j));
6325 printk(KERN_CONT "\n");
6326 }
6327 printk(KERN_WARNING "\n");
6328 }
6329
6330 bool find_numa_distance(int distance)
6331 {
6332 int i;
6333
6334 if (distance == node_distance(0, 0))
6335 return true;
6336
6337 for (i = 0; i < sched_domains_numa_levels; i++) {
6338 if (sched_domains_numa_distance[i] == distance)
6339 return true;
6340 }
6341
6342 return false;
6343 }
6344
6345 /*
6346 * A system can have three types of NUMA topology:
6347 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6348 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6349 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6350 *
6351 * The difference between a glueless mesh topology and a backplane
6352 * topology lies in whether communication between not directly
6353 * connected nodes goes through intermediary nodes (where programs
6354 * could run), or through backplane controllers. This affects
6355 * placement of programs.
6356 *
6357 * The type of topology can be discerned with the following tests:
6358 * - If the maximum distance between any nodes is 1 hop, the system
6359 * is directly connected.
6360 * - If for two nodes A and B, located N > 1 hops away from each other,
6361 * there is an intermediary node C, which is < N hops away from both
6362 * nodes A and B, the system is a glueless mesh.
6363 */
6364 static void init_numa_topology_type(void)
6365 {
6366 int a, b, c, n;
6367
6368 n = sched_max_numa_distance;
6369
6370 if (n <= 1)
6371 sched_numa_topology_type = NUMA_DIRECT;
6372
6373 for_each_online_node(a) {
6374 for_each_online_node(b) {
6375 /* Find two nodes furthest removed from each other. */
6376 if (node_distance(a, b) < n)
6377 continue;
6378
6379 /* Is there an intermediary node between a and b? */
6380 for_each_online_node(c) {
6381 if (node_distance(a, c) < n &&
6382 node_distance(b, c) < n) {
6383 sched_numa_topology_type =
6384 NUMA_GLUELESS_MESH;
6385 return;
6386 }
6387 }
6388
6389 sched_numa_topology_type = NUMA_BACKPLANE;
6390 return;
6391 }
6392 }
6393 }
6394
6395 static void sched_init_numa(void)
6396 {
6397 int next_distance, curr_distance = node_distance(0, 0);
6398 struct sched_domain_topology_level *tl;
6399 int level = 0;
6400 int i, j, k;
6401
6402 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6403 if (!sched_domains_numa_distance)
6404 return;
6405
6406 /*
6407 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6408 * unique distances in the node_distance() table.
6409 *
6410 * Assumes node_distance(0,j) includes all distances in
6411 * node_distance(i,j) in order to avoid cubic time.
6412 */
6413 next_distance = curr_distance;
6414 for (i = 0; i < nr_node_ids; i++) {
6415 for (j = 0; j < nr_node_ids; j++) {
6416 for (k = 0; k < nr_node_ids; k++) {
6417 int distance = node_distance(i, k);
6418
6419 if (distance > curr_distance &&
6420 (distance < next_distance ||
6421 next_distance == curr_distance))
6422 next_distance = distance;
6423
6424 /*
6425 * While not a strong assumption it would be nice to know
6426 * about cases where if node A is connected to B, B is not
6427 * equally connected to A.
6428 */
6429 if (sched_debug() && node_distance(k, i) != distance)
6430 sched_numa_warn("Node-distance not symmetric");
6431
6432 if (sched_debug() && i && !find_numa_distance(distance))
6433 sched_numa_warn("Node-0 not representative");
6434 }
6435 if (next_distance != curr_distance) {
6436 sched_domains_numa_distance[level++] = next_distance;
6437 sched_domains_numa_levels = level;
6438 curr_distance = next_distance;
6439 } else break;
6440 }
6441
6442 /*
6443 * In case of sched_debug() we verify the above assumption.
6444 */
6445 if (!sched_debug())
6446 break;
6447 }
6448
6449 if (!level)
6450 return;
6451
6452 /*
6453 * 'level' contains the number of unique distances, excluding the
6454 * identity distance node_distance(i,i).
6455 *
6456 * The sched_domains_numa_distance[] array includes the actual distance
6457 * numbers.
6458 */
6459
6460 /*
6461 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6462 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6463 * the array will contain less then 'level' members. This could be
6464 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6465 * in other functions.
6466 *
6467 * We reset it to 'level' at the end of this function.
6468 */
6469 sched_domains_numa_levels = 0;
6470
6471 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6472 if (!sched_domains_numa_masks)
6473 return;
6474
6475 /*
6476 * Now for each level, construct a mask per node which contains all
6477 * cpus of nodes that are that many hops away from us.
6478 */
6479 for (i = 0; i < level; i++) {
6480 sched_domains_numa_masks[i] =
6481 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6482 if (!sched_domains_numa_masks[i])
6483 return;
6484
6485 for (j = 0; j < nr_node_ids; j++) {
6486 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6487 if (!mask)
6488 return;
6489
6490 sched_domains_numa_masks[i][j] = mask;
6491
6492 for (k = 0; k < nr_node_ids; k++) {
6493 if (node_distance(j, k) > sched_domains_numa_distance[i])
6494 continue;
6495
6496 cpumask_or(mask, mask, cpumask_of_node(k));
6497 }
6498 }
6499 }
6500
6501 /* Compute default topology size */
6502 for (i = 0; sched_domain_topology[i].mask; i++);
6503
6504 tl = kzalloc((i + level + 1) *
6505 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6506 if (!tl)
6507 return;
6508
6509 /*
6510 * Copy the default topology bits..
6511 */
6512 for (i = 0; sched_domain_topology[i].mask; i++)
6513 tl[i] = sched_domain_topology[i];
6514
6515 /*
6516 * .. and append 'j' levels of NUMA goodness.
6517 */
6518 for (j = 0; j < level; i++, j++) {
6519 tl[i] = (struct sched_domain_topology_level){
6520 .mask = sd_numa_mask,
6521 .sd_flags = cpu_numa_flags,
6522 .flags = SDTL_OVERLAP,
6523 .numa_level = j,
6524 SD_INIT_NAME(NUMA)
6525 };
6526 }
6527
6528 sched_domain_topology = tl;
6529
6530 sched_domains_numa_levels = level;
6531 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6532
6533 init_numa_topology_type();
6534 }
6535
6536 static void sched_domains_numa_masks_set(int cpu)
6537 {
6538 int i, j;
6539 int node = cpu_to_node(cpu);
6540
6541 for (i = 0; i < sched_domains_numa_levels; i++) {
6542 for (j = 0; j < nr_node_ids; j++) {
6543 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6544 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6545 }
6546 }
6547 }
6548
6549 static void sched_domains_numa_masks_clear(int cpu)
6550 {
6551 int i, j;
6552 for (i = 0; i < sched_domains_numa_levels; i++) {
6553 for (j = 0; j < nr_node_ids; j++)
6554 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6555 }
6556 }
6557
6558 /*
6559 * Update sched_domains_numa_masks[level][node] array when new cpus
6560 * are onlined.
6561 */
6562 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6563 unsigned long action,
6564 void *hcpu)
6565 {
6566 int cpu = (long)hcpu;
6567
6568 switch (action & ~CPU_TASKS_FROZEN) {
6569 case CPU_ONLINE:
6570 sched_domains_numa_masks_set(cpu);
6571 break;
6572
6573 case CPU_DEAD:
6574 sched_domains_numa_masks_clear(cpu);
6575 break;
6576
6577 default:
6578 return NOTIFY_DONE;
6579 }
6580
6581 return NOTIFY_OK;
6582 }
6583 #else
6584 static inline void sched_init_numa(void)
6585 {
6586 }
6587
6588 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6589 unsigned long action,
6590 void *hcpu)
6591 {
6592 return 0;
6593 }
6594 #endif /* CONFIG_NUMA */
6595
6596 static int __sdt_alloc(const struct cpumask *cpu_map)
6597 {
6598 struct sched_domain_topology_level *tl;
6599 int j;
6600
6601 for_each_sd_topology(tl) {
6602 struct sd_data *sdd = &tl->data;
6603
6604 sdd->sd = alloc_percpu(struct sched_domain *);
6605 if (!sdd->sd)
6606 return -ENOMEM;
6607
6608 sdd->sg = alloc_percpu(struct sched_group *);
6609 if (!sdd->sg)
6610 return -ENOMEM;
6611
6612 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6613 if (!sdd->sgc)
6614 return -ENOMEM;
6615
6616 for_each_cpu(j, cpu_map) {
6617 struct sched_domain *sd;
6618 struct sched_group *sg;
6619 struct sched_group_capacity *sgc;
6620
6621 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6622 GFP_KERNEL, cpu_to_node(j));
6623 if (!sd)
6624 return -ENOMEM;
6625
6626 *per_cpu_ptr(sdd->sd, j) = sd;
6627
6628 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6629 GFP_KERNEL, cpu_to_node(j));
6630 if (!sg)
6631 return -ENOMEM;
6632
6633 sg->next = sg;
6634
6635 *per_cpu_ptr(sdd->sg, j) = sg;
6636
6637 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6638 GFP_KERNEL, cpu_to_node(j));
6639 if (!sgc)
6640 return -ENOMEM;
6641
6642 *per_cpu_ptr(sdd->sgc, j) = sgc;
6643 }
6644 }
6645
6646 return 0;
6647 }
6648
6649 static void __sdt_free(const struct cpumask *cpu_map)
6650 {
6651 struct sched_domain_topology_level *tl;
6652 int j;
6653
6654 for_each_sd_topology(tl) {
6655 struct sd_data *sdd = &tl->data;
6656
6657 for_each_cpu(j, cpu_map) {
6658 struct sched_domain *sd;
6659
6660 if (sdd->sd) {
6661 sd = *per_cpu_ptr(sdd->sd, j);
6662 if (sd && (sd->flags & SD_OVERLAP))
6663 free_sched_groups(sd->groups, 0);
6664 kfree(*per_cpu_ptr(sdd->sd, j));
6665 }
6666
6667 if (sdd->sg)
6668 kfree(*per_cpu_ptr(sdd->sg, j));
6669 if (sdd->sgc)
6670 kfree(*per_cpu_ptr(sdd->sgc, j));
6671 }
6672 free_percpu(sdd->sd);
6673 sdd->sd = NULL;
6674 free_percpu(sdd->sg);
6675 sdd->sg = NULL;
6676 free_percpu(sdd->sgc);
6677 sdd->sgc = NULL;
6678 }
6679 }
6680
6681 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6682 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6683 struct sched_domain *child, int cpu)
6684 {
6685 struct sched_domain *sd = sd_init(tl, cpu);
6686 if (!sd)
6687 return child;
6688
6689 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6690 if (child) {
6691 sd->level = child->level + 1;
6692 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6693 child->parent = sd;
6694 sd->child = child;
6695
6696 if (!cpumask_subset(sched_domain_span(child),
6697 sched_domain_span(sd))) {
6698 pr_err("BUG: arch topology borken\n");
6699 #ifdef CONFIG_SCHED_DEBUG
6700 pr_err(" the %s domain not a subset of the %s domain\n",
6701 child->name, sd->name);
6702 #endif
6703 /* Fixup, ensure @sd has at least @child cpus. */
6704 cpumask_or(sched_domain_span(sd),
6705 sched_domain_span(sd),
6706 sched_domain_span(child));
6707 }
6708
6709 }
6710 set_domain_attribute(sd, attr);
6711
6712 return sd;
6713 }
6714
6715 /*
6716 * Build sched domains for a given set of cpus and attach the sched domains
6717 * to the individual cpus
6718 */
6719 static int build_sched_domains(const struct cpumask *cpu_map,
6720 struct sched_domain_attr *attr)
6721 {
6722 enum s_alloc alloc_state;
6723 struct sched_domain *sd;
6724 struct s_data d;
6725 int i, ret = -ENOMEM;
6726
6727 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6728 if (alloc_state != sa_rootdomain)
6729 goto error;
6730
6731 /* Set up domains for cpus specified by the cpu_map. */
6732 for_each_cpu(i, cpu_map) {
6733 struct sched_domain_topology_level *tl;
6734
6735 sd = NULL;
6736 for_each_sd_topology(tl) {
6737 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6738 if (tl == sched_domain_topology)
6739 *per_cpu_ptr(d.sd, i) = sd;
6740 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6741 sd->flags |= SD_OVERLAP;
6742 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6743 break;
6744 }
6745 }
6746
6747 /* Build the groups for the domains */
6748 for_each_cpu(i, cpu_map) {
6749 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6750 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6751 if (sd->flags & SD_OVERLAP) {
6752 if (build_overlap_sched_groups(sd, i))
6753 goto error;
6754 } else {
6755 if (build_sched_groups(sd, i))
6756 goto error;
6757 }
6758 }
6759 }
6760
6761 /* Calculate CPU capacity for physical packages and nodes */
6762 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6763 if (!cpumask_test_cpu(i, cpu_map))
6764 continue;
6765
6766 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6767 claim_allocations(i, sd);
6768 init_sched_groups_capacity(i, sd);
6769 }
6770 }
6771
6772 /* Attach the domains */
6773 rcu_read_lock();
6774 for_each_cpu(i, cpu_map) {
6775 sd = *per_cpu_ptr(d.sd, i);
6776 cpu_attach_domain(sd, d.rd, i);
6777 }
6778 rcu_read_unlock();
6779
6780 ret = 0;
6781 error:
6782 __free_domain_allocs(&d, alloc_state, cpu_map);
6783 return ret;
6784 }
6785
6786 static cpumask_var_t *doms_cur; /* current sched domains */
6787 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6788 static struct sched_domain_attr *dattr_cur;
6789 /* attribues of custom domains in 'doms_cur' */
6790
6791 /*
6792 * Special case: If a kmalloc of a doms_cur partition (array of
6793 * cpumask) fails, then fallback to a single sched domain,
6794 * as determined by the single cpumask fallback_doms.
6795 */
6796 static cpumask_var_t fallback_doms;
6797
6798 /*
6799 * arch_update_cpu_topology lets virtualized architectures update the
6800 * cpu core maps. It is supposed to return 1 if the topology changed
6801 * or 0 if it stayed the same.
6802 */
6803 int __weak arch_update_cpu_topology(void)
6804 {
6805 return 0;
6806 }
6807
6808 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6809 {
6810 int i;
6811 cpumask_var_t *doms;
6812
6813 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6814 if (!doms)
6815 return NULL;
6816 for (i = 0; i < ndoms; i++) {
6817 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6818 free_sched_domains(doms, i);
6819 return NULL;
6820 }
6821 }
6822 return doms;
6823 }
6824
6825 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6826 {
6827 unsigned int i;
6828 for (i = 0; i < ndoms; i++)
6829 free_cpumask_var(doms[i]);
6830 kfree(doms);
6831 }
6832
6833 /*
6834 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6835 * For now this just excludes isolated cpus, but could be used to
6836 * exclude other special cases in the future.
6837 */
6838 static int init_sched_domains(const struct cpumask *cpu_map)
6839 {
6840 int err;
6841
6842 arch_update_cpu_topology();
6843 ndoms_cur = 1;
6844 doms_cur = alloc_sched_domains(ndoms_cur);
6845 if (!doms_cur)
6846 doms_cur = &fallback_doms;
6847 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6848 err = build_sched_domains(doms_cur[0], NULL);
6849 register_sched_domain_sysctl();
6850
6851 return err;
6852 }
6853
6854 /*
6855 * Detach sched domains from a group of cpus specified in cpu_map
6856 * These cpus will now be attached to the NULL domain
6857 */
6858 static void detach_destroy_domains(const struct cpumask *cpu_map)
6859 {
6860 int i;
6861
6862 rcu_read_lock();
6863 for_each_cpu(i, cpu_map)
6864 cpu_attach_domain(NULL, &def_root_domain, i);
6865 rcu_read_unlock();
6866 }
6867
6868 /* handle null as "default" */
6869 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6870 struct sched_domain_attr *new, int idx_new)
6871 {
6872 struct sched_domain_attr tmp;
6873
6874 /* fast path */
6875 if (!new && !cur)
6876 return 1;
6877
6878 tmp = SD_ATTR_INIT;
6879 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6880 new ? (new + idx_new) : &tmp,
6881 sizeof(struct sched_domain_attr));
6882 }
6883
6884 /*
6885 * Partition sched domains as specified by the 'ndoms_new'
6886 * cpumasks in the array doms_new[] of cpumasks. This compares
6887 * doms_new[] to the current sched domain partitioning, doms_cur[].
6888 * It destroys each deleted domain and builds each new domain.
6889 *
6890 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6891 * The masks don't intersect (don't overlap.) We should setup one
6892 * sched domain for each mask. CPUs not in any of the cpumasks will
6893 * not be load balanced. If the same cpumask appears both in the
6894 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6895 * it as it is.
6896 *
6897 * The passed in 'doms_new' should be allocated using
6898 * alloc_sched_domains. This routine takes ownership of it and will
6899 * free_sched_domains it when done with it. If the caller failed the
6900 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6901 * and partition_sched_domains() will fallback to the single partition
6902 * 'fallback_doms', it also forces the domains to be rebuilt.
6903 *
6904 * If doms_new == NULL it will be replaced with cpu_online_mask.
6905 * ndoms_new == 0 is a special case for destroying existing domains,
6906 * and it will not create the default domain.
6907 *
6908 * Call with hotplug lock held
6909 */
6910 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6911 struct sched_domain_attr *dattr_new)
6912 {
6913 int i, j, n;
6914 int new_topology;
6915
6916 mutex_lock(&sched_domains_mutex);
6917
6918 /* always unregister in case we don't destroy any domains */
6919 unregister_sched_domain_sysctl();
6920
6921 /* Let architecture update cpu core mappings. */
6922 new_topology = arch_update_cpu_topology();
6923
6924 n = doms_new ? ndoms_new : 0;
6925
6926 /* Destroy deleted domains */
6927 for (i = 0; i < ndoms_cur; i++) {
6928 for (j = 0; j < n && !new_topology; j++) {
6929 if (cpumask_equal(doms_cur[i], doms_new[j])
6930 && dattrs_equal(dattr_cur, i, dattr_new, j))
6931 goto match1;
6932 }
6933 /* no match - a current sched domain not in new doms_new[] */
6934 detach_destroy_domains(doms_cur[i]);
6935 match1:
6936 ;
6937 }
6938
6939 n = ndoms_cur;
6940 if (doms_new == NULL) {
6941 n = 0;
6942 doms_new = &fallback_doms;
6943 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6944 WARN_ON_ONCE(dattr_new);
6945 }
6946
6947 /* Build new domains */
6948 for (i = 0; i < ndoms_new; i++) {
6949 for (j = 0; j < n && !new_topology; j++) {
6950 if (cpumask_equal(doms_new[i], doms_cur[j])
6951 && dattrs_equal(dattr_new, i, dattr_cur, j))
6952 goto match2;
6953 }
6954 /* no match - add a new doms_new */
6955 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6956 match2:
6957 ;
6958 }
6959
6960 /* Remember the new sched domains */
6961 if (doms_cur != &fallback_doms)
6962 free_sched_domains(doms_cur, ndoms_cur);
6963 kfree(dattr_cur); /* kfree(NULL) is safe */
6964 doms_cur = doms_new;
6965 dattr_cur = dattr_new;
6966 ndoms_cur = ndoms_new;
6967
6968 register_sched_domain_sysctl();
6969
6970 mutex_unlock(&sched_domains_mutex);
6971 }
6972
6973 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6974
6975 /*
6976 * Update cpusets according to cpu_active mask. If cpusets are
6977 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6978 * around partition_sched_domains().
6979 *
6980 * If we come here as part of a suspend/resume, don't touch cpusets because we
6981 * want to restore it back to its original state upon resume anyway.
6982 */
6983 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6984 void *hcpu)
6985 {
6986 switch (action) {
6987 case CPU_ONLINE_FROZEN:
6988 case CPU_DOWN_FAILED_FROZEN:
6989
6990 /*
6991 * num_cpus_frozen tracks how many CPUs are involved in suspend
6992 * resume sequence. As long as this is not the last online
6993 * operation in the resume sequence, just build a single sched
6994 * domain, ignoring cpusets.
6995 */
6996 num_cpus_frozen--;
6997 if (likely(num_cpus_frozen)) {
6998 partition_sched_domains(1, NULL, NULL);
6999 break;
7000 }
7001
7002 /*
7003 * This is the last CPU online operation. So fall through and
7004 * restore the original sched domains by considering the
7005 * cpuset configurations.
7006 */
7007
7008 case CPU_ONLINE:
7009 case CPU_DOWN_FAILED:
7010 cpuset_update_active_cpus(true);
7011 break;
7012 default:
7013 return NOTIFY_DONE;
7014 }
7015 return NOTIFY_OK;
7016 }
7017
7018 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7019 void *hcpu)
7020 {
7021 switch (action) {
7022 case CPU_DOWN_PREPARE:
7023 cpuset_update_active_cpus(false);
7024 break;
7025 case CPU_DOWN_PREPARE_FROZEN:
7026 num_cpus_frozen++;
7027 partition_sched_domains(1, NULL, NULL);
7028 break;
7029 default:
7030 return NOTIFY_DONE;
7031 }
7032 return NOTIFY_OK;
7033 }
7034
7035 void __init sched_init_smp(void)
7036 {
7037 cpumask_var_t non_isolated_cpus;
7038
7039 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7040 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7041
7042 sched_init_numa();
7043
7044 /*
7045 * There's no userspace yet to cause hotplug operations; hence all the
7046 * cpu masks are stable and all blatant races in the below code cannot
7047 * happen.
7048 */
7049 mutex_lock(&sched_domains_mutex);
7050 init_sched_domains(cpu_active_mask);
7051 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7052 if (cpumask_empty(non_isolated_cpus))
7053 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7054 mutex_unlock(&sched_domains_mutex);
7055
7056 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7057 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7058 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7059
7060 init_hrtick();
7061
7062 /* Move init over to a non-isolated CPU */
7063 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7064 BUG();
7065 sched_init_granularity();
7066 free_cpumask_var(non_isolated_cpus);
7067
7068 init_sched_rt_class();
7069 init_sched_dl_class();
7070 }
7071 #else
7072 void __init sched_init_smp(void)
7073 {
7074 sched_init_granularity();
7075 }
7076 #endif /* CONFIG_SMP */
7077
7078 const_debug unsigned int sysctl_timer_migration = 1;
7079
7080 int in_sched_functions(unsigned long addr)
7081 {
7082 return in_lock_functions(addr) ||
7083 (addr >= (unsigned long)__sched_text_start
7084 && addr < (unsigned long)__sched_text_end);
7085 }
7086
7087 #ifdef CONFIG_CGROUP_SCHED
7088 /*
7089 * Default task group.
7090 * Every task in system belongs to this group at bootup.
7091 */
7092 struct task_group root_task_group;
7093 LIST_HEAD(task_groups);
7094 #endif
7095
7096 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7097
7098 void __init sched_init(void)
7099 {
7100 int i, j;
7101 unsigned long alloc_size = 0, ptr;
7102
7103 #ifdef CONFIG_FAIR_GROUP_SCHED
7104 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7105 #endif
7106 #ifdef CONFIG_RT_GROUP_SCHED
7107 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7108 #endif
7109 if (alloc_size) {
7110 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7111
7112 #ifdef CONFIG_FAIR_GROUP_SCHED
7113 root_task_group.se = (struct sched_entity **)ptr;
7114 ptr += nr_cpu_ids * sizeof(void **);
7115
7116 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7117 ptr += nr_cpu_ids * sizeof(void **);
7118
7119 #endif /* CONFIG_FAIR_GROUP_SCHED */
7120 #ifdef CONFIG_RT_GROUP_SCHED
7121 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7122 ptr += nr_cpu_ids * sizeof(void **);
7123
7124 root_task_group.rt_rq = (struct rt_rq **)ptr;
7125 ptr += nr_cpu_ids * sizeof(void **);
7126
7127 #endif /* CONFIG_RT_GROUP_SCHED */
7128 }
7129 #ifdef CONFIG_CPUMASK_OFFSTACK
7130 for_each_possible_cpu(i) {
7131 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7132 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7133 }
7134 #endif /* CONFIG_CPUMASK_OFFSTACK */
7135
7136 init_rt_bandwidth(&def_rt_bandwidth,
7137 global_rt_period(), global_rt_runtime());
7138 init_dl_bandwidth(&def_dl_bandwidth,
7139 global_rt_period(), global_rt_runtime());
7140
7141 #ifdef CONFIG_SMP
7142 init_defrootdomain();
7143 #endif
7144
7145 #ifdef CONFIG_RT_GROUP_SCHED
7146 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7147 global_rt_period(), global_rt_runtime());
7148 #endif /* CONFIG_RT_GROUP_SCHED */
7149
7150 #ifdef CONFIG_CGROUP_SCHED
7151 list_add(&root_task_group.list, &task_groups);
7152 INIT_LIST_HEAD(&root_task_group.children);
7153 INIT_LIST_HEAD(&root_task_group.siblings);
7154 autogroup_init(&init_task);
7155
7156 #endif /* CONFIG_CGROUP_SCHED */
7157
7158 for_each_possible_cpu(i) {
7159 struct rq *rq;
7160
7161 rq = cpu_rq(i);
7162 raw_spin_lock_init(&rq->lock);
7163 rq->nr_running = 0;
7164 rq->calc_load_active = 0;
7165 rq->calc_load_update = jiffies + LOAD_FREQ;
7166 init_cfs_rq(&rq->cfs);
7167 init_rt_rq(&rq->rt);
7168 init_dl_rq(&rq->dl);
7169 #ifdef CONFIG_FAIR_GROUP_SCHED
7170 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7171 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7172 /*
7173 * How much cpu bandwidth does root_task_group get?
7174 *
7175 * In case of task-groups formed thr' the cgroup filesystem, it
7176 * gets 100% of the cpu resources in the system. This overall
7177 * system cpu resource is divided among the tasks of
7178 * root_task_group and its child task-groups in a fair manner,
7179 * based on each entity's (task or task-group's) weight
7180 * (se->load.weight).
7181 *
7182 * In other words, if root_task_group has 10 tasks of weight
7183 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7184 * then A0's share of the cpu resource is:
7185 *
7186 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7187 *
7188 * We achieve this by letting root_task_group's tasks sit
7189 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7190 */
7191 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7192 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7193 #endif /* CONFIG_FAIR_GROUP_SCHED */
7194
7195 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7196 #ifdef CONFIG_RT_GROUP_SCHED
7197 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7198 #endif
7199
7200 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7201 rq->cpu_load[j] = 0;
7202
7203 rq->last_load_update_tick = jiffies;
7204
7205 #ifdef CONFIG_SMP
7206 rq->sd = NULL;
7207 rq->rd = NULL;
7208 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7209 rq->post_schedule = 0;
7210 rq->active_balance = 0;
7211 rq->next_balance = jiffies;
7212 rq->push_cpu = 0;
7213 rq->cpu = i;
7214 rq->online = 0;
7215 rq->idle_stamp = 0;
7216 rq->avg_idle = 2*sysctl_sched_migration_cost;
7217 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7218
7219 INIT_LIST_HEAD(&rq->cfs_tasks);
7220
7221 rq_attach_root(rq, &def_root_domain);
7222 #ifdef CONFIG_NO_HZ_COMMON
7223 rq->nohz_flags = 0;
7224 #endif
7225 #ifdef CONFIG_NO_HZ_FULL
7226 rq->last_sched_tick = 0;
7227 #endif
7228 #endif
7229 init_rq_hrtick(rq);
7230 atomic_set(&rq->nr_iowait, 0);
7231 }
7232
7233 set_load_weight(&init_task);
7234
7235 #ifdef CONFIG_PREEMPT_NOTIFIERS
7236 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7237 #endif
7238
7239 /*
7240 * The boot idle thread does lazy MMU switching as well:
7241 */
7242 atomic_inc(&init_mm.mm_count);
7243 enter_lazy_tlb(&init_mm, current);
7244
7245 /*
7246 * During early bootup we pretend to be a normal task:
7247 */
7248 current->sched_class = &fair_sched_class;
7249
7250 /*
7251 * Make us the idle thread. Technically, schedule() should not be
7252 * called from this thread, however somewhere below it might be,
7253 * but because we are the idle thread, we just pick up running again
7254 * when this runqueue becomes "idle".
7255 */
7256 init_idle(current, smp_processor_id());
7257
7258 calc_load_update = jiffies + LOAD_FREQ;
7259
7260 #ifdef CONFIG_SMP
7261 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7262 /* May be allocated at isolcpus cmdline parse time */
7263 if (cpu_isolated_map == NULL)
7264 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7265 idle_thread_set_boot_cpu();
7266 set_cpu_rq_start_time();
7267 #endif
7268 init_sched_fair_class();
7269
7270 scheduler_running = 1;
7271 }
7272
7273 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7274 static inline int preempt_count_equals(int preempt_offset)
7275 {
7276 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7277
7278 return (nested == preempt_offset);
7279 }
7280
7281 void __might_sleep(const char *file, int line, int preempt_offset)
7282 {
7283 /*
7284 * Blocking primitives will set (and therefore destroy) current->state,
7285 * since we will exit with TASK_RUNNING make sure we enter with it,
7286 * otherwise we will destroy state.
7287 */
7288 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7289 "do not call blocking ops when !TASK_RUNNING; "
7290 "state=%lx set at [<%p>] %pS\n",
7291 current->state,
7292 (void *)current->task_state_change,
7293 (void *)current->task_state_change);
7294
7295 ___might_sleep(file, line, preempt_offset);
7296 }
7297 EXPORT_SYMBOL(__might_sleep);
7298
7299 void ___might_sleep(const char *file, int line, int preempt_offset)
7300 {
7301 static unsigned long prev_jiffy; /* ratelimiting */
7302
7303 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7304 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7305 !is_idle_task(current)) ||
7306 system_state != SYSTEM_RUNNING || oops_in_progress)
7307 return;
7308 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7309 return;
7310 prev_jiffy = jiffies;
7311
7312 printk(KERN_ERR
7313 "BUG: sleeping function called from invalid context at %s:%d\n",
7314 file, line);
7315 printk(KERN_ERR
7316 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7317 in_atomic(), irqs_disabled(),
7318 current->pid, current->comm);
7319
7320 if (task_stack_end_corrupted(current))
7321 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7322
7323 debug_show_held_locks(current);
7324 if (irqs_disabled())
7325 print_irqtrace_events(current);
7326 #ifdef CONFIG_DEBUG_PREEMPT
7327 if (!preempt_count_equals(preempt_offset)) {
7328 pr_err("Preemption disabled at:");
7329 print_ip_sym(current->preempt_disable_ip);
7330 pr_cont("\n");
7331 }
7332 #endif
7333 dump_stack();
7334 }
7335 EXPORT_SYMBOL(___might_sleep);
7336 #endif
7337
7338 #ifdef CONFIG_MAGIC_SYSRQ
7339 static void normalize_task(struct rq *rq, struct task_struct *p)
7340 {
7341 const struct sched_class *prev_class = p->sched_class;
7342 struct sched_attr attr = {
7343 .sched_policy = SCHED_NORMAL,
7344 };
7345 int old_prio = p->prio;
7346 int queued;
7347
7348 queued = task_on_rq_queued(p);
7349 if (queued)
7350 dequeue_task(rq, p, 0);
7351 __setscheduler(rq, p, &attr);
7352 if (queued) {
7353 enqueue_task(rq, p, 0);
7354 resched_curr(rq);
7355 }
7356
7357 check_class_changed(rq, p, prev_class, old_prio);
7358 }
7359
7360 void normalize_rt_tasks(void)
7361 {
7362 struct task_struct *g, *p;
7363 unsigned long flags;
7364 struct rq *rq;
7365
7366 read_lock(&tasklist_lock);
7367 for_each_process_thread(g, p) {
7368 /*
7369 * Only normalize user tasks:
7370 */
7371 if (p->flags & PF_KTHREAD)
7372 continue;
7373
7374 p->se.exec_start = 0;
7375 #ifdef CONFIG_SCHEDSTATS
7376 p->se.statistics.wait_start = 0;
7377 p->se.statistics.sleep_start = 0;
7378 p->se.statistics.block_start = 0;
7379 #endif
7380
7381 if (!dl_task(p) && !rt_task(p)) {
7382 /*
7383 * Renice negative nice level userspace
7384 * tasks back to 0:
7385 */
7386 if (task_nice(p) < 0)
7387 set_user_nice(p, 0);
7388 continue;
7389 }
7390
7391 rq = task_rq_lock(p, &flags);
7392 normalize_task(rq, p);
7393 task_rq_unlock(rq, p, &flags);
7394 }
7395 read_unlock(&tasklist_lock);
7396 }
7397
7398 #endif /* CONFIG_MAGIC_SYSRQ */
7399
7400 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7401 /*
7402 * These functions are only useful for the IA64 MCA handling, or kdb.
7403 *
7404 * They can only be called when the whole system has been
7405 * stopped - every CPU needs to be quiescent, and no scheduling
7406 * activity can take place. Using them for anything else would
7407 * be a serious bug, and as a result, they aren't even visible
7408 * under any other configuration.
7409 */
7410
7411 /**
7412 * curr_task - return the current task for a given cpu.
7413 * @cpu: the processor in question.
7414 *
7415 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7416 *
7417 * Return: The current task for @cpu.
7418 */
7419 struct task_struct *curr_task(int cpu)
7420 {
7421 return cpu_curr(cpu);
7422 }
7423
7424 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7425
7426 #ifdef CONFIG_IA64
7427 /**
7428 * set_curr_task - set the current task for a given cpu.
7429 * @cpu: the processor in question.
7430 * @p: the task pointer to set.
7431 *
7432 * Description: This function must only be used when non-maskable interrupts
7433 * are serviced on a separate stack. It allows the architecture to switch the
7434 * notion of the current task on a cpu in a non-blocking manner. This function
7435 * must be called with all CPU's synchronized, and interrupts disabled, the
7436 * and caller must save the original value of the current task (see
7437 * curr_task() above) and restore that value before reenabling interrupts and
7438 * re-starting the system.
7439 *
7440 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7441 */
7442 void set_curr_task(int cpu, struct task_struct *p)
7443 {
7444 cpu_curr(cpu) = p;
7445 }
7446
7447 #endif
7448
7449 #ifdef CONFIG_CGROUP_SCHED
7450 /* task_group_lock serializes the addition/removal of task groups */
7451 static DEFINE_SPINLOCK(task_group_lock);
7452
7453 static void free_sched_group(struct task_group *tg)
7454 {
7455 free_fair_sched_group(tg);
7456 free_rt_sched_group(tg);
7457 autogroup_free(tg);
7458 kfree(tg);
7459 }
7460
7461 /* allocate runqueue etc for a new task group */
7462 struct task_group *sched_create_group(struct task_group *parent)
7463 {
7464 struct task_group *tg;
7465
7466 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7467 if (!tg)
7468 return ERR_PTR(-ENOMEM);
7469
7470 if (!alloc_fair_sched_group(tg, parent))
7471 goto err;
7472
7473 if (!alloc_rt_sched_group(tg, parent))
7474 goto err;
7475
7476 return tg;
7477
7478 err:
7479 free_sched_group(tg);
7480 return ERR_PTR(-ENOMEM);
7481 }
7482
7483 void sched_online_group(struct task_group *tg, struct task_group *parent)
7484 {
7485 unsigned long flags;
7486
7487 spin_lock_irqsave(&task_group_lock, flags);
7488 list_add_rcu(&tg->list, &task_groups);
7489
7490 WARN_ON(!parent); /* root should already exist */
7491
7492 tg->parent = parent;
7493 INIT_LIST_HEAD(&tg->children);
7494 list_add_rcu(&tg->siblings, &parent->children);
7495 spin_unlock_irqrestore(&task_group_lock, flags);
7496 }
7497
7498 /* rcu callback to free various structures associated with a task group */
7499 static void free_sched_group_rcu(struct rcu_head *rhp)
7500 {
7501 /* now it should be safe to free those cfs_rqs */
7502 free_sched_group(container_of(rhp, struct task_group, rcu));
7503 }
7504
7505 /* Destroy runqueue etc associated with a task group */
7506 void sched_destroy_group(struct task_group *tg)
7507 {
7508 /* wait for possible concurrent references to cfs_rqs complete */
7509 call_rcu(&tg->rcu, free_sched_group_rcu);
7510 }
7511
7512 void sched_offline_group(struct task_group *tg)
7513 {
7514 unsigned long flags;
7515 int i;
7516
7517 /* end participation in shares distribution */
7518 for_each_possible_cpu(i)
7519 unregister_fair_sched_group(tg, i);
7520
7521 spin_lock_irqsave(&task_group_lock, flags);
7522 list_del_rcu(&tg->list);
7523 list_del_rcu(&tg->siblings);
7524 spin_unlock_irqrestore(&task_group_lock, flags);
7525 }
7526
7527 /* change task's runqueue when it moves between groups.
7528 * The caller of this function should have put the task in its new group
7529 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7530 * reflect its new group.
7531 */
7532 void sched_move_task(struct task_struct *tsk)
7533 {
7534 struct task_group *tg;
7535 int queued, running;
7536 unsigned long flags;
7537 struct rq *rq;
7538
7539 rq = task_rq_lock(tsk, &flags);
7540
7541 running = task_current(rq, tsk);
7542 queued = task_on_rq_queued(tsk);
7543
7544 if (queued)
7545 dequeue_task(rq, tsk, 0);
7546 if (unlikely(running))
7547 put_prev_task(rq, tsk);
7548
7549 /*
7550 * All callers are synchronized by task_rq_lock(); we do not use RCU
7551 * which is pointless here. Thus, we pass "true" to task_css_check()
7552 * to prevent lockdep warnings.
7553 */
7554 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7555 struct task_group, css);
7556 tg = autogroup_task_group(tsk, tg);
7557 tsk->sched_task_group = tg;
7558
7559 #ifdef CONFIG_FAIR_GROUP_SCHED
7560 if (tsk->sched_class->task_move_group)
7561 tsk->sched_class->task_move_group(tsk, queued);
7562 else
7563 #endif
7564 set_task_rq(tsk, task_cpu(tsk));
7565
7566 if (unlikely(running))
7567 tsk->sched_class->set_curr_task(rq);
7568 if (queued)
7569 enqueue_task(rq, tsk, 0);
7570
7571 task_rq_unlock(rq, tsk, &flags);
7572 }
7573 #endif /* CONFIG_CGROUP_SCHED */
7574
7575 #ifdef CONFIG_RT_GROUP_SCHED
7576 /*
7577 * Ensure that the real time constraints are schedulable.
7578 */
7579 static DEFINE_MUTEX(rt_constraints_mutex);
7580
7581 /* Must be called with tasklist_lock held */
7582 static inline int tg_has_rt_tasks(struct task_group *tg)
7583 {
7584 struct task_struct *g, *p;
7585
7586 /*
7587 * Autogroups do not have RT tasks; see autogroup_create().
7588 */
7589 if (task_group_is_autogroup(tg))
7590 return 0;
7591
7592 for_each_process_thread(g, p) {
7593 if (rt_task(p) && task_group(p) == tg)
7594 return 1;
7595 }
7596
7597 return 0;
7598 }
7599
7600 struct rt_schedulable_data {
7601 struct task_group *tg;
7602 u64 rt_period;
7603 u64 rt_runtime;
7604 };
7605
7606 static int tg_rt_schedulable(struct task_group *tg, void *data)
7607 {
7608 struct rt_schedulable_data *d = data;
7609 struct task_group *child;
7610 unsigned long total, sum = 0;
7611 u64 period, runtime;
7612
7613 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7614 runtime = tg->rt_bandwidth.rt_runtime;
7615
7616 if (tg == d->tg) {
7617 period = d->rt_period;
7618 runtime = d->rt_runtime;
7619 }
7620
7621 /*
7622 * Cannot have more runtime than the period.
7623 */
7624 if (runtime > period && runtime != RUNTIME_INF)
7625 return -EINVAL;
7626
7627 /*
7628 * Ensure we don't starve existing RT tasks.
7629 */
7630 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7631 return -EBUSY;
7632
7633 total = to_ratio(period, runtime);
7634
7635 /*
7636 * Nobody can have more than the global setting allows.
7637 */
7638 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7639 return -EINVAL;
7640
7641 /*
7642 * The sum of our children's runtime should not exceed our own.
7643 */
7644 list_for_each_entry_rcu(child, &tg->children, siblings) {
7645 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7646 runtime = child->rt_bandwidth.rt_runtime;
7647
7648 if (child == d->tg) {
7649 period = d->rt_period;
7650 runtime = d->rt_runtime;
7651 }
7652
7653 sum += to_ratio(period, runtime);
7654 }
7655
7656 if (sum > total)
7657 return -EINVAL;
7658
7659 return 0;
7660 }
7661
7662 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7663 {
7664 int ret;
7665
7666 struct rt_schedulable_data data = {
7667 .tg = tg,
7668 .rt_period = period,
7669 .rt_runtime = runtime,
7670 };
7671
7672 rcu_read_lock();
7673 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7674 rcu_read_unlock();
7675
7676 return ret;
7677 }
7678
7679 static int tg_set_rt_bandwidth(struct task_group *tg,
7680 u64 rt_period, u64 rt_runtime)
7681 {
7682 int i, err = 0;
7683
7684 /*
7685 * Disallowing the root group RT runtime is BAD, it would disallow the
7686 * kernel creating (and or operating) RT threads.
7687 */
7688 if (tg == &root_task_group && rt_runtime == 0)
7689 return -EINVAL;
7690
7691 /* No period doesn't make any sense. */
7692 if (rt_period == 0)
7693 return -EINVAL;
7694
7695 mutex_lock(&rt_constraints_mutex);
7696 read_lock(&tasklist_lock);
7697 err = __rt_schedulable(tg, rt_period, rt_runtime);
7698 if (err)
7699 goto unlock;
7700
7701 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7702 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7703 tg->rt_bandwidth.rt_runtime = rt_runtime;
7704
7705 for_each_possible_cpu(i) {
7706 struct rt_rq *rt_rq = tg->rt_rq[i];
7707
7708 raw_spin_lock(&rt_rq->rt_runtime_lock);
7709 rt_rq->rt_runtime = rt_runtime;
7710 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7711 }
7712 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7713 unlock:
7714 read_unlock(&tasklist_lock);
7715 mutex_unlock(&rt_constraints_mutex);
7716
7717 return err;
7718 }
7719
7720 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7721 {
7722 u64 rt_runtime, rt_period;
7723
7724 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7725 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7726 if (rt_runtime_us < 0)
7727 rt_runtime = RUNTIME_INF;
7728
7729 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7730 }
7731
7732 static long sched_group_rt_runtime(struct task_group *tg)
7733 {
7734 u64 rt_runtime_us;
7735
7736 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7737 return -1;
7738
7739 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7740 do_div(rt_runtime_us, NSEC_PER_USEC);
7741 return rt_runtime_us;
7742 }
7743
7744 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7745 {
7746 u64 rt_runtime, rt_period;
7747
7748 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7749 rt_runtime = tg->rt_bandwidth.rt_runtime;
7750
7751 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7752 }
7753
7754 static long sched_group_rt_period(struct task_group *tg)
7755 {
7756 u64 rt_period_us;
7757
7758 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7759 do_div(rt_period_us, NSEC_PER_USEC);
7760 return rt_period_us;
7761 }
7762 #endif /* CONFIG_RT_GROUP_SCHED */
7763
7764 #ifdef CONFIG_RT_GROUP_SCHED
7765 static int sched_rt_global_constraints(void)
7766 {
7767 int ret = 0;
7768
7769 mutex_lock(&rt_constraints_mutex);
7770 read_lock(&tasklist_lock);
7771 ret = __rt_schedulable(NULL, 0, 0);
7772 read_unlock(&tasklist_lock);
7773 mutex_unlock(&rt_constraints_mutex);
7774
7775 return ret;
7776 }
7777
7778 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7779 {
7780 /* Don't accept realtime tasks when there is no way for them to run */
7781 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7782 return 0;
7783
7784 return 1;
7785 }
7786
7787 #else /* !CONFIG_RT_GROUP_SCHED */
7788 static int sched_rt_global_constraints(void)
7789 {
7790 unsigned long flags;
7791 int i, ret = 0;
7792
7793 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7794 for_each_possible_cpu(i) {
7795 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7796
7797 raw_spin_lock(&rt_rq->rt_runtime_lock);
7798 rt_rq->rt_runtime = global_rt_runtime();
7799 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7800 }
7801 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7802
7803 return ret;
7804 }
7805 #endif /* CONFIG_RT_GROUP_SCHED */
7806
7807 static int sched_dl_global_validate(void)
7808 {
7809 u64 runtime = global_rt_runtime();
7810 u64 period = global_rt_period();
7811 u64 new_bw = to_ratio(period, runtime);
7812 struct dl_bw *dl_b;
7813 int cpu, ret = 0;
7814 unsigned long flags;
7815
7816 /*
7817 * Here we want to check the bandwidth not being set to some
7818 * value smaller than the currently allocated bandwidth in
7819 * any of the root_domains.
7820 *
7821 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7822 * cycling on root_domains... Discussion on different/better
7823 * solutions is welcome!
7824 */
7825 for_each_possible_cpu(cpu) {
7826 rcu_read_lock_sched();
7827 dl_b = dl_bw_of(cpu);
7828
7829 raw_spin_lock_irqsave(&dl_b->lock, flags);
7830 if (new_bw < dl_b->total_bw)
7831 ret = -EBUSY;
7832 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7833
7834 rcu_read_unlock_sched();
7835
7836 if (ret)
7837 break;
7838 }
7839
7840 return ret;
7841 }
7842
7843 static void sched_dl_do_global(void)
7844 {
7845 u64 new_bw = -1;
7846 struct dl_bw *dl_b;
7847 int cpu;
7848 unsigned long flags;
7849
7850 def_dl_bandwidth.dl_period = global_rt_period();
7851 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7852
7853 if (global_rt_runtime() != RUNTIME_INF)
7854 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7855
7856 /*
7857 * FIXME: As above...
7858 */
7859 for_each_possible_cpu(cpu) {
7860 rcu_read_lock_sched();
7861 dl_b = dl_bw_of(cpu);
7862
7863 raw_spin_lock_irqsave(&dl_b->lock, flags);
7864 dl_b->bw = new_bw;
7865 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7866
7867 rcu_read_unlock_sched();
7868 }
7869 }
7870
7871 static int sched_rt_global_validate(void)
7872 {
7873 if (sysctl_sched_rt_period <= 0)
7874 return -EINVAL;
7875
7876 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7877 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7878 return -EINVAL;
7879
7880 return 0;
7881 }
7882
7883 static void sched_rt_do_global(void)
7884 {
7885 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7886 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7887 }
7888
7889 int sched_rt_handler(struct ctl_table *table, int write,
7890 void __user *buffer, size_t *lenp,
7891 loff_t *ppos)
7892 {
7893 int old_period, old_runtime;
7894 static DEFINE_MUTEX(mutex);
7895 int ret;
7896
7897 mutex_lock(&mutex);
7898 old_period = sysctl_sched_rt_period;
7899 old_runtime = sysctl_sched_rt_runtime;
7900
7901 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7902
7903 if (!ret && write) {
7904 ret = sched_rt_global_validate();
7905 if (ret)
7906 goto undo;
7907
7908 ret = sched_dl_global_validate();
7909 if (ret)
7910 goto undo;
7911
7912 ret = sched_rt_global_constraints();
7913 if (ret)
7914 goto undo;
7915
7916 sched_rt_do_global();
7917 sched_dl_do_global();
7918 }
7919 if (0) {
7920 undo:
7921 sysctl_sched_rt_period = old_period;
7922 sysctl_sched_rt_runtime = old_runtime;
7923 }
7924 mutex_unlock(&mutex);
7925
7926 return ret;
7927 }
7928
7929 int sched_rr_handler(struct ctl_table *table, int write,
7930 void __user *buffer, size_t *lenp,
7931 loff_t *ppos)
7932 {
7933 int ret;
7934 static DEFINE_MUTEX(mutex);
7935
7936 mutex_lock(&mutex);
7937 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7938 /* make sure that internally we keep jiffies */
7939 /* also, writing zero resets timeslice to default */
7940 if (!ret && write) {
7941 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7942 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7943 }
7944 mutex_unlock(&mutex);
7945 return ret;
7946 }
7947
7948 #ifdef CONFIG_CGROUP_SCHED
7949
7950 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7951 {
7952 return css ? container_of(css, struct task_group, css) : NULL;
7953 }
7954
7955 static struct cgroup_subsys_state *
7956 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7957 {
7958 struct task_group *parent = css_tg(parent_css);
7959 struct task_group *tg;
7960
7961 if (!parent) {
7962 /* This is early initialization for the top cgroup */
7963 return &root_task_group.css;
7964 }
7965
7966 tg = sched_create_group(parent);
7967 if (IS_ERR(tg))
7968 return ERR_PTR(-ENOMEM);
7969
7970 return &tg->css;
7971 }
7972
7973 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7974 {
7975 struct task_group *tg = css_tg(css);
7976 struct task_group *parent = css_tg(css->parent);
7977
7978 if (parent)
7979 sched_online_group(tg, parent);
7980 return 0;
7981 }
7982
7983 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7984 {
7985 struct task_group *tg = css_tg(css);
7986
7987 sched_destroy_group(tg);
7988 }
7989
7990 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7991 {
7992 struct task_group *tg = css_tg(css);
7993
7994 sched_offline_group(tg);
7995 }
7996
7997 static void cpu_cgroup_fork(struct task_struct *task)
7998 {
7999 sched_move_task(task);
8000 }
8001
8002 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8003 struct cgroup_taskset *tset)
8004 {
8005 struct task_struct *task;
8006
8007 cgroup_taskset_for_each(task, tset) {
8008 #ifdef CONFIG_RT_GROUP_SCHED
8009 if (!sched_rt_can_attach(css_tg(css), task))
8010 return -EINVAL;
8011 #else
8012 /* We don't support RT-tasks being in separate groups */
8013 if (task->sched_class != &fair_sched_class)
8014 return -EINVAL;
8015 #endif
8016 }
8017 return 0;
8018 }
8019
8020 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8021 struct cgroup_taskset *tset)
8022 {
8023 struct task_struct *task;
8024
8025 cgroup_taskset_for_each(task, tset)
8026 sched_move_task(task);
8027 }
8028
8029 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8030 struct cgroup_subsys_state *old_css,
8031 struct task_struct *task)
8032 {
8033 /*
8034 * cgroup_exit() is called in the copy_process() failure path.
8035 * Ignore this case since the task hasn't ran yet, this avoids
8036 * trying to poke a half freed task state from generic code.
8037 */
8038 if (!(task->flags & PF_EXITING))
8039 return;
8040
8041 sched_move_task(task);
8042 }
8043
8044 #ifdef CONFIG_FAIR_GROUP_SCHED
8045 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8046 struct cftype *cftype, u64 shareval)
8047 {
8048 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8049 }
8050
8051 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8052 struct cftype *cft)
8053 {
8054 struct task_group *tg = css_tg(css);
8055
8056 return (u64) scale_load_down(tg->shares);
8057 }
8058
8059 #ifdef CONFIG_CFS_BANDWIDTH
8060 static DEFINE_MUTEX(cfs_constraints_mutex);
8061
8062 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8063 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8064
8065 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8066
8067 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8068 {
8069 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8070 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8071
8072 if (tg == &root_task_group)
8073 return -EINVAL;
8074
8075 /*
8076 * Ensure we have at some amount of bandwidth every period. This is
8077 * to prevent reaching a state of large arrears when throttled via
8078 * entity_tick() resulting in prolonged exit starvation.
8079 */
8080 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8081 return -EINVAL;
8082
8083 /*
8084 * Likewise, bound things on the otherside by preventing insane quota
8085 * periods. This also allows us to normalize in computing quota
8086 * feasibility.
8087 */
8088 if (period > max_cfs_quota_period)
8089 return -EINVAL;
8090
8091 /*
8092 * Prevent race between setting of cfs_rq->runtime_enabled and
8093 * unthrottle_offline_cfs_rqs().
8094 */
8095 get_online_cpus();
8096 mutex_lock(&cfs_constraints_mutex);
8097 ret = __cfs_schedulable(tg, period, quota);
8098 if (ret)
8099 goto out_unlock;
8100
8101 runtime_enabled = quota != RUNTIME_INF;
8102 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8103 /*
8104 * If we need to toggle cfs_bandwidth_used, off->on must occur
8105 * before making related changes, and on->off must occur afterwards
8106 */
8107 if (runtime_enabled && !runtime_was_enabled)
8108 cfs_bandwidth_usage_inc();
8109 raw_spin_lock_irq(&cfs_b->lock);
8110 cfs_b->period = ns_to_ktime(period);
8111 cfs_b->quota = quota;
8112
8113 __refill_cfs_bandwidth_runtime(cfs_b);
8114 /* restart the period timer (if active) to handle new period expiry */
8115 if (runtime_enabled && cfs_b->timer_active) {
8116 /* force a reprogram */
8117 __start_cfs_bandwidth(cfs_b, true);
8118 }
8119 raw_spin_unlock_irq(&cfs_b->lock);
8120
8121 for_each_online_cpu(i) {
8122 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8123 struct rq *rq = cfs_rq->rq;
8124
8125 raw_spin_lock_irq(&rq->lock);
8126 cfs_rq->runtime_enabled = runtime_enabled;
8127 cfs_rq->runtime_remaining = 0;
8128
8129 if (cfs_rq->throttled)
8130 unthrottle_cfs_rq(cfs_rq);
8131 raw_spin_unlock_irq(&rq->lock);
8132 }
8133 if (runtime_was_enabled && !runtime_enabled)
8134 cfs_bandwidth_usage_dec();
8135 out_unlock:
8136 mutex_unlock(&cfs_constraints_mutex);
8137 put_online_cpus();
8138
8139 return ret;
8140 }
8141
8142 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8143 {
8144 u64 quota, period;
8145
8146 period = ktime_to_ns(tg->cfs_bandwidth.period);
8147 if (cfs_quota_us < 0)
8148 quota = RUNTIME_INF;
8149 else
8150 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8151
8152 return tg_set_cfs_bandwidth(tg, period, quota);
8153 }
8154
8155 long tg_get_cfs_quota(struct task_group *tg)
8156 {
8157 u64 quota_us;
8158
8159 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8160 return -1;
8161
8162 quota_us = tg->cfs_bandwidth.quota;
8163 do_div(quota_us, NSEC_PER_USEC);
8164
8165 return quota_us;
8166 }
8167
8168 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8169 {
8170 u64 quota, period;
8171
8172 period = (u64)cfs_period_us * NSEC_PER_USEC;
8173 quota = tg->cfs_bandwidth.quota;
8174
8175 return tg_set_cfs_bandwidth(tg, period, quota);
8176 }
8177
8178 long tg_get_cfs_period(struct task_group *tg)
8179 {
8180 u64 cfs_period_us;
8181
8182 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8183 do_div(cfs_period_us, NSEC_PER_USEC);
8184
8185 return cfs_period_us;
8186 }
8187
8188 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8189 struct cftype *cft)
8190 {
8191 return tg_get_cfs_quota(css_tg(css));
8192 }
8193
8194 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8195 struct cftype *cftype, s64 cfs_quota_us)
8196 {
8197 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8198 }
8199
8200 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8201 struct cftype *cft)
8202 {
8203 return tg_get_cfs_period(css_tg(css));
8204 }
8205
8206 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8207 struct cftype *cftype, u64 cfs_period_us)
8208 {
8209 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8210 }
8211
8212 struct cfs_schedulable_data {
8213 struct task_group *tg;
8214 u64 period, quota;
8215 };
8216
8217 /*
8218 * normalize group quota/period to be quota/max_period
8219 * note: units are usecs
8220 */
8221 static u64 normalize_cfs_quota(struct task_group *tg,
8222 struct cfs_schedulable_data *d)
8223 {
8224 u64 quota, period;
8225
8226 if (tg == d->tg) {
8227 period = d->period;
8228 quota = d->quota;
8229 } else {
8230 period = tg_get_cfs_period(tg);
8231 quota = tg_get_cfs_quota(tg);
8232 }
8233
8234 /* note: these should typically be equivalent */
8235 if (quota == RUNTIME_INF || quota == -1)
8236 return RUNTIME_INF;
8237
8238 return to_ratio(period, quota);
8239 }
8240
8241 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8242 {
8243 struct cfs_schedulable_data *d = data;
8244 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8245 s64 quota = 0, parent_quota = -1;
8246
8247 if (!tg->parent) {
8248 quota = RUNTIME_INF;
8249 } else {
8250 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8251
8252 quota = normalize_cfs_quota(tg, d);
8253 parent_quota = parent_b->hierarchical_quota;
8254
8255 /*
8256 * ensure max(child_quota) <= parent_quota, inherit when no
8257 * limit is set
8258 */
8259 if (quota == RUNTIME_INF)
8260 quota = parent_quota;
8261 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8262 return -EINVAL;
8263 }
8264 cfs_b->hierarchical_quota = quota;
8265
8266 return 0;
8267 }
8268
8269 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8270 {
8271 int ret;
8272 struct cfs_schedulable_data data = {
8273 .tg = tg,
8274 .period = period,
8275 .quota = quota,
8276 };
8277
8278 if (quota != RUNTIME_INF) {
8279 do_div(data.period, NSEC_PER_USEC);
8280 do_div(data.quota, NSEC_PER_USEC);
8281 }
8282
8283 rcu_read_lock();
8284 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8285 rcu_read_unlock();
8286
8287 return ret;
8288 }
8289
8290 static int cpu_stats_show(struct seq_file *sf, void *v)
8291 {
8292 struct task_group *tg = css_tg(seq_css(sf));
8293 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8294
8295 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8296 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8297 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8298
8299 return 0;
8300 }
8301 #endif /* CONFIG_CFS_BANDWIDTH */
8302 #endif /* CONFIG_FAIR_GROUP_SCHED */
8303
8304 #ifdef CONFIG_RT_GROUP_SCHED
8305 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8306 struct cftype *cft, s64 val)
8307 {
8308 return sched_group_set_rt_runtime(css_tg(css), val);
8309 }
8310
8311 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8312 struct cftype *cft)
8313 {
8314 return sched_group_rt_runtime(css_tg(css));
8315 }
8316
8317 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8318 struct cftype *cftype, u64 rt_period_us)
8319 {
8320 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8321 }
8322
8323 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8324 struct cftype *cft)
8325 {
8326 return sched_group_rt_period(css_tg(css));
8327 }
8328 #endif /* CONFIG_RT_GROUP_SCHED */
8329
8330 static struct cftype cpu_files[] = {
8331 #ifdef CONFIG_FAIR_GROUP_SCHED
8332 {
8333 .name = "shares",
8334 .read_u64 = cpu_shares_read_u64,
8335 .write_u64 = cpu_shares_write_u64,
8336 },
8337 #endif
8338 #ifdef CONFIG_CFS_BANDWIDTH
8339 {
8340 .name = "cfs_quota_us",
8341 .read_s64 = cpu_cfs_quota_read_s64,
8342 .write_s64 = cpu_cfs_quota_write_s64,
8343 },
8344 {
8345 .name = "cfs_period_us",
8346 .read_u64 = cpu_cfs_period_read_u64,
8347 .write_u64 = cpu_cfs_period_write_u64,
8348 },
8349 {
8350 .name = "stat",
8351 .seq_show = cpu_stats_show,
8352 },
8353 #endif
8354 #ifdef CONFIG_RT_GROUP_SCHED
8355 {
8356 .name = "rt_runtime_us",
8357 .read_s64 = cpu_rt_runtime_read,
8358 .write_s64 = cpu_rt_runtime_write,
8359 },
8360 {
8361 .name = "rt_period_us",
8362 .read_u64 = cpu_rt_period_read_uint,
8363 .write_u64 = cpu_rt_period_write_uint,
8364 },
8365 #endif
8366 { } /* terminate */
8367 };
8368
8369 struct cgroup_subsys cpu_cgrp_subsys = {
8370 .css_alloc = cpu_cgroup_css_alloc,
8371 .css_free = cpu_cgroup_css_free,
8372 .css_online = cpu_cgroup_css_online,
8373 .css_offline = cpu_cgroup_css_offline,
8374 .fork = cpu_cgroup_fork,
8375 .can_attach = cpu_cgroup_can_attach,
8376 .attach = cpu_cgroup_attach,
8377 .exit = cpu_cgroup_exit,
8378 .legacy_cftypes = cpu_files,
8379 .early_init = 1,
8380 };
8381
8382 #endif /* CONFIG_CGROUP_SCHED */
8383
8384 void dump_cpu_task(int cpu)
8385 {
8386 pr_info("Task dump for CPU %d:\n", cpu);
8387 sched_show_task(cpu_curr(cpu));
8388 }