]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/core.c
sched/core: Add missing update_rq_clock() in post_init_entity_util_avg()
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 #include <linux/prefetch.h>
78 #include <linux/mutex.h>
79
80 #include <asm/switch_to.h>
81 #include <asm/tlb.h>
82 #include <asm/irq_regs.h>
83 #ifdef CONFIG_PARAVIRT
84 #include <asm/paravirt.h>
85 #endif
86
87 #include "sched.h"
88 #include "../workqueue_internal.h"
89 #include "../smpboot.h"
90
91 #define CREATE_TRACE_POINTS
92 #include <trace/events/sched.h>
93
94 DEFINE_MUTEX(sched_domains_mutex);
95 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
96
97 static void update_rq_clock_task(struct rq *rq, s64 delta);
98
99 void update_rq_clock(struct rq *rq)
100 {
101 s64 delta;
102
103 lockdep_assert_held(&rq->lock);
104
105 if (rq->clock_skip_update & RQCF_ACT_SKIP)
106 return;
107
108 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
109 if (delta < 0)
110 return;
111 rq->clock += delta;
112 update_rq_clock_task(rq, delta);
113 }
114
115 /*
116 * Debugging: various feature bits
117 */
118
119 #define SCHED_FEAT(name, enabled) \
120 (1UL << __SCHED_FEAT_##name) * enabled |
121
122 const_debug unsigned int sysctl_sched_features =
123 #include "features.h"
124 0;
125
126 #undef SCHED_FEAT
127
128 /*
129 * Number of tasks to iterate in a single balance run.
130 * Limited because this is done with IRQs disabled.
131 */
132 const_debug unsigned int sysctl_sched_nr_migrate = 32;
133
134 /*
135 * period over which we average the RT time consumption, measured
136 * in ms.
137 *
138 * default: 1s
139 */
140 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
141
142 /*
143 * period over which we measure -rt task cpu usage in us.
144 * default: 1s
145 */
146 unsigned int sysctl_sched_rt_period = 1000000;
147
148 __read_mostly int scheduler_running;
149
150 /*
151 * part of the period that we allow rt tasks to run in us.
152 * default: 0.95s
153 */
154 int sysctl_sched_rt_runtime = 950000;
155
156 /* cpus with isolated domains */
157 cpumask_var_t cpu_isolated_map;
158
159 /*
160 * this_rq_lock - lock this runqueue and disable interrupts.
161 */
162 static struct rq *this_rq_lock(void)
163 __acquires(rq->lock)
164 {
165 struct rq *rq;
166
167 local_irq_disable();
168 rq = this_rq();
169 raw_spin_lock(&rq->lock);
170
171 return rq;
172 }
173
174 /*
175 * __task_rq_lock - lock the rq @p resides on.
176 */
177 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
178 __acquires(rq->lock)
179 {
180 struct rq *rq;
181
182 lockdep_assert_held(&p->pi_lock);
183
184 for (;;) {
185 rq = task_rq(p);
186 raw_spin_lock(&rq->lock);
187 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
188 rq_pin_lock(rq, rf);
189 return rq;
190 }
191 raw_spin_unlock(&rq->lock);
192
193 while (unlikely(task_on_rq_migrating(p)))
194 cpu_relax();
195 }
196 }
197
198 /*
199 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
200 */
201 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
202 __acquires(p->pi_lock)
203 __acquires(rq->lock)
204 {
205 struct rq *rq;
206
207 for (;;) {
208 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
209 rq = task_rq(p);
210 raw_spin_lock(&rq->lock);
211 /*
212 * move_queued_task() task_rq_lock()
213 *
214 * ACQUIRE (rq->lock)
215 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
216 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
217 * [S] ->cpu = new_cpu [L] task_rq()
218 * [L] ->on_rq
219 * RELEASE (rq->lock)
220 *
221 * If we observe the old cpu in task_rq_lock, the acquire of
222 * the old rq->lock will fully serialize against the stores.
223 *
224 * If we observe the new cpu in task_rq_lock, the acquire will
225 * pair with the WMB to ensure we must then also see migrating.
226 */
227 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
228 rq_pin_lock(rq, rf);
229 return rq;
230 }
231 raw_spin_unlock(&rq->lock);
232 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
233
234 while (unlikely(task_on_rq_migrating(p)))
235 cpu_relax();
236 }
237 }
238
239 #ifdef CONFIG_SCHED_HRTICK
240 /*
241 * Use HR-timers to deliver accurate preemption points.
242 */
243
244 static void hrtick_clear(struct rq *rq)
245 {
246 if (hrtimer_active(&rq->hrtick_timer))
247 hrtimer_cancel(&rq->hrtick_timer);
248 }
249
250 /*
251 * High-resolution timer tick.
252 * Runs from hardirq context with interrupts disabled.
253 */
254 static enum hrtimer_restart hrtick(struct hrtimer *timer)
255 {
256 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
257
258 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
259
260 raw_spin_lock(&rq->lock);
261 update_rq_clock(rq);
262 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
263 raw_spin_unlock(&rq->lock);
264
265 return HRTIMER_NORESTART;
266 }
267
268 #ifdef CONFIG_SMP
269
270 static void __hrtick_restart(struct rq *rq)
271 {
272 struct hrtimer *timer = &rq->hrtick_timer;
273
274 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
275 }
276
277 /*
278 * called from hardirq (IPI) context
279 */
280 static void __hrtick_start(void *arg)
281 {
282 struct rq *rq = arg;
283
284 raw_spin_lock(&rq->lock);
285 __hrtick_restart(rq);
286 rq->hrtick_csd_pending = 0;
287 raw_spin_unlock(&rq->lock);
288 }
289
290 /*
291 * Called to set the hrtick timer state.
292 *
293 * called with rq->lock held and irqs disabled
294 */
295 void hrtick_start(struct rq *rq, u64 delay)
296 {
297 struct hrtimer *timer = &rq->hrtick_timer;
298 ktime_t time;
299 s64 delta;
300
301 /*
302 * Don't schedule slices shorter than 10000ns, that just
303 * doesn't make sense and can cause timer DoS.
304 */
305 delta = max_t(s64, delay, 10000LL);
306 time = ktime_add_ns(timer->base->get_time(), delta);
307
308 hrtimer_set_expires(timer, time);
309
310 if (rq == this_rq()) {
311 __hrtick_restart(rq);
312 } else if (!rq->hrtick_csd_pending) {
313 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
314 rq->hrtick_csd_pending = 1;
315 }
316 }
317
318 #else
319 /*
320 * Called to set the hrtick timer state.
321 *
322 * called with rq->lock held and irqs disabled
323 */
324 void hrtick_start(struct rq *rq, u64 delay)
325 {
326 /*
327 * Don't schedule slices shorter than 10000ns, that just
328 * doesn't make sense. Rely on vruntime for fairness.
329 */
330 delay = max_t(u64, delay, 10000LL);
331 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
332 HRTIMER_MODE_REL_PINNED);
333 }
334 #endif /* CONFIG_SMP */
335
336 static void init_rq_hrtick(struct rq *rq)
337 {
338 #ifdef CONFIG_SMP
339 rq->hrtick_csd_pending = 0;
340
341 rq->hrtick_csd.flags = 0;
342 rq->hrtick_csd.func = __hrtick_start;
343 rq->hrtick_csd.info = rq;
344 #endif
345
346 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
347 rq->hrtick_timer.function = hrtick;
348 }
349 #else /* CONFIG_SCHED_HRTICK */
350 static inline void hrtick_clear(struct rq *rq)
351 {
352 }
353
354 static inline void init_rq_hrtick(struct rq *rq)
355 {
356 }
357 #endif /* CONFIG_SCHED_HRTICK */
358
359 /*
360 * cmpxchg based fetch_or, macro so it works for different integer types
361 */
362 #define fetch_or(ptr, mask) \
363 ({ \
364 typeof(ptr) _ptr = (ptr); \
365 typeof(mask) _mask = (mask); \
366 typeof(*_ptr) _old, _val = *_ptr; \
367 \
368 for (;;) { \
369 _old = cmpxchg(_ptr, _val, _val | _mask); \
370 if (_old == _val) \
371 break; \
372 _val = _old; \
373 } \
374 _old; \
375 })
376
377 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
378 /*
379 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
380 * this avoids any races wrt polling state changes and thereby avoids
381 * spurious IPIs.
382 */
383 static bool set_nr_and_not_polling(struct task_struct *p)
384 {
385 struct thread_info *ti = task_thread_info(p);
386 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
387 }
388
389 /*
390 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
391 *
392 * If this returns true, then the idle task promises to call
393 * sched_ttwu_pending() and reschedule soon.
394 */
395 static bool set_nr_if_polling(struct task_struct *p)
396 {
397 struct thread_info *ti = task_thread_info(p);
398 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
399
400 for (;;) {
401 if (!(val & _TIF_POLLING_NRFLAG))
402 return false;
403 if (val & _TIF_NEED_RESCHED)
404 return true;
405 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
406 if (old == val)
407 break;
408 val = old;
409 }
410 return true;
411 }
412
413 #else
414 static bool set_nr_and_not_polling(struct task_struct *p)
415 {
416 set_tsk_need_resched(p);
417 return true;
418 }
419
420 #ifdef CONFIG_SMP
421 static bool set_nr_if_polling(struct task_struct *p)
422 {
423 return false;
424 }
425 #endif
426 #endif
427
428 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
429 {
430 struct wake_q_node *node = &task->wake_q;
431
432 /*
433 * Atomically grab the task, if ->wake_q is !nil already it means
434 * its already queued (either by us or someone else) and will get the
435 * wakeup due to that.
436 *
437 * This cmpxchg() implies a full barrier, which pairs with the write
438 * barrier implied by the wakeup in wake_up_q().
439 */
440 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
441 return;
442
443 get_task_struct(task);
444
445 /*
446 * The head is context local, there can be no concurrency.
447 */
448 *head->lastp = node;
449 head->lastp = &node->next;
450 }
451
452 void wake_up_q(struct wake_q_head *head)
453 {
454 struct wake_q_node *node = head->first;
455
456 while (node != WAKE_Q_TAIL) {
457 struct task_struct *task;
458
459 task = container_of(node, struct task_struct, wake_q);
460 BUG_ON(!task);
461 /* task can safely be re-inserted now */
462 node = node->next;
463 task->wake_q.next = NULL;
464
465 /*
466 * wake_up_process() implies a wmb() to pair with the queueing
467 * in wake_q_add() so as not to miss wakeups.
468 */
469 wake_up_process(task);
470 put_task_struct(task);
471 }
472 }
473
474 /*
475 * resched_curr - mark rq's current task 'to be rescheduled now'.
476 *
477 * On UP this means the setting of the need_resched flag, on SMP it
478 * might also involve a cross-CPU call to trigger the scheduler on
479 * the target CPU.
480 */
481 void resched_curr(struct rq *rq)
482 {
483 struct task_struct *curr = rq->curr;
484 int cpu;
485
486 lockdep_assert_held(&rq->lock);
487
488 if (test_tsk_need_resched(curr))
489 return;
490
491 cpu = cpu_of(rq);
492
493 if (cpu == smp_processor_id()) {
494 set_tsk_need_resched(curr);
495 set_preempt_need_resched();
496 return;
497 }
498
499 if (set_nr_and_not_polling(curr))
500 smp_send_reschedule(cpu);
501 else
502 trace_sched_wake_idle_without_ipi(cpu);
503 }
504
505 void resched_cpu(int cpu)
506 {
507 struct rq *rq = cpu_rq(cpu);
508 unsigned long flags;
509
510 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
511 return;
512 resched_curr(rq);
513 raw_spin_unlock_irqrestore(&rq->lock, flags);
514 }
515
516 #ifdef CONFIG_SMP
517 #ifdef CONFIG_NO_HZ_COMMON
518 /*
519 * In the semi idle case, use the nearest busy cpu for migrating timers
520 * from an idle cpu. This is good for power-savings.
521 *
522 * We don't do similar optimization for completely idle system, as
523 * selecting an idle cpu will add more delays to the timers than intended
524 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
525 */
526 int get_nohz_timer_target(void)
527 {
528 int i, cpu = smp_processor_id();
529 struct sched_domain *sd;
530
531 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
532 return cpu;
533
534 rcu_read_lock();
535 for_each_domain(cpu, sd) {
536 for_each_cpu(i, sched_domain_span(sd)) {
537 if (cpu == i)
538 continue;
539
540 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
541 cpu = i;
542 goto unlock;
543 }
544 }
545 }
546
547 if (!is_housekeeping_cpu(cpu))
548 cpu = housekeeping_any_cpu();
549 unlock:
550 rcu_read_unlock();
551 return cpu;
552 }
553 /*
554 * When add_timer_on() enqueues a timer into the timer wheel of an
555 * idle CPU then this timer might expire before the next timer event
556 * which is scheduled to wake up that CPU. In case of a completely
557 * idle system the next event might even be infinite time into the
558 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
559 * leaves the inner idle loop so the newly added timer is taken into
560 * account when the CPU goes back to idle and evaluates the timer
561 * wheel for the next timer event.
562 */
563 static void wake_up_idle_cpu(int cpu)
564 {
565 struct rq *rq = cpu_rq(cpu);
566
567 if (cpu == smp_processor_id())
568 return;
569
570 if (set_nr_and_not_polling(rq->idle))
571 smp_send_reschedule(cpu);
572 else
573 trace_sched_wake_idle_without_ipi(cpu);
574 }
575
576 static bool wake_up_full_nohz_cpu(int cpu)
577 {
578 /*
579 * We just need the target to call irq_exit() and re-evaluate
580 * the next tick. The nohz full kick at least implies that.
581 * If needed we can still optimize that later with an
582 * empty IRQ.
583 */
584 if (cpu_is_offline(cpu))
585 return true; /* Don't try to wake offline CPUs. */
586 if (tick_nohz_full_cpu(cpu)) {
587 if (cpu != smp_processor_id() ||
588 tick_nohz_tick_stopped())
589 tick_nohz_full_kick_cpu(cpu);
590 return true;
591 }
592
593 return false;
594 }
595
596 /*
597 * Wake up the specified CPU. If the CPU is going offline, it is the
598 * caller's responsibility to deal with the lost wakeup, for example,
599 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
600 */
601 void wake_up_nohz_cpu(int cpu)
602 {
603 if (!wake_up_full_nohz_cpu(cpu))
604 wake_up_idle_cpu(cpu);
605 }
606
607 static inline bool got_nohz_idle_kick(void)
608 {
609 int cpu = smp_processor_id();
610
611 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
612 return false;
613
614 if (idle_cpu(cpu) && !need_resched())
615 return true;
616
617 /*
618 * We can't run Idle Load Balance on this CPU for this time so we
619 * cancel it and clear NOHZ_BALANCE_KICK
620 */
621 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
622 return false;
623 }
624
625 #else /* CONFIG_NO_HZ_COMMON */
626
627 static inline bool got_nohz_idle_kick(void)
628 {
629 return false;
630 }
631
632 #endif /* CONFIG_NO_HZ_COMMON */
633
634 #ifdef CONFIG_NO_HZ_FULL
635 bool sched_can_stop_tick(struct rq *rq)
636 {
637 int fifo_nr_running;
638
639 /* Deadline tasks, even if single, need the tick */
640 if (rq->dl.dl_nr_running)
641 return false;
642
643 /*
644 * If there are more than one RR tasks, we need the tick to effect the
645 * actual RR behaviour.
646 */
647 if (rq->rt.rr_nr_running) {
648 if (rq->rt.rr_nr_running == 1)
649 return true;
650 else
651 return false;
652 }
653
654 /*
655 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
656 * forced preemption between FIFO tasks.
657 */
658 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
659 if (fifo_nr_running)
660 return true;
661
662 /*
663 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
664 * if there's more than one we need the tick for involuntary
665 * preemption.
666 */
667 if (rq->nr_running > 1)
668 return false;
669
670 return true;
671 }
672 #endif /* CONFIG_NO_HZ_FULL */
673
674 void sched_avg_update(struct rq *rq)
675 {
676 s64 period = sched_avg_period();
677
678 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
679 /*
680 * Inline assembly required to prevent the compiler
681 * optimising this loop into a divmod call.
682 * See __iter_div_u64_rem() for another example of this.
683 */
684 asm("" : "+rm" (rq->age_stamp));
685 rq->age_stamp += period;
686 rq->rt_avg /= 2;
687 }
688 }
689
690 #endif /* CONFIG_SMP */
691
692 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
693 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
694 /*
695 * Iterate task_group tree rooted at *from, calling @down when first entering a
696 * node and @up when leaving it for the final time.
697 *
698 * Caller must hold rcu_lock or sufficient equivalent.
699 */
700 int walk_tg_tree_from(struct task_group *from,
701 tg_visitor down, tg_visitor up, void *data)
702 {
703 struct task_group *parent, *child;
704 int ret;
705
706 parent = from;
707
708 down:
709 ret = (*down)(parent, data);
710 if (ret)
711 goto out;
712 list_for_each_entry_rcu(child, &parent->children, siblings) {
713 parent = child;
714 goto down;
715
716 up:
717 continue;
718 }
719 ret = (*up)(parent, data);
720 if (ret || parent == from)
721 goto out;
722
723 child = parent;
724 parent = parent->parent;
725 if (parent)
726 goto up;
727 out:
728 return ret;
729 }
730
731 int tg_nop(struct task_group *tg, void *data)
732 {
733 return 0;
734 }
735 #endif
736
737 static void set_load_weight(struct task_struct *p)
738 {
739 int prio = p->static_prio - MAX_RT_PRIO;
740 struct load_weight *load = &p->se.load;
741
742 /*
743 * SCHED_IDLE tasks get minimal weight:
744 */
745 if (idle_policy(p->policy)) {
746 load->weight = scale_load(WEIGHT_IDLEPRIO);
747 load->inv_weight = WMULT_IDLEPRIO;
748 return;
749 }
750
751 load->weight = scale_load(sched_prio_to_weight[prio]);
752 load->inv_weight = sched_prio_to_wmult[prio];
753 }
754
755 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
756 {
757 update_rq_clock(rq);
758 if (!(flags & ENQUEUE_RESTORE))
759 sched_info_queued(rq, p);
760 p->sched_class->enqueue_task(rq, p, flags);
761 }
762
763 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
764 {
765 update_rq_clock(rq);
766 if (!(flags & DEQUEUE_SAVE))
767 sched_info_dequeued(rq, p);
768 p->sched_class->dequeue_task(rq, p, flags);
769 }
770
771 void activate_task(struct rq *rq, struct task_struct *p, int flags)
772 {
773 if (task_contributes_to_load(p))
774 rq->nr_uninterruptible--;
775
776 enqueue_task(rq, p, flags);
777 }
778
779 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
780 {
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible++;
783
784 dequeue_task(rq, p, flags);
785 }
786
787 static void update_rq_clock_task(struct rq *rq, s64 delta)
788 {
789 /*
790 * In theory, the compile should just see 0 here, and optimize out the call
791 * to sched_rt_avg_update. But I don't trust it...
792 */
793 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
794 s64 steal = 0, irq_delta = 0;
795 #endif
796 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
797 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
798
799 /*
800 * Since irq_time is only updated on {soft,}irq_exit, we might run into
801 * this case when a previous update_rq_clock() happened inside a
802 * {soft,}irq region.
803 *
804 * When this happens, we stop ->clock_task and only update the
805 * prev_irq_time stamp to account for the part that fit, so that a next
806 * update will consume the rest. This ensures ->clock_task is
807 * monotonic.
808 *
809 * It does however cause some slight miss-attribution of {soft,}irq
810 * time, a more accurate solution would be to update the irq_time using
811 * the current rq->clock timestamp, except that would require using
812 * atomic ops.
813 */
814 if (irq_delta > delta)
815 irq_delta = delta;
816
817 rq->prev_irq_time += irq_delta;
818 delta -= irq_delta;
819 #endif
820 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
821 if (static_key_false((&paravirt_steal_rq_enabled))) {
822 steal = paravirt_steal_clock(cpu_of(rq));
823 steal -= rq->prev_steal_time_rq;
824
825 if (unlikely(steal > delta))
826 steal = delta;
827
828 rq->prev_steal_time_rq += steal;
829 delta -= steal;
830 }
831 #endif
832
833 rq->clock_task += delta;
834
835 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
836 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
837 sched_rt_avg_update(rq, irq_delta + steal);
838 #endif
839 }
840
841 void sched_set_stop_task(int cpu, struct task_struct *stop)
842 {
843 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
844 struct task_struct *old_stop = cpu_rq(cpu)->stop;
845
846 if (stop) {
847 /*
848 * Make it appear like a SCHED_FIFO task, its something
849 * userspace knows about and won't get confused about.
850 *
851 * Also, it will make PI more or less work without too
852 * much confusion -- but then, stop work should not
853 * rely on PI working anyway.
854 */
855 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
856
857 stop->sched_class = &stop_sched_class;
858 }
859
860 cpu_rq(cpu)->stop = stop;
861
862 if (old_stop) {
863 /*
864 * Reset it back to a normal scheduling class so that
865 * it can die in pieces.
866 */
867 old_stop->sched_class = &rt_sched_class;
868 }
869 }
870
871 /*
872 * __normal_prio - return the priority that is based on the static prio
873 */
874 static inline int __normal_prio(struct task_struct *p)
875 {
876 return p->static_prio;
877 }
878
879 /*
880 * Calculate the expected normal priority: i.e. priority
881 * without taking RT-inheritance into account. Might be
882 * boosted by interactivity modifiers. Changes upon fork,
883 * setprio syscalls, and whenever the interactivity
884 * estimator recalculates.
885 */
886 static inline int normal_prio(struct task_struct *p)
887 {
888 int prio;
889
890 if (task_has_dl_policy(p))
891 prio = MAX_DL_PRIO-1;
892 else if (task_has_rt_policy(p))
893 prio = MAX_RT_PRIO-1 - p->rt_priority;
894 else
895 prio = __normal_prio(p);
896 return prio;
897 }
898
899 /*
900 * Calculate the current priority, i.e. the priority
901 * taken into account by the scheduler. This value might
902 * be boosted by RT tasks, or might be boosted by
903 * interactivity modifiers. Will be RT if the task got
904 * RT-boosted. If not then it returns p->normal_prio.
905 */
906 static int effective_prio(struct task_struct *p)
907 {
908 p->normal_prio = normal_prio(p);
909 /*
910 * If we are RT tasks or we were boosted to RT priority,
911 * keep the priority unchanged. Otherwise, update priority
912 * to the normal priority:
913 */
914 if (!rt_prio(p->prio))
915 return p->normal_prio;
916 return p->prio;
917 }
918
919 /**
920 * task_curr - is this task currently executing on a CPU?
921 * @p: the task in question.
922 *
923 * Return: 1 if the task is currently executing. 0 otherwise.
924 */
925 inline int task_curr(const struct task_struct *p)
926 {
927 return cpu_curr(task_cpu(p)) == p;
928 }
929
930 /*
931 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
932 * use the balance_callback list if you want balancing.
933 *
934 * this means any call to check_class_changed() must be followed by a call to
935 * balance_callback().
936 */
937 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
938 const struct sched_class *prev_class,
939 int oldprio)
940 {
941 if (prev_class != p->sched_class) {
942 if (prev_class->switched_from)
943 prev_class->switched_from(rq, p);
944
945 p->sched_class->switched_to(rq, p);
946 } else if (oldprio != p->prio || dl_task(p))
947 p->sched_class->prio_changed(rq, p, oldprio);
948 }
949
950 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951 {
952 const struct sched_class *class;
953
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
961 resched_curr(rq);
962 break;
963 }
964 }
965 }
966
967 /*
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
970 */
971 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
972 rq_clock_skip_update(rq, true);
973 }
974
975 #ifdef CONFIG_SMP
976 /*
977 * This is how migration works:
978 *
979 * 1) we invoke migration_cpu_stop() on the target CPU using
980 * stop_one_cpu().
981 * 2) stopper starts to run (implicitly forcing the migrated thread
982 * off the CPU)
983 * 3) it checks whether the migrated task is still in the wrong runqueue.
984 * 4) if it's in the wrong runqueue then the migration thread removes
985 * it and puts it into the right queue.
986 * 5) stopper completes and stop_one_cpu() returns and the migration
987 * is done.
988 */
989
990 /*
991 * move_queued_task - move a queued task to new rq.
992 *
993 * Returns (locked) new rq. Old rq's lock is released.
994 */
995 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
996 {
997 lockdep_assert_held(&rq->lock);
998
999 p->on_rq = TASK_ON_RQ_MIGRATING;
1000 dequeue_task(rq, p, 0);
1001 set_task_cpu(p, new_cpu);
1002 raw_spin_unlock(&rq->lock);
1003
1004 rq = cpu_rq(new_cpu);
1005
1006 raw_spin_lock(&rq->lock);
1007 BUG_ON(task_cpu(p) != new_cpu);
1008 enqueue_task(rq, p, 0);
1009 p->on_rq = TASK_ON_RQ_QUEUED;
1010 check_preempt_curr(rq, p, 0);
1011
1012 return rq;
1013 }
1014
1015 struct migration_arg {
1016 struct task_struct *task;
1017 int dest_cpu;
1018 };
1019
1020 /*
1021 * Move (not current) task off this cpu, onto dest cpu. We're doing
1022 * this because either it can't run here any more (set_cpus_allowed()
1023 * away from this CPU, or CPU going down), or because we're
1024 * attempting to rebalance this task on exec (sched_exec).
1025 *
1026 * So we race with normal scheduler movements, but that's OK, as long
1027 * as the task is no longer on this CPU.
1028 */
1029 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1030 {
1031 if (unlikely(!cpu_active(dest_cpu)))
1032 return rq;
1033
1034 /* Affinity changed (again). */
1035 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1036 return rq;
1037
1038 rq = move_queued_task(rq, p, dest_cpu);
1039
1040 return rq;
1041 }
1042
1043 /*
1044 * migration_cpu_stop - this will be executed by a highprio stopper thread
1045 * and performs thread migration by bumping thread off CPU then
1046 * 'pushing' onto another runqueue.
1047 */
1048 static int migration_cpu_stop(void *data)
1049 {
1050 struct migration_arg *arg = data;
1051 struct task_struct *p = arg->task;
1052 struct rq *rq = this_rq();
1053
1054 /*
1055 * The original target cpu might have gone down and we might
1056 * be on another cpu but it doesn't matter.
1057 */
1058 local_irq_disable();
1059 /*
1060 * We need to explicitly wake pending tasks before running
1061 * __migrate_task() such that we will not miss enforcing cpus_allowed
1062 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1063 */
1064 sched_ttwu_pending();
1065
1066 raw_spin_lock(&p->pi_lock);
1067 raw_spin_lock(&rq->lock);
1068 /*
1069 * If task_rq(p) != rq, it cannot be migrated here, because we're
1070 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1071 * we're holding p->pi_lock.
1072 */
1073 if (task_rq(p) == rq) {
1074 if (task_on_rq_queued(p))
1075 rq = __migrate_task(rq, p, arg->dest_cpu);
1076 else
1077 p->wake_cpu = arg->dest_cpu;
1078 }
1079 raw_spin_unlock(&rq->lock);
1080 raw_spin_unlock(&p->pi_lock);
1081
1082 local_irq_enable();
1083 return 0;
1084 }
1085
1086 /*
1087 * sched_class::set_cpus_allowed must do the below, but is not required to
1088 * actually call this function.
1089 */
1090 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1091 {
1092 cpumask_copy(&p->cpus_allowed, new_mask);
1093 p->nr_cpus_allowed = cpumask_weight(new_mask);
1094 }
1095
1096 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1097 {
1098 struct rq *rq = task_rq(p);
1099 bool queued, running;
1100
1101 lockdep_assert_held(&p->pi_lock);
1102
1103 queued = task_on_rq_queued(p);
1104 running = task_current(rq, p);
1105
1106 if (queued) {
1107 /*
1108 * Because __kthread_bind() calls this on blocked tasks without
1109 * holding rq->lock.
1110 */
1111 lockdep_assert_held(&rq->lock);
1112 dequeue_task(rq, p, DEQUEUE_SAVE);
1113 }
1114 if (running)
1115 put_prev_task(rq, p);
1116
1117 p->sched_class->set_cpus_allowed(p, new_mask);
1118
1119 if (queued)
1120 enqueue_task(rq, p, ENQUEUE_RESTORE);
1121 if (running)
1122 set_curr_task(rq, p);
1123 }
1124
1125 /*
1126 * Change a given task's CPU affinity. Migrate the thread to a
1127 * proper CPU and schedule it away if the CPU it's executing on
1128 * is removed from the allowed bitmask.
1129 *
1130 * NOTE: the caller must have a valid reference to the task, the
1131 * task must not exit() & deallocate itself prematurely. The
1132 * call is not atomic; no spinlocks may be held.
1133 */
1134 static int __set_cpus_allowed_ptr(struct task_struct *p,
1135 const struct cpumask *new_mask, bool check)
1136 {
1137 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1138 unsigned int dest_cpu;
1139 struct rq_flags rf;
1140 struct rq *rq;
1141 int ret = 0;
1142
1143 rq = task_rq_lock(p, &rf);
1144
1145 if (p->flags & PF_KTHREAD) {
1146 /*
1147 * Kernel threads are allowed on online && !active CPUs
1148 */
1149 cpu_valid_mask = cpu_online_mask;
1150 }
1151
1152 /*
1153 * Must re-check here, to close a race against __kthread_bind(),
1154 * sched_setaffinity() is not guaranteed to observe the flag.
1155 */
1156 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1157 ret = -EINVAL;
1158 goto out;
1159 }
1160
1161 if (cpumask_equal(&p->cpus_allowed, new_mask))
1162 goto out;
1163
1164 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1165 ret = -EINVAL;
1166 goto out;
1167 }
1168
1169 do_set_cpus_allowed(p, new_mask);
1170
1171 if (p->flags & PF_KTHREAD) {
1172 /*
1173 * For kernel threads that do indeed end up on online &&
1174 * !active we want to ensure they are strict per-cpu threads.
1175 */
1176 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1177 !cpumask_intersects(new_mask, cpu_active_mask) &&
1178 p->nr_cpus_allowed != 1);
1179 }
1180
1181 /* Can the task run on the task's current CPU? If so, we're done */
1182 if (cpumask_test_cpu(task_cpu(p), new_mask))
1183 goto out;
1184
1185 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1186 if (task_running(rq, p) || p->state == TASK_WAKING) {
1187 struct migration_arg arg = { p, dest_cpu };
1188 /* Need help from migration thread: drop lock and wait. */
1189 task_rq_unlock(rq, p, &rf);
1190 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1191 tlb_migrate_finish(p->mm);
1192 return 0;
1193 } else if (task_on_rq_queued(p)) {
1194 /*
1195 * OK, since we're going to drop the lock immediately
1196 * afterwards anyway.
1197 */
1198 rq_unpin_lock(rq, &rf);
1199 rq = move_queued_task(rq, p, dest_cpu);
1200 rq_repin_lock(rq, &rf);
1201 }
1202 out:
1203 task_rq_unlock(rq, p, &rf);
1204
1205 return ret;
1206 }
1207
1208 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1209 {
1210 return __set_cpus_allowed_ptr(p, new_mask, false);
1211 }
1212 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1213
1214 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1215 {
1216 #ifdef CONFIG_SCHED_DEBUG
1217 /*
1218 * We should never call set_task_cpu() on a blocked task,
1219 * ttwu() will sort out the placement.
1220 */
1221 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1222 !p->on_rq);
1223
1224 /*
1225 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1226 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1227 * time relying on p->on_rq.
1228 */
1229 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1230 p->sched_class == &fair_sched_class &&
1231 (p->on_rq && !task_on_rq_migrating(p)));
1232
1233 #ifdef CONFIG_LOCKDEP
1234 /*
1235 * The caller should hold either p->pi_lock or rq->lock, when changing
1236 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1237 *
1238 * sched_move_task() holds both and thus holding either pins the cgroup,
1239 * see task_group().
1240 *
1241 * Furthermore, all task_rq users should acquire both locks, see
1242 * task_rq_lock().
1243 */
1244 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1245 lockdep_is_held(&task_rq(p)->lock)));
1246 #endif
1247 #endif
1248
1249 trace_sched_migrate_task(p, new_cpu);
1250
1251 if (task_cpu(p) != new_cpu) {
1252 if (p->sched_class->migrate_task_rq)
1253 p->sched_class->migrate_task_rq(p);
1254 p->se.nr_migrations++;
1255 perf_event_task_migrate(p);
1256 }
1257
1258 __set_task_cpu(p, new_cpu);
1259 }
1260
1261 static void __migrate_swap_task(struct task_struct *p, int cpu)
1262 {
1263 if (task_on_rq_queued(p)) {
1264 struct rq *src_rq, *dst_rq;
1265
1266 src_rq = task_rq(p);
1267 dst_rq = cpu_rq(cpu);
1268
1269 p->on_rq = TASK_ON_RQ_MIGRATING;
1270 deactivate_task(src_rq, p, 0);
1271 set_task_cpu(p, cpu);
1272 activate_task(dst_rq, p, 0);
1273 p->on_rq = TASK_ON_RQ_QUEUED;
1274 check_preempt_curr(dst_rq, p, 0);
1275 } else {
1276 /*
1277 * Task isn't running anymore; make it appear like we migrated
1278 * it before it went to sleep. This means on wakeup we make the
1279 * previous cpu our target instead of where it really is.
1280 */
1281 p->wake_cpu = cpu;
1282 }
1283 }
1284
1285 struct migration_swap_arg {
1286 struct task_struct *src_task, *dst_task;
1287 int src_cpu, dst_cpu;
1288 };
1289
1290 static int migrate_swap_stop(void *data)
1291 {
1292 struct migration_swap_arg *arg = data;
1293 struct rq *src_rq, *dst_rq;
1294 int ret = -EAGAIN;
1295
1296 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1297 return -EAGAIN;
1298
1299 src_rq = cpu_rq(arg->src_cpu);
1300 dst_rq = cpu_rq(arg->dst_cpu);
1301
1302 double_raw_lock(&arg->src_task->pi_lock,
1303 &arg->dst_task->pi_lock);
1304 double_rq_lock(src_rq, dst_rq);
1305
1306 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1307 goto unlock;
1308
1309 if (task_cpu(arg->src_task) != arg->src_cpu)
1310 goto unlock;
1311
1312 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1313 goto unlock;
1314
1315 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1316 goto unlock;
1317
1318 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1319 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1320
1321 ret = 0;
1322
1323 unlock:
1324 double_rq_unlock(src_rq, dst_rq);
1325 raw_spin_unlock(&arg->dst_task->pi_lock);
1326 raw_spin_unlock(&arg->src_task->pi_lock);
1327
1328 return ret;
1329 }
1330
1331 /*
1332 * Cross migrate two tasks
1333 */
1334 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1335 {
1336 struct migration_swap_arg arg;
1337 int ret = -EINVAL;
1338
1339 arg = (struct migration_swap_arg){
1340 .src_task = cur,
1341 .src_cpu = task_cpu(cur),
1342 .dst_task = p,
1343 .dst_cpu = task_cpu(p),
1344 };
1345
1346 if (arg.src_cpu == arg.dst_cpu)
1347 goto out;
1348
1349 /*
1350 * These three tests are all lockless; this is OK since all of them
1351 * will be re-checked with proper locks held further down the line.
1352 */
1353 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1354 goto out;
1355
1356 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1357 goto out;
1358
1359 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1360 goto out;
1361
1362 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1363 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1364
1365 out:
1366 return ret;
1367 }
1368
1369 /*
1370 * wait_task_inactive - wait for a thread to unschedule.
1371 *
1372 * If @match_state is nonzero, it's the @p->state value just checked and
1373 * not expected to change. If it changes, i.e. @p might have woken up,
1374 * then return zero. When we succeed in waiting for @p to be off its CPU,
1375 * we return a positive number (its total switch count). If a second call
1376 * a short while later returns the same number, the caller can be sure that
1377 * @p has remained unscheduled the whole time.
1378 *
1379 * The caller must ensure that the task *will* unschedule sometime soon,
1380 * else this function might spin for a *long* time. This function can't
1381 * be called with interrupts off, or it may introduce deadlock with
1382 * smp_call_function() if an IPI is sent by the same process we are
1383 * waiting to become inactive.
1384 */
1385 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1386 {
1387 int running, queued;
1388 struct rq_flags rf;
1389 unsigned long ncsw;
1390 struct rq *rq;
1391
1392 for (;;) {
1393 /*
1394 * We do the initial early heuristics without holding
1395 * any task-queue locks at all. We'll only try to get
1396 * the runqueue lock when things look like they will
1397 * work out!
1398 */
1399 rq = task_rq(p);
1400
1401 /*
1402 * If the task is actively running on another CPU
1403 * still, just relax and busy-wait without holding
1404 * any locks.
1405 *
1406 * NOTE! Since we don't hold any locks, it's not
1407 * even sure that "rq" stays as the right runqueue!
1408 * But we don't care, since "task_running()" will
1409 * return false if the runqueue has changed and p
1410 * is actually now running somewhere else!
1411 */
1412 while (task_running(rq, p)) {
1413 if (match_state && unlikely(p->state != match_state))
1414 return 0;
1415 cpu_relax();
1416 }
1417
1418 /*
1419 * Ok, time to look more closely! We need the rq
1420 * lock now, to be *sure*. If we're wrong, we'll
1421 * just go back and repeat.
1422 */
1423 rq = task_rq_lock(p, &rf);
1424 trace_sched_wait_task(p);
1425 running = task_running(rq, p);
1426 queued = task_on_rq_queued(p);
1427 ncsw = 0;
1428 if (!match_state || p->state == match_state)
1429 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1430 task_rq_unlock(rq, p, &rf);
1431
1432 /*
1433 * If it changed from the expected state, bail out now.
1434 */
1435 if (unlikely(!ncsw))
1436 break;
1437
1438 /*
1439 * Was it really running after all now that we
1440 * checked with the proper locks actually held?
1441 *
1442 * Oops. Go back and try again..
1443 */
1444 if (unlikely(running)) {
1445 cpu_relax();
1446 continue;
1447 }
1448
1449 /*
1450 * It's not enough that it's not actively running,
1451 * it must be off the runqueue _entirely_, and not
1452 * preempted!
1453 *
1454 * So if it was still runnable (but just not actively
1455 * running right now), it's preempted, and we should
1456 * yield - it could be a while.
1457 */
1458 if (unlikely(queued)) {
1459 ktime_t to = NSEC_PER_SEC / HZ;
1460
1461 set_current_state(TASK_UNINTERRUPTIBLE);
1462 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1463 continue;
1464 }
1465
1466 /*
1467 * Ahh, all good. It wasn't running, and it wasn't
1468 * runnable, which means that it will never become
1469 * running in the future either. We're all done!
1470 */
1471 break;
1472 }
1473
1474 return ncsw;
1475 }
1476
1477 /***
1478 * kick_process - kick a running thread to enter/exit the kernel
1479 * @p: the to-be-kicked thread
1480 *
1481 * Cause a process which is running on another CPU to enter
1482 * kernel-mode, without any delay. (to get signals handled.)
1483 *
1484 * NOTE: this function doesn't have to take the runqueue lock,
1485 * because all it wants to ensure is that the remote task enters
1486 * the kernel. If the IPI races and the task has been migrated
1487 * to another CPU then no harm is done and the purpose has been
1488 * achieved as well.
1489 */
1490 void kick_process(struct task_struct *p)
1491 {
1492 int cpu;
1493
1494 preempt_disable();
1495 cpu = task_cpu(p);
1496 if ((cpu != smp_processor_id()) && task_curr(p))
1497 smp_send_reschedule(cpu);
1498 preempt_enable();
1499 }
1500 EXPORT_SYMBOL_GPL(kick_process);
1501
1502 /*
1503 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1504 *
1505 * A few notes on cpu_active vs cpu_online:
1506 *
1507 * - cpu_active must be a subset of cpu_online
1508 *
1509 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1510 * see __set_cpus_allowed_ptr(). At this point the newly online
1511 * cpu isn't yet part of the sched domains, and balancing will not
1512 * see it.
1513 *
1514 * - on cpu-down we clear cpu_active() to mask the sched domains and
1515 * avoid the load balancer to place new tasks on the to be removed
1516 * cpu. Existing tasks will remain running there and will be taken
1517 * off.
1518 *
1519 * This means that fallback selection must not select !active CPUs.
1520 * And can assume that any active CPU must be online. Conversely
1521 * select_task_rq() below may allow selection of !active CPUs in order
1522 * to satisfy the above rules.
1523 */
1524 static int select_fallback_rq(int cpu, struct task_struct *p)
1525 {
1526 int nid = cpu_to_node(cpu);
1527 const struct cpumask *nodemask = NULL;
1528 enum { cpuset, possible, fail } state = cpuset;
1529 int dest_cpu;
1530
1531 /*
1532 * If the node that the cpu is on has been offlined, cpu_to_node()
1533 * will return -1. There is no cpu on the node, and we should
1534 * select the cpu on the other node.
1535 */
1536 if (nid != -1) {
1537 nodemask = cpumask_of_node(nid);
1538
1539 /* Look for allowed, online CPU in same node. */
1540 for_each_cpu(dest_cpu, nodemask) {
1541 if (!cpu_active(dest_cpu))
1542 continue;
1543 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1544 return dest_cpu;
1545 }
1546 }
1547
1548 for (;;) {
1549 /* Any allowed, online CPU? */
1550 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1551 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1552 continue;
1553 if (!cpu_online(dest_cpu))
1554 continue;
1555 goto out;
1556 }
1557
1558 /* No more Mr. Nice Guy. */
1559 switch (state) {
1560 case cpuset:
1561 if (IS_ENABLED(CONFIG_CPUSETS)) {
1562 cpuset_cpus_allowed_fallback(p);
1563 state = possible;
1564 break;
1565 }
1566 /* fall-through */
1567 case possible:
1568 do_set_cpus_allowed(p, cpu_possible_mask);
1569 state = fail;
1570 break;
1571
1572 case fail:
1573 BUG();
1574 break;
1575 }
1576 }
1577
1578 out:
1579 if (state != cpuset) {
1580 /*
1581 * Don't tell them about moving exiting tasks or
1582 * kernel threads (both mm NULL), since they never
1583 * leave kernel.
1584 */
1585 if (p->mm && printk_ratelimit()) {
1586 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1587 task_pid_nr(p), p->comm, cpu);
1588 }
1589 }
1590
1591 return dest_cpu;
1592 }
1593
1594 /*
1595 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1596 */
1597 static inline
1598 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1599 {
1600 lockdep_assert_held(&p->pi_lock);
1601
1602 if (tsk_nr_cpus_allowed(p) > 1)
1603 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1604 else
1605 cpu = cpumask_any(tsk_cpus_allowed(p));
1606
1607 /*
1608 * In order not to call set_task_cpu() on a blocking task we need
1609 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1610 * cpu.
1611 *
1612 * Since this is common to all placement strategies, this lives here.
1613 *
1614 * [ this allows ->select_task() to simply return task_cpu(p) and
1615 * not worry about this generic constraint ]
1616 */
1617 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1618 !cpu_online(cpu)))
1619 cpu = select_fallback_rq(task_cpu(p), p);
1620
1621 return cpu;
1622 }
1623
1624 static void update_avg(u64 *avg, u64 sample)
1625 {
1626 s64 diff = sample - *avg;
1627 *avg += diff >> 3;
1628 }
1629
1630 #else
1631
1632 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1633 const struct cpumask *new_mask, bool check)
1634 {
1635 return set_cpus_allowed_ptr(p, new_mask);
1636 }
1637
1638 #endif /* CONFIG_SMP */
1639
1640 static void
1641 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1642 {
1643 struct rq *rq;
1644
1645 if (!schedstat_enabled())
1646 return;
1647
1648 rq = this_rq();
1649
1650 #ifdef CONFIG_SMP
1651 if (cpu == rq->cpu) {
1652 schedstat_inc(rq->ttwu_local);
1653 schedstat_inc(p->se.statistics.nr_wakeups_local);
1654 } else {
1655 struct sched_domain *sd;
1656
1657 schedstat_inc(p->se.statistics.nr_wakeups_remote);
1658 rcu_read_lock();
1659 for_each_domain(rq->cpu, sd) {
1660 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1661 schedstat_inc(sd->ttwu_wake_remote);
1662 break;
1663 }
1664 }
1665 rcu_read_unlock();
1666 }
1667
1668 if (wake_flags & WF_MIGRATED)
1669 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1670 #endif /* CONFIG_SMP */
1671
1672 schedstat_inc(rq->ttwu_count);
1673 schedstat_inc(p->se.statistics.nr_wakeups);
1674
1675 if (wake_flags & WF_SYNC)
1676 schedstat_inc(p->se.statistics.nr_wakeups_sync);
1677 }
1678
1679 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1680 {
1681 activate_task(rq, p, en_flags);
1682 p->on_rq = TASK_ON_RQ_QUEUED;
1683
1684 /* if a worker is waking up, notify workqueue */
1685 if (p->flags & PF_WQ_WORKER)
1686 wq_worker_waking_up(p, cpu_of(rq));
1687 }
1688
1689 /*
1690 * Mark the task runnable and perform wakeup-preemption.
1691 */
1692 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1693 struct rq_flags *rf)
1694 {
1695 check_preempt_curr(rq, p, wake_flags);
1696 p->state = TASK_RUNNING;
1697 trace_sched_wakeup(p);
1698
1699 #ifdef CONFIG_SMP
1700 if (p->sched_class->task_woken) {
1701 /*
1702 * Our task @p is fully woken up and running; so its safe to
1703 * drop the rq->lock, hereafter rq is only used for statistics.
1704 */
1705 rq_unpin_lock(rq, rf);
1706 p->sched_class->task_woken(rq, p);
1707 rq_repin_lock(rq, rf);
1708 }
1709
1710 if (rq->idle_stamp) {
1711 u64 delta = rq_clock(rq) - rq->idle_stamp;
1712 u64 max = 2*rq->max_idle_balance_cost;
1713
1714 update_avg(&rq->avg_idle, delta);
1715
1716 if (rq->avg_idle > max)
1717 rq->avg_idle = max;
1718
1719 rq->idle_stamp = 0;
1720 }
1721 #endif
1722 }
1723
1724 static void
1725 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1726 struct rq_flags *rf)
1727 {
1728 int en_flags = ENQUEUE_WAKEUP;
1729
1730 lockdep_assert_held(&rq->lock);
1731
1732 #ifdef CONFIG_SMP
1733 if (p->sched_contributes_to_load)
1734 rq->nr_uninterruptible--;
1735
1736 if (wake_flags & WF_MIGRATED)
1737 en_flags |= ENQUEUE_MIGRATED;
1738 #endif
1739
1740 ttwu_activate(rq, p, en_flags);
1741 ttwu_do_wakeup(rq, p, wake_flags, rf);
1742 }
1743
1744 /*
1745 * Called in case the task @p isn't fully descheduled from its runqueue,
1746 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1747 * since all we need to do is flip p->state to TASK_RUNNING, since
1748 * the task is still ->on_rq.
1749 */
1750 static int ttwu_remote(struct task_struct *p, int wake_flags)
1751 {
1752 struct rq_flags rf;
1753 struct rq *rq;
1754 int ret = 0;
1755
1756 rq = __task_rq_lock(p, &rf);
1757 if (task_on_rq_queued(p)) {
1758 /* check_preempt_curr() may use rq clock */
1759 update_rq_clock(rq);
1760 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1761 ret = 1;
1762 }
1763 __task_rq_unlock(rq, &rf);
1764
1765 return ret;
1766 }
1767
1768 #ifdef CONFIG_SMP
1769 void sched_ttwu_pending(void)
1770 {
1771 struct rq *rq = this_rq();
1772 struct llist_node *llist = llist_del_all(&rq->wake_list);
1773 struct task_struct *p;
1774 unsigned long flags;
1775 struct rq_flags rf;
1776
1777 if (!llist)
1778 return;
1779
1780 raw_spin_lock_irqsave(&rq->lock, flags);
1781 rq_pin_lock(rq, &rf);
1782
1783 while (llist) {
1784 int wake_flags = 0;
1785
1786 p = llist_entry(llist, struct task_struct, wake_entry);
1787 llist = llist_next(llist);
1788
1789 if (p->sched_remote_wakeup)
1790 wake_flags = WF_MIGRATED;
1791
1792 ttwu_do_activate(rq, p, wake_flags, &rf);
1793 }
1794
1795 rq_unpin_lock(rq, &rf);
1796 raw_spin_unlock_irqrestore(&rq->lock, flags);
1797 }
1798
1799 void scheduler_ipi(void)
1800 {
1801 /*
1802 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1803 * TIF_NEED_RESCHED remotely (for the first time) will also send
1804 * this IPI.
1805 */
1806 preempt_fold_need_resched();
1807
1808 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1809 return;
1810
1811 /*
1812 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1813 * traditionally all their work was done from the interrupt return
1814 * path. Now that we actually do some work, we need to make sure
1815 * we do call them.
1816 *
1817 * Some archs already do call them, luckily irq_enter/exit nest
1818 * properly.
1819 *
1820 * Arguably we should visit all archs and update all handlers,
1821 * however a fair share of IPIs are still resched only so this would
1822 * somewhat pessimize the simple resched case.
1823 */
1824 irq_enter();
1825 sched_ttwu_pending();
1826
1827 /*
1828 * Check if someone kicked us for doing the nohz idle load balance.
1829 */
1830 if (unlikely(got_nohz_idle_kick())) {
1831 this_rq()->idle_balance = 1;
1832 raise_softirq_irqoff(SCHED_SOFTIRQ);
1833 }
1834 irq_exit();
1835 }
1836
1837 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1838 {
1839 struct rq *rq = cpu_rq(cpu);
1840
1841 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1842
1843 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1844 if (!set_nr_if_polling(rq->idle))
1845 smp_send_reschedule(cpu);
1846 else
1847 trace_sched_wake_idle_without_ipi(cpu);
1848 }
1849 }
1850
1851 void wake_up_if_idle(int cpu)
1852 {
1853 struct rq *rq = cpu_rq(cpu);
1854 unsigned long flags;
1855
1856 rcu_read_lock();
1857
1858 if (!is_idle_task(rcu_dereference(rq->curr)))
1859 goto out;
1860
1861 if (set_nr_if_polling(rq->idle)) {
1862 trace_sched_wake_idle_without_ipi(cpu);
1863 } else {
1864 raw_spin_lock_irqsave(&rq->lock, flags);
1865 if (is_idle_task(rq->curr))
1866 smp_send_reschedule(cpu);
1867 /* Else cpu is not in idle, do nothing here */
1868 raw_spin_unlock_irqrestore(&rq->lock, flags);
1869 }
1870
1871 out:
1872 rcu_read_unlock();
1873 }
1874
1875 bool cpus_share_cache(int this_cpu, int that_cpu)
1876 {
1877 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878 }
1879 #endif /* CONFIG_SMP */
1880
1881 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1882 {
1883 struct rq *rq = cpu_rq(cpu);
1884 struct rq_flags rf;
1885
1886 #if defined(CONFIG_SMP)
1887 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1888 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1889 ttwu_queue_remote(p, cpu, wake_flags);
1890 return;
1891 }
1892 #endif
1893
1894 raw_spin_lock(&rq->lock);
1895 rq_pin_lock(rq, &rf);
1896 ttwu_do_activate(rq, p, wake_flags, &rf);
1897 rq_unpin_lock(rq, &rf);
1898 raw_spin_unlock(&rq->lock);
1899 }
1900
1901 /*
1902 * Notes on Program-Order guarantees on SMP systems.
1903 *
1904 * MIGRATION
1905 *
1906 * The basic program-order guarantee on SMP systems is that when a task [t]
1907 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1908 * execution on its new cpu [c1].
1909 *
1910 * For migration (of runnable tasks) this is provided by the following means:
1911 *
1912 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1913 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1914 * rq(c1)->lock (if not at the same time, then in that order).
1915 * C) LOCK of the rq(c1)->lock scheduling in task
1916 *
1917 * Transitivity guarantees that B happens after A and C after B.
1918 * Note: we only require RCpc transitivity.
1919 * Note: the cpu doing B need not be c0 or c1
1920 *
1921 * Example:
1922 *
1923 * CPU0 CPU1 CPU2
1924 *
1925 * LOCK rq(0)->lock
1926 * sched-out X
1927 * sched-in Y
1928 * UNLOCK rq(0)->lock
1929 *
1930 * LOCK rq(0)->lock // orders against CPU0
1931 * dequeue X
1932 * UNLOCK rq(0)->lock
1933 *
1934 * LOCK rq(1)->lock
1935 * enqueue X
1936 * UNLOCK rq(1)->lock
1937 *
1938 * LOCK rq(1)->lock // orders against CPU2
1939 * sched-out Z
1940 * sched-in X
1941 * UNLOCK rq(1)->lock
1942 *
1943 *
1944 * BLOCKING -- aka. SLEEP + WAKEUP
1945 *
1946 * For blocking we (obviously) need to provide the same guarantee as for
1947 * migration. However the means are completely different as there is no lock
1948 * chain to provide order. Instead we do:
1949 *
1950 * 1) smp_store_release(X->on_cpu, 0)
1951 * 2) smp_cond_load_acquire(!X->on_cpu)
1952 *
1953 * Example:
1954 *
1955 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1956 *
1957 * LOCK rq(0)->lock LOCK X->pi_lock
1958 * dequeue X
1959 * sched-out X
1960 * smp_store_release(X->on_cpu, 0);
1961 *
1962 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1963 * X->state = WAKING
1964 * set_task_cpu(X,2)
1965 *
1966 * LOCK rq(2)->lock
1967 * enqueue X
1968 * X->state = RUNNING
1969 * UNLOCK rq(2)->lock
1970 *
1971 * LOCK rq(2)->lock // orders against CPU1
1972 * sched-out Z
1973 * sched-in X
1974 * UNLOCK rq(2)->lock
1975 *
1976 * UNLOCK X->pi_lock
1977 * UNLOCK rq(0)->lock
1978 *
1979 *
1980 * However; for wakeups there is a second guarantee we must provide, namely we
1981 * must observe the state that lead to our wakeup. That is, not only must our
1982 * task observe its own prior state, it must also observe the stores prior to
1983 * its wakeup.
1984 *
1985 * This means that any means of doing remote wakeups must order the CPU doing
1986 * the wakeup against the CPU the task is going to end up running on. This,
1987 * however, is already required for the regular Program-Order guarantee above,
1988 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1989 *
1990 */
1991
1992 /**
1993 * try_to_wake_up - wake up a thread
1994 * @p: the thread to be awakened
1995 * @state: the mask of task states that can be woken
1996 * @wake_flags: wake modifier flags (WF_*)
1997 *
1998 * If (@state & @p->state) @p->state = TASK_RUNNING.
1999 *
2000 * If the task was not queued/runnable, also place it back on a runqueue.
2001 *
2002 * Atomic against schedule() which would dequeue a task, also see
2003 * set_current_state().
2004 *
2005 * Return: %true if @p->state changes (an actual wakeup was done),
2006 * %false otherwise.
2007 */
2008 static int
2009 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2010 {
2011 unsigned long flags;
2012 int cpu, success = 0;
2013
2014 /*
2015 * If we are going to wake up a thread waiting for CONDITION we
2016 * need to ensure that CONDITION=1 done by the caller can not be
2017 * reordered with p->state check below. This pairs with mb() in
2018 * set_current_state() the waiting thread does.
2019 */
2020 smp_mb__before_spinlock();
2021 raw_spin_lock_irqsave(&p->pi_lock, flags);
2022 if (!(p->state & state))
2023 goto out;
2024
2025 trace_sched_waking(p);
2026
2027 success = 1; /* we're going to change ->state */
2028 cpu = task_cpu(p);
2029
2030 /*
2031 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2032 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2033 * in smp_cond_load_acquire() below.
2034 *
2035 * sched_ttwu_pending() try_to_wake_up()
2036 * [S] p->on_rq = 1; [L] P->state
2037 * UNLOCK rq->lock -----.
2038 * \
2039 * +--- RMB
2040 * schedule() /
2041 * LOCK rq->lock -----'
2042 * UNLOCK rq->lock
2043 *
2044 * [task p]
2045 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2046 *
2047 * Pairs with the UNLOCK+LOCK on rq->lock from the
2048 * last wakeup of our task and the schedule that got our task
2049 * current.
2050 */
2051 smp_rmb();
2052 if (p->on_rq && ttwu_remote(p, wake_flags))
2053 goto stat;
2054
2055 #ifdef CONFIG_SMP
2056 /*
2057 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2058 * possible to, falsely, observe p->on_cpu == 0.
2059 *
2060 * One must be running (->on_cpu == 1) in order to remove oneself
2061 * from the runqueue.
2062 *
2063 * [S] ->on_cpu = 1; [L] ->on_rq
2064 * UNLOCK rq->lock
2065 * RMB
2066 * LOCK rq->lock
2067 * [S] ->on_rq = 0; [L] ->on_cpu
2068 *
2069 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2070 * from the consecutive calls to schedule(); the first switching to our
2071 * task, the second putting it to sleep.
2072 */
2073 smp_rmb();
2074
2075 /*
2076 * If the owning (remote) cpu is still in the middle of schedule() with
2077 * this task as prev, wait until its done referencing the task.
2078 *
2079 * Pairs with the smp_store_release() in finish_lock_switch().
2080 *
2081 * This ensures that tasks getting woken will be fully ordered against
2082 * their previous state and preserve Program Order.
2083 */
2084 smp_cond_load_acquire(&p->on_cpu, !VAL);
2085
2086 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2087 p->state = TASK_WAKING;
2088
2089 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2090 if (task_cpu(p) != cpu) {
2091 wake_flags |= WF_MIGRATED;
2092 set_task_cpu(p, cpu);
2093 }
2094 #endif /* CONFIG_SMP */
2095
2096 ttwu_queue(p, cpu, wake_flags);
2097 stat:
2098 ttwu_stat(p, cpu, wake_flags);
2099 out:
2100 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2101
2102 return success;
2103 }
2104
2105 /**
2106 * try_to_wake_up_local - try to wake up a local task with rq lock held
2107 * @p: the thread to be awakened
2108 * @cookie: context's cookie for pinning
2109 *
2110 * Put @p on the run-queue if it's not already there. The caller must
2111 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2112 * the current task.
2113 */
2114 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2115 {
2116 struct rq *rq = task_rq(p);
2117
2118 if (WARN_ON_ONCE(rq != this_rq()) ||
2119 WARN_ON_ONCE(p == current))
2120 return;
2121
2122 lockdep_assert_held(&rq->lock);
2123
2124 if (!raw_spin_trylock(&p->pi_lock)) {
2125 /*
2126 * This is OK, because current is on_cpu, which avoids it being
2127 * picked for load-balance and preemption/IRQs are still
2128 * disabled avoiding further scheduler activity on it and we've
2129 * not yet picked a replacement task.
2130 */
2131 rq_unpin_lock(rq, rf);
2132 raw_spin_unlock(&rq->lock);
2133 raw_spin_lock(&p->pi_lock);
2134 raw_spin_lock(&rq->lock);
2135 rq_repin_lock(rq, rf);
2136 }
2137
2138 if (!(p->state & TASK_NORMAL))
2139 goto out;
2140
2141 trace_sched_waking(p);
2142
2143 if (!task_on_rq_queued(p))
2144 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2145
2146 ttwu_do_wakeup(rq, p, 0, rf);
2147 ttwu_stat(p, smp_processor_id(), 0);
2148 out:
2149 raw_spin_unlock(&p->pi_lock);
2150 }
2151
2152 /**
2153 * wake_up_process - Wake up a specific process
2154 * @p: The process to be woken up.
2155 *
2156 * Attempt to wake up the nominated process and move it to the set of runnable
2157 * processes.
2158 *
2159 * Return: 1 if the process was woken up, 0 if it was already running.
2160 *
2161 * It may be assumed that this function implies a write memory barrier before
2162 * changing the task state if and only if any tasks are woken up.
2163 */
2164 int wake_up_process(struct task_struct *p)
2165 {
2166 return try_to_wake_up(p, TASK_NORMAL, 0);
2167 }
2168 EXPORT_SYMBOL(wake_up_process);
2169
2170 int wake_up_state(struct task_struct *p, unsigned int state)
2171 {
2172 return try_to_wake_up(p, state, 0);
2173 }
2174
2175 /*
2176 * This function clears the sched_dl_entity static params.
2177 */
2178 void __dl_clear_params(struct task_struct *p)
2179 {
2180 struct sched_dl_entity *dl_se = &p->dl;
2181
2182 dl_se->dl_runtime = 0;
2183 dl_se->dl_deadline = 0;
2184 dl_se->dl_period = 0;
2185 dl_se->flags = 0;
2186 dl_se->dl_bw = 0;
2187
2188 dl_se->dl_throttled = 0;
2189 dl_se->dl_yielded = 0;
2190 }
2191
2192 /*
2193 * Perform scheduler related setup for a newly forked process p.
2194 * p is forked by current.
2195 *
2196 * __sched_fork() is basic setup used by init_idle() too:
2197 */
2198 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2199 {
2200 p->on_rq = 0;
2201
2202 p->se.on_rq = 0;
2203 p->se.exec_start = 0;
2204 p->se.sum_exec_runtime = 0;
2205 p->se.prev_sum_exec_runtime = 0;
2206 p->se.nr_migrations = 0;
2207 p->se.vruntime = 0;
2208 INIT_LIST_HEAD(&p->se.group_node);
2209
2210 #ifdef CONFIG_FAIR_GROUP_SCHED
2211 p->se.cfs_rq = NULL;
2212 #endif
2213
2214 #ifdef CONFIG_SCHEDSTATS
2215 /* Even if schedstat is disabled, there should not be garbage */
2216 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2217 #endif
2218
2219 RB_CLEAR_NODE(&p->dl.rb_node);
2220 init_dl_task_timer(&p->dl);
2221 __dl_clear_params(p);
2222
2223 INIT_LIST_HEAD(&p->rt.run_list);
2224 p->rt.timeout = 0;
2225 p->rt.time_slice = sched_rr_timeslice;
2226 p->rt.on_rq = 0;
2227 p->rt.on_list = 0;
2228
2229 #ifdef CONFIG_PREEMPT_NOTIFIERS
2230 INIT_HLIST_HEAD(&p->preempt_notifiers);
2231 #endif
2232
2233 #ifdef CONFIG_NUMA_BALANCING
2234 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2235 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2236 p->mm->numa_scan_seq = 0;
2237 }
2238
2239 if (clone_flags & CLONE_VM)
2240 p->numa_preferred_nid = current->numa_preferred_nid;
2241 else
2242 p->numa_preferred_nid = -1;
2243
2244 p->node_stamp = 0ULL;
2245 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2246 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2247 p->numa_work.next = &p->numa_work;
2248 p->numa_faults = NULL;
2249 p->last_task_numa_placement = 0;
2250 p->last_sum_exec_runtime = 0;
2251
2252 p->numa_group = NULL;
2253 #endif /* CONFIG_NUMA_BALANCING */
2254 }
2255
2256 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2257
2258 #ifdef CONFIG_NUMA_BALANCING
2259
2260 void set_numabalancing_state(bool enabled)
2261 {
2262 if (enabled)
2263 static_branch_enable(&sched_numa_balancing);
2264 else
2265 static_branch_disable(&sched_numa_balancing);
2266 }
2267
2268 #ifdef CONFIG_PROC_SYSCTL
2269 int sysctl_numa_balancing(struct ctl_table *table, int write,
2270 void __user *buffer, size_t *lenp, loff_t *ppos)
2271 {
2272 struct ctl_table t;
2273 int err;
2274 int state = static_branch_likely(&sched_numa_balancing);
2275
2276 if (write && !capable(CAP_SYS_ADMIN))
2277 return -EPERM;
2278
2279 t = *table;
2280 t.data = &state;
2281 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2282 if (err < 0)
2283 return err;
2284 if (write)
2285 set_numabalancing_state(state);
2286 return err;
2287 }
2288 #endif
2289 #endif
2290
2291 #ifdef CONFIG_SCHEDSTATS
2292
2293 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2294 static bool __initdata __sched_schedstats = false;
2295
2296 static void set_schedstats(bool enabled)
2297 {
2298 if (enabled)
2299 static_branch_enable(&sched_schedstats);
2300 else
2301 static_branch_disable(&sched_schedstats);
2302 }
2303
2304 void force_schedstat_enabled(void)
2305 {
2306 if (!schedstat_enabled()) {
2307 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2308 static_branch_enable(&sched_schedstats);
2309 }
2310 }
2311
2312 static int __init setup_schedstats(char *str)
2313 {
2314 int ret = 0;
2315 if (!str)
2316 goto out;
2317
2318 /*
2319 * This code is called before jump labels have been set up, so we can't
2320 * change the static branch directly just yet. Instead set a temporary
2321 * variable so init_schedstats() can do it later.
2322 */
2323 if (!strcmp(str, "enable")) {
2324 __sched_schedstats = true;
2325 ret = 1;
2326 } else if (!strcmp(str, "disable")) {
2327 __sched_schedstats = false;
2328 ret = 1;
2329 }
2330 out:
2331 if (!ret)
2332 pr_warn("Unable to parse schedstats=\n");
2333
2334 return ret;
2335 }
2336 __setup("schedstats=", setup_schedstats);
2337
2338 static void __init init_schedstats(void)
2339 {
2340 set_schedstats(__sched_schedstats);
2341 }
2342
2343 #ifdef CONFIG_PROC_SYSCTL
2344 int sysctl_schedstats(struct ctl_table *table, int write,
2345 void __user *buffer, size_t *lenp, loff_t *ppos)
2346 {
2347 struct ctl_table t;
2348 int err;
2349 int state = static_branch_likely(&sched_schedstats);
2350
2351 if (write && !capable(CAP_SYS_ADMIN))
2352 return -EPERM;
2353
2354 t = *table;
2355 t.data = &state;
2356 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2357 if (err < 0)
2358 return err;
2359 if (write)
2360 set_schedstats(state);
2361 return err;
2362 }
2363 #endif /* CONFIG_PROC_SYSCTL */
2364 #else /* !CONFIG_SCHEDSTATS */
2365 static inline void init_schedstats(void) {}
2366 #endif /* CONFIG_SCHEDSTATS */
2367
2368 /*
2369 * fork()/clone()-time setup:
2370 */
2371 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2372 {
2373 unsigned long flags;
2374 int cpu = get_cpu();
2375
2376 __sched_fork(clone_flags, p);
2377 /*
2378 * We mark the process as NEW here. This guarantees that
2379 * nobody will actually run it, and a signal or other external
2380 * event cannot wake it up and insert it on the runqueue either.
2381 */
2382 p->state = TASK_NEW;
2383
2384 /*
2385 * Make sure we do not leak PI boosting priority to the child.
2386 */
2387 p->prio = current->normal_prio;
2388
2389 /*
2390 * Revert to default priority/policy on fork if requested.
2391 */
2392 if (unlikely(p->sched_reset_on_fork)) {
2393 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2394 p->policy = SCHED_NORMAL;
2395 p->static_prio = NICE_TO_PRIO(0);
2396 p->rt_priority = 0;
2397 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2398 p->static_prio = NICE_TO_PRIO(0);
2399
2400 p->prio = p->normal_prio = __normal_prio(p);
2401 set_load_weight(p);
2402
2403 /*
2404 * We don't need the reset flag anymore after the fork. It has
2405 * fulfilled its duty:
2406 */
2407 p->sched_reset_on_fork = 0;
2408 }
2409
2410 if (dl_prio(p->prio)) {
2411 put_cpu();
2412 return -EAGAIN;
2413 } else if (rt_prio(p->prio)) {
2414 p->sched_class = &rt_sched_class;
2415 } else {
2416 p->sched_class = &fair_sched_class;
2417 }
2418
2419 init_entity_runnable_average(&p->se);
2420
2421 /*
2422 * The child is not yet in the pid-hash so no cgroup attach races,
2423 * and the cgroup is pinned to this child due to cgroup_fork()
2424 * is ran before sched_fork().
2425 *
2426 * Silence PROVE_RCU.
2427 */
2428 raw_spin_lock_irqsave(&p->pi_lock, flags);
2429 /*
2430 * We're setting the cpu for the first time, we don't migrate,
2431 * so use __set_task_cpu().
2432 */
2433 __set_task_cpu(p, cpu);
2434 if (p->sched_class->task_fork)
2435 p->sched_class->task_fork(p);
2436 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2437
2438 #ifdef CONFIG_SCHED_INFO
2439 if (likely(sched_info_on()))
2440 memset(&p->sched_info, 0, sizeof(p->sched_info));
2441 #endif
2442 #if defined(CONFIG_SMP)
2443 p->on_cpu = 0;
2444 #endif
2445 init_task_preempt_count(p);
2446 #ifdef CONFIG_SMP
2447 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2448 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2449 #endif
2450
2451 put_cpu();
2452 return 0;
2453 }
2454
2455 unsigned long to_ratio(u64 period, u64 runtime)
2456 {
2457 if (runtime == RUNTIME_INF)
2458 return 1ULL << 20;
2459
2460 /*
2461 * Doing this here saves a lot of checks in all
2462 * the calling paths, and returning zero seems
2463 * safe for them anyway.
2464 */
2465 if (period == 0)
2466 return 0;
2467
2468 return div64_u64(runtime << 20, period);
2469 }
2470
2471 #ifdef CONFIG_SMP
2472 inline struct dl_bw *dl_bw_of(int i)
2473 {
2474 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2475 "sched RCU must be held");
2476 return &cpu_rq(i)->rd->dl_bw;
2477 }
2478
2479 static inline int dl_bw_cpus(int i)
2480 {
2481 struct root_domain *rd = cpu_rq(i)->rd;
2482 int cpus = 0;
2483
2484 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2485 "sched RCU must be held");
2486 for_each_cpu_and(i, rd->span, cpu_active_mask)
2487 cpus++;
2488
2489 return cpus;
2490 }
2491 #else
2492 inline struct dl_bw *dl_bw_of(int i)
2493 {
2494 return &cpu_rq(i)->dl.dl_bw;
2495 }
2496
2497 static inline int dl_bw_cpus(int i)
2498 {
2499 return 1;
2500 }
2501 #endif
2502
2503 /*
2504 * We must be sure that accepting a new task (or allowing changing the
2505 * parameters of an existing one) is consistent with the bandwidth
2506 * constraints. If yes, this function also accordingly updates the currently
2507 * allocated bandwidth to reflect the new situation.
2508 *
2509 * This function is called while holding p's rq->lock.
2510 *
2511 * XXX we should delay bw change until the task's 0-lag point, see
2512 * __setparam_dl().
2513 */
2514 static int dl_overflow(struct task_struct *p, int policy,
2515 const struct sched_attr *attr)
2516 {
2517
2518 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2519 u64 period = attr->sched_period ?: attr->sched_deadline;
2520 u64 runtime = attr->sched_runtime;
2521 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2522 int cpus, err = -1;
2523
2524 /* !deadline task may carry old deadline bandwidth */
2525 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2526 return 0;
2527
2528 /*
2529 * Either if a task, enters, leave, or stays -deadline but changes
2530 * its parameters, we may need to update accordingly the total
2531 * allocated bandwidth of the container.
2532 */
2533 raw_spin_lock(&dl_b->lock);
2534 cpus = dl_bw_cpus(task_cpu(p));
2535 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2536 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2537 __dl_add(dl_b, new_bw);
2538 err = 0;
2539 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2540 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2541 __dl_clear(dl_b, p->dl.dl_bw);
2542 __dl_add(dl_b, new_bw);
2543 err = 0;
2544 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2545 __dl_clear(dl_b, p->dl.dl_bw);
2546 err = 0;
2547 }
2548 raw_spin_unlock(&dl_b->lock);
2549
2550 return err;
2551 }
2552
2553 extern void init_dl_bw(struct dl_bw *dl_b);
2554
2555 /*
2556 * wake_up_new_task - wake up a newly created task for the first time.
2557 *
2558 * This function will do some initial scheduler statistics housekeeping
2559 * that must be done for every newly created context, then puts the task
2560 * on the runqueue and wakes it.
2561 */
2562 void wake_up_new_task(struct task_struct *p)
2563 {
2564 struct rq_flags rf;
2565 struct rq *rq;
2566
2567 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2568 p->state = TASK_RUNNING;
2569 #ifdef CONFIG_SMP
2570 /*
2571 * Fork balancing, do it here and not earlier because:
2572 * - cpus_allowed can change in the fork path
2573 * - any previously selected cpu might disappear through hotplug
2574 *
2575 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2576 * as we're not fully set-up yet.
2577 */
2578 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2579 #endif
2580 rq = __task_rq_lock(p, &rf);
2581 update_rq_clock(rq);
2582 post_init_entity_util_avg(&p->se);
2583
2584 activate_task(rq, p, 0);
2585 p->on_rq = TASK_ON_RQ_QUEUED;
2586 trace_sched_wakeup_new(p);
2587 check_preempt_curr(rq, p, WF_FORK);
2588 #ifdef CONFIG_SMP
2589 if (p->sched_class->task_woken) {
2590 /*
2591 * Nothing relies on rq->lock after this, so its fine to
2592 * drop it.
2593 */
2594 rq_unpin_lock(rq, &rf);
2595 p->sched_class->task_woken(rq, p);
2596 rq_repin_lock(rq, &rf);
2597 }
2598 #endif
2599 task_rq_unlock(rq, p, &rf);
2600 }
2601
2602 #ifdef CONFIG_PREEMPT_NOTIFIERS
2603
2604 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2605
2606 void preempt_notifier_inc(void)
2607 {
2608 static_key_slow_inc(&preempt_notifier_key);
2609 }
2610 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2611
2612 void preempt_notifier_dec(void)
2613 {
2614 static_key_slow_dec(&preempt_notifier_key);
2615 }
2616 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2617
2618 /**
2619 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2620 * @notifier: notifier struct to register
2621 */
2622 void preempt_notifier_register(struct preempt_notifier *notifier)
2623 {
2624 if (!static_key_false(&preempt_notifier_key))
2625 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2626
2627 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2628 }
2629 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2630
2631 /**
2632 * preempt_notifier_unregister - no longer interested in preemption notifications
2633 * @notifier: notifier struct to unregister
2634 *
2635 * This is *not* safe to call from within a preemption notifier.
2636 */
2637 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2638 {
2639 hlist_del(&notifier->link);
2640 }
2641 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2642
2643 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2644 {
2645 struct preempt_notifier *notifier;
2646
2647 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2648 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2649 }
2650
2651 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2652 {
2653 if (static_key_false(&preempt_notifier_key))
2654 __fire_sched_in_preempt_notifiers(curr);
2655 }
2656
2657 static void
2658 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2659 struct task_struct *next)
2660 {
2661 struct preempt_notifier *notifier;
2662
2663 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2664 notifier->ops->sched_out(notifier, next);
2665 }
2666
2667 static __always_inline void
2668 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2669 struct task_struct *next)
2670 {
2671 if (static_key_false(&preempt_notifier_key))
2672 __fire_sched_out_preempt_notifiers(curr, next);
2673 }
2674
2675 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2676
2677 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2678 {
2679 }
2680
2681 static inline void
2682 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2683 struct task_struct *next)
2684 {
2685 }
2686
2687 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2688
2689 /**
2690 * prepare_task_switch - prepare to switch tasks
2691 * @rq: the runqueue preparing to switch
2692 * @prev: the current task that is being switched out
2693 * @next: the task we are going to switch to.
2694 *
2695 * This is called with the rq lock held and interrupts off. It must
2696 * be paired with a subsequent finish_task_switch after the context
2697 * switch.
2698 *
2699 * prepare_task_switch sets up locking and calls architecture specific
2700 * hooks.
2701 */
2702 static inline void
2703 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2704 struct task_struct *next)
2705 {
2706 sched_info_switch(rq, prev, next);
2707 perf_event_task_sched_out(prev, next);
2708 fire_sched_out_preempt_notifiers(prev, next);
2709 prepare_lock_switch(rq, next);
2710 prepare_arch_switch(next);
2711 }
2712
2713 /**
2714 * finish_task_switch - clean up after a task-switch
2715 * @prev: the thread we just switched away from.
2716 *
2717 * finish_task_switch must be called after the context switch, paired
2718 * with a prepare_task_switch call before the context switch.
2719 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2720 * and do any other architecture-specific cleanup actions.
2721 *
2722 * Note that we may have delayed dropping an mm in context_switch(). If
2723 * so, we finish that here outside of the runqueue lock. (Doing it
2724 * with the lock held can cause deadlocks; see schedule() for
2725 * details.)
2726 *
2727 * The context switch have flipped the stack from under us and restored the
2728 * local variables which were saved when this task called schedule() in the
2729 * past. prev == current is still correct but we need to recalculate this_rq
2730 * because prev may have moved to another CPU.
2731 */
2732 static struct rq *finish_task_switch(struct task_struct *prev)
2733 __releases(rq->lock)
2734 {
2735 struct rq *rq = this_rq();
2736 struct mm_struct *mm = rq->prev_mm;
2737 long prev_state;
2738
2739 /*
2740 * The previous task will have left us with a preempt_count of 2
2741 * because it left us after:
2742 *
2743 * schedule()
2744 * preempt_disable(); // 1
2745 * __schedule()
2746 * raw_spin_lock_irq(&rq->lock) // 2
2747 *
2748 * Also, see FORK_PREEMPT_COUNT.
2749 */
2750 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2751 "corrupted preempt_count: %s/%d/0x%x\n",
2752 current->comm, current->pid, preempt_count()))
2753 preempt_count_set(FORK_PREEMPT_COUNT);
2754
2755 rq->prev_mm = NULL;
2756
2757 /*
2758 * A task struct has one reference for the use as "current".
2759 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2760 * schedule one last time. The schedule call will never return, and
2761 * the scheduled task must drop that reference.
2762 *
2763 * We must observe prev->state before clearing prev->on_cpu (in
2764 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2765 * running on another CPU and we could rave with its RUNNING -> DEAD
2766 * transition, resulting in a double drop.
2767 */
2768 prev_state = prev->state;
2769 vtime_task_switch(prev);
2770 perf_event_task_sched_in(prev, current);
2771 finish_lock_switch(rq, prev);
2772 finish_arch_post_lock_switch();
2773
2774 fire_sched_in_preempt_notifiers(current);
2775 if (mm)
2776 mmdrop(mm);
2777 if (unlikely(prev_state == TASK_DEAD)) {
2778 if (prev->sched_class->task_dead)
2779 prev->sched_class->task_dead(prev);
2780
2781 /*
2782 * Remove function-return probe instances associated with this
2783 * task and put them back on the free list.
2784 */
2785 kprobe_flush_task(prev);
2786
2787 /* Task is done with its stack. */
2788 put_task_stack(prev);
2789
2790 put_task_struct(prev);
2791 }
2792
2793 tick_nohz_task_switch();
2794 return rq;
2795 }
2796
2797 #ifdef CONFIG_SMP
2798
2799 /* rq->lock is NOT held, but preemption is disabled */
2800 static void __balance_callback(struct rq *rq)
2801 {
2802 struct callback_head *head, *next;
2803 void (*func)(struct rq *rq);
2804 unsigned long flags;
2805
2806 raw_spin_lock_irqsave(&rq->lock, flags);
2807 head = rq->balance_callback;
2808 rq->balance_callback = NULL;
2809 while (head) {
2810 func = (void (*)(struct rq *))head->func;
2811 next = head->next;
2812 head->next = NULL;
2813 head = next;
2814
2815 func(rq);
2816 }
2817 raw_spin_unlock_irqrestore(&rq->lock, flags);
2818 }
2819
2820 static inline void balance_callback(struct rq *rq)
2821 {
2822 if (unlikely(rq->balance_callback))
2823 __balance_callback(rq);
2824 }
2825
2826 #else
2827
2828 static inline void balance_callback(struct rq *rq)
2829 {
2830 }
2831
2832 #endif
2833
2834 /**
2835 * schedule_tail - first thing a freshly forked thread must call.
2836 * @prev: the thread we just switched away from.
2837 */
2838 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2839 __releases(rq->lock)
2840 {
2841 struct rq *rq;
2842
2843 /*
2844 * New tasks start with FORK_PREEMPT_COUNT, see there and
2845 * finish_task_switch() for details.
2846 *
2847 * finish_task_switch() will drop rq->lock() and lower preempt_count
2848 * and the preempt_enable() will end up enabling preemption (on
2849 * PREEMPT_COUNT kernels).
2850 */
2851
2852 rq = finish_task_switch(prev);
2853 balance_callback(rq);
2854 preempt_enable();
2855
2856 if (current->set_child_tid)
2857 put_user(task_pid_vnr(current), current->set_child_tid);
2858 }
2859
2860 /*
2861 * context_switch - switch to the new MM and the new thread's register state.
2862 */
2863 static __always_inline struct rq *
2864 context_switch(struct rq *rq, struct task_struct *prev,
2865 struct task_struct *next, struct rq_flags *rf)
2866 {
2867 struct mm_struct *mm, *oldmm;
2868
2869 prepare_task_switch(rq, prev, next);
2870
2871 mm = next->mm;
2872 oldmm = prev->active_mm;
2873 /*
2874 * For paravirt, this is coupled with an exit in switch_to to
2875 * combine the page table reload and the switch backend into
2876 * one hypercall.
2877 */
2878 arch_start_context_switch(prev);
2879
2880 if (!mm) {
2881 next->active_mm = oldmm;
2882 atomic_inc(&oldmm->mm_count);
2883 enter_lazy_tlb(oldmm, next);
2884 } else
2885 switch_mm_irqs_off(oldmm, mm, next);
2886
2887 if (!prev->mm) {
2888 prev->active_mm = NULL;
2889 rq->prev_mm = oldmm;
2890 }
2891
2892 rq->clock_skip_update = 0;
2893
2894 /*
2895 * Since the runqueue lock will be released by the next
2896 * task (which is an invalid locking op but in the case
2897 * of the scheduler it's an obvious special-case), so we
2898 * do an early lockdep release here:
2899 */
2900 rq_unpin_lock(rq, rf);
2901 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2902
2903 /* Here we just switch the register state and the stack. */
2904 switch_to(prev, next, prev);
2905 barrier();
2906
2907 return finish_task_switch(prev);
2908 }
2909
2910 /*
2911 * nr_running and nr_context_switches:
2912 *
2913 * externally visible scheduler statistics: current number of runnable
2914 * threads, total number of context switches performed since bootup.
2915 */
2916 unsigned long nr_running(void)
2917 {
2918 unsigned long i, sum = 0;
2919
2920 for_each_online_cpu(i)
2921 sum += cpu_rq(i)->nr_running;
2922
2923 return sum;
2924 }
2925
2926 /*
2927 * Check if only the current task is running on the cpu.
2928 *
2929 * Caution: this function does not check that the caller has disabled
2930 * preemption, thus the result might have a time-of-check-to-time-of-use
2931 * race. The caller is responsible to use it correctly, for example:
2932 *
2933 * - from a non-preemptable section (of course)
2934 *
2935 * - from a thread that is bound to a single CPU
2936 *
2937 * - in a loop with very short iterations (e.g. a polling loop)
2938 */
2939 bool single_task_running(void)
2940 {
2941 return raw_rq()->nr_running == 1;
2942 }
2943 EXPORT_SYMBOL(single_task_running);
2944
2945 unsigned long long nr_context_switches(void)
2946 {
2947 int i;
2948 unsigned long long sum = 0;
2949
2950 for_each_possible_cpu(i)
2951 sum += cpu_rq(i)->nr_switches;
2952
2953 return sum;
2954 }
2955
2956 unsigned long nr_iowait(void)
2957 {
2958 unsigned long i, sum = 0;
2959
2960 for_each_possible_cpu(i)
2961 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2962
2963 return sum;
2964 }
2965
2966 unsigned long nr_iowait_cpu(int cpu)
2967 {
2968 struct rq *this = cpu_rq(cpu);
2969 return atomic_read(&this->nr_iowait);
2970 }
2971
2972 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2973 {
2974 struct rq *rq = this_rq();
2975 *nr_waiters = atomic_read(&rq->nr_iowait);
2976 *load = rq->load.weight;
2977 }
2978
2979 #ifdef CONFIG_SMP
2980
2981 /*
2982 * sched_exec - execve() is a valuable balancing opportunity, because at
2983 * this point the task has the smallest effective memory and cache footprint.
2984 */
2985 void sched_exec(void)
2986 {
2987 struct task_struct *p = current;
2988 unsigned long flags;
2989 int dest_cpu;
2990
2991 raw_spin_lock_irqsave(&p->pi_lock, flags);
2992 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2993 if (dest_cpu == smp_processor_id())
2994 goto unlock;
2995
2996 if (likely(cpu_active(dest_cpu))) {
2997 struct migration_arg arg = { p, dest_cpu };
2998
2999 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3000 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3001 return;
3002 }
3003 unlock:
3004 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3005 }
3006
3007 #endif
3008
3009 DEFINE_PER_CPU(struct kernel_stat, kstat);
3010 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3011
3012 EXPORT_PER_CPU_SYMBOL(kstat);
3013 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3014
3015 /*
3016 * The function fair_sched_class.update_curr accesses the struct curr
3017 * and its field curr->exec_start; when called from task_sched_runtime(),
3018 * we observe a high rate of cache misses in practice.
3019 * Prefetching this data results in improved performance.
3020 */
3021 static inline void prefetch_curr_exec_start(struct task_struct *p)
3022 {
3023 #ifdef CONFIG_FAIR_GROUP_SCHED
3024 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3025 #else
3026 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3027 #endif
3028 prefetch(curr);
3029 prefetch(&curr->exec_start);
3030 }
3031
3032 /*
3033 * Return accounted runtime for the task.
3034 * In case the task is currently running, return the runtime plus current's
3035 * pending runtime that have not been accounted yet.
3036 */
3037 unsigned long long task_sched_runtime(struct task_struct *p)
3038 {
3039 struct rq_flags rf;
3040 struct rq *rq;
3041 u64 ns;
3042
3043 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3044 /*
3045 * 64-bit doesn't need locks to atomically read a 64bit value.
3046 * So we have a optimization chance when the task's delta_exec is 0.
3047 * Reading ->on_cpu is racy, but this is ok.
3048 *
3049 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3050 * If we race with it entering cpu, unaccounted time is 0. This is
3051 * indistinguishable from the read occurring a few cycles earlier.
3052 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3053 * been accounted, so we're correct here as well.
3054 */
3055 if (!p->on_cpu || !task_on_rq_queued(p))
3056 return p->se.sum_exec_runtime;
3057 #endif
3058
3059 rq = task_rq_lock(p, &rf);
3060 /*
3061 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3062 * project cycles that may never be accounted to this
3063 * thread, breaking clock_gettime().
3064 */
3065 if (task_current(rq, p) && task_on_rq_queued(p)) {
3066 prefetch_curr_exec_start(p);
3067 update_rq_clock(rq);
3068 p->sched_class->update_curr(rq);
3069 }
3070 ns = p->se.sum_exec_runtime;
3071 task_rq_unlock(rq, p, &rf);
3072
3073 return ns;
3074 }
3075
3076 /*
3077 * This function gets called by the timer code, with HZ frequency.
3078 * We call it with interrupts disabled.
3079 */
3080 void scheduler_tick(void)
3081 {
3082 int cpu = smp_processor_id();
3083 struct rq *rq = cpu_rq(cpu);
3084 struct task_struct *curr = rq->curr;
3085
3086 sched_clock_tick();
3087
3088 raw_spin_lock(&rq->lock);
3089 update_rq_clock(rq);
3090 curr->sched_class->task_tick(rq, curr, 0);
3091 cpu_load_update_active(rq);
3092 calc_global_load_tick(rq);
3093 raw_spin_unlock(&rq->lock);
3094
3095 perf_event_task_tick();
3096
3097 #ifdef CONFIG_SMP
3098 rq->idle_balance = idle_cpu(cpu);
3099 trigger_load_balance(rq);
3100 #endif
3101 rq_last_tick_reset(rq);
3102 }
3103
3104 #ifdef CONFIG_NO_HZ_FULL
3105 /**
3106 * scheduler_tick_max_deferment
3107 *
3108 * Keep at least one tick per second when a single
3109 * active task is running because the scheduler doesn't
3110 * yet completely support full dynticks environment.
3111 *
3112 * This makes sure that uptime, CFS vruntime, load
3113 * balancing, etc... continue to move forward, even
3114 * with a very low granularity.
3115 *
3116 * Return: Maximum deferment in nanoseconds.
3117 */
3118 u64 scheduler_tick_max_deferment(void)
3119 {
3120 struct rq *rq = this_rq();
3121 unsigned long next, now = READ_ONCE(jiffies);
3122
3123 next = rq->last_sched_tick + HZ;
3124
3125 if (time_before_eq(next, now))
3126 return 0;
3127
3128 return jiffies_to_nsecs(next - now);
3129 }
3130 #endif
3131
3132 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3133 defined(CONFIG_PREEMPT_TRACER))
3134 /*
3135 * If the value passed in is equal to the current preempt count
3136 * then we just disabled preemption. Start timing the latency.
3137 */
3138 static inline void preempt_latency_start(int val)
3139 {
3140 if (preempt_count() == val) {
3141 unsigned long ip = get_lock_parent_ip();
3142 #ifdef CONFIG_DEBUG_PREEMPT
3143 current->preempt_disable_ip = ip;
3144 #endif
3145 trace_preempt_off(CALLER_ADDR0, ip);
3146 }
3147 }
3148
3149 void preempt_count_add(int val)
3150 {
3151 #ifdef CONFIG_DEBUG_PREEMPT
3152 /*
3153 * Underflow?
3154 */
3155 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3156 return;
3157 #endif
3158 __preempt_count_add(val);
3159 #ifdef CONFIG_DEBUG_PREEMPT
3160 /*
3161 * Spinlock count overflowing soon?
3162 */
3163 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3164 PREEMPT_MASK - 10);
3165 #endif
3166 preempt_latency_start(val);
3167 }
3168 EXPORT_SYMBOL(preempt_count_add);
3169 NOKPROBE_SYMBOL(preempt_count_add);
3170
3171 /*
3172 * If the value passed in equals to the current preempt count
3173 * then we just enabled preemption. Stop timing the latency.
3174 */
3175 static inline void preempt_latency_stop(int val)
3176 {
3177 if (preempt_count() == val)
3178 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3179 }
3180
3181 void preempt_count_sub(int val)
3182 {
3183 #ifdef CONFIG_DEBUG_PREEMPT
3184 /*
3185 * Underflow?
3186 */
3187 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3188 return;
3189 /*
3190 * Is the spinlock portion underflowing?
3191 */
3192 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3193 !(preempt_count() & PREEMPT_MASK)))
3194 return;
3195 #endif
3196
3197 preempt_latency_stop(val);
3198 __preempt_count_sub(val);
3199 }
3200 EXPORT_SYMBOL(preempt_count_sub);
3201 NOKPROBE_SYMBOL(preempt_count_sub);
3202
3203 #else
3204 static inline void preempt_latency_start(int val) { }
3205 static inline void preempt_latency_stop(int val) { }
3206 #endif
3207
3208 /*
3209 * Print scheduling while atomic bug:
3210 */
3211 static noinline void __schedule_bug(struct task_struct *prev)
3212 {
3213 /* Save this before calling printk(), since that will clobber it */
3214 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3215
3216 if (oops_in_progress)
3217 return;
3218
3219 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3220 prev->comm, prev->pid, preempt_count());
3221
3222 debug_show_held_locks(prev);
3223 print_modules();
3224 if (irqs_disabled())
3225 print_irqtrace_events(prev);
3226 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3227 && in_atomic_preempt_off()) {
3228 pr_err("Preemption disabled at:");
3229 print_ip_sym(preempt_disable_ip);
3230 pr_cont("\n");
3231 }
3232 if (panic_on_warn)
3233 panic("scheduling while atomic\n");
3234
3235 dump_stack();
3236 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3237 }
3238
3239 /*
3240 * Various schedule()-time debugging checks and statistics:
3241 */
3242 static inline void schedule_debug(struct task_struct *prev)
3243 {
3244 #ifdef CONFIG_SCHED_STACK_END_CHECK
3245 if (task_stack_end_corrupted(prev))
3246 panic("corrupted stack end detected inside scheduler\n");
3247 #endif
3248
3249 if (unlikely(in_atomic_preempt_off())) {
3250 __schedule_bug(prev);
3251 preempt_count_set(PREEMPT_DISABLED);
3252 }
3253 rcu_sleep_check();
3254
3255 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3256
3257 schedstat_inc(this_rq()->sched_count);
3258 }
3259
3260 /*
3261 * Pick up the highest-prio task:
3262 */
3263 static inline struct task_struct *
3264 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3265 {
3266 const struct sched_class *class = &fair_sched_class;
3267 struct task_struct *p;
3268
3269 /*
3270 * Optimization: we know that if all tasks are in
3271 * the fair class we can call that function directly:
3272 */
3273 if (likely(prev->sched_class == class &&
3274 rq->nr_running == rq->cfs.h_nr_running)) {
3275 p = fair_sched_class.pick_next_task(rq, prev, rf);
3276 if (unlikely(p == RETRY_TASK))
3277 goto again;
3278
3279 /* assumes fair_sched_class->next == idle_sched_class */
3280 if (unlikely(!p))
3281 p = idle_sched_class.pick_next_task(rq, prev, rf);
3282
3283 return p;
3284 }
3285
3286 again:
3287 for_each_class(class) {
3288 p = class->pick_next_task(rq, prev, rf);
3289 if (p) {
3290 if (unlikely(p == RETRY_TASK))
3291 goto again;
3292 return p;
3293 }
3294 }
3295
3296 BUG(); /* the idle class will always have a runnable task */
3297 }
3298
3299 /*
3300 * __schedule() is the main scheduler function.
3301 *
3302 * The main means of driving the scheduler and thus entering this function are:
3303 *
3304 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3305 *
3306 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3307 * paths. For example, see arch/x86/entry_64.S.
3308 *
3309 * To drive preemption between tasks, the scheduler sets the flag in timer
3310 * interrupt handler scheduler_tick().
3311 *
3312 * 3. Wakeups don't really cause entry into schedule(). They add a
3313 * task to the run-queue and that's it.
3314 *
3315 * Now, if the new task added to the run-queue preempts the current
3316 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3317 * called on the nearest possible occasion:
3318 *
3319 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3320 *
3321 * - in syscall or exception context, at the next outmost
3322 * preempt_enable(). (this might be as soon as the wake_up()'s
3323 * spin_unlock()!)
3324 *
3325 * - in IRQ context, return from interrupt-handler to
3326 * preemptible context
3327 *
3328 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3329 * then at the next:
3330 *
3331 * - cond_resched() call
3332 * - explicit schedule() call
3333 * - return from syscall or exception to user-space
3334 * - return from interrupt-handler to user-space
3335 *
3336 * WARNING: must be called with preemption disabled!
3337 */
3338 static void __sched notrace __schedule(bool preempt)
3339 {
3340 struct task_struct *prev, *next;
3341 unsigned long *switch_count;
3342 struct rq_flags rf;
3343 struct rq *rq;
3344 int cpu;
3345
3346 cpu = smp_processor_id();
3347 rq = cpu_rq(cpu);
3348 prev = rq->curr;
3349
3350 schedule_debug(prev);
3351
3352 if (sched_feat(HRTICK))
3353 hrtick_clear(rq);
3354
3355 local_irq_disable();
3356 rcu_note_context_switch();
3357
3358 /*
3359 * Make sure that signal_pending_state()->signal_pending() below
3360 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3361 * done by the caller to avoid the race with signal_wake_up().
3362 */
3363 smp_mb__before_spinlock();
3364 raw_spin_lock(&rq->lock);
3365 rq_pin_lock(rq, &rf);
3366
3367 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3368
3369 switch_count = &prev->nivcsw;
3370 if (!preempt && prev->state) {
3371 if (unlikely(signal_pending_state(prev->state, prev))) {
3372 prev->state = TASK_RUNNING;
3373 } else {
3374 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3375 prev->on_rq = 0;
3376
3377 /*
3378 * If a worker went to sleep, notify and ask workqueue
3379 * whether it wants to wake up a task to maintain
3380 * concurrency.
3381 */
3382 if (prev->flags & PF_WQ_WORKER) {
3383 struct task_struct *to_wakeup;
3384
3385 to_wakeup = wq_worker_sleeping(prev);
3386 if (to_wakeup)
3387 try_to_wake_up_local(to_wakeup, &rf);
3388 }
3389 }
3390 switch_count = &prev->nvcsw;
3391 }
3392
3393 if (task_on_rq_queued(prev))
3394 update_rq_clock(rq);
3395
3396 next = pick_next_task(rq, prev, &rf);
3397 clear_tsk_need_resched(prev);
3398 clear_preempt_need_resched();
3399
3400 if (likely(prev != next)) {
3401 rq->nr_switches++;
3402 rq->curr = next;
3403 ++*switch_count;
3404
3405 trace_sched_switch(preempt, prev, next);
3406 rq = context_switch(rq, prev, next, &rf); /* unlocks the rq */
3407 } else {
3408 rq->clock_skip_update = 0;
3409 rq_unpin_lock(rq, &rf);
3410 raw_spin_unlock_irq(&rq->lock);
3411 }
3412
3413 balance_callback(rq);
3414 }
3415
3416 void __noreturn do_task_dead(void)
3417 {
3418 /*
3419 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3420 * when the following two conditions become true.
3421 * - There is race condition of mmap_sem (It is acquired by
3422 * exit_mm()), and
3423 * - SMI occurs before setting TASK_RUNINNG.
3424 * (or hypervisor of virtual machine switches to other guest)
3425 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3426 *
3427 * To avoid it, we have to wait for releasing tsk->pi_lock which
3428 * is held by try_to_wake_up()
3429 */
3430 smp_mb();
3431 raw_spin_unlock_wait(&current->pi_lock);
3432
3433 /* causes final put_task_struct in finish_task_switch(). */
3434 __set_current_state(TASK_DEAD);
3435 current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
3436 __schedule(false);
3437 BUG();
3438 /* Avoid "noreturn function does return". */
3439 for (;;)
3440 cpu_relax(); /* For when BUG is null */
3441 }
3442
3443 static inline void sched_submit_work(struct task_struct *tsk)
3444 {
3445 if (!tsk->state || tsk_is_pi_blocked(tsk))
3446 return;
3447 /*
3448 * If we are going to sleep and we have plugged IO queued,
3449 * make sure to submit it to avoid deadlocks.
3450 */
3451 if (blk_needs_flush_plug(tsk))
3452 blk_schedule_flush_plug(tsk);
3453 }
3454
3455 asmlinkage __visible void __sched schedule(void)
3456 {
3457 struct task_struct *tsk = current;
3458
3459 sched_submit_work(tsk);
3460 do {
3461 preempt_disable();
3462 __schedule(false);
3463 sched_preempt_enable_no_resched();
3464 } while (need_resched());
3465 }
3466 EXPORT_SYMBOL(schedule);
3467
3468 #ifdef CONFIG_CONTEXT_TRACKING
3469 asmlinkage __visible void __sched schedule_user(void)
3470 {
3471 /*
3472 * If we come here after a random call to set_need_resched(),
3473 * or we have been woken up remotely but the IPI has not yet arrived,
3474 * we haven't yet exited the RCU idle mode. Do it here manually until
3475 * we find a better solution.
3476 *
3477 * NB: There are buggy callers of this function. Ideally we
3478 * should warn if prev_state != CONTEXT_USER, but that will trigger
3479 * too frequently to make sense yet.
3480 */
3481 enum ctx_state prev_state = exception_enter();
3482 schedule();
3483 exception_exit(prev_state);
3484 }
3485 #endif
3486
3487 /**
3488 * schedule_preempt_disabled - called with preemption disabled
3489 *
3490 * Returns with preemption disabled. Note: preempt_count must be 1
3491 */
3492 void __sched schedule_preempt_disabled(void)
3493 {
3494 sched_preempt_enable_no_resched();
3495 schedule();
3496 preempt_disable();
3497 }
3498
3499 static void __sched notrace preempt_schedule_common(void)
3500 {
3501 do {
3502 /*
3503 * Because the function tracer can trace preempt_count_sub()
3504 * and it also uses preempt_enable/disable_notrace(), if
3505 * NEED_RESCHED is set, the preempt_enable_notrace() called
3506 * by the function tracer will call this function again and
3507 * cause infinite recursion.
3508 *
3509 * Preemption must be disabled here before the function
3510 * tracer can trace. Break up preempt_disable() into two
3511 * calls. One to disable preemption without fear of being
3512 * traced. The other to still record the preemption latency,
3513 * which can also be traced by the function tracer.
3514 */
3515 preempt_disable_notrace();
3516 preempt_latency_start(1);
3517 __schedule(true);
3518 preempt_latency_stop(1);
3519 preempt_enable_no_resched_notrace();
3520
3521 /*
3522 * Check again in case we missed a preemption opportunity
3523 * between schedule and now.
3524 */
3525 } while (need_resched());
3526 }
3527
3528 #ifdef CONFIG_PREEMPT
3529 /*
3530 * this is the entry point to schedule() from in-kernel preemption
3531 * off of preempt_enable. Kernel preemptions off return from interrupt
3532 * occur there and call schedule directly.
3533 */
3534 asmlinkage __visible void __sched notrace preempt_schedule(void)
3535 {
3536 /*
3537 * If there is a non-zero preempt_count or interrupts are disabled,
3538 * we do not want to preempt the current task. Just return..
3539 */
3540 if (likely(!preemptible()))
3541 return;
3542
3543 preempt_schedule_common();
3544 }
3545 NOKPROBE_SYMBOL(preempt_schedule);
3546 EXPORT_SYMBOL(preempt_schedule);
3547
3548 /**
3549 * preempt_schedule_notrace - preempt_schedule called by tracing
3550 *
3551 * The tracing infrastructure uses preempt_enable_notrace to prevent
3552 * recursion and tracing preempt enabling caused by the tracing
3553 * infrastructure itself. But as tracing can happen in areas coming
3554 * from userspace or just about to enter userspace, a preempt enable
3555 * can occur before user_exit() is called. This will cause the scheduler
3556 * to be called when the system is still in usermode.
3557 *
3558 * To prevent this, the preempt_enable_notrace will use this function
3559 * instead of preempt_schedule() to exit user context if needed before
3560 * calling the scheduler.
3561 */
3562 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3563 {
3564 enum ctx_state prev_ctx;
3565
3566 if (likely(!preemptible()))
3567 return;
3568
3569 do {
3570 /*
3571 * Because the function tracer can trace preempt_count_sub()
3572 * and it also uses preempt_enable/disable_notrace(), if
3573 * NEED_RESCHED is set, the preempt_enable_notrace() called
3574 * by the function tracer will call this function again and
3575 * cause infinite recursion.
3576 *
3577 * Preemption must be disabled here before the function
3578 * tracer can trace. Break up preempt_disable() into two
3579 * calls. One to disable preemption without fear of being
3580 * traced. The other to still record the preemption latency,
3581 * which can also be traced by the function tracer.
3582 */
3583 preempt_disable_notrace();
3584 preempt_latency_start(1);
3585 /*
3586 * Needs preempt disabled in case user_exit() is traced
3587 * and the tracer calls preempt_enable_notrace() causing
3588 * an infinite recursion.
3589 */
3590 prev_ctx = exception_enter();
3591 __schedule(true);
3592 exception_exit(prev_ctx);
3593
3594 preempt_latency_stop(1);
3595 preempt_enable_no_resched_notrace();
3596 } while (need_resched());
3597 }
3598 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3599
3600 #endif /* CONFIG_PREEMPT */
3601
3602 /*
3603 * this is the entry point to schedule() from kernel preemption
3604 * off of irq context.
3605 * Note, that this is called and return with irqs disabled. This will
3606 * protect us against recursive calling from irq.
3607 */
3608 asmlinkage __visible void __sched preempt_schedule_irq(void)
3609 {
3610 enum ctx_state prev_state;
3611
3612 /* Catch callers which need to be fixed */
3613 BUG_ON(preempt_count() || !irqs_disabled());
3614
3615 prev_state = exception_enter();
3616
3617 do {
3618 preempt_disable();
3619 local_irq_enable();
3620 __schedule(true);
3621 local_irq_disable();
3622 sched_preempt_enable_no_resched();
3623 } while (need_resched());
3624
3625 exception_exit(prev_state);
3626 }
3627
3628 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3629 void *key)
3630 {
3631 return try_to_wake_up(curr->private, mode, wake_flags);
3632 }
3633 EXPORT_SYMBOL(default_wake_function);
3634
3635 #ifdef CONFIG_RT_MUTEXES
3636
3637 /*
3638 * rt_mutex_setprio - set the current priority of a task
3639 * @p: task
3640 * @prio: prio value (kernel-internal form)
3641 *
3642 * This function changes the 'effective' priority of a task. It does
3643 * not touch ->normal_prio like __setscheduler().
3644 *
3645 * Used by the rt_mutex code to implement priority inheritance
3646 * logic. Call site only calls if the priority of the task changed.
3647 */
3648 void rt_mutex_setprio(struct task_struct *p, int prio)
3649 {
3650 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3651 const struct sched_class *prev_class;
3652 struct rq_flags rf;
3653 struct rq *rq;
3654
3655 BUG_ON(prio > MAX_PRIO);
3656
3657 rq = __task_rq_lock(p, &rf);
3658
3659 /*
3660 * Idle task boosting is a nono in general. There is one
3661 * exception, when PREEMPT_RT and NOHZ is active:
3662 *
3663 * The idle task calls get_next_timer_interrupt() and holds
3664 * the timer wheel base->lock on the CPU and another CPU wants
3665 * to access the timer (probably to cancel it). We can safely
3666 * ignore the boosting request, as the idle CPU runs this code
3667 * with interrupts disabled and will complete the lock
3668 * protected section without being interrupted. So there is no
3669 * real need to boost.
3670 */
3671 if (unlikely(p == rq->idle)) {
3672 WARN_ON(p != rq->curr);
3673 WARN_ON(p->pi_blocked_on);
3674 goto out_unlock;
3675 }
3676
3677 trace_sched_pi_setprio(p, prio);
3678 oldprio = p->prio;
3679
3680 if (oldprio == prio)
3681 queue_flag &= ~DEQUEUE_MOVE;
3682
3683 prev_class = p->sched_class;
3684 queued = task_on_rq_queued(p);
3685 running = task_current(rq, p);
3686 if (queued)
3687 dequeue_task(rq, p, queue_flag);
3688 if (running)
3689 put_prev_task(rq, p);
3690
3691 /*
3692 * Boosting condition are:
3693 * 1. -rt task is running and holds mutex A
3694 * --> -dl task blocks on mutex A
3695 *
3696 * 2. -dl task is running and holds mutex A
3697 * --> -dl task blocks on mutex A and could preempt the
3698 * running task
3699 */
3700 if (dl_prio(prio)) {
3701 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3702 if (!dl_prio(p->normal_prio) ||
3703 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3704 p->dl.dl_boosted = 1;
3705 queue_flag |= ENQUEUE_REPLENISH;
3706 } else
3707 p->dl.dl_boosted = 0;
3708 p->sched_class = &dl_sched_class;
3709 } else if (rt_prio(prio)) {
3710 if (dl_prio(oldprio))
3711 p->dl.dl_boosted = 0;
3712 if (oldprio < prio)
3713 queue_flag |= ENQUEUE_HEAD;
3714 p->sched_class = &rt_sched_class;
3715 } else {
3716 if (dl_prio(oldprio))
3717 p->dl.dl_boosted = 0;
3718 if (rt_prio(oldprio))
3719 p->rt.timeout = 0;
3720 p->sched_class = &fair_sched_class;
3721 }
3722
3723 p->prio = prio;
3724
3725 if (queued)
3726 enqueue_task(rq, p, queue_flag);
3727 if (running)
3728 set_curr_task(rq, p);
3729
3730 check_class_changed(rq, p, prev_class, oldprio);
3731 out_unlock:
3732 preempt_disable(); /* avoid rq from going away on us */
3733 __task_rq_unlock(rq, &rf);
3734
3735 balance_callback(rq);
3736 preempt_enable();
3737 }
3738 #endif
3739
3740 void set_user_nice(struct task_struct *p, long nice)
3741 {
3742 bool queued, running;
3743 int old_prio, delta;
3744 struct rq_flags rf;
3745 struct rq *rq;
3746
3747 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3748 return;
3749 /*
3750 * We have to be careful, if called from sys_setpriority(),
3751 * the task might be in the middle of scheduling on another CPU.
3752 */
3753 rq = task_rq_lock(p, &rf);
3754 /*
3755 * The RT priorities are set via sched_setscheduler(), but we still
3756 * allow the 'normal' nice value to be set - but as expected
3757 * it wont have any effect on scheduling until the task is
3758 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3759 */
3760 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3761 p->static_prio = NICE_TO_PRIO(nice);
3762 goto out_unlock;
3763 }
3764 queued = task_on_rq_queued(p);
3765 running = task_current(rq, p);
3766 if (queued)
3767 dequeue_task(rq, p, DEQUEUE_SAVE);
3768 if (running)
3769 put_prev_task(rq, p);
3770
3771 p->static_prio = NICE_TO_PRIO(nice);
3772 set_load_weight(p);
3773 old_prio = p->prio;
3774 p->prio = effective_prio(p);
3775 delta = p->prio - old_prio;
3776
3777 if (queued) {
3778 enqueue_task(rq, p, ENQUEUE_RESTORE);
3779 /*
3780 * If the task increased its priority or is running and
3781 * lowered its priority, then reschedule its CPU:
3782 */
3783 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3784 resched_curr(rq);
3785 }
3786 if (running)
3787 set_curr_task(rq, p);
3788 out_unlock:
3789 task_rq_unlock(rq, p, &rf);
3790 }
3791 EXPORT_SYMBOL(set_user_nice);
3792
3793 /*
3794 * can_nice - check if a task can reduce its nice value
3795 * @p: task
3796 * @nice: nice value
3797 */
3798 int can_nice(const struct task_struct *p, const int nice)
3799 {
3800 /* convert nice value [19,-20] to rlimit style value [1,40] */
3801 int nice_rlim = nice_to_rlimit(nice);
3802
3803 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3804 capable(CAP_SYS_NICE));
3805 }
3806
3807 #ifdef __ARCH_WANT_SYS_NICE
3808
3809 /*
3810 * sys_nice - change the priority of the current process.
3811 * @increment: priority increment
3812 *
3813 * sys_setpriority is a more generic, but much slower function that
3814 * does similar things.
3815 */
3816 SYSCALL_DEFINE1(nice, int, increment)
3817 {
3818 long nice, retval;
3819
3820 /*
3821 * Setpriority might change our priority at the same moment.
3822 * We don't have to worry. Conceptually one call occurs first
3823 * and we have a single winner.
3824 */
3825 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3826 nice = task_nice(current) + increment;
3827
3828 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3829 if (increment < 0 && !can_nice(current, nice))
3830 return -EPERM;
3831
3832 retval = security_task_setnice(current, nice);
3833 if (retval)
3834 return retval;
3835
3836 set_user_nice(current, nice);
3837 return 0;
3838 }
3839
3840 #endif
3841
3842 /**
3843 * task_prio - return the priority value of a given task.
3844 * @p: the task in question.
3845 *
3846 * Return: The priority value as seen by users in /proc.
3847 * RT tasks are offset by -200. Normal tasks are centered
3848 * around 0, value goes from -16 to +15.
3849 */
3850 int task_prio(const struct task_struct *p)
3851 {
3852 return p->prio - MAX_RT_PRIO;
3853 }
3854
3855 /**
3856 * idle_cpu - is a given cpu idle currently?
3857 * @cpu: the processor in question.
3858 *
3859 * Return: 1 if the CPU is currently idle. 0 otherwise.
3860 */
3861 int idle_cpu(int cpu)
3862 {
3863 struct rq *rq = cpu_rq(cpu);
3864
3865 if (rq->curr != rq->idle)
3866 return 0;
3867
3868 if (rq->nr_running)
3869 return 0;
3870
3871 #ifdef CONFIG_SMP
3872 if (!llist_empty(&rq->wake_list))
3873 return 0;
3874 #endif
3875
3876 return 1;
3877 }
3878
3879 /**
3880 * idle_task - return the idle task for a given cpu.
3881 * @cpu: the processor in question.
3882 *
3883 * Return: The idle task for the cpu @cpu.
3884 */
3885 struct task_struct *idle_task(int cpu)
3886 {
3887 return cpu_rq(cpu)->idle;
3888 }
3889
3890 /**
3891 * find_process_by_pid - find a process with a matching PID value.
3892 * @pid: the pid in question.
3893 *
3894 * The task of @pid, if found. %NULL otherwise.
3895 */
3896 static struct task_struct *find_process_by_pid(pid_t pid)
3897 {
3898 return pid ? find_task_by_vpid(pid) : current;
3899 }
3900
3901 /*
3902 * This function initializes the sched_dl_entity of a newly becoming
3903 * SCHED_DEADLINE task.
3904 *
3905 * Only the static values are considered here, the actual runtime and the
3906 * absolute deadline will be properly calculated when the task is enqueued
3907 * for the first time with its new policy.
3908 */
3909 static void
3910 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3911 {
3912 struct sched_dl_entity *dl_se = &p->dl;
3913
3914 dl_se->dl_runtime = attr->sched_runtime;
3915 dl_se->dl_deadline = attr->sched_deadline;
3916 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3917 dl_se->flags = attr->sched_flags;
3918 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3919
3920 /*
3921 * Changing the parameters of a task is 'tricky' and we're not doing
3922 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3923 *
3924 * What we SHOULD do is delay the bandwidth release until the 0-lag
3925 * point. This would include retaining the task_struct until that time
3926 * and change dl_overflow() to not immediately decrement the current
3927 * amount.
3928 *
3929 * Instead we retain the current runtime/deadline and let the new
3930 * parameters take effect after the current reservation period lapses.
3931 * This is safe (albeit pessimistic) because the 0-lag point is always
3932 * before the current scheduling deadline.
3933 *
3934 * We can still have temporary overloads because we do not delay the
3935 * change in bandwidth until that time; so admission control is
3936 * not on the safe side. It does however guarantee tasks will never
3937 * consume more than promised.
3938 */
3939 }
3940
3941 /*
3942 * sched_setparam() passes in -1 for its policy, to let the functions
3943 * it calls know not to change it.
3944 */
3945 #define SETPARAM_POLICY -1
3946
3947 static void __setscheduler_params(struct task_struct *p,
3948 const struct sched_attr *attr)
3949 {
3950 int policy = attr->sched_policy;
3951
3952 if (policy == SETPARAM_POLICY)
3953 policy = p->policy;
3954
3955 p->policy = policy;
3956
3957 if (dl_policy(policy))
3958 __setparam_dl(p, attr);
3959 else if (fair_policy(policy))
3960 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3961
3962 /*
3963 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3964 * !rt_policy. Always setting this ensures that things like
3965 * getparam()/getattr() don't report silly values for !rt tasks.
3966 */
3967 p->rt_priority = attr->sched_priority;
3968 p->normal_prio = normal_prio(p);
3969 set_load_weight(p);
3970 }
3971
3972 /* Actually do priority change: must hold pi & rq lock. */
3973 static void __setscheduler(struct rq *rq, struct task_struct *p,
3974 const struct sched_attr *attr, bool keep_boost)
3975 {
3976 __setscheduler_params(p, attr);
3977
3978 /*
3979 * Keep a potential priority boosting if called from
3980 * sched_setscheduler().
3981 */
3982 if (keep_boost)
3983 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3984 else
3985 p->prio = normal_prio(p);
3986
3987 if (dl_prio(p->prio))
3988 p->sched_class = &dl_sched_class;
3989 else if (rt_prio(p->prio))
3990 p->sched_class = &rt_sched_class;
3991 else
3992 p->sched_class = &fair_sched_class;
3993 }
3994
3995 static void
3996 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3997 {
3998 struct sched_dl_entity *dl_se = &p->dl;
3999
4000 attr->sched_priority = p->rt_priority;
4001 attr->sched_runtime = dl_se->dl_runtime;
4002 attr->sched_deadline = dl_se->dl_deadline;
4003 attr->sched_period = dl_se->dl_period;
4004 attr->sched_flags = dl_se->flags;
4005 }
4006
4007 /*
4008 * This function validates the new parameters of a -deadline task.
4009 * We ask for the deadline not being zero, and greater or equal
4010 * than the runtime, as well as the period of being zero or
4011 * greater than deadline. Furthermore, we have to be sure that
4012 * user parameters are above the internal resolution of 1us (we
4013 * check sched_runtime only since it is always the smaller one) and
4014 * below 2^63 ns (we have to check both sched_deadline and
4015 * sched_period, as the latter can be zero).
4016 */
4017 static bool
4018 __checkparam_dl(const struct sched_attr *attr)
4019 {
4020 /* deadline != 0 */
4021 if (attr->sched_deadline == 0)
4022 return false;
4023
4024 /*
4025 * Since we truncate DL_SCALE bits, make sure we're at least
4026 * that big.
4027 */
4028 if (attr->sched_runtime < (1ULL << DL_SCALE))
4029 return false;
4030
4031 /*
4032 * Since we use the MSB for wrap-around and sign issues, make
4033 * sure it's not set (mind that period can be equal to zero).
4034 */
4035 if (attr->sched_deadline & (1ULL << 63) ||
4036 attr->sched_period & (1ULL << 63))
4037 return false;
4038
4039 /* runtime <= deadline <= period (if period != 0) */
4040 if ((attr->sched_period != 0 &&
4041 attr->sched_period < attr->sched_deadline) ||
4042 attr->sched_deadline < attr->sched_runtime)
4043 return false;
4044
4045 return true;
4046 }
4047
4048 /*
4049 * check the target process has a UID that matches the current process's
4050 */
4051 static bool check_same_owner(struct task_struct *p)
4052 {
4053 const struct cred *cred = current_cred(), *pcred;
4054 bool match;
4055
4056 rcu_read_lock();
4057 pcred = __task_cred(p);
4058 match = (uid_eq(cred->euid, pcred->euid) ||
4059 uid_eq(cred->euid, pcred->uid));
4060 rcu_read_unlock();
4061 return match;
4062 }
4063
4064 static bool dl_param_changed(struct task_struct *p,
4065 const struct sched_attr *attr)
4066 {
4067 struct sched_dl_entity *dl_se = &p->dl;
4068
4069 if (dl_se->dl_runtime != attr->sched_runtime ||
4070 dl_se->dl_deadline != attr->sched_deadline ||
4071 dl_se->dl_period != attr->sched_period ||
4072 dl_se->flags != attr->sched_flags)
4073 return true;
4074
4075 return false;
4076 }
4077
4078 static int __sched_setscheduler(struct task_struct *p,
4079 const struct sched_attr *attr,
4080 bool user, bool pi)
4081 {
4082 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4083 MAX_RT_PRIO - 1 - attr->sched_priority;
4084 int retval, oldprio, oldpolicy = -1, queued, running;
4085 int new_effective_prio, policy = attr->sched_policy;
4086 const struct sched_class *prev_class;
4087 struct rq_flags rf;
4088 int reset_on_fork;
4089 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4090 struct rq *rq;
4091
4092 /* may grab non-irq protected spin_locks */
4093 BUG_ON(in_interrupt());
4094 recheck:
4095 /* double check policy once rq lock held */
4096 if (policy < 0) {
4097 reset_on_fork = p->sched_reset_on_fork;
4098 policy = oldpolicy = p->policy;
4099 } else {
4100 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4101
4102 if (!valid_policy(policy))
4103 return -EINVAL;
4104 }
4105
4106 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4107 return -EINVAL;
4108
4109 /*
4110 * Valid priorities for SCHED_FIFO and SCHED_RR are
4111 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4112 * SCHED_BATCH and SCHED_IDLE is 0.
4113 */
4114 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4115 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4116 return -EINVAL;
4117 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4118 (rt_policy(policy) != (attr->sched_priority != 0)))
4119 return -EINVAL;
4120
4121 /*
4122 * Allow unprivileged RT tasks to decrease priority:
4123 */
4124 if (user && !capable(CAP_SYS_NICE)) {
4125 if (fair_policy(policy)) {
4126 if (attr->sched_nice < task_nice(p) &&
4127 !can_nice(p, attr->sched_nice))
4128 return -EPERM;
4129 }
4130
4131 if (rt_policy(policy)) {
4132 unsigned long rlim_rtprio =
4133 task_rlimit(p, RLIMIT_RTPRIO);
4134
4135 /* can't set/change the rt policy */
4136 if (policy != p->policy && !rlim_rtprio)
4137 return -EPERM;
4138
4139 /* can't increase priority */
4140 if (attr->sched_priority > p->rt_priority &&
4141 attr->sched_priority > rlim_rtprio)
4142 return -EPERM;
4143 }
4144
4145 /*
4146 * Can't set/change SCHED_DEADLINE policy at all for now
4147 * (safest behavior); in the future we would like to allow
4148 * unprivileged DL tasks to increase their relative deadline
4149 * or reduce their runtime (both ways reducing utilization)
4150 */
4151 if (dl_policy(policy))
4152 return -EPERM;
4153
4154 /*
4155 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4156 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4157 */
4158 if (idle_policy(p->policy) && !idle_policy(policy)) {
4159 if (!can_nice(p, task_nice(p)))
4160 return -EPERM;
4161 }
4162
4163 /* can't change other user's priorities */
4164 if (!check_same_owner(p))
4165 return -EPERM;
4166
4167 /* Normal users shall not reset the sched_reset_on_fork flag */
4168 if (p->sched_reset_on_fork && !reset_on_fork)
4169 return -EPERM;
4170 }
4171
4172 if (user) {
4173 retval = security_task_setscheduler(p);
4174 if (retval)
4175 return retval;
4176 }
4177
4178 /*
4179 * make sure no PI-waiters arrive (or leave) while we are
4180 * changing the priority of the task:
4181 *
4182 * To be able to change p->policy safely, the appropriate
4183 * runqueue lock must be held.
4184 */
4185 rq = task_rq_lock(p, &rf);
4186
4187 /*
4188 * Changing the policy of the stop threads its a very bad idea
4189 */
4190 if (p == rq->stop) {
4191 task_rq_unlock(rq, p, &rf);
4192 return -EINVAL;
4193 }
4194
4195 /*
4196 * If not changing anything there's no need to proceed further,
4197 * but store a possible modification of reset_on_fork.
4198 */
4199 if (unlikely(policy == p->policy)) {
4200 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4201 goto change;
4202 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4203 goto change;
4204 if (dl_policy(policy) && dl_param_changed(p, attr))
4205 goto change;
4206
4207 p->sched_reset_on_fork = reset_on_fork;
4208 task_rq_unlock(rq, p, &rf);
4209 return 0;
4210 }
4211 change:
4212
4213 if (user) {
4214 #ifdef CONFIG_RT_GROUP_SCHED
4215 /*
4216 * Do not allow realtime tasks into groups that have no runtime
4217 * assigned.
4218 */
4219 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4220 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4221 !task_group_is_autogroup(task_group(p))) {
4222 task_rq_unlock(rq, p, &rf);
4223 return -EPERM;
4224 }
4225 #endif
4226 #ifdef CONFIG_SMP
4227 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4228 cpumask_t *span = rq->rd->span;
4229
4230 /*
4231 * Don't allow tasks with an affinity mask smaller than
4232 * the entire root_domain to become SCHED_DEADLINE. We
4233 * will also fail if there's no bandwidth available.
4234 */
4235 if (!cpumask_subset(span, &p->cpus_allowed) ||
4236 rq->rd->dl_bw.bw == 0) {
4237 task_rq_unlock(rq, p, &rf);
4238 return -EPERM;
4239 }
4240 }
4241 #endif
4242 }
4243
4244 /* recheck policy now with rq lock held */
4245 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4246 policy = oldpolicy = -1;
4247 task_rq_unlock(rq, p, &rf);
4248 goto recheck;
4249 }
4250
4251 /*
4252 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4253 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4254 * is available.
4255 */
4256 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4257 task_rq_unlock(rq, p, &rf);
4258 return -EBUSY;
4259 }
4260
4261 p->sched_reset_on_fork = reset_on_fork;
4262 oldprio = p->prio;
4263
4264 if (pi) {
4265 /*
4266 * Take priority boosted tasks into account. If the new
4267 * effective priority is unchanged, we just store the new
4268 * normal parameters and do not touch the scheduler class and
4269 * the runqueue. This will be done when the task deboost
4270 * itself.
4271 */
4272 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4273 if (new_effective_prio == oldprio)
4274 queue_flags &= ~DEQUEUE_MOVE;
4275 }
4276
4277 queued = task_on_rq_queued(p);
4278 running = task_current(rq, p);
4279 if (queued)
4280 dequeue_task(rq, p, queue_flags);
4281 if (running)
4282 put_prev_task(rq, p);
4283
4284 prev_class = p->sched_class;
4285 __setscheduler(rq, p, attr, pi);
4286
4287 if (queued) {
4288 /*
4289 * We enqueue to tail when the priority of a task is
4290 * increased (user space view).
4291 */
4292 if (oldprio < p->prio)
4293 queue_flags |= ENQUEUE_HEAD;
4294
4295 enqueue_task(rq, p, queue_flags);
4296 }
4297 if (running)
4298 set_curr_task(rq, p);
4299
4300 check_class_changed(rq, p, prev_class, oldprio);
4301 preempt_disable(); /* avoid rq from going away on us */
4302 task_rq_unlock(rq, p, &rf);
4303
4304 if (pi)
4305 rt_mutex_adjust_pi(p);
4306
4307 /*
4308 * Run balance callbacks after we've adjusted the PI chain.
4309 */
4310 balance_callback(rq);
4311 preempt_enable();
4312
4313 return 0;
4314 }
4315
4316 static int _sched_setscheduler(struct task_struct *p, int policy,
4317 const struct sched_param *param, bool check)
4318 {
4319 struct sched_attr attr = {
4320 .sched_policy = policy,
4321 .sched_priority = param->sched_priority,
4322 .sched_nice = PRIO_TO_NICE(p->static_prio),
4323 };
4324
4325 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4326 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4327 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4328 policy &= ~SCHED_RESET_ON_FORK;
4329 attr.sched_policy = policy;
4330 }
4331
4332 return __sched_setscheduler(p, &attr, check, true);
4333 }
4334 /**
4335 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4336 * @p: the task in question.
4337 * @policy: new policy.
4338 * @param: structure containing the new RT priority.
4339 *
4340 * Return: 0 on success. An error code otherwise.
4341 *
4342 * NOTE that the task may be already dead.
4343 */
4344 int sched_setscheduler(struct task_struct *p, int policy,
4345 const struct sched_param *param)
4346 {
4347 return _sched_setscheduler(p, policy, param, true);
4348 }
4349 EXPORT_SYMBOL_GPL(sched_setscheduler);
4350
4351 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4352 {
4353 return __sched_setscheduler(p, attr, true, true);
4354 }
4355 EXPORT_SYMBOL_GPL(sched_setattr);
4356
4357 /**
4358 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4359 * @p: the task in question.
4360 * @policy: new policy.
4361 * @param: structure containing the new RT priority.
4362 *
4363 * Just like sched_setscheduler, only don't bother checking if the
4364 * current context has permission. For example, this is needed in
4365 * stop_machine(): we create temporary high priority worker threads,
4366 * but our caller might not have that capability.
4367 *
4368 * Return: 0 on success. An error code otherwise.
4369 */
4370 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4371 const struct sched_param *param)
4372 {
4373 return _sched_setscheduler(p, policy, param, false);
4374 }
4375 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4376
4377 static int
4378 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4379 {
4380 struct sched_param lparam;
4381 struct task_struct *p;
4382 int retval;
4383
4384 if (!param || pid < 0)
4385 return -EINVAL;
4386 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4387 return -EFAULT;
4388
4389 rcu_read_lock();
4390 retval = -ESRCH;
4391 p = find_process_by_pid(pid);
4392 if (p != NULL)
4393 retval = sched_setscheduler(p, policy, &lparam);
4394 rcu_read_unlock();
4395
4396 return retval;
4397 }
4398
4399 /*
4400 * Mimics kernel/events/core.c perf_copy_attr().
4401 */
4402 static int sched_copy_attr(struct sched_attr __user *uattr,
4403 struct sched_attr *attr)
4404 {
4405 u32 size;
4406 int ret;
4407
4408 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4409 return -EFAULT;
4410
4411 /*
4412 * zero the full structure, so that a short copy will be nice.
4413 */
4414 memset(attr, 0, sizeof(*attr));
4415
4416 ret = get_user(size, &uattr->size);
4417 if (ret)
4418 return ret;
4419
4420 if (size > PAGE_SIZE) /* silly large */
4421 goto err_size;
4422
4423 if (!size) /* abi compat */
4424 size = SCHED_ATTR_SIZE_VER0;
4425
4426 if (size < SCHED_ATTR_SIZE_VER0)
4427 goto err_size;
4428
4429 /*
4430 * If we're handed a bigger struct than we know of,
4431 * ensure all the unknown bits are 0 - i.e. new
4432 * user-space does not rely on any kernel feature
4433 * extensions we dont know about yet.
4434 */
4435 if (size > sizeof(*attr)) {
4436 unsigned char __user *addr;
4437 unsigned char __user *end;
4438 unsigned char val;
4439
4440 addr = (void __user *)uattr + sizeof(*attr);
4441 end = (void __user *)uattr + size;
4442
4443 for (; addr < end; addr++) {
4444 ret = get_user(val, addr);
4445 if (ret)
4446 return ret;
4447 if (val)
4448 goto err_size;
4449 }
4450 size = sizeof(*attr);
4451 }
4452
4453 ret = copy_from_user(attr, uattr, size);
4454 if (ret)
4455 return -EFAULT;
4456
4457 /*
4458 * XXX: do we want to be lenient like existing syscalls; or do we want
4459 * to be strict and return an error on out-of-bounds values?
4460 */
4461 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4462
4463 return 0;
4464
4465 err_size:
4466 put_user(sizeof(*attr), &uattr->size);
4467 return -E2BIG;
4468 }
4469
4470 /**
4471 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4472 * @pid: the pid in question.
4473 * @policy: new policy.
4474 * @param: structure containing the new RT priority.
4475 *
4476 * Return: 0 on success. An error code otherwise.
4477 */
4478 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4479 struct sched_param __user *, param)
4480 {
4481 /* negative values for policy are not valid */
4482 if (policy < 0)
4483 return -EINVAL;
4484
4485 return do_sched_setscheduler(pid, policy, param);
4486 }
4487
4488 /**
4489 * sys_sched_setparam - set/change the RT priority of a thread
4490 * @pid: the pid in question.
4491 * @param: structure containing the new RT priority.
4492 *
4493 * Return: 0 on success. An error code otherwise.
4494 */
4495 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4496 {
4497 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4498 }
4499
4500 /**
4501 * sys_sched_setattr - same as above, but with extended sched_attr
4502 * @pid: the pid in question.
4503 * @uattr: structure containing the extended parameters.
4504 * @flags: for future extension.
4505 */
4506 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4507 unsigned int, flags)
4508 {
4509 struct sched_attr attr;
4510 struct task_struct *p;
4511 int retval;
4512
4513 if (!uattr || pid < 0 || flags)
4514 return -EINVAL;
4515
4516 retval = sched_copy_attr(uattr, &attr);
4517 if (retval)
4518 return retval;
4519
4520 if ((int)attr.sched_policy < 0)
4521 return -EINVAL;
4522
4523 rcu_read_lock();
4524 retval = -ESRCH;
4525 p = find_process_by_pid(pid);
4526 if (p != NULL)
4527 retval = sched_setattr(p, &attr);
4528 rcu_read_unlock();
4529
4530 return retval;
4531 }
4532
4533 /**
4534 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4535 * @pid: the pid in question.
4536 *
4537 * Return: On success, the policy of the thread. Otherwise, a negative error
4538 * code.
4539 */
4540 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4541 {
4542 struct task_struct *p;
4543 int retval;
4544
4545 if (pid < 0)
4546 return -EINVAL;
4547
4548 retval = -ESRCH;
4549 rcu_read_lock();
4550 p = find_process_by_pid(pid);
4551 if (p) {
4552 retval = security_task_getscheduler(p);
4553 if (!retval)
4554 retval = p->policy
4555 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4556 }
4557 rcu_read_unlock();
4558 return retval;
4559 }
4560
4561 /**
4562 * sys_sched_getparam - get the RT priority of a thread
4563 * @pid: the pid in question.
4564 * @param: structure containing the RT priority.
4565 *
4566 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4567 * code.
4568 */
4569 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4570 {
4571 struct sched_param lp = { .sched_priority = 0 };
4572 struct task_struct *p;
4573 int retval;
4574
4575 if (!param || pid < 0)
4576 return -EINVAL;
4577
4578 rcu_read_lock();
4579 p = find_process_by_pid(pid);
4580 retval = -ESRCH;
4581 if (!p)
4582 goto out_unlock;
4583
4584 retval = security_task_getscheduler(p);
4585 if (retval)
4586 goto out_unlock;
4587
4588 if (task_has_rt_policy(p))
4589 lp.sched_priority = p->rt_priority;
4590 rcu_read_unlock();
4591
4592 /*
4593 * This one might sleep, we cannot do it with a spinlock held ...
4594 */
4595 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4596
4597 return retval;
4598
4599 out_unlock:
4600 rcu_read_unlock();
4601 return retval;
4602 }
4603
4604 static int sched_read_attr(struct sched_attr __user *uattr,
4605 struct sched_attr *attr,
4606 unsigned int usize)
4607 {
4608 int ret;
4609
4610 if (!access_ok(VERIFY_WRITE, uattr, usize))
4611 return -EFAULT;
4612
4613 /*
4614 * If we're handed a smaller struct than we know of,
4615 * ensure all the unknown bits are 0 - i.e. old
4616 * user-space does not get uncomplete information.
4617 */
4618 if (usize < sizeof(*attr)) {
4619 unsigned char *addr;
4620 unsigned char *end;
4621
4622 addr = (void *)attr + usize;
4623 end = (void *)attr + sizeof(*attr);
4624
4625 for (; addr < end; addr++) {
4626 if (*addr)
4627 return -EFBIG;
4628 }
4629
4630 attr->size = usize;
4631 }
4632
4633 ret = copy_to_user(uattr, attr, attr->size);
4634 if (ret)
4635 return -EFAULT;
4636
4637 return 0;
4638 }
4639
4640 /**
4641 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4642 * @pid: the pid in question.
4643 * @uattr: structure containing the extended parameters.
4644 * @size: sizeof(attr) for fwd/bwd comp.
4645 * @flags: for future extension.
4646 */
4647 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4648 unsigned int, size, unsigned int, flags)
4649 {
4650 struct sched_attr attr = {
4651 .size = sizeof(struct sched_attr),
4652 };
4653 struct task_struct *p;
4654 int retval;
4655
4656 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4657 size < SCHED_ATTR_SIZE_VER0 || flags)
4658 return -EINVAL;
4659
4660 rcu_read_lock();
4661 p = find_process_by_pid(pid);
4662 retval = -ESRCH;
4663 if (!p)
4664 goto out_unlock;
4665
4666 retval = security_task_getscheduler(p);
4667 if (retval)
4668 goto out_unlock;
4669
4670 attr.sched_policy = p->policy;
4671 if (p->sched_reset_on_fork)
4672 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4673 if (task_has_dl_policy(p))
4674 __getparam_dl(p, &attr);
4675 else if (task_has_rt_policy(p))
4676 attr.sched_priority = p->rt_priority;
4677 else
4678 attr.sched_nice = task_nice(p);
4679
4680 rcu_read_unlock();
4681
4682 retval = sched_read_attr(uattr, &attr, size);
4683 return retval;
4684
4685 out_unlock:
4686 rcu_read_unlock();
4687 return retval;
4688 }
4689
4690 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4691 {
4692 cpumask_var_t cpus_allowed, new_mask;
4693 struct task_struct *p;
4694 int retval;
4695
4696 rcu_read_lock();
4697
4698 p = find_process_by_pid(pid);
4699 if (!p) {
4700 rcu_read_unlock();
4701 return -ESRCH;
4702 }
4703
4704 /* Prevent p going away */
4705 get_task_struct(p);
4706 rcu_read_unlock();
4707
4708 if (p->flags & PF_NO_SETAFFINITY) {
4709 retval = -EINVAL;
4710 goto out_put_task;
4711 }
4712 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4713 retval = -ENOMEM;
4714 goto out_put_task;
4715 }
4716 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4717 retval = -ENOMEM;
4718 goto out_free_cpus_allowed;
4719 }
4720 retval = -EPERM;
4721 if (!check_same_owner(p)) {
4722 rcu_read_lock();
4723 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4724 rcu_read_unlock();
4725 goto out_free_new_mask;
4726 }
4727 rcu_read_unlock();
4728 }
4729
4730 retval = security_task_setscheduler(p);
4731 if (retval)
4732 goto out_free_new_mask;
4733
4734
4735 cpuset_cpus_allowed(p, cpus_allowed);
4736 cpumask_and(new_mask, in_mask, cpus_allowed);
4737
4738 /*
4739 * Since bandwidth control happens on root_domain basis,
4740 * if admission test is enabled, we only admit -deadline
4741 * tasks allowed to run on all the CPUs in the task's
4742 * root_domain.
4743 */
4744 #ifdef CONFIG_SMP
4745 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4746 rcu_read_lock();
4747 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4748 retval = -EBUSY;
4749 rcu_read_unlock();
4750 goto out_free_new_mask;
4751 }
4752 rcu_read_unlock();
4753 }
4754 #endif
4755 again:
4756 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4757
4758 if (!retval) {
4759 cpuset_cpus_allowed(p, cpus_allowed);
4760 if (!cpumask_subset(new_mask, cpus_allowed)) {
4761 /*
4762 * We must have raced with a concurrent cpuset
4763 * update. Just reset the cpus_allowed to the
4764 * cpuset's cpus_allowed
4765 */
4766 cpumask_copy(new_mask, cpus_allowed);
4767 goto again;
4768 }
4769 }
4770 out_free_new_mask:
4771 free_cpumask_var(new_mask);
4772 out_free_cpus_allowed:
4773 free_cpumask_var(cpus_allowed);
4774 out_put_task:
4775 put_task_struct(p);
4776 return retval;
4777 }
4778
4779 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4780 struct cpumask *new_mask)
4781 {
4782 if (len < cpumask_size())
4783 cpumask_clear(new_mask);
4784 else if (len > cpumask_size())
4785 len = cpumask_size();
4786
4787 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4788 }
4789
4790 /**
4791 * sys_sched_setaffinity - set the cpu affinity of a process
4792 * @pid: pid of the process
4793 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4794 * @user_mask_ptr: user-space pointer to the new cpu mask
4795 *
4796 * Return: 0 on success. An error code otherwise.
4797 */
4798 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4799 unsigned long __user *, user_mask_ptr)
4800 {
4801 cpumask_var_t new_mask;
4802 int retval;
4803
4804 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4805 return -ENOMEM;
4806
4807 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4808 if (retval == 0)
4809 retval = sched_setaffinity(pid, new_mask);
4810 free_cpumask_var(new_mask);
4811 return retval;
4812 }
4813
4814 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4815 {
4816 struct task_struct *p;
4817 unsigned long flags;
4818 int retval;
4819
4820 rcu_read_lock();
4821
4822 retval = -ESRCH;
4823 p = find_process_by_pid(pid);
4824 if (!p)
4825 goto out_unlock;
4826
4827 retval = security_task_getscheduler(p);
4828 if (retval)
4829 goto out_unlock;
4830
4831 raw_spin_lock_irqsave(&p->pi_lock, flags);
4832 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4833 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4834
4835 out_unlock:
4836 rcu_read_unlock();
4837
4838 return retval;
4839 }
4840
4841 /**
4842 * sys_sched_getaffinity - get the cpu affinity of a process
4843 * @pid: pid of the process
4844 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4845 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4846 *
4847 * Return: size of CPU mask copied to user_mask_ptr on success. An
4848 * error code otherwise.
4849 */
4850 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4851 unsigned long __user *, user_mask_ptr)
4852 {
4853 int ret;
4854 cpumask_var_t mask;
4855
4856 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4857 return -EINVAL;
4858 if (len & (sizeof(unsigned long)-1))
4859 return -EINVAL;
4860
4861 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4862 return -ENOMEM;
4863
4864 ret = sched_getaffinity(pid, mask);
4865 if (ret == 0) {
4866 size_t retlen = min_t(size_t, len, cpumask_size());
4867
4868 if (copy_to_user(user_mask_ptr, mask, retlen))
4869 ret = -EFAULT;
4870 else
4871 ret = retlen;
4872 }
4873 free_cpumask_var(mask);
4874
4875 return ret;
4876 }
4877
4878 /**
4879 * sys_sched_yield - yield the current processor to other threads.
4880 *
4881 * This function yields the current CPU to other tasks. If there are no
4882 * other threads running on this CPU then this function will return.
4883 *
4884 * Return: 0.
4885 */
4886 SYSCALL_DEFINE0(sched_yield)
4887 {
4888 struct rq *rq = this_rq_lock();
4889
4890 schedstat_inc(rq->yld_count);
4891 current->sched_class->yield_task(rq);
4892
4893 /*
4894 * Since we are going to call schedule() anyway, there's
4895 * no need to preempt or enable interrupts:
4896 */
4897 __release(rq->lock);
4898 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4899 do_raw_spin_unlock(&rq->lock);
4900 sched_preempt_enable_no_resched();
4901
4902 schedule();
4903
4904 return 0;
4905 }
4906
4907 #ifndef CONFIG_PREEMPT
4908 int __sched _cond_resched(void)
4909 {
4910 if (should_resched(0)) {
4911 preempt_schedule_common();
4912 return 1;
4913 }
4914 return 0;
4915 }
4916 EXPORT_SYMBOL(_cond_resched);
4917 #endif
4918
4919 /*
4920 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4921 * call schedule, and on return reacquire the lock.
4922 *
4923 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4924 * operations here to prevent schedule() from being called twice (once via
4925 * spin_unlock(), once by hand).
4926 */
4927 int __cond_resched_lock(spinlock_t *lock)
4928 {
4929 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4930 int ret = 0;
4931
4932 lockdep_assert_held(lock);
4933
4934 if (spin_needbreak(lock) || resched) {
4935 spin_unlock(lock);
4936 if (resched)
4937 preempt_schedule_common();
4938 else
4939 cpu_relax();
4940 ret = 1;
4941 spin_lock(lock);
4942 }
4943 return ret;
4944 }
4945 EXPORT_SYMBOL(__cond_resched_lock);
4946
4947 int __sched __cond_resched_softirq(void)
4948 {
4949 BUG_ON(!in_softirq());
4950
4951 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4952 local_bh_enable();
4953 preempt_schedule_common();
4954 local_bh_disable();
4955 return 1;
4956 }
4957 return 0;
4958 }
4959 EXPORT_SYMBOL(__cond_resched_softirq);
4960
4961 /**
4962 * yield - yield the current processor to other threads.
4963 *
4964 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4965 *
4966 * The scheduler is at all times free to pick the calling task as the most
4967 * eligible task to run, if removing the yield() call from your code breaks
4968 * it, its already broken.
4969 *
4970 * Typical broken usage is:
4971 *
4972 * while (!event)
4973 * yield();
4974 *
4975 * where one assumes that yield() will let 'the other' process run that will
4976 * make event true. If the current task is a SCHED_FIFO task that will never
4977 * happen. Never use yield() as a progress guarantee!!
4978 *
4979 * If you want to use yield() to wait for something, use wait_event().
4980 * If you want to use yield() to be 'nice' for others, use cond_resched().
4981 * If you still want to use yield(), do not!
4982 */
4983 void __sched yield(void)
4984 {
4985 set_current_state(TASK_RUNNING);
4986 sys_sched_yield();
4987 }
4988 EXPORT_SYMBOL(yield);
4989
4990 /**
4991 * yield_to - yield the current processor to another thread in
4992 * your thread group, or accelerate that thread toward the
4993 * processor it's on.
4994 * @p: target task
4995 * @preempt: whether task preemption is allowed or not
4996 *
4997 * It's the caller's job to ensure that the target task struct
4998 * can't go away on us before we can do any checks.
4999 *
5000 * Return:
5001 * true (>0) if we indeed boosted the target task.
5002 * false (0) if we failed to boost the target.
5003 * -ESRCH if there's no task to yield to.
5004 */
5005 int __sched yield_to(struct task_struct *p, bool preempt)
5006 {
5007 struct task_struct *curr = current;
5008 struct rq *rq, *p_rq;
5009 unsigned long flags;
5010 int yielded = 0;
5011
5012 local_irq_save(flags);
5013 rq = this_rq();
5014
5015 again:
5016 p_rq = task_rq(p);
5017 /*
5018 * If we're the only runnable task on the rq and target rq also
5019 * has only one task, there's absolutely no point in yielding.
5020 */
5021 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5022 yielded = -ESRCH;
5023 goto out_irq;
5024 }
5025
5026 double_rq_lock(rq, p_rq);
5027 if (task_rq(p) != p_rq) {
5028 double_rq_unlock(rq, p_rq);
5029 goto again;
5030 }
5031
5032 if (!curr->sched_class->yield_to_task)
5033 goto out_unlock;
5034
5035 if (curr->sched_class != p->sched_class)
5036 goto out_unlock;
5037
5038 if (task_running(p_rq, p) || p->state)
5039 goto out_unlock;
5040
5041 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5042 if (yielded) {
5043 schedstat_inc(rq->yld_count);
5044 /*
5045 * Make p's CPU reschedule; pick_next_entity takes care of
5046 * fairness.
5047 */
5048 if (preempt && rq != p_rq)
5049 resched_curr(p_rq);
5050 }
5051
5052 out_unlock:
5053 double_rq_unlock(rq, p_rq);
5054 out_irq:
5055 local_irq_restore(flags);
5056
5057 if (yielded > 0)
5058 schedule();
5059
5060 return yielded;
5061 }
5062 EXPORT_SYMBOL_GPL(yield_to);
5063
5064 /*
5065 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5066 * that process accounting knows that this is a task in IO wait state.
5067 */
5068 long __sched io_schedule_timeout(long timeout)
5069 {
5070 int old_iowait = current->in_iowait;
5071 struct rq *rq;
5072 long ret;
5073
5074 current->in_iowait = 1;
5075 blk_schedule_flush_plug(current);
5076
5077 delayacct_blkio_start();
5078 rq = raw_rq();
5079 atomic_inc(&rq->nr_iowait);
5080 ret = schedule_timeout(timeout);
5081 current->in_iowait = old_iowait;
5082 atomic_dec(&rq->nr_iowait);
5083 delayacct_blkio_end();
5084
5085 return ret;
5086 }
5087 EXPORT_SYMBOL(io_schedule_timeout);
5088
5089 /**
5090 * sys_sched_get_priority_max - return maximum RT priority.
5091 * @policy: scheduling class.
5092 *
5093 * Return: On success, this syscall returns the maximum
5094 * rt_priority that can be used by a given scheduling class.
5095 * On failure, a negative error code is returned.
5096 */
5097 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5098 {
5099 int ret = -EINVAL;
5100
5101 switch (policy) {
5102 case SCHED_FIFO:
5103 case SCHED_RR:
5104 ret = MAX_USER_RT_PRIO-1;
5105 break;
5106 case SCHED_DEADLINE:
5107 case SCHED_NORMAL:
5108 case SCHED_BATCH:
5109 case SCHED_IDLE:
5110 ret = 0;
5111 break;
5112 }
5113 return ret;
5114 }
5115
5116 /**
5117 * sys_sched_get_priority_min - return minimum RT priority.
5118 * @policy: scheduling class.
5119 *
5120 * Return: On success, this syscall returns the minimum
5121 * rt_priority that can be used by a given scheduling class.
5122 * On failure, a negative error code is returned.
5123 */
5124 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5125 {
5126 int ret = -EINVAL;
5127
5128 switch (policy) {
5129 case SCHED_FIFO:
5130 case SCHED_RR:
5131 ret = 1;
5132 break;
5133 case SCHED_DEADLINE:
5134 case SCHED_NORMAL:
5135 case SCHED_BATCH:
5136 case SCHED_IDLE:
5137 ret = 0;
5138 }
5139 return ret;
5140 }
5141
5142 /**
5143 * sys_sched_rr_get_interval - return the default timeslice of a process.
5144 * @pid: pid of the process.
5145 * @interval: userspace pointer to the timeslice value.
5146 *
5147 * this syscall writes the default timeslice value of a given process
5148 * into the user-space timespec buffer. A value of '0' means infinity.
5149 *
5150 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5151 * an error code.
5152 */
5153 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5154 struct timespec __user *, interval)
5155 {
5156 struct task_struct *p;
5157 unsigned int time_slice;
5158 struct rq_flags rf;
5159 struct timespec t;
5160 struct rq *rq;
5161 int retval;
5162
5163 if (pid < 0)
5164 return -EINVAL;
5165
5166 retval = -ESRCH;
5167 rcu_read_lock();
5168 p = find_process_by_pid(pid);
5169 if (!p)
5170 goto out_unlock;
5171
5172 retval = security_task_getscheduler(p);
5173 if (retval)
5174 goto out_unlock;
5175
5176 rq = task_rq_lock(p, &rf);
5177 time_slice = 0;
5178 if (p->sched_class->get_rr_interval)
5179 time_slice = p->sched_class->get_rr_interval(rq, p);
5180 task_rq_unlock(rq, p, &rf);
5181
5182 rcu_read_unlock();
5183 jiffies_to_timespec(time_slice, &t);
5184 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5185 return retval;
5186
5187 out_unlock:
5188 rcu_read_unlock();
5189 return retval;
5190 }
5191
5192 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5193
5194 void sched_show_task(struct task_struct *p)
5195 {
5196 unsigned long free = 0;
5197 int ppid;
5198 unsigned long state = p->state;
5199
5200 if (!try_get_task_stack(p))
5201 return;
5202 if (state)
5203 state = __ffs(state) + 1;
5204 printk(KERN_INFO "%-15.15s %c", p->comm,
5205 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5206 if (state == TASK_RUNNING)
5207 printk(KERN_CONT " running task ");
5208 #ifdef CONFIG_DEBUG_STACK_USAGE
5209 free = stack_not_used(p);
5210 #endif
5211 ppid = 0;
5212 rcu_read_lock();
5213 if (pid_alive(p))
5214 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5215 rcu_read_unlock();
5216 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5217 task_pid_nr(p), ppid,
5218 (unsigned long)task_thread_info(p)->flags);
5219
5220 print_worker_info(KERN_INFO, p);
5221 show_stack(p, NULL);
5222 put_task_stack(p);
5223 }
5224
5225 void show_state_filter(unsigned long state_filter)
5226 {
5227 struct task_struct *g, *p;
5228
5229 #if BITS_PER_LONG == 32
5230 printk(KERN_INFO
5231 " task PC stack pid father\n");
5232 #else
5233 printk(KERN_INFO
5234 " task PC stack pid father\n");
5235 #endif
5236 rcu_read_lock();
5237 for_each_process_thread(g, p) {
5238 /*
5239 * reset the NMI-timeout, listing all files on a slow
5240 * console might take a lot of time:
5241 * Also, reset softlockup watchdogs on all CPUs, because
5242 * another CPU might be blocked waiting for us to process
5243 * an IPI.
5244 */
5245 touch_nmi_watchdog();
5246 touch_all_softlockup_watchdogs();
5247 if (!state_filter || (p->state & state_filter))
5248 sched_show_task(p);
5249 }
5250
5251 #ifdef CONFIG_SCHED_DEBUG
5252 if (!state_filter)
5253 sysrq_sched_debug_show();
5254 #endif
5255 rcu_read_unlock();
5256 /*
5257 * Only show locks if all tasks are dumped:
5258 */
5259 if (!state_filter)
5260 debug_show_all_locks();
5261 }
5262
5263 void init_idle_bootup_task(struct task_struct *idle)
5264 {
5265 idle->sched_class = &idle_sched_class;
5266 }
5267
5268 /**
5269 * init_idle - set up an idle thread for a given CPU
5270 * @idle: task in question
5271 * @cpu: cpu the idle task belongs to
5272 *
5273 * NOTE: this function does not set the idle thread's NEED_RESCHED
5274 * flag, to make booting more robust.
5275 */
5276 void init_idle(struct task_struct *idle, int cpu)
5277 {
5278 struct rq *rq = cpu_rq(cpu);
5279 unsigned long flags;
5280
5281 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5282 raw_spin_lock(&rq->lock);
5283
5284 __sched_fork(0, idle);
5285 idle->state = TASK_RUNNING;
5286 idle->se.exec_start = sched_clock();
5287 idle->flags |= PF_IDLE;
5288
5289 kasan_unpoison_task_stack(idle);
5290
5291 #ifdef CONFIG_SMP
5292 /*
5293 * Its possible that init_idle() gets called multiple times on a task,
5294 * in that case do_set_cpus_allowed() will not do the right thing.
5295 *
5296 * And since this is boot we can forgo the serialization.
5297 */
5298 set_cpus_allowed_common(idle, cpumask_of(cpu));
5299 #endif
5300 /*
5301 * We're having a chicken and egg problem, even though we are
5302 * holding rq->lock, the cpu isn't yet set to this cpu so the
5303 * lockdep check in task_group() will fail.
5304 *
5305 * Similar case to sched_fork(). / Alternatively we could
5306 * use task_rq_lock() here and obtain the other rq->lock.
5307 *
5308 * Silence PROVE_RCU
5309 */
5310 rcu_read_lock();
5311 __set_task_cpu(idle, cpu);
5312 rcu_read_unlock();
5313
5314 rq->curr = rq->idle = idle;
5315 idle->on_rq = TASK_ON_RQ_QUEUED;
5316 #ifdef CONFIG_SMP
5317 idle->on_cpu = 1;
5318 #endif
5319 raw_spin_unlock(&rq->lock);
5320 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5321
5322 /* Set the preempt count _outside_ the spinlocks! */
5323 init_idle_preempt_count(idle, cpu);
5324
5325 /*
5326 * The idle tasks have their own, simple scheduling class:
5327 */
5328 idle->sched_class = &idle_sched_class;
5329 ftrace_graph_init_idle_task(idle, cpu);
5330 vtime_init_idle(idle, cpu);
5331 #ifdef CONFIG_SMP
5332 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5333 #endif
5334 }
5335
5336 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5337 const struct cpumask *trial)
5338 {
5339 int ret = 1, trial_cpus;
5340 struct dl_bw *cur_dl_b;
5341 unsigned long flags;
5342
5343 if (!cpumask_weight(cur))
5344 return ret;
5345
5346 rcu_read_lock_sched();
5347 cur_dl_b = dl_bw_of(cpumask_any(cur));
5348 trial_cpus = cpumask_weight(trial);
5349
5350 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5351 if (cur_dl_b->bw != -1 &&
5352 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5353 ret = 0;
5354 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5355 rcu_read_unlock_sched();
5356
5357 return ret;
5358 }
5359
5360 int task_can_attach(struct task_struct *p,
5361 const struct cpumask *cs_cpus_allowed)
5362 {
5363 int ret = 0;
5364
5365 /*
5366 * Kthreads which disallow setaffinity shouldn't be moved
5367 * to a new cpuset; we don't want to change their cpu
5368 * affinity and isolating such threads by their set of
5369 * allowed nodes is unnecessary. Thus, cpusets are not
5370 * applicable for such threads. This prevents checking for
5371 * success of set_cpus_allowed_ptr() on all attached tasks
5372 * before cpus_allowed may be changed.
5373 */
5374 if (p->flags & PF_NO_SETAFFINITY) {
5375 ret = -EINVAL;
5376 goto out;
5377 }
5378
5379 #ifdef CONFIG_SMP
5380 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5381 cs_cpus_allowed)) {
5382 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5383 cs_cpus_allowed);
5384 struct dl_bw *dl_b;
5385 bool overflow;
5386 int cpus;
5387 unsigned long flags;
5388
5389 rcu_read_lock_sched();
5390 dl_b = dl_bw_of(dest_cpu);
5391 raw_spin_lock_irqsave(&dl_b->lock, flags);
5392 cpus = dl_bw_cpus(dest_cpu);
5393 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5394 if (overflow)
5395 ret = -EBUSY;
5396 else {
5397 /*
5398 * We reserve space for this task in the destination
5399 * root_domain, as we can't fail after this point.
5400 * We will free resources in the source root_domain
5401 * later on (see set_cpus_allowed_dl()).
5402 */
5403 __dl_add(dl_b, p->dl.dl_bw);
5404 }
5405 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5406 rcu_read_unlock_sched();
5407
5408 }
5409 #endif
5410 out:
5411 return ret;
5412 }
5413
5414 #ifdef CONFIG_SMP
5415
5416 static bool sched_smp_initialized __read_mostly;
5417
5418 #ifdef CONFIG_NUMA_BALANCING
5419 /* Migrate current task p to target_cpu */
5420 int migrate_task_to(struct task_struct *p, int target_cpu)
5421 {
5422 struct migration_arg arg = { p, target_cpu };
5423 int curr_cpu = task_cpu(p);
5424
5425 if (curr_cpu == target_cpu)
5426 return 0;
5427
5428 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5429 return -EINVAL;
5430
5431 /* TODO: This is not properly updating schedstats */
5432
5433 trace_sched_move_numa(p, curr_cpu, target_cpu);
5434 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5435 }
5436
5437 /*
5438 * Requeue a task on a given node and accurately track the number of NUMA
5439 * tasks on the runqueues
5440 */
5441 void sched_setnuma(struct task_struct *p, int nid)
5442 {
5443 bool queued, running;
5444 struct rq_flags rf;
5445 struct rq *rq;
5446
5447 rq = task_rq_lock(p, &rf);
5448 queued = task_on_rq_queued(p);
5449 running = task_current(rq, p);
5450
5451 if (queued)
5452 dequeue_task(rq, p, DEQUEUE_SAVE);
5453 if (running)
5454 put_prev_task(rq, p);
5455
5456 p->numa_preferred_nid = nid;
5457
5458 if (queued)
5459 enqueue_task(rq, p, ENQUEUE_RESTORE);
5460 if (running)
5461 set_curr_task(rq, p);
5462 task_rq_unlock(rq, p, &rf);
5463 }
5464 #endif /* CONFIG_NUMA_BALANCING */
5465
5466 #ifdef CONFIG_HOTPLUG_CPU
5467 /*
5468 * Ensures that the idle task is using init_mm right before its cpu goes
5469 * offline.
5470 */
5471 void idle_task_exit(void)
5472 {
5473 struct mm_struct *mm = current->active_mm;
5474
5475 BUG_ON(cpu_online(smp_processor_id()));
5476
5477 if (mm != &init_mm) {
5478 switch_mm_irqs_off(mm, &init_mm, current);
5479 finish_arch_post_lock_switch();
5480 }
5481 mmdrop(mm);
5482 }
5483
5484 /*
5485 * Since this CPU is going 'away' for a while, fold any nr_active delta
5486 * we might have. Assumes we're called after migrate_tasks() so that the
5487 * nr_active count is stable. We need to take the teardown thread which
5488 * is calling this into account, so we hand in adjust = 1 to the load
5489 * calculation.
5490 *
5491 * Also see the comment "Global load-average calculations".
5492 */
5493 static void calc_load_migrate(struct rq *rq)
5494 {
5495 long delta = calc_load_fold_active(rq, 1);
5496 if (delta)
5497 atomic_long_add(delta, &calc_load_tasks);
5498 }
5499
5500 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5501 {
5502 }
5503
5504 static const struct sched_class fake_sched_class = {
5505 .put_prev_task = put_prev_task_fake,
5506 };
5507
5508 static struct task_struct fake_task = {
5509 /*
5510 * Avoid pull_{rt,dl}_task()
5511 */
5512 .prio = MAX_PRIO + 1,
5513 .sched_class = &fake_sched_class,
5514 };
5515
5516 /*
5517 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5518 * try_to_wake_up()->select_task_rq().
5519 *
5520 * Called with rq->lock held even though we'er in stop_machine() and
5521 * there's no concurrency possible, we hold the required locks anyway
5522 * because of lock validation efforts.
5523 */
5524 static void migrate_tasks(struct rq *dead_rq)
5525 {
5526 struct rq *rq = dead_rq;
5527 struct task_struct *next, *stop = rq->stop;
5528 struct rq_flags rf;
5529 int dest_cpu;
5530
5531 /*
5532 * Fudge the rq selection such that the below task selection loop
5533 * doesn't get stuck on the currently eligible stop task.
5534 *
5535 * We're currently inside stop_machine() and the rq is either stuck
5536 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5537 * either way we should never end up calling schedule() until we're
5538 * done here.
5539 */
5540 rq->stop = NULL;
5541
5542 /*
5543 * put_prev_task() and pick_next_task() sched
5544 * class method both need to have an up-to-date
5545 * value of rq->clock[_task]
5546 */
5547 update_rq_clock(rq);
5548
5549 for (;;) {
5550 /*
5551 * There's this thread running, bail when that's the only
5552 * remaining thread.
5553 */
5554 if (rq->nr_running == 1)
5555 break;
5556
5557 /*
5558 * pick_next_task assumes pinned rq->lock.
5559 */
5560 rq_pin_lock(rq, &rf);
5561 next = pick_next_task(rq, &fake_task, &rf);
5562 BUG_ON(!next);
5563 next->sched_class->put_prev_task(rq, next);
5564
5565 /*
5566 * Rules for changing task_struct::cpus_allowed are holding
5567 * both pi_lock and rq->lock, such that holding either
5568 * stabilizes the mask.
5569 *
5570 * Drop rq->lock is not quite as disastrous as it usually is
5571 * because !cpu_active at this point, which means load-balance
5572 * will not interfere. Also, stop-machine.
5573 */
5574 rq_unpin_lock(rq, &rf);
5575 raw_spin_unlock(&rq->lock);
5576 raw_spin_lock(&next->pi_lock);
5577 raw_spin_lock(&rq->lock);
5578
5579 /*
5580 * Since we're inside stop-machine, _nothing_ should have
5581 * changed the task, WARN if weird stuff happened, because in
5582 * that case the above rq->lock drop is a fail too.
5583 */
5584 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5585 raw_spin_unlock(&next->pi_lock);
5586 continue;
5587 }
5588
5589 /* Find suitable destination for @next, with force if needed. */
5590 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5591
5592 rq = __migrate_task(rq, next, dest_cpu);
5593 if (rq != dead_rq) {
5594 raw_spin_unlock(&rq->lock);
5595 rq = dead_rq;
5596 raw_spin_lock(&rq->lock);
5597 }
5598 raw_spin_unlock(&next->pi_lock);
5599 }
5600
5601 rq->stop = stop;
5602 }
5603 #endif /* CONFIG_HOTPLUG_CPU */
5604
5605 static void set_rq_online(struct rq *rq)
5606 {
5607 if (!rq->online) {
5608 const struct sched_class *class;
5609
5610 cpumask_set_cpu(rq->cpu, rq->rd->online);
5611 rq->online = 1;
5612
5613 for_each_class(class) {
5614 if (class->rq_online)
5615 class->rq_online(rq);
5616 }
5617 }
5618 }
5619
5620 static void set_rq_offline(struct rq *rq)
5621 {
5622 if (rq->online) {
5623 const struct sched_class *class;
5624
5625 for_each_class(class) {
5626 if (class->rq_offline)
5627 class->rq_offline(rq);
5628 }
5629
5630 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5631 rq->online = 0;
5632 }
5633 }
5634
5635 static void set_cpu_rq_start_time(unsigned int cpu)
5636 {
5637 struct rq *rq = cpu_rq(cpu);
5638
5639 rq->age_stamp = sched_clock_cpu(cpu);
5640 }
5641
5642 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5643
5644 #ifdef CONFIG_SCHED_DEBUG
5645
5646 static __read_mostly int sched_debug_enabled;
5647
5648 static int __init sched_debug_setup(char *str)
5649 {
5650 sched_debug_enabled = 1;
5651
5652 return 0;
5653 }
5654 early_param("sched_debug", sched_debug_setup);
5655
5656 static inline bool sched_debug(void)
5657 {
5658 return sched_debug_enabled;
5659 }
5660
5661 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5662 struct cpumask *groupmask)
5663 {
5664 struct sched_group *group = sd->groups;
5665
5666 cpumask_clear(groupmask);
5667
5668 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5669
5670 if (!(sd->flags & SD_LOAD_BALANCE)) {
5671 printk("does not load-balance\n");
5672 if (sd->parent)
5673 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5674 " has parent");
5675 return -1;
5676 }
5677
5678 printk(KERN_CONT "span %*pbl level %s\n",
5679 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5680
5681 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5682 printk(KERN_ERR "ERROR: domain->span does not contain "
5683 "CPU%d\n", cpu);
5684 }
5685 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5686 printk(KERN_ERR "ERROR: domain->groups does not contain"
5687 " CPU%d\n", cpu);
5688 }
5689
5690 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5691 do {
5692 if (!group) {
5693 printk("\n");
5694 printk(KERN_ERR "ERROR: group is NULL\n");
5695 break;
5696 }
5697
5698 if (!cpumask_weight(sched_group_cpus(group))) {
5699 printk(KERN_CONT "\n");
5700 printk(KERN_ERR "ERROR: empty group\n");
5701 break;
5702 }
5703
5704 if (!(sd->flags & SD_OVERLAP) &&
5705 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5706 printk(KERN_CONT "\n");
5707 printk(KERN_ERR "ERROR: repeated CPUs\n");
5708 break;
5709 }
5710
5711 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5712
5713 printk(KERN_CONT " %*pbl",
5714 cpumask_pr_args(sched_group_cpus(group)));
5715 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5716 printk(KERN_CONT " (cpu_capacity = %lu)",
5717 group->sgc->capacity);
5718 }
5719
5720 group = group->next;
5721 } while (group != sd->groups);
5722 printk(KERN_CONT "\n");
5723
5724 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5725 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5726
5727 if (sd->parent &&
5728 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5729 printk(KERN_ERR "ERROR: parent span is not a superset "
5730 "of domain->span\n");
5731 return 0;
5732 }
5733
5734 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5735 {
5736 int level = 0;
5737
5738 if (!sched_debug_enabled)
5739 return;
5740
5741 if (!sd) {
5742 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5743 return;
5744 }
5745
5746 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5747
5748 for (;;) {
5749 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5750 break;
5751 level++;
5752 sd = sd->parent;
5753 if (!sd)
5754 break;
5755 }
5756 }
5757 #else /* !CONFIG_SCHED_DEBUG */
5758
5759 # define sched_debug_enabled 0
5760 # define sched_domain_debug(sd, cpu) do { } while (0)
5761 static inline bool sched_debug(void)
5762 {
5763 return false;
5764 }
5765 #endif /* CONFIG_SCHED_DEBUG */
5766
5767 static int sd_degenerate(struct sched_domain *sd)
5768 {
5769 if (cpumask_weight(sched_domain_span(sd)) == 1)
5770 return 1;
5771
5772 /* Following flags need at least 2 groups */
5773 if (sd->flags & (SD_LOAD_BALANCE |
5774 SD_BALANCE_NEWIDLE |
5775 SD_BALANCE_FORK |
5776 SD_BALANCE_EXEC |
5777 SD_SHARE_CPUCAPACITY |
5778 SD_ASYM_CPUCAPACITY |
5779 SD_SHARE_PKG_RESOURCES |
5780 SD_SHARE_POWERDOMAIN)) {
5781 if (sd->groups != sd->groups->next)
5782 return 0;
5783 }
5784
5785 /* Following flags don't use groups */
5786 if (sd->flags & (SD_WAKE_AFFINE))
5787 return 0;
5788
5789 return 1;
5790 }
5791
5792 static int
5793 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5794 {
5795 unsigned long cflags = sd->flags, pflags = parent->flags;
5796
5797 if (sd_degenerate(parent))
5798 return 1;
5799
5800 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5801 return 0;
5802
5803 /* Flags needing groups don't count if only 1 group in parent */
5804 if (parent->groups == parent->groups->next) {
5805 pflags &= ~(SD_LOAD_BALANCE |
5806 SD_BALANCE_NEWIDLE |
5807 SD_BALANCE_FORK |
5808 SD_BALANCE_EXEC |
5809 SD_ASYM_CPUCAPACITY |
5810 SD_SHARE_CPUCAPACITY |
5811 SD_SHARE_PKG_RESOURCES |
5812 SD_PREFER_SIBLING |
5813 SD_SHARE_POWERDOMAIN);
5814 if (nr_node_ids == 1)
5815 pflags &= ~SD_SERIALIZE;
5816 }
5817 if (~cflags & pflags)
5818 return 0;
5819
5820 return 1;
5821 }
5822
5823 static void free_rootdomain(struct rcu_head *rcu)
5824 {
5825 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5826
5827 cpupri_cleanup(&rd->cpupri);
5828 cpudl_cleanup(&rd->cpudl);
5829 free_cpumask_var(rd->dlo_mask);
5830 free_cpumask_var(rd->rto_mask);
5831 free_cpumask_var(rd->online);
5832 free_cpumask_var(rd->span);
5833 kfree(rd);
5834 }
5835
5836 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5837 {
5838 struct root_domain *old_rd = NULL;
5839 unsigned long flags;
5840
5841 raw_spin_lock_irqsave(&rq->lock, flags);
5842
5843 if (rq->rd) {
5844 old_rd = rq->rd;
5845
5846 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5847 set_rq_offline(rq);
5848
5849 cpumask_clear_cpu(rq->cpu, old_rd->span);
5850
5851 /*
5852 * If we dont want to free the old_rd yet then
5853 * set old_rd to NULL to skip the freeing later
5854 * in this function:
5855 */
5856 if (!atomic_dec_and_test(&old_rd->refcount))
5857 old_rd = NULL;
5858 }
5859
5860 atomic_inc(&rd->refcount);
5861 rq->rd = rd;
5862
5863 cpumask_set_cpu(rq->cpu, rd->span);
5864 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5865 set_rq_online(rq);
5866
5867 raw_spin_unlock_irqrestore(&rq->lock, flags);
5868
5869 if (old_rd)
5870 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5871 }
5872
5873 static int init_rootdomain(struct root_domain *rd)
5874 {
5875 memset(rd, 0, sizeof(*rd));
5876
5877 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5878 goto out;
5879 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5880 goto free_span;
5881 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5882 goto free_online;
5883 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5884 goto free_dlo_mask;
5885
5886 init_dl_bw(&rd->dl_bw);
5887 if (cpudl_init(&rd->cpudl) != 0)
5888 goto free_dlo_mask;
5889
5890 if (cpupri_init(&rd->cpupri) != 0)
5891 goto free_rto_mask;
5892 return 0;
5893
5894 free_rto_mask:
5895 free_cpumask_var(rd->rto_mask);
5896 free_dlo_mask:
5897 free_cpumask_var(rd->dlo_mask);
5898 free_online:
5899 free_cpumask_var(rd->online);
5900 free_span:
5901 free_cpumask_var(rd->span);
5902 out:
5903 return -ENOMEM;
5904 }
5905
5906 /*
5907 * By default the system creates a single root-domain with all cpus as
5908 * members (mimicking the global state we have today).
5909 */
5910 struct root_domain def_root_domain;
5911
5912 static void init_defrootdomain(void)
5913 {
5914 init_rootdomain(&def_root_domain);
5915
5916 atomic_set(&def_root_domain.refcount, 1);
5917 }
5918
5919 static struct root_domain *alloc_rootdomain(void)
5920 {
5921 struct root_domain *rd;
5922
5923 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5924 if (!rd)
5925 return NULL;
5926
5927 if (init_rootdomain(rd) != 0) {
5928 kfree(rd);
5929 return NULL;
5930 }
5931
5932 return rd;
5933 }
5934
5935 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5936 {
5937 struct sched_group *tmp, *first;
5938
5939 if (!sg)
5940 return;
5941
5942 first = sg;
5943 do {
5944 tmp = sg->next;
5945
5946 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5947 kfree(sg->sgc);
5948
5949 kfree(sg);
5950 sg = tmp;
5951 } while (sg != first);
5952 }
5953
5954 static void destroy_sched_domain(struct sched_domain *sd)
5955 {
5956 /*
5957 * If its an overlapping domain it has private groups, iterate and
5958 * nuke them all.
5959 */
5960 if (sd->flags & SD_OVERLAP) {
5961 free_sched_groups(sd->groups, 1);
5962 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5963 kfree(sd->groups->sgc);
5964 kfree(sd->groups);
5965 }
5966 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
5967 kfree(sd->shared);
5968 kfree(sd);
5969 }
5970
5971 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
5972 {
5973 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5974
5975 while (sd) {
5976 struct sched_domain *parent = sd->parent;
5977 destroy_sched_domain(sd);
5978 sd = parent;
5979 }
5980 }
5981
5982 static void destroy_sched_domains(struct sched_domain *sd)
5983 {
5984 if (sd)
5985 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
5986 }
5987
5988 /*
5989 * Keep a special pointer to the highest sched_domain that has
5990 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5991 * allows us to avoid some pointer chasing select_idle_sibling().
5992 *
5993 * Also keep a unique ID per domain (we use the first cpu number in
5994 * the cpumask of the domain), this allows us to quickly tell if
5995 * two cpus are in the same cache domain, see cpus_share_cache().
5996 */
5997 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5998 DEFINE_PER_CPU(int, sd_llc_size);
5999 DEFINE_PER_CPU(int, sd_llc_id);
6000 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
6001 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
6002 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
6003
6004 static void update_top_cache_domain(int cpu)
6005 {
6006 struct sched_domain_shared *sds = NULL;
6007 struct sched_domain *sd;
6008 int id = cpu;
6009 int size = 1;
6010
6011 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6012 if (sd) {
6013 id = cpumask_first(sched_domain_span(sd));
6014 size = cpumask_weight(sched_domain_span(sd));
6015 sds = sd->shared;
6016 }
6017
6018 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6019 per_cpu(sd_llc_size, cpu) = size;
6020 per_cpu(sd_llc_id, cpu) = id;
6021 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
6022
6023 sd = lowest_flag_domain(cpu, SD_NUMA);
6024 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6025
6026 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6027 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6028 }
6029
6030 /*
6031 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6032 * hold the hotplug lock.
6033 */
6034 static void
6035 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6036 {
6037 struct rq *rq = cpu_rq(cpu);
6038 struct sched_domain *tmp;
6039
6040 /* Remove the sched domains which do not contribute to scheduling. */
6041 for (tmp = sd; tmp; ) {
6042 struct sched_domain *parent = tmp->parent;
6043 if (!parent)
6044 break;
6045
6046 if (sd_parent_degenerate(tmp, parent)) {
6047 tmp->parent = parent->parent;
6048 if (parent->parent)
6049 parent->parent->child = tmp;
6050 /*
6051 * Transfer SD_PREFER_SIBLING down in case of a
6052 * degenerate parent; the spans match for this
6053 * so the property transfers.
6054 */
6055 if (parent->flags & SD_PREFER_SIBLING)
6056 tmp->flags |= SD_PREFER_SIBLING;
6057 destroy_sched_domain(parent);
6058 } else
6059 tmp = tmp->parent;
6060 }
6061
6062 if (sd && sd_degenerate(sd)) {
6063 tmp = sd;
6064 sd = sd->parent;
6065 destroy_sched_domain(tmp);
6066 if (sd)
6067 sd->child = NULL;
6068 }
6069
6070 sched_domain_debug(sd, cpu);
6071
6072 rq_attach_root(rq, rd);
6073 tmp = rq->sd;
6074 rcu_assign_pointer(rq->sd, sd);
6075 destroy_sched_domains(tmp);
6076
6077 update_top_cache_domain(cpu);
6078 }
6079
6080 /* Setup the mask of cpus configured for isolated domains */
6081 static int __init isolated_cpu_setup(char *str)
6082 {
6083 int ret;
6084
6085 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6086 ret = cpulist_parse(str, cpu_isolated_map);
6087 if (ret) {
6088 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6089 return 0;
6090 }
6091 return 1;
6092 }
6093 __setup("isolcpus=", isolated_cpu_setup);
6094
6095 struct s_data {
6096 struct sched_domain ** __percpu sd;
6097 struct root_domain *rd;
6098 };
6099
6100 enum s_alloc {
6101 sa_rootdomain,
6102 sa_sd,
6103 sa_sd_storage,
6104 sa_none,
6105 };
6106
6107 /*
6108 * Build an iteration mask that can exclude certain CPUs from the upwards
6109 * domain traversal.
6110 *
6111 * Asymmetric node setups can result in situations where the domain tree is of
6112 * unequal depth, make sure to skip domains that already cover the entire
6113 * range.
6114 *
6115 * In that case build_sched_domains() will have terminated the iteration early
6116 * and our sibling sd spans will be empty. Domains should always include the
6117 * cpu they're built on, so check that.
6118 *
6119 */
6120 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6121 {
6122 const struct cpumask *span = sched_domain_span(sd);
6123 struct sd_data *sdd = sd->private;
6124 struct sched_domain *sibling;
6125 int i;
6126
6127 for_each_cpu(i, span) {
6128 sibling = *per_cpu_ptr(sdd->sd, i);
6129 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6130 continue;
6131
6132 cpumask_set_cpu(i, sched_group_mask(sg));
6133 }
6134 }
6135
6136 /*
6137 * Return the canonical balance cpu for this group, this is the first cpu
6138 * of this group that's also in the iteration mask.
6139 */
6140 int group_balance_cpu(struct sched_group *sg)
6141 {
6142 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6143 }
6144
6145 static int
6146 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6147 {
6148 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6149 const struct cpumask *span = sched_domain_span(sd);
6150 struct cpumask *covered = sched_domains_tmpmask;
6151 struct sd_data *sdd = sd->private;
6152 struct sched_domain *sibling;
6153 int i;
6154
6155 cpumask_clear(covered);
6156
6157 for_each_cpu(i, span) {
6158 struct cpumask *sg_span;
6159
6160 if (cpumask_test_cpu(i, covered))
6161 continue;
6162
6163 sibling = *per_cpu_ptr(sdd->sd, i);
6164
6165 /* See the comment near build_group_mask(). */
6166 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6167 continue;
6168
6169 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6170 GFP_KERNEL, cpu_to_node(cpu));
6171
6172 if (!sg)
6173 goto fail;
6174
6175 sg_span = sched_group_cpus(sg);
6176 if (sibling->child)
6177 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6178 else
6179 cpumask_set_cpu(i, sg_span);
6180
6181 cpumask_or(covered, covered, sg_span);
6182
6183 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6184 if (atomic_inc_return(&sg->sgc->ref) == 1)
6185 build_group_mask(sd, sg);
6186
6187 /*
6188 * Initialize sgc->capacity such that even if we mess up the
6189 * domains and no possible iteration will get us here, we won't
6190 * die on a /0 trap.
6191 */
6192 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6193 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
6194
6195 /*
6196 * Make sure the first group of this domain contains the
6197 * canonical balance cpu. Otherwise the sched_domain iteration
6198 * breaks. See update_sg_lb_stats().
6199 */
6200 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6201 group_balance_cpu(sg) == cpu)
6202 groups = sg;
6203
6204 if (!first)
6205 first = sg;
6206 if (last)
6207 last->next = sg;
6208 last = sg;
6209 last->next = first;
6210 }
6211 sd->groups = groups;
6212
6213 return 0;
6214
6215 fail:
6216 free_sched_groups(first, 0);
6217
6218 return -ENOMEM;
6219 }
6220
6221 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6222 {
6223 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6224 struct sched_domain *child = sd->child;
6225
6226 if (child)
6227 cpu = cpumask_first(sched_domain_span(child));
6228
6229 if (sg) {
6230 *sg = *per_cpu_ptr(sdd->sg, cpu);
6231 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6232 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6233 }
6234
6235 return cpu;
6236 }
6237
6238 /*
6239 * build_sched_groups will build a circular linked list of the groups
6240 * covered by the given span, and will set each group's ->cpumask correctly,
6241 * and ->cpu_capacity to 0.
6242 *
6243 * Assumes the sched_domain tree is fully constructed
6244 */
6245 static int
6246 build_sched_groups(struct sched_domain *sd, int cpu)
6247 {
6248 struct sched_group *first = NULL, *last = NULL;
6249 struct sd_data *sdd = sd->private;
6250 const struct cpumask *span = sched_domain_span(sd);
6251 struct cpumask *covered;
6252 int i;
6253
6254 get_group(cpu, sdd, &sd->groups);
6255 atomic_inc(&sd->groups->ref);
6256
6257 if (cpu != cpumask_first(span))
6258 return 0;
6259
6260 lockdep_assert_held(&sched_domains_mutex);
6261 covered = sched_domains_tmpmask;
6262
6263 cpumask_clear(covered);
6264
6265 for_each_cpu(i, span) {
6266 struct sched_group *sg;
6267 int group, j;
6268
6269 if (cpumask_test_cpu(i, covered))
6270 continue;
6271
6272 group = get_group(i, sdd, &sg);
6273 cpumask_setall(sched_group_mask(sg));
6274
6275 for_each_cpu(j, span) {
6276 if (get_group(j, sdd, NULL) != group)
6277 continue;
6278
6279 cpumask_set_cpu(j, covered);
6280 cpumask_set_cpu(j, sched_group_cpus(sg));
6281 }
6282
6283 if (!first)
6284 first = sg;
6285 if (last)
6286 last->next = sg;
6287 last = sg;
6288 }
6289 last->next = first;
6290
6291 return 0;
6292 }
6293
6294 /*
6295 * Initialize sched groups cpu_capacity.
6296 *
6297 * cpu_capacity indicates the capacity of sched group, which is used while
6298 * distributing the load between different sched groups in a sched domain.
6299 * Typically cpu_capacity for all the groups in a sched domain will be same
6300 * unless there are asymmetries in the topology. If there are asymmetries,
6301 * group having more cpu_capacity will pickup more load compared to the
6302 * group having less cpu_capacity.
6303 */
6304 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6305 {
6306 struct sched_group *sg = sd->groups;
6307
6308 WARN_ON(!sg);
6309
6310 do {
6311 int cpu, max_cpu = -1;
6312
6313 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6314
6315 if (!(sd->flags & SD_ASYM_PACKING))
6316 goto next;
6317
6318 for_each_cpu(cpu, sched_group_cpus(sg)) {
6319 if (max_cpu < 0)
6320 max_cpu = cpu;
6321 else if (sched_asym_prefer(cpu, max_cpu))
6322 max_cpu = cpu;
6323 }
6324 sg->asym_prefer_cpu = max_cpu;
6325
6326 next:
6327 sg = sg->next;
6328 } while (sg != sd->groups);
6329
6330 if (cpu != group_balance_cpu(sg))
6331 return;
6332
6333 update_group_capacity(sd, cpu);
6334 }
6335
6336 /*
6337 * Initializers for schedule domains
6338 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6339 */
6340
6341 static int default_relax_domain_level = -1;
6342 int sched_domain_level_max;
6343
6344 static int __init setup_relax_domain_level(char *str)
6345 {
6346 if (kstrtoint(str, 0, &default_relax_domain_level))
6347 pr_warn("Unable to set relax_domain_level\n");
6348
6349 return 1;
6350 }
6351 __setup("relax_domain_level=", setup_relax_domain_level);
6352
6353 static void set_domain_attribute(struct sched_domain *sd,
6354 struct sched_domain_attr *attr)
6355 {
6356 int request;
6357
6358 if (!attr || attr->relax_domain_level < 0) {
6359 if (default_relax_domain_level < 0)
6360 return;
6361 else
6362 request = default_relax_domain_level;
6363 } else
6364 request = attr->relax_domain_level;
6365 if (request < sd->level) {
6366 /* turn off idle balance on this domain */
6367 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6368 } else {
6369 /* turn on idle balance on this domain */
6370 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6371 }
6372 }
6373
6374 static void __sdt_free(const struct cpumask *cpu_map);
6375 static int __sdt_alloc(const struct cpumask *cpu_map);
6376
6377 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6378 const struct cpumask *cpu_map)
6379 {
6380 switch (what) {
6381 case sa_rootdomain:
6382 if (!atomic_read(&d->rd->refcount))
6383 free_rootdomain(&d->rd->rcu); /* fall through */
6384 case sa_sd:
6385 free_percpu(d->sd); /* fall through */
6386 case sa_sd_storage:
6387 __sdt_free(cpu_map); /* fall through */
6388 case sa_none:
6389 break;
6390 }
6391 }
6392
6393 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6394 const struct cpumask *cpu_map)
6395 {
6396 memset(d, 0, sizeof(*d));
6397
6398 if (__sdt_alloc(cpu_map))
6399 return sa_sd_storage;
6400 d->sd = alloc_percpu(struct sched_domain *);
6401 if (!d->sd)
6402 return sa_sd_storage;
6403 d->rd = alloc_rootdomain();
6404 if (!d->rd)
6405 return sa_sd;
6406 return sa_rootdomain;
6407 }
6408
6409 /*
6410 * NULL the sd_data elements we've used to build the sched_domain and
6411 * sched_group structure so that the subsequent __free_domain_allocs()
6412 * will not free the data we're using.
6413 */
6414 static void claim_allocations(int cpu, struct sched_domain *sd)
6415 {
6416 struct sd_data *sdd = sd->private;
6417
6418 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6419 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6420
6421 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
6422 *per_cpu_ptr(sdd->sds, cpu) = NULL;
6423
6424 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6425 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6426
6427 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6428 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6429 }
6430
6431 #ifdef CONFIG_NUMA
6432 static int sched_domains_numa_levels;
6433 enum numa_topology_type sched_numa_topology_type;
6434 static int *sched_domains_numa_distance;
6435 int sched_max_numa_distance;
6436 static struct cpumask ***sched_domains_numa_masks;
6437 static int sched_domains_curr_level;
6438 #endif
6439
6440 /*
6441 * SD_flags allowed in topology descriptions.
6442 *
6443 * These flags are purely descriptive of the topology and do not prescribe
6444 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6445 * function:
6446 *
6447 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6448 * SD_SHARE_PKG_RESOURCES - describes shared caches
6449 * SD_NUMA - describes NUMA topologies
6450 * SD_SHARE_POWERDOMAIN - describes shared power domain
6451 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
6452 *
6453 * Odd one out, which beside describing the topology has a quirk also
6454 * prescribes the desired behaviour that goes along with it:
6455 *
6456 * SD_ASYM_PACKING - describes SMT quirks
6457 */
6458 #define TOPOLOGY_SD_FLAGS \
6459 (SD_SHARE_CPUCAPACITY | \
6460 SD_SHARE_PKG_RESOURCES | \
6461 SD_NUMA | \
6462 SD_ASYM_PACKING | \
6463 SD_ASYM_CPUCAPACITY | \
6464 SD_SHARE_POWERDOMAIN)
6465
6466 static struct sched_domain *
6467 sd_init(struct sched_domain_topology_level *tl,
6468 const struct cpumask *cpu_map,
6469 struct sched_domain *child, int cpu)
6470 {
6471 struct sd_data *sdd = &tl->data;
6472 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6473 int sd_id, sd_weight, sd_flags = 0;
6474
6475 #ifdef CONFIG_NUMA
6476 /*
6477 * Ugly hack to pass state to sd_numa_mask()...
6478 */
6479 sched_domains_curr_level = tl->numa_level;
6480 #endif
6481
6482 sd_weight = cpumask_weight(tl->mask(cpu));
6483
6484 if (tl->sd_flags)
6485 sd_flags = (*tl->sd_flags)();
6486 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6487 "wrong sd_flags in topology description\n"))
6488 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6489
6490 *sd = (struct sched_domain){
6491 .min_interval = sd_weight,
6492 .max_interval = 2*sd_weight,
6493 .busy_factor = 32,
6494 .imbalance_pct = 125,
6495
6496 .cache_nice_tries = 0,
6497 .busy_idx = 0,
6498 .idle_idx = 0,
6499 .newidle_idx = 0,
6500 .wake_idx = 0,
6501 .forkexec_idx = 0,
6502
6503 .flags = 1*SD_LOAD_BALANCE
6504 | 1*SD_BALANCE_NEWIDLE
6505 | 1*SD_BALANCE_EXEC
6506 | 1*SD_BALANCE_FORK
6507 | 0*SD_BALANCE_WAKE
6508 | 1*SD_WAKE_AFFINE
6509 | 0*SD_SHARE_CPUCAPACITY
6510 | 0*SD_SHARE_PKG_RESOURCES
6511 | 0*SD_SERIALIZE
6512 | 0*SD_PREFER_SIBLING
6513 | 0*SD_NUMA
6514 | sd_flags
6515 ,
6516
6517 .last_balance = jiffies,
6518 .balance_interval = sd_weight,
6519 .smt_gain = 0,
6520 .max_newidle_lb_cost = 0,
6521 .next_decay_max_lb_cost = jiffies,
6522 .child = child,
6523 #ifdef CONFIG_SCHED_DEBUG
6524 .name = tl->name,
6525 #endif
6526 };
6527
6528 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6529 sd_id = cpumask_first(sched_domain_span(sd));
6530
6531 /*
6532 * Convert topological properties into behaviour.
6533 */
6534
6535 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6536 struct sched_domain *t = sd;
6537
6538 for_each_lower_domain(t)
6539 t->flags |= SD_BALANCE_WAKE;
6540 }
6541
6542 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6543 sd->flags |= SD_PREFER_SIBLING;
6544 sd->imbalance_pct = 110;
6545 sd->smt_gain = 1178; /* ~15% */
6546
6547 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6548 sd->imbalance_pct = 117;
6549 sd->cache_nice_tries = 1;
6550 sd->busy_idx = 2;
6551
6552 #ifdef CONFIG_NUMA
6553 } else if (sd->flags & SD_NUMA) {
6554 sd->cache_nice_tries = 2;
6555 sd->busy_idx = 3;
6556 sd->idle_idx = 2;
6557
6558 sd->flags |= SD_SERIALIZE;
6559 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6560 sd->flags &= ~(SD_BALANCE_EXEC |
6561 SD_BALANCE_FORK |
6562 SD_WAKE_AFFINE);
6563 }
6564
6565 #endif
6566 } else {
6567 sd->flags |= SD_PREFER_SIBLING;
6568 sd->cache_nice_tries = 1;
6569 sd->busy_idx = 2;
6570 sd->idle_idx = 1;
6571 }
6572
6573 /*
6574 * For all levels sharing cache; connect a sched_domain_shared
6575 * instance.
6576 */
6577 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6578 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
6579 atomic_inc(&sd->shared->ref);
6580 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
6581 }
6582
6583 sd->private = sdd;
6584
6585 return sd;
6586 }
6587
6588 /*
6589 * Topology list, bottom-up.
6590 */
6591 static struct sched_domain_topology_level default_topology[] = {
6592 #ifdef CONFIG_SCHED_SMT
6593 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6594 #endif
6595 #ifdef CONFIG_SCHED_MC
6596 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6597 #endif
6598 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6599 { NULL, },
6600 };
6601
6602 static struct sched_domain_topology_level *sched_domain_topology =
6603 default_topology;
6604
6605 #define for_each_sd_topology(tl) \
6606 for (tl = sched_domain_topology; tl->mask; tl++)
6607
6608 void set_sched_topology(struct sched_domain_topology_level *tl)
6609 {
6610 if (WARN_ON_ONCE(sched_smp_initialized))
6611 return;
6612
6613 sched_domain_topology = tl;
6614 }
6615
6616 #ifdef CONFIG_NUMA
6617
6618 static const struct cpumask *sd_numa_mask(int cpu)
6619 {
6620 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6621 }
6622
6623 static void sched_numa_warn(const char *str)
6624 {
6625 static int done = false;
6626 int i,j;
6627
6628 if (done)
6629 return;
6630
6631 done = true;
6632
6633 printk(KERN_WARNING "ERROR: %s\n\n", str);
6634
6635 for (i = 0; i < nr_node_ids; i++) {
6636 printk(KERN_WARNING " ");
6637 for (j = 0; j < nr_node_ids; j++)
6638 printk(KERN_CONT "%02d ", node_distance(i,j));
6639 printk(KERN_CONT "\n");
6640 }
6641 printk(KERN_WARNING "\n");
6642 }
6643
6644 bool find_numa_distance(int distance)
6645 {
6646 int i;
6647
6648 if (distance == node_distance(0, 0))
6649 return true;
6650
6651 for (i = 0; i < sched_domains_numa_levels; i++) {
6652 if (sched_domains_numa_distance[i] == distance)
6653 return true;
6654 }
6655
6656 return false;
6657 }
6658
6659 /*
6660 * A system can have three types of NUMA topology:
6661 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6662 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6663 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6664 *
6665 * The difference between a glueless mesh topology and a backplane
6666 * topology lies in whether communication between not directly
6667 * connected nodes goes through intermediary nodes (where programs
6668 * could run), or through backplane controllers. This affects
6669 * placement of programs.
6670 *
6671 * The type of topology can be discerned with the following tests:
6672 * - If the maximum distance between any nodes is 1 hop, the system
6673 * is directly connected.
6674 * - If for two nodes A and B, located N > 1 hops away from each other,
6675 * there is an intermediary node C, which is < N hops away from both
6676 * nodes A and B, the system is a glueless mesh.
6677 */
6678 static void init_numa_topology_type(void)
6679 {
6680 int a, b, c, n;
6681
6682 n = sched_max_numa_distance;
6683
6684 if (sched_domains_numa_levels <= 1) {
6685 sched_numa_topology_type = NUMA_DIRECT;
6686 return;
6687 }
6688
6689 for_each_online_node(a) {
6690 for_each_online_node(b) {
6691 /* Find two nodes furthest removed from each other. */
6692 if (node_distance(a, b) < n)
6693 continue;
6694
6695 /* Is there an intermediary node between a and b? */
6696 for_each_online_node(c) {
6697 if (node_distance(a, c) < n &&
6698 node_distance(b, c) < n) {
6699 sched_numa_topology_type =
6700 NUMA_GLUELESS_MESH;
6701 return;
6702 }
6703 }
6704
6705 sched_numa_topology_type = NUMA_BACKPLANE;
6706 return;
6707 }
6708 }
6709 }
6710
6711 static void sched_init_numa(void)
6712 {
6713 int next_distance, curr_distance = node_distance(0, 0);
6714 struct sched_domain_topology_level *tl;
6715 int level = 0;
6716 int i, j, k;
6717
6718 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6719 if (!sched_domains_numa_distance)
6720 return;
6721
6722 /*
6723 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6724 * unique distances in the node_distance() table.
6725 *
6726 * Assumes node_distance(0,j) includes all distances in
6727 * node_distance(i,j) in order to avoid cubic time.
6728 */
6729 next_distance = curr_distance;
6730 for (i = 0; i < nr_node_ids; i++) {
6731 for (j = 0; j < nr_node_ids; j++) {
6732 for (k = 0; k < nr_node_ids; k++) {
6733 int distance = node_distance(i, k);
6734
6735 if (distance > curr_distance &&
6736 (distance < next_distance ||
6737 next_distance == curr_distance))
6738 next_distance = distance;
6739
6740 /*
6741 * While not a strong assumption it would be nice to know
6742 * about cases where if node A is connected to B, B is not
6743 * equally connected to A.
6744 */
6745 if (sched_debug() && node_distance(k, i) != distance)
6746 sched_numa_warn("Node-distance not symmetric");
6747
6748 if (sched_debug() && i && !find_numa_distance(distance))
6749 sched_numa_warn("Node-0 not representative");
6750 }
6751 if (next_distance != curr_distance) {
6752 sched_domains_numa_distance[level++] = next_distance;
6753 sched_domains_numa_levels = level;
6754 curr_distance = next_distance;
6755 } else break;
6756 }
6757
6758 /*
6759 * In case of sched_debug() we verify the above assumption.
6760 */
6761 if (!sched_debug())
6762 break;
6763 }
6764
6765 if (!level)
6766 return;
6767
6768 /*
6769 * 'level' contains the number of unique distances, excluding the
6770 * identity distance node_distance(i,i).
6771 *
6772 * The sched_domains_numa_distance[] array includes the actual distance
6773 * numbers.
6774 */
6775
6776 /*
6777 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6778 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6779 * the array will contain less then 'level' members. This could be
6780 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6781 * in other functions.
6782 *
6783 * We reset it to 'level' at the end of this function.
6784 */
6785 sched_domains_numa_levels = 0;
6786
6787 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6788 if (!sched_domains_numa_masks)
6789 return;
6790
6791 /*
6792 * Now for each level, construct a mask per node which contains all
6793 * cpus of nodes that are that many hops away from us.
6794 */
6795 for (i = 0; i < level; i++) {
6796 sched_domains_numa_masks[i] =
6797 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6798 if (!sched_domains_numa_masks[i])
6799 return;
6800
6801 for (j = 0; j < nr_node_ids; j++) {
6802 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6803 if (!mask)
6804 return;
6805
6806 sched_domains_numa_masks[i][j] = mask;
6807
6808 for_each_node(k) {
6809 if (node_distance(j, k) > sched_domains_numa_distance[i])
6810 continue;
6811
6812 cpumask_or(mask, mask, cpumask_of_node(k));
6813 }
6814 }
6815 }
6816
6817 /* Compute default topology size */
6818 for (i = 0; sched_domain_topology[i].mask; i++);
6819
6820 tl = kzalloc((i + level + 1) *
6821 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6822 if (!tl)
6823 return;
6824
6825 /*
6826 * Copy the default topology bits..
6827 */
6828 for (i = 0; sched_domain_topology[i].mask; i++)
6829 tl[i] = sched_domain_topology[i];
6830
6831 /*
6832 * .. and append 'j' levels of NUMA goodness.
6833 */
6834 for (j = 0; j < level; i++, j++) {
6835 tl[i] = (struct sched_domain_topology_level){
6836 .mask = sd_numa_mask,
6837 .sd_flags = cpu_numa_flags,
6838 .flags = SDTL_OVERLAP,
6839 .numa_level = j,
6840 SD_INIT_NAME(NUMA)
6841 };
6842 }
6843
6844 sched_domain_topology = tl;
6845
6846 sched_domains_numa_levels = level;
6847 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6848
6849 init_numa_topology_type();
6850 }
6851
6852 static void sched_domains_numa_masks_set(unsigned int cpu)
6853 {
6854 int node = cpu_to_node(cpu);
6855 int i, j;
6856
6857 for (i = 0; i < sched_domains_numa_levels; i++) {
6858 for (j = 0; j < nr_node_ids; j++) {
6859 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6860 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6861 }
6862 }
6863 }
6864
6865 static void sched_domains_numa_masks_clear(unsigned int cpu)
6866 {
6867 int i, j;
6868
6869 for (i = 0; i < sched_domains_numa_levels; i++) {
6870 for (j = 0; j < nr_node_ids; j++)
6871 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6872 }
6873 }
6874
6875 #else
6876 static inline void sched_init_numa(void) { }
6877 static void sched_domains_numa_masks_set(unsigned int cpu) { }
6878 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
6879 #endif /* CONFIG_NUMA */
6880
6881 static int __sdt_alloc(const struct cpumask *cpu_map)
6882 {
6883 struct sched_domain_topology_level *tl;
6884 int j;
6885
6886 for_each_sd_topology(tl) {
6887 struct sd_data *sdd = &tl->data;
6888
6889 sdd->sd = alloc_percpu(struct sched_domain *);
6890 if (!sdd->sd)
6891 return -ENOMEM;
6892
6893 sdd->sds = alloc_percpu(struct sched_domain_shared *);
6894 if (!sdd->sds)
6895 return -ENOMEM;
6896
6897 sdd->sg = alloc_percpu(struct sched_group *);
6898 if (!sdd->sg)
6899 return -ENOMEM;
6900
6901 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6902 if (!sdd->sgc)
6903 return -ENOMEM;
6904
6905 for_each_cpu(j, cpu_map) {
6906 struct sched_domain *sd;
6907 struct sched_domain_shared *sds;
6908 struct sched_group *sg;
6909 struct sched_group_capacity *sgc;
6910
6911 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6912 GFP_KERNEL, cpu_to_node(j));
6913 if (!sd)
6914 return -ENOMEM;
6915
6916 *per_cpu_ptr(sdd->sd, j) = sd;
6917
6918 sds = kzalloc_node(sizeof(struct sched_domain_shared),
6919 GFP_KERNEL, cpu_to_node(j));
6920 if (!sds)
6921 return -ENOMEM;
6922
6923 *per_cpu_ptr(sdd->sds, j) = sds;
6924
6925 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6926 GFP_KERNEL, cpu_to_node(j));
6927 if (!sg)
6928 return -ENOMEM;
6929
6930 sg->next = sg;
6931
6932 *per_cpu_ptr(sdd->sg, j) = sg;
6933
6934 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6935 GFP_KERNEL, cpu_to_node(j));
6936 if (!sgc)
6937 return -ENOMEM;
6938
6939 *per_cpu_ptr(sdd->sgc, j) = sgc;
6940 }
6941 }
6942
6943 return 0;
6944 }
6945
6946 static void __sdt_free(const struct cpumask *cpu_map)
6947 {
6948 struct sched_domain_topology_level *tl;
6949 int j;
6950
6951 for_each_sd_topology(tl) {
6952 struct sd_data *sdd = &tl->data;
6953
6954 for_each_cpu(j, cpu_map) {
6955 struct sched_domain *sd;
6956
6957 if (sdd->sd) {
6958 sd = *per_cpu_ptr(sdd->sd, j);
6959 if (sd && (sd->flags & SD_OVERLAP))
6960 free_sched_groups(sd->groups, 0);
6961 kfree(*per_cpu_ptr(sdd->sd, j));
6962 }
6963
6964 if (sdd->sds)
6965 kfree(*per_cpu_ptr(sdd->sds, j));
6966 if (sdd->sg)
6967 kfree(*per_cpu_ptr(sdd->sg, j));
6968 if (sdd->sgc)
6969 kfree(*per_cpu_ptr(sdd->sgc, j));
6970 }
6971 free_percpu(sdd->sd);
6972 sdd->sd = NULL;
6973 free_percpu(sdd->sds);
6974 sdd->sds = NULL;
6975 free_percpu(sdd->sg);
6976 sdd->sg = NULL;
6977 free_percpu(sdd->sgc);
6978 sdd->sgc = NULL;
6979 }
6980 }
6981
6982 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6983 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6984 struct sched_domain *child, int cpu)
6985 {
6986 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
6987
6988 if (child) {
6989 sd->level = child->level + 1;
6990 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6991 child->parent = sd;
6992
6993 if (!cpumask_subset(sched_domain_span(child),
6994 sched_domain_span(sd))) {
6995 pr_err("BUG: arch topology borken\n");
6996 #ifdef CONFIG_SCHED_DEBUG
6997 pr_err(" the %s domain not a subset of the %s domain\n",
6998 child->name, sd->name);
6999 #endif
7000 /* Fixup, ensure @sd has at least @child cpus. */
7001 cpumask_or(sched_domain_span(sd),
7002 sched_domain_span(sd),
7003 sched_domain_span(child));
7004 }
7005
7006 }
7007 set_domain_attribute(sd, attr);
7008
7009 return sd;
7010 }
7011
7012 /*
7013 * Build sched domains for a given set of cpus and attach the sched domains
7014 * to the individual cpus
7015 */
7016 static int build_sched_domains(const struct cpumask *cpu_map,
7017 struct sched_domain_attr *attr)
7018 {
7019 enum s_alloc alloc_state;
7020 struct sched_domain *sd;
7021 struct s_data d;
7022 struct rq *rq = NULL;
7023 int i, ret = -ENOMEM;
7024
7025 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7026 if (alloc_state != sa_rootdomain)
7027 goto error;
7028
7029 /* Set up domains for cpus specified by the cpu_map. */
7030 for_each_cpu(i, cpu_map) {
7031 struct sched_domain_topology_level *tl;
7032
7033 sd = NULL;
7034 for_each_sd_topology(tl) {
7035 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7036 if (tl == sched_domain_topology)
7037 *per_cpu_ptr(d.sd, i) = sd;
7038 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7039 sd->flags |= SD_OVERLAP;
7040 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7041 break;
7042 }
7043 }
7044
7045 /* Build the groups for the domains */
7046 for_each_cpu(i, cpu_map) {
7047 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7048 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7049 if (sd->flags & SD_OVERLAP) {
7050 if (build_overlap_sched_groups(sd, i))
7051 goto error;
7052 } else {
7053 if (build_sched_groups(sd, i))
7054 goto error;
7055 }
7056 }
7057 }
7058
7059 /* Calculate CPU capacity for physical packages and nodes */
7060 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7061 if (!cpumask_test_cpu(i, cpu_map))
7062 continue;
7063
7064 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7065 claim_allocations(i, sd);
7066 init_sched_groups_capacity(i, sd);
7067 }
7068 }
7069
7070 /* Attach the domains */
7071 rcu_read_lock();
7072 for_each_cpu(i, cpu_map) {
7073 rq = cpu_rq(i);
7074 sd = *per_cpu_ptr(d.sd, i);
7075
7076 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
7077 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
7078 WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
7079
7080 cpu_attach_domain(sd, d.rd, i);
7081 }
7082 rcu_read_unlock();
7083
7084 if (rq && sched_debug_enabled) {
7085 pr_info("span: %*pbl (max cpu_capacity = %lu)\n",
7086 cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
7087 }
7088
7089 ret = 0;
7090 error:
7091 __free_domain_allocs(&d, alloc_state, cpu_map);
7092 return ret;
7093 }
7094
7095 static cpumask_var_t *doms_cur; /* current sched domains */
7096 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7097 static struct sched_domain_attr *dattr_cur;
7098 /* attribues of custom domains in 'doms_cur' */
7099
7100 /*
7101 * Special case: If a kmalloc of a doms_cur partition (array of
7102 * cpumask) fails, then fallback to a single sched domain,
7103 * as determined by the single cpumask fallback_doms.
7104 */
7105 static cpumask_var_t fallback_doms;
7106
7107 /*
7108 * arch_update_cpu_topology lets virtualized architectures update the
7109 * cpu core maps. It is supposed to return 1 if the topology changed
7110 * or 0 if it stayed the same.
7111 */
7112 int __weak arch_update_cpu_topology(void)
7113 {
7114 return 0;
7115 }
7116
7117 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7118 {
7119 int i;
7120 cpumask_var_t *doms;
7121
7122 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7123 if (!doms)
7124 return NULL;
7125 for (i = 0; i < ndoms; i++) {
7126 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7127 free_sched_domains(doms, i);
7128 return NULL;
7129 }
7130 }
7131 return doms;
7132 }
7133
7134 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7135 {
7136 unsigned int i;
7137 for (i = 0; i < ndoms; i++)
7138 free_cpumask_var(doms[i]);
7139 kfree(doms);
7140 }
7141
7142 /*
7143 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7144 * For now this just excludes isolated cpus, but could be used to
7145 * exclude other special cases in the future.
7146 */
7147 static int init_sched_domains(const struct cpumask *cpu_map)
7148 {
7149 int err;
7150
7151 arch_update_cpu_topology();
7152 ndoms_cur = 1;
7153 doms_cur = alloc_sched_domains(ndoms_cur);
7154 if (!doms_cur)
7155 doms_cur = &fallback_doms;
7156 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7157 err = build_sched_domains(doms_cur[0], NULL);
7158 register_sched_domain_sysctl();
7159
7160 return err;
7161 }
7162
7163 /*
7164 * Detach sched domains from a group of cpus specified in cpu_map
7165 * These cpus will now be attached to the NULL domain
7166 */
7167 static void detach_destroy_domains(const struct cpumask *cpu_map)
7168 {
7169 int i;
7170
7171 rcu_read_lock();
7172 for_each_cpu(i, cpu_map)
7173 cpu_attach_domain(NULL, &def_root_domain, i);
7174 rcu_read_unlock();
7175 }
7176
7177 /* handle null as "default" */
7178 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7179 struct sched_domain_attr *new, int idx_new)
7180 {
7181 struct sched_domain_attr tmp;
7182
7183 /* fast path */
7184 if (!new && !cur)
7185 return 1;
7186
7187 tmp = SD_ATTR_INIT;
7188 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7189 new ? (new + idx_new) : &tmp,
7190 sizeof(struct sched_domain_attr));
7191 }
7192
7193 /*
7194 * Partition sched domains as specified by the 'ndoms_new'
7195 * cpumasks in the array doms_new[] of cpumasks. This compares
7196 * doms_new[] to the current sched domain partitioning, doms_cur[].
7197 * It destroys each deleted domain and builds each new domain.
7198 *
7199 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7200 * The masks don't intersect (don't overlap.) We should setup one
7201 * sched domain for each mask. CPUs not in any of the cpumasks will
7202 * not be load balanced. If the same cpumask appears both in the
7203 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7204 * it as it is.
7205 *
7206 * The passed in 'doms_new' should be allocated using
7207 * alloc_sched_domains. This routine takes ownership of it and will
7208 * free_sched_domains it when done with it. If the caller failed the
7209 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7210 * and partition_sched_domains() will fallback to the single partition
7211 * 'fallback_doms', it also forces the domains to be rebuilt.
7212 *
7213 * If doms_new == NULL it will be replaced with cpu_online_mask.
7214 * ndoms_new == 0 is a special case for destroying existing domains,
7215 * and it will not create the default domain.
7216 *
7217 * Call with hotplug lock held
7218 */
7219 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7220 struct sched_domain_attr *dattr_new)
7221 {
7222 int i, j, n;
7223 int new_topology;
7224
7225 mutex_lock(&sched_domains_mutex);
7226
7227 /* always unregister in case we don't destroy any domains */
7228 unregister_sched_domain_sysctl();
7229
7230 /* Let architecture update cpu core mappings. */
7231 new_topology = arch_update_cpu_topology();
7232
7233 n = doms_new ? ndoms_new : 0;
7234
7235 /* Destroy deleted domains */
7236 for (i = 0; i < ndoms_cur; i++) {
7237 for (j = 0; j < n && !new_topology; j++) {
7238 if (cpumask_equal(doms_cur[i], doms_new[j])
7239 && dattrs_equal(dattr_cur, i, dattr_new, j))
7240 goto match1;
7241 }
7242 /* no match - a current sched domain not in new doms_new[] */
7243 detach_destroy_domains(doms_cur[i]);
7244 match1:
7245 ;
7246 }
7247
7248 n = ndoms_cur;
7249 if (doms_new == NULL) {
7250 n = 0;
7251 doms_new = &fallback_doms;
7252 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7253 WARN_ON_ONCE(dattr_new);
7254 }
7255
7256 /* Build new domains */
7257 for (i = 0; i < ndoms_new; i++) {
7258 for (j = 0; j < n && !new_topology; j++) {
7259 if (cpumask_equal(doms_new[i], doms_cur[j])
7260 && dattrs_equal(dattr_new, i, dattr_cur, j))
7261 goto match2;
7262 }
7263 /* no match - add a new doms_new */
7264 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7265 match2:
7266 ;
7267 }
7268
7269 /* Remember the new sched domains */
7270 if (doms_cur != &fallback_doms)
7271 free_sched_domains(doms_cur, ndoms_cur);
7272 kfree(dattr_cur); /* kfree(NULL) is safe */
7273 doms_cur = doms_new;
7274 dattr_cur = dattr_new;
7275 ndoms_cur = ndoms_new;
7276
7277 register_sched_domain_sysctl();
7278
7279 mutex_unlock(&sched_domains_mutex);
7280 }
7281
7282 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7283
7284 /*
7285 * Update cpusets according to cpu_active mask. If cpusets are
7286 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7287 * around partition_sched_domains().
7288 *
7289 * If we come here as part of a suspend/resume, don't touch cpusets because we
7290 * want to restore it back to its original state upon resume anyway.
7291 */
7292 static void cpuset_cpu_active(void)
7293 {
7294 if (cpuhp_tasks_frozen) {
7295 /*
7296 * num_cpus_frozen tracks how many CPUs are involved in suspend
7297 * resume sequence. As long as this is not the last online
7298 * operation in the resume sequence, just build a single sched
7299 * domain, ignoring cpusets.
7300 */
7301 num_cpus_frozen--;
7302 if (likely(num_cpus_frozen)) {
7303 partition_sched_domains(1, NULL, NULL);
7304 return;
7305 }
7306 /*
7307 * This is the last CPU online operation. So fall through and
7308 * restore the original sched domains by considering the
7309 * cpuset configurations.
7310 */
7311 }
7312 cpuset_update_active_cpus(true);
7313 }
7314
7315 static int cpuset_cpu_inactive(unsigned int cpu)
7316 {
7317 unsigned long flags;
7318 struct dl_bw *dl_b;
7319 bool overflow;
7320 int cpus;
7321
7322 if (!cpuhp_tasks_frozen) {
7323 rcu_read_lock_sched();
7324 dl_b = dl_bw_of(cpu);
7325
7326 raw_spin_lock_irqsave(&dl_b->lock, flags);
7327 cpus = dl_bw_cpus(cpu);
7328 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7329 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7330
7331 rcu_read_unlock_sched();
7332
7333 if (overflow)
7334 return -EBUSY;
7335 cpuset_update_active_cpus(false);
7336 } else {
7337 num_cpus_frozen++;
7338 partition_sched_domains(1, NULL, NULL);
7339 }
7340 return 0;
7341 }
7342
7343 int sched_cpu_activate(unsigned int cpu)
7344 {
7345 struct rq *rq = cpu_rq(cpu);
7346 unsigned long flags;
7347
7348 set_cpu_active(cpu, true);
7349
7350 if (sched_smp_initialized) {
7351 sched_domains_numa_masks_set(cpu);
7352 cpuset_cpu_active();
7353 }
7354
7355 /*
7356 * Put the rq online, if not already. This happens:
7357 *
7358 * 1) In the early boot process, because we build the real domains
7359 * after all cpus have been brought up.
7360 *
7361 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7362 * domains.
7363 */
7364 raw_spin_lock_irqsave(&rq->lock, flags);
7365 if (rq->rd) {
7366 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7367 set_rq_online(rq);
7368 }
7369 raw_spin_unlock_irqrestore(&rq->lock, flags);
7370
7371 update_max_interval();
7372
7373 return 0;
7374 }
7375
7376 int sched_cpu_deactivate(unsigned int cpu)
7377 {
7378 int ret;
7379
7380 set_cpu_active(cpu, false);
7381 /*
7382 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7383 * users of this state to go away such that all new such users will
7384 * observe it.
7385 *
7386 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7387 * not imply sync_sched(), so wait for both.
7388 *
7389 * Do sync before park smpboot threads to take care the rcu boost case.
7390 */
7391 if (IS_ENABLED(CONFIG_PREEMPT))
7392 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7393 else
7394 synchronize_rcu();
7395
7396 if (!sched_smp_initialized)
7397 return 0;
7398
7399 ret = cpuset_cpu_inactive(cpu);
7400 if (ret) {
7401 set_cpu_active(cpu, true);
7402 return ret;
7403 }
7404 sched_domains_numa_masks_clear(cpu);
7405 return 0;
7406 }
7407
7408 static void sched_rq_cpu_starting(unsigned int cpu)
7409 {
7410 struct rq *rq = cpu_rq(cpu);
7411
7412 rq->calc_load_update = calc_load_update;
7413 update_max_interval();
7414 }
7415
7416 int sched_cpu_starting(unsigned int cpu)
7417 {
7418 set_cpu_rq_start_time(cpu);
7419 sched_rq_cpu_starting(cpu);
7420 return 0;
7421 }
7422
7423 #ifdef CONFIG_HOTPLUG_CPU
7424 int sched_cpu_dying(unsigned int cpu)
7425 {
7426 struct rq *rq = cpu_rq(cpu);
7427 unsigned long flags;
7428
7429 /* Handle pending wakeups and then migrate everything off */
7430 sched_ttwu_pending();
7431 raw_spin_lock_irqsave(&rq->lock, flags);
7432 if (rq->rd) {
7433 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7434 set_rq_offline(rq);
7435 }
7436 migrate_tasks(rq);
7437 BUG_ON(rq->nr_running != 1);
7438 raw_spin_unlock_irqrestore(&rq->lock, flags);
7439 calc_load_migrate(rq);
7440 update_max_interval();
7441 nohz_balance_exit_idle(cpu);
7442 hrtick_clear(rq);
7443 return 0;
7444 }
7445 #endif
7446
7447 #ifdef CONFIG_SCHED_SMT
7448 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7449
7450 static void sched_init_smt(void)
7451 {
7452 /*
7453 * We've enumerated all CPUs and will assume that if any CPU
7454 * has SMT siblings, CPU0 will too.
7455 */
7456 if (cpumask_weight(cpu_smt_mask(0)) > 1)
7457 static_branch_enable(&sched_smt_present);
7458 }
7459 #else
7460 static inline void sched_init_smt(void) { }
7461 #endif
7462
7463 void __init sched_init_smp(void)
7464 {
7465 cpumask_var_t non_isolated_cpus;
7466
7467 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7468 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7469
7470 sched_init_numa();
7471
7472 /*
7473 * There's no userspace yet to cause hotplug operations; hence all the
7474 * cpu masks are stable and all blatant races in the below code cannot
7475 * happen.
7476 */
7477 mutex_lock(&sched_domains_mutex);
7478 init_sched_domains(cpu_active_mask);
7479 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7480 if (cpumask_empty(non_isolated_cpus))
7481 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7482 mutex_unlock(&sched_domains_mutex);
7483
7484 /* Move init over to a non-isolated CPU */
7485 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7486 BUG();
7487 sched_init_granularity();
7488 free_cpumask_var(non_isolated_cpus);
7489
7490 init_sched_rt_class();
7491 init_sched_dl_class();
7492
7493 sched_init_smt();
7494
7495 sched_smp_initialized = true;
7496 }
7497
7498 static int __init migration_init(void)
7499 {
7500 sched_rq_cpu_starting(smp_processor_id());
7501 return 0;
7502 }
7503 early_initcall(migration_init);
7504
7505 #else
7506 void __init sched_init_smp(void)
7507 {
7508 sched_init_granularity();
7509 }
7510 #endif /* CONFIG_SMP */
7511
7512 int in_sched_functions(unsigned long addr)
7513 {
7514 return in_lock_functions(addr) ||
7515 (addr >= (unsigned long)__sched_text_start
7516 && addr < (unsigned long)__sched_text_end);
7517 }
7518
7519 #ifdef CONFIG_CGROUP_SCHED
7520 /*
7521 * Default task group.
7522 * Every task in system belongs to this group at bootup.
7523 */
7524 struct task_group root_task_group;
7525 LIST_HEAD(task_groups);
7526
7527 /* Cacheline aligned slab cache for task_group */
7528 static struct kmem_cache *task_group_cache __read_mostly;
7529 #endif
7530
7531 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7532 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7533
7534 #define WAIT_TABLE_BITS 8
7535 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
7536 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
7537
7538 wait_queue_head_t *bit_waitqueue(void *word, int bit)
7539 {
7540 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
7541 unsigned long val = (unsigned long)word << shift | bit;
7542
7543 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
7544 }
7545 EXPORT_SYMBOL(bit_waitqueue);
7546
7547 void __init sched_init(void)
7548 {
7549 int i, j;
7550 unsigned long alloc_size = 0, ptr;
7551
7552 for (i = 0; i < WAIT_TABLE_SIZE; i++)
7553 init_waitqueue_head(bit_wait_table + i);
7554
7555 #ifdef CONFIG_FAIR_GROUP_SCHED
7556 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7557 #endif
7558 #ifdef CONFIG_RT_GROUP_SCHED
7559 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7560 #endif
7561 if (alloc_size) {
7562 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7563
7564 #ifdef CONFIG_FAIR_GROUP_SCHED
7565 root_task_group.se = (struct sched_entity **)ptr;
7566 ptr += nr_cpu_ids * sizeof(void **);
7567
7568 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7569 ptr += nr_cpu_ids * sizeof(void **);
7570
7571 #endif /* CONFIG_FAIR_GROUP_SCHED */
7572 #ifdef CONFIG_RT_GROUP_SCHED
7573 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7574 ptr += nr_cpu_ids * sizeof(void **);
7575
7576 root_task_group.rt_rq = (struct rt_rq **)ptr;
7577 ptr += nr_cpu_ids * sizeof(void **);
7578
7579 #endif /* CONFIG_RT_GROUP_SCHED */
7580 }
7581 #ifdef CONFIG_CPUMASK_OFFSTACK
7582 for_each_possible_cpu(i) {
7583 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7584 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7585 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7586 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7587 }
7588 #endif /* CONFIG_CPUMASK_OFFSTACK */
7589
7590 init_rt_bandwidth(&def_rt_bandwidth,
7591 global_rt_period(), global_rt_runtime());
7592 init_dl_bandwidth(&def_dl_bandwidth,
7593 global_rt_period(), global_rt_runtime());
7594
7595 #ifdef CONFIG_SMP
7596 init_defrootdomain();
7597 #endif
7598
7599 #ifdef CONFIG_RT_GROUP_SCHED
7600 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7601 global_rt_period(), global_rt_runtime());
7602 #endif /* CONFIG_RT_GROUP_SCHED */
7603
7604 #ifdef CONFIG_CGROUP_SCHED
7605 task_group_cache = KMEM_CACHE(task_group, 0);
7606
7607 list_add(&root_task_group.list, &task_groups);
7608 INIT_LIST_HEAD(&root_task_group.children);
7609 INIT_LIST_HEAD(&root_task_group.siblings);
7610 autogroup_init(&init_task);
7611 #endif /* CONFIG_CGROUP_SCHED */
7612
7613 for_each_possible_cpu(i) {
7614 struct rq *rq;
7615
7616 rq = cpu_rq(i);
7617 raw_spin_lock_init(&rq->lock);
7618 rq->nr_running = 0;
7619 rq->calc_load_active = 0;
7620 rq->calc_load_update = jiffies + LOAD_FREQ;
7621 init_cfs_rq(&rq->cfs);
7622 init_rt_rq(&rq->rt);
7623 init_dl_rq(&rq->dl);
7624 #ifdef CONFIG_FAIR_GROUP_SCHED
7625 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7626 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7627 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7628 /*
7629 * How much cpu bandwidth does root_task_group get?
7630 *
7631 * In case of task-groups formed thr' the cgroup filesystem, it
7632 * gets 100% of the cpu resources in the system. This overall
7633 * system cpu resource is divided among the tasks of
7634 * root_task_group and its child task-groups in a fair manner,
7635 * based on each entity's (task or task-group's) weight
7636 * (se->load.weight).
7637 *
7638 * In other words, if root_task_group has 10 tasks of weight
7639 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7640 * then A0's share of the cpu resource is:
7641 *
7642 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7643 *
7644 * We achieve this by letting root_task_group's tasks sit
7645 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7646 */
7647 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7648 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7649 #endif /* CONFIG_FAIR_GROUP_SCHED */
7650
7651 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7652 #ifdef CONFIG_RT_GROUP_SCHED
7653 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7654 #endif
7655
7656 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7657 rq->cpu_load[j] = 0;
7658
7659 #ifdef CONFIG_SMP
7660 rq->sd = NULL;
7661 rq->rd = NULL;
7662 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7663 rq->balance_callback = NULL;
7664 rq->active_balance = 0;
7665 rq->next_balance = jiffies;
7666 rq->push_cpu = 0;
7667 rq->cpu = i;
7668 rq->online = 0;
7669 rq->idle_stamp = 0;
7670 rq->avg_idle = 2*sysctl_sched_migration_cost;
7671 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7672
7673 INIT_LIST_HEAD(&rq->cfs_tasks);
7674
7675 rq_attach_root(rq, &def_root_domain);
7676 #ifdef CONFIG_NO_HZ_COMMON
7677 rq->last_load_update_tick = jiffies;
7678 rq->nohz_flags = 0;
7679 #endif
7680 #ifdef CONFIG_NO_HZ_FULL
7681 rq->last_sched_tick = 0;
7682 #endif
7683 #endif /* CONFIG_SMP */
7684 init_rq_hrtick(rq);
7685 atomic_set(&rq->nr_iowait, 0);
7686 }
7687
7688 set_load_weight(&init_task);
7689
7690 /*
7691 * The boot idle thread does lazy MMU switching as well:
7692 */
7693 atomic_inc(&init_mm.mm_count);
7694 enter_lazy_tlb(&init_mm, current);
7695
7696 /*
7697 * Make us the idle thread. Technically, schedule() should not be
7698 * called from this thread, however somewhere below it might be,
7699 * but because we are the idle thread, we just pick up running again
7700 * when this runqueue becomes "idle".
7701 */
7702 init_idle(current, smp_processor_id());
7703
7704 calc_load_update = jiffies + LOAD_FREQ;
7705
7706 #ifdef CONFIG_SMP
7707 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7708 /* May be allocated at isolcpus cmdline parse time */
7709 if (cpu_isolated_map == NULL)
7710 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7711 idle_thread_set_boot_cpu();
7712 set_cpu_rq_start_time(smp_processor_id());
7713 #endif
7714 init_sched_fair_class();
7715
7716 init_schedstats();
7717
7718 scheduler_running = 1;
7719 }
7720
7721 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7722 static inline int preempt_count_equals(int preempt_offset)
7723 {
7724 int nested = preempt_count() + rcu_preempt_depth();
7725
7726 return (nested == preempt_offset);
7727 }
7728
7729 void __might_sleep(const char *file, int line, int preempt_offset)
7730 {
7731 /*
7732 * Blocking primitives will set (and therefore destroy) current->state,
7733 * since we will exit with TASK_RUNNING make sure we enter with it,
7734 * otherwise we will destroy state.
7735 */
7736 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7737 "do not call blocking ops when !TASK_RUNNING; "
7738 "state=%lx set at [<%p>] %pS\n",
7739 current->state,
7740 (void *)current->task_state_change,
7741 (void *)current->task_state_change);
7742
7743 ___might_sleep(file, line, preempt_offset);
7744 }
7745 EXPORT_SYMBOL(__might_sleep);
7746
7747 void ___might_sleep(const char *file, int line, int preempt_offset)
7748 {
7749 static unsigned long prev_jiffy; /* ratelimiting */
7750 unsigned long preempt_disable_ip;
7751
7752 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7753 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7754 !is_idle_task(current)) ||
7755 system_state != SYSTEM_RUNNING || oops_in_progress)
7756 return;
7757 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7758 return;
7759 prev_jiffy = jiffies;
7760
7761 /* Save this before calling printk(), since that will clobber it */
7762 preempt_disable_ip = get_preempt_disable_ip(current);
7763
7764 printk(KERN_ERR
7765 "BUG: sleeping function called from invalid context at %s:%d\n",
7766 file, line);
7767 printk(KERN_ERR
7768 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7769 in_atomic(), irqs_disabled(),
7770 current->pid, current->comm);
7771
7772 if (task_stack_end_corrupted(current))
7773 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7774
7775 debug_show_held_locks(current);
7776 if (irqs_disabled())
7777 print_irqtrace_events(current);
7778 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7779 && !preempt_count_equals(preempt_offset)) {
7780 pr_err("Preemption disabled at:");
7781 print_ip_sym(preempt_disable_ip);
7782 pr_cont("\n");
7783 }
7784 dump_stack();
7785 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7786 }
7787 EXPORT_SYMBOL(___might_sleep);
7788 #endif
7789
7790 #ifdef CONFIG_MAGIC_SYSRQ
7791 void normalize_rt_tasks(void)
7792 {
7793 struct task_struct *g, *p;
7794 struct sched_attr attr = {
7795 .sched_policy = SCHED_NORMAL,
7796 };
7797
7798 read_lock(&tasklist_lock);
7799 for_each_process_thread(g, p) {
7800 /*
7801 * Only normalize user tasks:
7802 */
7803 if (p->flags & PF_KTHREAD)
7804 continue;
7805
7806 p->se.exec_start = 0;
7807 schedstat_set(p->se.statistics.wait_start, 0);
7808 schedstat_set(p->se.statistics.sleep_start, 0);
7809 schedstat_set(p->se.statistics.block_start, 0);
7810
7811 if (!dl_task(p) && !rt_task(p)) {
7812 /*
7813 * Renice negative nice level userspace
7814 * tasks back to 0:
7815 */
7816 if (task_nice(p) < 0)
7817 set_user_nice(p, 0);
7818 continue;
7819 }
7820
7821 __sched_setscheduler(p, &attr, false, false);
7822 }
7823 read_unlock(&tasklist_lock);
7824 }
7825
7826 #endif /* CONFIG_MAGIC_SYSRQ */
7827
7828 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7829 /*
7830 * These functions are only useful for the IA64 MCA handling, or kdb.
7831 *
7832 * They can only be called when the whole system has been
7833 * stopped - every CPU needs to be quiescent, and no scheduling
7834 * activity can take place. Using them for anything else would
7835 * be a serious bug, and as a result, they aren't even visible
7836 * under any other configuration.
7837 */
7838
7839 /**
7840 * curr_task - return the current task for a given cpu.
7841 * @cpu: the processor in question.
7842 *
7843 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7844 *
7845 * Return: The current task for @cpu.
7846 */
7847 struct task_struct *curr_task(int cpu)
7848 {
7849 return cpu_curr(cpu);
7850 }
7851
7852 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7853
7854 #ifdef CONFIG_IA64
7855 /**
7856 * set_curr_task - set the current task for a given cpu.
7857 * @cpu: the processor in question.
7858 * @p: the task pointer to set.
7859 *
7860 * Description: This function must only be used when non-maskable interrupts
7861 * are serviced on a separate stack. It allows the architecture to switch the
7862 * notion of the current task on a cpu in a non-blocking manner. This function
7863 * must be called with all CPU's synchronized, and interrupts disabled, the
7864 * and caller must save the original value of the current task (see
7865 * curr_task() above) and restore that value before reenabling interrupts and
7866 * re-starting the system.
7867 *
7868 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7869 */
7870 void ia64_set_curr_task(int cpu, struct task_struct *p)
7871 {
7872 cpu_curr(cpu) = p;
7873 }
7874
7875 #endif
7876
7877 #ifdef CONFIG_CGROUP_SCHED
7878 /* task_group_lock serializes the addition/removal of task groups */
7879 static DEFINE_SPINLOCK(task_group_lock);
7880
7881 static void sched_free_group(struct task_group *tg)
7882 {
7883 free_fair_sched_group(tg);
7884 free_rt_sched_group(tg);
7885 autogroup_free(tg);
7886 kmem_cache_free(task_group_cache, tg);
7887 }
7888
7889 /* allocate runqueue etc for a new task group */
7890 struct task_group *sched_create_group(struct task_group *parent)
7891 {
7892 struct task_group *tg;
7893
7894 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7895 if (!tg)
7896 return ERR_PTR(-ENOMEM);
7897
7898 if (!alloc_fair_sched_group(tg, parent))
7899 goto err;
7900
7901 if (!alloc_rt_sched_group(tg, parent))
7902 goto err;
7903
7904 return tg;
7905
7906 err:
7907 sched_free_group(tg);
7908 return ERR_PTR(-ENOMEM);
7909 }
7910
7911 void sched_online_group(struct task_group *tg, struct task_group *parent)
7912 {
7913 unsigned long flags;
7914
7915 spin_lock_irqsave(&task_group_lock, flags);
7916 list_add_rcu(&tg->list, &task_groups);
7917
7918 WARN_ON(!parent); /* root should already exist */
7919
7920 tg->parent = parent;
7921 INIT_LIST_HEAD(&tg->children);
7922 list_add_rcu(&tg->siblings, &parent->children);
7923 spin_unlock_irqrestore(&task_group_lock, flags);
7924
7925 online_fair_sched_group(tg);
7926 }
7927
7928 /* rcu callback to free various structures associated with a task group */
7929 static void sched_free_group_rcu(struct rcu_head *rhp)
7930 {
7931 /* now it should be safe to free those cfs_rqs */
7932 sched_free_group(container_of(rhp, struct task_group, rcu));
7933 }
7934
7935 void sched_destroy_group(struct task_group *tg)
7936 {
7937 /* wait for possible concurrent references to cfs_rqs complete */
7938 call_rcu(&tg->rcu, sched_free_group_rcu);
7939 }
7940
7941 void sched_offline_group(struct task_group *tg)
7942 {
7943 unsigned long flags;
7944
7945 /* end participation in shares distribution */
7946 unregister_fair_sched_group(tg);
7947
7948 spin_lock_irqsave(&task_group_lock, flags);
7949 list_del_rcu(&tg->list);
7950 list_del_rcu(&tg->siblings);
7951 spin_unlock_irqrestore(&task_group_lock, flags);
7952 }
7953
7954 static void sched_change_group(struct task_struct *tsk, int type)
7955 {
7956 struct task_group *tg;
7957
7958 /*
7959 * All callers are synchronized by task_rq_lock(); we do not use RCU
7960 * which is pointless here. Thus, we pass "true" to task_css_check()
7961 * to prevent lockdep warnings.
7962 */
7963 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7964 struct task_group, css);
7965 tg = autogroup_task_group(tsk, tg);
7966 tsk->sched_task_group = tg;
7967
7968 #ifdef CONFIG_FAIR_GROUP_SCHED
7969 if (tsk->sched_class->task_change_group)
7970 tsk->sched_class->task_change_group(tsk, type);
7971 else
7972 #endif
7973 set_task_rq(tsk, task_cpu(tsk));
7974 }
7975
7976 /*
7977 * Change task's runqueue when it moves between groups.
7978 *
7979 * The caller of this function should have put the task in its new group by
7980 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7981 * its new group.
7982 */
7983 void sched_move_task(struct task_struct *tsk)
7984 {
7985 int queued, running;
7986 struct rq_flags rf;
7987 struct rq *rq;
7988
7989 rq = task_rq_lock(tsk, &rf);
7990
7991 running = task_current(rq, tsk);
7992 queued = task_on_rq_queued(tsk);
7993
7994 if (queued)
7995 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7996 if (unlikely(running))
7997 put_prev_task(rq, tsk);
7998
7999 sched_change_group(tsk, TASK_MOVE_GROUP);
8000
8001 if (queued)
8002 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
8003 if (unlikely(running))
8004 set_curr_task(rq, tsk);
8005
8006 task_rq_unlock(rq, tsk, &rf);
8007 }
8008 #endif /* CONFIG_CGROUP_SCHED */
8009
8010 #ifdef CONFIG_RT_GROUP_SCHED
8011 /*
8012 * Ensure that the real time constraints are schedulable.
8013 */
8014 static DEFINE_MUTEX(rt_constraints_mutex);
8015
8016 /* Must be called with tasklist_lock held */
8017 static inline int tg_has_rt_tasks(struct task_group *tg)
8018 {
8019 struct task_struct *g, *p;
8020
8021 /*
8022 * Autogroups do not have RT tasks; see autogroup_create().
8023 */
8024 if (task_group_is_autogroup(tg))
8025 return 0;
8026
8027 for_each_process_thread(g, p) {
8028 if (rt_task(p) && task_group(p) == tg)
8029 return 1;
8030 }
8031
8032 return 0;
8033 }
8034
8035 struct rt_schedulable_data {
8036 struct task_group *tg;
8037 u64 rt_period;
8038 u64 rt_runtime;
8039 };
8040
8041 static int tg_rt_schedulable(struct task_group *tg, void *data)
8042 {
8043 struct rt_schedulable_data *d = data;
8044 struct task_group *child;
8045 unsigned long total, sum = 0;
8046 u64 period, runtime;
8047
8048 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8049 runtime = tg->rt_bandwidth.rt_runtime;
8050
8051 if (tg == d->tg) {
8052 period = d->rt_period;
8053 runtime = d->rt_runtime;
8054 }
8055
8056 /*
8057 * Cannot have more runtime than the period.
8058 */
8059 if (runtime > period && runtime != RUNTIME_INF)
8060 return -EINVAL;
8061
8062 /*
8063 * Ensure we don't starve existing RT tasks.
8064 */
8065 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8066 return -EBUSY;
8067
8068 total = to_ratio(period, runtime);
8069
8070 /*
8071 * Nobody can have more than the global setting allows.
8072 */
8073 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8074 return -EINVAL;
8075
8076 /*
8077 * The sum of our children's runtime should not exceed our own.
8078 */
8079 list_for_each_entry_rcu(child, &tg->children, siblings) {
8080 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8081 runtime = child->rt_bandwidth.rt_runtime;
8082
8083 if (child == d->tg) {
8084 period = d->rt_period;
8085 runtime = d->rt_runtime;
8086 }
8087
8088 sum += to_ratio(period, runtime);
8089 }
8090
8091 if (sum > total)
8092 return -EINVAL;
8093
8094 return 0;
8095 }
8096
8097 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8098 {
8099 int ret;
8100
8101 struct rt_schedulable_data data = {
8102 .tg = tg,
8103 .rt_period = period,
8104 .rt_runtime = runtime,
8105 };
8106
8107 rcu_read_lock();
8108 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8109 rcu_read_unlock();
8110
8111 return ret;
8112 }
8113
8114 static int tg_set_rt_bandwidth(struct task_group *tg,
8115 u64 rt_period, u64 rt_runtime)
8116 {
8117 int i, err = 0;
8118
8119 /*
8120 * Disallowing the root group RT runtime is BAD, it would disallow the
8121 * kernel creating (and or operating) RT threads.
8122 */
8123 if (tg == &root_task_group && rt_runtime == 0)
8124 return -EINVAL;
8125
8126 /* No period doesn't make any sense. */
8127 if (rt_period == 0)
8128 return -EINVAL;
8129
8130 mutex_lock(&rt_constraints_mutex);
8131 read_lock(&tasklist_lock);
8132 err = __rt_schedulable(tg, rt_period, rt_runtime);
8133 if (err)
8134 goto unlock;
8135
8136 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8137 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8138 tg->rt_bandwidth.rt_runtime = rt_runtime;
8139
8140 for_each_possible_cpu(i) {
8141 struct rt_rq *rt_rq = tg->rt_rq[i];
8142
8143 raw_spin_lock(&rt_rq->rt_runtime_lock);
8144 rt_rq->rt_runtime = rt_runtime;
8145 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8146 }
8147 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8148 unlock:
8149 read_unlock(&tasklist_lock);
8150 mutex_unlock(&rt_constraints_mutex);
8151
8152 return err;
8153 }
8154
8155 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8156 {
8157 u64 rt_runtime, rt_period;
8158
8159 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8160 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8161 if (rt_runtime_us < 0)
8162 rt_runtime = RUNTIME_INF;
8163
8164 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8165 }
8166
8167 static long sched_group_rt_runtime(struct task_group *tg)
8168 {
8169 u64 rt_runtime_us;
8170
8171 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8172 return -1;
8173
8174 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8175 do_div(rt_runtime_us, NSEC_PER_USEC);
8176 return rt_runtime_us;
8177 }
8178
8179 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8180 {
8181 u64 rt_runtime, rt_period;
8182
8183 rt_period = rt_period_us * NSEC_PER_USEC;
8184 rt_runtime = tg->rt_bandwidth.rt_runtime;
8185
8186 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8187 }
8188
8189 static long sched_group_rt_period(struct task_group *tg)
8190 {
8191 u64 rt_period_us;
8192
8193 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8194 do_div(rt_period_us, NSEC_PER_USEC);
8195 return rt_period_us;
8196 }
8197 #endif /* CONFIG_RT_GROUP_SCHED */
8198
8199 #ifdef CONFIG_RT_GROUP_SCHED
8200 static int sched_rt_global_constraints(void)
8201 {
8202 int ret = 0;
8203
8204 mutex_lock(&rt_constraints_mutex);
8205 read_lock(&tasklist_lock);
8206 ret = __rt_schedulable(NULL, 0, 0);
8207 read_unlock(&tasklist_lock);
8208 mutex_unlock(&rt_constraints_mutex);
8209
8210 return ret;
8211 }
8212
8213 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8214 {
8215 /* Don't accept realtime tasks when there is no way for them to run */
8216 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8217 return 0;
8218
8219 return 1;
8220 }
8221
8222 #else /* !CONFIG_RT_GROUP_SCHED */
8223 static int sched_rt_global_constraints(void)
8224 {
8225 unsigned long flags;
8226 int i;
8227
8228 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8229 for_each_possible_cpu(i) {
8230 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8231
8232 raw_spin_lock(&rt_rq->rt_runtime_lock);
8233 rt_rq->rt_runtime = global_rt_runtime();
8234 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8235 }
8236 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8237
8238 return 0;
8239 }
8240 #endif /* CONFIG_RT_GROUP_SCHED */
8241
8242 static int sched_dl_global_validate(void)
8243 {
8244 u64 runtime = global_rt_runtime();
8245 u64 period = global_rt_period();
8246 u64 new_bw = to_ratio(period, runtime);
8247 struct dl_bw *dl_b;
8248 int cpu, ret = 0;
8249 unsigned long flags;
8250
8251 /*
8252 * Here we want to check the bandwidth not being set to some
8253 * value smaller than the currently allocated bandwidth in
8254 * any of the root_domains.
8255 *
8256 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8257 * cycling on root_domains... Discussion on different/better
8258 * solutions is welcome!
8259 */
8260 for_each_possible_cpu(cpu) {
8261 rcu_read_lock_sched();
8262 dl_b = dl_bw_of(cpu);
8263
8264 raw_spin_lock_irqsave(&dl_b->lock, flags);
8265 if (new_bw < dl_b->total_bw)
8266 ret = -EBUSY;
8267 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8268
8269 rcu_read_unlock_sched();
8270
8271 if (ret)
8272 break;
8273 }
8274
8275 return ret;
8276 }
8277
8278 static void sched_dl_do_global(void)
8279 {
8280 u64 new_bw = -1;
8281 struct dl_bw *dl_b;
8282 int cpu;
8283 unsigned long flags;
8284
8285 def_dl_bandwidth.dl_period = global_rt_period();
8286 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8287
8288 if (global_rt_runtime() != RUNTIME_INF)
8289 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8290
8291 /*
8292 * FIXME: As above...
8293 */
8294 for_each_possible_cpu(cpu) {
8295 rcu_read_lock_sched();
8296 dl_b = dl_bw_of(cpu);
8297
8298 raw_spin_lock_irqsave(&dl_b->lock, flags);
8299 dl_b->bw = new_bw;
8300 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8301
8302 rcu_read_unlock_sched();
8303 }
8304 }
8305
8306 static int sched_rt_global_validate(void)
8307 {
8308 if (sysctl_sched_rt_period <= 0)
8309 return -EINVAL;
8310
8311 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8312 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8313 return -EINVAL;
8314
8315 return 0;
8316 }
8317
8318 static void sched_rt_do_global(void)
8319 {
8320 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8321 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8322 }
8323
8324 int sched_rt_handler(struct ctl_table *table, int write,
8325 void __user *buffer, size_t *lenp,
8326 loff_t *ppos)
8327 {
8328 int old_period, old_runtime;
8329 static DEFINE_MUTEX(mutex);
8330 int ret;
8331
8332 mutex_lock(&mutex);
8333 old_period = sysctl_sched_rt_period;
8334 old_runtime = sysctl_sched_rt_runtime;
8335
8336 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8337
8338 if (!ret && write) {
8339 ret = sched_rt_global_validate();
8340 if (ret)
8341 goto undo;
8342
8343 ret = sched_dl_global_validate();
8344 if (ret)
8345 goto undo;
8346
8347 ret = sched_rt_global_constraints();
8348 if (ret)
8349 goto undo;
8350
8351 sched_rt_do_global();
8352 sched_dl_do_global();
8353 }
8354 if (0) {
8355 undo:
8356 sysctl_sched_rt_period = old_period;
8357 sysctl_sched_rt_runtime = old_runtime;
8358 }
8359 mutex_unlock(&mutex);
8360
8361 return ret;
8362 }
8363
8364 int sched_rr_handler(struct ctl_table *table, int write,
8365 void __user *buffer, size_t *lenp,
8366 loff_t *ppos)
8367 {
8368 int ret;
8369 static DEFINE_MUTEX(mutex);
8370
8371 mutex_lock(&mutex);
8372 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8373 /* make sure that internally we keep jiffies */
8374 /* also, writing zero resets timeslice to default */
8375 if (!ret && write) {
8376 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8377 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8378 }
8379 mutex_unlock(&mutex);
8380 return ret;
8381 }
8382
8383 #ifdef CONFIG_CGROUP_SCHED
8384
8385 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8386 {
8387 return css ? container_of(css, struct task_group, css) : NULL;
8388 }
8389
8390 static struct cgroup_subsys_state *
8391 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8392 {
8393 struct task_group *parent = css_tg(parent_css);
8394 struct task_group *tg;
8395
8396 if (!parent) {
8397 /* This is early initialization for the top cgroup */
8398 return &root_task_group.css;
8399 }
8400
8401 tg = sched_create_group(parent);
8402 if (IS_ERR(tg))
8403 return ERR_PTR(-ENOMEM);
8404
8405 sched_online_group(tg, parent);
8406
8407 return &tg->css;
8408 }
8409
8410 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8411 {
8412 struct task_group *tg = css_tg(css);
8413
8414 sched_offline_group(tg);
8415 }
8416
8417 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8418 {
8419 struct task_group *tg = css_tg(css);
8420
8421 /*
8422 * Relies on the RCU grace period between css_released() and this.
8423 */
8424 sched_free_group(tg);
8425 }
8426
8427 /*
8428 * This is called before wake_up_new_task(), therefore we really only
8429 * have to set its group bits, all the other stuff does not apply.
8430 */
8431 static void cpu_cgroup_fork(struct task_struct *task)
8432 {
8433 struct rq_flags rf;
8434 struct rq *rq;
8435
8436 rq = task_rq_lock(task, &rf);
8437
8438 sched_change_group(task, TASK_SET_GROUP);
8439
8440 task_rq_unlock(rq, task, &rf);
8441 }
8442
8443 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8444 {
8445 struct task_struct *task;
8446 struct cgroup_subsys_state *css;
8447 int ret = 0;
8448
8449 cgroup_taskset_for_each(task, css, tset) {
8450 #ifdef CONFIG_RT_GROUP_SCHED
8451 if (!sched_rt_can_attach(css_tg(css), task))
8452 return -EINVAL;
8453 #else
8454 /* We don't support RT-tasks being in separate groups */
8455 if (task->sched_class != &fair_sched_class)
8456 return -EINVAL;
8457 #endif
8458 /*
8459 * Serialize against wake_up_new_task() such that if its
8460 * running, we're sure to observe its full state.
8461 */
8462 raw_spin_lock_irq(&task->pi_lock);
8463 /*
8464 * Avoid calling sched_move_task() before wake_up_new_task()
8465 * has happened. This would lead to problems with PELT, due to
8466 * move wanting to detach+attach while we're not attached yet.
8467 */
8468 if (task->state == TASK_NEW)
8469 ret = -EINVAL;
8470 raw_spin_unlock_irq(&task->pi_lock);
8471
8472 if (ret)
8473 break;
8474 }
8475 return ret;
8476 }
8477
8478 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8479 {
8480 struct task_struct *task;
8481 struct cgroup_subsys_state *css;
8482
8483 cgroup_taskset_for_each(task, css, tset)
8484 sched_move_task(task);
8485 }
8486
8487 #ifdef CONFIG_FAIR_GROUP_SCHED
8488 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8489 struct cftype *cftype, u64 shareval)
8490 {
8491 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8492 }
8493
8494 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8495 struct cftype *cft)
8496 {
8497 struct task_group *tg = css_tg(css);
8498
8499 return (u64) scale_load_down(tg->shares);
8500 }
8501
8502 #ifdef CONFIG_CFS_BANDWIDTH
8503 static DEFINE_MUTEX(cfs_constraints_mutex);
8504
8505 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8506 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8507
8508 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8509
8510 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8511 {
8512 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8513 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8514
8515 if (tg == &root_task_group)
8516 return -EINVAL;
8517
8518 /*
8519 * Ensure we have at some amount of bandwidth every period. This is
8520 * to prevent reaching a state of large arrears when throttled via
8521 * entity_tick() resulting in prolonged exit starvation.
8522 */
8523 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8524 return -EINVAL;
8525
8526 /*
8527 * Likewise, bound things on the otherside by preventing insane quota
8528 * periods. This also allows us to normalize in computing quota
8529 * feasibility.
8530 */
8531 if (period > max_cfs_quota_period)
8532 return -EINVAL;
8533
8534 /*
8535 * Prevent race between setting of cfs_rq->runtime_enabled and
8536 * unthrottle_offline_cfs_rqs().
8537 */
8538 get_online_cpus();
8539 mutex_lock(&cfs_constraints_mutex);
8540 ret = __cfs_schedulable(tg, period, quota);
8541 if (ret)
8542 goto out_unlock;
8543
8544 runtime_enabled = quota != RUNTIME_INF;
8545 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8546 /*
8547 * If we need to toggle cfs_bandwidth_used, off->on must occur
8548 * before making related changes, and on->off must occur afterwards
8549 */
8550 if (runtime_enabled && !runtime_was_enabled)
8551 cfs_bandwidth_usage_inc();
8552 raw_spin_lock_irq(&cfs_b->lock);
8553 cfs_b->period = ns_to_ktime(period);
8554 cfs_b->quota = quota;
8555
8556 __refill_cfs_bandwidth_runtime(cfs_b);
8557 /* restart the period timer (if active) to handle new period expiry */
8558 if (runtime_enabled)
8559 start_cfs_bandwidth(cfs_b);
8560 raw_spin_unlock_irq(&cfs_b->lock);
8561
8562 for_each_online_cpu(i) {
8563 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8564 struct rq *rq = cfs_rq->rq;
8565
8566 raw_spin_lock_irq(&rq->lock);
8567 cfs_rq->runtime_enabled = runtime_enabled;
8568 cfs_rq->runtime_remaining = 0;
8569
8570 if (cfs_rq->throttled)
8571 unthrottle_cfs_rq(cfs_rq);
8572 raw_spin_unlock_irq(&rq->lock);
8573 }
8574 if (runtime_was_enabled && !runtime_enabled)
8575 cfs_bandwidth_usage_dec();
8576 out_unlock:
8577 mutex_unlock(&cfs_constraints_mutex);
8578 put_online_cpus();
8579
8580 return ret;
8581 }
8582
8583 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8584 {
8585 u64 quota, period;
8586
8587 period = ktime_to_ns(tg->cfs_bandwidth.period);
8588 if (cfs_quota_us < 0)
8589 quota = RUNTIME_INF;
8590 else
8591 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8592
8593 return tg_set_cfs_bandwidth(tg, period, quota);
8594 }
8595
8596 long tg_get_cfs_quota(struct task_group *tg)
8597 {
8598 u64 quota_us;
8599
8600 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8601 return -1;
8602
8603 quota_us = tg->cfs_bandwidth.quota;
8604 do_div(quota_us, NSEC_PER_USEC);
8605
8606 return quota_us;
8607 }
8608
8609 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8610 {
8611 u64 quota, period;
8612
8613 period = (u64)cfs_period_us * NSEC_PER_USEC;
8614 quota = tg->cfs_bandwidth.quota;
8615
8616 return tg_set_cfs_bandwidth(tg, period, quota);
8617 }
8618
8619 long tg_get_cfs_period(struct task_group *tg)
8620 {
8621 u64 cfs_period_us;
8622
8623 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8624 do_div(cfs_period_us, NSEC_PER_USEC);
8625
8626 return cfs_period_us;
8627 }
8628
8629 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8630 struct cftype *cft)
8631 {
8632 return tg_get_cfs_quota(css_tg(css));
8633 }
8634
8635 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8636 struct cftype *cftype, s64 cfs_quota_us)
8637 {
8638 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8639 }
8640
8641 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8642 struct cftype *cft)
8643 {
8644 return tg_get_cfs_period(css_tg(css));
8645 }
8646
8647 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8648 struct cftype *cftype, u64 cfs_period_us)
8649 {
8650 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8651 }
8652
8653 struct cfs_schedulable_data {
8654 struct task_group *tg;
8655 u64 period, quota;
8656 };
8657
8658 /*
8659 * normalize group quota/period to be quota/max_period
8660 * note: units are usecs
8661 */
8662 static u64 normalize_cfs_quota(struct task_group *tg,
8663 struct cfs_schedulable_data *d)
8664 {
8665 u64 quota, period;
8666
8667 if (tg == d->tg) {
8668 period = d->period;
8669 quota = d->quota;
8670 } else {
8671 period = tg_get_cfs_period(tg);
8672 quota = tg_get_cfs_quota(tg);
8673 }
8674
8675 /* note: these should typically be equivalent */
8676 if (quota == RUNTIME_INF || quota == -1)
8677 return RUNTIME_INF;
8678
8679 return to_ratio(period, quota);
8680 }
8681
8682 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8683 {
8684 struct cfs_schedulable_data *d = data;
8685 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8686 s64 quota = 0, parent_quota = -1;
8687
8688 if (!tg->parent) {
8689 quota = RUNTIME_INF;
8690 } else {
8691 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8692
8693 quota = normalize_cfs_quota(tg, d);
8694 parent_quota = parent_b->hierarchical_quota;
8695
8696 /*
8697 * ensure max(child_quota) <= parent_quota, inherit when no
8698 * limit is set
8699 */
8700 if (quota == RUNTIME_INF)
8701 quota = parent_quota;
8702 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8703 return -EINVAL;
8704 }
8705 cfs_b->hierarchical_quota = quota;
8706
8707 return 0;
8708 }
8709
8710 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8711 {
8712 int ret;
8713 struct cfs_schedulable_data data = {
8714 .tg = tg,
8715 .period = period,
8716 .quota = quota,
8717 };
8718
8719 if (quota != RUNTIME_INF) {
8720 do_div(data.period, NSEC_PER_USEC);
8721 do_div(data.quota, NSEC_PER_USEC);
8722 }
8723
8724 rcu_read_lock();
8725 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8726 rcu_read_unlock();
8727
8728 return ret;
8729 }
8730
8731 static int cpu_stats_show(struct seq_file *sf, void *v)
8732 {
8733 struct task_group *tg = css_tg(seq_css(sf));
8734 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8735
8736 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8737 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8738 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8739
8740 return 0;
8741 }
8742 #endif /* CONFIG_CFS_BANDWIDTH */
8743 #endif /* CONFIG_FAIR_GROUP_SCHED */
8744
8745 #ifdef CONFIG_RT_GROUP_SCHED
8746 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8747 struct cftype *cft, s64 val)
8748 {
8749 return sched_group_set_rt_runtime(css_tg(css), val);
8750 }
8751
8752 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8753 struct cftype *cft)
8754 {
8755 return sched_group_rt_runtime(css_tg(css));
8756 }
8757
8758 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8759 struct cftype *cftype, u64 rt_period_us)
8760 {
8761 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8762 }
8763
8764 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8765 struct cftype *cft)
8766 {
8767 return sched_group_rt_period(css_tg(css));
8768 }
8769 #endif /* CONFIG_RT_GROUP_SCHED */
8770
8771 static struct cftype cpu_files[] = {
8772 #ifdef CONFIG_FAIR_GROUP_SCHED
8773 {
8774 .name = "shares",
8775 .read_u64 = cpu_shares_read_u64,
8776 .write_u64 = cpu_shares_write_u64,
8777 },
8778 #endif
8779 #ifdef CONFIG_CFS_BANDWIDTH
8780 {
8781 .name = "cfs_quota_us",
8782 .read_s64 = cpu_cfs_quota_read_s64,
8783 .write_s64 = cpu_cfs_quota_write_s64,
8784 },
8785 {
8786 .name = "cfs_period_us",
8787 .read_u64 = cpu_cfs_period_read_u64,
8788 .write_u64 = cpu_cfs_period_write_u64,
8789 },
8790 {
8791 .name = "stat",
8792 .seq_show = cpu_stats_show,
8793 },
8794 #endif
8795 #ifdef CONFIG_RT_GROUP_SCHED
8796 {
8797 .name = "rt_runtime_us",
8798 .read_s64 = cpu_rt_runtime_read,
8799 .write_s64 = cpu_rt_runtime_write,
8800 },
8801 {
8802 .name = "rt_period_us",
8803 .read_u64 = cpu_rt_period_read_uint,
8804 .write_u64 = cpu_rt_period_write_uint,
8805 },
8806 #endif
8807 { } /* terminate */
8808 };
8809
8810 struct cgroup_subsys cpu_cgrp_subsys = {
8811 .css_alloc = cpu_cgroup_css_alloc,
8812 .css_released = cpu_cgroup_css_released,
8813 .css_free = cpu_cgroup_css_free,
8814 .fork = cpu_cgroup_fork,
8815 .can_attach = cpu_cgroup_can_attach,
8816 .attach = cpu_cgroup_attach,
8817 .legacy_cftypes = cpu_files,
8818 .early_init = true,
8819 };
8820
8821 #endif /* CONFIG_CGROUP_SCHED */
8822
8823 void dump_cpu_task(int cpu)
8824 {
8825 pr_info("Task dump for CPU %d:\n", cpu);
8826 sched_show_task(cpu_curr(cpu));
8827 }
8828
8829 /*
8830 * Nice levels are multiplicative, with a gentle 10% change for every
8831 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8832 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8833 * that remained on nice 0.
8834 *
8835 * The "10% effect" is relative and cumulative: from _any_ nice level,
8836 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8837 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8838 * If a task goes up by ~10% and another task goes down by ~10% then
8839 * the relative distance between them is ~25%.)
8840 */
8841 const int sched_prio_to_weight[40] = {
8842 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8843 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8844 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8845 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8846 /* 0 */ 1024, 820, 655, 526, 423,
8847 /* 5 */ 335, 272, 215, 172, 137,
8848 /* 10 */ 110, 87, 70, 56, 45,
8849 /* 15 */ 36, 29, 23, 18, 15,
8850 };
8851
8852 /*
8853 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8854 *
8855 * In cases where the weight does not change often, we can use the
8856 * precalculated inverse to speed up arithmetics by turning divisions
8857 * into multiplications:
8858 */
8859 const u32 sched_prio_to_wmult[40] = {
8860 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8861 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8862 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8863 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8864 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8865 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8866 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8867 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8868 };