]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched/core.c
sched: Let 'struct sched_group_power' care about CPU capacity
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 unsigned long delta;
96 ktime_t soft, hard, now;
97
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
104
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111 }
112
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118 void update_rq_clock(struct rq *rq)
119 {
120 s64 delta;
121
122 if (rq->skip_clock_update > 0)
123 return;
124
125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 rq->clock += delta;
127 update_rq_clock_task(rq, delta);
128 }
129
130 /*
131 * Debugging: various feature bits
132 */
133
134 #define SCHED_FEAT(name, enabled) \
135 (1UL << __SCHED_FEAT_##name) * enabled |
136
137 const_debug unsigned int sysctl_sched_features =
138 #include "features.h"
139 0;
140
141 #undef SCHED_FEAT
142
143 #ifdef CONFIG_SCHED_DEBUG
144 #define SCHED_FEAT(name, enabled) \
145 #name ,
146
147 static const char * const sched_feat_names[] = {
148 #include "features.h"
149 };
150
151 #undef SCHED_FEAT
152
153 static int sched_feat_show(struct seq_file *m, void *v)
154 {
155 int i;
156
157 for (i = 0; i < __SCHED_FEAT_NR; i++) {
158 if (!(sysctl_sched_features & (1UL << i)))
159 seq_puts(m, "NO_");
160 seq_printf(m, "%s ", sched_feat_names[i]);
161 }
162 seq_puts(m, "\n");
163
164 return 0;
165 }
166
167 #ifdef HAVE_JUMP_LABEL
168
169 #define jump_label_key__true STATIC_KEY_INIT_TRUE
170 #define jump_label_key__false STATIC_KEY_INIT_FALSE
171
172 #define SCHED_FEAT(name, enabled) \
173 jump_label_key__##enabled ,
174
175 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
176 #include "features.h"
177 };
178
179 #undef SCHED_FEAT
180
181 static void sched_feat_disable(int i)
182 {
183 if (static_key_enabled(&sched_feat_keys[i]))
184 static_key_slow_dec(&sched_feat_keys[i]);
185 }
186
187 static void sched_feat_enable(int i)
188 {
189 if (!static_key_enabled(&sched_feat_keys[i]))
190 static_key_slow_inc(&sched_feat_keys[i]);
191 }
192 #else
193 static void sched_feat_disable(int i) { };
194 static void sched_feat_enable(int i) { };
195 #endif /* HAVE_JUMP_LABEL */
196
197 static int sched_feat_set(char *cmp)
198 {
199 int i;
200 int neg = 0;
201
202 if (strncmp(cmp, "NO_", 3) == 0) {
203 neg = 1;
204 cmp += 3;
205 }
206
207 for (i = 0; i < __SCHED_FEAT_NR; i++) {
208 if (strcmp(cmp, sched_feat_names[i]) == 0) {
209 if (neg) {
210 sysctl_sched_features &= ~(1UL << i);
211 sched_feat_disable(i);
212 } else {
213 sysctl_sched_features |= (1UL << i);
214 sched_feat_enable(i);
215 }
216 break;
217 }
218 }
219
220 return i;
221 }
222
223 static ssize_t
224 sched_feat_write(struct file *filp, const char __user *ubuf,
225 size_t cnt, loff_t *ppos)
226 {
227 char buf[64];
228 char *cmp;
229 int i;
230
231 if (cnt > 63)
232 cnt = 63;
233
234 if (copy_from_user(&buf, ubuf, cnt))
235 return -EFAULT;
236
237 buf[cnt] = 0;
238 cmp = strstrip(buf);
239
240 i = sched_feat_set(cmp);
241 if (i == __SCHED_FEAT_NR)
242 return -EINVAL;
243
244 *ppos += cnt;
245
246 return cnt;
247 }
248
249 static int sched_feat_open(struct inode *inode, struct file *filp)
250 {
251 return single_open(filp, sched_feat_show, NULL);
252 }
253
254 static const struct file_operations sched_feat_fops = {
255 .open = sched_feat_open,
256 .write = sched_feat_write,
257 .read = seq_read,
258 .llseek = seq_lseek,
259 .release = single_release,
260 };
261
262 static __init int sched_init_debug(void)
263 {
264 debugfs_create_file("sched_features", 0644, NULL, NULL,
265 &sched_feat_fops);
266
267 return 0;
268 }
269 late_initcall(sched_init_debug);
270 #endif /* CONFIG_SCHED_DEBUG */
271
272 /*
273 * Number of tasks to iterate in a single balance run.
274 * Limited because this is done with IRQs disabled.
275 */
276 const_debug unsigned int sysctl_sched_nr_migrate = 32;
277
278 /*
279 * period over which we average the RT time consumption, measured
280 * in ms.
281 *
282 * default: 1s
283 */
284 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
285
286 /*
287 * period over which we measure -rt task cpu usage in us.
288 * default: 1s
289 */
290 unsigned int sysctl_sched_rt_period = 1000000;
291
292 __read_mostly int scheduler_running;
293
294 /*
295 * part of the period that we allow rt tasks to run in us.
296 * default: 0.95s
297 */
298 int sysctl_sched_rt_runtime = 950000;
299
300 /*
301 * __task_rq_lock - lock the rq @p resides on.
302 */
303 static inline struct rq *__task_rq_lock(struct task_struct *p)
304 __acquires(rq->lock)
305 {
306 struct rq *rq;
307
308 lockdep_assert_held(&p->pi_lock);
309
310 for (;;) {
311 rq = task_rq(p);
312 raw_spin_lock(&rq->lock);
313 if (likely(rq == task_rq(p)))
314 return rq;
315 raw_spin_unlock(&rq->lock);
316 }
317 }
318
319 /*
320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
321 */
322 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
323 __acquires(p->pi_lock)
324 __acquires(rq->lock)
325 {
326 struct rq *rq;
327
328 for (;;) {
329 raw_spin_lock_irqsave(&p->pi_lock, *flags);
330 rq = task_rq(p);
331 raw_spin_lock(&rq->lock);
332 if (likely(rq == task_rq(p)))
333 return rq;
334 raw_spin_unlock(&rq->lock);
335 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
336 }
337 }
338
339 static void __task_rq_unlock(struct rq *rq)
340 __releases(rq->lock)
341 {
342 raw_spin_unlock(&rq->lock);
343 }
344
345 static inline void
346 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
347 __releases(rq->lock)
348 __releases(p->pi_lock)
349 {
350 raw_spin_unlock(&rq->lock);
351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352 }
353
354 /*
355 * this_rq_lock - lock this runqueue and disable interrupts.
356 */
357 static struct rq *this_rq_lock(void)
358 __acquires(rq->lock)
359 {
360 struct rq *rq;
361
362 local_irq_disable();
363 rq = this_rq();
364 raw_spin_lock(&rq->lock);
365
366 return rq;
367 }
368
369 #ifdef CONFIG_SCHED_HRTICK
370 /*
371 * Use HR-timers to deliver accurate preemption points.
372 */
373
374 static void hrtick_clear(struct rq *rq)
375 {
376 if (hrtimer_active(&rq->hrtick_timer))
377 hrtimer_cancel(&rq->hrtick_timer);
378 }
379
380 /*
381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled.
383 */
384 static enum hrtimer_restart hrtick(struct hrtimer *timer)
385 {
386 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387
388 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389
390 raw_spin_lock(&rq->lock);
391 update_rq_clock(rq);
392 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393 raw_spin_unlock(&rq->lock);
394
395 return HRTIMER_NORESTART;
396 }
397
398 #ifdef CONFIG_SMP
399
400 static int __hrtick_restart(struct rq *rq)
401 {
402 struct hrtimer *timer = &rq->hrtick_timer;
403 ktime_t time = hrtimer_get_softexpires(timer);
404
405 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
406 }
407
408 /*
409 * called from hardirq (IPI) context
410 */
411 static void __hrtick_start(void *arg)
412 {
413 struct rq *rq = arg;
414
415 raw_spin_lock(&rq->lock);
416 __hrtick_restart(rq);
417 rq->hrtick_csd_pending = 0;
418 raw_spin_unlock(&rq->lock);
419 }
420
421 /*
422 * Called to set the hrtick timer state.
423 *
424 * called with rq->lock held and irqs disabled
425 */
426 void hrtick_start(struct rq *rq, u64 delay)
427 {
428 struct hrtimer *timer = &rq->hrtick_timer;
429 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430
431 hrtimer_set_expires(timer, time);
432
433 if (rq == this_rq()) {
434 __hrtick_restart(rq);
435 } else if (!rq->hrtick_csd_pending) {
436 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
437 rq->hrtick_csd_pending = 1;
438 }
439 }
440
441 static int
442 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443 {
444 int cpu = (int)(long)hcpu;
445
446 switch (action) {
447 case CPU_UP_CANCELED:
448 case CPU_UP_CANCELED_FROZEN:
449 case CPU_DOWN_PREPARE:
450 case CPU_DOWN_PREPARE_FROZEN:
451 case CPU_DEAD:
452 case CPU_DEAD_FROZEN:
453 hrtick_clear(cpu_rq(cpu));
454 return NOTIFY_OK;
455 }
456
457 return NOTIFY_DONE;
458 }
459
460 static __init void init_hrtick(void)
461 {
462 hotcpu_notifier(hotplug_hrtick, 0);
463 }
464 #else
465 /*
466 * Called to set the hrtick timer state.
467 *
468 * called with rq->lock held and irqs disabled
469 */
470 void hrtick_start(struct rq *rq, u64 delay)
471 {
472 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
473 HRTIMER_MODE_REL_PINNED, 0);
474 }
475
476 static inline void init_hrtick(void)
477 {
478 }
479 #endif /* CONFIG_SMP */
480
481 static void init_rq_hrtick(struct rq *rq)
482 {
483 #ifdef CONFIG_SMP
484 rq->hrtick_csd_pending = 0;
485
486 rq->hrtick_csd.flags = 0;
487 rq->hrtick_csd.func = __hrtick_start;
488 rq->hrtick_csd.info = rq;
489 #endif
490
491 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
492 rq->hrtick_timer.function = hrtick;
493 }
494 #else /* CONFIG_SCHED_HRTICK */
495 static inline void hrtick_clear(struct rq *rq)
496 {
497 }
498
499 static inline void init_rq_hrtick(struct rq *rq)
500 {
501 }
502
503 static inline void init_hrtick(void)
504 {
505 }
506 #endif /* CONFIG_SCHED_HRTICK */
507
508 /*
509 * cmpxchg based fetch_or, macro so it works for different integer types
510 */
511 #define fetch_or(ptr, val) \
512 ({ typeof(*(ptr)) __old, __val = *(ptr); \
513 for (;;) { \
514 __old = cmpxchg((ptr), __val, __val | (val)); \
515 if (__old == __val) \
516 break; \
517 __val = __old; \
518 } \
519 __old; \
520 })
521
522 #ifdef TIF_POLLING_NRFLAG
523 /*
524 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
525 * this avoids any races wrt polling state changes and thereby avoids
526 * spurious IPIs.
527 */
528 static bool set_nr_and_not_polling(struct task_struct *p)
529 {
530 struct thread_info *ti = task_thread_info(p);
531 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
532 }
533 #else
534 static bool set_nr_and_not_polling(struct task_struct *p)
535 {
536 set_tsk_need_resched(p);
537 return true;
538 }
539 #endif
540
541 /*
542 * resched_task - mark a task 'to be rescheduled now'.
543 *
544 * On UP this means the setting of the need_resched flag, on SMP it
545 * might also involve a cross-CPU call to trigger the scheduler on
546 * the target CPU.
547 */
548 void resched_task(struct task_struct *p)
549 {
550 int cpu;
551
552 lockdep_assert_held(&task_rq(p)->lock);
553
554 if (test_tsk_need_resched(p))
555 return;
556
557 cpu = task_cpu(p);
558
559 if (cpu == smp_processor_id()) {
560 set_tsk_need_resched(p);
561 set_preempt_need_resched();
562 return;
563 }
564
565 if (set_nr_and_not_polling(p))
566 smp_send_reschedule(cpu);
567 }
568
569 void resched_cpu(int cpu)
570 {
571 struct rq *rq = cpu_rq(cpu);
572 unsigned long flags;
573
574 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
575 return;
576 resched_task(cpu_curr(cpu));
577 raw_spin_unlock_irqrestore(&rq->lock, flags);
578 }
579
580 #ifdef CONFIG_SMP
581 #ifdef CONFIG_NO_HZ_COMMON
582 /*
583 * In the semi idle case, use the nearest busy cpu for migrating timers
584 * from an idle cpu. This is good for power-savings.
585 *
586 * We don't do similar optimization for completely idle system, as
587 * selecting an idle cpu will add more delays to the timers than intended
588 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
589 */
590 int get_nohz_timer_target(int pinned)
591 {
592 int cpu = smp_processor_id();
593 int i;
594 struct sched_domain *sd;
595
596 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
597 return cpu;
598
599 rcu_read_lock();
600 for_each_domain(cpu, sd) {
601 for_each_cpu(i, sched_domain_span(sd)) {
602 if (!idle_cpu(i)) {
603 cpu = i;
604 goto unlock;
605 }
606 }
607 }
608 unlock:
609 rcu_read_unlock();
610 return cpu;
611 }
612 /*
613 * When add_timer_on() enqueues a timer into the timer wheel of an
614 * idle CPU then this timer might expire before the next timer event
615 * which is scheduled to wake up that CPU. In case of a completely
616 * idle system the next event might even be infinite time into the
617 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
618 * leaves the inner idle loop so the newly added timer is taken into
619 * account when the CPU goes back to idle and evaluates the timer
620 * wheel for the next timer event.
621 */
622 static void wake_up_idle_cpu(int cpu)
623 {
624 struct rq *rq = cpu_rq(cpu);
625
626 if (cpu == smp_processor_id())
627 return;
628
629 /*
630 * This is safe, as this function is called with the timer
631 * wheel base lock of (cpu) held. When the CPU is on the way
632 * to idle and has not yet set rq->curr to idle then it will
633 * be serialized on the timer wheel base lock and take the new
634 * timer into account automatically.
635 */
636 if (rq->curr != rq->idle)
637 return;
638
639 /*
640 * We can set TIF_RESCHED on the idle task of the other CPU
641 * lockless. The worst case is that the other CPU runs the
642 * idle task through an additional NOOP schedule()
643 */
644 set_tsk_need_resched(rq->idle);
645
646 /* NEED_RESCHED must be visible before we test polling */
647 smp_mb();
648 if (!tsk_is_polling(rq->idle))
649 smp_send_reschedule(cpu);
650 }
651
652 static bool wake_up_full_nohz_cpu(int cpu)
653 {
654 if (tick_nohz_full_cpu(cpu)) {
655 if (cpu != smp_processor_id() ||
656 tick_nohz_tick_stopped())
657 smp_send_reschedule(cpu);
658 return true;
659 }
660
661 return false;
662 }
663
664 void wake_up_nohz_cpu(int cpu)
665 {
666 if (!wake_up_full_nohz_cpu(cpu))
667 wake_up_idle_cpu(cpu);
668 }
669
670 static inline bool got_nohz_idle_kick(void)
671 {
672 int cpu = smp_processor_id();
673
674 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
675 return false;
676
677 if (idle_cpu(cpu) && !need_resched())
678 return true;
679
680 /*
681 * We can't run Idle Load Balance on this CPU for this time so we
682 * cancel it and clear NOHZ_BALANCE_KICK
683 */
684 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
685 return false;
686 }
687
688 #else /* CONFIG_NO_HZ_COMMON */
689
690 static inline bool got_nohz_idle_kick(void)
691 {
692 return false;
693 }
694
695 #endif /* CONFIG_NO_HZ_COMMON */
696
697 #ifdef CONFIG_NO_HZ_FULL
698 bool sched_can_stop_tick(void)
699 {
700 struct rq *rq;
701
702 rq = this_rq();
703
704 /* Make sure rq->nr_running update is visible after the IPI */
705 smp_rmb();
706
707 /* More than one running task need preemption */
708 if (rq->nr_running > 1)
709 return false;
710
711 return true;
712 }
713 #endif /* CONFIG_NO_HZ_FULL */
714
715 void sched_avg_update(struct rq *rq)
716 {
717 s64 period = sched_avg_period();
718
719 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
720 /*
721 * Inline assembly required to prevent the compiler
722 * optimising this loop into a divmod call.
723 * See __iter_div_u64_rem() for another example of this.
724 */
725 asm("" : "+rm" (rq->age_stamp));
726 rq->age_stamp += period;
727 rq->rt_avg /= 2;
728 }
729 }
730
731 #endif /* CONFIG_SMP */
732
733 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
734 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
735 /*
736 * Iterate task_group tree rooted at *from, calling @down when first entering a
737 * node and @up when leaving it for the final time.
738 *
739 * Caller must hold rcu_lock or sufficient equivalent.
740 */
741 int walk_tg_tree_from(struct task_group *from,
742 tg_visitor down, tg_visitor up, void *data)
743 {
744 struct task_group *parent, *child;
745 int ret;
746
747 parent = from;
748
749 down:
750 ret = (*down)(parent, data);
751 if (ret)
752 goto out;
753 list_for_each_entry_rcu(child, &parent->children, siblings) {
754 parent = child;
755 goto down;
756
757 up:
758 continue;
759 }
760 ret = (*up)(parent, data);
761 if (ret || parent == from)
762 goto out;
763
764 child = parent;
765 parent = parent->parent;
766 if (parent)
767 goto up;
768 out:
769 return ret;
770 }
771
772 int tg_nop(struct task_group *tg, void *data)
773 {
774 return 0;
775 }
776 #endif
777
778 static void set_load_weight(struct task_struct *p)
779 {
780 int prio = p->static_prio - MAX_RT_PRIO;
781 struct load_weight *load = &p->se.load;
782
783 /*
784 * SCHED_IDLE tasks get minimal weight:
785 */
786 if (p->policy == SCHED_IDLE) {
787 load->weight = scale_load(WEIGHT_IDLEPRIO);
788 load->inv_weight = WMULT_IDLEPRIO;
789 return;
790 }
791
792 load->weight = scale_load(prio_to_weight[prio]);
793 load->inv_weight = prio_to_wmult[prio];
794 }
795
796 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
797 {
798 update_rq_clock(rq);
799 sched_info_queued(rq, p);
800 p->sched_class->enqueue_task(rq, p, flags);
801 }
802
803 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
804 {
805 update_rq_clock(rq);
806 sched_info_dequeued(rq, p);
807 p->sched_class->dequeue_task(rq, p, flags);
808 }
809
810 void activate_task(struct rq *rq, struct task_struct *p, int flags)
811 {
812 if (task_contributes_to_load(p))
813 rq->nr_uninterruptible--;
814
815 enqueue_task(rq, p, flags);
816 }
817
818 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
819 {
820 if (task_contributes_to_load(p))
821 rq->nr_uninterruptible++;
822
823 dequeue_task(rq, p, flags);
824 }
825
826 static void update_rq_clock_task(struct rq *rq, s64 delta)
827 {
828 /*
829 * In theory, the compile should just see 0 here, and optimize out the call
830 * to sched_rt_avg_update. But I don't trust it...
831 */
832 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
833 s64 steal = 0, irq_delta = 0;
834 #endif
835 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
836 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
837
838 /*
839 * Since irq_time is only updated on {soft,}irq_exit, we might run into
840 * this case when a previous update_rq_clock() happened inside a
841 * {soft,}irq region.
842 *
843 * When this happens, we stop ->clock_task and only update the
844 * prev_irq_time stamp to account for the part that fit, so that a next
845 * update will consume the rest. This ensures ->clock_task is
846 * monotonic.
847 *
848 * It does however cause some slight miss-attribution of {soft,}irq
849 * time, a more accurate solution would be to update the irq_time using
850 * the current rq->clock timestamp, except that would require using
851 * atomic ops.
852 */
853 if (irq_delta > delta)
854 irq_delta = delta;
855
856 rq->prev_irq_time += irq_delta;
857 delta -= irq_delta;
858 #endif
859 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
860 if (static_key_false((&paravirt_steal_rq_enabled))) {
861 steal = paravirt_steal_clock(cpu_of(rq));
862 steal -= rq->prev_steal_time_rq;
863
864 if (unlikely(steal > delta))
865 steal = delta;
866
867 rq->prev_steal_time_rq += steal;
868 delta -= steal;
869 }
870 #endif
871
872 rq->clock_task += delta;
873
874 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
875 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
876 sched_rt_avg_update(rq, irq_delta + steal);
877 #endif
878 }
879
880 void sched_set_stop_task(int cpu, struct task_struct *stop)
881 {
882 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
883 struct task_struct *old_stop = cpu_rq(cpu)->stop;
884
885 if (stop) {
886 /*
887 * Make it appear like a SCHED_FIFO task, its something
888 * userspace knows about and won't get confused about.
889 *
890 * Also, it will make PI more or less work without too
891 * much confusion -- but then, stop work should not
892 * rely on PI working anyway.
893 */
894 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
895
896 stop->sched_class = &stop_sched_class;
897 }
898
899 cpu_rq(cpu)->stop = stop;
900
901 if (old_stop) {
902 /*
903 * Reset it back to a normal scheduling class so that
904 * it can die in pieces.
905 */
906 old_stop->sched_class = &rt_sched_class;
907 }
908 }
909
910 /*
911 * __normal_prio - return the priority that is based on the static prio
912 */
913 static inline int __normal_prio(struct task_struct *p)
914 {
915 return p->static_prio;
916 }
917
918 /*
919 * Calculate the expected normal priority: i.e. priority
920 * without taking RT-inheritance into account. Might be
921 * boosted by interactivity modifiers. Changes upon fork,
922 * setprio syscalls, and whenever the interactivity
923 * estimator recalculates.
924 */
925 static inline int normal_prio(struct task_struct *p)
926 {
927 int prio;
928
929 if (task_has_dl_policy(p))
930 prio = MAX_DL_PRIO-1;
931 else if (task_has_rt_policy(p))
932 prio = MAX_RT_PRIO-1 - p->rt_priority;
933 else
934 prio = __normal_prio(p);
935 return prio;
936 }
937
938 /*
939 * Calculate the current priority, i.e. the priority
940 * taken into account by the scheduler. This value might
941 * be boosted by RT tasks, or might be boosted by
942 * interactivity modifiers. Will be RT if the task got
943 * RT-boosted. If not then it returns p->normal_prio.
944 */
945 static int effective_prio(struct task_struct *p)
946 {
947 p->normal_prio = normal_prio(p);
948 /*
949 * If we are RT tasks or we were boosted to RT priority,
950 * keep the priority unchanged. Otherwise, update priority
951 * to the normal priority:
952 */
953 if (!rt_prio(p->prio))
954 return p->normal_prio;
955 return p->prio;
956 }
957
958 /**
959 * task_curr - is this task currently executing on a CPU?
960 * @p: the task in question.
961 *
962 * Return: 1 if the task is currently executing. 0 otherwise.
963 */
964 inline int task_curr(const struct task_struct *p)
965 {
966 return cpu_curr(task_cpu(p)) == p;
967 }
968
969 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
970 const struct sched_class *prev_class,
971 int oldprio)
972 {
973 if (prev_class != p->sched_class) {
974 if (prev_class->switched_from)
975 prev_class->switched_from(rq, p);
976 p->sched_class->switched_to(rq, p);
977 } else if (oldprio != p->prio || dl_task(p))
978 p->sched_class->prio_changed(rq, p, oldprio);
979 }
980
981 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
982 {
983 const struct sched_class *class;
984
985 if (p->sched_class == rq->curr->sched_class) {
986 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
987 } else {
988 for_each_class(class) {
989 if (class == rq->curr->sched_class)
990 break;
991 if (class == p->sched_class) {
992 resched_task(rq->curr);
993 break;
994 }
995 }
996 }
997
998 /*
999 * A queue event has occurred, and we're going to schedule. In
1000 * this case, we can save a useless back to back clock update.
1001 */
1002 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1003 rq->skip_clock_update = 1;
1004 }
1005
1006 #ifdef CONFIG_SMP
1007 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1008 {
1009 #ifdef CONFIG_SCHED_DEBUG
1010 /*
1011 * We should never call set_task_cpu() on a blocked task,
1012 * ttwu() will sort out the placement.
1013 */
1014 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1015 !(task_preempt_count(p) & PREEMPT_ACTIVE));
1016
1017 #ifdef CONFIG_LOCKDEP
1018 /*
1019 * The caller should hold either p->pi_lock or rq->lock, when changing
1020 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1021 *
1022 * sched_move_task() holds both and thus holding either pins the cgroup,
1023 * see task_group().
1024 *
1025 * Furthermore, all task_rq users should acquire both locks, see
1026 * task_rq_lock().
1027 */
1028 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1029 lockdep_is_held(&task_rq(p)->lock)));
1030 #endif
1031 #endif
1032
1033 trace_sched_migrate_task(p, new_cpu);
1034
1035 if (task_cpu(p) != new_cpu) {
1036 if (p->sched_class->migrate_task_rq)
1037 p->sched_class->migrate_task_rq(p, new_cpu);
1038 p->se.nr_migrations++;
1039 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1040 }
1041
1042 __set_task_cpu(p, new_cpu);
1043 }
1044
1045 static void __migrate_swap_task(struct task_struct *p, int cpu)
1046 {
1047 if (p->on_rq) {
1048 struct rq *src_rq, *dst_rq;
1049
1050 src_rq = task_rq(p);
1051 dst_rq = cpu_rq(cpu);
1052
1053 deactivate_task(src_rq, p, 0);
1054 set_task_cpu(p, cpu);
1055 activate_task(dst_rq, p, 0);
1056 check_preempt_curr(dst_rq, p, 0);
1057 } else {
1058 /*
1059 * Task isn't running anymore; make it appear like we migrated
1060 * it before it went to sleep. This means on wakeup we make the
1061 * previous cpu our targer instead of where it really is.
1062 */
1063 p->wake_cpu = cpu;
1064 }
1065 }
1066
1067 struct migration_swap_arg {
1068 struct task_struct *src_task, *dst_task;
1069 int src_cpu, dst_cpu;
1070 };
1071
1072 static int migrate_swap_stop(void *data)
1073 {
1074 struct migration_swap_arg *arg = data;
1075 struct rq *src_rq, *dst_rq;
1076 int ret = -EAGAIN;
1077
1078 src_rq = cpu_rq(arg->src_cpu);
1079 dst_rq = cpu_rq(arg->dst_cpu);
1080
1081 double_raw_lock(&arg->src_task->pi_lock,
1082 &arg->dst_task->pi_lock);
1083 double_rq_lock(src_rq, dst_rq);
1084 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1085 goto unlock;
1086
1087 if (task_cpu(arg->src_task) != arg->src_cpu)
1088 goto unlock;
1089
1090 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1091 goto unlock;
1092
1093 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1094 goto unlock;
1095
1096 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1097 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1098
1099 ret = 0;
1100
1101 unlock:
1102 double_rq_unlock(src_rq, dst_rq);
1103 raw_spin_unlock(&arg->dst_task->pi_lock);
1104 raw_spin_unlock(&arg->src_task->pi_lock);
1105
1106 return ret;
1107 }
1108
1109 /*
1110 * Cross migrate two tasks
1111 */
1112 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1113 {
1114 struct migration_swap_arg arg;
1115 int ret = -EINVAL;
1116
1117 arg = (struct migration_swap_arg){
1118 .src_task = cur,
1119 .src_cpu = task_cpu(cur),
1120 .dst_task = p,
1121 .dst_cpu = task_cpu(p),
1122 };
1123
1124 if (arg.src_cpu == arg.dst_cpu)
1125 goto out;
1126
1127 /*
1128 * These three tests are all lockless; this is OK since all of them
1129 * will be re-checked with proper locks held further down the line.
1130 */
1131 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1132 goto out;
1133
1134 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1135 goto out;
1136
1137 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1138 goto out;
1139
1140 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1141 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1142
1143 out:
1144 return ret;
1145 }
1146
1147 struct migration_arg {
1148 struct task_struct *task;
1149 int dest_cpu;
1150 };
1151
1152 static int migration_cpu_stop(void *data);
1153
1154 /*
1155 * wait_task_inactive - wait for a thread to unschedule.
1156 *
1157 * If @match_state is nonzero, it's the @p->state value just checked and
1158 * not expected to change. If it changes, i.e. @p might have woken up,
1159 * then return zero. When we succeed in waiting for @p to be off its CPU,
1160 * we return a positive number (its total switch count). If a second call
1161 * a short while later returns the same number, the caller can be sure that
1162 * @p has remained unscheduled the whole time.
1163 *
1164 * The caller must ensure that the task *will* unschedule sometime soon,
1165 * else this function might spin for a *long* time. This function can't
1166 * be called with interrupts off, or it may introduce deadlock with
1167 * smp_call_function() if an IPI is sent by the same process we are
1168 * waiting to become inactive.
1169 */
1170 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1171 {
1172 unsigned long flags;
1173 int running, on_rq;
1174 unsigned long ncsw;
1175 struct rq *rq;
1176
1177 for (;;) {
1178 /*
1179 * We do the initial early heuristics without holding
1180 * any task-queue locks at all. We'll only try to get
1181 * the runqueue lock when things look like they will
1182 * work out!
1183 */
1184 rq = task_rq(p);
1185
1186 /*
1187 * If the task is actively running on another CPU
1188 * still, just relax and busy-wait without holding
1189 * any locks.
1190 *
1191 * NOTE! Since we don't hold any locks, it's not
1192 * even sure that "rq" stays as the right runqueue!
1193 * But we don't care, since "task_running()" will
1194 * return false if the runqueue has changed and p
1195 * is actually now running somewhere else!
1196 */
1197 while (task_running(rq, p)) {
1198 if (match_state && unlikely(p->state != match_state))
1199 return 0;
1200 cpu_relax();
1201 }
1202
1203 /*
1204 * Ok, time to look more closely! We need the rq
1205 * lock now, to be *sure*. If we're wrong, we'll
1206 * just go back and repeat.
1207 */
1208 rq = task_rq_lock(p, &flags);
1209 trace_sched_wait_task(p);
1210 running = task_running(rq, p);
1211 on_rq = p->on_rq;
1212 ncsw = 0;
1213 if (!match_state || p->state == match_state)
1214 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1215 task_rq_unlock(rq, p, &flags);
1216
1217 /*
1218 * If it changed from the expected state, bail out now.
1219 */
1220 if (unlikely(!ncsw))
1221 break;
1222
1223 /*
1224 * Was it really running after all now that we
1225 * checked with the proper locks actually held?
1226 *
1227 * Oops. Go back and try again..
1228 */
1229 if (unlikely(running)) {
1230 cpu_relax();
1231 continue;
1232 }
1233
1234 /*
1235 * It's not enough that it's not actively running,
1236 * it must be off the runqueue _entirely_, and not
1237 * preempted!
1238 *
1239 * So if it was still runnable (but just not actively
1240 * running right now), it's preempted, and we should
1241 * yield - it could be a while.
1242 */
1243 if (unlikely(on_rq)) {
1244 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1245
1246 set_current_state(TASK_UNINTERRUPTIBLE);
1247 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1248 continue;
1249 }
1250
1251 /*
1252 * Ahh, all good. It wasn't running, and it wasn't
1253 * runnable, which means that it will never become
1254 * running in the future either. We're all done!
1255 */
1256 break;
1257 }
1258
1259 return ncsw;
1260 }
1261
1262 /***
1263 * kick_process - kick a running thread to enter/exit the kernel
1264 * @p: the to-be-kicked thread
1265 *
1266 * Cause a process which is running on another CPU to enter
1267 * kernel-mode, without any delay. (to get signals handled.)
1268 *
1269 * NOTE: this function doesn't have to take the runqueue lock,
1270 * because all it wants to ensure is that the remote task enters
1271 * the kernel. If the IPI races and the task has been migrated
1272 * to another CPU then no harm is done and the purpose has been
1273 * achieved as well.
1274 */
1275 void kick_process(struct task_struct *p)
1276 {
1277 int cpu;
1278
1279 preempt_disable();
1280 cpu = task_cpu(p);
1281 if ((cpu != smp_processor_id()) && task_curr(p))
1282 smp_send_reschedule(cpu);
1283 preempt_enable();
1284 }
1285 EXPORT_SYMBOL_GPL(kick_process);
1286 #endif /* CONFIG_SMP */
1287
1288 #ifdef CONFIG_SMP
1289 /*
1290 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1291 */
1292 static int select_fallback_rq(int cpu, struct task_struct *p)
1293 {
1294 int nid = cpu_to_node(cpu);
1295 const struct cpumask *nodemask = NULL;
1296 enum { cpuset, possible, fail } state = cpuset;
1297 int dest_cpu;
1298
1299 /*
1300 * If the node that the cpu is on has been offlined, cpu_to_node()
1301 * will return -1. There is no cpu on the node, and we should
1302 * select the cpu on the other node.
1303 */
1304 if (nid != -1) {
1305 nodemask = cpumask_of_node(nid);
1306
1307 /* Look for allowed, online CPU in same node. */
1308 for_each_cpu(dest_cpu, nodemask) {
1309 if (!cpu_online(dest_cpu))
1310 continue;
1311 if (!cpu_active(dest_cpu))
1312 continue;
1313 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1314 return dest_cpu;
1315 }
1316 }
1317
1318 for (;;) {
1319 /* Any allowed, online CPU? */
1320 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1321 if (!cpu_online(dest_cpu))
1322 continue;
1323 if (!cpu_active(dest_cpu))
1324 continue;
1325 goto out;
1326 }
1327
1328 switch (state) {
1329 case cpuset:
1330 /* No more Mr. Nice Guy. */
1331 cpuset_cpus_allowed_fallback(p);
1332 state = possible;
1333 break;
1334
1335 case possible:
1336 do_set_cpus_allowed(p, cpu_possible_mask);
1337 state = fail;
1338 break;
1339
1340 case fail:
1341 BUG();
1342 break;
1343 }
1344 }
1345
1346 out:
1347 if (state != cpuset) {
1348 /*
1349 * Don't tell them about moving exiting tasks or
1350 * kernel threads (both mm NULL), since they never
1351 * leave kernel.
1352 */
1353 if (p->mm && printk_ratelimit()) {
1354 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1355 task_pid_nr(p), p->comm, cpu);
1356 }
1357 }
1358
1359 return dest_cpu;
1360 }
1361
1362 /*
1363 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1364 */
1365 static inline
1366 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1367 {
1368 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1369
1370 /*
1371 * In order not to call set_task_cpu() on a blocking task we need
1372 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1373 * cpu.
1374 *
1375 * Since this is common to all placement strategies, this lives here.
1376 *
1377 * [ this allows ->select_task() to simply return task_cpu(p) and
1378 * not worry about this generic constraint ]
1379 */
1380 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1381 !cpu_online(cpu)))
1382 cpu = select_fallback_rq(task_cpu(p), p);
1383
1384 return cpu;
1385 }
1386
1387 static void update_avg(u64 *avg, u64 sample)
1388 {
1389 s64 diff = sample - *avg;
1390 *avg += diff >> 3;
1391 }
1392 #endif
1393
1394 static void
1395 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1396 {
1397 #ifdef CONFIG_SCHEDSTATS
1398 struct rq *rq = this_rq();
1399
1400 #ifdef CONFIG_SMP
1401 int this_cpu = smp_processor_id();
1402
1403 if (cpu == this_cpu) {
1404 schedstat_inc(rq, ttwu_local);
1405 schedstat_inc(p, se.statistics.nr_wakeups_local);
1406 } else {
1407 struct sched_domain *sd;
1408
1409 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1410 rcu_read_lock();
1411 for_each_domain(this_cpu, sd) {
1412 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1413 schedstat_inc(sd, ttwu_wake_remote);
1414 break;
1415 }
1416 }
1417 rcu_read_unlock();
1418 }
1419
1420 if (wake_flags & WF_MIGRATED)
1421 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1422
1423 #endif /* CONFIG_SMP */
1424
1425 schedstat_inc(rq, ttwu_count);
1426 schedstat_inc(p, se.statistics.nr_wakeups);
1427
1428 if (wake_flags & WF_SYNC)
1429 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1430
1431 #endif /* CONFIG_SCHEDSTATS */
1432 }
1433
1434 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1435 {
1436 activate_task(rq, p, en_flags);
1437 p->on_rq = 1;
1438
1439 /* if a worker is waking up, notify workqueue */
1440 if (p->flags & PF_WQ_WORKER)
1441 wq_worker_waking_up(p, cpu_of(rq));
1442 }
1443
1444 /*
1445 * Mark the task runnable and perform wakeup-preemption.
1446 */
1447 static void
1448 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1449 {
1450 check_preempt_curr(rq, p, wake_flags);
1451 trace_sched_wakeup(p, true);
1452
1453 p->state = TASK_RUNNING;
1454 #ifdef CONFIG_SMP
1455 if (p->sched_class->task_woken)
1456 p->sched_class->task_woken(rq, p);
1457
1458 if (rq->idle_stamp) {
1459 u64 delta = rq_clock(rq) - rq->idle_stamp;
1460 u64 max = 2*rq->max_idle_balance_cost;
1461
1462 update_avg(&rq->avg_idle, delta);
1463
1464 if (rq->avg_idle > max)
1465 rq->avg_idle = max;
1466
1467 rq->idle_stamp = 0;
1468 }
1469 #endif
1470 }
1471
1472 static void
1473 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1474 {
1475 #ifdef CONFIG_SMP
1476 if (p->sched_contributes_to_load)
1477 rq->nr_uninterruptible--;
1478 #endif
1479
1480 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1481 ttwu_do_wakeup(rq, p, wake_flags);
1482 }
1483
1484 /*
1485 * Called in case the task @p isn't fully descheduled from its runqueue,
1486 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1487 * since all we need to do is flip p->state to TASK_RUNNING, since
1488 * the task is still ->on_rq.
1489 */
1490 static int ttwu_remote(struct task_struct *p, int wake_flags)
1491 {
1492 struct rq *rq;
1493 int ret = 0;
1494
1495 rq = __task_rq_lock(p);
1496 if (p->on_rq) {
1497 /* check_preempt_curr() may use rq clock */
1498 update_rq_clock(rq);
1499 ttwu_do_wakeup(rq, p, wake_flags);
1500 ret = 1;
1501 }
1502 __task_rq_unlock(rq);
1503
1504 return ret;
1505 }
1506
1507 #ifdef CONFIG_SMP
1508 static void sched_ttwu_pending(void)
1509 {
1510 struct rq *rq = this_rq();
1511 struct llist_node *llist = llist_del_all(&rq->wake_list);
1512 struct task_struct *p;
1513
1514 raw_spin_lock(&rq->lock);
1515
1516 while (llist) {
1517 p = llist_entry(llist, struct task_struct, wake_entry);
1518 llist = llist_next(llist);
1519 ttwu_do_activate(rq, p, 0);
1520 }
1521
1522 raw_spin_unlock(&rq->lock);
1523 }
1524
1525 void scheduler_ipi(void)
1526 {
1527 /*
1528 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1529 * TIF_NEED_RESCHED remotely (for the first time) will also send
1530 * this IPI.
1531 */
1532 preempt_fold_need_resched();
1533
1534 if (llist_empty(&this_rq()->wake_list)
1535 && !tick_nohz_full_cpu(smp_processor_id())
1536 && !got_nohz_idle_kick())
1537 return;
1538
1539 /*
1540 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1541 * traditionally all their work was done from the interrupt return
1542 * path. Now that we actually do some work, we need to make sure
1543 * we do call them.
1544 *
1545 * Some archs already do call them, luckily irq_enter/exit nest
1546 * properly.
1547 *
1548 * Arguably we should visit all archs and update all handlers,
1549 * however a fair share of IPIs are still resched only so this would
1550 * somewhat pessimize the simple resched case.
1551 */
1552 irq_enter();
1553 tick_nohz_full_check();
1554 sched_ttwu_pending();
1555
1556 /*
1557 * Check if someone kicked us for doing the nohz idle load balance.
1558 */
1559 if (unlikely(got_nohz_idle_kick())) {
1560 this_rq()->idle_balance = 1;
1561 raise_softirq_irqoff(SCHED_SOFTIRQ);
1562 }
1563 irq_exit();
1564 }
1565
1566 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1567 {
1568 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1569 smp_send_reschedule(cpu);
1570 }
1571
1572 bool cpus_share_cache(int this_cpu, int that_cpu)
1573 {
1574 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1575 }
1576 #endif /* CONFIG_SMP */
1577
1578 static void ttwu_queue(struct task_struct *p, int cpu)
1579 {
1580 struct rq *rq = cpu_rq(cpu);
1581
1582 #if defined(CONFIG_SMP)
1583 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1584 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1585 ttwu_queue_remote(p, cpu);
1586 return;
1587 }
1588 #endif
1589
1590 raw_spin_lock(&rq->lock);
1591 ttwu_do_activate(rq, p, 0);
1592 raw_spin_unlock(&rq->lock);
1593 }
1594
1595 /**
1596 * try_to_wake_up - wake up a thread
1597 * @p: the thread to be awakened
1598 * @state: the mask of task states that can be woken
1599 * @wake_flags: wake modifier flags (WF_*)
1600 *
1601 * Put it on the run-queue if it's not already there. The "current"
1602 * thread is always on the run-queue (except when the actual
1603 * re-schedule is in progress), and as such you're allowed to do
1604 * the simpler "current->state = TASK_RUNNING" to mark yourself
1605 * runnable without the overhead of this.
1606 *
1607 * Return: %true if @p was woken up, %false if it was already running.
1608 * or @state didn't match @p's state.
1609 */
1610 static int
1611 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1612 {
1613 unsigned long flags;
1614 int cpu, success = 0;
1615
1616 /*
1617 * If we are going to wake up a thread waiting for CONDITION we
1618 * need to ensure that CONDITION=1 done by the caller can not be
1619 * reordered with p->state check below. This pairs with mb() in
1620 * set_current_state() the waiting thread does.
1621 */
1622 smp_mb__before_spinlock();
1623 raw_spin_lock_irqsave(&p->pi_lock, flags);
1624 if (!(p->state & state))
1625 goto out;
1626
1627 success = 1; /* we're going to change ->state */
1628 cpu = task_cpu(p);
1629
1630 if (p->on_rq && ttwu_remote(p, wake_flags))
1631 goto stat;
1632
1633 #ifdef CONFIG_SMP
1634 /*
1635 * If the owning (remote) cpu is still in the middle of schedule() with
1636 * this task as prev, wait until its done referencing the task.
1637 */
1638 while (p->on_cpu)
1639 cpu_relax();
1640 /*
1641 * Pairs with the smp_wmb() in finish_lock_switch().
1642 */
1643 smp_rmb();
1644
1645 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1646 p->state = TASK_WAKING;
1647
1648 if (p->sched_class->task_waking)
1649 p->sched_class->task_waking(p);
1650
1651 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1652 if (task_cpu(p) != cpu) {
1653 wake_flags |= WF_MIGRATED;
1654 set_task_cpu(p, cpu);
1655 }
1656 #endif /* CONFIG_SMP */
1657
1658 ttwu_queue(p, cpu);
1659 stat:
1660 ttwu_stat(p, cpu, wake_flags);
1661 out:
1662 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1663
1664 return success;
1665 }
1666
1667 /**
1668 * try_to_wake_up_local - try to wake up a local task with rq lock held
1669 * @p: the thread to be awakened
1670 *
1671 * Put @p on the run-queue if it's not already there. The caller must
1672 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1673 * the current task.
1674 */
1675 static void try_to_wake_up_local(struct task_struct *p)
1676 {
1677 struct rq *rq = task_rq(p);
1678
1679 if (WARN_ON_ONCE(rq != this_rq()) ||
1680 WARN_ON_ONCE(p == current))
1681 return;
1682
1683 lockdep_assert_held(&rq->lock);
1684
1685 if (!raw_spin_trylock(&p->pi_lock)) {
1686 raw_spin_unlock(&rq->lock);
1687 raw_spin_lock(&p->pi_lock);
1688 raw_spin_lock(&rq->lock);
1689 }
1690
1691 if (!(p->state & TASK_NORMAL))
1692 goto out;
1693
1694 if (!p->on_rq)
1695 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1696
1697 ttwu_do_wakeup(rq, p, 0);
1698 ttwu_stat(p, smp_processor_id(), 0);
1699 out:
1700 raw_spin_unlock(&p->pi_lock);
1701 }
1702
1703 /**
1704 * wake_up_process - Wake up a specific process
1705 * @p: The process to be woken up.
1706 *
1707 * Attempt to wake up the nominated process and move it to the set of runnable
1708 * processes.
1709 *
1710 * Return: 1 if the process was woken up, 0 if it was already running.
1711 *
1712 * It may be assumed that this function implies a write memory barrier before
1713 * changing the task state if and only if any tasks are woken up.
1714 */
1715 int wake_up_process(struct task_struct *p)
1716 {
1717 WARN_ON(task_is_stopped_or_traced(p));
1718 return try_to_wake_up(p, TASK_NORMAL, 0);
1719 }
1720 EXPORT_SYMBOL(wake_up_process);
1721
1722 int wake_up_state(struct task_struct *p, unsigned int state)
1723 {
1724 return try_to_wake_up(p, state, 0);
1725 }
1726
1727 /*
1728 * Perform scheduler related setup for a newly forked process p.
1729 * p is forked by current.
1730 *
1731 * __sched_fork() is basic setup used by init_idle() too:
1732 */
1733 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1734 {
1735 p->on_rq = 0;
1736
1737 p->se.on_rq = 0;
1738 p->se.exec_start = 0;
1739 p->se.sum_exec_runtime = 0;
1740 p->se.prev_sum_exec_runtime = 0;
1741 p->se.nr_migrations = 0;
1742 p->se.vruntime = 0;
1743 INIT_LIST_HEAD(&p->se.group_node);
1744
1745 #ifdef CONFIG_SCHEDSTATS
1746 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1747 #endif
1748
1749 RB_CLEAR_NODE(&p->dl.rb_node);
1750 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1751 p->dl.dl_runtime = p->dl.runtime = 0;
1752 p->dl.dl_deadline = p->dl.deadline = 0;
1753 p->dl.dl_period = 0;
1754 p->dl.flags = 0;
1755
1756 INIT_LIST_HEAD(&p->rt.run_list);
1757
1758 #ifdef CONFIG_PREEMPT_NOTIFIERS
1759 INIT_HLIST_HEAD(&p->preempt_notifiers);
1760 #endif
1761
1762 #ifdef CONFIG_NUMA_BALANCING
1763 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1764 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1765 p->mm->numa_scan_seq = 0;
1766 }
1767
1768 if (clone_flags & CLONE_VM)
1769 p->numa_preferred_nid = current->numa_preferred_nid;
1770 else
1771 p->numa_preferred_nid = -1;
1772
1773 p->node_stamp = 0ULL;
1774 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1775 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1776 p->numa_work.next = &p->numa_work;
1777 p->numa_faults_memory = NULL;
1778 p->numa_faults_buffer_memory = NULL;
1779 p->last_task_numa_placement = 0;
1780 p->last_sum_exec_runtime = 0;
1781
1782 INIT_LIST_HEAD(&p->numa_entry);
1783 p->numa_group = NULL;
1784 #endif /* CONFIG_NUMA_BALANCING */
1785 }
1786
1787 #ifdef CONFIG_NUMA_BALANCING
1788 #ifdef CONFIG_SCHED_DEBUG
1789 void set_numabalancing_state(bool enabled)
1790 {
1791 if (enabled)
1792 sched_feat_set("NUMA");
1793 else
1794 sched_feat_set("NO_NUMA");
1795 }
1796 #else
1797 __read_mostly bool numabalancing_enabled;
1798
1799 void set_numabalancing_state(bool enabled)
1800 {
1801 numabalancing_enabled = enabled;
1802 }
1803 #endif /* CONFIG_SCHED_DEBUG */
1804
1805 #ifdef CONFIG_PROC_SYSCTL
1806 int sysctl_numa_balancing(struct ctl_table *table, int write,
1807 void __user *buffer, size_t *lenp, loff_t *ppos)
1808 {
1809 struct ctl_table t;
1810 int err;
1811 int state = numabalancing_enabled;
1812
1813 if (write && !capable(CAP_SYS_ADMIN))
1814 return -EPERM;
1815
1816 t = *table;
1817 t.data = &state;
1818 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1819 if (err < 0)
1820 return err;
1821 if (write)
1822 set_numabalancing_state(state);
1823 return err;
1824 }
1825 #endif
1826 #endif
1827
1828 /*
1829 * fork()/clone()-time setup:
1830 */
1831 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1832 {
1833 unsigned long flags;
1834 int cpu = get_cpu();
1835
1836 __sched_fork(clone_flags, p);
1837 /*
1838 * We mark the process as running here. This guarantees that
1839 * nobody will actually run it, and a signal or other external
1840 * event cannot wake it up and insert it on the runqueue either.
1841 */
1842 p->state = TASK_RUNNING;
1843
1844 /*
1845 * Make sure we do not leak PI boosting priority to the child.
1846 */
1847 p->prio = current->normal_prio;
1848
1849 /*
1850 * Revert to default priority/policy on fork if requested.
1851 */
1852 if (unlikely(p->sched_reset_on_fork)) {
1853 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1854 p->policy = SCHED_NORMAL;
1855 p->static_prio = NICE_TO_PRIO(0);
1856 p->rt_priority = 0;
1857 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1858 p->static_prio = NICE_TO_PRIO(0);
1859
1860 p->prio = p->normal_prio = __normal_prio(p);
1861 set_load_weight(p);
1862
1863 /*
1864 * We don't need the reset flag anymore after the fork. It has
1865 * fulfilled its duty:
1866 */
1867 p->sched_reset_on_fork = 0;
1868 }
1869
1870 if (dl_prio(p->prio)) {
1871 put_cpu();
1872 return -EAGAIN;
1873 } else if (rt_prio(p->prio)) {
1874 p->sched_class = &rt_sched_class;
1875 } else {
1876 p->sched_class = &fair_sched_class;
1877 }
1878
1879 if (p->sched_class->task_fork)
1880 p->sched_class->task_fork(p);
1881
1882 /*
1883 * The child is not yet in the pid-hash so no cgroup attach races,
1884 * and the cgroup is pinned to this child due to cgroup_fork()
1885 * is ran before sched_fork().
1886 *
1887 * Silence PROVE_RCU.
1888 */
1889 raw_spin_lock_irqsave(&p->pi_lock, flags);
1890 set_task_cpu(p, cpu);
1891 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1892
1893 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1894 if (likely(sched_info_on()))
1895 memset(&p->sched_info, 0, sizeof(p->sched_info));
1896 #endif
1897 #if defined(CONFIG_SMP)
1898 p->on_cpu = 0;
1899 #endif
1900 init_task_preempt_count(p);
1901 #ifdef CONFIG_SMP
1902 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1903 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1904 #endif
1905
1906 put_cpu();
1907 return 0;
1908 }
1909
1910 unsigned long to_ratio(u64 period, u64 runtime)
1911 {
1912 if (runtime == RUNTIME_INF)
1913 return 1ULL << 20;
1914
1915 /*
1916 * Doing this here saves a lot of checks in all
1917 * the calling paths, and returning zero seems
1918 * safe for them anyway.
1919 */
1920 if (period == 0)
1921 return 0;
1922
1923 return div64_u64(runtime << 20, period);
1924 }
1925
1926 #ifdef CONFIG_SMP
1927 inline struct dl_bw *dl_bw_of(int i)
1928 {
1929 return &cpu_rq(i)->rd->dl_bw;
1930 }
1931
1932 static inline int dl_bw_cpus(int i)
1933 {
1934 struct root_domain *rd = cpu_rq(i)->rd;
1935 int cpus = 0;
1936
1937 for_each_cpu_and(i, rd->span, cpu_active_mask)
1938 cpus++;
1939
1940 return cpus;
1941 }
1942 #else
1943 inline struct dl_bw *dl_bw_of(int i)
1944 {
1945 return &cpu_rq(i)->dl.dl_bw;
1946 }
1947
1948 static inline int dl_bw_cpus(int i)
1949 {
1950 return 1;
1951 }
1952 #endif
1953
1954 static inline
1955 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1956 {
1957 dl_b->total_bw -= tsk_bw;
1958 }
1959
1960 static inline
1961 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1962 {
1963 dl_b->total_bw += tsk_bw;
1964 }
1965
1966 static inline
1967 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1968 {
1969 return dl_b->bw != -1 &&
1970 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1971 }
1972
1973 /*
1974 * We must be sure that accepting a new task (or allowing changing the
1975 * parameters of an existing one) is consistent with the bandwidth
1976 * constraints. If yes, this function also accordingly updates the currently
1977 * allocated bandwidth to reflect the new situation.
1978 *
1979 * This function is called while holding p's rq->lock.
1980 */
1981 static int dl_overflow(struct task_struct *p, int policy,
1982 const struct sched_attr *attr)
1983 {
1984
1985 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1986 u64 period = attr->sched_period ?: attr->sched_deadline;
1987 u64 runtime = attr->sched_runtime;
1988 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1989 int cpus, err = -1;
1990
1991 if (new_bw == p->dl.dl_bw)
1992 return 0;
1993
1994 /*
1995 * Either if a task, enters, leave, or stays -deadline but changes
1996 * its parameters, we may need to update accordingly the total
1997 * allocated bandwidth of the container.
1998 */
1999 raw_spin_lock(&dl_b->lock);
2000 cpus = dl_bw_cpus(task_cpu(p));
2001 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2002 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2003 __dl_add(dl_b, new_bw);
2004 err = 0;
2005 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2006 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2007 __dl_clear(dl_b, p->dl.dl_bw);
2008 __dl_add(dl_b, new_bw);
2009 err = 0;
2010 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2011 __dl_clear(dl_b, p->dl.dl_bw);
2012 err = 0;
2013 }
2014 raw_spin_unlock(&dl_b->lock);
2015
2016 return err;
2017 }
2018
2019 extern void init_dl_bw(struct dl_bw *dl_b);
2020
2021 /*
2022 * wake_up_new_task - wake up a newly created task for the first time.
2023 *
2024 * This function will do some initial scheduler statistics housekeeping
2025 * that must be done for every newly created context, then puts the task
2026 * on the runqueue and wakes it.
2027 */
2028 void wake_up_new_task(struct task_struct *p)
2029 {
2030 unsigned long flags;
2031 struct rq *rq;
2032
2033 raw_spin_lock_irqsave(&p->pi_lock, flags);
2034 #ifdef CONFIG_SMP
2035 /*
2036 * Fork balancing, do it here and not earlier because:
2037 * - cpus_allowed can change in the fork path
2038 * - any previously selected cpu might disappear through hotplug
2039 */
2040 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2041 #endif
2042
2043 /* Initialize new task's runnable average */
2044 init_task_runnable_average(p);
2045 rq = __task_rq_lock(p);
2046 activate_task(rq, p, 0);
2047 p->on_rq = 1;
2048 trace_sched_wakeup_new(p, true);
2049 check_preempt_curr(rq, p, WF_FORK);
2050 #ifdef CONFIG_SMP
2051 if (p->sched_class->task_woken)
2052 p->sched_class->task_woken(rq, p);
2053 #endif
2054 task_rq_unlock(rq, p, &flags);
2055 }
2056
2057 #ifdef CONFIG_PREEMPT_NOTIFIERS
2058
2059 /**
2060 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2061 * @notifier: notifier struct to register
2062 */
2063 void preempt_notifier_register(struct preempt_notifier *notifier)
2064 {
2065 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2066 }
2067 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2068
2069 /**
2070 * preempt_notifier_unregister - no longer interested in preemption notifications
2071 * @notifier: notifier struct to unregister
2072 *
2073 * This is safe to call from within a preemption notifier.
2074 */
2075 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2076 {
2077 hlist_del(&notifier->link);
2078 }
2079 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2080
2081 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2082 {
2083 struct preempt_notifier *notifier;
2084
2085 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2086 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2087 }
2088
2089 static void
2090 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2091 struct task_struct *next)
2092 {
2093 struct preempt_notifier *notifier;
2094
2095 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2096 notifier->ops->sched_out(notifier, next);
2097 }
2098
2099 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2100
2101 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2102 {
2103 }
2104
2105 static void
2106 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2107 struct task_struct *next)
2108 {
2109 }
2110
2111 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2112
2113 /**
2114 * prepare_task_switch - prepare to switch tasks
2115 * @rq: the runqueue preparing to switch
2116 * @prev: the current task that is being switched out
2117 * @next: the task we are going to switch to.
2118 *
2119 * This is called with the rq lock held and interrupts off. It must
2120 * be paired with a subsequent finish_task_switch after the context
2121 * switch.
2122 *
2123 * prepare_task_switch sets up locking and calls architecture specific
2124 * hooks.
2125 */
2126 static inline void
2127 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2128 struct task_struct *next)
2129 {
2130 trace_sched_switch(prev, next);
2131 sched_info_switch(rq, prev, next);
2132 perf_event_task_sched_out(prev, next);
2133 fire_sched_out_preempt_notifiers(prev, next);
2134 prepare_lock_switch(rq, next);
2135 prepare_arch_switch(next);
2136 }
2137
2138 /**
2139 * finish_task_switch - clean up after a task-switch
2140 * @rq: runqueue associated with task-switch
2141 * @prev: the thread we just switched away from.
2142 *
2143 * finish_task_switch must be called after the context switch, paired
2144 * with a prepare_task_switch call before the context switch.
2145 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2146 * and do any other architecture-specific cleanup actions.
2147 *
2148 * Note that we may have delayed dropping an mm in context_switch(). If
2149 * so, we finish that here outside of the runqueue lock. (Doing it
2150 * with the lock held can cause deadlocks; see schedule() for
2151 * details.)
2152 */
2153 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2154 __releases(rq->lock)
2155 {
2156 struct mm_struct *mm = rq->prev_mm;
2157 long prev_state;
2158
2159 rq->prev_mm = NULL;
2160
2161 /*
2162 * A task struct has one reference for the use as "current".
2163 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2164 * schedule one last time. The schedule call will never return, and
2165 * the scheduled task must drop that reference.
2166 * The test for TASK_DEAD must occur while the runqueue locks are
2167 * still held, otherwise prev could be scheduled on another cpu, die
2168 * there before we look at prev->state, and then the reference would
2169 * be dropped twice.
2170 * Manfred Spraul <manfred@colorfullife.com>
2171 */
2172 prev_state = prev->state;
2173 vtime_task_switch(prev);
2174 finish_arch_switch(prev);
2175 perf_event_task_sched_in(prev, current);
2176 finish_lock_switch(rq, prev);
2177 finish_arch_post_lock_switch();
2178
2179 fire_sched_in_preempt_notifiers(current);
2180 if (mm)
2181 mmdrop(mm);
2182 if (unlikely(prev_state == TASK_DEAD)) {
2183 if (prev->sched_class->task_dead)
2184 prev->sched_class->task_dead(prev);
2185
2186 /*
2187 * Remove function-return probe instances associated with this
2188 * task and put them back on the free list.
2189 */
2190 kprobe_flush_task(prev);
2191 put_task_struct(prev);
2192 }
2193
2194 tick_nohz_task_switch(current);
2195 }
2196
2197 #ifdef CONFIG_SMP
2198
2199 /* rq->lock is NOT held, but preemption is disabled */
2200 static inline void post_schedule(struct rq *rq)
2201 {
2202 if (rq->post_schedule) {
2203 unsigned long flags;
2204
2205 raw_spin_lock_irqsave(&rq->lock, flags);
2206 if (rq->curr->sched_class->post_schedule)
2207 rq->curr->sched_class->post_schedule(rq);
2208 raw_spin_unlock_irqrestore(&rq->lock, flags);
2209
2210 rq->post_schedule = 0;
2211 }
2212 }
2213
2214 #else
2215
2216 static inline void post_schedule(struct rq *rq)
2217 {
2218 }
2219
2220 #endif
2221
2222 /**
2223 * schedule_tail - first thing a freshly forked thread must call.
2224 * @prev: the thread we just switched away from.
2225 */
2226 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2227 __releases(rq->lock)
2228 {
2229 struct rq *rq = this_rq();
2230
2231 finish_task_switch(rq, prev);
2232
2233 /*
2234 * FIXME: do we need to worry about rq being invalidated by the
2235 * task_switch?
2236 */
2237 post_schedule(rq);
2238
2239 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2240 /* In this case, finish_task_switch does not reenable preemption */
2241 preempt_enable();
2242 #endif
2243 if (current->set_child_tid)
2244 put_user(task_pid_vnr(current), current->set_child_tid);
2245 }
2246
2247 /*
2248 * context_switch - switch to the new MM and the new
2249 * thread's register state.
2250 */
2251 static inline void
2252 context_switch(struct rq *rq, struct task_struct *prev,
2253 struct task_struct *next)
2254 {
2255 struct mm_struct *mm, *oldmm;
2256
2257 prepare_task_switch(rq, prev, next);
2258
2259 mm = next->mm;
2260 oldmm = prev->active_mm;
2261 /*
2262 * For paravirt, this is coupled with an exit in switch_to to
2263 * combine the page table reload and the switch backend into
2264 * one hypercall.
2265 */
2266 arch_start_context_switch(prev);
2267
2268 if (!mm) {
2269 next->active_mm = oldmm;
2270 atomic_inc(&oldmm->mm_count);
2271 enter_lazy_tlb(oldmm, next);
2272 } else
2273 switch_mm(oldmm, mm, next);
2274
2275 if (!prev->mm) {
2276 prev->active_mm = NULL;
2277 rq->prev_mm = oldmm;
2278 }
2279 /*
2280 * Since the runqueue lock will be released by the next
2281 * task (which is an invalid locking op but in the case
2282 * of the scheduler it's an obvious special-case), so we
2283 * do an early lockdep release here:
2284 */
2285 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2286 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2287 #endif
2288
2289 context_tracking_task_switch(prev, next);
2290 /* Here we just switch the register state and the stack. */
2291 switch_to(prev, next, prev);
2292
2293 barrier();
2294 /*
2295 * this_rq must be evaluated again because prev may have moved
2296 * CPUs since it called schedule(), thus the 'rq' on its stack
2297 * frame will be invalid.
2298 */
2299 finish_task_switch(this_rq(), prev);
2300 }
2301
2302 /*
2303 * nr_running and nr_context_switches:
2304 *
2305 * externally visible scheduler statistics: current number of runnable
2306 * threads, total number of context switches performed since bootup.
2307 */
2308 unsigned long nr_running(void)
2309 {
2310 unsigned long i, sum = 0;
2311
2312 for_each_online_cpu(i)
2313 sum += cpu_rq(i)->nr_running;
2314
2315 return sum;
2316 }
2317
2318 unsigned long long nr_context_switches(void)
2319 {
2320 int i;
2321 unsigned long long sum = 0;
2322
2323 for_each_possible_cpu(i)
2324 sum += cpu_rq(i)->nr_switches;
2325
2326 return sum;
2327 }
2328
2329 unsigned long nr_iowait(void)
2330 {
2331 unsigned long i, sum = 0;
2332
2333 for_each_possible_cpu(i)
2334 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2335
2336 return sum;
2337 }
2338
2339 unsigned long nr_iowait_cpu(int cpu)
2340 {
2341 struct rq *this = cpu_rq(cpu);
2342 return atomic_read(&this->nr_iowait);
2343 }
2344
2345 #ifdef CONFIG_SMP
2346
2347 /*
2348 * sched_exec - execve() is a valuable balancing opportunity, because at
2349 * this point the task has the smallest effective memory and cache footprint.
2350 */
2351 void sched_exec(void)
2352 {
2353 struct task_struct *p = current;
2354 unsigned long flags;
2355 int dest_cpu;
2356
2357 raw_spin_lock_irqsave(&p->pi_lock, flags);
2358 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2359 if (dest_cpu == smp_processor_id())
2360 goto unlock;
2361
2362 if (likely(cpu_active(dest_cpu))) {
2363 struct migration_arg arg = { p, dest_cpu };
2364
2365 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2366 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2367 return;
2368 }
2369 unlock:
2370 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2371 }
2372
2373 #endif
2374
2375 DEFINE_PER_CPU(struct kernel_stat, kstat);
2376 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2377
2378 EXPORT_PER_CPU_SYMBOL(kstat);
2379 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2380
2381 /*
2382 * Return any ns on the sched_clock that have not yet been accounted in
2383 * @p in case that task is currently running.
2384 *
2385 * Called with task_rq_lock() held on @rq.
2386 */
2387 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2388 {
2389 u64 ns = 0;
2390
2391 if (task_current(rq, p)) {
2392 update_rq_clock(rq);
2393 ns = rq_clock_task(rq) - p->se.exec_start;
2394 if ((s64)ns < 0)
2395 ns = 0;
2396 }
2397
2398 return ns;
2399 }
2400
2401 unsigned long long task_delta_exec(struct task_struct *p)
2402 {
2403 unsigned long flags;
2404 struct rq *rq;
2405 u64 ns = 0;
2406
2407 rq = task_rq_lock(p, &flags);
2408 ns = do_task_delta_exec(p, rq);
2409 task_rq_unlock(rq, p, &flags);
2410
2411 return ns;
2412 }
2413
2414 /*
2415 * Return accounted runtime for the task.
2416 * In case the task is currently running, return the runtime plus current's
2417 * pending runtime that have not been accounted yet.
2418 */
2419 unsigned long long task_sched_runtime(struct task_struct *p)
2420 {
2421 unsigned long flags;
2422 struct rq *rq;
2423 u64 ns = 0;
2424
2425 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2426 /*
2427 * 64-bit doesn't need locks to atomically read a 64bit value.
2428 * So we have a optimization chance when the task's delta_exec is 0.
2429 * Reading ->on_cpu is racy, but this is ok.
2430 *
2431 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2432 * If we race with it entering cpu, unaccounted time is 0. This is
2433 * indistinguishable from the read occurring a few cycles earlier.
2434 */
2435 if (!p->on_cpu)
2436 return p->se.sum_exec_runtime;
2437 #endif
2438
2439 rq = task_rq_lock(p, &flags);
2440 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2441 task_rq_unlock(rq, p, &flags);
2442
2443 return ns;
2444 }
2445
2446 /*
2447 * This function gets called by the timer code, with HZ frequency.
2448 * We call it with interrupts disabled.
2449 */
2450 void scheduler_tick(void)
2451 {
2452 int cpu = smp_processor_id();
2453 struct rq *rq = cpu_rq(cpu);
2454 struct task_struct *curr = rq->curr;
2455
2456 sched_clock_tick();
2457
2458 raw_spin_lock(&rq->lock);
2459 update_rq_clock(rq);
2460 curr->sched_class->task_tick(rq, curr, 0);
2461 update_cpu_load_active(rq);
2462 raw_spin_unlock(&rq->lock);
2463
2464 perf_event_task_tick();
2465
2466 #ifdef CONFIG_SMP
2467 rq->idle_balance = idle_cpu(cpu);
2468 trigger_load_balance(rq);
2469 #endif
2470 rq_last_tick_reset(rq);
2471 }
2472
2473 #ifdef CONFIG_NO_HZ_FULL
2474 /**
2475 * scheduler_tick_max_deferment
2476 *
2477 * Keep at least one tick per second when a single
2478 * active task is running because the scheduler doesn't
2479 * yet completely support full dynticks environment.
2480 *
2481 * This makes sure that uptime, CFS vruntime, load
2482 * balancing, etc... continue to move forward, even
2483 * with a very low granularity.
2484 *
2485 * Return: Maximum deferment in nanoseconds.
2486 */
2487 u64 scheduler_tick_max_deferment(void)
2488 {
2489 struct rq *rq = this_rq();
2490 unsigned long next, now = ACCESS_ONCE(jiffies);
2491
2492 next = rq->last_sched_tick + HZ;
2493
2494 if (time_before_eq(next, now))
2495 return 0;
2496
2497 return jiffies_to_nsecs(next - now);
2498 }
2499 #endif
2500
2501 notrace unsigned long get_parent_ip(unsigned long addr)
2502 {
2503 if (in_lock_functions(addr)) {
2504 addr = CALLER_ADDR2;
2505 if (in_lock_functions(addr))
2506 addr = CALLER_ADDR3;
2507 }
2508 return addr;
2509 }
2510
2511 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2512 defined(CONFIG_PREEMPT_TRACER))
2513
2514 void __kprobes preempt_count_add(int val)
2515 {
2516 #ifdef CONFIG_DEBUG_PREEMPT
2517 /*
2518 * Underflow?
2519 */
2520 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2521 return;
2522 #endif
2523 __preempt_count_add(val);
2524 #ifdef CONFIG_DEBUG_PREEMPT
2525 /*
2526 * Spinlock count overflowing soon?
2527 */
2528 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2529 PREEMPT_MASK - 10);
2530 #endif
2531 if (preempt_count() == val) {
2532 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2533 #ifdef CONFIG_DEBUG_PREEMPT
2534 current->preempt_disable_ip = ip;
2535 #endif
2536 trace_preempt_off(CALLER_ADDR0, ip);
2537 }
2538 }
2539 EXPORT_SYMBOL(preempt_count_add);
2540
2541 void __kprobes preempt_count_sub(int val)
2542 {
2543 #ifdef CONFIG_DEBUG_PREEMPT
2544 /*
2545 * Underflow?
2546 */
2547 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2548 return;
2549 /*
2550 * Is the spinlock portion underflowing?
2551 */
2552 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2553 !(preempt_count() & PREEMPT_MASK)))
2554 return;
2555 #endif
2556
2557 if (preempt_count() == val)
2558 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2559 __preempt_count_sub(val);
2560 }
2561 EXPORT_SYMBOL(preempt_count_sub);
2562
2563 #endif
2564
2565 /*
2566 * Print scheduling while atomic bug:
2567 */
2568 static noinline void __schedule_bug(struct task_struct *prev)
2569 {
2570 if (oops_in_progress)
2571 return;
2572
2573 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2574 prev->comm, prev->pid, preempt_count());
2575
2576 debug_show_held_locks(prev);
2577 print_modules();
2578 if (irqs_disabled())
2579 print_irqtrace_events(prev);
2580 #ifdef CONFIG_DEBUG_PREEMPT
2581 if (in_atomic_preempt_off()) {
2582 pr_err("Preemption disabled at:");
2583 print_ip_sym(current->preempt_disable_ip);
2584 pr_cont("\n");
2585 }
2586 #endif
2587 dump_stack();
2588 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2589 }
2590
2591 /*
2592 * Various schedule()-time debugging checks and statistics:
2593 */
2594 static inline void schedule_debug(struct task_struct *prev)
2595 {
2596 /*
2597 * Test if we are atomic. Since do_exit() needs to call into
2598 * schedule() atomically, we ignore that path. Otherwise whine
2599 * if we are scheduling when we should not.
2600 */
2601 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2602 __schedule_bug(prev);
2603 rcu_sleep_check();
2604
2605 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2606
2607 schedstat_inc(this_rq(), sched_count);
2608 }
2609
2610 /*
2611 * Pick up the highest-prio task:
2612 */
2613 static inline struct task_struct *
2614 pick_next_task(struct rq *rq, struct task_struct *prev)
2615 {
2616 const struct sched_class *class = &fair_sched_class;
2617 struct task_struct *p;
2618
2619 /*
2620 * Optimization: we know that if all tasks are in
2621 * the fair class we can call that function directly:
2622 */
2623 if (likely(prev->sched_class == class &&
2624 rq->nr_running == rq->cfs.h_nr_running)) {
2625 p = fair_sched_class.pick_next_task(rq, prev);
2626 if (unlikely(p == RETRY_TASK))
2627 goto again;
2628
2629 /* assumes fair_sched_class->next == idle_sched_class */
2630 if (unlikely(!p))
2631 p = idle_sched_class.pick_next_task(rq, prev);
2632
2633 return p;
2634 }
2635
2636 again:
2637 for_each_class(class) {
2638 p = class->pick_next_task(rq, prev);
2639 if (p) {
2640 if (unlikely(p == RETRY_TASK))
2641 goto again;
2642 return p;
2643 }
2644 }
2645
2646 BUG(); /* the idle class will always have a runnable task */
2647 }
2648
2649 /*
2650 * __schedule() is the main scheduler function.
2651 *
2652 * The main means of driving the scheduler and thus entering this function are:
2653 *
2654 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2655 *
2656 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2657 * paths. For example, see arch/x86/entry_64.S.
2658 *
2659 * To drive preemption between tasks, the scheduler sets the flag in timer
2660 * interrupt handler scheduler_tick().
2661 *
2662 * 3. Wakeups don't really cause entry into schedule(). They add a
2663 * task to the run-queue and that's it.
2664 *
2665 * Now, if the new task added to the run-queue preempts the current
2666 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2667 * called on the nearest possible occasion:
2668 *
2669 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2670 *
2671 * - in syscall or exception context, at the next outmost
2672 * preempt_enable(). (this might be as soon as the wake_up()'s
2673 * spin_unlock()!)
2674 *
2675 * - in IRQ context, return from interrupt-handler to
2676 * preemptible context
2677 *
2678 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2679 * then at the next:
2680 *
2681 * - cond_resched() call
2682 * - explicit schedule() call
2683 * - return from syscall or exception to user-space
2684 * - return from interrupt-handler to user-space
2685 */
2686 static void __sched __schedule(void)
2687 {
2688 struct task_struct *prev, *next;
2689 unsigned long *switch_count;
2690 struct rq *rq;
2691 int cpu;
2692
2693 need_resched:
2694 preempt_disable();
2695 cpu = smp_processor_id();
2696 rq = cpu_rq(cpu);
2697 rcu_note_context_switch(cpu);
2698 prev = rq->curr;
2699
2700 schedule_debug(prev);
2701
2702 if (sched_feat(HRTICK))
2703 hrtick_clear(rq);
2704
2705 /*
2706 * Make sure that signal_pending_state()->signal_pending() below
2707 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2708 * done by the caller to avoid the race with signal_wake_up().
2709 */
2710 smp_mb__before_spinlock();
2711 raw_spin_lock_irq(&rq->lock);
2712
2713 switch_count = &prev->nivcsw;
2714 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2715 if (unlikely(signal_pending_state(prev->state, prev))) {
2716 prev->state = TASK_RUNNING;
2717 } else {
2718 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2719 prev->on_rq = 0;
2720
2721 /*
2722 * If a worker went to sleep, notify and ask workqueue
2723 * whether it wants to wake up a task to maintain
2724 * concurrency.
2725 */
2726 if (prev->flags & PF_WQ_WORKER) {
2727 struct task_struct *to_wakeup;
2728
2729 to_wakeup = wq_worker_sleeping(prev, cpu);
2730 if (to_wakeup)
2731 try_to_wake_up_local(to_wakeup);
2732 }
2733 }
2734 switch_count = &prev->nvcsw;
2735 }
2736
2737 if (prev->on_rq || rq->skip_clock_update < 0)
2738 update_rq_clock(rq);
2739
2740 next = pick_next_task(rq, prev);
2741 clear_tsk_need_resched(prev);
2742 clear_preempt_need_resched();
2743 rq->skip_clock_update = 0;
2744
2745 if (likely(prev != next)) {
2746 rq->nr_switches++;
2747 rq->curr = next;
2748 ++*switch_count;
2749
2750 context_switch(rq, prev, next); /* unlocks the rq */
2751 /*
2752 * The context switch have flipped the stack from under us
2753 * and restored the local variables which were saved when
2754 * this task called schedule() in the past. prev == current
2755 * is still correct, but it can be moved to another cpu/rq.
2756 */
2757 cpu = smp_processor_id();
2758 rq = cpu_rq(cpu);
2759 } else
2760 raw_spin_unlock_irq(&rq->lock);
2761
2762 post_schedule(rq);
2763
2764 sched_preempt_enable_no_resched();
2765 if (need_resched())
2766 goto need_resched;
2767 }
2768
2769 static inline void sched_submit_work(struct task_struct *tsk)
2770 {
2771 if (!tsk->state || tsk_is_pi_blocked(tsk))
2772 return;
2773 /*
2774 * If we are going to sleep and we have plugged IO queued,
2775 * make sure to submit it to avoid deadlocks.
2776 */
2777 if (blk_needs_flush_plug(tsk))
2778 blk_schedule_flush_plug(tsk);
2779 }
2780
2781 asmlinkage __visible void __sched schedule(void)
2782 {
2783 struct task_struct *tsk = current;
2784
2785 sched_submit_work(tsk);
2786 __schedule();
2787 }
2788 EXPORT_SYMBOL(schedule);
2789
2790 #ifdef CONFIG_CONTEXT_TRACKING
2791 asmlinkage __visible void __sched schedule_user(void)
2792 {
2793 /*
2794 * If we come here after a random call to set_need_resched(),
2795 * or we have been woken up remotely but the IPI has not yet arrived,
2796 * we haven't yet exited the RCU idle mode. Do it here manually until
2797 * we find a better solution.
2798 */
2799 user_exit();
2800 schedule();
2801 user_enter();
2802 }
2803 #endif
2804
2805 /**
2806 * schedule_preempt_disabled - called with preemption disabled
2807 *
2808 * Returns with preemption disabled. Note: preempt_count must be 1
2809 */
2810 void __sched schedule_preempt_disabled(void)
2811 {
2812 sched_preempt_enable_no_resched();
2813 schedule();
2814 preempt_disable();
2815 }
2816
2817 #ifdef CONFIG_PREEMPT
2818 /*
2819 * this is the entry point to schedule() from in-kernel preemption
2820 * off of preempt_enable. Kernel preemptions off return from interrupt
2821 * occur there and call schedule directly.
2822 */
2823 asmlinkage __visible void __sched notrace preempt_schedule(void)
2824 {
2825 /*
2826 * If there is a non-zero preempt_count or interrupts are disabled,
2827 * we do not want to preempt the current task. Just return..
2828 */
2829 if (likely(!preemptible()))
2830 return;
2831
2832 do {
2833 __preempt_count_add(PREEMPT_ACTIVE);
2834 __schedule();
2835 __preempt_count_sub(PREEMPT_ACTIVE);
2836
2837 /*
2838 * Check again in case we missed a preemption opportunity
2839 * between schedule and now.
2840 */
2841 barrier();
2842 } while (need_resched());
2843 }
2844 EXPORT_SYMBOL(preempt_schedule);
2845 #endif /* CONFIG_PREEMPT */
2846
2847 /*
2848 * this is the entry point to schedule() from kernel preemption
2849 * off of irq context.
2850 * Note, that this is called and return with irqs disabled. This will
2851 * protect us against recursive calling from irq.
2852 */
2853 asmlinkage __visible void __sched preempt_schedule_irq(void)
2854 {
2855 enum ctx_state prev_state;
2856
2857 /* Catch callers which need to be fixed */
2858 BUG_ON(preempt_count() || !irqs_disabled());
2859
2860 prev_state = exception_enter();
2861
2862 do {
2863 __preempt_count_add(PREEMPT_ACTIVE);
2864 local_irq_enable();
2865 __schedule();
2866 local_irq_disable();
2867 __preempt_count_sub(PREEMPT_ACTIVE);
2868
2869 /*
2870 * Check again in case we missed a preemption opportunity
2871 * between schedule and now.
2872 */
2873 barrier();
2874 } while (need_resched());
2875
2876 exception_exit(prev_state);
2877 }
2878
2879 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2880 void *key)
2881 {
2882 return try_to_wake_up(curr->private, mode, wake_flags);
2883 }
2884 EXPORT_SYMBOL(default_wake_function);
2885
2886 #ifdef CONFIG_RT_MUTEXES
2887
2888 /*
2889 * rt_mutex_setprio - set the current priority of a task
2890 * @p: task
2891 * @prio: prio value (kernel-internal form)
2892 *
2893 * This function changes the 'effective' priority of a task. It does
2894 * not touch ->normal_prio like __setscheduler().
2895 *
2896 * Used by the rt_mutex code to implement priority inheritance
2897 * logic. Call site only calls if the priority of the task changed.
2898 */
2899 void rt_mutex_setprio(struct task_struct *p, int prio)
2900 {
2901 int oldprio, on_rq, running, enqueue_flag = 0;
2902 struct rq *rq;
2903 const struct sched_class *prev_class;
2904
2905 BUG_ON(prio > MAX_PRIO);
2906
2907 rq = __task_rq_lock(p);
2908
2909 /*
2910 * Idle task boosting is a nono in general. There is one
2911 * exception, when PREEMPT_RT and NOHZ is active:
2912 *
2913 * The idle task calls get_next_timer_interrupt() and holds
2914 * the timer wheel base->lock on the CPU and another CPU wants
2915 * to access the timer (probably to cancel it). We can safely
2916 * ignore the boosting request, as the idle CPU runs this code
2917 * with interrupts disabled and will complete the lock
2918 * protected section without being interrupted. So there is no
2919 * real need to boost.
2920 */
2921 if (unlikely(p == rq->idle)) {
2922 WARN_ON(p != rq->curr);
2923 WARN_ON(p->pi_blocked_on);
2924 goto out_unlock;
2925 }
2926
2927 trace_sched_pi_setprio(p, prio);
2928 p->pi_top_task = rt_mutex_get_top_task(p);
2929 oldprio = p->prio;
2930 prev_class = p->sched_class;
2931 on_rq = p->on_rq;
2932 running = task_current(rq, p);
2933 if (on_rq)
2934 dequeue_task(rq, p, 0);
2935 if (running)
2936 p->sched_class->put_prev_task(rq, p);
2937
2938 /*
2939 * Boosting condition are:
2940 * 1. -rt task is running and holds mutex A
2941 * --> -dl task blocks on mutex A
2942 *
2943 * 2. -dl task is running and holds mutex A
2944 * --> -dl task blocks on mutex A and could preempt the
2945 * running task
2946 */
2947 if (dl_prio(prio)) {
2948 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2949 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2950 p->dl.dl_boosted = 1;
2951 p->dl.dl_throttled = 0;
2952 enqueue_flag = ENQUEUE_REPLENISH;
2953 } else
2954 p->dl.dl_boosted = 0;
2955 p->sched_class = &dl_sched_class;
2956 } else if (rt_prio(prio)) {
2957 if (dl_prio(oldprio))
2958 p->dl.dl_boosted = 0;
2959 if (oldprio < prio)
2960 enqueue_flag = ENQUEUE_HEAD;
2961 p->sched_class = &rt_sched_class;
2962 } else {
2963 if (dl_prio(oldprio))
2964 p->dl.dl_boosted = 0;
2965 p->sched_class = &fair_sched_class;
2966 }
2967
2968 p->prio = prio;
2969
2970 if (running)
2971 p->sched_class->set_curr_task(rq);
2972 if (on_rq)
2973 enqueue_task(rq, p, enqueue_flag);
2974
2975 check_class_changed(rq, p, prev_class, oldprio);
2976 out_unlock:
2977 __task_rq_unlock(rq);
2978 }
2979 #endif
2980
2981 void set_user_nice(struct task_struct *p, long nice)
2982 {
2983 int old_prio, delta, on_rq;
2984 unsigned long flags;
2985 struct rq *rq;
2986
2987 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
2988 return;
2989 /*
2990 * We have to be careful, if called from sys_setpriority(),
2991 * the task might be in the middle of scheduling on another CPU.
2992 */
2993 rq = task_rq_lock(p, &flags);
2994 /*
2995 * The RT priorities are set via sched_setscheduler(), but we still
2996 * allow the 'normal' nice value to be set - but as expected
2997 * it wont have any effect on scheduling until the task is
2998 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
2999 */
3000 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3001 p->static_prio = NICE_TO_PRIO(nice);
3002 goto out_unlock;
3003 }
3004 on_rq = p->on_rq;
3005 if (on_rq)
3006 dequeue_task(rq, p, 0);
3007
3008 p->static_prio = NICE_TO_PRIO(nice);
3009 set_load_weight(p);
3010 old_prio = p->prio;
3011 p->prio = effective_prio(p);
3012 delta = p->prio - old_prio;
3013
3014 if (on_rq) {
3015 enqueue_task(rq, p, 0);
3016 /*
3017 * If the task increased its priority or is running and
3018 * lowered its priority, then reschedule its CPU:
3019 */
3020 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3021 resched_task(rq->curr);
3022 }
3023 out_unlock:
3024 task_rq_unlock(rq, p, &flags);
3025 }
3026 EXPORT_SYMBOL(set_user_nice);
3027
3028 /*
3029 * can_nice - check if a task can reduce its nice value
3030 * @p: task
3031 * @nice: nice value
3032 */
3033 int can_nice(const struct task_struct *p, const int nice)
3034 {
3035 /* convert nice value [19,-20] to rlimit style value [1,40] */
3036 int nice_rlim = nice_to_rlimit(nice);
3037
3038 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3039 capable(CAP_SYS_NICE));
3040 }
3041
3042 #ifdef __ARCH_WANT_SYS_NICE
3043
3044 /*
3045 * sys_nice - change the priority of the current process.
3046 * @increment: priority increment
3047 *
3048 * sys_setpriority is a more generic, but much slower function that
3049 * does similar things.
3050 */
3051 SYSCALL_DEFINE1(nice, int, increment)
3052 {
3053 long nice, retval;
3054
3055 /*
3056 * Setpriority might change our priority at the same moment.
3057 * We don't have to worry. Conceptually one call occurs first
3058 * and we have a single winner.
3059 */
3060 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3061 nice = task_nice(current) + increment;
3062
3063 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3064 if (increment < 0 && !can_nice(current, nice))
3065 return -EPERM;
3066
3067 retval = security_task_setnice(current, nice);
3068 if (retval)
3069 return retval;
3070
3071 set_user_nice(current, nice);
3072 return 0;
3073 }
3074
3075 #endif
3076
3077 /**
3078 * task_prio - return the priority value of a given task.
3079 * @p: the task in question.
3080 *
3081 * Return: The priority value as seen by users in /proc.
3082 * RT tasks are offset by -200. Normal tasks are centered
3083 * around 0, value goes from -16 to +15.
3084 */
3085 int task_prio(const struct task_struct *p)
3086 {
3087 return p->prio - MAX_RT_PRIO;
3088 }
3089
3090 /**
3091 * idle_cpu - is a given cpu idle currently?
3092 * @cpu: the processor in question.
3093 *
3094 * Return: 1 if the CPU is currently idle. 0 otherwise.
3095 */
3096 int idle_cpu(int cpu)
3097 {
3098 struct rq *rq = cpu_rq(cpu);
3099
3100 if (rq->curr != rq->idle)
3101 return 0;
3102
3103 if (rq->nr_running)
3104 return 0;
3105
3106 #ifdef CONFIG_SMP
3107 if (!llist_empty(&rq->wake_list))
3108 return 0;
3109 #endif
3110
3111 return 1;
3112 }
3113
3114 /**
3115 * idle_task - return the idle task for a given cpu.
3116 * @cpu: the processor in question.
3117 *
3118 * Return: The idle task for the cpu @cpu.
3119 */
3120 struct task_struct *idle_task(int cpu)
3121 {
3122 return cpu_rq(cpu)->idle;
3123 }
3124
3125 /**
3126 * find_process_by_pid - find a process with a matching PID value.
3127 * @pid: the pid in question.
3128 *
3129 * The task of @pid, if found. %NULL otherwise.
3130 */
3131 static struct task_struct *find_process_by_pid(pid_t pid)
3132 {
3133 return pid ? find_task_by_vpid(pid) : current;
3134 }
3135
3136 /*
3137 * This function initializes the sched_dl_entity of a newly becoming
3138 * SCHED_DEADLINE task.
3139 *
3140 * Only the static values are considered here, the actual runtime and the
3141 * absolute deadline will be properly calculated when the task is enqueued
3142 * for the first time with its new policy.
3143 */
3144 static void
3145 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3146 {
3147 struct sched_dl_entity *dl_se = &p->dl;
3148
3149 init_dl_task_timer(dl_se);
3150 dl_se->dl_runtime = attr->sched_runtime;
3151 dl_se->dl_deadline = attr->sched_deadline;
3152 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3153 dl_se->flags = attr->sched_flags;
3154 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3155 dl_se->dl_throttled = 0;
3156 dl_se->dl_new = 1;
3157 dl_se->dl_yielded = 0;
3158 }
3159
3160 static void __setscheduler_params(struct task_struct *p,
3161 const struct sched_attr *attr)
3162 {
3163 int policy = attr->sched_policy;
3164
3165 if (policy == -1) /* setparam */
3166 policy = p->policy;
3167
3168 p->policy = policy;
3169
3170 if (dl_policy(policy))
3171 __setparam_dl(p, attr);
3172 else if (fair_policy(policy))
3173 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3174
3175 /*
3176 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3177 * !rt_policy. Always setting this ensures that things like
3178 * getparam()/getattr() don't report silly values for !rt tasks.
3179 */
3180 p->rt_priority = attr->sched_priority;
3181 p->normal_prio = normal_prio(p);
3182 set_load_weight(p);
3183 }
3184
3185 /* Actually do priority change: must hold pi & rq lock. */
3186 static void __setscheduler(struct rq *rq, struct task_struct *p,
3187 const struct sched_attr *attr)
3188 {
3189 __setscheduler_params(p, attr);
3190
3191 /*
3192 * If we get here, there was no pi waiters boosting the
3193 * task. It is safe to use the normal prio.
3194 */
3195 p->prio = normal_prio(p);
3196
3197 if (dl_prio(p->prio))
3198 p->sched_class = &dl_sched_class;
3199 else if (rt_prio(p->prio))
3200 p->sched_class = &rt_sched_class;
3201 else
3202 p->sched_class = &fair_sched_class;
3203 }
3204
3205 static void
3206 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3207 {
3208 struct sched_dl_entity *dl_se = &p->dl;
3209
3210 attr->sched_priority = p->rt_priority;
3211 attr->sched_runtime = dl_se->dl_runtime;
3212 attr->sched_deadline = dl_se->dl_deadline;
3213 attr->sched_period = dl_se->dl_period;
3214 attr->sched_flags = dl_se->flags;
3215 }
3216
3217 /*
3218 * This function validates the new parameters of a -deadline task.
3219 * We ask for the deadline not being zero, and greater or equal
3220 * than the runtime, as well as the period of being zero or
3221 * greater than deadline. Furthermore, we have to be sure that
3222 * user parameters are above the internal resolution of 1us (we
3223 * check sched_runtime only since it is always the smaller one) and
3224 * below 2^63 ns (we have to check both sched_deadline and
3225 * sched_period, as the latter can be zero).
3226 */
3227 static bool
3228 __checkparam_dl(const struct sched_attr *attr)
3229 {
3230 /* deadline != 0 */
3231 if (attr->sched_deadline == 0)
3232 return false;
3233
3234 /*
3235 * Since we truncate DL_SCALE bits, make sure we're at least
3236 * that big.
3237 */
3238 if (attr->sched_runtime < (1ULL << DL_SCALE))
3239 return false;
3240
3241 /*
3242 * Since we use the MSB for wrap-around and sign issues, make
3243 * sure it's not set (mind that period can be equal to zero).
3244 */
3245 if (attr->sched_deadline & (1ULL << 63) ||
3246 attr->sched_period & (1ULL << 63))
3247 return false;
3248
3249 /* runtime <= deadline <= period (if period != 0) */
3250 if ((attr->sched_period != 0 &&
3251 attr->sched_period < attr->sched_deadline) ||
3252 attr->sched_deadline < attr->sched_runtime)
3253 return false;
3254
3255 return true;
3256 }
3257
3258 /*
3259 * check the target process has a UID that matches the current process's
3260 */
3261 static bool check_same_owner(struct task_struct *p)
3262 {
3263 const struct cred *cred = current_cred(), *pcred;
3264 bool match;
3265
3266 rcu_read_lock();
3267 pcred = __task_cred(p);
3268 match = (uid_eq(cred->euid, pcred->euid) ||
3269 uid_eq(cred->euid, pcred->uid));
3270 rcu_read_unlock();
3271 return match;
3272 }
3273
3274 static int __sched_setscheduler(struct task_struct *p,
3275 const struct sched_attr *attr,
3276 bool user)
3277 {
3278 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3279 MAX_RT_PRIO - 1 - attr->sched_priority;
3280 int retval, oldprio, oldpolicy = -1, on_rq, running;
3281 int policy = attr->sched_policy;
3282 unsigned long flags;
3283 const struct sched_class *prev_class;
3284 struct rq *rq;
3285 int reset_on_fork;
3286
3287 /* may grab non-irq protected spin_locks */
3288 BUG_ON(in_interrupt());
3289 recheck:
3290 /* double check policy once rq lock held */
3291 if (policy < 0) {
3292 reset_on_fork = p->sched_reset_on_fork;
3293 policy = oldpolicy = p->policy;
3294 } else {
3295 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3296
3297 if (policy != SCHED_DEADLINE &&
3298 policy != SCHED_FIFO && policy != SCHED_RR &&
3299 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3300 policy != SCHED_IDLE)
3301 return -EINVAL;
3302 }
3303
3304 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3305 return -EINVAL;
3306
3307 /*
3308 * Valid priorities for SCHED_FIFO and SCHED_RR are
3309 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3310 * SCHED_BATCH and SCHED_IDLE is 0.
3311 */
3312 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3313 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3314 return -EINVAL;
3315 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3316 (rt_policy(policy) != (attr->sched_priority != 0)))
3317 return -EINVAL;
3318
3319 /*
3320 * Allow unprivileged RT tasks to decrease priority:
3321 */
3322 if (user && !capable(CAP_SYS_NICE)) {
3323 if (fair_policy(policy)) {
3324 if (attr->sched_nice < task_nice(p) &&
3325 !can_nice(p, attr->sched_nice))
3326 return -EPERM;
3327 }
3328
3329 if (rt_policy(policy)) {
3330 unsigned long rlim_rtprio =
3331 task_rlimit(p, RLIMIT_RTPRIO);
3332
3333 /* can't set/change the rt policy */
3334 if (policy != p->policy && !rlim_rtprio)
3335 return -EPERM;
3336
3337 /* can't increase priority */
3338 if (attr->sched_priority > p->rt_priority &&
3339 attr->sched_priority > rlim_rtprio)
3340 return -EPERM;
3341 }
3342
3343 /*
3344 * Can't set/change SCHED_DEADLINE policy at all for now
3345 * (safest behavior); in the future we would like to allow
3346 * unprivileged DL tasks to increase their relative deadline
3347 * or reduce their runtime (both ways reducing utilization)
3348 */
3349 if (dl_policy(policy))
3350 return -EPERM;
3351
3352 /*
3353 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3354 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3355 */
3356 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3357 if (!can_nice(p, task_nice(p)))
3358 return -EPERM;
3359 }
3360
3361 /* can't change other user's priorities */
3362 if (!check_same_owner(p))
3363 return -EPERM;
3364
3365 /* Normal users shall not reset the sched_reset_on_fork flag */
3366 if (p->sched_reset_on_fork && !reset_on_fork)
3367 return -EPERM;
3368 }
3369
3370 if (user) {
3371 retval = security_task_setscheduler(p);
3372 if (retval)
3373 return retval;
3374 }
3375
3376 /*
3377 * make sure no PI-waiters arrive (or leave) while we are
3378 * changing the priority of the task:
3379 *
3380 * To be able to change p->policy safely, the appropriate
3381 * runqueue lock must be held.
3382 */
3383 rq = task_rq_lock(p, &flags);
3384
3385 /*
3386 * Changing the policy of the stop threads its a very bad idea
3387 */
3388 if (p == rq->stop) {
3389 task_rq_unlock(rq, p, &flags);
3390 return -EINVAL;
3391 }
3392
3393 /*
3394 * If not changing anything there's no need to proceed further,
3395 * but store a possible modification of reset_on_fork.
3396 */
3397 if (unlikely(policy == p->policy)) {
3398 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3399 goto change;
3400 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3401 goto change;
3402 if (dl_policy(policy))
3403 goto change;
3404
3405 p->sched_reset_on_fork = reset_on_fork;
3406 task_rq_unlock(rq, p, &flags);
3407 return 0;
3408 }
3409 change:
3410
3411 if (user) {
3412 #ifdef CONFIG_RT_GROUP_SCHED
3413 /*
3414 * Do not allow realtime tasks into groups that have no runtime
3415 * assigned.
3416 */
3417 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3418 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3419 !task_group_is_autogroup(task_group(p))) {
3420 task_rq_unlock(rq, p, &flags);
3421 return -EPERM;
3422 }
3423 #endif
3424 #ifdef CONFIG_SMP
3425 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3426 cpumask_t *span = rq->rd->span;
3427
3428 /*
3429 * Don't allow tasks with an affinity mask smaller than
3430 * the entire root_domain to become SCHED_DEADLINE. We
3431 * will also fail if there's no bandwidth available.
3432 */
3433 if (!cpumask_subset(span, &p->cpus_allowed) ||
3434 rq->rd->dl_bw.bw == 0) {
3435 task_rq_unlock(rq, p, &flags);
3436 return -EPERM;
3437 }
3438 }
3439 #endif
3440 }
3441
3442 /* recheck policy now with rq lock held */
3443 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3444 policy = oldpolicy = -1;
3445 task_rq_unlock(rq, p, &flags);
3446 goto recheck;
3447 }
3448
3449 /*
3450 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3451 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3452 * is available.
3453 */
3454 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3455 task_rq_unlock(rq, p, &flags);
3456 return -EBUSY;
3457 }
3458
3459 p->sched_reset_on_fork = reset_on_fork;
3460 oldprio = p->prio;
3461
3462 /*
3463 * Special case for priority boosted tasks.
3464 *
3465 * If the new priority is lower or equal (user space view)
3466 * than the current (boosted) priority, we just store the new
3467 * normal parameters and do not touch the scheduler class and
3468 * the runqueue. This will be done when the task deboost
3469 * itself.
3470 */
3471 if (rt_mutex_check_prio(p, newprio)) {
3472 __setscheduler_params(p, attr);
3473 task_rq_unlock(rq, p, &flags);
3474 return 0;
3475 }
3476
3477 on_rq = p->on_rq;
3478 running = task_current(rq, p);
3479 if (on_rq)
3480 dequeue_task(rq, p, 0);
3481 if (running)
3482 p->sched_class->put_prev_task(rq, p);
3483
3484 prev_class = p->sched_class;
3485 __setscheduler(rq, p, attr);
3486
3487 if (running)
3488 p->sched_class->set_curr_task(rq);
3489 if (on_rq) {
3490 /*
3491 * We enqueue to tail when the priority of a task is
3492 * increased (user space view).
3493 */
3494 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3495 }
3496
3497 check_class_changed(rq, p, prev_class, oldprio);
3498 task_rq_unlock(rq, p, &flags);
3499
3500 rt_mutex_adjust_pi(p);
3501
3502 return 0;
3503 }
3504
3505 static int _sched_setscheduler(struct task_struct *p, int policy,
3506 const struct sched_param *param, bool check)
3507 {
3508 struct sched_attr attr = {
3509 .sched_policy = policy,
3510 .sched_priority = param->sched_priority,
3511 .sched_nice = PRIO_TO_NICE(p->static_prio),
3512 };
3513
3514 /*
3515 * Fixup the legacy SCHED_RESET_ON_FORK hack
3516 */
3517 if (policy & SCHED_RESET_ON_FORK) {
3518 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3519 policy &= ~SCHED_RESET_ON_FORK;
3520 attr.sched_policy = policy;
3521 }
3522
3523 return __sched_setscheduler(p, &attr, check);
3524 }
3525 /**
3526 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3527 * @p: the task in question.
3528 * @policy: new policy.
3529 * @param: structure containing the new RT priority.
3530 *
3531 * Return: 0 on success. An error code otherwise.
3532 *
3533 * NOTE that the task may be already dead.
3534 */
3535 int sched_setscheduler(struct task_struct *p, int policy,
3536 const struct sched_param *param)
3537 {
3538 return _sched_setscheduler(p, policy, param, true);
3539 }
3540 EXPORT_SYMBOL_GPL(sched_setscheduler);
3541
3542 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3543 {
3544 return __sched_setscheduler(p, attr, true);
3545 }
3546 EXPORT_SYMBOL_GPL(sched_setattr);
3547
3548 /**
3549 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3550 * @p: the task in question.
3551 * @policy: new policy.
3552 * @param: structure containing the new RT priority.
3553 *
3554 * Just like sched_setscheduler, only don't bother checking if the
3555 * current context has permission. For example, this is needed in
3556 * stop_machine(): we create temporary high priority worker threads,
3557 * but our caller might not have that capability.
3558 *
3559 * Return: 0 on success. An error code otherwise.
3560 */
3561 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3562 const struct sched_param *param)
3563 {
3564 return _sched_setscheduler(p, policy, param, false);
3565 }
3566
3567 static int
3568 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3569 {
3570 struct sched_param lparam;
3571 struct task_struct *p;
3572 int retval;
3573
3574 if (!param || pid < 0)
3575 return -EINVAL;
3576 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3577 return -EFAULT;
3578
3579 rcu_read_lock();
3580 retval = -ESRCH;
3581 p = find_process_by_pid(pid);
3582 if (p != NULL)
3583 retval = sched_setscheduler(p, policy, &lparam);
3584 rcu_read_unlock();
3585
3586 return retval;
3587 }
3588
3589 /*
3590 * Mimics kernel/events/core.c perf_copy_attr().
3591 */
3592 static int sched_copy_attr(struct sched_attr __user *uattr,
3593 struct sched_attr *attr)
3594 {
3595 u32 size;
3596 int ret;
3597
3598 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3599 return -EFAULT;
3600
3601 /*
3602 * zero the full structure, so that a short copy will be nice.
3603 */
3604 memset(attr, 0, sizeof(*attr));
3605
3606 ret = get_user(size, &uattr->size);
3607 if (ret)
3608 return ret;
3609
3610 if (size > PAGE_SIZE) /* silly large */
3611 goto err_size;
3612
3613 if (!size) /* abi compat */
3614 size = SCHED_ATTR_SIZE_VER0;
3615
3616 if (size < SCHED_ATTR_SIZE_VER0)
3617 goto err_size;
3618
3619 /*
3620 * If we're handed a bigger struct than we know of,
3621 * ensure all the unknown bits are 0 - i.e. new
3622 * user-space does not rely on any kernel feature
3623 * extensions we dont know about yet.
3624 */
3625 if (size > sizeof(*attr)) {
3626 unsigned char __user *addr;
3627 unsigned char __user *end;
3628 unsigned char val;
3629
3630 addr = (void __user *)uattr + sizeof(*attr);
3631 end = (void __user *)uattr + size;
3632
3633 for (; addr < end; addr++) {
3634 ret = get_user(val, addr);
3635 if (ret)
3636 return ret;
3637 if (val)
3638 goto err_size;
3639 }
3640 size = sizeof(*attr);
3641 }
3642
3643 ret = copy_from_user(attr, uattr, size);
3644 if (ret)
3645 return -EFAULT;
3646
3647 /*
3648 * XXX: do we want to be lenient like existing syscalls; or do we want
3649 * to be strict and return an error on out-of-bounds values?
3650 */
3651 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3652
3653 return 0;
3654
3655 err_size:
3656 put_user(sizeof(*attr), &uattr->size);
3657 return -E2BIG;
3658 }
3659
3660 /**
3661 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3662 * @pid: the pid in question.
3663 * @policy: new policy.
3664 * @param: structure containing the new RT priority.
3665 *
3666 * Return: 0 on success. An error code otherwise.
3667 */
3668 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3669 struct sched_param __user *, param)
3670 {
3671 /* negative values for policy are not valid */
3672 if (policy < 0)
3673 return -EINVAL;
3674
3675 return do_sched_setscheduler(pid, policy, param);
3676 }
3677
3678 /**
3679 * sys_sched_setparam - set/change the RT priority of a thread
3680 * @pid: the pid in question.
3681 * @param: structure containing the new RT priority.
3682 *
3683 * Return: 0 on success. An error code otherwise.
3684 */
3685 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3686 {
3687 return do_sched_setscheduler(pid, -1, param);
3688 }
3689
3690 /**
3691 * sys_sched_setattr - same as above, but with extended sched_attr
3692 * @pid: the pid in question.
3693 * @uattr: structure containing the extended parameters.
3694 * @flags: for future extension.
3695 */
3696 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3697 unsigned int, flags)
3698 {
3699 struct sched_attr attr;
3700 struct task_struct *p;
3701 int retval;
3702
3703 if (!uattr || pid < 0 || flags)
3704 return -EINVAL;
3705
3706 retval = sched_copy_attr(uattr, &attr);
3707 if (retval)
3708 return retval;
3709
3710 if (attr.sched_policy < 0)
3711 return -EINVAL;
3712
3713 rcu_read_lock();
3714 retval = -ESRCH;
3715 p = find_process_by_pid(pid);
3716 if (p != NULL)
3717 retval = sched_setattr(p, &attr);
3718 rcu_read_unlock();
3719
3720 return retval;
3721 }
3722
3723 /**
3724 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3725 * @pid: the pid in question.
3726 *
3727 * Return: On success, the policy of the thread. Otherwise, a negative error
3728 * code.
3729 */
3730 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3731 {
3732 struct task_struct *p;
3733 int retval;
3734
3735 if (pid < 0)
3736 return -EINVAL;
3737
3738 retval = -ESRCH;
3739 rcu_read_lock();
3740 p = find_process_by_pid(pid);
3741 if (p) {
3742 retval = security_task_getscheduler(p);
3743 if (!retval)
3744 retval = p->policy
3745 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3746 }
3747 rcu_read_unlock();
3748 return retval;
3749 }
3750
3751 /**
3752 * sys_sched_getparam - get the RT priority of a thread
3753 * @pid: the pid in question.
3754 * @param: structure containing the RT priority.
3755 *
3756 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3757 * code.
3758 */
3759 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3760 {
3761 struct sched_param lp = { .sched_priority = 0 };
3762 struct task_struct *p;
3763 int retval;
3764
3765 if (!param || pid < 0)
3766 return -EINVAL;
3767
3768 rcu_read_lock();
3769 p = find_process_by_pid(pid);
3770 retval = -ESRCH;
3771 if (!p)
3772 goto out_unlock;
3773
3774 retval = security_task_getscheduler(p);
3775 if (retval)
3776 goto out_unlock;
3777
3778 if (task_has_rt_policy(p))
3779 lp.sched_priority = p->rt_priority;
3780 rcu_read_unlock();
3781
3782 /*
3783 * This one might sleep, we cannot do it with a spinlock held ...
3784 */
3785 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3786
3787 return retval;
3788
3789 out_unlock:
3790 rcu_read_unlock();
3791 return retval;
3792 }
3793
3794 static int sched_read_attr(struct sched_attr __user *uattr,
3795 struct sched_attr *attr,
3796 unsigned int usize)
3797 {
3798 int ret;
3799
3800 if (!access_ok(VERIFY_WRITE, uattr, usize))
3801 return -EFAULT;
3802
3803 /*
3804 * If we're handed a smaller struct than we know of,
3805 * ensure all the unknown bits are 0 - i.e. old
3806 * user-space does not get uncomplete information.
3807 */
3808 if (usize < sizeof(*attr)) {
3809 unsigned char *addr;
3810 unsigned char *end;
3811
3812 addr = (void *)attr + usize;
3813 end = (void *)attr + sizeof(*attr);
3814
3815 for (; addr < end; addr++) {
3816 if (*addr)
3817 return -EFBIG;
3818 }
3819
3820 attr->size = usize;
3821 }
3822
3823 ret = copy_to_user(uattr, attr, attr->size);
3824 if (ret)
3825 return -EFAULT;
3826
3827 return 0;
3828 }
3829
3830 /**
3831 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3832 * @pid: the pid in question.
3833 * @uattr: structure containing the extended parameters.
3834 * @size: sizeof(attr) for fwd/bwd comp.
3835 * @flags: for future extension.
3836 */
3837 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3838 unsigned int, size, unsigned int, flags)
3839 {
3840 struct sched_attr attr = {
3841 .size = sizeof(struct sched_attr),
3842 };
3843 struct task_struct *p;
3844 int retval;
3845
3846 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3847 size < SCHED_ATTR_SIZE_VER0 || flags)
3848 return -EINVAL;
3849
3850 rcu_read_lock();
3851 p = find_process_by_pid(pid);
3852 retval = -ESRCH;
3853 if (!p)
3854 goto out_unlock;
3855
3856 retval = security_task_getscheduler(p);
3857 if (retval)
3858 goto out_unlock;
3859
3860 attr.sched_policy = p->policy;
3861 if (p->sched_reset_on_fork)
3862 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3863 if (task_has_dl_policy(p))
3864 __getparam_dl(p, &attr);
3865 else if (task_has_rt_policy(p))
3866 attr.sched_priority = p->rt_priority;
3867 else
3868 attr.sched_nice = task_nice(p);
3869
3870 rcu_read_unlock();
3871
3872 retval = sched_read_attr(uattr, &attr, size);
3873 return retval;
3874
3875 out_unlock:
3876 rcu_read_unlock();
3877 return retval;
3878 }
3879
3880 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3881 {
3882 cpumask_var_t cpus_allowed, new_mask;
3883 struct task_struct *p;
3884 int retval;
3885
3886 rcu_read_lock();
3887
3888 p = find_process_by_pid(pid);
3889 if (!p) {
3890 rcu_read_unlock();
3891 return -ESRCH;
3892 }
3893
3894 /* Prevent p going away */
3895 get_task_struct(p);
3896 rcu_read_unlock();
3897
3898 if (p->flags & PF_NO_SETAFFINITY) {
3899 retval = -EINVAL;
3900 goto out_put_task;
3901 }
3902 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3903 retval = -ENOMEM;
3904 goto out_put_task;
3905 }
3906 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3907 retval = -ENOMEM;
3908 goto out_free_cpus_allowed;
3909 }
3910 retval = -EPERM;
3911 if (!check_same_owner(p)) {
3912 rcu_read_lock();
3913 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3914 rcu_read_unlock();
3915 goto out_unlock;
3916 }
3917 rcu_read_unlock();
3918 }
3919
3920 retval = security_task_setscheduler(p);
3921 if (retval)
3922 goto out_unlock;
3923
3924
3925 cpuset_cpus_allowed(p, cpus_allowed);
3926 cpumask_and(new_mask, in_mask, cpus_allowed);
3927
3928 /*
3929 * Since bandwidth control happens on root_domain basis,
3930 * if admission test is enabled, we only admit -deadline
3931 * tasks allowed to run on all the CPUs in the task's
3932 * root_domain.
3933 */
3934 #ifdef CONFIG_SMP
3935 if (task_has_dl_policy(p)) {
3936 const struct cpumask *span = task_rq(p)->rd->span;
3937
3938 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3939 retval = -EBUSY;
3940 goto out_unlock;
3941 }
3942 }
3943 #endif
3944 again:
3945 retval = set_cpus_allowed_ptr(p, new_mask);
3946
3947 if (!retval) {
3948 cpuset_cpus_allowed(p, cpus_allowed);
3949 if (!cpumask_subset(new_mask, cpus_allowed)) {
3950 /*
3951 * We must have raced with a concurrent cpuset
3952 * update. Just reset the cpus_allowed to the
3953 * cpuset's cpus_allowed
3954 */
3955 cpumask_copy(new_mask, cpus_allowed);
3956 goto again;
3957 }
3958 }
3959 out_unlock:
3960 free_cpumask_var(new_mask);
3961 out_free_cpus_allowed:
3962 free_cpumask_var(cpus_allowed);
3963 out_put_task:
3964 put_task_struct(p);
3965 return retval;
3966 }
3967
3968 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3969 struct cpumask *new_mask)
3970 {
3971 if (len < cpumask_size())
3972 cpumask_clear(new_mask);
3973 else if (len > cpumask_size())
3974 len = cpumask_size();
3975
3976 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3977 }
3978
3979 /**
3980 * sys_sched_setaffinity - set the cpu affinity of a process
3981 * @pid: pid of the process
3982 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3983 * @user_mask_ptr: user-space pointer to the new cpu mask
3984 *
3985 * Return: 0 on success. An error code otherwise.
3986 */
3987 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3988 unsigned long __user *, user_mask_ptr)
3989 {
3990 cpumask_var_t new_mask;
3991 int retval;
3992
3993 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3994 return -ENOMEM;
3995
3996 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3997 if (retval == 0)
3998 retval = sched_setaffinity(pid, new_mask);
3999 free_cpumask_var(new_mask);
4000 return retval;
4001 }
4002
4003 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4004 {
4005 struct task_struct *p;
4006 unsigned long flags;
4007 int retval;
4008
4009 rcu_read_lock();
4010
4011 retval = -ESRCH;
4012 p = find_process_by_pid(pid);
4013 if (!p)
4014 goto out_unlock;
4015
4016 retval = security_task_getscheduler(p);
4017 if (retval)
4018 goto out_unlock;
4019
4020 raw_spin_lock_irqsave(&p->pi_lock, flags);
4021 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4022 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4023
4024 out_unlock:
4025 rcu_read_unlock();
4026
4027 return retval;
4028 }
4029
4030 /**
4031 * sys_sched_getaffinity - get the cpu affinity of a process
4032 * @pid: pid of the process
4033 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4034 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4035 *
4036 * Return: 0 on success. An error code otherwise.
4037 */
4038 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4039 unsigned long __user *, user_mask_ptr)
4040 {
4041 int ret;
4042 cpumask_var_t mask;
4043
4044 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4045 return -EINVAL;
4046 if (len & (sizeof(unsigned long)-1))
4047 return -EINVAL;
4048
4049 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4050 return -ENOMEM;
4051
4052 ret = sched_getaffinity(pid, mask);
4053 if (ret == 0) {
4054 size_t retlen = min_t(size_t, len, cpumask_size());
4055
4056 if (copy_to_user(user_mask_ptr, mask, retlen))
4057 ret = -EFAULT;
4058 else
4059 ret = retlen;
4060 }
4061 free_cpumask_var(mask);
4062
4063 return ret;
4064 }
4065
4066 /**
4067 * sys_sched_yield - yield the current processor to other threads.
4068 *
4069 * This function yields the current CPU to other tasks. If there are no
4070 * other threads running on this CPU then this function will return.
4071 *
4072 * Return: 0.
4073 */
4074 SYSCALL_DEFINE0(sched_yield)
4075 {
4076 struct rq *rq = this_rq_lock();
4077
4078 schedstat_inc(rq, yld_count);
4079 current->sched_class->yield_task(rq);
4080
4081 /*
4082 * Since we are going to call schedule() anyway, there's
4083 * no need to preempt or enable interrupts:
4084 */
4085 __release(rq->lock);
4086 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4087 do_raw_spin_unlock(&rq->lock);
4088 sched_preempt_enable_no_resched();
4089
4090 schedule();
4091
4092 return 0;
4093 }
4094
4095 static void __cond_resched(void)
4096 {
4097 __preempt_count_add(PREEMPT_ACTIVE);
4098 __schedule();
4099 __preempt_count_sub(PREEMPT_ACTIVE);
4100 }
4101
4102 int __sched _cond_resched(void)
4103 {
4104 if (should_resched()) {
4105 __cond_resched();
4106 return 1;
4107 }
4108 return 0;
4109 }
4110 EXPORT_SYMBOL(_cond_resched);
4111
4112 /*
4113 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4114 * call schedule, and on return reacquire the lock.
4115 *
4116 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4117 * operations here to prevent schedule() from being called twice (once via
4118 * spin_unlock(), once by hand).
4119 */
4120 int __cond_resched_lock(spinlock_t *lock)
4121 {
4122 int resched = should_resched();
4123 int ret = 0;
4124
4125 lockdep_assert_held(lock);
4126
4127 if (spin_needbreak(lock) || resched) {
4128 spin_unlock(lock);
4129 if (resched)
4130 __cond_resched();
4131 else
4132 cpu_relax();
4133 ret = 1;
4134 spin_lock(lock);
4135 }
4136 return ret;
4137 }
4138 EXPORT_SYMBOL(__cond_resched_lock);
4139
4140 int __sched __cond_resched_softirq(void)
4141 {
4142 BUG_ON(!in_softirq());
4143
4144 if (should_resched()) {
4145 local_bh_enable();
4146 __cond_resched();
4147 local_bh_disable();
4148 return 1;
4149 }
4150 return 0;
4151 }
4152 EXPORT_SYMBOL(__cond_resched_softirq);
4153
4154 /**
4155 * yield - yield the current processor to other threads.
4156 *
4157 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4158 *
4159 * The scheduler is at all times free to pick the calling task as the most
4160 * eligible task to run, if removing the yield() call from your code breaks
4161 * it, its already broken.
4162 *
4163 * Typical broken usage is:
4164 *
4165 * while (!event)
4166 * yield();
4167 *
4168 * where one assumes that yield() will let 'the other' process run that will
4169 * make event true. If the current task is a SCHED_FIFO task that will never
4170 * happen. Never use yield() as a progress guarantee!!
4171 *
4172 * If you want to use yield() to wait for something, use wait_event().
4173 * If you want to use yield() to be 'nice' for others, use cond_resched().
4174 * If you still want to use yield(), do not!
4175 */
4176 void __sched yield(void)
4177 {
4178 set_current_state(TASK_RUNNING);
4179 sys_sched_yield();
4180 }
4181 EXPORT_SYMBOL(yield);
4182
4183 /**
4184 * yield_to - yield the current processor to another thread in
4185 * your thread group, or accelerate that thread toward the
4186 * processor it's on.
4187 * @p: target task
4188 * @preempt: whether task preemption is allowed or not
4189 *
4190 * It's the caller's job to ensure that the target task struct
4191 * can't go away on us before we can do any checks.
4192 *
4193 * Return:
4194 * true (>0) if we indeed boosted the target task.
4195 * false (0) if we failed to boost the target.
4196 * -ESRCH if there's no task to yield to.
4197 */
4198 int __sched yield_to(struct task_struct *p, bool preempt)
4199 {
4200 struct task_struct *curr = current;
4201 struct rq *rq, *p_rq;
4202 unsigned long flags;
4203 int yielded = 0;
4204
4205 local_irq_save(flags);
4206 rq = this_rq();
4207
4208 again:
4209 p_rq = task_rq(p);
4210 /*
4211 * If we're the only runnable task on the rq and target rq also
4212 * has only one task, there's absolutely no point in yielding.
4213 */
4214 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4215 yielded = -ESRCH;
4216 goto out_irq;
4217 }
4218
4219 double_rq_lock(rq, p_rq);
4220 if (task_rq(p) != p_rq) {
4221 double_rq_unlock(rq, p_rq);
4222 goto again;
4223 }
4224
4225 if (!curr->sched_class->yield_to_task)
4226 goto out_unlock;
4227
4228 if (curr->sched_class != p->sched_class)
4229 goto out_unlock;
4230
4231 if (task_running(p_rq, p) || p->state)
4232 goto out_unlock;
4233
4234 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4235 if (yielded) {
4236 schedstat_inc(rq, yld_count);
4237 /*
4238 * Make p's CPU reschedule; pick_next_entity takes care of
4239 * fairness.
4240 */
4241 if (preempt && rq != p_rq)
4242 resched_task(p_rq->curr);
4243 }
4244
4245 out_unlock:
4246 double_rq_unlock(rq, p_rq);
4247 out_irq:
4248 local_irq_restore(flags);
4249
4250 if (yielded > 0)
4251 schedule();
4252
4253 return yielded;
4254 }
4255 EXPORT_SYMBOL_GPL(yield_to);
4256
4257 /*
4258 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4259 * that process accounting knows that this is a task in IO wait state.
4260 */
4261 void __sched io_schedule(void)
4262 {
4263 struct rq *rq = raw_rq();
4264
4265 delayacct_blkio_start();
4266 atomic_inc(&rq->nr_iowait);
4267 blk_flush_plug(current);
4268 current->in_iowait = 1;
4269 schedule();
4270 current->in_iowait = 0;
4271 atomic_dec(&rq->nr_iowait);
4272 delayacct_blkio_end();
4273 }
4274 EXPORT_SYMBOL(io_schedule);
4275
4276 long __sched io_schedule_timeout(long timeout)
4277 {
4278 struct rq *rq = raw_rq();
4279 long ret;
4280
4281 delayacct_blkio_start();
4282 atomic_inc(&rq->nr_iowait);
4283 blk_flush_plug(current);
4284 current->in_iowait = 1;
4285 ret = schedule_timeout(timeout);
4286 current->in_iowait = 0;
4287 atomic_dec(&rq->nr_iowait);
4288 delayacct_blkio_end();
4289 return ret;
4290 }
4291
4292 /**
4293 * sys_sched_get_priority_max - return maximum RT priority.
4294 * @policy: scheduling class.
4295 *
4296 * Return: On success, this syscall returns the maximum
4297 * rt_priority that can be used by a given scheduling class.
4298 * On failure, a negative error code is returned.
4299 */
4300 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4301 {
4302 int ret = -EINVAL;
4303
4304 switch (policy) {
4305 case SCHED_FIFO:
4306 case SCHED_RR:
4307 ret = MAX_USER_RT_PRIO-1;
4308 break;
4309 case SCHED_DEADLINE:
4310 case SCHED_NORMAL:
4311 case SCHED_BATCH:
4312 case SCHED_IDLE:
4313 ret = 0;
4314 break;
4315 }
4316 return ret;
4317 }
4318
4319 /**
4320 * sys_sched_get_priority_min - return minimum RT priority.
4321 * @policy: scheduling class.
4322 *
4323 * Return: On success, this syscall returns the minimum
4324 * rt_priority that can be used by a given scheduling class.
4325 * On failure, a negative error code is returned.
4326 */
4327 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4328 {
4329 int ret = -EINVAL;
4330
4331 switch (policy) {
4332 case SCHED_FIFO:
4333 case SCHED_RR:
4334 ret = 1;
4335 break;
4336 case SCHED_DEADLINE:
4337 case SCHED_NORMAL:
4338 case SCHED_BATCH:
4339 case SCHED_IDLE:
4340 ret = 0;
4341 }
4342 return ret;
4343 }
4344
4345 /**
4346 * sys_sched_rr_get_interval - return the default timeslice of a process.
4347 * @pid: pid of the process.
4348 * @interval: userspace pointer to the timeslice value.
4349 *
4350 * this syscall writes the default timeslice value of a given process
4351 * into the user-space timespec buffer. A value of '0' means infinity.
4352 *
4353 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4354 * an error code.
4355 */
4356 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4357 struct timespec __user *, interval)
4358 {
4359 struct task_struct *p;
4360 unsigned int time_slice;
4361 unsigned long flags;
4362 struct rq *rq;
4363 int retval;
4364 struct timespec t;
4365
4366 if (pid < 0)
4367 return -EINVAL;
4368
4369 retval = -ESRCH;
4370 rcu_read_lock();
4371 p = find_process_by_pid(pid);
4372 if (!p)
4373 goto out_unlock;
4374
4375 retval = security_task_getscheduler(p);
4376 if (retval)
4377 goto out_unlock;
4378
4379 rq = task_rq_lock(p, &flags);
4380 time_slice = 0;
4381 if (p->sched_class->get_rr_interval)
4382 time_slice = p->sched_class->get_rr_interval(rq, p);
4383 task_rq_unlock(rq, p, &flags);
4384
4385 rcu_read_unlock();
4386 jiffies_to_timespec(time_slice, &t);
4387 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4388 return retval;
4389
4390 out_unlock:
4391 rcu_read_unlock();
4392 return retval;
4393 }
4394
4395 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4396
4397 void sched_show_task(struct task_struct *p)
4398 {
4399 unsigned long free = 0;
4400 int ppid;
4401 unsigned state;
4402
4403 state = p->state ? __ffs(p->state) + 1 : 0;
4404 printk(KERN_INFO "%-15.15s %c", p->comm,
4405 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4406 #if BITS_PER_LONG == 32
4407 if (state == TASK_RUNNING)
4408 printk(KERN_CONT " running ");
4409 else
4410 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4411 #else
4412 if (state == TASK_RUNNING)
4413 printk(KERN_CONT " running task ");
4414 else
4415 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4416 #endif
4417 #ifdef CONFIG_DEBUG_STACK_USAGE
4418 free = stack_not_used(p);
4419 #endif
4420 rcu_read_lock();
4421 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4422 rcu_read_unlock();
4423 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4424 task_pid_nr(p), ppid,
4425 (unsigned long)task_thread_info(p)->flags);
4426
4427 print_worker_info(KERN_INFO, p);
4428 show_stack(p, NULL);
4429 }
4430
4431 void show_state_filter(unsigned long state_filter)
4432 {
4433 struct task_struct *g, *p;
4434
4435 #if BITS_PER_LONG == 32
4436 printk(KERN_INFO
4437 " task PC stack pid father\n");
4438 #else
4439 printk(KERN_INFO
4440 " task PC stack pid father\n");
4441 #endif
4442 rcu_read_lock();
4443 do_each_thread(g, p) {
4444 /*
4445 * reset the NMI-timeout, listing all files on a slow
4446 * console might take a lot of time:
4447 */
4448 touch_nmi_watchdog();
4449 if (!state_filter || (p->state & state_filter))
4450 sched_show_task(p);
4451 } while_each_thread(g, p);
4452
4453 touch_all_softlockup_watchdogs();
4454
4455 #ifdef CONFIG_SCHED_DEBUG
4456 sysrq_sched_debug_show();
4457 #endif
4458 rcu_read_unlock();
4459 /*
4460 * Only show locks if all tasks are dumped:
4461 */
4462 if (!state_filter)
4463 debug_show_all_locks();
4464 }
4465
4466 void init_idle_bootup_task(struct task_struct *idle)
4467 {
4468 idle->sched_class = &idle_sched_class;
4469 }
4470
4471 /**
4472 * init_idle - set up an idle thread for a given CPU
4473 * @idle: task in question
4474 * @cpu: cpu the idle task belongs to
4475 *
4476 * NOTE: this function does not set the idle thread's NEED_RESCHED
4477 * flag, to make booting more robust.
4478 */
4479 void init_idle(struct task_struct *idle, int cpu)
4480 {
4481 struct rq *rq = cpu_rq(cpu);
4482 unsigned long flags;
4483
4484 raw_spin_lock_irqsave(&rq->lock, flags);
4485
4486 __sched_fork(0, idle);
4487 idle->state = TASK_RUNNING;
4488 idle->se.exec_start = sched_clock();
4489
4490 do_set_cpus_allowed(idle, cpumask_of(cpu));
4491 /*
4492 * We're having a chicken and egg problem, even though we are
4493 * holding rq->lock, the cpu isn't yet set to this cpu so the
4494 * lockdep check in task_group() will fail.
4495 *
4496 * Similar case to sched_fork(). / Alternatively we could
4497 * use task_rq_lock() here and obtain the other rq->lock.
4498 *
4499 * Silence PROVE_RCU
4500 */
4501 rcu_read_lock();
4502 __set_task_cpu(idle, cpu);
4503 rcu_read_unlock();
4504
4505 rq->curr = rq->idle = idle;
4506 idle->on_rq = 1;
4507 #if defined(CONFIG_SMP)
4508 idle->on_cpu = 1;
4509 #endif
4510 raw_spin_unlock_irqrestore(&rq->lock, flags);
4511
4512 /* Set the preempt count _outside_ the spinlocks! */
4513 init_idle_preempt_count(idle, cpu);
4514
4515 /*
4516 * The idle tasks have their own, simple scheduling class:
4517 */
4518 idle->sched_class = &idle_sched_class;
4519 ftrace_graph_init_idle_task(idle, cpu);
4520 vtime_init_idle(idle, cpu);
4521 #if defined(CONFIG_SMP)
4522 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4523 #endif
4524 }
4525
4526 #ifdef CONFIG_SMP
4527 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4528 {
4529 if (p->sched_class && p->sched_class->set_cpus_allowed)
4530 p->sched_class->set_cpus_allowed(p, new_mask);
4531
4532 cpumask_copy(&p->cpus_allowed, new_mask);
4533 p->nr_cpus_allowed = cpumask_weight(new_mask);
4534 }
4535
4536 /*
4537 * This is how migration works:
4538 *
4539 * 1) we invoke migration_cpu_stop() on the target CPU using
4540 * stop_one_cpu().
4541 * 2) stopper starts to run (implicitly forcing the migrated thread
4542 * off the CPU)
4543 * 3) it checks whether the migrated task is still in the wrong runqueue.
4544 * 4) if it's in the wrong runqueue then the migration thread removes
4545 * it and puts it into the right queue.
4546 * 5) stopper completes and stop_one_cpu() returns and the migration
4547 * is done.
4548 */
4549
4550 /*
4551 * Change a given task's CPU affinity. Migrate the thread to a
4552 * proper CPU and schedule it away if the CPU it's executing on
4553 * is removed from the allowed bitmask.
4554 *
4555 * NOTE: the caller must have a valid reference to the task, the
4556 * task must not exit() & deallocate itself prematurely. The
4557 * call is not atomic; no spinlocks may be held.
4558 */
4559 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4560 {
4561 unsigned long flags;
4562 struct rq *rq;
4563 unsigned int dest_cpu;
4564 int ret = 0;
4565
4566 rq = task_rq_lock(p, &flags);
4567
4568 if (cpumask_equal(&p->cpus_allowed, new_mask))
4569 goto out;
4570
4571 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4572 ret = -EINVAL;
4573 goto out;
4574 }
4575
4576 do_set_cpus_allowed(p, new_mask);
4577
4578 /* Can the task run on the task's current CPU? If so, we're done */
4579 if (cpumask_test_cpu(task_cpu(p), new_mask))
4580 goto out;
4581
4582 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4583 if (p->on_rq) {
4584 struct migration_arg arg = { p, dest_cpu };
4585 /* Need help from migration thread: drop lock and wait. */
4586 task_rq_unlock(rq, p, &flags);
4587 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4588 tlb_migrate_finish(p->mm);
4589 return 0;
4590 }
4591 out:
4592 task_rq_unlock(rq, p, &flags);
4593
4594 return ret;
4595 }
4596 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4597
4598 /*
4599 * Move (not current) task off this cpu, onto dest cpu. We're doing
4600 * this because either it can't run here any more (set_cpus_allowed()
4601 * away from this CPU, or CPU going down), or because we're
4602 * attempting to rebalance this task on exec (sched_exec).
4603 *
4604 * So we race with normal scheduler movements, but that's OK, as long
4605 * as the task is no longer on this CPU.
4606 *
4607 * Returns non-zero if task was successfully migrated.
4608 */
4609 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4610 {
4611 struct rq *rq_dest, *rq_src;
4612 int ret = 0;
4613
4614 if (unlikely(!cpu_active(dest_cpu)))
4615 return ret;
4616
4617 rq_src = cpu_rq(src_cpu);
4618 rq_dest = cpu_rq(dest_cpu);
4619
4620 raw_spin_lock(&p->pi_lock);
4621 double_rq_lock(rq_src, rq_dest);
4622 /* Already moved. */
4623 if (task_cpu(p) != src_cpu)
4624 goto done;
4625 /* Affinity changed (again). */
4626 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4627 goto fail;
4628
4629 /*
4630 * If we're not on a rq, the next wake-up will ensure we're
4631 * placed properly.
4632 */
4633 if (p->on_rq) {
4634 dequeue_task(rq_src, p, 0);
4635 set_task_cpu(p, dest_cpu);
4636 enqueue_task(rq_dest, p, 0);
4637 check_preempt_curr(rq_dest, p, 0);
4638 }
4639 done:
4640 ret = 1;
4641 fail:
4642 double_rq_unlock(rq_src, rq_dest);
4643 raw_spin_unlock(&p->pi_lock);
4644 return ret;
4645 }
4646
4647 #ifdef CONFIG_NUMA_BALANCING
4648 /* Migrate current task p to target_cpu */
4649 int migrate_task_to(struct task_struct *p, int target_cpu)
4650 {
4651 struct migration_arg arg = { p, target_cpu };
4652 int curr_cpu = task_cpu(p);
4653
4654 if (curr_cpu == target_cpu)
4655 return 0;
4656
4657 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4658 return -EINVAL;
4659
4660 /* TODO: This is not properly updating schedstats */
4661
4662 trace_sched_move_numa(p, curr_cpu, target_cpu);
4663 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4664 }
4665
4666 /*
4667 * Requeue a task on a given node and accurately track the number of NUMA
4668 * tasks on the runqueues
4669 */
4670 void sched_setnuma(struct task_struct *p, int nid)
4671 {
4672 struct rq *rq;
4673 unsigned long flags;
4674 bool on_rq, running;
4675
4676 rq = task_rq_lock(p, &flags);
4677 on_rq = p->on_rq;
4678 running = task_current(rq, p);
4679
4680 if (on_rq)
4681 dequeue_task(rq, p, 0);
4682 if (running)
4683 p->sched_class->put_prev_task(rq, p);
4684
4685 p->numa_preferred_nid = nid;
4686
4687 if (running)
4688 p->sched_class->set_curr_task(rq);
4689 if (on_rq)
4690 enqueue_task(rq, p, 0);
4691 task_rq_unlock(rq, p, &flags);
4692 }
4693 #endif
4694
4695 /*
4696 * migration_cpu_stop - this will be executed by a highprio stopper thread
4697 * and performs thread migration by bumping thread off CPU then
4698 * 'pushing' onto another runqueue.
4699 */
4700 static int migration_cpu_stop(void *data)
4701 {
4702 struct migration_arg *arg = data;
4703
4704 /*
4705 * The original target cpu might have gone down and we might
4706 * be on another cpu but it doesn't matter.
4707 */
4708 local_irq_disable();
4709 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4710 local_irq_enable();
4711 return 0;
4712 }
4713
4714 #ifdef CONFIG_HOTPLUG_CPU
4715
4716 /*
4717 * Ensures that the idle task is using init_mm right before its cpu goes
4718 * offline.
4719 */
4720 void idle_task_exit(void)
4721 {
4722 struct mm_struct *mm = current->active_mm;
4723
4724 BUG_ON(cpu_online(smp_processor_id()));
4725
4726 if (mm != &init_mm) {
4727 switch_mm(mm, &init_mm, current);
4728 finish_arch_post_lock_switch();
4729 }
4730 mmdrop(mm);
4731 }
4732
4733 /*
4734 * Since this CPU is going 'away' for a while, fold any nr_active delta
4735 * we might have. Assumes we're called after migrate_tasks() so that the
4736 * nr_active count is stable.
4737 *
4738 * Also see the comment "Global load-average calculations".
4739 */
4740 static void calc_load_migrate(struct rq *rq)
4741 {
4742 long delta = calc_load_fold_active(rq);
4743 if (delta)
4744 atomic_long_add(delta, &calc_load_tasks);
4745 }
4746
4747 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4748 {
4749 }
4750
4751 static const struct sched_class fake_sched_class = {
4752 .put_prev_task = put_prev_task_fake,
4753 };
4754
4755 static struct task_struct fake_task = {
4756 /*
4757 * Avoid pull_{rt,dl}_task()
4758 */
4759 .prio = MAX_PRIO + 1,
4760 .sched_class = &fake_sched_class,
4761 };
4762
4763 /*
4764 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4765 * try_to_wake_up()->select_task_rq().
4766 *
4767 * Called with rq->lock held even though we'er in stop_machine() and
4768 * there's no concurrency possible, we hold the required locks anyway
4769 * because of lock validation efforts.
4770 */
4771 static void migrate_tasks(unsigned int dead_cpu)
4772 {
4773 struct rq *rq = cpu_rq(dead_cpu);
4774 struct task_struct *next, *stop = rq->stop;
4775 int dest_cpu;
4776
4777 /*
4778 * Fudge the rq selection such that the below task selection loop
4779 * doesn't get stuck on the currently eligible stop task.
4780 *
4781 * We're currently inside stop_machine() and the rq is either stuck
4782 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4783 * either way we should never end up calling schedule() until we're
4784 * done here.
4785 */
4786 rq->stop = NULL;
4787
4788 /*
4789 * put_prev_task() and pick_next_task() sched
4790 * class method both need to have an up-to-date
4791 * value of rq->clock[_task]
4792 */
4793 update_rq_clock(rq);
4794
4795 for ( ; ; ) {
4796 /*
4797 * There's this thread running, bail when that's the only
4798 * remaining thread.
4799 */
4800 if (rq->nr_running == 1)
4801 break;
4802
4803 next = pick_next_task(rq, &fake_task);
4804 BUG_ON(!next);
4805 next->sched_class->put_prev_task(rq, next);
4806
4807 /* Find suitable destination for @next, with force if needed. */
4808 dest_cpu = select_fallback_rq(dead_cpu, next);
4809 raw_spin_unlock(&rq->lock);
4810
4811 __migrate_task(next, dead_cpu, dest_cpu);
4812
4813 raw_spin_lock(&rq->lock);
4814 }
4815
4816 rq->stop = stop;
4817 }
4818
4819 #endif /* CONFIG_HOTPLUG_CPU */
4820
4821 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4822
4823 static struct ctl_table sd_ctl_dir[] = {
4824 {
4825 .procname = "sched_domain",
4826 .mode = 0555,
4827 },
4828 {}
4829 };
4830
4831 static struct ctl_table sd_ctl_root[] = {
4832 {
4833 .procname = "kernel",
4834 .mode = 0555,
4835 .child = sd_ctl_dir,
4836 },
4837 {}
4838 };
4839
4840 static struct ctl_table *sd_alloc_ctl_entry(int n)
4841 {
4842 struct ctl_table *entry =
4843 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4844
4845 return entry;
4846 }
4847
4848 static void sd_free_ctl_entry(struct ctl_table **tablep)
4849 {
4850 struct ctl_table *entry;
4851
4852 /*
4853 * In the intermediate directories, both the child directory and
4854 * procname are dynamically allocated and could fail but the mode
4855 * will always be set. In the lowest directory the names are
4856 * static strings and all have proc handlers.
4857 */
4858 for (entry = *tablep; entry->mode; entry++) {
4859 if (entry->child)
4860 sd_free_ctl_entry(&entry->child);
4861 if (entry->proc_handler == NULL)
4862 kfree(entry->procname);
4863 }
4864
4865 kfree(*tablep);
4866 *tablep = NULL;
4867 }
4868
4869 static int min_load_idx = 0;
4870 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4871
4872 static void
4873 set_table_entry(struct ctl_table *entry,
4874 const char *procname, void *data, int maxlen,
4875 umode_t mode, proc_handler *proc_handler,
4876 bool load_idx)
4877 {
4878 entry->procname = procname;
4879 entry->data = data;
4880 entry->maxlen = maxlen;
4881 entry->mode = mode;
4882 entry->proc_handler = proc_handler;
4883
4884 if (load_idx) {
4885 entry->extra1 = &min_load_idx;
4886 entry->extra2 = &max_load_idx;
4887 }
4888 }
4889
4890 static struct ctl_table *
4891 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4892 {
4893 struct ctl_table *table = sd_alloc_ctl_entry(14);
4894
4895 if (table == NULL)
4896 return NULL;
4897
4898 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4899 sizeof(long), 0644, proc_doulongvec_minmax, false);
4900 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4901 sizeof(long), 0644, proc_doulongvec_minmax, false);
4902 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4903 sizeof(int), 0644, proc_dointvec_minmax, true);
4904 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4905 sizeof(int), 0644, proc_dointvec_minmax, true);
4906 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4907 sizeof(int), 0644, proc_dointvec_minmax, true);
4908 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4909 sizeof(int), 0644, proc_dointvec_minmax, true);
4910 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4911 sizeof(int), 0644, proc_dointvec_minmax, true);
4912 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4913 sizeof(int), 0644, proc_dointvec_minmax, false);
4914 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4915 sizeof(int), 0644, proc_dointvec_minmax, false);
4916 set_table_entry(&table[9], "cache_nice_tries",
4917 &sd->cache_nice_tries,
4918 sizeof(int), 0644, proc_dointvec_minmax, false);
4919 set_table_entry(&table[10], "flags", &sd->flags,
4920 sizeof(int), 0644, proc_dointvec_minmax, false);
4921 set_table_entry(&table[11], "max_newidle_lb_cost",
4922 &sd->max_newidle_lb_cost,
4923 sizeof(long), 0644, proc_doulongvec_minmax, false);
4924 set_table_entry(&table[12], "name", sd->name,
4925 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4926 /* &table[13] is terminator */
4927
4928 return table;
4929 }
4930
4931 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4932 {
4933 struct ctl_table *entry, *table;
4934 struct sched_domain *sd;
4935 int domain_num = 0, i;
4936 char buf[32];
4937
4938 for_each_domain(cpu, sd)
4939 domain_num++;
4940 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4941 if (table == NULL)
4942 return NULL;
4943
4944 i = 0;
4945 for_each_domain(cpu, sd) {
4946 snprintf(buf, 32, "domain%d", i);
4947 entry->procname = kstrdup(buf, GFP_KERNEL);
4948 entry->mode = 0555;
4949 entry->child = sd_alloc_ctl_domain_table(sd);
4950 entry++;
4951 i++;
4952 }
4953 return table;
4954 }
4955
4956 static struct ctl_table_header *sd_sysctl_header;
4957 static void register_sched_domain_sysctl(void)
4958 {
4959 int i, cpu_num = num_possible_cpus();
4960 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4961 char buf[32];
4962
4963 WARN_ON(sd_ctl_dir[0].child);
4964 sd_ctl_dir[0].child = entry;
4965
4966 if (entry == NULL)
4967 return;
4968
4969 for_each_possible_cpu(i) {
4970 snprintf(buf, 32, "cpu%d", i);
4971 entry->procname = kstrdup(buf, GFP_KERNEL);
4972 entry->mode = 0555;
4973 entry->child = sd_alloc_ctl_cpu_table(i);
4974 entry++;
4975 }
4976
4977 WARN_ON(sd_sysctl_header);
4978 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4979 }
4980
4981 /* may be called multiple times per register */
4982 static void unregister_sched_domain_sysctl(void)
4983 {
4984 if (sd_sysctl_header)
4985 unregister_sysctl_table(sd_sysctl_header);
4986 sd_sysctl_header = NULL;
4987 if (sd_ctl_dir[0].child)
4988 sd_free_ctl_entry(&sd_ctl_dir[0].child);
4989 }
4990 #else
4991 static void register_sched_domain_sysctl(void)
4992 {
4993 }
4994 static void unregister_sched_domain_sysctl(void)
4995 {
4996 }
4997 #endif
4998
4999 static void set_rq_online(struct rq *rq)
5000 {
5001 if (!rq->online) {
5002 const struct sched_class *class;
5003
5004 cpumask_set_cpu(rq->cpu, rq->rd->online);
5005 rq->online = 1;
5006
5007 for_each_class(class) {
5008 if (class->rq_online)
5009 class->rq_online(rq);
5010 }
5011 }
5012 }
5013
5014 static void set_rq_offline(struct rq *rq)
5015 {
5016 if (rq->online) {
5017 const struct sched_class *class;
5018
5019 for_each_class(class) {
5020 if (class->rq_offline)
5021 class->rq_offline(rq);
5022 }
5023
5024 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5025 rq->online = 0;
5026 }
5027 }
5028
5029 /*
5030 * migration_call - callback that gets triggered when a CPU is added.
5031 * Here we can start up the necessary migration thread for the new CPU.
5032 */
5033 static int
5034 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5035 {
5036 int cpu = (long)hcpu;
5037 unsigned long flags;
5038 struct rq *rq = cpu_rq(cpu);
5039
5040 switch (action & ~CPU_TASKS_FROZEN) {
5041
5042 case CPU_UP_PREPARE:
5043 rq->calc_load_update = calc_load_update;
5044 break;
5045
5046 case CPU_ONLINE:
5047 /* Update our root-domain */
5048 raw_spin_lock_irqsave(&rq->lock, flags);
5049 if (rq->rd) {
5050 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5051
5052 set_rq_online(rq);
5053 }
5054 raw_spin_unlock_irqrestore(&rq->lock, flags);
5055 break;
5056
5057 #ifdef CONFIG_HOTPLUG_CPU
5058 case CPU_DYING:
5059 sched_ttwu_pending();
5060 /* Update our root-domain */
5061 raw_spin_lock_irqsave(&rq->lock, flags);
5062 if (rq->rd) {
5063 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5064 set_rq_offline(rq);
5065 }
5066 migrate_tasks(cpu);
5067 BUG_ON(rq->nr_running != 1); /* the migration thread */
5068 raw_spin_unlock_irqrestore(&rq->lock, flags);
5069 break;
5070
5071 case CPU_DEAD:
5072 calc_load_migrate(rq);
5073 break;
5074 #endif
5075 }
5076
5077 update_max_interval();
5078
5079 return NOTIFY_OK;
5080 }
5081
5082 /*
5083 * Register at high priority so that task migration (migrate_all_tasks)
5084 * happens before everything else. This has to be lower priority than
5085 * the notifier in the perf_event subsystem, though.
5086 */
5087 static struct notifier_block migration_notifier = {
5088 .notifier_call = migration_call,
5089 .priority = CPU_PRI_MIGRATION,
5090 };
5091
5092 static void __cpuinit set_cpu_rq_start_time(void)
5093 {
5094 int cpu = smp_processor_id();
5095 struct rq *rq = cpu_rq(cpu);
5096 rq->age_stamp = sched_clock_cpu(cpu);
5097 }
5098
5099 static int sched_cpu_active(struct notifier_block *nfb,
5100 unsigned long action, void *hcpu)
5101 {
5102 switch (action & ~CPU_TASKS_FROZEN) {
5103 case CPU_STARTING:
5104 set_cpu_rq_start_time();
5105 return NOTIFY_OK;
5106 case CPU_DOWN_FAILED:
5107 set_cpu_active((long)hcpu, true);
5108 return NOTIFY_OK;
5109 default:
5110 return NOTIFY_DONE;
5111 }
5112 }
5113
5114 static int sched_cpu_inactive(struct notifier_block *nfb,
5115 unsigned long action, void *hcpu)
5116 {
5117 unsigned long flags;
5118 long cpu = (long)hcpu;
5119
5120 switch (action & ~CPU_TASKS_FROZEN) {
5121 case CPU_DOWN_PREPARE:
5122 set_cpu_active(cpu, false);
5123
5124 /* explicitly allow suspend */
5125 if (!(action & CPU_TASKS_FROZEN)) {
5126 struct dl_bw *dl_b = dl_bw_of(cpu);
5127 bool overflow;
5128 int cpus;
5129
5130 raw_spin_lock_irqsave(&dl_b->lock, flags);
5131 cpus = dl_bw_cpus(cpu);
5132 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5133 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5134
5135 if (overflow)
5136 return notifier_from_errno(-EBUSY);
5137 }
5138 return NOTIFY_OK;
5139 }
5140
5141 return NOTIFY_DONE;
5142 }
5143
5144 static int __init migration_init(void)
5145 {
5146 void *cpu = (void *)(long)smp_processor_id();
5147 int err;
5148
5149 /* Initialize migration for the boot CPU */
5150 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5151 BUG_ON(err == NOTIFY_BAD);
5152 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5153 register_cpu_notifier(&migration_notifier);
5154
5155 /* Register cpu active notifiers */
5156 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5157 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5158
5159 return 0;
5160 }
5161 early_initcall(migration_init);
5162 #endif
5163
5164 #ifdef CONFIG_SMP
5165
5166 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5167
5168 #ifdef CONFIG_SCHED_DEBUG
5169
5170 static __read_mostly int sched_debug_enabled;
5171
5172 static int __init sched_debug_setup(char *str)
5173 {
5174 sched_debug_enabled = 1;
5175
5176 return 0;
5177 }
5178 early_param("sched_debug", sched_debug_setup);
5179
5180 static inline bool sched_debug(void)
5181 {
5182 return sched_debug_enabled;
5183 }
5184
5185 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5186 struct cpumask *groupmask)
5187 {
5188 struct sched_group *group = sd->groups;
5189 char str[256];
5190
5191 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5192 cpumask_clear(groupmask);
5193
5194 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5195
5196 if (!(sd->flags & SD_LOAD_BALANCE)) {
5197 printk("does not load-balance\n");
5198 if (sd->parent)
5199 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5200 " has parent");
5201 return -1;
5202 }
5203
5204 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5205
5206 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5207 printk(KERN_ERR "ERROR: domain->span does not contain "
5208 "CPU%d\n", cpu);
5209 }
5210 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5211 printk(KERN_ERR "ERROR: domain->groups does not contain"
5212 " CPU%d\n", cpu);
5213 }
5214
5215 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5216 do {
5217 if (!group) {
5218 printk("\n");
5219 printk(KERN_ERR "ERROR: group is NULL\n");
5220 break;
5221 }
5222
5223 /*
5224 * Even though we initialize ->capacity to something semi-sane,
5225 * we leave capacity_orig unset. This allows us to detect if
5226 * domain iteration is still funny without causing /0 traps.
5227 */
5228 if (!group->sgc->capacity_orig) {
5229 printk(KERN_CONT "\n");
5230 printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
5231 break;
5232 }
5233
5234 if (!cpumask_weight(sched_group_cpus(group))) {
5235 printk(KERN_CONT "\n");
5236 printk(KERN_ERR "ERROR: empty group\n");
5237 break;
5238 }
5239
5240 if (!(sd->flags & SD_OVERLAP) &&
5241 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5242 printk(KERN_CONT "\n");
5243 printk(KERN_ERR "ERROR: repeated CPUs\n");
5244 break;
5245 }
5246
5247 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5248
5249 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5250
5251 printk(KERN_CONT " %s", str);
5252 if (group->sgc->capacity != SCHED_POWER_SCALE) {
5253 printk(KERN_CONT " (cpu_capacity = %d)",
5254 group->sgc->capacity);
5255 }
5256
5257 group = group->next;
5258 } while (group != sd->groups);
5259 printk(KERN_CONT "\n");
5260
5261 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5262 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5263
5264 if (sd->parent &&
5265 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5266 printk(KERN_ERR "ERROR: parent span is not a superset "
5267 "of domain->span\n");
5268 return 0;
5269 }
5270
5271 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5272 {
5273 int level = 0;
5274
5275 if (!sched_debug_enabled)
5276 return;
5277
5278 if (!sd) {
5279 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5280 return;
5281 }
5282
5283 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5284
5285 for (;;) {
5286 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5287 break;
5288 level++;
5289 sd = sd->parent;
5290 if (!sd)
5291 break;
5292 }
5293 }
5294 #else /* !CONFIG_SCHED_DEBUG */
5295 # define sched_domain_debug(sd, cpu) do { } while (0)
5296 static inline bool sched_debug(void)
5297 {
5298 return false;
5299 }
5300 #endif /* CONFIG_SCHED_DEBUG */
5301
5302 static int sd_degenerate(struct sched_domain *sd)
5303 {
5304 if (cpumask_weight(sched_domain_span(sd)) == 1)
5305 return 1;
5306
5307 /* Following flags need at least 2 groups */
5308 if (sd->flags & (SD_LOAD_BALANCE |
5309 SD_BALANCE_NEWIDLE |
5310 SD_BALANCE_FORK |
5311 SD_BALANCE_EXEC |
5312 SD_SHARE_CPUPOWER |
5313 SD_SHARE_PKG_RESOURCES |
5314 SD_SHARE_POWERDOMAIN)) {
5315 if (sd->groups != sd->groups->next)
5316 return 0;
5317 }
5318
5319 /* Following flags don't use groups */
5320 if (sd->flags & (SD_WAKE_AFFINE))
5321 return 0;
5322
5323 return 1;
5324 }
5325
5326 static int
5327 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5328 {
5329 unsigned long cflags = sd->flags, pflags = parent->flags;
5330
5331 if (sd_degenerate(parent))
5332 return 1;
5333
5334 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5335 return 0;
5336
5337 /* Flags needing groups don't count if only 1 group in parent */
5338 if (parent->groups == parent->groups->next) {
5339 pflags &= ~(SD_LOAD_BALANCE |
5340 SD_BALANCE_NEWIDLE |
5341 SD_BALANCE_FORK |
5342 SD_BALANCE_EXEC |
5343 SD_SHARE_CPUPOWER |
5344 SD_SHARE_PKG_RESOURCES |
5345 SD_PREFER_SIBLING |
5346 SD_SHARE_POWERDOMAIN);
5347 if (nr_node_ids == 1)
5348 pflags &= ~SD_SERIALIZE;
5349 }
5350 if (~cflags & pflags)
5351 return 0;
5352
5353 return 1;
5354 }
5355
5356 static void free_rootdomain(struct rcu_head *rcu)
5357 {
5358 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5359
5360 cpupri_cleanup(&rd->cpupri);
5361 cpudl_cleanup(&rd->cpudl);
5362 free_cpumask_var(rd->dlo_mask);
5363 free_cpumask_var(rd->rto_mask);
5364 free_cpumask_var(rd->online);
5365 free_cpumask_var(rd->span);
5366 kfree(rd);
5367 }
5368
5369 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5370 {
5371 struct root_domain *old_rd = NULL;
5372 unsigned long flags;
5373
5374 raw_spin_lock_irqsave(&rq->lock, flags);
5375
5376 if (rq->rd) {
5377 old_rd = rq->rd;
5378
5379 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5380 set_rq_offline(rq);
5381
5382 cpumask_clear_cpu(rq->cpu, old_rd->span);
5383
5384 /*
5385 * If we dont want to free the old_rd yet then
5386 * set old_rd to NULL to skip the freeing later
5387 * in this function:
5388 */
5389 if (!atomic_dec_and_test(&old_rd->refcount))
5390 old_rd = NULL;
5391 }
5392
5393 atomic_inc(&rd->refcount);
5394 rq->rd = rd;
5395
5396 cpumask_set_cpu(rq->cpu, rd->span);
5397 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5398 set_rq_online(rq);
5399
5400 raw_spin_unlock_irqrestore(&rq->lock, flags);
5401
5402 if (old_rd)
5403 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5404 }
5405
5406 static int init_rootdomain(struct root_domain *rd)
5407 {
5408 memset(rd, 0, sizeof(*rd));
5409
5410 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5411 goto out;
5412 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5413 goto free_span;
5414 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5415 goto free_online;
5416 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5417 goto free_dlo_mask;
5418
5419 init_dl_bw(&rd->dl_bw);
5420 if (cpudl_init(&rd->cpudl) != 0)
5421 goto free_dlo_mask;
5422
5423 if (cpupri_init(&rd->cpupri) != 0)
5424 goto free_rto_mask;
5425 return 0;
5426
5427 free_rto_mask:
5428 free_cpumask_var(rd->rto_mask);
5429 free_dlo_mask:
5430 free_cpumask_var(rd->dlo_mask);
5431 free_online:
5432 free_cpumask_var(rd->online);
5433 free_span:
5434 free_cpumask_var(rd->span);
5435 out:
5436 return -ENOMEM;
5437 }
5438
5439 /*
5440 * By default the system creates a single root-domain with all cpus as
5441 * members (mimicking the global state we have today).
5442 */
5443 struct root_domain def_root_domain;
5444
5445 static void init_defrootdomain(void)
5446 {
5447 init_rootdomain(&def_root_domain);
5448
5449 atomic_set(&def_root_domain.refcount, 1);
5450 }
5451
5452 static struct root_domain *alloc_rootdomain(void)
5453 {
5454 struct root_domain *rd;
5455
5456 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5457 if (!rd)
5458 return NULL;
5459
5460 if (init_rootdomain(rd) != 0) {
5461 kfree(rd);
5462 return NULL;
5463 }
5464
5465 return rd;
5466 }
5467
5468 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5469 {
5470 struct sched_group *tmp, *first;
5471
5472 if (!sg)
5473 return;
5474
5475 first = sg;
5476 do {
5477 tmp = sg->next;
5478
5479 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5480 kfree(sg->sgc);
5481
5482 kfree(sg);
5483 sg = tmp;
5484 } while (sg != first);
5485 }
5486
5487 static void free_sched_domain(struct rcu_head *rcu)
5488 {
5489 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5490
5491 /*
5492 * If its an overlapping domain it has private groups, iterate and
5493 * nuke them all.
5494 */
5495 if (sd->flags & SD_OVERLAP) {
5496 free_sched_groups(sd->groups, 1);
5497 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5498 kfree(sd->groups->sgc);
5499 kfree(sd->groups);
5500 }
5501 kfree(sd);
5502 }
5503
5504 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5505 {
5506 call_rcu(&sd->rcu, free_sched_domain);
5507 }
5508
5509 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5510 {
5511 for (; sd; sd = sd->parent)
5512 destroy_sched_domain(sd, cpu);
5513 }
5514
5515 /*
5516 * Keep a special pointer to the highest sched_domain that has
5517 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5518 * allows us to avoid some pointer chasing select_idle_sibling().
5519 *
5520 * Also keep a unique ID per domain (we use the first cpu number in
5521 * the cpumask of the domain), this allows us to quickly tell if
5522 * two cpus are in the same cache domain, see cpus_share_cache().
5523 */
5524 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5525 DEFINE_PER_CPU(int, sd_llc_size);
5526 DEFINE_PER_CPU(int, sd_llc_id);
5527 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5528 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5529 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5530
5531 static void update_top_cache_domain(int cpu)
5532 {
5533 struct sched_domain *sd;
5534 struct sched_domain *busy_sd = NULL;
5535 int id = cpu;
5536 int size = 1;
5537
5538 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5539 if (sd) {
5540 id = cpumask_first(sched_domain_span(sd));
5541 size = cpumask_weight(sched_domain_span(sd));
5542 busy_sd = sd->parent; /* sd_busy */
5543 }
5544 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5545
5546 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5547 per_cpu(sd_llc_size, cpu) = size;
5548 per_cpu(sd_llc_id, cpu) = id;
5549
5550 sd = lowest_flag_domain(cpu, SD_NUMA);
5551 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5552
5553 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5554 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5555 }
5556
5557 /*
5558 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5559 * hold the hotplug lock.
5560 */
5561 static void
5562 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5563 {
5564 struct rq *rq = cpu_rq(cpu);
5565 struct sched_domain *tmp;
5566
5567 /* Remove the sched domains which do not contribute to scheduling. */
5568 for (tmp = sd; tmp; ) {
5569 struct sched_domain *parent = tmp->parent;
5570 if (!parent)
5571 break;
5572
5573 if (sd_parent_degenerate(tmp, parent)) {
5574 tmp->parent = parent->parent;
5575 if (parent->parent)
5576 parent->parent->child = tmp;
5577 /*
5578 * Transfer SD_PREFER_SIBLING down in case of a
5579 * degenerate parent; the spans match for this
5580 * so the property transfers.
5581 */
5582 if (parent->flags & SD_PREFER_SIBLING)
5583 tmp->flags |= SD_PREFER_SIBLING;
5584 destroy_sched_domain(parent, cpu);
5585 } else
5586 tmp = tmp->parent;
5587 }
5588
5589 if (sd && sd_degenerate(sd)) {
5590 tmp = sd;
5591 sd = sd->parent;
5592 destroy_sched_domain(tmp, cpu);
5593 if (sd)
5594 sd->child = NULL;
5595 }
5596
5597 sched_domain_debug(sd, cpu);
5598
5599 rq_attach_root(rq, rd);
5600 tmp = rq->sd;
5601 rcu_assign_pointer(rq->sd, sd);
5602 destroy_sched_domains(tmp, cpu);
5603
5604 update_top_cache_domain(cpu);
5605 }
5606
5607 /* cpus with isolated domains */
5608 static cpumask_var_t cpu_isolated_map;
5609
5610 /* Setup the mask of cpus configured for isolated domains */
5611 static int __init isolated_cpu_setup(char *str)
5612 {
5613 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5614 cpulist_parse(str, cpu_isolated_map);
5615 return 1;
5616 }
5617
5618 __setup("isolcpus=", isolated_cpu_setup);
5619
5620 struct s_data {
5621 struct sched_domain ** __percpu sd;
5622 struct root_domain *rd;
5623 };
5624
5625 enum s_alloc {
5626 sa_rootdomain,
5627 sa_sd,
5628 sa_sd_storage,
5629 sa_none,
5630 };
5631
5632 /*
5633 * Build an iteration mask that can exclude certain CPUs from the upwards
5634 * domain traversal.
5635 *
5636 * Asymmetric node setups can result in situations where the domain tree is of
5637 * unequal depth, make sure to skip domains that already cover the entire
5638 * range.
5639 *
5640 * In that case build_sched_domains() will have terminated the iteration early
5641 * and our sibling sd spans will be empty. Domains should always include the
5642 * cpu they're built on, so check that.
5643 *
5644 */
5645 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5646 {
5647 const struct cpumask *span = sched_domain_span(sd);
5648 struct sd_data *sdd = sd->private;
5649 struct sched_domain *sibling;
5650 int i;
5651
5652 for_each_cpu(i, span) {
5653 sibling = *per_cpu_ptr(sdd->sd, i);
5654 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5655 continue;
5656
5657 cpumask_set_cpu(i, sched_group_mask(sg));
5658 }
5659 }
5660
5661 /*
5662 * Return the canonical balance cpu for this group, this is the first cpu
5663 * of this group that's also in the iteration mask.
5664 */
5665 int group_balance_cpu(struct sched_group *sg)
5666 {
5667 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5668 }
5669
5670 static int
5671 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5672 {
5673 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5674 const struct cpumask *span = sched_domain_span(sd);
5675 struct cpumask *covered = sched_domains_tmpmask;
5676 struct sd_data *sdd = sd->private;
5677 struct sched_domain *child;
5678 int i;
5679
5680 cpumask_clear(covered);
5681
5682 for_each_cpu(i, span) {
5683 struct cpumask *sg_span;
5684
5685 if (cpumask_test_cpu(i, covered))
5686 continue;
5687
5688 child = *per_cpu_ptr(sdd->sd, i);
5689
5690 /* See the comment near build_group_mask(). */
5691 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5692 continue;
5693
5694 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5695 GFP_KERNEL, cpu_to_node(cpu));
5696
5697 if (!sg)
5698 goto fail;
5699
5700 sg_span = sched_group_cpus(sg);
5701 if (child->child) {
5702 child = child->child;
5703 cpumask_copy(sg_span, sched_domain_span(child));
5704 } else
5705 cpumask_set_cpu(i, sg_span);
5706
5707 cpumask_or(covered, covered, sg_span);
5708
5709 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5710 if (atomic_inc_return(&sg->sgc->ref) == 1)
5711 build_group_mask(sd, sg);
5712
5713 /*
5714 * Initialize sgc->capacity such that even if we mess up the
5715 * domains and no possible iteration will get us here, we won't
5716 * die on a /0 trap.
5717 */
5718 sg->sgc->capacity = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5719 sg->sgc->capacity_orig = sg->sgc->capacity;
5720
5721 /*
5722 * Make sure the first group of this domain contains the
5723 * canonical balance cpu. Otherwise the sched_domain iteration
5724 * breaks. See update_sg_lb_stats().
5725 */
5726 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5727 group_balance_cpu(sg) == cpu)
5728 groups = sg;
5729
5730 if (!first)
5731 first = sg;
5732 if (last)
5733 last->next = sg;
5734 last = sg;
5735 last->next = first;
5736 }
5737 sd->groups = groups;
5738
5739 return 0;
5740
5741 fail:
5742 free_sched_groups(first, 0);
5743
5744 return -ENOMEM;
5745 }
5746
5747 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5748 {
5749 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5750 struct sched_domain *child = sd->child;
5751
5752 if (child)
5753 cpu = cpumask_first(sched_domain_span(child));
5754
5755 if (sg) {
5756 *sg = *per_cpu_ptr(sdd->sg, cpu);
5757 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5758 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5759 }
5760
5761 return cpu;
5762 }
5763
5764 /*
5765 * build_sched_groups will build a circular linked list of the groups
5766 * covered by the given span, and will set each group's ->cpumask correctly,
5767 * and ->cpu_power to 0.
5768 *
5769 * Assumes the sched_domain tree is fully constructed
5770 */
5771 static int
5772 build_sched_groups(struct sched_domain *sd, int cpu)
5773 {
5774 struct sched_group *first = NULL, *last = NULL;
5775 struct sd_data *sdd = sd->private;
5776 const struct cpumask *span = sched_domain_span(sd);
5777 struct cpumask *covered;
5778 int i;
5779
5780 get_group(cpu, sdd, &sd->groups);
5781 atomic_inc(&sd->groups->ref);
5782
5783 if (cpu != cpumask_first(span))
5784 return 0;
5785
5786 lockdep_assert_held(&sched_domains_mutex);
5787 covered = sched_domains_tmpmask;
5788
5789 cpumask_clear(covered);
5790
5791 for_each_cpu(i, span) {
5792 struct sched_group *sg;
5793 int group, j;
5794
5795 if (cpumask_test_cpu(i, covered))
5796 continue;
5797
5798 group = get_group(i, sdd, &sg);
5799 cpumask_setall(sched_group_mask(sg));
5800
5801 for_each_cpu(j, span) {
5802 if (get_group(j, sdd, NULL) != group)
5803 continue;
5804
5805 cpumask_set_cpu(j, covered);
5806 cpumask_set_cpu(j, sched_group_cpus(sg));
5807 }
5808
5809 if (!first)
5810 first = sg;
5811 if (last)
5812 last->next = sg;
5813 last = sg;
5814 }
5815 last->next = first;
5816
5817 return 0;
5818 }
5819
5820 /*
5821 * Initialize sched groups cpu_capacity.
5822 *
5823 * cpu_capacity indicates the capacity of sched group, which is used while
5824 * distributing the load between different sched groups in a sched domain.
5825 * Typically cpu_capacity for all the groups in a sched domain will be same
5826 * unless there are asymmetries in the topology. If there are asymmetries,
5827 * group having more cpu_capacity will pickup more load compared to the
5828 * group having less cpu_capacity.
5829 */
5830 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5831 {
5832 struct sched_group *sg = sd->groups;
5833
5834 WARN_ON(!sg);
5835
5836 do {
5837 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5838 sg = sg->next;
5839 } while (sg != sd->groups);
5840
5841 if (cpu != group_balance_cpu(sg))
5842 return;
5843
5844 update_group_capacity(sd, cpu);
5845 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5846 }
5847
5848 /*
5849 * Initializers for schedule domains
5850 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5851 */
5852
5853 static int default_relax_domain_level = -1;
5854 int sched_domain_level_max;
5855
5856 static int __init setup_relax_domain_level(char *str)
5857 {
5858 if (kstrtoint(str, 0, &default_relax_domain_level))
5859 pr_warn("Unable to set relax_domain_level\n");
5860
5861 return 1;
5862 }
5863 __setup("relax_domain_level=", setup_relax_domain_level);
5864
5865 static void set_domain_attribute(struct sched_domain *sd,
5866 struct sched_domain_attr *attr)
5867 {
5868 int request;
5869
5870 if (!attr || attr->relax_domain_level < 0) {
5871 if (default_relax_domain_level < 0)
5872 return;
5873 else
5874 request = default_relax_domain_level;
5875 } else
5876 request = attr->relax_domain_level;
5877 if (request < sd->level) {
5878 /* turn off idle balance on this domain */
5879 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5880 } else {
5881 /* turn on idle balance on this domain */
5882 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5883 }
5884 }
5885
5886 static void __sdt_free(const struct cpumask *cpu_map);
5887 static int __sdt_alloc(const struct cpumask *cpu_map);
5888
5889 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5890 const struct cpumask *cpu_map)
5891 {
5892 switch (what) {
5893 case sa_rootdomain:
5894 if (!atomic_read(&d->rd->refcount))
5895 free_rootdomain(&d->rd->rcu); /* fall through */
5896 case sa_sd:
5897 free_percpu(d->sd); /* fall through */
5898 case sa_sd_storage:
5899 __sdt_free(cpu_map); /* fall through */
5900 case sa_none:
5901 break;
5902 }
5903 }
5904
5905 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5906 const struct cpumask *cpu_map)
5907 {
5908 memset(d, 0, sizeof(*d));
5909
5910 if (__sdt_alloc(cpu_map))
5911 return sa_sd_storage;
5912 d->sd = alloc_percpu(struct sched_domain *);
5913 if (!d->sd)
5914 return sa_sd_storage;
5915 d->rd = alloc_rootdomain();
5916 if (!d->rd)
5917 return sa_sd;
5918 return sa_rootdomain;
5919 }
5920
5921 /*
5922 * NULL the sd_data elements we've used to build the sched_domain and
5923 * sched_group structure so that the subsequent __free_domain_allocs()
5924 * will not free the data we're using.
5925 */
5926 static void claim_allocations(int cpu, struct sched_domain *sd)
5927 {
5928 struct sd_data *sdd = sd->private;
5929
5930 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5931 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5932
5933 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5934 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5935
5936 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
5937 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
5938 }
5939
5940 #ifdef CONFIG_NUMA
5941 static int sched_domains_numa_levels;
5942 static int *sched_domains_numa_distance;
5943 static struct cpumask ***sched_domains_numa_masks;
5944 static int sched_domains_curr_level;
5945 #endif
5946
5947 /*
5948 * SD_flags allowed in topology descriptions.
5949 *
5950 * SD_SHARE_CPUPOWER - describes SMT topologies
5951 * SD_SHARE_PKG_RESOURCES - describes shared caches
5952 * SD_NUMA - describes NUMA topologies
5953 * SD_SHARE_POWERDOMAIN - describes shared power domain
5954 *
5955 * Odd one out:
5956 * SD_ASYM_PACKING - describes SMT quirks
5957 */
5958 #define TOPOLOGY_SD_FLAGS \
5959 (SD_SHARE_CPUPOWER | \
5960 SD_SHARE_PKG_RESOURCES | \
5961 SD_NUMA | \
5962 SD_ASYM_PACKING | \
5963 SD_SHARE_POWERDOMAIN)
5964
5965 static struct sched_domain *
5966 sd_init(struct sched_domain_topology_level *tl, int cpu)
5967 {
5968 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5969 int sd_weight, sd_flags = 0;
5970
5971 #ifdef CONFIG_NUMA
5972 /*
5973 * Ugly hack to pass state to sd_numa_mask()...
5974 */
5975 sched_domains_curr_level = tl->numa_level;
5976 #endif
5977
5978 sd_weight = cpumask_weight(tl->mask(cpu));
5979
5980 if (tl->sd_flags)
5981 sd_flags = (*tl->sd_flags)();
5982 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
5983 "wrong sd_flags in topology description\n"))
5984 sd_flags &= ~TOPOLOGY_SD_FLAGS;
5985
5986 *sd = (struct sched_domain){
5987 .min_interval = sd_weight,
5988 .max_interval = 2*sd_weight,
5989 .busy_factor = 32,
5990 .imbalance_pct = 125,
5991
5992 .cache_nice_tries = 0,
5993 .busy_idx = 0,
5994 .idle_idx = 0,
5995 .newidle_idx = 0,
5996 .wake_idx = 0,
5997 .forkexec_idx = 0,
5998
5999 .flags = 1*SD_LOAD_BALANCE
6000 | 1*SD_BALANCE_NEWIDLE
6001 | 1*SD_BALANCE_EXEC
6002 | 1*SD_BALANCE_FORK
6003 | 0*SD_BALANCE_WAKE
6004 | 1*SD_WAKE_AFFINE
6005 | 0*SD_SHARE_CPUPOWER
6006 | 0*SD_SHARE_PKG_RESOURCES
6007 | 0*SD_SERIALIZE
6008 | 0*SD_PREFER_SIBLING
6009 | 0*SD_NUMA
6010 | sd_flags
6011 ,
6012
6013 .last_balance = jiffies,
6014 .balance_interval = sd_weight,
6015 .smt_gain = 0,
6016 .max_newidle_lb_cost = 0,
6017 .next_decay_max_lb_cost = jiffies,
6018 #ifdef CONFIG_SCHED_DEBUG
6019 .name = tl->name,
6020 #endif
6021 };
6022
6023 /*
6024 * Convert topological properties into behaviour.
6025 */
6026
6027 if (sd->flags & SD_SHARE_CPUPOWER) {
6028 sd->imbalance_pct = 110;
6029 sd->smt_gain = 1178; /* ~15% */
6030
6031 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6032 sd->imbalance_pct = 117;
6033 sd->cache_nice_tries = 1;
6034 sd->busy_idx = 2;
6035
6036 #ifdef CONFIG_NUMA
6037 } else if (sd->flags & SD_NUMA) {
6038 sd->cache_nice_tries = 2;
6039 sd->busy_idx = 3;
6040 sd->idle_idx = 2;
6041
6042 sd->flags |= SD_SERIALIZE;
6043 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6044 sd->flags &= ~(SD_BALANCE_EXEC |
6045 SD_BALANCE_FORK |
6046 SD_WAKE_AFFINE);
6047 }
6048
6049 #endif
6050 } else {
6051 sd->flags |= SD_PREFER_SIBLING;
6052 sd->cache_nice_tries = 1;
6053 sd->busy_idx = 2;
6054 sd->idle_idx = 1;
6055 }
6056
6057 sd->private = &tl->data;
6058
6059 return sd;
6060 }
6061
6062 /*
6063 * Topology list, bottom-up.
6064 */
6065 static struct sched_domain_topology_level default_topology[] = {
6066 #ifdef CONFIG_SCHED_SMT
6067 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6068 #endif
6069 #ifdef CONFIG_SCHED_MC
6070 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6071 #endif
6072 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6073 { NULL, },
6074 };
6075
6076 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6077
6078 #define for_each_sd_topology(tl) \
6079 for (tl = sched_domain_topology; tl->mask; tl++)
6080
6081 void set_sched_topology(struct sched_domain_topology_level *tl)
6082 {
6083 sched_domain_topology = tl;
6084 }
6085
6086 #ifdef CONFIG_NUMA
6087
6088 static const struct cpumask *sd_numa_mask(int cpu)
6089 {
6090 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6091 }
6092
6093 static void sched_numa_warn(const char *str)
6094 {
6095 static int done = false;
6096 int i,j;
6097
6098 if (done)
6099 return;
6100
6101 done = true;
6102
6103 printk(KERN_WARNING "ERROR: %s\n\n", str);
6104
6105 for (i = 0; i < nr_node_ids; i++) {
6106 printk(KERN_WARNING " ");
6107 for (j = 0; j < nr_node_ids; j++)
6108 printk(KERN_CONT "%02d ", node_distance(i,j));
6109 printk(KERN_CONT "\n");
6110 }
6111 printk(KERN_WARNING "\n");
6112 }
6113
6114 static bool find_numa_distance(int distance)
6115 {
6116 int i;
6117
6118 if (distance == node_distance(0, 0))
6119 return true;
6120
6121 for (i = 0; i < sched_domains_numa_levels; i++) {
6122 if (sched_domains_numa_distance[i] == distance)
6123 return true;
6124 }
6125
6126 return false;
6127 }
6128
6129 static void sched_init_numa(void)
6130 {
6131 int next_distance, curr_distance = node_distance(0, 0);
6132 struct sched_domain_topology_level *tl;
6133 int level = 0;
6134 int i, j, k;
6135
6136 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6137 if (!sched_domains_numa_distance)
6138 return;
6139
6140 /*
6141 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6142 * unique distances in the node_distance() table.
6143 *
6144 * Assumes node_distance(0,j) includes all distances in
6145 * node_distance(i,j) in order to avoid cubic time.
6146 */
6147 next_distance = curr_distance;
6148 for (i = 0; i < nr_node_ids; i++) {
6149 for (j = 0; j < nr_node_ids; j++) {
6150 for (k = 0; k < nr_node_ids; k++) {
6151 int distance = node_distance(i, k);
6152
6153 if (distance > curr_distance &&
6154 (distance < next_distance ||
6155 next_distance == curr_distance))
6156 next_distance = distance;
6157
6158 /*
6159 * While not a strong assumption it would be nice to know
6160 * about cases where if node A is connected to B, B is not
6161 * equally connected to A.
6162 */
6163 if (sched_debug() && node_distance(k, i) != distance)
6164 sched_numa_warn("Node-distance not symmetric");
6165
6166 if (sched_debug() && i && !find_numa_distance(distance))
6167 sched_numa_warn("Node-0 not representative");
6168 }
6169 if (next_distance != curr_distance) {
6170 sched_domains_numa_distance[level++] = next_distance;
6171 sched_domains_numa_levels = level;
6172 curr_distance = next_distance;
6173 } else break;
6174 }
6175
6176 /*
6177 * In case of sched_debug() we verify the above assumption.
6178 */
6179 if (!sched_debug())
6180 break;
6181 }
6182 /*
6183 * 'level' contains the number of unique distances, excluding the
6184 * identity distance node_distance(i,i).
6185 *
6186 * The sched_domains_numa_distance[] array includes the actual distance
6187 * numbers.
6188 */
6189
6190 /*
6191 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6192 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6193 * the array will contain less then 'level' members. This could be
6194 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6195 * in other functions.
6196 *
6197 * We reset it to 'level' at the end of this function.
6198 */
6199 sched_domains_numa_levels = 0;
6200
6201 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6202 if (!sched_domains_numa_masks)
6203 return;
6204
6205 /*
6206 * Now for each level, construct a mask per node which contains all
6207 * cpus of nodes that are that many hops away from us.
6208 */
6209 for (i = 0; i < level; i++) {
6210 sched_domains_numa_masks[i] =
6211 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6212 if (!sched_domains_numa_masks[i])
6213 return;
6214
6215 for (j = 0; j < nr_node_ids; j++) {
6216 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6217 if (!mask)
6218 return;
6219
6220 sched_domains_numa_masks[i][j] = mask;
6221
6222 for (k = 0; k < nr_node_ids; k++) {
6223 if (node_distance(j, k) > sched_domains_numa_distance[i])
6224 continue;
6225
6226 cpumask_or(mask, mask, cpumask_of_node(k));
6227 }
6228 }
6229 }
6230
6231 /* Compute default topology size */
6232 for (i = 0; sched_domain_topology[i].mask; i++);
6233
6234 tl = kzalloc((i + level + 1) *
6235 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6236 if (!tl)
6237 return;
6238
6239 /*
6240 * Copy the default topology bits..
6241 */
6242 for (i = 0; sched_domain_topology[i].mask; i++)
6243 tl[i] = sched_domain_topology[i];
6244
6245 /*
6246 * .. and append 'j' levels of NUMA goodness.
6247 */
6248 for (j = 0; j < level; i++, j++) {
6249 tl[i] = (struct sched_domain_topology_level){
6250 .mask = sd_numa_mask,
6251 .sd_flags = cpu_numa_flags,
6252 .flags = SDTL_OVERLAP,
6253 .numa_level = j,
6254 SD_INIT_NAME(NUMA)
6255 };
6256 }
6257
6258 sched_domain_topology = tl;
6259
6260 sched_domains_numa_levels = level;
6261 }
6262
6263 static void sched_domains_numa_masks_set(int cpu)
6264 {
6265 int i, j;
6266 int node = cpu_to_node(cpu);
6267
6268 for (i = 0; i < sched_domains_numa_levels; i++) {
6269 for (j = 0; j < nr_node_ids; j++) {
6270 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6271 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6272 }
6273 }
6274 }
6275
6276 static void sched_domains_numa_masks_clear(int cpu)
6277 {
6278 int i, j;
6279 for (i = 0; i < sched_domains_numa_levels; i++) {
6280 for (j = 0; j < nr_node_ids; j++)
6281 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6282 }
6283 }
6284
6285 /*
6286 * Update sched_domains_numa_masks[level][node] array when new cpus
6287 * are onlined.
6288 */
6289 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6290 unsigned long action,
6291 void *hcpu)
6292 {
6293 int cpu = (long)hcpu;
6294
6295 switch (action & ~CPU_TASKS_FROZEN) {
6296 case CPU_ONLINE:
6297 sched_domains_numa_masks_set(cpu);
6298 break;
6299
6300 case CPU_DEAD:
6301 sched_domains_numa_masks_clear(cpu);
6302 break;
6303
6304 default:
6305 return NOTIFY_DONE;
6306 }
6307
6308 return NOTIFY_OK;
6309 }
6310 #else
6311 static inline void sched_init_numa(void)
6312 {
6313 }
6314
6315 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6316 unsigned long action,
6317 void *hcpu)
6318 {
6319 return 0;
6320 }
6321 #endif /* CONFIG_NUMA */
6322
6323 static int __sdt_alloc(const struct cpumask *cpu_map)
6324 {
6325 struct sched_domain_topology_level *tl;
6326 int j;
6327
6328 for_each_sd_topology(tl) {
6329 struct sd_data *sdd = &tl->data;
6330
6331 sdd->sd = alloc_percpu(struct sched_domain *);
6332 if (!sdd->sd)
6333 return -ENOMEM;
6334
6335 sdd->sg = alloc_percpu(struct sched_group *);
6336 if (!sdd->sg)
6337 return -ENOMEM;
6338
6339 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6340 if (!sdd->sgc)
6341 return -ENOMEM;
6342
6343 for_each_cpu(j, cpu_map) {
6344 struct sched_domain *sd;
6345 struct sched_group *sg;
6346 struct sched_group_capacity *sgc;
6347
6348 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6349 GFP_KERNEL, cpu_to_node(j));
6350 if (!sd)
6351 return -ENOMEM;
6352
6353 *per_cpu_ptr(sdd->sd, j) = sd;
6354
6355 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6356 GFP_KERNEL, cpu_to_node(j));
6357 if (!sg)
6358 return -ENOMEM;
6359
6360 sg->next = sg;
6361
6362 *per_cpu_ptr(sdd->sg, j) = sg;
6363
6364 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6365 GFP_KERNEL, cpu_to_node(j));
6366 if (!sgc)
6367 return -ENOMEM;
6368
6369 *per_cpu_ptr(sdd->sgc, j) = sgc;
6370 }
6371 }
6372
6373 return 0;
6374 }
6375
6376 static void __sdt_free(const struct cpumask *cpu_map)
6377 {
6378 struct sched_domain_topology_level *tl;
6379 int j;
6380
6381 for_each_sd_topology(tl) {
6382 struct sd_data *sdd = &tl->data;
6383
6384 for_each_cpu(j, cpu_map) {
6385 struct sched_domain *sd;
6386
6387 if (sdd->sd) {
6388 sd = *per_cpu_ptr(sdd->sd, j);
6389 if (sd && (sd->flags & SD_OVERLAP))
6390 free_sched_groups(sd->groups, 0);
6391 kfree(*per_cpu_ptr(sdd->sd, j));
6392 }
6393
6394 if (sdd->sg)
6395 kfree(*per_cpu_ptr(sdd->sg, j));
6396 if (sdd->sgc)
6397 kfree(*per_cpu_ptr(sdd->sgc, j));
6398 }
6399 free_percpu(sdd->sd);
6400 sdd->sd = NULL;
6401 free_percpu(sdd->sg);
6402 sdd->sg = NULL;
6403 free_percpu(sdd->sgc);
6404 sdd->sgc = NULL;
6405 }
6406 }
6407
6408 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6409 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6410 struct sched_domain *child, int cpu)
6411 {
6412 struct sched_domain *sd = sd_init(tl, cpu);
6413 if (!sd)
6414 return child;
6415
6416 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6417 if (child) {
6418 sd->level = child->level + 1;
6419 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6420 child->parent = sd;
6421 sd->child = child;
6422 }
6423 set_domain_attribute(sd, attr);
6424
6425 return sd;
6426 }
6427
6428 /*
6429 * Build sched domains for a given set of cpus and attach the sched domains
6430 * to the individual cpus
6431 */
6432 static int build_sched_domains(const struct cpumask *cpu_map,
6433 struct sched_domain_attr *attr)
6434 {
6435 enum s_alloc alloc_state;
6436 struct sched_domain *sd;
6437 struct s_data d;
6438 int i, ret = -ENOMEM;
6439
6440 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6441 if (alloc_state != sa_rootdomain)
6442 goto error;
6443
6444 /* Set up domains for cpus specified by the cpu_map. */
6445 for_each_cpu(i, cpu_map) {
6446 struct sched_domain_topology_level *tl;
6447
6448 sd = NULL;
6449 for_each_sd_topology(tl) {
6450 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6451 if (tl == sched_domain_topology)
6452 *per_cpu_ptr(d.sd, i) = sd;
6453 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6454 sd->flags |= SD_OVERLAP;
6455 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6456 break;
6457 }
6458 }
6459
6460 /* Build the groups for the domains */
6461 for_each_cpu(i, cpu_map) {
6462 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6463 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6464 if (sd->flags & SD_OVERLAP) {
6465 if (build_overlap_sched_groups(sd, i))
6466 goto error;
6467 } else {
6468 if (build_sched_groups(sd, i))
6469 goto error;
6470 }
6471 }
6472 }
6473
6474 /* Calculate CPU power for physical packages and nodes */
6475 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6476 if (!cpumask_test_cpu(i, cpu_map))
6477 continue;
6478
6479 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6480 claim_allocations(i, sd);
6481 init_sched_groups_capacity(i, sd);
6482 }
6483 }
6484
6485 /* Attach the domains */
6486 rcu_read_lock();
6487 for_each_cpu(i, cpu_map) {
6488 sd = *per_cpu_ptr(d.sd, i);
6489 cpu_attach_domain(sd, d.rd, i);
6490 }
6491 rcu_read_unlock();
6492
6493 ret = 0;
6494 error:
6495 __free_domain_allocs(&d, alloc_state, cpu_map);
6496 return ret;
6497 }
6498
6499 static cpumask_var_t *doms_cur; /* current sched domains */
6500 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6501 static struct sched_domain_attr *dattr_cur;
6502 /* attribues of custom domains in 'doms_cur' */
6503
6504 /*
6505 * Special case: If a kmalloc of a doms_cur partition (array of
6506 * cpumask) fails, then fallback to a single sched domain,
6507 * as determined by the single cpumask fallback_doms.
6508 */
6509 static cpumask_var_t fallback_doms;
6510
6511 /*
6512 * arch_update_cpu_topology lets virtualized architectures update the
6513 * cpu core maps. It is supposed to return 1 if the topology changed
6514 * or 0 if it stayed the same.
6515 */
6516 int __weak arch_update_cpu_topology(void)
6517 {
6518 return 0;
6519 }
6520
6521 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6522 {
6523 int i;
6524 cpumask_var_t *doms;
6525
6526 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6527 if (!doms)
6528 return NULL;
6529 for (i = 0; i < ndoms; i++) {
6530 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6531 free_sched_domains(doms, i);
6532 return NULL;
6533 }
6534 }
6535 return doms;
6536 }
6537
6538 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6539 {
6540 unsigned int i;
6541 for (i = 0; i < ndoms; i++)
6542 free_cpumask_var(doms[i]);
6543 kfree(doms);
6544 }
6545
6546 /*
6547 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6548 * For now this just excludes isolated cpus, but could be used to
6549 * exclude other special cases in the future.
6550 */
6551 static int init_sched_domains(const struct cpumask *cpu_map)
6552 {
6553 int err;
6554
6555 arch_update_cpu_topology();
6556 ndoms_cur = 1;
6557 doms_cur = alloc_sched_domains(ndoms_cur);
6558 if (!doms_cur)
6559 doms_cur = &fallback_doms;
6560 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6561 err = build_sched_domains(doms_cur[0], NULL);
6562 register_sched_domain_sysctl();
6563
6564 return err;
6565 }
6566
6567 /*
6568 * Detach sched domains from a group of cpus specified in cpu_map
6569 * These cpus will now be attached to the NULL domain
6570 */
6571 static void detach_destroy_domains(const struct cpumask *cpu_map)
6572 {
6573 int i;
6574
6575 rcu_read_lock();
6576 for_each_cpu(i, cpu_map)
6577 cpu_attach_domain(NULL, &def_root_domain, i);
6578 rcu_read_unlock();
6579 }
6580
6581 /* handle null as "default" */
6582 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6583 struct sched_domain_attr *new, int idx_new)
6584 {
6585 struct sched_domain_attr tmp;
6586
6587 /* fast path */
6588 if (!new && !cur)
6589 return 1;
6590
6591 tmp = SD_ATTR_INIT;
6592 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6593 new ? (new + idx_new) : &tmp,
6594 sizeof(struct sched_domain_attr));
6595 }
6596
6597 /*
6598 * Partition sched domains as specified by the 'ndoms_new'
6599 * cpumasks in the array doms_new[] of cpumasks. This compares
6600 * doms_new[] to the current sched domain partitioning, doms_cur[].
6601 * It destroys each deleted domain and builds each new domain.
6602 *
6603 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6604 * The masks don't intersect (don't overlap.) We should setup one
6605 * sched domain for each mask. CPUs not in any of the cpumasks will
6606 * not be load balanced. If the same cpumask appears both in the
6607 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6608 * it as it is.
6609 *
6610 * The passed in 'doms_new' should be allocated using
6611 * alloc_sched_domains. This routine takes ownership of it and will
6612 * free_sched_domains it when done with it. If the caller failed the
6613 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6614 * and partition_sched_domains() will fallback to the single partition
6615 * 'fallback_doms', it also forces the domains to be rebuilt.
6616 *
6617 * If doms_new == NULL it will be replaced with cpu_online_mask.
6618 * ndoms_new == 0 is a special case for destroying existing domains,
6619 * and it will not create the default domain.
6620 *
6621 * Call with hotplug lock held
6622 */
6623 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6624 struct sched_domain_attr *dattr_new)
6625 {
6626 int i, j, n;
6627 int new_topology;
6628
6629 mutex_lock(&sched_domains_mutex);
6630
6631 /* always unregister in case we don't destroy any domains */
6632 unregister_sched_domain_sysctl();
6633
6634 /* Let architecture update cpu core mappings. */
6635 new_topology = arch_update_cpu_topology();
6636
6637 n = doms_new ? ndoms_new : 0;
6638
6639 /* Destroy deleted domains */
6640 for (i = 0; i < ndoms_cur; i++) {
6641 for (j = 0; j < n && !new_topology; j++) {
6642 if (cpumask_equal(doms_cur[i], doms_new[j])
6643 && dattrs_equal(dattr_cur, i, dattr_new, j))
6644 goto match1;
6645 }
6646 /* no match - a current sched domain not in new doms_new[] */
6647 detach_destroy_domains(doms_cur[i]);
6648 match1:
6649 ;
6650 }
6651
6652 n = ndoms_cur;
6653 if (doms_new == NULL) {
6654 n = 0;
6655 doms_new = &fallback_doms;
6656 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6657 WARN_ON_ONCE(dattr_new);
6658 }
6659
6660 /* Build new domains */
6661 for (i = 0; i < ndoms_new; i++) {
6662 for (j = 0; j < n && !new_topology; j++) {
6663 if (cpumask_equal(doms_new[i], doms_cur[j])
6664 && dattrs_equal(dattr_new, i, dattr_cur, j))
6665 goto match2;
6666 }
6667 /* no match - add a new doms_new */
6668 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6669 match2:
6670 ;
6671 }
6672
6673 /* Remember the new sched domains */
6674 if (doms_cur != &fallback_doms)
6675 free_sched_domains(doms_cur, ndoms_cur);
6676 kfree(dattr_cur); /* kfree(NULL) is safe */
6677 doms_cur = doms_new;
6678 dattr_cur = dattr_new;
6679 ndoms_cur = ndoms_new;
6680
6681 register_sched_domain_sysctl();
6682
6683 mutex_unlock(&sched_domains_mutex);
6684 }
6685
6686 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6687
6688 /*
6689 * Update cpusets according to cpu_active mask. If cpusets are
6690 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6691 * around partition_sched_domains().
6692 *
6693 * If we come here as part of a suspend/resume, don't touch cpusets because we
6694 * want to restore it back to its original state upon resume anyway.
6695 */
6696 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6697 void *hcpu)
6698 {
6699 switch (action) {
6700 case CPU_ONLINE_FROZEN:
6701 case CPU_DOWN_FAILED_FROZEN:
6702
6703 /*
6704 * num_cpus_frozen tracks how many CPUs are involved in suspend
6705 * resume sequence. As long as this is not the last online
6706 * operation in the resume sequence, just build a single sched
6707 * domain, ignoring cpusets.
6708 */
6709 num_cpus_frozen--;
6710 if (likely(num_cpus_frozen)) {
6711 partition_sched_domains(1, NULL, NULL);
6712 break;
6713 }
6714
6715 /*
6716 * This is the last CPU online operation. So fall through and
6717 * restore the original sched domains by considering the
6718 * cpuset configurations.
6719 */
6720
6721 case CPU_ONLINE:
6722 case CPU_DOWN_FAILED:
6723 cpuset_update_active_cpus(true);
6724 break;
6725 default:
6726 return NOTIFY_DONE;
6727 }
6728 return NOTIFY_OK;
6729 }
6730
6731 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6732 void *hcpu)
6733 {
6734 switch (action) {
6735 case CPU_DOWN_PREPARE:
6736 cpuset_update_active_cpus(false);
6737 break;
6738 case CPU_DOWN_PREPARE_FROZEN:
6739 num_cpus_frozen++;
6740 partition_sched_domains(1, NULL, NULL);
6741 break;
6742 default:
6743 return NOTIFY_DONE;
6744 }
6745 return NOTIFY_OK;
6746 }
6747
6748 void __init sched_init_smp(void)
6749 {
6750 cpumask_var_t non_isolated_cpus;
6751
6752 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6753 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6754
6755 sched_init_numa();
6756
6757 /*
6758 * There's no userspace yet to cause hotplug operations; hence all the
6759 * cpu masks are stable and all blatant races in the below code cannot
6760 * happen.
6761 */
6762 mutex_lock(&sched_domains_mutex);
6763 init_sched_domains(cpu_active_mask);
6764 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6765 if (cpumask_empty(non_isolated_cpus))
6766 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6767 mutex_unlock(&sched_domains_mutex);
6768
6769 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6770 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6771 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6772
6773 init_hrtick();
6774
6775 /* Move init over to a non-isolated CPU */
6776 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6777 BUG();
6778 sched_init_granularity();
6779 free_cpumask_var(non_isolated_cpus);
6780
6781 init_sched_rt_class();
6782 init_sched_dl_class();
6783 }
6784 #else
6785 void __init sched_init_smp(void)
6786 {
6787 sched_init_granularity();
6788 }
6789 #endif /* CONFIG_SMP */
6790
6791 const_debug unsigned int sysctl_timer_migration = 1;
6792
6793 int in_sched_functions(unsigned long addr)
6794 {
6795 return in_lock_functions(addr) ||
6796 (addr >= (unsigned long)__sched_text_start
6797 && addr < (unsigned long)__sched_text_end);
6798 }
6799
6800 #ifdef CONFIG_CGROUP_SCHED
6801 /*
6802 * Default task group.
6803 * Every task in system belongs to this group at bootup.
6804 */
6805 struct task_group root_task_group;
6806 LIST_HEAD(task_groups);
6807 #endif
6808
6809 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6810
6811 void __init sched_init(void)
6812 {
6813 int i, j;
6814 unsigned long alloc_size = 0, ptr;
6815
6816 #ifdef CONFIG_FAIR_GROUP_SCHED
6817 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6818 #endif
6819 #ifdef CONFIG_RT_GROUP_SCHED
6820 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6821 #endif
6822 #ifdef CONFIG_CPUMASK_OFFSTACK
6823 alloc_size += num_possible_cpus() * cpumask_size();
6824 #endif
6825 if (alloc_size) {
6826 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6827
6828 #ifdef CONFIG_FAIR_GROUP_SCHED
6829 root_task_group.se = (struct sched_entity **)ptr;
6830 ptr += nr_cpu_ids * sizeof(void **);
6831
6832 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6833 ptr += nr_cpu_ids * sizeof(void **);
6834
6835 #endif /* CONFIG_FAIR_GROUP_SCHED */
6836 #ifdef CONFIG_RT_GROUP_SCHED
6837 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6838 ptr += nr_cpu_ids * sizeof(void **);
6839
6840 root_task_group.rt_rq = (struct rt_rq **)ptr;
6841 ptr += nr_cpu_ids * sizeof(void **);
6842
6843 #endif /* CONFIG_RT_GROUP_SCHED */
6844 #ifdef CONFIG_CPUMASK_OFFSTACK
6845 for_each_possible_cpu(i) {
6846 per_cpu(load_balance_mask, i) = (void *)ptr;
6847 ptr += cpumask_size();
6848 }
6849 #endif /* CONFIG_CPUMASK_OFFSTACK */
6850 }
6851
6852 init_rt_bandwidth(&def_rt_bandwidth,
6853 global_rt_period(), global_rt_runtime());
6854 init_dl_bandwidth(&def_dl_bandwidth,
6855 global_rt_period(), global_rt_runtime());
6856
6857 #ifdef CONFIG_SMP
6858 init_defrootdomain();
6859 #endif
6860
6861 #ifdef CONFIG_RT_GROUP_SCHED
6862 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6863 global_rt_period(), global_rt_runtime());
6864 #endif /* CONFIG_RT_GROUP_SCHED */
6865
6866 #ifdef CONFIG_CGROUP_SCHED
6867 list_add(&root_task_group.list, &task_groups);
6868 INIT_LIST_HEAD(&root_task_group.children);
6869 INIT_LIST_HEAD(&root_task_group.siblings);
6870 autogroup_init(&init_task);
6871
6872 #endif /* CONFIG_CGROUP_SCHED */
6873
6874 for_each_possible_cpu(i) {
6875 struct rq *rq;
6876
6877 rq = cpu_rq(i);
6878 raw_spin_lock_init(&rq->lock);
6879 rq->nr_running = 0;
6880 rq->calc_load_active = 0;
6881 rq->calc_load_update = jiffies + LOAD_FREQ;
6882 init_cfs_rq(&rq->cfs);
6883 init_rt_rq(&rq->rt, rq);
6884 init_dl_rq(&rq->dl, rq);
6885 #ifdef CONFIG_FAIR_GROUP_SCHED
6886 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6887 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6888 /*
6889 * How much cpu bandwidth does root_task_group get?
6890 *
6891 * In case of task-groups formed thr' the cgroup filesystem, it
6892 * gets 100% of the cpu resources in the system. This overall
6893 * system cpu resource is divided among the tasks of
6894 * root_task_group and its child task-groups in a fair manner,
6895 * based on each entity's (task or task-group's) weight
6896 * (se->load.weight).
6897 *
6898 * In other words, if root_task_group has 10 tasks of weight
6899 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6900 * then A0's share of the cpu resource is:
6901 *
6902 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6903 *
6904 * We achieve this by letting root_task_group's tasks sit
6905 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6906 */
6907 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6908 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6909 #endif /* CONFIG_FAIR_GROUP_SCHED */
6910
6911 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6912 #ifdef CONFIG_RT_GROUP_SCHED
6913 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6914 #endif
6915
6916 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6917 rq->cpu_load[j] = 0;
6918
6919 rq->last_load_update_tick = jiffies;
6920
6921 #ifdef CONFIG_SMP
6922 rq->sd = NULL;
6923 rq->rd = NULL;
6924 rq->cpu_power = SCHED_POWER_SCALE;
6925 rq->post_schedule = 0;
6926 rq->active_balance = 0;
6927 rq->next_balance = jiffies;
6928 rq->push_cpu = 0;
6929 rq->cpu = i;
6930 rq->online = 0;
6931 rq->idle_stamp = 0;
6932 rq->avg_idle = 2*sysctl_sched_migration_cost;
6933 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6934
6935 INIT_LIST_HEAD(&rq->cfs_tasks);
6936
6937 rq_attach_root(rq, &def_root_domain);
6938 #ifdef CONFIG_NO_HZ_COMMON
6939 rq->nohz_flags = 0;
6940 #endif
6941 #ifdef CONFIG_NO_HZ_FULL
6942 rq->last_sched_tick = 0;
6943 #endif
6944 #endif
6945 init_rq_hrtick(rq);
6946 atomic_set(&rq->nr_iowait, 0);
6947 }
6948
6949 set_load_weight(&init_task);
6950
6951 #ifdef CONFIG_PREEMPT_NOTIFIERS
6952 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6953 #endif
6954
6955 /*
6956 * The boot idle thread does lazy MMU switching as well:
6957 */
6958 atomic_inc(&init_mm.mm_count);
6959 enter_lazy_tlb(&init_mm, current);
6960
6961 /*
6962 * Make us the idle thread. Technically, schedule() should not be
6963 * called from this thread, however somewhere below it might be,
6964 * but because we are the idle thread, we just pick up running again
6965 * when this runqueue becomes "idle".
6966 */
6967 init_idle(current, smp_processor_id());
6968
6969 calc_load_update = jiffies + LOAD_FREQ;
6970
6971 /*
6972 * During early bootup we pretend to be a normal task:
6973 */
6974 current->sched_class = &fair_sched_class;
6975
6976 #ifdef CONFIG_SMP
6977 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6978 /* May be allocated at isolcpus cmdline parse time */
6979 if (cpu_isolated_map == NULL)
6980 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6981 idle_thread_set_boot_cpu();
6982 set_cpu_rq_start_time();
6983 #endif
6984 init_sched_fair_class();
6985
6986 scheduler_running = 1;
6987 }
6988
6989 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6990 static inline int preempt_count_equals(int preempt_offset)
6991 {
6992 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6993
6994 return (nested == preempt_offset);
6995 }
6996
6997 void __might_sleep(const char *file, int line, int preempt_offset)
6998 {
6999 static unsigned long prev_jiffy; /* ratelimiting */
7000
7001 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7002 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7003 !is_idle_task(current)) ||
7004 system_state != SYSTEM_RUNNING || oops_in_progress)
7005 return;
7006 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7007 return;
7008 prev_jiffy = jiffies;
7009
7010 printk(KERN_ERR
7011 "BUG: sleeping function called from invalid context at %s:%d\n",
7012 file, line);
7013 printk(KERN_ERR
7014 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7015 in_atomic(), irqs_disabled(),
7016 current->pid, current->comm);
7017
7018 debug_show_held_locks(current);
7019 if (irqs_disabled())
7020 print_irqtrace_events(current);
7021 #ifdef CONFIG_DEBUG_PREEMPT
7022 if (!preempt_count_equals(preempt_offset)) {
7023 pr_err("Preemption disabled at:");
7024 print_ip_sym(current->preempt_disable_ip);
7025 pr_cont("\n");
7026 }
7027 #endif
7028 dump_stack();
7029 }
7030 EXPORT_SYMBOL(__might_sleep);
7031 #endif
7032
7033 #ifdef CONFIG_MAGIC_SYSRQ
7034 static void normalize_task(struct rq *rq, struct task_struct *p)
7035 {
7036 const struct sched_class *prev_class = p->sched_class;
7037 struct sched_attr attr = {
7038 .sched_policy = SCHED_NORMAL,
7039 };
7040 int old_prio = p->prio;
7041 int on_rq;
7042
7043 on_rq = p->on_rq;
7044 if (on_rq)
7045 dequeue_task(rq, p, 0);
7046 __setscheduler(rq, p, &attr);
7047 if (on_rq) {
7048 enqueue_task(rq, p, 0);
7049 resched_task(rq->curr);
7050 }
7051
7052 check_class_changed(rq, p, prev_class, old_prio);
7053 }
7054
7055 void normalize_rt_tasks(void)
7056 {
7057 struct task_struct *g, *p;
7058 unsigned long flags;
7059 struct rq *rq;
7060
7061 read_lock_irqsave(&tasklist_lock, flags);
7062 do_each_thread(g, p) {
7063 /*
7064 * Only normalize user tasks:
7065 */
7066 if (!p->mm)
7067 continue;
7068
7069 p->se.exec_start = 0;
7070 #ifdef CONFIG_SCHEDSTATS
7071 p->se.statistics.wait_start = 0;
7072 p->se.statistics.sleep_start = 0;
7073 p->se.statistics.block_start = 0;
7074 #endif
7075
7076 if (!dl_task(p) && !rt_task(p)) {
7077 /*
7078 * Renice negative nice level userspace
7079 * tasks back to 0:
7080 */
7081 if (task_nice(p) < 0 && p->mm)
7082 set_user_nice(p, 0);
7083 continue;
7084 }
7085
7086 raw_spin_lock(&p->pi_lock);
7087 rq = __task_rq_lock(p);
7088
7089 normalize_task(rq, p);
7090
7091 __task_rq_unlock(rq);
7092 raw_spin_unlock(&p->pi_lock);
7093 } while_each_thread(g, p);
7094
7095 read_unlock_irqrestore(&tasklist_lock, flags);
7096 }
7097
7098 #endif /* CONFIG_MAGIC_SYSRQ */
7099
7100 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7101 /*
7102 * These functions are only useful for the IA64 MCA handling, or kdb.
7103 *
7104 * They can only be called when the whole system has been
7105 * stopped - every CPU needs to be quiescent, and no scheduling
7106 * activity can take place. Using them for anything else would
7107 * be a serious bug, and as a result, they aren't even visible
7108 * under any other configuration.
7109 */
7110
7111 /**
7112 * curr_task - return the current task for a given cpu.
7113 * @cpu: the processor in question.
7114 *
7115 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7116 *
7117 * Return: The current task for @cpu.
7118 */
7119 struct task_struct *curr_task(int cpu)
7120 {
7121 return cpu_curr(cpu);
7122 }
7123
7124 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7125
7126 #ifdef CONFIG_IA64
7127 /**
7128 * set_curr_task - set the current task for a given cpu.
7129 * @cpu: the processor in question.
7130 * @p: the task pointer to set.
7131 *
7132 * Description: This function must only be used when non-maskable interrupts
7133 * are serviced on a separate stack. It allows the architecture to switch the
7134 * notion of the current task on a cpu in a non-blocking manner. This function
7135 * must be called with all CPU's synchronized, and interrupts disabled, the
7136 * and caller must save the original value of the current task (see
7137 * curr_task() above) and restore that value before reenabling interrupts and
7138 * re-starting the system.
7139 *
7140 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7141 */
7142 void set_curr_task(int cpu, struct task_struct *p)
7143 {
7144 cpu_curr(cpu) = p;
7145 }
7146
7147 #endif
7148
7149 #ifdef CONFIG_CGROUP_SCHED
7150 /* task_group_lock serializes the addition/removal of task groups */
7151 static DEFINE_SPINLOCK(task_group_lock);
7152
7153 static void free_sched_group(struct task_group *tg)
7154 {
7155 free_fair_sched_group(tg);
7156 free_rt_sched_group(tg);
7157 autogroup_free(tg);
7158 kfree(tg);
7159 }
7160
7161 /* allocate runqueue etc for a new task group */
7162 struct task_group *sched_create_group(struct task_group *parent)
7163 {
7164 struct task_group *tg;
7165
7166 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7167 if (!tg)
7168 return ERR_PTR(-ENOMEM);
7169
7170 if (!alloc_fair_sched_group(tg, parent))
7171 goto err;
7172
7173 if (!alloc_rt_sched_group(tg, parent))
7174 goto err;
7175
7176 return tg;
7177
7178 err:
7179 free_sched_group(tg);
7180 return ERR_PTR(-ENOMEM);
7181 }
7182
7183 void sched_online_group(struct task_group *tg, struct task_group *parent)
7184 {
7185 unsigned long flags;
7186
7187 spin_lock_irqsave(&task_group_lock, flags);
7188 list_add_rcu(&tg->list, &task_groups);
7189
7190 WARN_ON(!parent); /* root should already exist */
7191
7192 tg->parent = parent;
7193 INIT_LIST_HEAD(&tg->children);
7194 list_add_rcu(&tg->siblings, &parent->children);
7195 spin_unlock_irqrestore(&task_group_lock, flags);
7196 }
7197
7198 /* rcu callback to free various structures associated with a task group */
7199 static void free_sched_group_rcu(struct rcu_head *rhp)
7200 {
7201 /* now it should be safe to free those cfs_rqs */
7202 free_sched_group(container_of(rhp, struct task_group, rcu));
7203 }
7204
7205 /* Destroy runqueue etc associated with a task group */
7206 void sched_destroy_group(struct task_group *tg)
7207 {
7208 /* wait for possible concurrent references to cfs_rqs complete */
7209 call_rcu(&tg->rcu, free_sched_group_rcu);
7210 }
7211
7212 void sched_offline_group(struct task_group *tg)
7213 {
7214 unsigned long flags;
7215 int i;
7216
7217 /* end participation in shares distribution */
7218 for_each_possible_cpu(i)
7219 unregister_fair_sched_group(tg, i);
7220
7221 spin_lock_irqsave(&task_group_lock, flags);
7222 list_del_rcu(&tg->list);
7223 list_del_rcu(&tg->siblings);
7224 spin_unlock_irqrestore(&task_group_lock, flags);
7225 }
7226
7227 /* change task's runqueue when it moves between groups.
7228 * The caller of this function should have put the task in its new group
7229 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7230 * reflect its new group.
7231 */
7232 void sched_move_task(struct task_struct *tsk)
7233 {
7234 struct task_group *tg;
7235 int on_rq, running;
7236 unsigned long flags;
7237 struct rq *rq;
7238
7239 rq = task_rq_lock(tsk, &flags);
7240
7241 running = task_current(rq, tsk);
7242 on_rq = tsk->on_rq;
7243
7244 if (on_rq)
7245 dequeue_task(rq, tsk, 0);
7246 if (unlikely(running))
7247 tsk->sched_class->put_prev_task(rq, tsk);
7248
7249 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7250 lockdep_is_held(&tsk->sighand->siglock)),
7251 struct task_group, css);
7252 tg = autogroup_task_group(tsk, tg);
7253 tsk->sched_task_group = tg;
7254
7255 #ifdef CONFIG_FAIR_GROUP_SCHED
7256 if (tsk->sched_class->task_move_group)
7257 tsk->sched_class->task_move_group(tsk, on_rq);
7258 else
7259 #endif
7260 set_task_rq(tsk, task_cpu(tsk));
7261
7262 if (unlikely(running))
7263 tsk->sched_class->set_curr_task(rq);
7264 if (on_rq)
7265 enqueue_task(rq, tsk, 0);
7266
7267 task_rq_unlock(rq, tsk, &flags);
7268 }
7269 #endif /* CONFIG_CGROUP_SCHED */
7270
7271 #ifdef CONFIG_RT_GROUP_SCHED
7272 /*
7273 * Ensure that the real time constraints are schedulable.
7274 */
7275 static DEFINE_MUTEX(rt_constraints_mutex);
7276
7277 /* Must be called with tasklist_lock held */
7278 static inline int tg_has_rt_tasks(struct task_group *tg)
7279 {
7280 struct task_struct *g, *p;
7281
7282 do_each_thread(g, p) {
7283 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7284 return 1;
7285 } while_each_thread(g, p);
7286
7287 return 0;
7288 }
7289
7290 struct rt_schedulable_data {
7291 struct task_group *tg;
7292 u64 rt_period;
7293 u64 rt_runtime;
7294 };
7295
7296 static int tg_rt_schedulable(struct task_group *tg, void *data)
7297 {
7298 struct rt_schedulable_data *d = data;
7299 struct task_group *child;
7300 unsigned long total, sum = 0;
7301 u64 period, runtime;
7302
7303 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7304 runtime = tg->rt_bandwidth.rt_runtime;
7305
7306 if (tg == d->tg) {
7307 period = d->rt_period;
7308 runtime = d->rt_runtime;
7309 }
7310
7311 /*
7312 * Cannot have more runtime than the period.
7313 */
7314 if (runtime > period && runtime != RUNTIME_INF)
7315 return -EINVAL;
7316
7317 /*
7318 * Ensure we don't starve existing RT tasks.
7319 */
7320 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7321 return -EBUSY;
7322
7323 total = to_ratio(period, runtime);
7324
7325 /*
7326 * Nobody can have more than the global setting allows.
7327 */
7328 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7329 return -EINVAL;
7330
7331 /*
7332 * The sum of our children's runtime should not exceed our own.
7333 */
7334 list_for_each_entry_rcu(child, &tg->children, siblings) {
7335 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7336 runtime = child->rt_bandwidth.rt_runtime;
7337
7338 if (child == d->tg) {
7339 period = d->rt_period;
7340 runtime = d->rt_runtime;
7341 }
7342
7343 sum += to_ratio(period, runtime);
7344 }
7345
7346 if (sum > total)
7347 return -EINVAL;
7348
7349 return 0;
7350 }
7351
7352 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7353 {
7354 int ret;
7355
7356 struct rt_schedulable_data data = {
7357 .tg = tg,
7358 .rt_period = period,
7359 .rt_runtime = runtime,
7360 };
7361
7362 rcu_read_lock();
7363 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7364 rcu_read_unlock();
7365
7366 return ret;
7367 }
7368
7369 static int tg_set_rt_bandwidth(struct task_group *tg,
7370 u64 rt_period, u64 rt_runtime)
7371 {
7372 int i, err = 0;
7373
7374 mutex_lock(&rt_constraints_mutex);
7375 read_lock(&tasklist_lock);
7376 err = __rt_schedulable(tg, rt_period, rt_runtime);
7377 if (err)
7378 goto unlock;
7379
7380 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7381 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7382 tg->rt_bandwidth.rt_runtime = rt_runtime;
7383
7384 for_each_possible_cpu(i) {
7385 struct rt_rq *rt_rq = tg->rt_rq[i];
7386
7387 raw_spin_lock(&rt_rq->rt_runtime_lock);
7388 rt_rq->rt_runtime = rt_runtime;
7389 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7390 }
7391 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7392 unlock:
7393 read_unlock(&tasklist_lock);
7394 mutex_unlock(&rt_constraints_mutex);
7395
7396 return err;
7397 }
7398
7399 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7400 {
7401 u64 rt_runtime, rt_period;
7402
7403 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7404 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7405 if (rt_runtime_us < 0)
7406 rt_runtime = RUNTIME_INF;
7407
7408 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7409 }
7410
7411 static long sched_group_rt_runtime(struct task_group *tg)
7412 {
7413 u64 rt_runtime_us;
7414
7415 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7416 return -1;
7417
7418 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7419 do_div(rt_runtime_us, NSEC_PER_USEC);
7420 return rt_runtime_us;
7421 }
7422
7423 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7424 {
7425 u64 rt_runtime, rt_period;
7426
7427 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7428 rt_runtime = tg->rt_bandwidth.rt_runtime;
7429
7430 if (rt_period == 0)
7431 return -EINVAL;
7432
7433 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7434 }
7435
7436 static long sched_group_rt_period(struct task_group *tg)
7437 {
7438 u64 rt_period_us;
7439
7440 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7441 do_div(rt_period_us, NSEC_PER_USEC);
7442 return rt_period_us;
7443 }
7444 #endif /* CONFIG_RT_GROUP_SCHED */
7445
7446 #ifdef CONFIG_RT_GROUP_SCHED
7447 static int sched_rt_global_constraints(void)
7448 {
7449 int ret = 0;
7450
7451 mutex_lock(&rt_constraints_mutex);
7452 read_lock(&tasklist_lock);
7453 ret = __rt_schedulable(NULL, 0, 0);
7454 read_unlock(&tasklist_lock);
7455 mutex_unlock(&rt_constraints_mutex);
7456
7457 return ret;
7458 }
7459
7460 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7461 {
7462 /* Don't accept realtime tasks when there is no way for them to run */
7463 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7464 return 0;
7465
7466 return 1;
7467 }
7468
7469 #else /* !CONFIG_RT_GROUP_SCHED */
7470 static int sched_rt_global_constraints(void)
7471 {
7472 unsigned long flags;
7473 int i, ret = 0;
7474
7475 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7476 for_each_possible_cpu(i) {
7477 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7478
7479 raw_spin_lock(&rt_rq->rt_runtime_lock);
7480 rt_rq->rt_runtime = global_rt_runtime();
7481 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7482 }
7483 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7484
7485 return ret;
7486 }
7487 #endif /* CONFIG_RT_GROUP_SCHED */
7488
7489 static int sched_dl_global_constraints(void)
7490 {
7491 u64 runtime = global_rt_runtime();
7492 u64 period = global_rt_period();
7493 u64 new_bw = to_ratio(period, runtime);
7494 int cpu, ret = 0;
7495 unsigned long flags;
7496
7497 /*
7498 * Here we want to check the bandwidth not being set to some
7499 * value smaller than the currently allocated bandwidth in
7500 * any of the root_domains.
7501 *
7502 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7503 * cycling on root_domains... Discussion on different/better
7504 * solutions is welcome!
7505 */
7506 for_each_possible_cpu(cpu) {
7507 struct dl_bw *dl_b = dl_bw_of(cpu);
7508
7509 raw_spin_lock_irqsave(&dl_b->lock, flags);
7510 if (new_bw < dl_b->total_bw)
7511 ret = -EBUSY;
7512 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7513
7514 if (ret)
7515 break;
7516 }
7517
7518 return ret;
7519 }
7520
7521 static void sched_dl_do_global(void)
7522 {
7523 u64 new_bw = -1;
7524 int cpu;
7525 unsigned long flags;
7526
7527 def_dl_bandwidth.dl_period = global_rt_period();
7528 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7529
7530 if (global_rt_runtime() != RUNTIME_INF)
7531 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7532
7533 /*
7534 * FIXME: As above...
7535 */
7536 for_each_possible_cpu(cpu) {
7537 struct dl_bw *dl_b = dl_bw_of(cpu);
7538
7539 raw_spin_lock_irqsave(&dl_b->lock, flags);
7540 dl_b->bw = new_bw;
7541 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7542 }
7543 }
7544
7545 static int sched_rt_global_validate(void)
7546 {
7547 if (sysctl_sched_rt_period <= 0)
7548 return -EINVAL;
7549
7550 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7551 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7552 return -EINVAL;
7553
7554 return 0;
7555 }
7556
7557 static void sched_rt_do_global(void)
7558 {
7559 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7560 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7561 }
7562
7563 int sched_rt_handler(struct ctl_table *table, int write,
7564 void __user *buffer, size_t *lenp,
7565 loff_t *ppos)
7566 {
7567 int old_period, old_runtime;
7568 static DEFINE_MUTEX(mutex);
7569 int ret;
7570
7571 mutex_lock(&mutex);
7572 old_period = sysctl_sched_rt_period;
7573 old_runtime = sysctl_sched_rt_runtime;
7574
7575 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7576
7577 if (!ret && write) {
7578 ret = sched_rt_global_validate();
7579 if (ret)
7580 goto undo;
7581
7582 ret = sched_rt_global_constraints();
7583 if (ret)
7584 goto undo;
7585
7586 ret = sched_dl_global_constraints();
7587 if (ret)
7588 goto undo;
7589
7590 sched_rt_do_global();
7591 sched_dl_do_global();
7592 }
7593 if (0) {
7594 undo:
7595 sysctl_sched_rt_period = old_period;
7596 sysctl_sched_rt_runtime = old_runtime;
7597 }
7598 mutex_unlock(&mutex);
7599
7600 return ret;
7601 }
7602
7603 int sched_rr_handler(struct ctl_table *table, int write,
7604 void __user *buffer, size_t *lenp,
7605 loff_t *ppos)
7606 {
7607 int ret;
7608 static DEFINE_MUTEX(mutex);
7609
7610 mutex_lock(&mutex);
7611 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7612 /* make sure that internally we keep jiffies */
7613 /* also, writing zero resets timeslice to default */
7614 if (!ret && write) {
7615 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7616 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7617 }
7618 mutex_unlock(&mutex);
7619 return ret;
7620 }
7621
7622 #ifdef CONFIG_CGROUP_SCHED
7623
7624 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7625 {
7626 return css ? container_of(css, struct task_group, css) : NULL;
7627 }
7628
7629 static struct cgroup_subsys_state *
7630 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7631 {
7632 struct task_group *parent = css_tg(parent_css);
7633 struct task_group *tg;
7634
7635 if (!parent) {
7636 /* This is early initialization for the top cgroup */
7637 return &root_task_group.css;
7638 }
7639
7640 tg = sched_create_group(parent);
7641 if (IS_ERR(tg))
7642 return ERR_PTR(-ENOMEM);
7643
7644 return &tg->css;
7645 }
7646
7647 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7648 {
7649 struct task_group *tg = css_tg(css);
7650 struct task_group *parent = css_tg(css_parent(css));
7651
7652 if (parent)
7653 sched_online_group(tg, parent);
7654 return 0;
7655 }
7656
7657 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7658 {
7659 struct task_group *tg = css_tg(css);
7660
7661 sched_destroy_group(tg);
7662 }
7663
7664 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7665 {
7666 struct task_group *tg = css_tg(css);
7667
7668 sched_offline_group(tg);
7669 }
7670
7671 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7672 struct cgroup_taskset *tset)
7673 {
7674 struct task_struct *task;
7675
7676 cgroup_taskset_for_each(task, tset) {
7677 #ifdef CONFIG_RT_GROUP_SCHED
7678 if (!sched_rt_can_attach(css_tg(css), task))
7679 return -EINVAL;
7680 #else
7681 /* We don't support RT-tasks being in separate groups */
7682 if (task->sched_class != &fair_sched_class)
7683 return -EINVAL;
7684 #endif
7685 }
7686 return 0;
7687 }
7688
7689 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7690 struct cgroup_taskset *tset)
7691 {
7692 struct task_struct *task;
7693
7694 cgroup_taskset_for_each(task, tset)
7695 sched_move_task(task);
7696 }
7697
7698 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7699 struct cgroup_subsys_state *old_css,
7700 struct task_struct *task)
7701 {
7702 /*
7703 * cgroup_exit() is called in the copy_process() failure path.
7704 * Ignore this case since the task hasn't ran yet, this avoids
7705 * trying to poke a half freed task state from generic code.
7706 */
7707 if (!(task->flags & PF_EXITING))
7708 return;
7709
7710 sched_move_task(task);
7711 }
7712
7713 #ifdef CONFIG_FAIR_GROUP_SCHED
7714 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7715 struct cftype *cftype, u64 shareval)
7716 {
7717 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7718 }
7719
7720 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7721 struct cftype *cft)
7722 {
7723 struct task_group *tg = css_tg(css);
7724
7725 return (u64) scale_load_down(tg->shares);
7726 }
7727
7728 #ifdef CONFIG_CFS_BANDWIDTH
7729 static DEFINE_MUTEX(cfs_constraints_mutex);
7730
7731 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7732 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7733
7734 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7735
7736 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7737 {
7738 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7739 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7740
7741 if (tg == &root_task_group)
7742 return -EINVAL;
7743
7744 /*
7745 * Ensure we have at some amount of bandwidth every period. This is
7746 * to prevent reaching a state of large arrears when throttled via
7747 * entity_tick() resulting in prolonged exit starvation.
7748 */
7749 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7750 return -EINVAL;
7751
7752 /*
7753 * Likewise, bound things on the otherside by preventing insane quota
7754 * periods. This also allows us to normalize in computing quota
7755 * feasibility.
7756 */
7757 if (period > max_cfs_quota_period)
7758 return -EINVAL;
7759
7760 mutex_lock(&cfs_constraints_mutex);
7761 ret = __cfs_schedulable(tg, period, quota);
7762 if (ret)
7763 goto out_unlock;
7764
7765 runtime_enabled = quota != RUNTIME_INF;
7766 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7767 /*
7768 * If we need to toggle cfs_bandwidth_used, off->on must occur
7769 * before making related changes, and on->off must occur afterwards
7770 */
7771 if (runtime_enabled && !runtime_was_enabled)
7772 cfs_bandwidth_usage_inc();
7773 raw_spin_lock_irq(&cfs_b->lock);
7774 cfs_b->period = ns_to_ktime(period);
7775 cfs_b->quota = quota;
7776
7777 __refill_cfs_bandwidth_runtime(cfs_b);
7778 /* restart the period timer (if active) to handle new period expiry */
7779 if (runtime_enabled && cfs_b->timer_active) {
7780 /* force a reprogram */
7781 cfs_b->timer_active = 0;
7782 __start_cfs_bandwidth(cfs_b);
7783 }
7784 raw_spin_unlock_irq(&cfs_b->lock);
7785
7786 for_each_possible_cpu(i) {
7787 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7788 struct rq *rq = cfs_rq->rq;
7789
7790 raw_spin_lock_irq(&rq->lock);
7791 cfs_rq->runtime_enabled = runtime_enabled;
7792 cfs_rq->runtime_remaining = 0;
7793
7794 if (cfs_rq->throttled)
7795 unthrottle_cfs_rq(cfs_rq);
7796 raw_spin_unlock_irq(&rq->lock);
7797 }
7798 if (runtime_was_enabled && !runtime_enabled)
7799 cfs_bandwidth_usage_dec();
7800 out_unlock:
7801 mutex_unlock(&cfs_constraints_mutex);
7802
7803 return ret;
7804 }
7805
7806 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7807 {
7808 u64 quota, period;
7809
7810 period = ktime_to_ns(tg->cfs_bandwidth.period);
7811 if (cfs_quota_us < 0)
7812 quota = RUNTIME_INF;
7813 else
7814 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7815
7816 return tg_set_cfs_bandwidth(tg, period, quota);
7817 }
7818
7819 long tg_get_cfs_quota(struct task_group *tg)
7820 {
7821 u64 quota_us;
7822
7823 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7824 return -1;
7825
7826 quota_us = tg->cfs_bandwidth.quota;
7827 do_div(quota_us, NSEC_PER_USEC);
7828
7829 return quota_us;
7830 }
7831
7832 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7833 {
7834 u64 quota, period;
7835
7836 period = (u64)cfs_period_us * NSEC_PER_USEC;
7837 quota = tg->cfs_bandwidth.quota;
7838
7839 return tg_set_cfs_bandwidth(tg, period, quota);
7840 }
7841
7842 long tg_get_cfs_period(struct task_group *tg)
7843 {
7844 u64 cfs_period_us;
7845
7846 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7847 do_div(cfs_period_us, NSEC_PER_USEC);
7848
7849 return cfs_period_us;
7850 }
7851
7852 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7853 struct cftype *cft)
7854 {
7855 return tg_get_cfs_quota(css_tg(css));
7856 }
7857
7858 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7859 struct cftype *cftype, s64 cfs_quota_us)
7860 {
7861 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7862 }
7863
7864 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7865 struct cftype *cft)
7866 {
7867 return tg_get_cfs_period(css_tg(css));
7868 }
7869
7870 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7871 struct cftype *cftype, u64 cfs_period_us)
7872 {
7873 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7874 }
7875
7876 struct cfs_schedulable_data {
7877 struct task_group *tg;
7878 u64 period, quota;
7879 };
7880
7881 /*
7882 * normalize group quota/period to be quota/max_period
7883 * note: units are usecs
7884 */
7885 static u64 normalize_cfs_quota(struct task_group *tg,
7886 struct cfs_schedulable_data *d)
7887 {
7888 u64 quota, period;
7889
7890 if (tg == d->tg) {
7891 period = d->period;
7892 quota = d->quota;
7893 } else {
7894 period = tg_get_cfs_period(tg);
7895 quota = tg_get_cfs_quota(tg);
7896 }
7897
7898 /* note: these should typically be equivalent */
7899 if (quota == RUNTIME_INF || quota == -1)
7900 return RUNTIME_INF;
7901
7902 return to_ratio(period, quota);
7903 }
7904
7905 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7906 {
7907 struct cfs_schedulable_data *d = data;
7908 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7909 s64 quota = 0, parent_quota = -1;
7910
7911 if (!tg->parent) {
7912 quota = RUNTIME_INF;
7913 } else {
7914 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7915
7916 quota = normalize_cfs_quota(tg, d);
7917 parent_quota = parent_b->hierarchal_quota;
7918
7919 /*
7920 * ensure max(child_quota) <= parent_quota, inherit when no
7921 * limit is set
7922 */
7923 if (quota == RUNTIME_INF)
7924 quota = parent_quota;
7925 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7926 return -EINVAL;
7927 }
7928 cfs_b->hierarchal_quota = quota;
7929
7930 return 0;
7931 }
7932
7933 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7934 {
7935 int ret;
7936 struct cfs_schedulable_data data = {
7937 .tg = tg,
7938 .period = period,
7939 .quota = quota,
7940 };
7941
7942 if (quota != RUNTIME_INF) {
7943 do_div(data.period, NSEC_PER_USEC);
7944 do_div(data.quota, NSEC_PER_USEC);
7945 }
7946
7947 rcu_read_lock();
7948 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7949 rcu_read_unlock();
7950
7951 return ret;
7952 }
7953
7954 static int cpu_stats_show(struct seq_file *sf, void *v)
7955 {
7956 struct task_group *tg = css_tg(seq_css(sf));
7957 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7958
7959 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7960 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7961 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7962
7963 return 0;
7964 }
7965 #endif /* CONFIG_CFS_BANDWIDTH */
7966 #endif /* CONFIG_FAIR_GROUP_SCHED */
7967
7968 #ifdef CONFIG_RT_GROUP_SCHED
7969 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7970 struct cftype *cft, s64 val)
7971 {
7972 return sched_group_set_rt_runtime(css_tg(css), val);
7973 }
7974
7975 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7976 struct cftype *cft)
7977 {
7978 return sched_group_rt_runtime(css_tg(css));
7979 }
7980
7981 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7982 struct cftype *cftype, u64 rt_period_us)
7983 {
7984 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7985 }
7986
7987 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7988 struct cftype *cft)
7989 {
7990 return sched_group_rt_period(css_tg(css));
7991 }
7992 #endif /* CONFIG_RT_GROUP_SCHED */
7993
7994 static struct cftype cpu_files[] = {
7995 #ifdef CONFIG_FAIR_GROUP_SCHED
7996 {
7997 .name = "shares",
7998 .read_u64 = cpu_shares_read_u64,
7999 .write_u64 = cpu_shares_write_u64,
8000 },
8001 #endif
8002 #ifdef CONFIG_CFS_BANDWIDTH
8003 {
8004 .name = "cfs_quota_us",
8005 .read_s64 = cpu_cfs_quota_read_s64,
8006 .write_s64 = cpu_cfs_quota_write_s64,
8007 },
8008 {
8009 .name = "cfs_period_us",
8010 .read_u64 = cpu_cfs_period_read_u64,
8011 .write_u64 = cpu_cfs_period_write_u64,
8012 },
8013 {
8014 .name = "stat",
8015 .seq_show = cpu_stats_show,
8016 },
8017 #endif
8018 #ifdef CONFIG_RT_GROUP_SCHED
8019 {
8020 .name = "rt_runtime_us",
8021 .read_s64 = cpu_rt_runtime_read,
8022 .write_s64 = cpu_rt_runtime_write,
8023 },
8024 {
8025 .name = "rt_period_us",
8026 .read_u64 = cpu_rt_period_read_uint,
8027 .write_u64 = cpu_rt_period_write_uint,
8028 },
8029 #endif
8030 { } /* terminate */
8031 };
8032
8033 struct cgroup_subsys cpu_cgrp_subsys = {
8034 .css_alloc = cpu_cgroup_css_alloc,
8035 .css_free = cpu_cgroup_css_free,
8036 .css_online = cpu_cgroup_css_online,
8037 .css_offline = cpu_cgroup_css_offline,
8038 .can_attach = cpu_cgroup_can_attach,
8039 .attach = cpu_cgroup_attach,
8040 .exit = cpu_cgroup_exit,
8041 .base_cftypes = cpu_files,
8042 .early_init = 1,
8043 };
8044
8045 #endif /* CONFIG_CGROUP_SCHED */
8046
8047 void dump_cpu_task(int cpu)
8048 {
8049 pr_info("Task dump for CPU %d:\n", cpu);
8050 sched_show_task(cpu_curr(cpu));
8051 }