]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched/core.c
x86: Support kmap_local() forced debugging
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12
13 #include "sched.h"
14
15 #include <linux/nospec.h>
16
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26
27 #include "pelt.h"
28 #include "smp.h"
29
30 /*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49 * Debugging: various feature bits
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
54 */
55 #define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 0;
60 #undef SCHED_FEAT
61 #endif
62
63 /*
64 * Number of tasks to iterate in a single balance run.
65 * Limited because this is done with IRQs disabled.
66 */
67 const_debug unsigned int sysctl_sched_nr_migrate = 32;
68
69 /*
70 * period over which we measure -rt task CPU usage in us.
71 * default: 1s
72 */
73 unsigned int sysctl_sched_rt_period = 1000000;
74
75 __read_mostly int scheduler_running;
76
77 /*
78 * part of the period that we allow rt tasks to run in us.
79 * default: 0.95s
80 */
81 int sysctl_sched_rt_runtime = 950000;
82
83
84 /*
85 * Serialization rules:
86 *
87 * Lock order:
88 *
89 * p->pi_lock
90 * rq->lock
91 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
92 *
93 * rq1->lock
94 * rq2->lock where: rq1 < rq2
95 *
96 * Regular state:
97 *
98 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
99 * local CPU's rq->lock, it optionally removes the task from the runqueue and
100 * always looks at the local rq data structures to find the most eligible task
101 * to run next.
102 *
103 * Task enqueue is also under rq->lock, possibly taken from another CPU.
104 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
105 * the local CPU to avoid bouncing the runqueue state around [ see
106 * ttwu_queue_wakelist() ]
107 *
108 * Task wakeup, specifically wakeups that involve migration, are horribly
109 * complicated to avoid having to take two rq->locks.
110 *
111 * Special state:
112 *
113 * System-calls and anything external will use task_rq_lock() which acquires
114 * both p->pi_lock and rq->lock. As a consequence the state they change is
115 * stable while holding either lock:
116 *
117 * - sched_setaffinity()/
118 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
119 * - set_user_nice(): p->se.load, p->*prio
120 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
121 * p->se.load, p->rt_priority,
122 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
123 * - sched_setnuma(): p->numa_preferred_nid
124 * - sched_move_task()/
125 * cpu_cgroup_fork(): p->sched_task_group
126 * - uclamp_update_active() p->uclamp*
127 *
128 * p->state <- TASK_*:
129 *
130 * is changed locklessly using set_current_state(), __set_current_state() or
131 * set_special_state(), see their respective comments, or by
132 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
133 * concurrent self.
134 *
135 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
136 *
137 * is set by activate_task() and cleared by deactivate_task(), under
138 * rq->lock. Non-zero indicates the task is runnable, the special
139 * ON_RQ_MIGRATING state is used for migration without holding both
140 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
141 *
142 * p->on_cpu <- { 0, 1 }:
143 *
144 * is set by prepare_task() and cleared by finish_task() such that it will be
145 * set before p is scheduled-in and cleared after p is scheduled-out, both
146 * under rq->lock. Non-zero indicates the task is running on its CPU.
147 *
148 * [ The astute reader will observe that it is possible for two tasks on one
149 * CPU to have ->on_cpu = 1 at the same time. ]
150 *
151 * task_cpu(p): is changed by set_task_cpu(), the rules are:
152 *
153 * - Don't call set_task_cpu() on a blocked task:
154 *
155 * We don't care what CPU we're not running on, this simplifies hotplug,
156 * the CPU assignment of blocked tasks isn't required to be valid.
157 *
158 * - for try_to_wake_up(), called under p->pi_lock:
159 *
160 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
161 *
162 * - for migration called under rq->lock:
163 * [ see task_on_rq_migrating() in task_rq_lock() ]
164 *
165 * o move_queued_task()
166 * o detach_task()
167 *
168 * - for migration called under double_rq_lock():
169 *
170 * o __migrate_swap_task()
171 * o push_rt_task() / pull_rt_task()
172 * o push_dl_task() / pull_dl_task()
173 * o dl_task_offline_migration()
174 *
175 */
176
177 /*
178 * __task_rq_lock - lock the rq @p resides on.
179 */
180 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
181 __acquires(rq->lock)
182 {
183 struct rq *rq;
184
185 lockdep_assert_held(&p->pi_lock);
186
187 for (;;) {
188 rq = task_rq(p);
189 raw_spin_lock(&rq->lock);
190 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
191 rq_pin_lock(rq, rf);
192 return rq;
193 }
194 raw_spin_unlock(&rq->lock);
195
196 while (unlikely(task_on_rq_migrating(p)))
197 cpu_relax();
198 }
199 }
200
201 /*
202 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
203 */
204 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
205 __acquires(p->pi_lock)
206 __acquires(rq->lock)
207 {
208 struct rq *rq;
209
210 for (;;) {
211 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
212 rq = task_rq(p);
213 raw_spin_lock(&rq->lock);
214 /*
215 * move_queued_task() task_rq_lock()
216 *
217 * ACQUIRE (rq->lock)
218 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
219 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
220 * [S] ->cpu = new_cpu [L] task_rq()
221 * [L] ->on_rq
222 * RELEASE (rq->lock)
223 *
224 * If we observe the old CPU in task_rq_lock(), the acquire of
225 * the old rq->lock will fully serialize against the stores.
226 *
227 * If we observe the new CPU in task_rq_lock(), the address
228 * dependency headed by '[L] rq = task_rq()' and the acquire
229 * will pair with the WMB to ensure we then also see migrating.
230 */
231 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
232 rq_pin_lock(rq, rf);
233 return rq;
234 }
235 raw_spin_unlock(&rq->lock);
236 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
237
238 while (unlikely(task_on_rq_migrating(p)))
239 cpu_relax();
240 }
241 }
242
243 /*
244 * RQ-clock updating methods:
245 */
246
247 static void update_rq_clock_task(struct rq *rq, s64 delta)
248 {
249 /*
250 * In theory, the compile should just see 0 here, and optimize out the call
251 * to sched_rt_avg_update. But I don't trust it...
252 */
253 s64 __maybe_unused steal = 0, irq_delta = 0;
254
255 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
256 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
257
258 /*
259 * Since irq_time is only updated on {soft,}irq_exit, we might run into
260 * this case when a previous update_rq_clock() happened inside a
261 * {soft,}irq region.
262 *
263 * When this happens, we stop ->clock_task and only update the
264 * prev_irq_time stamp to account for the part that fit, so that a next
265 * update will consume the rest. This ensures ->clock_task is
266 * monotonic.
267 *
268 * It does however cause some slight miss-attribution of {soft,}irq
269 * time, a more accurate solution would be to update the irq_time using
270 * the current rq->clock timestamp, except that would require using
271 * atomic ops.
272 */
273 if (irq_delta > delta)
274 irq_delta = delta;
275
276 rq->prev_irq_time += irq_delta;
277 delta -= irq_delta;
278 #endif
279 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
280 if (static_key_false((&paravirt_steal_rq_enabled))) {
281 steal = paravirt_steal_clock(cpu_of(rq));
282 steal -= rq->prev_steal_time_rq;
283
284 if (unlikely(steal > delta))
285 steal = delta;
286
287 rq->prev_steal_time_rq += steal;
288 delta -= steal;
289 }
290 #endif
291
292 rq->clock_task += delta;
293
294 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
295 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
296 update_irq_load_avg(rq, irq_delta + steal);
297 #endif
298 update_rq_clock_pelt(rq, delta);
299 }
300
301 void update_rq_clock(struct rq *rq)
302 {
303 s64 delta;
304
305 lockdep_assert_held(&rq->lock);
306
307 if (rq->clock_update_flags & RQCF_ACT_SKIP)
308 return;
309
310 #ifdef CONFIG_SCHED_DEBUG
311 if (sched_feat(WARN_DOUBLE_CLOCK))
312 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
313 rq->clock_update_flags |= RQCF_UPDATED;
314 #endif
315
316 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
317 if (delta < 0)
318 return;
319 rq->clock += delta;
320 update_rq_clock_task(rq, delta);
321 }
322
323 static inline void
324 rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
325 {
326 csd->flags = 0;
327 csd->func = func;
328 csd->info = rq;
329 }
330
331 #ifdef CONFIG_SCHED_HRTICK
332 /*
333 * Use HR-timers to deliver accurate preemption points.
334 */
335
336 static void hrtick_clear(struct rq *rq)
337 {
338 if (hrtimer_active(&rq->hrtick_timer))
339 hrtimer_cancel(&rq->hrtick_timer);
340 }
341
342 /*
343 * High-resolution timer tick.
344 * Runs from hardirq context with interrupts disabled.
345 */
346 static enum hrtimer_restart hrtick(struct hrtimer *timer)
347 {
348 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
349 struct rq_flags rf;
350
351 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
352
353 rq_lock(rq, &rf);
354 update_rq_clock(rq);
355 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
356 rq_unlock(rq, &rf);
357
358 return HRTIMER_NORESTART;
359 }
360
361 #ifdef CONFIG_SMP
362
363 static void __hrtick_restart(struct rq *rq)
364 {
365 struct hrtimer *timer = &rq->hrtick_timer;
366
367 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
368 }
369
370 /*
371 * called from hardirq (IPI) context
372 */
373 static void __hrtick_start(void *arg)
374 {
375 struct rq *rq = arg;
376 struct rq_flags rf;
377
378 rq_lock(rq, &rf);
379 __hrtick_restart(rq);
380 rq_unlock(rq, &rf);
381 }
382
383 /*
384 * Called to set the hrtick timer state.
385 *
386 * called with rq->lock held and irqs disabled
387 */
388 void hrtick_start(struct rq *rq, u64 delay)
389 {
390 struct hrtimer *timer = &rq->hrtick_timer;
391 ktime_t time;
392 s64 delta;
393
394 /*
395 * Don't schedule slices shorter than 10000ns, that just
396 * doesn't make sense and can cause timer DoS.
397 */
398 delta = max_t(s64, delay, 10000LL);
399 time = ktime_add_ns(timer->base->get_time(), delta);
400
401 hrtimer_set_expires(timer, time);
402
403 if (rq == this_rq())
404 __hrtick_restart(rq);
405 else
406 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
407 }
408
409 #else
410 /*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
415 void hrtick_start(struct rq *rq, u64 delay)
416 {
417 /*
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
420 */
421 delay = max_t(u64, delay, 10000LL);
422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 HRTIMER_MODE_REL_PINNED_HARD);
424 }
425
426 #endif /* CONFIG_SMP */
427
428 static void hrtick_rq_init(struct rq *rq)
429 {
430 #ifdef CONFIG_SMP
431 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
432 #endif
433 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
434 rq->hrtick_timer.function = hrtick;
435 }
436 #else /* CONFIG_SCHED_HRTICK */
437 static inline void hrtick_clear(struct rq *rq)
438 {
439 }
440
441 static inline void hrtick_rq_init(struct rq *rq)
442 {
443 }
444 #endif /* CONFIG_SCHED_HRTICK */
445
446 /*
447 * cmpxchg based fetch_or, macro so it works for different integer types
448 */
449 #define fetch_or(ptr, mask) \
450 ({ \
451 typeof(ptr) _ptr = (ptr); \
452 typeof(mask) _mask = (mask); \
453 typeof(*_ptr) _old, _val = *_ptr; \
454 \
455 for (;;) { \
456 _old = cmpxchg(_ptr, _val, _val | _mask); \
457 if (_old == _val) \
458 break; \
459 _val = _old; \
460 } \
461 _old; \
462 })
463
464 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
465 /*
466 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
467 * this avoids any races wrt polling state changes and thereby avoids
468 * spurious IPIs.
469 */
470 static bool set_nr_and_not_polling(struct task_struct *p)
471 {
472 struct thread_info *ti = task_thread_info(p);
473 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
474 }
475
476 /*
477 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
478 *
479 * If this returns true, then the idle task promises to call
480 * sched_ttwu_pending() and reschedule soon.
481 */
482 static bool set_nr_if_polling(struct task_struct *p)
483 {
484 struct thread_info *ti = task_thread_info(p);
485 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
486
487 for (;;) {
488 if (!(val & _TIF_POLLING_NRFLAG))
489 return false;
490 if (val & _TIF_NEED_RESCHED)
491 return true;
492 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
493 if (old == val)
494 break;
495 val = old;
496 }
497 return true;
498 }
499
500 #else
501 static bool set_nr_and_not_polling(struct task_struct *p)
502 {
503 set_tsk_need_resched(p);
504 return true;
505 }
506
507 #ifdef CONFIG_SMP
508 static bool set_nr_if_polling(struct task_struct *p)
509 {
510 return false;
511 }
512 #endif
513 #endif
514
515 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
516 {
517 struct wake_q_node *node = &task->wake_q;
518
519 /*
520 * Atomically grab the task, if ->wake_q is !nil already it means
521 * it's already queued (either by us or someone else) and will get the
522 * wakeup due to that.
523 *
524 * In order to ensure that a pending wakeup will observe our pending
525 * state, even in the failed case, an explicit smp_mb() must be used.
526 */
527 smp_mb__before_atomic();
528 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
529 return false;
530
531 /*
532 * The head is context local, there can be no concurrency.
533 */
534 *head->lastp = node;
535 head->lastp = &node->next;
536 return true;
537 }
538
539 /**
540 * wake_q_add() - queue a wakeup for 'later' waking.
541 * @head: the wake_q_head to add @task to
542 * @task: the task to queue for 'later' wakeup
543 *
544 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
545 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
546 * instantly.
547 *
548 * This function must be used as-if it were wake_up_process(); IOW the task
549 * must be ready to be woken at this location.
550 */
551 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
552 {
553 if (__wake_q_add(head, task))
554 get_task_struct(task);
555 }
556
557 /**
558 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
559 * @head: the wake_q_head to add @task to
560 * @task: the task to queue for 'later' wakeup
561 *
562 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
563 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
564 * instantly.
565 *
566 * This function must be used as-if it were wake_up_process(); IOW the task
567 * must be ready to be woken at this location.
568 *
569 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
570 * that already hold reference to @task can call the 'safe' version and trust
571 * wake_q to do the right thing depending whether or not the @task is already
572 * queued for wakeup.
573 */
574 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
575 {
576 if (!__wake_q_add(head, task))
577 put_task_struct(task);
578 }
579
580 void wake_up_q(struct wake_q_head *head)
581 {
582 struct wake_q_node *node = head->first;
583
584 while (node != WAKE_Q_TAIL) {
585 struct task_struct *task;
586
587 task = container_of(node, struct task_struct, wake_q);
588 BUG_ON(!task);
589 /* Task can safely be re-inserted now: */
590 node = node->next;
591 task->wake_q.next = NULL;
592
593 /*
594 * wake_up_process() executes a full barrier, which pairs with
595 * the queueing in wake_q_add() so as not to miss wakeups.
596 */
597 wake_up_process(task);
598 put_task_struct(task);
599 }
600 }
601
602 /*
603 * resched_curr - mark rq's current task 'to be rescheduled now'.
604 *
605 * On UP this means the setting of the need_resched flag, on SMP it
606 * might also involve a cross-CPU call to trigger the scheduler on
607 * the target CPU.
608 */
609 void resched_curr(struct rq *rq)
610 {
611 struct task_struct *curr = rq->curr;
612 int cpu;
613
614 lockdep_assert_held(&rq->lock);
615
616 if (test_tsk_need_resched(curr))
617 return;
618
619 cpu = cpu_of(rq);
620
621 if (cpu == smp_processor_id()) {
622 set_tsk_need_resched(curr);
623 set_preempt_need_resched();
624 return;
625 }
626
627 if (set_nr_and_not_polling(curr))
628 smp_send_reschedule(cpu);
629 else
630 trace_sched_wake_idle_without_ipi(cpu);
631 }
632
633 void resched_cpu(int cpu)
634 {
635 struct rq *rq = cpu_rq(cpu);
636 unsigned long flags;
637
638 raw_spin_lock_irqsave(&rq->lock, flags);
639 if (cpu_online(cpu) || cpu == smp_processor_id())
640 resched_curr(rq);
641 raw_spin_unlock_irqrestore(&rq->lock, flags);
642 }
643
644 #ifdef CONFIG_SMP
645 #ifdef CONFIG_NO_HZ_COMMON
646 /*
647 * In the semi idle case, use the nearest busy CPU for migrating timers
648 * from an idle CPU. This is good for power-savings.
649 *
650 * We don't do similar optimization for completely idle system, as
651 * selecting an idle CPU will add more delays to the timers than intended
652 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
653 */
654 int get_nohz_timer_target(void)
655 {
656 int i, cpu = smp_processor_id(), default_cpu = -1;
657 struct sched_domain *sd;
658
659 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
660 if (!idle_cpu(cpu))
661 return cpu;
662 default_cpu = cpu;
663 }
664
665 rcu_read_lock();
666 for_each_domain(cpu, sd) {
667 for_each_cpu_and(i, sched_domain_span(sd),
668 housekeeping_cpumask(HK_FLAG_TIMER)) {
669 if (cpu == i)
670 continue;
671
672 if (!idle_cpu(i)) {
673 cpu = i;
674 goto unlock;
675 }
676 }
677 }
678
679 if (default_cpu == -1)
680 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
681 cpu = default_cpu;
682 unlock:
683 rcu_read_unlock();
684 return cpu;
685 }
686
687 /*
688 * When add_timer_on() enqueues a timer into the timer wheel of an
689 * idle CPU then this timer might expire before the next timer event
690 * which is scheduled to wake up that CPU. In case of a completely
691 * idle system the next event might even be infinite time into the
692 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
693 * leaves the inner idle loop so the newly added timer is taken into
694 * account when the CPU goes back to idle and evaluates the timer
695 * wheel for the next timer event.
696 */
697 static void wake_up_idle_cpu(int cpu)
698 {
699 struct rq *rq = cpu_rq(cpu);
700
701 if (cpu == smp_processor_id())
702 return;
703
704 if (set_nr_and_not_polling(rq->idle))
705 smp_send_reschedule(cpu);
706 else
707 trace_sched_wake_idle_without_ipi(cpu);
708 }
709
710 static bool wake_up_full_nohz_cpu(int cpu)
711 {
712 /*
713 * We just need the target to call irq_exit() and re-evaluate
714 * the next tick. The nohz full kick at least implies that.
715 * If needed we can still optimize that later with an
716 * empty IRQ.
717 */
718 if (cpu_is_offline(cpu))
719 return true; /* Don't try to wake offline CPUs. */
720 if (tick_nohz_full_cpu(cpu)) {
721 if (cpu != smp_processor_id() ||
722 tick_nohz_tick_stopped())
723 tick_nohz_full_kick_cpu(cpu);
724 return true;
725 }
726
727 return false;
728 }
729
730 /*
731 * Wake up the specified CPU. If the CPU is going offline, it is the
732 * caller's responsibility to deal with the lost wakeup, for example,
733 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
734 */
735 void wake_up_nohz_cpu(int cpu)
736 {
737 if (!wake_up_full_nohz_cpu(cpu))
738 wake_up_idle_cpu(cpu);
739 }
740
741 static void nohz_csd_func(void *info)
742 {
743 struct rq *rq = info;
744 int cpu = cpu_of(rq);
745 unsigned int flags;
746
747 /*
748 * Release the rq::nohz_csd.
749 */
750 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
751 WARN_ON(!(flags & NOHZ_KICK_MASK));
752
753 rq->idle_balance = idle_cpu(cpu);
754 if (rq->idle_balance && !need_resched()) {
755 rq->nohz_idle_balance = flags;
756 raise_softirq_irqoff(SCHED_SOFTIRQ);
757 }
758 }
759
760 #endif /* CONFIG_NO_HZ_COMMON */
761
762 #ifdef CONFIG_NO_HZ_FULL
763 bool sched_can_stop_tick(struct rq *rq)
764 {
765 int fifo_nr_running;
766
767 /* Deadline tasks, even if single, need the tick */
768 if (rq->dl.dl_nr_running)
769 return false;
770
771 /*
772 * If there are more than one RR tasks, we need the tick to affect the
773 * actual RR behaviour.
774 */
775 if (rq->rt.rr_nr_running) {
776 if (rq->rt.rr_nr_running == 1)
777 return true;
778 else
779 return false;
780 }
781
782 /*
783 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
784 * forced preemption between FIFO tasks.
785 */
786 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
787 if (fifo_nr_running)
788 return true;
789
790 /*
791 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
792 * if there's more than one we need the tick for involuntary
793 * preemption.
794 */
795 if (rq->nr_running > 1)
796 return false;
797
798 return true;
799 }
800 #endif /* CONFIG_NO_HZ_FULL */
801 #endif /* CONFIG_SMP */
802
803 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
804 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
805 /*
806 * Iterate task_group tree rooted at *from, calling @down when first entering a
807 * node and @up when leaving it for the final time.
808 *
809 * Caller must hold rcu_lock or sufficient equivalent.
810 */
811 int walk_tg_tree_from(struct task_group *from,
812 tg_visitor down, tg_visitor up, void *data)
813 {
814 struct task_group *parent, *child;
815 int ret;
816
817 parent = from;
818
819 down:
820 ret = (*down)(parent, data);
821 if (ret)
822 goto out;
823 list_for_each_entry_rcu(child, &parent->children, siblings) {
824 parent = child;
825 goto down;
826
827 up:
828 continue;
829 }
830 ret = (*up)(parent, data);
831 if (ret || parent == from)
832 goto out;
833
834 child = parent;
835 parent = parent->parent;
836 if (parent)
837 goto up;
838 out:
839 return ret;
840 }
841
842 int tg_nop(struct task_group *tg, void *data)
843 {
844 return 0;
845 }
846 #endif
847
848 static void set_load_weight(struct task_struct *p, bool update_load)
849 {
850 int prio = p->static_prio - MAX_RT_PRIO;
851 struct load_weight *load = &p->se.load;
852
853 /*
854 * SCHED_IDLE tasks get minimal weight:
855 */
856 if (task_has_idle_policy(p)) {
857 load->weight = scale_load(WEIGHT_IDLEPRIO);
858 load->inv_weight = WMULT_IDLEPRIO;
859 return;
860 }
861
862 /*
863 * SCHED_OTHER tasks have to update their load when changing their
864 * weight
865 */
866 if (update_load && p->sched_class == &fair_sched_class) {
867 reweight_task(p, prio);
868 } else {
869 load->weight = scale_load(sched_prio_to_weight[prio]);
870 load->inv_weight = sched_prio_to_wmult[prio];
871 }
872 }
873
874 #ifdef CONFIG_UCLAMP_TASK
875 /*
876 * Serializes updates of utilization clamp values
877 *
878 * The (slow-path) user-space triggers utilization clamp value updates which
879 * can require updates on (fast-path) scheduler's data structures used to
880 * support enqueue/dequeue operations.
881 * While the per-CPU rq lock protects fast-path update operations, user-space
882 * requests are serialized using a mutex to reduce the risk of conflicting
883 * updates or API abuses.
884 */
885 static DEFINE_MUTEX(uclamp_mutex);
886
887 /* Max allowed minimum utilization */
888 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
889
890 /* Max allowed maximum utilization */
891 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
892
893 /*
894 * By default RT tasks run at the maximum performance point/capacity of the
895 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
896 * SCHED_CAPACITY_SCALE.
897 *
898 * This knob allows admins to change the default behavior when uclamp is being
899 * used. In battery powered devices, particularly, running at the maximum
900 * capacity and frequency will increase energy consumption and shorten the
901 * battery life.
902 *
903 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
904 *
905 * This knob will not override the system default sched_util_clamp_min defined
906 * above.
907 */
908 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
909
910 /* All clamps are required to be less or equal than these values */
911 static struct uclamp_se uclamp_default[UCLAMP_CNT];
912
913 /*
914 * This static key is used to reduce the uclamp overhead in the fast path. It
915 * primarily disables the call to uclamp_rq_{inc, dec}() in
916 * enqueue/dequeue_task().
917 *
918 * This allows users to continue to enable uclamp in their kernel config with
919 * minimum uclamp overhead in the fast path.
920 *
921 * As soon as userspace modifies any of the uclamp knobs, the static key is
922 * enabled, since we have an actual users that make use of uclamp
923 * functionality.
924 *
925 * The knobs that would enable this static key are:
926 *
927 * * A task modifying its uclamp value with sched_setattr().
928 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
929 * * An admin modifying the cgroup cpu.uclamp.{min, max}
930 */
931 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
932
933 /* Integer rounded range for each bucket */
934 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
935
936 #define for_each_clamp_id(clamp_id) \
937 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
938
939 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
940 {
941 return clamp_value / UCLAMP_BUCKET_DELTA;
942 }
943
944 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
945 {
946 if (clamp_id == UCLAMP_MIN)
947 return 0;
948 return SCHED_CAPACITY_SCALE;
949 }
950
951 static inline void uclamp_se_set(struct uclamp_se *uc_se,
952 unsigned int value, bool user_defined)
953 {
954 uc_se->value = value;
955 uc_se->bucket_id = uclamp_bucket_id(value);
956 uc_se->user_defined = user_defined;
957 }
958
959 static inline unsigned int
960 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
961 unsigned int clamp_value)
962 {
963 /*
964 * Avoid blocked utilization pushing up the frequency when we go
965 * idle (which drops the max-clamp) by retaining the last known
966 * max-clamp.
967 */
968 if (clamp_id == UCLAMP_MAX) {
969 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
970 return clamp_value;
971 }
972
973 return uclamp_none(UCLAMP_MIN);
974 }
975
976 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
977 unsigned int clamp_value)
978 {
979 /* Reset max-clamp retention only on idle exit */
980 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
981 return;
982
983 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
984 }
985
986 static inline
987 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
988 unsigned int clamp_value)
989 {
990 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
991 int bucket_id = UCLAMP_BUCKETS - 1;
992
993 /*
994 * Since both min and max clamps are max aggregated, find the
995 * top most bucket with tasks in.
996 */
997 for ( ; bucket_id >= 0; bucket_id--) {
998 if (!bucket[bucket_id].tasks)
999 continue;
1000 return bucket[bucket_id].value;
1001 }
1002
1003 /* No tasks -- default clamp values */
1004 return uclamp_idle_value(rq, clamp_id, clamp_value);
1005 }
1006
1007 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1008 {
1009 unsigned int default_util_min;
1010 struct uclamp_se *uc_se;
1011
1012 lockdep_assert_held(&p->pi_lock);
1013
1014 uc_se = &p->uclamp_req[UCLAMP_MIN];
1015
1016 /* Only sync if user didn't override the default */
1017 if (uc_se->user_defined)
1018 return;
1019
1020 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1021 uclamp_se_set(uc_se, default_util_min, false);
1022 }
1023
1024 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1025 {
1026 struct rq_flags rf;
1027 struct rq *rq;
1028
1029 if (!rt_task(p))
1030 return;
1031
1032 /* Protect updates to p->uclamp_* */
1033 rq = task_rq_lock(p, &rf);
1034 __uclamp_update_util_min_rt_default(p);
1035 task_rq_unlock(rq, p, &rf);
1036 }
1037
1038 static void uclamp_sync_util_min_rt_default(void)
1039 {
1040 struct task_struct *g, *p;
1041
1042 /*
1043 * copy_process() sysctl_uclamp
1044 * uclamp_min_rt = X;
1045 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1046 * // link thread smp_mb__after_spinlock()
1047 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1048 * sched_post_fork() for_each_process_thread()
1049 * __uclamp_sync_rt() __uclamp_sync_rt()
1050 *
1051 * Ensures that either sched_post_fork() will observe the new
1052 * uclamp_min_rt or for_each_process_thread() will observe the new
1053 * task.
1054 */
1055 read_lock(&tasklist_lock);
1056 smp_mb__after_spinlock();
1057 read_unlock(&tasklist_lock);
1058
1059 rcu_read_lock();
1060 for_each_process_thread(g, p)
1061 uclamp_update_util_min_rt_default(p);
1062 rcu_read_unlock();
1063 }
1064
1065 static inline struct uclamp_se
1066 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1067 {
1068 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1069 #ifdef CONFIG_UCLAMP_TASK_GROUP
1070 struct uclamp_se uc_max;
1071
1072 /*
1073 * Tasks in autogroups or root task group will be
1074 * restricted by system defaults.
1075 */
1076 if (task_group_is_autogroup(task_group(p)))
1077 return uc_req;
1078 if (task_group(p) == &root_task_group)
1079 return uc_req;
1080
1081 uc_max = task_group(p)->uclamp[clamp_id];
1082 if (uc_req.value > uc_max.value || !uc_req.user_defined)
1083 return uc_max;
1084 #endif
1085
1086 return uc_req;
1087 }
1088
1089 /*
1090 * The effective clamp bucket index of a task depends on, by increasing
1091 * priority:
1092 * - the task specific clamp value, when explicitly requested from userspace
1093 * - the task group effective clamp value, for tasks not either in the root
1094 * group or in an autogroup
1095 * - the system default clamp value, defined by the sysadmin
1096 */
1097 static inline struct uclamp_se
1098 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1099 {
1100 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1101 struct uclamp_se uc_max = uclamp_default[clamp_id];
1102
1103 /* System default restrictions always apply */
1104 if (unlikely(uc_req.value > uc_max.value))
1105 return uc_max;
1106
1107 return uc_req;
1108 }
1109
1110 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1111 {
1112 struct uclamp_se uc_eff;
1113
1114 /* Task currently refcounted: use back-annotated (effective) value */
1115 if (p->uclamp[clamp_id].active)
1116 return (unsigned long)p->uclamp[clamp_id].value;
1117
1118 uc_eff = uclamp_eff_get(p, clamp_id);
1119
1120 return (unsigned long)uc_eff.value;
1121 }
1122
1123 /*
1124 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1125 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1126 * updates the rq's clamp value if required.
1127 *
1128 * Tasks can have a task-specific value requested from user-space, track
1129 * within each bucket the maximum value for tasks refcounted in it.
1130 * This "local max aggregation" allows to track the exact "requested" value
1131 * for each bucket when all its RUNNABLE tasks require the same clamp.
1132 */
1133 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1134 enum uclamp_id clamp_id)
1135 {
1136 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1137 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1138 struct uclamp_bucket *bucket;
1139
1140 lockdep_assert_held(&rq->lock);
1141
1142 /* Update task effective clamp */
1143 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1144
1145 bucket = &uc_rq->bucket[uc_se->bucket_id];
1146 bucket->tasks++;
1147 uc_se->active = true;
1148
1149 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1150
1151 /*
1152 * Local max aggregation: rq buckets always track the max
1153 * "requested" clamp value of its RUNNABLE tasks.
1154 */
1155 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1156 bucket->value = uc_se->value;
1157
1158 if (uc_se->value > READ_ONCE(uc_rq->value))
1159 WRITE_ONCE(uc_rq->value, uc_se->value);
1160 }
1161
1162 /*
1163 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1164 * is released. If this is the last task reference counting the rq's max
1165 * active clamp value, then the rq's clamp value is updated.
1166 *
1167 * Both refcounted tasks and rq's cached clamp values are expected to be
1168 * always valid. If it's detected they are not, as defensive programming,
1169 * enforce the expected state and warn.
1170 */
1171 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1172 enum uclamp_id clamp_id)
1173 {
1174 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1175 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1176 struct uclamp_bucket *bucket;
1177 unsigned int bkt_clamp;
1178 unsigned int rq_clamp;
1179
1180 lockdep_assert_held(&rq->lock);
1181
1182 /*
1183 * If sched_uclamp_used was enabled after task @p was enqueued,
1184 * we could end up with unbalanced call to uclamp_rq_dec_id().
1185 *
1186 * In this case the uc_se->active flag should be false since no uclamp
1187 * accounting was performed at enqueue time and we can just return
1188 * here.
1189 *
1190 * Need to be careful of the following enqueue/dequeue ordering
1191 * problem too
1192 *
1193 * enqueue(taskA)
1194 * // sched_uclamp_used gets enabled
1195 * enqueue(taskB)
1196 * dequeue(taskA)
1197 * // Must not decrement bucket->tasks here
1198 * dequeue(taskB)
1199 *
1200 * where we could end up with stale data in uc_se and
1201 * bucket[uc_se->bucket_id].
1202 *
1203 * The following check here eliminates the possibility of such race.
1204 */
1205 if (unlikely(!uc_se->active))
1206 return;
1207
1208 bucket = &uc_rq->bucket[uc_se->bucket_id];
1209
1210 SCHED_WARN_ON(!bucket->tasks);
1211 if (likely(bucket->tasks))
1212 bucket->tasks--;
1213
1214 uc_se->active = false;
1215
1216 /*
1217 * Keep "local max aggregation" simple and accept to (possibly)
1218 * overboost some RUNNABLE tasks in the same bucket.
1219 * The rq clamp bucket value is reset to its base value whenever
1220 * there are no more RUNNABLE tasks refcounting it.
1221 */
1222 if (likely(bucket->tasks))
1223 return;
1224
1225 rq_clamp = READ_ONCE(uc_rq->value);
1226 /*
1227 * Defensive programming: this should never happen. If it happens,
1228 * e.g. due to future modification, warn and fixup the expected value.
1229 */
1230 SCHED_WARN_ON(bucket->value > rq_clamp);
1231 if (bucket->value >= rq_clamp) {
1232 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1233 WRITE_ONCE(uc_rq->value, bkt_clamp);
1234 }
1235 }
1236
1237 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1238 {
1239 enum uclamp_id clamp_id;
1240
1241 /*
1242 * Avoid any overhead until uclamp is actually used by the userspace.
1243 *
1244 * The condition is constructed such that a NOP is generated when
1245 * sched_uclamp_used is disabled.
1246 */
1247 if (!static_branch_unlikely(&sched_uclamp_used))
1248 return;
1249
1250 if (unlikely(!p->sched_class->uclamp_enabled))
1251 return;
1252
1253 for_each_clamp_id(clamp_id)
1254 uclamp_rq_inc_id(rq, p, clamp_id);
1255
1256 /* Reset clamp idle holding when there is one RUNNABLE task */
1257 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1258 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1259 }
1260
1261 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1262 {
1263 enum uclamp_id clamp_id;
1264
1265 /*
1266 * Avoid any overhead until uclamp is actually used by the userspace.
1267 *
1268 * The condition is constructed such that a NOP is generated when
1269 * sched_uclamp_used is disabled.
1270 */
1271 if (!static_branch_unlikely(&sched_uclamp_used))
1272 return;
1273
1274 if (unlikely(!p->sched_class->uclamp_enabled))
1275 return;
1276
1277 for_each_clamp_id(clamp_id)
1278 uclamp_rq_dec_id(rq, p, clamp_id);
1279 }
1280
1281 static inline void
1282 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1283 {
1284 struct rq_flags rf;
1285 struct rq *rq;
1286
1287 /*
1288 * Lock the task and the rq where the task is (or was) queued.
1289 *
1290 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1291 * price to pay to safely serialize util_{min,max} updates with
1292 * enqueues, dequeues and migration operations.
1293 * This is the same locking schema used by __set_cpus_allowed_ptr().
1294 */
1295 rq = task_rq_lock(p, &rf);
1296
1297 /*
1298 * Setting the clamp bucket is serialized by task_rq_lock().
1299 * If the task is not yet RUNNABLE and its task_struct is not
1300 * affecting a valid clamp bucket, the next time it's enqueued,
1301 * it will already see the updated clamp bucket value.
1302 */
1303 if (p->uclamp[clamp_id].active) {
1304 uclamp_rq_dec_id(rq, p, clamp_id);
1305 uclamp_rq_inc_id(rq, p, clamp_id);
1306 }
1307
1308 task_rq_unlock(rq, p, &rf);
1309 }
1310
1311 #ifdef CONFIG_UCLAMP_TASK_GROUP
1312 static inline void
1313 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1314 unsigned int clamps)
1315 {
1316 enum uclamp_id clamp_id;
1317 struct css_task_iter it;
1318 struct task_struct *p;
1319
1320 css_task_iter_start(css, 0, &it);
1321 while ((p = css_task_iter_next(&it))) {
1322 for_each_clamp_id(clamp_id) {
1323 if ((0x1 << clamp_id) & clamps)
1324 uclamp_update_active(p, clamp_id);
1325 }
1326 }
1327 css_task_iter_end(&it);
1328 }
1329
1330 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1331 static void uclamp_update_root_tg(void)
1332 {
1333 struct task_group *tg = &root_task_group;
1334
1335 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1336 sysctl_sched_uclamp_util_min, false);
1337 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1338 sysctl_sched_uclamp_util_max, false);
1339
1340 rcu_read_lock();
1341 cpu_util_update_eff(&root_task_group.css);
1342 rcu_read_unlock();
1343 }
1344 #else
1345 static void uclamp_update_root_tg(void) { }
1346 #endif
1347
1348 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1349 void *buffer, size_t *lenp, loff_t *ppos)
1350 {
1351 bool update_root_tg = false;
1352 int old_min, old_max, old_min_rt;
1353 int result;
1354
1355 mutex_lock(&uclamp_mutex);
1356 old_min = sysctl_sched_uclamp_util_min;
1357 old_max = sysctl_sched_uclamp_util_max;
1358 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1359
1360 result = proc_dointvec(table, write, buffer, lenp, ppos);
1361 if (result)
1362 goto undo;
1363 if (!write)
1364 goto done;
1365
1366 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1367 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1368 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1369
1370 result = -EINVAL;
1371 goto undo;
1372 }
1373
1374 if (old_min != sysctl_sched_uclamp_util_min) {
1375 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1376 sysctl_sched_uclamp_util_min, false);
1377 update_root_tg = true;
1378 }
1379 if (old_max != sysctl_sched_uclamp_util_max) {
1380 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1381 sysctl_sched_uclamp_util_max, false);
1382 update_root_tg = true;
1383 }
1384
1385 if (update_root_tg) {
1386 static_branch_enable(&sched_uclamp_used);
1387 uclamp_update_root_tg();
1388 }
1389
1390 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1391 static_branch_enable(&sched_uclamp_used);
1392 uclamp_sync_util_min_rt_default();
1393 }
1394
1395 /*
1396 * We update all RUNNABLE tasks only when task groups are in use.
1397 * Otherwise, keep it simple and do just a lazy update at each next
1398 * task enqueue time.
1399 */
1400
1401 goto done;
1402
1403 undo:
1404 sysctl_sched_uclamp_util_min = old_min;
1405 sysctl_sched_uclamp_util_max = old_max;
1406 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1407 done:
1408 mutex_unlock(&uclamp_mutex);
1409
1410 return result;
1411 }
1412
1413 static int uclamp_validate(struct task_struct *p,
1414 const struct sched_attr *attr)
1415 {
1416 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1417 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1418
1419 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1420 util_min = attr->sched_util_min;
1421
1422 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1423 return -EINVAL;
1424 }
1425
1426 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1427 util_max = attr->sched_util_max;
1428
1429 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1430 return -EINVAL;
1431 }
1432
1433 if (util_min != -1 && util_max != -1 && util_min > util_max)
1434 return -EINVAL;
1435
1436 /*
1437 * We have valid uclamp attributes; make sure uclamp is enabled.
1438 *
1439 * We need to do that here, because enabling static branches is a
1440 * blocking operation which obviously cannot be done while holding
1441 * scheduler locks.
1442 */
1443 static_branch_enable(&sched_uclamp_used);
1444
1445 return 0;
1446 }
1447
1448 static bool uclamp_reset(const struct sched_attr *attr,
1449 enum uclamp_id clamp_id,
1450 struct uclamp_se *uc_se)
1451 {
1452 /* Reset on sched class change for a non user-defined clamp value. */
1453 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1454 !uc_se->user_defined)
1455 return true;
1456
1457 /* Reset on sched_util_{min,max} == -1. */
1458 if (clamp_id == UCLAMP_MIN &&
1459 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1460 attr->sched_util_min == -1) {
1461 return true;
1462 }
1463
1464 if (clamp_id == UCLAMP_MAX &&
1465 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1466 attr->sched_util_max == -1) {
1467 return true;
1468 }
1469
1470 return false;
1471 }
1472
1473 static void __setscheduler_uclamp(struct task_struct *p,
1474 const struct sched_attr *attr)
1475 {
1476 enum uclamp_id clamp_id;
1477
1478 for_each_clamp_id(clamp_id) {
1479 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1480 unsigned int value;
1481
1482 if (!uclamp_reset(attr, clamp_id, uc_se))
1483 continue;
1484
1485 /*
1486 * RT by default have a 100% boost value that could be modified
1487 * at runtime.
1488 */
1489 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1490 value = sysctl_sched_uclamp_util_min_rt_default;
1491 else
1492 value = uclamp_none(clamp_id);
1493
1494 uclamp_se_set(uc_se, value, false);
1495
1496 }
1497
1498 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1499 return;
1500
1501 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1502 attr->sched_util_min != -1) {
1503 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1504 attr->sched_util_min, true);
1505 }
1506
1507 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1508 attr->sched_util_max != -1) {
1509 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1510 attr->sched_util_max, true);
1511 }
1512 }
1513
1514 static void uclamp_fork(struct task_struct *p)
1515 {
1516 enum uclamp_id clamp_id;
1517
1518 /*
1519 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1520 * as the task is still at its early fork stages.
1521 */
1522 for_each_clamp_id(clamp_id)
1523 p->uclamp[clamp_id].active = false;
1524
1525 if (likely(!p->sched_reset_on_fork))
1526 return;
1527
1528 for_each_clamp_id(clamp_id) {
1529 uclamp_se_set(&p->uclamp_req[clamp_id],
1530 uclamp_none(clamp_id), false);
1531 }
1532 }
1533
1534 static void uclamp_post_fork(struct task_struct *p)
1535 {
1536 uclamp_update_util_min_rt_default(p);
1537 }
1538
1539 static void __init init_uclamp_rq(struct rq *rq)
1540 {
1541 enum uclamp_id clamp_id;
1542 struct uclamp_rq *uc_rq = rq->uclamp;
1543
1544 for_each_clamp_id(clamp_id) {
1545 uc_rq[clamp_id] = (struct uclamp_rq) {
1546 .value = uclamp_none(clamp_id)
1547 };
1548 }
1549
1550 rq->uclamp_flags = 0;
1551 }
1552
1553 static void __init init_uclamp(void)
1554 {
1555 struct uclamp_se uc_max = {};
1556 enum uclamp_id clamp_id;
1557 int cpu;
1558
1559 for_each_possible_cpu(cpu)
1560 init_uclamp_rq(cpu_rq(cpu));
1561
1562 for_each_clamp_id(clamp_id) {
1563 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1564 uclamp_none(clamp_id), false);
1565 }
1566
1567 /* System defaults allow max clamp values for both indexes */
1568 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1569 for_each_clamp_id(clamp_id) {
1570 uclamp_default[clamp_id] = uc_max;
1571 #ifdef CONFIG_UCLAMP_TASK_GROUP
1572 root_task_group.uclamp_req[clamp_id] = uc_max;
1573 root_task_group.uclamp[clamp_id] = uc_max;
1574 #endif
1575 }
1576 }
1577
1578 #else /* CONFIG_UCLAMP_TASK */
1579 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1580 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1581 static inline int uclamp_validate(struct task_struct *p,
1582 const struct sched_attr *attr)
1583 {
1584 return -EOPNOTSUPP;
1585 }
1586 static void __setscheduler_uclamp(struct task_struct *p,
1587 const struct sched_attr *attr) { }
1588 static inline void uclamp_fork(struct task_struct *p) { }
1589 static inline void uclamp_post_fork(struct task_struct *p) { }
1590 static inline void init_uclamp(void) { }
1591 #endif /* CONFIG_UCLAMP_TASK */
1592
1593 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1594 {
1595 if (!(flags & ENQUEUE_NOCLOCK))
1596 update_rq_clock(rq);
1597
1598 if (!(flags & ENQUEUE_RESTORE)) {
1599 sched_info_queued(rq, p);
1600 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1601 }
1602
1603 uclamp_rq_inc(rq, p);
1604 p->sched_class->enqueue_task(rq, p, flags);
1605 }
1606
1607 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1608 {
1609 if (!(flags & DEQUEUE_NOCLOCK))
1610 update_rq_clock(rq);
1611
1612 if (!(flags & DEQUEUE_SAVE)) {
1613 sched_info_dequeued(rq, p);
1614 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1615 }
1616
1617 uclamp_rq_dec(rq, p);
1618 p->sched_class->dequeue_task(rq, p, flags);
1619 }
1620
1621 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1622 {
1623 enqueue_task(rq, p, flags);
1624
1625 p->on_rq = TASK_ON_RQ_QUEUED;
1626 }
1627
1628 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1629 {
1630 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1631
1632 dequeue_task(rq, p, flags);
1633 }
1634
1635 /*
1636 * __normal_prio - return the priority that is based on the static prio
1637 */
1638 static inline int __normal_prio(struct task_struct *p)
1639 {
1640 return p->static_prio;
1641 }
1642
1643 /*
1644 * Calculate the expected normal priority: i.e. priority
1645 * without taking RT-inheritance into account. Might be
1646 * boosted by interactivity modifiers. Changes upon fork,
1647 * setprio syscalls, and whenever the interactivity
1648 * estimator recalculates.
1649 */
1650 static inline int normal_prio(struct task_struct *p)
1651 {
1652 int prio;
1653
1654 if (task_has_dl_policy(p))
1655 prio = MAX_DL_PRIO-1;
1656 else if (task_has_rt_policy(p))
1657 prio = MAX_RT_PRIO-1 - p->rt_priority;
1658 else
1659 prio = __normal_prio(p);
1660 return prio;
1661 }
1662
1663 /*
1664 * Calculate the current priority, i.e. the priority
1665 * taken into account by the scheduler. This value might
1666 * be boosted by RT tasks, or might be boosted by
1667 * interactivity modifiers. Will be RT if the task got
1668 * RT-boosted. If not then it returns p->normal_prio.
1669 */
1670 static int effective_prio(struct task_struct *p)
1671 {
1672 p->normal_prio = normal_prio(p);
1673 /*
1674 * If we are RT tasks or we were boosted to RT priority,
1675 * keep the priority unchanged. Otherwise, update priority
1676 * to the normal priority:
1677 */
1678 if (!rt_prio(p->prio))
1679 return p->normal_prio;
1680 return p->prio;
1681 }
1682
1683 /**
1684 * task_curr - is this task currently executing on a CPU?
1685 * @p: the task in question.
1686 *
1687 * Return: 1 if the task is currently executing. 0 otherwise.
1688 */
1689 inline int task_curr(const struct task_struct *p)
1690 {
1691 return cpu_curr(task_cpu(p)) == p;
1692 }
1693
1694 /*
1695 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1696 * use the balance_callback list if you want balancing.
1697 *
1698 * this means any call to check_class_changed() must be followed by a call to
1699 * balance_callback().
1700 */
1701 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1702 const struct sched_class *prev_class,
1703 int oldprio)
1704 {
1705 if (prev_class != p->sched_class) {
1706 if (prev_class->switched_from)
1707 prev_class->switched_from(rq, p);
1708
1709 p->sched_class->switched_to(rq, p);
1710 } else if (oldprio != p->prio || dl_task(p))
1711 p->sched_class->prio_changed(rq, p, oldprio);
1712 }
1713
1714 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1715 {
1716 if (p->sched_class == rq->curr->sched_class)
1717 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1718 else if (p->sched_class > rq->curr->sched_class)
1719 resched_curr(rq);
1720
1721 /*
1722 * A queue event has occurred, and we're going to schedule. In
1723 * this case, we can save a useless back to back clock update.
1724 */
1725 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1726 rq_clock_skip_update(rq);
1727 }
1728
1729 #ifdef CONFIG_SMP
1730
1731 static void
1732 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1733
1734 static int __set_cpus_allowed_ptr(struct task_struct *p,
1735 const struct cpumask *new_mask,
1736 u32 flags);
1737
1738 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
1739 {
1740 if (likely(!p->migration_disabled))
1741 return;
1742
1743 if (p->cpus_ptr != &p->cpus_mask)
1744 return;
1745
1746 /*
1747 * Violates locking rules! see comment in __do_set_cpus_allowed().
1748 */
1749 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
1750 }
1751
1752 void migrate_disable(void)
1753 {
1754 struct task_struct *p = current;
1755
1756 if (p->migration_disabled) {
1757 p->migration_disabled++;
1758 return;
1759 }
1760
1761 preempt_disable();
1762 this_rq()->nr_pinned++;
1763 p->migration_disabled = 1;
1764 preempt_enable();
1765 }
1766 EXPORT_SYMBOL_GPL(migrate_disable);
1767
1768 void migrate_enable(void)
1769 {
1770 struct task_struct *p = current;
1771
1772 if (p->migration_disabled > 1) {
1773 p->migration_disabled--;
1774 return;
1775 }
1776
1777 /*
1778 * Ensure stop_task runs either before or after this, and that
1779 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
1780 */
1781 preempt_disable();
1782 if (p->cpus_ptr != &p->cpus_mask)
1783 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
1784 /*
1785 * Mustn't clear migration_disabled() until cpus_ptr points back at the
1786 * regular cpus_mask, otherwise things that race (eg.
1787 * select_fallback_rq) get confused.
1788 */
1789 barrier();
1790 p->migration_disabled = 0;
1791 this_rq()->nr_pinned--;
1792 preempt_enable();
1793 }
1794 EXPORT_SYMBOL_GPL(migrate_enable);
1795
1796 static inline bool rq_has_pinned_tasks(struct rq *rq)
1797 {
1798 return rq->nr_pinned;
1799 }
1800
1801 /*
1802 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1803 * __set_cpus_allowed_ptr() and select_fallback_rq().
1804 */
1805 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1806 {
1807 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1808 return false;
1809
1810 if (is_per_cpu_kthread(p) || is_migration_disabled(p))
1811 return cpu_online(cpu);
1812
1813 return cpu_active(cpu);
1814 }
1815
1816 /*
1817 * This is how migration works:
1818 *
1819 * 1) we invoke migration_cpu_stop() on the target CPU using
1820 * stop_one_cpu().
1821 * 2) stopper starts to run (implicitly forcing the migrated thread
1822 * off the CPU)
1823 * 3) it checks whether the migrated task is still in the wrong runqueue.
1824 * 4) if it's in the wrong runqueue then the migration thread removes
1825 * it and puts it into the right queue.
1826 * 5) stopper completes and stop_one_cpu() returns and the migration
1827 * is done.
1828 */
1829
1830 /*
1831 * move_queued_task - move a queued task to new rq.
1832 *
1833 * Returns (locked) new rq. Old rq's lock is released.
1834 */
1835 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1836 struct task_struct *p, int new_cpu)
1837 {
1838 lockdep_assert_held(&rq->lock);
1839
1840 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1841 set_task_cpu(p, new_cpu);
1842 rq_unlock(rq, rf);
1843
1844 rq = cpu_rq(new_cpu);
1845
1846 rq_lock(rq, rf);
1847 BUG_ON(task_cpu(p) != new_cpu);
1848 activate_task(rq, p, 0);
1849 check_preempt_curr(rq, p, 0);
1850
1851 return rq;
1852 }
1853
1854 struct migration_arg {
1855 struct task_struct *task;
1856 int dest_cpu;
1857 struct set_affinity_pending *pending;
1858 };
1859
1860 struct set_affinity_pending {
1861 refcount_t refs;
1862 struct completion done;
1863 struct cpu_stop_work stop_work;
1864 struct migration_arg arg;
1865 };
1866
1867 /*
1868 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1869 * this because either it can't run here any more (set_cpus_allowed()
1870 * away from this CPU, or CPU going down), or because we're
1871 * attempting to rebalance this task on exec (sched_exec).
1872 *
1873 * So we race with normal scheduler movements, but that's OK, as long
1874 * as the task is no longer on this CPU.
1875 */
1876 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1877 struct task_struct *p, int dest_cpu)
1878 {
1879 /* Affinity changed (again). */
1880 if (!is_cpu_allowed(p, dest_cpu))
1881 return rq;
1882
1883 update_rq_clock(rq);
1884 rq = move_queued_task(rq, rf, p, dest_cpu);
1885
1886 return rq;
1887 }
1888
1889 /*
1890 * migration_cpu_stop - this will be executed by a highprio stopper thread
1891 * and performs thread migration by bumping thread off CPU then
1892 * 'pushing' onto another runqueue.
1893 */
1894 static int migration_cpu_stop(void *data)
1895 {
1896 struct set_affinity_pending *pending;
1897 struct migration_arg *arg = data;
1898 struct task_struct *p = arg->task;
1899 int dest_cpu = arg->dest_cpu;
1900 struct rq *rq = this_rq();
1901 bool complete = false;
1902 struct rq_flags rf;
1903
1904 /*
1905 * The original target CPU might have gone down and we might
1906 * be on another CPU but it doesn't matter.
1907 */
1908 local_irq_save(rf.flags);
1909 /*
1910 * We need to explicitly wake pending tasks before running
1911 * __migrate_task() such that we will not miss enforcing cpus_ptr
1912 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1913 */
1914 flush_smp_call_function_from_idle();
1915
1916 raw_spin_lock(&p->pi_lock);
1917 rq_lock(rq, &rf);
1918
1919 pending = p->migration_pending;
1920 /*
1921 * If task_rq(p) != rq, it cannot be migrated here, because we're
1922 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1923 * we're holding p->pi_lock.
1924 */
1925 if (task_rq(p) == rq) {
1926 if (is_migration_disabled(p))
1927 goto out;
1928
1929 if (pending) {
1930 p->migration_pending = NULL;
1931 complete = true;
1932 }
1933
1934 /* migrate_enable() -- we must not race against SCA */
1935 if (dest_cpu < 0) {
1936 /*
1937 * When this was migrate_enable() but we no longer
1938 * have a @pending, a concurrent SCA 'fixed' things
1939 * and we should be valid again. Nothing to do.
1940 */
1941 if (!pending) {
1942 WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
1943 goto out;
1944 }
1945
1946 dest_cpu = cpumask_any_distribute(&p->cpus_mask);
1947 }
1948
1949 if (task_on_rq_queued(p))
1950 rq = __migrate_task(rq, &rf, p, dest_cpu);
1951 else
1952 p->wake_cpu = dest_cpu;
1953
1954 } else if (dest_cpu < 0 || pending) {
1955 /*
1956 * This happens when we get migrated between migrate_enable()'s
1957 * preempt_enable() and scheduling the stopper task. At that
1958 * point we're a regular task again and not current anymore.
1959 *
1960 * A !PREEMPT kernel has a giant hole here, which makes it far
1961 * more likely.
1962 */
1963
1964 /*
1965 * The task moved before the stopper got to run. We're holding
1966 * ->pi_lock, so the allowed mask is stable - if it got
1967 * somewhere allowed, we're done.
1968 */
1969 if (pending && cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
1970 p->migration_pending = NULL;
1971 complete = true;
1972 goto out;
1973 }
1974
1975 /*
1976 * When this was migrate_enable() but we no longer have an
1977 * @pending, a concurrent SCA 'fixed' things and we should be
1978 * valid again. Nothing to do.
1979 */
1980 if (!pending) {
1981 WARN_ON_ONCE(!cpumask_test_cpu(task_cpu(p), &p->cpus_mask));
1982 goto out;
1983 }
1984
1985 /*
1986 * When migrate_enable() hits a rq mis-match we can't reliably
1987 * determine is_migration_disabled() and so have to chase after
1988 * it.
1989 */
1990 task_rq_unlock(rq, p, &rf);
1991 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
1992 &pending->arg, &pending->stop_work);
1993 return 0;
1994 }
1995 out:
1996 task_rq_unlock(rq, p, &rf);
1997
1998 if (complete)
1999 complete_all(&pending->done);
2000
2001 /* For pending->{arg,stop_work} */
2002 pending = arg->pending;
2003 if (pending && refcount_dec_and_test(&pending->refs))
2004 wake_up_var(&pending->refs);
2005
2006 return 0;
2007 }
2008
2009 int push_cpu_stop(void *arg)
2010 {
2011 struct rq *lowest_rq = NULL, *rq = this_rq();
2012 struct task_struct *p = arg;
2013
2014 raw_spin_lock_irq(&p->pi_lock);
2015 raw_spin_lock(&rq->lock);
2016
2017 if (task_rq(p) != rq)
2018 goto out_unlock;
2019
2020 if (is_migration_disabled(p)) {
2021 p->migration_flags |= MDF_PUSH;
2022 goto out_unlock;
2023 }
2024
2025 p->migration_flags &= ~MDF_PUSH;
2026
2027 if (p->sched_class->find_lock_rq)
2028 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2029
2030 if (!lowest_rq)
2031 goto out_unlock;
2032
2033 // XXX validate p is still the highest prio task
2034 if (task_rq(p) == rq) {
2035 deactivate_task(rq, p, 0);
2036 set_task_cpu(p, lowest_rq->cpu);
2037 activate_task(lowest_rq, p, 0);
2038 resched_curr(lowest_rq);
2039 }
2040
2041 double_unlock_balance(rq, lowest_rq);
2042
2043 out_unlock:
2044 rq->push_busy = false;
2045 raw_spin_unlock(&rq->lock);
2046 raw_spin_unlock_irq(&p->pi_lock);
2047
2048 put_task_struct(p);
2049 return 0;
2050 }
2051
2052 /*
2053 * sched_class::set_cpus_allowed must do the below, but is not required to
2054 * actually call this function.
2055 */
2056 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2057 {
2058 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2059 p->cpus_ptr = new_mask;
2060 return;
2061 }
2062
2063 cpumask_copy(&p->cpus_mask, new_mask);
2064 p->nr_cpus_allowed = cpumask_weight(new_mask);
2065 }
2066
2067 static void
2068 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2069 {
2070 struct rq *rq = task_rq(p);
2071 bool queued, running;
2072
2073 /*
2074 * This here violates the locking rules for affinity, since we're only
2075 * supposed to change these variables while holding both rq->lock and
2076 * p->pi_lock.
2077 *
2078 * HOWEVER, it magically works, because ttwu() is the only code that
2079 * accesses these variables under p->pi_lock and only does so after
2080 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2081 * before finish_task().
2082 *
2083 * XXX do further audits, this smells like something putrid.
2084 */
2085 if (flags & SCA_MIGRATE_DISABLE)
2086 SCHED_WARN_ON(!p->on_cpu);
2087 else
2088 lockdep_assert_held(&p->pi_lock);
2089
2090 queued = task_on_rq_queued(p);
2091 running = task_current(rq, p);
2092
2093 if (queued) {
2094 /*
2095 * Because __kthread_bind() calls this on blocked tasks without
2096 * holding rq->lock.
2097 */
2098 lockdep_assert_held(&rq->lock);
2099 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2100 }
2101 if (running)
2102 put_prev_task(rq, p);
2103
2104 p->sched_class->set_cpus_allowed(p, new_mask, flags);
2105
2106 if (queued)
2107 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2108 if (running)
2109 set_next_task(rq, p);
2110 }
2111
2112 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2113 {
2114 __do_set_cpus_allowed(p, new_mask, 0);
2115 }
2116
2117 /*
2118 * This function is wildly self concurrent; here be dragons.
2119 *
2120 *
2121 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2122 * designated task is enqueued on an allowed CPU. If that task is currently
2123 * running, we have to kick it out using the CPU stopper.
2124 *
2125 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2126 * Consider:
2127 *
2128 * Initial conditions: P0->cpus_mask = [0, 1]
2129 *
2130 * P0@CPU0 P1
2131 *
2132 * migrate_disable();
2133 * <preempted>
2134 * set_cpus_allowed_ptr(P0, [1]);
2135 *
2136 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2137 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2138 * This means we need the following scheme:
2139 *
2140 * P0@CPU0 P1
2141 *
2142 * migrate_disable();
2143 * <preempted>
2144 * set_cpus_allowed_ptr(P0, [1]);
2145 * <blocks>
2146 * <resumes>
2147 * migrate_enable();
2148 * __set_cpus_allowed_ptr();
2149 * <wakes local stopper>
2150 * `--> <woken on migration completion>
2151 *
2152 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2153 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2154 * task p are serialized by p->pi_lock, which we can leverage: the one that
2155 * should come into effect at the end of the Migrate-Disable region is the last
2156 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2157 * but we still need to properly signal those waiting tasks at the appropriate
2158 * moment.
2159 *
2160 * This is implemented using struct set_affinity_pending. The first
2161 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2162 * setup an instance of that struct and install it on the targeted task_struct.
2163 * Any and all further callers will reuse that instance. Those then wait for
2164 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2165 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2166 *
2167 *
2168 * (1) In the cases covered above. There is one more where the completion is
2169 * signaled within affine_move_task() itself: when a subsequent affinity request
2170 * cancels the need for an active migration. Consider:
2171 *
2172 * Initial conditions: P0->cpus_mask = [0, 1]
2173 *
2174 * P0@CPU0 P1 P2
2175 *
2176 * migrate_disable();
2177 * <preempted>
2178 * set_cpus_allowed_ptr(P0, [1]);
2179 * <blocks>
2180 * set_cpus_allowed_ptr(P0, [0, 1]);
2181 * <signal completion>
2182 * <awakes>
2183 *
2184 * Note that the above is safe vs a concurrent migrate_enable(), as any
2185 * pending affinity completion is preceded by an uninstallation of
2186 * p->migration_pending done with p->pi_lock held.
2187 */
2188 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2189 int dest_cpu, unsigned int flags)
2190 {
2191 struct set_affinity_pending my_pending = { }, *pending = NULL;
2192 struct migration_arg arg = {
2193 .task = p,
2194 .dest_cpu = dest_cpu,
2195 };
2196 bool complete = false;
2197
2198 /* Can the task run on the task's current CPU? If so, we're done */
2199 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2200 struct task_struct *push_task = NULL;
2201
2202 if ((flags & SCA_MIGRATE_ENABLE) &&
2203 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2204 rq->push_busy = true;
2205 push_task = get_task_struct(p);
2206 }
2207
2208 pending = p->migration_pending;
2209 if (pending) {
2210 refcount_inc(&pending->refs);
2211 p->migration_pending = NULL;
2212 complete = true;
2213 }
2214 task_rq_unlock(rq, p, rf);
2215
2216 if (push_task) {
2217 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2218 p, &rq->push_work);
2219 }
2220
2221 if (complete)
2222 goto do_complete;
2223
2224 return 0;
2225 }
2226
2227 if (!(flags & SCA_MIGRATE_ENABLE)) {
2228 /* serialized by p->pi_lock */
2229 if (!p->migration_pending) {
2230 /* Install the request */
2231 refcount_set(&my_pending.refs, 1);
2232 init_completion(&my_pending.done);
2233 p->migration_pending = &my_pending;
2234 } else {
2235 pending = p->migration_pending;
2236 refcount_inc(&pending->refs);
2237 }
2238 }
2239 pending = p->migration_pending;
2240 /*
2241 * - !MIGRATE_ENABLE:
2242 * we'll have installed a pending if there wasn't one already.
2243 *
2244 * - MIGRATE_ENABLE:
2245 * we're here because the current CPU isn't matching anymore,
2246 * the only way that can happen is because of a concurrent
2247 * set_cpus_allowed_ptr() call, which should then still be
2248 * pending completion.
2249 *
2250 * Either way, we really should have a @pending here.
2251 */
2252 if (WARN_ON_ONCE(!pending)) {
2253 task_rq_unlock(rq, p, rf);
2254 return -EINVAL;
2255 }
2256
2257 if (flags & SCA_MIGRATE_ENABLE) {
2258
2259 refcount_inc(&pending->refs); /* pending->{arg,stop_work} */
2260 p->migration_flags &= ~MDF_PUSH;
2261 task_rq_unlock(rq, p, rf);
2262
2263 pending->arg = (struct migration_arg) {
2264 .task = p,
2265 .dest_cpu = -1,
2266 .pending = pending,
2267 };
2268
2269 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2270 &pending->arg, &pending->stop_work);
2271
2272 return 0;
2273 }
2274
2275 if (task_running(rq, p) || p->state == TASK_WAKING) {
2276 /*
2277 * Lessen races (and headaches) by delegating
2278 * is_migration_disabled(p) checks to the stopper, which will
2279 * run on the same CPU as said p.
2280 */
2281 task_rq_unlock(rq, p, rf);
2282 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
2283
2284 } else {
2285
2286 if (!is_migration_disabled(p)) {
2287 if (task_on_rq_queued(p))
2288 rq = move_queued_task(rq, rf, p, dest_cpu);
2289
2290 p->migration_pending = NULL;
2291 complete = true;
2292 }
2293 task_rq_unlock(rq, p, rf);
2294
2295 do_complete:
2296 if (complete)
2297 complete_all(&pending->done);
2298 }
2299
2300 wait_for_completion(&pending->done);
2301
2302 if (refcount_dec_and_test(&pending->refs))
2303 wake_up_var(&pending->refs);
2304
2305 /*
2306 * Block the original owner of &pending until all subsequent callers
2307 * have seen the completion and decremented the refcount
2308 */
2309 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2310
2311 return 0;
2312 }
2313
2314 /*
2315 * Change a given task's CPU affinity. Migrate the thread to a
2316 * proper CPU and schedule it away if the CPU it's executing on
2317 * is removed from the allowed bitmask.
2318 *
2319 * NOTE: the caller must have a valid reference to the task, the
2320 * task must not exit() & deallocate itself prematurely. The
2321 * call is not atomic; no spinlocks may be held.
2322 */
2323 static int __set_cpus_allowed_ptr(struct task_struct *p,
2324 const struct cpumask *new_mask,
2325 u32 flags)
2326 {
2327 const struct cpumask *cpu_valid_mask = cpu_active_mask;
2328 unsigned int dest_cpu;
2329 struct rq_flags rf;
2330 struct rq *rq;
2331 int ret = 0;
2332
2333 rq = task_rq_lock(p, &rf);
2334 update_rq_clock(rq);
2335
2336 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
2337 /*
2338 * Kernel threads are allowed on online && !active CPUs.
2339 *
2340 * Specifically, migration_disabled() tasks must not fail the
2341 * cpumask_any_and_distribute() pick below, esp. so on
2342 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2343 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2344 */
2345 cpu_valid_mask = cpu_online_mask;
2346 }
2347
2348 /*
2349 * Must re-check here, to close a race against __kthread_bind(),
2350 * sched_setaffinity() is not guaranteed to observe the flag.
2351 */
2352 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2353 ret = -EINVAL;
2354 goto out;
2355 }
2356
2357 if (!(flags & SCA_MIGRATE_ENABLE)) {
2358 if (cpumask_equal(&p->cpus_mask, new_mask))
2359 goto out;
2360
2361 if (WARN_ON_ONCE(p == current &&
2362 is_migration_disabled(p) &&
2363 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2364 ret = -EBUSY;
2365 goto out;
2366 }
2367 }
2368
2369 /*
2370 * Picking a ~random cpu helps in cases where we are changing affinity
2371 * for groups of tasks (ie. cpuset), so that load balancing is not
2372 * immediately required to distribute the tasks within their new mask.
2373 */
2374 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2375 if (dest_cpu >= nr_cpu_ids) {
2376 ret = -EINVAL;
2377 goto out;
2378 }
2379
2380 __do_set_cpus_allowed(p, new_mask, flags);
2381
2382 if (p->flags & PF_KTHREAD) {
2383 /*
2384 * For kernel threads that do indeed end up on online &&
2385 * !active we want to ensure they are strict per-CPU threads.
2386 */
2387 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
2388 !cpumask_intersects(new_mask, cpu_active_mask) &&
2389 p->nr_cpus_allowed != 1);
2390 }
2391
2392 return affine_move_task(rq, p, &rf, dest_cpu, flags);
2393
2394 out:
2395 task_rq_unlock(rq, p, &rf);
2396
2397 return ret;
2398 }
2399
2400 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2401 {
2402 return __set_cpus_allowed_ptr(p, new_mask, 0);
2403 }
2404 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2405
2406 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2407 {
2408 #ifdef CONFIG_SCHED_DEBUG
2409 /*
2410 * We should never call set_task_cpu() on a blocked task,
2411 * ttwu() will sort out the placement.
2412 */
2413 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2414 !p->on_rq);
2415
2416 /*
2417 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2418 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2419 * time relying on p->on_rq.
2420 */
2421 WARN_ON_ONCE(p->state == TASK_RUNNING &&
2422 p->sched_class == &fair_sched_class &&
2423 (p->on_rq && !task_on_rq_migrating(p)));
2424
2425 #ifdef CONFIG_LOCKDEP
2426 /*
2427 * The caller should hold either p->pi_lock or rq->lock, when changing
2428 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2429 *
2430 * sched_move_task() holds both and thus holding either pins the cgroup,
2431 * see task_group().
2432 *
2433 * Furthermore, all task_rq users should acquire both locks, see
2434 * task_rq_lock().
2435 */
2436 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2437 lockdep_is_held(&task_rq(p)->lock)));
2438 #endif
2439 /*
2440 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2441 */
2442 WARN_ON_ONCE(!cpu_online(new_cpu));
2443
2444 WARN_ON_ONCE(is_migration_disabled(p));
2445 #endif
2446
2447 trace_sched_migrate_task(p, new_cpu);
2448
2449 if (task_cpu(p) != new_cpu) {
2450 if (p->sched_class->migrate_task_rq)
2451 p->sched_class->migrate_task_rq(p, new_cpu);
2452 p->se.nr_migrations++;
2453 rseq_migrate(p);
2454 perf_event_task_migrate(p);
2455 }
2456
2457 __set_task_cpu(p, new_cpu);
2458 }
2459
2460 #ifdef CONFIG_NUMA_BALANCING
2461 static void __migrate_swap_task(struct task_struct *p, int cpu)
2462 {
2463 if (task_on_rq_queued(p)) {
2464 struct rq *src_rq, *dst_rq;
2465 struct rq_flags srf, drf;
2466
2467 src_rq = task_rq(p);
2468 dst_rq = cpu_rq(cpu);
2469
2470 rq_pin_lock(src_rq, &srf);
2471 rq_pin_lock(dst_rq, &drf);
2472
2473 deactivate_task(src_rq, p, 0);
2474 set_task_cpu(p, cpu);
2475 activate_task(dst_rq, p, 0);
2476 check_preempt_curr(dst_rq, p, 0);
2477
2478 rq_unpin_lock(dst_rq, &drf);
2479 rq_unpin_lock(src_rq, &srf);
2480
2481 } else {
2482 /*
2483 * Task isn't running anymore; make it appear like we migrated
2484 * it before it went to sleep. This means on wakeup we make the
2485 * previous CPU our target instead of where it really is.
2486 */
2487 p->wake_cpu = cpu;
2488 }
2489 }
2490
2491 struct migration_swap_arg {
2492 struct task_struct *src_task, *dst_task;
2493 int src_cpu, dst_cpu;
2494 };
2495
2496 static int migrate_swap_stop(void *data)
2497 {
2498 struct migration_swap_arg *arg = data;
2499 struct rq *src_rq, *dst_rq;
2500 int ret = -EAGAIN;
2501
2502 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2503 return -EAGAIN;
2504
2505 src_rq = cpu_rq(arg->src_cpu);
2506 dst_rq = cpu_rq(arg->dst_cpu);
2507
2508 double_raw_lock(&arg->src_task->pi_lock,
2509 &arg->dst_task->pi_lock);
2510 double_rq_lock(src_rq, dst_rq);
2511
2512 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2513 goto unlock;
2514
2515 if (task_cpu(arg->src_task) != arg->src_cpu)
2516 goto unlock;
2517
2518 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2519 goto unlock;
2520
2521 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2522 goto unlock;
2523
2524 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2525 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2526
2527 ret = 0;
2528
2529 unlock:
2530 double_rq_unlock(src_rq, dst_rq);
2531 raw_spin_unlock(&arg->dst_task->pi_lock);
2532 raw_spin_unlock(&arg->src_task->pi_lock);
2533
2534 return ret;
2535 }
2536
2537 /*
2538 * Cross migrate two tasks
2539 */
2540 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2541 int target_cpu, int curr_cpu)
2542 {
2543 struct migration_swap_arg arg;
2544 int ret = -EINVAL;
2545
2546 arg = (struct migration_swap_arg){
2547 .src_task = cur,
2548 .src_cpu = curr_cpu,
2549 .dst_task = p,
2550 .dst_cpu = target_cpu,
2551 };
2552
2553 if (arg.src_cpu == arg.dst_cpu)
2554 goto out;
2555
2556 /*
2557 * These three tests are all lockless; this is OK since all of them
2558 * will be re-checked with proper locks held further down the line.
2559 */
2560 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2561 goto out;
2562
2563 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2564 goto out;
2565
2566 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2567 goto out;
2568
2569 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2570 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2571
2572 out:
2573 return ret;
2574 }
2575 #endif /* CONFIG_NUMA_BALANCING */
2576
2577 /*
2578 * wait_task_inactive - wait for a thread to unschedule.
2579 *
2580 * If @match_state is nonzero, it's the @p->state value just checked and
2581 * not expected to change. If it changes, i.e. @p might have woken up,
2582 * then return zero. When we succeed in waiting for @p to be off its CPU,
2583 * we return a positive number (its total switch count). If a second call
2584 * a short while later returns the same number, the caller can be sure that
2585 * @p has remained unscheduled the whole time.
2586 *
2587 * The caller must ensure that the task *will* unschedule sometime soon,
2588 * else this function might spin for a *long* time. This function can't
2589 * be called with interrupts off, or it may introduce deadlock with
2590 * smp_call_function() if an IPI is sent by the same process we are
2591 * waiting to become inactive.
2592 */
2593 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2594 {
2595 int running, queued;
2596 struct rq_flags rf;
2597 unsigned long ncsw;
2598 struct rq *rq;
2599
2600 for (;;) {
2601 /*
2602 * We do the initial early heuristics without holding
2603 * any task-queue locks at all. We'll only try to get
2604 * the runqueue lock when things look like they will
2605 * work out!
2606 */
2607 rq = task_rq(p);
2608
2609 /*
2610 * If the task is actively running on another CPU
2611 * still, just relax and busy-wait without holding
2612 * any locks.
2613 *
2614 * NOTE! Since we don't hold any locks, it's not
2615 * even sure that "rq" stays as the right runqueue!
2616 * But we don't care, since "task_running()" will
2617 * return false if the runqueue has changed and p
2618 * is actually now running somewhere else!
2619 */
2620 while (task_running(rq, p)) {
2621 if (match_state && unlikely(p->state != match_state))
2622 return 0;
2623 cpu_relax();
2624 }
2625
2626 /*
2627 * Ok, time to look more closely! We need the rq
2628 * lock now, to be *sure*. If we're wrong, we'll
2629 * just go back and repeat.
2630 */
2631 rq = task_rq_lock(p, &rf);
2632 trace_sched_wait_task(p);
2633 running = task_running(rq, p);
2634 queued = task_on_rq_queued(p);
2635 ncsw = 0;
2636 if (!match_state || p->state == match_state)
2637 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2638 task_rq_unlock(rq, p, &rf);
2639
2640 /*
2641 * If it changed from the expected state, bail out now.
2642 */
2643 if (unlikely(!ncsw))
2644 break;
2645
2646 /*
2647 * Was it really running after all now that we
2648 * checked with the proper locks actually held?
2649 *
2650 * Oops. Go back and try again..
2651 */
2652 if (unlikely(running)) {
2653 cpu_relax();
2654 continue;
2655 }
2656
2657 /*
2658 * It's not enough that it's not actively running,
2659 * it must be off the runqueue _entirely_, and not
2660 * preempted!
2661 *
2662 * So if it was still runnable (but just not actively
2663 * running right now), it's preempted, and we should
2664 * yield - it could be a while.
2665 */
2666 if (unlikely(queued)) {
2667 ktime_t to = NSEC_PER_SEC / HZ;
2668
2669 set_current_state(TASK_UNINTERRUPTIBLE);
2670 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2671 continue;
2672 }
2673
2674 /*
2675 * Ahh, all good. It wasn't running, and it wasn't
2676 * runnable, which means that it will never become
2677 * running in the future either. We're all done!
2678 */
2679 break;
2680 }
2681
2682 return ncsw;
2683 }
2684
2685 /***
2686 * kick_process - kick a running thread to enter/exit the kernel
2687 * @p: the to-be-kicked thread
2688 *
2689 * Cause a process which is running on another CPU to enter
2690 * kernel-mode, without any delay. (to get signals handled.)
2691 *
2692 * NOTE: this function doesn't have to take the runqueue lock,
2693 * because all it wants to ensure is that the remote task enters
2694 * the kernel. If the IPI races and the task has been migrated
2695 * to another CPU then no harm is done and the purpose has been
2696 * achieved as well.
2697 */
2698 void kick_process(struct task_struct *p)
2699 {
2700 int cpu;
2701
2702 preempt_disable();
2703 cpu = task_cpu(p);
2704 if ((cpu != smp_processor_id()) && task_curr(p))
2705 smp_send_reschedule(cpu);
2706 preempt_enable();
2707 }
2708 EXPORT_SYMBOL_GPL(kick_process);
2709
2710 /*
2711 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2712 *
2713 * A few notes on cpu_active vs cpu_online:
2714 *
2715 * - cpu_active must be a subset of cpu_online
2716 *
2717 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2718 * see __set_cpus_allowed_ptr(). At this point the newly online
2719 * CPU isn't yet part of the sched domains, and balancing will not
2720 * see it.
2721 *
2722 * - on CPU-down we clear cpu_active() to mask the sched domains and
2723 * avoid the load balancer to place new tasks on the to be removed
2724 * CPU. Existing tasks will remain running there and will be taken
2725 * off.
2726 *
2727 * This means that fallback selection must not select !active CPUs.
2728 * And can assume that any active CPU must be online. Conversely
2729 * select_task_rq() below may allow selection of !active CPUs in order
2730 * to satisfy the above rules.
2731 */
2732 static int select_fallback_rq(int cpu, struct task_struct *p)
2733 {
2734 int nid = cpu_to_node(cpu);
2735 const struct cpumask *nodemask = NULL;
2736 enum { cpuset, possible, fail } state = cpuset;
2737 int dest_cpu;
2738
2739 /*
2740 * If the node that the CPU is on has been offlined, cpu_to_node()
2741 * will return -1. There is no CPU on the node, and we should
2742 * select the CPU on the other node.
2743 */
2744 if (nid != -1) {
2745 nodemask = cpumask_of_node(nid);
2746
2747 /* Look for allowed, online CPU in same node. */
2748 for_each_cpu(dest_cpu, nodemask) {
2749 if (!cpu_active(dest_cpu))
2750 continue;
2751 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2752 return dest_cpu;
2753 }
2754 }
2755
2756 for (;;) {
2757 /* Any allowed, online CPU? */
2758 for_each_cpu(dest_cpu, p->cpus_ptr) {
2759 if (!is_cpu_allowed(p, dest_cpu))
2760 continue;
2761
2762 goto out;
2763 }
2764
2765 /* No more Mr. Nice Guy. */
2766 switch (state) {
2767 case cpuset:
2768 if (IS_ENABLED(CONFIG_CPUSETS)) {
2769 cpuset_cpus_allowed_fallback(p);
2770 state = possible;
2771 break;
2772 }
2773 fallthrough;
2774 case possible:
2775 /*
2776 * XXX When called from select_task_rq() we only
2777 * hold p->pi_lock and again violate locking order.
2778 *
2779 * More yuck to audit.
2780 */
2781 do_set_cpus_allowed(p, cpu_possible_mask);
2782 state = fail;
2783 break;
2784
2785 case fail:
2786 BUG();
2787 break;
2788 }
2789 }
2790
2791 out:
2792 if (state != cpuset) {
2793 /*
2794 * Don't tell them about moving exiting tasks or
2795 * kernel threads (both mm NULL), since they never
2796 * leave kernel.
2797 */
2798 if (p->mm && printk_ratelimit()) {
2799 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2800 task_pid_nr(p), p->comm, cpu);
2801 }
2802 }
2803
2804 return dest_cpu;
2805 }
2806
2807 /*
2808 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2809 */
2810 static inline
2811 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
2812 {
2813 lockdep_assert_held(&p->pi_lock);
2814
2815 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
2816 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
2817 else
2818 cpu = cpumask_any(p->cpus_ptr);
2819
2820 /*
2821 * In order not to call set_task_cpu() on a blocking task we need
2822 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2823 * CPU.
2824 *
2825 * Since this is common to all placement strategies, this lives here.
2826 *
2827 * [ this allows ->select_task() to simply return task_cpu(p) and
2828 * not worry about this generic constraint ]
2829 */
2830 if (unlikely(!is_cpu_allowed(p, cpu)))
2831 cpu = select_fallback_rq(task_cpu(p), p);
2832
2833 return cpu;
2834 }
2835
2836 void sched_set_stop_task(int cpu, struct task_struct *stop)
2837 {
2838 static struct lock_class_key stop_pi_lock;
2839 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2840 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2841
2842 if (stop) {
2843 /*
2844 * Make it appear like a SCHED_FIFO task, its something
2845 * userspace knows about and won't get confused about.
2846 *
2847 * Also, it will make PI more or less work without too
2848 * much confusion -- but then, stop work should not
2849 * rely on PI working anyway.
2850 */
2851 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2852
2853 stop->sched_class = &stop_sched_class;
2854
2855 /*
2856 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
2857 * adjust the effective priority of a task. As a result,
2858 * rt_mutex_setprio() can trigger (RT) balancing operations,
2859 * which can then trigger wakeups of the stop thread to push
2860 * around the current task.
2861 *
2862 * The stop task itself will never be part of the PI-chain, it
2863 * never blocks, therefore that ->pi_lock recursion is safe.
2864 * Tell lockdep about this by placing the stop->pi_lock in its
2865 * own class.
2866 */
2867 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
2868 }
2869
2870 cpu_rq(cpu)->stop = stop;
2871
2872 if (old_stop) {
2873 /*
2874 * Reset it back to a normal scheduling class so that
2875 * it can die in pieces.
2876 */
2877 old_stop->sched_class = &rt_sched_class;
2878 }
2879 }
2880
2881 #else /* CONFIG_SMP */
2882
2883 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2884 const struct cpumask *new_mask,
2885 u32 flags)
2886 {
2887 return set_cpus_allowed_ptr(p, new_mask);
2888 }
2889
2890 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
2891
2892 static inline bool rq_has_pinned_tasks(struct rq *rq)
2893 {
2894 return false;
2895 }
2896
2897 #endif /* !CONFIG_SMP */
2898
2899 static void
2900 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2901 {
2902 struct rq *rq;
2903
2904 if (!schedstat_enabled())
2905 return;
2906
2907 rq = this_rq();
2908
2909 #ifdef CONFIG_SMP
2910 if (cpu == rq->cpu) {
2911 __schedstat_inc(rq->ttwu_local);
2912 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2913 } else {
2914 struct sched_domain *sd;
2915
2916 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2917 rcu_read_lock();
2918 for_each_domain(rq->cpu, sd) {
2919 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2920 __schedstat_inc(sd->ttwu_wake_remote);
2921 break;
2922 }
2923 }
2924 rcu_read_unlock();
2925 }
2926
2927 if (wake_flags & WF_MIGRATED)
2928 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2929 #endif /* CONFIG_SMP */
2930
2931 __schedstat_inc(rq->ttwu_count);
2932 __schedstat_inc(p->se.statistics.nr_wakeups);
2933
2934 if (wake_flags & WF_SYNC)
2935 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2936 }
2937
2938 /*
2939 * Mark the task runnable and perform wakeup-preemption.
2940 */
2941 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2942 struct rq_flags *rf)
2943 {
2944 check_preempt_curr(rq, p, wake_flags);
2945 p->state = TASK_RUNNING;
2946 trace_sched_wakeup(p);
2947
2948 #ifdef CONFIG_SMP
2949 if (p->sched_class->task_woken) {
2950 /*
2951 * Our task @p is fully woken up and running; so it's safe to
2952 * drop the rq->lock, hereafter rq is only used for statistics.
2953 */
2954 rq_unpin_lock(rq, rf);
2955 p->sched_class->task_woken(rq, p);
2956 rq_repin_lock(rq, rf);
2957 }
2958
2959 if (rq->idle_stamp) {
2960 u64 delta = rq_clock(rq) - rq->idle_stamp;
2961 u64 max = 2*rq->max_idle_balance_cost;
2962
2963 update_avg(&rq->avg_idle, delta);
2964
2965 if (rq->avg_idle > max)
2966 rq->avg_idle = max;
2967
2968 rq->idle_stamp = 0;
2969 }
2970 #endif
2971 }
2972
2973 static void
2974 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2975 struct rq_flags *rf)
2976 {
2977 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2978
2979 lockdep_assert_held(&rq->lock);
2980
2981 if (p->sched_contributes_to_load)
2982 rq->nr_uninterruptible--;
2983
2984 #ifdef CONFIG_SMP
2985 if (wake_flags & WF_MIGRATED)
2986 en_flags |= ENQUEUE_MIGRATED;
2987 #endif
2988
2989 activate_task(rq, p, en_flags);
2990 ttwu_do_wakeup(rq, p, wake_flags, rf);
2991 }
2992
2993 /*
2994 * Consider @p being inside a wait loop:
2995 *
2996 * for (;;) {
2997 * set_current_state(TASK_UNINTERRUPTIBLE);
2998 *
2999 * if (CONDITION)
3000 * break;
3001 *
3002 * schedule();
3003 * }
3004 * __set_current_state(TASK_RUNNING);
3005 *
3006 * between set_current_state() and schedule(). In this case @p is still
3007 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3008 * an atomic manner.
3009 *
3010 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3011 * then schedule() must still happen and p->state can be changed to
3012 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3013 * need to do a full wakeup with enqueue.
3014 *
3015 * Returns: %true when the wakeup is done,
3016 * %false otherwise.
3017 */
3018 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3019 {
3020 struct rq_flags rf;
3021 struct rq *rq;
3022 int ret = 0;
3023
3024 rq = __task_rq_lock(p, &rf);
3025 if (task_on_rq_queued(p)) {
3026 /* check_preempt_curr() may use rq clock */
3027 update_rq_clock(rq);
3028 ttwu_do_wakeup(rq, p, wake_flags, &rf);
3029 ret = 1;
3030 }
3031 __task_rq_unlock(rq, &rf);
3032
3033 return ret;
3034 }
3035
3036 #ifdef CONFIG_SMP
3037 void sched_ttwu_pending(void *arg)
3038 {
3039 struct llist_node *llist = arg;
3040 struct rq *rq = this_rq();
3041 struct task_struct *p, *t;
3042 struct rq_flags rf;
3043
3044 if (!llist)
3045 return;
3046
3047 /*
3048 * rq::ttwu_pending racy indication of out-standing wakeups.
3049 * Races such that false-negatives are possible, since they
3050 * are shorter lived that false-positives would be.
3051 */
3052 WRITE_ONCE(rq->ttwu_pending, 0);
3053
3054 rq_lock_irqsave(rq, &rf);
3055 update_rq_clock(rq);
3056
3057 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3058 if (WARN_ON_ONCE(p->on_cpu))
3059 smp_cond_load_acquire(&p->on_cpu, !VAL);
3060
3061 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3062 set_task_cpu(p, cpu_of(rq));
3063
3064 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3065 }
3066
3067 rq_unlock_irqrestore(rq, &rf);
3068 }
3069
3070 void send_call_function_single_ipi(int cpu)
3071 {
3072 struct rq *rq = cpu_rq(cpu);
3073
3074 if (!set_nr_if_polling(rq->idle))
3075 arch_send_call_function_single_ipi(cpu);
3076 else
3077 trace_sched_wake_idle_without_ipi(cpu);
3078 }
3079
3080 /*
3081 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3082 * necessary. The wakee CPU on receipt of the IPI will queue the task
3083 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3084 * of the wakeup instead of the waker.
3085 */
3086 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3087 {
3088 struct rq *rq = cpu_rq(cpu);
3089
3090 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3091
3092 WRITE_ONCE(rq->ttwu_pending, 1);
3093 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3094 }
3095
3096 void wake_up_if_idle(int cpu)
3097 {
3098 struct rq *rq = cpu_rq(cpu);
3099 struct rq_flags rf;
3100
3101 rcu_read_lock();
3102
3103 if (!is_idle_task(rcu_dereference(rq->curr)))
3104 goto out;
3105
3106 if (set_nr_if_polling(rq->idle)) {
3107 trace_sched_wake_idle_without_ipi(cpu);
3108 } else {
3109 rq_lock_irqsave(rq, &rf);
3110 if (is_idle_task(rq->curr))
3111 smp_send_reschedule(cpu);
3112 /* Else CPU is not idle, do nothing here: */
3113 rq_unlock_irqrestore(rq, &rf);
3114 }
3115
3116 out:
3117 rcu_read_unlock();
3118 }
3119
3120 bool cpus_share_cache(int this_cpu, int that_cpu)
3121 {
3122 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3123 }
3124
3125 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3126 {
3127 /*
3128 * If the CPU does not share cache, then queue the task on the
3129 * remote rqs wakelist to avoid accessing remote data.
3130 */
3131 if (!cpus_share_cache(smp_processor_id(), cpu))
3132 return true;
3133
3134 /*
3135 * If the task is descheduling and the only running task on the
3136 * CPU then use the wakelist to offload the task activation to
3137 * the soon-to-be-idle CPU as the current CPU is likely busy.
3138 * nr_running is checked to avoid unnecessary task stacking.
3139 */
3140 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3141 return true;
3142
3143 return false;
3144 }
3145
3146 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3147 {
3148 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3149 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3150 return false;
3151
3152 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3153 __ttwu_queue_wakelist(p, cpu, wake_flags);
3154 return true;
3155 }
3156
3157 return false;
3158 }
3159
3160 #else /* !CONFIG_SMP */
3161
3162 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3163 {
3164 return false;
3165 }
3166
3167 #endif /* CONFIG_SMP */
3168
3169 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3170 {
3171 struct rq *rq = cpu_rq(cpu);
3172 struct rq_flags rf;
3173
3174 if (ttwu_queue_wakelist(p, cpu, wake_flags))
3175 return;
3176
3177 rq_lock(rq, &rf);
3178 update_rq_clock(rq);
3179 ttwu_do_activate(rq, p, wake_flags, &rf);
3180 rq_unlock(rq, &rf);
3181 }
3182
3183 /*
3184 * Notes on Program-Order guarantees on SMP systems.
3185 *
3186 * MIGRATION
3187 *
3188 * The basic program-order guarantee on SMP systems is that when a task [t]
3189 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3190 * execution on its new CPU [c1].
3191 *
3192 * For migration (of runnable tasks) this is provided by the following means:
3193 *
3194 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3195 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3196 * rq(c1)->lock (if not at the same time, then in that order).
3197 * C) LOCK of the rq(c1)->lock scheduling in task
3198 *
3199 * Release/acquire chaining guarantees that B happens after A and C after B.
3200 * Note: the CPU doing B need not be c0 or c1
3201 *
3202 * Example:
3203 *
3204 * CPU0 CPU1 CPU2
3205 *
3206 * LOCK rq(0)->lock
3207 * sched-out X
3208 * sched-in Y
3209 * UNLOCK rq(0)->lock
3210 *
3211 * LOCK rq(0)->lock // orders against CPU0
3212 * dequeue X
3213 * UNLOCK rq(0)->lock
3214 *
3215 * LOCK rq(1)->lock
3216 * enqueue X
3217 * UNLOCK rq(1)->lock
3218 *
3219 * LOCK rq(1)->lock // orders against CPU2
3220 * sched-out Z
3221 * sched-in X
3222 * UNLOCK rq(1)->lock
3223 *
3224 *
3225 * BLOCKING -- aka. SLEEP + WAKEUP
3226 *
3227 * For blocking we (obviously) need to provide the same guarantee as for
3228 * migration. However the means are completely different as there is no lock
3229 * chain to provide order. Instead we do:
3230 *
3231 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3232 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3233 *
3234 * Example:
3235 *
3236 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3237 *
3238 * LOCK rq(0)->lock LOCK X->pi_lock
3239 * dequeue X
3240 * sched-out X
3241 * smp_store_release(X->on_cpu, 0);
3242 *
3243 * smp_cond_load_acquire(&X->on_cpu, !VAL);
3244 * X->state = WAKING
3245 * set_task_cpu(X,2)
3246 *
3247 * LOCK rq(2)->lock
3248 * enqueue X
3249 * X->state = RUNNING
3250 * UNLOCK rq(2)->lock
3251 *
3252 * LOCK rq(2)->lock // orders against CPU1
3253 * sched-out Z
3254 * sched-in X
3255 * UNLOCK rq(2)->lock
3256 *
3257 * UNLOCK X->pi_lock
3258 * UNLOCK rq(0)->lock
3259 *
3260 *
3261 * However, for wakeups there is a second guarantee we must provide, namely we
3262 * must ensure that CONDITION=1 done by the caller can not be reordered with
3263 * accesses to the task state; see try_to_wake_up() and set_current_state().
3264 */
3265
3266 /**
3267 * try_to_wake_up - wake up a thread
3268 * @p: the thread to be awakened
3269 * @state: the mask of task states that can be woken
3270 * @wake_flags: wake modifier flags (WF_*)
3271 *
3272 * Conceptually does:
3273 *
3274 * If (@state & @p->state) @p->state = TASK_RUNNING.
3275 *
3276 * If the task was not queued/runnable, also place it back on a runqueue.
3277 *
3278 * This function is atomic against schedule() which would dequeue the task.
3279 *
3280 * It issues a full memory barrier before accessing @p->state, see the comment
3281 * with set_current_state().
3282 *
3283 * Uses p->pi_lock to serialize against concurrent wake-ups.
3284 *
3285 * Relies on p->pi_lock stabilizing:
3286 * - p->sched_class
3287 * - p->cpus_ptr
3288 * - p->sched_task_group
3289 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3290 *
3291 * Tries really hard to only take one task_rq(p)->lock for performance.
3292 * Takes rq->lock in:
3293 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3294 * - ttwu_queue() -- new rq, for enqueue of the task;
3295 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3296 *
3297 * As a consequence we race really badly with just about everything. See the
3298 * many memory barriers and their comments for details.
3299 *
3300 * Return: %true if @p->state changes (an actual wakeup was done),
3301 * %false otherwise.
3302 */
3303 static int
3304 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3305 {
3306 unsigned long flags;
3307 int cpu, success = 0;
3308
3309 preempt_disable();
3310 if (p == current) {
3311 /*
3312 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3313 * == smp_processor_id()'. Together this means we can special
3314 * case the whole 'p->on_rq && ttwu_runnable()' case below
3315 * without taking any locks.
3316 *
3317 * In particular:
3318 * - we rely on Program-Order guarantees for all the ordering,
3319 * - we're serialized against set_special_state() by virtue of
3320 * it disabling IRQs (this allows not taking ->pi_lock).
3321 */
3322 if (!(p->state & state))
3323 goto out;
3324
3325 success = 1;
3326 trace_sched_waking(p);
3327 p->state = TASK_RUNNING;
3328 trace_sched_wakeup(p);
3329 goto out;
3330 }
3331
3332 /*
3333 * If we are going to wake up a thread waiting for CONDITION we
3334 * need to ensure that CONDITION=1 done by the caller can not be
3335 * reordered with p->state check below. This pairs with smp_store_mb()
3336 * in set_current_state() that the waiting thread does.
3337 */
3338 raw_spin_lock_irqsave(&p->pi_lock, flags);
3339 smp_mb__after_spinlock();
3340 if (!(p->state & state))
3341 goto unlock;
3342
3343 trace_sched_waking(p);
3344
3345 /* We're going to change ->state: */
3346 success = 1;
3347
3348 /*
3349 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3350 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3351 * in smp_cond_load_acquire() below.
3352 *
3353 * sched_ttwu_pending() try_to_wake_up()
3354 * STORE p->on_rq = 1 LOAD p->state
3355 * UNLOCK rq->lock
3356 *
3357 * __schedule() (switch to task 'p')
3358 * LOCK rq->lock smp_rmb();
3359 * smp_mb__after_spinlock();
3360 * UNLOCK rq->lock
3361 *
3362 * [task p]
3363 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
3364 *
3365 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3366 * __schedule(). See the comment for smp_mb__after_spinlock().
3367 *
3368 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3369 */
3370 smp_rmb();
3371 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3372 goto unlock;
3373
3374 if (p->in_iowait) {
3375 delayacct_blkio_end(p);
3376 atomic_dec(&task_rq(p)->nr_iowait);
3377 }
3378
3379 #ifdef CONFIG_SMP
3380 /*
3381 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3382 * possible to, falsely, observe p->on_cpu == 0.
3383 *
3384 * One must be running (->on_cpu == 1) in order to remove oneself
3385 * from the runqueue.
3386 *
3387 * __schedule() (switch to task 'p') try_to_wake_up()
3388 * STORE p->on_cpu = 1 LOAD p->on_rq
3389 * UNLOCK rq->lock
3390 *
3391 * __schedule() (put 'p' to sleep)
3392 * LOCK rq->lock smp_rmb();
3393 * smp_mb__after_spinlock();
3394 * STORE p->on_rq = 0 LOAD p->on_cpu
3395 *
3396 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3397 * __schedule(). See the comment for smp_mb__after_spinlock().
3398 *
3399 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3400 * schedule()'s deactivate_task() has 'happened' and p will no longer
3401 * care about it's own p->state. See the comment in __schedule().
3402 */
3403 smp_acquire__after_ctrl_dep();
3404
3405 /*
3406 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3407 * == 0), which means we need to do an enqueue, change p->state to
3408 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3409 * enqueue, such as ttwu_queue_wakelist().
3410 */
3411 p->state = TASK_WAKING;
3412
3413 /*
3414 * If the owning (remote) CPU is still in the middle of schedule() with
3415 * this task as prev, considering queueing p on the remote CPUs wake_list
3416 * which potentially sends an IPI instead of spinning on p->on_cpu to
3417 * let the waker make forward progress. This is safe because IRQs are
3418 * disabled and the IPI will deliver after on_cpu is cleared.
3419 *
3420 * Ensure we load task_cpu(p) after p->on_cpu:
3421 *
3422 * set_task_cpu(p, cpu);
3423 * STORE p->cpu = @cpu
3424 * __schedule() (switch to task 'p')
3425 * LOCK rq->lock
3426 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
3427 * STORE p->on_cpu = 1 LOAD p->cpu
3428 *
3429 * to ensure we observe the correct CPU on which the task is currently
3430 * scheduling.
3431 */
3432 if (smp_load_acquire(&p->on_cpu) &&
3433 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3434 goto unlock;
3435
3436 /*
3437 * If the owning (remote) CPU is still in the middle of schedule() with
3438 * this task as prev, wait until it's done referencing the task.
3439 *
3440 * Pairs with the smp_store_release() in finish_task().
3441 *
3442 * This ensures that tasks getting woken will be fully ordered against
3443 * their previous state and preserve Program Order.
3444 */
3445 smp_cond_load_acquire(&p->on_cpu, !VAL);
3446
3447 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
3448 if (task_cpu(p) != cpu) {
3449 wake_flags |= WF_MIGRATED;
3450 psi_ttwu_dequeue(p);
3451 set_task_cpu(p, cpu);
3452 }
3453 #else
3454 cpu = task_cpu(p);
3455 #endif /* CONFIG_SMP */
3456
3457 ttwu_queue(p, cpu, wake_flags);
3458 unlock:
3459 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3460 out:
3461 if (success)
3462 ttwu_stat(p, task_cpu(p), wake_flags);
3463 preempt_enable();
3464
3465 return success;
3466 }
3467
3468 /**
3469 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3470 * @p: Process for which the function is to be invoked.
3471 * @func: Function to invoke.
3472 * @arg: Argument to function.
3473 *
3474 * If the specified task can be quickly locked into a definite state
3475 * (either sleeping or on a given runqueue), arrange to keep it in that
3476 * state while invoking @func(@arg). This function can use ->on_rq and
3477 * task_curr() to work out what the state is, if required. Given that
3478 * @func can be invoked with a runqueue lock held, it had better be quite
3479 * lightweight.
3480 *
3481 * Returns:
3482 * @false if the task slipped out from under the locks.
3483 * @true if the task was locked onto a runqueue or is sleeping.
3484 * However, @func can override this by returning @false.
3485 */
3486 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3487 {
3488 bool ret = false;
3489 struct rq_flags rf;
3490 struct rq *rq;
3491
3492 lockdep_assert_irqs_enabled();
3493 raw_spin_lock_irq(&p->pi_lock);
3494 if (p->on_rq) {
3495 rq = __task_rq_lock(p, &rf);
3496 if (task_rq(p) == rq)
3497 ret = func(p, arg);
3498 rq_unlock(rq, &rf);
3499 } else {
3500 switch (p->state) {
3501 case TASK_RUNNING:
3502 case TASK_WAKING:
3503 break;
3504 default:
3505 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3506 if (!p->on_rq)
3507 ret = func(p, arg);
3508 }
3509 }
3510 raw_spin_unlock_irq(&p->pi_lock);
3511 return ret;
3512 }
3513
3514 /**
3515 * wake_up_process - Wake up a specific process
3516 * @p: The process to be woken up.
3517 *
3518 * Attempt to wake up the nominated process and move it to the set of runnable
3519 * processes.
3520 *
3521 * Return: 1 if the process was woken up, 0 if it was already running.
3522 *
3523 * This function executes a full memory barrier before accessing the task state.
3524 */
3525 int wake_up_process(struct task_struct *p)
3526 {
3527 return try_to_wake_up(p, TASK_NORMAL, 0);
3528 }
3529 EXPORT_SYMBOL(wake_up_process);
3530
3531 int wake_up_state(struct task_struct *p, unsigned int state)
3532 {
3533 return try_to_wake_up(p, state, 0);
3534 }
3535
3536 /*
3537 * Perform scheduler related setup for a newly forked process p.
3538 * p is forked by current.
3539 *
3540 * __sched_fork() is basic setup used by init_idle() too:
3541 */
3542 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3543 {
3544 p->on_rq = 0;
3545
3546 p->se.on_rq = 0;
3547 p->se.exec_start = 0;
3548 p->se.sum_exec_runtime = 0;
3549 p->se.prev_sum_exec_runtime = 0;
3550 p->se.nr_migrations = 0;
3551 p->se.vruntime = 0;
3552 INIT_LIST_HEAD(&p->se.group_node);
3553
3554 #ifdef CONFIG_FAIR_GROUP_SCHED
3555 p->se.cfs_rq = NULL;
3556 #endif
3557
3558 #ifdef CONFIG_SCHEDSTATS
3559 /* Even if schedstat is disabled, there should not be garbage */
3560 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3561 #endif
3562
3563 RB_CLEAR_NODE(&p->dl.rb_node);
3564 init_dl_task_timer(&p->dl);
3565 init_dl_inactive_task_timer(&p->dl);
3566 __dl_clear_params(p);
3567
3568 INIT_LIST_HEAD(&p->rt.run_list);
3569 p->rt.timeout = 0;
3570 p->rt.time_slice = sched_rr_timeslice;
3571 p->rt.on_rq = 0;
3572 p->rt.on_list = 0;
3573
3574 #ifdef CONFIG_PREEMPT_NOTIFIERS
3575 INIT_HLIST_HEAD(&p->preempt_notifiers);
3576 #endif
3577
3578 #ifdef CONFIG_COMPACTION
3579 p->capture_control = NULL;
3580 #endif
3581 init_numa_balancing(clone_flags, p);
3582 #ifdef CONFIG_SMP
3583 p->wake_entry.u_flags = CSD_TYPE_TTWU;
3584 p->migration_pending = NULL;
3585 #endif
3586 }
3587
3588 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3589
3590 #ifdef CONFIG_NUMA_BALANCING
3591
3592 void set_numabalancing_state(bool enabled)
3593 {
3594 if (enabled)
3595 static_branch_enable(&sched_numa_balancing);
3596 else
3597 static_branch_disable(&sched_numa_balancing);
3598 }
3599
3600 #ifdef CONFIG_PROC_SYSCTL
3601 int sysctl_numa_balancing(struct ctl_table *table, int write,
3602 void *buffer, size_t *lenp, loff_t *ppos)
3603 {
3604 struct ctl_table t;
3605 int err;
3606 int state = static_branch_likely(&sched_numa_balancing);
3607
3608 if (write && !capable(CAP_SYS_ADMIN))
3609 return -EPERM;
3610
3611 t = *table;
3612 t.data = &state;
3613 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3614 if (err < 0)
3615 return err;
3616 if (write)
3617 set_numabalancing_state(state);
3618 return err;
3619 }
3620 #endif
3621 #endif
3622
3623 #ifdef CONFIG_SCHEDSTATS
3624
3625 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3626 static bool __initdata __sched_schedstats = false;
3627
3628 static void set_schedstats(bool enabled)
3629 {
3630 if (enabled)
3631 static_branch_enable(&sched_schedstats);
3632 else
3633 static_branch_disable(&sched_schedstats);
3634 }
3635
3636 void force_schedstat_enabled(void)
3637 {
3638 if (!schedstat_enabled()) {
3639 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3640 static_branch_enable(&sched_schedstats);
3641 }
3642 }
3643
3644 static int __init setup_schedstats(char *str)
3645 {
3646 int ret = 0;
3647 if (!str)
3648 goto out;
3649
3650 /*
3651 * This code is called before jump labels have been set up, so we can't
3652 * change the static branch directly just yet. Instead set a temporary
3653 * variable so init_schedstats() can do it later.
3654 */
3655 if (!strcmp(str, "enable")) {
3656 __sched_schedstats = true;
3657 ret = 1;
3658 } else if (!strcmp(str, "disable")) {
3659 __sched_schedstats = false;
3660 ret = 1;
3661 }
3662 out:
3663 if (!ret)
3664 pr_warn("Unable to parse schedstats=\n");
3665
3666 return ret;
3667 }
3668 __setup("schedstats=", setup_schedstats);
3669
3670 static void __init init_schedstats(void)
3671 {
3672 set_schedstats(__sched_schedstats);
3673 }
3674
3675 #ifdef CONFIG_PROC_SYSCTL
3676 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3677 size_t *lenp, loff_t *ppos)
3678 {
3679 struct ctl_table t;
3680 int err;
3681 int state = static_branch_likely(&sched_schedstats);
3682
3683 if (write && !capable(CAP_SYS_ADMIN))
3684 return -EPERM;
3685
3686 t = *table;
3687 t.data = &state;
3688 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3689 if (err < 0)
3690 return err;
3691 if (write)
3692 set_schedstats(state);
3693 return err;
3694 }
3695 #endif /* CONFIG_PROC_SYSCTL */
3696 #else /* !CONFIG_SCHEDSTATS */
3697 static inline void init_schedstats(void) {}
3698 #endif /* CONFIG_SCHEDSTATS */
3699
3700 /*
3701 * fork()/clone()-time setup:
3702 */
3703 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3704 {
3705 unsigned long flags;
3706
3707 __sched_fork(clone_flags, p);
3708 /*
3709 * We mark the process as NEW here. This guarantees that
3710 * nobody will actually run it, and a signal or other external
3711 * event cannot wake it up and insert it on the runqueue either.
3712 */
3713 p->state = TASK_NEW;
3714
3715 /*
3716 * Make sure we do not leak PI boosting priority to the child.
3717 */
3718 p->prio = current->normal_prio;
3719
3720 uclamp_fork(p);
3721
3722 /*
3723 * Revert to default priority/policy on fork if requested.
3724 */
3725 if (unlikely(p->sched_reset_on_fork)) {
3726 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3727 p->policy = SCHED_NORMAL;
3728 p->static_prio = NICE_TO_PRIO(0);
3729 p->rt_priority = 0;
3730 } else if (PRIO_TO_NICE(p->static_prio) < 0)
3731 p->static_prio = NICE_TO_PRIO(0);
3732
3733 p->prio = p->normal_prio = __normal_prio(p);
3734 set_load_weight(p, false);
3735
3736 /*
3737 * We don't need the reset flag anymore after the fork. It has
3738 * fulfilled its duty:
3739 */
3740 p->sched_reset_on_fork = 0;
3741 }
3742
3743 if (dl_prio(p->prio))
3744 return -EAGAIN;
3745 else if (rt_prio(p->prio))
3746 p->sched_class = &rt_sched_class;
3747 else
3748 p->sched_class = &fair_sched_class;
3749
3750 init_entity_runnable_average(&p->se);
3751
3752 /*
3753 * The child is not yet in the pid-hash so no cgroup attach races,
3754 * and the cgroup is pinned to this child due to cgroup_fork()
3755 * is ran before sched_fork().
3756 *
3757 * Silence PROVE_RCU.
3758 */
3759 raw_spin_lock_irqsave(&p->pi_lock, flags);
3760 rseq_migrate(p);
3761 /*
3762 * We're setting the CPU for the first time, we don't migrate,
3763 * so use __set_task_cpu().
3764 */
3765 __set_task_cpu(p, smp_processor_id());
3766 if (p->sched_class->task_fork)
3767 p->sched_class->task_fork(p);
3768 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3769
3770 #ifdef CONFIG_SCHED_INFO
3771 if (likely(sched_info_on()))
3772 memset(&p->sched_info, 0, sizeof(p->sched_info));
3773 #endif
3774 #if defined(CONFIG_SMP)
3775 p->on_cpu = 0;
3776 #endif
3777 init_task_preempt_count(p);
3778 #ifdef CONFIG_SMP
3779 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3780 RB_CLEAR_NODE(&p->pushable_dl_tasks);
3781 #endif
3782 return 0;
3783 }
3784
3785 void sched_post_fork(struct task_struct *p)
3786 {
3787 uclamp_post_fork(p);
3788 }
3789
3790 unsigned long to_ratio(u64 period, u64 runtime)
3791 {
3792 if (runtime == RUNTIME_INF)
3793 return BW_UNIT;
3794
3795 /*
3796 * Doing this here saves a lot of checks in all
3797 * the calling paths, and returning zero seems
3798 * safe for them anyway.
3799 */
3800 if (period == 0)
3801 return 0;
3802
3803 return div64_u64(runtime << BW_SHIFT, period);
3804 }
3805
3806 /*
3807 * wake_up_new_task - wake up a newly created task for the first time.
3808 *
3809 * This function will do some initial scheduler statistics housekeeping
3810 * that must be done for every newly created context, then puts the task
3811 * on the runqueue and wakes it.
3812 */
3813 void wake_up_new_task(struct task_struct *p)
3814 {
3815 struct rq_flags rf;
3816 struct rq *rq;
3817
3818 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3819 p->state = TASK_RUNNING;
3820 #ifdef CONFIG_SMP
3821 /*
3822 * Fork balancing, do it here and not earlier because:
3823 * - cpus_ptr can change in the fork path
3824 * - any previously selected CPU might disappear through hotplug
3825 *
3826 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3827 * as we're not fully set-up yet.
3828 */
3829 p->recent_used_cpu = task_cpu(p);
3830 rseq_migrate(p);
3831 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
3832 #endif
3833 rq = __task_rq_lock(p, &rf);
3834 update_rq_clock(rq);
3835 post_init_entity_util_avg(p);
3836
3837 activate_task(rq, p, ENQUEUE_NOCLOCK);
3838 trace_sched_wakeup_new(p);
3839 check_preempt_curr(rq, p, WF_FORK);
3840 #ifdef CONFIG_SMP
3841 if (p->sched_class->task_woken) {
3842 /*
3843 * Nothing relies on rq->lock after this, so it's fine to
3844 * drop it.
3845 */
3846 rq_unpin_lock(rq, &rf);
3847 p->sched_class->task_woken(rq, p);
3848 rq_repin_lock(rq, &rf);
3849 }
3850 #endif
3851 task_rq_unlock(rq, p, &rf);
3852 }
3853
3854 #ifdef CONFIG_PREEMPT_NOTIFIERS
3855
3856 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3857
3858 void preempt_notifier_inc(void)
3859 {
3860 static_branch_inc(&preempt_notifier_key);
3861 }
3862 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3863
3864 void preempt_notifier_dec(void)
3865 {
3866 static_branch_dec(&preempt_notifier_key);
3867 }
3868 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3869
3870 /**
3871 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3872 * @notifier: notifier struct to register
3873 */
3874 void preempt_notifier_register(struct preempt_notifier *notifier)
3875 {
3876 if (!static_branch_unlikely(&preempt_notifier_key))
3877 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3878
3879 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3880 }
3881 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3882
3883 /**
3884 * preempt_notifier_unregister - no longer interested in preemption notifications
3885 * @notifier: notifier struct to unregister
3886 *
3887 * This is *not* safe to call from within a preemption notifier.
3888 */
3889 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3890 {
3891 hlist_del(&notifier->link);
3892 }
3893 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3894
3895 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3896 {
3897 struct preempt_notifier *notifier;
3898
3899 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3900 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3901 }
3902
3903 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3904 {
3905 if (static_branch_unlikely(&preempt_notifier_key))
3906 __fire_sched_in_preempt_notifiers(curr);
3907 }
3908
3909 static void
3910 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3911 struct task_struct *next)
3912 {
3913 struct preempt_notifier *notifier;
3914
3915 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3916 notifier->ops->sched_out(notifier, next);
3917 }
3918
3919 static __always_inline void
3920 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3921 struct task_struct *next)
3922 {
3923 if (static_branch_unlikely(&preempt_notifier_key))
3924 __fire_sched_out_preempt_notifiers(curr, next);
3925 }
3926
3927 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3928
3929 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3930 {
3931 }
3932
3933 static inline void
3934 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3935 struct task_struct *next)
3936 {
3937 }
3938
3939 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3940
3941 static inline void prepare_task(struct task_struct *next)
3942 {
3943 #ifdef CONFIG_SMP
3944 /*
3945 * Claim the task as running, we do this before switching to it
3946 * such that any running task will have this set.
3947 *
3948 * See the ttwu() WF_ON_CPU case and its ordering comment.
3949 */
3950 WRITE_ONCE(next->on_cpu, 1);
3951 #endif
3952 }
3953
3954 static inline void finish_task(struct task_struct *prev)
3955 {
3956 #ifdef CONFIG_SMP
3957 /*
3958 * This must be the very last reference to @prev from this CPU. After
3959 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3960 * must ensure this doesn't happen until the switch is completely
3961 * finished.
3962 *
3963 * In particular, the load of prev->state in finish_task_switch() must
3964 * happen before this.
3965 *
3966 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3967 */
3968 smp_store_release(&prev->on_cpu, 0);
3969 #endif
3970 }
3971
3972 #ifdef CONFIG_SMP
3973
3974 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
3975 {
3976 void (*func)(struct rq *rq);
3977 struct callback_head *next;
3978
3979 lockdep_assert_held(&rq->lock);
3980
3981 while (head) {
3982 func = (void (*)(struct rq *))head->func;
3983 next = head->next;
3984 head->next = NULL;
3985 head = next;
3986
3987 func(rq);
3988 }
3989 }
3990
3991 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
3992 {
3993 struct callback_head *head = rq->balance_callback;
3994
3995 lockdep_assert_held(&rq->lock);
3996 if (head) {
3997 rq->balance_callback = NULL;
3998 rq->balance_flags &= ~BALANCE_WORK;
3999 }
4000
4001 return head;
4002 }
4003
4004 static void __balance_callbacks(struct rq *rq)
4005 {
4006 do_balance_callbacks(rq, splice_balance_callbacks(rq));
4007 }
4008
4009 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4010 {
4011 unsigned long flags;
4012
4013 if (unlikely(head)) {
4014 raw_spin_lock_irqsave(&rq->lock, flags);
4015 do_balance_callbacks(rq, head);
4016 raw_spin_unlock_irqrestore(&rq->lock, flags);
4017 }
4018 }
4019
4020 static void balance_push(struct rq *rq);
4021
4022 static inline void balance_switch(struct rq *rq)
4023 {
4024 if (likely(!rq->balance_flags))
4025 return;
4026
4027 if (rq->balance_flags & BALANCE_PUSH) {
4028 balance_push(rq);
4029 return;
4030 }
4031
4032 __balance_callbacks(rq);
4033 }
4034
4035 #else
4036
4037 static inline void __balance_callbacks(struct rq *rq)
4038 {
4039 }
4040
4041 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4042 {
4043 return NULL;
4044 }
4045
4046 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4047 {
4048 }
4049
4050 static inline void balance_switch(struct rq *rq)
4051 {
4052 }
4053
4054 #endif
4055
4056 static inline void
4057 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4058 {
4059 /*
4060 * Since the runqueue lock will be released by the next
4061 * task (which is an invalid locking op but in the case
4062 * of the scheduler it's an obvious special-case), so we
4063 * do an early lockdep release here:
4064 */
4065 rq_unpin_lock(rq, rf);
4066 spin_release(&rq->lock.dep_map, _THIS_IP_);
4067 #ifdef CONFIG_DEBUG_SPINLOCK
4068 /* this is a valid case when another task releases the spinlock */
4069 rq->lock.owner = next;
4070 #endif
4071 }
4072
4073 static inline void finish_lock_switch(struct rq *rq)
4074 {
4075 /*
4076 * If we are tracking spinlock dependencies then we have to
4077 * fix up the runqueue lock - which gets 'carried over' from
4078 * prev into current:
4079 */
4080 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
4081 balance_switch(rq);
4082 raw_spin_unlock_irq(&rq->lock);
4083 }
4084
4085 /*
4086 * NOP if the arch has not defined these:
4087 */
4088
4089 #ifndef prepare_arch_switch
4090 # define prepare_arch_switch(next) do { } while (0)
4091 #endif
4092
4093 #ifndef finish_arch_post_lock_switch
4094 # define finish_arch_post_lock_switch() do { } while (0)
4095 #endif
4096
4097 /**
4098 * prepare_task_switch - prepare to switch tasks
4099 * @rq: the runqueue preparing to switch
4100 * @prev: the current task that is being switched out
4101 * @next: the task we are going to switch to.
4102 *
4103 * This is called with the rq lock held and interrupts off. It must
4104 * be paired with a subsequent finish_task_switch after the context
4105 * switch.
4106 *
4107 * prepare_task_switch sets up locking and calls architecture specific
4108 * hooks.
4109 */
4110 static inline void
4111 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4112 struct task_struct *next)
4113 {
4114 kcov_prepare_switch(prev);
4115 sched_info_switch(rq, prev, next);
4116 perf_event_task_sched_out(prev, next);
4117 rseq_preempt(prev);
4118 fire_sched_out_preempt_notifiers(prev, next);
4119 prepare_task(next);
4120 prepare_arch_switch(next);
4121 }
4122
4123 /**
4124 * finish_task_switch - clean up after a task-switch
4125 * @prev: the thread we just switched away from.
4126 *
4127 * finish_task_switch must be called after the context switch, paired
4128 * with a prepare_task_switch call before the context switch.
4129 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4130 * and do any other architecture-specific cleanup actions.
4131 *
4132 * Note that we may have delayed dropping an mm in context_switch(). If
4133 * so, we finish that here outside of the runqueue lock. (Doing it
4134 * with the lock held can cause deadlocks; see schedule() for
4135 * details.)
4136 *
4137 * The context switch have flipped the stack from under us and restored the
4138 * local variables which were saved when this task called schedule() in the
4139 * past. prev == current is still correct but we need to recalculate this_rq
4140 * because prev may have moved to another CPU.
4141 */
4142 static struct rq *finish_task_switch(struct task_struct *prev)
4143 __releases(rq->lock)
4144 {
4145 struct rq *rq = this_rq();
4146 struct mm_struct *mm = rq->prev_mm;
4147 long prev_state;
4148
4149 /*
4150 * The previous task will have left us with a preempt_count of 2
4151 * because it left us after:
4152 *
4153 * schedule()
4154 * preempt_disable(); // 1
4155 * __schedule()
4156 * raw_spin_lock_irq(&rq->lock) // 2
4157 *
4158 * Also, see FORK_PREEMPT_COUNT.
4159 */
4160 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4161 "corrupted preempt_count: %s/%d/0x%x\n",
4162 current->comm, current->pid, preempt_count()))
4163 preempt_count_set(FORK_PREEMPT_COUNT);
4164
4165 rq->prev_mm = NULL;
4166
4167 /*
4168 * A task struct has one reference for the use as "current".
4169 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4170 * schedule one last time. The schedule call will never return, and
4171 * the scheduled task must drop that reference.
4172 *
4173 * We must observe prev->state before clearing prev->on_cpu (in
4174 * finish_task), otherwise a concurrent wakeup can get prev
4175 * running on another CPU and we could rave with its RUNNING -> DEAD
4176 * transition, resulting in a double drop.
4177 */
4178 prev_state = prev->state;
4179 vtime_task_switch(prev);
4180 perf_event_task_sched_in(prev, current);
4181 finish_task(prev);
4182 finish_lock_switch(rq);
4183 finish_arch_post_lock_switch();
4184 kcov_finish_switch(current);
4185
4186 fire_sched_in_preempt_notifiers(current);
4187 /*
4188 * When switching through a kernel thread, the loop in
4189 * membarrier_{private,global}_expedited() may have observed that
4190 * kernel thread and not issued an IPI. It is therefore possible to
4191 * schedule between user->kernel->user threads without passing though
4192 * switch_mm(). Membarrier requires a barrier after storing to
4193 * rq->curr, before returning to userspace, so provide them here:
4194 *
4195 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4196 * provided by mmdrop(),
4197 * - a sync_core for SYNC_CORE.
4198 */
4199 if (mm) {
4200 membarrier_mm_sync_core_before_usermode(mm);
4201 mmdrop(mm);
4202 }
4203 if (unlikely(prev_state == TASK_DEAD)) {
4204 if (prev->sched_class->task_dead)
4205 prev->sched_class->task_dead(prev);
4206
4207 /*
4208 * Remove function-return probe instances associated with this
4209 * task and put them back on the free list.
4210 */
4211 kprobe_flush_task(prev);
4212
4213 /* Task is done with its stack. */
4214 put_task_stack(prev);
4215
4216 put_task_struct_rcu_user(prev);
4217 }
4218
4219 tick_nohz_task_switch();
4220 return rq;
4221 }
4222
4223 /**
4224 * schedule_tail - first thing a freshly forked thread must call.
4225 * @prev: the thread we just switched away from.
4226 */
4227 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4228 __releases(rq->lock)
4229 {
4230 struct rq *rq;
4231
4232 /*
4233 * New tasks start with FORK_PREEMPT_COUNT, see there and
4234 * finish_task_switch() for details.
4235 *
4236 * finish_task_switch() will drop rq->lock() and lower preempt_count
4237 * and the preempt_enable() will end up enabling preemption (on
4238 * PREEMPT_COUNT kernels).
4239 */
4240
4241 rq = finish_task_switch(prev);
4242 preempt_enable();
4243
4244 if (current->set_child_tid)
4245 put_user(task_pid_vnr(current), current->set_child_tid);
4246
4247 calculate_sigpending();
4248 }
4249
4250 /*
4251 * context_switch - switch to the new MM and the new thread's register state.
4252 */
4253 static __always_inline struct rq *
4254 context_switch(struct rq *rq, struct task_struct *prev,
4255 struct task_struct *next, struct rq_flags *rf)
4256 {
4257 prepare_task_switch(rq, prev, next);
4258
4259 /*
4260 * For paravirt, this is coupled with an exit in switch_to to
4261 * combine the page table reload and the switch backend into
4262 * one hypercall.
4263 */
4264 arch_start_context_switch(prev);
4265
4266 /*
4267 * kernel -> kernel lazy + transfer active
4268 * user -> kernel lazy + mmgrab() active
4269 *
4270 * kernel -> user switch + mmdrop() active
4271 * user -> user switch
4272 */
4273 if (!next->mm) { // to kernel
4274 enter_lazy_tlb(prev->active_mm, next);
4275
4276 next->active_mm = prev->active_mm;
4277 if (prev->mm) // from user
4278 mmgrab(prev->active_mm);
4279 else
4280 prev->active_mm = NULL;
4281 } else { // to user
4282 membarrier_switch_mm(rq, prev->active_mm, next->mm);
4283 /*
4284 * sys_membarrier() requires an smp_mb() between setting
4285 * rq->curr / membarrier_switch_mm() and returning to userspace.
4286 *
4287 * The below provides this either through switch_mm(), or in
4288 * case 'prev->active_mm == next->mm' through
4289 * finish_task_switch()'s mmdrop().
4290 */
4291 switch_mm_irqs_off(prev->active_mm, next->mm, next);
4292
4293 if (!prev->mm) { // from kernel
4294 /* will mmdrop() in finish_task_switch(). */
4295 rq->prev_mm = prev->active_mm;
4296 prev->active_mm = NULL;
4297 }
4298 }
4299
4300 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4301
4302 prepare_lock_switch(rq, next, rf);
4303
4304 /* Here we just switch the register state and the stack. */
4305 switch_to(prev, next, prev);
4306 barrier();
4307
4308 return finish_task_switch(prev);
4309 }
4310
4311 /*
4312 * nr_running and nr_context_switches:
4313 *
4314 * externally visible scheduler statistics: current number of runnable
4315 * threads, total number of context switches performed since bootup.
4316 */
4317 unsigned long nr_running(void)
4318 {
4319 unsigned long i, sum = 0;
4320
4321 for_each_online_cpu(i)
4322 sum += cpu_rq(i)->nr_running;
4323
4324 return sum;
4325 }
4326
4327 /*
4328 * Check if only the current task is running on the CPU.
4329 *
4330 * Caution: this function does not check that the caller has disabled
4331 * preemption, thus the result might have a time-of-check-to-time-of-use
4332 * race. The caller is responsible to use it correctly, for example:
4333 *
4334 * - from a non-preemptible section (of course)
4335 *
4336 * - from a thread that is bound to a single CPU
4337 *
4338 * - in a loop with very short iterations (e.g. a polling loop)
4339 */
4340 bool single_task_running(void)
4341 {
4342 return raw_rq()->nr_running == 1;
4343 }
4344 EXPORT_SYMBOL(single_task_running);
4345
4346 unsigned long long nr_context_switches(void)
4347 {
4348 int i;
4349 unsigned long long sum = 0;
4350
4351 for_each_possible_cpu(i)
4352 sum += cpu_rq(i)->nr_switches;
4353
4354 return sum;
4355 }
4356
4357 /*
4358 * Consumers of these two interfaces, like for example the cpuidle menu
4359 * governor, are using nonsensical data. Preferring shallow idle state selection
4360 * for a CPU that has IO-wait which might not even end up running the task when
4361 * it does become runnable.
4362 */
4363
4364 unsigned long nr_iowait_cpu(int cpu)
4365 {
4366 return atomic_read(&cpu_rq(cpu)->nr_iowait);
4367 }
4368
4369 /*
4370 * IO-wait accounting, and how it's mostly bollocks (on SMP).
4371 *
4372 * The idea behind IO-wait account is to account the idle time that we could
4373 * have spend running if it were not for IO. That is, if we were to improve the
4374 * storage performance, we'd have a proportional reduction in IO-wait time.
4375 *
4376 * This all works nicely on UP, where, when a task blocks on IO, we account
4377 * idle time as IO-wait, because if the storage were faster, it could've been
4378 * running and we'd not be idle.
4379 *
4380 * This has been extended to SMP, by doing the same for each CPU. This however
4381 * is broken.
4382 *
4383 * Imagine for instance the case where two tasks block on one CPU, only the one
4384 * CPU will have IO-wait accounted, while the other has regular idle. Even
4385 * though, if the storage were faster, both could've ran at the same time,
4386 * utilising both CPUs.
4387 *
4388 * This means, that when looking globally, the current IO-wait accounting on
4389 * SMP is a lower bound, by reason of under accounting.
4390 *
4391 * Worse, since the numbers are provided per CPU, they are sometimes
4392 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4393 * associated with any one particular CPU, it can wake to another CPU than it
4394 * blocked on. This means the per CPU IO-wait number is meaningless.
4395 *
4396 * Task CPU affinities can make all that even more 'interesting'.
4397 */
4398
4399 unsigned long nr_iowait(void)
4400 {
4401 unsigned long i, sum = 0;
4402
4403 for_each_possible_cpu(i)
4404 sum += nr_iowait_cpu(i);
4405
4406 return sum;
4407 }
4408
4409 #ifdef CONFIG_SMP
4410
4411 /*
4412 * sched_exec - execve() is a valuable balancing opportunity, because at
4413 * this point the task has the smallest effective memory and cache footprint.
4414 */
4415 void sched_exec(void)
4416 {
4417 struct task_struct *p = current;
4418 unsigned long flags;
4419 int dest_cpu;
4420
4421 raw_spin_lock_irqsave(&p->pi_lock, flags);
4422 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
4423 if (dest_cpu == smp_processor_id())
4424 goto unlock;
4425
4426 if (likely(cpu_active(dest_cpu))) {
4427 struct migration_arg arg = { p, dest_cpu };
4428
4429 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4430 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4431 return;
4432 }
4433 unlock:
4434 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4435 }
4436
4437 #endif
4438
4439 DEFINE_PER_CPU(struct kernel_stat, kstat);
4440 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4441
4442 EXPORT_PER_CPU_SYMBOL(kstat);
4443 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4444
4445 /*
4446 * The function fair_sched_class.update_curr accesses the struct curr
4447 * and its field curr->exec_start; when called from task_sched_runtime(),
4448 * we observe a high rate of cache misses in practice.
4449 * Prefetching this data results in improved performance.
4450 */
4451 static inline void prefetch_curr_exec_start(struct task_struct *p)
4452 {
4453 #ifdef CONFIG_FAIR_GROUP_SCHED
4454 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4455 #else
4456 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4457 #endif
4458 prefetch(curr);
4459 prefetch(&curr->exec_start);
4460 }
4461
4462 /*
4463 * Return accounted runtime for the task.
4464 * In case the task is currently running, return the runtime plus current's
4465 * pending runtime that have not been accounted yet.
4466 */
4467 unsigned long long task_sched_runtime(struct task_struct *p)
4468 {
4469 struct rq_flags rf;
4470 struct rq *rq;
4471 u64 ns;
4472
4473 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4474 /*
4475 * 64-bit doesn't need locks to atomically read a 64-bit value.
4476 * So we have a optimization chance when the task's delta_exec is 0.
4477 * Reading ->on_cpu is racy, but this is ok.
4478 *
4479 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4480 * If we race with it entering CPU, unaccounted time is 0. This is
4481 * indistinguishable from the read occurring a few cycles earlier.
4482 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4483 * been accounted, so we're correct here as well.
4484 */
4485 if (!p->on_cpu || !task_on_rq_queued(p))
4486 return p->se.sum_exec_runtime;
4487 #endif
4488
4489 rq = task_rq_lock(p, &rf);
4490 /*
4491 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4492 * project cycles that may never be accounted to this
4493 * thread, breaking clock_gettime().
4494 */
4495 if (task_current(rq, p) && task_on_rq_queued(p)) {
4496 prefetch_curr_exec_start(p);
4497 update_rq_clock(rq);
4498 p->sched_class->update_curr(rq);
4499 }
4500 ns = p->se.sum_exec_runtime;
4501 task_rq_unlock(rq, p, &rf);
4502
4503 return ns;
4504 }
4505
4506 /*
4507 * This function gets called by the timer code, with HZ frequency.
4508 * We call it with interrupts disabled.
4509 */
4510 void scheduler_tick(void)
4511 {
4512 int cpu = smp_processor_id();
4513 struct rq *rq = cpu_rq(cpu);
4514 struct task_struct *curr = rq->curr;
4515 struct rq_flags rf;
4516 unsigned long thermal_pressure;
4517
4518 arch_scale_freq_tick();
4519 sched_clock_tick();
4520
4521 rq_lock(rq, &rf);
4522
4523 update_rq_clock(rq);
4524 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4525 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4526 curr->sched_class->task_tick(rq, curr, 0);
4527 calc_global_load_tick(rq);
4528 psi_task_tick(rq);
4529
4530 rq_unlock(rq, &rf);
4531
4532 perf_event_task_tick();
4533
4534 #ifdef CONFIG_SMP
4535 rq->idle_balance = idle_cpu(cpu);
4536 trigger_load_balance(rq);
4537 #endif
4538 }
4539
4540 #ifdef CONFIG_NO_HZ_FULL
4541
4542 struct tick_work {
4543 int cpu;
4544 atomic_t state;
4545 struct delayed_work work;
4546 };
4547 /* Values for ->state, see diagram below. */
4548 #define TICK_SCHED_REMOTE_OFFLINE 0
4549 #define TICK_SCHED_REMOTE_OFFLINING 1
4550 #define TICK_SCHED_REMOTE_RUNNING 2
4551
4552 /*
4553 * State diagram for ->state:
4554 *
4555 *
4556 * TICK_SCHED_REMOTE_OFFLINE
4557 * | ^
4558 * | |
4559 * | | sched_tick_remote()
4560 * | |
4561 * | |
4562 * +--TICK_SCHED_REMOTE_OFFLINING
4563 * | ^
4564 * | |
4565 * sched_tick_start() | | sched_tick_stop()
4566 * | |
4567 * V |
4568 * TICK_SCHED_REMOTE_RUNNING
4569 *
4570 *
4571 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4572 * and sched_tick_start() are happy to leave the state in RUNNING.
4573 */
4574
4575 static struct tick_work __percpu *tick_work_cpu;
4576
4577 static void sched_tick_remote(struct work_struct *work)
4578 {
4579 struct delayed_work *dwork = to_delayed_work(work);
4580 struct tick_work *twork = container_of(dwork, struct tick_work, work);
4581 int cpu = twork->cpu;
4582 struct rq *rq = cpu_rq(cpu);
4583 struct task_struct *curr;
4584 struct rq_flags rf;
4585 u64 delta;
4586 int os;
4587
4588 /*
4589 * Handle the tick only if it appears the remote CPU is running in full
4590 * dynticks mode. The check is racy by nature, but missing a tick or
4591 * having one too much is no big deal because the scheduler tick updates
4592 * statistics and checks timeslices in a time-independent way, regardless
4593 * of when exactly it is running.
4594 */
4595 if (!tick_nohz_tick_stopped_cpu(cpu))
4596 goto out_requeue;
4597
4598 rq_lock_irq(rq, &rf);
4599 curr = rq->curr;
4600 if (cpu_is_offline(cpu))
4601 goto out_unlock;
4602
4603 update_rq_clock(rq);
4604
4605 if (!is_idle_task(curr)) {
4606 /*
4607 * Make sure the next tick runs within a reasonable
4608 * amount of time.
4609 */
4610 delta = rq_clock_task(rq) - curr->se.exec_start;
4611 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4612 }
4613 curr->sched_class->task_tick(rq, curr, 0);
4614
4615 calc_load_nohz_remote(rq);
4616 out_unlock:
4617 rq_unlock_irq(rq, &rf);
4618 out_requeue:
4619
4620 /*
4621 * Run the remote tick once per second (1Hz). This arbitrary
4622 * frequency is large enough to avoid overload but short enough
4623 * to keep scheduler internal stats reasonably up to date. But
4624 * first update state to reflect hotplug activity if required.
4625 */
4626 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4627 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4628 if (os == TICK_SCHED_REMOTE_RUNNING)
4629 queue_delayed_work(system_unbound_wq, dwork, HZ);
4630 }
4631
4632 static void sched_tick_start(int cpu)
4633 {
4634 int os;
4635 struct tick_work *twork;
4636
4637 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4638 return;
4639
4640 WARN_ON_ONCE(!tick_work_cpu);
4641
4642 twork = per_cpu_ptr(tick_work_cpu, cpu);
4643 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4644 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4645 if (os == TICK_SCHED_REMOTE_OFFLINE) {
4646 twork->cpu = cpu;
4647 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4648 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4649 }
4650 }
4651
4652 #ifdef CONFIG_HOTPLUG_CPU
4653 static void sched_tick_stop(int cpu)
4654 {
4655 struct tick_work *twork;
4656 int os;
4657
4658 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4659 return;
4660
4661 WARN_ON_ONCE(!tick_work_cpu);
4662
4663 twork = per_cpu_ptr(tick_work_cpu, cpu);
4664 /* There cannot be competing actions, but don't rely on stop-machine. */
4665 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4666 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4667 /* Don't cancel, as this would mess up the state machine. */
4668 }
4669 #endif /* CONFIG_HOTPLUG_CPU */
4670
4671 int __init sched_tick_offload_init(void)
4672 {
4673 tick_work_cpu = alloc_percpu(struct tick_work);
4674 BUG_ON(!tick_work_cpu);
4675 return 0;
4676 }
4677
4678 #else /* !CONFIG_NO_HZ_FULL */
4679 static inline void sched_tick_start(int cpu) { }
4680 static inline void sched_tick_stop(int cpu) { }
4681 #endif
4682
4683 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4684 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4685 /*
4686 * If the value passed in is equal to the current preempt count
4687 * then we just disabled preemption. Start timing the latency.
4688 */
4689 static inline void preempt_latency_start(int val)
4690 {
4691 if (preempt_count() == val) {
4692 unsigned long ip = get_lock_parent_ip();
4693 #ifdef CONFIG_DEBUG_PREEMPT
4694 current->preempt_disable_ip = ip;
4695 #endif
4696 trace_preempt_off(CALLER_ADDR0, ip);
4697 }
4698 }
4699
4700 void preempt_count_add(int val)
4701 {
4702 #ifdef CONFIG_DEBUG_PREEMPT
4703 /*
4704 * Underflow?
4705 */
4706 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4707 return;
4708 #endif
4709 __preempt_count_add(val);
4710 #ifdef CONFIG_DEBUG_PREEMPT
4711 /*
4712 * Spinlock count overflowing soon?
4713 */
4714 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4715 PREEMPT_MASK - 10);
4716 #endif
4717 preempt_latency_start(val);
4718 }
4719 EXPORT_SYMBOL(preempt_count_add);
4720 NOKPROBE_SYMBOL(preempt_count_add);
4721
4722 /*
4723 * If the value passed in equals to the current preempt count
4724 * then we just enabled preemption. Stop timing the latency.
4725 */
4726 static inline void preempt_latency_stop(int val)
4727 {
4728 if (preempt_count() == val)
4729 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4730 }
4731
4732 void preempt_count_sub(int val)
4733 {
4734 #ifdef CONFIG_DEBUG_PREEMPT
4735 /*
4736 * Underflow?
4737 */
4738 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4739 return;
4740 /*
4741 * Is the spinlock portion underflowing?
4742 */
4743 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4744 !(preempt_count() & PREEMPT_MASK)))
4745 return;
4746 #endif
4747
4748 preempt_latency_stop(val);
4749 __preempt_count_sub(val);
4750 }
4751 EXPORT_SYMBOL(preempt_count_sub);
4752 NOKPROBE_SYMBOL(preempt_count_sub);
4753
4754 #else
4755 static inline void preempt_latency_start(int val) { }
4756 static inline void preempt_latency_stop(int val) { }
4757 #endif
4758
4759 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4760 {
4761 #ifdef CONFIG_DEBUG_PREEMPT
4762 return p->preempt_disable_ip;
4763 #else
4764 return 0;
4765 #endif
4766 }
4767
4768 /*
4769 * Print scheduling while atomic bug:
4770 */
4771 static noinline void __schedule_bug(struct task_struct *prev)
4772 {
4773 /* Save this before calling printk(), since that will clobber it */
4774 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4775
4776 if (oops_in_progress)
4777 return;
4778
4779 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4780 prev->comm, prev->pid, preempt_count());
4781
4782 debug_show_held_locks(prev);
4783 print_modules();
4784 if (irqs_disabled())
4785 print_irqtrace_events(prev);
4786 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4787 && in_atomic_preempt_off()) {
4788 pr_err("Preemption disabled at:");
4789 print_ip_sym(KERN_ERR, preempt_disable_ip);
4790 }
4791 if (panic_on_warn)
4792 panic("scheduling while atomic\n");
4793
4794 dump_stack();
4795 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4796 }
4797
4798 /*
4799 * Various schedule()-time debugging checks and statistics:
4800 */
4801 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4802 {
4803 #ifdef CONFIG_SCHED_STACK_END_CHECK
4804 if (task_stack_end_corrupted(prev))
4805 panic("corrupted stack end detected inside scheduler\n");
4806
4807 if (task_scs_end_corrupted(prev))
4808 panic("corrupted shadow stack detected inside scheduler\n");
4809 #endif
4810
4811 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4812 if (!preempt && prev->state && prev->non_block_count) {
4813 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4814 prev->comm, prev->pid, prev->non_block_count);
4815 dump_stack();
4816 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4817 }
4818 #endif
4819
4820 if (unlikely(in_atomic_preempt_off())) {
4821 __schedule_bug(prev);
4822 preempt_count_set(PREEMPT_DISABLED);
4823 }
4824 rcu_sleep_check();
4825
4826 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4827
4828 schedstat_inc(this_rq()->sched_count);
4829 }
4830
4831 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4832 struct rq_flags *rf)
4833 {
4834 #ifdef CONFIG_SMP
4835 const struct sched_class *class;
4836 /*
4837 * We must do the balancing pass before put_prev_task(), such
4838 * that when we release the rq->lock the task is in the same
4839 * state as before we took rq->lock.
4840 *
4841 * We can terminate the balance pass as soon as we know there is
4842 * a runnable task of @class priority or higher.
4843 */
4844 for_class_range(class, prev->sched_class, &idle_sched_class) {
4845 if (class->balance(rq, prev, rf))
4846 break;
4847 }
4848 #endif
4849
4850 put_prev_task(rq, prev);
4851 }
4852
4853 /*
4854 * Pick up the highest-prio task:
4855 */
4856 static inline struct task_struct *
4857 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4858 {
4859 const struct sched_class *class;
4860 struct task_struct *p;
4861
4862 /*
4863 * Optimization: we know that if all tasks are in the fair class we can
4864 * call that function directly, but only if the @prev task wasn't of a
4865 * higher scheduling class, because otherwise those lose the
4866 * opportunity to pull in more work from other CPUs.
4867 */
4868 if (likely(prev->sched_class <= &fair_sched_class &&
4869 rq->nr_running == rq->cfs.h_nr_running)) {
4870
4871 p = pick_next_task_fair(rq, prev, rf);
4872 if (unlikely(p == RETRY_TASK))
4873 goto restart;
4874
4875 /* Assumes fair_sched_class->next == idle_sched_class */
4876 if (!p) {
4877 put_prev_task(rq, prev);
4878 p = pick_next_task_idle(rq);
4879 }
4880
4881 return p;
4882 }
4883
4884 restart:
4885 put_prev_task_balance(rq, prev, rf);
4886
4887 for_each_class(class) {
4888 p = class->pick_next_task(rq);
4889 if (p)
4890 return p;
4891 }
4892
4893 /* The idle class should always have a runnable task: */
4894 BUG();
4895 }
4896
4897 /*
4898 * __schedule() is the main scheduler function.
4899 *
4900 * The main means of driving the scheduler and thus entering this function are:
4901 *
4902 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4903 *
4904 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4905 * paths. For example, see arch/x86/entry_64.S.
4906 *
4907 * To drive preemption between tasks, the scheduler sets the flag in timer
4908 * interrupt handler scheduler_tick().
4909 *
4910 * 3. Wakeups don't really cause entry into schedule(). They add a
4911 * task to the run-queue and that's it.
4912 *
4913 * Now, if the new task added to the run-queue preempts the current
4914 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4915 * called on the nearest possible occasion:
4916 *
4917 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4918 *
4919 * - in syscall or exception context, at the next outmost
4920 * preempt_enable(). (this might be as soon as the wake_up()'s
4921 * spin_unlock()!)
4922 *
4923 * - in IRQ context, return from interrupt-handler to
4924 * preemptible context
4925 *
4926 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4927 * then at the next:
4928 *
4929 * - cond_resched() call
4930 * - explicit schedule() call
4931 * - return from syscall or exception to user-space
4932 * - return from interrupt-handler to user-space
4933 *
4934 * WARNING: must be called with preemption disabled!
4935 */
4936 static void __sched notrace __schedule(bool preempt)
4937 {
4938 struct task_struct *prev, *next;
4939 unsigned long *switch_count;
4940 unsigned long prev_state;
4941 struct rq_flags rf;
4942 struct rq *rq;
4943 int cpu;
4944
4945 cpu = smp_processor_id();
4946 rq = cpu_rq(cpu);
4947 prev = rq->curr;
4948
4949 schedule_debug(prev, preempt);
4950
4951 if (sched_feat(HRTICK))
4952 hrtick_clear(rq);
4953
4954 local_irq_disable();
4955 rcu_note_context_switch(preempt);
4956
4957 /*
4958 * Make sure that signal_pending_state()->signal_pending() below
4959 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4960 * done by the caller to avoid the race with signal_wake_up():
4961 *
4962 * __set_current_state(@state) signal_wake_up()
4963 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
4964 * wake_up_state(p, state)
4965 * LOCK rq->lock LOCK p->pi_state
4966 * smp_mb__after_spinlock() smp_mb__after_spinlock()
4967 * if (signal_pending_state()) if (p->state & @state)
4968 *
4969 * Also, the membarrier system call requires a full memory barrier
4970 * after coming from user-space, before storing to rq->curr.
4971 */
4972 rq_lock(rq, &rf);
4973 smp_mb__after_spinlock();
4974
4975 /* Promote REQ to ACT */
4976 rq->clock_update_flags <<= 1;
4977 update_rq_clock(rq);
4978
4979 switch_count = &prev->nivcsw;
4980
4981 /*
4982 * We must load prev->state once (task_struct::state is volatile), such
4983 * that:
4984 *
4985 * - we form a control dependency vs deactivate_task() below.
4986 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
4987 */
4988 prev_state = prev->state;
4989 if (!preempt && prev_state) {
4990 if (signal_pending_state(prev_state, prev)) {
4991 prev->state = TASK_RUNNING;
4992 } else {
4993 prev->sched_contributes_to_load =
4994 (prev_state & TASK_UNINTERRUPTIBLE) &&
4995 !(prev_state & TASK_NOLOAD) &&
4996 !(prev->flags & PF_FROZEN);
4997
4998 if (prev->sched_contributes_to_load)
4999 rq->nr_uninterruptible++;
5000
5001 /*
5002 * __schedule() ttwu()
5003 * prev_state = prev->state; if (p->on_rq && ...)
5004 * if (prev_state) goto out;
5005 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
5006 * p->state = TASK_WAKING
5007 *
5008 * Where __schedule() and ttwu() have matching control dependencies.
5009 *
5010 * After this, schedule() must not care about p->state any more.
5011 */
5012 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
5013
5014 if (prev->in_iowait) {
5015 atomic_inc(&rq->nr_iowait);
5016 delayacct_blkio_start();
5017 }
5018 }
5019 switch_count = &prev->nvcsw;
5020 }
5021
5022 next = pick_next_task(rq, prev, &rf);
5023 clear_tsk_need_resched(prev);
5024 clear_preempt_need_resched();
5025
5026 if (likely(prev != next)) {
5027 rq->nr_switches++;
5028 /*
5029 * RCU users of rcu_dereference(rq->curr) may not see
5030 * changes to task_struct made by pick_next_task().
5031 */
5032 RCU_INIT_POINTER(rq->curr, next);
5033 /*
5034 * The membarrier system call requires each architecture
5035 * to have a full memory barrier after updating
5036 * rq->curr, before returning to user-space.
5037 *
5038 * Here are the schemes providing that barrier on the
5039 * various architectures:
5040 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5041 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5042 * - finish_lock_switch() for weakly-ordered
5043 * architectures where spin_unlock is a full barrier,
5044 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5045 * is a RELEASE barrier),
5046 */
5047 ++*switch_count;
5048
5049 migrate_disable_switch(rq, prev);
5050 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5051
5052 trace_sched_switch(preempt, prev, next);
5053
5054 /* Also unlocks the rq: */
5055 rq = context_switch(rq, prev, next, &rf);
5056 } else {
5057 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5058
5059 rq_unpin_lock(rq, &rf);
5060 __balance_callbacks(rq);
5061 raw_spin_unlock_irq(&rq->lock);
5062 }
5063 }
5064
5065 void __noreturn do_task_dead(void)
5066 {
5067 /* Causes final put_task_struct in finish_task_switch(): */
5068 set_special_state(TASK_DEAD);
5069
5070 /* Tell freezer to ignore us: */
5071 current->flags |= PF_NOFREEZE;
5072
5073 __schedule(false);
5074 BUG();
5075
5076 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
5077 for (;;)
5078 cpu_relax();
5079 }
5080
5081 static inline void sched_submit_work(struct task_struct *tsk)
5082 {
5083 unsigned int task_flags;
5084
5085 if (!tsk->state)
5086 return;
5087
5088 task_flags = tsk->flags;
5089 /*
5090 * If a worker went to sleep, notify and ask workqueue whether
5091 * it wants to wake up a task to maintain concurrency.
5092 * As this function is called inside the schedule() context,
5093 * we disable preemption to avoid it calling schedule() again
5094 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5095 * requires it.
5096 */
5097 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5098 preempt_disable();
5099 if (task_flags & PF_WQ_WORKER)
5100 wq_worker_sleeping(tsk);
5101 else
5102 io_wq_worker_sleeping(tsk);
5103 preempt_enable_no_resched();
5104 }
5105
5106 if (tsk_is_pi_blocked(tsk))
5107 return;
5108
5109 /*
5110 * If we are going to sleep and we have plugged IO queued,
5111 * make sure to submit it to avoid deadlocks.
5112 */
5113 if (blk_needs_flush_plug(tsk))
5114 blk_schedule_flush_plug(tsk);
5115 }
5116
5117 static void sched_update_worker(struct task_struct *tsk)
5118 {
5119 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5120 if (tsk->flags & PF_WQ_WORKER)
5121 wq_worker_running(tsk);
5122 else
5123 io_wq_worker_running(tsk);
5124 }
5125 }
5126
5127 asmlinkage __visible void __sched schedule(void)
5128 {
5129 struct task_struct *tsk = current;
5130
5131 sched_submit_work(tsk);
5132 do {
5133 preempt_disable();
5134 __schedule(false);
5135 sched_preempt_enable_no_resched();
5136 } while (need_resched());
5137 sched_update_worker(tsk);
5138 }
5139 EXPORT_SYMBOL(schedule);
5140
5141 /*
5142 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
5143 * state (have scheduled out non-voluntarily) by making sure that all
5144 * tasks have either left the run queue or have gone into user space.
5145 * As idle tasks do not do either, they must not ever be preempted
5146 * (schedule out non-voluntarily).
5147 *
5148 * schedule_idle() is similar to schedule_preempt_disable() except that it
5149 * never enables preemption because it does not call sched_submit_work().
5150 */
5151 void __sched schedule_idle(void)
5152 {
5153 /*
5154 * As this skips calling sched_submit_work(), which the idle task does
5155 * regardless because that function is a nop when the task is in a
5156 * TASK_RUNNING state, make sure this isn't used someplace that the
5157 * current task can be in any other state. Note, idle is always in the
5158 * TASK_RUNNING state.
5159 */
5160 WARN_ON_ONCE(current->state);
5161 do {
5162 __schedule(false);
5163 } while (need_resched());
5164 }
5165
5166 #ifdef CONFIG_CONTEXT_TRACKING
5167 asmlinkage __visible void __sched schedule_user(void)
5168 {
5169 /*
5170 * If we come here after a random call to set_need_resched(),
5171 * or we have been woken up remotely but the IPI has not yet arrived,
5172 * we haven't yet exited the RCU idle mode. Do it here manually until
5173 * we find a better solution.
5174 *
5175 * NB: There are buggy callers of this function. Ideally we
5176 * should warn if prev_state != CONTEXT_USER, but that will trigger
5177 * too frequently to make sense yet.
5178 */
5179 enum ctx_state prev_state = exception_enter();
5180 schedule();
5181 exception_exit(prev_state);
5182 }
5183 #endif
5184
5185 /**
5186 * schedule_preempt_disabled - called with preemption disabled
5187 *
5188 * Returns with preemption disabled. Note: preempt_count must be 1
5189 */
5190 void __sched schedule_preempt_disabled(void)
5191 {
5192 sched_preempt_enable_no_resched();
5193 schedule();
5194 preempt_disable();
5195 }
5196
5197 static void __sched notrace preempt_schedule_common(void)
5198 {
5199 do {
5200 /*
5201 * Because the function tracer can trace preempt_count_sub()
5202 * and it also uses preempt_enable/disable_notrace(), if
5203 * NEED_RESCHED is set, the preempt_enable_notrace() called
5204 * by the function tracer will call this function again and
5205 * cause infinite recursion.
5206 *
5207 * Preemption must be disabled here before the function
5208 * tracer can trace. Break up preempt_disable() into two
5209 * calls. One to disable preemption without fear of being
5210 * traced. The other to still record the preemption latency,
5211 * which can also be traced by the function tracer.
5212 */
5213 preempt_disable_notrace();
5214 preempt_latency_start(1);
5215 __schedule(true);
5216 preempt_latency_stop(1);
5217 preempt_enable_no_resched_notrace();
5218
5219 /*
5220 * Check again in case we missed a preemption opportunity
5221 * between schedule and now.
5222 */
5223 } while (need_resched());
5224 }
5225
5226 #ifdef CONFIG_PREEMPTION
5227 /*
5228 * This is the entry point to schedule() from in-kernel preemption
5229 * off of preempt_enable.
5230 */
5231 asmlinkage __visible void __sched notrace preempt_schedule(void)
5232 {
5233 /*
5234 * If there is a non-zero preempt_count or interrupts are disabled,
5235 * we do not want to preempt the current task. Just return..
5236 */
5237 if (likely(!preemptible()))
5238 return;
5239
5240 preempt_schedule_common();
5241 }
5242 NOKPROBE_SYMBOL(preempt_schedule);
5243 EXPORT_SYMBOL(preempt_schedule);
5244
5245 /**
5246 * preempt_schedule_notrace - preempt_schedule called by tracing
5247 *
5248 * The tracing infrastructure uses preempt_enable_notrace to prevent
5249 * recursion and tracing preempt enabling caused by the tracing
5250 * infrastructure itself. But as tracing can happen in areas coming
5251 * from userspace or just about to enter userspace, a preempt enable
5252 * can occur before user_exit() is called. This will cause the scheduler
5253 * to be called when the system is still in usermode.
5254 *
5255 * To prevent this, the preempt_enable_notrace will use this function
5256 * instead of preempt_schedule() to exit user context if needed before
5257 * calling the scheduler.
5258 */
5259 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
5260 {
5261 enum ctx_state prev_ctx;
5262
5263 if (likely(!preemptible()))
5264 return;
5265
5266 do {
5267 /*
5268 * Because the function tracer can trace preempt_count_sub()
5269 * and it also uses preempt_enable/disable_notrace(), if
5270 * NEED_RESCHED is set, the preempt_enable_notrace() called
5271 * by the function tracer will call this function again and
5272 * cause infinite recursion.
5273 *
5274 * Preemption must be disabled here before the function
5275 * tracer can trace. Break up preempt_disable() into two
5276 * calls. One to disable preemption without fear of being
5277 * traced. The other to still record the preemption latency,
5278 * which can also be traced by the function tracer.
5279 */
5280 preempt_disable_notrace();
5281 preempt_latency_start(1);
5282 /*
5283 * Needs preempt disabled in case user_exit() is traced
5284 * and the tracer calls preempt_enable_notrace() causing
5285 * an infinite recursion.
5286 */
5287 prev_ctx = exception_enter();
5288 __schedule(true);
5289 exception_exit(prev_ctx);
5290
5291 preempt_latency_stop(1);
5292 preempt_enable_no_resched_notrace();
5293 } while (need_resched());
5294 }
5295 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
5296
5297 #endif /* CONFIG_PREEMPTION */
5298
5299 /*
5300 * This is the entry point to schedule() from kernel preemption
5301 * off of irq context.
5302 * Note, that this is called and return with irqs disabled. This will
5303 * protect us against recursive calling from irq.
5304 */
5305 asmlinkage __visible void __sched preempt_schedule_irq(void)
5306 {
5307 enum ctx_state prev_state;
5308
5309 /* Catch callers which need to be fixed */
5310 BUG_ON(preempt_count() || !irqs_disabled());
5311
5312 prev_state = exception_enter();
5313
5314 do {
5315 preempt_disable();
5316 local_irq_enable();
5317 __schedule(true);
5318 local_irq_disable();
5319 sched_preempt_enable_no_resched();
5320 } while (need_resched());
5321
5322 exception_exit(prev_state);
5323 }
5324
5325 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
5326 void *key)
5327 {
5328 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
5329 return try_to_wake_up(curr->private, mode, wake_flags);
5330 }
5331 EXPORT_SYMBOL(default_wake_function);
5332
5333 #ifdef CONFIG_RT_MUTEXES
5334
5335 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5336 {
5337 if (pi_task)
5338 prio = min(prio, pi_task->prio);
5339
5340 return prio;
5341 }
5342
5343 static inline int rt_effective_prio(struct task_struct *p, int prio)
5344 {
5345 struct task_struct *pi_task = rt_mutex_get_top_task(p);
5346
5347 return __rt_effective_prio(pi_task, prio);
5348 }
5349
5350 /*
5351 * rt_mutex_setprio - set the current priority of a task
5352 * @p: task to boost
5353 * @pi_task: donor task
5354 *
5355 * This function changes the 'effective' priority of a task. It does
5356 * not touch ->normal_prio like __setscheduler().
5357 *
5358 * Used by the rt_mutex code to implement priority inheritance
5359 * logic. Call site only calls if the priority of the task changed.
5360 */
5361 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
5362 {
5363 int prio, oldprio, queued, running, queue_flag =
5364 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5365 const struct sched_class *prev_class;
5366 struct rq_flags rf;
5367 struct rq *rq;
5368
5369 /* XXX used to be waiter->prio, not waiter->task->prio */
5370 prio = __rt_effective_prio(pi_task, p->normal_prio);
5371
5372 /*
5373 * If nothing changed; bail early.
5374 */
5375 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5376 return;
5377
5378 rq = __task_rq_lock(p, &rf);
5379 update_rq_clock(rq);
5380 /*
5381 * Set under pi_lock && rq->lock, such that the value can be used under
5382 * either lock.
5383 *
5384 * Note that there is loads of tricky to make this pointer cache work
5385 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5386 * ensure a task is de-boosted (pi_task is set to NULL) before the
5387 * task is allowed to run again (and can exit). This ensures the pointer
5388 * points to a blocked task -- which guarantees the task is present.
5389 */
5390 p->pi_top_task = pi_task;
5391
5392 /*
5393 * For FIFO/RR we only need to set prio, if that matches we're done.
5394 */
5395 if (prio == p->prio && !dl_prio(prio))
5396 goto out_unlock;
5397
5398 /*
5399 * Idle task boosting is a nono in general. There is one
5400 * exception, when PREEMPT_RT and NOHZ is active:
5401 *
5402 * The idle task calls get_next_timer_interrupt() and holds
5403 * the timer wheel base->lock on the CPU and another CPU wants
5404 * to access the timer (probably to cancel it). We can safely
5405 * ignore the boosting request, as the idle CPU runs this code
5406 * with interrupts disabled and will complete the lock
5407 * protected section without being interrupted. So there is no
5408 * real need to boost.
5409 */
5410 if (unlikely(p == rq->idle)) {
5411 WARN_ON(p != rq->curr);
5412 WARN_ON(p->pi_blocked_on);
5413 goto out_unlock;
5414 }
5415
5416 trace_sched_pi_setprio(p, pi_task);
5417 oldprio = p->prio;
5418
5419 if (oldprio == prio)
5420 queue_flag &= ~DEQUEUE_MOVE;
5421
5422 prev_class = p->sched_class;
5423 queued = task_on_rq_queued(p);
5424 running = task_current(rq, p);
5425 if (queued)
5426 dequeue_task(rq, p, queue_flag);
5427 if (running)
5428 put_prev_task(rq, p);
5429
5430 /*
5431 * Boosting condition are:
5432 * 1. -rt task is running and holds mutex A
5433 * --> -dl task blocks on mutex A
5434 *
5435 * 2. -dl task is running and holds mutex A
5436 * --> -dl task blocks on mutex A and could preempt the
5437 * running task
5438 */
5439 if (dl_prio(prio)) {
5440 if (!dl_prio(p->normal_prio) ||
5441 (pi_task && dl_prio(pi_task->prio) &&
5442 dl_entity_preempt(&pi_task->dl, &p->dl))) {
5443 p->dl.dl_boosted = 1;
5444 queue_flag |= ENQUEUE_REPLENISH;
5445 } else
5446 p->dl.dl_boosted = 0;
5447 p->sched_class = &dl_sched_class;
5448 } else if (rt_prio(prio)) {
5449 if (dl_prio(oldprio))
5450 p->dl.dl_boosted = 0;
5451 if (oldprio < prio)
5452 queue_flag |= ENQUEUE_HEAD;
5453 p->sched_class = &rt_sched_class;
5454 } else {
5455 if (dl_prio(oldprio))
5456 p->dl.dl_boosted = 0;
5457 if (rt_prio(oldprio))
5458 p->rt.timeout = 0;
5459 p->sched_class = &fair_sched_class;
5460 }
5461
5462 p->prio = prio;
5463
5464 if (queued)
5465 enqueue_task(rq, p, queue_flag);
5466 if (running)
5467 set_next_task(rq, p);
5468
5469 check_class_changed(rq, p, prev_class, oldprio);
5470 out_unlock:
5471 /* Avoid rq from going away on us: */
5472 preempt_disable();
5473
5474 rq_unpin_lock(rq, &rf);
5475 __balance_callbacks(rq);
5476 raw_spin_unlock(&rq->lock);
5477
5478 preempt_enable();
5479 }
5480 #else
5481 static inline int rt_effective_prio(struct task_struct *p, int prio)
5482 {
5483 return prio;
5484 }
5485 #endif
5486
5487 void set_user_nice(struct task_struct *p, long nice)
5488 {
5489 bool queued, running;
5490 int old_prio;
5491 struct rq_flags rf;
5492 struct rq *rq;
5493
5494 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
5495 return;
5496 /*
5497 * We have to be careful, if called from sys_setpriority(),
5498 * the task might be in the middle of scheduling on another CPU.
5499 */
5500 rq = task_rq_lock(p, &rf);
5501 update_rq_clock(rq);
5502
5503 /*
5504 * The RT priorities are set via sched_setscheduler(), but we still
5505 * allow the 'normal' nice value to be set - but as expected
5506 * it won't have any effect on scheduling until the task is
5507 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
5508 */
5509 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5510 p->static_prio = NICE_TO_PRIO(nice);
5511 goto out_unlock;
5512 }
5513 queued = task_on_rq_queued(p);
5514 running = task_current(rq, p);
5515 if (queued)
5516 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
5517 if (running)
5518 put_prev_task(rq, p);
5519
5520 p->static_prio = NICE_TO_PRIO(nice);
5521 set_load_weight(p, true);
5522 old_prio = p->prio;
5523 p->prio = effective_prio(p);
5524
5525 if (queued)
5526 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5527 if (running)
5528 set_next_task(rq, p);
5529
5530 /*
5531 * If the task increased its priority or is running and
5532 * lowered its priority, then reschedule its CPU:
5533 */
5534 p->sched_class->prio_changed(rq, p, old_prio);
5535
5536 out_unlock:
5537 task_rq_unlock(rq, p, &rf);
5538 }
5539 EXPORT_SYMBOL(set_user_nice);
5540
5541 /*
5542 * can_nice - check if a task can reduce its nice value
5543 * @p: task
5544 * @nice: nice value
5545 */
5546 int can_nice(const struct task_struct *p, const int nice)
5547 {
5548 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
5549 int nice_rlim = nice_to_rlimit(nice);
5550
5551 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5552 capable(CAP_SYS_NICE));
5553 }
5554
5555 #ifdef __ARCH_WANT_SYS_NICE
5556
5557 /*
5558 * sys_nice - change the priority of the current process.
5559 * @increment: priority increment
5560 *
5561 * sys_setpriority is a more generic, but much slower function that
5562 * does similar things.
5563 */
5564 SYSCALL_DEFINE1(nice, int, increment)
5565 {
5566 long nice, retval;
5567
5568 /*
5569 * Setpriority might change our priority at the same moment.
5570 * We don't have to worry. Conceptually one call occurs first
5571 * and we have a single winner.
5572 */
5573 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5574 nice = task_nice(current) + increment;
5575
5576 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5577 if (increment < 0 && !can_nice(current, nice))
5578 return -EPERM;
5579
5580 retval = security_task_setnice(current, nice);
5581 if (retval)
5582 return retval;
5583
5584 set_user_nice(current, nice);
5585 return 0;
5586 }
5587
5588 #endif
5589
5590 /**
5591 * task_prio - return the priority value of a given task.
5592 * @p: the task in question.
5593 *
5594 * Return: The priority value as seen by users in /proc.
5595 * RT tasks are offset by -200. Normal tasks are centered
5596 * around 0, value goes from -16 to +15.
5597 */
5598 int task_prio(const struct task_struct *p)
5599 {
5600 return p->prio - MAX_RT_PRIO;
5601 }
5602
5603 /**
5604 * idle_cpu - is a given CPU idle currently?
5605 * @cpu: the processor in question.
5606 *
5607 * Return: 1 if the CPU is currently idle. 0 otherwise.
5608 */
5609 int idle_cpu(int cpu)
5610 {
5611 struct rq *rq = cpu_rq(cpu);
5612
5613 if (rq->curr != rq->idle)
5614 return 0;
5615
5616 if (rq->nr_running)
5617 return 0;
5618
5619 #ifdef CONFIG_SMP
5620 if (rq->ttwu_pending)
5621 return 0;
5622 #endif
5623
5624 return 1;
5625 }
5626
5627 /**
5628 * available_idle_cpu - is a given CPU idle for enqueuing work.
5629 * @cpu: the CPU in question.
5630 *
5631 * Return: 1 if the CPU is currently idle. 0 otherwise.
5632 */
5633 int available_idle_cpu(int cpu)
5634 {
5635 if (!idle_cpu(cpu))
5636 return 0;
5637
5638 if (vcpu_is_preempted(cpu))
5639 return 0;
5640
5641 return 1;
5642 }
5643
5644 /**
5645 * idle_task - return the idle task for a given CPU.
5646 * @cpu: the processor in question.
5647 *
5648 * Return: The idle task for the CPU @cpu.
5649 */
5650 struct task_struct *idle_task(int cpu)
5651 {
5652 return cpu_rq(cpu)->idle;
5653 }
5654
5655 /**
5656 * find_process_by_pid - find a process with a matching PID value.
5657 * @pid: the pid in question.
5658 *
5659 * The task of @pid, if found. %NULL otherwise.
5660 */
5661 static struct task_struct *find_process_by_pid(pid_t pid)
5662 {
5663 return pid ? find_task_by_vpid(pid) : current;
5664 }
5665
5666 /*
5667 * sched_setparam() passes in -1 for its policy, to let the functions
5668 * it calls know not to change it.
5669 */
5670 #define SETPARAM_POLICY -1
5671
5672 static void __setscheduler_params(struct task_struct *p,
5673 const struct sched_attr *attr)
5674 {
5675 int policy = attr->sched_policy;
5676
5677 if (policy == SETPARAM_POLICY)
5678 policy = p->policy;
5679
5680 p->policy = policy;
5681
5682 if (dl_policy(policy))
5683 __setparam_dl(p, attr);
5684 else if (fair_policy(policy))
5685 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5686
5687 /*
5688 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5689 * !rt_policy. Always setting this ensures that things like
5690 * getparam()/getattr() don't report silly values for !rt tasks.
5691 */
5692 p->rt_priority = attr->sched_priority;
5693 p->normal_prio = normal_prio(p);
5694 set_load_weight(p, true);
5695 }
5696
5697 /* Actually do priority change: must hold pi & rq lock. */
5698 static void __setscheduler(struct rq *rq, struct task_struct *p,
5699 const struct sched_attr *attr, bool keep_boost)
5700 {
5701 /*
5702 * If params can't change scheduling class changes aren't allowed
5703 * either.
5704 */
5705 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
5706 return;
5707
5708 __setscheduler_params(p, attr);
5709
5710 /*
5711 * Keep a potential priority boosting if called from
5712 * sched_setscheduler().
5713 */
5714 p->prio = normal_prio(p);
5715 if (keep_boost)
5716 p->prio = rt_effective_prio(p, p->prio);
5717
5718 if (dl_prio(p->prio))
5719 p->sched_class = &dl_sched_class;
5720 else if (rt_prio(p->prio))
5721 p->sched_class = &rt_sched_class;
5722 else
5723 p->sched_class = &fair_sched_class;
5724 }
5725
5726 /*
5727 * Check the target process has a UID that matches the current process's:
5728 */
5729 static bool check_same_owner(struct task_struct *p)
5730 {
5731 const struct cred *cred = current_cred(), *pcred;
5732 bool match;
5733
5734 rcu_read_lock();
5735 pcred = __task_cred(p);
5736 match = (uid_eq(cred->euid, pcred->euid) ||
5737 uid_eq(cred->euid, pcred->uid));
5738 rcu_read_unlock();
5739 return match;
5740 }
5741
5742 static int __sched_setscheduler(struct task_struct *p,
5743 const struct sched_attr *attr,
5744 bool user, bool pi)
5745 {
5746 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
5747 MAX_RT_PRIO - 1 - attr->sched_priority;
5748 int retval, oldprio, oldpolicy = -1, queued, running;
5749 int new_effective_prio, policy = attr->sched_policy;
5750 const struct sched_class *prev_class;
5751 struct callback_head *head;
5752 struct rq_flags rf;
5753 int reset_on_fork;
5754 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5755 struct rq *rq;
5756
5757 /* The pi code expects interrupts enabled */
5758 BUG_ON(pi && in_interrupt());
5759 recheck:
5760 /* Double check policy once rq lock held: */
5761 if (policy < 0) {
5762 reset_on_fork = p->sched_reset_on_fork;
5763 policy = oldpolicy = p->policy;
5764 } else {
5765 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5766
5767 if (!valid_policy(policy))
5768 return -EINVAL;
5769 }
5770
5771 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5772 return -EINVAL;
5773
5774 /*
5775 * Valid priorities for SCHED_FIFO and SCHED_RR are
5776 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5777 * SCHED_BATCH and SCHED_IDLE is 0.
5778 */
5779 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5780 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5781 return -EINVAL;
5782 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5783 (rt_policy(policy) != (attr->sched_priority != 0)))
5784 return -EINVAL;
5785
5786 /*
5787 * Allow unprivileged RT tasks to decrease priority:
5788 */
5789 if (user && !capable(CAP_SYS_NICE)) {
5790 if (fair_policy(policy)) {
5791 if (attr->sched_nice < task_nice(p) &&
5792 !can_nice(p, attr->sched_nice))
5793 return -EPERM;
5794 }
5795
5796 if (rt_policy(policy)) {
5797 unsigned long rlim_rtprio =
5798 task_rlimit(p, RLIMIT_RTPRIO);
5799
5800 /* Can't set/change the rt policy: */
5801 if (policy != p->policy && !rlim_rtprio)
5802 return -EPERM;
5803
5804 /* Can't increase priority: */
5805 if (attr->sched_priority > p->rt_priority &&
5806 attr->sched_priority > rlim_rtprio)
5807 return -EPERM;
5808 }
5809
5810 /*
5811 * Can't set/change SCHED_DEADLINE policy at all for now
5812 * (safest behavior); in the future we would like to allow
5813 * unprivileged DL tasks to increase their relative deadline
5814 * or reduce their runtime (both ways reducing utilization)
5815 */
5816 if (dl_policy(policy))
5817 return -EPERM;
5818
5819 /*
5820 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5821 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5822 */
5823 if (task_has_idle_policy(p) && !idle_policy(policy)) {
5824 if (!can_nice(p, task_nice(p)))
5825 return -EPERM;
5826 }
5827
5828 /* Can't change other user's priorities: */
5829 if (!check_same_owner(p))
5830 return -EPERM;
5831
5832 /* Normal users shall not reset the sched_reset_on_fork flag: */
5833 if (p->sched_reset_on_fork && !reset_on_fork)
5834 return -EPERM;
5835 }
5836
5837 if (user) {
5838 if (attr->sched_flags & SCHED_FLAG_SUGOV)
5839 return -EINVAL;
5840
5841 retval = security_task_setscheduler(p);
5842 if (retval)
5843 return retval;
5844 }
5845
5846 /* Update task specific "requested" clamps */
5847 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5848 retval = uclamp_validate(p, attr);
5849 if (retval)
5850 return retval;
5851 }
5852
5853 if (pi)
5854 cpuset_read_lock();
5855
5856 /*
5857 * Make sure no PI-waiters arrive (or leave) while we are
5858 * changing the priority of the task:
5859 *
5860 * To be able to change p->policy safely, the appropriate
5861 * runqueue lock must be held.
5862 */
5863 rq = task_rq_lock(p, &rf);
5864 update_rq_clock(rq);
5865
5866 /*
5867 * Changing the policy of the stop threads its a very bad idea:
5868 */
5869 if (p == rq->stop) {
5870 retval = -EINVAL;
5871 goto unlock;
5872 }
5873
5874 /*
5875 * If not changing anything there's no need to proceed further,
5876 * but store a possible modification of reset_on_fork.
5877 */
5878 if (unlikely(policy == p->policy)) {
5879 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5880 goto change;
5881 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5882 goto change;
5883 if (dl_policy(policy) && dl_param_changed(p, attr))
5884 goto change;
5885 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5886 goto change;
5887
5888 p->sched_reset_on_fork = reset_on_fork;
5889 retval = 0;
5890 goto unlock;
5891 }
5892 change:
5893
5894 if (user) {
5895 #ifdef CONFIG_RT_GROUP_SCHED
5896 /*
5897 * Do not allow realtime tasks into groups that have no runtime
5898 * assigned.
5899 */
5900 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5901 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5902 !task_group_is_autogroup(task_group(p))) {
5903 retval = -EPERM;
5904 goto unlock;
5905 }
5906 #endif
5907 #ifdef CONFIG_SMP
5908 if (dl_bandwidth_enabled() && dl_policy(policy) &&
5909 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5910 cpumask_t *span = rq->rd->span;
5911
5912 /*
5913 * Don't allow tasks with an affinity mask smaller than
5914 * the entire root_domain to become SCHED_DEADLINE. We
5915 * will also fail if there's no bandwidth available.
5916 */
5917 if (!cpumask_subset(span, p->cpus_ptr) ||
5918 rq->rd->dl_bw.bw == 0) {
5919 retval = -EPERM;
5920 goto unlock;
5921 }
5922 }
5923 #endif
5924 }
5925
5926 /* Re-check policy now with rq lock held: */
5927 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5928 policy = oldpolicy = -1;
5929 task_rq_unlock(rq, p, &rf);
5930 if (pi)
5931 cpuset_read_unlock();
5932 goto recheck;
5933 }
5934
5935 /*
5936 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5937 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5938 * is available.
5939 */
5940 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5941 retval = -EBUSY;
5942 goto unlock;
5943 }
5944
5945 p->sched_reset_on_fork = reset_on_fork;
5946 oldprio = p->prio;
5947
5948 if (pi) {
5949 /*
5950 * Take priority boosted tasks into account. If the new
5951 * effective priority is unchanged, we just store the new
5952 * normal parameters and do not touch the scheduler class and
5953 * the runqueue. This will be done when the task deboost
5954 * itself.
5955 */
5956 new_effective_prio = rt_effective_prio(p, newprio);
5957 if (new_effective_prio == oldprio)
5958 queue_flags &= ~DEQUEUE_MOVE;
5959 }
5960
5961 queued = task_on_rq_queued(p);
5962 running = task_current(rq, p);
5963 if (queued)
5964 dequeue_task(rq, p, queue_flags);
5965 if (running)
5966 put_prev_task(rq, p);
5967
5968 prev_class = p->sched_class;
5969
5970 __setscheduler(rq, p, attr, pi);
5971 __setscheduler_uclamp(p, attr);
5972
5973 if (queued) {
5974 /*
5975 * We enqueue to tail when the priority of a task is
5976 * increased (user space view).
5977 */
5978 if (oldprio < p->prio)
5979 queue_flags |= ENQUEUE_HEAD;
5980
5981 enqueue_task(rq, p, queue_flags);
5982 }
5983 if (running)
5984 set_next_task(rq, p);
5985
5986 check_class_changed(rq, p, prev_class, oldprio);
5987
5988 /* Avoid rq from going away on us: */
5989 preempt_disable();
5990 head = splice_balance_callbacks(rq);
5991 task_rq_unlock(rq, p, &rf);
5992
5993 if (pi) {
5994 cpuset_read_unlock();
5995 rt_mutex_adjust_pi(p);
5996 }
5997
5998 /* Run balance callbacks after we've adjusted the PI chain: */
5999 balance_callbacks(rq, head);
6000 preempt_enable();
6001
6002 return 0;
6003
6004 unlock:
6005 task_rq_unlock(rq, p, &rf);
6006 if (pi)
6007 cpuset_read_unlock();
6008 return retval;
6009 }
6010
6011 static int _sched_setscheduler(struct task_struct *p, int policy,
6012 const struct sched_param *param, bool check)
6013 {
6014 struct sched_attr attr = {
6015 .sched_policy = policy,
6016 .sched_priority = param->sched_priority,
6017 .sched_nice = PRIO_TO_NICE(p->static_prio),
6018 };
6019
6020 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
6021 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
6022 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6023 policy &= ~SCHED_RESET_ON_FORK;
6024 attr.sched_policy = policy;
6025 }
6026
6027 return __sched_setscheduler(p, &attr, check, true);
6028 }
6029 /**
6030 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6031 * @p: the task in question.
6032 * @policy: new policy.
6033 * @param: structure containing the new RT priority.
6034 *
6035 * Use sched_set_fifo(), read its comment.
6036 *
6037 * Return: 0 on success. An error code otherwise.
6038 *
6039 * NOTE that the task may be already dead.
6040 */
6041 int sched_setscheduler(struct task_struct *p, int policy,
6042 const struct sched_param *param)
6043 {
6044 return _sched_setscheduler(p, policy, param, true);
6045 }
6046
6047 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
6048 {
6049 return __sched_setscheduler(p, attr, true, true);
6050 }
6051
6052 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
6053 {
6054 return __sched_setscheduler(p, attr, false, true);
6055 }
6056
6057 /**
6058 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6059 * @p: the task in question.
6060 * @policy: new policy.
6061 * @param: structure containing the new RT priority.
6062 *
6063 * Just like sched_setscheduler, only don't bother checking if the
6064 * current context has permission. For example, this is needed in
6065 * stop_machine(): we create temporary high priority worker threads,
6066 * but our caller might not have that capability.
6067 *
6068 * Return: 0 on success. An error code otherwise.
6069 */
6070 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6071 const struct sched_param *param)
6072 {
6073 return _sched_setscheduler(p, policy, param, false);
6074 }
6075
6076 /*
6077 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
6078 * incapable of resource management, which is the one thing an OS really should
6079 * be doing.
6080 *
6081 * This is of course the reason it is limited to privileged users only.
6082 *
6083 * Worse still; it is fundamentally impossible to compose static priority
6084 * workloads. You cannot take two correctly working static prio workloads
6085 * and smash them together and still expect them to work.
6086 *
6087 * For this reason 'all' FIFO tasks the kernel creates are basically at:
6088 *
6089 * MAX_RT_PRIO / 2
6090 *
6091 * The administrator _MUST_ configure the system, the kernel simply doesn't
6092 * know enough information to make a sensible choice.
6093 */
6094 void sched_set_fifo(struct task_struct *p)
6095 {
6096 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
6097 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6098 }
6099 EXPORT_SYMBOL_GPL(sched_set_fifo);
6100
6101 /*
6102 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
6103 */
6104 void sched_set_fifo_low(struct task_struct *p)
6105 {
6106 struct sched_param sp = { .sched_priority = 1 };
6107 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6108 }
6109 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
6110
6111 void sched_set_normal(struct task_struct *p, int nice)
6112 {
6113 struct sched_attr attr = {
6114 .sched_policy = SCHED_NORMAL,
6115 .sched_nice = nice,
6116 };
6117 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
6118 }
6119 EXPORT_SYMBOL_GPL(sched_set_normal);
6120
6121 static int
6122 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6123 {
6124 struct sched_param lparam;
6125 struct task_struct *p;
6126 int retval;
6127
6128 if (!param || pid < 0)
6129 return -EINVAL;
6130 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6131 return -EFAULT;
6132
6133 rcu_read_lock();
6134 retval = -ESRCH;
6135 p = find_process_by_pid(pid);
6136 if (likely(p))
6137 get_task_struct(p);
6138 rcu_read_unlock();
6139
6140 if (likely(p)) {
6141 retval = sched_setscheduler(p, policy, &lparam);
6142 put_task_struct(p);
6143 }
6144
6145 return retval;
6146 }
6147
6148 /*
6149 * Mimics kernel/events/core.c perf_copy_attr().
6150 */
6151 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
6152 {
6153 u32 size;
6154 int ret;
6155
6156 /* Zero the full structure, so that a short copy will be nice: */
6157 memset(attr, 0, sizeof(*attr));
6158
6159 ret = get_user(size, &uattr->size);
6160 if (ret)
6161 return ret;
6162
6163 /* ABI compatibility quirk: */
6164 if (!size)
6165 size = SCHED_ATTR_SIZE_VER0;
6166 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
6167 goto err_size;
6168
6169 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
6170 if (ret) {
6171 if (ret == -E2BIG)
6172 goto err_size;
6173 return ret;
6174 }
6175
6176 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
6177 size < SCHED_ATTR_SIZE_VER1)
6178 return -EINVAL;
6179
6180 /*
6181 * XXX: Do we want to be lenient like existing syscalls; or do we want
6182 * to be strict and return an error on out-of-bounds values?
6183 */
6184 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
6185
6186 return 0;
6187
6188 err_size:
6189 put_user(sizeof(*attr), &uattr->size);
6190 return -E2BIG;
6191 }
6192
6193 /**
6194 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6195 * @pid: the pid in question.
6196 * @policy: new policy.
6197 * @param: structure containing the new RT priority.
6198 *
6199 * Return: 0 on success. An error code otherwise.
6200 */
6201 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
6202 {
6203 if (policy < 0)
6204 return -EINVAL;
6205
6206 return do_sched_setscheduler(pid, policy, param);
6207 }
6208
6209 /**
6210 * sys_sched_setparam - set/change the RT priority of a thread
6211 * @pid: the pid in question.
6212 * @param: structure containing the new RT priority.
6213 *
6214 * Return: 0 on success. An error code otherwise.
6215 */
6216 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6217 {
6218 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
6219 }
6220
6221 /**
6222 * sys_sched_setattr - same as above, but with extended sched_attr
6223 * @pid: the pid in question.
6224 * @uattr: structure containing the extended parameters.
6225 * @flags: for future extension.
6226 */
6227 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
6228 unsigned int, flags)
6229 {
6230 struct sched_attr attr;
6231 struct task_struct *p;
6232 int retval;
6233
6234 if (!uattr || pid < 0 || flags)
6235 return -EINVAL;
6236
6237 retval = sched_copy_attr(uattr, &attr);
6238 if (retval)
6239 return retval;
6240
6241 if ((int)attr.sched_policy < 0)
6242 return -EINVAL;
6243 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
6244 attr.sched_policy = SETPARAM_POLICY;
6245
6246 rcu_read_lock();
6247 retval = -ESRCH;
6248 p = find_process_by_pid(pid);
6249 if (likely(p))
6250 get_task_struct(p);
6251 rcu_read_unlock();
6252
6253 if (likely(p)) {
6254 retval = sched_setattr(p, &attr);
6255 put_task_struct(p);
6256 }
6257
6258 return retval;
6259 }
6260
6261 /**
6262 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6263 * @pid: the pid in question.
6264 *
6265 * Return: On success, the policy of the thread. Otherwise, a negative error
6266 * code.
6267 */
6268 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6269 {
6270 struct task_struct *p;
6271 int retval;
6272
6273 if (pid < 0)
6274 return -EINVAL;
6275
6276 retval = -ESRCH;
6277 rcu_read_lock();
6278 p = find_process_by_pid(pid);
6279 if (p) {
6280 retval = security_task_getscheduler(p);
6281 if (!retval)
6282 retval = p->policy
6283 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6284 }
6285 rcu_read_unlock();
6286 return retval;
6287 }
6288
6289 /**
6290 * sys_sched_getparam - get the RT priority of a thread
6291 * @pid: the pid in question.
6292 * @param: structure containing the RT priority.
6293 *
6294 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6295 * code.
6296 */
6297 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6298 {
6299 struct sched_param lp = { .sched_priority = 0 };
6300 struct task_struct *p;
6301 int retval;
6302
6303 if (!param || pid < 0)
6304 return -EINVAL;
6305
6306 rcu_read_lock();
6307 p = find_process_by_pid(pid);
6308 retval = -ESRCH;
6309 if (!p)
6310 goto out_unlock;
6311
6312 retval = security_task_getscheduler(p);
6313 if (retval)
6314 goto out_unlock;
6315
6316 if (task_has_rt_policy(p))
6317 lp.sched_priority = p->rt_priority;
6318 rcu_read_unlock();
6319
6320 /*
6321 * This one might sleep, we cannot do it with a spinlock held ...
6322 */
6323 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6324
6325 return retval;
6326
6327 out_unlock:
6328 rcu_read_unlock();
6329 return retval;
6330 }
6331
6332 /*
6333 * Copy the kernel size attribute structure (which might be larger
6334 * than what user-space knows about) to user-space.
6335 *
6336 * Note that all cases are valid: user-space buffer can be larger or
6337 * smaller than the kernel-space buffer. The usual case is that both
6338 * have the same size.
6339 */
6340 static int
6341 sched_attr_copy_to_user(struct sched_attr __user *uattr,
6342 struct sched_attr *kattr,
6343 unsigned int usize)
6344 {
6345 unsigned int ksize = sizeof(*kattr);
6346
6347 if (!access_ok(uattr, usize))
6348 return -EFAULT;
6349
6350 /*
6351 * sched_getattr() ABI forwards and backwards compatibility:
6352 *
6353 * If usize == ksize then we just copy everything to user-space and all is good.
6354 *
6355 * If usize < ksize then we only copy as much as user-space has space for,
6356 * this keeps ABI compatibility as well. We skip the rest.
6357 *
6358 * If usize > ksize then user-space is using a newer version of the ABI,
6359 * which part the kernel doesn't know about. Just ignore it - tooling can
6360 * detect the kernel's knowledge of attributes from the attr->size value
6361 * which is set to ksize in this case.
6362 */
6363 kattr->size = min(usize, ksize);
6364
6365 if (copy_to_user(uattr, kattr, kattr->size))
6366 return -EFAULT;
6367
6368 return 0;
6369 }
6370
6371 /**
6372 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
6373 * @pid: the pid in question.
6374 * @uattr: structure containing the extended parameters.
6375 * @usize: sizeof(attr) for fwd/bwd comp.
6376 * @flags: for future extension.
6377 */
6378 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
6379 unsigned int, usize, unsigned int, flags)
6380 {
6381 struct sched_attr kattr = { };
6382 struct task_struct *p;
6383 int retval;
6384
6385 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6386 usize < SCHED_ATTR_SIZE_VER0 || flags)
6387 return -EINVAL;
6388
6389 rcu_read_lock();
6390 p = find_process_by_pid(pid);
6391 retval = -ESRCH;
6392 if (!p)
6393 goto out_unlock;
6394
6395 retval = security_task_getscheduler(p);
6396 if (retval)
6397 goto out_unlock;
6398
6399 kattr.sched_policy = p->policy;
6400 if (p->sched_reset_on_fork)
6401 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6402 if (task_has_dl_policy(p))
6403 __getparam_dl(p, &kattr);
6404 else if (task_has_rt_policy(p))
6405 kattr.sched_priority = p->rt_priority;
6406 else
6407 kattr.sched_nice = task_nice(p);
6408
6409 #ifdef CONFIG_UCLAMP_TASK
6410 /*
6411 * This could race with another potential updater, but this is fine
6412 * because it'll correctly read the old or the new value. We don't need
6413 * to guarantee who wins the race as long as it doesn't return garbage.
6414 */
6415 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6416 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
6417 #endif
6418
6419 rcu_read_unlock();
6420
6421 return sched_attr_copy_to_user(uattr, &kattr, usize);
6422
6423 out_unlock:
6424 rcu_read_unlock();
6425 return retval;
6426 }
6427
6428 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6429 {
6430 cpumask_var_t cpus_allowed, new_mask;
6431 struct task_struct *p;
6432 int retval;
6433
6434 rcu_read_lock();
6435
6436 p = find_process_by_pid(pid);
6437 if (!p) {
6438 rcu_read_unlock();
6439 return -ESRCH;
6440 }
6441
6442 /* Prevent p going away */
6443 get_task_struct(p);
6444 rcu_read_unlock();
6445
6446 if (p->flags & PF_NO_SETAFFINITY) {
6447 retval = -EINVAL;
6448 goto out_put_task;
6449 }
6450 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6451 retval = -ENOMEM;
6452 goto out_put_task;
6453 }
6454 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6455 retval = -ENOMEM;
6456 goto out_free_cpus_allowed;
6457 }
6458 retval = -EPERM;
6459 if (!check_same_owner(p)) {
6460 rcu_read_lock();
6461 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6462 rcu_read_unlock();
6463 goto out_free_new_mask;
6464 }
6465 rcu_read_unlock();
6466 }
6467
6468 retval = security_task_setscheduler(p);
6469 if (retval)
6470 goto out_free_new_mask;
6471
6472
6473 cpuset_cpus_allowed(p, cpus_allowed);
6474 cpumask_and(new_mask, in_mask, cpus_allowed);
6475
6476 /*
6477 * Since bandwidth control happens on root_domain basis,
6478 * if admission test is enabled, we only admit -deadline
6479 * tasks allowed to run on all the CPUs in the task's
6480 * root_domain.
6481 */
6482 #ifdef CONFIG_SMP
6483 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6484 rcu_read_lock();
6485 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
6486 retval = -EBUSY;
6487 rcu_read_unlock();
6488 goto out_free_new_mask;
6489 }
6490 rcu_read_unlock();
6491 }
6492 #endif
6493 again:
6494 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
6495
6496 if (!retval) {
6497 cpuset_cpus_allowed(p, cpus_allowed);
6498 if (!cpumask_subset(new_mask, cpus_allowed)) {
6499 /*
6500 * We must have raced with a concurrent cpuset
6501 * update. Just reset the cpus_allowed to the
6502 * cpuset's cpus_allowed
6503 */
6504 cpumask_copy(new_mask, cpus_allowed);
6505 goto again;
6506 }
6507 }
6508 out_free_new_mask:
6509 free_cpumask_var(new_mask);
6510 out_free_cpus_allowed:
6511 free_cpumask_var(cpus_allowed);
6512 out_put_task:
6513 put_task_struct(p);
6514 return retval;
6515 }
6516
6517 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6518 struct cpumask *new_mask)
6519 {
6520 if (len < cpumask_size())
6521 cpumask_clear(new_mask);
6522 else if (len > cpumask_size())
6523 len = cpumask_size();
6524
6525 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6526 }
6527
6528 /**
6529 * sys_sched_setaffinity - set the CPU affinity of a process
6530 * @pid: pid of the process
6531 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6532 * @user_mask_ptr: user-space pointer to the new CPU mask
6533 *
6534 * Return: 0 on success. An error code otherwise.
6535 */
6536 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6537 unsigned long __user *, user_mask_ptr)
6538 {
6539 cpumask_var_t new_mask;
6540 int retval;
6541
6542 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6543 return -ENOMEM;
6544
6545 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6546 if (retval == 0)
6547 retval = sched_setaffinity(pid, new_mask);
6548 free_cpumask_var(new_mask);
6549 return retval;
6550 }
6551
6552 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6553 {
6554 struct task_struct *p;
6555 unsigned long flags;
6556 int retval;
6557
6558 rcu_read_lock();
6559
6560 retval = -ESRCH;
6561 p = find_process_by_pid(pid);
6562 if (!p)
6563 goto out_unlock;
6564
6565 retval = security_task_getscheduler(p);
6566 if (retval)
6567 goto out_unlock;
6568
6569 raw_spin_lock_irqsave(&p->pi_lock, flags);
6570 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6571 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6572
6573 out_unlock:
6574 rcu_read_unlock();
6575
6576 return retval;
6577 }
6578
6579 /**
6580 * sys_sched_getaffinity - get the CPU affinity of a process
6581 * @pid: pid of the process
6582 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6583 * @user_mask_ptr: user-space pointer to hold the current CPU mask
6584 *
6585 * Return: size of CPU mask copied to user_mask_ptr on success. An
6586 * error code otherwise.
6587 */
6588 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6589 unsigned long __user *, user_mask_ptr)
6590 {
6591 int ret;
6592 cpumask_var_t mask;
6593
6594 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6595 return -EINVAL;
6596 if (len & (sizeof(unsigned long)-1))
6597 return -EINVAL;
6598
6599 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6600 return -ENOMEM;
6601
6602 ret = sched_getaffinity(pid, mask);
6603 if (ret == 0) {
6604 unsigned int retlen = min(len, cpumask_size());
6605
6606 if (copy_to_user(user_mask_ptr, mask, retlen))
6607 ret = -EFAULT;
6608 else
6609 ret = retlen;
6610 }
6611 free_cpumask_var(mask);
6612
6613 return ret;
6614 }
6615
6616 /**
6617 * sys_sched_yield - yield the current processor to other threads.
6618 *
6619 * This function yields the current CPU to other tasks. If there are no
6620 * other threads running on this CPU then this function will return.
6621 *
6622 * Return: 0.
6623 */
6624 static void do_sched_yield(void)
6625 {
6626 struct rq_flags rf;
6627 struct rq *rq;
6628
6629 rq = this_rq_lock_irq(&rf);
6630
6631 schedstat_inc(rq->yld_count);
6632 current->sched_class->yield_task(rq);
6633
6634 preempt_disable();
6635 rq_unlock_irq(rq, &rf);
6636 sched_preempt_enable_no_resched();
6637
6638 schedule();
6639 }
6640
6641 SYSCALL_DEFINE0(sched_yield)
6642 {
6643 do_sched_yield();
6644 return 0;
6645 }
6646
6647 #ifndef CONFIG_PREEMPTION
6648 int __sched _cond_resched(void)
6649 {
6650 if (should_resched(0)) {
6651 preempt_schedule_common();
6652 return 1;
6653 }
6654 rcu_all_qs();
6655 return 0;
6656 }
6657 EXPORT_SYMBOL(_cond_resched);
6658 #endif
6659
6660 /*
6661 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6662 * call schedule, and on return reacquire the lock.
6663 *
6664 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6665 * operations here to prevent schedule() from being called twice (once via
6666 * spin_unlock(), once by hand).
6667 */
6668 int __cond_resched_lock(spinlock_t *lock)
6669 {
6670 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6671 int ret = 0;
6672
6673 lockdep_assert_held(lock);
6674
6675 if (spin_needbreak(lock) || resched) {
6676 spin_unlock(lock);
6677 if (resched)
6678 preempt_schedule_common();
6679 else
6680 cpu_relax();
6681 ret = 1;
6682 spin_lock(lock);
6683 }
6684 return ret;
6685 }
6686 EXPORT_SYMBOL(__cond_resched_lock);
6687
6688 /**
6689 * yield - yield the current processor to other threads.
6690 *
6691 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6692 *
6693 * The scheduler is at all times free to pick the calling task as the most
6694 * eligible task to run, if removing the yield() call from your code breaks
6695 * it, it's already broken.
6696 *
6697 * Typical broken usage is:
6698 *
6699 * while (!event)
6700 * yield();
6701 *
6702 * where one assumes that yield() will let 'the other' process run that will
6703 * make event true. If the current task is a SCHED_FIFO task that will never
6704 * happen. Never use yield() as a progress guarantee!!
6705 *
6706 * If you want to use yield() to wait for something, use wait_event().
6707 * If you want to use yield() to be 'nice' for others, use cond_resched().
6708 * If you still want to use yield(), do not!
6709 */
6710 void __sched yield(void)
6711 {
6712 set_current_state(TASK_RUNNING);
6713 do_sched_yield();
6714 }
6715 EXPORT_SYMBOL(yield);
6716
6717 /**
6718 * yield_to - yield the current processor to another thread in
6719 * your thread group, or accelerate that thread toward the
6720 * processor it's on.
6721 * @p: target task
6722 * @preempt: whether task preemption is allowed or not
6723 *
6724 * It's the caller's job to ensure that the target task struct
6725 * can't go away on us before we can do any checks.
6726 *
6727 * Return:
6728 * true (>0) if we indeed boosted the target task.
6729 * false (0) if we failed to boost the target.
6730 * -ESRCH if there's no task to yield to.
6731 */
6732 int __sched yield_to(struct task_struct *p, bool preempt)
6733 {
6734 struct task_struct *curr = current;
6735 struct rq *rq, *p_rq;
6736 unsigned long flags;
6737 int yielded = 0;
6738
6739 local_irq_save(flags);
6740 rq = this_rq();
6741
6742 again:
6743 p_rq = task_rq(p);
6744 /*
6745 * If we're the only runnable task on the rq and target rq also
6746 * has only one task, there's absolutely no point in yielding.
6747 */
6748 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6749 yielded = -ESRCH;
6750 goto out_irq;
6751 }
6752
6753 double_rq_lock(rq, p_rq);
6754 if (task_rq(p) != p_rq) {
6755 double_rq_unlock(rq, p_rq);
6756 goto again;
6757 }
6758
6759 if (!curr->sched_class->yield_to_task)
6760 goto out_unlock;
6761
6762 if (curr->sched_class != p->sched_class)
6763 goto out_unlock;
6764
6765 if (task_running(p_rq, p) || p->state)
6766 goto out_unlock;
6767
6768 yielded = curr->sched_class->yield_to_task(rq, p);
6769 if (yielded) {
6770 schedstat_inc(rq->yld_count);
6771 /*
6772 * Make p's CPU reschedule; pick_next_entity takes care of
6773 * fairness.
6774 */
6775 if (preempt && rq != p_rq)
6776 resched_curr(p_rq);
6777 }
6778
6779 out_unlock:
6780 double_rq_unlock(rq, p_rq);
6781 out_irq:
6782 local_irq_restore(flags);
6783
6784 if (yielded > 0)
6785 schedule();
6786
6787 return yielded;
6788 }
6789 EXPORT_SYMBOL_GPL(yield_to);
6790
6791 int io_schedule_prepare(void)
6792 {
6793 int old_iowait = current->in_iowait;
6794
6795 current->in_iowait = 1;
6796 blk_schedule_flush_plug(current);
6797
6798 return old_iowait;
6799 }
6800
6801 void io_schedule_finish(int token)
6802 {
6803 current->in_iowait = token;
6804 }
6805
6806 /*
6807 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6808 * that process accounting knows that this is a task in IO wait state.
6809 */
6810 long __sched io_schedule_timeout(long timeout)
6811 {
6812 int token;
6813 long ret;
6814
6815 token = io_schedule_prepare();
6816 ret = schedule_timeout(timeout);
6817 io_schedule_finish(token);
6818
6819 return ret;
6820 }
6821 EXPORT_SYMBOL(io_schedule_timeout);
6822
6823 void __sched io_schedule(void)
6824 {
6825 int token;
6826
6827 token = io_schedule_prepare();
6828 schedule();
6829 io_schedule_finish(token);
6830 }
6831 EXPORT_SYMBOL(io_schedule);
6832
6833 /**
6834 * sys_sched_get_priority_max - return maximum RT priority.
6835 * @policy: scheduling class.
6836 *
6837 * Return: On success, this syscall returns the maximum
6838 * rt_priority that can be used by a given scheduling class.
6839 * On failure, a negative error code is returned.
6840 */
6841 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6842 {
6843 int ret = -EINVAL;
6844
6845 switch (policy) {
6846 case SCHED_FIFO:
6847 case SCHED_RR:
6848 ret = MAX_USER_RT_PRIO-1;
6849 break;
6850 case SCHED_DEADLINE:
6851 case SCHED_NORMAL:
6852 case SCHED_BATCH:
6853 case SCHED_IDLE:
6854 ret = 0;
6855 break;
6856 }
6857 return ret;
6858 }
6859
6860 /**
6861 * sys_sched_get_priority_min - return minimum RT priority.
6862 * @policy: scheduling class.
6863 *
6864 * Return: On success, this syscall returns the minimum
6865 * rt_priority that can be used by a given scheduling class.
6866 * On failure, a negative error code is returned.
6867 */
6868 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6869 {
6870 int ret = -EINVAL;
6871
6872 switch (policy) {
6873 case SCHED_FIFO:
6874 case SCHED_RR:
6875 ret = 1;
6876 break;
6877 case SCHED_DEADLINE:
6878 case SCHED_NORMAL:
6879 case SCHED_BATCH:
6880 case SCHED_IDLE:
6881 ret = 0;
6882 }
6883 return ret;
6884 }
6885
6886 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6887 {
6888 struct task_struct *p;
6889 unsigned int time_slice;
6890 struct rq_flags rf;
6891 struct rq *rq;
6892 int retval;
6893
6894 if (pid < 0)
6895 return -EINVAL;
6896
6897 retval = -ESRCH;
6898 rcu_read_lock();
6899 p = find_process_by_pid(pid);
6900 if (!p)
6901 goto out_unlock;
6902
6903 retval = security_task_getscheduler(p);
6904 if (retval)
6905 goto out_unlock;
6906
6907 rq = task_rq_lock(p, &rf);
6908 time_slice = 0;
6909 if (p->sched_class->get_rr_interval)
6910 time_slice = p->sched_class->get_rr_interval(rq, p);
6911 task_rq_unlock(rq, p, &rf);
6912
6913 rcu_read_unlock();
6914 jiffies_to_timespec64(time_slice, t);
6915 return 0;
6916
6917 out_unlock:
6918 rcu_read_unlock();
6919 return retval;
6920 }
6921
6922 /**
6923 * sys_sched_rr_get_interval - return the default timeslice of a process.
6924 * @pid: pid of the process.
6925 * @interval: userspace pointer to the timeslice value.
6926 *
6927 * this syscall writes the default timeslice value of a given process
6928 * into the user-space timespec buffer. A value of '0' means infinity.
6929 *
6930 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6931 * an error code.
6932 */
6933 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6934 struct __kernel_timespec __user *, interval)
6935 {
6936 struct timespec64 t;
6937 int retval = sched_rr_get_interval(pid, &t);
6938
6939 if (retval == 0)
6940 retval = put_timespec64(&t, interval);
6941
6942 return retval;
6943 }
6944
6945 #ifdef CONFIG_COMPAT_32BIT_TIME
6946 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6947 struct old_timespec32 __user *, interval)
6948 {
6949 struct timespec64 t;
6950 int retval = sched_rr_get_interval(pid, &t);
6951
6952 if (retval == 0)
6953 retval = put_old_timespec32(&t, interval);
6954 return retval;
6955 }
6956 #endif
6957
6958 void sched_show_task(struct task_struct *p)
6959 {
6960 unsigned long free = 0;
6961 int ppid;
6962
6963 if (!try_get_task_stack(p))
6964 return;
6965
6966 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6967
6968 if (p->state == TASK_RUNNING)
6969 pr_cont(" running task ");
6970 #ifdef CONFIG_DEBUG_STACK_USAGE
6971 free = stack_not_used(p);
6972 #endif
6973 ppid = 0;
6974 rcu_read_lock();
6975 if (pid_alive(p))
6976 ppid = task_pid_nr(rcu_dereference(p->real_parent));
6977 rcu_read_unlock();
6978 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6979 free, task_pid_nr(p), ppid,
6980 (unsigned long)task_thread_info(p)->flags);
6981
6982 print_worker_info(KERN_INFO, p);
6983 print_stop_info(KERN_INFO, p);
6984 show_stack(p, NULL, KERN_INFO);
6985 put_task_stack(p);
6986 }
6987 EXPORT_SYMBOL_GPL(sched_show_task);
6988
6989 static inline bool
6990 state_filter_match(unsigned long state_filter, struct task_struct *p)
6991 {
6992 /* no filter, everything matches */
6993 if (!state_filter)
6994 return true;
6995
6996 /* filter, but doesn't match */
6997 if (!(p->state & state_filter))
6998 return false;
6999
7000 /*
7001 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7002 * TASK_KILLABLE).
7003 */
7004 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
7005 return false;
7006
7007 return true;
7008 }
7009
7010
7011 void show_state_filter(unsigned long state_filter)
7012 {
7013 struct task_struct *g, *p;
7014
7015 rcu_read_lock();
7016 for_each_process_thread(g, p) {
7017 /*
7018 * reset the NMI-timeout, listing all files on a slow
7019 * console might take a lot of time:
7020 * Also, reset softlockup watchdogs on all CPUs, because
7021 * another CPU might be blocked waiting for us to process
7022 * an IPI.
7023 */
7024 touch_nmi_watchdog();
7025 touch_all_softlockup_watchdogs();
7026 if (state_filter_match(state_filter, p))
7027 sched_show_task(p);
7028 }
7029
7030 #ifdef CONFIG_SCHED_DEBUG
7031 if (!state_filter)
7032 sysrq_sched_debug_show();
7033 #endif
7034 rcu_read_unlock();
7035 /*
7036 * Only show locks if all tasks are dumped:
7037 */
7038 if (!state_filter)
7039 debug_show_all_locks();
7040 }
7041
7042 /**
7043 * init_idle - set up an idle thread for a given CPU
7044 * @idle: task in question
7045 * @cpu: CPU the idle task belongs to
7046 *
7047 * NOTE: this function does not set the idle thread's NEED_RESCHED
7048 * flag, to make booting more robust.
7049 */
7050 void init_idle(struct task_struct *idle, int cpu)
7051 {
7052 struct rq *rq = cpu_rq(cpu);
7053 unsigned long flags;
7054
7055 __sched_fork(0, idle);
7056
7057 raw_spin_lock_irqsave(&idle->pi_lock, flags);
7058 raw_spin_lock(&rq->lock);
7059
7060 idle->state = TASK_RUNNING;
7061 idle->se.exec_start = sched_clock();
7062 idle->flags |= PF_IDLE;
7063
7064 scs_task_reset(idle);
7065 kasan_unpoison_task_stack(idle);
7066
7067 #ifdef CONFIG_SMP
7068 /*
7069 * It's possible that init_idle() gets called multiple times on a task,
7070 * in that case do_set_cpus_allowed() will not do the right thing.
7071 *
7072 * And since this is boot we can forgo the serialization.
7073 */
7074 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
7075 #endif
7076 /*
7077 * We're having a chicken and egg problem, even though we are
7078 * holding rq->lock, the CPU isn't yet set to this CPU so the
7079 * lockdep check in task_group() will fail.
7080 *
7081 * Similar case to sched_fork(). / Alternatively we could
7082 * use task_rq_lock() here and obtain the other rq->lock.
7083 *
7084 * Silence PROVE_RCU
7085 */
7086 rcu_read_lock();
7087 __set_task_cpu(idle, cpu);
7088 rcu_read_unlock();
7089
7090 rq->idle = idle;
7091 rcu_assign_pointer(rq->curr, idle);
7092 idle->on_rq = TASK_ON_RQ_QUEUED;
7093 #ifdef CONFIG_SMP
7094 idle->on_cpu = 1;
7095 #endif
7096 raw_spin_unlock(&rq->lock);
7097 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7098
7099 /* Set the preempt count _outside_ the spinlocks! */
7100 init_idle_preempt_count(idle, cpu);
7101
7102 /*
7103 * The idle tasks have their own, simple scheduling class:
7104 */
7105 idle->sched_class = &idle_sched_class;
7106 ftrace_graph_init_idle_task(idle, cpu);
7107 vtime_init_idle(idle, cpu);
7108 #ifdef CONFIG_SMP
7109 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7110 #endif
7111 }
7112
7113 #ifdef CONFIG_SMP
7114
7115 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7116 const struct cpumask *trial)
7117 {
7118 int ret = 1;
7119
7120 if (!cpumask_weight(cur))
7121 return ret;
7122
7123 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7124
7125 return ret;
7126 }
7127
7128 int task_can_attach(struct task_struct *p,
7129 const struct cpumask *cs_cpus_allowed)
7130 {
7131 int ret = 0;
7132
7133 /*
7134 * Kthreads which disallow setaffinity shouldn't be moved
7135 * to a new cpuset; we don't want to change their CPU
7136 * affinity and isolating such threads by their set of
7137 * allowed nodes is unnecessary. Thus, cpusets are not
7138 * applicable for such threads. This prevents checking for
7139 * success of set_cpus_allowed_ptr() on all attached tasks
7140 * before cpus_mask may be changed.
7141 */
7142 if (p->flags & PF_NO_SETAFFINITY) {
7143 ret = -EINVAL;
7144 goto out;
7145 }
7146
7147 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
7148 cs_cpus_allowed))
7149 ret = dl_task_can_attach(p, cs_cpus_allowed);
7150
7151 out:
7152 return ret;
7153 }
7154
7155 bool sched_smp_initialized __read_mostly;
7156
7157 #ifdef CONFIG_NUMA_BALANCING
7158 /* Migrate current task p to target_cpu */
7159 int migrate_task_to(struct task_struct *p, int target_cpu)
7160 {
7161 struct migration_arg arg = { p, target_cpu };
7162 int curr_cpu = task_cpu(p);
7163
7164 if (curr_cpu == target_cpu)
7165 return 0;
7166
7167 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7168 return -EINVAL;
7169
7170 /* TODO: This is not properly updating schedstats */
7171
7172 trace_sched_move_numa(p, curr_cpu, target_cpu);
7173 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7174 }
7175
7176 /*
7177 * Requeue a task on a given node and accurately track the number of NUMA
7178 * tasks on the runqueues
7179 */
7180 void sched_setnuma(struct task_struct *p, int nid)
7181 {
7182 bool queued, running;
7183 struct rq_flags rf;
7184 struct rq *rq;
7185
7186 rq = task_rq_lock(p, &rf);
7187 queued = task_on_rq_queued(p);
7188 running = task_current(rq, p);
7189
7190 if (queued)
7191 dequeue_task(rq, p, DEQUEUE_SAVE);
7192 if (running)
7193 put_prev_task(rq, p);
7194
7195 p->numa_preferred_nid = nid;
7196
7197 if (queued)
7198 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7199 if (running)
7200 set_next_task(rq, p);
7201 task_rq_unlock(rq, p, &rf);
7202 }
7203 #endif /* CONFIG_NUMA_BALANCING */
7204
7205 #ifdef CONFIG_HOTPLUG_CPU
7206 /*
7207 * Ensure that the idle task is using init_mm right before its CPU goes
7208 * offline.
7209 */
7210 void idle_task_exit(void)
7211 {
7212 struct mm_struct *mm = current->active_mm;
7213
7214 BUG_ON(cpu_online(smp_processor_id()));
7215 BUG_ON(current != this_rq()->idle);
7216
7217 if (mm != &init_mm) {
7218 switch_mm(mm, &init_mm, current);
7219 finish_arch_post_lock_switch();
7220 }
7221
7222 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7223 }
7224
7225 static int __balance_push_cpu_stop(void *arg)
7226 {
7227 struct task_struct *p = arg;
7228 struct rq *rq = this_rq();
7229 struct rq_flags rf;
7230 int cpu;
7231
7232 raw_spin_lock_irq(&p->pi_lock);
7233 rq_lock(rq, &rf);
7234
7235 update_rq_clock(rq);
7236
7237 if (task_rq(p) == rq && task_on_rq_queued(p)) {
7238 cpu = select_fallback_rq(rq->cpu, p);
7239 rq = __migrate_task(rq, &rf, p, cpu);
7240 }
7241
7242 rq_unlock(rq, &rf);
7243 raw_spin_unlock_irq(&p->pi_lock);
7244
7245 put_task_struct(p);
7246
7247 return 0;
7248 }
7249
7250 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7251
7252 /*
7253 * Ensure we only run per-cpu kthreads once the CPU goes !active.
7254 */
7255 static void balance_push(struct rq *rq)
7256 {
7257 struct task_struct *push_task = rq->curr;
7258
7259 lockdep_assert_held(&rq->lock);
7260 SCHED_WARN_ON(rq->cpu != smp_processor_id());
7261
7262 /*
7263 * Both the cpu-hotplug and stop task are in this case and are
7264 * required to complete the hotplug process.
7265 */
7266 if (is_per_cpu_kthread(push_task) || is_migration_disabled(push_task)) {
7267 /*
7268 * If this is the idle task on the outgoing CPU try to wake
7269 * up the hotplug control thread which might wait for the
7270 * last task to vanish. The rcuwait_active() check is
7271 * accurate here because the waiter is pinned on this CPU
7272 * and can't obviously be running in parallel.
7273 *
7274 * On RT kernels this also has to check whether there are
7275 * pinned and scheduled out tasks on the runqueue. They
7276 * need to leave the migrate disabled section first.
7277 */
7278 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7279 rcuwait_active(&rq->hotplug_wait)) {
7280 raw_spin_unlock(&rq->lock);
7281 rcuwait_wake_up(&rq->hotplug_wait);
7282 raw_spin_lock(&rq->lock);
7283 }
7284 return;
7285 }
7286
7287 get_task_struct(push_task);
7288 /*
7289 * Temporarily drop rq->lock such that we can wake-up the stop task.
7290 * Both preemption and IRQs are still disabled.
7291 */
7292 raw_spin_unlock(&rq->lock);
7293 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7294 this_cpu_ptr(&push_work));
7295 /*
7296 * At this point need_resched() is true and we'll take the loop in
7297 * schedule(). The next pick is obviously going to be the stop task
7298 * which is_per_cpu_kthread() and will push this task away.
7299 */
7300 raw_spin_lock(&rq->lock);
7301 }
7302
7303 static void balance_push_set(int cpu, bool on)
7304 {
7305 struct rq *rq = cpu_rq(cpu);
7306 struct rq_flags rf;
7307
7308 rq_lock_irqsave(rq, &rf);
7309 if (on)
7310 rq->balance_flags |= BALANCE_PUSH;
7311 else
7312 rq->balance_flags &= ~BALANCE_PUSH;
7313 rq_unlock_irqrestore(rq, &rf);
7314 }
7315
7316 /*
7317 * Invoked from a CPUs hotplug control thread after the CPU has been marked
7318 * inactive. All tasks which are not per CPU kernel threads are either
7319 * pushed off this CPU now via balance_push() or placed on a different CPU
7320 * during wakeup. Wait until the CPU is quiescent.
7321 */
7322 static void balance_hotplug_wait(void)
7323 {
7324 struct rq *rq = this_rq();
7325
7326 rcuwait_wait_event(&rq->hotplug_wait,
7327 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
7328 TASK_UNINTERRUPTIBLE);
7329 }
7330
7331 #else
7332
7333 static inline void balance_push(struct rq *rq)
7334 {
7335 }
7336
7337 static inline void balance_push_set(int cpu, bool on)
7338 {
7339 }
7340
7341 static inline void balance_hotplug_wait(void)
7342 {
7343 }
7344
7345 #endif /* CONFIG_HOTPLUG_CPU */
7346
7347 void set_rq_online(struct rq *rq)
7348 {
7349 if (!rq->online) {
7350 const struct sched_class *class;
7351
7352 cpumask_set_cpu(rq->cpu, rq->rd->online);
7353 rq->online = 1;
7354
7355 for_each_class(class) {
7356 if (class->rq_online)
7357 class->rq_online(rq);
7358 }
7359 }
7360 }
7361
7362 void set_rq_offline(struct rq *rq)
7363 {
7364 if (rq->online) {
7365 const struct sched_class *class;
7366
7367 for_each_class(class) {
7368 if (class->rq_offline)
7369 class->rq_offline(rq);
7370 }
7371
7372 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7373 rq->online = 0;
7374 }
7375 }
7376
7377 /*
7378 * used to mark begin/end of suspend/resume:
7379 */
7380 static int num_cpus_frozen;
7381
7382 /*
7383 * Update cpusets according to cpu_active mask. If cpusets are
7384 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7385 * around partition_sched_domains().
7386 *
7387 * If we come here as part of a suspend/resume, don't touch cpusets because we
7388 * want to restore it back to its original state upon resume anyway.
7389 */
7390 static void cpuset_cpu_active(void)
7391 {
7392 if (cpuhp_tasks_frozen) {
7393 /*
7394 * num_cpus_frozen tracks how many CPUs are involved in suspend
7395 * resume sequence. As long as this is not the last online
7396 * operation in the resume sequence, just build a single sched
7397 * domain, ignoring cpusets.
7398 */
7399 partition_sched_domains(1, NULL, NULL);
7400 if (--num_cpus_frozen)
7401 return;
7402 /*
7403 * This is the last CPU online operation. So fall through and
7404 * restore the original sched domains by considering the
7405 * cpuset configurations.
7406 */
7407 cpuset_force_rebuild();
7408 }
7409 cpuset_update_active_cpus();
7410 }
7411
7412 static int cpuset_cpu_inactive(unsigned int cpu)
7413 {
7414 if (!cpuhp_tasks_frozen) {
7415 if (dl_cpu_busy(cpu))
7416 return -EBUSY;
7417 cpuset_update_active_cpus();
7418 } else {
7419 num_cpus_frozen++;
7420 partition_sched_domains(1, NULL, NULL);
7421 }
7422 return 0;
7423 }
7424
7425 int sched_cpu_activate(unsigned int cpu)
7426 {
7427 struct rq *rq = cpu_rq(cpu);
7428 struct rq_flags rf;
7429
7430 balance_push_set(cpu, false);
7431
7432 #ifdef CONFIG_SCHED_SMT
7433 /*
7434 * When going up, increment the number of cores with SMT present.
7435 */
7436 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7437 static_branch_inc_cpuslocked(&sched_smt_present);
7438 #endif
7439 set_cpu_active(cpu, true);
7440
7441 if (sched_smp_initialized) {
7442 sched_domains_numa_masks_set(cpu);
7443 cpuset_cpu_active();
7444 }
7445
7446 /*
7447 * Put the rq online, if not already. This happens:
7448 *
7449 * 1) In the early boot process, because we build the real domains
7450 * after all CPUs have been brought up.
7451 *
7452 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7453 * domains.
7454 */
7455 rq_lock_irqsave(rq, &rf);
7456 if (rq->rd) {
7457 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7458 set_rq_online(rq);
7459 }
7460 rq_unlock_irqrestore(rq, &rf);
7461
7462 return 0;
7463 }
7464
7465 int sched_cpu_deactivate(unsigned int cpu)
7466 {
7467 struct rq *rq = cpu_rq(cpu);
7468 struct rq_flags rf;
7469 int ret;
7470
7471 set_cpu_active(cpu, false);
7472 /*
7473 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7474 * users of this state to go away such that all new such users will
7475 * observe it.
7476 *
7477 * Do sync before park smpboot threads to take care the rcu boost case.
7478 */
7479 synchronize_rcu();
7480
7481 balance_push_set(cpu, true);
7482
7483 rq_lock_irqsave(rq, &rf);
7484 if (rq->rd) {
7485 update_rq_clock(rq);
7486 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7487 set_rq_offline(rq);
7488 }
7489 rq_unlock_irqrestore(rq, &rf);
7490
7491 #ifdef CONFIG_SCHED_SMT
7492 /*
7493 * When going down, decrement the number of cores with SMT present.
7494 */
7495 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7496 static_branch_dec_cpuslocked(&sched_smt_present);
7497 #endif
7498
7499 if (!sched_smp_initialized)
7500 return 0;
7501
7502 ret = cpuset_cpu_inactive(cpu);
7503 if (ret) {
7504 balance_push_set(cpu, false);
7505 set_cpu_active(cpu, true);
7506 return ret;
7507 }
7508 sched_domains_numa_masks_clear(cpu);
7509 return 0;
7510 }
7511
7512 static void sched_rq_cpu_starting(unsigned int cpu)
7513 {
7514 struct rq *rq = cpu_rq(cpu);
7515
7516 rq->calc_load_update = calc_load_update;
7517 update_max_interval();
7518 }
7519
7520 int sched_cpu_starting(unsigned int cpu)
7521 {
7522 sched_rq_cpu_starting(cpu);
7523 sched_tick_start(cpu);
7524 return 0;
7525 }
7526
7527 #ifdef CONFIG_HOTPLUG_CPU
7528
7529 /*
7530 * Invoked immediately before the stopper thread is invoked to bring the
7531 * CPU down completely. At this point all per CPU kthreads except the
7532 * hotplug thread (current) and the stopper thread (inactive) have been
7533 * either parked or have been unbound from the outgoing CPU. Ensure that
7534 * any of those which might be on the way out are gone.
7535 *
7536 * If after this point a bound task is being woken on this CPU then the
7537 * responsible hotplug callback has failed to do it's job.
7538 * sched_cpu_dying() will catch it with the appropriate fireworks.
7539 */
7540 int sched_cpu_wait_empty(unsigned int cpu)
7541 {
7542 balance_hotplug_wait();
7543 return 0;
7544 }
7545
7546 /*
7547 * Since this CPU is going 'away' for a while, fold any nr_active delta we
7548 * might have. Called from the CPU stopper task after ensuring that the
7549 * stopper is the last running task on the CPU, so nr_active count is
7550 * stable. We need to take the teardown thread which is calling this into
7551 * account, so we hand in adjust = 1 to the load calculation.
7552 *
7553 * Also see the comment "Global load-average calculations".
7554 */
7555 static void calc_load_migrate(struct rq *rq)
7556 {
7557 long delta = calc_load_fold_active(rq, 1);
7558
7559 if (delta)
7560 atomic_long_add(delta, &calc_load_tasks);
7561 }
7562
7563 int sched_cpu_dying(unsigned int cpu)
7564 {
7565 struct rq *rq = cpu_rq(cpu);
7566 struct rq_flags rf;
7567
7568 /* Handle pending wakeups and then migrate everything off */
7569 sched_tick_stop(cpu);
7570
7571 rq_lock_irqsave(rq, &rf);
7572 BUG_ON(rq->nr_running != 1 || rq_has_pinned_tasks(rq));
7573 rq_unlock_irqrestore(rq, &rf);
7574
7575 calc_load_migrate(rq);
7576 update_max_interval();
7577 nohz_balance_exit_idle(rq);
7578 hrtick_clear(rq);
7579 return 0;
7580 }
7581 #endif
7582
7583 void __init sched_init_smp(void)
7584 {
7585 sched_init_numa();
7586
7587 /*
7588 * There's no userspace yet to cause hotplug operations; hence all the
7589 * CPU masks are stable and all blatant races in the below code cannot
7590 * happen.
7591 */
7592 mutex_lock(&sched_domains_mutex);
7593 sched_init_domains(cpu_active_mask);
7594 mutex_unlock(&sched_domains_mutex);
7595
7596 /* Move init over to a non-isolated CPU */
7597 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7598 BUG();
7599 sched_init_granularity();
7600
7601 init_sched_rt_class();
7602 init_sched_dl_class();
7603
7604 sched_smp_initialized = true;
7605 }
7606
7607 static int __init migration_init(void)
7608 {
7609 sched_cpu_starting(smp_processor_id());
7610 return 0;
7611 }
7612 early_initcall(migration_init);
7613
7614 #else
7615 void __init sched_init_smp(void)
7616 {
7617 sched_init_granularity();
7618 }
7619 #endif /* CONFIG_SMP */
7620
7621 int in_sched_functions(unsigned long addr)
7622 {
7623 return in_lock_functions(addr) ||
7624 (addr >= (unsigned long)__sched_text_start
7625 && addr < (unsigned long)__sched_text_end);
7626 }
7627
7628 #ifdef CONFIG_CGROUP_SCHED
7629 /*
7630 * Default task group.
7631 * Every task in system belongs to this group at bootup.
7632 */
7633 struct task_group root_task_group;
7634 LIST_HEAD(task_groups);
7635
7636 /* Cacheline aligned slab cache for task_group */
7637 static struct kmem_cache *task_group_cache __read_mostly;
7638 #endif
7639
7640 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7641 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7642
7643 void __init sched_init(void)
7644 {
7645 unsigned long ptr = 0;
7646 int i;
7647
7648 /* Make sure the linker didn't screw up */
7649 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7650 &fair_sched_class + 1 != &rt_sched_class ||
7651 &rt_sched_class + 1 != &dl_sched_class);
7652 #ifdef CONFIG_SMP
7653 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7654 #endif
7655
7656 wait_bit_init();
7657
7658 #ifdef CONFIG_FAIR_GROUP_SCHED
7659 ptr += 2 * nr_cpu_ids * sizeof(void **);
7660 #endif
7661 #ifdef CONFIG_RT_GROUP_SCHED
7662 ptr += 2 * nr_cpu_ids * sizeof(void **);
7663 #endif
7664 if (ptr) {
7665 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7666
7667 #ifdef CONFIG_FAIR_GROUP_SCHED
7668 root_task_group.se = (struct sched_entity **)ptr;
7669 ptr += nr_cpu_ids * sizeof(void **);
7670
7671 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7672 ptr += nr_cpu_ids * sizeof(void **);
7673
7674 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7675 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7676 #endif /* CONFIG_FAIR_GROUP_SCHED */
7677 #ifdef CONFIG_RT_GROUP_SCHED
7678 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7679 ptr += nr_cpu_ids * sizeof(void **);
7680
7681 root_task_group.rt_rq = (struct rt_rq **)ptr;
7682 ptr += nr_cpu_ids * sizeof(void **);
7683
7684 #endif /* CONFIG_RT_GROUP_SCHED */
7685 }
7686 #ifdef CONFIG_CPUMASK_OFFSTACK
7687 for_each_possible_cpu(i) {
7688 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7689 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7690 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7691 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7692 }
7693 #endif /* CONFIG_CPUMASK_OFFSTACK */
7694
7695 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7696 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7697
7698 #ifdef CONFIG_SMP
7699 init_defrootdomain();
7700 #endif
7701
7702 #ifdef CONFIG_RT_GROUP_SCHED
7703 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7704 global_rt_period(), global_rt_runtime());
7705 #endif /* CONFIG_RT_GROUP_SCHED */
7706
7707 #ifdef CONFIG_CGROUP_SCHED
7708 task_group_cache = KMEM_CACHE(task_group, 0);
7709
7710 list_add(&root_task_group.list, &task_groups);
7711 INIT_LIST_HEAD(&root_task_group.children);
7712 INIT_LIST_HEAD(&root_task_group.siblings);
7713 autogroup_init(&init_task);
7714 #endif /* CONFIG_CGROUP_SCHED */
7715
7716 for_each_possible_cpu(i) {
7717 struct rq *rq;
7718
7719 rq = cpu_rq(i);
7720 raw_spin_lock_init(&rq->lock);
7721 rq->nr_running = 0;
7722 rq->calc_load_active = 0;
7723 rq->calc_load_update = jiffies + LOAD_FREQ;
7724 init_cfs_rq(&rq->cfs);
7725 init_rt_rq(&rq->rt);
7726 init_dl_rq(&rq->dl);
7727 #ifdef CONFIG_FAIR_GROUP_SCHED
7728 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7729 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7730 /*
7731 * How much CPU bandwidth does root_task_group get?
7732 *
7733 * In case of task-groups formed thr' the cgroup filesystem, it
7734 * gets 100% of the CPU resources in the system. This overall
7735 * system CPU resource is divided among the tasks of
7736 * root_task_group and its child task-groups in a fair manner,
7737 * based on each entity's (task or task-group's) weight
7738 * (se->load.weight).
7739 *
7740 * In other words, if root_task_group has 10 tasks of weight
7741 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7742 * then A0's share of the CPU resource is:
7743 *
7744 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7745 *
7746 * We achieve this by letting root_task_group's tasks sit
7747 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7748 */
7749 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7750 #endif /* CONFIG_FAIR_GROUP_SCHED */
7751
7752 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7753 #ifdef CONFIG_RT_GROUP_SCHED
7754 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7755 #endif
7756 #ifdef CONFIG_SMP
7757 rq->sd = NULL;
7758 rq->rd = NULL;
7759 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7760 rq->balance_callback = NULL;
7761 rq->active_balance = 0;
7762 rq->next_balance = jiffies;
7763 rq->push_cpu = 0;
7764 rq->cpu = i;
7765 rq->online = 0;
7766 rq->idle_stamp = 0;
7767 rq->avg_idle = 2*sysctl_sched_migration_cost;
7768 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7769
7770 INIT_LIST_HEAD(&rq->cfs_tasks);
7771
7772 rq_attach_root(rq, &def_root_domain);
7773 #ifdef CONFIG_NO_HZ_COMMON
7774 rq->last_blocked_load_update_tick = jiffies;
7775 atomic_set(&rq->nohz_flags, 0);
7776
7777 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
7778 #endif
7779 #ifdef CONFIG_HOTPLUG_CPU
7780 rcuwait_init(&rq->hotplug_wait);
7781 #endif
7782 #endif /* CONFIG_SMP */
7783 hrtick_rq_init(rq);
7784 atomic_set(&rq->nr_iowait, 0);
7785 }
7786
7787 set_load_weight(&init_task, false);
7788
7789 /*
7790 * The boot idle thread does lazy MMU switching as well:
7791 */
7792 mmgrab(&init_mm);
7793 enter_lazy_tlb(&init_mm, current);
7794
7795 /*
7796 * Make us the idle thread. Technically, schedule() should not be
7797 * called from this thread, however somewhere below it might be,
7798 * but because we are the idle thread, we just pick up running again
7799 * when this runqueue becomes "idle".
7800 */
7801 init_idle(current, smp_processor_id());
7802
7803 calc_load_update = jiffies + LOAD_FREQ;
7804
7805 #ifdef CONFIG_SMP
7806 idle_thread_set_boot_cpu();
7807 #endif
7808 init_sched_fair_class();
7809
7810 init_schedstats();
7811
7812 psi_init();
7813
7814 init_uclamp();
7815
7816 scheduler_running = 1;
7817 }
7818
7819 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7820 static inline int preempt_count_equals(int preempt_offset)
7821 {
7822 int nested = preempt_count() + rcu_preempt_depth();
7823
7824 return (nested == preempt_offset);
7825 }
7826
7827 void __might_sleep(const char *file, int line, int preempt_offset)
7828 {
7829 /*
7830 * Blocking primitives will set (and therefore destroy) current->state,
7831 * since we will exit with TASK_RUNNING make sure we enter with it,
7832 * otherwise we will destroy state.
7833 */
7834 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7835 "do not call blocking ops when !TASK_RUNNING; "
7836 "state=%lx set at [<%p>] %pS\n",
7837 current->state,
7838 (void *)current->task_state_change,
7839 (void *)current->task_state_change);
7840
7841 ___might_sleep(file, line, preempt_offset);
7842 }
7843 EXPORT_SYMBOL(__might_sleep);
7844
7845 void ___might_sleep(const char *file, int line, int preempt_offset)
7846 {
7847 /* Ratelimiting timestamp: */
7848 static unsigned long prev_jiffy;
7849
7850 unsigned long preempt_disable_ip;
7851
7852 /* WARN_ON_ONCE() by default, no rate limit required: */
7853 rcu_sleep_check();
7854
7855 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7856 !is_idle_task(current) && !current->non_block_count) ||
7857 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7858 oops_in_progress)
7859 return;
7860
7861 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7862 return;
7863 prev_jiffy = jiffies;
7864
7865 /* Save this before calling printk(), since that will clobber it: */
7866 preempt_disable_ip = get_preempt_disable_ip(current);
7867
7868 printk(KERN_ERR
7869 "BUG: sleeping function called from invalid context at %s:%d\n",
7870 file, line);
7871 printk(KERN_ERR
7872 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7873 in_atomic(), irqs_disabled(), current->non_block_count,
7874 current->pid, current->comm);
7875
7876 if (task_stack_end_corrupted(current))
7877 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7878
7879 debug_show_held_locks(current);
7880 if (irqs_disabled())
7881 print_irqtrace_events(current);
7882 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7883 && !preempt_count_equals(preempt_offset)) {
7884 pr_err("Preemption disabled at:");
7885 print_ip_sym(KERN_ERR, preempt_disable_ip);
7886 }
7887 dump_stack();
7888 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7889 }
7890 EXPORT_SYMBOL(___might_sleep);
7891
7892 void __cant_sleep(const char *file, int line, int preempt_offset)
7893 {
7894 static unsigned long prev_jiffy;
7895
7896 if (irqs_disabled())
7897 return;
7898
7899 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7900 return;
7901
7902 if (preempt_count() > preempt_offset)
7903 return;
7904
7905 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7906 return;
7907 prev_jiffy = jiffies;
7908
7909 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7910 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7911 in_atomic(), irqs_disabled(),
7912 current->pid, current->comm);
7913
7914 debug_show_held_locks(current);
7915 dump_stack();
7916 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7917 }
7918 EXPORT_SYMBOL_GPL(__cant_sleep);
7919
7920 #ifdef CONFIG_SMP
7921 void __cant_migrate(const char *file, int line)
7922 {
7923 static unsigned long prev_jiffy;
7924
7925 if (irqs_disabled())
7926 return;
7927
7928 if (is_migration_disabled(current))
7929 return;
7930
7931 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7932 return;
7933
7934 if (preempt_count() > 0)
7935 return;
7936
7937 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7938 return;
7939 prev_jiffy = jiffies;
7940
7941 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
7942 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
7943 in_atomic(), irqs_disabled(), is_migration_disabled(current),
7944 current->pid, current->comm);
7945
7946 debug_show_held_locks(current);
7947 dump_stack();
7948 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7949 }
7950 EXPORT_SYMBOL_GPL(__cant_migrate);
7951 #endif
7952 #endif
7953
7954 #ifdef CONFIG_MAGIC_SYSRQ
7955 void normalize_rt_tasks(void)
7956 {
7957 struct task_struct *g, *p;
7958 struct sched_attr attr = {
7959 .sched_policy = SCHED_NORMAL,
7960 };
7961
7962 read_lock(&tasklist_lock);
7963 for_each_process_thread(g, p) {
7964 /*
7965 * Only normalize user tasks:
7966 */
7967 if (p->flags & PF_KTHREAD)
7968 continue;
7969
7970 p->se.exec_start = 0;
7971 schedstat_set(p->se.statistics.wait_start, 0);
7972 schedstat_set(p->se.statistics.sleep_start, 0);
7973 schedstat_set(p->se.statistics.block_start, 0);
7974
7975 if (!dl_task(p) && !rt_task(p)) {
7976 /*
7977 * Renice negative nice level userspace
7978 * tasks back to 0:
7979 */
7980 if (task_nice(p) < 0)
7981 set_user_nice(p, 0);
7982 continue;
7983 }
7984
7985 __sched_setscheduler(p, &attr, false, false);
7986 }
7987 read_unlock(&tasklist_lock);
7988 }
7989
7990 #endif /* CONFIG_MAGIC_SYSRQ */
7991
7992 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7993 /*
7994 * These functions are only useful for the IA64 MCA handling, or kdb.
7995 *
7996 * They can only be called when the whole system has been
7997 * stopped - every CPU needs to be quiescent, and no scheduling
7998 * activity can take place. Using them for anything else would
7999 * be a serious bug, and as a result, they aren't even visible
8000 * under any other configuration.
8001 */
8002
8003 /**
8004 * curr_task - return the current task for a given CPU.
8005 * @cpu: the processor in question.
8006 *
8007 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8008 *
8009 * Return: The current task for @cpu.
8010 */
8011 struct task_struct *curr_task(int cpu)
8012 {
8013 return cpu_curr(cpu);
8014 }
8015
8016 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8017
8018 #ifdef CONFIG_IA64
8019 /**
8020 * ia64_set_curr_task - set the current task for a given CPU.
8021 * @cpu: the processor in question.
8022 * @p: the task pointer to set.
8023 *
8024 * Description: This function must only be used when non-maskable interrupts
8025 * are serviced on a separate stack. It allows the architecture to switch the
8026 * notion of the current task on a CPU in a non-blocking manner. This function
8027 * must be called with all CPU's synchronized, and interrupts disabled, the
8028 * and caller must save the original value of the current task (see
8029 * curr_task() above) and restore that value before reenabling interrupts and
8030 * re-starting the system.
8031 *
8032 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8033 */
8034 void ia64_set_curr_task(int cpu, struct task_struct *p)
8035 {
8036 cpu_curr(cpu) = p;
8037 }
8038
8039 #endif
8040
8041 #ifdef CONFIG_CGROUP_SCHED
8042 /* task_group_lock serializes the addition/removal of task groups */
8043 static DEFINE_SPINLOCK(task_group_lock);
8044
8045 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8046 struct task_group *parent)
8047 {
8048 #ifdef CONFIG_UCLAMP_TASK_GROUP
8049 enum uclamp_id clamp_id;
8050
8051 for_each_clamp_id(clamp_id) {
8052 uclamp_se_set(&tg->uclamp_req[clamp_id],
8053 uclamp_none(clamp_id), false);
8054 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8055 }
8056 #endif
8057 }
8058
8059 static void sched_free_group(struct task_group *tg)
8060 {
8061 free_fair_sched_group(tg);
8062 free_rt_sched_group(tg);
8063 autogroup_free(tg);
8064 kmem_cache_free(task_group_cache, tg);
8065 }
8066
8067 /* allocate runqueue etc for a new task group */
8068 struct task_group *sched_create_group(struct task_group *parent)
8069 {
8070 struct task_group *tg;
8071
8072 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8073 if (!tg)
8074 return ERR_PTR(-ENOMEM);
8075
8076 if (!alloc_fair_sched_group(tg, parent))
8077 goto err;
8078
8079 if (!alloc_rt_sched_group(tg, parent))
8080 goto err;
8081
8082 alloc_uclamp_sched_group(tg, parent);
8083
8084 return tg;
8085
8086 err:
8087 sched_free_group(tg);
8088 return ERR_PTR(-ENOMEM);
8089 }
8090
8091 void sched_online_group(struct task_group *tg, struct task_group *parent)
8092 {
8093 unsigned long flags;
8094
8095 spin_lock_irqsave(&task_group_lock, flags);
8096 list_add_rcu(&tg->list, &task_groups);
8097
8098 /* Root should already exist: */
8099 WARN_ON(!parent);
8100
8101 tg->parent = parent;
8102 INIT_LIST_HEAD(&tg->children);
8103 list_add_rcu(&tg->siblings, &parent->children);
8104 spin_unlock_irqrestore(&task_group_lock, flags);
8105
8106 online_fair_sched_group(tg);
8107 }
8108
8109 /* rcu callback to free various structures associated with a task group */
8110 static void sched_free_group_rcu(struct rcu_head *rhp)
8111 {
8112 /* Now it should be safe to free those cfs_rqs: */
8113 sched_free_group(container_of(rhp, struct task_group, rcu));
8114 }
8115
8116 void sched_destroy_group(struct task_group *tg)
8117 {
8118 /* Wait for possible concurrent references to cfs_rqs complete: */
8119 call_rcu(&tg->rcu, sched_free_group_rcu);
8120 }
8121
8122 void sched_offline_group(struct task_group *tg)
8123 {
8124 unsigned long flags;
8125
8126 /* End participation in shares distribution: */
8127 unregister_fair_sched_group(tg);
8128
8129 spin_lock_irqsave(&task_group_lock, flags);
8130 list_del_rcu(&tg->list);
8131 list_del_rcu(&tg->siblings);
8132 spin_unlock_irqrestore(&task_group_lock, flags);
8133 }
8134
8135 static void sched_change_group(struct task_struct *tsk, int type)
8136 {
8137 struct task_group *tg;
8138
8139 /*
8140 * All callers are synchronized by task_rq_lock(); we do not use RCU
8141 * which is pointless here. Thus, we pass "true" to task_css_check()
8142 * to prevent lockdep warnings.
8143 */
8144 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8145 struct task_group, css);
8146 tg = autogroup_task_group(tsk, tg);
8147 tsk->sched_task_group = tg;
8148
8149 #ifdef CONFIG_FAIR_GROUP_SCHED
8150 if (tsk->sched_class->task_change_group)
8151 tsk->sched_class->task_change_group(tsk, type);
8152 else
8153 #endif
8154 set_task_rq(tsk, task_cpu(tsk));
8155 }
8156
8157 /*
8158 * Change task's runqueue when it moves between groups.
8159 *
8160 * The caller of this function should have put the task in its new group by
8161 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8162 * its new group.
8163 */
8164 void sched_move_task(struct task_struct *tsk)
8165 {
8166 int queued, running, queue_flags =
8167 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8168 struct rq_flags rf;
8169 struct rq *rq;
8170
8171 rq = task_rq_lock(tsk, &rf);
8172 update_rq_clock(rq);
8173
8174 running = task_current(rq, tsk);
8175 queued = task_on_rq_queued(tsk);
8176
8177 if (queued)
8178 dequeue_task(rq, tsk, queue_flags);
8179 if (running)
8180 put_prev_task(rq, tsk);
8181
8182 sched_change_group(tsk, TASK_MOVE_GROUP);
8183
8184 if (queued)
8185 enqueue_task(rq, tsk, queue_flags);
8186 if (running) {
8187 set_next_task(rq, tsk);
8188 /*
8189 * After changing group, the running task may have joined a
8190 * throttled one but it's still the running task. Trigger a
8191 * resched to make sure that task can still run.
8192 */
8193 resched_curr(rq);
8194 }
8195
8196 task_rq_unlock(rq, tsk, &rf);
8197 }
8198
8199 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8200 {
8201 return css ? container_of(css, struct task_group, css) : NULL;
8202 }
8203
8204 static struct cgroup_subsys_state *
8205 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8206 {
8207 struct task_group *parent = css_tg(parent_css);
8208 struct task_group *tg;
8209
8210 if (!parent) {
8211 /* This is early initialization for the top cgroup */
8212 return &root_task_group.css;
8213 }
8214
8215 tg = sched_create_group(parent);
8216 if (IS_ERR(tg))
8217 return ERR_PTR(-ENOMEM);
8218
8219 return &tg->css;
8220 }
8221
8222 /* Expose task group only after completing cgroup initialization */
8223 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8224 {
8225 struct task_group *tg = css_tg(css);
8226 struct task_group *parent = css_tg(css->parent);
8227
8228 if (parent)
8229 sched_online_group(tg, parent);
8230
8231 #ifdef CONFIG_UCLAMP_TASK_GROUP
8232 /* Propagate the effective uclamp value for the new group */
8233 cpu_util_update_eff(css);
8234 #endif
8235
8236 return 0;
8237 }
8238
8239 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8240 {
8241 struct task_group *tg = css_tg(css);
8242
8243 sched_offline_group(tg);
8244 }
8245
8246 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8247 {
8248 struct task_group *tg = css_tg(css);
8249
8250 /*
8251 * Relies on the RCU grace period between css_released() and this.
8252 */
8253 sched_free_group(tg);
8254 }
8255
8256 /*
8257 * This is called before wake_up_new_task(), therefore we really only
8258 * have to set its group bits, all the other stuff does not apply.
8259 */
8260 static void cpu_cgroup_fork(struct task_struct *task)
8261 {
8262 struct rq_flags rf;
8263 struct rq *rq;
8264
8265 rq = task_rq_lock(task, &rf);
8266
8267 update_rq_clock(rq);
8268 sched_change_group(task, TASK_SET_GROUP);
8269
8270 task_rq_unlock(rq, task, &rf);
8271 }
8272
8273 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8274 {
8275 struct task_struct *task;
8276 struct cgroup_subsys_state *css;
8277 int ret = 0;
8278
8279 cgroup_taskset_for_each(task, css, tset) {
8280 #ifdef CONFIG_RT_GROUP_SCHED
8281 if (!sched_rt_can_attach(css_tg(css), task))
8282 return -EINVAL;
8283 #endif
8284 /*
8285 * Serialize against wake_up_new_task() such that if it's
8286 * running, we're sure to observe its full state.
8287 */
8288 raw_spin_lock_irq(&task->pi_lock);
8289 /*
8290 * Avoid calling sched_move_task() before wake_up_new_task()
8291 * has happened. This would lead to problems with PELT, due to
8292 * move wanting to detach+attach while we're not attached yet.
8293 */
8294 if (task->state == TASK_NEW)
8295 ret = -EINVAL;
8296 raw_spin_unlock_irq(&task->pi_lock);
8297
8298 if (ret)
8299 break;
8300 }
8301 return ret;
8302 }
8303
8304 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8305 {
8306 struct task_struct *task;
8307 struct cgroup_subsys_state *css;
8308
8309 cgroup_taskset_for_each(task, css, tset)
8310 sched_move_task(task);
8311 }
8312
8313 #ifdef CONFIG_UCLAMP_TASK_GROUP
8314 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8315 {
8316 struct cgroup_subsys_state *top_css = css;
8317 struct uclamp_se *uc_parent = NULL;
8318 struct uclamp_se *uc_se = NULL;
8319 unsigned int eff[UCLAMP_CNT];
8320 enum uclamp_id clamp_id;
8321 unsigned int clamps;
8322
8323 css_for_each_descendant_pre(css, top_css) {
8324 uc_parent = css_tg(css)->parent
8325 ? css_tg(css)->parent->uclamp : NULL;
8326
8327 for_each_clamp_id(clamp_id) {
8328 /* Assume effective clamps matches requested clamps */
8329 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8330 /* Cap effective clamps with parent's effective clamps */
8331 if (uc_parent &&
8332 eff[clamp_id] > uc_parent[clamp_id].value) {
8333 eff[clamp_id] = uc_parent[clamp_id].value;
8334 }
8335 }
8336 /* Ensure protection is always capped by limit */
8337 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8338
8339 /* Propagate most restrictive effective clamps */
8340 clamps = 0x0;
8341 uc_se = css_tg(css)->uclamp;
8342 for_each_clamp_id(clamp_id) {
8343 if (eff[clamp_id] == uc_se[clamp_id].value)
8344 continue;
8345 uc_se[clamp_id].value = eff[clamp_id];
8346 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8347 clamps |= (0x1 << clamp_id);
8348 }
8349 if (!clamps) {
8350 css = css_rightmost_descendant(css);
8351 continue;
8352 }
8353
8354 /* Immediately update descendants RUNNABLE tasks */
8355 uclamp_update_active_tasks(css, clamps);
8356 }
8357 }
8358
8359 /*
8360 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8361 * C expression. Since there is no way to convert a macro argument (N) into a
8362 * character constant, use two levels of macros.
8363 */
8364 #define _POW10(exp) ((unsigned int)1e##exp)
8365 #define POW10(exp) _POW10(exp)
8366
8367 struct uclamp_request {
8368 #define UCLAMP_PERCENT_SHIFT 2
8369 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
8370 s64 percent;
8371 u64 util;
8372 int ret;
8373 };
8374
8375 static inline struct uclamp_request
8376 capacity_from_percent(char *buf)
8377 {
8378 struct uclamp_request req = {
8379 .percent = UCLAMP_PERCENT_SCALE,
8380 .util = SCHED_CAPACITY_SCALE,
8381 .ret = 0,
8382 };
8383
8384 buf = strim(buf);
8385 if (strcmp(buf, "max")) {
8386 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8387 &req.percent);
8388 if (req.ret)
8389 return req;
8390 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8391 req.ret = -ERANGE;
8392 return req;
8393 }
8394
8395 req.util = req.percent << SCHED_CAPACITY_SHIFT;
8396 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8397 }
8398
8399 return req;
8400 }
8401
8402 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8403 size_t nbytes, loff_t off,
8404 enum uclamp_id clamp_id)
8405 {
8406 struct uclamp_request req;
8407 struct task_group *tg;
8408
8409 req = capacity_from_percent(buf);
8410 if (req.ret)
8411 return req.ret;
8412
8413 static_branch_enable(&sched_uclamp_used);
8414
8415 mutex_lock(&uclamp_mutex);
8416 rcu_read_lock();
8417
8418 tg = css_tg(of_css(of));
8419 if (tg->uclamp_req[clamp_id].value != req.util)
8420 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8421
8422 /*
8423 * Because of not recoverable conversion rounding we keep track of the
8424 * exact requested value
8425 */
8426 tg->uclamp_pct[clamp_id] = req.percent;
8427
8428 /* Update effective clamps to track the most restrictive value */
8429 cpu_util_update_eff(of_css(of));
8430
8431 rcu_read_unlock();
8432 mutex_unlock(&uclamp_mutex);
8433
8434 return nbytes;
8435 }
8436
8437 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8438 char *buf, size_t nbytes,
8439 loff_t off)
8440 {
8441 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8442 }
8443
8444 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8445 char *buf, size_t nbytes,
8446 loff_t off)
8447 {
8448 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8449 }
8450
8451 static inline void cpu_uclamp_print(struct seq_file *sf,
8452 enum uclamp_id clamp_id)
8453 {
8454 struct task_group *tg;
8455 u64 util_clamp;
8456 u64 percent;
8457 u32 rem;
8458
8459 rcu_read_lock();
8460 tg = css_tg(seq_css(sf));
8461 util_clamp = tg->uclamp_req[clamp_id].value;
8462 rcu_read_unlock();
8463
8464 if (util_clamp == SCHED_CAPACITY_SCALE) {
8465 seq_puts(sf, "max\n");
8466 return;
8467 }
8468
8469 percent = tg->uclamp_pct[clamp_id];
8470 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8471 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8472 }
8473
8474 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8475 {
8476 cpu_uclamp_print(sf, UCLAMP_MIN);
8477 return 0;
8478 }
8479
8480 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8481 {
8482 cpu_uclamp_print(sf, UCLAMP_MAX);
8483 return 0;
8484 }
8485 #endif /* CONFIG_UCLAMP_TASK_GROUP */
8486
8487 #ifdef CONFIG_FAIR_GROUP_SCHED
8488 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8489 struct cftype *cftype, u64 shareval)
8490 {
8491 if (shareval > scale_load_down(ULONG_MAX))
8492 shareval = MAX_SHARES;
8493 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8494 }
8495
8496 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8497 struct cftype *cft)
8498 {
8499 struct task_group *tg = css_tg(css);
8500
8501 return (u64) scale_load_down(tg->shares);
8502 }
8503
8504 #ifdef CONFIG_CFS_BANDWIDTH
8505 static DEFINE_MUTEX(cfs_constraints_mutex);
8506
8507 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8508 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8509 /* More than 203 days if BW_SHIFT equals 20. */
8510 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
8511
8512 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8513
8514 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8515 {
8516 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8517 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8518
8519 if (tg == &root_task_group)
8520 return -EINVAL;
8521
8522 /*
8523 * Ensure we have at some amount of bandwidth every period. This is
8524 * to prevent reaching a state of large arrears when throttled via
8525 * entity_tick() resulting in prolonged exit starvation.
8526 */
8527 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8528 return -EINVAL;
8529
8530 /*
8531 * Likewise, bound things on the otherside by preventing insane quota
8532 * periods. This also allows us to normalize in computing quota
8533 * feasibility.
8534 */
8535 if (period > max_cfs_quota_period)
8536 return -EINVAL;
8537
8538 /*
8539 * Bound quota to defend quota against overflow during bandwidth shift.
8540 */
8541 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8542 return -EINVAL;
8543
8544 /*
8545 * Prevent race between setting of cfs_rq->runtime_enabled and
8546 * unthrottle_offline_cfs_rqs().
8547 */
8548 get_online_cpus();
8549 mutex_lock(&cfs_constraints_mutex);
8550 ret = __cfs_schedulable(tg, period, quota);
8551 if (ret)
8552 goto out_unlock;
8553
8554 runtime_enabled = quota != RUNTIME_INF;
8555 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8556 /*
8557 * If we need to toggle cfs_bandwidth_used, off->on must occur
8558 * before making related changes, and on->off must occur afterwards
8559 */
8560 if (runtime_enabled && !runtime_was_enabled)
8561 cfs_bandwidth_usage_inc();
8562 raw_spin_lock_irq(&cfs_b->lock);
8563 cfs_b->period = ns_to_ktime(period);
8564 cfs_b->quota = quota;
8565
8566 __refill_cfs_bandwidth_runtime(cfs_b);
8567
8568 /* Restart the period timer (if active) to handle new period expiry: */
8569 if (runtime_enabled)
8570 start_cfs_bandwidth(cfs_b);
8571
8572 raw_spin_unlock_irq(&cfs_b->lock);
8573
8574 for_each_online_cpu(i) {
8575 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8576 struct rq *rq = cfs_rq->rq;
8577 struct rq_flags rf;
8578
8579 rq_lock_irq(rq, &rf);
8580 cfs_rq->runtime_enabled = runtime_enabled;
8581 cfs_rq->runtime_remaining = 0;
8582
8583 if (cfs_rq->throttled)
8584 unthrottle_cfs_rq(cfs_rq);
8585 rq_unlock_irq(rq, &rf);
8586 }
8587 if (runtime_was_enabled && !runtime_enabled)
8588 cfs_bandwidth_usage_dec();
8589 out_unlock:
8590 mutex_unlock(&cfs_constraints_mutex);
8591 put_online_cpus();
8592
8593 return ret;
8594 }
8595
8596 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8597 {
8598 u64 quota, period;
8599
8600 period = ktime_to_ns(tg->cfs_bandwidth.period);
8601 if (cfs_quota_us < 0)
8602 quota = RUNTIME_INF;
8603 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
8604 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8605 else
8606 return -EINVAL;
8607
8608 return tg_set_cfs_bandwidth(tg, period, quota);
8609 }
8610
8611 static long tg_get_cfs_quota(struct task_group *tg)
8612 {
8613 u64 quota_us;
8614
8615 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8616 return -1;
8617
8618 quota_us = tg->cfs_bandwidth.quota;
8619 do_div(quota_us, NSEC_PER_USEC);
8620
8621 return quota_us;
8622 }
8623
8624 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8625 {
8626 u64 quota, period;
8627
8628 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8629 return -EINVAL;
8630
8631 period = (u64)cfs_period_us * NSEC_PER_USEC;
8632 quota = tg->cfs_bandwidth.quota;
8633
8634 return tg_set_cfs_bandwidth(tg, period, quota);
8635 }
8636
8637 static long tg_get_cfs_period(struct task_group *tg)
8638 {
8639 u64 cfs_period_us;
8640
8641 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8642 do_div(cfs_period_us, NSEC_PER_USEC);
8643
8644 return cfs_period_us;
8645 }
8646
8647 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8648 struct cftype *cft)
8649 {
8650 return tg_get_cfs_quota(css_tg(css));
8651 }
8652
8653 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8654 struct cftype *cftype, s64 cfs_quota_us)
8655 {
8656 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8657 }
8658
8659 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8660 struct cftype *cft)
8661 {
8662 return tg_get_cfs_period(css_tg(css));
8663 }
8664
8665 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8666 struct cftype *cftype, u64 cfs_period_us)
8667 {
8668 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8669 }
8670
8671 struct cfs_schedulable_data {
8672 struct task_group *tg;
8673 u64 period, quota;
8674 };
8675
8676 /*
8677 * normalize group quota/period to be quota/max_period
8678 * note: units are usecs
8679 */
8680 static u64 normalize_cfs_quota(struct task_group *tg,
8681 struct cfs_schedulable_data *d)
8682 {
8683 u64 quota, period;
8684
8685 if (tg == d->tg) {
8686 period = d->period;
8687 quota = d->quota;
8688 } else {
8689 period = tg_get_cfs_period(tg);
8690 quota = tg_get_cfs_quota(tg);
8691 }
8692
8693 /* note: these should typically be equivalent */
8694 if (quota == RUNTIME_INF || quota == -1)
8695 return RUNTIME_INF;
8696
8697 return to_ratio(period, quota);
8698 }
8699
8700 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8701 {
8702 struct cfs_schedulable_data *d = data;
8703 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8704 s64 quota = 0, parent_quota = -1;
8705
8706 if (!tg->parent) {
8707 quota = RUNTIME_INF;
8708 } else {
8709 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8710
8711 quota = normalize_cfs_quota(tg, d);
8712 parent_quota = parent_b->hierarchical_quota;
8713
8714 /*
8715 * Ensure max(child_quota) <= parent_quota. On cgroup2,
8716 * always take the min. On cgroup1, only inherit when no
8717 * limit is set:
8718 */
8719 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8720 quota = min(quota, parent_quota);
8721 } else {
8722 if (quota == RUNTIME_INF)
8723 quota = parent_quota;
8724 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8725 return -EINVAL;
8726 }
8727 }
8728 cfs_b->hierarchical_quota = quota;
8729
8730 return 0;
8731 }
8732
8733 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8734 {
8735 int ret;
8736 struct cfs_schedulable_data data = {
8737 .tg = tg,
8738 .period = period,
8739 .quota = quota,
8740 };
8741
8742 if (quota != RUNTIME_INF) {
8743 do_div(data.period, NSEC_PER_USEC);
8744 do_div(data.quota, NSEC_PER_USEC);
8745 }
8746
8747 rcu_read_lock();
8748 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8749 rcu_read_unlock();
8750
8751 return ret;
8752 }
8753
8754 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8755 {
8756 struct task_group *tg = css_tg(seq_css(sf));
8757 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8758
8759 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8760 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8761 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8762
8763 if (schedstat_enabled() && tg != &root_task_group) {
8764 u64 ws = 0;
8765 int i;
8766
8767 for_each_possible_cpu(i)
8768 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8769
8770 seq_printf(sf, "wait_sum %llu\n", ws);
8771 }
8772
8773 return 0;
8774 }
8775 #endif /* CONFIG_CFS_BANDWIDTH */
8776 #endif /* CONFIG_FAIR_GROUP_SCHED */
8777
8778 #ifdef CONFIG_RT_GROUP_SCHED
8779 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8780 struct cftype *cft, s64 val)
8781 {
8782 return sched_group_set_rt_runtime(css_tg(css), val);
8783 }
8784
8785 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8786 struct cftype *cft)
8787 {
8788 return sched_group_rt_runtime(css_tg(css));
8789 }
8790
8791 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8792 struct cftype *cftype, u64 rt_period_us)
8793 {
8794 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8795 }
8796
8797 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8798 struct cftype *cft)
8799 {
8800 return sched_group_rt_period(css_tg(css));
8801 }
8802 #endif /* CONFIG_RT_GROUP_SCHED */
8803
8804 static struct cftype cpu_legacy_files[] = {
8805 #ifdef CONFIG_FAIR_GROUP_SCHED
8806 {
8807 .name = "shares",
8808 .read_u64 = cpu_shares_read_u64,
8809 .write_u64 = cpu_shares_write_u64,
8810 },
8811 #endif
8812 #ifdef CONFIG_CFS_BANDWIDTH
8813 {
8814 .name = "cfs_quota_us",
8815 .read_s64 = cpu_cfs_quota_read_s64,
8816 .write_s64 = cpu_cfs_quota_write_s64,
8817 },
8818 {
8819 .name = "cfs_period_us",
8820 .read_u64 = cpu_cfs_period_read_u64,
8821 .write_u64 = cpu_cfs_period_write_u64,
8822 },
8823 {
8824 .name = "stat",
8825 .seq_show = cpu_cfs_stat_show,
8826 },
8827 #endif
8828 #ifdef CONFIG_RT_GROUP_SCHED
8829 {
8830 .name = "rt_runtime_us",
8831 .read_s64 = cpu_rt_runtime_read,
8832 .write_s64 = cpu_rt_runtime_write,
8833 },
8834 {
8835 .name = "rt_period_us",
8836 .read_u64 = cpu_rt_period_read_uint,
8837 .write_u64 = cpu_rt_period_write_uint,
8838 },
8839 #endif
8840 #ifdef CONFIG_UCLAMP_TASK_GROUP
8841 {
8842 .name = "uclamp.min",
8843 .flags = CFTYPE_NOT_ON_ROOT,
8844 .seq_show = cpu_uclamp_min_show,
8845 .write = cpu_uclamp_min_write,
8846 },
8847 {
8848 .name = "uclamp.max",
8849 .flags = CFTYPE_NOT_ON_ROOT,
8850 .seq_show = cpu_uclamp_max_show,
8851 .write = cpu_uclamp_max_write,
8852 },
8853 #endif
8854 { } /* Terminate */
8855 };
8856
8857 static int cpu_extra_stat_show(struct seq_file *sf,
8858 struct cgroup_subsys_state *css)
8859 {
8860 #ifdef CONFIG_CFS_BANDWIDTH
8861 {
8862 struct task_group *tg = css_tg(css);
8863 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8864 u64 throttled_usec;
8865
8866 throttled_usec = cfs_b->throttled_time;
8867 do_div(throttled_usec, NSEC_PER_USEC);
8868
8869 seq_printf(sf, "nr_periods %d\n"
8870 "nr_throttled %d\n"
8871 "throttled_usec %llu\n",
8872 cfs_b->nr_periods, cfs_b->nr_throttled,
8873 throttled_usec);
8874 }
8875 #endif
8876 return 0;
8877 }
8878
8879 #ifdef CONFIG_FAIR_GROUP_SCHED
8880 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8881 struct cftype *cft)
8882 {
8883 struct task_group *tg = css_tg(css);
8884 u64 weight = scale_load_down(tg->shares);
8885
8886 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8887 }
8888
8889 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8890 struct cftype *cft, u64 weight)
8891 {
8892 /*
8893 * cgroup weight knobs should use the common MIN, DFL and MAX
8894 * values which are 1, 100 and 10000 respectively. While it loses
8895 * a bit of range on both ends, it maps pretty well onto the shares
8896 * value used by scheduler and the round-trip conversions preserve
8897 * the original value over the entire range.
8898 */
8899 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8900 return -ERANGE;
8901
8902 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8903
8904 return sched_group_set_shares(css_tg(css), scale_load(weight));
8905 }
8906
8907 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8908 struct cftype *cft)
8909 {
8910 unsigned long weight = scale_load_down(css_tg(css)->shares);
8911 int last_delta = INT_MAX;
8912 int prio, delta;
8913
8914 /* find the closest nice value to the current weight */
8915 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8916 delta = abs(sched_prio_to_weight[prio] - weight);
8917 if (delta >= last_delta)
8918 break;
8919 last_delta = delta;
8920 }
8921
8922 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8923 }
8924
8925 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8926 struct cftype *cft, s64 nice)
8927 {
8928 unsigned long weight;
8929 int idx;
8930
8931 if (nice < MIN_NICE || nice > MAX_NICE)
8932 return -ERANGE;
8933
8934 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8935 idx = array_index_nospec(idx, 40);
8936 weight = sched_prio_to_weight[idx];
8937
8938 return sched_group_set_shares(css_tg(css), scale_load(weight));
8939 }
8940 #endif
8941
8942 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8943 long period, long quota)
8944 {
8945 if (quota < 0)
8946 seq_puts(sf, "max");
8947 else
8948 seq_printf(sf, "%ld", quota);
8949
8950 seq_printf(sf, " %ld\n", period);
8951 }
8952
8953 /* caller should put the current value in *@periodp before calling */
8954 static int __maybe_unused cpu_period_quota_parse(char *buf,
8955 u64 *periodp, u64 *quotap)
8956 {
8957 char tok[21]; /* U64_MAX */
8958
8959 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
8960 return -EINVAL;
8961
8962 *periodp *= NSEC_PER_USEC;
8963
8964 if (sscanf(tok, "%llu", quotap))
8965 *quotap *= NSEC_PER_USEC;
8966 else if (!strcmp(tok, "max"))
8967 *quotap = RUNTIME_INF;
8968 else
8969 return -EINVAL;
8970
8971 return 0;
8972 }
8973
8974 #ifdef CONFIG_CFS_BANDWIDTH
8975 static int cpu_max_show(struct seq_file *sf, void *v)
8976 {
8977 struct task_group *tg = css_tg(seq_css(sf));
8978
8979 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
8980 return 0;
8981 }
8982
8983 static ssize_t cpu_max_write(struct kernfs_open_file *of,
8984 char *buf, size_t nbytes, loff_t off)
8985 {
8986 struct task_group *tg = css_tg(of_css(of));
8987 u64 period = tg_get_cfs_period(tg);
8988 u64 quota;
8989 int ret;
8990
8991 ret = cpu_period_quota_parse(buf, &period, &quota);
8992 if (!ret)
8993 ret = tg_set_cfs_bandwidth(tg, period, quota);
8994 return ret ?: nbytes;
8995 }
8996 #endif
8997
8998 static struct cftype cpu_files[] = {
8999 #ifdef CONFIG_FAIR_GROUP_SCHED
9000 {
9001 .name = "weight",
9002 .flags = CFTYPE_NOT_ON_ROOT,
9003 .read_u64 = cpu_weight_read_u64,
9004 .write_u64 = cpu_weight_write_u64,
9005 },
9006 {
9007 .name = "weight.nice",
9008 .flags = CFTYPE_NOT_ON_ROOT,
9009 .read_s64 = cpu_weight_nice_read_s64,
9010 .write_s64 = cpu_weight_nice_write_s64,
9011 },
9012 #endif
9013 #ifdef CONFIG_CFS_BANDWIDTH
9014 {
9015 .name = "max",
9016 .flags = CFTYPE_NOT_ON_ROOT,
9017 .seq_show = cpu_max_show,
9018 .write = cpu_max_write,
9019 },
9020 #endif
9021 #ifdef CONFIG_UCLAMP_TASK_GROUP
9022 {
9023 .name = "uclamp.min",
9024 .flags = CFTYPE_NOT_ON_ROOT,
9025 .seq_show = cpu_uclamp_min_show,
9026 .write = cpu_uclamp_min_write,
9027 },
9028 {
9029 .name = "uclamp.max",
9030 .flags = CFTYPE_NOT_ON_ROOT,
9031 .seq_show = cpu_uclamp_max_show,
9032 .write = cpu_uclamp_max_write,
9033 },
9034 #endif
9035 { } /* terminate */
9036 };
9037
9038 struct cgroup_subsys cpu_cgrp_subsys = {
9039 .css_alloc = cpu_cgroup_css_alloc,
9040 .css_online = cpu_cgroup_css_online,
9041 .css_released = cpu_cgroup_css_released,
9042 .css_free = cpu_cgroup_css_free,
9043 .css_extra_stat_show = cpu_extra_stat_show,
9044 .fork = cpu_cgroup_fork,
9045 .can_attach = cpu_cgroup_can_attach,
9046 .attach = cpu_cgroup_attach,
9047 .legacy_cftypes = cpu_legacy_files,
9048 .dfl_cftypes = cpu_files,
9049 .early_init = true,
9050 .threaded = true,
9051 };
9052
9053 #endif /* CONFIG_CGROUP_SCHED */
9054
9055 void dump_cpu_task(int cpu)
9056 {
9057 pr_info("Task dump for CPU %d:\n", cpu);
9058 sched_show_task(cpu_curr(cpu));
9059 }
9060
9061 /*
9062 * Nice levels are multiplicative, with a gentle 10% change for every
9063 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9064 * nice 1, it will get ~10% less CPU time than another CPU-bound task
9065 * that remained on nice 0.
9066 *
9067 * The "10% effect" is relative and cumulative: from _any_ nice level,
9068 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9069 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9070 * If a task goes up by ~10% and another task goes down by ~10% then
9071 * the relative distance between them is ~25%.)
9072 */
9073 const int sched_prio_to_weight[40] = {
9074 /* -20 */ 88761, 71755, 56483, 46273, 36291,
9075 /* -15 */ 29154, 23254, 18705, 14949, 11916,
9076 /* -10 */ 9548, 7620, 6100, 4904, 3906,
9077 /* -5 */ 3121, 2501, 1991, 1586, 1277,
9078 /* 0 */ 1024, 820, 655, 526, 423,
9079 /* 5 */ 335, 272, 215, 172, 137,
9080 /* 10 */ 110, 87, 70, 56, 45,
9081 /* 15 */ 36, 29, 23, 18, 15,
9082 };
9083
9084 /*
9085 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9086 *
9087 * In cases where the weight does not change often, we can use the
9088 * precalculated inverse to speed up arithmetics by turning divisions
9089 * into multiplications:
9090 */
9091 const u32 sched_prio_to_wmult[40] = {
9092 /* -20 */ 48388, 59856, 76040, 92818, 118348,
9093 /* -15 */ 147320, 184698, 229616, 287308, 360437,
9094 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
9095 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
9096 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
9097 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
9098 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
9099 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9100 };
9101
9102 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9103 {
9104 trace_sched_update_nr_running_tp(rq, count);
9105 }