]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/core.c
sched/deadline: Fix migration of SCHED_DEADLINE tasks
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98 void update_rq_clock(struct rq *rq)
99 {
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112 }
113
114 /*
115 * Debugging: various feature bits
116 */
117
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 0;
124
125 #undef SCHED_FEAT
126
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled) \
129 #name ,
130
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
133 };
134
135 #undef SCHED_FEAT
136
137 static int sched_feat_show(struct seq_file *m, void *v)
138 {
139 int i;
140
141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
145 }
146 seq_puts(m, "\n");
147
148 return 0;
149 }
150
151 #ifdef HAVE_JUMP_LABEL
152
153 #define jump_label_key__true STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
155
156 #define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
161 };
162
163 #undef SCHED_FEAT
164
165 static void sched_feat_disable(int i)
166 {
167 static_key_disable(&sched_feat_keys[i]);
168 }
169
170 static void sched_feat_enable(int i)
171 {
172 static_key_enable(&sched_feat_keys[i]);
173 }
174 #else
175 static void sched_feat_disable(int i) { };
176 static void sched_feat_enable(int i) { };
177 #endif /* HAVE_JUMP_LABEL */
178
179 static int sched_feat_set(char *cmp)
180 {
181 int i;
182 int neg = 0;
183
184 if (strncmp(cmp, "NO_", 3) == 0) {
185 neg = 1;
186 cmp += 3;
187 }
188
189 for (i = 0; i < __SCHED_FEAT_NR; i++) {
190 if (strcmp(cmp, sched_feat_names[i]) == 0) {
191 if (neg) {
192 sysctl_sched_features &= ~(1UL << i);
193 sched_feat_disable(i);
194 } else {
195 sysctl_sched_features |= (1UL << i);
196 sched_feat_enable(i);
197 }
198 break;
199 }
200 }
201
202 return i;
203 }
204
205 static ssize_t
206 sched_feat_write(struct file *filp, const char __user *ubuf,
207 size_t cnt, loff_t *ppos)
208 {
209 char buf[64];
210 char *cmp;
211 int i;
212 struct inode *inode;
213
214 if (cnt > 63)
215 cnt = 63;
216
217 if (copy_from_user(&buf, ubuf, cnt))
218 return -EFAULT;
219
220 buf[cnt] = 0;
221 cmp = strstrip(buf);
222
223 /* Ensure the static_key remains in a consistent state */
224 inode = file_inode(filp);
225 mutex_lock(&inode->i_mutex);
226 i = sched_feat_set(cmp);
227 mutex_unlock(&inode->i_mutex);
228 if (i == __SCHED_FEAT_NR)
229 return -EINVAL;
230
231 *ppos += cnt;
232
233 return cnt;
234 }
235
236 static int sched_feat_open(struct inode *inode, struct file *filp)
237 {
238 return single_open(filp, sched_feat_show, NULL);
239 }
240
241 static const struct file_operations sched_feat_fops = {
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
247 };
248
249 static __init int sched_init_debug(void)
250 {
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255 }
256 late_initcall(sched_init_debug);
257 #endif /* CONFIG_SCHED_DEBUG */
258
259 /*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263 const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
265 /*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
273 /*
274 * period over which we measure -rt task cpu usage in us.
275 * default: 1s
276 */
277 unsigned int sysctl_sched_rt_period = 1000000;
278
279 __read_mostly int scheduler_running;
280
281 /*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285 int sysctl_sched_rt_runtime = 950000;
286
287 /* cpus with isolated domains */
288 cpumask_var_t cpu_isolated_map;
289
290 /*
291 * this_rq_lock - lock this runqueue and disable interrupts.
292 */
293 static struct rq *this_rq_lock(void)
294 __acquires(rq->lock)
295 {
296 struct rq *rq;
297
298 local_irq_disable();
299 rq = this_rq();
300 raw_spin_lock(&rq->lock);
301
302 return rq;
303 }
304
305 #ifdef CONFIG_SCHED_HRTICK
306 /*
307 * Use HR-timers to deliver accurate preemption points.
308 */
309
310 static void hrtick_clear(struct rq *rq)
311 {
312 if (hrtimer_active(&rq->hrtick_timer))
313 hrtimer_cancel(&rq->hrtick_timer);
314 }
315
316 /*
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
319 */
320 static enum hrtimer_restart hrtick(struct hrtimer *timer)
321 {
322 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323
324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325
326 raw_spin_lock(&rq->lock);
327 update_rq_clock(rq);
328 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
329 raw_spin_unlock(&rq->lock);
330
331 return HRTIMER_NORESTART;
332 }
333
334 #ifdef CONFIG_SMP
335
336 static void __hrtick_restart(struct rq *rq)
337 {
338 struct hrtimer *timer = &rq->hrtick_timer;
339
340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
341 }
342
343 /*
344 * called from hardirq (IPI) context
345 */
346 static void __hrtick_start(void *arg)
347 {
348 struct rq *rq = arg;
349
350 raw_spin_lock(&rq->lock);
351 __hrtick_restart(rq);
352 rq->hrtick_csd_pending = 0;
353 raw_spin_unlock(&rq->lock);
354 }
355
356 /*
357 * Called to set the hrtick timer state.
358 *
359 * called with rq->lock held and irqs disabled
360 */
361 void hrtick_start(struct rq *rq, u64 delay)
362 {
363 struct hrtimer *timer = &rq->hrtick_timer;
364 ktime_t time;
365 s64 delta;
366
367 /*
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
370 */
371 delta = max_t(s64, delay, 10000LL);
372 time = ktime_add_ns(timer->base->get_time(), delta);
373
374 hrtimer_set_expires(timer, time);
375
376 if (rq == this_rq()) {
377 __hrtick_restart(rq);
378 } else if (!rq->hrtick_csd_pending) {
379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
380 rq->hrtick_csd_pending = 1;
381 }
382 }
383
384 static int
385 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386 {
387 int cpu = (int)(long)hcpu;
388
389 switch (action) {
390 case CPU_UP_CANCELED:
391 case CPU_UP_CANCELED_FROZEN:
392 case CPU_DOWN_PREPARE:
393 case CPU_DOWN_PREPARE_FROZEN:
394 case CPU_DEAD:
395 case CPU_DEAD_FROZEN:
396 hrtick_clear(cpu_rq(cpu));
397 return NOTIFY_OK;
398 }
399
400 return NOTIFY_DONE;
401 }
402
403 static __init void init_hrtick(void)
404 {
405 hotcpu_notifier(hotplug_hrtick, 0);
406 }
407 #else
408 /*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
413 void hrtick_start(struct rq *rq, u64 delay)
414 {
415 /*
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
418 */
419 delay = max_t(u64, delay, 10000LL);
420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 HRTIMER_MODE_REL_PINNED);
422 }
423
424 static inline void init_hrtick(void)
425 {
426 }
427 #endif /* CONFIG_SMP */
428
429 static void init_rq_hrtick(struct rq *rq)
430 {
431 #ifdef CONFIG_SMP
432 rq->hrtick_csd_pending = 0;
433
434 rq->hrtick_csd.flags = 0;
435 rq->hrtick_csd.func = __hrtick_start;
436 rq->hrtick_csd.info = rq;
437 #endif
438
439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 rq->hrtick_timer.function = hrtick;
441 }
442 #else /* CONFIG_SCHED_HRTICK */
443 static inline void hrtick_clear(struct rq *rq)
444 {
445 }
446
447 static inline void init_rq_hrtick(struct rq *rq)
448 {
449 }
450
451 static inline void init_hrtick(void)
452 {
453 }
454 #endif /* CONFIG_SCHED_HRTICK */
455
456 /*
457 * cmpxchg based fetch_or, macro so it works for different integer types
458 */
459 #define fetch_or(ptr, val) \
460 ({ typeof(*(ptr)) __old, __val = *(ptr); \
461 for (;;) { \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
464 break; \
465 __val = __old; \
466 } \
467 __old; \
468 })
469
470 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
471 /*
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
474 * spurious IPIs.
475 */
476 static bool set_nr_and_not_polling(struct task_struct *p)
477 {
478 struct thread_info *ti = task_thread_info(p);
479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480 }
481
482 /*
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484 *
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
487 */
488 static bool set_nr_if_polling(struct task_struct *p)
489 {
490 struct thread_info *ti = task_thread_info(p);
491 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
492
493 for (;;) {
494 if (!(val & _TIF_POLLING_NRFLAG))
495 return false;
496 if (val & _TIF_NEED_RESCHED)
497 return true;
498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 if (old == val)
500 break;
501 val = old;
502 }
503 return true;
504 }
505
506 #else
507 static bool set_nr_and_not_polling(struct task_struct *p)
508 {
509 set_tsk_need_resched(p);
510 return true;
511 }
512
513 #ifdef CONFIG_SMP
514 static bool set_nr_if_polling(struct task_struct *p)
515 {
516 return false;
517 }
518 #endif
519 #endif
520
521 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522 {
523 struct wake_q_node *node = &task->wake_q;
524
525 /*
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
529 *
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
532 */
533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 return;
535
536 get_task_struct(task);
537
538 /*
539 * The head is context local, there can be no concurrency.
540 */
541 *head->lastp = node;
542 head->lastp = &node->next;
543 }
544
545 void wake_up_q(struct wake_q_head *head)
546 {
547 struct wake_q_node *node = head->first;
548
549 while (node != WAKE_Q_TAIL) {
550 struct task_struct *task;
551
552 task = container_of(node, struct task_struct, wake_q);
553 BUG_ON(!task);
554 /* task can safely be re-inserted now */
555 node = node->next;
556 task->wake_q.next = NULL;
557
558 /*
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
561 */
562 wake_up_process(task);
563 put_task_struct(task);
564 }
565 }
566
567 /*
568 * resched_curr - mark rq's current task 'to be rescheduled now'.
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
574 void resched_curr(struct rq *rq)
575 {
576 struct task_struct *curr = rq->curr;
577 int cpu;
578
579 lockdep_assert_held(&rq->lock);
580
581 if (test_tsk_need_resched(curr))
582 return;
583
584 cpu = cpu_of(rq);
585
586 if (cpu == smp_processor_id()) {
587 set_tsk_need_resched(curr);
588 set_preempt_need_resched();
589 return;
590 }
591
592 if (set_nr_and_not_polling(curr))
593 smp_send_reschedule(cpu);
594 else
595 trace_sched_wake_idle_without_ipi(cpu);
596 }
597
598 void resched_cpu(int cpu)
599 {
600 struct rq *rq = cpu_rq(cpu);
601 unsigned long flags;
602
603 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
604 return;
605 resched_curr(rq);
606 raw_spin_unlock_irqrestore(&rq->lock, flags);
607 }
608
609 #ifdef CONFIG_SMP
610 #ifdef CONFIG_NO_HZ_COMMON
611 /*
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
614 *
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618 */
619 int get_nohz_timer_target(void)
620 {
621 int i, cpu = smp_processor_id();
622 struct sched_domain *sd;
623
624 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
625 return cpu;
626
627 rcu_read_lock();
628 for_each_domain(cpu, sd) {
629 for_each_cpu(i, sched_domain_span(sd)) {
630 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
631 cpu = i;
632 goto unlock;
633 }
634 }
635 }
636
637 if (!is_housekeeping_cpu(cpu))
638 cpu = housekeeping_any_cpu();
639 unlock:
640 rcu_read_unlock();
641 return cpu;
642 }
643 /*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
653 static void wake_up_idle_cpu(int cpu)
654 {
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
660 if (set_nr_and_not_polling(rq->idle))
661 smp_send_reschedule(cpu);
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
664 }
665
666 static bool wake_up_full_nohz_cpu(int cpu)
667 {
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
674 if (tick_nohz_full_cpu(cpu)) {
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
677 tick_nohz_full_kick_cpu(cpu);
678 return true;
679 }
680
681 return false;
682 }
683
684 void wake_up_nohz_cpu(int cpu)
685 {
686 if (!wake_up_full_nohz_cpu(cpu))
687 wake_up_idle_cpu(cpu);
688 }
689
690 static inline bool got_nohz_idle_kick(void)
691 {
692 int cpu = smp_processor_id();
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
706 }
707
708 #else /* CONFIG_NO_HZ_COMMON */
709
710 static inline bool got_nohz_idle_kick(void)
711 {
712 return false;
713 }
714
715 #endif /* CONFIG_NO_HZ_COMMON */
716
717 #ifdef CONFIG_NO_HZ_FULL
718 bool sched_can_stop_tick(void)
719 {
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
734 return rt_se->run_list.prev == rt_se->run_list.next;
735 }
736
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
742 if (this_rq()->nr_running > 1)
743 return false;
744
745 return true;
746 }
747 #endif /* CONFIG_NO_HZ_FULL */
748
749 void sched_avg_update(struct rq *rq)
750 {
751 s64 period = sched_avg_period();
752
753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
763 }
764
765 #endif /* CONFIG_SMP */
766
767 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769 /*
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
774 */
775 int walk_tg_tree_from(struct task_group *from,
776 tg_visitor down, tg_visitor up, void *data)
777 {
778 struct task_group *parent, *child;
779 int ret;
780
781 parent = from;
782
783 down:
784 ret = (*down)(parent, data);
785 if (ret)
786 goto out;
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791 up:
792 continue;
793 }
794 ret = (*up)(parent, data);
795 if (ret || parent == from)
796 goto out;
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
802 out:
803 return ret;
804 }
805
806 int tg_nop(struct task_group *tg, void *data)
807 {
808 return 0;
809 }
810 #endif
811
812 static void set_load_weight(struct task_struct *p)
813 {
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
820 if (p->policy == SCHED_IDLE) {
821 load->weight = scale_load(WEIGHT_IDLEPRIO);
822 load->inv_weight = WMULT_IDLEPRIO;
823 return;
824 }
825
826 load->weight = scale_load(prio_to_weight[prio]);
827 load->inv_weight = prio_to_wmult[prio];
828 }
829
830 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831 {
832 update_rq_clock(rq);
833 sched_info_queued(rq, p);
834 p->sched_class->enqueue_task(rq, p, flags);
835 }
836
837 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
838 {
839 update_rq_clock(rq);
840 sched_info_dequeued(rq, p);
841 p->sched_class->dequeue_task(rq, p, flags);
842 }
843
844 void activate_task(struct rq *rq, struct task_struct *p, int flags)
845 {
846 if (task_contributes_to_load(p))
847 rq->nr_uninterruptible--;
848
849 enqueue_task(rq, p, flags);
850 }
851
852 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
853 {
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible++;
856
857 dequeue_task(rq, p, flags);
858 }
859
860 static void update_rq_clock_task(struct rq *rq, s64 delta)
861 {
862 /*
863 * In theory, the compile should just see 0 here, and optimize out the call
864 * to sched_rt_avg_update. But I don't trust it...
865 */
866 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
867 s64 steal = 0, irq_delta = 0;
868 #endif
869 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
870 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
871
872 /*
873 * Since irq_time is only updated on {soft,}irq_exit, we might run into
874 * this case when a previous update_rq_clock() happened inside a
875 * {soft,}irq region.
876 *
877 * When this happens, we stop ->clock_task and only update the
878 * prev_irq_time stamp to account for the part that fit, so that a next
879 * update will consume the rest. This ensures ->clock_task is
880 * monotonic.
881 *
882 * It does however cause some slight miss-attribution of {soft,}irq
883 * time, a more accurate solution would be to update the irq_time using
884 * the current rq->clock timestamp, except that would require using
885 * atomic ops.
886 */
887 if (irq_delta > delta)
888 irq_delta = delta;
889
890 rq->prev_irq_time += irq_delta;
891 delta -= irq_delta;
892 #endif
893 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
894 if (static_key_false((&paravirt_steal_rq_enabled))) {
895 steal = paravirt_steal_clock(cpu_of(rq));
896 steal -= rq->prev_steal_time_rq;
897
898 if (unlikely(steal > delta))
899 steal = delta;
900
901 rq->prev_steal_time_rq += steal;
902 delta -= steal;
903 }
904 #endif
905
906 rq->clock_task += delta;
907
908 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
909 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
910 sched_rt_avg_update(rq, irq_delta + steal);
911 #endif
912 }
913
914 void sched_set_stop_task(int cpu, struct task_struct *stop)
915 {
916 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
917 struct task_struct *old_stop = cpu_rq(cpu)->stop;
918
919 if (stop) {
920 /*
921 * Make it appear like a SCHED_FIFO task, its something
922 * userspace knows about and won't get confused about.
923 *
924 * Also, it will make PI more or less work without too
925 * much confusion -- but then, stop work should not
926 * rely on PI working anyway.
927 */
928 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
929
930 stop->sched_class = &stop_sched_class;
931 }
932
933 cpu_rq(cpu)->stop = stop;
934
935 if (old_stop) {
936 /*
937 * Reset it back to a normal scheduling class so that
938 * it can die in pieces.
939 */
940 old_stop->sched_class = &rt_sched_class;
941 }
942 }
943
944 /*
945 * __normal_prio - return the priority that is based on the static prio
946 */
947 static inline int __normal_prio(struct task_struct *p)
948 {
949 return p->static_prio;
950 }
951
952 /*
953 * Calculate the expected normal priority: i.e. priority
954 * without taking RT-inheritance into account. Might be
955 * boosted by interactivity modifiers. Changes upon fork,
956 * setprio syscalls, and whenever the interactivity
957 * estimator recalculates.
958 */
959 static inline int normal_prio(struct task_struct *p)
960 {
961 int prio;
962
963 if (task_has_dl_policy(p))
964 prio = MAX_DL_PRIO-1;
965 else if (task_has_rt_policy(p))
966 prio = MAX_RT_PRIO-1 - p->rt_priority;
967 else
968 prio = __normal_prio(p);
969 return prio;
970 }
971
972 /*
973 * Calculate the current priority, i.e. the priority
974 * taken into account by the scheduler. This value might
975 * be boosted by RT tasks, or might be boosted by
976 * interactivity modifiers. Will be RT if the task got
977 * RT-boosted. If not then it returns p->normal_prio.
978 */
979 static int effective_prio(struct task_struct *p)
980 {
981 p->normal_prio = normal_prio(p);
982 /*
983 * If we are RT tasks or we were boosted to RT priority,
984 * keep the priority unchanged. Otherwise, update priority
985 * to the normal priority:
986 */
987 if (!rt_prio(p->prio))
988 return p->normal_prio;
989 return p->prio;
990 }
991
992 /**
993 * task_curr - is this task currently executing on a CPU?
994 * @p: the task in question.
995 *
996 * Return: 1 if the task is currently executing. 0 otherwise.
997 */
998 inline int task_curr(const struct task_struct *p)
999 {
1000 return cpu_curr(task_cpu(p)) == p;
1001 }
1002
1003 /*
1004 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1005 * use the balance_callback list if you want balancing.
1006 *
1007 * this means any call to check_class_changed() must be followed by a call to
1008 * balance_callback().
1009 */
1010 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1011 const struct sched_class *prev_class,
1012 int oldprio)
1013 {
1014 if (prev_class != p->sched_class) {
1015 if (prev_class->switched_from)
1016 prev_class->switched_from(rq, p);
1017
1018 p->sched_class->switched_to(rq, p);
1019 } else if (oldprio != p->prio || dl_task(p))
1020 p->sched_class->prio_changed(rq, p, oldprio);
1021 }
1022
1023 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1024 {
1025 const struct sched_class *class;
1026
1027 if (p->sched_class == rq->curr->sched_class) {
1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 } else {
1030 for_each_class(class) {
1031 if (class == rq->curr->sched_class)
1032 break;
1033 if (class == p->sched_class) {
1034 resched_curr(rq);
1035 break;
1036 }
1037 }
1038 }
1039
1040 /*
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1043 */
1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1045 rq_clock_skip_update(rq, true);
1046 }
1047
1048 #ifdef CONFIG_SMP
1049 /*
1050 * This is how migration works:
1051 *
1052 * 1) we invoke migration_cpu_stop() on the target CPU using
1053 * stop_one_cpu().
1054 * 2) stopper starts to run (implicitly forcing the migrated thread
1055 * off the CPU)
1056 * 3) it checks whether the migrated task is still in the wrong runqueue.
1057 * 4) if it's in the wrong runqueue then the migration thread removes
1058 * it and puts it into the right queue.
1059 * 5) stopper completes and stop_one_cpu() returns and the migration
1060 * is done.
1061 */
1062
1063 /*
1064 * move_queued_task - move a queued task to new rq.
1065 *
1066 * Returns (locked) new rq. Old rq's lock is released.
1067 */
1068 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1069 {
1070 lockdep_assert_held(&rq->lock);
1071
1072 dequeue_task(rq, p, 0);
1073 p->on_rq = TASK_ON_RQ_MIGRATING;
1074 set_task_cpu(p, new_cpu);
1075 raw_spin_unlock(&rq->lock);
1076
1077 rq = cpu_rq(new_cpu);
1078
1079 raw_spin_lock(&rq->lock);
1080 BUG_ON(task_cpu(p) != new_cpu);
1081 p->on_rq = TASK_ON_RQ_QUEUED;
1082 enqueue_task(rq, p, 0);
1083 check_preempt_curr(rq, p, 0);
1084
1085 return rq;
1086 }
1087
1088 struct migration_arg {
1089 struct task_struct *task;
1090 int dest_cpu;
1091 };
1092
1093 /*
1094 * Move (not current) task off this cpu, onto dest cpu. We're doing
1095 * this because either it can't run here any more (set_cpus_allowed()
1096 * away from this CPU, or CPU going down), or because we're
1097 * attempting to rebalance this task on exec (sched_exec).
1098 *
1099 * So we race with normal scheduler movements, but that's OK, as long
1100 * as the task is no longer on this CPU.
1101 */
1102 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1103 {
1104 if (unlikely(!cpu_active(dest_cpu)))
1105 return rq;
1106
1107 /* Affinity changed (again). */
1108 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1109 return rq;
1110
1111 rq = move_queued_task(rq, p, dest_cpu);
1112
1113 return rq;
1114 }
1115
1116 /*
1117 * migration_cpu_stop - this will be executed by a highprio stopper thread
1118 * and performs thread migration by bumping thread off CPU then
1119 * 'pushing' onto another runqueue.
1120 */
1121 static int migration_cpu_stop(void *data)
1122 {
1123 struct migration_arg *arg = data;
1124 struct task_struct *p = arg->task;
1125 struct rq *rq = this_rq();
1126
1127 /*
1128 * The original target cpu might have gone down and we might
1129 * be on another cpu but it doesn't matter.
1130 */
1131 local_irq_disable();
1132 /*
1133 * We need to explicitly wake pending tasks before running
1134 * __migrate_task() such that we will not miss enforcing cpus_allowed
1135 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1136 */
1137 sched_ttwu_pending();
1138
1139 raw_spin_lock(&p->pi_lock);
1140 raw_spin_lock(&rq->lock);
1141 /*
1142 * If task_rq(p) != rq, it cannot be migrated here, because we're
1143 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1144 * we're holding p->pi_lock.
1145 */
1146 if (task_rq(p) == rq && task_on_rq_queued(p))
1147 rq = __migrate_task(rq, p, arg->dest_cpu);
1148 raw_spin_unlock(&rq->lock);
1149 raw_spin_unlock(&p->pi_lock);
1150
1151 local_irq_enable();
1152 return 0;
1153 }
1154
1155 /*
1156 * sched_class::set_cpus_allowed must do the below, but is not required to
1157 * actually call this function.
1158 */
1159 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1160 {
1161 cpumask_copy(&p->cpus_allowed, new_mask);
1162 p->nr_cpus_allowed = cpumask_weight(new_mask);
1163 }
1164
1165 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1166 {
1167 struct rq *rq = task_rq(p);
1168 bool queued, running;
1169
1170 lockdep_assert_held(&p->pi_lock);
1171
1172 queued = task_on_rq_queued(p);
1173 running = task_current(rq, p);
1174
1175 if (queued) {
1176 /*
1177 * Because __kthread_bind() calls this on blocked tasks without
1178 * holding rq->lock.
1179 */
1180 lockdep_assert_held(&rq->lock);
1181 dequeue_task(rq, p, 0);
1182 }
1183 if (running)
1184 put_prev_task(rq, p);
1185
1186 p->sched_class->set_cpus_allowed(p, new_mask);
1187
1188 if (running)
1189 p->sched_class->set_curr_task(rq);
1190 if (queued)
1191 enqueue_task(rq, p, 0);
1192 }
1193
1194 /*
1195 * Change a given task's CPU affinity. Migrate the thread to a
1196 * proper CPU and schedule it away if the CPU it's executing on
1197 * is removed from the allowed bitmask.
1198 *
1199 * NOTE: the caller must have a valid reference to the task, the
1200 * task must not exit() & deallocate itself prematurely. The
1201 * call is not atomic; no spinlocks may be held.
1202 */
1203 static int __set_cpus_allowed_ptr(struct task_struct *p,
1204 const struct cpumask *new_mask, bool check)
1205 {
1206 unsigned long flags;
1207 struct rq *rq;
1208 unsigned int dest_cpu;
1209 int ret = 0;
1210
1211 rq = task_rq_lock(p, &flags);
1212
1213 /*
1214 * Must re-check here, to close a race against __kthread_bind(),
1215 * sched_setaffinity() is not guaranteed to observe the flag.
1216 */
1217 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1218 ret = -EINVAL;
1219 goto out;
1220 }
1221
1222 if (cpumask_equal(&p->cpus_allowed, new_mask))
1223 goto out;
1224
1225 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1226 ret = -EINVAL;
1227 goto out;
1228 }
1229
1230 do_set_cpus_allowed(p, new_mask);
1231
1232 /* Can the task run on the task's current CPU? If so, we're done */
1233 if (cpumask_test_cpu(task_cpu(p), new_mask))
1234 goto out;
1235
1236 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1237 if (task_running(rq, p) || p->state == TASK_WAKING) {
1238 struct migration_arg arg = { p, dest_cpu };
1239 /* Need help from migration thread: drop lock and wait. */
1240 task_rq_unlock(rq, p, &flags);
1241 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1242 tlb_migrate_finish(p->mm);
1243 return 0;
1244 } else if (task_on_rq_queued(p)) {
1245 /*
1246 * OK, since we're going to drop the lock immediately
1247 * afterwards anyway.
1248 */
1249 lockdep_unpin_lock(&rq->lock);
1250 rq = move_queued_task(rq, p, dest_cpu);
1251 lockdep_pin_lock(&rq->lock);
1252 }
1253 out:
1254 task_rq_unlock(rq, p, &flags);
1255
1256 return ret;
1257 }
1258
1259 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1260 {
1261 return __set_cpus_allowed_ptr(p, new_mask, false);
1262 }
1263 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1264
1265 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1266 {
1267 #ifdef CONFIG_SCHED_DEBUG
1268 /*
1269 * We should never call set_task_cpu() on a blocked task,
1270 * ttwu() will sort out the placement.
1271 */
1272 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1273 !p->on_rq);
1274
1275 #ifdef CONFIG_LOCKDEP
1276 /*
1277 * The caller should hold either p->pi_lock or rq->lock, when changing
1278 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1279 *
1280 * sched_move_task() holds both and thus holding either pins the cgroup,
1281 * see task_group().
1282 *
1283 * Furthermore, all task_rq users should acquire both locks, see
1284 * task_rq_lock().
1285 */
1286 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1287 lockdep_is_held(&task_rq(p)->lock)));
1288 #endif
1289 #endif
1290
1291 trace_sched_migrate_task(p, new_cpu);
1292
1293 if (task_cpu(p) != new_cpu) {
1294 if (p->sched_class->migrate_task_rq)
1295 p->sched_class->migrate_task_rq(p, new_cpu);
1296 p->se.nr_migrations++;
1297 perf_event_task_migrate(p);
1298 }
1299
1300 __set_task_cpu(p, new_cpu);
1301 }
1302
1303 static void __migrate_swap_task(struct task_struct *p, int cpu)
1304 {
1305 if (task_on_rq_queued(p)) {
1306 struct rq *src_rq, *dst_rq;
1307
1308 src_rq = task_rq(p);
1309 dst_rq = cpu_rq(cpu);
1310
1311 deactivate_task(src_rq, p, 0);
1312 set_task_cpu(p, cpu);
1313 activate_task(dst_rq, p, 0);
1314 check_preempt_curr(dst_rq, p, 0);
1315 } else {
1316 /*
1317 * Task isn't running anymore; make it appear like we migrated
1318 * it before it went to sleep. This means on wakeup we make the
1319 * previous cpu our targer instead of where it really is.
1320 */
1321 p->wake_cpu = cpu;
1322 }
1323 }
1324
1325 struct migration_swap_arg {
1326 struct task_struct *src_task, *dst_task;
1327 int src_cpu, dst_cpu;
1328 };
1329
1330 static int migrate_swap_stop(void *data)
1331 {
1332 struct migration_swap_arg *arg = data;
1333 struct rq *src_rq, *dst_rq;
1334 int ret = -EAGAIN;
1335
1336 src_rq = cpu_rq(arg->src_cpu);
1337 dst_rq = cpu_rq(arg->dst_cpu);
1338
1339 double_raw_lock(&arg->src_task->pi_lock,
1340 &arg->dst_task->pi_lock);
1341 double_rq_lock(src_rq, dst_rq);
1342 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1343 goto unlock;
1344
1345 if (task_cpu(arg->src_task) != arg->src_cpu)
1346 goto unlock;
1347
1348 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1349 goto unlock;
1350
1351 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1352 goto unlock;
1353
1354 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1355 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1356
1357 ret = 0;
1358
1359 unlock:
1360 double_rq_unlock(src_rq, dst_rq);
1361 raw_spin_unlock(&arg->dst_task->pi_lock);
1362 raw_spin_unlock(&arg->src_task->pi_lock);
1363
1364 return ret;
1365 }
1366
1367 /*
1368 * Cross migrate two tasks
1369 */
1370 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1371 {
1372 struct migration_swap_arg arg;
1373 int ret = -EINVAL;
1374
1375 arg = (struct migration_swap_arg){
1376 .src_task = cur,
1377 .src_cpu = task_cpu(cur),
1378 .dst_task = p,
1379 .dst_cpu = task_cpu(p),
1380 };
1381
1382 if (arg.src_cpu == arg.dst_cpu)
1383 goto out;
1384
1385 /*
1386 * These three tests are all lockless; this is OK since all of them
1387 * will be re-checked with proper locks held further down the line.
1388 */
1389 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1390 goto out;
1391
1392 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1393 goto out;
1394
1395 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1396 goto out;
1397
1398 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1399 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1400
1401 out:
1402 return ret;
1403 }
1404
1405 /*
1406 * wait_task_inactive - wait for a thread to unschedule.
1407 *
1408 * If @match_state is nonzero, it's the @p->state value just checked and
1409 * not expected to change. If it changes, i.e. @p might have woken up,
1410 * then return zero. When we succeed in waiting for @p to be off its CPU,
1411 * we return a positive number (its total switch count). If a second call
1412 * a short while later returns the same number, the caller can be sure that
1413 * @p has remained unscheduled the whole time.
1414 *
1415 * The caller must ensure that the task *will* unschedule sometime soon,
1416 * else this function might spin for a *long* time. This function can't
1417 * be called with interrupts off, or it may introduce deadlock with
1418 * smp_call_function() if an IPI is sent by the same process we are
1419 * waiting to become inactive.
1420 */
1421 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1422 {
1423 unsigned long flags;
1424 int running, queued;
1425 unsigned long ncsw;
1426 struct rq *rq;
1427
1428 for (;;) {
1429 /*
1430 * We do the initial early heuristics without holding
1431 * any task-queue locks at all. We'll only try to get
1432 * the runqueue lock when things look like they will
1433 * work out!
1434 */
1435 rq = task_rq(p);
1436
1437 /*
1438 * If the task is actively running on another CPU
1439 * still, just relax and busy-wait without holding
1440 * any locks.
1441 *
1442 * NOTE! Since we don't hold any locks, it's not
1443 * even sure that "rq" stays as the right runqueue!
1444 * But we don't care, since "task_running()" will
1445 * return false if the runqueue has changed and p
1446 * is actually now running somewhere else!
1447 */
1448 while (task_running(rq, p)) {
1449 if (match_state && unlikely(p->state != match_state))
1450 return 0;
1451 cpu_relax();
1452 }
1453
1454 /*
1455 * Ok, time to look more closely! We need the rq
1456 * lock now, to be *sure*. If we're wrong, we'll
1457 * just go back and repeat.
1458 */
1459 rq = task_rq_lock(p, &flags);
1460 trace_sched_wait_task(p);
1461 running = task_running(rq, p);
1462 queued = task_on_rq_queued(p);
1463 ncsw = 0;
1464 if (!match_state || p->state == match_state)
1465 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1466 task_rq_unlock(rq, p, &flags);
1467
1468 /*
1469 * If it changed from the expected state, bail out now.
1470 */
1471 if (unlikely(!ncsw))
1472 break;
1473
1474 /*
1475 * Was it really running after all now that we
1476 * checked with the proper locks actually held?
1477 *
1478 * Oops. Go back and try again..
1479 */
1480 if (unlikely(running)) {
1481 cpu_relax();
1482 continue;
1483 }
1484
1485 /*
1486 * It's not enough that it's not actively running,
1487 * it must be off the runqueue _entirely_, and not
1488 * preempted!
1489 *
1490 * So if it was still runnable (but just not actively
1491 * running right now), it's preempted, and we should
1492 * yield - it could be a while.
1493 */
1494 if (unlikely(queued)) {
1495 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1496
1497 set_current_state(TASK_UNINTERRUPTIBLE);
1498 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1499 continue;
1500 }
1501
1502 /*
1503 * Ahh, all good. It wasn't running, and it wasn't
1504 * runnable, which means that it will never become
1505 * running in the future either. We're all done!
1506 */
1507 break;
1508 }
1509
1510 return ncsw;
1511 }
1512
1513 /***
1514 * kick_process - kick a running thread to enter/exit the kernel
1515 * @p: the to-be-kicked thread
1516 *
1517 * Cause a process which is running on another CPU to enter
1518 * kernel-mode, without any delay. (to get signals handled.)
1519 *
1520 * NOTE: this function doesn't have to take the runqueue lock,
1521 * because all it wants to ensure is that the remote task enters
1522 * the kernel. If the IPI races and the task has been migrated
1523 * to another CPU then no harm is done and the purpose has been
1524 * achieved as well.
1525 */
1526 void kick_process(struct task_struct *p)
1527 {
1528 int cpu;
1529
1530 preempt_disable();
1531 cpu = task_cpu(p);
1532 if ((cpu != smp_processor_id()) && task_curr(p))
1533 smp_send_reschedule(cpu);
1534 preempt_enable();
1535 }
1536 EXPORT_SYMBOL_GPL(kick_process);
1537
1538 /*
1539 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1540 */
1541 static int select_fallback_rq(int cpu, struct task_struct *p)
1542 {
1543 int nid = cpu_to_node(cpu);
1544 const struct cpumask *nodemask = NULL;
1545 enum { cpuset, possible, fail } state = cpuset;
1546 int dest_cpu;
1547
1548 /*
1549 * If the node that the cpu is on has been offlined, cpu_to_node()
1550 * will return -1. There is no cpu on the node, and we should
1551 * select the cpu on the other node.
1552 */
1553 if (nid != -1) {
1554 nodemask = cpumask_of_node(nid);
1555
1556 /* Look for allowed, online CPU in same node. */
1557 for_each_cpu(dest_cpu, nodemask) {
1558 if (!cpu_online(dest_cpu))
1559 continue;
1560 if (!cpu_active(dest_cpu))
1561 continue;
1562 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1563 return dest_cpu;
1564 }
1565 }
1566
1567 for (;;) {
1568 /* Any allowed, online CPU? */
1569 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1570 if (!cpu_online(dest_cpu))
1571 continue;
1572 if (!cpu_active(dest_cpu))
1573 continue;
1574 goto out;
1575 }
1576
1577 switch (state) {
1578 case cpuset:
1579 /* No more Mr. Nice Guy. */
1580 cpuset_cpus_allowed_fallback(p);
1581 state = possible;
1582 break;
1583
1584 case possible:
1585 do_set_cpus_allowed(p, cpu_possible_mask);
1586 state = fail;
1587 break;
1588
1589 case fail:
1590 BUG();
1591 break;
1592 }
1593 }
1594
1595 out:
1596 if (state != cpuset) {
1597 /*
1598 * Don't tell them about moving exiting tasks or
1599 * kernel threads (both mm NULL), since they never
1600 * leave kernel.
1601 */
1602 if (p->mm && printk_ratelimit()) {
1603 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1604 task_pid_nr(p), p->comm, cpu);
1605 }
1606 }
1607
1608 return dest_cpu;
1609 }
1610
1611 /*
1612 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1613 */
1614 static inline
1615 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1616 {
1617 lockdep_assert_held(&p->pi_lock);
1618
1619 if (p->nr_cpus_allowed > 1)
1620 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1621
1622 /*
1623 * In order not to call set_task_cpu() on a blocking task we need
1624 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1625 * cpu.
1626 *
1627 * Since this is common to all placement strategies, this lives here.
1628 *
1629 * [ this allows ->select_task() to simply return task_cpu(p) and
1630 * not worry about this generic constraint ]
1631 */
1632 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1633 !cpu_online(cpu)))
1634 cpu = select_fallback_rq(task_cpu(p), p);
1635
1636 return cpu;
1637 }
1638
1639 static void update_avg(u64 *avg, u64 sample)
1640 {
1641 s64 diff = sample - *avg;
1642 *avg += diff >> 3;
1643 }
1644
1645 #else
1646
1647 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1648 const struct cpumask *new_mask, bool check)
1649 {
1650 return set_cpus_allowed_ptr(p, new_mask);
1651 }
1652
1653 #endif /* CONFIG_SMP */
1654
1655 static void
1656 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1657 {
1658 #ifdef CONFIG_SCHEDSTATS
1659 struct rq *rq = this_rq();
1660
1661 #ifdef CONFIG_SMP
1662 int this_cpu = smp_processor_id();
1663
1664 if (cpu == this_cpu) {
1665 schedstat_inc(rq, ttwu_local);
1666 schedstat_inc(p, se.statistics.nr_wakeups_local);
1667 } else {
1668 struct sched_domain *sd;
1669
1670 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1671 rcu_read_lock();
1672 for_each_domain(this_cpu, sd) {
1673 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1674 schedstat_inc(sd, ttwu_wake_remote);
1675 break;
1676 }
1677 }
1678 rcu_read_unlock();
1679 }
1680
1681 if (wake_flags & WF_MIGRATED)
1682 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1683
1684 #endif /* CONFIG_SMP */
1685
1686 schedstat_inc(rq, ttwu_count);
1687 schedstat_inc(p, se.statistics.nr_wakeups);
1688
1689 if (wake_flags & WF_SYNC)
1690 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1691
1692 #endif /* CONFIG_SCHEDSTATS */
1693 }
1694
1695 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1696 {
1697 activate_task(rq, p, en_flags);
1698 p->on_rq = TASK_ON_RQ_QUEUED;
1699
1700 /* if a worker is waking up, notify workqueue */
1701 if (p->flags & PF_WQ_WORKER)
1702 wq_worker_waking_up(p, cpu_of(rq));
1703 }
1704
1705 /*
1706 * Mark the task runnable and perform wakeup-preemption.
1707 */
1708 static void
1709 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1710 {
1711 check_preempt_curr(rq, p, wake_flags);
1712 p->state = TASK_RUNNING;
1713 trace_sched_wakeup(p);
1714
1715 #ifdef CONFIG_SMP
1716 if (p->sched_class->task_woken) {
1717 /*
1718 * Our task @p is fully woken up and running; so its safe to
1719 * drop the rq->lock, hereafter rq is only used for statistics.
1720 */
1721 lockdep_unpin_lock(&rq->lock);
1722 p->sched_class->task_woken(rq, p);
1723 lockdep_pin_lock(&rq->lock);
1724 }
1725
1726 if (rq->idle_stamp) {
1727 u64 delta = rq_clock(rq) - rq->idle_stamp;
1728 u64 max = 2*rq->max_idle_balance_cost;
1729
1730 update_avg(&rq->avg_idle, delta);
1731
1732 if (rq->avg_idle > max)
1733 rq->avg_idle = max;
1734
1735 rq->idle_stamp = 0;
1736 }
1737 #endif
1738 }
1739
1740 static void
1741 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1742 {
1743 lockdep_assert_held(&rq->lock);
1744
1745 #ifdef CONFIG_SMP
1746 if (p->sched_contributes_to_load)
1747 rq->nr_uninterruptible--;
1748 #endif
1749
1750 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1751 ttwu_do_wakeup(rq, p, wake_flags);
1752 }
1753
1754 /*
1755 * Called in case the task @p isn't fully descheduled from its runqueue,
1756 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1757 * since all we need to do is flip p->state to TASK_RUNNING, since
1758 * the task is still ->on_rq.
1759 */
1760 static int ttwu_remote(struct task_struct *p, int wake_flags)
1761 {
1762 struct rq *rq;
1763 int ret = 0;
1764
1765 rq = __task_rq_lock(p);
1766 if (task_on_rq_queued(p)) {
1767 /* check_preempt_curr() may use rq clock */
1768 update_rq_clock(rq);
1769 ttwu_do_wakeup(rq, p, wake_flags);
1770 ret = 1;
1771 }
1772 __task_rq_unlock(rq);
1773
1774 return ret;
1775 }
1776
1777 #ifdef CONFIG_SMP
1778 void sched_ttwu_pending(void)
1779 {
1780 struct rq *rq = this_rq();
1781 struct llist_node *llist = llist_del_all(&rq->wake_list);
1782 struct task_struct *p;
1783 unsigned long flags;
1784
1785 if (!llist)
1786 return;
1787
1788 raw_spin_lock_irqsave(&rq->lock, flags);
1789 lockdep_pin_lock(&rq->lock);
1790
1791 while (llist) {
1792 p = llist_entry(llist, struct task_struct, wake_entry);
1793 llist = llist_next(llist);
1794 ttwu_do_activate(rq, p, 0);
1795 }
1796
1797 lockdep_unpin_lock(&rq->lock);
1798 raw_spin_unlock_irqrestore(&rq->lock, flags);
1799 }
1800
1801 void scheduler_ipi(void)
1802 {
1803 /*
1804 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1805 * TIF_NEED_RESCHED remotely (for the first time) will also send
1806 * this IPI.
1807 */
1808 preempt_fold_need_resched();
1809
1810 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1811 return;
1812
1813 /*
1814 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1815 * traditionally all their work was done from the interrupt return
1816 * path. Now that we actually do some work, we need to make sure
1817 * we do call them.
1818 *
1819 * Some archs already do call them, luckily irq_enter/exit nest
1820 * properly.
1821 *
1822 * Arguably we should visit all archs and update all handlers,
1823 * however a fair share of IPIs are still resched only so this would
1824 * somewhat pessimize the simple resched case.
1825 */
1826 irq_enter();
1827 sched_ttwu_pending();
1828
1829 /*
1830 * Check if someone kicked us for doing the nohz idle load balance.
1831 */
1832 if (unlikely(got_nohz_idle_kick())) {
1833 this_rq()->idle_balance = 1;
1834 raise_softirq_irqoff(SCHED_SOFTIRQ);
1835 }
1836 irq_exit();
1837 }
1838
1839 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1840 {
1841 struct rq *rq = cpu_rq(cpu);
1842
1843 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1844 if (!set_nr_if_polling(rq->idle))
1845 smp_send_reschedule(cpu);
1846 else
1847 trace_sched_wake_idle_without_ipi(cpu);
1848 }
1849 }
1850
1851 void wake_up_if_idle(int cpu)
1852 {
1853 struct rq *rq = cpu_rq(cpu);
1854 unsigned long flags;
1855
1856 rcu_read_lock();
1857
1858 if (!is_idle_task(rcu_dereference(rq->curr)))
1859 goto out;
1860
1861 if (set_nr_if_polling(rq->idle)) {
1862 trace_sched_wake_idle_without_ipi(cpu);
1863 } else {
1864 raw_spin_lock_irqsave(&rq->lock, flags);
1865 if (is_idle_task(rq->curr))
1866 smp_send_reschedule(cpu);
1867 /* Else cpu is not in idle, do nothing here */
1868 raw_spin_unlock_irqrestore(&rq->lock, flags);
1869 }
1870
1871 out:
1872 rcu_read_unlock();
1873 }
1874
1875 bool cpus_share_cache(int this_cpu, int that_cpu)
1876 {
1877 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878 }
1879 #endif /* CONFIG_SMP */
1880
1881 static void ttwu_queue(struct task_struct *p, int cpu)
1882 {
1883 struct rq *rq = cpu_rq(cpu);
1884
1885 #if defined(CONFIG_SMP)
1886 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1887 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1888 ttwu_queue_remote(p, cpu);
1889 return;
1890 }
1891 #endif
1892
1893 raw_spin_lock(&rq->lock);
1894 lockdep_pin_lock(&rq->lock);
1895 ttwu_do_activate(rq, p, 0);
1896 lockdep_unpin_lock(&rq->lock);
1897 raw_spin_unlock(&rq->lock);
1898 }
1899
1900 /**
1901 * try_to_wake_up - wake up a thread
1902 * @p: the thread to be awakened
1903 * @state: the mask of task states that can be woken
1904 * @wake_flags: wake modifier flags (WF_*)
1905 *
1906 * Put it on the run-queue if it's not already there. The "current"
1907 * thread is always on the run-queue (except when the actual
1908 * re-schedule is in progress), and as such you're allowed to do
1909 * the simpler "current->state = TASK_RUNNING" to mark yourself
1910 * runnable without the overhead of this.
1911 *
1912 * Return: %true if @p was woken up, %false if it was already running.
1913 * or @state didn't match @p's state.
1914 */
1915 static int
1916 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1917 {
1918 unsigned long flags;
1919 int cpu, success = 0;
1920
1921 /*
1922 * If we are going to wake up a thread waiting for CONDITION we
1923 * need to ensure that CONDITION=1 done by the caller can not be
1924 * reordered with p->state check below. This pairs with mb() in
1925 * set_current_state() the waiting thread does.
1926 */
1927 smp_mb__before_spinlock();
1928 raw_spin_lock_irqsave(&p->pi_lock, flags);
1929 if (!(p->state & state))
1930 goto out;
1931
1932 trace_sched_waking(p);
1933
1934 success = 1; /* we're going to change ->state */
1935 cpu = task_cpu(p);
1936
1937 if (p->on_rq && ttwu_remote(p, wake_flags))
1938 goto stat;
1939
1940 #ifdef CONFIG_SMP
1941 /*
1942 * If the owning (remote) cpu is still in the middle of schedule() with
1943 * this task as prev, wait until its done referencing the task.
1944 */
1945 while (p->on_cpu)
1946 cpu_relax();
1947 /*
1948 * Pairs with the smp_wmb() in finish_lock_switch().
1949 */
1950 smp_rmb();
1951
1952 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1953 p->state = TASK_WAKING;
1954
1955 if (p->sched_class->task_waking)
1956 p->sched_class->task_waking(p);
1957
1958 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1959 if (task_cpu(p) != cpu) {
1960 wake_flags |= WF_MIGRATED;
1961 set_task_cpu(p, cpu);
1962 }
1963 #endif /* CONFIG_SMP */
1964
1965 ttwu_queue(p, cpu);
1966 stat:
1967 ttwu_stat(p, cpu, wake_flags);
1968 out:
1969 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1970
1971 return success;
1972 }
1973
1974 /**
1975 * try_to_wake_up_local - try to wake up a local task with rq lock held
1976 * @p: the thread to be awakened
1977 *
1978 * Put @p on the run-queue if it's not already there. The caller must
1979 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1980 * the current task.
1981 */
1982 static void try_to_wake_up_local(struct task_struct *p)
1983 {
1984 struct rq *rq = task_rq(p);
1985
1986 if (WARN_ON_ONCE(rq != this_rq()) ||
1987 WARN_ON_ONCE(p == current))
1988 return;
1989
1990 lockdep_assert_held(&rq->lock);
1991
1992 if (!raw_spin_trylock(&p->pi_lock)) {
1993 /*
1994 * This is OK, because current is on_cpu, which avoids it being
1995 * picked for load-balance and preemption/IRQs are still
1996 * disabled avoiding further scheduler activity on it and we've
1997 * not yet picked a replacement task.
1998 */
1999 lockdep_unpin_lock(&rq->lock);
2000 raw_spin_unlock(&rq->lock);
2001 raw_spin_lock(&p->pi_lock);
2002 raw_spin_lock(&rq->lock);
2003 lockdep_pin_lock(&rq->lock);
2004 }
2005
2006 if (!(p->state & TASK_NORMAL))
2007 goto out;
2008
2009 trace_sched_waking(p);
2010
2011 if (!task_on_rq_queued(p))
2012 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2013
2014 ttwu_do_wakeup(rq, p, 0);
2015 ttwu_stat(p, smp_processor_id(), 0);
2016 out:
2017 raw_spin_unlock(&p->pi_lock);
2018 }
2019
2020 /**
2021 * wake_up_process - Wake up a specific process
2022 * @p: The process to be woken up.
2023 *
2024 * Attempt to wake up the nominated process and move it to the set of runnable
2025 * processes.
2026 *
2027 * Return: 1 if the process was woken up, 0 if it was already running.
2028 *
2029 * It may be assumed that this function implies a write memory barrier before
2030 * changing the task state if and only if any tasks are woken up.
2031 */
2032 int wake_up_process(struct task_struct *p)
2033 {
2034 WARN_ON(task_is_stopped_or_traced(p));
2035 return try_to_wake_up(p, TASK_NORMAL, 0);
2036 }
2037 EXPORT_SYMBOL(wake_up_process);
2038
2039 int wake_up_state(struct task_struct *p, unsigned int state)
2040 {
2041 return try_to_wake_up(p, state, 0);
2042 }
2043
2044 /*
2045 * This function clears the sched_dl_entity static params.
2046 */
2047 void __dl_clear_params(struct task_struct *p)
2048 {
2049 struct sched_dl_entity *dl_se = &p->dl;
2050
2051 dl_se->dl_runtime = 0;
2052 dl_se->dl_deadline = 0;
2053 dl_se->dl_period = 0;
2054 dl_se->flags = 0;
2055 dl_se->dl_bw = 0;
2056
2057 dl_se->dl_throttled = 0;
2058 dl_se->dl_new = 1;
2059 dl_se->dl_yielded = 0;
2060 }
2061
2062 /*
2063 * Perform scheduler related setup for a newly forked process p.
2064 * p is forked by current.
2065 *
2066 * __sched_fork() is basic setup used by init_idle() too:
2067 */
2068 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2069 {
2070 p->on_rq = 0;
2071
2072 p->se.on_rq = 0;
2073 p->se.exec_start = 0;
2074 p->se.sum_exec_runtime = 0;
2075 p->se.prev_sum_exec_runtime = 0;
2076 p->se.nr_migrations = 0;
2077 p->se.vruntime = 0;
2078 INIT_LIST_HEAD(&p->se.group_node);
2079
2080 #ifdef CONFIG_SCHEDSTATS
2081 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2082 #endif
2083
2084 RB_CLEAR_NODE(&p->dl.rb_node);
2085 init_dl_task_timer(&p->dl);
2086 __dl_clear_params(p);
2087
2088 INIT_LIST_HEAD(&p->rt.run_list);
2089
2090 #ifdef CONFIG_PREEMPT_NOTIFIERS
2091 INIT_HLIST_HEAD(&p->preempt_notifiers);
2092 #endif
2093
2094 #ifdef CONFIG_NUMA_BALANCING
2095 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2096 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2097 p->mm->numa_scan_seq = 0;
2098 }
2099
2100 if (clone_flags & CLONE_VM)
2101 p->numa_preferred_nid = current->numa_preferred_nid;
2102 else
2103 p->numa_preferred_nid = -1;
2104
2105 p->node_stamp = 0ULL;
2106 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2107 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2108 p->numa_work.next = &p->numa_work;
2109 p->numa_faults = NULL;
2110 p->last_task_numa_placement = 0;
2111 p->last_sum_exec_runtime = 0;
2112
2113 p->numa_group = NULL;
2114 #endif /* CONFIG_NUMA_BALANCING */
2115 }
2116
2117 #ifdef CONFIG_NUMA_BALANCING
2118 #ifdef CONFIG_SCHED_DEBUG
2119 void set_numabalancing_state(bool enabled)
2120 {
2121 if (enabled)
2122 sched_feat_set("NUMA");
2123 else
2124 sched_feat_set("NO_NUMA");
2125 }
2126 #else
2127 __read_mostly bool numabalancing_enabled;
2128
2129 void set_numabalancing_state(bool enabled)
2130 {
2131 numabalancing_enabled = enabled;
2132 }
2133 #endif /* CONFIG_SCHED_DEBUG */
2134
2135 #ifdef CONFIG_PROC_SYSCTL
2136 int sysctl_numa_balancing(struct ctl_table *table, int write,
2137 void __user *buffer, size_t *lenp, loff_t *ppos)
2138 {
2139 struct ctl_table t;
2140 int err;
2141 int state = numabalancing_enabled;
2142
2143 if (write && !capable(CAP_SYS_ADMIN))
2144 return -EPERM;
2145
2146 t = *table;
2147 t.data = &state;
2148 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2149 if (err < 0)
2150 return err;
2151 if (write)
2152 set_numabalancing_state(state);
2153 return err;
2154 }
2155 #endif
2156 #endif
2157
2158 /*
2159 * fork()/clone()-time setup:
2160 */
2161 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2162 {
2163 unsigned long flags;
2164 int cpu = get_cpu();
2165
2166 __sched_fork(clone_flags, p);
2167 /*
2168 * We mark the process as running here. This guarantees that
2169 * nobody will actually run it, and a signal or other external
2170 * event cannot wake it up and insert it on the runqueue either.
2171 */
2172 p->state = TASK_RUNNING;
2173
2174 /*
2175 * Make sure we do not leak PI boosting priority to the child.
2176 */
2177 p->prio = current->normal_prio;
2178
2179 /*
2180 * Revert to default priority/policy on fork if requested.
2181 */
2182 if (unlikely(p->sched_reset_on_fork)) {
2183 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2184 p->policy = SCHED_NORMAL;
2185 p->static_prio = NICE_TO_PRIO(0);
2186 p->rt_priority = 0;
2187 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2188 p->static_prio = NICE_TO_PRIO(0);
2189
2190 p->prio = p->normal_prio = __normal_prio(p);
2191 set_load_weight(p);
2192
2193 /*
2194 * We don't need the reset flag anymore after the fork. It has
2195 * fulfilled its duty:
2196 */
2197 p->sched_reset_on_fork = 0;
2198 }
2199
2200 if (dl_prio(p->prio)) {
2201 put_cpu();
2202 return -EAGAIN;
2203 } else if (rt_prio(p->prio)) {
2204 p->sched_class = &rt_sched_class;
2205 } else {
2206 p->sched_class = &fair_sched_class;
2207 }
2208
2209 if (p->sched_class->task_fork)
2210 p->sched_class->task_fork(p);
2211
2212 /*
2213 * The child is not yet in the pid-hash so no cgroup attach races,
2214 * and the cgroup is pinned to this child due to cgroup_fork()
2215 * is ran before sched_fork().
2216 *
2217 * Silence PROVE_RCU.
2218 */
2219 raw_spin_lock_irqsave(&p->pi_lock, flags);
2220 set_task_cpu(p, cpu);
2221 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2222
2223 #ifdef CONFIG_SCHED_INFO
2224 if (likely(sched_info_on()))
2225 memset(&p->sched_info, 0, sizeof(p->sched_info));
2226 #endif
2227 #if defined(CONFIG_SMP)
2228 p->on_cpu = 0;
2229 #endif
2230 init_task_preempt_count(p);
2231 #ifdef CONFIG_SMP
2232 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2233 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2234 #endif
2235
2236 put_cpu();
2237 return 0;
2238 }
2239
2240 unsigned long to_ratio(u64 period, u64 runtime)
2241 {
2242 if (runtime == RUNTIME_INF)
2243 return 1ULL << 20;
2244
2245 /*
2246 * Doing this here saves a lot of checks in all
2247 * the calling paths, and returning zero seems
2248 * safe for them anyway.
2249 */
2250 if (period == 0)
2251 return 0;
2252
2253 return div64_u64(runtime << 20, period);
2254 }
2255
2256 #ifdef CONFIG_SMP
2257 inline struct dl_bw *dl_bw_of(int i)
2258 {
2259 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2260 "sched RCU must be held");
2261 return &cpu_rq(i)->rd->dl_bw;
2262 }
2263
2264 static inline int dl_bw_cpus(int i)
2265 {
2266 struct root_domain *rd = cpu_rq(i)->rd;
2267 int cpus = 0;
2268
2269 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2270 "sched RCU must be held");
2271 for_each_cpu_and(i, rd->span, cpu_active_mask)
2272 cpus++;
2273
2274 return cpus;
2275 }
2276 #else
2277 inline struct dl_bw *dl_bw_of(int i)
2278 {
2279 return &cpu_rq(i)->dl.dl_bw;
2280 }
2281
2282 static inline int dl_bw_cpus(int i)
2283 {
2284 return 1;
2285 }
2286 #endif
2287
2288 /*
2289 * We must be sure that accepting a new task (or allowing changing the
2290 * parameters of an existing one) is consistent with the bandwidth
2291 * constraints. If yes, this function also accordingly updates the currently
2292 * allocated bandwidth to reflect the new situation.
2293 *
2294 * This function is called while holding p's rq->lock.
2295 *
2296 * XXX we should delay bw change until the task's 0-lag point, see
2297 * __setparam_dl().
2298 */
2299 static int dl_overflow(struct task_struct *p, int policy,
2300 const struct sched_attr *attr)
2301 {
2302
2303 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2304 u64 period = attr->sched_period ?: attr->sched_deadline;
2305 u64 runtime = attr->sched_runtime;
2306 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2307 int cpus, err = -1;
2308
2309 if (new_bw == p->dl.dl_bw)
2310 return 0;
2311
2312 /*
2313 * Either if a task, enters, leave, or stays -deadline but changes
2314 * its parameters, we may need to update accordingly the total
2315 * allocated bandwidth of the container.
2316 */
2317 raw_spin_lock(&dl_b->lock);
2318 cpus = dl_bw_cpus(task_cpu(p));
2319 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2320 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2321 __dl_add(dl_b, new_bw);
2322 err = 0;
2323 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2324 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2325 __dl_clear(dl_b, p->dl.dl_bw);
2326 __dl_add(dl_b, new_bw);
2327 err = 0;
2328 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2329 __dl_clear(dl_b, p->dl.dl_bw);
2330 err = 0;
2331 }
2332 raw_spin_unlock(&dl_b->lock);
2333
2334 return err;
2335 }
2336
2337 extern void init_dl_bw(struct dl_bw *dl_b);
2338
2339 /*
2340 * wake_up_new_task - wake up a newly created task for the first time.
2341 *
2342 * This function will do some initial scheduler statistics housekeeping
2343 * that must be done for every newly created context, then puts the task
2344 * on the runqueue and wakes it.
2345 */
2346 void wake_up_new_task(struct task_struct *p)
2347 {
2348 unsigned long flags;
2349 struct rq *rq;
2350
2351 raw_spin_lock_irqsave(&p->pi_lock, flags);
2352 #ifdef CONFIG_SMP
2353 /*
2354 * Fork balancing, do it here and not earlier because:
2355 * - cpus_allowed can change in the fork path
2356 * - any previously selected cpu might disappear through hotplug
2357 */
2358 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2359 #endif
2360
2361 /* Initialize new task's runnable average */
2362 init_entity_runnable_average(&p->se);
2363 rq = __task_rq_lock(p);
2364 activate_task(rq, p, 0);
2365 p->on_rq = TASK_ON_RQ_QUEUED;
2366 trace_sched_wakeup_new(p);
2367 check_preempt_curr(rq, p, WF_FORK);
2368 #ifdef CONFIG_SMP
2369 if (p->sched_class->task_woken)
2370 p->sched_class->task_woken(rq, p);
2371 #endif
2372 task_rq_unlock(rq, p, &flags);
2373 }
2374
2375 #ifdef CONFIG_PREEMPT_NOTIFIERS
2376
2377 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2378
2379 void preempt_notifier_inc(void)
2380 {
2381 static_key_slow_inc(&preempt_notifier_key);
2382 }
2383 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2384
2385 void preempt_notifier_dec(void)
2386 {
2387 static_key_slow_dec(&preempt_notifier_key);
2388 }
2389 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2390
2391 /**
2392 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2393 * @notifier: notifier struct to register
2394 */
2395 void preempt_notifier_register(struct preempt_notifier *notifier)
2396 {
2397 if (!static_key_false(&preempt_notifier_key))
2398 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2399
2400 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2401 }
2402 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2403
2404 /**
2405 * preempt_notifier_unregister - no longer interested in preemption notifications
2406 * @notifier: notifier struct to unregister
2407 *
2408 * This is *not* safe to call from within a preemption notifier.
2409 */
2410 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2411 {
2412 hlist_del(&notifier->link);
2413 }
2414 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2415
2416 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2417 {
2418 struct preempt_notifier *notifier;
2419
2420 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2421 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2422 }
2423
2424 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2425 {
2426 if (static_key_false(&preempt_notifier_key))
2427 __fire_sched_in_preempt_notifiers(curr);
2428 }
2429
2430 static void
2431 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2432 struct task_struct *next)
2433 {
2434 struct preempt_notifier *notifier;
2435
2436 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2437 notifier->ops->sched_out(notifier, next);
2438 }
2439
2440 static __always_inline void
2441 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2442 struct task_struct *next)
2443 {
2444 if (static_key_false(&preempt_notifier_key))
2445 __fire_sched_out_preempt_notifiers(curr, next);
2446 }
2447
2448 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2449
2450 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2451 {
2452 }
2453
2454 static inline void
2455 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2456 struct task_struct *next)
2457 {
2458 }
2459
2460 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2461
2462 /**
2463 * prepare_task_switch - prepare to switch tasks
2464 * @rq: the runqueue preparing to switch
2465 * @prev: the current task that is being switched out
2466 * @next: the task we are going to switch to.
2467 *
2468 * This is called with the rq lock held and interrupts off. It must
2469 * be paired with a subsequent finish_task_switch after the context
2470 * switch.
2471 *
2472 * prepare_task_switch sets up locking and calls architecture specific
2473 * hooks.
2474 */
2475 static inline void
2476 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2477 struct task_struct *next)
2478 {
2479 trace_sched_switch(prev, next);
2480 sched_info_switch(rq, prev, next);
2481 perf_event_task_sched_out(prev, next);
2482 fire_sched_out_preempt_notifiers(prev, next);
2483 prepare_lock_switch(rq, next);
2484 prepare_arch_switch(next);
2485 }
2486
2487 /**
2488 * finish_task_switch - clean up after a task-switch
2489 * @prev: the thread we just switched away from.
2490 *
2491 * finish_task_switch must be called after the context switch, paired
2492 * with a prepare_task_switch call before the context switch.
2493 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2494 * and do any other architecture-specific cleanup actions.
2495 *
2496 * Note that we may have delayed dropping an mm in context_switch(). If
2497 * so, we finish that here outside of the runqueue lock. (Doing it
2498 * with the lock held can cause deadlocks; see schedule() for
2499 * details.)
2500 *
2501 * The context switch have flipped the stack from under us and restored the
2502 * local variables which were saved when this task called schedule() in the
2503 * past. prev == current is still correct but we need to recalculate this_rq
2504 * because prev may have moved to another CPU.
2505 */
2506 static struct rq *finish_task_switch(struct task_struct *prev)
2507 __releases(rq->lock)
2508 {
2509 struct rq *rq = this_rq();
2510 struct mm_struct *mm = rq->prev_mm;
2511 long prev_state;
2512
2513 rq->prev_mm = NULL;
2514
2515 /*
2516 * A task struct has one reference for the use as "current".
2517 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2518 * schedule one last time. The schedule call will never return, and
2519 * the scheduled task must drop that reference.
2520 *
2521 * We must observe prev->state before clearing prev->on_cpu (in
2522 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2523 * running on another CPU and we could rave with its RUNNING -> DEAD
2524 * transition, resulting in a double drop.
2525 */
2526 prev_state = prev->state;
2527 vtime_task_switch(prev);
2528 perf_event_task_sched_in(prev, current);
2529 finish_lock_switch(rq, prev);
2530 finish_arch_post_lock_switch();
2531
2532 fire_sched_in_preempt_notifiers(current);
2533 if (mm)
2534 mmdrop(mm);
2535 if (unlikely(prev_state == TASK_DEAD)) {
2536 if (prev->sched_class->task_dead)
2537 prev->sched_class->task_dead(prev);
2538
2539 /*
2540 * Remove function-return probe instances associated with this
2541 * task and put them back on the free list.
2542 */
2543 kprobe_flush_task(prev);
2544 put_task_struct(prev);
2545 }
2546
2547 tick_nohz_task_switch();
2548 return rq;
2549 }
2550
2551 #ifdef CONFIG_SMP
2552
2553 /* rq->lock is NOT held, but preemption is disabled */
2554 static void __balance_callback(struct rq *rq)
2555 {
2556 struct callback_head *head, *next;
2557 void (*func)(struct rq *rq);
2558 unsigned long flags;
2559
2560 raw_spin_lock_irqsave(&rq->lock, flags);
2561 head = rq->balance_callback;
2562 rq->balance_callback = NULL;
2563 while (head) {
2564 func = (void (*)(struct rq *))head->func;
2565 next = head->next;
2566 head->next = NULL;
2567 head = next;
2568
2569 func(rq);
2570 }
2571 raw_spin_unlock_irqrestore(&rq->lock, flags);
2572 }
2573
2574 static inline void balance_callback(struct rq *rq)
2575 {
2576 if (unlikely(rq->balance_callback))
2577 __balance_callback(rq);
2578 }
2579
2580 #else
2581
2582 static inline void balance_callback(struct rq *rq)
2583 {
2584 }
2585
2586 #endif
2587
2588 /**
2589 * schedule_tail - first thing a freshly forked thread must call.
2590 * @prev: the thread we just switched away from.
2591 */
2592 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2593 __releases(rq->lock)
2594 {
2595 struct rq *rq;
2596
2597 /* finish_task_switch() drops rq->lock and enables preemtion */
2598 preempt_disable();
2599 rq = finish_task_switch(prev);
2600 balance_callback(rq);
2601 preempt_enable();
2602
2603 if (current->set_child_tid)
2604 put_user(task_pid_vnr(current), current->set_child_tid);
2605 }
2606
2607 /*
2608 * context_switch - switch to the new MM and the new thread's register state.
2609 */
2610 static inline struct rq *
2611 context_switch(struct rq *rq, struct task_struct *prev,
2612 struct task_struct *next)
2613 {
2614 struct mm_struct *mm, *oldmm;
2615
2616 prepare_task_switch(rq, prev, next);
2617
2618 mm = next->mm;
2619 oldmm = prev->active_mm;
2620 /*
2621 * For paravirt, this is coupled with an exit in switch_to to
2622 * combine the page table reload and the switch backend into
2623 * one hypercall.
2624 */
2625 arch_start_context_switch(prev);
2626
2627 if (!mm) {
2628 next->active_mm = oldmm;
2629 atomic_inc(&oldmm->mm_count);
2630 enter_lazy_tlb(oldmm, next);
2631 } else
2632 switch_mm(oldmm, mm, next);
2633
2634 if (!prev->mm) {
2635 prev->active_mm = NULL;
2636 rq->prev_mm = oldmm;
2637 }
2638 /*
2639 * Since the runqueue lock will be released by the next
2640 * task (which is an invalid locking op but in the case
2641 * of the scheduler it's an obvious special-case), so we
2642 * do an early lockdep release here:
2643 */
2644 lockdep_unpin_lock(&rq->lock);
2645 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2646
2647 /* Here we just switch the register state and the stack. */
2648 switch_to(prev, next, prev);
2649 barrier();
2650
2651 return finish_task_switch(prev);
2652 }
2653
2654 /*
2655 * nr_running and nr_context_switches:
2656 *
2657 * externally visible scheduler statistics: current number of runnable
2658 * threads, total number of context switches performed since bootup.
2659 */
2660 unsigned long nr_running(void)
2661 {
2662 unsigned long i, sum = 0;
2663
2664 for_each_online_cpu(i)
2665 sum += cpu_rq(i)->nr_running;
2666
2667 return sum;
2668 }
2669
2670 /*
2671 * Check if only the current task is running on the cpu.
2672 *
2673 * Caution: this function does not check that the caller has disabled
2674 * preemption, thus the result might have a time-of-check-to-time-of-use
2675 * race. The caller is responsible to use it correctly, for example:
2676 *
2677 * - from a non-preemptable section (of course)
2678 *
2679 * - from a thread that is bound to a single CPU
2680 *
2681 * - in a loop with very short iterations (e.g. a polling loop)
2682 */
2683 bool single_task_running(void)
2684 {
2685 return raw_rq()->nr_running == 1;
2686 }
2687 EXPORT_SYMBOL(single_task_running);
2688
2689 unsigned long long nr_context_switches(void)
2690 {
2691 int i;
2692 unsigned long long sum = 0;
2693
2694 for_each_possible_cpu(i)
2695 sum += cpu_rq(i)->nr_switches;
2696
2697 return sum;
2698 }
2699
2700 unsigned long nr_iowait(void)
2701 {
2702 unsigned long i, sum = 0;
2703
2704 for_each_possible_cpu(i)
2705 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2706
2707 return sum;
2708 }
2709
2710 unsigned long nr_iowait_cpu(int cpu)
2711 {
2712 struct rq *this = cpu_rq(cpu);
2713 return atomic_read(&this->nr_iowait);
2714 }
2715
2716 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2717 {
2718 struct rq *rq = this_rq();
2719 *nr_waiters = atomic_read(&rq->nr_iowait);
2720 *load = rq->load.weight;
2721 }
2722
2723 #ifdef CONFIG_SMP
2724
2725 /*
2726 * sched_exec - execve() is a valuable balancing opportunity, because at
2727 * this point the task has the smallest effective memory and cache footprint.
2728 */
2729 void sched_exec(void)
2730 {
2731 struct task_struct *p = current;
2732 unsigned long flags;
2733 int dest_cpu;
2734
2735 raw_spin_lock_irqsave(&p->pi_lock, flags);
2736 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2737 if (dest_cpu == smp_processor_id())
2738 goto unlock;
2739
2740 if (likely(cpu_active(dest_cpu))) {
2741 struct migration_arg arg = { p, dest_cpu };
2742
2743 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2744 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2745 return;
2746 }
2747 unlock:
2748 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2749 }
2750
2751 #endif
2752
2753 DEFINE_PER_CPU(struct kernel_stat, kstat);
2754 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2755
2756 EXPORT_PER_CPU_SYMBOL(kstat);
2757 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2758
2759 /*
2760 * Return accounted runtime for the task.
2761 * In case the task is currently running, return the runtime plus current's
2762 * pending runtime that have not been accounted yet.
2763 */
2764 unsigned long long task_sched_runtime(struct task_struct *p)
2765 {
2766 unsigned long flags;
2767 struct rq *rq;
2768 u64 ns;
2769
2770 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2771 /*
2772 * 64-bit doesn't need locks to atomically read a 64bit value.
2773 * So we have a optimization chance when the task's delta_exec is 0.
2774 * Reading ->on_cpu is racy, but this is ok.
2775 *
2776 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2777 * If we race with it entering cpu, unaccounted time is 0. This is
2778 * indistinguishable from the read occurring a few cycles earlier.
2779 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2780 * been accounted, so we're correct here as well.
2781 */
2782 if (!p->on_cpu || !task_on_rq_queued(p))
2783 return p->se.sum_exec_runtime;
2784 #endif
2785
2786 rq = task_rq_lock(p, &flags);
2787 /*
2788 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2789 * project cycles that may never be accounted to this
2790 * thread, breaking clock_gettime().
2791 */
2792 if (task_current(rq, p) && task_on_rq_queued(p)) {
2793 update_rq_clock(rq);
2794 p->sched_class->update_curr(rq);
2795 }
2796 ns = p->se.sum_exec_runtime;
2797 task_rq_unlock(rq, p, &flags);
2798
2799 return ns;
2800 }
2801
2802 /*
2803 * This function gets called by the timer code, with HZ frequency.
2804 * We call it with interrupts disabled.
2805 */
2806 void scheduler_tick(void)
2807 {
2808 int cpu = smp_processor_id();
2809 struct rq *rq = cpu_rq(cpu);
2810 struct task_struct *curr = rq->curr;
2811
2812 sched_clock_tick();
2813
2814 raw_spin_lock(&rq->lock);
2815 update_rq_clock(rq);
2816 curr->sched_class->task_tick(rq, curr, 0);
2817 update_cpu_load_active(rq);
2818 calc_global_load_tick(rq);
2819 raw_spin_unlock(&rq->lock);
2820
2821 perf_event_task_tick();
2822
2823 #ifdef CONFIG_SMP
2824 rq->idle_balance = idle_cpu(cpu);
2825 trigger_load_balance(rq);
2826 #endif
2827 rq_last_tick_reset(rq);
2828 }
2829
2830 #ifdef CONFIG_NO_HZ_FULL
2831 /**
2832 * scheduler_tick_max_deferment
2833 *
2834 * Keep at least one tick per second when a single
2835 * active task is running because the scheduler doesn't
2836 * yet completely support full dynticks environment.
2837 *
2838 * This makes sure that uptime, CFS vruntime, load
2839 * balancing, etc... continue to move forward, even
2840 * with a very low granularity.
2841 *
2842 * Return: Maximum deferment in nanoseconds.
2843 */
2844 u64 scheduler_tick_max_deferment(void)
2845 {
2846 struct rq *rq = this_rq();
2847 unsigned long next, now = READ_ONCE(jiffies);
2848
2849 next = rq->last_sched_tick + HZ;
2850
2851 if (time_before_eq(next, now))
2852 return 0;
2853
2854 return jiffies_to_nsecs(next - now);
2855 }
2856 #endif
2857
2858 notrace unsigned long get_parent_ip(unsigned long addr)
2859 {
2860 if (in_lock_functions(addr)) {
2861 addr = CALLER_ADDR2;
2862 if (in_lock_functions(addr))
2863 addr = CALLER_ADDR3;
2864 }
2865 return addr;
2866 }
2867
2868 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2869 defined(CONFIG_PREEMPT_TRACER))
2870
2871 void preempt_count_add(int val)
2872 {
2873 #ifdef CONFIG_DEBUG_PREEMPT
2874 /*
2875 * Underflow?
2876 */
2877 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2878 return;
2879 #endif
2880 __preempt_count_add(val);
2881 #ifdef CONFIG_DEBUG_PREEMPT
2882 /*
2883 * Spinlock count overflowing soon?
2884 */
2885 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2886 PREEMPT_MASK - 10);
2887 #endif
2888 if (preempt_count() == val) {
2889 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2890 #ifdef CONFIG_DEBUG_PREEMPT
2891 current->preempt_disable_ip = ip;
2892 #endif
2893 trace_preempt_off(CALLER_ADDR0, ip);
2894 }
2895 }
2896 EXPORT_SYMBOL(preempt_count_add);
2897 NOKPROBE_SYMBOL(preempt_count_add);
2898
2899 void preempt_count_sub(int val)
2900 {
2901 #ifdef CONFIG_DEBUG_PREEMPT
2902 /*
2903 * Underflow?
2904 */
2905 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2906 return;
2907 /*
2908 * Is the spinlock portion underflowing?
2909 */
2910 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2911 !(preempt_count() & PREEMPT_MASK)))
2912 return;
2913 #endif
2914
2915 if (preempt_count() == val)
2916 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2917 __preempt_count_sub(val);
2918 }
2919 EXPORT_SYMBOL(preempt_count_sub);
2920 NOKPROBE_SYMBOL(preempt_count_sub);
2921
2922 #endif
2923
2924 /*
2925 * Print scheduling while atomic bug:
2926 */
2927 static noinline void __schedule_bug(struct task_struct *prev)
2928 {
2929 if (oops_in_progress)
2930 return;
2931
2932 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2933 prev->comm, prev->pid, preempt_count());
2934
2935 debug_show_held_locks(prev);
2936 print_modules();
2937 if (irqs_disabled())
2938 print_irqtrace_events(prev);
2939 #ifdef CONFIG_DEBUG_PREEMPT
2940 if (in_atomic_preempt_off()) {
2941 pr_err("Preemption disabled at:");
2942 print_ip_sym(current->preempt_disable_ip);
2943 pr_cont("\n");
2944 }
2945 #endif
2946 dump_stack();
2947 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2948 }
2949
2950 /*
2951 * Various schedule()-time debugging checks and statistics:
2952 */
2953 static inline void schedule_debug(struct task_struct *prev)
2954 {
2955 #ifdef CONFIG_SCHED_STACK_END_CHECK
2956 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2957 #endif
2958 /*
2959 * Test if we are atomic. Since do_exit() needs to call into
2960 * schedule() atomically, we ignore that path. Otherwise whine
2961 * if we are scheduling when we should not.
2962 */
2963 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2964 __schedule_bug(prev);
2965 rcu_sleep_check();
2966
2967 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2968
2969 schedstat_inc(this_rq(), sched_count);
2970 }
2971
2972 /*
2973 * Pick up the highest-prio task:
2974 */
2975 static inline struct task_struct *
2976 pick_next_task(struct rq *rq, struct task_struct *prev)
2977 {
2978 const struct sched_class *class = &fair_sched_class;
2979 struct task_struct *p;
2980
2981 /*
2982 * Optimization: we know that if all tasks are in
2983 * the fair class we can call that function directly:
2984 */
2985 if (likely(prev->sched_class == class &&
2986 rq->nr_running == rq->cfs.h_nr_running)) {
2987 p = fair_sched_class.pick_next_task(rq, prev);
2988 if (unlikely(p == RETRY_TASK))
2989 goto again;
2990
2991 /* assumes fair_sched_class->next == idle_sched_class */
2992 if (unlikely(!p))
2993 p = idle_sched_class.pick_next_task(rq, prev);
2994
2995 return p;
2996 }
2997
2998 again:
2999 for_each_class(class) {
3000 p = class->pick_next_task(rq, prev);
3001 if (p) {
3002 if (unlikely(p == RETRY_TASK))
3003 goto again;
3004 return p;
3005 }
3006 }
3007
3008 BUG(); /* the idle class will always have a runnable task */
3009 }
3010
3011 /*
3012 * __schedule() is the main scheduler function.
3013 *
3014 * The main means of driving the scheduler and thus entering this function are:
3015 *
3016 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3017 *
3018 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3019 * paths. For example, see arch/x86/entry_64.S.
3020 *
3021 * To drive preemption between tasks, the scheduler sets the flag in timer
3022 * interrupt handler scheduler_tick().
3023 *
3024 * 3. Wakeups don't really cause entry into schedule(). They add a
3025 * task to the run-queue and that's it.
3026 *
3027 * Now, if the new task added to the run-queue preempts the current
3028 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3029 * called on the nearest possible occasion:
3030 *
3031 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3032 *
3033 * - in syscall or exception context, at the next outmost
3034 * preempt_enable(). (this might be as soon as the wake_up()'s
3035 * spin_unlock()!)
3036 *
3037 * - in IRQ context, return from interrupt-handler to
3038 * preemptible context
3039 *
3040 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3041 * then at the next:
3042 *
3043 * - cond_resched() call
3044 * - explicit schedule() call
3045 * - return from syscall or exception to user-space
3046 * - return from interrupt-handler to user-space
3047 *
3048 * WARNING: must be called with preemption disabled!
3049 */
3050 static void __sched __schedule(void)
3051 {
3052 struct task_struct *prev, *next;
3053 unsigned long *switch_count;
3054 struct rq *rq;
3055 int cpu;
3056
3057 cpu = smp_processor_id();
3058 rq = cpu_rq(cpu);
3059 rcu_note_context_switch();
3060 prev = rq->curr;
3061
3062 schedule_debug(prev);
3063
3064 if (sched_feat(HRTICK))
3065 hrtick_clear(rq);
3066
3067 /*
3068 * Make sure that signal_pending_state()->signal_pending() below
3069 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3070 * done by the caller to avoid the race with signal_wake_up().
3071 */
3072 smp_mb__before_spinlock();
3073 raw_spin_lock_irq(&rq->lock);
3074 lockdep_pin_lock(&rq->lock);
3075
3076 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3077
3078 switch_count = &prev->nivcsw;
3079 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3080 if (unlikely(signal_pending_state(prev->state, prev))) {
3081 prev->state = TASK_RUNNING;
3082 } else {
3083 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3084 prev->on_rq = 0;
3085
3086 /*
3087 * If a worker went to sleep, notify and ask workqueue
3088 * whether it wants to wake up a task to maintain
3089 * concurrency.
3090 */
3091 if (prev->flags & PF_WQ_WORKER) {
3092 struct task_struct *to_wakeup;
3093
3094 to_wakeup = wq_worker_sleeping(prev, cpu);
3095 if (to_wakeup)
3096 try_to_wake_up_local(to_wakeup);
3097 }
3098 }
3099 switch_count = &prev->nvcsw;
3100 }
3101
3102 if (task_on_rq_queued(prev))
3103 update_rq_clock(rq);
3104
3105 next = pick_next_task(rq, prev);
3106 clear_tsk_need_resched(prev);
3107 clear_preempt_need_resched();
3108 rq->clock_skip_update = 0;
3109
3110 if (likely(prev != next)) {
3111 rq->nr_switches++;
3112 rq->curr = next;
3113 ++*switch_count;
3114
3115 rq = context_switch(rq, prev, next); /* unlocks the rq */
3116 cpu = cpu_of(rq);
3117 } else {
3118 lockdep_unpin_lock(&rq->lock);
3119 raw_spin_unlock_irq(&rq->lock);
3120 }
3121
3122 balance_callback(rq);
3123 }
3124
3125 static inline void sched_submit_work(struct task_struct *tsk)
3126 {
3127 if (!tsk->state || tsk_is_pi_blocked(tsk))
3128 return;
3129 /*
3130 * If we are going to sleep and we have plugged IO queued,
3131 * make sure to submit it to avoid deadlocks.
3132 */
3133 if (blk_needs_flush_plug(tsk))
3134 blk_schedule_flush_plug(tsk);
3135 }
3136
3137 asmlinkage __visible void __sched schedule(void)
3138 {
3139 struct task_struct *tsk = current;
3140
3141 sched_submit_work(tsk);
3142 do {
3143 preempt_disable();
3144 __schedule();
3145 sched_preempt_enable_no_resched();
3146 } while (need_resched());
3147 }
3148 EXPORT_SYMBOL(schedule);
3149
3150 #ifdef CONFIG_CONTEXT_TRACKING
3151 asmlinkage __visible void __sched schedule_user(void)
3152 {
3153 /*
3154 * If we come here after a random call to set_need_resched(),
3155 * or we have been woken up remotely but the IPI has not yet arrived,
3156 * we haven't yet exited the RCU idle mode. Do it here manually until
3157 * we find a better solution.
3158 *
3159 * NB: There are buggy callers of this function. Ideally we
3160 * should warn if prev_state != CONTEXT_USER, but that will trigger
3161 * too frequently to make sense yet.
3162 */
3163 enum ctx_state prev_state = exception_enter();
3164 schedule();
3165 exception_exit(prev_state);
3166 }
3167 #endif
3168
3169 /**
3170 * schedule_preempt_disabled - called with preemption disabled
3171 *
3172 * Returns with preemption disabled. Note: preempt_count must be 1
3173 */
3174 void __sched schedule_preempt_disabled(void)
3175 {
3176 sched_preempt_enable_no_resched();
3177 schedule();
3178 preempt_disable();
3179 }
3180
3181 static void __sched notrace preempt_schedule_common(void)
3182 {
3183 do {
3184 preempt_active_enter();
3185 __schedule();
3186 preempt_active_exit();
3187
3188 /*
3189 * Check again in case we missed a preemption opportunity
3190 * between schedule and now.
3191 */
3192 } while (need_resched());
3193 }
3194
3195 #ifdef CONFIG_PREEMPT
3196 /*
3197 * this is the entry point to schedule() from in-kernel preemption
3198 * off of preempt_enable. Kernel preemptions off return from interrupt
3199 * occur there and call schedule directly.
3200 */
3201 asmlinkage __visible void __sched notrace preempt_schedule(void)
3202 {
3203 /*
3204 * If there is a non-zero preempt_count or interrupts are disabled,
3205 * we do not want to preempt the current task. Just return..
3206 */
3207 if (likely(!preemptible()))
3208 return;
3209
3210 preempt_schedule_common();
3211 }
3212 NOKPROBE_SYMBOL(preempt_schedule);
3213 EXPORT_SYMBOL(preempt_schedule);
3214
3215 /**
3216 * preempt_schedule_notrace - preempt_schedule called by tracing
3217 *
3218 * The tracing infrastructure uses preempt_enable_notrace to prevent
3219 * recursion and tracing preempt enabling caused by the tracing
3220 * infrastructure itself. But as tracing can happen in areas coming
3221 * from userspace or just about to enter userspace, a preempt enable
3222 * can occur before user_exit() is called. This will cause the scheduler
3223 * to be called when the system is still in usermode.
3224 *
3225 * To prevent this, the preempt_enable_notrace will use this function
3226 * instead of preempt_schedule() to exit user context if needed before
3227 * calling the scheduler.
3228 */
3229 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3230 {
3231 enum ctx_state prev_ctx;
3232
3233 if (likely(!preemptible()))
3234 return;
3235
3236 do {
3237 /*
3238 * Use raw __prempt_count() ops that don't call function.
3239 * We can't call functions before disabling preemption which
3240 * disarm preemption tracing recursions.
3241 */
3242 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3243 barrier();
3244 /*
3245 * Needs preempt disabled in case user_exit() is traced
3246 * and the tracer calls preempt_enable_notrace() causing
3247 * an infinite recursion.
3248 */
3249 prev_ctx = exception_enter();
3250 __schedule();
3251 exception_exit(prev_ctx);
3252
3253 barrier();
3254 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3255 } while (need_resched());
3256 }
3257 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3258
3259 #endif /* CONFIG_PREEMPT */
3260
3261 /*
3262 * this is the entry point to schedule() from kernel preemption
3263 * off of irq context.
3264 * Note, that this is called and return with irqs disabled. This will
3265 * protect us against recursive calling from irq.
3266 */
3267 asmlinkage __visible void __sched preempt_schedule_irq(void)
3268 {
3269 enum ctx_state prev_state;
3270
3271 /* Catch callers which need to be fixed */
3272 BUG_ON(preempt_count() || !irqs_disabled());
3273
3274 prev_state = exception_enter();
3275
3276 do {
3277 preempt_active_enter();
3278 local_irq_enable();
3279 __schedule();
3280 local_irq_disable();
3281 preempt_active_exit();
3282 } while (need_resched());
3283
3284 exception_exit(prev_state);
3285 }
3286
3287 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3288 void *key)
3289 {
3290 return try_to_wake_up(curr->private, mode, wake_flags);
3291 }
3292 EXPORT_SYMBOL(default_wake_function);
3293
3294 #ifdef CONFIG_RT_MUTEXES
3295
3296 /*
3297 * rt_mutex_setprio - set the current priority of a task
3298 * @p: task
3299 * @prio: prio value (kernel-internal form)
3300 *
3301 * This function changes the 'effective' priority of a task. It does
3302 * not touch ->normal_prio like __setscheduler().
3303 *
3304 * Used by the rt_mutex code to implement priority inheritance
3305 * logic. Call site only calls if the priority of the task changed.
3306 */
3307 void rt_mutex_setprio(struct task_struct *p, int prio)
3308 {
3309 int oldprio, queued, running, enqueue_flag = 0;
3310 struct rq *rq;
3311 const struct sched_class *prev_class;
3312
3313 BUG_ON(prio > MAX_PRIO);
3314
3315 rq = __task_rq_lock(p);
3316
3317 /*
3318 * Idle task boosting is a nono in general. There is one
3319 * exception, when PREEMPT_RT and NOHZ is active:
3320 *
3321 * The idle task calls get_next_timer_interrupt() and holds
3322 * the timer wheel base->lock on the CPU and another CPU wants
3323 * to access the timer (probably to cancel it). We can safely
3324 * ignore the boosting request, as the idle CPU runs this code
3325 * with interrupts disabled and will complete the lock
3326 * protected section without being interrupted. So there is no
3327 * real need to boost.
3328 */
3329 if (unlikely(p == rq->idle)) {
3330 WARN_ON(p != rq->curr);
3331 WARN_ON(p->pi_blocked_on);
3332 goto out_unlock;
3333 }
3334
3335 trace_sched_pi_setprio(p, prio);
3336 oldprio = p->prio;
3337 prev_class = p->sched_class;
3338 queued = task_on_rq_queued(p);
3339 running = task_current(rq, p);
3340 if (queued)
3341 dequeue_task(rq, p, 0);
3342 if (running)
3343 put_prev_task(rq, p);
3344
3345 /*
3346 * Boosting condition are:
3347 * 1. -rt task is running and holds mutex A
3348 * --> -dl task blocks on mutex A
3349 *
3350 * 2. -dl task is running and holds mutex A
3351 * --> -dl task blocks on mutex A and could preempt the
3352 * running task
3353 */
3354 if (dl_prio(prio)) {
3355 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3356 if (!dl_prio(p->normal_prio) ||
3357 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3358 p->dl.dl_boosted = 1;
3359 enqueue_flag = ENQUEUE_REPLENISH;
3360 } else
3361 p->dl.dl_boosted = 0;
3362 p->sched_class = &dl_sched_class;
3363 } else if (rt_prio(prio)) {
3364 if (dl_prio(oldprio))
3365 p->dl.dl_boosted = 0;
3366 if (oldprio < prio)
3367 enqueue_flag = ENQUEUE_HEAD;
3368 p->sched_class = &rt_sched_class;
3369 } else {
3370 if (dl_prio(oldprio))
3371 p->dl.dl_boosted = 0;
3372 if (rt_prio(oldprio))
3373 p->rt.timeout = 0;
3374 p->sched_class = &fair_sched_class;
3375 }
3376
3377 p->prio = prio;
3378
3379 if (running)
3380 p->sched_class->set_curr_task(rq);
3381 if (queued)
3382 enqueue_task(rq, p, enqueue_flag);
3383
3384 check_class_changed(rq, p, prev_class, oldprio);
3385 out_unlock:
3386 preempt_disable(); /* avoid rq from going away on us */
3387 __task_rq_unlock(rq);
3388
3389 balance_callback(rq);
3390 preempt_enable();
3391 }
3392 #endif
3393
3394 void set_user_nice(struct task_struct *p, long nice)
3395 {
3396 int old_prio, delta, queued;
3397 unsigned long flags;
3398 struct rq *rq;
3399
3400 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3401 return;
3402 /*
3403 * We have to be careful, if called from sys_setpriority(),
3404 * the task might be in the middle of scheduling on another CPU.
3405 */
3406 rq = task_rq_lock(p, &flags);
3407 /*
3408 * The RT priorities are set via sched_setscheduler(), but we still
3409 * allow the 'normal' nice value to be set - but as expected
3410 * it wont have any effect on scheduling until the task is
3411 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3412 */
3413 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3414 p->static_prio = NICE_TO_PRIO(nice);
3415 goto out_unlock;
3416 }
3417 queued = task_on_rq_queued(p);
3418 if (queued)
3419 dequeue_task(rq, p, 0);
3420
3421 p->static_prio = NICE_TO_PRIO(nice);
3422 set_load_weight(p);
3423 old_prio = p->prio;
3424 p->prio = effective_prio(p);
3425 delta = p->prio - old_prio;
3426
3427 if (queued) {
3428 enqueue_task(rq, p, 0);
3429 /*
3430 * If the task increased its priority or is running and
3431 * lowered its priority, then reschedule its CPU:
3432 */
3433 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3434 resched_curr(rq);
3435 }
3436 out_unlock:
3437 task_rq_unlock(rq, p, &flags);
3438 }
3439 EXPORT_SYMBOL(set_user_nice);
3440
3441 /*
3442 * can_nice - check if a task can reduce its nice value
3443 * @p: task
3444 * @nice: nice value
3445 */
3446 int can_nice(const struct task_struct *p, const int nice)
3447 {
3448 /* convert nice value [19,-20] to rlimit style value [1,40] */
3449 int nice_rlim = nice_to_rlimit(nice);
3450
3451 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3452 capable(CAP_SYS_NICE));
3453 }
3454
3455 #ifdef __ARCH_WANT_SYS_NICE
3456
3457 /*
3458 * sys_nice - change the priority of the current process.
3459 * @increment: priority increment
3460 *
3461 * sys_setpriority is a more generic, but much slower function that
3462 * does similar things.
3463 */
3464 SYSCALL_DEFINE1(nice, int, increment)
3465 {
3466 long nice, retval;
3467
3468 /*
3469 * Setpriority might change our priority at the same moment.
3470 * We don't have to worry. Conceptually one call occurs first
3471 * and we have a single winner.
3472 */
3473 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3474 nice = task_nice(current) + increment;
3475
3476 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3477 if (increment < 0 && !can_nice(current, nice))
3478 return -EPERM;
3479
3480 retval = security_task_setnice(current, nice);
3481 if (retval)
3482 return retval;
3483
3484 set_user_nice(current, nice);
3485 return 0;
3486 }
3487
3488 #endif
3489
3490 /**
3491 * task_prio - return the priority value of a given task.
3492 * @p: the task in question.
3493 *
3494 * Return: The priority value as seen by users in /proc.
3495 * RT tasks are offset by -200. Normal tasks are centered
3496 * around 0, value goes from -16 to +15.
3497 */
3498 int task_prio(const struct task_struct *p)
3499 {
3500 return p->prio - MAX_RT_PRIO;
3501 }
3502
3503 /**
3504 * idle_cpu - is a given cpu idle currently?
3505 * @cpu: the processor in question.
3506 *
3507 * Return: 1 if the CPU is currently idle. 0 otherwise.
3508 */
3509 int idle_cpu(int cpu)
3510 {
3511 struct rq *rq = cpu_rq(cpu);
3512
3513 if (rq->curr != rq->idle)
3514 return 0;
3515
3516 if (rq->nr_running)
3517 return 0;
3518
3519 #ifdef CONFIG_SMP
3520 if (!llist_empty(&rq->wake_list))
3521 return 0;
3522 #endif
3523
3524 return 1;
3525 }
3526
3527 /**
3528 * idle_task - return the idle task for a given cpu.
3529 * @cpu: the processor in question.
3530 *
3531 * Return: The idle task for the cpu @cpu.
3532 */
3533 struct task_struct *idle_task(int cpu)
3534 {
3535 return cpu_rq(cpu)->idle;
3536 }
3537
3538 /**
3539 * find_process_by_pid - find a process with a matching PID value.
3540 * @pid: the pid in question.
3541 *
3542 * The task of @pid, if found. %NULL otherwise.
3543 */
3544 static struct task_struct *find_process_by_pid(pid_t pid)
3545 {
3546 return pid ? find_task_by_vpid(pid) : current;
3547 }
3548
3549 /*
3550 * This function initializes the sched_dl_entity of a newly becoming
3551 * SCHED_DEADLINE task.
3552 *
3553 * Only the static values are considered here, the actual runtime and the
3554 * absolute deadline will be properly calculated when the task is enqueued
3555 * for the first time with its new policy.
3556 */
3557 static void
3558 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3559 {
3560 struct sched_dl_entity *dl_se = &p->dl;
3561
3562 dl_se->dl_runtime = attr->sched_runtime;
3563 dl_se->dl_deadline = attr->sched_deadline;
3564 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3565 dl_se->flags = attr->sched_flags;
3566 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3567
3568 /*
3569 * Changing the parameters of a task is 'tricky' and we're not doing
3570 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3571 *
3572 * What we SHOULD do is delay the bandwidth release until the 0-lag
3573 * point. This would include retaining the task_struct until that time
3574 * and change dl_overflow() to not immediately decrement the current
3575 * amount.
3576 *
3577 * Instead we retain the current runtime/deadline and let the new
3578 * parameters take effect after the current reservation period lapses.
3579 * This is safe (albeit pessimistic) because the 0-lag point is always
3580 * before the current scheduling deadline.
3581 *
3582 * We can still have temporary overloads because we do not delay the
3583 * change in bandwidth until that time; so admission control is
3584 * not on the safe side. It does however guarantee tasks will never
3585 * consume more than promised.
3586 */
3587 }
3588
3589 /*
3590 * sched_setparam() passes in -1 for its policy, to let the functions
3591 * it calls know not to change it.
3592 */
3593 #define SETPARAM_POLICY -1
3594
3595 static void __setscheduler_params(struct task_struct *p,
3596 const struct sched_attr *attr)
3597 {
3598 int policy = attr->sched_policy;
3599
3600 if (policy == SETPARAM_POLICY)
3601 policy = p->policy;
3602
3603 p->policy = policy;
3604
3605 if (dl_policy(policy))
3606 __setparam_dl(p, attr);
3607 else if (fair_policy(policy))
3608 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3609
3610 /*
3611 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3612 * !rt_policy. Always setting this ensures that things like
3613 * getparam()/getattr() don't report silly values for !rt tasks.
3614 */
3615 p->rt_priority = attr->sched_priority;
3616 p->normal_prio = normal_prio(p);
3617 set_load_weight(p);
3618 }
3619
3620 /* Actually do priority change: must hold pi & rq lock. */
3621 static void __setscheduler(struct rq *rq, struct task_struct *p,
3622 const struct sched_attr *attr, bool keep_boost)
3623 {
3624 __setscheduler_params(p, attr);
3625
3626 /*
3627 * Keep a potential priority boosting if called from
3628 * sched_setscheduler().
3629 */
3630 if (keep_boost)
3631 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3632 else
3633 p->prio = normal_prio(p);
3634
3635 if (dl_prio(p->prio))
3636 p->sched_class = &dl_sched_class;
3637 else if (rt_prio(p->prio))
3638 p->sched_class = &rt_sched_class;
3639 else
3640 p->sched_class = &fair_sched_class;
3641 }
3642
3643 static void
3644 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3645 {
3646 struct sched_dl_entity *dl_se = &p->dl;
3647
3648 attr->sched_priority = p->rt_priority;
3649 attr->sched_runtime = dl_se->dl_runtime;
3650 attr->sched_deadline = dl_se->dl_deadline;
3651 attr->sched_period = dl_se->dl_period;
3652 attr->sched_flags = dl_se->flags;
3653 }
3654
3655 /*
3656 * This function validates the new parameters of a -deadline task.
3657 * We ask for the deadline not being zero, and greater or equal
3658 * than the runtime, as well as the period of being zero or
3659 * greater than deadline. Furthermore, we have to be sure that
3660 * user parameters are above the internal resolution of 1us (we
3661 * check sched_runtime only since it is always the smaller one) and
3662 * below 2^63 ns (we have to check both sched_deadline and
3663 * sched_period, as the latter can be zero).
3664 */
3665 static bool
3666 __checkparam_dl(const struct sched_attr *attr)
3667 {
3668 /* deadline != 0 */
3669 if (attr->sched_deadline == 0)
3670 return false;
3671
3672 /*
3673 * Since we truncate DL_SCALE bits, make sure we're at least
3674 * that big.
3675 */
3676 if (attr->sched_runtime < (1ULL << DL_SCALE))
3677 return false;
3678
3679 /*
3680 * Since we use the MSB for wrap-around and sign issues, make
3681 * sure it's not set (mind that period can be equal to zero).
3682 */
3683 if (attr->sched_deadline & (1ULL << 63) ||
3684 attr->sched_period & (1ULL << 63))
3685 return false;
3686
3687 /* runtime <= deadline <= period (if period != 0) */
3688 if ((attr->sched_period != 0 &&
3689 attr->sched_period < attr->sched_deadline) ||
3690 attr->sched_deadline < attr->sched_runtime)
3691 return false;
3692
3693 return true;
3694 }
3695
3696 /*
3697 * check the target process has a UID that matches the current process's
3698 */
3699 static bool check_same_owner(struct task_struct *p)
3700 {
3701 const struct cred *cred = current_cred(), *pcred;
3702 bool match;
3703
3704 rcu_read_lock();
3705 pcred = __task_cred(p);
3706 match = (uid_eq(cred->euid, pcred->euid) ||
3707 uid_eq(cred->euid, pcred->uid));
3708 rcu_read_unlock();
3709 return match;
3710 }
3711
3712 static bool dl_param_changed(struct task_struct *p,
3713 const struct sched_attr *attr)
3714 {
3715 struct sched_dl_entity *dl_se = &p->dl;
3716
3717 if (dl_se->dl_runtime != attr->sched_runtime ||
3718 dl_se->dl_deadline != attr->sched_deadline ||
3719 dl_se->dl_period != attr->sched_period ||
3720 dl_se->flags != attr->sched_flags)
3721 return true;
3722
3723 return false;
3724 }
3725
3726 static int __sched_setscheduler(struct task_struct *p,
3727 const struct sched_attr *attr,
3728 bool user, bool pi)
3729 {
3730 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3731 MAX_RT_PRIO - 1 - attr->sched_priority;
3732 int retval, oldprio, oldpolicy = -1, queued, running;
3733 int new_effective_prio, policy = attr->sched_policy;
3734 unsigned long flags;
3735 const struct sched_class *prev_class;
3736 struct rq *rq;
3737 int reset_on_fork;
3738
3739 /* may grab non-irq protected spin_locks */
3740 BUG_ON(in_interrupt());
3741 recheck:
3742 /* double check policy once rq lock held */
3743 if (policy < 0) {
3744 reset_on_fork = p->sched_reset_on_fork;
3745 policy = oldpolicy = p->policy;
3746 } else {
3747 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3748
3749 if (policy != SCHED_DEADLINE &&
3750 policy != SCHED_FIFO && policy != SCHED_RR &&
3751 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3752 policy != SCHED_IDLE)
3753 return -EINVAL;
3754 }
3755
3756 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3757 return -EINVAL;
3758
3759 /*
3760 * Valid priorities for SCHED_FIFO and SCHED_RR are
3761 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3762 * SCHED_BATCH and SCHED_IDLE is 0.
3763 */
3764 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3765 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3766 return -EINVAL;
3767 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3768 (rt_policy(policy) != (attr->sched_priority != 0)))
3769 return -EINVAL;
3770
3771 /*
3772 * Allow unprivileged RT tasks to decrease priority:
3773 */
3774 if (user && !capable(CAP_SYS_NICE)) {
3775 if (fair_policy(policy)) {
3776 if (attr->sched_nice < task_nice(p) &&
3777 !can_nice(p, attr->sched_nice))
3778 return -EPERM;
3779 }
3780
3781 if (rt_policy(policy)) {
3782 unsigned long rlim_rtprio =
3783 task_rlimit(p, RLIMIT_RTPRIO);
3784
3785 /* can't set/change the rt policy */
3786 if (policy != p->policy && !rlim_rtprio)
3787 return -EPERM;
3788
3789 /* can't increase priority */
3790 if (attr->sched_priority > p->rt_priority &&
3791 attr->sched_priority > rlim_rtprio)
3792 return -EPERM;
3793 }
3794
3795 /*
3796 * Can't set/change SCHED_DEADLINE policy at all for now
3797 * (safest behavior); in the future we would like to allow
3798 * unprivileged DL tasks to increase their relative deadline
3799 * or reduce their runtime (both ways reducing utilization)
3800 */
3801 if (dl_policy(policy))
3802 return -EPERM;
3803
3804 /*
3805 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3806 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3807 */
3808 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3809 if (!can_nice(p, task_nice(p)))
3810 return -EPERM;
3811 }
3812
3813 /* can't change other user's priorities */
3814 if (!check_same_owner(p))
3815 return -EPERM;
3816
3817 /* Normal users shall not reset the sched_reset_on_fork flag */
3818 if (p->sched_reset_on_fork && !reset_on_fork)
3819 return -EPERM;
3820 }
3821
3822 if (user) {
3823 retval = security_task_setscheduler(p);
3824 if (retval)
3825 return retval;
3826 }
3827
3828 /*
3829 * make sure no PI-waiters arrive (or leave) while we are
3830 * changing the priority of the task:
3831 *
3832 * To be able to change p->policy safely, the appropriate
3833 * runqueue lock must be held.
3834 */
3835 rq = task_rq_lock(p, &flags);
3836
3837 /*
3838 * Changing the policy of the stop threads its a very bad idea
3839 */
3840 if (p == rq->stop) {
3841 task_rq_unlock(rq, p, &flags);
3842 return -EINVAL;
3843 }
3844
3845 /*
3846 * If not changing anything there's no need to proceed further,
3847 * but store a possible modification of reset_on_fork.
3848 */
3849 if (unlikely(policy == p->policy)) {
3850 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3851 goto change;
3852 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3853 goto change;
3854 if (dl_policy(policy) && dl_param_changed(p, attr))
3855 goto change;
3856
3857 p->sched_reset_on_fork = reset_on_fork;
3858 task_rq_unlock(rq, p, &flags);
3859 return 0;
3860 }
3861 change:
3862
3863 if (user) {
3864 #ifdef CONFIG_RT_GROUP_SCHED
3865 /*
3866 * Do not allow realtime tasks into groups that have no runtime
3867 * assigned.
3868 */
3869 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3870 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3871 !task_group_is_autogroup(task_group(p))) {
3872 task_rq_unlock(rq, p, &flags);
3873 return -EPERM;
3874 }
3875 #endif
3876 #ifdef CONFIG_SMP
3877 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3878 cpumask_t *span = rq->rd->span;
3879
3880 /*
3881 * Don't allow tasks with an affinity mask smaller than
3882 * the entire root_domain to become SCHED_DEADLINE. We
3883 * will also fail if there's no bandwidth available.
3884 */
3885 if (!cpumask_subset(span, &p->cpus_allowed) ||
3886 rq->rd->dl_bw.bw == 0) {
3887 task_rq_unlock(rq, p, &flags);
3888 return -EPERM;
3889 }
3890 }
3891 #endif
3892 }
3893
3894 /* recheck policy now with rq lock held */
3895 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3896 policy = oldpolicy = -1;
3897 task_rq_unlock(rq, p, &flags);
3898 goto recheck;
3899 }
3900
3901 /*
3902 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3903 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3904 * is available.
3905 */
3906 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3907 task_rq_unlock(rq, p, &flags);
3908 return -EBUSY;
3909 }
3910
3911 p->sched_reset_on_fork = reset_on_fork;
3912 oldprio = p->prio;
3913
3914 if (pi) {
3915 /*
3916 * Take priority boosted tasks into account. If the new
3917 * effective priority is unchanged, we just store the new
3918 * normal parameters and do not touch the scheduler class and
3919 * the runqueue. This will be done when the task deboost
3920 * itself.
3921 */
3922 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3923 if (new_effective_prio == oldprio) {
3924 __setscheduler_params(p, attr);
3925 task_rq_unlock(rq, p, &flags);
3926 return 0;
3927 }
3928 }
3929
3930 queued = task_on_rq_queued(p);
3931 running = task_current(rq, p);
3932 if (queued)
3933 dequeue_task(rq, p, 0);
3934 if (running)
3935 put_prev_task(rq, p);
3936
3937 prev_class = p->sched_class;
3938 __setscheduler(rq, p, attr, pi);
3939
3940 if (running)
3941 p->sched_class->set_curr_task(rq);
3942 if (queued) {
3943 /*
3944 * We enqueue to tail when the priority of a task is
3945 * increased (user space view).
3946 */
3947 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3948 }
3949
3950 check_class_changed(rq, p, prev_class, oldprio);
3951 preempt_disable(); /* avoid rq from going away on us */
3952 task_rq_unlock(rq, p, &flags);
3953
3954 if (pi)
3955 rt_mutex_adjust_pi(p);
3956
3957 /*
3958 * Run balance callbacks after we've adjusted the PI chain.
3959 */
3960 balance_callback(rq);
3961 preempt_enable();
3962
3963 return 0;
3964 }
3965
3966 static int _sched_setscheduler(struct task_struct *p, int policy,
3967 const struct sched_param *param, bool check)
3968 {
3969 struct sched_attr attr = {
3970 .sched_policy = policy,
3971 .sched_priority = param->sched_priority,
3972 .sched_nice = PRIO_TO_NICE(p->static_prio),
3973 };
3974
3975 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3976 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3977 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3978 policy &= ~SCHED_RESET_ON_FORK;
3979 attr.sched_policy = policy;
3980 }
3981
3982 return __sched_setscheduler(p, &attr, check, true);
3983 }
3984 /**
3985 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3986 * @p: the task in question.
3987 * @policy: new policy.
3988 * @param: structure containing the new RT priority.
3989 *
3990 * Return: 0 on success. An error code otherwise.
3991 *
3992 * NOTE that the task may be already dead.
3993 */
3994 int sched_setscheduler(struct task_struct *p, int policy,
3995 const struct sched_param *param)
3996 {
3997 return _sched_setscheduler(p, policy, param, true);
3998 }
3999 EXPORT_SYMBOL_GPL(sched_setscheduler);
4000
4001 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4002 {
4003 return __sched_setscheduler(p, attr, true, true);
4004 }
4005 EXPORT_SYMBOL_GPL(sched_setattr);
4006
4007 /**
4008 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4009 * @p: the task in question.
4010 * @policy: new policy.
4011 * @param: structure containing the new RT priority.
4012 *
4013 * Just like sched_setscheduler, only don't bother checking if the
4014 * current context has permission. For example, this is needed in
4015 * stop_machine(): we create temporary high priority worker threads,
4016 * but our caller might not have that capability.
4017 *
4018 * Return: 0 on success. An error code otherwise.
4019 */
4020 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4021 const struct sched_param *param)
4022 {
4023 return _sched_setscheduler(p, policy, param, false);
4024 }
4025
4026 static int
4027 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4028 {
4029 struct sched_param lparam;
4030 struct task_struct *p;
4031 int retval;
4032
4033 if (!param || pid < 0)
4034 return -EINVAL;
4035 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4036 return -EFAULT;
4037
4038 rcu_read_lock();
4039 retval = -ESRCH;
4040 p = find_process_by_pid(pid);
4041 if (p != NULL)
4042 retval = sched_setscheduler(p, policy, &lparam);
4043 rcu_read_unlock();
4044
4045 return retval;
4046 }
4047
4048 /*
4049 * Mimics kernel/events/core.c perf_copy_attr().
4050 */
4051 static int sched_copy_attr(struct sched_attr __user *uattr,
4052 struct sched_attr *attr)
4053 {
4054 u32 size;
4055 int ret;
4056
4057 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4058 return -EFAULT;
4059
4060 /*
4061 * zero the full structure, so that a short copy will be nice.
4062 */
4063 memset(attr, 0, sizeof(*attr));
4064
4065 ret = get_user(size, &uattr->size);
4066 if (ret)
4067 return ret;
4068
4069 if (size > PAGE_SIZE) /* silly large */
4070 goto err_size;
4071
4072 if (!size) /* abi compat */
4073 size = SCHED_ATTR_SIZE_VER0;
4074
4075 if (size < SCHED_ATTR_SIZE_VER0)
4076 goto err_size;
4077
4078 /*
4079 * If we're handed a bigger struct than we know of,
4080 * ensure all the unknown bits are 0 - i.e. new
4081 * user-space does not rely on any kernel feature
4082 * extensions we dont know about yet.
4083 */
4084 if (size > sizeof(*attr)) {
4085 unsigned char __user *addr;
4086 unsigned char __user *end;
4087 unsigned char val;
4088
4089 addr = (void __user *)uattr + sizeof(*attr);
4090 end = (void __user *)uattr + size;
4091
4092 for (; addr < end; addr++) {
4093 ret = get_user(val, addr);
4094 if (ret)
4095 return ret;
4096 if (val)
4097 goto err_size;
4098 }
4099 size = sizeof(*attr);
4100 }
4101
4102 ret = copy_from_user(attr, uattr, size);
4103 if (ret)
4104 return -EFAULT;
4105
4106 /*
4107 * XXX: do we want to be lenient like existing syscalls; or do we want
4108 * to be strict and return an error on out-of-bounds values?
4109 */
4110 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4111
4112 return 0;
4113
4114 err_size:
4115 put_user(sizeof(*attr), &uattr->size);
4116 return -E2BIG;
4117 }
4118
4119 /**
4120 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4121 * @pid: the pid in question.
4122 * @policy: new policy.
4123 * @param: structure containing the new RT priority.
4124 *
4125 * Return: 0 on success. An error code otherwise.
4126 */
4127 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4128 struct sched_param __user *, param)
4129 {
4130 /* negative values for policy are not valid */
4131 if (policy < 0)
4132 return -EINVAL;
4133
4134 return do_sched_setscheduler(pid, policy, param);
4135 }
4136
4137 /**
4138 * sys_sched_setparam - set/change the RT priority of a thread
4139 * @pid: the pid in question.
4140 * @param: structure containing the new RT priority.
4141 *
4142 * Return: 0 on success. An error code otherwise.
4143 */
4144 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4145 {
4146 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4147 }
4148
4149 /**
4150 * sys_sched_setattr - same as above, but with extended sched_attr
4151 * @pid: the pid in question.
4152 * @uattr: structure containing the extended parameters.
4153 * @flags: for future extension.
4154 */
4155 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4156 unsigned int, flags)
4157 {
4158 struct sched_attr attr;
4159 struct task_struct *p;
4160 int retval;
4161
4162 if (!uattr || pid < 0 || flags)
4163 return -EINVAL;
4164
4165 retval = sched_copy_attr(uattr, &attr);
4166 if (retval)
4167 return retval;
4168
4169 if ((int)attr.sched_policy < 0)
4170 return -EINVAL;
4171
4172 rcu_read_lock();
4173 retval = -ESRCH;
4174 p = find_process_by_pid(pid);
4175 if (p != NULL)
4176 retval = sched_setattr(p, &attr);
4177 rcu_read_unlock();
4178
4179 return retval;
4180 }
4181
4182 /**
4183 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4184 * @pid: the pid in question.
4185 *
4186 * Return: On success, the policy of the thread. Otherwise, a negative error
4187 * code.
4188 */
4189 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4190 {
4191 struct task_struct *p;
4192 int retval;
4193
4194 if (pid < 0)
4195 return -EINVAL;
4196
4197 retval = -ESRCH;
4198 rcu_read_lock();
4199 p = find_process_by_pid(pid);
4200 if (p) {
4201 retval = security_task_getscheduler(p);
4202 if (!retval)
4203 retval = p->policy
4204 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4205 }
4206 rcu_read_unlock();
4207 return retval;
4208 }
4209
4210 /**
4211 * sys_sched_getparam - get the RT priority of a thread
4212 * @pid: the pid in question.
4213 * @param: structure containing the RT priority.
4214 *
4215 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4216 * code.
4217 */
4218 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4219 {
4220 struct sched_param lp = { .sched_priority = 0 };
4221 struct task_struct *p;
4222 int retval;
4223
4224 if (!param || pid < 0)
4225 return -EINVAL;
4226
4227 rcu_read_lock();
4228 p = find_process_by_pid(pid);
4229 retval = -ESRCH;
4230 if (!p)
4231 goto out_unlock;
4232
4233 retval = security_task_getscheduler(p);
4234 if (retval)
4235 goto out_unlock;
4236
4237 if (task_has_rt_policy(p))
4238 lp.sched_priority = p->rt_priority;
4239 rcu_read_unlock();
4240
4241 /*
4242 * This one might sleep, we cannot do it with a spinlock held ...
4243 */
4244 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4245
4246 return retval;
4247
4248 out_unlock:
4249 rcu_read_unlock();
4250 return retval;
4251 }
4252
4253 static int sched_read_attr(struct sched_attr __user *uattr,
4254 struct sched_attr *attr,
4255 unsigned int usize)
4256 {
4257 int ret;
4258
4259 if (!access_ok(VERIFY_WRITE, uattr, usize))
4260 return -EFAULT;
4261
4262 /*
4263 * If we're handed a smaller struct than we know of,
4264 * ensure all the unknown bits are 0 - i.e. old
4265 * user-space does not get uncomplete information.
4266 */
4267 if (usize < sizeof(*attr)) {
4268 unsigned char *addr;
4269 unsigned char *end;
4270
4271 addr = (void *)attr + usize;
4272 end = (void *)attr + sizeof(*attr);
4273
4274 for (; addr < end; addr++) {
4275 if (*addr)
4276 return -EFBIG;
4277 }
4278
4279 attr->size = usize;
4280 }
4281
4282 ret = copy_to_user(uattr, attr, attr->size);
4283 if (ret)
4284 return -EFAULT;
4285
4286 return 0;
4287 }
4288
4289 /**
4290 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4291 * @pid: the pid in question.
4292 * @uattr: structure containing the extended parameters.
4293 * @size: sizeof(attr) for fwd/bwd comp.
4294 * @flags: for future extension.
4295 */
4296 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4297 unsigned int, size, unsigned int, flags)
4298 {
4299 struct sched_attr attr = {
4300 .size = sizeof(struct sched_attr),
4301 };
4302 struct task_struct *p;
4303 int retval;
4304
4305 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4306 size < SCHED_ATTR_SIZE_VER0 || flags)
4307 return -EINVAL;
4308
4309 rcu_read_lock();
4310 p = find_process_by_pid(pid);
4311 retval = -ESRCH;
4312 if (!p)
4313 goto out_unlock;
4314
4315 retval = security_task_getscheduler(p);
4316 if (retval)
4317 goto out_unlock;
4318
4319 attr.sched_policy = p->policy;
4320 if (p->sched_reset_on_fork)
4321 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4322 if (task_has_dl_policy(p))
4323 __getparam_dl(p, &attr);
4324 else if (task_has_rt_policy(p))
4325 attr.sched_priority = p->rt_priority;
4326 else
4327 attr.sched_nice = task_nice(p);
4328
4329 rcu_read_unlock();
4330
4331 retval = sched_read_attr(uattr, &attr, size);
4332 return retval;
4333
4334 out_unlock:
4335 rcu_read_unlock();
4336 return retval;
4337 }
4338
4339 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4340 {
4341 cpumask_var_t cpus_allowed, new_mask;
4342 struct task_struct *p;
4343 int retval;
4344
4345 rcu_read_lock();
4346
4347 p = find_process_by_pid(pid);
4348 if (!p) {
4349 rcu_read_unlock();
4350 return -ESRCH;
4351 }
4352
4353 /* Prevent p going away */
4354 get_task_struct(p);
4355 rcu_read_unlock();
4356
4357 if (p->flags & PF_NO_SETAFFINITY) {
4358 retval = -EINVAL;
4359 goto out_put_task;
4360 }
4361 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4362 retval = -ENOMEM;
4363 goto out_put_task;
4364 }
4365 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4366 retval = -ENOMEM;
4367 goto out_free_cpus_allowed;
4368 }
4369 retval = -EPERM;
4370 if (!check_same_owner(p)) {
4371 rcu_read_lock();
4372 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4373 rcu_read_unlock();
4374 goto out_free_new_mask;
4375 }
4376 rcu_read_unlock();
4377 }
4378
4379 retval = security_task_setscheduler(p);
4380 if (retval)
4381 goto out_free_new_mask;
4382
4383
4384 cpuset_cpus_allowed(p, cpus_allowed);
4385 cpumask_and(new_mask, in_mask, cpus_allowed);
4386
4387 /*
4388 * Since bandwidth control happens on root_domain basis,
4389 * if admission test is enabled, we only admit -deadline
4390 * tasks allowed to run on all the CPUs in the task's
4391 * root_domain.
4392 */
4393 #ifdef CONFIG_SMP
4394 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4395 rcu_read_lock();
4396 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4397 retval = -EBUSY;
4398 rcu_read_unlock();
4399 goto out_free_new_mask;
4400 }
4401 rcu_read_unlock();
4402 }
4403 #endif
4404 again:
4405 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4406
4407 if (!retval) {
4408 cpuset_cpus_allowed(p, cpus_allowed);
4409 if (!cpumask_subset(new_mask, cpus_allowed)) {
4410 /*
4411 * We must have raced with a concurrent cpuset
4412 * update. Just reset the cpus_allowed to the
4413 * cpuset's cpus_allowed
4414 */
4415 cpumask_copy(new_mask, cpus_allowed);
4416 goto again;
4417 }
4418 }
4419 out_free_new_mask:
4420 free_cpumask_var(new_mask);
4421 out_free_cpus_allowed:
4422 free_cpumask_var(cpus_allowed);
4423 out_put_task:
4424 put_task_struct(p);
4425 return retval;
4426 }
4427
4428 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4429 struct cpumask *new_mask)
4430 {
4431 if (len < cpumask_size())
4432 cpumask_clear(new_mask);
4433 else if (len > cpumask_size())
4434 len = cpumask_size();
4435
4436 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4437 }
4438
4439 /**
4440 * sys_sched_setaffinity - set the cpu affinity of a process
4441 * @pid: pid of the process
4442 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4443 * @user_mask_ptr: user-space pointer to the new cpu mask
4444 *
4445 * Return: 0 on success. An error code otherwise.
4446 */
4447 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4448 unsigned long __user *, user_mask_ptr)
4449 {
4450 cpumask_var_t new_mask;
4451 int retval;
4452
4453 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4454 return -ENOMEM;
4455
4456 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4457 if (retval == 0)
4458 retval = sched_setaffinity(pid, new_mask);
4459 free_cpumask_var(new_mask);
4460 return retval;
4461 }
4462
4463 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4464 {
4465 struct task_struct *p;
4466 unsigned long flags;
4467 int retval;
4468
4469 rcu_read_lock();
4470
4471 retval = -ESRCH;
4472 p = find_process_by_pid(pid);
4473 if (!p)
4474 goto out_unlock;
4475
4476 retval = security_task_getscheduler(p);
4477 if (retval)
4478 goto out_unlock;
4479
4480 raw_spin_lock_irqsave(&p->pi_lock, flags);
4481 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4482 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4483
4484 out_unlock:
4485 rcu_read_unlock();
4486
4487 return retval;
4488 }
4489
4490 /**
4491 * sys_sched_getaffinity - get the cpu affinity of a process
4492 * @pid: pid of the process
4493 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4494 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4495 *
4496 * Return: 0 on success. An error code otherwise.
4497 */
4498 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4499 unsigned long __user *, user_mask_ptr)
4500 {
4501 int ret;
4502 cpumask_var_t mask;
4503
4504 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4505 return -EINVAL;
4506 if (len & (sizeof(unsigned long)-1))
4507 return -EINVAL;
4508
4509 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4510 return -ENOMEM;
4511
4512 ret = sched_getaffinity(pid, mask);
4513 if (ret == 0) {
4514 size_t retlen = min_t(size_t, len, cpumask_size());
4515
4516 if (copy_to_user(user_mask_ptr, mask, retlen))
4517 ret = -EFAULT;
4518 else
4519 ret = retlen;
4520 }
4521 free_cpumask_var(mask);
4522
4523 return ret;
4524 }
4525
4526 /**
4527 * sys_sched_yield - yield the current processor to other threads.
4528 *
4529 * This function yields the current CPU to other tasks. If there are no
4530 * other threads running on this CPU then this function will return.
4531 *
4532 * Return: 0.
4533 */
4534 SYSCALL_DEFINE0(sched_yield)
4535 {
4536 struct rq *rq = this_rq_lock();
4537
4538 schedstat_inc(rq, yld_count);
4539 current->sched_class->yield_task(rq);
4540
4541 /*
4542 * Since we are going to call schedule() anyway, there's
4543 * no need to preempt or enable interrupts:
4544 */
4545 __release(rq->lock);
4546 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4547 do_raw_spin_unlock(&rq->lock);
4548 sched_preempt_enable_no_resched();
4549
4550 schedule();
4551
4552 return 0;
4553 }
4554
4555 int __sched _cond_resched(void)
4556 {
4557 if (should_resched(0)) {
4558 preempt_schedule_common();
4559 return 1;
4560 }
4561 return 0;
4562 }
4563 EXPORT_SYMBOL(_cond_resched);
4564
4565 /*
4566 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4567 * call schedule, and on return reacquire the lock.
4568 *
4569 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4570 * operations here to prevent schedule() from being called twice (once via
4571 * spin_unlock(), once by hand).
4572 */
4573 int __cond_resched_lock(spinlock_t *lock)
4574 {
4575 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4576 int ret = 0;
4577
4578 lockdep_assert_held(lock);
4579
4580 if (spin_needbreak(lock) || resched) {
4581 spin_unlock(lock);
4582 if (resched)
4583 preempt_schedule_common();
4584 else
4585 cpu_relax();
4586 ret = 1;
4587 spin_lock(lock);
4588 }
4589 return ret;
4590 }
4591 EXPORT_SYMBOL(__cond_resched_lock);
4592
4593 int __sched __cond_resched_softirq(void)
4594 {
4595 BUG_ON(!in_softirq());
4596
4597 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4598 local_bh_enable();
4599 preempt_schedule_common();
4600 local_bh_disable();
4601 return 1;
4602 }
4603 return 0;
4604 }
4605 EXPORT_SYMBOL(__cond_resched_softirq);
4606
4607 /**
4608 * yield - yield the current processor to other threads.
4609 *
4610 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4611 *
4612 * The scheduler is at all times free to pick the calling task as the most
4613 * eligible task to run, if removing the yield() call from your code breaks
4614 * it, its already broken.
4615 *
4616 * Typical broken usage is:
4617 *
4618 * while (!event)
4619 * yield();
4620 *
4621 * where one assumes that yield() will let 'the other' process run that will
4622 * make event true. If the current task is a SCHED_FIFO task that will never
4623 * happen. Never use yield() as a progress guarantee!!
4624 *
4625 * If you want to use yield() to wait for something, use wait_event().
4626 * If you want to use yield() to be 'nice' for others, use cond_resched().
4627 * If you still want to use yield(), do not!
4628 */
4629 void __sched yield(void)
4630 {
4631 set_current_state(TASK_RUNNING);
4632 sys_sched_yield();
4633 }
4634 EXPORT_SYMBOL(yield);
4635
4636 /**
4637 * yield_to - yield the current processor to another thread in
4638 * your thread group, or accelerate that thread toward the
4639 * processor it's on.
4640 * @p: target task
4641 * @preempt: whether task preemption is allowed or not
4642 *
4643 * It's the caller's job to ensure that the target task struct
4644 * can't go away on us before we can do any checks.
4645 *
4646 * Return:
4647 * true (>0) if we indeed boosted the target task.
4648 * false (0) if we failed to boost the target.
4649 * -ESRCH if there's no task to yield to.
4650 */
4651 int __sched yield_to(struct task_struct *p, bool preempt)
4652 {
4653 struct task_struct *curr = current;
4654 struct rq *rq, *p_rq;
4655 unsigned long flags;
4656 int yielded = 0;
4657
4658 local_irq_save(flags);
4659 rq = this_rq();
4660
4661 again:
4662 p_rq = task_rq(p);
4663 /*
4664 * If we're the only runnable task on the rq and target rq also
4665 * has only one task, there's absolutely no point in yielding.
4666 */
4667 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4668 yielded = -ESRCH;
4669 goto out_irq;
4670 }
4671
4672 double_rq_lock(rq, p_rq);
4673 if (task_rq(p) != p_rq) {
4674 double_rq_unlock(rq, p_rq);
4675 goto again;
4676 }
4677
4678 if (!curr->sched_class->yield_to_task)
4679 goto out_unlock;
4680
4681 if (curr->sched_class != p->sched_class)
4682 goto out_unlock;
4683
4684 if (task_running(p_rq, p) || p->state)
4685 goto out_unlock;
4686
4687 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4688 if (yielded) {
4689 schedstat_inc(rq, yld_count);
4690 /*
4691 * Make p's CPU reschedule; pick_next_entity takes care of
4692 * fairness.
4693 */
4694 if (preempt && rq != p_rq)
4695 resched_curr(p_rq);
4696 }
4697
4698 out_unlock:
4699 double_rq_unlock(rq, p_rq);
4700 out_irq:
4701 local_irq_restore(flags);
4702
4703 if (yielded > 0)
4704 schedule();
4705
4706 return yielded;
4707 }
4708 EXPORT_SYMBOL_GPL(yield_to);
4709
4710 /*
4711 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4712 * that process accounting knows that this is a task in IO wait state.
4713 */
4714 long __sched io_schedule_timeout(long timeout)
4715 {
4716 int old_iowait = current->in_iowait;
4717 struct rq *rq;
4718 long ret;
4719
4720 current->in_iowait = 1;
4721 blk_schedule_flush_plug(current);
4722
4723 delayacct_blkio_start();
4724 rq = raw_rq();
4725 atomic_inc(&rq->nr_iowait);
4726 ret = schedule_timeout(timeout);
4727 current->in_iowait = old_iowait;
4728 atomic_dec(&rq->nr_iowait);
4729 delayacct_blkio_end();
4730
4731 return ret;
4732 }
4733 EXPORT_SYMBOL(io_schedule_timeout);
4734
4735 /**
4736 * sys_sched_get_priority_max - return maximum RT priority.
4737 * @policy: scheduling class.
4738 *
4739 * Return: On success, this syscall returns the maximum
4740 * rt_priority that can be used by a given scheduling class.
4741 * On failure, a negative error code is returned.
4742 */
4743 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4744 {
4745 int ret = -EINVAL;
4746
4747 switch (policy) {
4748 case SCHED_FIFO:
4749 case SCHED_RR:
4750 ret = MAX_USER_RT_PRIO-1;
4751 break;
4752 case SCHED_DEADLINE:
4753 case SCHED_NORMAL:
4754 case SCHED_BATCH:
4755 case SCHED_IDLE:
4756 ret = 0;
4757 break;
4758 }
4759 return ret;
4760 }
4761
4762 /**
4763 * sys_sched_get_priority_min - return minimum RT priority.
4764 * @policy: scheduling class.
4765 *
4766 * Return: On success, this syscall returns the minimum
4767 * rt_priority that can be used by a given scheduling class.
4768 * On failure, a negative error code is returned.
4769 */
4770 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4771 {
4772 int ret = -EINVAL;
4773
4774 switch (policy) {
4775 case SCHED_FIFO:
4776 case SCHED_RR:
4777 ret = 1;
4778 break;
4779 case SCHED_DEADLINE:
4780 case SCHED_NORMAL:
4781 case SCHED_BATCH:
4782 case SCHED_IDLE:
4783 ret = 0;
4784 }
4785 return ret;
4786 }
4787
4788 /**
4789 * sys_sched_rr_get_interval - return the default timeslice of a process.
4790 * @pid: pid of the process.
4791 * @interval: userspace pointer to the timeslice value.
4792 *
4793 * this syscall writes the default timeslice value of a given process
4794 * into the user-space timespec buffer. A value of '0' means infinity.
4795 *
4796 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4797 * an error code.
4798 */
4799 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4800 struct timespec __user *, interval)
4801 {
4802 struct task_struct *p;
4803 unsigned int time_slice;
4804 unsigned long flags;
4805 struct rq *rq;
4806 int retval;
4807 struct timespec t;
4808
4809 if (pid < 0)
4810 return -EINVAL;
4811
4812 retval = -ESRCH;
4813 rcu_read_lock();
4814 p = find_process_by_pid(pid);
4815 if (!p)
4816 goto out_unlock;
4817
4818 retval = security_task_getscheduler(p);
4819 if (retval)
4820 goto out_unlock;
4821
4822 rq = task_rq_lock(p, &flags);
4823 time_slice = 0;
4824 if (p->sched_class->get_rr_interval)
4825 time_slice = p->sched_class->get_rr_interval(rq, p);
4826 task_rq_unlock(rq, p, &flags);
4827
4828 rcu_read_unlock();
4829 jiffies_to_timespec(time_slice, &t);
4830 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4831 return retval;
4832
4833 out_unlock:
4834 rcu_read_unlock();
4835 return retval;
4836 }
4837
4838 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4839
4840 void sched_show_task(struct task_struct *p)
4841 {
4842 unsigned long free = 0;
4843 int ppid;
4844 unsigned long state = p->state;
4845
4846 if (state)
4847 state = __ffs(state) + 1;
4848 printk(KERN_INFO "%-15.15s %c", p->comm,
4849 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4850 #if BITS_PER_LONG == 32
4851 if (state == TASK_RUNNING)
4852 printk(KERN_CONT " running ");
4853 else
4854 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4855 #else
4856 if (state == TASK_RUNNING)
4857 printk(KERN_CONT " running task ");
4858 else
4859 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4860 #endif
4861 #ifdef CONFIG_DEBUG_STACK_USAGE
4862 free = stack_not_used(p);
4863 #endif
4864 ppid = 0;
4865 rcu_read_lock();
4866 if (pid_alive(p))
4867 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4868 rcu_read_unlock();
4869 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4870 task_pid_nr(p), ppid,
4871 (unsigned long)task_thread_info(p)->flags);
4872
4873 print_worker_info(KERN_INFO, p);
4874 show_stack(p, NULL);
4875 }
4876
4877 void show_state_filter(unsigned long state_filter)
4878 {
4879 struct task_struct *g, *p;
4880
4881 #if BITS_PER_LONG == 32
4882 printk(KERN_INFO
4883 " task PC stack pid father\n");
4884 #else
4885 printk(KERN_INFO
4886 " task PC stack pid father\n");
4887 #endif
4888 rcu_read_lock();
4889 for_each_process_thread(g, p) {
4890 /*
4891 * reset the NMI-timeout, listing all files on a slow
4892 * console might take a lot of time:
4893 */
4894 touch_nmi_watchdog();
4895 if (!state_filter || (p->state & state_filter))
4896 sched_show_task(p);
4897 }
4898
4899 touch_all_softlockup_watchdogs();
4900
4901 #ifdef CONFIG_SCHED_DEBUG
4902 sysrq_sched_debug_show();
4903 #endif
4904 rcu_read_unlock();
4905 /*
4906 * Only show locks if all tasks are dumped:
4907 */
4908 if (!state_filter)
4909 debug_show_all_locks();
4910 }
4911
4912 void init_idle_bootup_task(struct task_struct *idle)
4913 {
4914 idle->sched_class = &idle_sched_class;
4915 }
4916
4917 /**
4918 * init_idle - set up an idle thread for a given CPU
4919 * @idle: task in question
4920 * @cpu: cpu the idle task belongs to
4921 *
4922 * NOTE: this function does not set the idle thread's NEED_RESCHED
4923 * flag, to make booting more robust.
4924 */
4925 void init_idle(struct task_struct *idle, int cpu)
4926 {
4927 struct rq *rq = cpu_rq(cpu);
4928 unsigned long flags;
4929
4930 raw_spin_lock_irqsave(&idle->pi_lock, flags);
4931 raw_spin_lock(&rq->lock);
4932
4933 __sched_fork(0, idle);
4934 idle->state = TASK_RUNNING;
4935 idle->se.exec_start = sched_clock();
4936
4937 #ifdef CONFIG_SMP
4938 /*
4939 * Its possible that init_idle() gets called multiple times on a task,
4940 * in that case do_set_cpus_allowed() will not do the right thing.
4941 *
4942 * And since this is boot we can forgo the serialization.
4943 */
4944 set_cpus_allowed_common(idle, cpumask_of(cpu));
4945 #endif
4946 /*
4947 * We're having a chicken and egg problem, even though we are
4948 * holding rq->lock, the cpu isn't yet set to this cpu so the
4949 * lockdep check in task_group() will fail.
4950 *
4951 * Similar case to sched_fork(). / Alternatively we could
4952 * use task_rq_lock() here and obtain the other rq->lock.
4953 *
4954 * Silence PROVE_RCU
4955 */
4956 rcu_read_lock();
4957 __set_task_cpu(idle, cpu);
4958 rcu_read_unlock();
4959
4960 rq->curr = rq->idle = idle;
4961 idle->on_rq = TASK_ON_RQ_QUEUED;
4962 #ifdef CONFIG_SMP
4963 idle->on_cpu = 1;
4964 #endif
4965 raw_spin_unlock(&rq->lock);
4966 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
4967
4968 /* Set the preempt count _outside_ the spinlocks! */
4969 init_idle_preempt_count(idle, cpu);
4970
4971 /*
4972 * The idle tasks have their own, simple scheduling class:
4973 */
4974 idle->sched_class = &idle_sched_class;
4975 ftrace_graph_init_idle_task(idle, cpu);
4976 vtime_init_idle(idle, cpu);
4977 #ifdef CONFIG_SMP
4978 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4979 #endif
4980 }
4981
4982 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4983 const struct cpumask *trial)
4984 {
4985 int ret = 1, trial_cpus;
4986 struct dl_bw *cur_dl_b;
4987 unsigned long flags;
4988
4989 if (!cpumask_weight(cur))
4990 return ret;
4991
4992 rcu_read_lock_sched();
4993 cur_dl_b = dl_bw_of(cpumask_any(cur));
4994 trial_cpus = cpumask_weight(trial);
4995
4996 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4997 if (cur_dl_b->bw != -1 &&
4998 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4999 ret = 0;
5000 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5001 rcu_read_unlock_sched();
5002
5003 return ret;
5004 }
5005
5006 int task_can_attach(struct task_struct *p,
5007 const struct cpumask *cs_cpus_allowed)
5008 {
5009 int ret = 0;
5010
5011 /*
5012 * Kthreads which disallow setaffinity shouldn't be moved
5013 * to a new cpuset; we don't want to change their cpu
5014 * affinity and isolating such threads by their set of
5015 * allowed nodes is unnecessary. Thus, cpusets are not
5016 * applicable for such threads. This prevents checking for
5017 * success of set_cpus_allowed_ptr() on all attached tasks
5018 * before cpus_allowed may be changed.
5019 */
5020 if (p->flags & PF_NO_SETAFFINITY) {
5021 ret = -EINVAL;
5022 goto out;
5023 }
5024
5025 #ifdef CONFIG_SMP
5026 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5027 cs_cpus_allowed)) {
5028 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5029 cs_cpus_allowed);
5030 struct dl_bw *dl_b;
5031 bool overflow;
5032 int cpus;
5033 unsigned long flags;
5034
5035 rcu_read_lock_sched();
5036 dl_b = dl_bw_of(dest_cpu);
5037 raw_spin_lock_irqsave(&dl_b->lock, flags);
5038 cpus = dl_bw_cpus(dest_cpu);
5039 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5040 if (overflow)
5041 ret = -EBUSY;
5042 else {
5043 /*
5044 * We reserve space for this task in the destination
5045 * root_domain, as we can't fail after this point.
5046 * We will free resources in the source root_domain
5047 * later on (see set_cpus_allowed_dl()).
5048 */
5049 __dl_add(dl_b, p->dl.dl_bw);
5050 }
5051 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5052 rcu_read_unlock_sched();
5053
5054 }
5055 #endif
5056 out:
5057 return ret;
5058 }
5059
5060 #ifdef CONFIG_SMP
5061
5062 #ifdef CONFIG_NUMA_BALANCING
5063 /* Migrate current task p to target_cpu */
5064 int migrate_task_to(struct task_struct *p, int target_cpu)
5065 {
5066 struct migration_arg arg = { p, target_cpu };
5067 int curr_cpu = task_cpu(p);
5068
5069 if (curr_cpu == target_cpu)
5070 return 0;
5071
5072 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5073 return -EINVAL;
5074
5075 /* TODO: This is not properly updating schedstats */
5076
5077 trace_sched_move_numa(p, curr_cpu, target_cpu);
5078 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5079 }
5080
5081 /*
5082 * Requeue a task on a given node and accurately track the number of NUMA
5083 * tasks on the runqueues
5084 */
5085 void sched_setnuma(struct task_struct *p, int nid)
5086 {
5087 struct rq *rq;
5088 unsigned long flags;
5089 bool queued, running;
5090
5091 rq = task_rq_lock(p, &flags);
5092 queued = task_on_rq_queued(p);
5093 running = task_current(rq, p);
5094
5095 if (queued)
5096 dequeue_task(rq, p, 0);
5097 if (running)
5098 put_prev_task(rq, p);
5099
5100 p->numa_preferred_nid = nid;
5101
5102 if (running)
5103 p->sched_class->set_curr_task(rq);
5104 if (queued)
5105 enqueue_task(rq, p, 0);
5106 task_rq_unlock(rq, p, &flags);
5107 }
5108 #endif /* CONFIG_NUMA_BALANCING */
5109
5110 #ifdef CONFIG_HOTPLUG_CPU
5111 /*
5112 * Ensures that the idle task is using init_mm right before its cpu goes
5113 * offline.
5114 */
5115 void idle_task_exit(void)
5116 {
5117 struct mm_struct *mm = current->active_mm;
5118
5119 BUG_ON(cpu_online(smp_processor_id()));
5120
5121 if (mm != &init_mm) {
5122 switch_mm(mm, &init_mm, current);
5123 finish_arch_post_lock_switch();
5124 }
5125 mmdrop(mm);
5126 }
5127
5128 /*
5129 * Since this CPU is going 'away' for a while, fold any nr_active delta
5130 * we might have. Assumes we're called after migrate_tasks() so that the
5131 * nr_active count is stable.
5132 *
5133 * Also see the comment "Global load-average calculations".
5134 */
5135 static void calc_load_migrate(struct rq *rq)
5136 {
5137 long delta = calc_load_fold_active(rq);
5138 if (delta)
5139 atomic_long_add(delta, &calc_load_tasks);
5140 }
5141
5142 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5143 {
5144 }
5145
5146 static const struct sched_class fake_sched_class = {
5147 .put_prev_task = put_prev_task_fake,
5148 };
5149
5150 static struct task_struct fake_task = {
5151 /*
5152 * Avoid pull_{rt,dl}_task()
5153 */
5154 .prio = MAX_PRIO + 1,
5155 .sched_class = &fake_sched_class,
5156 };
5157
5158 /*
5159 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5160 * try_to_wake_up()->select_task_rq().
5161 *
5162 * Called with rq->lock held even though we'er in stop_machine() and
5163 * there's no concurrency possible, we hold the required locks anyway
5164 * because of lock validation efforts.
5165 */
5166 static void migrate_tasks(struct rq *dead_rq)
5167 {
5168 struct rq *rq = dead_rq;
5169 struct task_struct *next, *stop = rq->stop;
5170 int dest_cpu;
5171
5172 /*
5173 * Fudge the rq selection such that the below task selection loop
5174 * doesn't get stuck on the currently eligible stop task.
5175 *
5176 * We're currently inside stop_machine() and the rq is either stuck
5177 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5178 * either way we should never end up calling schedule() until we're
5179 * done here.
5180 */
5181 rq->stop = NULL;
5182
5183 /*
5184 * put_prev_task() and pick_next_task() sched
5185 * class method both need to have an up-to-date
5186 * value of rq->clock[_task]
5187 */
5188 update_rq_clock(rq);
5189
5190 for (;;) {
5191 /*
5192 * There's this thread running, bail when that's the only
5193 * remaining thread.
5194 */
5195 if (rq->nr_running == 1)
5196 break;
5197
5198 /*
5199 * pick_next_task assumes pinned rq->lock.
5200 */
5201 lockdep_pin_lock(&rq->lock);
5202 next = pick_next_task(rq, &fake_task);
5203 BUG_ON(!next);
5204 next->sched_class->put_prev_task(rq, next);
5205
5206 /*
5207 * Rules for changing task_struct::cpus_allowed are holding
5208 * both pi_lock and rq->lock, such that holding either
5209 * stabilizes the mask.
5210 *
5211 * Drop rq->lock is not quite as disastrous as it usually is
5212 * because !cpu_active at this point, which means load-balance
5213 * will not interfere. Also, stop-machine.
5214 */
5215 lockdep_unpin_lock(&rq->lock);
5216 raw_spin_unlock(&rq->lock);
5217 raw_spin_lock(&next->pi_lock);
5218 raw_spin_lock(&rq->lock);
5219
5220 /*
5221 * Since we're inside stop-machine, _nothing_ should have
5222 * changed the task, WARN if weird stuff happened, because in
5223 * that case the above rq->lock drop is a fail too.
5224 */
5225 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5226 raw_spin_unlock(&next->pi_lock);
5227 continue;
5228 }
5229
5230 /* Find suitable destination for @next, with force if needed. */
5231 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5232
5233 rq = __migrate_task(rq, next, dest_cpu);
5234 if (rq != dead_rq) {
5235 raw_spin_unlock(&rq->lock);
5236 rq = dead_rq;
5237 raw_spin_lock(&rq->lock);
5238 }
5239 raw_spin_unlock(&next->pi_lock);
5240 }
5241
5242 rq->stop = stop;
5243 }
5244 #endif /* CONFIG_HOTPLUG_CPU */
5245
5246 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5247
5248 static struct ctl_table sd_ctl_dir[] = {
5249 {
5250 .procname = "sched_domain",
5251 .mode = 0555,
5252 },
5253 {}
5254 };
5255
5256 static struct ctl_table sd_ctl_root[] = {
5257 {
5258 .procname = "kernel",
5259 .mode = 0555,
5260 .child = sd_ctl_dir,
5261 },
5262 {}
5263 };
5264
5265 static struct ctl_table *sd_alloc_ctl_entry(int n)
5266 {
5267 struct ctl_table *entry =
5268 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5269
5270 return entry;
5271 }
5272
5273 static void sd_free_ctl_entry(struct ctl_table **tablep)
5274 {
5275 struct ctl_table *entry;
5276
5277 /*
5278 * In the intermediate directories, both the child directory and
5279 * procname are dynamically allocated and could fail but the mode
5280 * will always be set. In the lowest directory the names are
5281 * static strings and all have proc handlers.
5282 */
5283 for (entry = *tablep; entry->mode; entry++) {
5284 if (entry->child)
5285 sd_free_ctl_entry(&entry->child);
5286 if (entry->proc_handler == NULL)
5287 kfree(entry->procname);
5288 }
5289
5290 kfree(*tablep);
5291 *tablep = NULL;
5292 }
5293
5294 static int min_load_idx = 0;
5295 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5296
5297 static void
5298 set_table_entry(struct ctl_table *entry,
5299 const char *procname, void *data, int maxlen,
5300 umode_t mode, proc_handler *proc_handler,
5301 bool load_idx)
5302 {
5303 entry->procname = procname;
5304 entry->data = data;
5305 entry->maxlen = maxlen;
5306 entry->mode = mode;
5307 entry->proc_handler = proc_handler;
5308
5309 if (load_idx) {
5310 entry->extra1 = &min_load_idx;
5311 entry->extra2 = &max_load_idx;
5312 }
5313 }
5314
5315 static struct ctl_table *
5316 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5317 {
5318 struct ctl_table *table = sd_alloc_ctl_entry(14);
5319
5320 if (table == NULL)
5321 return NULL;
5322
5323 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5324 sizeof(long), 0644, proc_doulongvec_minmax, false);
5325 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5326 sizeof(long), 0644, proc_doulongvec_minmax, false);
5327 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5328 sizeof(int), 0644, proc_dointvec_minmax, true);
5329 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5330 sizeof(int), 0644, proc_dointvec_minmax, true);
5331 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5332 sizeof(int), 0644, proc_dointvec_minmax, true);
5333 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5334 sizeof(int), 0644, proc_dointvec_minmax, true);
5335 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5336 sizeof(int), 0644, proc_dointvec_minmax, true);
5337 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5338 sizeof(int), 0644, proc_dointvec_minmax, false);
5339 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5340 sizeof(int), 0644, proc_dointvec_minmax, false);
5341 set_table_entry(&table[9], "cache_nice_tries",
5342 &sd->cache_nice_tries,
5343 sizeof(int), 0644, proc_dointvec_minmax, false);
5344 set_table_entry(&table[10], "flags", &sd->flags,
5345 sizeof(int), 0644, proc_dointvec_minmax, false);
5346 set_table_entry(&table[11], "max_newidle_lb_cost",
5347 &sd->max_newidle_lb_cost,
5348 sizeof(long), 0644, proc_doulongvec_minmax, false);
5349 set_table_entry(&table[12], "name", sd->name,
5350 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5351 /* &table[13] is terminator */
5352
5353 return table;
5354 }
5355
5356 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5357 {
5358 struct ctl_table *entry, *table;
5359 struct sched_domain *sd;
5360 int domain_num = 0, i;
5361 char buf[32];
5362
5363 for_each_domain(cpu, sd)
5364 domain_num++;
5365 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5366 if (table == NULL)
5367 return NULL;
5368
5369 i = 0;
5370 for_each_domain(cpu, sd) {
5371 snprintf(buf, 32, "domain%d", i);
5372 entry->procname = kstrdup(buf, GFP_KERNEL);
5373 entry->mode = 0555;
5374 entry->child = sd_alloc_ctl_domain_table(sd);
5375 entry++;
5376 i++;
5377 }
5378 return table;
5379 }
5380
5381 static struct ctl_table_header *sd_sysctl_header;
5382 static void register_sched_domain_sysctl(void)
5383 {
5384 int i, cpu_num = num_possible_cpus();
5385 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5386 char buf[32];
5387
5388 WARN_ON(sd_ctl_dir[0].child);
5389 sd_ctl_dir[0].child = entry;
5390
5391 if (entry == NULL)
5392 return;
5393
5394 for_each_possible_cpu(i) {
5395 snprintf(buf, 32, "cpu%d", i);
5396 entry->procname = kstrdup(buf, GFP_KERNEL);
5397 entry->mode = 0555;
5398 entry->child = sd_alloc_ctl_cpu_table(i);
5399 entry++;
5400 }
5401
5402 WARN_ON(sd_sysctl_header);
5403 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5404 }
5405
5406 /* may be called multiple times per register */
5407 static void unregister_sched_domain_sysctl(void)
5408 {
5409 unregister_sysctl_table(sd_sysctl_header);
5410 sd_sysctl_header = NULL;
5411 if (sd_ctl_dir[0].child)
5412 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5413 }
5414 #else
5415 static void register_sched_domain_sysctl(void)
5416 {
5417 }
5418 static void unregister_sched_domain_sysctl(void)
5419 {
5420 }
5421 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5422
5423 static void set_rq_online(struct rq *rq)
5424 {
5425 if (!rq->online) {
5426 const struct sched_class *class;
5427
5428 cpumask_set_cpu(rq->cpu, rq->rd->online);
5429 rq->online = 1;
5430
5431 for_each_class(class) {
5432 if (class->rq_online)
5433 class->rq_online(rq);
5434 }
5435 }
5436 }
5437
5438 static void set_rq_offline(struct rq *rq)
5439 {
5440 if (rq->online) {
5441 const struct sched_class *class;
5442
5443 for_each_class(class) {
5444 if (class->rq_offline)
5445 class->rq_offline(rq);
5446 }
5447
5448 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5449 rq->online = 0;
5450 }
5451 }
5452
5453 /*
5454 * migration_call - callback that gets triggered when a CPU is added.
5455 * Here we can start up the necessary migration thread for the new CPU.
5456 */
5457 static int
5458 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5459 {
5460 int cpu = (long)hcpu;
5461 unsigned long flags;
5462 struct rq *rq = cpu_rq(cpu);
5463
5464 switch (action & ~CPU_TASKS_FROZEN) {
5465
5466 case CPU_UP_PREPARE:
5467 rq->calc_load_update = calc_load_update;
5468 break;
5469
5470 case CPU_ONLINE:
5471 /* Update our root-domain */
5472 raw_spin_lock_irqsave(&rq->lock, flags);
5473 if (rq->rd) {
5474 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5475
5476 set_rq_online(rq);
5477 }
5478 raw_spin_unlock_irqrestore(&rq->lock, flags);
5479 break;
5480
5481 #ifdef CONFIG_HOTPLUG_CPU
5482 case CPU_DYING:
5483 sched_ttwu_pending();
5484 /* Update our root-domain */
5485 raw_spin_lock_irqsave(&rq->lock, flags);
5486 if (rq->rd) {
5487 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5488 set_rq_offline(rq);
5489 }
5490 migrate_tasks(rq);
5491 BUG_ON(rq->nr_running != 1); /* the migration thread */
5492 raw_spin_unlock_irqrestore(&rq->lock, flags);
5493 break;
5494
5495 case CPU_DEAD:
5496 calc_load_migrate(rq);
5497 break;
5498 #endif
5499 }
5500
5501 update_max_interval();
5502
5503 return NOTIFY_OK;
5504 }
5505
5506 /*
5507 * Register at high priority so that task migration (migrate_all_tasks)
5508 * happens before everything else. This has to be lower priority than
5509 * the notifier in the perf_event subsystem, though.
5510 */
5511 static struct notifier_block migration_notifier = {
5512 .notifier_call = migration_call,
5513 .priority = CPU_PRI_MIGRATION,
5514 };
5515
5516 static void set_cpu_rq_start_time(void)
5517 {
5518 int cpu = smp_processor_id();
5519 struct rq *rq = cpu_rq(cpu);
5520 rq->age_stamp = sched_clock_cpu(cpu);
5521 }
5522
5523 static int sched_cpu_active(struct notifier_block *nfb,
5524 unsigned long action, void *hcpu)
5525 {
5526 switch (action & ~CPU_TASKS_FROZEN) {
5527 case CPU_STARTING:
5528 set_cpu_rq_start_time();
5529 return NOTIFY_OK;
5530 case CPU_ONLINE:
5531 /*
5532 * At this point a starting CPU has marked itself as online via
5533 * set_cpu_online(). But it might not yet have marked itself
5534 * as active, which is essential from here on.
5535 *
5536 * Thus, fall-through and help the starting CPU along.
5537 */
5538 case CPU_DOWN_FAILED:
5539 set_cpu_active((long)hcpu, true);
5540 return NOTIFY_OK;
5541 default:
5542 return NOTIFY_DONE;
5543 }
5544 }
5545
5546 static int sched_cpu_inactive(struct notifier_block *nfb,
5547 unsigned long action, void *hcpu)
5548 {
5549 switch (action & ~CPU_TASKS_FROZEN) {
5550 case CPU_DOWN_PREPARE:
5551 set_cpu_active((long)hcpu, false);
5552 return NOTIFY_OK;
5553 default:
5554 return NOTIFY_DONE;
5555 }
5556 }
5557
5558 static int __init migration_init(void)
5559 {
5560 void *cpu = (void *)(long)smp_processor_id();
5561 int err;
5562
5563 /* Initialize migration for the boot CPU */
5564 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5565 BUG_ON(err == NOTIFY_BAD);
5566 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5567 register_cpu_notifier(&migration_notifier);
5568
5569 /* Register cpu active notifiers */
5570 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5571 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5572
5573 return 0;
5574 }
5575 early_initcall(migration_init);
5576
5577 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5578
5579 #ifdef CONFIG_SCHED_DEBUG
5580
5581 static __read_mostly int sched_debug_enabled;
5582
5583 static int __init sched_debug_setup(char *str)
5584 {
5585 sched_debug_enabled = 1;
5586
5587 return 0;
5588 }
5589 early_param("sched_debug", sched_debug_setup);
5590
5591 static inline bool sched_debug(void)
5592 {
5593 return sched_debug_enabled;
5594 }
5595
5596 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5597 struct cpumask *groupmask)
5598 {
5599 struct sched_group *group = sd->groups;
5600
5601 cpumask_clear(groupmask);
5602
5603 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5604
5605 if (!(sd->flags & SD_LOAD_BALANCE)) {
5606 printk("does not load-balance\n");
5607 if (sd->parent)
5608 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5609 " has parent");
5610 return -1;
5611 }
5612
5613 printk(KERN_CONT "span %*pbl level %s\n",
5614 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5615
5616 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5617 printk(KERN_ERR "ERROR: domain->span does not contain "
5618 "CPU%d\n", cpu);
5619 }
5620 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5621 printk(KERN_ERR "ERROR: domain->groups does not contain"
5622 " CPU%d\n", cpu);
5623 }
5624
5625 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5626 do {
5627 if (!group) {
5628 printk("\n");
5629 printk(KERN_ERR "ERROR: group is NULL\n");
5630 break;
5631 }
5632
5633 if (!cpumask_weight(sched_group_cpus(group))) {
5634 printk(KERN_CONT "\n");
5635 printk(KERN_ERR "ERROR: empty group\n");
5636 break;
5637 }
5638
5639 if (!(sd->flags & SD_OVERLAP) &&
5640 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5641 printk(KERN_CONT "\n");
5642 printk(KERN_ERR "ERROR: repeated CPUs\n");
5643 break;
5644 }
5645
5646 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5647
5648 printk(KERN_CONT " %*pbl",
5649 cpumask_pr_args(sched_group_cpus(group)));
5650 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5651 printk(KERN_CONT " (cpu_capacity = %d)",
5652 group->sgc->capacity);
5653 }
5654
5655 group = group->next;
5656 } while (group != sd->groups);
5657 printk(KERN_CONT "\n");
5658
5659 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5660 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5661
5662 if (sd->parent &&
5663 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5664 printk(KERN_ERR "ERROR: parent span is not a superset "
5665 "of domain->span\n");
5666 return 0;
5667 }
5668
5669 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5670 {
5671 int level = 0;
5672
5673 if (!sched_debug_enabled)
5674 return;
5675
5676 if (!sd) {
5677 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5678 return;
5679 }
5680
5681 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5682
5683 for (;;) {
5684 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5685 break;
5686 level++;
5687 sd = sd->parent;
5688 if (!sd)
5689 break;
5690 }
5691 }
5692 #else /* !CONFIG_SCHED_DEBUG */
5693 # define sched_domain_debug(sd, cpu) do { } while (0)
5694 static inline bool sched_debug(void)
5695 {
5696 return false;
5697 }
5698 #endif /* CONFIG_SCHED_DEBUG */
5699
5700 static int sd_degenerate(struct sched_domain *sd)
5701 {
5702 if (cpumask_weight(sched_domain_span(sd)) == 1)
5703 return 1;
5704
5705 /* Following flags need at least 2 groups */
5706 if (sd->flags & (SD_LOAD_BALANCE |
5707 SD_BALANCE_NEWIDLE |
5708 SD_BALANCE_FORK |
5709 SD_BALANCE_EXEC |
5710 SD_SHARE_CPUCAPACITY |
5711 SD_SHARE_PKG_RESOURCES |
5712 SD_SHARE_POWERDOMAIN)) {
5713 if (sd->groups != sd->groups->next)
5714 return 0;
5715 }
5716
5717 /* Following flags don't use groups */
5718 if (sd->flags & (SD_WAKE_AFFINE))
5719 return 0;
5720
5721 return 1;
5722 }
5723
5724 static int
5725 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5726 {
5727 unsigned long cflags = sd->flags, pflags = parent->flags;
5728
5729 if (sd_degenerate(parent))
5730 return 1;
5731
5732 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5733 return 0;
5734
5735 /* Flags needing groups don't count if only 1 group in parent */
5736 if (parent->groups == parent->groups->next) {
5737 pflags &= ~(SD_LOAD_BALANCE |
5738 SD_BALANCE_NEWIDLE |
5739 SD_BALANCE_FORK |
5740 SD_BALANCE_EXEC |
5741 SD_SHARE_CPUCAPACITY |
5742 SD_SHARE_PKG_RESOURCES |
5743 SD_PREFER_SIBLING |
5744 SD_SHARE_POWERDOMAIN);
5745 if (nr_node_ids == 1)
5746 pflags &= ~SD_SERIALIZE;
5747 }
5748 if (~cflags & pflags)
5749 return 0;
5750
5751 return 1;
5752 }
5753
5754 static void free_rootdomain(struct rcu_head *rcu)
5755 {
5756 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5757
5758 cpupri_cleanup(&rd->cpupri);
5759 cpudl_cleanup(&rd->cpudl);
5760 free_cpumask_var(rd->dlo_mask);
5761 free_cpumask_var(rd->rto_mask);
5762 free_cpumask_var(rd->online);
5763 free_cpumask_var(rd->span);
5764 kfree(rd);
5765 }
5766
5767 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5768 {
5769 struct root_domain *old_rd = NULL;
5770 unsigned long flags;
5771
5772 raw_spin_lock_irqsave(&rq->lock, flags);
5773
5774 if (rq->rd) {
5775 old_rd = rq->rd;
5776
5777 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5778 set_rq_offline(rq);
5779
5780 cpumask_clear_cpu(rq->cpu, old_rd->span);
5781
5782 /*
5783 * If we dont want to free the old_rd yet then
5784 * set old_rd to NULL to skip the freeing later
5785 * in this function:
5786 */
5787 if (!atomic_dec_and_test(&old_rd->refcount))
5788 old_rd = NULL;
5789 }
5790
5791 atomic_inc(&rd->refcount);
5792 rq->rd = rd;
5793
5794 cpumask_set_cpu(rq->cpu, rd->span);
5795 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5796 set_rq_online(rq);
5797
5798 raw_spin_unlock_irqrestore(&rq->lock, flags);
5799
5800 if (old_rd)
5801 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5802 }
5803
5804 static int init_rootdomain(struct root_domain *rd)
5805 {
5806 memset(rd, 0, sizeof(*rd));
5807
5808 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5809 goto out;
5810 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5811 goto free_span;
5812 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5813 goto free_online;
5814 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5815 goto free_dlo_mask;
5816
5817 init_dl_bw(&rd->dl_bw);
5818 if (cpudl_init(&rd->cpudl) != 0)
5819 goto free_dlo_mask;
5820
5821 if (cpupri_init(&rd->cpupri) != 0)
5822 goto free_rto_mask;
5823 return 0;
5824
5825 free_rto_mask:
5826 free_cpumask_var(rd->rto_mask);
5827 free_dlo_mask:
5828 free_cpumask_var(rd->dlo_mask);
5829 free_online:
5830 free_cpumask_var(rd->online);
5831 free_span:
5832 free_cpumask_var(rd->span);
5833 out:
5834 return -ENOMEM;
5835 }
5836
5837 /*
5838 * By default the system creates a single root-domain with all cpus as
5839 * members (mimicking the global state we have today).
5840 */
5841 struct root_domain def_root_domain;
5842
5843 static void init_defrootdomain(void)
5844 {
5845 init_rootdomain(&def_root_domain);
5846
5847 atomic_set(&def_root_domain.refcount, 1);
5848 }
5849
5850 static struct root_domain *alloc_rootdomain(void)
5851 {
5852 struct root_domain *rd;
5853
5854 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5855 if (!rd)
5856 return NULL;
5857
5858 if (init_rootdomain(rd) != 0) {
5859 kfree(rd);
5860 return NULL;
5861 }
5862
5863 return rd;
5864 }
5865
5866 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5867 {
5868 struct sched_group *tmp, *first;
5869
5870 if (!sg)
5871 return;
5872
5873 first = sg;
5874 do {
5875 tmp = sg->next;
5876
5877 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5878 kfree(sg->sgc);
5879
5880 kfree(sg);
5881 sg = tmp;
5882 } while (sg != first);
5883 }
5884
5885 static void free_sched_domain(struct rcu_head *rcu)
5886 {
5887 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5888
5889 /*
5890 * If its an overlapping domain it has private groups, iterate and
5891 * nuke them all.
5892 */
5893 if (sd->flags & SD_OVERLAP) {
5894 free_sched_groups(sd->groups, 1);
5895 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5896 kfree(sd->groups->sgc);
5897 kfree(sd->groups);
5898 }
5899 kfree(sd);
5900 }
5901
5902 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5903 {
5904 call_rcu(&sd->rcu, free_sched_domain);
5905 }
5906
5907 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5908 {
5909 for (; sd; sd = sd->parent)
5910 destroy_sched_domain(sd, cpu);
5911 }
5912
5913 /*
5914 * Keep a special pointer to the highest sched_domain that has
5915 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5916 * allows us to avoid some pointer chasing select_idle_sibling().
5917 *
5918 * Also keep a unique ID per domain (we use the first cpu number in
5919 * the cpumask of the domain), this allows us to quickly tell if
5920 * two cpus are in the same cache domain, see cpus_share_cache().
5921 */
5922 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5923 DEFINE_PER_CPU(int, sd_llc_size);
5924 DEFINE_PER_CPU(int, sd_llc_id);
5925 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5926 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5927 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5928
5929 static void update_top_cache_domain(int cpu)
5930 {
5931 struct sched_domain *sd;
5932 struct sched_domain *busy_sd = NULL;
5933 int id = cpu;
5934 int size = 1;
5935
5936 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5937 if (sd) {
5938 id = cpumask_first(sched_domain_span(sd));
5939 size = cpumask_weight(sched_domain_span(sd));
5940 busy_sd = sd->parent; /* sd_busy */
5941 }
5942 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5943
5944 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5945 per_cpu(sd_llc_size, cpu) = size;
5946 per_cpu(sd_llc_id, cpu) = id;
5947
5948 sd = lowest_flag_domain(cpu, SD_NUMA);
5949 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5950
5951 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5952 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5953 }
5954
5955 /*
5956 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5957 * hold the hotplug lock.
5958 */
5959 static void
5960 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5961 {
5962 struct rq *rq = cpu_rq(cpu);
5963 struct sched_domain *tmp;
5964
5965 /* Remove the sched domains which do not contribute to scheduling. */
5966 for (tmp = sd; tmp; ) {
5967 struct sched_domain *parent = tmp->parent;
5968 if (!parent)
5969 break;
5970
5971 if (sd_parent_degenerate(tmp, parent)) {
5972 tmp->parent = parent->parent;
5973 if (parent->parent)
5974 parent->parent->child = tmp;
5975 /*
5976 * Transfer SD_PREFER_SIBLING down in case of a
5977 * degenerate parent; the spans match for this
5978 * so the property transfers.
5979 */
5980 if (parent->flags & SD_PREFER_SIBLING)
5981 tmp->flags |= SD_PREFER_SIBLING;
5982 destroy_sched_domain(parent, cpu);
5983 } else
5984 tmp = tmp->parent;
5985 }
5986
5987 if (sd && sd_degenerate(sd)) {
5988 tmp = sd;
5989 sd = sd->parent;
5990 destroy_sched_domain(tmp, cpu);
5991 if (sd)
5992 sd->child = NULL;
5993 }
5994
5995 sched_domain_debug(sd, cpu);
5996
5997 rq_attach_root(rq, rd);
5998 tmp = rq->sd;
5999 rcu_assign_pointer(rq->sd, sd);
6000 destroy_sched_domains(tmp, cpu);
6001
6002 update_top_cache_domain(cpu);
6003 }
6004
6005 /* Setup the mask of cpus configured for isolated domains */
6006 static int __init isolated_cpu_setup(char *str)
6007 {
6008 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6009 cpulist_parse(str, cpu_isolated_map);
6010 return 1;
6011 }
6012
6013 __setup("isolcpus=", isolated_cpu_setup);
6014
6015 struct s_data {
6016 struct sched_domain ** __percpu sd;
6017 struct root_domain *rd;
6018 };
6019
6020 enum s_alloc {
6021 sa_rootdomain,
6022 sa_sd,
6023 sa_sd_storage,
6024 sa_none,
6025 };
6026
6027 /*
6028 * Build an iteration mask that can exclude certain CPUs from the upwards
6029 * domain traversal.
6030 *
6031 * Asymmetric node setups can result in situations where the domain tree is of
6032 * unequal depth, make sure to skip domains that already cover the entire
6033 * range.
6034 *
6035 * In that case build_sched_domains() will have terminated the iteration early
6036 * and our sibling sd spans will be empty. Domains should always include the
6037 * cpu they're built on, so check that.
6038 *
6039 */
6040 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6041 {
6042 const struct cpumask *span = sched_domain_span(sd);
6043 struct sd_data *sdd = sd->private;
6044 struct sched_domain *sibling;
6045 int i;
6046
6047 for_each_cpu(i, span) {
6048 sibling = *per_cpu_ptr(sdd->sd, i);
6049 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6050 continue;
6051
6052 cpumask_set_cpu(i, sched_group_mask(sg));
6053 }
6054 }
6055
6056 /*
6057 * Return the canonical balance cpu for this group, this is the first cpu
6058 * of this group that's also in the iteration mask.
6059 */
6060 int group_balance_cpu(struct sched_group *sg)
6061 {
6062 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6063 }
6064
6065 static int
6066 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6067 {
6068 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6069 const struct cpumask *span = sched_domain_span(sd);
6070 struct cpumask *covered = sched_domains_tmpmask;
6071 struct sd_data *sdd = sd->private;
6072 struct sched_domain *sibling;
6073 int i;
6074
6075 cpumask_clear(covered);
6076
6077 for_each_cpu(i, span) {
6078 struct cpumask *sg_span;
6079
6080 if (cpumask_test_cpu(i, covered))
6081 continue;
6082
6083 sibling = *per_cpu_ptr(sdd->sd, i);
6084
6085 /* See the comment near build_group_mask(). */
6086 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6087 continue;
6088
6089 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6090 GFP_KERNEL, cpu_to_node(cpu));
6091
6092 if (!sg)
6093 goto fail;
6094
6095 sg_span = sched_group_cpus(sg);
6096 if (sibling->child)
6097 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6098 else
6099 cpumask_set_cpu(i, sg_span);
6100
6101 cpumask_or(covered, covered, sg_span);
6102
6103 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6104 if (atomic_inc_return(&sg->sgc->ref) == 1)
6105 build_group_mask(sd, sg);
6106
6107 /*
6108 * Initialize sgc->capacity such that even if we mess up the
6109 * domains and no possible iteration will get us here, we won't
6110 * die on a /0 trap.
6111 */
6112 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6113
6114 /*
6115 * Make sure the first group of this domain contains the
6116 * canonical balance cpu. Otherwise the sched_domain iteration
6117 * breaks. See update_sg_lb_stats().
6118 */
6119 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6120 group_balance_cpu(sg) == cpu)
6121 groups = sg;
6122
6123 if (!first)
6124 first = sg;
6125 if (last)
6126 last->next = sg;
6127 last = sg;
6128 last->next = first;
6129 }
6130 sd->groups = groups;
6131
6132 return 0;
6133
6134 fail:
6135 free_sched_groups(first, 0);
6136
6137 return -ENOMEM;
6138 }
6139
6140 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6141 {
6142 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6143 struct sched_domain *child = sd->child;
6144
6145 if (child)
6146 cpu = cpumask_first(sched_domain_span(child));
6147
6148 if (sg) {
6149 *sg = *per_cpu_ptr(sdd->sg, cpu);
6150 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6151 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6152 }
6153
6154 return cpu;
6155 }
6156
6157 /*
6158 * build_sched_groups will build a circular linked list of the groups
6159 * covered by the given span, and will set each group's ->cpumask correctly,
6160 * and ->cpu_capacity to 0.
6161 *
6162 * Assumes the sched_domain tree is fully constructed
6163 */
6164 static int
6165 build_sched_groups(struct sched_domain *sd, int cpu)
6166 {
6167 struct sched_group *first = NULL, *last = NULL;
6168 struct sd_data *sdd = sd->private;
6169 const struct cpumask *span = sched_domain_span(sd);
6170 struct cpumask *covered;
6171 int i;
6172
6173 get_group(cpu, sdd, &sd->groups);
6174 atomic_inc(&sd->groups->ref);
6175
6176 if (cpu != cpumask_first(span))
6177 return 0;
6178
6179 lockdep_assert_held(&sched_domains_mutex);
6180 covered = sched_domains_tmpmask;
6181
6182 cpumask_clear(covered);
6183
6184 for_each_cpu(i, span) {
6185 struct sched_group *sg;
6186 int group, j;
6187
6188 if (cpumask_test_cpu(i, covered))
6189 continue;
6190
6191 group = get_group(i, sdd, &sg);
6192 cpumask_setall(sched_group_mask(sg));
6193
6194 for_each_cpu(j, span) {
6195 if (get_group(j, sdd, NULL) != group)
6196 continue;
6197
6198 cpumask_set_cpu(j, covered);
6199 cpumask_set_cpu(j, sched_group_cpus(sg));
6200 }
6201
6202 if (!first)
6203 first = sg;
6204 if (last)
6205 last->next = sg;
6206 last = sg;
6207 }
6208 last->next = first;
6209
6210 return 0;
6211 }
6212
6213 /*
6214 * Initialize sched groups cpu_capacity.
6215 *
6216 * cpu_capacity indicates the capacity of sched group, which is used while
6217 * distributing the load between different sched groups in a sched domain.
6218 * Typically cpu_capacity for all the groups in a sched domain will be same
6219 * unless there are asymmetries in the topology. If there are asymmetries,
6220 * group having more cpu_capacity will pickup more load compared to the
6221 * group having less cpu_capacity.
6222 */
6223 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6224 {
6225 struct sched_group *sg = sd->groups;
6226
6227 WARN_ON(!sg);
6228
6229 do {
6230 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6231 sg = sg->next;
6232 } while (sg != sd->groups);
6233
6234 if (cpu != group_balance_cpu(sg))
6235 return;
6236
6237 update_group_capacity(sd, cpu);
6238 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6239 }
6240
6241 /*
6242 * Initializers for schedule domains
6243 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6244 */
6245
6246 static int default_relax_domain_level = -1;
6247 int sched_domain_level_max;
6248
6249 static int __init setup_relax_domain_level(char *str)
6250 {
6251 if (kstrtoint(str, 0, &default_relax_domain_level))
6252 pr_warn("Unable to set relax_domain_level\n");
6253
6254 return 1;
6255 }
6256 __setup("relax_domain_level=", setup_relax_domain_level);
6257
6258 static void set_domain_attribute(struct sched_domain *sd,
6259 struct sched_domain_attr *attr)
6260 {
6261 int request;
6262
6263 if (!attr || attr->relax_domain_level < 0) {
6264 if (default_relax_domain_level < 0)
6265 return;
6266 else
6267 request = default_relax_domain_level;
6268 } else
6269 request = attr->relax_domain_level;
6270 if (request < sd->level) {
6271 /* turn off idle balance on this domain */
6272 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6273 } else {
6274 /* turn on idle balance on this domain */
6275 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6276 }
6277 }
6278
6279 static void __sdt_free(const struct cpumask *cpu_map);
6280 static int __sdt_alloc(const struct cpumask *cpu_map);
6281
6282 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6283 const struct cpumask *cpu_map)
6284 {
6285 switch (what) {
6286 case sa_rootdomain:
6287 if (!atomic_read(&d->rd->refcount))
6288 free_rootdomain(&d->rd->rcu); /* fall through */
6289 case sa_sd:
6290 free_percpu(d->sd); /* fall through */
6291 case sa_sd_storage:
6292 __sdt_free(cpu_map); /* fall through */
6293 case sa_none:
6294 break;
6295 }
6296 }
6297
6298 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6299 const struct cpumask *cpu_map)
6300 {
6301 memset(d, 0, sizeof(*d));
6302
6303 if (__sdt_alloc(cpu_map))
6304 return sa_sd_storage;
6305 d->sd = alloc_percpu(struct sched_domain *);
6306 if (!d->sd)
6307 return sa_sd_storage;
6308 d->rd = alloc_rootdomain();
6309 if (!d->rd)
6310 return sa_sd;
6311 return sa_rootdomain;
6312 }
6313
6314 /*
6315 * NULL the sd_data elements we've used to build the sched_domain and
6316 * sched_group structure so that the subsequent __free_domain_allocs()
6317 * will not free the data we're using.
6318 */
6319 static void claim_allocations(int cpu, struct sched_domain *sd)
6320 {
6321 struct sd_data *sdd = sd->private;
6322
6323 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6324 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6325
6326 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6327 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6328
6329 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6330 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6331 }
6332
6333 #ifdef CONFIG_NUMA
6334 static int sched_domains_numa_levels;
6335 enum numa_topology_type sched_numa_topology_type;
6336 static int *sched_domains_numa_distance;
6337 int sched_max_numa_distance;
6338 static struct cpumask ***sched_domains_numa_masks;
6339 static int sched_domains_curr_level;
6340 #endif
6341
6342 /*
6343 * SD_flags allowed in topology descriptions.
6344 *
6345 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6346 * SD_SHARE_PKG_RESOURCES - describes shared caches
6347 * SD_NUMA - describes NUMA topologies
6348 * SD_SHARE_POWERDOMAIN - describes shared power domain
6349 *
6350 * Odd one out:
6351 * SD_ASYM_PACKING - describes SMT quirks
6352 */
6353 #define TOPOLOGY_SD_FLAGS \
6354 (SD_SHARE_CPUCAPACITY | \
6355 SD_SHARE_PKG_RESOURCES | \
6356 SD_NUMA | \
6357 SD_ASYM_PACKING | \
6358 SD_SHARE_POWERDOMAIN)
6359
6360 static struct sched_domain *
6361 sd_init(struct sched_domain_topology_level *tl, int cpu)
6362 {
6363 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6364 int sd_weight, sd_flags = 0;
6365
6366 #ifdef CONFIG_NUMA
6367 /*
6368 * Ugly hack to pass state to sd_numa_mask()...
6369 */
6370 sched_domains_curr_level = tl->numa_level;
6371 #endif
6372
6373 sd_weight = cpumask_weight(tl->mask(cpu));
6374
6375 if (tl->sd_flags)
6376 sd_flags = (*tl->sd_flags)();
6377 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6378 "wrong sd_flags in topology description\n"))
6379 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6380
6381 *sd = (struct sched_domain){
6382 .min_interval = sd_weight,
6383 .max_interval = 2*sd_weight,
6384 .busy_factor = 32,
6385 .imbalance_pct = 125,
6386
6387 .cache_nice_tries = 0,
6388 .busy_idx = 0,
6389 .idle_idx = 0,
6390 .newidle_idx = 0,
6391 .wake_idx = 0,
6392 .forkexec_idx = 0,
6393
6394 .flags = 1*SD_LOAD_BALANCE
6395 | 1*SD_BALANCE_NEWIDLE
6396 | 1*SD_BALANCE_EXEC
6397 | 1*SD_BALANCE_FORK
6398 | 0*SD_BALANCE_WAKE
6399 | 1*SD_WAKE_AFFINE
6400 | 0*SD_SHARE_CPUCAPACITY
6401 | 0*SD_SHARE_PKG_RESOURCES
6402 | 0*SD_SERIALIZE
6403 | 0*SD_PREFER_SIBLING
6404 | 0*SD_NUMA
6405 | sd_flags
6406 ,
6407
6408 .last_balance = jiffies,
6409 .balance_interval = sd_weight,
6410 .smt_gain = 0,
6411 .max_newidle_lb_cost = 0,
6412 .next_decay_max_lb_cost = jiffies,
6413 #ifdef CONFIG_SCHED_DEBUG
6414 .name = tl->name,
6415 #endif
6416 };
6417
6418 /*
6419 * Convert topological properties into behaviour.
6420 */
6421
6422 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6423 sd->flags |= SD_PREFER_SIBLING;
6424 sd->imbalance_pct = 110;
6425 sd->smt_gain = 1178; /* ~15% */
6426
6427 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6428 sd->imbalance_pct = 117;
6429 sd->cache_nice_tries = 1;
6430 sd->busy_idx = 2;
6431
6432 #ifdef CONFIG_NUMA
6433 } else if (sd->flags & SD_NUMA) {
6434 sd->cache_nice_tries = 2;
6435 sd->busy_idx = 3;
6436 sd->idle_idx = 2;
6437
6438 sd->flags |= SD_SERIALIZE;
6439 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6440 sd->flags &= ~(SD_BALANCE_EXEC |
6441 SD_BALANCE_FORK |
6442 SD_WAKE_AFFINE);
6443 }
6444
6445 #endif
6446 } else {
6447 sd->flags |= SD_PREFER_SIBLING;
6448 sd->cache_nice_tries = 1;
6449 sd->busy_idx = 2;
6450 sd->idle_idx = 1;
6451 }
6452
6453 sd->private = &tl->data;
6454
6455 return sd;
6456 }
6457
6458 /*
6459 * Topology list, bottom-up.
6460 */
6461 static struct sched_domain_topology_level default_topology[] = {
6462 #ifdef CONFIG_SCHED_SMT
6463 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6464 #endif
6465 #ifdef CONFIG_SCHED_MC
6466 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6467 #endif
6468 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6469 { NULL, },
6470 };
6471
6472 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6473
6474 #define for_each_sd_topology(tl) \
6475 for (tl = sched_domain_topology; tl->mask; tl++)
6476
6477 void set_sched_topology(struct sched_domain_topology_level *tl)
6478 {
6479 sched_domain_topology = tl;
6480 }
6481
6482 #ifdef CONFIG_NUMA
6483
6484 static const struct cpumask *sd_numa_mask(int cpu)
6485 {
6486 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6487 }
6488
6489 static void sched_numa_warn(const char *str)
6490 {
6491 static int done = false;
6492 int i,j;
6493
6494 if (done)
6495 return;
6496
6497 done = true;
6498
6499 printk(KERN_WARNING "ERROR: %s\n\n", str);
6500
6501 for (i = 0; i < nr_node_ids; i++) {
6502 printk(KERN_WARNING " ");
6503 for (j = 0; j < nr_node_ids; j++)
6504 printk(KERN_CONT "%02d ", node_distance(i,j));
6505 printk(KERN_CONT "\n");
6506 }
6507 printk(KERN_WARNING "\n");
6508 }
6509
6510 bool find_numa_distance(int distance)
6511 {
6512 int i;
6513
6514 if (distance == node_distance(0, 0))
6515 return true;
6516
6517 for (i = 0; i < sched_domains_numa_levels; i++) {
6518 if (sched_domains_numa_distance[i] == distance)
6519 return true;
6520 }
6521
6522 return false;
6523 }
6524
6525 /*
6526 * A system can have three types of NUMA topology:
6527 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6528 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6529 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6530 *
6531 * The difference between a glueless mesh topology and a backplane
6532 * topology lies in whether communication between not directly
6533 * connected nodes goes through intermediary nodes (where programs
6534 * could run), or through backplane controllers. This affects
6535 * placement of programs.
6536 *
6537 * The type of topology can be discerned with the following tests:
6538 * - If the maximum distance between any nodes is 1 hop, the system
6539 * is directly connected.
6540 * - If for two nodes A and B, located N > 1 hops away from each other,
6541 * there is an intermediary node C, which is < N hops away from both
6542 * nodes A and B, the system is a glueless mesh.
6543 */
6544 static void init_numa_topology_type(void)
6545 {
6546 int a, b, c, n;
6547
6548 n = sched_max_numa_distance;
6549
6550 if (sched_domains_numa_levels <= 1) {
6551 sched_numa_topology_type = NUMA_DIRECT;
6552 return;
6553 }
6554
6555 for_each_online_node(a) {
6556 for_each_online_node(b) {
6557 /* Find two nodes furthest removed from each other. */
6558 if (node_distance(a, b) < n)
6559 continue;
6560
6561 /* Is there an intermediary node between a and b? */
6562 for_each_online_node(c) {
6563 if (node_distance(a, c) < n &&
6564 node_distance(b, c) < n) {
6565 sched_numa_topology_type =
6566 NUMA_GLUELESS_MESH;
6567 return;
6568 }
6569 }
6570
6571 sched_numa_topology_type = NUMA_BACKPLANE;
6572 return;
6573 }
6574 }
6575 }
6576
6577 static void sched_init_numa(void)
6578 {
6579 int next_distance, curr_distance = node_distance(0, 0);
6580 struct sched_domain_topology_level *tl;
6581 int level = 0;
6582 int i, j, k;
6583
6584 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6585 if (!sched_domains_numa_distance)
6586 return;
6587
6588 /*
6589 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6590 * unique distances in the node_distance() table.
6591 *
6592 * Assumes node_distance(0,j) includes all distances in
6593 * node_distance(i,j) in order to avoid cubic time.
6594 */
6595 next_distance = curr_distance;
6596 for (i = 0; i < nr_node_ids; i++) {
6597 for (j = 0; j < nr_node_ids; j++) {
6598 for (k = 0; k < nr_node_ids; k++) {
6599 int distance = node_distance(i, k);
6600
6601 if (distance > curr_distance &&
6602 (distance < next_distance ||
6603 next_distance == curr_distance))
6604 next_distance = distance;
6605
6606 /*
6607 * While not a strong assumption it would be nice to know
6608 * about cases where if node A is connected to B, B is not
6609 * equally connected to A.
6610 */
6611 if (sched_debug() && node_distance(k, i) != distance)
6612 sched_numa_warn("Node-distance not symmetric");
6613
6614 if (sched_debug() && i && !find_numa_distance(distance))
6615 sched_numa_warn("Node-0 not representative");
6616 }
6617 if (next_distance != curr_distance) {
6618 sched_domains_numa_distance[level++] = next_distance;
6619 sched_domains_numa_levels = level;
6620 curr_distance = next_distance;
6621 } else break;
6622 }
6623
6624 /*
6625 * In case of sched_debug() we verify the above assumption.
6626 */
6627 if (!sched_debug())
6628 break;
6629 }
6630
6631 if (!level)
6632 return;
6633
6634 /*
6635 * 'level' contains the number of unique distances, excluding the
6636 * identity distance node_distance(i,i).
6637 *
6638 * The sched_domains_numa_distance[] array includes the actual distance
6639 * numbers.
6640 */
6641
6642 /*
6643 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6644 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6645 * the array will contain less then 'level' members. This could be
6646 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6647 * in other functions.
6648 *
6649 * We reset it to 'level' at the end of this function.
6650 */
6651 sched_domains_numa_levels = 0;
6652
6653 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6654 if (!sched_domains_numa_masks)
6655 return;
6656
6657 /*
6658 * Now for each level, construct a mask per node which contains all
6659 * cpus of nodes that are that many hops away from us.
6660 */
6661 for (i = 0; i < level; i++) {
6662 sched_domains_numa_masks[i] =
6663 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6664 if (!sched_domains_numa_masks[i])
6665 return;
6666
6667 for (j = 0; j < nr_node_ids; j++) {
6668 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6669 if (!mask)
6670 return;
6671
6672 sched_domains_numa_masks[i][j] = mask;
6673
6674 for (k = 0; k < nr_node_ids; k++) {
6675 if (node_distance(j, k) > sched_domains_numa_distance[i])
6676 continue;
6677
6678 cpumask_or(mask, mask, cpumask_of_node(k));
6679 }
6680 }
6681 }
6682
6683 /* Compute default topology size */
6684 for (i = 0; sched_domain_topology[i].mask; i++);
6685
6686 tl = kzalloc((i + level + 1) *
6687 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6688 if (!tl)
6689 return;
6690
6691 /*
6692 * Copy the default topology bits..
6693 */
6694 for (i = 0; sched_domain_topology[i].mask; i++)
6695 tl[i] = sched_domain_topology[i];
6696
6697 /*
6698 * .. and append 'j' levels of NUMA goodness.
6699 */
6700 for (j = 0; j < level; i++, j++) {
6701 tl[i] = (struct sched_domain_topology_level){
6702 .mask = sd_numa_mask,
6703 .sd_flags = cpu_numa_flags,
6704 .flags = SDTL_OVERLAP,
6705 .numa_level = j,
6706 SD_INIT_NAME(NUMA)
6707 };
6708 }
6709
6710 sched_domain_topology = tl;
6711
6712 sched_domains_numa_levels = level;
6713 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6714
6715 init_numa_topology_type();
6716 }
6717
6718 static void sched_domains_numa_masks_set(int cpu)
6719 {
6720 int i, j;
6721 int node = cpu_to_node(cpu);
6722
6723 for (i = 0; i < sched_domains_numa_levels; i++) {
6724 for (j = 0; j < nr_node_ids; j++) {
6725 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6726 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6727 }
6728 }
6729 }
6730
6731 static void sched_domains_numa_masks_clear(int cpu)
6732 {
6733 int i, j;
6734 for (i = 0; i < sched_domains_numa_levels; i++) {
6735 for (j = 0; j < nr_node_ids; j++)
6736 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6737 }
6738 }
6739
6740 /*
6741 * Update sched_domains_numa_masks[level][node] array when new cpus
6742 * are onlined.
6743 */
6744 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6745 unsigned long action,
6746 void *hcpu)
6747 {
6748 int cpu = (long)hcpu;
6749
6750 switch (action & ~CPU_TASKS_FROZEN) {
6751 case CPU_ONLINE:
6752 sched_domains_numa_masks_set(cpu);
6753 break;
6754
6755 case CPU_DEAD:
6756 sched_domains_numa_masks_clear(cpu);
6757 break;
6758
6759 default:
6760 return NOTIFY_DONE;
6761 }
6762
6763 return NOTIFY_OK;
6764 }
6765 #else
6766 static inline void sched_init_numa(void)
6767 {
6768 }
6769
6770 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6771 unsigned long action,
6772 void *hcpu)
6773 {
6774 return 0;
6775 }
6776 #endif /* CONFIG_NUMA */
6777
6778 static int __sdt_alloc(const struct cpumask *cpu_map)
6779 {
6780 struct sched_domain_topology_level *tl;
6781 int j;
6782
6783 for_each_sd_topology(tl) {
6784 struct sd_data *sdd = &tl->data;
6785
6786 sdd->sd = alloc_percpu(struct sched_domain *);
6787 if (!sdd->sd)
6788 return -ENOMEM;
6789
6790 sdd->sg = alloc_percpu(struct sched_group *);
6791 if (!sdd->sg)
6792 return -ENOMEM;
6793
6794 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6795 if (!sdd->sgc)
6796 return -ENOMEM;
6797
6798 for_each_cpu(j, cpu_map) {
6799 struct sched_domain *sd;
6800 struct sched_group *sg;
6801 struct sched_group_capacity *sgc;
6802
6803 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6804 GFP_KERNEL, cpu_to_node(j));
6805 if (!sd)
6806 return -ENOMEM;
6807
6808 *per_cpu_ptr(sdd->sd, j) = sd;
6809
6810 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6811 GFP_KERNEL, cpu_to_node(j));
6812 if (!sg)
6813 return -ENOMEM;
6814
6815 sg->next = sg;
6816
6817 *per_cpu_ptr(sdd->sg, j) = sg;
6818
6819 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6820 GFP_KERNEL, cpu_to_node(j));
6821 if (!sgc)
6822 return -ENOMEM;
6823
6824 *per_cpu_ptr(sdd->sgc, j) = sgc;
6825 }
6826 }
6827
6828 return 0;
6829 }
6830
6831 static void __sdt_free(const struct cpumask *cpu_map)
6832 {
6833 struct sched_domain_topology_level *tl;
6834 int j;
6835
6836 for_each_sd_topology(tl) {
6837 struct sd_data *sdd = &tl->data;
6838
6839 for_each_cpu(j, cpu_map) {
6840 struct sched_domain *sd;
6841
6842 if (sdd->sd) {
6843 sd = *per_cpu_ptr(sdd->sd, j);
6844 if (sd && (sd->flags & SD_OVERLAP))
6845 free_sched_groups(sd->groups, 0);
6846 kfree(*per_cpu_ptr(sdd->sd, j));
6847 }
6848
6849 if (sdd->sg)
6850 kfree(*per_cpu_ptr(sdd->sg, j));
6851 if (sdd->sgc)
6852 kfree(*per_cpu_ptr(sdd->sgc, j));
6853 }
6854 free_percpu(sdd->sd);
6855 sdd->sd = NULL;
6856 free_percpu(sdd->sg);
6857 sdd->sg = NULL;
6858 free_percpu(sdd->sgc);
6859 sdd->sgc = NULL;
6860 }
6861 }
6862
6863 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6864 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6865 struct sched_domain *child, int cpu)
6866 {
6867 struct sched_domain *sd = sd_init(tl, cpu);
6868 if (!sd)
6869 return child;
6870
6871 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6872 if (child) {
6873 sd->level = child->level + 1;
6874 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6875 child->parent = sd;
6876 sd->child = child;
6877
6878 if (!cpumask_subset(sched_domain_span(child),
6879 sched_domain_span(sd))) {
6880 pr_err("BUG: arch topology borken\n");
6881 #ifdef CONFIG_SCHED_DEBUG
6882 pr_err(" the %s domain not a subset of the %s domain\n",
6883 child->name, sd->name);
6884 #endif
6885 /* Fixup, ensure @sd has at least @child cpus. */
6886 cpumask_or(sched_domain_span(sd),
6887 sched_domain_span(sd),
6888 sched_domain_span(child));
6889 }
6890
6891 }
6892 set_domain_attribute(sd, attr);
6893
6894 return sd;
6895 }
6896
6897 /*
6898 * Build sched domains for a given set of cpus and attach the sched domains
6899 * to the individual cpus
6900 */
6901 static int build_sched_domains(const struct cpumask *cpu_map,
6902 struct sched_domain_attr *attr)
6903 {
6904 enum s_alloc alloc_state;
6905 struct sched_domain *sd;
6906 struct s_data d;
6907 int i, ret = -ENOMEM;
6908
6909 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6910 if (alloc_state != sa_rootdomain)
6911 goto error;
6912
6913 /* Set up domains for cpus specified by the cpu_map. */
6914 for_each_cpu(i, cpu_map) {
6915 struct sched_domain_topology_level *tl;
6916
6917 sd = NULL;
6918 for_each_sd_topology(tl) {
6919 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6920 if (tl == sched_domain_topology)
6921 *per_cpu_ptr(d.sd, i) = sd;
6922 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6923 sd->flags |= SD_OVERLAP;
6924 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6925 break;
6926 }
6927 }
6928
6929 /* Build the groups for the domains */
6930 for_each_cpu(i, cpu_map) {
6931 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6932 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6933 if (sd->flags & SD_OVERLAP) {
6934 if (build_overlap_sched_groups(sd, i))
6935 goto error;
6936 } else {
6937 if (build_sched_groups(sd, i))
6938 goto error;
6939 }
6940 }
6941 }
6942
6943 /* Calculate CPU capacity for physical packages and nodes */
6944 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6945 if (!cpumask_test_cpu(i, cpu_map))
6946 continue;
6947
6948 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6949 claim_allocations(i, sd);
6950 init_sched_groups_capacity(i, sd);
6951 }
6952 }
6953
6954 /* Attach the domains */
6955 rcu_read_lock();
6956 for_each_cpu(i, cpu_map) {
6957 sd = *per_cpu_ptr(d.sd, i);
6958 cpu_attach_domain(sd, d.rd, i);
6959 }
6960 rcu_read_unlock();
6961
6962 ret = 0;
6963 error:
6964 __free_domain_allocs(&d, alloc_state, cpu_map);
6965 return ret;
6966 }
6967
6968 static cpumask_var_t *doms_cur; /* current sched domains */
6969 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6970 static struct sched_domain_attr *dattr_cur;
6971 /* attribues of custom domains in 'doms_cur' */
6972
6973 /*
6974 * Special case: If a kmalloc of a doms_cur partition (array of
6975 * cpumask) fails, then fallback to a single sched domain,
6976 * as determined by the single cpumask fallback_doms.
6977 */
6978 static cpumask_var_t fallback_doms;
6979
6980 /*
6981 * arch_update_cpu_topology lets virtualized architectures update the
6982 * cpu core maps. It is supposed to return 1 if the topology changed
6983 * or 0 if it stayed the same.
6984 */
6985 int __weak arch_update_cpu_topology(void)
6986 {
6987 return 0;
6988 }
6989
6990 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6991 {
6992 int i;
6993 cpumask_var_t *doms;
6994
6995 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6996 if (!doms)
6997 return NULL;
6998 for (i = 0; i < ndoms; i++) {
6999 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7000 free_sched_domains(doms, i);
7001 return NULL;
7002 }
7003 }
7004 return doms;
7005 }
7006
7007 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7008 {
7009 unsigned int i;
7010 for (i = 0; i < ndoms; i++)
7011 free_cpumask_var(doms[i]);
7012 kfree(doms);
7013 }
7014
7015 /*
7016 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7017 * For now this just excludes isolated cpus, but could be used to
7018 * exclude other special cases in the future.
7019 */
7020 static int init_sched_domains(const struct cpumask *cpu_map)
7021 {
7022 int err;
7023
7024 arch_update_cpu_topology();
7025 ndoms_cur = 1;
7026 doms_cur = alloc_sched_domains(ndoms_cur);
7027 if (!doms_cur)
7028 doms_cur = &fallback_doms;
7029 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7030 err = build_sched_domains(doms_cur[0], NULL);
7031 register_sched_domain_sysctl();
7032
7033 return err;
7034 }
7035
7036 /*
7037 * Detach sched domains from a group of cpus specified in cpu_map
7038 * These cpus will now be attached to the NULL domain
7039 */
7040 static void detach_destroy_domains(const struct cpumask *cpu_map)
7041 {
7042 int i;
7043
7044 rcu_read_lock();
7045 for_each_cpu(i, cpu_map)
7046 cpu_attach_domain(NULL, &def_root_domain, i);
7047 rcu_read_unlock();
7048 }
7049
7050 /* handle null as "default" */
7051 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7052 struct sched_domain_attr *new, int idx_new)
7053 {
7054 struct sched_domain_attr tmp;
7055
7056 /* fast path */
7057 if (!new && !cur)
7058 return 1;
7059
7060 tmp = SD_ATTR_INIT;
7061 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7062 new ? (new + idx_new) : &tmp,
7063 sizeof(struct sched_domain_attr));
7064 }
7065
7066 /*
7067 * Partition sched domains as specified by the 'ndoms_new'
7068 * cpumasks in the array doms_new[] of cpumasks. This compares
7069 * doms_new[] to the current sched domain partitioning, doms_cur[].
7070 * It destroys each deleted domain and builds each new domain.
7071 *
7072 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7073 * The masks don't intersect (don't overlap.) We should setup one
7074 * sched domain for each mask. CPUs not in any of the cpumasks will
7075 * not be load balanced. If the same cpumask appears both in the
7076 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7077 * it as it is.
7078 *
7079 * The passed in 'doms_new' should be allocated using
7080 * alloc_sched_domains. This routine takes ownership of it and will
7081 * free_sched_domains it when done with it. If the caller failed the
7082 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7083 * and partition_sched_domains() will fallback to the single partition
7084 * 'fallback_doms', it also forces the domains to be rebuilt.
7085 *
7086 * If doms_new == NULL it will be replaced with cpu_online_mask.
7087 * ndoms_new == 0 is a special case for destroying existing domains,
7088 * and it will not create the default domain.
7089 *
7090 * Call with hotplug lock held
7091 */
7092 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7093 struct sched_domain_attr *dattr_new)
7094 {
7095 int i, j, n;
7096 int new_topology;
7097
7098 mutex_lock(&sched_domains_mutex);
7099
7100 /* always unregister in case we don't destroy any domains */
7101 unregister_sched_domain_sysctl();
7102
7103 /* Let architecture update cpu core mappings. */
7104 new_topology = arch_update_cpu_topology();
7105
7106 n = doms_new ? ndoms_new : 0;
7107
7108 /* Destroy deleted domains */
7109 for (i = 0; i < ndoms_cur; i++) {
7110 for (j = 0; j < n && !new_topology; j++) {
7111 if (cpumask_equal(doms_cur[i], doms_new[j])
7112 && dattrs_equal(dattr_cur, i, dattr_new, j))
7113 goto match1;
7114 }
7115 /* no match - a current sched domain not in new doms_new[] */
7116 detach_destroy_domains(doms_cur[i]);
7117 match1:
7118 ;
7119 }
7120
7121 n = ndoms_cur;
7122 if (doms_new == NULL) {
7123 n = 0;
7124 doms_new = &fallback_doms;
7125 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7126 WARN_ON_ONCE(dattr_new);
7127 }
7128
7129 /* Build new domains */
7130 for (i = 0; i < ndoms_new; i++) {
7131 for (j = 0; j < n && !new_topology; j++) {
7132 if (cpumask_equal(doms_new[i], doms_cur[j])
7133 && dattrs_equal(dattr_new, i, dattr_cur, j))
7134 goto match2;
7135 }
7136 /* no match - add a new doms_new */
7137 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7138 match2:
7139 ;
7140 }
7141
7142 /* Remember the new sched domains */
7143 if (doms_cur != &fallback_doms)
7144 free_sched_domains(doms_cur, ndoms_cur);
7145 kfree(dattr_cur); /* kfree(NULL) is safe */
7146 doms_cur = doms_new;
7147 dattr_cur = dattr_new;
7148 ndoms_cur = ndoms_new;
7149
7150 register_sched_domain_sysctl();
7151
7152 mutex_unlock(&sched_domains_mutex);
7153 }
7154
7155 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7156
7157 /*
7158 * Update cpusets according to cpu_active mask. If cpusets are
7159 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7160 * around partition_sched_domains().
7161 *
7162 * If we come here as part of a suspend/resume, don't touch cpusets because we
7163 * want to restore it back to its original state upon resume anyway.
7164 */
7165 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7166 void *hcpu)
7167 {
7168 switch (action) {
7169 case CPU_ONLINE_FROZEN:
7170 case CPU_DOWN_FAILED_FROZEN:
7171
7172 /*
7173 * num_cpus_frozen tracks how many CPUs are involved in suspend
7174 * resume sequence. As long as this is not the last online
7175 * operation in the resume sequence, just build a single sched
7176 * domain, ignoring cpusets.
7177 */
7178 num_cpus_frozen--;
7179 if (likely(num_cpus_frozen)) {
7180 partition_sched_domains(1, NULL, NULL);
7181 break;
7182 }
7183
7184 /*
7185 * This is the last CPU online operation. So fall through and
7186 * restore the original sched domains by considering the
7187 * cpuset configurations.
7188 */
7189
7190 case CPU_ONLINE:
7191 cpuset_update_active_cpus(true);
7192 break;
7193 default:
7194 return NOTIFY_DONE;
7195 }
7196 return NOTIFY_OK;
7197 }
7198
7199 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7200 void *hcpu)
7201 {
7202 unsigned long flags;
7203 long cpu = (long)hcpu;
7204 struct dl_bw *dl_b;
7205 bool overflow;
7206 int cpus;
7207
7208 switch (action) {
7209 case CPU_DOWN_PREPARE:
7210 rcu_read_lock_sched();
7211 dl_b = dl_bw_of(cpu);
7212
7213 raw_spin_lock_irqsave(&dl_b->lock, flags);
7214 cpus = dl_bw_cpus(cpu);
7215 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7216 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7217
7218 rcu_read_unlock_sched();
7219
7220 if (overflow)
7221 return notifier_from_errno(-EBUSY);
7222 cpuset_update_active_cpus(false);
7223 break;
7224 case CPU_DOWN_PREPARE_FROZEN:
7225 num_cpus_frozen++;
7226 partition_sched_domains(1, NULL, NULL);
7227 break;
7228 default:
7229 return NOTIFY_DONE;
7230 }
7231 return NOTIFY_OK;
7232 }
7233
7234 void __init sched_init_smp(void)
7235 {
7236 cpumask_var_t non_isolated_cpus;
7237
7238 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7239 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7240
7241 sched_init_numa();
7242
7243 /*
7244 * There's no userspace yet to cause hotplug operations; hence all the
7245 * cpu masks are stable and all blatant races in the below code cannot
7246 * happen.
7247 */
7248 mutex_lock(&sched_domains_mutex);
7249 init_sched_domains(cpu_active_mask);
7250 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7251 if (cpumask_empty(non_isolated_cpus))
7252 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7253 mutex_unlock(&sched_domains_mutex);
7254
7255 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7256 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7257 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7258
7259 init_hrtick();
7260
7261 /* Move init over to a non-isolated CPU */
7262 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7263 BUG();
7264 sched_init_granularity();
7265 free_cpumask_var(non_isolated_cpus);
7266
7267 init_sched_rt_class();
7268 init_sched_dl_class();
7269 }
7270 #else
7271 void __init sched_init_smp(void)
7272 {
7273 sched_init_granularity();
7274 }
7275 #endif /* CONFIG_SMP */
7276
7277 int in_sched_functions(unsigned long addr)
7278 {
7279 return in_lock_functions(addr) ||
7280 (addr >= (unsigned long)__sched_text_start
7281 && addr < (unsigned long)__sched_text_end);
7282 }
7283
7284 #ifdef CONFIG_CGROUP_SCHED
7285 /*
7286 * Default task group.
7287 * Every task in system belongs to this group at bootup.
7288 */
7289 struct task_group root_task_group;
7290 LIST_HEAD(task_groups);
7291 #endif
7292
7293 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7294
7295 void __init sched_init(void)
7296 {
7297 int i, j;
7298 unsigned long alloc_size = 0, ptr;
7299
7300 #ifdef CONFIG_FAIR_GROUP_SCHED
7301 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7302 #endif
7303 #ifdef CONFIG_RT_GROUP_SCHED
7304 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7305 #endif
7306 if (alloc_size) {
7307 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7308
7309 #ifdef CONFIG_FAIR_GROUP_SCHED
7310 root_task_group.se = (struct sched_entity **)ptr;
7311 ptr += nr_cpu_ids * sizeof(void **);
7312
7313 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7314 ptr += nr_cpu_ids * sizeof(void **);
7315
7316 #endif /* CONFIG_FAIR_GROUP_SCHED */
7317 #ifdef CONFIG_RT_GROUP_SCHED
7318 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7319 ptr += nr_cpu_ids * sizeof(void **);
7320
7321 root_task_group.rt_rq = (struct rt_rq **)ptr;
7322 ptr += nr_cpu_ids * sizeof(void **);
7323
7324 #endif /* CONFIG_RT_GROUP_SCHED */
7325 }
7326 #ifdef CONFIG_CPUMASK_OFFSTACK
7327 for_each_possible_cpu(i) {
7328 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7329 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7330 }
7331 #endif /* CONFIG_CPUMASK_OFFSTACK */
7332
7333 init_rt_bandwidth(&def_rt_bandwidth,
7334 global_rt_period(), global_rt_runtime());
7335 init_dl_bandwidth(&def_dl_bandwidth,
7336 global_rt_period(), global_rt_runtime());
7337
7338 #ifdef CONFIG_SMP
7339 init_defrootdomain();
7340 #endif
7341
7342 #ifdef CONFIG_RT_GROUP_SCHED
7343 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7344 global_rt_period(), global_rt_runtime());
7345 #endif /* CONFIG_RT_GROUP_SCHED */
7346
7347 #ifdef CONFIG_CGROUP_SCHED
7348 list_add(&root_task_group.list, &task_groups);
7349 INIT_LIST_HEAD(&root_task_group.children);
7350 INIT_LIST_HEAD(&root_task_group.siblings);
7351 autogroup_init(&init_task);
7352
7353 #endif /* CONFIG_CGROUP_SCHED */
7354
7355 for_each_possible_cpu(i) {
7356 struct rq *rq;
7357
7358 rq = cpu_rq(i);
7359 raw_spin_lock_init(&rq->lock);
7360 rq->nr_running = 0;
7361 rq->calc_load_active = 0;
7362 rq->calc_load_update = jiffies + LOAD_FREQ;
7363 init_cfs_rq(&rq->cfs);
7364 init_rt_rq(&rq->rt);
7365 init_dl_rq(&rq->dl);
7366 #ifdef CONFIG_FAIR_GROUP_SCHED
7367 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7368 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7369 /*
7370 * How much cpu bandwidth does root_task_group get?
7371 *
7372 * In case of task-groups formed thr' the cgroup filesystem, it
7373 * gets 100% of the cpu resources in the system. This overall
7374 * system cpu resource is divided among the tasks of
7375 * root_task_group and its child task-groups in a fair manner,
7376 * based on each entity's (task or task-group's) weight
7377 * (se->load.weight).
7378 *
7379 * In other words, if root_task_group has 10 tasks of weight
7380 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7381 * then A0's share of the cpu resource is:
7382 *
7383 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7384 *
7385 * We achieve this by letting root_task_group's tasks sit
7386 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7387 */
7388 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7389 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7390 #endif /* CONFIG_FAIR_GROUP_SCHED */
7391
7392 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7393 #ifdef CONFIG_RT_GROUP_SCHED
7394 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7395 #endif
7396
7397 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7398 rq->cpu_load[j] = 0;
7399
7400 rq->last_load_update_tick = jiffies;
7401
7402 #ifdef CONFIG_SMP
7403 rq->sd = NULL;
7404 rq->rd = NULL;
7405 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7406 rq->balance_callback = NULL;
7407 rq->active_balance = 0;
7408 rq->next_balance = jiffies;
7409 rq->push_cpu = 0;
7410 rq->cpu = i;
7411 rq->online = 0;
7412 rq->idle_stamp = 0;
7413 rq->avg_idle = 2*sysctl_sched_migration_cost;
7414 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7415
7416 INIT_LIST_HEAD(&rq->cfs_tasks);
7417
7418 rq_attach_root(rq, &def_root_domain);
7419 #ifdef CONFIG_NO_HZ_COMMON
7420 rq->nohz_flags = 0;
7421 #endif
7422 #ifdef CONFIG_NO_HZ_FULL
7423 rq->last_sched_tick = 0;
7424 #endif
7425 #endif
7426 init_rq_hrtick(rq);
7427 atomic_set(&rq->nr_iowait, 0);
7428 }
7429
7430 set_load_weight(&init_task);
7431
7432 #ifdef CONFIG_PREEMPT_NOTIFIERS
7433 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7434 #endif
7435
7436 /*
7437 * The boot idle thread does lazy MMU switching as well:
7438 */
7439 atomic_inc(&init_mm.mm_count);
7440 enter_lazy_tlb(&init_mm, current);
7441
7442 /*
7443 * During early bootup we pretend to be a normal task:
7444 */
7445 current->sched_class = &fair_sched_class;
7446
7447 /*
7448 * Make us the idle thread. Technically, schedule() should not be
7449 * called from this thread, however somewhere below it might be,
7450 * but because we are the idle thread, we just pick up running again
7451 * when this runqueue becomes "idle".
7452 */
7453 init_idle(current, smp_processor_id());
7454
7455 calc_load_update = jiffies + LOAD_FREQ;
7456
7457 #ifdef CONFIG_SMP
7458 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7459 /* May be allocated at isolcpus cmdline parse time */
7460 if (cpu_isolated_map == NULL)
7461 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7462 idle_thread_set_boot_cpu();
7463 set_cpu_rq_start_time();
7464 #endif
7465 init_sched_fair_class();
7466
7467 scheduler_running = 1;
7468 }
7469
7470 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7471 static inline int preempt_count_equals(int preempt_offset)
7472 {
7473 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7474
7475 return (nested == preempt_offset);
7476 }
7477
7478 void __might_sleep(const char *file, int line, int preempt_offset)
7479 {
7480 /*
7481 * Blocking primitives will set (and therefore destroy) current->state,
7482 * since we will exit with TASK_RUNNING make sure we enter with it,
7483 * otherwise we will destroy state.
7484 */
7485 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7486 "do not call blocking ops when !TASK_RUNNING; "
7487 "state=%lx set at [<%p>] %pS\n",
7488 current->state,
7489 (void *)current->task_state_change,
7490 (void *)current->task_state_change);
7491
7492 ___might_sleep(file, line, preempt_offset);
7493 }
7494 EXPORT_SYMBOL(__might_sleep);
7495
7496 void ___might_sleep(const char *file, int line, int preempt_offset)
7497 {
7498 static unsigned long prev_jiffy; /* ratelimiting */
7499
7500 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7501 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7502 !is_idle_task(current)) ||
7503 system_state != SYSTEM_RUNNING || oops_in_progress)
7504 return;
7505 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7506 return;
7507 prev_jiffy = jiffies;
7508
7509 printk(KERN_ERR
7510 "BUG: sleeping function called from invalid context at %s:%d\n",
7511 file, line);
7512 printk(KERN_ERR
7513 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7514 in_atomic(), irqs_disabled(),
7515 current->pid, current->comm);
7516
7517 if (task_stack_end_corrupted(current))
7518 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7519
7520 debug_show_held_locks(current);
7521 if (irqs_disabled())
7522 print_irqtrace_events(current);
7523 #ifdef CONFIG_DEBUG_PREEMPT
7524 if (!preempt_count_equals(preempt_offset)) {
7525 pr_err("Preemption disabled at:");
7526 print_ip_sym(current->preempt_disable_ip);
7527 pr_cont("\n");
7528 }
7529 #endif
7530 dump_stack();
7531 }
7532 EXPORT_SYMBOL(___might_sleep);
7533 #endif
7534
7535 #ifdef CONFIG_MAGIC_SYSRQ
7536 void normalize_rt_tasks(void)
7537 {
7538 struct task_struct *g, *p;
7539 struct sched_attr attr = {
7540 .sched_policy = SCHED_NORMAL,
7541 };
7542
7543 read_lock(&tasklist_lock);
7544 for_each_process_thread(g, p) {
7545 /*
7546 * Only normalize user tasks:
7547 */
7548 if (p->flags & PF_KTHREAD)
7549 continue;
7550
7551 p->se.exec_start = 0;
7552 #ifdef CONFIG_SCHEDSTATS
7553 p->se.statistics.wait_start = 0;
7554 p->se.statistics.sleep_start = 0;
7555 p->se.statistics.block_start = 0;
7556 #endif
7557
7558 if (!dl_task(p) && !rt_task(p)) {
7559 /*
7560 * Renice negative nice level userspace
7561 * tasks back to 0:
7562 */
7563 if (task_nice(p) < 0)
7564 set_user_nice(p, 0);
7565 continue;
7566 }
7567
7568 __sched_setscheduler(p, &attr, false, false);
7569 }
7570 read_unlock(&tasklist_lock);
7571 }
7572
7573 #endif /* CONFIG_MAGIC_SYSRQ */
7574
7575 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7576 /*
7577 * These functions are only useful for the IA64 MCA handling, or kdb.
7578 *
7579 * They can only be called when the whole system has been
7580 * stopped - every CPU needs to be quiescent, and no scheduling
7581 * activity can take place. Using them for anything else would
7582 * be a serious bug, and as a result, they aren't even visible
7583 * under any other configuration.
7584 */
7585
7586 /**
7587 * curr_task - return the current task for a given cpu.
7588 * @cpu: the processor in question.
7589 *
7590 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7591 *
7592 * Return: The current task for @cpu.
7593 */
7594 struct task_struct *curr_task(int cpu)
7595 {
7596 return cpu_curr(cpu);
7597 }
7598
7599 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7600
7601 #ifdef CONFIG_IA64
7602 /**
7603 * set_curr_task - set the current task for a given cpu.
7604 * @cpu: the processor in question.
7605 * @p: the task pointer to set.
7606 *
7607 * Description: This function must only be used when non-maskable interrupts
7608 * are serviced on a separate stack. It allows the architecture to switch the
7609 * notion of the current task on a cpu in a non-blocking manner. This function
7610 * must be called with all CPU's synchronized, and interrupts disabled, the
7611 * and caller must save the original value of the current task (see
7612 * curr_task() above) and restore that value before reenabling interrupts and
7613 * re-starting the system.
7614 *
7615 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7616 */
7617 void set_curr_task(int cpu, struct task_struct *p)
7618 {
7619 cpu_curr(cpu) = p;
7620 }
7621
7622 #endif
7623
7624 #ifdef CONFIG_CGROUP_SCHED
7625 /* task_group_lock serializes the addition/removal of task groups */
7626 static DEFINE_SPINLOCK(task_group_lock);
7627
7628 static void free_sched_group(struct task_group *tg)
7629 {
7630 free_fair_sched_group(tg);
7631 free_rt_sched_group(tg);
7632 autogroup_free(tg);
7633 kfree(tg);
7634 }
7635
7636 /* allocate runqueue etc for a new task group */
7637 struct task_group *sched_create_group(struct task_group *parent)
7638 {
7639 struct task_group *tg;
7640
7641 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7642 if (!tg)
7643 return ERR_PTR(-ENOMEM);
7644
7645 if (!alloc_fair_sched_group(tg, parent))
7646 goto err;
7647
7648 if (!alloc_rt_sched_group(tg, parent))
7649 goto err;
7650
7651 return tg;
7652
7653 err:
7654 free_sched_group(tg);
7655 return ERR_PTR(-ENOMEM);
7656 }
7657
7658 void sched_online_group(struct task_group *tg, struct task_group *parent)
7659 {
7660 unsigned long flags;
7661
7662 spin_lock_irqsave(&task_group_lock, flags);
7663 list_add_rcu(&tg->list, &task_groups);
7664
7665 WARN_ON(!parent); /* root should already exist */
7666
7667 tg->parent = parent;
7668 INIT_LIST_HEAD(&tg->children);
7669 list_add_rcu(&tg->siblings, &parent->children);
7670 spin_unlock_irqrestore(&task_group_lock, flags);
7671 }
7672
7673 /* rcu callback to free various structures associated with a task group */
7674 static void free_sched_group_rcu(struct rcu_head *rhp)
7675 {
7676 /* now it should be safe to free those cfs_rqs */
7677 free_sched_group(container_of(rhp, struct task_group, rcu));
7678 }
7679
7680 /* Destroy runqueue etc associated with a task group */
7681 void sched_destroy_group(struct task_group *tg)
7682 {
7683 /* wait for possible concurrent references to cfs_rqs complete */
7684 call_rcu(&tg->rcu, free_sched_group_rcu);
7685 }
7686
7687 void sched_offline_group(struct task_group *tg)
7688 {
7689 unsigned long flags;
7690 int i;
7691
7692 /* end participation in shares distribution */
7693 for_each_possible_cpu(i)
7694 unregister_fair_sched_group(tg, i);
7695
7696 spin_lock_irqsave(&task_group_lock, flags);
7697 list_del_rcu(&tg->list);
7698 list_del_rcu(&tg->siblings);
7699 spin_unlock_irqrestore(&task_group_lock, flags);
7700 }
7701
7702 /* change task's runqueue when it moves between groups.
7703 * The caller of this function should have put the task in its new group
7704 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7705 * reflect its new group.
7706 */
7707 void sched_move_task(struct task_struct *tsk)
7708 {
7709 struct task_group *tg;
7710 int queued, running;
7711 unsigned long flags;
7712 struct rq *rq;
7713
7714 rq = task_rq_lock(tsk, &flags);
7715
7716 running = task_current(rq, tsk);
7717 queued = task_on_rq_queued(tsk);
7718
7719 if (queued)
7720 dequeue_task(rq, tsk, 0);
7721 if (unlikely(running))
7722 put_prev_task(rq, tsk);
7723
7724 /*
7725 * All callers are synchronized by task_rq_lock(); we do not use RCU
7726 * which is pointless here. Thus, we pass "true" to task_css_check()
7727 * to prevent lockdep warnings.
7728 */
7729 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7730 struct task_group, css);
7731 tg = autogroup_task_group(tsk, tg);
7732 tsk->sched_task_group = tg;
7733
7734 #ifdef CONFIG_FAIR_GROUP_SCHED
7735 if (tsk->sched_class->task_move_group)
7736 tsk->sched_class->task_move_group(tsk, queued);
7737 else
7738 #endif
7739 set_task_rq(tsk, task_cpu(tsk));
7740
7741 if (unlikely(running))
7742 tsk->sched_class->set_curr_task(rq);
7743 if (queued)
7744 enqueue_task(rq, tsk, 0);
7745
7746 task_rq_unlock(rq, tsk, &flags);
7747 }
7748 #endif /* CONFIG_CGROUP_SCHED */
7749
7750 #ifdef CONFIG_RT_GROUP_SCHED
7751 /*
7752 * Ensure that the real time constraints are schedulable.
7753 */
7754 static DEFINE_MUTEX(rt_constraints_mutex);
7755
7756 /* Must be called with tasklist_lock held */
7757 static inline int tg_has_rt_tasks(struct task_group *tg)
7758 {
7759 struct task_struct *g, *p;
7760
7761 /*
7762 * Autogroups do not have RT tasks; see autogroup_create().
7763 */
7764 if (task_group_is_autogroup(tg))
7765 return 0;
7766
7767 for_each_process_thread(g, p) {
7768 if (rt_task(p) && task_group(p) == tg)
7769 return 1;
7770 }
7771
7772 return 0;
7773 }
7774
7775 struct rt_schedulable_data {
7776 struct task_group *tg;
7777 u64 rt_period;
7778 u64 rt_runtime;
7779 };
7780
7781 static int tg_rt_schedulable(struct task_group *tg, void *data)
7782 {
7783 struct rt_schedulable_data *d = data;
7784 struct task_group *child;
7785 unsigned long total, sum = 0;
7786 u64 period, runtime;
7787
7788 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7789 runtime = tg->rt_bandwidth.rt_runtime;
7790
7791 if (tg == d->tg) {
7792 period = d->rt_period;
7793 runtime = d->rt_runtime;
7794 }
7795
7796 /*
7797 * Cannot have more runtime than the period.
7798 */
7799 if (runtime > period && runtime != RUNTIME_INF)
7800 return -EINVAL;
7801
7802 /*
7803 * Ensure we don't starve existing RT tasks.
7804 */
7805 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7806 return -EBUSY;
7807
7808 total = to_ratio(period, runtime);
7809
7810 /*
7811 * Nobody can have more than the global setting allows.
7812 */
7813 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7814 return -EINVAL;
7815
7816 /*
7817 * The sum of our children's runtime should not exceed our own.
7818 */
7819 list_for_each_entry_rcu(child, &tg->children, siblings) {
7820 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7821 runtime = child->rt_bandwidth.rt_runtime;
7822
7823 if (child == d->tg) {
7824 period = d->rt_period;
7825 runtime = d->rt_runtime;
7826 }
7827
7828 sum += to_ratio(period, runtime);
7829 }
7830
7831 if (sum > total)
7832 return -EINVAL;
7833
7834 return 0;
7835 }
7836
7837 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7838 {
7839 int ret;
7840
7841 struct rt_schedulable_data data = {
7842 .tg = tg,
7843 .rt_period = period,
7844 .rt_runtime = runtime,
7845 };
7846
7847 rcu_read_lock();
7848 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7849 rcu_read_unlock();
7850
7851 return ret;
7852 }
7853
7854 static int tg_set_rt_bandwidth(struct task_group *tg,
7855 u64 rt_period, u64 rt_runtime)
7856 {
7857 int i, err = 0;
7858
7859 /*
7860 * Disallowing the root group RT runtime is BAD, it would disallow the
7861 * kernel creating (and or operating) RT threads.
7862 */
7863 if (tg == &root_task_group && rt_runtime == 0)
7864 return -EINVAL;
7865
7866 /* No period doesn't make any sense. */
7867 if (rt_period == 0)
7868 return -EINVAL;
7869
7870 mutex_lock(&rt_constraints_mutex);
7871 read_lock(&tasklist_lock);
7872 err = __rt_schedulable(tg, rt_period, rt_runtime);
7873 if (err)
7874 goto unlock;
7875
7876 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7877 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7878 tg->rt_bandwidth.rt_runtime = rt_runtime;
7879
7880 for_each_possible_cpu(i) {
7881 struct rt_rq *rt_rq = tg->rt_rq[i];
7882
7883 raw_spin_lock(&rt_rq->rt_runtime_lock);
7884 rt_rq->rt_runtime = rt_runtime;
7885 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7886 }
7887 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7888 unlock:
7889 read_unlock(&tasklist_lock);
7890 mutex_unlock(&rt_constraints_mutex);
7891
7892 return err;
7893 }
7894
7895 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7896 {
7897 u64 rt_runtime, rt_period;
7898
7899 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7900 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7901 if (rt_runtime_us < 0)
7902 rt_runtime = RUNTIME_INF;
7903
7904 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7905 }
7906
7907 static long sched_group_rt_runtime(struct task_group *tg)
7908 {
7909 u64 rt_runtime_us;
7910
7911 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7912 return -1;
7913
7914 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7915 do_div(rt_runtime_us, NSEC_PER_USEC);
7916 return rt_runtime_us;
7917 }
7918
7919 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7920 {
7921 u64 rt_runtime, rt_period;
7922
7923 rt_period = rt_period_us * NSEC_PER_USEC;
7924 rt_runtime = tg->rt_bandwidth.rt_runtime;
7925
7926 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7927 }
7928
7929 static long sched_group_rt_period(struct task_group *tg)
7930 {
7931 u64 rt_period_us;
7932
7933 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7934 do_div(rt_period_us, NSEC_PER_USEC);
7935 return rt_period_us;
7936 }
7937 #endif /* CONFIG_RT_GROUP_SCHED */
7938
7939 #ifdef CONFIG_RT_GROUP_SCHED
7940 static int sched_rt_global_constraints(void)
7941 {
7942 int ret = 0;
7943
7944 mutex_lock(&rt_constraints_mutex);
7945 read_lock(&tasklist_lock);
7946 ret = __rt_schedulable(NULL, 0, 0);
7947 read_unlock(&tasklist_lock);
7948 mutex_unlock(&rt_constraints_mutex);
7949
7950 return ret;
7951 }
7952
7953 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7954 {
7955 /* Don't accept realtime tasks when there is no way for them to run */
7956 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7957 return 0;
7958
7959 return 1;
7960 }
7961
7962 #else /* !CONFIG_RT_GROUP_SCHED */
7963 static int sched_rt_global_constraints(void)
7964 {
7965 unsigned long flags;
7966 int i, ret = 0;
7967
7968 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7969 for_each_possible_cpu(i) {
7970 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7971
7972 raw_spin_lock(&rt_rq->rt_runtime_lock);
7973 rt_rq->rt_runtime = global_rt_runtime();
7974 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7975 }
7976 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7977
7978 return ret;
7979 }
7980 #endif /* CONFIG_RT_GROUP_SCHED */
7981
7982 static int sched_dl_global_validate(void)
7983 {
7984 u64 runtime = global_rt_runtime();
7985 u64 period = global_rt_period();
7986 u64 new_bw = to_ratio(period, runtime);
7987 struct dl_bw *dl_b;
7988 int cpu, ret = 0;
7989 unsigned long flags;
7990
7991 /*
7992 * Here we want to check the bandwidth not being set to some
7993 * value smaller than the currently allocated bandwidth in
7994 * any of the root_domains.
7995 *
7996 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7997 * cycling on root_domains... Discussion on different/better
7998 * solutions is welcome!
7999 */
8000 for_each_possible_cpu(cpu) {
8001 rcu_read_lock_sched();
8002 dl_b = dl_bw_of(cpu);
8003
8004 raw_spin_lock_irqsave(&dl_b->lock, flags);
8005 if (new_bw < dl_b->total_bw)
8006 ret = -EBUSY;
8007 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8008
8009 rcu_read_unlock_sched();
8010
8011 if (ret)
8012 break;
8013 }
8014
8015 return ret;
8016 }
8017
8018 static void sched_dl_do_global(void)
8019 {
8020 u64 new_bw = -1;
8021 struct dl_bw *dl_b;
8022 int cpu;
8023 unsigned long flags;
8024
8025 def_dl_bandwidth.dl_period = global_rt_period();
8026 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8027
8028 if (global_rt_runtime() != RUNTIME_INF)
8029 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8030
8031 /*
8032 * FIXME: As above...
8033 */
8034 for_each_possible_cpu(cpu) {
8035 rcu_read_lock_sched();
8036 dl_b = dl_bw_of(cpu);
8037
8038 raw_spin_lock_irqsave(&dl_b->lock, flags);
8039 dl_b->bw = new_bw;
8040 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8041
8042 rcu_read_unlock_sched();
8043 }
8044 }
8045
8046 static int sched_rt_global_validate(void)
8047 {
8048 if (sysctl_sched_rt_period <= 0)
8049 return -EINVAL;
8050
8051 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8052 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8053 return -EINVAL;
8054
8055 return 0;
8056 }
8057
8058 static void sched_rt_do_global(void)
8059 {
8060 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8061 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8062 }
8063
8064 int sched_rt_handler(struct ctl_table *table, int write,
8065 void __user *buffer, size_t *lenp,
8066 loff_t *ppos)
8067 {
8068 int old_period, old_runtime;
8069 static DEFINE_MUTEX(mutex);
8070 int ret;
8071
8072 mutex_lock(&mutex);
8073 old_period = sysctl_sched_rt_period;
8074 old_runtime = sysctl_sched_rt_runtime;
8075
8076 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8077
8078 if (!ret && write) {
8079 ret = sched_rt_global_validate();
8080 if (ret)
8081 goto undo;
8082
8083 ret = sched_dl_global_validate();
8084 if (ret)
8085 goto undo;
8086
8087 ret = sched_rt_global_constraints();
8088 if (ret)
8089 goto undo;
8090
8091 sched_rt_do_global();
8092 sched_dl_do_global();
8093 }
8094 if (0) {
8095 undo:
8096 sysctl_sched_rt_period = old_period;
8097 sysctl_sched_rt_runtime = old_runtime;
8098 }
8099 mutex_unlock(&mutex);
8100
8101 return ret;
8102 }
8103
8104 int sched_rr_handler(struct ctl_table *table, int write,
8105 void __user *buffer, size_t *lenp,
8106 loff_t *ppos)
8107 {
8108 int ret;
8109 static DEFINE_MUTEX(mutex);
8110
8111 mutex_lock(&mutex);
8112 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8113 /* make sure that internally we keep jiffies */
8114 /* also, writing zero resets timeslice to default */
8115 if (!ret && write) {
8116 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8117 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8118 }
8119 mutex_unlock(&mutex);
8120 return ret;
8121 }
8122
8123 #ifdef CONFIG_CGROUP_SCHED
8124
8125 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8126 {
8127 return css ? container_of(css, struct task_group, css) : NULL;
8128 }
8129
8130 static struct cgroup_subsys_state *
8131 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8132 {
8133 struct task_group *parent = css_tg(parent_css);
8134 struct task_group *tg;
8135
8136 if (!parent) {
8137 /* This is early initialization for the top cgroup */
8138 return &root_task_group.css;
8139 }
8140
8141 tg = sched_create_group(parent);
8142 if (IS_ERR(tg))
8143 return ERR_PTR(-ENOMEM);
8144
8145 return &tg->css;
8146 }
8147
8148 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8149 {
8150 struct task_group *tg = css_tg(css);
8151 struct task_group *parent = css_tg(css->parent);
8152
8153 if (parent)
8154 sched_online_group(tg, parent);
8155 return 0;
8156 }
8157
8158 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8159 {
8160 struct task_group *tg = css_tg(css);
8161
8162 sched_destroy_group(tg);
8163 }
8164
8165 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8166 {
8167 struct task_group *tg = css_tg(css);
8168
8169 sched_offline_group(tg);
8170 }
8171
8172 static void cpu_cgroup_fork(struct task_struct *task, void *private)
8173 {
8174 sched_move_task(task);
8175 }
8176
8177 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8178 struct cgroup_taskset *tset)
8179 {
8180 struct task_struct *task;
8181
8182 cgroup_taskset_for_each(task, tset) {
8183 #ifdef CONFIG_RT_GROUP_SCHED
8184 if (!sched_rt_can_attach(css_tg(css), task))
8185 return -EINVAL;
8186 #else
8187 /* We don't support RT-tasks being in separate groups */
8188 if (task->sched_class != &fair_sched_class)
8189 return -EINVAL;
8190 #endif
8191 }
8192 return 0;
8193 }
8194
8195 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8196 struct cgroup_taskset *tset)
8197 {
8198 struct task_struct *task;
8199
8200 cgroup_taskset_for_each(task, tset)
8201 sched_move_task(task);
8202 }
8203
8204 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8205 struct cgroup_subsys_state *old_css,
8206 struct task_struct *task)
8207 {
8208 /*
8209 * cgroup_exit() is called in the copy_process() failure path.
8210 * Ignore this case since the task hasn't ran yet, this avoids
8211 * trying to poke a half freed task state from generic code.
8212 */
8213 if (!(task->flags & PF_EXITING))
8214 return;
8215
8216 sched_move_task(task);
8217 }
8218
8219 #ifdef CONFIG_FAIR_GROUP_SCHED
8220 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8221 struct cftype *cftype, u64 shareval)
8222 {
8223 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8224 }
8225
8226 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8227 struct cftype *cft)
8228 {
8229 struct task_group *tg = css_tg(css);
8230
8231 return (u64) scale_load_down(tg->shares);
8232 }
8233
8234 #ifdef CONFIG_CFS_BANDWIDTH
8235 static DEFINE_MUTEX(cfs_constraints_mutex);
8236
8237 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8238 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8239
8240 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8241
8242 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8243 {
8244 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8245 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8246
8247 if (tg == &root_task_group)
8248 return -EINVAL;
8249
8250 /*
8251 * Ensure we have at some amount of bandwidth every period. This is
8252 * to prevent reaching a state of large arrears when throttled via
8253 * entity_tick() resulting in prolonged exit starvation.
8254 */
8255 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8256 return -EINVAL;
8257
8258 /*
8259 * Likewise, bound things on the otherside by preventing insane quota
8260 * periods. This also allows us to normalize in computing quota
8261 * feasibility.
8262 */
8263 if (period > max_cfs_quota_period)
8264 return -EINVAL;
8265
8266 /*
8267 * Prevent race between setting of cfs_rq->runtime_enabled and
8268 * unthrottle_offline_cfs_rqs().
8269 */
8270 get_online_cpus();
8271 mutex_lock(&cfs_constraints_mutex);
8272 ret = __cfs_schedulable(tg, period, quota);
8273 if (ret)
8274 goto out_unlock;
8275
8276 runtime_enabled = quota != RUNTIME_INF;
8277 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8278 /*
8279 * If we need to toggle cfs_bandwidth_used, off->on must occur
8280 * before making related changes, and on->off must occur afterwards
8281 */
8282 if (runtime_enabled && !runtime_was_enabled)
8283 cfs_bandwidth_usage_inc();
8284 raw_spin_lock_irq(&cfs_b->lock);
8285 cfs_b->period = ns_to_ktime(period);
8286 cfs_b->quota = quota;
8287
8288 __refill_cfs_bandwidth_runtime(cfs_b);
8289 /* restart the period timer (if active) to handle new period expiry */
8290 if (runtime_enabled)
8291 start_cfs_bandwidth(cfs_b);
8292 raw_spin_unlock_irq(&cfs_b->lock);
8293
8294 for_each_online_cpu(i) {
8295 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8296 struct rq *rq = cfs_rq->rq;
8297
8298 raw_spin_lock_irq(&rq->lock);
8299 cfs_rq->runtime_enabled = runtime_enabled;
8300 cfs_rq->runtime_remaining = 0;
8301
8302 if (cfs_rq->throttled)
8303 unthrottle_cfs_rq(cfs_rq);
8304 raw_spin_unlock_irq(&rq->lock);
8305 }
8306 if (runtime_was_enabled && !runtime_enabled)
8307 cfs_bandwidth_usage_dec();
8308 out_unlock:
8309 mutex_unlock(&cfs_constraints_mutex);
8310 put_online_cpus();
8311
8312 return ret;
8313 }
8314
8315 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8316 {
8317 u64 quota, period;
8318
8319 period = ktime_to_ns(tg->cfs_bandwidth.period);
8320 if (cfs_quota_us < 0)
8321 quota = RUNTIME_INF;
8322 else
8323 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8324
8325 return tg_set_cfs_bandwidth(tg, period, quota);
8326 }
8327
8328 long tg_get_cfs_quota(struct task_group *tg)
8329 {
8330 u64 quota_us;
8331
8332 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8333 return -1;
8334
8335 quota_us = tg->cfs_bandwidth.quota;
8336 do_div(quota_us, NSEC_PER_USEC);
8337
8338 return quota_us;
8339 }
8340
8341 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8342 {
8343 u64 quota, period;
8344
8345 period = (u64)cfs_period_us * NSEC_PER_USEC;
8346 quota = tg->cfs_bandwidth.quota;
8347
8348 return tg_set_cfs_bandwidth(tg, period, quota);
8349 }
8350
8351 long tg_get_cfs_period(struct task_group *tg)
8352 {
8353 u64 cfs_period_us;
8354
8355 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8356 do_div(cfs_period_us, NSEC_PER_USEC);
8357
8358 return cfs_period_us;
8359 }
8360
8361 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8362 struct cftype *cft)
8363 {
8364 return tg_get_cfs_quota(css_tg(css));
8365 }
8366
8367 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8368 struct cftype *cftype, s64 cfs_quota_us)
8369 {
8370 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8371 }
8372
8373 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8374 struct cftype *cft)
8375 {
8376 return tg_get_cfs_period(css_tg(css));
8377 }
8378
8379 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8380 struct cftype *cftype, u64 cfs_period_us)
8381 {
8382 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8383 }
8384
8385 struct cfs_schedulable_data {
8386 struct task_group *tg;
8387 u64 period, quota;
8388 };
8389
8390 /*
8391 * normalize group quota/period to be quota/max_period
8392 * note: units are usecs
8393 */
8394 static u64 normalize_cfs_quota(struct task_group *tg,
8395 struct cfs_schedulable_data *d)
8396 {
8397 u64 quota, period;
8398
8399 if (tg == d->tg) {
8400 period = d->period;
8401 quota = d->quota;
8402 } else {
8403 period = tg_get_cfs_period(tg);
8404 quota = tg_get_cfs_quota(tg);
8405 }
8406
8407 /* note: these should typically be equivalent */
8408 if (quota == RUNTIME_INF || quota == -1)
8409 return RUNTIME_INF;
8410
8411 return to_ratio(period, quota);
8412 }
8413
8414 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8415 {
8416 struct cfs_schedulable_data *d = data;
8417 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8418 s64 quota = 0, parent_quota = -1;
8419
8420 if (!tg->parent) {
8421 quota = RUNTIME_INF;
8422 } else {
8423 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8424
8425 quota = normalize_cfs_quota(tg, d);
8426 parent_quota = parent_b->hierarchical_quota;
8427
8428 /*
8429 * ensure max(child_quota) <= parent_quota, inherit when no
8430 * limit is set
8431 */
8432 if (quota == RUNTIME_INF)
8433 quota = parent_quota;
8434 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8435 return -EINVAL;
8436 }
8437 cfs_b->hierarchical_quota = quota;
8438
8439 return 0;
8440 }
8441
8442 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8443 {
8444 int ret;
8445 struct cfs_schedulable_data data = {
8446 .tg = tg,
8447 .period = period,
8448 .quota = quota,
8449 };
8450
8451 if (quota != RUNTIME_INF) {
8452 do_div(data.period, NSEC_PER_USEC);
8453 do_div(data.quota, NSEC_PER_USEC);
8454 }
8455
8456 rcu_read_lock();
8457 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8458 rcu_read_unlock();
8459
8460 return ret;
8461 }
8462
8463 static int cpu_stats_show(struct seq_file *sf, void *v)
8464 {
8465 struct task_group *tg = css_tg(seq_css(sf));
8466 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8467
8468 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8469 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8470 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8471
8472 return 0;
8473 }
8474 #endif /* CONFIG_CFS_BANDWIDTH */
8475 #endif /* CONFIG_FAIR_GROUP_SCHED */
8476
8477 #ifdef CONFIG_RT_GROUP_SCHED
8478 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8479 struct cftype *cft, s64 val)
8480 {
8481 return sched_group_set_rt_runtime(css_tg(css), val);
8482 }
8483
8484 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8485 struct cftype *cft)
8486 {
8487 return sched_group_rt_runtime(css_tg(css));
8488 }
8489
8490 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8491 struct cftype *cftype, u64 rt_period_us)
8492 {
8493 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8494 }
8495
8496 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8497 struct cftype *cft)
8498 {
8499 return sched_group_rt_period(css_tg(css));
8500 }
8501 #endif /* CONFIG_RT_GROUP_SCHED */
8502
8503 static struct cftype cpu_files[] = {
8504 #ifdef CONFIG_FAIR_GROUP_SCHED
8505 {
8506 .name = "shares",
8507 .read_u64 = cpu_shares_read_u64,
8508 .write_u64 = cpu_shares_write_u64,
8509 },
8510 #endif
8511 #ifdef CONFIG_CFS_BANDWIDTH
8512 {
8513 .name = "cfs_quota_us",
8514 .read_s64 = cpu_cfs_quota_read_s64,
8515 .write_s64 = cpu_cfs_quota_write_s64,
8516 },
8517 {
8518 .name = "cfs_period_us",
8519 .read_u64 = cpu_cfs_period_read_u64,
8520 .write_u64 = cpu_cfs_period_write_u64,
8521 },
8522 {
8523 .name = "stat",
8524 .seq_show = cpu_stats_show,
8525 },
8526 #endif
8527 #ifdef CONFIG_RT_GROUP_SCHED
8528 {
8529 .name = "rt_runtime_us",
8530 .read_s64 = cpu_rt_runtime_read,
8531 .write_s64 = cpu_rt_runtime_write,
8532 },
8533 {
8534 .name = "rt_period_us",
8535 .read_u64 = cpu_rt_period_read_uint,
8536 .write_u64 = cpu_rt_period_write_uint,
8537 },
8538 #endif
8539 { } /* terminate */
8540 };
8541
8542 struct cgroup_subsys cpu_cgrp_subsys = {
8543 .css_alloc = cpu_cgroup_css_alloc,
8544 .css_free = cpu_cgroup_css_free,
8545 .css_online = cpu_cgroup_css_online,
8546 .css_offline = cpu_cgroup_css_offline,
8547 .fork = cpu_cgroup_fork,
8548 .can_attach = cpu_cgroup_can_attach,
8549 .attach = cpu_cgroup_attach,
8550 .exit = cpu_cgroup_exit,
8551 .legacy_cftypes = cpu_files,
8552 .early_init = 1,
8553 };
8554
8555 #endif /* CONFIG_CGROUP_SCHED */
8556
8557 void dump_cpu_task(int cpu)
8558 {
8559 pr_info("Task dump for CPU %d:\n", cpu);
8560 sched_show_task(cpu_curr(cpu));
8561 }