]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/core.c
Merge branch 'linux-4.15' of git://github.com/skeggsb/linux into drm-fixes
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Core kernel scheduler code and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 */
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/wait_bit.h>
14 #include <linux/cpuset.h>
15 #include <linux/delayacct.h>
16 #include <linux/init_task.h>
17 #include <linux/context_tracking.h>
18 #include <linux/rcupdate_wait.h>
19 #include <linux/compat.h>
20
21 #include <linux/blkdev.h>
22 #include <linux/kprobes.h>
23 #include <linux/mmu_context.h>
24 #include <linux/module.h>
25 #include <linux/nmi.h>
26 #include <linux/prefetch.h>
27 #include <linux/profile.h>
28 #include <linux/security.h>
29 #include <linux/syscalls.h>
30 #include <linux/sched/isolation.h>
31
32 #include <asm/switch_to.h>
33 #include <asm/tlb.h>
34 #ifdef CONFIG_PARAVIRT
35 #include <asm/paravirt.h>
36 #endif
37
38 #include "sched.h"
39 #include "../workqueue_internal.h"
40 #include "../smpboot.h"
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/sched.h>
44
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46
47 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
48 /*
49 * Debugging: various feature bits
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
54 */
55 #define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 0;
60 #undef SCHED_FEAT
61 #endif
62
63 /*
64 * Number of tasks to iterate in a single balance run.
65 * Limited because this is done with IRQs disabled.
66 */
67 const_debug unsigned int sysctl_sched_nr_migrate = 32;
68
69 /*
70 * period over which we average the RT time consumption, measured
71 * in ms.
72 *
73 * default: 1s
74 */
75 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
76
77 /*
78 * period over which we measure -rt task CPU usage in us.
79 * default: 1s
80 */
81 unsigned int sysctl_sched_rt_period = 1000000;
82
83 __read_mostly int scheduler_running;
84
85 /*
86 * part of the period that we allow rt tasks to run in us.
87 * default: 0.95s
88 */
89 int sysctl_sched_rt_runtime = 950000;
90
91 /*
92 * __task_rq_lock - lock the rq @p resides on.
93 */
94 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
95 __acquires(rq->lock)
96 {
97 struct rq *rq;
98
99 lockdep_assert_held(&p->pi_lock);
100
101 for (;;) {
102 rq = task_rq(p);
103 raw_spin_lock(&rq->lock);
104 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
105 rq_pin_lock(rq, rf);
106 return rq;
107 }
108 raw_spin_unlock(&rq->lock);
109
110 while (unlikely(task_on_rq_migrating(p)))
111 cpu_relax();
112 }
113 }
114
115 /*
116 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
117 */
118 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
119 __acquires(p->pi_lock)
120 __acquires(rq->lock)
121 {
122 struct rq *rq;
123
124 for (;;) {
125 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
126 rq = task_rq(p);
127 raw_spin_lock(&rq->lock);
128 /*
129 * move_queued_task() task_rq_lock()
130 *
131 * ACQUIRE (rq->lock)
132 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
133 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
134 * [S] ->cpu = new_cpu [L] task_rq()
135 * [L] ->on_rq
136 * RELEASE (rq->lock)
137 *
138 * If we observe the old cpu in task_rq_lock, the acquire of
139 * the old rq->lock will fully serialize against the stores.
140 *
141 * If we observe the new CPU in task_rq_lock, the acquire will
142 * pair with the WMB to ensure we must then also see migrating.
143 */
144 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
145 rq_pin_lock(rq, rf);
146 return rq;
147 }
148 raw_spin_unlock(&rq->lock);
149 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
150
151 while (unlikely(task_on_rq_migrating(p)))
152 cpu_relax();
153 }
154 }
155
156 /*
157 * RQ-clock updating methods:
158 */
159
160 static void update_rq_clock_task(struct rq *rq, s64 delta)
161 {
162 /*
163 * In theory, the compile should just see 0 here, and optimize out the call
164 * to sched_rt_avg_update. But I don't trust it...
165 */
166 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
167 s64 steal = 0, irq_delta = 0;
168 #endif
169 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
170 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
171
172 /*
173 * Since irq_time is only updated on {soft,}irq_exit, we might run into
174 * this case when a previous update_rq_clock() happened inside a
175 * {soft,}irq region.
176 *
177 * When this happens, we stop ->clock_task and only update the
178 * prev_irq_time stamp to account for the part that fit, so that a next
179 * update will consume the rest. This ensures ->clock_task is
180 * monotonic.
181 *
182 * It does however cause some slight miss-attribution of {soft,}irq
183 * time, a more accurate solution would be to update the irq_time using
184 * the current rq->clock timestamp, except that would require using
185 * atomic ops.
186 */
187 if (irq_delta > delta)
188 irq_delta = delta;
189
190 rq->prev_irq_time += irq_delta;
191 delta -= irq_delta;
192 #endif
193 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
194 if (static_key_false((&paravirt_steal_rq_enabled))) {
195 steal = paravirt_steal_clock(cpu_of(rq));
196 steal -= rq->prev_steal_time_rq;
197
198 if (unlikely(steal > delta))
199 steal = delta;
200
201 rq->prev_steal_time_rq += steal;
202 delta -= steal;
203 }
204 #endif
205
206 rq->clock_task += delta;
207
208 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
209 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
210 sched_rt_avg_update(rq, irq_delta + steal);
211 #endif
212 }
213
214 void update_rq_clock(struct rq *rq)
215 {
216 s64 delta;
217
218 lockdep_assert_held(&rq->lock);
219
220 if (rq->clock_update_flags & RQCF_ACT_SKIP)
221 return;
222
223 #ifdef CONFIG_SCHED_DEBUG
224 if (sched_feat(WARN_DOUBLE_CLOCK))
225 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
226 rq->clock_update_flags |= RQCF_UPDATED;
227 #endif
228
229 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
230 if (delta < 0)
231 return;
232 rq->clock += delta;
233 update_rq_clock_task(rq, delta);
234 }
235
236
237 #ifdef CONFIG_SCHED_HRTICK
238 /*
239 * Use HR-timers to deliver accurate preemption points.
240 */
241
242 static void hrtick_clear(struct rq *rq)
243 {
244 if (hrtimer_active(&rq->hrtick_timer))
245 hrtimer_cancel(&rq->hrtick_timer);
246 }
247
248 /*
249 * High-resolution timer tick.
250 * Runs from hardirq context with interrupts disabled.
251 */
252 static enum hrtimer_restart hrtick(struct hrtimer *timer)
253 {
254 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
255 struct rq_flags rf;
256
257 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
258
259 rq_lock(rq, &rf);
260 update_rq_clock(rq);
261 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
262 rq_unlock(rq, &rf);
263
264 return HRTIMER_NORESTART;
265 }
266
267 #ifdef CONFIG_SMP
268
269 static void __hrtick_restart(struct rq *rq)
270 {
271 struct hrtimer *timer = &rq->hrtick_timer;
272
273 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
274 }
275
276 /*
277 * called from hardirq (IPI) context
278 */
279 static void __hrtick_start(void *arg)
280 {
281 struct rq *rq = arg;
282 struct rq_flags rf;
283
284 rq_lock(rq, &rf);
285 __hrtick_restart(rq);
286 rq->hrtick_csd_pending = 0;
287 rq_unlock(rq, &rf);
288 }
289
290 /*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
295 void hrtick_start(struct rq *rq, u64 delay)
296 {
297 struct hrtimer *timer = &rq->hrtick_timer;
298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
307
308 hrtimer_set_expires(timer, time);
309
310 if (rq == this_rq()) {
311 __hrtick_restart(rq);
312 } else if (!rq->hrtick_csd_pending) {
313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 rq->hrtick_csd_pending = 1;
315 }
316 }
317
318 #else
319 /*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
324 void hrtick_start(struct rq *rq, u64 delay)
325 {
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
333 }
334 #endif /* CONFIG_SMP */
335
336 static void init_rq_hrtick(struct rq *rq)
337 {
338 #ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
340
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344 #endif
345
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
348 }
349 #else /* CONFIG_SCHED_HRTICK */
350 static inline void hrtick_clear(struct rq *rq)
351 {
352 }
353
354 static inline void init_rq_hrtick(struct rq *rq)
355 {
356 }
357 #endif /* CONFIG_SCHED_HRTICK */
358
359 /*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362 #define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375 })
376
377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 /*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383 static bool set_nr_and_not_polling(struct task_struct *p)
384 {
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387 }
388
389 /*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395 static bool set_nr_if_polling(struct task_struct *p)
396 {
397 struct thread_info *ti = task_thread_info(p);
398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411 }
412
413 #else
414 static bool set_nr_and_not_polling(struct task_struct *p)
415 {
416 set_tsk_need_resched(p);
417 return true;
418 }
419
420 #ifdef CONFIG_SMP
421 static bool set_nr_if_polling(struct task_struct *p)
422 {
423 return false;
424 }
425 #endif
426 #endif
427
428 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429 {
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
438 * barrier implied by the wakeup in wake_up_q().
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450 }
451
452 void wake_up_q(struct wake_q_head *head)
453 {
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* Task can safely be re-inserted now: */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472 }
473
474 /*
475 * resched_curr - mark rq's current task 'to be rescheduled now'.
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
481 void resched_curr(struct rq *rq)
482 {
483 struct task_struct *curr = rq->curr;
484 int cpu;
485
486 lockdep_assert_held(&rq->lock);
487
488 if (test_tsk_need_resched(curr))
489 return;
490
491 cpu = cpu_of(rq);
492
493 if (cpu == smp_processor_id()) {
494 set_tsk_need_resched(curr);
495 set_preempt_need_resched();
496 return;
497 }
498
499 if (set_nr_and_not_polling(curr))
500 smp_send_reschedule(cpu);
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
503 }
504
505 void resched_cpu(int cpu)
506 {
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
510 raw_spin_lock_irqsave(&rq->lock, flags);
511 resched_curr(rq);
512 raw_spin_unlock_irqrestore(&rq->lock, flags);
513 }
514
515 #ifdef CONFIG_SMP
516 #ifdef CONFIG_NO_HZ_COMMON
517 /*
518 * In the semi idle case, use the nearest busy CPU for migrating timers
519 * from an idle CPU. This is good for power-savings.
520 *
521 * We don't do similar optimization for completely idle system, as
522 * selecting an idle CPU will add more delays to the timers than intended
523 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
524 */
525 int get_nohz_timer_target(void)
526 {
527 int i, cpu = smp_processor_id();
528 struct sched_domain *sd;
529
530 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
531 return cpu;
532
533 rcu_read_lock();
534 for_each_domain(cpu, sd) {
535 for_each_cpu(i, sched_domain_span(sd)) {
536 if (cpu == i)
537 continue;
538
539 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
540 cpu = i;
541 goto unlock;
542 }
543 }
544 }
545
546 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
547 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
548 unlock:
549 rcu_read_unlock();
550 return cpu;
551 }
552
553 /*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
563 static void wake_up_idle_cpu(int cpu)
564 {
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
570 if (set_nr_and_not_polling(rq->idle))
571 smp_send_reschedule(cpu);
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
574 }
575
576 static bool wake_up_full_nohz_cpu(int cpu)
577 {
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
584 if (cpu_is_offline(cpu))
585 return true; /* Don't try to wake offline CPUs. */
586 if (tick_nohz_full_cpu(cpu)) {
587 if (cpu != smp_processor_id() ||
588 tick_nohz_tick_stopped())
589 tick_nohz_full_kick_cpu(cpu);
590 return true;
591 }
592
593 return false;
594 }
595
596 /*
597 * Wake up the specified CPU. If the CPU is going offline, it is the
598 * caller's responsibility to deal with the lost wakeup, for example,
599 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
600 */
601 void wake_up_nohz_cpu(int cpu)
602 {
603 if (!wake_up_full_nohz_cpu(cpu))
604 wake_up_idle_cpu(cpu);
605 }
606
607 static inline bool got_nohz_idle_kick(void)
608 {
609 int cpu = smp_processor_id();
610
611 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
612 return false;
613
614 if (idle_cpu(cpu) && !need_resched())
615 return true;
616
617 /*
618 * We can't run Idle Load Balance on this CPU for this time so we
619 * cancel it and clear NOHZ_BALANCE_KICK
620 */
621 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
622 return false;
623 }
624
625 #else /* CONFIG_NO_HZ_COMMON */
626
627 static inline bool got_nohz_idle_kick(void)
628 {
629 return false;
630 }
631
632 #endif /* CONFIG_NO_HZ_COMMON */
633
634 #ifdef CONFIG_NO_HZ_FULL
635 bool sched_can_stop_tick(struct rq *rq)
636 {
637 int fifo_nr_running;
638
639 /* Deadline tasks, even if single, need the tick */
640 if (rq->dl.dl_nr_running)
641 return false;
642
643 /*
644 * If there are more than one RR tasks, we need the tick to effect the
645 * actual RR behaviour.
646 */
647 if (rq->rt.rr_nr_running) {
648 if (rq->rt.rr_nr_running == 1)
649 return true;
650 else
651 return false;
652 }
653
654 /*
655 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
656 * forced preemption between FIFO tasks.
657 */
658 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
659 if (fifo_nr_running)
660 return true;
661
662 /*
663 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
664 * if there's more than one we need the tick for involuntary
665 * preemption.
666 */
667 if (rq->nr_running > 1)
668 return false;
669
670 return true;
671 }
672 #endif /* CONFIG_NO_HZ_FULL */
673
674 void sched_avg_update(struct rq *rq)
675 {
676 s64 period = sched_avg_period();
677
678 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
679 /*
680 * Inline assembly required to prevent the compiler
681 * optimising this loop into a divmod call.
682 * See __iter_div_u64_rem() for another example of this.
683 */
684 asm("" : "+rm" (rq->age_stamp));
685 rq->age_stamp += period;
686 rq->rt_avg /= 2;
687 }
688 }
689
690 #endif /* CONFIG_SMP */
691
692 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
693 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
694 /*
695 * Iterate task_group tree rooted at *from, calling @down when first entering a
696 * node and @up when leaving it for the final time.
697 *
698 * Caller must hold rcu_lock or sufficient equivalent.
699 */
700 int walk_tg_tree_from(struct task_group *from,
701 tg_visitor down, tg_visitor up, void *data)
702 {
703 struct task_group *parent, *child;
704 int ret;
705
706 parent = from;
707
708 down:
709 ret = (*down)(parent, data);
710 if (ret)
711 goto out;
712 list_for_each_entry_rcu(child, &parent->children, siblings) {
713 parent = child;
714 goto down;
715
716 up:
717 continue;
718 }
719 ret = (*up)(parent, data);
720 if (ret || parent == from)
721 goto out;
722
723 child = parent;
724 parent = parent->parent;
725 if (parent)
726 goto up;
727 out:
728 return ret;
729 }
730
731 int tg_nop(struct task_group *tg, void *data)
732 {
733 return 0;
734 }
735 #endif
736
737 static void set_load_weight(struct task_struct *p, bool update_load)
738 {
739 int prio = p->static_prio - MAX_RT_PRIO;
740 struct load_weight *load = &p->se.load;
741
742 /*
743 * SCHED_IDLE tasks get minimal weight:
744 */
745 if (idle_policy(p->policy)) {
746 load->weight = scale_load(WEIGHT_IDLEPRIO);
747 load->inv_weight = WMULT_IDLEPRIO;
748 return;
749 }
750
751 /*
752 * SCHED_OTHER tasks have to update their load when changing their
753 * weight
754 */
755 if (update_load && p->sched_class == &fair_sched_class) {
756 reweight_task(p, prio);
757 } else {
758 load->weight = scale_load(sched_prio_to_weight[prio]);
759 load->inv_weight = sched_prio_to_wmult[prio];
760 }
761 }
762
763 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 if (!(flags & ENQUEUE_NOCLOCK))
766 update_rq_clock(rq);
767
768 if (!(flags & ENQUEUE_RESTORE))
769 sched_info_queued(rq, p);
770
771 p->sched_class->enqueue_task(rq, p, flags);
772 }
773
774 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
775 {
776 if (!(flags & DEQUEUE_NOCLOCK))
777 update_rq_clock(rq);
778
779 if (!(flags & DEQUEUE_SAVE))
780 sched_info_dequeued(rq, p);
781
782 p->sched_class->dequeue_task(rq, p, flags);
783 }
784
785 void activate_task(struct rq *rq, struct task_struct *p, int flags)
786 {
787 if (task_contributes_to_load(p))
788 rq->nr_uninterruptible--;
789
790 enqueue_task(rq, p, flags);
791 }
792
793 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
794 {
795 if (task_contributes_to_load(p))
796 rq->nr_uninterruptible++;
797
798 dequeue_task(rq, p, flags);
799 }
800
801 /*
802 * __normal_prio - return the priority that is based on the static prio
803 */
804 static inline int __normal_prio(struct task_struct *p)
805 {
806 return p->static_prio;
807 }
808
809 /*
810 * Calculate the expected normal priority: i.e. priority
811 * without taking RT-inheritance into account. Might be
812 * boosted by interactivity modifiers. Changes upon fork,
813 * setprio syscalls, and whenever the interactivity
814 * estimator recalculates.
815 */
816 static inline int normal_prio(struct task_struct *p)
817 {
818 int prio;
819
820 if (task_has_dl_policy(p))
821 prio = MAX_DL_PRIO-1;
822 else if (task_has_rt_policy(p))
823 prio = MAX_RT_PRIO-1 - p->rt_priority;
824 else
825 prio = __normal_prio(p);
826 return prio;
827 }
828
829 /*
830 * Calculate the current priority, i.e. the priority
831 * taken into account by the scheduler. This value might
832 * be boosted by RT tasks, or might be boosted by
833 * interactivity modifiers. Will be RT if the task got
834 * RT-boosted. If not then it returns p->normal_prio.
835 */
836 static int effective_prio(struct task_struct *p)
837 {
838 p->normal_prio = normal_prio(p);
839 /*
840 * If we are RT tasks or we were boosted to RT priority,
841 * keep the priority unchanged. Otherwise, update priority
842 * to the normal priority:
843 */
844 if (!rt_prio(p->prio))
845 return p->normal_prio;
846 return p->prio;
847 }
848
849 /**
850 * task_curr - is this task currently executing on a CPU?
851 * @p: the task in question.
852 *
853 * Return: 1 if the task is currently executing. 0 otherwise.
854 */
855 inline int task_curr(const struct task_struct *p)
856 {
857 return cpu_curr(task_cpu(p)) == p;
858 }
859
860 /*
861 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
862 * use the balance_callback list if you want balancing.
863 *
864 * this means any call to check_class_changed() must be followed by a call to
865 * balance_callback().
866 */
867 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
868 const struct sched_class *prev_class,
869 int oldprio)
870 {
871 if (prev_class != p->sched_class) {
872 if (prev_class->switched_from)
873 prev_class->switched_from(rq, p);
874
875 p->sched_class->switched_to(rq, p);
876 } else if (oldprio != p->prio || dl_task(p))
877 p->sched_class->prio_changed(rq, p, oldprio);
878 }
879
880 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
881 {
882 const struct sched_class *class;
883
884 if (p->sched_class == rq->curr->sched_class) {
885 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
886 } else {
887 for_each_class(class) {
888 if (class == rq->curr->sched_class)
889 break;
890 if (class == p->sched_class) {
891 resched_curr(rq);
892 break;
893 }
894 }
895 }
896
897 /*
898 * A queue event has occurred, and we're going to schedule. In
899 * this case, we can save a useless back to back clock update.
900 */
901 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
902 rq_clock_skip_update(rq, true);
903 }
904
905 #ifdef CONFIG_SMP
906 /*
907 * This is how migration works:
908 *
909 * 1) we invoke migration_cpu_stop() on the target CPU using
910 * stop_one_cpu().
911 * 2) stopper starts to run (implicitly forcing the migrated thread
912 * off the CPU)
913 * 3) it checks whether the migrated task is still in the wrong runqueue.
914 * 4) if it's in the wrong runqueue then the migration thread removes
915 * it and puts it into the right queue.
916 * 5) stopper completes and stop_one_cpu() returns and the migration
917 * is done.
918 */
919
920 /*
921 * move_queued_task - move a queued task to new rq.
922 *
923 * Returns (locked) new rq. Old rq's lock is released.
924 */
925 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
926 struct task_struct *p, int new_cpu)
927 {
928 lockdep_assert_held(&rq->lock);
929
930 p->on_rq = TASK_ON_RQ_MIGRATING;
931 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
932 set_task_cpu(p, new_cpu);
933 rq_unlock(rq, rf);
934
935 rq = cpu_rq(new_cpu);
936
937 rq_lock(rq, rf);
938 BUG_ON(task_cpu(p) != new_cpu);
939 enqueue_task(rq, p, 0);
940 p->on_rq = TASK_ON_RQ_QUEUED;
941 check_preempt_curr(rq, p, 0);
942
943 return rq;
944 }
945
946 struct migration_arg {
947 struct task_struct *task;
948 int dest_cpu;
949 };
950
951 /*
952 * Move (not current) task off this CPU, onto the destination CPU. We're doing
953 * this because either it can't run here any more (set_cpus_allowed()
954 * away from this CPU, or CPU going down), or because we're
955 * attempting to rebalance this task on exec (sched_exec).
956 *
957 * So we race with normal scheduler movements, but that's OK, as long
958 * as the task is no longer on this CPU.
959 */
960 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
961 struct task_struct *p, int dest_cpu)
962 {
963 if (p->flags & PF_KTHREAD) {
964 if (unlikely(!cpu_online(dest_cpu)))
965 return rq;
966 } else {
967 if (unlikely(!cpu_active(dest_cpu)))
968 return rq;
969 }
970
971 /* Affinity changed (again). */
972 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
973 return rq;
974
975 update_rq_clock(rq);
976 rq = move_queued_task(rq, rf, p, dest_cpu);
977
978 return rq;
979 }
980
981 /*
982 * migration_cpu_stop - this will be executed by a highprio stopper thread
983 * and performs thread migration by bumping thread off CPU then
984 * 'pushing' onto another runqueue.
985 */
986 static int migration_cpu_stop(void *data)
987 {
988 struct migration_arg *arg = data;
989 struct task_struct *p = arg->task;
990 struct rq *rq = this_rq();
991 struct rq_flags rf;
992
993 /*
994 * The original target CPU might have gone down and we might
995 * be on another CPU but it doesn't matter.
996 */
997 local_irq_disable();
998 /*
999 * We need to explicitly wake pending tasks before running
1000 * __migrate_task() such that we will not miss enforcing cpus_allowed
1001 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1002 */
1003 sched_ttwu_pending();
1004
1005 raw_spin_lock(&p->pi_lock);
1006 rq_lock(rq, &rf);
1007 /*
1008 * If task_rq(p) != rq, it cannot be migrated here, because we're
1009 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1010 * we're holding p->pi_lock.
1011 */
1012 if (task_rq(p) == rq) {
1013 if (task_on_rq_queued(p))
1014 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1015 else
1016 p->wake_cpu = arg->dest_cpu;
1017 }
1018 rq_unlock(rq, &rf);
1019 raw_spin_unlock(&p->pi_lock);
1020
1021 local_irq_enable();
1022 return 0;
1023 }
1024
1025 /*
1026 * sched_class::set_cpus_allowed must do the below, but is not required to
1027 * actually call this function.
1028 */
1029 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1030 {
1031 cpumask_copy(&p->cpus_allowed, new_mask);
1032 p->nr_cpus_allowed = cpumask_weight(new_mask);
1033 }
1034
1035 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1036 {
1037 struct rq *rq = task_rq(p);
1038 bool queued, running;
1039
1040 lockdep_assert_held(&p->pi_lock);
1041
1042 queued = task_on_rq_queued(p);
1043 running = task_current(rq, p);
1044
1045 if (queued) {
1046 /*
1047 * Because __kthread_bind() calls this on blocked tasks without
1048 * holding rq->lock.
1049 */
1050 lockdep_assert_held(&rq->lock);
1051 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1052 }
1053 if (running)
1054 put_prev_task(rq, p);
1055
1056 p->sched_class->set_cpus_allowed(p, new_mask);
1057
1058 if (queued)
1059 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1060 if (running)
1061 set_curr_task(rq, p);
1062 }
1063
1064 /*
1065 * Change a given task's CPU affinity. Migrate the thread to a
1066 * proper CPU and schedule it away if the CPU it's executing on
1067 * is removed from the allowed bitmask.
1068 *
1069 * NOTE: the caller must have a valid reference to the task, the
1070 * task must not exit() & deallocate itself prematurely. The
1071 * call is not atomic; no spinlocks may be held.
1072 */
1073 static int __set_cpus_allowed_ptr(struct task_struct *p,
1074 const struct cpumask *new_mask, bool check)
1075 {
1076 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1077 unsigned int dest_cpu;
1078 struct rq_flags rf;
1079 struct rq *rq;
1080 int ret = 0;
1081
1082 rq = task_rq_lock(p, &rf);
1083 update_rq_clock(rq);
1084
1085 if (p->flags & PF_KTHREAD) {
1086 /*
1087 * Kernel threads are allowed on online && !active CPUs
1088 */
1089 cpu_valid_mask = cpu_online_mask;
1090 }
1091
1092 /*
1093 * Must re-check here, to close a race against __kthread_bind(),
1094 * sched_setaffinity() is not guaranteed to observe the flag.
1095 */
1096 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1097 ret = -EINVAL;
1098 goto out;
1099 }
1100
1101 if (cpumask_equal(&p->cpus_allowed, new_mask))
1102 goto out;
1103
1104 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1105 ret = -EINVAL;
1106 goto out;
1107 }
1108
1109 do_set_cpus_allowed(p, new_mask);
1110
1111 if (p->flags & PF_KTHREAD) {
1112 /*
1113 * For kernel threads that do indeed end up on online &&
1114 * !active we want to ensure they are strict per-CPU threads.
1115 */
1116 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1117 !cpumask_intersects(new_mask, cpu_active_mask) &&
1118 p->nr_cpus_allowed != 1);
1119 }
1120
1121 /* Can the task run on the task's current CPU? If so, we're done */
1122 if (cpumask_test_cpu(task_cpu(p), new_mask))
1123 goto out;
1124
1125 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1126 if (task_running(rq, p) || p->state == TASK_WAKING) {
1127 struct migration_arg arg = { p, dest_cpu };
1128 /* Need help from migration thread: drop lock and wait. */
1129 task_rq_unlock(rq, p, &rf);
1130 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1131 tlb_migrate_finish(p->mm);
1132 return 0;
1133 } else if (task_on_rq_queued(p)) {
1134 /*
1135 * OK, since we're going to drop the lock immediately
1136 * afterwards anyway.
1137 */
1138 rq = move_queued_task(rq, &rf, p, dest_cpu);
1139 }
1140 out:
1141 task_rq_unlock(rq, p, &rf);
1142
1143 return ret;
1144 }
1145
1146 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1147 {
1148 return __set_cpus_allowed_ptr(p, new_mask, false);
1149 }
1150 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1151
1152 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1153 {
1154 #ifdef CONFIG_SCHED_DEBUG
1155 /*
1156 * We should never call set_task_cpu() on a blocked task,
1157 * ttwu() will sort out the placement.
1158 */
1159 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1160 !p->on_rq);
1161
1162 /*
1163 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1164 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1165 * time relying on p->on_rq.
1166 */
1167 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1168 p->sched_class == &fair_sched_class &&
1169 (p->on_rq && !task_on_rq_migrating(p)));
1170
1171 #ifdef CONFIG_LOCKDEP
1172 /*
1173 * The caller should hold either p->pi_lock or rq->lock, when changing
1174 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1175 *
1176 * sched_move_task() holds both and thus holding either pins the cgroup,
1177 * see task_group().
1178 *
1179 * Furthermore, all task_rq users should acquire both locks, see
1180 * task_rq_lock().
1181 */
1182 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1183 lockdep_is_held(&task_rq(p)->lock)));
1184 #endif
1185 /*
1186 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1187 */
1188 WARN_ON_ONCE(!cpu_online(new_cpu));
1189 #endif
1190
1191 trace_sched_migrate_task(p, new_cpu);
1192
1193 if (task_cpu(p) != new_cpu) {
1194 if (p->sched_class->migrate_task_rq)
1195 p->sched_class->migrate_task_rq(p);
1196 p->se.nr_migrations++;
1197 perf_event_task_migrate(p);
1198 }
1199
1200 __set_task_cpu(p, new_cpu);
1201 }
1202
1203 static void __migrate_swap_task(struct task_struct *p, int cpu)
1204 {
1205 if (task_on_rq_queued(p)) {
1206 struct rq *src_rq, *dst_rq;
1207 struct rq_flags srf, drf;
1208
1209 src_rq = task_rq(p);
1210 dst_rq = cpu_rq(cpu);
1211
1212 rq_pin_lock(src_rq, &srf);
1213 rq_pin_lock(dst_rq, &drf);
1214
1215 p->on_rq = TASK_ON_RQ_MIGRATING;
1216 deactivate_task(src_rq, p, 0);
1217 set_task_cpu(p, cpu);
1218 activate_task(dst_rq, p, 0);
1219 p->on_rq = TASK_ON_RQ_QUEUED;
1220 check_preempt_curr(dst_rq, p, 0);
1221
1222 rq_unpin_lock(dst_rq, &drf);
1223 rq_unpin_lock(src_rq, &srf);
1224
1225 } else {
1226 /*
1227 * Task isn't running anymore; make it appear like we migrated
1228 * it before it went to sleep. This means on wakeup we make the
1229 * previous CPU our target instead of where it really is.
1230 */
1231 p->wake_cpu = cpu;
1232 }
1233 }
1234
1235 struct migration_swap_arg {
1236 struct task_struct *src_task, *dst_task;
1237 int src_cpu, dst_cpu;
1238 };
1239
1240 static int migrate_swap_stop(void *data)
1241 {
1242 struct migration_swap_arg *arg = data;
1243 struct rq *src_rq, *dst_rq;
1244 int ret = -EAGAIN;
1245
1246 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1247 return -EAGAIN;
1248
1249 src_rq = cpu_rq(arg->src_cpu);
1250 dst_rq = cpu_rq(arg->dst_cpu);
1251
1252 double_raw_lock(&arg->src_task->pi_lock,
1253 &arg->dst_task->pi_lock);
1254 double_rq_lock(src_rq, dst_rq);
1255
1256 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1257 goto unlock;
1258
1259 if (task_cpu(arg->src_task) != arg->src_cpu)
1260 goto unlock;
1261
1262 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1263 goto unlock;
1264
1265 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1266 goto unlock;
1267
1268 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1269 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1270
1271 ret = 0;
1272
1273 unlock:
1274 double_rq_unlock(src_rq, dst_rq);
1275 raw_spin_unlock(&arg->dst_task->pi_lock);
1276 raw_spin_unlock(&arg->src_task->pi_lock);
1277
1278 return ret;
1279 }
1280
1281 /*
1282 * Cross migrate two tasks
1283 */
1284 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1285 {
1286 struct migration_swap_arg arg;
1287 int ret = -EINVAL;
1288
1289 arg = (struct migration_swap_arg){
1290 .src_task = cur,
1291 .src_cpu = task_cpu(cur),
1292 .dst_task = p,
1293 .dst_cpu = task_cpu(p),
1294 };
1295
1296 if (arg.src_cpu == arg.dst_cpu)
1297 goto out;
1298
1299 /*
1300 * These three tests are all lockless; this is OK since all of them
1301 * will be re-checked with proper locks held further down the line.
1302 */
1303 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1304 goto out;
1305
1306 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1307 goto out;
1308
1309 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1310 goto out;
1311
1312 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1313 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1314
1315 out:
1316 return ret;
1317 }
1318
1319 /*
1320 * wait_task_inactive - wait for a thread to unschedule.
1321 *
1322 * If @match_state is nonzero, it's the @p->state value just checked and
1323 * not expected to change. If it changes, i.e. @p might have woken up,
1324 * then return zero. When we succeed in waiting for @p to be off its CPU,
1325 * we return a positive number (its total switch count). If a second call
1326 * a short while later returns the same number, the caller can be sure that
1327 * @p has remained unscheduled the whole time.
1328 *
1329 * The caller must ensure that the task *will* unschedule sometime soon,
1330 * else this function might spin for a *long* time. This function can't
1331 * be called with interrupts off, or it may introduce deadlock with
1332 * smp_call_function() if an IPI is sent by the same process we are
1333 * waiting to become inactive.
1334 */
1335 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1336 {
1337 int running, queued;
1338 struct rq_flags rf;
1339 unsigned long ncsw;
1340 struct rq *rq;
1341
1342 for (;;) {
1343 /*
1344 * We do the initial early heuristics without holding
1345 * any task-queue locks at all. We'll only try to get
1346 * the runqueue lock when things look like they will
1347 * work out!
1348 */
1349 rq = task_rq(p);
1350
1351 /*
1352 * If the task is actively running on another CPU
1353 * still, just relax and busy-wait without holding
1354 * any locks.
1355 *
1356 * NOTE! Since we don't hold any locks, it's not
1357 * even sure that "rq" stays as the right runqueue!
1358 * But we don't care, since "task_running()" will
1359 * return false if the runqueue has changed and p
1360 * is actually now running somewhere else!
1361 */
1362 while (task_running(rq, p)) {
1363 if (match_state && unlikely(p->state != match_state))
1364 return 0;
1365 cpu_relax();
1366 }
1367
1368 /*
1369 * Ok, time to look more closely! We need the rq
1370 * lock now, to be *sure*. If we're wrong, we'll
1371 * just go back and repeat.
1372 */
1373 rq = task_rq_lock(p, &rf);
1374 trace_sched_wait_task(p);
1375 running = task_running(rq, p);
1376 queued = task_on_rq_queued(p);
1377 ncsw = 0;
1378 if (!match_state || p->state == match_state)
1379 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1380 task_rq_unlock(rq, p, &rf);
1381
1382 /*
1383 * If it changed from the expected state, bail out now.
1384 */
1385 if (unlikely(!ncsw))
1386 break;
1387
1388 /*
1389 * Was it really running after all now that we
1390 * checked with the proper locks actually held?
1391 *
1392 * Oops. Go back and try again..
1393 */
1394 if (unlikely(running)) {
1395 cpu_relax();
1396 continue;
1397 }
1398
1399 /*
1400 * It's not enough that it's not actively running,
1401 * it must be off the runqueue _entirely_, and not
1402 * preempted!
1403 *
1404 * So if it was still runnable (but just not actively
1405 * running right now), it's preempted, and we should
1406 * yield - it could be a while.
1407 */
1408 if (unlikely(queued)) {
1409 ktime_t to = NSEC_PER_SEC / HZ;
1410
1411 set_current_state(TASK_UNINTERRUPTIBLE);
1412 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1413 continue;
1414 }
1415
1416 /*
1417 * Ahh, all good. It wasn't running, and it wasn't
1418 * runnable, which means that it will never become
1419 * running in the future either. We're all done!
1420 */
1421 break;
1422 }
1423
1424 return ncsw;
1425 }
1426
1427 /***
1428 * kick_process - kick a running thread to enter/exit the kernel
1429 * @p: the to-be-kicked thread
1430 *
1431 * Cause a process which is running on another CPU to enter
1432 * kernel-mode, without any delay. (to get signals handled.)
1433 *
1434 * NOTE: this function doesn't have to take the runqueue lock,
1435 * because all it wants to ensure is that the remote task enters
1436 * the kernel. If the IPI races and the task has been migrated
1437 * to another CPU then no harm is done and the purpose has been
1438 * achieved as well.
1439 */
1440 void kick_process(struct task_struct *p)
1441 {
1442 int cpu;
1443
1444 preempt_disable();
1445 cpu = task_cpu(p);
1446 if ((cpu != smp_processor_id()) && task_curr(p))
1447 smp_send_reschedule(cpu);
1448 preempt_enable();
1449 }
1450 EXPORT_SYMBOL_GPL(kick_process);
1451
1452 /*
1453 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1454 *
1455 * A few notes on cpu_active vs cpu_online:
1456 *
1457 * - cpu_active must be a subset of cpu_online
1458 *
1459 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1460 * see __set_cpus_allowed_ptr(). At this point the newly online
1461 * CPU isn't yet part of the sched domains, and balancing will not
1462 * see it.
1463 *
1464 * - on CPU-down we clear cpu_active() to mask the sched domains and
1465 * avoid the load balancer to place new tasks on the to be removed
1466 * CPU. Existing tasks will remain running there and will be taken
1467 * off.
1468 *
1469 * This means that fallback selection must not select !active CPUs.
1470 * And can assume that any active CPU must be online. Conversely
1471 * select_task_rq() below may allow selection of !active CPUs in order
1472 * to satisfy the above rules.
1473 */
1474 static int select_fallback_rq(int cpu, struct task_struct *p)
1475 {
1476 int nid = cpu_to_node(cpu);
1477 const struct cpumask *nodemask = NULL;
1478 enum { cpuset, possible, fail } state = cpuset;
1479 int dest_cpu;
1480
1481 /*
1482 * If the node that the CPU is on has been offlined, cpu_to_node()
1483 * will return -1. There is no CPU on the node, and we should
1484 * select the CPU on the other node.
1485 */
1486 if (nid != -1) {
1487 nodemask = cpumask_of_node(nid);
1488
1489 /* Look for allowed, online CPU in same node. */
1490 for_each_cpu(dest_cpu, nodemask) {
1491 if (!cpu_active(dest_cpu))
1492 continue;
1493 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1494 return dest_cpu;
1495 }
1496 }
1497
1498 for (;;) {
1499 /* Any allowed, online CPU? */
1500 for_each_cpu(dest_cpu, &p->cpus_allowed) {
1501 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1502 continue;
1503 if (!cpu_online(dest_cpu))
1504 continue;
1505 goto out;
1506 }
1507
1508 /* No more Mr. Nice Guy. */
1509 switch (state) {
1510 case cpuset:
1511 if (IS_ENABLED(CONFIG_CPUSETS)) {
1512 cpuset_cpus_allowed_fallback(p);
1513 state = possible;
1514 break;
1515 }
1516 /* Fall-through */
1517 case possible:
1518 do_set_cpus_allowed(p, cpu_possible_mask);
1519 state = fail;
1520 break;
1521
1522 case fail:
1523 BUG();
1524 break;
1525 }
1526 }
1527
1528 out:
1529 if (state != cpuset) {
1530 /*
1531 * Don't tell them about moving exiting tasks or
1532 * kernel threads (both mm NULL), since they never
1533 * leave kernel.
1534 */
1535 if (p->mm && printk_ratelimit()) {
1536 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1537 task_pid_nr(p), p->comm, cpu);
1538 }
1539 }
1540
1541 return dest_cpu;
1542 }
1543
1544 /*
1545 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1546 */
1547 static inline
1548 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1549 {
1550 lockdep_assert_held(&p->pi_lock);
1551
1552 if (p->nr_cpus_allowed > 1)
1553 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1554 else
1555 cpu = cpumask_any(&p->cpus_allowed);
1556
1557 /*
1558 * In order not to call set_task_cpu() on a blocking task we need
1559 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1560 * CPU.
1561 *
1562 * Since this is common to all placement strategies, this lives here.
1563 *
1564 * [ this allows ->select_task() to simply return task_cpu(p) and
1565 * not worry about this generic constraint ]
1566 */
1567 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
1568 !cpu_online(cpu)))
1569 cpu = select_fallback_rq(task_cpu(p), p);
1570
1571 return cpu;
1572 }
1573
1574 static void update_avg(u64 *avg, u64 sample)
1575 {
1576 s64 diff = sample - *avg;
1577 *avg += diff >> 3;
1578 }
1579
1580 void sched_set_stop_task(int cpu, struct task_struct *stop)
1581 {
1582 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1583 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1584
1585 if (stop) {
1586 /*
1587 * Make it appear like a SCHED_FIFO task, its something
1588 * userspace knows about and won't get confused about.
1589 *
1590 * Also, it will make PI more or less work without too
1591 * much confusion -- but then, stop work should not
1592 * rely on PI working anyway.
1593 */
1594 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1595
1596 stop->sched_class = &stop_sched_class;
1597 }
1598
1599 cpu_rq(cpu)->stop = stop;
1600
1601 if (old_stop) {
1602 /*
1603 * Reset it back to a normal scheduling class so that
1604 * it can die in pieces.
1605 */
1606 old_stop->sched_class = &rt_sched_class;
1607 }
1608 }
1609
1610 #else
1611
1612 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1613 const struct cpumask *new_mask, bool check)
1614 {
1615 return set_cpus_allowed_ptr(p, new_mask);
1616 }
1617
1618 #endif /* CONFIG_SMP */
1619
1620 static void
1621 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1622 {
1623 struct rq *rq;
1624
1625 if (!schedstat_enabled())
1626 return;
1627
1628 rq = this_rq();
1629
1630 #ifdef CONFIG_SMP
1631 if (cpu == rq->cpu) {
1632 schedstat_inc(rq->ttwu_local);
1633 schedstat_inc(p->se.statistics.nr_wakeups_local);
1634 } else {
1635 struct sched_domain *sd;
1636
1637 schedstat_inc(p->se.statistics.nr_wakeups_remote);
1638 rcu_read_lock();
1639 for_each_domain(rq->cpu, sd) {
1640 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1641 schedstat_inc(sd->ttwu_wake_remote);
1642 break;
1643 }
1644 }
1645 rcu_read_unlock();
1646 }
1647
1648 if (wake_flags & WF_MIGRATED)
1649 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1650 #endif /* CONFIG_SMP */
1651
1652 schedstat_inc(rq->ttwu_count);
1653 schedstat_inc(p->se.statistics.nr_wakeups);
1654
1655 if (wake_flags & WF_SYNC)
1656 schedstat_inc(p->se.statistics.nr_wakeups_sync);
1657 }
1658
1659 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1660 {
1661 activate_task(rq, p, en_flags);
1662 p->on_rq = TASK_ON_RQ_QUEUED;
1663
1664 /* If a worker is waking up, notify the workqueue: */
1665 if (p->flags & PF_WQ_WORKER)
1666 wq_worker_waking_up(p, cpu_of(rq));
1667 }
1668
1669 /*
1670 * Mark the task runnable and perform wakeup-preemption.
1671 */
1672 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1673 struct rq_flags *rf)
1674 {
1675 check_preempt_curr(rq, p, wake_flags);
1676 p->state = TASK_RUNNING;
1677 trace_sched_wakeup(p);
1678
1679 #ifdef CONFIG_SMP
1680 if (p->sched_class->task_woken) {
1681 /*
1682 * Our task @p is fully woken up and running; so its safe to
1683 * drop the rq->lock, hereafter rq is only used for statistics.
1684 */
1685 rq_unpin_lock(rq, rf);
1686 p->sched_class->task_woken(rq, p);
1687 rq_repin_lock(rq, rf);
1688 }
1689
1690 if (rq->idle_stamp) {
1691 u64 delta = rq_clock(rq) - rq->idle_stamp;
1692 u64 max = 2*rq->max_idle_balance_cost;
1693
1694 update_avg(&rq->avg_idle, delta);
1695
1696 if (rq->avg_idle > max)
1697 rq->avg_idle = max;
1698
1699 rq->idle_stamp = 0;
1700 }
1701 #endif
1702 }
1703
1704 static void
1705 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1706 struct rq_flags *rf)
1707 {
1708 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1709
1710 lockdep_assert_held(&rq->lock);
1711
1712 #ifdef CONFIG_SMP
1713 if (p->sched_contributes_to_load)
1714 rq->nr_uninterruptible--;
1715
1716 if (wake_flags & WF_MIGRATED)
1717 en_flags |= ENQUEUE_MIGRATED;
1718 #endif
1719
1720 ttwu_activate(rq, p, en_flags);
1721 ttwu_do_wakeup(rq, p, wake_flags, rf);
1722 }
1723
1724 /*
1725 * Called in case the task @p isn't fully descheduled from its runqueue,
1726 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1727 * since all we need to do is flip p->state to TASK_RUNNING, since
1728 * the task is still ->on_rq.
1729 */
1730 static int ttwu_remote(struct task_struct *p, int wake_flags)
1731 {
1732 struct rq_flags rf;
1733 struct rq *rq;
1734 int ret = 0;
1735
1736 rq = __task_rq_lock(p, &rf);
1737 if (task_on_rq_queued(p)) {
1738 /* check_preempt_curr() may use rq clock */
1739 update_rq_clock(rq);
1740 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1741 ret = 1;
1742 }
1743 __task_rq_unlock(rq, &rf);
1744
1745 return ret;
1746 }
1747
1748 #ifdef CONFIG_SMP
1749 void sched_ttwu_pending(void)
1750 {
1751 struct rq *rq = this_rq();
1752 struct llist_node *llist = llist_del_all(&rq->wake_list);
1753 struct task_struct *p, *t;
1754 struct rq_flags rf;
1755
1756 if (!llist)
1757 return;
1758
1759 rq_lock_irqsave(rq, &rf);
1760 update_rq_clock(rq);
1761
1762 llist_for_each_entry_safe(p, t, llist, wake_entry)
1763 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1764
1765 rq_unlock_irqrestore(rq, &rf);
1766 }
1767
1768 void scheduler_ipi(void)
1769 {
1770 /*
1771 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1772 * TIF_NEED_RESCHED remotely (for the first time) will also send
1773 * this IPI.
1774 */
1775 preempt_fold_need_resched();
1776
1777 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1778 return;
1779
1780 /*
1781 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1782 * traditionally all their work was done from the interrupt return
1783 * path. Now that we actually do some work, we need to make sure
1784 * we do call them.
1785 *
1786 * Some archs already do call them, luckily irq_enter/exit nest
1787 * properly.
1788 *
1789 * Arguably we should visit all archs and update all handlers,
1790 * however a fair share of IPIs are still resched only so this would
1791 * somewhat pessimize the simple resched case.
1792 */
1793 irq_enter();
1794 sched_ttwu_pending();
1795
1796 /*
1797 * Check if someone kicked us for doing the nohz idle load balance.
1798 */
1799 if (unlikely(got_nohz_idle_kick())) {
1800 this_rq()->idle_balance = 1;
1801 raise_softirq_irqoff(SCHED_SOFTIRQ);
1802 }
1803 irq_exit();
1804 }
1805
1806 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1807 {
1808 struct rq *rq = cpu_rq(cpu);
1809
1810 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1811
1812 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1813 if (!set_nr_if_polling(rq->idle))
1814 smp_send_reschedule(cpu);
1815 else
1816 trace_sched_wake_idle_without_ipi(cpu);
1817 }
1818 }
1819
1820 void wake_up_if_idle(int cpu)
1821 {
1822 struct rq *rq = cpu_rq(cpu);
1823 struct rq_flags rf;
1824
1825 rcu_read_lock();
1826
1827 if (!is_idle_task(rcu_dereference(rq->curr)))
1828 goto out;
1829
1830 if (set_nr_if_polling(rq->idle)) {
1831 trace_sched_wake_idle_without_ipi(cpu);
1832 } else {
1833 rq_lock_irqsave(rq, &rf);
1834 if (is_idle_task(rq->curr))
1835 smp_send_reschedule(cpu);
1836 /* Else CPU is not idle, do nothing here: */
1837 rq_unlock_irqrestore(rq, &rf);
1838 }
1839
1840 out:
1841 rcu_read_unlock();
1842 }
1843
1844 bool cpus_share_cache(int this_cpu, int that_cpu)
1845 {
1846 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1847 }
1848 #endif /* CONFIG_SMP */
1849
1850 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1851 {
1852 struct rq *rq = cpu_rq(cpu);
1853 struct rq_flags rf;
1854
1855 #if defined(CONFIG_SMP)
1856 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1857 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1858 ttwu_queue_remote(p, cpu, wake_flags);
1859 return;
1860 }
1861 #endif
1862
1863 rq_lock(rq, &rf);
1864 update_rq_clock(rq);
1865 ttwu_do_activate(rq, p, wake_flags, &rf);
1866 rq_unlock(rq, &rf);
1867 }
1868
1869 /*
1870 * Notes on Program-Order guarantees on SMP systems.
1871 *
1872 * MIGRATION
1873 *
1874 * The basic program-order guarantee on SMP systems is that when a task [t]
1875 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1876 * execution on its new CPU [c1].
1877 *
1878 * For migration (of runnable tasks) this is provided by the following means:
1879 *
1880 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1881 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1882 * rq(c1)->lock (if not at the same time, then in that order).
1883 * C) LOCK of the rq(c1)->lock scheduling in task
1884 *
1885 * Transitivity guarantees that B happens after A and C after B.
1886 * Note: we only require RCpc transitivity.
1887 * Note: the CPU doing B need not be c0 or c1
1888 *
1889 * Example:
1890 *
1891 * CPU0 CPU1 CPU2
1892 *
1893 * LOCK rq(0)->lock
1894 * sched-out X
1895 * sched-in Y
1896 * UNLOCK rq(0)->lock
1897 *
1898 * LOCK rq(0)->lock // orders against CPU0
1899 * dequeue X
1900 * UNLOCK rq(0)->lock
1901 *
1902 * LOCK rq(1)->lock
1903 * enqueue X
1904 * UNLOCK rq(1)->lock
1905 *
1906 * LOCK rq(1)->lock // orders against CPU2
1907 * sched-out Z
1908 * sched-in X
1909 * UNLOCK rq(1)->lock
1910 *
1911 *
1912 * BLOCKING -- aka. SLEEP + WAKEUP
1913 *
1914 * For blocking we (obviously) need to provide the same guarantee as for
1915 * migration. However the means are completely different as there is no lock
1916 * chain to provide order. Instead we do:
1917 *
1918 * 1) smp_store_release(X->on_cpu, 0)
1919 * 2) smp_cond_load_acquire(!X->on_cpu)
1920 *
1921 * Example:
1922 *
1923 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1924 *
1925 * LOCK rq(0)->lock LOCK X->pi_lock
1926 * dequeue X
1927 * sched-out X
1928 * smp_store_release(X->on_cpu, 0);
1929 *
1930 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1931 * X->state = WAKING
1932 * set_task_cpu(X,2)
1933 *
1934 * LOCK rq(2)->lock
1935 * enqueue X
1936 * X->state = RUNNING
1937 * UNLOCK rq(2)->lock
1938 *
1939 * LOCK rq(2)->lock // orders against CPU1
1940 * sched-out Z
1941 * sched-in X
1942 * UNLOCK rq(2)->lock
1943 *
1944 * UNLOCK X->pi_lock
1945 * UNLOCK rq(0)->lock
1946 *
1947 *
1948 * However; for wakeups there is a second guarantee we must provide, namely we
1949 * must observe the state that lead to our wakeup. That is, not only must our
1950 * task observe its own prior state, it must also observe the stores prior to
1951 * its wakeup.
1952 *
1953 * This means that any means of doing remote wakeups must order the CPU doing
1954 * the wakeup against the CPU the task is going to end up running on. This,
1955 * however, is already required for the regular Program-Order guarantee above,
1956 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1957 *
1958 */
1959
1960 /**
1961 * try_to_wake_up - wake up a thread
1962 * @p: the thread to be awakened
1963 * @state: the mask of task states that can be woken
1964 * @wake_flags: wake modifier flags (WF_*)
1965 *
1966 * If (@state & @p->state) @p->state = TASK_RUNNING.
1967 *
1968 * If the task was not queued/runnable, also place it back on a runqueue.
1969 *
1970 * Atomic against schedule() which would dequeue a task, also see
1971 * set_current_state().
1972 *
1973 * Return: %true if @p->state changes (an actual wakeup was done),
1974 * %false otherwise.
1975 */
1976 static int
1977 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1978 {
1979 unsigned long flags;
1980 int cpu, success = 0;
1981
1982 /*
1983 * If we are going to wake up a thread waiting for CONDITION we
1984 * need to ensure that CONDITION=1 done by the caller can not be
1985 * reordered with p->state check below. This pairs with mb() in
1986 * set_current_state() the waiting thread does.
1987 */
1988 raw_spin_lock_irqsave(&p->pi_lock, flags);
1989 smp_mb__after_spinlock();
1990 if (!(p->state & state))
1991 goto out;
1992
1993 trace_sched_waking(p);
1994
1995 /* We're going to change ->state: */
1996 success = 1;
1997 cpu = task_cpu(p);
1998
1999 /*
2000 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2001 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2002 * in smp_cond_load_acquire() below.
2003 *
2004 * sched_ttwu_pending() try_to_wake_up()
2005 * [S] p->on_rq = 1; [L] P->state
2006 * UNLOCK rq->lock -----.
2007 * \
2008 * +--- RMB
2009 * schedule() /
2010 * LOCK rq->lock -----'
2011 * UNLOCK rq->lock
2012 *
2013 * [task p]
2014 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2015 *
2016 * Pairs with the UNLOCK+LOCK on rq->lock from the
2017 * last wakeup of our task and the schedule that got our task
2018 * current.
2019 */
2020 smp_rmb();
2021 if (p->on_rq && ttwu_remote(p, wake_flags))
2022 goto stat;
2023
2024 #ifdef CONFIG_SMP
2025 /*
2026 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2027 * possible to, falsely, observe p->on_cpu == 0.
2028 *
2029 * One must be running (->on_cpu == 1) in order to remove oneself
2030 * from the runqueue.
2031 *
2032 * [S] ->on_cpu = 1; [L] ->on_rq
2033 * UNLOCK rq->lock
2034 * RMB
2035 * LOCK rq->lock
2036 * [S] ->on_rq = 0; [L] ->on_cpu
2037 *
2038 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2039 * from the consecutive calls to schedule(); the first switching to our
2040 * task, the second putting it to sleep.
2041 */
2042 smp_rmb();
2043
2044 /*
2045 * If the owning (remote) CPU is still in the middle of schedule() with
2046 * this task as prev, wait until its done referencing the task.
2047 *
2048 * Pairs with the smp_store_release() in finish_lock_switch().
2049 *
2050 * This ensures that tasks getting woken will be fully ordered against
2051 * their previous state and preserve Program Order.
2052 */
2053 smp_cond_load_acquire(&p->on_cpu, !VAL);
2054
2055 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2056 p->state = TASK_WAKING;
2057
2058 if (p->in_iowait) {
2059 delayacct_blkio_end();
2060 atomic_dec(&task_rq(p)->nr_iowait);
2061 }
2062
2063 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2064 if (task_cpu(p) != cpu) {
2065 wake_flags |= WF_MIGRATED;
2066 set_task_cpu(p, cpu);
2067 }
2068
2069 #else /* CONFIG_SMP */
2070
2071 if (p->in_iowait) {
2072 delayacct_blkio_end();
2073 atomic_dec(&task_rq(p)->nr_iowait);
2074 }
2075
2076 #endif /* CONFIG_SMP */
2077
2078 ttwu_queue(p, cpu, wake_flags);
2079 stat:
2080 ttwu_stat(p, cpu, wake_flags);
2081 out:
2082 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2083
2084 return success;
2085 }
2086
2087 /**
2088 * try_to_wake_up_local - try to wake up a local task with rq lock held
2089 * @p: the thread to be awakened
2090 * @rf: request-queue flags for pinning
2091 *
2092 * Put @p on the run-queue if it's not already there. The caller must
2093 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2094 * the current task.
2095 */
2096 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2097 {
2098 struct rq *rq = task_rq(p);
2099
2100 if (WARN_ON_ONCE(rq != this_rq()) ||
2101 WARN_ON_ONCE(p == current))
2102 return;
2103
2104 lockdep_assert_held(&rq->lock);
2105
2106 if (!raw_spin_trylock(&p->pi_lock)) {
2107 /*
2108 * This is OK, because current is on_cpu, which avoids it being
2109 * picked for load-balance and preemption/IRQs are still
2110 * disabled avoiding further scheduler activity on it and we've
2111 * not yet picked a replacement task.
2112 */
2113 rq_unlock(rq, rf);
2114 raw_spin_lock(&p->pi_lock);
2115 rq_relock(rq, rf);
2116 }
2117
2118 if (!(p->state & TASK_NORMAL))
2119 goto out;
2120
2121 trace_sched_waking(p);
2122
2123 if (!task_on_rq_queued(p)) {
2124 if (p->in_iowait) {
2125 delayacct_blkio_end();
2126 atomic_dec(&rq->nr_iowait);
2127 }
2128 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2129 }
2130
2131 ttwu_do_wakeup(rq, p, 0, rf);
2132 ttwu_stat(p, smp_processor_id(), 0);
2133 out:
2134 raw_spin_unlock(&p->pi_lock);
2135 }
2136
2137 /**
2138 * wake_up_process - Wake up a specific process
2139 * @p: The process to be woken up.
2140 *
2141 * Attempt to wake up the nominated process and move it to the set of runnable
2142 * processes.
2143 *
2144 * Return: 1 if the process was woken up, 0 if it was already running.
2145 *
2146 * It may be assumed that this function implies a write memory barrier before
2147 * changing the task state if and only if any tasks are woken up.
2148 */
2149 int wake_up_process(struct task_struct *p)
2150 {
2151 return try_to_wake_up(p, TASK_NORMAL, 0);
2152 }
2153 EXPORT_SYMBOL(wake_up_process);
2154
2155 int wake_up_state(struct task_struct *p, unsigned int state)
2156 {
2157 return try_to_wake_up(p, state, 0);
2158 }
2159
2160 /*
2161 * Perform scheduler related setup for a newly forked process p.
2162 * p is forked by current.
2163 *
2164 * __sched_fork() is basic setup used by init_idle() too:
2165 */
2166 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2167 {
2168 p->on_rq = 0;
2169
2170 p->se.on_rq = 0;
2171 p->se.exec_start = 0;
2172 p->se.sum_exec_runtime = 0;
2173 p->se.prev_sum_exec_runtime = 0;
2174 p->se.nr_migrations = 0;
2175 p->se.vruntime = 0;
2176 INIT_LIST_HEAD(&p->se.group_node);
2177
2178 #ifdef CONFIG_FAIR_GROUP_SCHED
2179 p->se.cfs_rq = NULL;
2180 #endif
2181
2182 #ifdef CONFIG_SCHEDSTATS
2183 /* Even if schedstat is disabled, there should not be garbage */
2184 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2185 #endif
2186
2187 RB_CLEAR_NODE(&p->dl.rb_node);
2188 init_dl_task_timer(&p->dl);
2189 init_dl_inactive_task_timer(&p->dl);
2190 __dl_clear_params(p);
2191
2192 INIT_LIST_HEAD(&p->rt.run_list);
2193 p->rt.timeout = 0;
2194 p->rt.time_slice = sched_rr_timeslice;
2195 p->rt.on_rq = 0;
2196 p->rt.on_list = 0;
2197
2198 #ifdef CONFIG_PREEMPT_NOTIFIERS
2199 INIT_HLIST_HEAD(&p->preempt_notifiers);
2200 #endif
2201
2202 #ifdef CONFIG_NUMA_BALANCING
2203 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2204 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2205 p->mm->numa_scan_seq = 0;
2206 }
2207
2208 if (clone_flags & CLONE_VM)
2209 p->numa_preferred_nid = current->numa_preferred_nid;
2210 else
2211 p->numa_preferred_nid = -1;
2212
2213 p->node_stamp = 0ULL;
2214 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2215 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2216 p->numa_work.next = &p->numa_work;
2217 p->numa_faults = NULL;
2218 p->last_task_numa_placement = 0;
2219 p->last_sum_exec_runtime = 0;
2220
2221 p->numa_group = NULL;
2222 #endif /* CONFIG_NUMA_BALANCING */
2223 }
2224
2225 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2226
2227 #ifdef CONFIG_NUMA_BALANCING
2228
2229 void set_numabalancing_state(bool enabled)
2230 {
2231 if (enabled)
2232 static_branch_enable(&sched_numa_balancing);
2233 else
2234 static_branch_disable(&sched_numa_balancing);
2235 }
2236
2237 #ifdef CONFIG_PROC_SYSCTL
2238 int sysctl_numa_balancing(struct ctl_table *table, int write,
2239 void __user *buffer, size_t *lenp, loff_t *ppos)
2240 {
2241 struct ctl_table t;
2242 int err;
2243 int state = static_branch_likely(&sched_numa_balancing);
2244
2245 if (write && !capable(CAP_SYS_ADMIN))
2246 return -EPERM;
2247
2248 t = *table;
2249 t.data = &state;
2250 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2251 if (err < 0)
2252 return err;
2253 if (write)
2254 set_numabalancing_state(state);
2255 return err;
2256 }
2257 #endif
2258 #endif
2259
2260 #ifdef CONFIG_SCHEDSTATS
2261
2262 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2263 static bool __initdata __sched_schedstats = false;
2264
2265 static void set_schedstats(bool enabled)
2266 {
2267 if (enabled)
2268 static_branch_enable(&sched_schedstats);
2269 else
2270 static_branch_disable(&sched_schedstats);
2271 }
2272
2273 void force_schedstat_enabled(void)
2274 {
2275 if (!schedstat_enabled()) {
2276 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2277 static_branch_enable(&sched_schedstats);
2278 }
2279 }
2280
2281 static int __init setup_schedstats(char *str)
2282 {
2283 int ret = 0;
2284 if (!str)
2285 goto out;
2286
2287 /*
2288 * This code is called before jump labels have been set up, so we can't
2289 * change the static branch directly just yet. Instead set a temporary
2290 * variable so init_schedstats() can do it later.
2291 */
2292 if (!strcmp(str, "enable")) {
2293 __sched_schedstats = true;
2294 ret = 1;
2295 } else if (!strcmp(str, "disable")) {
2296 __sched_schedstats = false;
2297 ret = 1;
2298 }
2299 out:
2300 if (!ret)
2301 pr_warn("Unable to parse schedstats=\n");
2302
2303 return ret;
2304 }
2305 __setup("schedstats=", setup_schedstats);
2306
2307 static void __init init_schedstats(void)
2308 {
2309 set_schedstats(__sched_schedstats);
2310 }
2311
2312 #ifdef CONFIG_PROC_SYSCTL
2313 int sysctl_schedstats(struct ctl_table *table, int write,
2314 void __user *buffer, size_t *lenp, loff_t *ppos)
2315 {
2316 struct ctl_table t;
2317 int err;
2318 int state = static_branch_likely(&sched_schedstats);
2319
2320 if (write && !capable(CAP_SYS_ADMIN))
2321 return -EPERM;
2322
2323 t = *table;
2324 t.data = &state;
2325 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2326 if (err < 0)
2327 return err;
2328 if (write)
2329 set_schedstats(state);
2330 return err;
2331 }
2332 #endif /* CONFIG_PROC_SYSCTL */
2333 #else /* !CONFIG_SCHEDSTATS */
2334 static inline void init_schedstats(void) {}
2335 #endif /* CONFIG_SCHEDSTATS */
2336
2337 /*
2338 * fork()/clone()-time setup:
2339 */
2340 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2341 {
2342 unsigned long flags;
2343 int cpu = get_cpu();
2344
2345 __sched_fork(clone_flags, p);
2346 /*
2347 * We mark the process as NEW here. This guarantees that
2348 * nobody will actually run it, and a signal or other external
2349 * event cannot wake it up and insert it on the runqueue either.
2350 */
2351 p->state = TASK_NEW;
2352
2353 /*
2354 * Make sure we do not leak PI boosting priority to the child.
2355 */
2356 p->prio = current->normal_prio;
2357
2358 /*
2359 * Revert to default priority/policy on fork if requested.
2360 */
2361 if (unlikely(p->sched_reset_on_fork)) {
2362 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2363 p->policy = SCHED_NORMAL;
2364 p->static_prio = NICE_TO_PRIO(0);
2365 p->rt_priority = 0;
2366 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2367 p->static_prio = NICE_TO_PRIO(0);
2368
2369 p->prio = p->normal_prio = __normal_prio(p);
2370 set_load_weight(p, false);
2371
2372 /*
2373 * We don't need the reset flag anymore after the fork. It has
2374 * fulfilled its duty:
2375 */
2376 p->sched_reset_on_fork = 0;
2377 }
2378
2379 if (dl_prio(p->prio)) {
2380 put_cpu();
2381 return -EAGAIN;
2382 } else if (rt_prio(p->prio)) {
2383 p->sched_class = &rt_sched_class;
2384 } else {
2385 p->sched_class = &fair_sched_class;
2386 }
2387
2388 init_entity_runnable_average(&p->se);
2389
2390 /*
2391 * The child is not yet in the pid-hash so no cgroup attach races,
2392 * and the cgroup is pinned to this child due to cgroup_fork()
2393 * is ran before sched_fork().
2394 *
2395 * Silence PROVE_RCU.
2396 */
2397 raw_spin_lock_irqsave(&p->pi_lock, flags);
2398 /*
2399 * We're setting the CPU for the first time, we don't migrate,
2400 * so use __set_task_cpu().
2401 */
2402 __set_task_cpu(p, cpu);
2403 if (p->sched_class->task_fork)
2404 p->sched_class->task_fork(p);
2405 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2406
2407 #ifdef CONFIG_SCHED_INFO
2408 if (likely(sched_info_on()))
2409 memset(&p->sched_info, 0, sizeof(p->sched_info));
2410 #endif
2411 #if defined(CONFIG_SMP)
2412 p->on_cpu = 0;
2413 #endif
2414 init_task_preempt_count(p);
2415 #ifdef CONFIG_SMP
2416 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2417 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2418 #endif
2419
2420 put_cpu();
2421 return 0;
2422 }
2423
2424 unsigned long to_ratio(u64 period, u64 runtime)
2425 {
2426 if (runtime == RUNTIME_INF)
2427 return BW_UNIT;
2428
2429 /*
2430 * Doing this here saves a lot of checks in all
2431 * the calling paths, and returning zero seems
2432 * safe for them anyway.
2433 */
2434 if (period == 0)
2435 return 0;
2436
2437 return div64_u64(runtime << BW_SHIFT, period);
2438 }
2439
2440 /*
2441 * wake_up_new_task - wake up a newly created task for the first time.
2442 *
2443 * This function will do some initial scheduler statistics housekeeping
2444 * that must be done for every newly created context, then puts the task
2445 * on the runqueue and wakes it.
2446 */
2447 void wake_up_new_task(struct task_struct *p)
2448 {
2449 struct rq_flags rf;
2450 struct rq *rq;
2451
2452 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2453 p->state = TASK_RUNNING;
2454 #ifdef CONFIG_SMP
2455 /*
2456 * Fork balancing, do it here and not earlier because:
2457 * - cpus_allowed can change in the fork path
2458 * - any previously selected CPU might disappear through hotplug
2459 *
2460 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2461 * as we're not fully set-up yet.
2462 */
2463 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2464 #endif
2465 rq = __task_rq_lock(p, &rf);
2466 update_rq_clock(rq);
2467 post_init_entity_util_avg(&p->se);
2468
2469 activate_task(rq, p, ENQUEUE_NOCLOCK);
2470 p->on_rq = TASK_ON_RQ_QUEUED;
2471 trace_sched_wakeup_new(p);
2472 check_preempt_curr(rq, p, WF_FORK);
2473 #ifdef CONFIG_SMP
2474 if (p->sched_class->task_woken) {
2475 /*
2476 * Nothing relies on rq->lock after this, so its fine to
2477 * drop it.
2478 */
2479 rq_unpin_lock(rq, &rf);
2480 p->sched_class->task_woken(rq, p);
2481 rq_repin_lock(rq, &rf);
2482 }
2483 #endif
2484 task_rq_unlock(rq, p, &rf);
2485 }
2486
2487 #ifdef CONFIG_PREEMPT_NOTIFIERS
2488
2489 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2490
2491 void preempt_notifier_inc(void)
2492 {
2493 static_key_slow_inc(&preempt_notifier_key);
2494 }
2495 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2496
2497 void preempt_notifier_dec(void)
2498 {
2499 static_key_slow_dec(&preempt_notifier_key);
2500 }
2501 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2502
2503 /**
2504 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2505 * @notifier: notifier struct to register
2506 */
2507 void preempt_notifier_register(struct preempt_notifier *notifier)
2508 {
2509 if (!static_key_false(&preempt_notifier_key))
2510 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2511
2512 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2513 }
2514 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2515
2516 /**
2517 * preempt_notifier_unregister - no longer interested in preemption notifications
2518 * @notifier: notifier struct to unregister
2519 *
2520 * This is *not* safe to call from within a preemption notifier.
2521 */
2522 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2523 {
2524 hlist_del(&notifier->link);
2525 }
2526 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2527
2528 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2529 {
2530 struct preempt_notifier *notifier;
2531
2532 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2533 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2534 }
2535
2536 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2537 {
2538 if (static_key_false(&preempt_notifier_key))
2539 __fire_sched_in_preempt_notifiers(curr);
2540 }
2541
2542 static void
2543 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2544 struct task_struct *next)
2545 {
2546 struct preempt_notifier *notifier;
2547
2548 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2549 notifier->ops->sched_out(notifier, next);
2550 }
2551
2552 static __always_inline void
2553 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2554 struct task_struct *next)
2555 {
2556 if (static_key_false(&preempt_notifier_key))
2557 __fire_sched_out_preempt_notifiers(curr, next);
2558 }
2559
2560 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2561
2562 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2563 {
2564 }
2565
2566 static inline void
2567 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2568 struct task_struct *next)
2569 {
2570 }
2571
2572 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2573
2574 /**
2575 * prepare_task_switch - prepare to switch tasks
2576 * @rq: the runqueue preparing to switch
2577 * @prev: the current task that is being switched out
2578 * @next: the task we are going to switch to.
2579 *
2580 * This is called with the rq lock held and interrupts off. It must
2581 * be paired with a subsequent finish_task_switch after the context
2582 * switch.
2583 *
2584 * prepare_task_switch sets up locking and calls architecture specific
2585 * hooks.
2586 */
2587 static inline void
2588 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2589 struct task_struct *next)
2590 {
2591 sched_info_switch(rq, prev, next);
2592 perf_event_task_sched_out(prev, next);
2593 fire_sched_out_preempt_notifiers(prev, next);
2594 prepare_lock_switch(rq, next);
2595 prepare_arch_switch(next);
2596 }
2597
2598 /**
2599 * finish_task_switch - clean up after a task-switch
2600 * @prev: the thread we just switched away from.
2601 *
2602 * finish_task_switch must be called after the context switch, paired
2603 * with a prepare_task_switch call before the context switch.
2604 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2605 * and do any other architecture-specific cleanup actions.
2606 *
2607 * Note that we may have delayed dropping an mm in context_switch(). If
2608 * so, we finish that here outside of the runqueue lock. (Doing it
2609 * with the lock held can cause deadlocks; see schedule() for
2610 * details.)
2611 *
2612 * The context switch have flipped the stack from under us and restored the
2613 * local variables which were saved when this task called schedule() in the
2614 * past. prev == current is still correct but we need to recalculate this_rq
2615 * because prev may have moved to another CPU.
2616 */
2617 static struct rq *finish_task_switch(struct task_struct *prev)
2618 __releases(rq->lock)
2619 {
2620 struct rq *rq = this_rq();
2621 struct mm_struct *mm = rq->prev_mm;
2622 long prev_state;
2623
2624 /*
2625 * The previous task will have left us with a preempt_count of 2
2626 * because it left us after:
2627 *
2628 * schedule()
2629 * preempt_disable(); // 1
2630 * __schedule()
2631 * raw_spin_lock_irq(&rq->lock) // 2
2632 *
2633 * Also, see FORK_PREEMPT_COUNT.
2634 */
2635 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2636 "corrupted preempt_count: %s/%d/0x%x\n",
2637 current->comm, current->pid, preempt_count()))
2638 preempt_count_set(FORK_PREEMPT_COUNT);
2639
2640 rq->prev_mm = NULL;
2641
2642 /*
2643 * A task struct has one reference for the use as "current".
2644 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2645 * schedule one last time. The schedule call will never return, and
2646 * the scheduled task must drop that reference.
2647 *
2648 * We must observe prev->state before clearing prev->on_cpu (in
2649 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2650 * running on another CPU and we could rave with its RUNNING -> DEAD
2651 * transition, resulting in a double drop.
2652 */
2653 prev_state = prev->state;
2654 vtime_task_switch(prev);
2655 perf_event_task_sched_in(prev, current);
2656 /*
2657 * The membarrier system call requires a full memory barrier
2658 * after storing to rq->curr, before going back to user-space.
2659 *
2660 * TODO: This smp_mb__after_unlock_lock can go away if PPC end
2661 * up adding a full barrier to switch_mm(), or we should figure
2662 * out if a smp_mb__after_unlock_lock is really the proper API
2663 * to use.
2664 */
2665 smp_mb__after_unlock_lock();
2666 finish_lock_switch(rq, prev);
2667 finish_arch_post_lock_switch();
2668
2669 fire_sched_in_preempt_notifiers(current);
2670 if (mm)
2671 mmdrop(mm);
2672 if (unlikely(prev_state == TASK_DEAD)) {
2673 if (prev->sched_class->task_dead)
2674 prev->sched_class->task_dead(prev);
2675
2676 /*
2677 * Remove function-return probe instances associated with this
2678 * task and put them back on the free list.
2679 */
2680 kprobe_flush_task(prev);
2681
2682 /* Task is done with its stack. */
2683 put_task_stack(prev);
2684
2685 put_task_struct(prev);
2686 }
2687
2688 tick_nohz_task_switch();
2689 return rq;
2690 }
2691
2692 #ifdef CONFIG_SMP
2693
2694 /* rq->lock is NOT held, but preemption is disabled */
2695 static void __balance_callback(struct rq *rq)
2696 {
2697 struct callback_head *head, *next;
2698 void (*func)(struct rq *rq);
2699 unsigned long flags;
2700
2701 raw_spin_lock_irqsave(&rq->lock, flags);
2702 head = rq->balance_callback;
2703 rq->balance_callback = NULL;
2704 while (head) {
2705 func = (void (*)(struct rq *))head->func;
2706 next = head->next;
2707 head->next = NULL;
2708 head = next;
2709
2710 func(rq);
2711 }
2712 raw_spin_unlock_irqrestore(&rq->lock, flags);
2713 }
2714
2715 static inline void balance_callback(struct rq *rq)
2716 {
2717 if (unlikely(rq->balance_callback))
2718 __balance_callback(rq);
2719 }
2720
2721 #else
2722
2723 static inline void balance_callback(struct rq *rq)
2724 {
2725 }
2726
2727 #endif
2728
2729 /**
2730 * schedule_tail - first thing a freshly forked thread must call.
2731 * @prev: the thread we just switched away from.
2732 */
2733 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2734 __releases(rq->lock)
2735 {
2736 struct rq *rq;
2737
2738 /*
2739 * New tasks start with FORK_PREEMPT_COUNT, see there and
2740 * finish_task_switch() for details.
2741 *
2742 * finish_task_switch() will drop rq->lock() and lower preempt_count
2743 * and the preempt_enable() will end up enabling preemption (on
2744 * PREEMPT_COUNT kernels).
2745 */
2746
2747 rq = finish_task_switch(prev);
2748 balance_callback(rq);
2749 preempt_enable();
2750
2751 if (current->set_child_tid)
2752 put_user(task_pid_vnr(current), current->set_child_tid);
2753 }
2754
2755 /*
2756 * context_switch - switch to the new MM and the new thread's register state.
2757 */
2758 static __always_inline struct rq *
2759 context_switch(struct rq *rq, struct task_struct *prev,
2760 struct task_struct *next, struct rq_flags *rf)
2761 {
2762 struct mm_struct *mm, *oldmm;
2763
2764 prepare_task_switch(rq, prev, next);
2765
2766 mm = next->mm;
2767 oldmm = prev->active_mm;
2768 /*
2769 * For paravirt, this is coupled with an exit in switch_to to
2770 * combine the page table reload and the switch backend into
2771 * one hypercall.
2772 */
2773 arch_start_context_switch(prev);
2774
2775 if (!mm) {
2776 next->active_mm = oldmm;
2777 mmgrab(oldmm);
2778 enter_lazy_tlb(oldmm, next);
2779 } else
2780 switch_mm_irqs_off(oldmm, mm, next);
2781
2782 if (!prev->mm) {
2783 prev->active_mm = NULL;
2784 rq->prev_mm = oldmm;
2785 }
2786
2787 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2788
2789 /*
2790 * Since the runqueue lock will be released by the next
2791 * task (which is an invalid locking op but in the case
2792 * of the scheduler it's an obvious special-case), so we
2793 * do an early lockdep release here:
2794 */
2795 rq_unpin_lock(rq, rf);
2796 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2797
2798 /* Here we just switch the register state and the stack. */
2799 switch_to(prev, next, prev);
2800 barrier();
2801
2802 return finish_task_switch(prev);
2803 }
2804
2805 /*
2806 * nr_running and nr_context_switches:
2807 *
2808 * externally visible scheduler statistics: current number of runnable
2809 * threads, total number of context switches performed since bootup.
2810 */
2811 unsigned long nr_running(void)
2812 {
2813 unsigned long i, sum = 0;
2814
2815 for_each_online_cpu(i)
2816 sum += cpu_rq(i)->nr_running;
2817
2818 return sum;
2819 }
2820
2821 /*
2822 * Check if only the current task is running on the CPU.
2823 *
2824 * Caution: this function does not check that the caller has disabled
2825 * preemption, thus the result might have a time-of-check-to-time-of-use
2826 * race. The caller is responsible to use it correctly, for example:
2827 *
2828 * - from a non-preemptable section (of course)
2829 *
2830 * - from a thread that is bound to a single CPU
2831 *
2832 * - in a loop with very short iterations (e.g. a polling loop)
2833 */
2834 bool single_task_running(void)
2835 {
2836 return raw_rq()->nr_running == 1;
2837 }
2838 EXPORT_SYMBOL(single_task_running);
2839
2840 unsigned long long nr_context_switches(void)
2841 {
2842 int i;
2843 unsigned long long sum = 0;
2844
2845 for_each_possible_cpu(i)
2846 sum += cpu_rq(i)->nr_switches;
2847
2848 return sum;
2849 }
2850
2851 /*
2852 * IO-wait accounting, and how its mostly bollocks (on SMP).
2853 *
2854 * The idea behind IO-wait account is to account the idle time that we could
2855 * have spend running if it were not for IO. That is, if we were to improve the
2856 * storage performance, we'd have a proportional reduction in IO-wait time.
2857 *
2858 * This all works nicely on UP, where, when a task blocks on IO, we account
2859 * idle time as IO-wait, because if the storage were faster, it could've been
2860 * running and we'd not be idle.
2861 *
2862 * This has been extended to SMP, by doing the same for each CPU. This however
2863 * is broken.
2864 *
2865 * Imagine for instance the case where two tasks block on one CPU, only the one
2866 * CPU will have IO-wait accounted, while the other has regular idle. Even
2867 * though, if the storage were faster, both could've ran at the same time,
2868 * utilising both CPUs.
2869 *
2870 * This means, that when looking globally, the current IO-wait accounting on
2871 * SMP is a lower bound, by reason of under accounting.
2872 *
2873 * Worse, since the numbers are provided per CPU, they are sometimes
2874 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2875 * associated with any one particular CPU, it can wake to another CPU than it
2876 * blocked on. This means the per CPU IO-wait number is meaningless.
2877 *
2878 * Task CPU affinities can make all that even more 'interesting'.
2879 */
2880
2881 unsigned long nr_iowait(void)
2882 {
2883 unsigned long i, sum = 0;
2884
2885 for_each_possible_cpu(i)
2886 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2887
2888 return sum;
2889 }
2890
2891 /*
2892 * Consumers of these two interfaces, like for example the cpufreq menu
2893 * governor are using nonsensical data. Boosting frequency for a CPU that has
2894 * IO-wait which might not even end up running the task when it does become
2895 * runnable.
2896 */
2897
2898 unsigned long nr_iowait_cpu(int cpu)
2899 {
2900 struct rq *this = cpu_rq(cpu);
2901 return atomic_read(&this->nr_iowait);
2902 }
2903
2904 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2905 {
2906 struct rq *rq = this_rq();
2907 *nr_waiters = atomic_read(&rq->nr_iowait);
2908 *load = rq->load.weight;
2909 }
2910
2911 #ifdef CONFIG_SMP
2912
2913 /*
2914 * sched_exec - execve() is a valuable balancing opportunity, because at
2915 * this point the task has the smallest effective memory and cache footprint.
2916 */
2917 void sched_exec(void)
2918 {
2919 struct task_struct *p = current;
2920 unsigned long flags;
2921 int dest_cpu;
2922
2923 raw_spin_lock_irqsave(&p->pi_lock, flags);
2924 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2925 if (dest_cpu == smp_processor_id())
2926 goto unlock;
2927
2928 if (likely(cpu_active(dest_cpu))) {
2929 struct migration_arg arg = { p, dest_cpu };
2930
2931 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2932 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2933 return;
2934 }
2935 unlock:
2936 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2937 }
2938
2939 #endif
2940
2941 DEFINE_PER_CPU(struct kernel_stat, kstat);
2942 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2943
2944 EXPORT_PER_CPU_SYMBOL(kstat);
2945 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2946
2947 /*
2948 * The function fair_sched_class.update_curr accesses the struct curr
2949 * and its field curr->exec_start; when called from task_sched_runtime(),
2950 * we observe a high rate of cache misses in practice.
2951 * Prefetching this data results in improved performance.
2952 */
2953 static inline void prefetch_curr_exec_start(struct task_struct *p)
2954 {
2955 #ifdef CONFIG_FAIR_GROUP_SCHED
2956 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
2957 #else
2958 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
2959 #endif
2960 prefetch(curr);
2961 prefetch(&curr->exec_start);
2962 }
2963
2964 /*
2965 * Return accounted runtime for the task.
2966 * In case the task is currently running, return the runtime plus current's
2967 * pending runtime that have not been accounted yet.
2968 */
2969 unsigned long long task_sched_runtime(struct task_struct *p)
2970 {
2971 struct rq_flags rf;
2972 struct rq *rq;
2973 u64 ns;
2974
2975 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2976 /*
2977 * 64-bit doesn't need locks to atomically read a 64bit value.
2978 * So we have a optimization chance when the task's delta_exec is 0.
2979 * Reading ->on_cpu is racy, but this is ok.
2980 *
2981 * If we race with it leaving CPU, we'll take a lock. So we're correct.
2982 * If we race with it entering CPU, unaccounted time is 0. This is
2983 * indistinguishable from the read occurring a few cycles earlier.
2984 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2985 * been accounted, so we're correct here as well.
2986 */
2987 if (!p->on_cpu || !task_on_rq_queued(p))
2988 return p->se.sum_exec_runtime;
2989 #endif
2990
2991 rq = task_rq_lock(p, &rf);
2992 /*
2993 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2994 * project cycles that may never be accounted to this
2995 * thread, breaking clock_gettime().
2996 */
2997 if (task_current(rq, p) && task_on_rq_queued(p)) {
2998 prefetch_curr_exec_start(p);
2999 update_rq_clock(rq);
3000 p->sched_class->update_curr(rq);
3001 }
3002 ns = p->se.sum_exec_runtime;
3003 task_rq_unlock(rq, p, &rf);
3004
3005 return ns;
3006 }
3007
3008 /*
3009 * This function gets called by the timer code, with HZ frequency.
3010 * We call it with interrupts disabled.
3011 */
3012 void scheduler_tick(void)
3013 {
3014 int cpu = smp_processor_id();
3015 struct rq *rq = cpu_rq(cpu);
3016 struct task_struct *curr = rq->curr;
3017 struct rq_flags rf;
3018
3019 sched_clock_tick();
3020
3021 rq_lock(rq, &rf);
3022
3023 update_rq_clock(rq);
3024 curr->sched_class->task_tick(rq, curr, 0);
3025 cpu_load_update_active(rq);
3026 calc_global_load_tick(rq);
3027
3028 rq_unlock(rq, &rf);
3029
3030 perf_event_task_tick();
3031
3032 #ifdef CONFIG_SMP
3033 rq->idle_balance = idle_cpu(cpu);
3034 trigger_load_balance(rq);
3035 #endif
3036 rq_last_tick_reset(rq);
3037 }
3038
3039 #ifdef CONFIG_NO_HZ_FULL
3040 /**
3041 * scheduler_tick_max_deferment
3042 *
3043 * Keep at least one tick per second when a single
3044 * active task is running because the scheduler doesn't
3045 * yet completely support full dynticks environment.
3046 *
3047 * This makes sure that uptime, CFS vruntime, load
3048 * balancing, etc... continue to move forward, even
3049 * with a very low granularity.
3050 *
3051 * Return: Maximum deferment in nanoseconds.
3052 */
3053 u64 scheduler_tick_max_deferment(void)
3054 {
3055 struct rq *rq = this_rq();
3056 unsigned long next, now = READ_ONCE(jiffies);
3057
3058 next = rq->last_sched_tick + HZ;
3059
3060 if (time_before_eq(next, now))
3061 return 0;
3062
3063 return jiffies_to_nsecs(next - now);
3064 }
3065 #endif
3066
3067 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3068 defined(CONFIG_PREEMPT_TRACER))
3069 /*
3070 * If the value passed in is equal to the current preempt count
3071 * then we just disabled preemption. Start timing the latency.
3072 */
3073 static inline void preempt_latency_start(int val)
3074 {
3075 if (preempt_count() == val) {
3076 unsigned long ip = get_lock_parent_ip();
3077 #ifdef CONFIG_DEBUG_PREEMPT
3078 current->preempt_disable_ip = ip;
3079 #endif
3080 trace_preempt_off(CALLER_ADDR0, ip);
3081 }
3082 }
3083
3084 void preempt_count_add(int val)
3085 {
3086 #ifdef CONFIG_DEBUG_PREEMPT
3087 /*
3088 * Underflow?
3089 */
3090 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3091 return;
3092 #endif
3093 __preempt_count_add(val);
3094 #ifdef CONFIG_DEBUG_PREEMPT
3095 /*
3096 * Spinlock count overflowing soon?
3097 */
3098 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3099 PREEMPT_MASK - 10);
3100 #endif
3101 preempt_latency_start(val);
3102 }
3103 EXPORT_SYMBOL(preempt_count_add);
3104 NOKPROBE_SYMBOL(preempt_count_add);
3105
3106 /*
3107 * If the value passed in equals to the current preempt count
3108 * then we just enabled preemption. Stop timing the latency.
3109 */
3110 static inline void preempt_latency_stop(int val)
3111 {
3112 if (preempt_count() == val)
3113 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3114 }
3115
3116 void preempt_count_sub(int val)
3117 {
3118 #ifdef CONFIG_DEBUG_PREEMPT
3119 /*
3120 * Underflow?
3121 */
3122 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3123 return;
3124 /*
3125 * Is the spinlock portion underflowing?
3126 */
3127 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3128 !(preempt_count() & PREEMPT_MASK)))
3129 return;
3130 #endif
3131
3132 preempt_latency_stop(val);
3133 __preempt_count_sub(val);
3134 }
3135 EXPORT_SYMBOL(preempt_count_sub);
3136 NOKPROBE_SYMBOL(preempt_count_sub);
3137
3138 #else
3139 static inline void preempt_latency_start(int val) { }
3140 static inline void preempt_latency_stop(int val) { }
3141 #endif
3142
3143 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3144 {
3145 #ifdef CONFIG_DEBUG_PREEMPT
3146 return p->preempt_disable_ip;
3147 #else
3148 return 0;
3149 #endif
3150 }
3151
3152 /*
3153 * Print scheduling while atomic bug:
3154 */
3155 static noinline void __schedule_bug(struct task_struct *prev)
3156 {
3157 /* Save this before calling printk(), since that will clobber it */
3158 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3159
3160 if (oops_in_progress)
3161 return;
3162
3163 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3164 prev->comm, prev->pid, preempt_count());
3165
3166 debug_show_held_locks(prev);
3167 print_modules();
3168 if (irqs_disabled())
3169 print_irqtrace_events(prev);
3170 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3171 && in_atomic_preempt_off()) {
3172 pr_err("Preemption disabled at:");
3173 print_ip_sym(preempt_disable_ip);
3174 pr_cont("\n");
3175 }
3176 if (panic_on_warn)
3177 panic("scheduling while atomic\n");
3178
3179 dump_stack();
3180 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3181 }
3182
3183 /*
3184 * Various schedule()-time debugging checks and statistics:
3185 */
3186 static inline void schedule_debug(struct task_struct *prev)
3187 {
3188 #ifdef CONFIG_SCHED_STACK_END_CHECK
3189 if (task_stack_end_corrupted(prev))
3190 panic("corrupted stack end detected inside scheduler\n");
3191 #endif
3192
3193 if (unlikely(in_atomic_preempt_off())) {
3194 __schedule_bug(prev);
3195 preempt_count_set(PREEMPT_DISABLED);
3196 }
3197 rcu_sleep_check();
3198
3199 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3200
3201 schedstat_inc(this_rq()->sched_count);
3202 }
3203
3204 /*
3205 * Pick up the highest-prio task:
3206 */
3207 static inline struct task_struct *
3208 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3209 {
3210 const struct sched_class *class;
3211 struct task_struct *p;
3212
3213 /*
3214 * Optimization: we know that if all tasks are in the fair class we can
3215 * call that function directly, but only if the @prev task wasn't of a
3216 * higher scheduling class, because otherwise those loose the
3217 * opportunity to pull in more work from other CPUs.
3218 */
3219 if (likely((prev->sched_class == &idle_sched_class ||
3220 prev->sched_class == &fair_sched_class) &&
3221 rq->nr_running == rq->cfs.h_nr_running)) {
3222
3223 p = fair_sched_class.pick_next_task(rq, prev, rf);
3224 if (unlikely(p == RETRY_TASK))
3225 goto again;
3226
3227 /* Assumes fair_sched_class->next == idle_sched_class */
3228 if (unlikely(!p))
3229 p = idle_sched_class.pick_next_task(rq, prev, rf);
3230
3231 return p;
3232 }
3233
3234 again:
3235 for_each_class(class) {
3236 p = class->pick_next_task(rq, prev, rf);
3237 if (p) {
3238 if (unlikely(p == RETRY_TASK))
3239 goto again;
3240 return p;
3241 }
3242 }
3243
3244 /* The idle class should always have a runnable task: */
3245 BUG();
3246 }
3247
3248 /*
3249 * __schedule() is the main scheduler function.
3250 *
3251 * The main means of driving the scheduler and thus entering this function are:
3252 *
3253 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3254 *
3255 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3256 * paths. For example, see arch/x86/entry_64.S.
3257 *
3258 * To drive preemption between tasks, the scheduler sets the flag in timer
3259 * interrupt handler scheduler_tick().
3260 *
3261 * 3. Wakeups don't really cause entry into schedule(). They add a
3262 * task to the run-queue and that's it.
3263 *
3264 * Now, if the new task added to the run-queue preempts the current
3265 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3266 * called on the nearest possible occasion:
3267 *
3268 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3269 *
3270 * - in syscall or exception context, at the next outmost
3271 * preempt_enable(). (this might be as soon as the wake_up()'s
3272 * spin_unlock()!)
3273 *
3274 * - in IRQ context, return from interrupt-handler to
3275 * preemptible context
3276 *
3277 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3278 * then at the next:
3279 *
3280 * - cond_resched() call
3281 * - explicit schedule() call
3282 * - return from syscall or exception to user-space
3283 * - return from interrupt-handler to user-space
3284 *
3285 * WARNING: must be called with preemption disabled!
3286 */
3287 static void __sched notrace __schedule(bool preempt)
3288 {
3289 struct task_struct *prev, *next;
3290 unsigned long *switch_count;
3291 struct rq_flags rf;
3292 struct rq *rq;
3293 int cpu;
3294
3295 cpu = smp_processor_id();
3296 rq = cpu_rq(cpu);
3297 prev = rq->curr;
3298
3299 schedule_debug(prev);
3300
3301 if (sched_feat(HRTICK))
3302 hrtick_clear(rq);
3303
3304 local_irq_disable();
3305 rcu_note_context_switch(preempt);
3306
3307 /*
3308 * Make sure that signal_pending_state()->signal_pending() below
3309 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3310 * done by the caller to avoid the race with signal_wake_up().
3311 */
3312 rq_lock(rq, &rf);
3313 smp_mb__after_spinlock();
3314
3315 /* Promote REQ to ACT */
3316 rq->clock_update_flags <<= 1;
3317 update_rq_clock(rq);
3318
3319 switch_count = &prev->nivcsw;
3320 if (!preempt && prev->state) {
3321 if (unlikely(signal_pending_state(prev->state, prev))) {
3322 prev->state = TASK_RUNNING;
3323 } else {
3324 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3325 prev->on_rq = 0;
3326
3327 if (prev->in_iowait) {
3328 atomic_inc(&rq->nr_iowait);
3329 delayacct_blkio_start();
3330 }
3331
3332 /*
3333 * If a worker went to sleep, notify and ask workqueue
3334 * whether it wants to wake up a task to maintain
3335 * concurrency.
3336 */
3337 if (prev->flags & PF_WQ_WORKER) {
3338 struct task_struct *to_wakeup;
3339
3340 to_wakeup = wq_worker_sleeping(prev);
3341 if (to_wakeup)
3342 try_to_wake_up_local(to_wakeup, &rf);
3343 }
3344 }
3345 switch_count = &prev->nvcsw;
3346 }
3347
3348 next = pick_next_task(rq, prev, &rf);
3349 clear_tsk_need_resched(prev);
3350 clear_preempt_need_resched();
3351
3352 if (likely(prev != next)) {
3353 rq->nr_switches++;
3354 rq->curr = next;
3355 /*
3356 * The membarrier system call requires each architecture
3357 * to have a full memory barrier after updating
3358 * rq->curr, before returning to user-space. For TSO
3359 * (e.g. x86), the architecture must provide its own
3360 * barrier in switch_mm(). For weakly ordered machines
3361 * for which spin_unlock() acts as a full memory
3362 * barrier, finish_lock_switch() in common code takes
3363 * care of this barrier. For weakly ordered machines for
3364 * which spin_unlock() acts as a RELEASE barrier (only
3365 * arm64 and PowerPC), arm64 has a full barrier in
3366 * switch_to(), and PowerPC has
3367 * smp_mb__after_unlock_lock() before
3368 * finish_lock_switch().
3369 */
3370 ++*switch_count;
3371
3372 trace_sched_switch(preempt, prev, next);
3373
3374 /* Also unlocks the rq: */
3375 rq = context_switch(rq, prev, next, &rf);
3376 } else {
3377 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3378 rq_unlock_irq(rq, &rf);
3379 }
3380
3381 balance_callback(rq);
3382 }
3383
3384 void __noreturn do_task_dead(void)
3385 {
3386 /*
3387 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3388 * when the following two conditions become true.
3389 * - There is race condition of mmap_sem (It is acquired by
3390 * exit_mm()), and
3391 * - SMI occurs before setting TASK_RUNINNG.
3392 * (or hypervisor of virtual machine switches to other guest)
3393 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3394 *
3395 * To avoid it, we have to wait for releasing tsk->pi_lock which
3396 * is held by try_to_wake_up()
3397 */
3398 raw_spin_lock_irq(&current->pi_lock);
3399 raw_spin_unlock_irq(&current->pi_lock);
3400
3401 /* Causes final put_task_struct in finish_task_switch(): */
3402 __set_current_state(TASK_DEAD);
3403
3404 /* Tell freezer to ignore us: */
3405 current->flags |= PF_NOFREEZE;
3406
3407 __schedule(false);
3408 BUG();
3409
3410 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3411 for (;;)
3412 cpu_relax();
3413 }
3414
3415 static inline void sched_submit_work(struct task_struct *tsk)
3416 {
3417 if (!tsk->state || tsk_is_pi_blocked(tsk))
3418 return;
3419 /*
3420 * If we are going to sleep and we have plugged IO queued,
3421 * make sure to submit it to avoid deadlocks.
3422 */
3423 if (blk_needs_flush_plug(tsk))
3424 blk_schedule_flush_plug(tsk);
3425 }
3426
3427 asmlinkage __visible void __sched schedule(void)
3428 {
3429 struct task_struct *tsk = current;
3430
3431 sched_submit_work(tsk);
3432 do {
3433 preempt_disable();
3434 __schedule(false);
3435 sched_preempt_enable_no_resched();
3436 } while (need_resched());
3437 }
3438 EXPORT_SYMBOL(schedule);
3439
3440 /*
3441 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3442 * state (have scheduled out non-voluntarily) by making sure that all
3443 * tasks have either left the run queue or have gone into user space.
3444 * As idle tasks do not do either, they must not ever be preempted
3445 * (schedule out non-voluntarily).
3446 *
3447 * schedule_idle() is similar to schedule_preempt_disable() except that it
3448 * never enables preemption because it does not call sched_submit_work().
3449 */
3450 void __sched schedule_idle(void)
3451 {
3452 /*
3453 * As this skips calling sched_submit_work(), which the idle task does
3454 * regardless because that function is a nop when the task is in a
3455 * TASK_RUNNING state, make sure this isn't used someplace that the
3456 * current task can be in any other state. Note, idle is always in the
3457 * TASK_RUNNING state.
3458 */
3459 WARN_ON_ONCE(current->state);
3460 do {
3461 __schedule(false);
3462 } while (need_resched());
3463 }
3464
3465 #ifdef CONFIG_CONTEXT_TRACKING
3466 asmlinkage __visible void __sched schedule_user(void)
3467 {
3468 /*
3469 * If we come here after a random call to set_need_resched(),
3470 * or we have been woken up remotely but the IPI has not yet arrived,
3471 * we haven't yet exited the RCU idle mode. Do it here manually until
3472 * we find a better solution.
3473 *
3474 * NB: There are buggy callers of this function. Ideally we
3475 * should warn if prev_state != CONTEXT_USER, but that will trigger
3476 * too frequently to make sense yet.
3477 */
3478 enum ctx_state prev_state = exception_enter();
3479 schedule();
3480 exception_exit(prev_state);
3481 }
3482 #endif
3483
3484 /**
3485 * schedule_preempt_disabled - called with preemption disabled
3486 *
3487 * Returns with preemption disabled. Note: preempt_count must be 1
3488 */
3489 void __sched schedule_preempt_disabled(void)
3490 {
3491 sched_preempt_enable_no_resched();
3492 schedule();
3493 preempt_disable();
3494 }
3495
3496 static void __sched notrace preempt_schedule_common(void)
3497 {
3498 do {
3499 /*
3500 * Because the function tracer can trace preempt_count_sub()
3501 * and it also uses preempt_enable/disable_notrace(), if
3502 * NEED_RESCHED is set, the preempt_enable_notrace() called
3503 * by the function tracer will call this function again and
3504 * cause infinite recursion.
3505 *
3506 * Preemption must be disabled here before the function
3507 * tracer can trace. Break up preempt_disable() into two
3508 * calls. One to disable preemption without fear of being
3509 * traced. The other to still record the preemption latency,
3510 * which can also be traced by the function tracer.
3511 */
3512 preempt_disable_notrace();
3513 preempt_latency_start(1);
3514 __schedule(true);
3515 preempt_latency_stop(1);
3516 preempt_enable_no_resched_notrace();
3517
3518 /*
3519 * Check again in case we missed a preemption opportunity
3520 * between schedule and now.
3521 */
3522 } while (need_resched());
3523 }
3524
3525 #ifdef CONFIG_PREEMPT
3526 /*
3527 * this is the entry point to schedule() from in-kernel preemption
3528 * off of preempt_enable. Kernel preemptions off return from interrupt
3529 * occur there and call schedule directly.
3530 */
3531 asmlinkage __visible void __sched notrace preempt_schedule(void)
3532 {
3533 /*
3534 * If there is a non-zero preempt_count or interrupts are disabled,
3535 * we do not want to preempt the current task. Just return..
3536 */
3537 if (likely(!preemptible()))
3538 return;
3539
3540 preempt_schedule_common();
3541 }
3542 NOKPROBE_SYMBOL(preempt_schedule);
3543 EXPORT_SYMBOL(preempt_schedule);
3544
3545 /**
3546 * preempt_schedule_notrace - preempt_schedule called by tracing
3547 *
3548 * The tracing infrastructure uses preempt_enable_notrace to prevent
3549 * recursion and tracing preempt enabling caused by the tracing
3550 * infrastructure itself. But as tracing can happen in areas coming
3551 * from userspace or just about to enter userspace, a preempt enable
3552 * can occur before user_exit() is called. This will cause the scheduler
3553 * to be called when the system is still in usermode.
3554 *
3555 * To prevent this, the preempt_enable_notrace will use this function
3556 * instead of preempt_schedule() to exit user context if needed before
3557 * calling the scheduler.
3558 */
3559 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3560 {
3561 enum ctx_state prev_ctx;
3562
3563 if (likely(!preemptible()))
3564 return;
3565
3566 do {
3567 /*
3568 * Because the function tracer can trace preempt_count_sub()
3569 * and it also uses preempt_enable/disable_notrace(), if
3570 * NEED_RESCHED is set, the preempt_enable_notrace() called
3571 * by the function tracer will call this function again and
3572 * cause infinite recursion.
3573 *
3574 * Preemption must be disabled here before the function
3575 * tracer can trace. Break up preempt_disable() into two
3576 * calls. One to disable preemption without fear of being
3577 * traced. The other to still record the preemption latency,
3578 * which can also be traced by the function tracer.
3579 */
3580 preempt_disable_notrace();
3581 preempt_latency_start(1);
3582 /*
3583 * Needs preempt disabled in case user_exit() is traced
3584 * and the tracer calls preempt_enable_notrace() causing
3585 * an infinite recursion.
3586 */
3587 prev_ctx = exception_enter();
3588 __schedule(true);
3589 exception_exit(prev_ctx);
3590
3591 preempt_latency_stop(1);
3592 preempt_enable_no_resched_notrace();
3593 } while (need_resched());
3594 }
3595 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3596
3597 #endif /* CONFIG_PREEMPT */
3598
3599 /*
3600 * this is the entry point to schedule() from kernel preemption
3601 * off of irq context.
3602 * Note, that this is called and return with irqs disabled. This will
3603 * protect us against recursive calling from irq.
3604 */
3605 asmlinkage __visible void __sched preempt_schedule_irq(void)
3606 {
3607 enum ctx_state prev_state;
3608
3609 /* Catch callers which need to be fixed */
3610 BUG_ON(preempt_count() || !irqs_disabled());
3611
3612 prev_state = exception_enter();
3613
3614 do {
3615 preempt_disable();
3616 local_irq_enable();
3617 __schedule(true);
3618 local_irq_disable();
3619 sched_preempt_enable_no_resched();
3620 } while (need_resched());
3621
3622 exception_exit(prev_state);
3623 }
3624
3625 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3626 void *key)
3627 {
3628 return try_to_wake_up(curr->private, mode, wake_flags);
3629 }
3630 EXPORT_SYMBOL(default_wake_function);
3631
3632 #ifdef CONFIG_RT_MUTEXES
3633
3634 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3635 {
3636 if (pi_task)
3637 prio = min(prio, pi_task->prio);
3638
3639 return prio;
3640 }
3641
3642 static inline int rt_effective_prio(struct task_struct *p, int prio)
3643 {
3644 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3645
3646 return __rt_effective_prio(pi_task, prio);
3647 }
3648
3649 /*
3650 * rt_mutex_setprio - set the current priority of a task
3651 * @p: task to boost
3652 * @pi_task: donor task
3653 *
3654 * This function changes the 'effective' priority of a task. It does
3655 * not touch ->normal_prio like __setscheduler().
3656 *
3657 * Used by the rt_mutex code to implement priority inheritance
3658 * logic. Call site only calls if the priority of the task changed.
3659 */
3660 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3661 {
3662 int prio, oldprio, queued, running, queue_flag =
3663 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3664 const struct sched_class *prev_class;
3665 struct rq_flags rf;
3666 struct rq *rq;
3667
3668 /* XXX used to be waiter->prio, not waiter->task->prio */
3669 prio = __rt_effective_prio(pi_task, p->normal_prio);
3670
3671 /*
3672 * If nothing changed; bail early.
3673 */
3674 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3675 return;
3676
3677 rq = __task_rq_lock(p, &rf);
3678 update_rq_clock(rq);
3679 /*
3680 * Set under pi_lock && rq->lock, such that the value can be used under
3681 * either lock.
3682 *
3683 * Note that there is loads of tricky to make this pointer cache work
3684 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3685 * ensure a task is de-boosted (pi_task is set to NULL) before the
3686 * task is allowed to run again (and can exit). This ensures the pointer
3687 * points to a blocked task -- which guaratees the task is present.
3688 */
3689 p->pi_top_task = pi_task;
3690
3691 /*
3692 * For FIFO/RR we only need to set prio, if that matches we're done.
3693 */
3694 if (prio == p->prio && !dl_prio(prio))
3695 goto out_unlock;
3696
3697 /*
3698 * Idle task boosting is a nono in general. There is one
3699 * exception, when PREEMPT_RT and NOHZ is active:
3700 *
3701 * The idle task calls get_next_timer_interrupt() and holds
3702 * the timer wheel base->lock on the CPU and another CPU wants
3703 * to access the timer (probably to cancel it). We can safely
3704 * ignore the boosting request, as the idle CPU runs this code
3705 * with interrupts disabled and will complete the lock
3706 * protected section without being interrupted. So there is no
3707 * real need to boost.
3708 */
3709 if (unlikely(p == rq->idle)) {
3710 WARN_ON(p != rq->curr);
3711 WARN_ON(p->pi_blocked_on);
3712 goto out_unlock;
3713 }
3714
3715 trace_sched_pi_setprio(p, pi_task);
3716 oldprio = p->prio;
3717
3718 if (oldprio == prio)
3719 queue_flag &= ~DEQUEUE_MOVE;
3720
3721 prev_class = p->sched_class;
3722 queued = task_on_rq_queued(p);
3723 running = task_current(rq, p);
3724 if (queued)
3725 dequeue_task(rq, p, queue_flag);
3726 if (running)
3727 put_prev_task(rq, p);
3728
3729 /*
3730 * Boosting condition are:
3731 * 1. -rt task is running and holds mutex A
3732 * --> -dl task blocks on mutex A
3733 *
3734 * 2. -dl task is running and holds mutex A
3735 * --> -dl task blocks on mutex A and could preempt the
3736 * running task
3737 */
3738 if (dl_prio(prio)) {
3739 if (!dl_prio(p->normal_prio) ||
3740 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3741 p->dl.dl_boosted = 1;
3742 queue_flag |= ENQUEUE_REPLENISH;
3743 } else
3744 p->dl.dl_boosted = 0;
3745 p->sched_class = &dl_sched_class;
3746 } else if (rt_prio(prio)) {
3747 if (dl_prio(oldprio))
3748 p->dl.dl_boosted = 0;
3749 if (oldprio < prio)
3750 queue_flag |= ENQUEUE_HEAD;
3751 p->sched_class = &rt_sched_class;
3752 } else {
3753 if (dl_prio(oldprio))
3754 p->dl.dl_boosted = 0;
3755 if (rt_prio(oldprio))
3756 p->rt.timeout = 0;
3757 p->sched_class = &fair_sched_class;
3758 }
3759
3760 p->prio = prio;
3761
3762 if (queued)
3763 enqueue_task(rq, p, queue_flag);
3764 if (running)
3765 set_curr_task(rq, p);
3766
3767 check_class_changed(rq, p, prev_class, oldprio);
3768 out_unlock:
3769 /* Avoid rq from going away on us: */
3770 preempt_disable();
3771 __task_rq_unlock(rq, &rf);
3772
3773 balance_callback(rq);
3774 preempt_enable();
3775 }
3776 #else
3777 static inline int rt_effective_prio(struct task_struct *p, int prio)
3778 {
3779 return prio;
3780 }
3781 #endif
3782
3783 void set_user_nice(struct task_struct *p, long nice)
3784 {
3785 bool queued, running;
3786 int old_prio, delta;
3787 struct rq_flags rf;
3788 struct rq *rq;
3789
3790 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3791 return;
3792 /*
3793 * We have to be careful, if called from sys_setpriority(),
3794 * the task might be in the middle of scheduling on another CPU.
3795 */
3796 rq = task_rq_lock(p, &rf);
3797 update_rq_clock(rq);
3798
3799 /*
3800 * The RT priorities are set via sched_setscheduler(), but we still
3801 * allow the 'normal' nice value to be set - but as expected
3802 * it wont have any effect on scheduling until the task is
3803 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3804 */
3805 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3806 p->static_prio = NICE_TO_PRIO(nice);
3807 goto out_unlock;
3808 }
3809 queued = task_on_rq_queued(p);
3810 running = task_current(rq, p);
3811 if (queued)
3812 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3813 if (running)
3814 put_prev_task(rq, p);
3815
3816 p->static_prio = NICE_TO_PRIO(nice);
3817 set_load_weight(p, true);
3818 old_prio = p->prio;
3819 p->prio = effective_prio(p);
3820 delta = p->prio - old_prio;
3821
3822 if (queued) {
3823 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3824 /*
3825 * If the task increased its priority or is running and
3826 * lowered its priority, then reschedule its CPU:
3827 */
3828 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3829 resched_curr(rq);
3830 }
3831 if (running)
3832 set_curr_task(rq, p);
3833 out_unlock:
3834 task_rq_unlock(rq, p, &rf);
3835 }
3836 EXPORT_SYMBOL(set_user_nice);
3837
3838 /*
3839 * can_nice - check if a task can reduce its nice value
3840 * @p: task
3841 * @nice: nice value
3842 */
3843 int can_nice(const struct task_struct *p, const int nice)
3844 {
3845 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
3846 int nice_rlim = nice_to_rlimit(nice);
3847
3848 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3849 capable(CAP_SYS_NICE));
3850 }
3851
3852 #ifdef __ARCH_WANT_SYS_NICE
3853
3854 /*
3855 * sys_nice - change the priority of the current process.
3856 * @increment: priority increment
3857 *
3858 * sys_setpriority is a more generic, but much slower function that
3859 * does similar things.
3860 */
3861 SYSCALL_DEFINE1(nice, int, increment)
3862 {
3863 long nice, retval;
3864
3865 /*
3866 * Setpriority might change our priority at the same moment.
3867 * We don't have to worry. Conceptually one call occurs first
3868 * and we have a single winner.
3869 */
3870 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3871 nice = task_nice(current) + increment;
3872
3873 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3874 if (increment < 0 && !can_nice(current, nice))
3875 return -EPERM;
3876
3877 retval = security_task_setnice(current, nice);
3878 if (retval)
3879 return retval;
3880
3881 set_user_nice(current, nice);
3882 return 0;
3883 }
3884
3885 #endif
3886
3887 /**
3888 * task_prio - return the priority value of a given task.
3889 * @p: the task in question.
3890 *
3891 * Return: The priority value as seen by users in /proc.
3892 * RT tasks are offset by -200. Normal tasks are centered
3893 * around 0, value goes from -16 to +15.
3894 */
3895 int task_prio(const struct task_struct *p)
3896 {
3897 return p->prio - MAX_RT_PRIO;
3898 }
3899
3900 /**
3901 * idle_cpu - is a given CPU idle currently?
3902 * @cpu: the processor in question.
3903 *
3904 * Return: 1 if the CPU is currently idle. 0 otherwise.
3905 */
3906 int idle_cpu(int cpu)
3907 {
3908 struct rq *rq = cpu_rq(cpu);
3909
3910 if (rq->curr != rq->idle)
3911 return 0;
3912
3913 if (rq->nr_running)
3914 return 0;
3915
3916 #ifdef CONFIG_SMP
3917 if (!llist_empty(&rq->wake_list))
3918 return 0;
3919 #endif
3920
3921 return 1;
3922 }
3923
3924 /**
3925 * idle_task - return the idle task for a given CPU.
3926 * @cpu: the processor in question.
3927 *
3928 * Return: The idle task for the CPU @cpu.
3929 */
3930 struct task_struct *idle_task(int cpu)
3931 {
3932 return cpu_rq(cpu)->idle;
3933 }
3934
3935 /**
3936 * find_process_by_pid - find a process with a matching PID value.
3937 * @pid: the pid in question.
3938 *
3939 * The task of @pid, if found. %NULL otherwise.
3940 */
3941 static struct task_struct *find_process_by_pid(pid_t pid)
3942 {
3943 return pid ? find_task_by_vpid(pid) : current;
3944 }
3945
3946 /*
3947 * sched_setparam() passes in -1 for its policy, to let the functions
3948 * it calls know not to change it.
3949 */
3950 #define SETPARAM_POLICY -1
3951
3952 static void __setscheduler_params(struct task_struct *p,
3953 const struct sched_attr *attr)
3954 {
3955 int policy = attr->sched_policy;
3956
3957 if (policy == SETPARAM_POLICY)
3958 policy = p->policy;
3959
3960 p->policy = policy;
3961
3962 if (dl_policy(policy))
3963 __setparam_dl(p, attr);
3964 else if (fair_policy(policy))
3965 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3966
3967 /*
3968 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3969 * !rt_policy. Always setting this ensures that things like
3970 * getparam()/getattr() don't report silly values for !rt tasks.
3971 */
3972 p->rt_priority = attr->sched_priority;
3973 p->normal_prio = normal_prio(p);
3974 set_load_weight(p, true);
3975 }
3976
3977 /* Actually do priority change: must hold pi & rq lock. */
3978 static void __setscheduler(struct rq *rq, struct task_struct *p,
3979 const struct sched_attr *attr, bool keep_boost)
3980 {
3981 __setscheduler_params(p, attr);
3982
3983 /*
3984 * Keep a potential priority boosting if called from
3985 * sched_setscheduler().
3986 */
3987 p->prio = normal_prio(p);
3988 if (keep_boost)
3989 p->prio = rt_effective_prio(p, p->prio);
3990
3991 if (dl_prio(p->prio))
3992 p->sched_class = &dl_sched_class;
3993 else if (rt_prio(p->prio))
3994 p->sched_class = &rt_sched_class;
3995 else
3996 p->sched_class = &fair_sched_class;
3997 }
3998
3999 /*
4000 * Check the target process has a UID that matches the current process's:
4001 */
4002 static bool check_same_owner(struct task_struct *p)
4003 {
4004 const struct cred *cred = current_cred(), *pcred;
4005 bool match;
4006
4007 rcu_read_lock();
4008 pcred = __task_cred(p);
4009 match = (uid_eq(cred->euid, pcred->euid) ||
4010 uid_eq(cred->euid, pcred->uid));
4011 rcu_read_unlock();
4012 return match;
4013 }
4014
4015 static int __sched_setscheduler(struct task_struct *p,
4016 const struct sched_attr *attr,
4017 bool user, bool pi)
4018 {
4019 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4020 MAX_RT_PRIO - 1 - attr->sched_priority;
4021 int retval, oldprio, oldpolicy = -1, queued, running;
4022 int new_effective_prio, policy = attr->sched_policy;
4023 const struct sched_class *prev_class;
4024 struct rq_flags rf;
4025 int reset_on_fork;
4026 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4027 struct rq *rq;
4028
4029 /* The pi code expects interrupts enabled */
4030 BUG_ON(pi && in_interrupt());
4031 recheck:
4032 /* Double check policy once rq lock held: */
4033 if (policy < 0) {
4034 reset_on_fork = p->sched_reset_on_fork;
4035 policy = oldpolicy = p->policy;
4036 } else {
4037 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4038
4039 if (!valid_policy(policy))
4040 return -EINVAL;
4041 }
4042
4043 if (attr->sched_flags &
4044 ~(SCHED_FLAG_RESET_ON_FORK | SCHED_FLAG_RECLAIM))
4045 return -EINVAL;
4046
4047 /*
4048 * Valid priorities for SCHED_FIFO and SCHED_RR are
4049 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4050 * SCHED_BATCH and SCHED_IDLE is 0.
4051 */
4052 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4053 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4054 return -EINVAL;
4055 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4056 (rt_policy(policy) != (attr->sched_priority != 0)))
4057 return -EINVAL;
4058
4059 /*
4060 * Allow unprivileged RT tasks to decrease priority:
4061 */
4062 if (user && !capable(CAP_SYS_NICE)) {
4063 if (fair_policy(policy)) {
4064 if (attr->sched_nice < task_nice(p) &&
4065 !can_nice(p, attr->sched_nice))
4066 return -EPERM;
4067 }
4068
4069 if (rt_policy(policy)) {
4070 unsigned long rlim_rtprio =
4071 task_rlimit(p, RLIMIT_RTPRIO);
4072
4073 /* Can't set/change the rt policy: */
4074 if (policy != p->policy && !rlim_rtprio)
4075 return -EPERM;
4076
4077 /* Can't increase priority: */
4078 if (attr->sched_priority > p->rt_priority &&
4079 attr->sched_priority > rlim_rtprio)
4080 return -EPERM;
4081 }
4082
4083 /*
4084 * Can't set/change SCHED_DEADLINE policy at all for now
4085 * (safest behavior); in the future we would like to allow
4086 * unprivileged DL tasks to increase their relative deadline
4087 * or reduce their runtime (both ways reducing utilization)
4088 */
4089 if (dl_policy(policy))
4090 return -EPERM;
4091
4092 /*
4093 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4094 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4095 */
4096 if (idle_policy(p->policy) && !idle_policy(policy)) {
4097 if (!can_nice(p, task_nice(p)))
4098 return -EPERM;
4099 }
4100
4101 /* Can't change other user's priorities: */
4102 if (!check_same_owner(p))
4103 return -EPERM;
4104
4105 /* Normal users shall not reset the sched_reset_on_fork flag: */
4106 if (p->sched_reset_on_fork && !reset_on_fork)
4107 return -EPERM;
4108 }
4109
4110 if (user) {
4111 retval = security_task_setscheduler(p);
4112 if (retval)
4113 return retval;
4114 }
4115
4116 /*
4117 * Make sure no PI-waiters arrive (or leave) while we are
4118 * changing the priority of the task:
4119 *
4120 * To be able to change p->policy safely, the appropriate
4121 * runqueue lock must be held.
4122 */
4123 rq = task_rq_lock(p, &rf);
4124 update_rq_clock(rq);
4125
4126 /*
4127 * Changing the policy of the stop threads its a very bad idea:
4128 */
4129 if (p == rq->stop) {
4130 task_rq_unlock(rq, p, &rf);
4131 return -EINVAL;
4132 }
4133
4134 /*
4135 * If not changing anything there's no need to proceed further,
4136 * but store a possible modification of reset_on_fork.
4137 */
4138 if (unlikely(policy == p->policy)) {
4139 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4140 goto change;
4141 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4142 goto change;
4143 if (dl_policy(policy) && dl_param_changed(p, attr))
4144 goto change;
4145
4146 p->sched_reset_on_fork = reset_on_fork;
4147 task_rq_unlock(rq, p, &rf);
4148 return 0;
4149 }
4150 change:
4151
4152 if (user) {
4153 #ifdef CONFIG_RT_GROUP_SCHED
4154 /*
4155 * Do not allow realtime tasks into groups that have no runtime
4156 * assigned.
4157 */
4158 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4159 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4160 !task_group_is_autogroup(task_group(p))) {
4161 task_rq_unlock(rq, p, &rf);
4162 return -EPERM;
4163 }
4164 #endif
4165 #ifdef CONFIG_SMP
4166 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4167 cpumask_t *span = rq->rd->span;
4168
4169 /*
4170 * Don't allow tasks with an affinity mask smaller than
4171 * the entire root_domain to become SCHED_DEADLINE. We
4172 * will also fail if there's no bandwidth available.
4173 */
4174 if (!cpumask_subset(span, &p->cpus_allowed) ||
4175 rq->rd->dl_bw.bw == 0) {
4176 task_rq_unlock(rq, p, &rf);
4177 return -EPERM;
4178 }
4179 }
4180 #endif
4181 }
4182
4183 /* Re-check policy now with rq lock held: */
4184 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4185 policy = oldpolicy = -1;
4186 task_rq_unlock(rq, p, &rf);
4187 goto recheck;
4188 }
4189
4190 /*
4191 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4192 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4193 * is available.
4194 */
4195 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4196 task_rq_unlock(rq, p, &rf);
4197 return -EBUSY;
4198 }
4199
4200 p->sched_reset_on_fork = reset_on_fork;
4201 oldprio = p->prio;
4202
4203 if (pi) {
4204 /*
4205 * Take priority boosted tasks into account. If the new
4206 * effective priority is unchanged, we just store the new
4207 * normal parameters and do not touch the scheduler class and
4208 * the runqueue. This will be done when the task deboost
4209 * itself.
4210 */
4211 new_effective_prio = rt_effective_prio(p, newprio);
4212 if (new_effective_prio == oldprio)
4213 queue_flags &= ~DEQUEUE_MOVE;
4214 }
4215
4216 queued = task_on_rq_queued(p);
4217 running = task_current(rq, p);
4218 if (queued)
4219 dequeue_task(rq, p, queue_flags);
4220 if (running)
4221 put_prev_task(rq, p);
4222
4223 prev_class = p->sched_class;
4224 __setscheduler(rq, p, attr, pi);
4225
4226 if (queued) {
4227 /*
4228 * We enqueue to tail when the priority of a task is
4229 * increased (user space view).
4230 */
4231 if (oldprio < p->prio)
4232 queue_flags |= ENQUEUE_HEAD;
4233
4234 enqueue_task(rq, p, queue_flags);
4235 }
4236 if (running)
4237 set_curr_task(rq, p);
4238
4239 check_class_changed(rq, p, prev_class, oldprio);
4240
4241 /* Avoid rq from going away on us: */
4242 preempt_disable();
4243 task_rq_unlock(rq, p, &rf);
4244
4245 if (pi)
4246 rt_mutex_adjust_pi(p);
4247
4248 /* Run balance callbacks after we've adjusted the PI chain: */
4249 balance_callback(rq);
4250 preempt_enable();
4251
4252 return 0;
4253 }
4254
4255 static int _sched_setscheduler(struct task_struct *p, int policy,
4256 const struct sched_param *param, bool check)
4257 {
4258 struct sched_attr attr = {
4259 .sched_policy = policy,
4260 .sched_priority = param->sched_priority,
4261 .sched_nice = PRIO_TO_NICE(p->static_prio),
4262 };
4263
4264 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4265 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4266 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4267 policy &= ~SCHED_RESET_ON_FORK;
4268 attr.sched_policy = policy;
4269 }
4270
4271 return __sched_setscheduler(p, &attr, check, true);
4272 }
4273 /**
4274 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4275 * @p: the task in question.
4276 * @policy: new policy.
4277 * @param: structure containing the new RT priority.
4278 *
4279 * Return: 0 on success. An error code otherwise.
4280 *
4281 * NOTE that the task may be already dead.
4282 */
4283 int sched_setscheduler(struct task_struct *p, int policy,
4284 const struct sched_param *param)
4285 {
4286 return _sched_setscheduler(p, policy, param, true);
4287 }
4288 EXPORT_SYMBOL_GPL(sched_setscheduler);
4289
4290 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4291 {
4292 return __sched_setscheduler(p, attr, true, true);
4293 }
4294 EXPORT_SYMBOL_GPL(sched_setattr);
4295
4296 /**
4297 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4298 * @p: the task in question.
4299 * @policy: new policy.
4300 * @param: structure containing the new RT priority.
4301 *
4302 * Just like sched_setscheduler, only don't bother checking if the
4303 * current context has permission. For example, this is needed in
4304 * stop_machine(): we create temporary high priority worker threads,
4305 * but our caller might not have that capability.
4306 *
4307 * Return: 0 on success. An error code otherwise.
4308 */
4309 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4310 const struct sched_param *param)
4311 {
4312 return _sched_setscheduler(p, policy, param, false);
4313 }
4314 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4315
4316 static int
4317 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4318 {
4319 struct sched_param lparam;
4320 struct task_struct *p;
4321 int retval;
4322
4323 if (!param || pid < 0)
4324 return -EINVAL;
4325 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4326 return -EFAULT;
4327
4328 rcu_read_lock();
4329 retval = -ESRCH;
4330 p = find_process_by_pid(pid);
4331 if (p != NULL)
4332 retval = sched_setscheduler(p, policy, &lparam);
4333 rcu_read_unlock();
4334
4335 return retval;
4336 }
4337
4338 /*
4339 * Mimics kernel/events/core.c perf_copy_attr().
4340 */
4341 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4342 {
4343 u32 size;
4344 int ret;
4345
4346 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4347 return -EFAULT;
4348
4349 /* Zero the full structure, so that a short copy will be nice: */
4350 memset(attr, 0, sizeof(*attr));
4351
4352 ret = get_user(size, &uattr->size);
4353 if (ret)
4354 return ret;
4355
4356 /* Bail out on silly large: */
4357 if (size > PAGE_SIZE)
4358 goto err_size;
4359
4360 /* ABI compatibility quirk: */
4361 if (!size)
4362 size = SCHED_ATTR_SIZE_VER0;
4363
4364 if (size < SCHED_ATTR_SIZE_VER0)
4365 goto err_size;
4366
4367 /*
4368 * If we're handed a bigger struct than we know of,
4369 * ensure all the unknown bits are 0 - i.e. new
4370 * user-space does not rely on any kernel feature
4371 * extensions we dont know about yet.
4372 */
4373 if (size > sizeof(*attr)) {
4374 unsigned char __user *addr;
4375 unsigned char __user *end;
4376 unsigned char val;
4377
4378 addr = (void __user *)uattr + sizeof(*attr);
4379 end = (void __user *)uattr + size;
4380
4381 for (; addr < end; addr++) {
4382 ret = get_user(val, addr);
4383 if (ret)
4384 return ret;
4385 if (val)
4386 goto err_size;
4387 }
4388 size = sizeof(*attr);
4389 }
4390
4391 ret = copy_from_user(attr, uattr, size);
4392 if (ret)
4393 return -EFAULT;
4394
4395 /*
4396 * XXX: Do we want to be lenient like existing syscalls; or do we want
4397 * to be strict and return an error on out-of-bounds values?
4398 */
4399 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4400
4401 return 0;
4402
4403 err_size:
4404 put_user(sizeof(*attr), &uattr->size);
4405 return -E2BIG;
4406 }
4407
4408 /**
4409 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4410 * @pid: the pid in question.
4411 * @policy: new policy.
4412 * @param: structure containing the new RT priority.
4413 *
4414 * Return: 0 on success. An error code otherwise.
4415 */
4416 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4417 {
4418 if (policy < 0)
4419 return -EINVAL;
4420
4421 return do_sched_setscheduler(pid, policy, param);
4422 }
4423
4424 /**
4425 * sys_sched_setparam - set/change the RT priority of a thread
4426 * @pid: the pid in question.
4427 * @param: structure containing the new RT priority.
4428 *
4429 * Return: 0 on success. An error code otherwise.
4430 */
4431 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4432 {
4433 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4434 }
4435
4436 /**
4437 * sys_sched_setattr - same as above, but with extended sched_attr
4438 * @pid: the pid in question.
4439 * @uattr: structure containing the extended parameters.
4440 * @flags: for future extension.
4441 */
4442 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4443 unsigned int, flags)
4444 {
4445 struct sched_attr attr;
4446 struct task_struct *p;
4447 int retval;
4448
4449 if (!uattr || pid < 0 || flags)
4450 return -EINVAL;
4451
4452 retval = sched_copy_attr(uattr, &attr);
4453 if (retval)
4454 return retval;
4455
4456 if ((int)attr.sched_policy < 0)
4457 return -EINVAL;
4458
4459 rcu_read_lock();
4460 retval = -ESRCH;
4461 p = find_process_by_pid(pid);
4462 if (p != NULL)
4463 retval = sched_setattr(p, &attr);
4464 rcu_read_unlock();
4465
4466 return retval;
4467 }
4468
4469 /**
4470 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4471 * @pid: the pid in question.
4472 *
4473 * Return: On success, the policy of the thread. Otherwise, a negative error
4474 * code.
4475 */
4476 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4477 {
4478 struct task_struct *p;
4479 int retval;
4480
4481 if (pid < 0)
4482 return -EINVAL;
4483
4484 retval = -ESRCH;
4485 rcu_read_lock();
4486 p = find_process_by_pid(pid);
4487 if (p) {
4488 retval = security_task_getscheduler(p);
4489 if (!retval)
4490 retval = p->policy
4491 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4492 }
4493 rcu_read_unlock();
4494 return retval;
4495 }
4496
4497 /**
4498 * sys_sched_getparam - get the RT priority of a thread
4499 * @pid: the pid in question.
4500 * @param: structure containing the RT priority.
4501 *
4502 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4503 * code.
4504 */
4505 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4506 {
4507 struct sched_param lp = { .sched_priority = 0 };
4508 struct task_struct *p;
4509 int retval;
4510
4511 if (!param || pid < 0)
4512 return -EINVAL;
4513
4514 rcu_read_lock();
4515 p = find_process_by_pid(pid);
4516 retval = -ESRCH;
4517 if (!p)
4518 goto out_unlock;
4519
4520 retval = security_task_getscheduler(p);
4521 if (retval)
4522 goto out_unlock;
4523
4524 if (task_has_rt_policy(p))
4525 lp.sched_priority = p->rt_priority;
4526 rcu_read_unlock();
4527
4528 /*
4529 * This one might sleep, we cannot do it with a spinlock held ...
4530 */
4531 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4532
4533 return retval;
4534
4535 out_unlock:
4536 rcu_read_unlock();
4537 return retval;
4538 }
4539
4540 static int sched_read_attr(struct sched_attr __user *uattr,
4541 struct sched_attr *attr,
4542 unsigned int usize)
4543 {
4544 int ret;
4545
4546 if (!access_ok(VERIFY_WRITE, uattr, usize))
4547 return -EFAULT;
4548
4549 /*
4550 * If we're handed a smaller struct than we know of,
4551 * ensure all the unknown bits are 0 - i.e. old
4552 * user-space does not get uncomplete information.
4553 */
4554 if (usize < sizeof(*attr)) {
4555 unsigned char *addr;
4556 unsigned char *end;
4557
4558 addr = (void *)attr + usize;
4559 end = (void *)attr + sizeof(*attr);
4560
4561 for (; addr < end; addr++) {
4562 if (*addr)
4563 return -EFBIG;
4564 }
4565
4566 attr->size = usize;
4567 }
4568
4569 ret = copy_to_user(uattr, attr, attr->size);
4570 if (ret)
4571 return -EFAULT;
4572
4573 return 0;
4574 }
4575
4576 /**
4577 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4578 * @pid: the pid in question.
4579 * @uattr: structure containing the extended parameters.
4580 * @size: sizeof(attr) for fwd/bwd comp.
4581 * @flags: for future extension.
4582 */
4583 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4584 unsigned int, size, unsigned int, flags)
4585 {
4586 struct sched_attr attr = {
4587 .size = sizeof(struct sched_attr),
4588 };
4589 struct task_struct *p;
4590 int retval;
4591
4592 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4593 size < SCHED_ATTR_SIZE_VER0 || flags)
4594 return -EINVAL;
4595
4596 rcu_read_lock();
4597 p = find_process_by_pid(pid);
4598 retval = -ESRCH;
4599 if (!p)
4600 goto out_unlock;
4601
4602 retval = security_task_getscheduler(p);
4603 if (retval)
4604 goto out_unlock;
4605
4606 attr.sched_policy = p->policy;
4607 if (p->sched_reset_on_fork)
4608 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4609 if (task_has_dl_policy(p))
4610 __getparam_dl(p, &attr);
4611 else if (task_has_rt_policy(p))
4612 attr.sched_priority = p->rt_priority;
4613 else
4614 attr.sched_nice = task_nice(p);
4615
4616 rcu_read_unlock();
4617
4618 retval = sched_read_attr(uattr, &attr, size);
4619 return retval;
4620
4621 out_unlock:
4622 rcu_read_unlock();
4623 return retval;
4624 }
4625
4626 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4627 {
4628 cpumask_var_t cpus_allowed, new_mask;
4629 struct task_struct *p;
4630 int retval;
4631
4632 rcu_read_lock();
4633
4634 p = find_process_by_pid(pid);
4635 if (!p) {
4636 rcu_read_unlock();
4637 return -ESRCH;
4638 }
4639
4640 /* Prevent p going away */
4641 get_task_struct(p);
4642 rcu_read_unlock();
4643
4644 if (p->flags & PF_NO_SETAFFINITY) {
4645 retval = -EINVAL;
4646 goto out_put_task;
4647 }
4648 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4649 retval = -ENOMEM;
4650 goto out_put_task;
4651 }
4652 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4653 retval = -ENOMEM;
4654 goto out_free_cpus_allowed;
4655 }
4656 retval = -EPERM;
4657 if (!check_same_owner(p)) {
4658 rcu_read_lock();
4659 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4660 rcu_read_unlock();
4661 goto out_free_new_mask;
4662 }
4663 rcu_read_unlock();
4664 }
4665
4666 retval = security_task_setscheduler(p);
4667 if (retval)
4668 goto out_free_new_mask;
4669
4670
4671 cpuset_cpus_allowed(p, cpus_allowed);
4672 cpumask_and(new_mask, in_mask, cpus_allowed);
4673
4674 /*
4675 * Since bandwidth control happens on root_domain basis,
4676 * if admission test is enabled, we only admit -deadline
4677 * tasks allowed to run on all the CPUs in the task's
4678 * root_domain.
4679 */
4680 #ifdef CONFIG_SMP
4681 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4682 rcu_read_lock();
4683 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4684 retval = -EBUSY;
4685 rcu_read_unlock();
4686 goto out_free_new_mask;
4687 }
4688 rcu_read_unlock();
4689 }
4690 #endif
4691 again:
4692 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4693
4694 if (!retval) {
4695 cpuset_cpus_allowed(p, cpus_allowed);
4696 if (!cpumask_subset(new_mask, cpus_allowed)) {
4697 /*
4698 * We must have raced with a concurrent cpuset
4699 * update. Just reset the cpus_allowed to the
4700 * cpuset's cpus_allowed
4701 */
4702 cpumask_copy(new_mask, cpus_allowed);
4703 goto again;
4704 }
4705 }
4706 out_free_new_mask:
4707 free_cpumask_var(new_mask);
4708 out_free_cpus_allowed:
4709 free_cpumask_var(cpus_allowed);
4710 out_put_task:
4711 put_task_struct(p);
4712 return retval;
4713 }
4714
4715 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4716 struct cpumask *new_mask)
4717 {
4718 if (len < cpumask_size())
4719 cpumask_clear(new_mask);
4720 else if (len > cpumask_size())
4721 len = cpumask_size();
4722
4723 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4724 }
4725
4726 /**
4727 * sys_sched_setaffinity - set the CPU affinity of a process
4728 * @pid: pid of the process
4729 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4730 * @user_mask_ptr: user-space pointer to the new CPU mask
4731 *
4732 * Return: 0 on success. An error code otherwise.
4733 */
4734 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4735 unsigned long __user *, user_mask_ptr)
4736 {
4737 cpumask_var_t new_mask;
4738 int retval;
4739
4740 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4741 return -ENOMEM;
4742
4743 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4744 if (retval == 0)
4745 retval = sched_setaffinity(pid, new_mask);
4746 free_cpumask_var(new_mask);
4747 return retval;
4748 }
4749
4750 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4751 {
4752 struct task_struct *p;
4753 unsigned long flags;
4754 int retval;
4755
4756 rcu_read_lock();
4757
4758 retval = -ESRCH;
4759 p = find_process_by_pid(pid);
4760 if (!p)
4761 goto out_unlock;
4762
4763 retval = security_task_getscheduler(p);
4764 if (retval)
4765 goto out_unlock;
4766
4767 raw_spin_lock_irqsave(&p->pi_lock, flags);
4768 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4769 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4770
4771 out_unlock:
4772 rcu_read_unlock();
4773
4774 return retval;
4775 }
4776
4777 /**
4778 * sys_sched_getaffinity - get the CPU affinity of a process
4779 * @pid: pid of the process
4780 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4781 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4782 *
4783 * Return: size of CPU mask copied to user_mask_ptr on success. An
4784 * error code otherwise.
4785 */
4786 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4787 unsigned long __user *, user_mask_ptr)
4788 {
4789 int ret;
4790 cpumask_var_t mask;
4791
4792 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4793 return -EINVAL;
4794 if (len & (sizeof(unsigned long)-1))
4795 return -EINVAL;
4796
4797 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4798 return -ENOMEM;
4799
4800 ret = sched_getaffinity(pid, mask);
4801 if (ret == 0) {
4802 size_t retlen = min_t(size_t, len, cpumask_size());
4803
4804 if (copy_to_user(user_mask_ptr, mask, retlen))
4805 ret = -EFAULT;
4806 else
4807 ret = retlen;
4808 }
4809 free_cpumask_var(mask);
4810
4811 return ret;
4812 }
4813
4814 /**
4815 * sys_sched_yield - yield the current processor to other threads.
4816 *
4817 * This function yields the current CPU to other tasks. If there are no
4818 * other threads running on this CPU then this function will return.
4819 *
4820 * Return: 0.
4821 */
4822 SYSCALL_DEFINE0(sched_yield)
4823 {
4824 struct rq_flags rf;
4825 struct rq *rq;
4826
4827 local_irq_disable();
4828 rq = this_rq();
4829 rq_lock(rq, &rf);
4830
4831 schedstat_inc(rq->yld_count);
4832 current->sched_class->yield_task(rq);
4833
4834 /*
4835 * Since we are going to call schedule() anyway, there's
4836 * no need to preempt or enable interrupts:
4837 */
4838 preempt_disable();
4839 rq_unlock(rq, &rf);
4840 sched_preempt_enable_no_resched();
4841
4842 schedule();
4843
4844 return 0;
4845 }
4846
4847 #ifndef CONFIG_PREEMPT
4848 int __sched _cond_resched(void)
4849 {
4850 if (should_resched(0)) {
4851 preempt_schedule_common();
4852 return 1;
4853 }
4854 rcu_all_qs();
4855 return 0;
4856 }
4857 EXPORT_SYMBOL(_cond_resched);
4858 #endif
4859
4860 /*
4861 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4862 * call schedule, and on return reacquire the lock.
4863 *
4864 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4865 * operations here to prevent schedule() from being called twice (once via
4866 * spin_unlock(), once by hand).
4867 */
4868 int __cond_resched_lock(spinlock_t *lock)
4869 {
4870 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4871 int ret = 0;
4872
4873 lockdep_assert_held(lock);
4874
4875 if (spin_needbreak(lock) || resched) {
4876 spin_unlock(lock);
4877 if (resched)
4878 preempt_schedule_common();
4879 else
4880 cpu_relax();
4881 ret = 1;
4882 spin_lock(lock);
4883 }
4884 return ret;
4885 }
4886 EXPORT_SYMBOL(__cond_resched_lock);
4887
4888 int __sched __cond_resched_softirq(void)
4889 {
4890 BUG_ON(!in_softirq());
4891
4892 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4893 local_bh_enable();
4894 preempt_schedule_common();
4895 local_bh_disable();
4896 return 1;
4897 }
4898 return 0;
4899 }
4900 EXPORT_SYMBOL(__cond_resched_softirq);
4901
4902 /**
4903 * yield - yield the current processor to other threads.
4904 *
4905 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4906 *
4907 * The scheduler is at all times free to pick the calling task as the most
4908 * eligible task to run, if removing the yield() call from your code breaks
4909 * it, its already broken.
4910 *
4911 * Typical broken usage is:
4912 *
4913 * while (!event)
4914 * yield();
4915 *
4916 * where one assumes that yield() will let 'the other' process run that will
4917 * make event true. If the current task is a SCHED_FIFO task that will never
4918 * happen. Never use yield() as a progress guarantee!!
4919 *
4920 * If you want to use yield() to wait for something, use wait_event().
4921 * If you want to use yield() to be 'nice' for others, use cond_resched().
4922 * If you still want to use yield(), do not!
4923 */
4924 void __sched yield(void)
4925 {
4926 set_current_state(TASK_RUNNING);
4927 sys_sched_yield();
4928 }
4929 EXPORT_SYMBOL(yield);
4930
4931 /**
4932 * yield_to - yield the current processor to another thread in
4933 * your thread group, or accelerate that thread toward the
4934 * processor it's on.
4935 * @p: target task
4936 * @preempt: whether task preemption is allowed or not
4937 *
4938 * It's the caller's job to ensure that the target task struct
4939 * can't go away on us before we can do any checks.
4940 *
4941 * Return:
4942 * true (>0) if we indeed boosted the target task.
4943 * false (0) if we failed to boost the target.
4944 * -ESRCH if there's no task to yield to.
4945 */
4946 int __sched yield_to(struct task_struct *p, bool preempt)
4947 {
4948 struct task_struct *curr = current;
4949 struct rq *rq, *p_rq;
4950 unsigned long flags;
4951 int yielded = 0;
4952
4953 local_irq_save(flags);
4954 rq = this_rq();
4955
4956 again:
4957 p_rq = task_rq(p);
4958 /*
4959 * If we're the only runnable task on the rq and target rq also
4960 * has only one task, there's absolutely no point in yielding.
4961 */
4962 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4963 yielded = -ESRCH;
4964 goto out_irq;
4965 }
4966
4967 double_rq_lock(rq, p_rq);
4968 if (task_rq(p) != p_rq) {
4969 double_rq_unlock(rq, p_rq);
4970 goto again;
4971 }
4972
4973 if (!curr->sched_class->yield_to_task)
4974 goto out_unlock;
4975
4976 if (curr->sched_class != p->sched_class)
4977 goto out_unlock;
4978
4979 if (task_running(p_rq, p) || p->state)
4980 goto out_unlock;
4981
4982 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4983 if (yielded) {
4984 schedstat_inc(rq->yld_count);
4985 /*
4986 * Make p's CPU reschedule; pick_next_entity takes care of
4987 * fairness.
4988 */
4989 if (preempt && rq != p_rq)
4990 resched_curr(p_rq);
4991 }
4992
4993 out_unlock:
4994 double_rq_unlock(rq, p_rq);
4995 out_irq:
4996 local_irq_restore(flags);
4997
4998 if (yielded > 0)
4999 schedule();
5000
5001 return yielded;
5002 }
5003 EXPORT_SYMBOL_GPL(yield_to);
5004
5005 int io_schedule_prepare(void)
5006 {
5007 int old_iowait = current->in_iowait;
5008
5009 current->in_iowait = 1;
5010 blk_schedule_flush_plug(current);
5011
5012 return old_iowait;
5013 }
5014
5015 void io_schedule_finish(int token)
5016 {
5017 current->in_iowait = token;
5018 }
5019
5020 /*
5021 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5022 * that process accounting knows that this is a task in IO wait state.
5023 */
5024 long __sched io_schedule_timeout(long timeout)
5025 {
5026 int token;
5027 long ret;
5028
5029 token = io_schedule_prepare();
5030 ret = schedule_timeout(timeout);
5031 io_schedule_finish(token);
5032
5033 return ret;
5034 }
5035 EXPORT_SYMBOL(io_schedule_timeout);
5036
5037 void io_schedule(void)
5038 {
5039 int token;
5040
5041 token = io_schedule_prepare();
5042 schedule();
5043 io_schedule_finish(token);
5044 }
5045 EXPORT_SYMBOL(io_schedule);
5046
5047 /**
5048 * sys_sched_get_priority_max - return maximum RT priority.
5049 * @policy: scheduling class.
5050 *
5051 * Return: On success, this syscall returns the maximum
5052 * rt_priority that can be used by a given scheduling class.
5053 * On failure, a negative error code is returned.
5054 */
5055 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5056 {
5057 int ret = -EINVAL;
5058
5059 switch (policy) {
5060 case SCHED_FIFO:
5061 case SCHED_RR:
5062 ret = MAX_USER_RT_PRIO-1;
5063 break;
5064 case SCHED_DEADLINE:
5065 case SCHED_NORMAL:
5066 case SCHED_BATCH:
5067 case SCHED_IDLE:
5068 ret = 0;
5069 break;
5070 }
5071 return ret;
5072 }
5073
5074 /**
5075 * sys_sched_get_priority_min - return minimum RT priority.
5076 * @policy: scheduling class.
5077 *
5078 * Return: On success, this syscall returns the minimum
5079 * rt_priority that can be used by a given scheduling class.
5080 * On failure, a negative error code is returned.
5081 */
5082 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5083 {
5084 int ret = -EINVAL;
5085
5086 switch (policy) {
5087 case SCHED_FIFO:
5088 case SCHED_RR:
5089 ret = 1;
5090 break;
5091 case SCHED_DEADLINE:
5092 case SCHED_NORMAL:
5093 case SCHED_BATCH:
5094 case SCHED_IDLE:
5095 ret = 0;
5096 }
5097 return ret;
5098 }
5099
5100 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5101 {
5102 struct task_struct *p;
5103 unsigned int time_slice;
5104 struct rq_flags rf;
5105 struct rq *rq;
5106 int retval;
5107
5108 if (pid < 0)
5109 return -EINVAL;
5110
5111 retval = -ESRCH;
5112 rcu_read_lock();
5113 p = find_process_by_pid(pid);
5114 if (!p)
5115 goto out_unlock;
5116
5117 retval = security_task_getscheduler(p);
5118 if (retval)
5119 goto out_unlock;
5120
5121 rq = task_rq_lock(p, &rf);
5122 time_slice = 0;
5123 if (p->sched_class->get_rr_interval)
5124 time_slice = p->sched_class->get_rr_interval(rq, p);
5125 task_rq_unlock(rq, p, &rf);
5126
5127 rcu_read_unlock();
5128 jiffies_to_timespec64(time_slice, t);
5129 return 0;
5130
5131 out_unlock:
5132 rcu_read_unlock();
5133 return retval;
5134 }
5135
5136 /**
5137 * sys_sched_rr_get_interval - return the default timeslice of a process.
5138 * @pid: pid of the process.
5139 * @interval: userspace pointer to the timeslice value.
5140 *
5141 * this syscall writes the default timeslice value of a given process
5142 * into the user-space timespec buffer. A value of '0' means infinity.
5143 *
5144 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5145 * an error code.
5146 */
5147 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5148 struct timespec __user *, interval)
5149 {
5150 struct timespec64 t;
5151 int retval = sched_rr_get_interval(pid, &t);
5152
5153 if (retval == 0)
5154 retval = put_timespec64(&t, interval);
5155
5156 return retval;
5157 }
5158
5159 #ifdef CONFIG_COMPAT
5160 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5161 compat_pid_t, pid,
5162 struct compat_timespec __user *, interval)
5163 {
5164 struct timespec64 t;
5165 int retval = sched_rr_get_interval(pid, &t);
5166
5167 if (retval == 0)
5168 retval = compat_put_timespec64(&t, interval);
5169 return retval;
5170 }
5171 #endif
5172
5173 void sched_show_task(struct task_struct *p)
5174 {
5175 unsigned long free = 0;
5176 int ppid;
5177
5178 if (!try_get_task_stack(p))
5179 return;
5180
5181 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5182
5183 if (p->state == TASK_RUNNING)
5184 printk(KERN_CONT " running task ");
5185 #ifdef CONFIG_DEBUG_STACK_USAGE
5186 free = stack_not_used(p);
5187 #endif
5188 ppid = 0;
5189 rcu_read_lock();
5190 if (pid_alive(p))
5191 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5192 rcu_read_unlock();
5193 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5194 task_pid_nr(p), ppid,
5195 (unsigned long)task_thread_info(p)->flags);
5196
5197 print_worker_info(KERN_INFO, p);
5198 show_stack(p, NULL);
5199 put_task_stack(p);
5200 }
5201 EXPORT_SYMBOL_GPL(sched_show_task);
5202
5203 static inline bool
5204 state_filter_match(unsigned long state_filter, struct task_struct *p)
5205 {
5206 /* no filter, everything matches */
5207 if (!state_filter)
5208 return true;
5209
5210 /* filter, but doesn't match */
5211 if (!(p->state & state_filter))
5212 return false;
5213
5214 /*
5215 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5216 * TASK_KILLABLE).
5217 */
5218 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5219 return false;
5220
5221 return true;
5222 }
5223
5224
5225 void show_state_filter(unsigned long state_filter)
5226 {
5227 struct task_struct *g, *p;
5228
5229 #if BITS_PER_LONG == 32
5230 printk(KERN_INFO
5231 " task PC stack pid father\n");
5232 #else
5233 printk(KERN_INFO
5234 " task PC stack pid father\n");
5235 #endif
5236 rcu_read_lock();
5237 for_each_process_thread(g, p) {
5238 /*
5239 * reset the NMI-timeout, listing all files on a slow
5240 * console might take a lot of time:
5241 * Also, reset softlockup watchdogs on all CPUs, because
5242 * another CPU might be blocked waiting for us to process
5243 * an IPI.
5244 */
5245 touch_nmi_watchdog();
5246 touch_all_softlockup_watchdogs();
5247 if (state_filter_match(state_filter, p))
5248 sched_show_task(p);
5249 }
5250
5251 #ifdef CONFIG_SCHED_DEBUG
5252 if (!state_filter)
5253 sysrq_sched_debug_show();
5254 #endif
5255 rcu_read_unlock();
5256 /*
5257 * Only show locks if all tasks are dumped:
5258 */
5259 if (!state_filter)
5260 debug_show_all_locks();
5261 }
5262
5263 /**
5264 * init_idle - set up an idle thread for a given CPU
5265 * @idle: task in question
5266 * @cpu: CPU the idle task belongs to
5267 *
5268 * NOTE: this function does not set the idle thread's NEED_RESCHED
5269 * flag, to make booting more robust.
5270 */
5271 void init_idle(struct task_struct *idle, int cpu)
5272 {
5273 struct rq *rq = cpu_rq(cpu);
5274 unsigned long flags;
5275
5276 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5277 raw_spin_lock(&rq->lock);
5278
5279 __sched_fork(0, idle);
5280 idle->state = TASK_RUNNING;
5281 idle->se.exec_start = sched_clock();
5282 idle->flags |= PF_IDLE;
5283
5284 kasan_unpoison_task_stack(idle);
5285
5286 #ifdef CONFIG_SMP
5287 /*
5288 * Its possible that init_idle() gets called multiple times on a task,
5289 * in that case do_set_cpus_allowed() will not do the right thing.
5290 *
5291 * And since this is boot we can forgo the serialization.
5292 */
5293 set_cpus_allowed_common(idle, cpumask_of(cpu));
5294 #endif
5295 /*
5296 * We're having a chicken and egg problem, even though we are
5297 * holding rq->lock, the CPU isn't yet set to this CPU so the
5298 * lockdep check in task_group() will fail.
5299 *
5300 * Similar case to sched_fork(). / Alternatively we could
5301 * use task_rq_lock() here and obtain the other rq->lock.
5302 *
5303 * Silence PROVE_RCU
5304 */
5305 rcu_read_lock();
5306 __set_task_cpu(idle, cpu);
5307 rcu_read_unlock();
5308
5309 rq->curr = rq->idle = idle;
5310 idle->on_rq = TASK_ON_RQ_QUEUED;
5311 #ifdef CONFIG_SMP
5312 idle->on_cpu = 1;
5313 #endif
5314 raw_spin_unlock(&rq->lock);
5315 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5316
5317 /* Set the preempt count _outside_ the spinlocks! */
5318 init_idle_preempt_count(idle, cpu);
5319
5320 /*
5321 * The idle tasks have their own, simple scheduling class:
5322 */
5323 idle->sched_class = &idle_sched_class;
5324 ftrace_graph_init_idle_task(idle, cpu);
5325 vtime_init_idle(idle, cpu);
5326 #ifdef CONFIG_SMP
5327 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5328 #endif
5329 }
5330
5331 #ifdef CONFIG_SMP
5332
5333 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5334 const struct cpumask *trial)
5335 {
5336 int ret = 1;
5337
5338 if (!cpumask_weight(cur))
5339 return ret;
5340
5341 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5342
5343 return ret;
5344 }
5345
5346 int task_can_attach(struct task_struct *p,
5347 const struct cpumask *cs_cpus_allowed)
5348 {
5349 int ret = 0;
5350
5351 /*
5352 * Kthreads which disallow setaffinity shouldn't be moved
5353 * to a new cpuset; we don't want to change their CPU
5354 * affinity and isolating such threads by their set of
5355 * allowed nodes is unnecessary. Thus, cpusets are not
5356 * applicable for such threads. This prevents checking for
5357 * success of set_cpus_allowed_ptr() on all attached tasks
5358 * before cpus_allowed may be changed.
5359 */
5360 if (p->flags & PF_NO_SETAFFINITY) {
5361 ret = -EINVAL;
5362 goto out;
5363 }
5364
5365 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5366 cs_cpus_allowed))
5367 ret = dl_task_can_attach(p, cs_cpus_allowed);
5368
5369 out:
5370 return ret;
5371 }
5372
5373 bool sched_smp_initialized __read_mostly;
5374
5375 #ifdef CONFIG_NUMA_BALANCING
5376 /* Migrate current task p to target_cpu */
5377 int migrate_task_to(struct task_struct *p, int target_cpu)
5378 {
5379 struct migration_arg arg = { p, target_cpu };
5380 int curr_cpu = task_cpu(p);
5381
5382 if (curr_cpu == target_cpu)
5383 return 0;
5384
5385 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5386 return -EINVAL;
5387
5388 /* TODO: This is not properly updating schedstats */
5389
5390 trace_sched_move_numa(p, curr_cpu, target_cpu);
5391 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5392 }
5393
5394 /*
5395 * Requeue a task on a given node and accurately track the number of NUMA
5396 * tasks on the runqueues
5397 */
5398 void sched_setnuma(struct task_struct *p, int nid)
5399 {
5400 bool queued, running;
5401 struct rq_flags rf;
5402 struct rq *rq;
5403
5404 rq = task_rq_lock(p, &rf);
5405 queued = task_on_rq_queued(p);
5406 running = task_current(rq, p);
5407
5408 if (queued)
5409 dequeue_task(rq, p, DEQUEUE_SAVE);
5410 if (running)
5411 put_prev_task(rq, p);
5412
5413 p->numa_preferred_nid = nid;
5414
5415 if (queued)
5416 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5417 if (running)
5418 set_curr_task(rq, p);
5419 task_rq_unlock(rq, p, &rf);
5420 }
5421 #endif /* CONFIG_NUMA_BALANCING */
5422
5423 #ifdef CONFIG_HOTPLUG_CPU
5424 /*
5425 * Ensure that the idle task is using init_mm right before its CPU goes
5426 * offline.
5427 */
5428 void idle_task_exit(void)
5429 {
5430 struct mm_struct *mm = current->active_mm;
5431
5432 BUG_ON(cpu_online(smp_processor_id()));
5433
5434 if (mm != &init_mm) {
5435 switch_mm(mm, &init_mm, current);
5436 finish_arch_post_lock_switch();
5437 }
5438 mmdrop(mm);
5439 }
5440
5441 /*
5442 * Since this CPU is going 'away' for a while, fold any nr_active delta
5443 * we might have. Assumes we're called after migrate_tasks() so that the
5444 * nr_active count is stable. We need to take the teardown thread which
5445 * is calling this into account, so we hand in adjust = 1 to the load
5446 * calculation.
5447 *
5448 * Also see the comment "Global load-average calculations".
5449 */
5450 static void calc_load_migrate(struct rq *rq)
5451 {
5452 long delta = calc_load_fold_active(rq, 1);
5453 if (delta)
5454 atomic_long_add(delta, &calc_load_tasks);
5455 }
5456
5457 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5458 {
5459 }
5460
5461 static const struct sched_class fake_sched_class = {
5462 .put_prev_task = put_prev_task_fake,
5463 };
5464
5465 static struct task_struct fake_task = {
5466 /*
5467 * Avoid pull_{rt,dl}_task()
5468 */
5469 .prio = MAX_PRIO + 1,
5470 .sched_class = &fake_sched_class,
5471 };
5472
5473 /*
5474 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5475 * try_to_wake_up()->select_task_rq().
5476 *
5477 * Called with rq->lock held even though we'er in stop_machine() and
5478 * there's no concurrency possible, we hold the required locks anyway
5479 * because of lock validation efforts.
5480 */
5481 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5482 {
5483 struct rq *rq = dead_rq;
5484 struct task_struct *next, *stop = rq->stop;
5485 struct rq_flags orf = *rf;
5486 int dest_cpu;
5487
5488 /*
5489 * Fudge the rq selection such that the below task selection loop
5490 * doesn't get stuck on the currently eligible stop task.
5491 *
5492 * We're currently inside stop_machine() and the rq is either stuck
5493 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5494 * either way we should never end up calling schedule() until we're
5495 * done here.
5496 */
5497 rq->stop = NULL;
5498
5499 /*
5500 * put_prev_task() and pick_next_task() sched
5501 * class method both need to have an up-to-date
5502 * value of rq->clock[_task]
5503 */
5504 update_rq_clock(rq);
5505
5506 for (;;) {
5507 /*
5508 * There's this thread running, bail when that's the only
5509 * remaining thread:
5510 */
5511 if (rq->nr_running == 1)
5512 break;
5513
5514 /*
5515 * pick_next_task() assumes pinned rq->lock:
5516 */
5517 next = pick_next_task(rq, &fake_task, rf);
5518 BUG_ON(!next);
5519 put_prev_task(rq, next);
5520
5521 /*
5522 * Rules for changing task_struct::cpus_allowed are holding
5523 * both pi_lock and rq->lock, such that holding either
5524 * stabilizes the mask.
5525 *
5526 * Drop rq->lock is not quite as disastrous as it usually is
5527 * because !cpu_active at this point, which means load-balance
5528 * will not interfere. Also, stop-machine.
5529 */
5530 rq_unlock(rq, rf);
5531 raw_spin_lock(&next->pi_lock);
5532 rq_relock(rq, rf);
5533
5534 /*
5535 * Since we're inside stop-machine, _nothing_ should have
5536 * changed the task, WARN if weird stuff happened, because in
5537 * that case the above rq->lock drop is a fail too.
5538 */
5539 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5540 raw_spin_unlock(&next->pi_lock);
5541 continue;
5542 }
5543
5544 /* Find suitable destination for @next, with force if needed. */
5545 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5546 rq = __migrate_task(rq, rf, next, dest_cpu);
5547 if (rq != dead_rq) {
5548 rq_unlock(rq, rf);
5549 rq = dead_rq;
5550 *rf = orf;
5551 rq_relock(rq, rf);
5552 }
5553 raw_spin_unlock(&next->pi_lock);
5554 }
5555
5556 rq->stop = stop;
5557 }
5558 #endif /* CONFIG_HOTPLUG_CPU */
5559
5560 void set_rq_online(struct rq *rq)
5561 {
5562 if (!rq->online) {
5563 const struct sched_class *class;
5564
5565 cpumask_set_cpu(rq->cpu, rq->rd->online);
5566 rq->online = 1;
5567
5568 for_each_class(class) {
5569 if (class->rq_online)
5570 class->rq_online(rq);
5571 }
5572 }
5573 }
5574
5575 void set_rq_offline(struct rq *rq)
5576 {
5577 if (rq->online) {
5578 const struct sched_class *class;
5579
5580 for_each_class(class) {
5581 if (class->rq_offline)
5582 class->rq_offline(rq);
5583 }
5584
5585 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5586 rq->online = 0;
5587 }
5588 }
5589
5590 static void set_cpu_rq_start_time(unsigned int cpu)
5591 {
5592 struct rq *rq = cpu_rq(cpu);
5593
5594 rq->age_stamp = sched_clock_cpu(cpu);
5595 }
5596
5597 /*
5598 * used to mark begin/end of suspend/resume:
5599 */
5600 static int num_cpus_frozen;
5601
5602 /*
5603 * Update cpusets according to cpu_active mask. If cpusets are
5604 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5605 * around partition_sched_domains().
5606 *
5607 * If we come here as part of a suspend/resume, don't touch cpusets because we
5608 * want to restore it back to its original state upon resume anyway.
5609 */
5610 static void cpuset_cpu_active(void)
5611 {
5612 if (cpuhp_tasks_frozen) {
5613 /*
5614 * num_cpus_frozen tracks how many CPUs are involved in suspend
5615 * resume sequence. As long as this is not the last online
5616 * operation in the resume sequence, just build a single sched
5617 * domain, ignoring cpusets.
5618 */
5619 partition_sched_domains(1, NULL, NULL);
5620 if (--num_cpus_frozen)
5621 return;
5622 /*
5623 * This is the last CPU online operation. So fall through and
5624 * restore the original sched domains by considering the
5625 * cpuset configurations.
5626 */
5627 cpuset_force_rebuild();
5628 }
5629 cpuset_update_active_cpus();
5630 }
5631
5632 static int cpuset_cpu_inactive(unsigned int cpu)
5633 {
5634 if (!cpuhp_tasks_frozen) {
5635 if (dl_cpu_busy(cpu))
5636 return -EBUSY;
5637 cpuset_update_active_cpus();
5638 } else {
5639 num_cpus_frozen++;
5640 partition_sched_domains(1, NULL, NULL);
5641 }
5642 return 0;
5643 }
5644
5645 int sched_cpu_activate(unsigned int cpu)
5646 {
5647 struct rq *rq = cpu_rq(cpu);
5648 struct rq_flags rf;
5649
5650 set_cpu_active(cpu, true);
5651
5652 if (sched_smp_initialized) {
5653 sched_domains_numa_masks_set(cpu);
5654 cpuset_cpu_active();
5655 }
5656
5657 /*
5658 * Put the rq online, if not already. This happens:
5659 *
5660 * 1) In the early boot process, because we build the real domains
5661 * after all CPUs have been brought up.
5662 *
5663 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5664 * domains.
5665 */
5666 rq_lock_irqsave(rq, &rf);
5667 if (rq->rd) {
5668 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5669 set_rq_online(rq);
5670 }
5671 rq_unlock_irqrestore(rq, &rf);
5672
5673 update_max_interval();
5674
5675 return 0;
5676 }
5677
5678 int sched_cpu_deactivate(unsigned int cpu)
5679 {
5680 int ret;
5681
5682 set_cpu_active(cpu, false);
5683 /*
5684 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5685 * users of this state to go away such that all new such users will
5686 * observe it.
5687 *
5688 * Do sync before park smpboot threads to take care the rcu boost case.
5689 */
5690 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5691
5692 if (!sched_smp_initialized)
5693 return 0;
5694
5695 ret = cpuset_cpu_inactive(cpu);
5696 if (ret) {
5697 set_cpu_active(cpu, true);
5698 return ret;
5699 }
5700 sched_domains_numa_masks_clear(cpu);
5701 return 0;
5702 }
5703
5704 static void sched_rq_cpu_starting(unsigned int cpu)
5705 {
5706 struct rq *rq = cpu_rq(cpu);
5707
5708 rq->calc_load_update = calc_load_update;
5709 update_max_interval();
5710 }
5711
5712 int sched_cpu_starting(unsigned int cpu)
5713 {
5714 set_cpu_rq_start_time(cpu);
5715 sched_rq_cpu_starting(cpu);
5716 return 0;
5717 }
5718
5719 #ifdef CONFIG_HOTPLUG_CPU
5720 int sched_cpu_dying(unsigned int cpu)
5721 {
5722 struct rq *rq = cpu_rq(cpu);
5723 struct rq_flags rf;
5724
5725 /* Handle pending wakeups and then migrate everything off */
5726 sched_ttwu_pending();
5727
5728 rq_lock_irqsave(rq, &rf);
5729 if (rq->rd) {
5730 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5731 set_rq_offline(rq);
5732 }
5733 migrate_tasks(rq, &rf);
5734 BUG_ON(rq->nr_running != 1);
5735 rq_unlock_irqrestore(rq, &rf);
5736
5737 calc_load_migrate(rq);
5738 update_max_interval();
5739 nohz_balance_exit_idle(cpu);
5740 hrtick_clear(rq);
5741 return 0;
5742 }
5743 #endif
5744
5745 #ifdef CONFIG_SCHED_SMT
5746 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5747
5748 static void sched_init_smt(void)
5749 {
5750 /*
5751 * We've enumerated all CPUs and will assume that if any CPU
5752 * has SMT siblings, CPU0 will too.
5753 */
5754 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5755 static_branch_enable(&sched_smt_present);
5756 }
5757 #else
5758 static inline void sched_init_smt(void) { }
5759 #endif
5760
5761 void __init sched_init_smp(void)
5762 {
5763 sched_init_numa();
5764
5765 /*
5766 * There's no userspace yet to cause hotplug operations; hence all the
5767 * CPU masks are stable and all blatant races in the below code cannot
5768 * happen.
5769 */
5770 mutex_lock(&sched_domains_mutex);
5771 sched_init_domains(cpu_active_mask);
5772 mutex_unlock(&sched_domains_mutex);
5773
5774 /* Move init over to a non-isolated CPU */
5775 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5776 BUG();
5777 sched_init_granularity();
5778
5779 init_sched_rt_class();
5780 init_sched_dl_class();
5781
5782 sched_init_smt();
5783
5784 sched_smp_initialized = true;
5785 }
5786
5787 static int __init migration_init(void)
5788 {
5789 sched_rq_cpu_starting(smp_processor_id());
5790 return 0;
5791 }
5792 early_initcall(migration_init);
5793
5794 #else
5795 void __init sched_init_smp(void)
5796 {
5797 sched_init_granularity();
5798 }
5799 #endif /* CONFIG_SMP */
5800
5801 int in_sched_functions(unsigned long addr)
5802 {
5803 return in_lock_functions(addr) ||
5804 (addr >= (unsigned long)__sched_text_start
5805 && addr < (unsigned long)__sched_text_end);
5806 }
5807
5808 #ifdef CONFIG_CGROUP_SCHED
5809 /*
5810 * Default task group.
5811 * Every task in system belongs to this group at bootup.
5812 */
5813 struct task_group root_task_group;
5814 LIST_HEAD(task_groups);
5815
5816 /* Cacheline aligned slab cache for task_group */
5817 static struct kmem_cache *task_group_cache __read_mostly;
5818 #endif
5819
5820 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5821 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5822
5823 void __init sched_init(void)
5824 {
5825 int i, j;
5826 unsigned long alloc_size = 0, ptr;
5827
5828 sched_clock_init();
5829 wait_bit_init();
5830
5831 #ifdef CONFIG_FAIR_GROUP_SCHED
5832 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5833 #endif
5834 #ifdef CONFIG_RT_GROUP_SCHED
5835 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5836 #endif
5837 if (alloc_size) {
5838 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5839
5840 #ifdef CONFIG_FAIR_GROUP_SCHED
5841 root_task_group.se = (struct sched_entity **)ptr;
5842 ptr += nr_cpu_ids * sizeof(void **);
5843
5844 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5845 ptr += nr_cpu_ids * sizeof(void **);
5846
5847 #endif /* CONFIG_FAIR_GROUP_SCHED */
5848 #ifdef CONFIG_RT_GROUP_SCHED
5849 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5850 ptr += nr_cpu_ids * sizeof(void **);
5851
5852 root_task_group.rt_rq = (struct rt_rq **)ptr;
5853 ptr += nr_cpu_ids * sizeof(void **);
5854
5855 #endif /* CONFIG_RT_GROUP_SCHED */
5856 }
5857 #ifdef CONFIG_CPUMASK_OFFSTACK
5858 for_each_possible_cpu(i) {
5859 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5860 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5861 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5862 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5863 }
5864 #endif /* CONFIG_CPUMASK_OFFSTACK */
5865
5866 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5867 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5868
5869 #ifdef CONFIG_SMP
5870 init_defrootdomain();
5871 #endif
5872
5873 #ifdef CONFIG_RT_GROUP_SCHED
5874 init_rt_bandwidth(&root_task_group.rt_bandwidth,
5875 global_rt_period(), global_rt_runtime());
5876 #endif /* CONFIG_RT_GROUP_SCHED */
5877
5878 #ifdef CONFIG_CGROUP_SCHED
5879 task_group_cache = KMEM_CACHE(task_group, 0);
5880
5881 list_add(&root_task_group.list, &task_groups);
5882 INIT_LIST_HEAD(&root_task_group.children);
5883 INIT_LIST_HEAD(&root_task_group.siblings);
5884 autogroup_init(&init_task);
5885 #endif /* CONFIG_CGROUP_SCHED */
5886
5887 for_each_possible_cpu(i) {
5888 struct rq *rq;
5889
5890 rq = cpu_rq(i);
5891 raw_spin_lock_init(&rq->lock);
5892 rq->nr_running = 0;
5893 rq->calc_load_active = 0;
5894 rq->calc_load_update = jiffies + LOAD_FREQ;
5895 init_cfs_rq(&rq->cfs);
5896 init_rt_rq(&rq->rt);
5897 init_dl_rq(&rq->dl);
5898 #ifdef CONFIG_FAIR_GROUP_SCHED
5899 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
5900 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
5901 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
5902 /*
5903 * How much CPU bandwidth does root_task_group get?
5904 *
5905 * In case of task-groups formed thr' the cgroup filesystem, it
5906 * gets 100% of the CPU resources in the system. This overall
5907 * system CPU resource is divided among the tasks of
5908 * root_task_group and its child task-groups in a fair manner,
5909 * based on each entity's (task or task-group's) weight
5910 * (se->load.weight).
5911 *
5912 * In other words, if root_task_group has 10 tasks of weight
5913 * 1024) and two child groups A0 and A1 (of weight 1024 each),
5914 * then A0's share of the CPU resource is:
5915 *
5916 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
5917 *
5918 * We achieve this by letting root_task_group's tasks sit
5919 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
5920 */
5921 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
5922 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
5923 #endif /* CONFIG_FAIR_GROUP_SCHED */
5924
5925 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
5926 #ifdef CONFIG_RT_GROUP_SCHED
5927 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
5928 #endif
5929
5930 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
5931 rq->cpu_load[j] = 0;
5932
5933 #ifdef CONFIG_SMP
5934 rq->sd = NULL;
5935 rq->rd = NULL;
5936 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
5937 rq->balance_callback = NULL;
5938 rq->active_balance = 0;
5939 rq->next_balance = jiffies;
5940 rq->push_cpu = 0;
5941 rq->cpu = i;
5942 rq->online = 0;
5943 rq->idle_stamp = 0;
5944 rq->avg_idle = 2*sysctl_sched_migration_cost;
5945 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
5946
5947 INIT_LIST_HEAD(&rq->cfs_tasks);
5948
5949 rq_attach_root(rq, &def_root_domain);
5950 #ifdef CONFIG_NO_HZ_COMMON
5951 rq->last_load_update_tick = jiffies;
5952 rq->nohz_flags = 0;
5953 #endif
5954 #ifdef CONFIG_NO_HZ_FULL
5955 rq->last_sched_tick = 0;
5956 #endif
5957 #endif /* CONFIG_SMP */
5958 init_rq_hrtick(rq);
5959 atomic_set(&rq->nr_iowait, 0);
5960 }
5961
5962 set_load_weight(&init_task, false);
5963
5964 /*
5965 * The boot idle thread does lazy MMU switching as well:
5966 */
5967 mmgrab(&init_mm);
5968 enter_lazy_tlb(&init_mm, current);
5969
5970 /*
5971 * Make us the idle thread. Technically, schedule() should not be
5972 * called from this thread, however somewhere below it might be,
5973 * but because we are the idle thread, we just pick up running again
5974 * when this runqueue becomes "idle".
5975 */
5976 init_idle(current, smp_processor_id());
5977
5978 calc_load_update = jiffies + LOAD_FREQ;
5979
5980 #ifdef CONFIG_SMP
5981 idle_thread_set_boot_cpu();
5982 set_cpu_rq_start_time(smp_processor_id());
5983 #endif
5984 init_sched_fair_class();
5985
5986 init_schedstats();
5987
5988 scheduler_running = 1;
5989 }
5990
5991 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5992 static inline int preempt_count_equals(int preempt_offset)
5993 {
5994 int nested = preempt_count() + rcu_preempt_depth();
5995
5996 return (nested == preempt_offset);
5997 }
5998
5999 void __might_sleep(const char *file, int line, int preempt_offset)
6000 {
6001 /*
6002 * Blocking primitives will set (and therefore destroy) current->state,
6003 * since we will exit with TASK_RUNNING make sure we enter with it,
6004 * otherwise we will destroy state.
6005 */
6006 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6007 "do not call blocking ops when !TASK_RUNNING; "
6008 "state=%lx set at [<%p>] %pS\n",
6009 current->state,
6010 (void *)current->task_state_change,
6011 (void *)current->task_state_change);
6012
6013 ___might_sleep(file, line, preempt_offset);
6014 }
6015 EXPORT_SYMBOL(__might_sleep);
6016
6017 void ___might_sleep(const char *file, int line, int preempt_offset)
6018 {
6019 /* Ratelimiting timestamp: */
6020 static unsigned long prev_jiffy;
6021
6022 unsigned long preempt_disable_ip;
6023
6024 /* WARN_ON_ONCE() by default, no rate limit required: */
6025 rcu_sleep_check();
6026
6027 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6028 !is_idle_task(current)) ||
6029 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6030 oops_in_progress)
6031 return;
6032
6033 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6034 return;
6035 prev_jiffy = jiffies;
6036
6037 /* Save this before calling printk(), since that will clobber it: */
6038 preempt_disable_ip = get_preempt_disable_ip(current);
6039
6040 printk(KERN_ERR
6041 "BUG: sleeping function called from invalid context at %s:%d\n",
6042 file, line);
6043 printk(KERN_ERR
6044 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6045 in_atomic(), irqs_disabled(),
6046 current->pid, current->comm);
6047
6048 if (task_stack_end_corrupted(current))
6049 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6050
6051 debug_show_held_locks(current);
6052 if (irqs_disabled())
6053 print_irqtrace_events(current);
6054 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6055 && !preempt_count_equals(preempt_offset)) {
6056 pr_err("Preemption disabled at:");
6057 print_ip_sym(preempt_disable_ip);
6058 pr_cont("\n");
6059 }
6060 dump_stack();
6061 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6062 }
6063 EXPORT_SYMBOL(___might_sleep);
6064 #endif
6065
6066 #ifdef CONFIG_MAGIC_SYSRQ
6067 void normalize_rt_tasks(void)
6068 {
6069 struct task_struct *g, *p;
6070 struct sched_attr attr = {
6071 .sched_policy = SCHED_NORMAL,
6072 };
6073
6074 read_lock(&tasklist_lock);
6075 for_each_process_thread(g, p) {
6076 /*
6077 * Only normalize user tasks:
6078 */
6079 if (p->flags & PF_KTHREAD)
6080 continue;
6081
6082 p->se.exec_start = 0;
6083 schedstat_set(p->se.statistics.wait_start, 0);
6084 schedstat_set(p->se.statistics.sleep_start, 0);
6085 schedstat_set(p->se.statistics.block_start, 0);
6086
6087 if (!dl_task(p) && !rt_task(p)) {
6088 /*
6089 * Renice negative nice level userspace
6090 * tasks back to 0:
6091 */
6092 if (task_nice(p) < 0)
6093 set_user_nice(p, 0);
6094 continue;
6095 }
6096
6097 __sched_setscheduler(p, &attr, false, false);
6098 }
6099 read_unlock(&tasklist_lock);
6100 }
6101
6102 #endif /* CONFIG_MAGIC_SYSRQ */
6103
6104 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6105 /*
6106 * These functions are only useful for the IA64 MCA handling, or kdb.
6107 *
6108 * They can only be called when the whole system has been
6109 * stopped - every CPU needs to be quiescent, and no scheduling
6110 * activity can take place. Using them for anything else would
6111 * be a serious bug, and as a result, they aren't even visible
6112 * under any other configuration.
6113 */
6114
6115 /**
6116 * curr_task - return the current task for a given CPU.
6117 * @cpu: the processor in question.
6118 *
6119 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6120 *
6121 * Return: The current task for @cpu.
6122 */
6123 struct task_struct *curr_task(int cpu)
6124 {
6125 return cpu_curr(cpu);
6126 }
6127
6128 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6129
6130 #ifdef CONFIG_IA64
6131 /**
6132 * set_curr_task - set the current task for a given CPU.
6133 * @cpu: the processor in question.
6134 * @p: the task pointer to set.
6135 *
6136 * Description: This function must only be used when non-maskable interrupts
6137 * are serviced on a separate stack. It allows the architecture to switch the
6138 * notion of the current task on a CPU in a non-blocking manner. This function
6139 * must be called with all CPU's synchronized, and interrupts disabled, the
6140 * and caller must save the original value of the current task (see
6141 * curr_task() above) and restore that value before reenabling interrupts and
6142 * re-starting the system.
6143 *
6144 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6145 */
6146 void ia64_set_curr_task(int cpu, struct task_struct *p)
6147 {
6148 cpu_curr(cpu) = p;
6149 }
6150
6151 #endif
6152
6153 #ifdef CONFIG_CGROUP_SCHED
6154 /* task_group_lock serializes the addition/removal of task groups */
6155 static DEFINE_SPINLOCK(task_group_lock);
6156
6157 static void sched_free_group(struct task_group *tg)
6158 {
6159 free_fair_sched_group(tg);
6160 free_rt_sched_group(tg);
6161 autogroup_free(tg);
6162 kmem_cache_free(task_group_cache, tg);
6163 }
6164
6165 /* allocate runqueue etc for a new task group */
6166 struct task_group *sched_create_group(struct task_group *parent)
6167 {
6168 struct task_group *tg;
6169
6170 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6171 if (!tg)
6172 return ERR_PTR(-ENOMEM);
6173
6174 if (!alloc_fair_sched_group(tg, parent))
6175 goto err;
6176
6177 if (!alloc_rt_sched_group(tg, parent))
6178 goto err;
6179
6180 return tg;
6181
6182 err:
6183 sched_free_group(tg);
6184 return ERR_PTR(-ENOMEM);
6185 }
6186
6187 void sched_online_group(struct task_group *tg, struct task_group *parent)
6188 {
6189 unsigned long flags;
6190
6191 spin_lock_irqsave(&task_group_lock, flags);
6192 list_add_rcu(&tg->list, &task_groups);
6193
6194 /* Root should already exist: */
6195 WARN_ON(!parent);
6196
6197 tg->parent = parent;
6198 INIT_LIST_HEAD(&tg->children);
6199 list_add_rcu(&tg->siblings, &parent->children);
6200 spin_unlock_irqrestore(&task_group_lock, flags);
6201
6202 online_fair_sched_group(tg);
6203 }
6204
6205 /* rcu callback to free various structures associated with a task group */
6206 static void sched_free_group_rcu(struct rcu_head *rhp)
6207 {
6208 /* Now it should be safe to free those cfs_rqs: */
6209 sched_free_group(container_of(rhp, struct task_group, rcu));
6210 }
6211
6212 void sched_destroy_group(struct task_group *tg)
6213 {
6214 /* Wait for possible concurrent references to cfs_rqs complete: */
6215 call_rcu(&tg->rcu, sched_free_group_rcu);
6216 }
6217
6218 void sched_offline_group(struct task_group *tg)
6219 {
6220 unsigned long flags;
6221
6222 /* End participation in shares distribution: */
6223 unregister_fair_sched_group(tg);
6224
6225 spin_lock_irqsave(&task_group_lock, flags);
6226 list_del_rcu(&tg->list);
6227 list_del_rcu(&tg->siblings);
6228 spin_unlock_irqrestore(&task_group_lock, flags);
6229 }
6230
6231 static void sched_change_group(struct task_struct *tsk, int type)
6232 {
6233 struct task_group *tg;
6234
6235 /*
6236 * All callers are synchronized by task_rq_lock(); we do not use RCU
6237 * which is pointless here. Thus, we pass "true" to task_css_check()
6238 * to prevent lockdep warnings.
6239 */
6240 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6241 struct task_group, css);
6242 tg = autogroup_task_group(tsk, tg);
6243 tsk->sched_task_group = tg;
6244
6245 #ifdef CONFIG_FAIR_GROUP_SCHED
6246 if (tsk->sched_class->task_change_group)
6247 tsk->sched_class->task_change_group(tsk, type);
6248 else
6249 #endif
6250 set_task_rq(tsk, task_cpu(tsk));
6251 }
6252
6253 /*
6254 * Change task's runqueue when it moves between groups.
6255 *
6256 * The caller of this function should have put the task in its new group by
6257 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6258 * its new group.
6259 */
6260 void sched_move_task(struct task_struct *tsk)
6261 {
6262 int queued, running, queue_flags =
6263 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6264 struct rq_flags rf;
6265 struct rq *rq;
6266
6267 rq = task_rq_lock(tsk, &rf);
6268 update_rq_clock(rq);
6269
6270 running = task_current(rq, tsk);
6271 queued = task_on_rq_queued(tsk);
6272
6273 if (queued)
6274 dequeue_task(rq, tsk, queue_flags);
6275 if (running)
6276 put_prev_task(rq, tsk);
6277
6278 sched_change_group(tsk, TASK_MOVE_GROUP);
6279
6280 if (queued)
6281 enqueue_task(rq, tsk, queue_flags);
6282 if (running)
6283 set_curr_task(rq, tsk);
6284
6285 task_rq_unlock(rq, tsk, &rf);
6286 }
6287
6288 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6289 {
6290 return css ? container_of(css, struct task_group, css) : NULL;
6291 }
6292
6293 static struct cgroup_subsys_state *
6294 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6295 {
6296 struct task_group *parent = css_tg(parent_css);
6297 struct task_group *tg;
6298
6299 if (!parent) {
6300 /* This is early initialization for the top cgroup */
6301 return &root_task_group.css;
6302 }
6303
6304 tg = sched_create_group(parent);
6305 if (IS_ERR(tg))
6306 return ERR_PTR(-ENOMEM);
6307
6308 return &tg->css;
6309 }
6310
6311 /* Expose task group only after completing cgroup initialization */
6312 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6313 {
6314 struct task_group *tg = css_tg(css);
6315 struct task_group *parent = css_tg(css->parent);
6316
6317 if (parent)
6318 sched_online_group(tg, parent);
6319 return 0;
6320 }
6321
6322 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6323 {
6324 struct task_group *tg = css_tg(css);
6325
6326 sched_offline_group(tg);
6327 }
6328
6329 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6330 {
6331 struct task_group *tg = css_tg(css);
6332
6333 /*
6334 * Relies on the RCU grace period between css_released() and this.
6335 */
6336 sched_free_group(tg);
6337 }
6338
6339 /*
6340 * This is called before wake_up_new_task(), therefore we really only
6341 * have to set its group bits, all the other stuff does not apply.
6342 */
6343 static void cpu_cgroup_fork(struct task_struct *task)
6344 {
6345 struct rq_flags rf;
6346 struct rq *rq;
6347
6348 rq = task_rq_lock(task, &rf);
6349
6350 update_rq_clock(rq);
6351 sched_change_group(task, TASK_SET_GROUP);
6352
6353 task_rq_unlock(rq, task, &rf);
6354 }
6355
6356 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6357 {
6358 struct task_struct *task;
6359 struct cgroup_subsys_state *css;
6360 int ret = 0;
6361
6362 cgroup_taskset_for_each(task, css, tset) {
6363 #ifdef CONFIG_RT_GROUP_SCHED
6364 if (!sched_rt_can_attach(css_tg(css), task))
6365 return -EINVAL;
6366 #else
6367 /* We don't support RT-tasks being in separate groups */
6368 if (task->sched_class != &fair_sched_class)
6369 return -EINVAL;
6370 #endif
6371 /*
6372 * Serialize against wake_up_new_task() such that if its
6373 * running, we're sure to observe its full state.
6374 */
6375 raw_spin_lock_irq(&task->pi_lock);
6376 /*
6377 * Avoid calling sched_move_task() before wake_up_new_task()
6378 * has happened. This would lead to problems with PELT, due to
6379 * move wanting to detach+attach while we're not attached yet.
6380 */
6381 if (task->state == TASK_NEW)
6382 ret = -EINVAL;
6383 raw_spin_unlock_irq(&task->pi_lock);
6384
6385 if (ret)
6386 break;
6387 }
6388 return ret;
6389 }
6390
6391 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6392 {
6393 struct task_struct *task;
6394 struct cgroup_subsys_state *css;
6395
6396 cgroup_taskset_for_each(task, css, tset)
6397 sched_move_task(task);
6398 }
6399
6400 #ifdef CONFIG_FAIR_GROUP_SCHED
6401 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6402 struct cftype *cftype, u64 shareval)
6403 {
6404 return sched_group_set_shares(css_tg(css), scale_load(shareval));
6405 }
6406
6407 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6408 struct cftype *cft)
6409 {
6410 struct task_group *tg = css_tg(css);
6411
6412 return (u64) scale_load_down(tg->shares);
6413 }
6414
6415 #ifdef CONFIG_CFS_BANDWIDTH
6416 static DEFINE_MUTEX(cfs_constraints_mutex);
6417
6418 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6419 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6420
6421 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6422
6423 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6424 {
6425 int i, ret = 0, runtime_enabled, runtime_was_enabled;
6426 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6427
6428 if (tg == &root_task_group)
6429 return -EINVAL;
6430
6431 /*
6432 * Ensure we have at some amount of bandwidth every period. This is
6433 * to prevent reaching a state of large arrears when throttled via
6434 * entity_tick() resulting in prolonged exit starvation.
6435 */
6436 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6437 return -EINVAL;
6438
6439 /*
6440 * Likewise, bound things on the otherside by preventing insane quota
6441 * periods. This also allows us to normalize in computing quota
6442 * feasibility.
6443 */
6444 if (period > max_cfs_quota_period)
6445 return -EINVAL;
6446
6447 /*
6448 * Prevent race between setting of cfs_rq->runtime_enabled and
6449 * unthrottle_offline_cfs_rqs().
6450 */
6451 get_online_cpus();
6452 mutex_lock(&cfs_constraints_mutex);
6453 ret = __cfs_schedulable(tg, period, quota);
6454 if (ret)
6455 goto out_unlock;
6456
6457 runtime_enabled = quota != RUNTIME_INF;
6458 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6459 /*
6460 * If we need to toggle cfs_bandwidth_used, off->on must occur
6461 * before making related changes, and on->off must occur afterwards
6462 */
6463 if (runtime_enabled && !runtime_was_enabled)
6464 cfs_bandwidth_usage_inc();
6465 raw_spin_lock_irq(&cfs_b->lock);
6466 cfs_b->period = ns_to_ktime(period);
6467 cfs_b->quota = quota;
6468
6469 __refill_cfs_bandwidth_runtime(cfs_b);
6470
6471 /* Restart the period timer (if active) to handle new period expiry: */
6472 if (runtime_enabled)
6473 start_cfs_bandwidth(cfs_b);
6474
6475 raw_spin_unlock_irq(&cfs_b->lock);
6476
6477 for_each_online_cpu(i) {
6478 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6479 struct rq *rq = cfs_rq->rq;
6480 struct rq_flags rf;
6481
6482 rq_lock_irq(rq, &rf);
6483 cfs_rq->runtime_enabled = runtime_enabled;
6484 cfs_rq->runtime_remaining = 0;
6485
6486 if (cfs_rq->throttled)
6487 unthrottle_cfs_rq(cfs_rq);
6488 rq_unlock_irq(rq, &rf);
6489 }
6490 if (runtime_was_enabled && !runtime_enabled)
6491 cfs_bandwidth_usage_dec();
6492 out_unlock:
6493 mutex_unlock(&cfs_constraints_mutex);
6494 put_online_cpus();
6495
6496 return ret;
6497 }
6498
6499 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6500 {
6501 u64 quota, period;
6502
6503 period = ktime_to_ns(tg->cfs_bandwidth.period);
6504 if (cfs_quota_us < 0)
6505 quota = RUNTIME_INF;
6506 else
6507 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6508
6509 return tg_set_cfs_bandwidth(tg, period, quota);
6510 }
6511
6512 long tg_get_cfs_quota(struct task_group *tg)
6513 {
6514 u64 quota_us;
6515
6516 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6517 return -1;
6518
6519 quota_us = tg->cfs_bandwidth.quota;
6520 do_div(quota_us, NSEC_PER_USEC);
6521
6522 return quota_us;
6523 }
6524
6525 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6526 {
6527 u64 quota, period;
6528
6529 period = (u64)cfs_period_us * NSEC_PER_USEC;
6530 quota = tg->cfs_bandwidth.quota;
6531
6532 return tg_set_cfs_bandwidth(tg, period, quota);
6533 }
6534
6535 long tg_get_cfs_period(struct task_group *tg)
6536 {
6537 u64 cfs_period_us;
6538
6539 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6540 do_div(cfs_period_us, NSEC_PER_USEC);
6541
6542 return cfs_period_us;
6543 }
6544
6545 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6546 struct cftype *cft)
6547 {
6548 return tg_get_cfs_quota(css_tg(css));
6549 }
6550
6551 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6552 struct cftype *cftype, s64 cfs_quota_us)
6553 {
6554 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6555 }
6556
6557 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6558 struct cftype *cft)
6559 {
6560 return tg_get_cfs_period(css_tg(css));
6561 }
6562
6563 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6564 struct cftype *cftype, u64 cfs_period_us)
6565 {
6566 return tg_set_cfs_period(css_tg(css), cfs_period_us);
6567 }
6568
6569 struct cfs_schedulable_data {
6570 struct task_group *tg;
6571 u64 period, quota;
6572 };
6573
6574 /*
6575 * normalize group quota/period to be quota/max_period
6576 * note: units are usecs
6577 */
6578 static u64 normalize_cfs_quota(struct task_group *tg,
6579 struct cfs_schedulable_data *d)
6580 {
6581 u64 quota, period;
6582
6583 if (tg == d->tg) {
6584 period = d->period;
6585 quota = d->quota;
6586 } else {
6587 period = tg_get_cfs_period(tg);
6588 quota = tg_get_cfs_quota(tg);
6589 }
6590
6591 /* note: these should typically be equivalent */
6592 if (quota == RUNTIME_INF || quota == -1)
6593 return RUNTIME_INF;
6594
6595 return to_ratio(period, quota);
6596 }
6597
6598 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6599 {
6600 struct cfs_schedulable_data *d = data;
6601 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6602 s64 quota = 0, parent_quota = -1;
6603
6604 if (!tg->parent) {
6605 quota = RUNTIME_INF;
6606 } else {
6607 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6608
6609 quota = normalize_cfs_quota(tg, d);
6610 parent_quota = parent_b->hierarchical_quota;
6611
6612 /*
6613 * Ensure max(child_quota) <= parent_quota, inherit when no
6614 * limit is set:
6615 */
6616 if (quota == RUNTIME_INF)
6617 quota = parent_quota;
6618 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6619 return -EINVAL;
6620 }
6621 cfs_b->hierarchical_quota = quota;
6622
6623 return 0;
6624 }
6625
6626 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6627 {
6628 int ret;
6629 struct cfs_schedulable_data data = {
6630 .tg = tg,
6631 .period = period,
6632 .quota = quota,
6633 };
6634
6635 if (quota != RUNTIME_INF) {
6636 do_div(data.period, NSEC_PER_USEC);
6637 do_div(data.quota, NSEC_PER_USEC);
6638 }
6639
6640 rcu_read_lock();
6641 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6642 rcu_read_unlock();
6643
6644 return ret;
6645 }
6646
6647 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6648 {
6649 struct task_group *tg = css_tg(seq_css(sf));
6650 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6651
6652 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6653 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6654 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6655
6656 return 0;
6657 }
6658 #endif /* CONFIG_CFS_BANDWIDTH */
6659 #endif /* CONFIG_FAIR_GROUP_SCHED */
6660
6661 #ifdef CONFIG_RT_GROUP_SCHED
6662 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6663 struct cftype *cft, s64 val)
6664 {
6665 return sched_group_set_rt_runtime(css_tg(css), val);
6666 }
6667
6668 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6669 struct cftype *cft)
6670 {
6671 return sched_group_rt_runtime(css_tg(css));
6672 }
6673
6674 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6675 struct cftype *cftype, u64 rt_period_us)
6676 {
6677 return sched_group_set_rt_period(css_tg(css), rt_period_us);
6678 }
6679
6680 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6681 struct cftype *cft)
6682 {
6683 return sched_group_rt_period(css_tg(css));
6684 }
6685 #endif /* CONFIG_RT_GROUP_SCHED */
6686
6687 static struct cftype cpu_legacy_files[] = {
6688 #ifdef CONFIG_FAIR_GROUP_SCHED
6689 {
6690 .name = "shares",
6691 .read_u64 = cpu_shares_read_u64,
6692 .write_u64 = cpu_shares_write_u64,
6693 },
6694 #endif
6695 #ifdef CONFIG_CFS_BANDWIDTH
6696 {
6697 .name = "cfs_quota_us",
6698 .read_s64 = cpu_cfs_quota_read_s64,
6699 .write_s64 = cpu_cfs_quota_write_s64,
6700 },
6701 {
6702 .name = "cfs_period_us",
6703 .read_u64 = cpu_cfs_period_read_u64,
6704 .write_u64 = cpu_cfs_period_write_u64,
6705 },
6706 {
6707 .name = "stat",
6708 .seq_show = cpu_cfs_stat_show,
6709 },
6710 #endif
6711 #ifdef CONFIG_RT_GROUP_SCHED
6712 {
6713 .name = "rt_runtime_us",
6714 .read_s64 = cpu_rt_runtime_read,
6715 .write_s64 = cpu_rt_runtime_write,
6716 },
6717 {
6718 .name = "rt_period_us",
6719 .read_u64 = cpu_rt_period_read_uint,
6720 .write_u64 = cpu_rt_period_write_uint,
6721 },
6722 #endif
6723 { } /* Terminate */
6724 };
6725
6726 static int cpu_extra_stat_show(struct seq_file *sf,
6727 struct cgroup_subsys_state *css)
6728 {
6729 #ifdef CONFIG_CFS_BANDWIDTH
6730 {
6731 struct task_group *tg = css_tg(css);
6732 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6733 u64 throttled_usec;
6734
6735 throttled_usec = cfs_b->throttled_time;
6736 do_div(throttled_usec, NSEC_PER_USEC);
6737
6738 seq_printf(sf, "nr_periods %d\n"
6739 "nr_throttled %d\n"
6740 "throttled_usec %llu\n",
6741 cfs_b->nr_periods, cfs_b->nr_throttled,
6742 throttled_usec);
6743 }
6744 #endif
6745 return 0;
6746 }
6747
6748 #ifdef CONFIG_FAIR_GROUP_SCHED
6749 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6750 struct cftype *cft)
6751 {
6752 struct task_group *tg = css_tg(css);
6753 u64 weight = scale_load_down(tg->shares);
6754
6755 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6756 }
6757
6758 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6759 struct cftype *cft, u64 weight)
6760 {
6761 /*
6762 * cgroup weight knobs should use the common MIN, DFL and MAX
6763 * values which are 1, 100 and 10000 respectively. While it loses
6764 * a bit of range on both ends, it maps pretty well onto the shares
6765 * value used by scheduler and the round-trip conversions preserve
6766 * the original value over the entire range.
6767 */
6768 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6769 return -ERANGE;
6770
6771 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6772
6773 return sched_group_set_shares(css_tg(css), scale_load(weight));
6774 }
6775
6776 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6777 struct cftype *cft)
6778 {
6779 unsigned long weight = scale_load_down(css_tg(css)->shares);
6780 int last_delta = INT_MAX;
6781 int prio, delta;
6782
6783 /* find the closest nice value to the current weight */
6784 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6785 delta = abs(sched_prio_to_weight[prio] - weight);
6786 if (delta >= last_delta)
6787 break;
6788 last_delta = delta;
6789 }
6790
6791 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6792 }
6793
6794 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6795 struct cftype *cft, s64 nice)
6796 {
6797 unsigned long weight;
6798
6799 if (nice < MIN_NICE || nice > MAX_NICE)
6800 return -ERANGE;
6801
6802 weight = sched_prio_to_weight[NICE_TO_PRIO(nice) - MAX_RT_PRIO];
6803 return sched_group_set_shares(css_tg(css), scale_load(weight));
6804 }
6805 #endif
6806
6807 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6808 long period, long quota)
6809 {
6810 if (quota < 0)
6811 seq_puts(sf, "max");
6812 else
6813 seq_printf(sf, "%ld", quota);
6814
6815 seq_printf(sf, " %ld\n", period);
6816 }
6817
6818 /* caller should put the current value in *@periodp before calling */
6819 static int __maybe_unused cpu_period_quota_parse(char *buf,
6820 u64 *periodp, u64 *quotap)
6821 {
6822 char tok[21]; /* U64_MAX */
6823
6824 if (!sscanf(buf, "%s %llu", tok, periodp))
6825 return -EINVAL;
6826
6827 *periodp *= NSEC_PER_USEC;
6828
6829 if (sscanf(tok, "%llu", quotap))
6830 *quotap *= NSEC_PER_USEC;
6831 else if (!strcmp(tok, "max"))
6832 *quotap = RUNTIME_INF;
6833 else
6834 return -EINVAL;
6835
6836 return 0;
6837 }
6838
6839 #ifdef CONFIG_CFS_BANDWIDTH
6840 static int cpu_max_show(struct seq_file *sf, void *v)
6841 {
6842 struct task_group *tg = css_tg(seq_css(sf));
6843
6844 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6845 return 0;
6846 }
6847
6848 static ssize_t cpu_max_write(struct kernfs_open_file *of,
6849 char *buf, size_t nbytes, loff_t off)
6850 {
6851 struct task_group *tg = css_tg(of_css(of));
6852 u64 period = tg_get_cfs_period(tg);
6853 u64 quota;
6854 int ret;
6855
6856 ret = cpu_period_quota_parse(buf, &period, &quota);
6857 if (!ret)
6858 ret = tg_set_cfs_bandwidth(tg, period, quota);
6859 return ret ?: nbytes;
6860 }
6861 #endif
6862
6863 static struct cftype cpu_files[] = {
6864 #ifdef CONFIG_FAIR_GROUP_SCHED
6865 {
6866 .name = "weight",
6867 .flags = CFTYPE_NOT_ON_ROOT,
6868 .read_u64 = cpu_weight_read_u64,
6869 .write_u64 = cpu_weight_write_u64,
6870 },
6871 {
6872 .name = "weight.nice",
6873 .flags = CFTYPE_NOT_ON_ROOT,
6874 .read_s64 = cpu_weight_nice_read_s64,
6875 .write_s64 = cpu_weight_nice_write_s64,
6876 },
6877 #endif
6878 #ifdef CONFIG_CFS_BANDWIDTH
6879 {
6880 .name = "max",
6881 .flags = CFTYPE_NOT_ON_ROOT,
6882 .seq_show = cpu_max_show,
6883 .write = cpu_max_write,
6884 },
6885 #endif
6886 { } /* terminate */
6887 };
6888
6889 struct cgroup_subsys cpu_cgrp_subsys = {
6890 .css_alloc = cpu_cgroup_css_alloc,
6891 .css_online = cpu_cgroup_css_online,
6892 .css_released = cpu_cgroup_css_released,
6893 .css_free = cpu_cgroup_css_free,
6894 .css_extra_stat_show = cpu_extra_stat_show,
6895 .fork = cpu_cgroup_fork,
6896 .can_attach = cpu_cgroup_can_attach,
6897 .attach = cpu_cgroup_attach,
6898 .legacy_cftypes = cpu_legacy_files,
6899 .dfl_cftypes = cpu_files,
6900 .early_init = true,
6901 .threaded = true,
6902 };
6903
6904 #endif /* CONFIG_CGROUP_SCHED */
6905
6906 void dump_cpu_task(int cpu)
6907 {
6908 pr_info("Task dump for CPU %d:\n", cpu);
6909 sched_show_task(cpu_curr(cpu));
6910 }
6911
6912 /*
6913 * Nice levels are multiplicative, with a gentle 10% change for every
6914 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
6915 * nice 1, it will get ~10% less CPU time than another CPU-bound task
6916 * that remained on nice 0.
6917 *
6918 * The "10% effect" is relative and cumulative: from _any_ nice level,
6919 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
6920 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
6921 * If a task goes up by ~10% and another task goes down by ~10% then
6922 * the relative distance between them is ~25%.)
6923 */
6924 const int sched_prio_to_weight[40] = {
6925 /* -20 */ 88761, 71755, 56483, 46273, 36291,
6926 /* -15 */ 29154, 23254, 18705, 14949, 11916,
6927 /* -10 */ 9548, 7620, 6100, 4904, 3906,
6928 /* -5 */ 3121, 2501, 1991, 1586, 1277,
6929 /* 0 */ 1024, 820, 655, 526, 423,
6930 /* 5 */ 335, 272, 215, 172, 137,
6931 /* 10 */ 110, 87, 70, 56, 45,
6932 /* 15 */ 36, 29, 23, 18, 15,
6933 };
6934
6935 /*
6936 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
6937 *
6938 * In cases where the weight does not change often, we can use the
6939 * precalculated inverse to speed up arithmetics by turning divisions
6940 * into multiplications:
6941 */
6942 const u32 sched_prio_to_wmult[40] = {
6943 /* -20 */ 48388, 59856, 76040, 92818, 118348,
6944 /* -15 */ 147320, 184698, 229616, 287308, 360437,
6945 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
6946 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
6947 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
6948 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
6949 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
6950 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
6951 };