]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched/core.c
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78 #include <asm/mutex.h>
79 #ifdef CONFIG_PARAVIRT
80 #include <asm/paravirt.h>
81 #endif
82
83 #include "sched.h"
84 #include "../workqueue_sched.h"
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/sched.h>
88
89 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
90 {
91 unsigned long delta;
92 ktime_t soft, hard, now;
93
94 for (;;) {
95 if (hrtimer_active(period_timer))
96 break;
97
98 now = hrtimer_cb_get_time(period_timer);
99 hrtimer_forward(period_timer, now, period);
100
101 soft = hrtimer_get_softexpires(period_timer);
102 hard = hrtimer_get_expires(period_timer);
103 delta = ktime_to_ns(ktime_sub(hard, soft));
104 __hrtimer_start_range_ns(period_timer, soft, delta,
105 HRTIMER_MODE_ABS_PINNED, 0);
106 }
107 }
108
109 DEFINE_MUTEX(sched_domains_mutex);
110 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
111
112 static void update_rq_clock_task(struct rq *rq, s64 delta);
113
114 void update_rq_clock(struct rq *rq)
115 {
116 s64 delta;
117
118 if (rq->skip_clock_update > 0)
119 return;
120
121 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
122 rq->clock += delta;
123 update_rq_clock_task(rq, delta);
124 }
125
126 /*
127 * Debugging: various feature bits
128 */
129
130 #define SCHED_FEAT(name, enabled) \
131 (1UL << __SCHED_FEAT_##name) * enabled |
132
133 const_debug unsigned int sysctl_sched_features =
134 #include "features.h"
135 0;
136
137 #undef SCHED_FEAT
138
139 #ifdef CONFIG_SCHED_DEBUG
140 #define SCHED_FEAT(name, enabled) \
141 #name ,
142
143 static __read_mostly char *sched_feat_names[] = {
144 #include "features.h"
145 NULL
146 };
147
148 #undef SCHED_FEAT
149
150 static int sched_feat_show(struct seq_file *m, void *v)
151 {
152 int i;
153
154 for (i = 0; i < __SCHED_FEAT_NR; i++) {
155 if (!(sysctl_sched_features & (1UL << i)))
156 seq_puts(m, "NO_");
157 seq_printf(m, "%s ", sched_feat_names[i]);
158 }
159 seq_puts(m, "\n");
160
161 return 0;
162 }
163
164 #ifdef HAVE_JUMP_LABEL
165
166 #define jump_label_key__true STATIC_KEY_INIT_TRUE
167 #define jump_label_key__false STATIC_KEY_INIT_FALSE
168
169 #define SCHED_FEAT(name, enabled) \
170 jump_label_key__##enabled ,
171
172 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
173 #include "features.h"
174 };
175
176 #undef SCHED_FEAT
177
178 static void sched_feat_disable(int i)
179 {
180 if (static_key_enabled(&sched_feat_keys[i]))
181 static_key_slow_dec(&sched_feat_keys[i]);
182 }
183
184 static void sched_feat_enable(int i)
185 {
186 if (!static_key_enabled(&sched_feat_keys[i]))
187 static_key_slow_inc(&sched_feat_keys[i]);
188 }
189 #else
190 static void sched_feat_disable(int i) { };
191 static void sched_feat_enable(int i) { };
192 #endif /* HAVE_JUMP_LABEL */
193
194 static ssize_t
195 sched_feat_write(struct file *filp, const char __user *ubuf,
196 size_t cnt, loff_t *ppos)
197 {
198 char buf[64];
199 char *cmp;
200 int neg = 0;
201 int i;
202
203 if (cnt > 63)
204 cnt = 63;
205
206 if (copy_from_user(&buf, ubuf, cnt))
207 return -EFAULT;
208
209 buf[cnt] = 0;
210 cmp = strstrip(buf);
211
212 if (strncmp(cmp, "NO_", 3) == 0) {
213 neg = 1;
214 cmp += 3;
215 }
216
217 for (i = 0; i < __SCHED_FEAT_NR; i++) {
218 if (strcmp(cmp, sched_feat_names[i]) == 0) {
219 if (neg) {
220 sysctl_sched_features &= ~(1UL << i);
221 sched_feat_disable(i);
222 } else {
223 sysctl_sched_features |= (1UL << i);
224 sched_feat_enable(i);
225 }
226 break;
227 }
228 }
229
230 if (i == __SCHED_FEAT_NR)
231 return -EINVAL;
232
233 *ppos += cnt;
234
235 return cnt;
236 }
237
238 static int sched_feat_open(struct inode *inode, struct file *filp)
239 {
240 return single_open(filp, sched_feat_show, NULL);
241 }
242
243 static const struct file_operations sched_feat_fops = {
244 .open = sched_feat_open,
245 .write = sched_feat_write,
246 .read = seq_read,
247 .llseek = seq_lseek,
248 .release = single_release,
249 };
250
251 static __init int sched_init_debug(void)
252 {
253 debugfs_create_file("sched_features", 0644, NULL, NULL,
254 &sched_feat_fops);
255
256 return 0;
257 }
258 late_initcall(sched_init_debug);
259 #endif /* CONFIG_SCHED_DEBUG */
260
261 /*
262 * Number of tasks to iterate in a single balance run.
263 * Limited because this is done with IRQs disabled.
264 */
265 const_debug unsigned int sysctl_sched_nr_migrate = 32;
266
267 /*
268 * period over which we average the RT time consumption, measured
269 * in ms.
270 *
271 * default: 1s
272 */
273 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274
275 /*
276 * period over which we measure -rt task cpu usage in us.
277 * default: 1s
278 */
279 unsigned int sysctl_sched_rt_period = 1000000;
280
281 __read_mostly int scheduler_running;
282
283 /*
284 * part of the period that we allow rt tasks to run in us.
285 * default: 0.95s
286 */
287 int sysctl_sched_rt_runtime = 950000;
288
289
290
291 /*
292 * __task_rq_lock - lock the rq @p resides on.
293 */
294 static inline struct rq *__task_rq_lock(struct task_struct *p)
295 __acquires(rq->lock)
296 {
297 struct rq *rq;
298
299 lockdep_assert_held(&p->pi_lock);
300
301 for (;;) {
302 rq = task_rq(p);
303 raw_spin_lock(&rq->lock);
304 if (likely(rq == task_rq(p)))
305 return rq;
306 raw_spin_unlock(&rq->lock);
307 }
308 }
309
310 /*
311 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
312 */
313 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
314 __acquires(p->pi_lock)
315 __acquires(rq->lock)
316 {
317 struct rq *rq;
318
319 for (;;) {
320 raw_spin_lock_irqsave(&p->pi_lock, *flags);
321 rq = task_rq(p);
322 raw_spin_lock(&rq->lock);
323 if (likely(rq == task_rq(p)))
324 return rq;
325 raw_spin_unlock(&rq->lock);
326 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
327 }
328 }
329
330 static void __task_rq_unlock(struct rq *rq)
331 __releases(rq->lock)
332 {
333 raw_spin_unlock(&rq->lock);
334 }
335
336 static inline void
337 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
338 __releases(rq->lock)
339 __releases(p->pi_lock)
340 {
341 raw_spin_unlock(&rq->lock);
342 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
343 }
344
345 /*
346 * this_rq_lock - lock this runqueue and disable interrupts.
347 */
348 static struct rq *this_rq_lock(void)
349 __acquires(rq->lock)
350 {
351 struct rq *rq;
352
353 local_irq_disable();
354 rq = this_rq();
355 raw_spin_lock(&rq->lock);
356
357 return rq;
358 }
359
360 #ifdef CONFIG_SCHED_HRTICK
361 /*
362 * Use HR-timers to deliver accurate preemption points.
363 *
364 * Its all a bit involved since we cannot program an hrt while holding the
365 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
366 * reschedule event.
367 *
368 * When we get rescheduled we reprogram the hrtick_timer outside of the
369 * rq->lock.
370 */
371
372 static void hrtick_clear(struct rq *rq)
373 {
374 if (hrtimer_active(&rq->hrtick_timer))
375 hrtimer_cancel(&rq->hrtick_timer);
376 }
377
378 /*
379 * High-resolution timer tick.
380 * Runs from hardirq context with interrupts disabled.
381 */
382 static enum hrtimer_restart hrtick(struct hrtimer *timer)
383 {
384 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
385
386 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
387
388 raw_spin_lock(&rq->lock);
389 update_rq_clock(rq);
390 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
391 raw_spin_unlock(&rq->lock);
392
393 return HRTIMER_NORESTART;
394 }
395
396 #ifdef CONFIG_SMP
397 /*
398 * called from hardirq (IPI) context
399 */
400 static void __hrtick_start(void *arg)
401 {
402 struct rq *rq = arg;
403
404 raw_spin_lock(&rq->lock);
405 hrtimer_restart(&rq->hrtick_timer);
406 rq->hrtick_csd_pending = 0;
407 raw_spin_unlock(&rq->lock);
408 }
409
410 /*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
415 void hrtick_start(struct rq *rq, u64 delay)
416 {
417 struct hrtimer *timer = &rq->hrtick_timer;
418 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
419
420 hrtimer_set_expires(timer, time);
421
422 if (rq == this_rq()) {
423 hrtimer_restart(timer);
424 } else if (!rq->hrtick_csd_pending) {
425 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
426 rq->hrtick_csd_pending = 1;
427 }
428 }
429
430 static int
431 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
432 {
433 int cpu = (int)(long)hcpu;
434
435 switch (action) {
436 case CPU_UP_CANCELED:
437 case CPU_UP_CANCELED_FROZEN:
438 case CPU_DOWN_PREPARE:
439 case CPU_DOWN_PREPARE_FROZEN:
440 case CPU_DEAD:
441 case CPU_DEAD_FROZEN:
442 hrtick_clear(cpu_rq(cpu));
443 return NOTIFY_OK;
444 }
445
446 return NOTIFY_DONE;
447 }
448
449 static __init void init_hrtick(void)
450 {
451 hotcpu_notifier(hotplug_hrtick, 0);
452 }
453 #else
454 /*
455 * Called to set the hrtick timer state.
456 *
457 * called with rq->lock held and irqs disabled
458 */
459 void hrtick_start(struct rq *rq, u64 delay)
460 {
461 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
462 HRTIMER_MODE_REL_PINNED, 0);
463 }
464
465 static inline void init_hrtick(void)
466 {
467 }
468 #endif /* CONFIG_SMP */
469
470 static void init_rq_hrtick(struct rq *rq)
471 {
472 #ifdef CONFIG_SMP
473 rq->hrtick_csd_pending = 0;
474
475 rq->hrtick_csd.flags = 0;
476 rq->hrtick_csd.func = __hrtick_start;
477 rq->hrtick_csd.info = rq;
478 #endif
479
480 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
481 rq->hrtick_timer.function = hrtick;
482 }
483 #else /* CONFIG_SCHED_HRTICK */
484 static inline void hrtick_clear(struct rq *rq)
485 {
486 }
487
488 static inline void init_rq_hrtick(struct rq *rq)
489 {
490 }
491
492 static inline void init_hrtick(void)
493 {
494 }
495 #endif /* CONFIG_SCHED_HRTICK */
496
497 /*
498 * resched_task - mark a task 'to be rescheduled now'.
499 *
500 * On UP this means the setting of the need_resched flag, on SMP it
501 * might also involve a cross-CPU call to trigger the scheduler on
502 * the target CPU.
503 */
504 #ifdef CONFIG_SMP
505
506 #ifndef tsk_is_polling
507 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
508 #endif
509
510 void resched_task(struct task_struct *p)
511 {
512 int cpu;
513
514 assert_raw_spin_locked(&task_rq(p)->lock);
515
516 if (test_tsk_need_resched(p))
517 return;
518
519 set_tsk_need_resched(p);
520
521 cpu = task_cpu(p);
522 if (cpu == smp_processor_id())
523 return;
524
525 /* NEED_RESCHED must be visible before we test polling */
526 smp_mb();
527 if (!tsk_is_polling(p))
528 smp_send_reschedule(cpu);
529 }
530
531 void resched_cpu(int cpu)
532 {
533 struct rq *rq = cpu_rq(cpu);
534 unsigned long flags;
535
536 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
537 return;
538 resched_task(cpu_curr(cpu));
539 raw_spin_unlock_irqrestore(&rq->lock, flags);
540 }
541
542 #ifdef CONFIG_NO_HZ
543 /*
544 * In the semi idle case, use the nearest busy cpu for migrating timers
545 * from an idle cpu. This is good for power-savings.
546 *
547 * We don't do similar optimization for completely idle system, as
548 * selecting an idle cpu will add more delays to the timers than intended
549 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
550 */
551 int get_nohz_timer_target(void)
552 {
553 int cpu = smp_processor_id();
554 int i;
555 struct sched_domain *sd;
556
557 rcu_read_lock();
558 for_each_domain(cpu, sd) {
559 for_each_cpu(i, sched_domain_span(sd)) {
560 if (!idle_cpu(i)) {
561 cpu = i;
562 goto unlock;
563 }
564 }
565 }
566 unlock:
567 rcu_read_unlock();
568 return cpu;
569 }
570 /*
571 * When add_timer_on() enqueues a timer into the timer wheel of an
572 * idle CPU then this timer might expire before the next timer event
573 * which is scheduled to wake up that CPU. In case of a completely
574 * idle system the next event might even be infinite time into the
575 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
576 * leaves the inner idle loop so the newly added timer is taken into
577 * account when the CPU goes back to idle and evaluates the timer
578 * wheel for the next timer event.
579 */
580 void wake_up_idle_cpu(int cpu)
581 {
582 struct rq *rq = cpu_rq(cpu);
583
584 if (cpu == smp_processor_id())
585 return;
586
587 /*
588 * This is safe, as this function is called with the timer
589 * wheel base lock of (cpu) held. When the CPU is on the way
590 * to idle and has not yet set rq->curr to idle then it will
591 * be serialized on the timer wheel base lock and take the new
592 * timer into account automatically.
593 */
594 if (rq->curr != rq->idle)
595 return;
596
597 /*
598 * We can set TIF_RESCHED on the idle task of the other CPU
599 * lockless. The worst case is that the other CPU runs the
600 * idle task through an additional NOOP schedule()
601 */
602 set_tsk_need_resched(rq->idle);
603
604 /* NEED_RESCHED must be visible before we test polling */
605 smp_mb();
606 if (!tsk_is_polling(rq->idle))
607 smp_send_reschedule(cpu);
608 }
609
610 static inline bool got_nohz_idle_kick(void)
611 {
612 int cpu = smp_processor_id();
613 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
614 }
615
616 #else /* CONFIG_NO_HZ */
617
618 static inline bool got_nohz_idle_kick(void)
619 {
620 return false;
621 }
622
623 #endif /* CONFIG_NO_HZ */
624
625 void sched_avg_update(struct rq *rq)
626 {
627 s64 period = sched_avg_period();
628
629 while ((s64)(rq->clock - rq->age_stamp) > period) {
630 /*
631 * Inline assembly required to prevent the compiler
632 * optimising this loop into a divmod call.
633 * See __iter_div_u64_rem() for another example of this.
634 */
635 asm("" : "+rm" (rq->age_stamp));
636 rq->age_stamp += period;
637 rq->rt_avg /= 2;
638 }
639 }
640
641 #else /* !CONFIG_SMP */
642 void resched_task(struct task_struct *p)
643 {
644 assert_raw_spin_locked(&task_rq(p)->lock);
645 set_tsk_need_resched(p);
646 }
647 #endif /* CONFIG_SMP */
648
649 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
650 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
651 /*
652 * Iterate task_group tree rooted at *from, calling @down when first entering a
653 * node and @up when leaving it for the final time.
654 *
655 * Caller must hold rcu_lock or sufficient equivalent.
656 */
657 int walk_tg_tree_from(struct task_group *from,
658 tg_visitor down, tg_visitor up, void *data)
659 {
660 struct task_group *parent, *child;
661 int ret;
662
663 parent = from;
664
665 down:
666 ret = (*down)(parent, data);
667 if (ret)
668 goto out;
669 list_for_each_entry_rcu(child, &parent->children, siblings) {
670 parent = child;
671 goto down;
672
673 up:
674 continue;
675 }
676 ret = (*up)(parent, data);
677 if (ret || parent == from)
678 goto out;
679
680 child = parent;
681 parent = parent->parent;
682 if (parent)
683 goto up;
684 out:
685 return ret;
686 }
687
688 int tg_nop(struct task_group *tg, void *data)
689 {
690 return 0;
691 }
692 #endif
693
694 void update_cpu_load(struct rq *this_rq);
695
696 static void set_load_weight(struct task_struct *p)
697 {
698 int prio = p->static_prio - MAX_RT_PRIO;
699 struct load_weight *load = &p->se.load;
700
701 /*
702 * SCHED_IDLE tasks get minimal weight:
703 */
704 if (p->policy == SCHED_IDLE) {
705 load->weight = scale_load(WEIGHT_IDLEPRIO);
706 load->inv_weight = WMULT_IDLEPRIO;
707 return;
708 }
709
710 load->weight = scale_load(prio_to_weight[prio]);
711 load->inv_weight = prio_to_wmult[prio];
712 }
713
714 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
715 {
716 update_rq_clock(rq);
717 sched_info_queued(p);
718 p->sched_class->enqueue_task(rq, p, flags);
719 }
720
721 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
722 {
723 update_rq_clock(rq);
724 sched_info_dequeued(p);
725 p->sched_class->dequeue_task(rq, p, flags);
726 }
727
728 void activate_task(struct rq *rq, struct task_struct *p, int flags)
729 {
730 if (task_contributes_to_load(p))
731 rq->nr_uninterruptible--;
732
733 enqueue_task(rq, p, flags);
734 }
735
736 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
737 {
738 if (task_contributes_to_load(p))
739 rq->nr_uninterruptible++;
740
741 dequeue_task(rq, p, flags);
742 }
743
744 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
745
746 /*
747 * There are no locks covering percpu hardirq/softirq time.
748 * They are only modified in account_system_vtime, on corresponding CPU
749 * with interrupts disabled. So, writes are safe.
750 * They are read and saved off onto struct rq in update_rq_clock().
751 * This may result in other CPU reading this CPU's irq time and can
752 * race with irq/account_system_vtime on this CPU. We would either get old
753 * or new value with a side effect of accounting a slice of irq time to wrong
754 * task when irq is in progress while we read rq->clock. That is a worthy
755 * compromise in place of having locks on each irq in account_system_time.
756 */
757 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
758 static DEFINE_PER_CPU(u64, cpu_softirq_time);
759
760 static DEFINE_PER_CPU(u64, irq_start_time);
761 static int sched_clock_irqtime;
762
763 void enable_sched_clock_irqtime(void)
764 {
765 sched_clock_irqtime = 1;
766 }
767
768 void disable_sched_clock_irqtime(void)
769 {
770 sched_clock_irqtime = 0;
771 }
772
773 #ifndef CONFIG_64BIT
774 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
775
776 static inline void irq_time_write_begin(void)
777 {
778 __this_cpu_inc(irq_time_seq.sequence);
779 smp_wmb();
780 }
781
782 static inline void irq_time_write_end(void)
783 {
784 smp_wmb();
785 __this_cpu_inc(irq_time_seq.sequence);
786 }
787
788 static inline u64 irq_time_read(int cpu)
789 {
790 u64 irq_time;
791 unsigned seq;
792
793 do {
794 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
795 irq_time = per_cpu(cpu_softirq_time, cpu) +
796 per_cpu(cpu_hardirq_time, cpu);
797 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
798
799 return irq_time;
800 }
801 #else /* CONFIG_64BIT */
802 static inline void irq_time_write_begin(void)
803 {
804 }
805
806 static inline void irq_time_write_end(void)
807 {
808 }
809
810 static inline u64 irq_time_read(int cpu)
811 {
812 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
813 }
814 #endif /* CONFIG_64BIT */
815
816 /*
817 * Called before incrementing preempt_count on {soft,}irq_enter
818 * and before decrementing preempt_count on {soft,}irq_exit.
819 */
820 void account_system_vtime(struct task_struct *curr)
821 {
822 unsigned long flags;
823 s64 delta;
824 int cpu;
825
826 if (!sched_clock_irqtime)
827 return;
828
829 local_irq_save(flags);
830
831 cpu = smp_processor_id();
832 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
833 __this_cpu_add(irq_start_time, delta);
834
835 irq_time_write_begin();
836 /*
837 * We do not account for softirq time from ksoftirqd here.
838 * We want to continue accounting softirq time to ksoftirqd thread
839 * in that case, so as not to confuse scheduler with a special task
840 * that do not consume any time, but still wants to run.
841 */
842 if (hardirq_count())
843 __this_cpu_add(cpu_hardirq_time, delta);
844 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
845 __this_cpu_add(cpu_softirq_time, delta);
846
847 irq_time_write_end();
848 local_irq_restore(flags);
849 }
850 EXPORT_SYMBOL_GPL(account_system_vtime);
851
852 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
853
854 #ifdef CONFIG_PARAVIRT
855 static inline u64 steal_ticks(u64 steal)
856 {
857 if (unlikely(steal > NSEC_PER_SEC))
858 return div_u64(steal, TICK_NSEC);
859
860 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
861 }
862 #endif
863
864 static void update_rq_clock_task(struct rq *rq, s64 delta)
865 {
866 /*
867 * In theory, the compile should just see 0 here, and optimize out the call
868 * to sched_rt_avg_update. But I don't trust it...
869 */
870 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
871 s64 steal = 0, irq_delta = 0;
872 #endif
873 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
874 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
875
876 /*
877 * Since irq_time is only updated on {soft,}irq_exit, we might run into
878 * this case when a previous update_rq_clock() happened inside a
879 * {soft,}irq region.
880 *
881 * When this happens, we stop ->clock_task and only update the
882 * prev_irq_time stamp to account for the part that fit, so that a next
883 * update will consume the rest. This ensures ->clock_task is
884 * monotonic.
885 *
886 * It does however cause some slight miss-attribution of {soft,}irq
887 * time, a more accurate solution would be to update the irq_time using
888 * the current rq->clock timestamp, except that would require using
889 * atomic ops.
890 */
891 if (irq_delta > delta)
892 irq_delta = delta;
893
894 rq->prev_irq_time += irq_delta;
895 delta -= irq_delta;
896 #endif
897 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
898 if (static_key_false((&paravirt_steal_rq_enabled))) {
899 u64 st;
900
901 steal = paravirt_steal_clock(cpu_of(rq));
902 steal -= rq->prev_steal_time_rq;
903
904 if (unlikely(steal > delta))
905 steal = delta;
906
907 st = steal_ticks(steal);
908 steal = st * TICK_NSEC;
909
910 rq->prev_steal_time_rq += steal;
911
912 delta -= steal;
913 }
914 #endif
915
916 rq->clock_task += delta;
917
918 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
919 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
920 sched_rt_avg_update(rq, irq_delta + steal);
921 #endif
922 }
923
924 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
925 static int irqtime_account_hi_update(void)
926 {
927 u64 *cpustat = kcpustat_this_cpu->cpustat;
928 unsigned long flags;
929 u64 latest_ns;
930 int ret = 0;
931
932 local_irq_save(flags);
933 latest_ns = this_cpu_read(cpu_hardirq_time);
934 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
935 ret = 1;
936 local_irq_restore(flags);
937 return ret;
938 }
939
940 static int irqtime_account_si_update(void)
941 {
942 u64 *cpustat = kcpustat_this_cpu->cpustat;
943 unsigned long flags;
944 u64 latest_ns;
945 int ret = 0;
946
947 local_irq_save(flags);
948 latest_ns = this_cpu_read(cpu_softirq_time);
949 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
950 ret = 1;
951 local_irq_restore(flags);
952 return ret;
953 }
954
955 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
956
957 #define sched_clock_irqtime (0)
958
959 #endif
960
961 void sched_set_stop_task(int cpu, struct task_struct *stop)
962 {
963 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
964 struct task_struct *old_stop = cpu_rq(cpu)->stop;
965
966 if (stop) {
967 /*
968 * Make it appear like a SCHED_FIFO task, its something
969 * userspace knows about and won't get confused about.
970 *
971 * Also, it will make PI more or less work without too
972 * much confusion -- but then, stop work should not
973 * rely on PI working anyway.
974 */
975 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
976
977 stop->sched_class = &stop_sched_class;
978 }
979
980 cpu_rq(cpu)->stop = stop;
981
982 if (old_stop) {
983 /*
984 * Reset it back to a normal scheduling class so that
985 * it can die in pieces.
986 */
987 old_stop->sched_class = &rt_sched_class;
988 }
989 }
990
991 /*
992 * __normal_prio - return the priority that is based on the static prio
993 */
994 static inline int __normal_prio(struct task_struct *p)
995 {
996 return p->static_prio;
997 }
998
999 /*
1000 * Calculate the expected normal priority: i.e. priority
1001 * without taking RT-inheritance into account. Might be
1002 * boosted by interactivity modifiers. Changes upon fork,
1003 * setprio syscalls, and whenever the interactivity
1004 * estimator recalculates.
1005 */
1006 static inline int normal_prio(struct task_struct *p)
1007 {
1008 int prio;
1009
1010 if (task_has_rt_policy(p))
1011 prio = MAX_RT_PRIO-1 - p->rt_priority;
1012 else
1013 prio = __normal_prio(p);
1014 return prio;
1015 }
1016
1017 /*
1018 * Calculate the current priority, i.e. the priority
1019 * taken into account by the scheduler. This value might
1020 * be boosted by RT tasks, or might be boosted by
1021 * interactivity modifiers. Will be RT if the task got
1022 * RT-boosted. If not then it returns p->normal_prio.
1023 */
1024 static int effective_prio(struct task_struct *p)
1025 {
1026 p->normal_prio = normal_prio(p);
1027 /*
1028 * If we are RT tasks or we were boosted to RT priority,
1029 * keep the priority unchanged. Otherwise, update priority
1030 * to the normal priority:
1031 */
1032 if (!rt_prio(p->prio))
1033 return p->normal_prio;
1034 return p->prio;
1035 }
1036
1037 /**
1038 * task_curr - is this task currently executing on a CPU?
1039 * @p: the task in question.
1040 */
1041 inline int task_curr(const struct task_struct *p)
1042 {
1043 return cpu_curr(task_cpu(p)) == p;
1044 }
1045
1046 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1047 const struct sched_class *prev_class,
1048 int oldprio)
1049 {
1050 if (prev_class != p->sched_class) {
1051 if (prev_class->switched_from)
1052 prev_class->switched_from(rq, p);
1053 p->sched_class->switched_to(rq, p);
1054 } else if (oldprio != p->prio)
1055 p->sched_class->prio_changed(rq, p, oldprio);
1056 }
1057
1058 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1059 {
1060 const struct sched_class *class;
1061
1062 if (p->sched_class == rq->curr->sched_class) {
1063 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1064 } else {
1065 for_each_class(class) {
1066 if (class == rq->curr->sched_class)
1067 break;
1068 if (class == p->sched_class) {
1069 resched_task(rq->curr);
1070 break;
1071 }
1072 }
1073 }
1074
1075 /*
1076 * A queue event has occurred, and we're going to schedule. In
1077 * this case, we can save a useless back to back clock update.
1078 */
1079 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1080 rq->skip_clock_update = 1;
1081 }
1082
1083 #ifdef CONFIG_SMP
1084 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1085 {
1086 #ifdef CONFIG_SCHED_DEBUG
1087 /*
1088 * We should never call set_task_cpu() on a blocked task,
1089 * ttwu() will sort out the placement.
1090 */
1091 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1092 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1093
1094 #ifdef CONFIG_LOCKDEP
1095 /*
1096 * The caller should hold either p->pi_lock or rq->lock, when changing
1097 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1098 *
1099 * sched_move_task() holds both and thus holding either pins the cgroup,
1100 * see set_task_rq().
1101 *
1102 * Furthermore, all task_rq users should acquire both locks, see
1103 * task_rq_lock().
1104 */
1105 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1106 lockdep_is_held(&task_rq(p)->lock)));
1107 #endif
1108 #endif
1109
1110 trace_sched_migrate_task(p, new_cpu);
1111
1112 if (task_cpu(p) != new_cpu) {
1113 p->se.nr_migrations++;
1114 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1115 }
1116
1117 __set_task_cpu(p, new_cpu);
1118 }
1119
1120 struct migration_arg {
1121 struct task_struct *task;
1122 int dest_cpu;
1123 };
1124
1125 static int migration_cpu_stop(void *data);
1126
1127 /*
1128 * wait_task_inactive - wait for a thread to unschedule.
1129 *
1130 * If @match_state is nonzero, it's the @p->state value just checked and
1131 * not expected to change. If it changes, i.e. @p might have woken up,
1132 * then return zero. When we succeed in waiting for @p to be off its CPU,
1133 * we return a positive number (its total switch count). If a second call
1134 * a short while later returns the same number, the caller can be sure that
1135 * @p has remained unscheduled the whole time.
1136 *
1137 * The caller must ensure that the task *will* unschedule sometime soon,
1138 * else this function might spin for a *long* time. This function can't
1139 * be called with interrupts off, or it may introduce deadlock with
1140 * smp_call_function() if an IPI is sent by the same process we are
1141 * waiting to become inactive.
1142 */
1143 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1144 {
1145 unsigned long flags;
1146 int running, on_rq;
1147 unsigned long ncsw;
1148 struct rq *rq;
1149
1150 for (;;) {
1151 /*
1152 * We do the initial early heuristics without holding
1153 * any task-queue locks at all. We'll only try to get
1154 * the runqueue lock when things look like they will
1155 * work out!
1156 */
1157 rq = task_rq(p);
1158
1159 /*
1160 * If the task is actively running on another CPU
1161 * still, just relax and busy-wait without holding
1162 * any locks.
1163 *
1164 * NOTE! Since we don't hold any locks, it's not
1165 * even sure that "rq" stays as the right runqueue!
1166 * But we don't care, since "task_running()" will
1167 * return false if the runqueue has changed and p
1168 * is actually now running somewhere else!
1169 */
1170 while (task_running(rq, p)) {
1171 if (match_state && unlikely(p->state != match_state))
1172 return 0;
1173 cpu_relax();
1174 }
1175
1176 /*
1177 * Ok, time to look more closely! We need the rq
1178 * lock now, to be *sure*. If we're wrong, we'll
1179 * just go back and repeat.
1180 */
1181 rq = task_rq_lock(p, &flags);
1182 trace_sched_wait_task(p);
1183 running = task_running(rq, p);
1184 on_rq = p->on_rq;
1185 ncsw = 0;
1186 if (!match_state || p->state == match_state)
1187 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1188 task_rq_unlock(rq, p, &flags);
1189
1190 /*
1191 * If it changed from the expected state, bail out now.
1192 */
1193 if (unlikely(!ncsw))
1194 break;
1195
1196 /*
1197 * Was it really running after all now that we
1198 * checked with the proper locks actually held?
1199 *
1200 * Oops. Go back and try again..
1201 */
1202 if (unlikely(running)) {
1203 cpu_relax();
1204 continue;
1205 }
1206
1207 /*
1208 * It's not enough that it's not actively running,
1209 * it must be off the runqueue _entirely_, and not
1210 * preempted!
1211 *
1212 * So if it was still runnable (but just not actively
1213 * running right now), it's preempted, and we should
1214 * yield - it could be a while.
1215 */
1216 if (unlikely(on_rq)) {
1217 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1218
1219 set_current_state(TASK_UNINTERRUPTIBLE);
1220 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1221 continue;
1222 }
1223
1224 /*
1225 * Ahh, all good. It wasn't running, and it wasn't
1226 * runnable, which means that it will never become
1227 * running in the future either. We're all done!
1228 */
1229 break;
1230 }
1231
1232 return ncsw;
1233 }
1234
1235 /***
1236 * kick_process - kick a running thread to enter/exit the kernel
1237 * @p: the to-be-kicked thread
1238 *
1239 * Cause a process which is running on another CPU to enter
1240 * kernel-mode, without any delay. (to get signals handled.)
1241 *
1242 * NOTE: this function doesn't have to take the runqueue lock,
1243 * because all it wants to ensure is that the remote task enters
1244 * the kernel. If the IPI races and the task has been migrated
1245 * to another CPU then no harm is done and the purpose has been
1246 * achieved as well.
1247 */
1248 void kick_process(struct task_struct *p)
1249 {
1250 int cpu;
1251
1252 preempt_disable();
1253 cpu = task_cpu(p);
1254 if ((cpu != smp_processor_id()) && task_curr(p))
1255 smp_send_reschedule(cpu);
1256 preempt_enable();
1257 }
1258 EXPORT_SYMBOL_GPL(kick_process);
1259 #endif /* CONFIG_SMP */
1260
1261 #ifdef CONFIG_SMP
1262 /*
1263 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1264 */
1265 static int select_fallback_rq(int cpu, struct task_struct *p)
1266 {
1267 int dest_cpu;
1268 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1269
1270 /* Look for allowed, online CPU in same node. */
1271 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
1272 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1273 return dest_cpu;
1274
1275 /* Any allowed, online CPU? */
1276 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
1277 if (dest_cpu < nr_cpu_ids)
1278 return dest_cpu;
1279
1280 /* No more Mr. Nice Guy. */
1281 dest_cpu = cpuset_cpus_allowed_fallback(p);
1282 /*
1283 * Don't tell them about moving exiting tasks or
1284 * kernel threads (both mm NULL), since they never
1285 * leave kernel.
1286 */
1287 if (p->mm && printk_ratelimit()) {
1288 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1289 task_pid_nr(p), p->comm, cpu);
1290 }
1291
1292 return dest_cpu;
1293 }
1294
1295 /*
1296 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1297 */
1298 static inline
1299 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1300 {
1301 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1302
1303 /*
1304 * In order not to call set_task_cpu() on a blocking task we need
1305 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1306 * cpu.
1307 *
1308 * Since this is common to all placement strategies, this lives here.
1309 *
1310 * [ this allows ->select_task() to simply return task_cpu(p) and
1311 * not worry about this generic constraint ]
1312 */
1313 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1314 !cpu_online(cpu)))
1315 cpu = select_fallback_rq(task_cpu(p), p);
1316
1317 return cpu;
1318 }
1319
1320 static void update_avg(u64 *avg, u64 sample)
1321 {
1322 s64 diff = sample - *avg;
1323 *avg += diff >> 3;
1324 }
1325 #endif
1326
1327 static void
1328 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1329 {
1330 #ifdef CONFIG_SCHEDSTATS
1331 struct rq *rq = this_rq();
1332
1333 #ifdef CONFIG_SMP
1334 int this_cpu = smp_processor_id();
1335
1336 if (cpu == this_cpu) {
1337 schedstat_inc(rq, ttwu_local);
1338 schedstat_inc(p, se.statistics.nr_wakeups_local);
1339 } else {
1340 struct sched_domain *sd;
1341
1342 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1343 rcu_read_lock();
1344 for_each_domain(this_cpu, sd) {
1345 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1346 schedstat_inc(sd, ttwu_wake_remote);
1347 break;
1348 }
1349 }
1350 rcu_read_unlock();
1351 }
1352
1353 if (wake_flags & WF_MIGRATED)
1354 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1355
1356 #endif /* CONFIG_SMP */
1357
1358 schedstat_inc(rq, ttwu_count);
1359 schedstat_inc(p, se.statistics.nr_wakeups);
1360
1361 if (wake_flags & WF_SYNC)
1362 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1363
1364 #endif /* CONFIG_SCHEDSTATS */
1365 }
1366
1367 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1368 {
1369 activate_task(rq, p, en_flags);
1370 p->on_rq = 1;
1371
1372 /* if a worker is waking up, notify workqueue */
1373 if (p->flags & PF_WQ_WORKER)
1374 wq_worker_waking_up(p, cpu_of(rq));
1375 }
1376
1377 /*
1378 * Mark the task runnable and perform wakeup-preemption.
1379 */
1380 static void
1381 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1382 {
1383 trace_sched_wakeup(p, true);
1384 check_preempt_curr(rq, p, wake_flags);
1385
1386 p->state = TASK_RUNNING;
1387 #ifdef CONFIG_SMP
1388 if (p->sched_class->task_woken)
1389 p->sched_class->task_woken(rq, p);
1390
1391 if (rq->idle_stamp) {
1392 u64 delta = rq->clock - rq->idle_stamp;
1393 u64 max = 2*sysctl_sched_migration_cost;
1394
1395 if (delta > max)
1396 rq->avg_idle = max;
1397 else
1398 update_avg(&rq->avg_idle, delta);
1399 rq->idle_stamp = 0;
1400 }
1401 #endif
1402 }
1403
1404 static void
1405 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1406 {
1407 #ifdef CONFIG_SMP
1408 if (p->sched_contributes_to_load)
1409 rq->nr_uninterruptible--;
1410 #endif
1411
1412 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1413 ttwu_do_wakeup(rq, p, wake_flags);
1414 }
1415
1416 /*
1417 * Called in case the task @p isn't fully descheduled from its runqueue,
1418 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1419 * since all we need to do is flip p->state to TASK_RUNNING, since
1420 * the task is still ->on_rq.
1421 */
1422 static int ttwu_remote(struct task_struct *p, int wake_flags)
1423 {
1424 struct rq *rq;
1425 int ret = 0;
1426
1427 rq = __task_rq_lock(p);
1428 if (p->on_rq) {
1429 ttwu_do_wakeup(rq, p, wake_flags);
1430 ret = 1;
1431 }
1432 __task_rq_unlock(rq);
1433
1434 return ret;
1435 }
1436
1437 #ifdef CONFIG_SMP
1438 static void sched_ttwu_pending(void)
1439 {
1440 struct rq *rq = this_rq();
1441 struct llist_node *llist = llist_del_all(&rq->wake_list);
1442 struct task_struct *p;
1443
1444 raw_spin_lock(&rq->lock);
1445
1446 while (llist) {
1447 p = llist_entry(llist, struct task_struct, wake_entry);
1448 llist = llist_next(llist);
1449 ttwu_do_activate(rq, p, 0);
1450 }
1451
1452 raw_spin_unlock(&rq->lock);
1453 }
1454
1455 void scheduler_ipi(void)
1456 {
1457 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1458 return;
1459
1460 /*
1461 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1462 * traditionally all their work was done from the interrupt return
1463 * path. Now that we actually do some work, we need to make sure
1464 * we do call them.
1465 *
1466 * Some archs already do call them, luckily irq_enter/exit nest
1467 * properly.
1468 *
1469 * Arguably we should visit all archs and update all handlers,
1470 * however a fair share of IPIs are still resched only so this would
1471 * somewhat pessimize the simple resched case.
1472 */
1473 irq_enter();
1474 sched_ttwu_pending();
1475
1476 /*
1477 * Check if someone kicked us for doing the nohz idle load balance.
1478 */
1479 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1480 this_rq()->idle_balance = 1;
1481 raise_softirq_irqoff(SCHED_SOFTIRQ);
1482 }
1483 irq_exit();
1484 }
1485
1486 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1487 {
1488 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1489 smp_send_reschedule(cpu);
1490 }
1491
1492 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1493 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1494 {
1495 struct rq *rq;
1496 int ret = 0;
1497
1498 rq = __task_rq_lock(p);
1499 if (p->on_cpu) {
1500 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1501 ttwu_do_wakeup(rq, p, wake_flags);
1502 ret = 1;
1503 }
1504 __task_rq_unlock(rq);
1505
1506 return ret;
1507
1508 }
1509 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1510
1511 bool cpus_share_cache(int this_cpu, int that_cpu)
1512 {
1513 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1514 }
1515 #endif /* CONFIG_SMP */
1516
1517 static void ttwu_queue(struct task_struct *p, int cpu)
1518 {
1519 struct rq *rq = cpu_rq(cpu);
1520
1521 #if defined(CONFIG_SMP)
1522 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1523 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1524 ttwu_queue_remote(p, cpu);
1525 return;
1526 }
1527 #endif
1528
1529 raw_spin_lock(&rq->lock);
1530 ttwu_do_activate(rq, p, 0);
1531 raw_spin_unlock(&rq->lock);
1532 }
1533
1534 /**
1535 * try_to_wake_up - wake up a thread
1536 * @p: the thread to be awakened
1537 * @state: the mask of task states that can be woken
1538 * @wake_flags: wake modifier flags (WF_*)
1539 *
1540 * Put it on the run-queue if it's not already there. The "current"
1541 * thread is always on the run-queue (except when the actual
1542 * re-schedule is in progress), and as such you're allowed to do
1543 * the simpler "current->state = TASK_RUNNING" to mark yourself
1544 * runnable without the overhead of this.
1545 *
1546 * Returns %true if @p was woken up, %false if it was already running
1547 * or @state didn't match @p's state.
1548 */
1549 static int
1550 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1551 {
1552 unsigned long flags;
1553 int cpu, success = 0;
1554
1555 smp_wmb();
1556 raw_spin_lock_irqsave(&p->pi_lock, flags);
1557 if (!(p->state & state))
1558 goto out;
1559
1560 success = 1; /* we're going to change ->state */
1561 cpu = task_cpu(p);
1562
1563 if (p->on_rq && ttwu_remote(p, wake_flags))
1564 goto stat;
1565
1566 #ifdef CONFIG_SMP
1567 /*
1568 * If the owning (remote) cpu is still in the middle of schedule() with
1569 * this task as prev, wait until its done referencing the task.
1570 */
1571 while (p->on_cpu) {
1572 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1573 /*
1574 * In case the architecture enables interrupts in
1575 * context_switch(), we cannot busy wait, since that
1576 * would lead to deadlocks when an interrupt hits and
1577 * tries to wake up @prev. So bail and do a complete
1578 * remote wakeup.
1579 */
1580 if (ttwu_activate_remote(p, wake_flags))
1581 goto stat;
1582 #else
1583 cpu_relax();
1584 #endif
1585 }
1586 /*
1587 * Pairs with the smp_wmb() in finish_lock_switch().
1588 */
1589 smp_rmb();
1590
1591 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1592 p->state = TASK_WAKING;
1593
1594 if (p->sched_class->task_waking)
1595 p->sched_class->task_waking(p);
1596
1597 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1598 if (task_cpu(p) != cpu) {
1599 wake_flags |= WF_MIGRATED;
1600 set_task_cpu(p, cpu);
1601 }
1602 #endif /* CONFIG_SMP */
1603
1604 ttwu_queue(p, cpu);
1605 stat:
1606 ttwu_stat(p, cpu, wake_flags);
1607 out:
1608 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1609
1610 return success;
1611 }
1612
1613 /**
1614 * try_to_wake_up_local - try to wake up a local task with rq lock held
1615 * @p: the thread to be awakened
1616 *
1617 * Put @p on the run-queue if it's not already there. The caller must
1618 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1619 * the current task.
1620 */
1621 static void try_to_wake_up_local(struct task_struct *p)
1622 {
1623 struct rq *rq = task_rq(p);
1624
1625 BUG_ON(rq != this_rq());
1626 BUG_ON(p == current);
1627 lockdep_assert_held(&rq->lock);
1628
1629 if (!raw_spin_trylock(&p->pi_lock)) {
1630 raw_spin_unlock(&rq->lock);
1631 raw_spin_lock(&p->pi_lock);
1632 raw_spin_lock(&rq->lock);
1633 }
1634
1635 if (!(p->state & TASK_NORMAL))
1636 goto out;
1637
1638 if (!p->on_rq)
1639 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1640
1641 ttwu_do_wakeup(rq, p, 0);
1642 ttwu_stat(p, smp_processor_id(), 0);
1643 out:
1644 raw_spin_unlock(&p->pi_lock);
1645 }
1646
1647 /**
1648 * wake_up_process - Wake up a specific process
1649 * @p: The process to be woken up.
1650 *
1651 * Attempt to wake up the nominated process and move it to the set of runnable
1652 * processes. Returns 1 if the process was woken up, 0 if it was already
1653 * running.
1654 *
1655 * It may be assumed that this function implies a write memory barrier before
1656 * changing the task state if and only if any tasks are woken up.
1657 */
1658 int wake_up_process(struct task_struct *p)
1659 {
1660 return try_to_wake_up(p, TASK_ALL, 0);
1661 }
1662 EXPORT_SYMBOL(wake_up_process);
1663
1664 int wake_up_state(struct task_struct *p, unsigned int state)
1665 {
1666 return try_to_wake_up(p, state, 0);
1667 }
1668
1669 /*
1670 * Perform scheduler related setup for a newly forked process p.
1671 * p is forked by current.
1672 *
1673 * __sched_fork() is basic setup used by init_idle() too:
1674 */
1675 static void __sched_fork(struct task_struct *p)
1676 {
1677 p->on_rq = 0;
1678
1679 p->se.on_rq = 0;
1680 p->se.exec_start = 0;
1681 p->se.sum_exec_runtime = 0;
1682 p->se.prev_sum_exec_runtime = 0;
1683 p->se.nr_migrations = 0;
1684 p->se.vruntime = 0;
1685 INIT_LIST_HEAD(&p->se.group_node);
1686
1687 #ifdef CONFIG_SCHEDSTATS
1688 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1689 #endif
1690
1691 INIT_LIST_HEAD(&p->rt.run_list);
1692
1693 #ifdef CONFIG_PREEMPT_NOTIFIERS
1694 INIT_HLIST_HEAD(&p->preempt_notifiers);
1695 #endif
1696 }
1697
1698 /*
1699 * fork()/clone()-time setup:
1700 */
1701 void sched_fork(struct task_struct *p)
1702 {
1703 unsigned long flags;
1704 int cpu = get_cpu();
1705
1706 __sched_fork(p);
1707 /*
1708 * We mark the process as running here. This guarantees that
1709 * nobody will actually run it, and a signal or other external
1710 * event cannot wake it up and insert it on the runqueue either.
1711 */
1712 p->state = TASK_RUNNING;
1713
1714 /*
1715 * Make sure we do not leak PI boosting priority to the child.
1716 */
1717 p->prio = current->normal_prio;
1718
1719 /*
1720 * Revert to default priority/policy on fork if requested.
1721 */
1722 if (unlikely(p->sched_reset_on_fork)) {
1723 if (task_has_rt_policy(p)) {
1724 p->policy = SCHED_NORMAL;
1725 p->static_prio = NICE_TO_PRIO(0);
1726 p->rt_priority = 0;
1727 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1728 p->static_prio = NICE_TO_PRIO(0);
1729
1730 p->prio = p->normal_prio = __normal_prio(p);
1731 set_load_weight(p);
1732
1733 /*
1734 * We don't need the reset flag anymore after the fork. It has
1735 * fulfilled its duty:
1736 */
1737 p->sched_reset_on_fork = 0;
1738 }
1739
1740 if (!rt_prio(p->prio))
1741 p->sched_class = &fair_sched_class;
1742
1743 if (p->sched_class->task_fork)
1744 p->sched_class->task_fork(p);
1745
1746 /*
1747 * The child is not yet in the pid-hash so no cgroup attach races,
1748 * and the cgroup is pinned to this child due to cgroup_fork()
1749 * is ran before sched_fork().
1750 *
1751 * Silence PROVE_RCU.
1752 */
1753 raw_spin_lock_irqsave(&p->pi_lock, flags);
1754 set_task_cpu(p, cpu);
1755 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1756
1757 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1758 if (likely(sched_info_on()))
1759 memset(&p->sched_info, 0, sizeof(p->sched_info));
1760 #endif
1761 #if defined(CONFIG_SMP)
1762 p->on_cpu = 0;
1763 #endif
1764 #ifdef CONFIG_PREEMPT_COUNT
1765 /* Want to start with kernel preemption disabled. */
1766 task_thread_info(p)->preempt_count = 1;
1767 #endif
1768 #ifdef CONFIG_SMP
1769 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1770 #endif
1771
1772 put_cpu();
1773 }
1774
1775 /*
1776 * wake_up_new_task - wake up a newly created task for the first time.
1777 *
1778 * This function will do some initial scheduler statistics housekeeping
1779 * that must be done for every newly created context, then puts the task
1780 * on the runqueue and wakes it.
1781 */
1782 void wake_up_new_task(struct task_struct *p)
1783 {
1784 unsigned long flags;
1785 struct rq *rq;
1786
1787 raw_spin_lock_irqsave(&p->pi_lock, flags);
1788 #ifdef CONFIG_SMP
1789 /*
1790 * Fork balancing, do it here and not earlier because:
1791 * - cpus_allowed can change in the fork path
1792 * - any previously selected cpu might disappear through hotplug
1793 */
1794 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1795 #endif
1796
1797 rq = __task_rq_lock(p);
1798 activate_task(rq, p, 0);
1799 p->on_rq = 1;
1800 trace_sched_wakeup_new(p, true);
1801 check_preempt_curr(rq, p, WF_FORK);
1802 #ifdef CONFIG_SMP
1803 if (p->sched_class->task_woken)
1804 p->sched_class->task_woken(rq, p);
1805 #endif
1806 task_rq_unlock(rq, p, &flags);
1807 }
1808
1809 #ifdef CONFIG_PREEMPT_NOTIFIERS
1810
1811 /**
1812 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1813 * @notifier: notifier struct to register
1814 */
1815 void preempt_notifier_register(struct preempt_notifier *notifier)
1816 {
1817 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1818 }
1819 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1820
1821 /**
1822 * preempt_notifier_unregister - no longer interested in preemption notifications
1823 * @notifier: notifier struct to unregister
1824 *
1825 * This is safe to call from within a preemption notifier.
1826 */
1827 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1828 {
1829 hlist_del(&notifier->link);
1830 }
1831 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1832
1833 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1834 {
1835 struct preempt_notifier *notifier;
1836 struct hlist_node *node;
1837
1838 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1839 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1840 }
1841
1842 static void
1843 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1844 struct task_struct *next)
1845 {
1846 struct preempt_notifier *notifier;
1847 struct hlist_node *node;
1848
1849 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1850 notifier->ops->sched_out(notifier, next);
1851 }
1852
1853 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1854
1855 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1856 {
1857 }
1858
1859 static void
1860 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1861 struct task_struct *next)
1862 {
1863 }
1864
1865 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1866
1867 /**
1868 * prepare_task_switch - prepare to switch tasks
1869 * @rq: the runqueue preparing to switch
1870 * @prev: the current task that is being switched out
1871 * @next: the task we are going to switch to.
1872 *
1873 * This is called with the rq lock held and interrupts off. It must
1874 * be paired with a subsequent finish_task_switch after the context
1875 * switch.
1876 *
1877 * prepare_task_switch sets up locking and calls architecture specific
1878 * hooks.
1879 */
1880 static inline void
1881 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1882 struct task_struct *next)
1883 {
1884 sched_info_switch(prev, next);
1885 perf_event_task_sched_out(prev, next);
1886 fire_sched_out_preempt_notifiers(prev, next);
1887 prepare_lock_switch(rq, next);
1888 prepare_arch_switch(next);
1889 trace_sched_switch(prev, next);
1890 }
1891
1892 /**
1893 * finish_task_switch - clean up after a task-switch
1894 * @rq: runqueue associated with task-switch
1895 * @prev: the thread we just switched away from.
1896 *
1897 * finish_task_switch must be called after the context switch, paired
1898 * with a prepare_task_switch call before the context switch.
1899 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1900 * and do any other architecture-specific cleanup actions.
1901 *
1902 * Note that we may have delayed dropping an mm in context_switch(). If
1903 * so, we finish that here outside of the runqueue lock. (Doing it
1904 * with the lock held can cause deadlocks; see schedule() for
1905 * details.)
1906 */
1907 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1908 __releases(rq->lock)
1909 {
1910 struct mm_struct *mm = rq->prev_mm;
1911 long prev_state;
1912
1913 rq->prev_mm = NULL;
1914
1915 /*
1916 * A task struct has one reference for the use as "current".
1917 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1918 * schedule one last time. The schedule call will never return, and
1919 * the scheduled task must drop that reference.
1920 * The test for TASK_DEAD must occur while the runqueue locks are
1921 * still held, otherwise prev could be scheduled on another cpu, die
1922 * there before we look at prev->state, and then the reference would
1923 * be dropped twice.
1924 * Manfred Spraul <manfred@colorfullife.com>
1925 */
1926 prev_state = prev->state;
1927 finish_arch_switch(prev);
1928 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1929 local_irq_disable();
1930 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1931 perf_event_task_sched_in(prev, current);
1932 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1933 local_irq_enable();
1934 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1935 finish_lock_switch(rq, prev);
1936
1937 fire_sched_in_preempt_notifiers(current);
1938 if (mm)
1939 mmdrop(mm);
1940 if (unlikely(prev_state == TASK_DEAD)) {
1941 /*
1942 * Remove function-return probe instances associated with this
1943 * task and put them back on the free list.
1944 */
1945 kprobe_flush_task(prev);
1946 put_task_struct(prev);
1947 }
1948 }
1949
1950 #ifdef CONFIG_SMP
1951
1952 /* assumes rq->lock is held */
1953 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1954 {
1955 if (prev->sched_class->pre_schedule)
1956 prev->sched_class->pre_schedule(rq, prev);
1957 }
1958
1959 /* rq->lock is NOT held, but preemption is disabled */
1960 static inline void post_schedule(struct rq *rq)
1961 {
1962 if (rq->post_schedule) {
1963 unsigned long flags;
1964
1965 raw_spin_lock_irqsave(&rq->lock, flags);
1966 if (rq->curr->sched_class->post_schedule)
1967 rq->curr->sched_class->post_schedule(rq);
1968 raw_spin_unlock_irqrestore(&rq->lock, flags);
1969
1970 rq->post_schedule = 0;
1971 }
1972 }
1973
1974 #else
1975
1976 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1977 {
1978 }
1979
1980 static inline void post_schedule(struct rq *rq)
1981 {
1982 }
1983
1984 #endif
1985
1986 /**
1987 * schedule_tail - first thing a freshly forked thread must call.
1988 * @prev: the thread we just switched away from.
1989 */
1990 asmlinkage void schedule_tail(struct task_struct *prev)
1991 __releases(rq->lock)
1992 {
1993 struct rq *rq = this_rq();
1994
1995 finish_task_switch(rq, prev);
1996
1997 /*
1998 * FIXME: do we need to worry about rq being invalidated by the
1999 * task_switch?
2000 */
2001 post_schedule(rq);
2002
2003 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2004 /* In this case, finish_task_switch does not reenable preemption */
2005 preempt_enable();
2006 #endif
2007 if (current->set_child_tid)
2008 put_user(task_pid_vnr(current), current->set_child_tid);
2009 }
2010
2011 /*
2012 * context_switch - switch to the new MM and the new
2013 * thread's register state.
2014 */
2015 static inline void
2016 context_switch(struct rq *rq, struct task_struct *prev,
2017 struct task_struct *next)
2018 {
2019 struct mm_struct *mm, *oldmm;
2020
2021 prepare_task_switch(rq, prev, next);
2022
2023 mm = next->mm;
2024 oldmm = prev->active_mm;
2025 /*
2026 * For paravirt, this is coupled with an exit in switch_to to
2027 * combine the page table reload and the switch backend into
2028 * one hypercall.
2029 */
2030 arch_start_context_switch(prev);
2031
2032 if (!mm) {
2033 next->active_mm = oldmm;
2034 atomic_inc(&oldmm->mm_count);
2035 enter_lazy_tlb(oldmm, next);
2036 } else
2037 switch_mm(oldmm, mm, next);
2038
2039 if (!prev->mm) {
2040 prev->active_mm = NULL;
2041 rq->prev_mm = oldmm;
2042 }
2043 /*
2044 * Since the runqueue lock will be released by the next
2045 * task (which is an invalid locking op but in the case
2046 * of the scheduler it's an obvious special-case), so we
2047 * do an early lockdep release here:
2048 */
2049 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2050 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2051 #endif
2052
2053 /* Here we just switch the register state and the stack. */
2054 switch_to(prev, next, prev);
2055
2056 barrier();
2057 /*
2058 * this_rq must be evaluated again because prev may have moved
2059 * CPUs since it called schedule(), thus the 'rq' on its stack
2060 * frame will be invalid.
2061 */
2062 finish_task_switch(this_rq(), prev);
2063 }
2064
2065 /*
2066 * nr_running, nr_uninterruptible and nr_context_switches:
2067 *
2068 * externally visible scheduler statistics: current number of runnable
2069 * threads, current number of uninterruptible-sleeping threads, total
2070 * number of context switches performed since bootup.
2071 */
2072 unsigned long nr_running(void)
2073 {
2074 unsigned long i, sum = 0;
2075
2076 for_each_online_cpu(i)
2077 sum += cpu_rq(i)->nr_running;
2078
2079 return sum;
2080 }
2081
2082 unsigned long nr_uninterruptible(void)
2083 {
2084 unsigned long i, sum = 0;
2085
2086 for_each_possible_cpu(i)
2087 sum += cpu_rq(i)->nr_uninterruptible;
2088
2089 /*
2090 * Since we read the counters lockless, it might be slightly
2091 * inaccurate. Do not allow it to go below zero though:
2092 */
2093 if (unlikely((long)sum < 0))
2094 sum = 0;
2095
2096 return sum;
2097 }
2098
2099 unsigned long long nr_context_switches(void)
2100 {
2101 int i;
2102 unsigned long long sum = 0;
2103
2104 for_each_possible_cpu(i)
2105 sum += cpu_rq(i)->nr_switches;
2106
2107 return sum;
2108 }
2109
2110 unsigned long nr_iowait(void)
2111 {
2112 unsigned long i, sum = 0;
2113
2114 for_each_possible_cpu(i)
2115 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2116
2117 return sum;
2118 }
2119
2120 unsigned long nr_iowait_cpu(int cpu)
2121 {
2122 struct rq *this = cpu_rq(cpu);
2123 return atomic_read(&this->nr_iowait);
2124 }
2125
2126 unsigned long this_cpu_load(void)
2127 {
2128 struct rq *this = this_rq();
2129 return this->cpu_load[0];
2130 }
2131
2132
2133 /* Variables and functions for calc_load */
2134 static atomic_long_t calc_load_tasks;
2135 static unsigned long calc_load_update;
2136 unsigned long avenrun[3];
2137 EXPORT_SYMBOL(avenrun);
2138
2139 static long calc_load_fold_active(struct rq *this_rq)
2140 {
2141 long nr_active, delta = 0;
2142
2143 nr_active = this_rq->nr_running;
2144 nr_active += (long) this_rq->nr_uninterruptible;
2145
2146 if (nr_active != this_rq->calc_load_active) {
2147 delta = nr_active - this_rq->calc_load_active;
2148 this_rq->calc_load_active = nr_active;
2149 }
2150
2151 return delta;
2152 }
2153
2154 static unsigned long
2155 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2156 {
2157 load *= exp;
2158 load += active * (FIXED_1 - exp);
2159 load += 1UL << (FSHIFT - 1);
2160 return load >> FSHIFT;
2161 }
2162
2163 #ifdef CONFIG_NO_HZ
2164 /*
2165 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2166 *
2167 * When making the ILB scale, we should try to pull this in as well.
2168 */
2169 static atomic_long_t calc_load_tasks_idle;
2170
2171 void calc_load_account_idle(struct rq *this_rq)
2172 {
2173 long delta;
2174
2175 delta = calc_load_fold_active(this_rq);
2176 if (delta)
2177 atomic_long_add(delta, &calc_load_tasks_idle);
2178 }
2179
2180 static long calc_load_fold_idle(void)
2181 {
2182 long delta = 0;
2183
2184 /*
2185 * Its got a race, we don't care...
2186 */
2187 if (atomic_long_read(&calc_load_tasks_idle))
2188 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2189
2190 return delta;
2191 }
2192
2193 /**
2194 * fixed_power_int - compute: x^n, in O(log n) time
2195 *
2196 * @x: base of the power
2197 * @frac_bits: fractional bits of @x
2198 * @n: power to raise @x to.
2199 *
2200 * By exploiting the relation between the definition of the natural power
2201 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2202 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2203 * (where: n_i \elem {0, 1}, the binary vector representing n),
2204 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2205 * of course trivially computable in O(log_2 n), the length of our binary
2206 * vector.
2207 */
2208 static unsigned long
2209 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2210 {
2211 unsigned long result = 1UL << frac_bits;
2212
2213 if (n) for (;;) {
2214 if (n & 1) {
2215 result *= x;
2216 result += 1UL << (frac_bits - 1);
2217 result >>= frac_bits;
2218 }
2219 n >>= 1;
2220 if (!n)
2221 break;
2222 x *= x;
2223 x += 1UL << (frac_bits - 1);
2224 x >>= frac_bits;
2225 }
2226
2227 return result;
2228 }
2229
2230 /*
2231 * a1 = a0 * e + a * (1 - e)
2232 *
2233 * a2 = a1 * e + a * (1 - e)
2234 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2235 * = a0 * e^2 + a * (1 - e) * (1 + e)
2236 *
2237 * a3 = a2 * e + a * (1 - e)
2238 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2239 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2240 *
2241 * ...
2242 *
2243 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2244 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2245 * = a0 * e^n + a * (1 - e^n)
2246 *
2247 * [1] application of the geometric series:
2248 *
2249 * n 1 - x^(n+1)
2250 * S_n := \Sum x^i = -------------
2251 * i=0 1 - x
2252 */
2253 static unsigned long
2254 calc_load_n(unsigned long load, unsigned long exp,
2255 unsigned long active, unsigned int n)
2256 {
2257
2258 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2259 }
2260
2261 /*
2262 * NO_HZ can leave us missing all per-cpu ticks calling
2263 * calc_load_account_active(), but since an idle CPU folds its delta into
2264 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2265 * in the pending idle delta if our idle period crossed a load cycle boundary.
2266 *
2267 * Once we've updated the global active value, we need to apply the exponential
2268 * weights adjusted to the number of cycles missed.
2269 */
2270 static void calc_global_nohz(void)
2271 {
2272 long delta, active, n;
2273
2274 /*
2275 * If we crossed a calc_load_update boundary, make sure to fold
2276 * any pending idle changes, the respective CPUs might have
2277 * missed the tick driven calc_load_account_active() update
2278 * due to NO_HZ.
2279 */
2280 delta = calc_load_fold_idle();
2281 if (delta)
2282 atomic_long_add(delta, &calc_load_tasks);
2283
2284 /*
2285 * It could be the one fold was all it took, we done!
2286 */
2287 if (time_before(jiffies, calc_load_update + 10))
2288 return;
2289
2290 /*
2291 * Catch-up, fold however many we are behind still
2292 */
2293 delta = jiffies - calc_load_update - 10;
2294 n = 1 + (delta / LOAD_FREQ);
2295
2296 active = atomic_long_read(&calc_load_tasks);
2297 active = active > 0 ? active * FIXED_1 : 0;
2298
2299 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2300 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2301 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2302
2303 calc_load_update += n * LOAD_FREQ;
2304 }
2305 #else
2306 void calc_load_account_idle(struct rq *this_rq)
2307 {
2308 }
2309
2310 static inline long calc_load_fold_idle(void)
2311 {
2312 return 0;
2313 }
2314
2315 static void calc_global_nohz(void)
2316 {
2317 }
2318 #endif
2319
2320 /**
2321 * get_avenrun - get the load average array
2322 * @loads: pointer to dest load array
2323 * @offset: offset to add
2324 * @shift: shift count to shift the result left
2325 *
2326 * These values are estimates at best, so no need for locking.
2327 */
2328 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2329 {
2330 loads[0] = (avenrun[0] + offset) << shift;
2331 loads[1] = (avenrun[1] + offset) << shift;
2332 loads[2] = (avenrun[2] + offset) << shift;
2333 }
2334
2335 /*
2336 * calc_load - update the avenrun load estimates 10 ticks after the
2337 * CPUs have updated calc_load_tasks.
2338 */
2339 void calc_global_load(unsigned long ticks)
2340 {
2341 long active;
2342
2343 if (time_before(jiffies, calc_load_update + 10))
2344 return;
2345
2346 active = atomic_long_read(&calc_load_tasks);
2347 active = active > 0 ? active * FIXED_1 : 0;
2348
2349 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2350 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2351 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2352
2353 calc_load_update += LOAD_FREQ;
2354
2355 /*
2356 * Account one period with whatever state we found before
2357 * folding in the nohz state and ageing the entire idle period.
2358 *
2359 * This avoids loosing a sample when we go idle between
2360 * calc_load_account_active() (10 ticks ago) and now and thus
2361 * under-accounting.
2362 */
2363 calc_global_nohz();
2364 }
2365
2366 /*
2367 * Called from update_cpu_load() to periodically update this CPU's
2368 * active count.
2369 */
2370 static void calc_load_account_active(struct rq *this_rq)
2371 {
2372 long delta;
2373
2374 if (time_before(jiffies, this_rq->calc_load_update))
2375 return;
2376
2377 delta = calc_load_fold_active(this_rq);
2378 delta += calc_load_fold_idle();
2379 if (delta)
2380 atomic_long_add(delta, &calc_load_tasks);
2381
2382 this_rq->calc_load_update += LOAD_FREQ;
2383 }
2384
2385 /*
2386 * The exact cpuload at various idx values, calculated at every tick would be
2387 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2388 *
2389 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2390 * on nth tick when cpu may be busy, then we have:
2391 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2392 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2393 *
2394 * decay_load_missed() below does efficient calculation of
2395 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2396 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2397 *
2398 * The calculation is approximated on a 128 point scale.
2399 * degrade_zero_ticks is the number of ticks after which load at any
2400 * particular idx is approximated to be zero.
2401 * degrade_factor is a precomputed table, a row for each load idx.
2402 * Each column corresponds to degradation factor for a power of two ticks,
2403 * based on 128 point scale.
2404 * Example:
2405 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2406 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2407 *
2408 * With this power of 2 load factors, we can degrade the load n times
2409 * by looking at 1 bits in n and doing as many mult/shift instead of
2410 * n mult/shifts needed by the exact degradation.
2411 */
2412 #define DEGRADE_SHIFT 7
2413 static const unsigned char
2414 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2415 static const unsigned char
2416 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2417 {0, 0, 0, 0, 0, 0, 0, 0},
2418 {64, 32, 8, 0, 0, 0, 0, 0},
2419 {96, 72, 40, 12, 1, 0, 0},
2420 {112, 98, 75, 43, 15, 1, 0},
2421 {120, 112, 98, 76, 45, 16, 2} };
2422
2423 /*
2424 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2425 * would be when CPU is idle and so we just decay the old load without
2426 * adding any new load.
2427 */
2428 static unsigned long
2429 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2430 {
2431 int j = 0;
2432
2433 if (!missed_updates)
2434 return load;
2435
2436 if (missed_updates >= degrade_zero_ticks[idx])
2437 return 0;
2438
2439 if (idx == 1)
2440 return load >> missed_updates;
2441
2442 while (missed_updates) {
2443 if (missed_updates % 2)
2444 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2445
2446 missed_updates >>= 1;
2447 j++;
2448 }
2449 return load;
2450 }
2451
2452 /*
2453 * Update rq->cpu_load[] statistics. This function is usually called every
2454 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2455 * every tick. We fix it up based on jiffies.
2456 */
2457 void update_cpu_load(struct rq *this_rq)
2458 {
2459 unsigned long this_load = this_rq->load.weight;
2460 unsigned long curr_jiffies = jiffies;
2461 unsigned long pending_updates;
2462 int i, scale;
2463
2464 this_rq->nr_load_updates++;
2465
2466 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
2467 if (curr_jiffies == this_rq->last_load_update_tick)
2468 return;
2469
2470 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2471 this_rq->last_load_update_tick = curr_jiffies;
2472
2473 /* Update our load: */
2474 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2475 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2476 unsigned long old_load, new_load;
2477
2478 /* scale is effectively 1 << i now, and >> i divides by scale */
2479
2480 old_load = this_rq->cpu_load[i];
2481 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2482 new_load = this_load;
2483 /*
2484 * Round up the averaging division if load is increasing. This
2485 * prevents us from getting stuck on 9 if the load is 10, for
2486 * example.
2487 */
2488 if (new_load > old_load)
2489 new_load += scale - 1;
2490
2491 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2492 }
2493
2494 sched_avg_update(this_rq);
2495 }
2496
2497 static void update_cpu_load_active(struct rq *this_rq)
2498 {
2499 update_cpu_load(this_rq);
2500
2501 calc_load_account_active(this_rq);
2502 }
2503
2504 #ifdef CONFIG_SMP
2505
2506 /*
2507 * sched_exec - execve() is a valuable balancing opportunity, because at
2508 * this point the task has the smallest effective memory and cache footprint.
2509 */
2510 void sched_exec(void)
2511 {
2512 struct task_struct *p = current;
2513 unsigned long flags;
2514 int dest_cpu;
2515
2516 raw_spin_lock_irqsave(&p->pi_lock, flags);
2517 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2518 if (dest_cpu == smp_processor_id())
2519 goto unlock;
2520
2521 if (likely(cpu_active(dest_cpu))) {
2522 struct migration_arg arg = { p, dest_cpu };
2523
2524 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2525 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2526 return;
2527 }
2528 unlock:
2529 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2530 }
2531
2532 #endif
2533
2534 DEFINE_PER_CPU(struct kernel_stat, kstat);
2535 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2536
2537 EXPORT_PER_CPU_SYMBOL(kstat);
2538 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2539
2540 /*
2541 * Return any ns on the sched_clock that have not yet been accounted in
2542 * @p in case that task is currently running.
2543 *
2544 * Called with task_rq_lock() held on @rq.
2545 */
2546 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2547 {
2548 u64 ns = 0;
2549
2550 if (task_current(rq, p)) {
2551 update_rq_clock(rq);
2552 ns = rq->clock_task - p->se.exec_start;
2553 if ((s64)ns < 0)
2554 ns = 0;
2555 }
2556
2557 return ns;
2558 }
2559
2560 unsigned long long task_delta_exec(struct task_struct *p)
2561 {
2562 unsigned long flags;
2563 struct rq *rq;
2564 u64 ns = 0;
2565
2566 rq = task_rq_lock(p, &flags);
2567 ns = do_task_delta_exec(p, rq);
2568 task_rq_unlock(rq, p, &flags);
2569
2570 return ns;
2571 }
2572
2573 /*
2574 * Return accounted runtime for the task.
2575 * In case the task is currently running, return the runtime plus current's
2576 * pending runtime that have not been accounted yet.
2577 */
2578 unsigned long long task_sched_runtime(struct task_struct *p)
2579 {
2580 unsigned long flags;
2581 struct rq *rq;
2582 u64 ns = 0;
2583
2584 rq = task_rq_lock(p, &flags);
2585 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2586 task_rq_unlock(rq, p, &flags);
2587
2588 return ns;
2589 }
2590
2591 #ifdef CONFIG_CGROUP_CPUACCT
2592 struct cgroup_subsys cpuacct_subsys;
2593 struct cpuacct root_cpuacct;
2594 #endif
2595
2596 static inline void task_group_account_field(struct task_struct *p, int index,
2597 u64 tmp)
2598 {
2599 #ifdef CONFIG_CGROUP_CPUACCT
2600 struct kernel_cpustat *kcpustat;
2601 struct cpuacct *ca;
2602 #endif
2603 /*
2604 * Since all updates are sure to touch the root cgroup, we
2605 * get ourselves ahead and touch it first. If the root cgroup
2606 * is the only cgroup, then nothing else should be necessary.
2607 *
2608 */
2609 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2610
2611 #ifdef CONFIG_CGROUP_CPUACCT
2612 if (unlikely(!cpuacct_subsys.active))
2613 return;
2614
2615 rcu_read_lock();
2616 ca = task_ca(p);
2617 while (ca && (ca != &root_cpuacct)) {
2618 kcpustat = this_cpu_ptr(ca->cpustat);
2619 kcpustat->cpustat[index] += tmp;
2620 ca = parent_ca(ca);
2621 }
2622 rcu_read_unlock();
2623 #endif
2624 }
2625
2626
2627 /*
2628 * Account user cpu time to a process.
2629 * @p: the process that the cpu time gets accounted to
2630 * @cputime: the cpu time spent in user space since the last update
2631 * @cputime_scaled: cputime scaled by cpu frequency
2632 */
2633 void account_user_time(struct task_struct *p, cputime_t cputime,
2634 cputime_t cputime_scaled)
2635 {
2636 int index;
2637
2638 /* Add user time to process. */
2639 p->utime += cputime;
2640 p->utimescaled += cputime_scaled;
2641 account_group_user_time(p, cputime);
2642
2643 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2644
2645 /* Add user time to cpustat. */
2646 task_group_account_field(p, index, (__force u64) cputime);
2647
2648 /* Account for user time used */
2649 acct_update_integrals(p);
2650 }
2651
2652 /*
2653 * Account guest cpu time to a process.
2654 * @p: the process that the cpu time gets accounted to
2655 * @cputime: the cpu time spent in virtual machine since the last update
2656 * @cputime_scaled: cputime scaled by cpu frequency
2657 */
2658 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2659 cputime_t cputime_scaled)
2660 {
2661 u64 *cpustat = kcpustat_this_cpu->cpustat;
2662
2663 /* Add guest time to process. */
2664 p->utime += cputime;
2665 p->utimescaled += cputime_scaled;
2666 account_group_user_time(p, cputime);
2667 p->gtime += cputime;
2668
2669 /* Add guest time to cpustat. */
2670 if (TASK_NICE(p) > 0) {
2671 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2672 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2673 } else {
2674 cpustat[CPUTIME_USER] += (__force u64) cputime;
2675 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2676 }
2677 }
2678
2679 /*
2680 * Account system cpu time to a process and desired cpustat field
2681 * @p: the process that the cpu time gets accounted to
2682 * @cputime: the cpu time spent in kernel space since the last update
2683 * @cputime_scaled: cputime scaled by cpu frequency
2684 * @target_cputime64: pointer to cpustat field that has to be updated
2685 */
2686 static inline
2687 void __account_system_time(struct task_struct *p, cputime_t cputime,
2688 cputime_t cputime_scaled, int index)
2689 {
2690 /* Add system time to process. */
2691 p->stime += cputime;
2692 p->stimescaled += cputime_scaled;
2693 account_group_system_time(p, cputime);
2694
2695 /* Add system time to cpustat. */
2696 task_group_account_field(p, index, (__force u64) cputime);
2697
2698 /* Account for system time used */
2699 acct_update_integrals(p);
2700 }
2701
2702 /*
2703 * Account system cpu time to a process.
2704 * @p: the process that the cpu time gets accounted to
2705 * @hardirq_offset: the offset to subtract from hardirq_count()
2706 * @cputime: the cpu time spent in kernel space since the last update
2707 * @cputime_scaled: cputime scaled by cpu frequency
2708 */
2709 void account_system_time(struct task_struct *p, int hardirq_offset,
2710 cputime_t cputime, cputime_t cputime_scaled)
2711 {
2712 int index;
2713
2714 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2715 account_guest_time(p, cputime, cputime_scaled);
2716 return;
2717 }
2718
2719 if (hardirq_count() - hardirq_offset)
2720 index = CPUTIME_IRQ;
2721 else if (in_serving_softirq())
2722 index = CPUTIME_SOFTIRQ;
2723 else
2724 index = CPUTIME_SYSTEM;
2725
2726 __account_system_time(p, cputime, cputime_scaled, index);
2727 }
2728
2729 /*
2730 * Account for involuntary wait time.
2731 * @cputime: the cpu time spent in involuntary wait
2732 */
2733 void account_steal_time(cputime_t cputime)
2734 {
2735 u64 *cpustat = kcpustat_this_cpu->cpustat;
2736
2737 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2738 }
2739
2740 /*
2741 * Account for idle time.
2742 * @cputime: the cpu time spent in idle wait
2743 */
2744 void account_idle_time(cputime_t cputime)
2745 {
2746 u64 *cpustat = kcpustat_this_cpu->cpustat;
2747 struct rq *rq = this_rq();
2748
2749 if (atomic_read(&rq->nr_iowait) > 0)
2750 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2751 else
2752 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2753 }
2754
2755 static __always_inline bool steal_account_process_tick(void)
2756 {
2757 #ifdef CONFIG_PARAVIRT
2758 if (static_key_false(&paravirt_steal_enabled)) {
2759 u64 steal, st = 0;
2760
2761 steal = paravirt_steal_clock(smp_processor_id());
2762 steal -= this_rq()->prev_steal_time;
2763
2764 st = steal_ticks(steal);
2765 this_rq()->prev_steal_time += st * TICK_NSEC;
2766
2767 account_steal_time(st);
2768 return st;
2769 }
2770 #endif
2771 return false;
2772 }
2773
2774 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2775
2776 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2777 /*
2778 * Account a tick to a process and cpustat
2779 * @p: the process that the cpu time gets accounted to
2780 * @user_tick: is the tick from userspace
2781 * @rq: the pointer to rq
2782 *
2783 * Tick demultiplexing follows the order
2784 * - pending hardirq update
2785 * - pending softirq update
2786 * - user_time
2787 * - idle_time
2788 * - system time
2789 * - check for guest_time
2790 * - else account as system_time
2791 *
2792 * Check for hardirq is done both for system and user time as there is
2793 * no timer going off while we are on hardirq and hence we may never get an
2794 * opportunity to update it solely in system time.
2795 * p->stime and friends are only updated on system time and not on irq
2796 * softirq as those do not count in task exec_runtime any more.
2797 */
2798 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2799 struct rq *rq)
2800 {
2801 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2802 u64 *cpustat = kcpustat_this_cpu->cpustat;
2803
2804 if (steal_account_process_tick())
2805 return;
2806
2807 if (irqtime_account_hi_update()) {
2808 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2809 } else if (irqtime_account_si_update()) {
2810 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2811 } else if (this_cpu_ksoftirqd() == p) {
2812 /*
2813 * ksoftirqd time do not get accounted in cpu_softirq_time.
2814 * So, we have to handle it separately here.
2815 * Also, p->stime needs to be updated for ksoftirqd.
2816 */
2817 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2818 CPUTIME_SOFTIRQ);
2819 } else if (user_tick) {
2820 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2821 } else if (p == rq->idle) {
2822 account_idle_time(cputime_one_jiffy);
2823 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2824 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2825 } else {
2826 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2827 CPUTIME_SYSTEM);
2828 }
2829 }
2830
2831 static void irqtime_account_idle_ticks(int ticks)
2832 {
2833 int i;
2834 struct rq *rq = this_rq();
2835
2836 for (i = 0; i < ticks; i++)
2837 irqtime_account_process_tick(current, 0, rq);
2838 }
2839 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2840 static void irqtime_account_idle_ticks(int ticks) {}
2841 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2842 struct rq *rq) {}
2843 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2844
2845 /*
2846 * Account a single tick of cpu time.
2847 * @p: the process that the cpu time gets accounted to
2848 * @user_tick: indicates if the tick is a user or a system tick
2849 */
2850 void account_process_tick(struct task_struct *p, int user_tick)
2851 {
2852 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2853 struct rq *rq = this_rq();
2854
2855 if (sched_clock_irqtime) {
2856 irqtime_account_process_tick(p, user_tick, rq);
2857 return;
2858 }
2859
2860 if (steal_account_process_tick())
2861 return;
2862
2863 if (user_tick)
2864 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2865 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2866 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2867 one_jiffy_scaled);
2868 else
2869 account_idle_time(cputime_one_jiffy);
2870 }
2871
2872 /*
2873 * Account multiple ticks of steal time.
2874 * @p: the process from which the cpu time has been stolen
2875 * @ticks: number of stolen ticks
2876 */
2877 void account_steal_ticks(unsigned long ticks)
2878 {
2879 account_steal_time(jiffies_to_cputime(ticks));
2880 }
2881
2882 /*
2883 * Account multiple ticks of idle time.
2884 * @ticks: number of stolen ticks
2885 */
2886 void account_idle_ticks(unsigned long ticks)
2887 {
2888
2889 if (sched_clock_irqtime) {
2890 irqtime_account_idle_ticks(ticks);
2891 return;
2892 }
2893
2894 account_idle_time(jiffies_to_cputime(ticks));
2895 }
2896
2897 #endif
2898
2899 /*
2900 * Use precise platform statistics if available:
2901 */
2902 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2903 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2904 {
2905 *ut = p->utime;
2906 *st = p->stime;
2907 }
2908
2909 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2910 {
2911 struct task_cputime cputime;
2912
2913 thread_group_cputime(p, &cputime);
2914
2915 *ut = cputime.utime;
2916 *st = cputime.stime;
2917 }
2918 #else
2919
2920 #ifndef nsecs_to_cputime
2921 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
2922 #endif
2923
2924 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2925 {
2926 cputime_t rtime, utime = p->utime, total = utime + p->stime;
2927
2928 /*
2929 * Use CFS's precise accounting:
2930 */
2931 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2932
2933 if (total) {
2934 u64 temp = (__force u64) rtime;
2935
2936 temp *= (__force u64) utime;
2937 do_div(temp, (__force u32) total);
2938 utime = (__force cputime_t) temp;
2939 } else
2940 utime = rtime;
2941
2942 /*
2943 * Compare with previous values, to keep monotonicity:
2944 */
2945 p->prev_utime = max(p->prev_utime, utime);
2946 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2947
2948 *ut = p->prev_utime;
2949 *st = p->prev_stime;
2950 }
2951
2952 /*
2953 * Must be called with siglock held.
2954 */
2955 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2956 {
2957 struct signal_struct *sig = p->signal;
2958 struct task_cputime cputime;
2959 cputime_t rtime, utime, total;
2960
2961 thread_group_cputime(p, &cputime);
2962
2963 total = cputime.utime + cputime.stime;
2964 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2965
2966 if (total) {
2967 u64 temp = (__force u64) rtime;
2968
2969 temp *= (__force u64) cputime.utime;
2970 do_div(temp, (__force u32) total);
2971 utime = (__force cputime_t) temp;
2972 } else
2973 utime = rtime;
2974
2975 sig->prev_utime = max(sig->prev_utime, utime);
2976 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
2977
2978 *ut = sig->prev_utime;
2979 *st = sig->prev_stime;
2980 }
2981 #endif
2982
2983 /*
2984 * This function gets called by the timer code, with HZ frequency.
2985 * We call it with interrupts disabled.
2986 */
2987 void scheduler_tick(void)
2988 {
2989 int cpu = smp_processor_id();
2990 struct rq *rq = cpu_rq(cpu);
2991 struct task_struct *curr = rq->curr;
2992
2993 sched_clock_tick();
2994
2995 raw_spin_lock(&rq->lock);
2996 update_rq_clock(rq);
2997 update_cpu_load_active(rq);
2998 curr->sched_class->task_tick(rq, curr, 0);
2999 raw_spin_unlock(&rq->lock);
3000
3001 perf_event_task_tick();
3002
3003 #ifdef CONFIG_SMP
3004 rq->idle_balance = idle_cpu(cpu);
3005 trigger_load_balance(rq, cpu);
3006 #endif
3007 }
3008
3009 notrace unsigned long get_parent_ip(unsigned long addr)
3010 {
3011 if (in_lock_functions(addr)) {
3012 addr = CALLER_ADDR2;
3013 if (in_lock_functions(addr))
3014 addr = CALLER_ADDR3;
3015 }
3016 return addr;
3017 }
3018
3019 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3020 defined(CONFIG_PREEMPT_TRACER))
3021
3022 void __kprobes add_preempt_count(int val)
3023 {
3024 #ifdef CONFIG_DEBUG_PREEMPT
3025 /*
3026 * Underflow?
3027 */
3028 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3029 return;
3030 #endif
3031 preempt_count() += val;
3032 #ifdef CONFIG_DEBUG_PREEMPT
3033 /*
3034 * Spinlock count overflowing soon?
3035 */
3036 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3037 PREEMPT_MASK - 10);
3038 #endif
3039 if (preempt_count() == val)
3040 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3041 }
3042 EXPORT_SYMBOL(add_preempt_count);
3043
3044 void __kprobes sub_preempt_count(int val)
3045 {
3046 #ifdef CONFIG_DEBUG_PREEMPT
3047 /*
3048 * Underflow?
3049 */
3050 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3051 return;
3052 /*
3053 * Is the spinlock portion underflowing?
3054 */
3055 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3056 !(preempt_count() & PREEMPT_MASK)))
3057 return;
3058 #endif
3059
3060 if (preempt_count() == val)
3061 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3062 preempt_count() -= val;
3063 }
3064 EXPORT_SYMBOL(sub_preempt_count);
3065
3066 #endif
3067
3068 /*
3069 * Print scheduling while atomic bug:
3070 */
3071 static noinline void __schedule_bug(struct task_struct *prev)
3072 {
3073 struct pt_regs *regs = get_irq_regs();
3074
3075 if (oops_in_progress)
3076 return;
3077
3078 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3079 prev->comm, prev->pid, preempt_count());
3080
3081 debug_show_held_locks(prev);
3082 print_modules();
3083 if (irqs_disabled())
3084 print_irqtrace_events(prev);
3085
3086 if (regs)
3087 show_regs(regs);
3088 else
3089 dump_stack();
3090 }
3091
3092 /*
3093 * Various schedule()-time debugging checks and statistics:
3094 */
3095 static inline void schedule_debug(struct task_struct *prev)
3096 {
3097 /*
3098 * Test if we are atomic. Since do_exit() needs to call into
3099 * schedule() atomically, we ignore that path for now.
3100 * Otherwise, whine if we are scheduling when we should not be.
3101 */
3102 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3103 __schedule_bug(prev);
3104 rcu_sleep_check();
3105
3106 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3107
3108 schedstat_inc(this_rq(), sched_count);
3109 }
3110
3111 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3112 {
3113 if (prev->on_rq || rq->skip_clock_update < 0)
3114 update_rq_clock(rq);
3115 prev->sched_class->put_prev_task(rq, prev);
3116 }
3117
3118 /*
3119 * Pick up the highest-prio task:
3120 */
3121 static inline struct task_struct *
3122 pick_next_task(struct rq *rq)
3123 {
3124 const struct sched_class *class;
3125 struct task_struct *p;
3126
3127 /*
3128 * Optimization: we know that if all tasks are in
3129 * the fair class we can call that function directly:
3130 */
3131 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3132 p = fair_sched_class.pick_next_task(rq);
3133 if (likely(p))
3134 return p;
3135 }
3136
3137 for_each_class(class) {
3138 p = class->pick_next_task(rq);
3139 if (p)
3140 return p;
3141 }
3142
3143 BUG(); /* the idle class will always have a runnable task */
3144 }
3145
3146 /*
3147 * __schedule() is the main scheduler function.
3148 */
3149 static void __sched __schedule(void)
3150 {
3151 struct task_struct *prev, *next;
3152 unsigned long *switch_count;
3153 struct rq *rq;
3154 int cpu;
3155
3156 need_resched:
3157 preempt_disable();
3158 cpu = smp_processor_id();
3159 rq = cpu_rq(cpu);
3160 rcu_note_context_switch(cpu);
3161 prev = rq->curr;
3162
3163 schedule_debug(prev);
3164
3165 if (sched_feat(HRTICK))
3166 hrtick_clear(rq);
3167
3168 raw_spin_lock_irq(&rq->lock);
3169
3170 switch_count = &prev->nivcsw;
3171 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3172 if (unlikely(signal_pending_state(prev->state, prev))) {
3173 prev->state = TASK_RUNNING;
3174 } else {
3175 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3176 prev->on_rq = 0;
3177
3178 /*
3179 * If a worker went to sleep, notify and ask workqueue
3180 * whether it wants to wake up a task to maintain
3181 * concurrency.
3182 */
3183 if (prev->flags & PF_WQ_WORKER) {
3184 struct task_struct *to_wakeup;
3185
3186 to_wakeup = wq_worker_sleeping(prev, cpu);
3187 if (to_wakeup)
3188 try_to_wake_up_local(to_wakeup);
3189 }
3190 }
3191 switch_count = &prev->nvcsw;
3192 }
3193
3194 pre_schedule(rq, prev);
3195
3196 if (unlikely(!rq->nr_running))
3197 idle_balance(cpu, rq);
3198
3199 put_prev_task(rq, prev);
3200 next = pick_next_task(rq);
3201 clear_tsk_need_resched(prev);
3202 rq->skip_clock_update = 0;
3203
3204 if (likely(prev != next)) {
3205 rq->nr_switches++;
3206 rq->curr = next;
3207 ++*switch_count;
3208
3209 context_switch(rq, prev, next); /* unlocks the rq */
3210 /*
3211 * The context switch have flipped the stack from under us
3212 * and restored the local variables which were saved when
3213 * this task called schedule() in the past. prev == current
3214 * is still correct, but it can be moved to another cpu/rq.
3215 */
3216 cpu = smp_processor_id();
3217 rq = cpu_rq(cpu);
3218 } else
3219 raw_spin_unlock_irq(&rq->lock);
3220
3221 post_schedule(rq);
3222
3223 sched_preempt_enable_no_resched();
3224 if (need_resched())
3225 goto need_resched;
3226 }
3227
3228 static inline void sched_submit_work(struct task_struct *tsk)
3229 {
3230 if (!tsk->state || tsk_is_pi_blocked(tsk))
3231 return;
3232 /*
3233 * If we are going to sleep and we have plugged IO queued,
3234 * make sure to submit it to avoid deadlocks.
3235 */
3236 if (blk_needs_flush_plug(tsk))
3237 blk_schedule_flush_plug(tsk);
3238 }
3239
3240 asmlinkage void __sched schedule(void)
3241 {
3242 struct task_struct *tsk = current;
3243
3244 sched_submit_work(tsk);
3245 __schedule();
3246 }
3247 EXPORT_SYMBOL(schedule);
3248
3249 /**
3250 * schedule_preempt_disabled - called with preemption disabled
3251 *
3252 * Returns with preemption disabled. Note: preempt_count must be 1
3253 */
3254 void __sched schedule_preempt_disabled(void)
3255 {
3256 sched_preempt_enable_no_resched();
3257 schedule();
3258 preempt_disable();
3259 }
3260
3261 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3262
3263 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3264 {
3265 if (lock->owner != owner)
3266 return false;
3267
3268 /*
3269 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3270 * lock->owner still matches owner, if that fails, owner might
3271 * point to free()d memory, if it still matches, the rcu_read_lock()
3272 * ensures the memory stays valid.
3273 */
3274 barrier();
3275
3276 return owner->on_cpu;
3277 }
3278
3279 /*
3280 * Look out! "owner" is an entirely speculative pointer
3281 * access and not reliable.
3282 */
3283 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3284 {
3285 if (!sched_feat(OWNER_SPIN))
3286 return 0;
3287
3288 rcu_read_lock();
3289 while (owner_running(lock, owner)) {
3290 if (need_resched())
3291 break;
3292
3293 arch_mutex_cpu_relax();
3294 }
3295 rcu_read_unlock();
3296
3297 /*
3298 * We break out the loop above on need_resched() and when the
3299 * owner changed, which is a sign for heavy contention. Return
3300 * success only when lock->owner is NULL.
3301 */
3302 return lock->owner == NULL;
3303 }
3304 #endif
3305
3306 #ifdef CONFIG_PREEMPT
3307 /*
3308 * this is the entry point to schedule() from in-kernel preemption
3309 * off of preempt_enable. Kernel preemptions off return from interrupt
3310 * occur there and call schedule directly.
3311 */
3312 asmlinkage void __sched notrace preempt_schedule(void)
3313 {
3314 struct thread_info *ti = current_thread_info();
3315
3316 /*
3317 * If there is a non-zero preempt_count or interrupts are disabled,
3318 * we do not want to preempt the current task. Just return..
3319 */
3320 if (likely(ti->preempt_count || irqs_disabled()))
3321 return;
3322
3323 do {
3324 add_preempt_count_notrace(PREEMPT_ACTIVE);
3325 __schedule();
3326 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3327
3328 /*
3329 * Check again in case we missed a preemption opportunity
3330 * between schedule and now.
3331 */
3332 barrier();
3333 } while (need_resched());
3334 }
3335 EXPORT_SYMBOL(preempt_schedule);
3336
3337 /*
3338 * this is the entry point to schedule() from kernel preemption
3339 * off of irq context.
3340 * Note, that this is called and return with irqs disabled. This will
3341 * protect us against recursive calling from irq.
3342 */
3343 asmlinkage void __sched preempt_schedule_irq(void)
3344 {
3345 struct thread_info *ti = current_thread_info();
3346
3347 /* Catch callers which need to be fixed */
3348 BUG_ON(ti->preempt_count || !irqs_disabled());
3349
3350 do {
3351 add_preempt_count(PREEMPT_ACTIVE);
3352 local_irq_enable();
3353 __schedule();
3354 local_irq_disable();
3355 sub_preempt_count(PREEMPT_ACTIVE);
3356
3357 /*
3358 * Check again in case we missed a preemption opportunity
3359 * between schedule and now.
3360 */
3361 barrier();
3362 } while (need_resched());
3363 }
3364
3365 #endif /* CONFIG_PREEMPT */
3366
3367 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3368 void *key)
3369 {
3370 return try_to_wake_up(curr->private, mode, wake_flags);
3371 }
3372 EXPORT_SYMBOL(default_wake_function);
3373
3374 /*
3375 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3376 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3377 * number) then we wake all the non-exclusive tasks and one exclusive task.
3378 *
3379 * There are circumstances in which we can try to wake a task which has already
3380 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3381 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3382 */
3383 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3384 int nr_exclusive, int wake_flags, void *key)
3385 {
3386 wait_queue_t *curr, *next;
3387
3388 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3389 unsigned flags = curr->flags;
3390
3391 if (curr->func(curr, mode, wake_flags, key) &&
3392 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3393 break;
3394 }
3395 }
3396
3397 /**
3398 * __wake_up - wake up threads blocked on a waitqueue.
3399 * @q: the waitqueue
3400 * @mode: which threads
3401 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3402 * @key: is directly passed to the wakeup function
3403 *
3404 * It may be assumed that this function implies a write memory barrier before
3405 * changing the task state if and only if any tasks are woken up.
3406 */
3407 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3408 int nr_exclusive, void *key)
3409 {
3410 unsigned long flags;
3411
3412 spin_lock_irqsave(&q->lock, flags);
3413 __wake_up_common(q, mode, nr_exclusive, 0, key);
3414 spin_unlock_irqrestore(&q->lock, flags);
3415 }
3416 EXPORT_SYMBOL(__wake_up);
3417
3418 /*
3419 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3420 */
3421 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3422 {
3423 __wake_up_common(q, mode, nr, 0, NULL);
3424 }
3425 EXPORT_SYMBOL_GPL(__wake_up_locked);
3426
3427 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3428 {
3429 __wake_up_common(q, mode, 1, 0, key);
3430 }
3431 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3432
3433 /**
3434 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3435 * @q: the waitqueue
3436 * @mode: which threads
3437 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3438 * @key: opaque value to be passed to wakeup targets
3439 *
3440 * The sync wakeup differs that the waker knows that it will schedule
3441 * away soon, so while the target thread will be woken up, it will not
3442 * be migrated to another CPU - ie. the two threads are 'synchronized'
3443 * with each other. This can prevent needless bouncing between CPUs.
3444 *
3445 * On UP it can prevent extra preemption.
3446 *
3447 * It may be assumed that this function implies a write memory barrier before
3448 * changing the task state if and only if any tasks are woken up.
3449 */
3450 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3451 int nr_exclusive, void *key)
3452 {
3453 unsigned long flags;
3454 int wake_flags = WF_SYNC;
3455
3456 if (unlikely(!q))
3457 return;
3458
3459 if (unlikely(!nr_exclusive))
3460 wake_flags = 0;
3461
3462 spin_lock_irqsave(&q->lock, flags);
3463 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3464 spin_unlock_irqrestore(&q->lock, flags);
3465 }
3466 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3467
3468 /*
3469 * __wake_up_sync - see __wake_up_sync_key()
3470 */
3471 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3472 {
3473 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3474 }
3475 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3476
3477 /**
3478 * complete: - signals a single thread waiting on this completion
3479 * @x: holds the state of this particular completion
3480 *
3481 * This will wake up a single thread waiting on this completion. Threads will be
3482 * awakened in the same order in which they were queued.
3483 *
3484 * See also complete_all(), wait_for_completion() and related routines.
3485 *
3486 * It may be assumed that this function implies a write memory barrier before
3487 * changing the task state if and only if any tasks are woken up.
3488 */
3489 void complete(struct completion *x)
3490 {
3491 unsigned long flags;
3492
3493 spin_lock_irqsave(&x->wait.lock, flags);
3494 x->done++;
3495 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3496 spin_unlock_irqrestore(&x->wait.lock, flags);
3497 }
3498 EXPORT_SYMBOL(complete);
3499
3500 /**
3501 * complete_all: - signals all threads waiting on this completion
3502 * @x: holds the state of this particular completion
3503 *
3504 * This will wake up all threads waiting on this particular completion event.
3505 *
3506 * It may be assumed that this function implies a write memory barrier before
3507 * changing the task state if and only if any tasks are woken up.
3508 */
3509 void complete_all(struct completion *x)
3510 {
3511 unsigned long flags;
3512
3513 spin_lock_irqsave(&x->wait.lock, flags);
3514 x->done += UINT_MAX/2;
3515 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3516 spin_unlock_irqrestore(&x->wait.lock, flags);
3517 }
3518 EXPORT_SYMBOL(complete_all);
3519
3520 static inline long __sched
3521 do_wait_for_common(struct completion *x, long timeout, int state)
3522 {
3523 if (!x->done) {
3524 DECLARE_WAITQUEUE(wait, current);
3525
3526 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3527 do {
3528 if (signal_pending_state(state, current)) {
3529 timeout = -ERESTARTSYS;
3530 break;
3531 }
3532 __set_current_state(state);
3533 spin_unlock_irq(&x->wait.lock);
3534 timeout = schedule_timeout(timeout);
3535 spin_lock_irq(&x->wait.lock);
3536 } while (!x->done && timeout);
3537 __remove_wait_queue(&x->wait, &wait);
3538 if (!x->done)
3539 return timeout;
3540 }
3541 x->done--;
3542 return timeout ?: 1;
3543 }
3544
3545 static long __sched
3546 wait_for_common(struct completion *x, long timeout, int state)
3547 {
3548 might_sleep();
3549
3550 spin_lock_irq(&x->wait.lock);
3551 timeout = do_wait_for_common(x, timeout, state);
3552 spin_unlock_irq(&x->wait.lock);
3553 return timeout;
3554 }
3555
3556 /**
3557 * wait_for_completion: - waits for completion of a task
3558 * @x: holds the state of this particular completion
3559 *
3560 * This waits to be signaled for completion of a specific task. It is NOT
3561 * interruptible and there is no timeout.
3562 *
3563 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3564 * and interrupt capability. Also see complete().
3565 */
3566 void __sched wait_for_completion(struct completion *x)
3567 {
3568 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3569 }
3570 EXPORT_SYMBOL(wait_for_completion);
3571
3572 /**
3573 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3574 * @x: holds the state of this particular completion
3575 * @timeout: timeout value in jiffies
3576 *
3577 * This waits for either a completion of a specific task to be signaled or for a
3578 * specified timeout to expire. The timeout is in jiffies. It is not
3579 * interruptible.
3580 *
3581 * The return value is 0 if timed out, and positive (at least 1, or number of
3582 * jiffies left till timeout) if completed.
3583 */
3584 unsigned long __sched
3585 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3586 {
3587 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3588 }
3589 EXPORT_SYMBOL(wait_for_completion_timeout);
3590
3591 /**
3592 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3593 * @x: holds the state of this particular completion
3594 *
3595 * This waits for completion of a specific task to be signaled. It is
3596 * interruptible.
3597 *
3598 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3599 */
3600 int __sched wait_for_completion_interruptible(struct completion *x)
3601 {
3602 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3603 if (t == -ERESTARTSYS)
3604 return t;
3605 return 0;
3606 }
3607 EXPORT_SYMBOL(wait_for_completion_interruptible);
3608
3609 /**
3610 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3611 * @x: holds the state of this particular completion
3612 * @timeout: timeout value in jiffies
3613 *
3614 * This waits for either a completion of a specific task to be signaled or for a
3615 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3616 *
3617 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3618 * positive (at least 1, or number of jiffies left till timeout) if completed.
3619 */
3620 long __sched
3621 wait_for_completion_interruptible_timeout(struct completion *x,
3622 unsigned long timeout)
3623 {
3624 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3625 }
3626 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3627
3628 /**
3629 * wait_for_completion_killable: - waits for completion of a task (killable)
3630 * @x: holds the state of this particular completion
3631 *
3632 * This waits to be signaled for completion of a specific task. It can be
3633 * interrupted by a kill signal.
3634 *
3635 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3636 */
3637 int __sched wait_for_completion_killable(struct completion *x)
3638 {
3639 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3640 if (t == -ERESTARTSYS)
3641 return t;
3642 return 0;
3643 }
3644 EXPORT_SYMBOL(wait_for_completion_killable);
3645
3646 /**
3647 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3648 * @x: holds the state of this particular completion
3649 * @timeout: timeout value in jiffies
3650 *
3651 * This waits for either a completion of a specific task to be
3652 * signaled or for a specified timeout to expire. It can be
3653 * interrupted by a kill signal. The timeout is in jiffies.
3654 *
3655 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3656 * positive (at least 1, or number of jiffies left till timeout) if completed.
3657 */
3658 long __sched
3659 wait_for_completion_killable_timeout(struct completion *x,
3660 unsigned long timeout)
3661 {
3662 return wait_for_common(x, timeout, TASK_KILLABLE);
3663 }
3664 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3665
3666 /**
3667 * try_wait_for_completion - try to decrement a completion without blocking
3668 * @x: completion structure
3669 *
3670 * Returns: 0 if a decrement cannot be done without blocking
3671 * 1 if a decrement succeeded.
3672 *
3673 * If a completion is being used as a counting completion,
3674 * attempt to decrement the counter without blocking. This
3675 * enables us to avoid waiting if the resource the completion
3676 * is protecting is not available.
3677 */
3678 bool try_wait_for_completion(struct completion *x)
3679 {
3680 unsigned long flags;
3681 int ret = 1;
3682
3683 spin_lock_irqsave(&x->wait.lock, flags);
3684 if (!x->done)
3685 ret = 0;
3686 else
3687 x->done--;
3688 spin_unlock_irqrestore(&x->wait.lock, flags);
3689 return ret;
3690 }
3691 EXPORT_SYMBOL(try_wait_for_completion);
3692
3693 /**
3694 * completion_done - Test to see if a completion has any waiters
3695 * @x: completion structure
3696 *
3697 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3698 * 1 if there are no waiters.
3699 *
3700 */
3701 bool completion_done(struct completion *x)
3702 {
3703 unsigned long flags;
3704 int ret = 1;
3705
3706 spin_lock_irqsave(&x->wait.lock, flags);
3707 if (!x->done)
3708 ret = 0;
3709 spin_unlock_irqrestore(&x->wait.lock, flags);
3710 return ret;
3711 }
3712 EXPORT_SYMBOL(completion_done);
3713
3714 static long __sched
3715 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3716 {
3717 unsigned long flags;
3718 wait_queue_t wait;
3719
3720 init_waitqueue_entry(&wait, current);
3721
3722 __set_current_state(state);
3723
3724 spin_lock_irqsave(&q->lock, flags);
3725 __add_wait_queue(q, &wait);
3726 spin_unlock(&q->lock);
3727 timeout = schedule_timeout(timeout);
3728 spin_lock_irq(&q->lock);
3729 __remove_wait_queue(q, &wait);
3730 spin_unlock_irqrestore(&q->lock, flags);
3731
3732 return timeout;
3733 }
3734
3735 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3736 {
3737 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3738 }
3739 EXPORT_SYMBOL(interruptible_sleep_on);
3740
3741 long __sched
3742 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3743 {
3744 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3745 }
3746 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3747
3748 void __sched sleep_on(wait_queue_head_t *q)
3749 {
3750 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3751 }
3752 EXPORT_SYMBOL(sleep_on);
3753
3754 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3755 {
3756 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3757 }
3758 EXPORT_SYMBOL(sleep_on_timeout);
3759
3760 #ifdef CONFIG_RT_MUTEXES
3761
3762 /*
3763 * rt_mutex_setprio - set the current priority of a task
3764 * @p: task
3765 * @prio: prio value (kernel-internal form)
3766 *
3767 * This function changes the 'effective' priority of a task. It does
3768 * not touch ->normal_prio like __setscheduler().
3769 *
3770 * Used by the rt_mutex code to implement priority inheritance logic.
3771 */
3772 void rt_mutex_setprio(struct task_struct *p, int prio)
3773 {
3774 int oldprio, on_rq, running;
3775 struct rq *rq;
3776 const struct sched_class *prev_class;
3777
3778 BUG_ON(prio < 0 || prio > MAX_PRIO);
3779
3780 rq = __task_rq_lock(p);
3781
3782 /*
3783 * Idle task boosting is a nono in general. There is one
3784 * exception, when PREEMPT_RT and NOHZ is active:
3785 *
3786 * The idle task calls get_next_timer_interrupt() and holds
3787 * the timer wheel base->lock on the CPU and another CPU wants
3788 * to access the timer (probably to cancel it). We can safely
3789 * ignore the boosting request, as the idle CPU runs this code
3790 * with interrupts disabled and will complete the lock
3791 * protected section without being interrupted. So there is no
3792 * real need to boost.
3793 */
3794 if (unlikely(p == rq->idle)) {
3795 WARN_ON(p != rq->curr);
3796 WARN_ON(p->pi_blocked_on);
3797 goto out_unlock;
3798 }
3799
3800 trace_sched_pi_setprio(p, prio);
3801 oldprio = p->prio;
3802 prev_class = p->sched_class;
3803 on_rq = p->on_rq;
3804 running = task_current(rq, p);
3805 if (on_rq)
3806 dequeue_task(rq, p, 0);
3807 if (running)
3808 p->sched_class->put_prev_task(rq, p);
3809
3810 if (rt_prio(prio))
3811 p->sched_class = &rt_sched_class;
3812 else
3813 p->sched_class = &fair_sched_class;
3814
3815 p->prio = prio;
3816
3817 if (running)
3818 p->sched_class->set_curr_task(rq);
3819 if (on_rq)
3820 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3821
3822 check_class_changed(rq, p, prev_class, oldprio);
3823 out_unlock:
3824 __task_rq_unlock(rq);
3825 }
3826 #endif
3827 void set_user_nice(struct task_struct *p, long nice)
3828 {
3829 int old_prio, delta, on_rq;
3830 unsigned long flags;
3831 struct rq *rq;
3832
3833 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3834 return;
3835 /*
3836 * We have to be careful, if called from sys_setpriority(),
3837 * the task might be in the middle of scheduling on another CPU.
3838 */
3839 rq = task_rq_lock(p, &flags);
3840 /*
3841 * The RT priorities are set via sched_setscheduler(), but we still
3842 * allow the 'normal' nice value to be set - but as expected
3843 * it wont have any effect on scheduling until the task is
3844 * SCHED_FIFO/SCHED_RR:
3845 */
3846 if (task_has_rt_policy(p)) {
3847 p->static_prio = NICE_TO_PRIO(nice);
3848 goto out_unlock;
3849 }
3850 on_rq = p->on_rq;
3851 if (on_rq)
3852 dequeue_task(rq, p, 0);
3853
3854 p->static_prio = NICE_TO_PRIO(nice);
3855 set_load_weight(p);
3856 old_prio = p->prio;
3857 p->prio = effective_prio(p);
3858 delta = p->prio - old_prio;
3859
3860 if (on_rq) {
3861 enqueue_task(rq, p, 0);
3862 /*
3863 * If the task increased its priority or is running and
3864 * lowered its priority, then reschedule its CPU:
3865 */
3866 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3867 resched_task(rq->curr);
3868 }
3869 out_unlock:
3870 task_rq_unlock(rq, p, &flags);
3871 }
3872 EXPORT_SYMBOL(set_user_nice);
3873
3874 /*
3875 * can_nice - check if a task can reduce its nice value
3876 * @p: task
3877 * @nice: nice value
3878 */
3879 int can_nice(const struct task_struct *p, const int nice)
3880 {
3881 /* convert nice value [19,-20] to rlimit style value [1,40] */
3882 int nice_rlim = 20 - nice;
3883
3884 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3885 capable(CAP_SYS_NICE));
3886 }
3887
3888 #ifdef __ARCH_WANT_SYS_NICE
3889
3890 /*
3891 * sys_nice - change the priority of the current process.
3892 * @increment: priority increment
3893 *
3894 * sys_setpriority is a more generic, but much slower function that
3895 * does similar things.
3896 */
3897 SYSCALL_DEFINE1(nice, int, increment)
3898 {
3899 long nice, retval;
3900
3901 /*
3902 * Setpriority might change our priority at the same moment.
3903 * We don't have to worry. Conceptually one call occurs first
3904 * and we have a single winner.
3905 */
3906 if (increment < -40)
3907 increment = -40;
3908 if (increment > 40)
3909 increment = 40;
3910
3911 nice = TASK_NICE(current) + increment;
3912 if (nice < -20)
3913 nice = -20;
3914 if (nice > 19)
3915 nice = 19;
3916
3917 if (increment < 0 && !can_nice(current, nice))
3918 return -EPERM;
3919
3920 retval = security_task_setnice(current, nice);
3921 if (retval)
3922 return retval;
3923
3924 set_user_nice(current, nice);
3925 return 0;
3926 }
3927
3928 #endif
3929
3930 /**
3931 * task_prio - return the priority value of a given task.
3932 * @p: the task in question.
3933 *
3934 * This is the priority value as seen by users in /proc.
3935 * RT tasks are offset by -200. Normal tasks are centered
3936 * around 0, value goes from -16 to +15.
3937 */
3938 int task_prio(const struct task_struct *p)
3939 {
3940 return p->prio - MAX_RT_PRIO;
3941 }
3942
3943 /**
3944 * task_nice - return the nice value of a given task.
3945 * @p: the task in question.
3946 */
3947 int task_nice(const struct task_struct *p)
3948 {
3949 return TASK_NICE(p);
3950 }
3951 EXPORT_SYMBOL(task_nice);
3952
3953 /**
3954 * idle_cpu - is a given cpu idle currently?
3955 * @cpu: the processor in question.
3956 */
3957 int idle_cpu(int cpu)
3958 {
3959 struct rq *rq = cpu_rq(cpu);
3960
3961 if (rq->curr != rq->idle)
3962 return 0;
3963
3964 if (rq->nr_running)
3965 return 0;
3966
3967 #ifdef CONFIG_SMP
3968 if (!llist_empty(&rq->wake_list))
3969 return 0;
3970 #endif
3971
3972 return 1;
3973 }
3974
3975 /**
3976 * idle_task - return the idle task for a given cpu.
3977 * @cpu: the processor in question.
3978 */
3979 struct task_struct *idle_task(int cpu)
3980 {
3981 return cpu_rq(cpu)->idle;
3982 }
3983
3984 /**
3985 * find_process_by_pid - find a process with a matching PID value.
3986 * @pid: the pid in question.
3987 */
3988 static struct task_struct *find_process_by_pid(pid_t pid)
3989 {
3990 return pid ? find_task_by_vpid(pid) : current;
3991 }
3992
3993 /* Actually do priority change: must hold rq lock. */
3994 static void
3995 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3996 {
3997 p->policy = policy;
3998 p->rt_priority = prio;
3999 p->normal_prio = normal_prio(p);
4000 /* we are holding p->pi_lock already */
4001 p->prio = rt_mutex_getprio(p);
4002 if (rt_prio(p->prio))
4003 p->sched_class = &rt_sched_class;
4004 else
4005 p->sched_class = &fair_sched_class;
4006 set_load_weight(p);
4007 }
4008
4009 /*
4010 * check the target process has a UID that matches the current process's
4011 */
4012 static bool check_same_owner(struct task_struct *p)
4013 {
4014 const struct cred *cred = current_cred(), *pcred;
4015 bool match;
4016
4017 rcu_read_lock();
4018 pcred = __task_cred(p);
4019 if (cred->user->user_ns == pcred->user->user_ns)
4020 match = (cred->euid == pcred->euid ||
4021 cred->euid == pcred->uid);
4022 else
4023 match = false;
4024 rcu_read_unlock();
4025 return match;
4026 }
4027
4028 static int __sched_setscheduler(struct task_struct *p, int policy,
4029 const struct sched_param *param, bool user)
4030 {
4031 int retval, oldprio, oldpolicy = -1, on_rq, running;
4032 unsigned long flags;
4033 const struct sched_class *prev_class;
4034 struct rq *rq;
4035 int reset_on_fork;
4036
4037 /* may grab non-irq protected spin_locks */
4038 BUG_ON(in_interrupt());
4039 recheck:
4040 /* double check policy once rq lock held */
4041 if (policy < 0) {
4042 reset_on_fork = p->sched_reset_on_fork;
4043 policy = oldpolicy = p->policy;
4044 } else {
4045 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4046 policy &= ~SCHED_RESET_ON_FORK;
4047
4048 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4049 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4050 policy != SCHED_IDLE)
4051 return -EINVAL;
4052 }
4053
4054 /*
4055 * Valid priorities for SCHED_FIFO and SCHED_RR are
4056 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4057 * SCHED_BATCH and SCHED_IDLE is 0.
4058 */
4059 if (param->sched_priority < 0 ||
4060 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4061 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4062 return -EINVAL;
4063 if (rt_policy(policy) != (param->sched_priority != 0))
4064 return -EINVAL;
4065
4066 /*
4067 * Allow unprivileged RT tasks to decrease priority:
4068 */
4069 if (user && !capable(CAP_SYS_NICE)) {
4070 if (rt_policy(policy)) {
4071 unsigned long rlim_rtprio =
4072 task_rlimit(p, RLIMIT_RTPRIO);
4073
4074 /* can't set/change the rt policy */
4075 if (policy != p->policy && !rlim_rtprio)
4076 return -EPERM;
4077
4078 /* can't increase priority */
4079 if (param->sched_priority > p->rt_priority &&
4080 param->sched_priority > rlim_rtprio)
4081 return -EPERM;
4082 }
4083
4084 /*
4085 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4086 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4087 */
4088 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4089 if (!can_nice(p, TASK_NICE(p)))
4090 return -EPERM;
4091 }
4092
4093 /* can't change other user's priorities */
4094 if (!check_same_owner(p))
4095 return -EPERM;
4096
4097 /* Normal users shall not reset the sched_reset_on_fork flag */
4098 if (p->sched_reset_on_fork && !reset_on_fork)
4099 return -EPERM;
4100 }
4101
4102 if (user) {
4103 retval = security_task_setscheduler(p);
4104 if (retval)
4105 return retval;
4106 }
4107
4108 /*
4109 * make sure no PI-waiters arrive (or leave) while we are
4110 * changing the priority of the task:
4111 *
4112 * To be able to change p->policy safely, the appropriate
4113 * runqueue lock must be held.
4114 */
4115 rq = task_rq_lock(p, &flags);
4116
4117 /*
4118 * Changing the policy of the stop threads its a very bad idea
4119 */
4120 if (p == rq->stop) {
4121 task_rq_unlock(rq, p, &flags);
4122 return -EINVAL;
4123 }
4124
4125 /*
4126 * If not changing anything there's no need to proceed further:
4127 */
4128 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4129 param->sched_priority == p->rt_priority))) {
4130
4131 __task_rq_unlock(rq);
4132 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4133 return 0;
4134 }
4135
4136 #ifdef CONFIG_RT_GROUP_SCHED
4137 if (user) {
4138 /*
4139 * Do not allow realtime tasks into groups that have no runtime
4140 * assigned.
4141 */
4142 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4143 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4144 !task_group_is_autogroup(task_group(p))) {
4145 task_rq_unlock(rq, p, &flags);
4146 return -EPERM;
4147 }
4148 }
4149 #endif
4150
4151 /* recheck policy now with rq lock held */
4152 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4153 policy = oldpolicy = -1;
4154 task_rq_unlock(rq, p, &flags);
4155 goto recheck;
4156 }
4157 on_rq = p->on_rq;
4158 running = task_current(rq, p);
4159 if (on_rq)
4160 dequeue_task(rq, p, 0);
4161 if (running)
4162 p->sched_class->put_prev_task(rq, p);
4163
4164 p->sched_reset_on_fork = reset_on_fork;
4165
4166 oldprio = p->prio;
4167 prev_class = p->sched_class;
4168 __setscheduler(rq, p, policy, param->sched_priority);
4169
4170 if (running)
4171 p->sched_class->set_curr_task(rq);
4172 if (on_rq)
4173 enqueue_task(rq, p, 0);
4174
4175 check_class_changed(rq, p, prev_class, oldprio);
4176 task_rq_unlock(rq, p, &flags);
4177
4178 rt_mutex_adjust_pi(p);
4179
4180 return 0;
4181 }
4182
4183 /**
4184 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4185 * @p: the task in question.
4186 * @policy: new policy.
4187 * @param: structure containing the new RT priority.
4188 *
4189 * NOTE that the task may be already dead.
4190 */
4191 int sched_setscheduler(struct task_struct *p, int policy,
4192 const struct sched_param *param)
4193 {
4194 return __sched_setscheduler(p, policy, param, true);
4195 }
4196 EXPORT_SYMBOL_GPL(sched_setscheduler);
4197
4198 /**
4199 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4200 * @p: the task in question.
4201 * @policy: new policy.
4202 * @param: structure containing the new RT priority.
4203 *
4204 * Just like sched_setscheduler, only don't bother checking if the
4205 * current context has permission. For example, this is needed in
4206 * stop_machine(): we create temporary high priority worker threads,
4207 * but our caller might not have that capability.
4208 */
4209 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4210 const struct sched_param *param)
4211 {
4212 return __sched_setscheduler(p, policy, param, false);
4213 }
4214
4215 static int
4216 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4217 {
4218 struct sched_param lparam;
4219 struct task_struct *p;
4220 int retval;
4221
4222 if (!param || pid < 0)
4223 return -EINVAL;
4224 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4225 return -EFAULT;
4226
4227 rcu_read_lock();
4228 retval = -ESRCH;
4229 p = find_process_by_pid(pid);
4230 if (p != NULL)
4231 retval = sched_setscheduler(p, policy, &lparam);
4232 rcu_read_unlock();
4233
4234 return retval;
4235 }
4236
4237 /**
4238 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4239 * @pid: the pid in question.
4240 * @policy: new policy.
4241 * @param: structure containing the new RT priority.
4242 */
4243 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4244 struct sched_param __user *, param)
4245 {
4246 /* negative values for policy are not valid */
4247 if (policy < 0)
4248 return -EINVAL;
4249
4250 return do_sched_setscheduler(pid, policy, param);
4251 }
4252
4253 /**
4254 * sys_sched_setparam - set/change the RT priority of a thread
4255 * @pid: the pid in question.
4256 * @param: structure containing the new RT priority.
4257 */
4258 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4259 {
4260 return do_sched_setscheduler(pid, -1, param);
4261 }
4262
4263 /**
4264 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4265 * @pid: the pid in question.
4266 */
4267 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4268 {
4269 struct task_struct *p;
4270 int retval;
4271
4272 if (pid < 0)
4273 return -EINVAL;
4274
4275 retval = -ESRCH;
4276 rcu_read_lock();
4277 p = find_process_by_pid(pid);
4278 if (p) {
4279 retval = security_task_getscheduler(p);
4280 if (!retval)
4281 retval = p->policy
4282 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4283 }
4284 rcu_read_unlock();
4285 return retval;
4286 }
4287
4288 /**
4289 * sys_sched_getparam - get the RT priority of a thread
4290 * @pid: the pid in question.
4291 * @param: structure containing the RT priority.
4292 */
4293 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4294 {
4295 struct sched_param lp;
4296 struct task_struct *p;
4297 int retval;
4298
4299 if (!param || pid < 0)
4300 return -EINVAL;
4301
4302 rcu_read_lock();
4303 p = find_process_by_pid(pid);
4304 retval = -ESRCH;
4305 if (!p)
4306 goto out_unlock;
4307
4308 retval = security_task_getscheduler(p);
4309 if (retval)
4310 goto out_unlock;
4311
4312 lp.sched_priority = p->rt_priority;
4313 rcu_read_unlock();
4314
4315 /*
4316 * This one might sleep, we cannot do it with a spinlock held ...
4317 */
4318 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4319
4320 return retval;
4321
4322 out_unlock:
4323 rcu_read_unlock();
4324 return retval;
4325 }
4326
4327 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4328 {
4329 cpumask_var_t cpus_allowed, new_mask;
4330 struct task_struct *p;
4331 int retval;
4332
4333 get_online_cpus();
4334 rcu_read_lock();
4335
4336 p = find_process_by_pid(pid);
4337 if (!p) {
4338 rcu_read_unlock();
4339 put_online_cpus();
4340 return -ESRCH;
4341 }
4342
4343 /* Prevent p going away */
4344 get_task_struct(p);
4345 rcu_read_unlock();
4346
4347 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4348 retval = -ENOMEM;
4349 goto out_put_task;
4350 }
4351 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4352 retval = -ENOMEM;
4353 goto out_free_cpus_allowed;
4354 }
4355 retval = -EPERM;
4356 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4357 goto out_unlock;
4358
4359 retval = security_task_setscheduler(p);
4360 if (retval)
4361 goto out_unlock;
4362
4363 cpuset_cpus_allowed(p, cpus_allowed);
4364 cpumask_and(new_mask, in_mask, cpus_allowed);
4365 again:
4366 retval = set_cpus_allowed_ptr(p, new_mask);
4367
4368 if (!retval) {
4369 cpuset_cpus_allowed(p, cpus_allowed);
4370 if (!cpumask_subset(new_mask, cpus_allowed)) {
4371 /*
4372 * We must have raced with a concurrent cpuset
4373 * update. Just reset the cpus_allowed to the
4374 * cpuset's cpus_allowed
4375 */
4376 cpumask_copy(new_mask, cpus_allowed);
4377 goto again;
4378 }
4379 }
4380 out_unlock:
4381 free_cpumask_var(new_mask);
4382 out_free_cpus_allowed:
4383 free_cpumask_var(cpus_allowed);
4384 out_put_task:
4385 put_task_struct(p);
4386 put_online_cpus();
4387 return retval;
4388 }
4389
4390 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4391 struct cpumask *new_mask)
4392 {
4393 if (len < cpumask_size())
4394 cpumask_clear(new_mask);
4395 else if (len > cpumask_size())
4396 len = cpumask_size();
4397
4398 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4399 }
4400
4401 /**
4402 * sys_sched_setaffinity - set the cpu affinity of a process
4403 * @pid: pid of the process
4404 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4405 * @user_mask_ptr: user-space pointer to the new cpu mask
4406 */
4407 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4408 unsigned long __user *, user_mask_ptr)
4409 {
4410 cpumask_var_t new_mask;
4411 int retval;
4412
4413 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4414 return -ENOMEM;
4415
4416 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4417 if (retval == 0)
4418 retval = sched_setaffinity(pid, new_mask);
4419 free_cpumask_var(new_mask);
4420 return retval;
4421 }
4422
4423 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4424 {
4425 struct task_struct *p;
4426 unsigned long flags;
4427 int retval;
4428
4429 get_online_cpus();
4430 rcu_read_lock();
4431
4432 retval = -ESRCH;
4433 p = find_process_by_pid(pid);
4434 if (!p)
4435 goto out_unlock;
4436
4437 retval = security_task_getscheduler(p);
4438 if (retval)
4439 goto out_unlock;
4440
4441 raw_spin_lock_irqsave(&p->pi_lock, flags);
4442 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4443 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4444
4445 out_unlock:
4446 rcu_read_unlock();
4447 put_online_cpus();
4448
4449 return retval;
4450 }
4451
4452 /**
4453 * sys_sched_getaffinity - get the cpu affinity of a process
4454 * @pid: pid of the process
4455 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4456 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4457 */
4458 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4459 unsigned long __user *, user_mask_ptr)
4460 {
4461 int ret;
4462 cpumask_var_t mask;
4463
4464 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4465 return -EINVAL;
4466 if (len & (sizeof(unsigned long)-1))
4467 return -EINVAL;
4468
4469 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4470 return -ENOMEM;
4471
4472 ret = sched_getaffinity(pid, mask);
4473 if (ret == 0) {
4474 size_t retlen = min_t(size_t, len, cpumask_size());
4475
4476 if (copy_to_user(user_mask_ptr, mask, retlen))
4477 ret = -EFAULT;
4478 else
4479 ret = retlen;
4480 }
4481 free_cpumask_var(mask);
4482
4483 return ret;
4484 }
4485
4486 /**
4487 * sys_sched_yield - yield the current processor to other threads.
4488 *
4489 * This function yields the current CPU to other tasks. If there are no
4490 * other threads running on this CPU then this function will return.
4491 */
4492 SYSCALL_DEFINE0(sched_yield)
4493 {
4494 struct rq *rq = this_rq_lock();
4495
4496 schedstat_inc(rq, yld_count);
4497 current->sched_class->yield_task(rq);
4498
4499 /*
4500 * Since we are going to call schedule() anyway, there's
4501 * no need to preempt or enable interrupts:
4502 */
4503 __release(rq->lock);
4504 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4505 do_raw_spin_unlock(&rq->lock);
4506 sched_preempt_enable_no_resched();
4507
4508 schedule();
4509
4510 return 0;
4511 }
4512
4513 static inline int should_resched(void)
4514 {
4515 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4516 }
4517
4518 static void __cond_resched(void)
4519 {
4520 add_preempt_count(PREEMPT_ACTIVE);
4521 __schedule();
4522 sub_preempt_count(PREEMPT_ACTIVE);
4523 }
4524
4525 int __sched _cond_resched(void)
4526 {
4527 if (should_resched()) {
4528 __cond_resched();
4529 return 1;
4530 }
4531 return 0;
4532 }
4533 EXPORT_SYMBOL(_cond_resched);
4534
4535 /*
4536 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4537 * call schedule, and on return reacquire the lock.
4538 *
4539 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4540 * operations here to prevent schedule() from being called twice (once via
4541 * spin_unlock(), once by hand).
4542 */
4543 int __cond_resched_lock(spinlock_t *lock)
4544 {
4545 int resched = should_resched();
4546 int ret = 0;
4547
4548 lockdep_assert_held(lock);
4549
4550 if (spin_needbreak(lock) || resched) {
4551 spin_unlock(lock);
4552 if (resched)
4553 __cond_resched();
4554 else
4555 cpu_relax();
4556 ret = 1;
4557 spin_lock(lock);
4558 }
4559 return ret;
4560 }
4561 EXPORT_SYMBOL(__cond_resched_lock);
4562
4563 int __sched __cond_resched_softirq(void)
4564 {
4565 BUG_ON(!in_softirq());
4566
4567 if (should_resched()) {
4568 local_bh_enable();
4569 __cond_resched();
4570 local_bh_disable();
4571 return 1;
4572 }
4573 return 0;
4574 }
4575 EXPORT_SYMBOL(__cond_resched_softirq);
4576
4577 /**
4578 * yield - yield the current processor to other threads.
4579 *
4580 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4581 *
4582 * The scheduler is at all times free to pick the calling task as the most
4583 * eligible task to run, if removing the yield() call from your code breaks
4584 * it, its already broken.
4585 *
4586 * Typical broken usage is:
4587 *
4588 * while (!event)
4589 * yield();
4590 *
4591 * where one assumes that yield() will let 'the other' process run that will
4592 * make event true. If the current task is a SCHED_FIFO task that will never
4593 * happen. Never use yield() as a progress guarantee!!
4594 *
4595 * If you want to use yield() to wait for something, use wait_event().
4596 * If you want to use yield() to be 'nice' for others, use cond_resched().
4597 * If you still want to use yield(), do not!
4598 */
4599 void __sched yield(void)
4600 {
4601 set_current_state(TASK_RUNNING);
4602 sys_sched_yield();
4603 }
4604 EXPORT_SYMBOL(yield);
4605
4606 /**
4607 * yield_to - yield the current processor to another thread in
4608 * your thread group, or accelerate that thread toward the
4609 * processor it's on.
4610 * @p: target task
4611 * @preempt: whether task preemption is allowed or not
4612 *
4613 * It's the caller's job to ensure that the target task struct
4614 * can't go away on us before we can do any checks.
4615 *
4616 * Returns true if we indeed boosted the target task.
4617 */
4618 bool __sched yield_to(struct task_struct *p, bool preempt)
4619 {
4620 struct task_struct *curr = current;
4621 struct rq *rq, *p_rq;
4622 unsigned long flags;
4623 bool yielded = 0;
4624
4625 local_irq_save(flags);
4626 rq = this_rq();
4627
4628 again:
4629 p_rq = task_rq(p);
4630 double_rq_lock(rq, p_rq);
4631 while (task_rq(p) != p_rq) {
4632 double_rq_unlock(rq, p_rq);
4633 goto again;
4634 }
4635
4636 if (!curr->sched_class->yield_to_task)
4637 goto out;
4638
4639 if (curr->sched_class != p->sched_class)
4640 goto out;
4641
4642 if (task_running(p_rq, p) || p->state)
4643 goto out;
4644
4645 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4646 if (yielded) {
4647 schedstat_inc(rq, yld_count);
4648 /*
4649 * Make p's CPU reschedule; pick_next_entity takes care of
4650 * fairness.
4651 */
4652 if (preempt && rq != p_rq)
4653 resched_task(p_rq->curr);
4654 } else {
4655 /*
4656 * We might have set it in task_yield_fair(), but are
4657 * not going to schedule(), so don't want to skip
4658 * the next update.
4659 */
4660 rq->skip_clock_update = 0;
4661 }
4662
4663 out:
4664 double_rq_unlock(rq, p_rq);
4665 local_irq_restore(flags);
4666
4667 if (yielded)
4668 schedule();
4669
4670 return yielded;
4671 }
4672 EXPORT_SYMBOL_GPL(yield_to);
4673
4674 /*
4675 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4676 * that process accounting knows that this is a task in IO wait state.
4677 */
4678 void __sched io_schedule(void)
4679 {
4680 struct rq *rq = raw_rq();
4681
4682 delayacct_blkio_start();
4683 atomic_inc(&rq->nr_iowait);
4684 blk_flush_plug(current);
4685 current->in_iowait = 1;
4686 schedule();
4687 current->in_iowait = 0;
4688 atomic_dec(&rq->nr_iowait);
4689 delayacct_blkio_end();
4690 }
4691 EXPORT_SYMBOL(io_schedule);
4692
4693 long __sched io_schedule_timeout(long timeout)
4694 {
4695 struct rq *rq = raw_rq();
4696 long ret;
4697
4698 delayacct_blkio_start();
4699 atomic_inc(&rq->nr_iowait);
4700 blk_flush_plug(current);
4701 current->in_iowait = 1;
4702 ret = schedule_timeout(timeout);
4703 current->in_iowait = 0;
4704 atomic_dec(&rq->nr_iowait);
4705 delayacct_blkio_end();
4706 return ret;
4707 }
4708
4709 /**
4710 * sys_sched_get_priority_max - return maximum RT priority.
4711 * @policy: scheduling class.
4712 *
4713 * this syscall returns the maximum rt_priority that can be used
4714 * by a given scheduling class.
4715 */
4716 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4717 {
4718 int ret = -EINVAL;
4719
4720 switch (policy) {
4721 case SCHED_FIFO:
4722 case SCHED_RR:
4723 ret = MAX_USER_RT_PRIO-1;
4724 break;
4725 case SCHED_NORMAL:
4726 case SCHED_BATCH:
4727 case SCHED_IDLE:
4728 ret = 0;
4729 break;
4730 }
4731 return ret;
4732 }
4733
4734 /**
4735 * sys_sched_get_priority_min - return minimum RT priority.
4736 * @policy: scheduling class.
4737 *
4738 * this syscall returns the minimum rt_priority that can be used
4739 * by a given scheduling class.
4740 */
4741 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4742 {
4743 int ret = -EINVAL;
4744
4745 switch (policy) {
4746 case SCHED_FIFO:
4747 case SCHED_RR:
4748 ret = 1;
4749 break;
4750 case SCHED_NORMAL:
4751 case SCHED_BATCH:
4752 case SCHED_IDLE:
4753 ret = 0;
4754 }
4755 return ret;
4756 }
4757
4758 /**
4759 * sys_sched_rr_get_interval - return the default timeslice of a process.
4760 * @pid: pid of the process.
4761 * @interval: userspace pointer to the timeslice value.
4762 *
4763 * this syscall writes the default timeslice value of a given process
4764 * into the user-space timespec buffer. A value of '0' means infinity.
4765 */
4766 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4767 struct timespec __user *, interval)
4768 {
4769 struct task_struct *p;
4770 unsigned int time_slice;
4771 unsigned long flags;
4772 struct rq *rq;
4773 int retval;
4774 struct timespec t;
4775
4776 if (pid < 0)
4777 return -EINVAL;
4778
4779 retval = -ESRCH;
4780 rcu_read_lock();
4781 p = find_process_by_pid(pid);
4782 if (!p)
4783 goto out_unlock;
4784
4785 retval = security_task_getscheduler(p);
4786 if (retval)
4787 goto out_unlock;
4788
4789 rq = task_rq_lock(p, &flags);
4790 time_slice = p->sched_class->get_rr_interval(rq, p);
4791 task_rq_unlock(rq, p, &flags);
4792
4793 rcu_read_unlock();
4794 jiffies_to_timespec(time_slice, &t);
4795 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4796 return retval;
4797
4798 out_unlock:
4799 rcu_read_unlock();
4800 return retval;
4801 }
4802
4803 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4804
4805 void sched_show_task(struct task_struct *p)
4806 {
4807 unsigned long free = 0;
4808 unsigned state;
4809
4810 state = p->state ? __ffs(p->state) + 1 : 0;
4811 printk(KERN_INFO "%-15.15s %c", p->comm,
4812 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4813 #if BITS_PER_LONG == 32
4814 if (state == TASK_RUNNING)
4815 printk(KERN_CONT " running ");
4816 else
4817 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4818 #else
4819 if (state == TASK_RUNNING)
4820 printk(KERN_CONT " running task ");
4821 else
4822 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4823 #endif
4824 #ifdef CONFIG_DEBUG_STACK_USAGE
4825 free = stack_not_used(p);
4826 #endif
4827 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4828 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4829 (unsigned long)task_thread_info(p)->flags);
4830
4831 show_stack(p, NULL);
4832 }
4833
4834 void show_state_filter(unsigned long state_filter)
4835 {
4836 struct task_struct *g, *p;
4837
4838 #if BITS_PER_LONG == 32
4839 printk(KERN_INFO
4840 " task PC stack pid father\n");
4841 #else
4842 printk(KERN_INFO
4843 " task PC stack pid father\n");
4844 #endif
4845 rcu_read_lock();
4846 do_each_thread(g, p) {
4847 /*
4848 * reset the NMI-timeout, listing all files on a slow
4849 * console might take a lot of time:
4850 */
4851 touch_nmi_watchdog();
4852 if (!state_filter || (p->state & state_filter))
4853 sched_show_task(p);
4854 } while_each_thread(g, p);
4855
4856 touch_all_softlockup_watchdogs();
4857
4858 #ifdef CONFIG_SCHED_DEBUG
4859 sysrq_sched_debug_show();
4860 #endif
4861 rcu_read_unlock();
4862 /*
4863 * Only show locks if all tasks are dumped:
4864 */
4865 if (!state_filter)
4866 debug_show_all_locks();
4867 }
4868
4869 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4870 {
4871 idle->sched_class = &idle_sched_class;
4872 }
4873
4874 /**
4875 * init_idle - set up an idle thread for a given CPU
4876 * @idle: task in question
4877 * @cpu: cpu the idle task belongs to
4878 *
4879 * NOTE: this function does not set the idle thread's NEED_RESCHED
4880 * flag, to make booting more robust.
4881 */
4882 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4883 {
4884 struct rq *rq = cpu_rq(cpu);
4885 unsigned long flags;
4886
4887 raw_spin_lock_irqsave(&rq->lock, flags);
4888
4889 __sched_fork(idle);
4890 idle->state = TASK_RUNNING;
4891 idle->se.exec_start = sched_clock();
4892
4893 do_set_cpus_allowed(idle, cpumask_of(cpu));
4894 /*
4895 * We're having a chicken and egg problem, even though we are
4896 * holding rq->lock, the cpu isn't yet set to this cpu so the
4897 * lockdep check in task_group() will fail.
4898 *
4899 * Similar case to sched_fork(). / Alternatively we could
4900 * use task_rq_lock() here and obtain the other rq->lock.
4901 *
4902 * Silence PROVE_RCU
4903 */
4904 rcu_read_lock();
4905 __set_task_cpu(idle, cpu);
4906 rcu_read_unlock();
4907
4908 rq->curr = rq->idle = idle;
4909 #if defined(CONFIG_SMP)
4910 idle->on_cpu = 1;
4911 #endif
4912 raw_spin_unlock_irqrestore(&rq->lock, flags);
4913
4914 /* Set the preempt count _outside_ the spinlocks! */
4915 task_thread_info(idle)->preempt_count = 0;
4916
4917 /*
4918 * The idle tasks have their own, simple scheduling class:
4919 */
4920 idle->sched_class = &idle_sched_class;
4921 ftrace_graph_init_idle_task(idle, cpu);
4922 #if defined(CONFIG_SMP)
4923 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4924 #endif
4925 }
4926
4927 #ifdef CONFIG_SMP
4928 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4929 {
4930 if (p->sched_class && p->sched_class->set_cpus_allowed)
4931 p->sched_class->set_cpus_allowed(p, new_mask);
4932
4933 cpumask_copy(&p->cpus_allowed, new_mask);
4934 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4935 }
4936
4937 /*
4938 * This is how migration works:
4939 *
4940 * 1) we invoke migration_cpu_stop() on the target CPU using
4941 * stop_one_cpu().
4942 * 2) stopper starts to run (implicitly forcing the migrated thread
4943 * off the CPU)
4944 * 3) it checks whether the migrated task is still in the wrong runqueue.
4945 * 4) if it's in the wrong runqueue then the migration thread removes
4946 * it and puts it into the right queue.
4947 * 5) stopper completes and stop_one_cpu() returns and the migration
4948 * is done.
4949 */
4950
4951 /*
4952 * Change a given task's CPU affinity. Migrate the thread to a
4953 * proper CPU and schedule it away if the CPU it's executing on
4954 * is removed from the allowed bitmask.
4955 *
4956 * NOTE: the caller must have a valid reference to the task, the
4957 * task must not exit() & deallocate itself prematurely. The
4958 * call is not atomic; no spinlocks may be held.
4959 */
4960 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4961 {
4962 unsigned long flags;
4963 struct rq *rq;
4964 unsigned int dest_cpu;
4965 int ret = 0;
4966
4967 rq = task_rq_lock(p, &flags);
4968
4969 if (cpumask_equal(&p->cpus_allowed, new_mask))
4970 goto out;
4971
4972 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4973 ret = -EINVAL;
4974 goto out;
4975 }
4976
4977 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4978 ret = -EINVAL;
4979 goto out;
4980 }
4981
4982 do_set_cpus_allowed(p, new_mask);
4983
4984 /* Can the task run on the task's current CPU? If so, we're done */
4985 if (cpumask_test_cpu(task_cpu(p), new_mask))
4986 goto out;
4987
4988 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4989 if (p->on_rq) {
4990 struct migration_arg arg = { p, dest_cpu };
4991 /* Need help from migration thread: drop lock and wait. */
4992 task_rq_unlock(rq, p, &flags);
4993 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4994 tlb_migrate_finish(p->mm);
4995 return 0;
4996 }
4997 out:
4998 task_rq_unlock(rq, p, &flags);
4999
5000 return ret;
5001 }
5002 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5003
5004 /*
5005 * Move (not current) task off this cpu, onto dest cpu. We're doing
5006 * this because either it can't run here any more (set_cpus_allowed()
5007 * away from this CPU, or CPU going down), or because we're
5008 * attempting to rebalance this task on exec (sched_exec).
5009 *
5010 * So we race with normal scheduler movements, but that's OK, as long
5011 * as the task is no longer on this CPU.
5012 *
5013 * Returns non-zero if task was successfully migrated.
5014 */
5015 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5016 {
5017 struct rq *rq_dest, *rq_src;
5018 int ret = 0;
5019
5020 if (unlikely(!cpu_active(dest_cpu)))
5021 return ret;
5022
5023 rq_src = cpu_rq(src_cpu);
5024 rq_dest = cpu_rq(dest_cpu);
5025
5026 raw_spin_lock(&p->pi_lock);
5027 double_rq_lock(rq_src, rq_dest);
5028 /* Already moved. */
5029 if (task_cpu(p) != src_cpu)
5030 goto done;
5031 /* Affinity changed (again). */
5032 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5033 goto fail;
5034
5035 /*
5036 * If we're not on a rq, the next wake-up will ensure we're
5037 * placed properly.
5038 */
5039 if (p->on_rq) {
5040 dequeue_task(rq_src, p, 0);
5041 set_task_cpu(p, dest_cpu);
5042 enqueue_task(rq_dest, p, 0);
5043 check_preempt_curr(rq_dest, p, 0);
5044 }
5045 done:
5046 ret = 1;
5047 fail:
5048 double_rq_unlock(rq_src, rq_dest);
5049 raw_spin_unlock(&p->pi_lock);
5050 return ret;
5051 }
5052
5053 /*
5054 * migration_cpu_stop - this will be executed by a highprio stopper thread
5055 * and performs thread migration by bumping thread off CPU then
5056 * 'pushing' onto another runqueue.
5057 */
5058 static int migration_cpu_stop(void *data)
5059 {
5060 struct migration_arg *arg = data;
5061
5062 /*
5063 * The original target cpu might have gone down and we might
5064 * be on another cpu but it doesn't matter.
5065 */
5066 local_irq_disable();
5067 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5068 local_irq_enable();
5069 return 0;
5070 }
5071
5072 #ifdef CONFIG_HOTPLUG_CPU
5073
5074 /*
5075 * Ensures that the idle task is using init_mm right before its cpu goes
5076 * offline.
5077 */
5078 void idle_task_exit(void)
5079 {
5080 struct mm_struct *mm = current->active_mm;
5081
5082 BUG_ON(cpu_online(smp_processor_id()));
5083
5084 if (mm != &init_mm)
5085 switch_mm(mm, &init_mm, current);
5086 mmdrop(mm);
5087 }
5088
5089 /*
5090 * While a dead CPU has no uninterruptible tasks queued at this point,
5091 * it might still have a nonzero ->nr_uninterruptible counter, because
5092 * for performance reasons the counter is not stricly tracking tasks to
5093 * their home CPUs. So we just add the counter to another CPU's counter,
5094 * to keep the global sum constant after CPU-down:
5095 */
5096 static void migrate_nr_uninterruptible(struct rq *rq_src)
5097 {
5098 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5099
5100 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5101 rq_src->nr_uninterruptible = 0;
5102 }
5103
5104 /*
5105 * remove the tasks which were accounted by rq from calc_load_tasks.
5106 */
5107 static void calc_global_load_remove(struct rq *rq)
5108 {
5109 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5110 rq->calc_load_active = 0;
5111 }
5112
5113 /*
5114 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5115 * try_to_wake_up()->select_task_rq().
5116 *
5117 * Called with rq->lock held even though we'er in stop_machine() and
5118 * there's no concurrency possible, we hold the required locks anyway
5119 * because of lock validation efforts.
5120 */
5121 static void migrate_tasks(unsigned int dead_cpu)
5122 {
5123 struct rq *rq = cpu_rq(dead_cpu);
5124 struct task_struct *next, *stop = rq->stop;
5125 int dest_cpu;
5126
5127 /*
5128 * Fudge the rq selection such that the below task selection loop
5129 * doesn't get stuck on the currently eligible stop task.
5130 *
5131 * We're currently inside stop_machine() and the rq is either stuck
5132 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5133 * either way we should never end up calling schedule() until we're
5134 * done here.
5135 */
5136 rq->stop = NULL;
5137
5138 /* Ensure any throttled groups are reachable by pick_next_task */
5139 unthrottle_offline_cfs_rqs(rq);
5140
5141 for ( ; ; ) {
5142 /*
5143 * There's this thread running, bail when that's the only
5144 * remaining thread.
5145 */
5146 if (rq->nr_running == 1)
5147 break;
5148
5149 next = pick_next_task(rq);
5150 BUG_ON(!next);
5151 next->sched_class->put_prev_task(rq, next);
5152
5153 /* Find suitable destination for @next, with force if needed. */
5154 dest_cpu = select_fallback_rq(dead_cpu, next);
5155 raw_spin_unlock(&rq->lock);
5156
5157 __migrate_task(next, dead_cpu, dest_cpu);
5158
5159 raw_spin_lock(&rq->lock);
5160 }
5161
5162 rq->stop = stop;
5163 }
5164
5165 #endif /* CONFIG_HOTPLUG_CPU */
5166
5167 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5168
5169 static struct ctl_table sd_ctl_dir[] = {
5170 {
5171 .procname = "sched_domain",
5172 .mode = 0555,
5173 },
5174 {}
5175 };
5176
5177 static struct ctl_table sd_ctl_root[] = {
5178 {
5179 .procname = "kernel",
5180 .mode = 0555,
5181 .child = sd_ctl_dir,
5182 },
5183 {}
5184 };
5185
5186 static struct ctl_table *sd_alloc_ctl_entry(int n)
5187 {
5188 struct ctl_table *entry =
5189 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5190
5191 return entry;
5192 }
5193
5194 static void sd_free_ctl_entry(struct ctl_table **tablep)
5195 {
5196 struct ctl_table *entry;
5197
5198 /*
5199 * In the intermediate directories, both the child directory and
5200 * procname are dynamically allocated and could fail but the mode
5201 * will always be set. In the lowest directory the names are
5202 * static strings and all have proc handlers.
5203 */
5204 for (entry = *tablep; entry->mode; entry++) {
5205 if (entry->child)
5206 sd_free_ctl_entry(&entry->child);
5207 if (entry->proc_handler == NULL)
5208 kfree(entry->procname);
5209 }
5210
5211 kfree(*tablep);
5212 *tablep = NULL;
5213 }
5214
5215 static void
5216 set_table_entry(struct ctl_table *entry,
5217 const char *procname, void *data, int maxlen,
5218 umode_t mode, proc_handler *proc_handler)
5219 {
5220 entry->procname = procname;
5221 entry->data = data;
5222 entry->maxlen = maxlen;
5223 entry->mode = mode;
5224 entry->proc_handler = proc_handler;
5225 }
5226
5227 static struct ctl_table *
5228 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5229 {
5230 struct ctl_table *table = sd_alloc_ctl_entry(13);
5231
5232 if (table == NULL)
5233 return NULL;
5234
5235 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5236 sizeof(long), 0644, proc_doulongvec_minmax);
5237 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5238 sizeof(long), 0644, proc_doulongvec_minmax);
5239 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5240 sizeof(int), 0644, proc_dointvec_minmax);
5241 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5242 sizeof(int), 0644, proc_dointvec_minmax);
5243 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5244 sizeof(int), 0644, proc_dointvec_minmax);
5245 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5246 sizeof(int), 0644, proc_dointvec_minmax);
5247 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5248 sizeof(int), 0644, proc_dointvec_minmax);
5249 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5250 sizeof(int), 0644, proc_dointvec_minmax);
5251 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5252 sizeof(int), 0644, proc_dointvec_minmax);
5253 set_table_entry(&table[9], "cache_nice_tries",
5254 &sd->cache_nice_tries,
5255 sizeof(int), 0644, proc_dointvec_minmax);
5256 set_table_entry(&table[10], "flags", &sd->flags,
5257 sizeof(int), 0644, proc_dointvec_minmax);
5258 set_table_entry(&table[11], "name", sd->name,
5259 CORENAME_MAX_SIZE, 0444, proc_dostring);
5260 /* &table[12] is terminator */
5261
5262 return table;
5263 }
5264
5265 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5266 {
5267 struct ctl_table *entry, *table;
5268 struct sched_domain *sd;
5269 int domain_num = 0, i;
5270 char buf[32];
5271
5272 for_each_domain(cpu, sd)
5273 domain_num++;
5274 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5275 if (table == NULL)
5276 return NULL;
5277
5278 i = 0;
5279 for_each_domain(cpu, sd) {
5280 snprintf(buf, 32, "domain%d", i);
5281 entry->procname = kstrdup(buf, GFP_KERNEL);
5282 entry->mode = 0555;
5283 entry->child = sd_alloc_ctl_domain_table(sd);
5284 entry++;
5285 i++;
5286 }
5287 return table;
5288 }
5289
5290 static struct ctl_table_header *sd_sysctl_header;
5291 static void register_sched_domain_sysctl(void)
5292 {
5293 int i, cpu_num = num_possible_cpus();
5294 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5295 char buf[32];
5296
5297 WARN_ON(sd_ctl_dir[0].child);
5298 sd_ctl_dir[0].child = entry;
5299
5300 if (entry == NULL)
5301 return;
5302
5303 for_each_possible_cpu(i) {
5304 snprintf(buf, 32, "cpu%d", i);
5305 entry->procname = kstrdup(buf, GFP_KERNEL);
5306 entry->mode = 0555;
5307 entry->child = sd_alloc_ctl_cpu_table(i);
5308 entry++;
5309 }
5310
5311 WARN_ON(sd_sysctl_header);
5312 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5313 }
5314
5315 /* may be called multiple times per register */
5316 static void unregister_sched_domain_sysctl(void)
5317 {
5318 if (sd_sysctl_header)
5319 unregister_sysctl_table(sd_sysctl_header);
5320 sd_sysctl_header = NULL;
5321 if (sd_ctl_dir[0].child)
5322 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5323 }
5324 #else
5325 static void register_sched_domain_sysctl(void)
5326 {
5327 }
5328 static void unregister_sched_domain_sysctl(void)
5329 {
5330 }
5331 #endif
5332
5333 static void set_rq_online(struct rq *rq)
5334 {
5335 if (!rq->online) {
5336 const struct sched_class *class;
5337
5338 cpumask_set_cpu(rq->cpu, rq->rd->online);
5339 rq->online = 1;
5340
5341 for_each_class(class) {
5342 if (class->rq_online)
5343 class->rq_online(rq);
5344 }
5345 }
5346 }
5347
5348 static void set_rq_offline(struct rq *rq)
5349 {
5350 if (rq->online) {
5351 const struct sched_class *class;
5352
5353 for_each_class(class) {
5354 if (class->rq_offline)
5355 class->rq_offline(rq);
5356 }
5357
5358 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5359 rq->online = 0;
5360 }
5361 }
5362
5363 /*
5364 * migration_call - callback that gets triggered when a CPU is added.
5365 * Here we can start up the necessary migration thread for the new CPU.
5366 */
5367 static int __cpuinit
5368 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5369 {
5370 int cpu = (long)hcpu;
5371 unsigned long flags;
5372 struct rq *rq = cpu_rq(cpu);
5373
5374 switch (action & ~CPU_TASKS_FROZEN) {
5375
5376 case CPU_UP_PREPARE:
5377 rq->calc_load_update = calc_load_update;
5378 break;
5379
5380 case CPU_ONLINE:
5381 /* Update our root-domain */
5382 raw_spin_lock_irqsave(&rq->lock, flags);
5383 if (rq->rd) {
5384 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5385
5386 set_rq_online(rq);
5387 }
5388 raw_spin_unlock_irqrestore(&rq->lock, flags);
5389 break;
5390
5391 #ifdef CONFIG_HOTPLUG_CPU
5392 case CPU_DYING:
5393 sched_ttwu_pending();
5394 /* Update our root-domain */
5395 raw_spin_lock_irqsave(&rq->lock, flags);
5396 if (rq->rd) {
5397 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5398 set_rq_offline(rq);
5399 }
5400 migrate_tasks(cpu);
5401 BUG_ON(rq->nr_running != 1); /* the migration thread */
5402 raw_spin_unlock_irqrestore(&rq->lock, flags);
5403
5404 migrate_nr_uninterruptible(rq);
5405 calc_global_load_remove(rq);
5406 break;
5407 #endif
5408 }
5409
5410 update_max_interval();
5411
5412 return NOTIFY_OK;
5413 }
5414
5415 /*
5416 * Register at high priority so that task migration (migrate_all_tasks)
5417 * happens before everything else. This has to be lower priority than
5418 * the notifier in the perf_event subsystem, though.
5419 */
5420 static struct notifier_block __cpuinitdata migration_notifier = {
5421 .notifier_call = migration_call,
5422 .priority = CPU_PRI_MIGRATION,
5423 };
5424
5425 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5426 unsigned long action, void *hcpu)
5427 {
5428 switch (action & ~CPU_TASKS_FROZEN) {
5429 case CPU_STARTING:
5430 case CPU_DOWN_FAILED:
5431 set_cpu_active((long)hcpu, true);
5432 return NOTIFY_OK;
5433 default:
5434 return NOTIFY_DONE;
5435 }
5436 }
5437
5438 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5439 unsigned long action, void *hcpu)
5440 {
5441 switch (action & ~CPU_TASKS_FROZEN) {
5442 case CPU_DOWN_PREPARE:
5443 set_cpu_active((long)hcpu, false);
5444 return NOTIFY_OK;
5445 default:
5446 return NOTIFY_DONE;
5447 }
5448 }
5449
5450 static int __init migration_init(void)
5451 {
5452 void *cpu = (void *)(long)smp_processor_id();
5453 int err;
5454
5455 /* Initialize migration for the boot CPU */
5456 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5457 BUG_ON(err == NOTIFY_BAD);
5458 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5459 register_cpu_notifier(&migration_notifier);
5460
5461 /* Register cpu active notifiers */
5462 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5463 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5464
5465 return 0;
5466 }
5467 early_initcall(migration_init);
5468 #endif
5469
5470 #ifdef CONFIG_SMP
5471
5472 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5473
5474 #ifdef CONFIG_SCHED_DEBUG
5475
5476 static __read_mostly int sched_domain_debug_enabled;
5477
5478 static int __init sched_domain_debug_setup(char *str)
5479 {
5480 sched_domain_debug_enabled = 1;
5481
5482 return 0;
5483 }
5484 early_param("sched_debug", sched_domain_debug_setup);
5485
5486 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5487 struct cpumask *groupmask)
5488 {
5489 struct sched_group *group = sd->groups;
5490 char str[256];
5491
5492 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5493 cpumask_clear(groupmask);
5494
5495 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5496
5497 if (!(sd->flags & SD_LOAD_BALANCE)) {
5498 printk("does not load-balance\n");
5499 if (sd->parent)
5500 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5501 " has parent");
5502 return -1;
5503 }
5504
5505 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5506
5507 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5508 printk(KERN_ERR "ERROR: domain->span does not contain "
5509 "CPU%d\n", cpu);
5510 }
5511 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5512 printk(KERN_ERR "ERROR: domain->groups does not contain"
5513 " CPU%d\n", cpu);
5514 }
5515
5516 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5517 do {
5518 if (!group) {
5519 printk("\n");
5520 printk(KERN_ERR "ERROR: group is NULL\n");
5521 break;
5522 }
5523
5524 if (!group->sgp->power) {
5525 printk(KERN_CONT "\n");
5526 printk(KERN_ERR "ERROR: domain->cpu_power not "
5527 "set\n");
5528 break;
5529 }
5530
5531 if (!cpumask_weight(sched_group_cpus(group))) {
5532 printk(KERN_CONT "\n");
5533 printk(KERN_ERR "ERROR: empty group\n");
5534 break;
5535 }
5536
5537 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5538 printk(KERN_CONT "\n");
5539 printk(KERN_ERR "ERROR: repeated CPUs\n");
5540 break;
5541 }
5542
5543 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5544
5545 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5546
5547 printk(KERN_CONT " %s", str);
5548 if (group->sgp->power != SCHED_POWER_SCALE) {
5549 printk(KERN_CONT " (cpu_power = %d)",
5550 group->sgp->power);
5551 }
5552
5553 group = group->next;
5554 } while (group != sd->groups);
5555 printk(KERN_CONT "\n");
5556
5557 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5558 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5559
5560 if (sd->parent &&
5561 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5562 printk(KERN_ERR "ERROR: parent span is not a superset "
5563 "of domain->span\n");
5564 return 0;
5565 }
5566
5567 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5568 {
5569 int level = 0;
5570
5571 if (!sched_domain_debug_enabled)
5572 return;
5573
5574 if (!sd) {
5575 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5576 return;
5577 }
5578
5579 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5580
5581 for (;;) {
5582 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5583 break;
5584 level++;
5585 sd = sd->parent;
5586 if (!sd)
5587 break;
5588 }
5589 }
5590 #else /* !CONFIG_SCHED_DEBUG */
5591 # define sched_domain_debug(sd, cpu) do { } while (0)
5592 #endif /* CONFIG_SCHED_DEBUG */
5593
5594 static int sd_degenerate(struct sched_domain *sd)
5595 {
5596 if (cpumask_weight(sched_domain_span(sd)) == 1)
5597 return 1;
5598
5599 /* Following flags need at least 2 groups */
5600 if (sd->flags & (SD_LOAD_BALANCE |
5601 SD_BALANCE_NEWIDLE |
5602 SD_BALANCE_FORK |
5603 SD_BALANCE_EXEC |
5604 SD_SHARE_CPUPOWER |
5605 SD_SHARE_PKG_RESOURCES)) {
5606 if (sd->groups != sd->groups->next)
5607 return 0;
5608 }
5609
5610 /* Following flags don't use groups */
5611 if (sd->flags & (SD_WAKE_AFFINE))
5612 return 0;
5613
5614 return 1;
5615 }
5616
5617 static int
5618 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5619 {
5620 unsigned long cflags = sd->flags, pflags = parent->flags;
5621
5622 if (sd_degenerate(parent))
5623 return 1;
5624
5625 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5626 return 0;
5627
5628 /* Flags needing groups don't count if only 1 group in parent */
5629 if (parent->groups == parent->groups->next) {
5630 pflags &= ~(SD_LOAD_BALANCE |
5631 SD_BALANCE_NEWIDLE |
5632 SD_BALANCE_FORK |
5633 SD_BALANCE_EXEC |
5634 SD_SHARE_CPUPOWER |
5635 SD_SHARE_PKG_RESOURCES);
5636 if (nr_node_ids == 1)
5637 pflags &= ~SD_SERIALIZE;
5638 }
5639 if (~cflags & pflags)
5640 return 0;
5641
5642 return 1;
5643 }
5644
5645 static void free_rootdomain(struct rcu_head *rcu)
5646 {
5647 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5648
5649 cpupri_cleanup(&rd->cpupri);
5650 free_cpumask_var(rd->rto_mask);
5651 free_cpumask_var(rd->online);
5652 free_cpumask_var(rd->span);
5653 kfree(rd);
5654 }
5655
5656 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5657 {
5658 struct root_domain *old_rd = NULL;
5659 unsigned long flags;
5660
5661 raw_spin_lock_irqsave(&rq->lock, flags);
5662
5663 if (rq->rd) {
5664 old_rd = rq->rd;
5665
5666 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5667 set_rq_offline(rq);
5668
5669 cpumask_clear_cpu(rq->cpu, old_rd->span);
5670
5671 /*
5672 * If we dont want to free the old_rt yet then
5673 * set old_rd to NULL to skip the freeing later
5674 * in this function:
5675 */
5676 if (!atomic_dec_and_test(&old_rd->refcount))
5677 old_rd = NULL;
5678 }
5679
5680 atomic_inc(&rd->refcount);
5681 rq->rd = rd;
5682
5683 cpumask_set_cpu(rq->cpu, rd->span);
5684 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5685 set_rq_online(rq);
5686
5687 raw_spin_unlock_irqrestore(&rq->lock, flags);
5688
5689 if (old_rd)
5690 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5691 }
5692
5693 static int init_rootdomain(struct root_domain *rd)
5694 {
5695 memset(rd, 0, sizeof(*rd));
5696
5697 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5698 goto out;
5699 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5700 goto free_span;
5701 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5702 goto free_online;
5703
5704 if (cpupri_init(&rd->cpupri) != 0)
5705 goto free_rto_mask;
5706 return 0;
5707
5708 free_rto_mask:
5709 free_cpumask_var(rd->rto_mask);
5710 free_online:
5711 free_cpumask_var(rd->online);
5712 free_span:
5713 free_cpumask_var(rd->span);
5714 out:
5715 return -ENOMEM;
5716 }
5717
5718 /*
5719 * By default the system creates a single root-domain with all cpus as
5720 * members (mimicking the global state we have today).
5721 */
5722 struct root_domain def_root_domain;
5723
5724 static void init_defrootdomain(void)
5725 {
5726 init_rootdomain(&def_root_domain);
5727
5728 atomic_set(&def_root_domain.refcount, 1);
5729 }
5730
5731 static struct root_domain *alloc_rootdomain(void)
5732 {
5733 struct root_domain *rd;
5734
5735 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5736 if (!rd)
5737 return NULL;
5738
5739 if (init_rootdomain(rd) != 0) {
5740 kfree(rd);
5741 return NULL;
5742 }
5743
5744 return rd;
5745 }
5746
5747 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5748 {
5749 struct sched_group *tmp, *first;
5750
5751 if (!sg)
5752 return;
5753
5754 first = sg;
5755 do {
5756 tmp = sg->next;
5757
5758 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5759 kfree(sg->sgp);
5760
5761 kfree(sg);
5762 sg = tmp;
5763 } while (sg != first);
5764 }
5765
5766 static void free_sched_domain(struct rcu_head *rcu)
5767 {
5768 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5769
5770 /*
5771 * If its an overlapping domain it has private groups, iterate and
5772 * nuke them all.
5773 */
5774 if (sd->flags & SD_OVERLAP) {
5775 free_sched_groups(sd->groups, 1);
5776 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5777 kfree(sd->groups->sgp);
5778 kfree(sd->groups);
5779 }
5780 kfree(sd);
5781 }
5782
5783 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5784 {
5785 call_rcu(&sd->rcu, free_sched_domain);
5786 }
5787
5788 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5789 {
5790 for (; sd; sd = sd->parent)
5791 destroy_sched_domain(sd, cpu);
5792 }
5793
5794 /*
5795 * Keep a special pointer to the highest sched_domain that has
5796 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5797 * allows us to avoid some pointer chasing select_idle_sibling().
5798 *
5799 * Also keep a unique ID per domain (we use the first cpu number in
5800 * the cpumask of the domain), this allows us to quickly tell if
5801 * two cpus are in the same cache domain, see cpus_share_cache().
5802 */
5803 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5804 DEFINE_PER_CPU(int, sd_llc_id);
5805
5806 static void update_top_cache_domain(int cpu)
5807 {
5808 struct sched_domain *sd;
5809 int id = cpu;
5810
5811 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5812 if (sd)
5813 id = cpumask_first(sched_domain_span(sd));
5814
5815 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5816 per_cpu(sd_llc_id, cpu) = id;
5817 }
5818
5819 /*
5820 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5821 * hold the hotplug lock.
5822 */
5823 static void
5824 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5825 {
5826 struct rq *rq = cpu_rq(cpu);
5827 struct sched_domain *tmp;
5828
5829 /* Remove the sched domains which do not contribute to scheduling. */
5830 for (tmp = sd; tmp; ) {
5831 struct sched_domain *parent = tmp->parent;
5832 if (!parent)
5833 break;
5834
5835 if (sd_parent_degenerate(tmp, parent)) {
5836 tmp->parent = parent->parent;
5837 if (parent->parent)
5838 parent->parent->child = tmp;
5839 destroy_sched_domain(parent, cpu);
5840 } else
5841 tmp = tmp->parent;
5842 }
5843
5844 if (sd && sd_degenerate(sd)) {
5845 tmp = sd;
5846 sd = sd->parent;
5847 destroy_sched_domain(tmp, cpu);
5848 if (sd)
5849 sd->child = NULL;
5850 }
5851
5852 sched_domain_debug(sd, cpu);
5853
5854 rq_attach_root(rq, rd);
5855 tmp = rq->sd;
5856 rcu_assign_pointer(rq->sd, sd);
5857 destroy_sched_domains(tmp, cpu);
5858
5859 update_top_cache_domain(cpu);
5860 }
5861
5862 /* cpus with isolated domains */
5863 static cpumask_var_t cpu_isolated_map;
5864
5865 /* Setup the mask of cpus configured for isolated domains */
5866 static int __init isolated_cpu_setup(char *str)
5867 {
5868 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5869 cpulist_parse(str, cpu_isolated_map);
5870 return 1;
5871 }
5872
5873 __setup("isolcpus=", isolated_cpu_setup);
5874
5875 #ifdef CONFIG_NUMA
5876
5877 /**
5878 * find_next_best_node - find the next node to include in a sched_domain
5879 * @node: node whose sched_domain we're building
5880 * @used_nodes: nodes already in the sched_domain
5881 *
5882 * Find the next node to include in a given scheduling domain. Simply
5883 * finds the closest node not already in the @used_nodes map.
5884 *
5885 * Should use nodemask_t.
5886 */
5887 static int find_next_best_node(int node, nodemask_t *used_nodes)
5888 {
5889 int i, n, val, min_val, best_node = -1;
5890
5891 min_val = INT_MAX;
5892
5893 for (i = 0; i < nr_node_ids; i++) {
5894 /* Start at @node */
5895 n = (node + i) % nr_node_ids;
5896
5897 if (!nr_cpus_node(n))
5898 continue;
5899
5900 /* Skip already used nodes */
5901 if (node_isset(n, *used_nodes))
5902 continue;
5903
5904 /* Simple min distance search */
5905 val = node_distance(node, n);
5906
5907 if (val < min_val) {
5908 min_val = val;
5909 best_node = n;
5910 }
5911 }
5912
5913 if (best_node != -1)
5914 node_set(best_node, *used_nodes);
5915 return best_node;
5916 }
5917
5918 /**
5919 * sched_domain_node_span - get a cpumask for a node's sched_domain
5920 * @node: node whose cpumask we're constructing
5921 * @span: resulting cpumask
5922 *
5923 * Given a node, construct a good cpumask for its sched_domain to span. It
5924 * should be one that prevents unnecessary balancing, but also spreads tasks
5925 * out optimally.
5926 */
5927 static void sched_domain_node_span(int node, struct cpumask *span)
5928 {
5929 nodemask_t used_nodes;
5930 int i;
5931
5932 cpumask_clear(span);
5933 nodes_clear(used_nodes);
5934
5935 cpumask_or(span, span, cpumask_of_node(node));
5936 node_set(node, used_nodes);
5937
5938 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5939 int next_node = find_next_best_node(node, &used_nodes);
5940 if (next_node < 0)
5941 break;
5942 cpumask_or(span, span, cpumask_of_node(next_node));
5943 }
5944 }
5945
5946 static const struct cpumask *cpu_node_mask(int cpu)
5947 {
5948 lockdep_assert_held(&sched_domains_mutex);
5949
5950 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5951
5952 return sched_domains_tmpmask;
5953 }
5954
5955 static const struct cpumask *cpu_allnodes_mask(int cpu)
5956 {
5957 return cpu_possible_mask;
5958 }
5959 #endif /* CONFIG_NUMA */
5960
5961 static const struct cpumask *cpu_cpu_mask(int cpu)
5962 {
5963 return cpumask_of_node(cpu_to_node(cpu));
5964 }
5965
5966 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5967
5968 struct sd_data {
5969 struct sched_domain **__percpu sd;
5970 struct sched_group **__percpu sg;
5971 struct sched_group_power **__percpu sgp;
5972 };
5973
5974 struct s_data {
5975 struct sched_domain ** __percpu sd;
5976 struct root_domain *rd;
5977 };
5978
5979 enum s_alloc {
5980 sa_rootdomain,
5981 sa_sd,
5982 sa_sd_storage,
5983 sa_none,
5984 };
5985
5986 struct sched_domain_topology_level;
5987
5988 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5989 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5990
5991 #define SDTL_OVERLAP 0x01
5992
5993 struct sched_domain_topology_level {
5994 sched_domain_init_f init;
5995 sched_domain_mask_f mask;
5996 int flags;
5997 struct sd_data data;
5998 };
5999
6000 static int
6001 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6002 {
6003 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6004 const struct cpumask *span = sched_domain_span(sd);
6005 struct cpumask *covered = sched_domains_tmpmask;
6006 struct sd_data *sdd = sd->private;
6007 struct sched_domain *child;
6008 int i;
6009
6010 cpumask_clear(covered);
6011
6012 for_each_cpu(i, span) {
6013 struct cpumask *sg_span;
6014
6015 if (cpumask_test_cpu(i, covered))
6016 continue;
6017
6018 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6019 GFP_KERNEL, cpu_to_node(cpu));
6020
6021 if (!sg)
6022 goto fail;
6023
6024 sg_span = sched_group_cpus(sg);
6025
6026 child = *per_cpu_ptr(sdd->sd, i);
6027 if (child->child) {
6028 child = child->child;
6029 cpumask_copy(sg_span, sched_domain_span(child));
6030 } else
6031 cpumask_set_cpu(i, sg_span);
6032
6033 cpumask_or(covered, covered, sg_span);
6034
6035 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
6036 atomic_inc(&sg->sgp->ref);
6037
6038 if (cpumask_test_cpu(cpu, sg_span))
6039 groups = sg;
6040
6041 if (!first)
6042 first = sg;
6043 if (last)
6044 last->next = sg;
6045 last = sg;
6046 last->next = first;
6047 }
6048 sd->groups = groups;
6049
6050 return 0;
6051
6052 fail:
6053 free_sched_groups(first, 0);
6054
6055 return -ENOMEM;
6056 }
6057
6058 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6059 {
6060 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6061 struct sched_domain *child = sd->child;
6062
6063 if (child)
6064 cpu = cpumask_first(sched_domain_span(child));
6065
6066 if (sg) {
6067 *sg = *per_cpu_ptr(sdd->sg, cpu);
6068 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6069 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6070 }
6071
6072 return cpu;
6073 }
6074
6075 /*
6076 * build_sched_groups will build a circular linked list of the groups
6077 * covered by the given span, and will set each group's ->cpumask correctly,
6078 * and ->cpu_power to 0.
6079 *
6080 * Assumes the sched_domain tree is fully constructed
6081 */
6082 static int
6083 build_sched_groups(struct sched_domain *sd, int cpu)
6084 {
6085 struct sched_group *first = NULL, *last = NULL;
6086 struct sd_data *sdd = sd->private;
6087 const struct cpumask *span = sched_domain_span(sd);
6088 struct cpumask *covered;
6089 int i;
6090
6091 get_group(cpu, sdd, &sd->groups);
6092 atomic_inc(&sd->groups->ref);
6093
6094 if (cpu != cpumask_first(sched_domain_span(sd)))
6095 return 0;
6096
6097 lockdep_assert_held(&sched_domains_mutex);
6098 covered = sched_domains_tmpmask;
6099
6100 cpumask_clear(covered);
6101
6102 for_each_cpu(i, span) {
6103 struct sched_group *sg;
6104 int group = get_group(i, sdd, &sg);
6105 int j;
6106
6107 if (cpumask_test_cpu(i, covered))
6108 continue;
6109
6110 cpumask_clear(sched_group_cpus(sg));
6111 sg->sgp->power = 0;
6112
6113 for_each_cpu(j, span) {
6114 if (get_group(j, sdd, NULL) != group)
6115 continue;
6116
6117 cpumask_set_cpu(j, covered);
6118 cpumask_set_cpu(j, sched_group_cpus(sg));
6119 }
6120
6121 if (!first)
6122 first = sg;
6123 if (last)
6124 last->next = sg;
6125 last = sg;
6126 }
6127 last->next = first;
6128
6129 return 0;
6130 }
6131
6132 /*
6133 * Initialize sched groups cpu_power.
6134 *
6135 * cpu_power indicates the capacity of sched group, which is used while
6136 * distributing the load between different sched groups in a sched domain.
6137 * Typically cpu_power for all the groups in a sched domain will be same unless
6138 * there are asymmetries in the topology. If there are asymmetries, group
6139 * having more cpu_power will pickup more load compared to the group having
6140 * less cpu_power.
6141 */
6142 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6143 {
6144 struct sched_group *sg = sd->groups;
6145
6146 WARN_ON(!sd || !sg);
6147
6148 do {
6149 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6150 sg = sg->next;
6151 } while (sg != sd->groups);
6152
6153 if (cpu != group_first_cpu(sg))
6154 return;
6155
6156 update_group_power(sd, cpu);
6157 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6158 }
6159
6160 int __weak arch_sd_sibling_asym_packing(void)
6161 {
6162 return 0*SD_ASYM_PACKING;
6163 }
6164
6165 /*
6166 * Initializers for schedule domains
6167 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6168 */
6169
6170 #ifdef CONFIG_SCHED_DEBUG
6171 # define SD_INIT_NAME(sd, type) sd->name = #type
6172 #else
6173 # define SD_INIT_NAME(sd, type) do { } while (0)
6174 #endif
6175
6176 #define SD_INIT_FUNC(type) \
6177 static noinline struct sched_domain * \
6178 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6179 { \
6180 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6181 *sd = SD_##type##_INIT; \
6182 SD_INIT_NAME(sd, type); \
6183 sd->private = &tl->data; \
6184 return sd; \
6185 }
6186
6187 SD_INIT_FUNC(CPU)
6188 #ifdef CONFIG_NUMA
6189 SD_INIT_FUNC(ALLNODES)
6190 SD_INIT_FUNC(NODE)
6191 #endif
6192 #ifdef CONFIG_SCHED_SMT
6193 SD_INIT_FUNC(SIBLING)
6194 #endif
6195 #ifdef CONFIG_SCHED_MC
6196 SD_INIT_FUNC(MC)
6197 #endif
6198 #ifdef CONFIG_SCHED_BOOK
6199 SD_INIT_FUNC(BOOK)
6200 #endif
6201
6202 static int default_relax_domain_level = -1;
6203 int sched_domain_level_max;
6204
6205 static int __init setup_relax_domain_level(char *str)
6206 {
6207 unsigned long val;
6208
6209 val = simple_strtoul(str, NULL, 0);
6210 if (val < sched_domain_level_max)
6211 default_relax_domain_level = val;
6212
6213 return 1;
6214 }
6215 __setup("relax_domain_level=", setup_relax_domain_level);
6216
6217 static void set_domain_attribute(struct sched_domain *sd,
6218 struct sched_domain_attr *attr)
6219 {
6220 int request;
6221
6222 if (!attr || attr->relax_domain_level < 0) {
6223 if (default_relax_domain_level < 0)
6224 return;
6225 else
6226 request = default_relax_domain_level;
6227 } else
6228 request = attr->relax_domain_level;
6229 if (request < sd->level) {
6230 /* turn off idle balance on this domain */
6231 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6232 } else {
6233 /* turn on idle balance on this domain */
6234 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6235 }
6236 }
6237
6238 static void __sdt_free(const struct cpumask *cpu_map);
6239 static int __sdt_alloc(const struct cpumask *cpu_map);
6240
6241 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6242 const struct cpumask *cpu_map)
6243 {
6244 switch (what) {
6245 case sa_rootdomain:
6246 if (!atomic_read(&d->rd->refcount))
6247 free_rootdomain(&d->rd->rcu); /* fall through */
6248 case sa_sd:
6249 free_percpu(d->sd); /* fall through */
6250 case sa_sd_storage:
6251 __sdt_free(cpu_map); /* fall through */
6252 case sa_none:
6253 break;
6254 }
6255 }
6256
6257 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6258 const struct cpumask *cpu_map)
6259 {
6260 memset(d, 0, sizeof(*d));
6261
6262 if (__sdt_alloc(cpu_map))
6263 return sa_sd_storage;
6264 d->sd = alloc_percpu(struct sched_domain *);
6265 if (!d->sd)
6266 return sa_sd_storage;
6267 d->rd = alloc_rootdomain();
6268 if (!d->rd)
6269 return sa_sd;
6270 return sa_rootdomain;
6271 }
6272
6273 /*
6274 * NULL the sd_data elements we've used to build the sched_domain and
6275 * sched_group structure so that the subsequent __free_domain_allocs()
6276 * will not free the data we're using.
6277 */
6278 static void claim_allocations(int cpu, struct sched_domain *sd)
6279 {
6280 struct sd_data *sdd = sd->private;
6281
6282 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6283 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6284
6285 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6286 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6287
6288 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6289 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6290 }
6291
6292 #ifdef CONFIG_SCHED_SMT
6293 static const struct cpumask *cpu_smt_mask(int cpu)
6294 {
6295 return topology_thread_cpumask(cpu);
6296 }
6297 #endif
6298
6299 /*
6300 * Topology list, bottom-up.
6301 */
6302 static struct sched_domain_topology_level default_topology[] = {
6303 #ifdef CONFIG_SCHED_SMT
6304 { sd_init_SIBLING, cpu_smt_mask, },
6305 #endif
6306 #ifdef CONFIG_SCHED_MC
6307 { sd_init_MC, cpu_coregroup_mask, },
6308 #endif
6309 #ifdef CONFIG_SCHED_BOOK
6310 { sd_init_BOOK, cpu_book_mask, },
6311 #endif
6312 { sd_init_CPU, cpu_cpu_mask, },
6313 #ifdef CONFIG_NUMA
6314 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6315 { sd_init_ALLNODES, cpu_allnodes_mask, },
6316 #endif
6317 { NULL, },
6318 };
6319
6320 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6321
6322 static int __sdt_alloc(const struct cpumask *cpu_map)
6323 {
6324 struct sched_domain_topology_level *tl;
6325 int j;
6326
6327 for (tl = sched_domain_topology; tl->init; tl++) {
6328 struct sd_data *sdd = &tl->data;
6329
6330 sdd->sd = alloc_percpu(struct sched_domain *);
6331 if (!sdd->sd)
6332 return -ENOMEM;
6333
6334 sdd->sg = alloc_percpu(struct sched_group *);
6335 if (!sdd->sg)
6336 return -ENOMEM;
6337
6338 sdd->sgp = alloc_percpu(struct sched_group_power *);
6339 if (!sdd->sgp)
6340 return -ENOMEM;
6341
6342 for_each_cpu(j, cpu_map) {
6343 struct sched_domain *sd;
6344 struct sched_group *sg;
6345 struct sched_group_power *sgp;
6346
6347 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6348 GFP_KERNEL, cpu_to_node(j));
6349 if (!sd)
6350 return -ENOMEM;
6351
6352 *per_cpu_ptr(sdd->sd, j) = sd;
6353
6354 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6355 GFP_KERNEL, cpu_to_node(j));
6356 if (!sg)
6357 return -ENOMEM;
6358
6359 *per_cpu_ptr(sdd->sg, j) = sg;
6360
6361 sgp = kzalloc_node(sizeof(struct sched_group_power),
6362 GFP_KERNEL, cpu_to_node(j));
6363 if (!sgp)
6364 return -ENOMEM;
6365
6366 *per_cpu_ptr(sdd->sgp, j) = sgp;
6367 }
6368 }
6369
6370 return 0;
6371 }
6372
6373 static void __sdt_free(const struct cpumask *cpu_map)
6374 {
6375 struct sched_domain_topology_level *tl;
6376 int j;
6377
6378 for (tl = sched_domain_topology; tl->init; tl++) {
6379 struct sd_data *sdd = &tl->data;
6380
6381 for_each_cpu(j, cpu_map) {
6382 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6383 if (sd && (sd->flags & SD_OVERLAP))
6384 free_sched_groups(sd->groups, 0);
6385 kfree(*per_cpu_ptr(sdd->sd, j));
6386 kfree(*per_cpu_ptr(sdd->sg, j));
6387 kfree(*per_cpu_ptr(sdd->sgp, j));
6388 }
6389 free_percpu(sdd->sd);
6390 free_percpu(sdd->sg);
6391 free_percpu(sdd->sgp);
6392 }
6393 }
6394
6395 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6396 struct s_data *d, const struct cpumask *cpu_map,
6397 struct sched_domain_attr *attr, struct sched_domain *child,
6398 int cpu)
6399 {
6400 struct sched_domain *sd = tl->init(tl, cpu);
6401 if (!sd)
6402 return child;
6403
6404 set_domain_attribute(sd, attr);
6405 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6406 if (child) {
6407 sd->level = child->level + 1;
6408 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6409 child->parent = sd;
6410 }
6411 sd->child = child;
6412
6413 return sd;
6414 }
6415
6416 /*
6417 * Build sched domains for a given set of cpus and attach the sched domains
6418 * to the individual cpus
6419 */
6420 static int build_sched_domains(const struct cpumask *cpu_map,
6421 struct sched_domain_attr *attr)
6422 {
6423 enum s_alloc alloc_state = sa_none;
6424 struct sched_domain *sd;
6425 struct s_data d;
6426 int i, ret = -ENOMEM;
6427
6428 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6429 if (alloc_state != sa_rootdomain)
6430 goto error;
6431
6432 /* Set up domains for cpus specified by the cpu_map. */
6433 for_each_cpu(i, cpu_map) {
6434 struct sched_domain_topology_level *tl;
6435
6436 sd = NULL;
6437 for (tl = sched_domain_topology; tl->init; tl++) {
6438 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6439 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6440 sd->flags |= SD_OVERLAP;
6441 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6442 break;
6443 }
6444
6445 while (sd->child)
6446 sd = sd->child;
6447
6448 *per_cpu_ptr(d.sd, i) = sd;
6449 }
6450
6451 /* Build the groups for the domains */
6452 for_each_cpu(i, cpu_map) {
6453 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6454 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6455 if (sd->flags & SD_OVERLAP) {
6456 if (build_overlap_sched_groups(sd, i))
6457 goto error;
6458 } else {
6459 if (build_sched_groups(sd, i))
6460 goto error;
6461 }
6462 }
6463 }
6464
6465 /* Calculate CPU power for physical packages and nodes */
6466 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6467 if (!cpumask_test_cpu(i, cpu_map))
6468 continue;
6469
6470 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6471 claim_allocations(i, sd);
6472 init_sched_groups_power(i, sd);
6473 }
6474 }
6475
6476 /* Attach the domains */
6477 rcu_read_lock();
6478 for_each_cpu(i, cpu_map) {
6479 sd = *per_cpu_ptr(d.sd, i);
6480 cpu_attach_domain(sd, d.rd, i);
6481 }
6482 rcu_read_unlock();
6483
6484 ret = 0;
6485 error:
6486 __free_domain_allocs(&d, alloc_state, cpu_map);
6487 return ret;
6488 }
6489
6490 static cpumask_var_t *doms_cur; /* current sched domains */
6491 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6492 static struct sched_domain_attr *dattr_cur;
6493 /* attribues of custom domains in 'doms_cur' */
6494
6495 /*
6496 * Special case: If a kmalloc of a doms_cur partition (array of
6497 * cpumask) fails, then fallback to a single sched domain,
6498 * as determined by the single cpumask fallback_doms.
6499 */
6500 static cpumask_var_t fallback_doms;
6501
6502 /*
6503 * arch_update_cpu_topology lets virtualized architectures update the
6504 * cpu core maps. It is supposed to return 1 if the topology changed
6505 * or 0 if it stayed the same.
6506 */
6507 int __attribute__((weak)) arch_update_cpu_topology(void)
6508 {
6509 return 0;
6510 }
6511
6512 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6513 {
6514 int i;
6515 cpumask_var_t *doms;
6516
6517 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6518 if (!doms)
6519 return NULL;
6520 for (i = 0; i < ndoms; i++) {
6521 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6522 free_sched_domains(doms, i);
6523 return NULL;
6524 }
6525 }
6526 return doms;
6527 }
6528
6529 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6530 {
6531 unsigned int i;
6532 for (i = 0; i < ndoms; i++)
6533 free_cpumask_var(doms[i]);
6534 kfree(doms);
6535 }
6536
6537 /*
6538 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6539 * For now this just excludes isolated cpus, but could be used to
6540 * exclude other special cases in the future.
6541 */
6542 static int init_sched_domains(const struct cpumask *cpu_map)
6543 {
6544 int err;
6545
6546 arch_update_cpu_topology();
6547 ndoms_cur = 1;
6548 doms_cur = alloc_sched_domains(ndoms_cur);
6549 if (!doms_cur)
6550 doms_cur = &fallback_doms;
6551 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6552 dattr_cur = NULL;
6553 err = build_sched_domains(doms_cur[0], NULL);
6554 register_sched_domain_sysctl();
6555
6556 return err;
6557 }
6558
6559 /*
6560 * Detach sched domains from a group of cpus specified in cpu_map
6561 * These cpus will now be attached to the NULL domain
6562 */
6563 static void detach_destroy_domains(const struct cpumask *cpu_map)
6564 {
6565 int i;
6566
6567 rcu_read_lock();
6568 for_each_cpu(i, cpu_map)
6569 cpu_attach_domain(NULL, &def_root_domain, i);
6570 rcu_read_unlock();
6571 }
6572
6573 /* handle null as "default" */
6574 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6575 struct sched_domain_attr *new, int idx_new)
6576 {
6577 struct sched_domain_attr tmp;
6578
6579 /* fast path */
6580 if (!new && !cur)
6581 return 1;
6582
6583 tmp = SD_ATTR_INIT;
6584 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6585 new ? (new + idx_new) : &tmp,
6586 sizeof(struct sched_domain_attr));
6587 }
6588
6589 /*
6590 * Partition sched domains as specified by the 'ndoms_new'
6591 * cpumasks in the array doms_new[] of cpumasks. This compares
6592 * doms_new[] to the current sched domain partitioning, doms_cur[].
6593 * It destroys each deleted domain and builds each new domain.
6594 *
6595 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6596 * The masks don't intersect (don't overlap.) We should setup one
6597 * sched domain for each mask. CPUs not in any of the cpumasks will
6598 * not be load balanced. If the same cpumask appears both in the
6599 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6600 * it as it is.
6601 *
6602 * The passed in 'doms_new' should be allocated using
6603 * alloc_sched_domains. This routine takes ownership of it and will
6604 * free_sched_domains it when done with it. If the caller failed the
6605 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6606 * and partition_sched_domains() will fallback to the single partition
6607 * 'fallback_doms', it also forces the domains to be rebuilt.
6608 *
6609 * If doms_new == NULL it will be replaced with cpu_online_mask.
6610 * ndoms_new == 0 is a special case for destroying existing domains,
6611 * and it will not create the default domain.
6612 *
6613 * Call with hotplug lock held
6614 */
6615 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6616 struct sched_domain_attr *dattr_new)
6617 {
6618 int i, j, n;
6619 int new_topology;
6620
6621 mutex_lock(&sched_domains_mutex);
6622
6623 /* always unregister in case we don't destroy any domains */
6624 unregister_sched_domain_sysctl();
6625
6626 /* Let architecture update cpu core mappings. */
6627 new_topology = arch_update_cpu_topology();
6628
6629 n = doms_new ? ndoms_new : 0;
6630
6631 /* Destroy deleted domains */
6632 for (i = 0; i < ndoms_cur; i++) {
6633 for (j = 0; j < n && !new_topology; j++) {
6634 if (cpumask_equal(doms_cur[i], doms_new[j])
6635 && dattrs_equal(dattr_cur, i, dattr_new, j))
6636 goto match1;
6637 }
6638 /* no match - a current sched domain not in new doms_new[] */
6639 detach_destroy_domains(doms_cur[i]);
6640 match1:
6641 ;
6642 }
6643
6644 if (doms_new == NULL) {
6645 ndoms_cur = 0;
6646 doms_new = &fallback_doms;
6647 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6648 WARN_ON_ONCE(dattr_new);
6649 }
6650
6651 /* Build new domains */
6652 for (i = 0; i < ndoms_new; i++) {
6653 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6654 if (cpumask_equal(doms_new[i], doms_cur[j])
6655 && dattrs_equal(dattr_new, i, dattr_cur, j))
6656 goto match2;
6657 }
6658 /* no match - add a new doms_new */
6659 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6660 match2:
6661 ;
6662 }
6663
6664 /* Remember the new sched domains */
6665 if (doms_cur != &fallback_doms)
6666 free_sched_domains(doms_cur, ndoms_cur);
6667 kfree(dattr_cur); /* kfree(NULL) is safe */
6668 doms_cur = doms_new;
6669 dattr_cur = dattr_new;
6670 ndoms_cur = ndoms_new;
6671
6672 register_sched_domain_sysctl();
6673
6674 mutex_unlock(&sched_domains_mutex);
6675 }
6676
6677 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6678 static void reinit_sched_domains(void)
6679 {
6680 get_online_cpus();
6681
6682 /* Destroy domains first to force the rebuild */
6683 partition_sched_domains(0, NULL, NULL);
6684
6685 rebuild_sched_domains();
6686 put_online_cpus();
6687 }
6688
6689 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6690 {
6691 unsigned int level = 0;
6692
6693 if (sscanf(buf, "%u", &level) != 1)
6694 return -EINVAL;
6695
6696 /*
6697 * level is always be positive so don't check for
6698 * level < POWERSAVINGS_BALANCE_NONE which is 0
6699 * What happens on 0 or 1 byte write,
6700 * need to check for count as well?
6701 */
6702
6703 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6704 return -EINVAL;
6705
6706 if (smt)
6707 sched_smt_power_savings = level;
6708 else
6709 sched_mc_power_savings = level;
6710
6711 reinit_sched_domains();
6712
6713 return count;
6714 }
6715
6716 #ifdef CONFIG_SCHED_MC
6717 static ssize_t sched_mc_power_savings_show(struct device *dev,
6718 struct device_attribute *attr,
6719 char *buf)
6720 {
6721 return sprintf(buf, "%u\n", sched_mc_power_savings);
6722 }
6723 static ssize_t sched_mc_power_savings_store(struct device *dev,
6724 struct device_attribute *attr,
6725 const char *buf, size_t count)
6726 {
6727 return sched_power_savings_store(buf, count, 0);
6728 }
6729 static DEVICE_ATTR(sched_mc_power_savings, 0644,
6730 sched_mc_power_savings_show,
6731 sched_mc_power_savings_store);
6732 #endif
6733
6734 #ifdef CONFIG_SCHED_SMT
6735 static ssize_t sched_smt_power_savings_show(struct device *dev,
6736 struct device_attribute *attr,
6737 char *buf)
6738 {
6739 return sprintf(buf, "%u\n", sched_smt_power_savings);
6740 }
6741 static ssize_t sched_smt_power_savings_store(struct device *dev,
6742 struct device_attribute *attr,
6743 const char *buf, size_t count)
6744 {
6745 return sched_power_savings_store(buf, count, 1);
6746 }
6747 static DEVICE_ATTR(sched_smt_power_savings, 0644,
6748 sched_smt_power_savings_show,
6749 sched_smt_power_savings_store);
6750 #endif
6751
6752 int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6753 {
6754 int err = 0;
6755
6756 #ifdef CONFIG_SCHED_SMT
6757 if (smt_capable())
6758 err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6759 #endif
6760 #ifdef CONFIG_SCHED_MC
6761 if (!err && mc_capable())
6762 err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6763 #endif
6764 return err;
6765 }
6766 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6767
6768 /*
6769 * Update cpusets according to cpu_active mask. If cpusets are
6770 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6771 * around partition_sched_domains().
6772 */
6773 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6774 void *hcpu)
6775 {
6776 switch (action & ~CPU_TASKS_FROZEN) {
6777 case CPU_ONLINE:
6778 case CPU_DOWN_FAILED:
6779 cpuset_update_active_cpus();
6780 return NOTIFY_OK;
6781 default:
6782 return NOTIFY_DONE;
6783 }
6784 }
6785
6786 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6787 void *hcpu)
6788 {
6789 switch (action & ~CPU_TASKS_FROZEN) {
6790 case CPU_DOWN_PREPARE:
6791 cpuset_update_active_cpus();
6792 return NOTIFY_OK;
6793 default:
6794 return NOTIFY_DONE;
6795 }
6796 }
6797
6798 void __init sched_init_smp(void)
6799 {
6800 cpumask_var_t non_isolated_cpus;
6801
6802 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6803 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6804
6805 get_online_cpus();
6806 mutex_lock(&sched_domains_mutex);
6807 init_sched_domains(cpu_active_mask);
6808 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6809 if (cpumask_empty(non_isolated_cpus))
6810 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6811 mutex_unlock(&sched_domains_mutex);
6812 put_online_cpus();
6813
6814 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6815 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6816
6817 /* RT runtime code needs to handle some hotplug events */
6818 hotcpu_notifier(update_runtime, 0);
6819
6820 init_hrtick();
6821
6822 /* Move init over to a non-isolated CPU */
6823 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6824 BUG();
6825 sched_init_granularity();
6826 free_cpumask_var(non_isolated_cpus);
6827
6828 init_sched_rt_class();
6829 }
6830 #else
6831 void __init sched_init_smp(void)
6832 {
6833 sched_init_granularity();
6834 }
6835 #endif /* CONFIG_SMP */
6836
6837 const_debug unsigned int sysctl_timer_migration = 1;
6838
6839 int in_sched_functions(unsigned long addr)
6840 {
6841 return in_lock_functions(addr) ||
6842 (addr >= (unsigned long)__sched_text_start
6843 && addr < (unsigned long)__sched_text_end);
6844 }
6845
6846 #ifdef CONFIG_CGROUP_SCHED
6847 struct task_group root_task_group;
6848 #endif
6849
6850 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6851
6852 void __init sched_init(void)
6853 {
6854 int i, j;
6855 unsigned long alloc_size = 0, ptr;
6856
6857 #ifdef CONFIG_FAIR_GROUP_SCHED
6858 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6859 #endif
6860 #ifdef CONFIG_RT_GROUP_SCHED
6861 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6862 #endif
6863 #ifdef CONFIG_CPUMASK_OFFSTACK
6864 alloc_size += num_possible_cpus() * cpumask_size();
6865 #endif
6866 if (alloc_size) {
6867 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6868
6869 #ifdef CONFIG_FAIR_GROUP_SCHED
6870 root_task_group.se = (struct sched_entity **)ptr;
6871 ptr += nr_cpu_ids * sizeof(void **);
6872
6873 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6874 ptr += nr_cpu_ids * sizeof(void **);
6875
6876 #endif /* CONFIG_FAIR_GROUP_SCHED */
6877 #ifdef CONFIG_RT_GROUP_SCHED
6878 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6879 ptr += nr_cpu_ids * sizeof(void **);
6880
6881 root_task_group.rt_rq = (struct rt_rq **)ptr;
6882 ptr += nr_cpu_ids * sizeof(void **);
6883
6884 #endif /* CONFIG_RT_GROUP_SCHED */
6885 #ifdef CONFIG_CPUMASK_OFFSTACK
6886 for_each_possible_cpu(i) {
6887 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6888 ptr += cpumask_size();
6889 }
6890 #endif /* CONFIG_CPUMASK_OFFSTACK */
6891 }
6892
6893 #ifdef CONFIG_SMP
6894 init_defrootdomain();
6895 #endif
6896
6897 init_rt_bandwidth(&def_rt_bandwidth,
6898 global_rt_period(), global_rt_runtime());
6899
6900 #ifdef CONFIG_RT_GROUP_SCHED
6901 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6902 global_rt_period(), global_rt_runtime());
6903 #endif /* CONFIG_RT_GROUP_SCHED */
6904
6905 #ifdef CONFIG_CGROUP_SCHED
6906 list_add(&root_task_group.list, &task_groups);
6907 INIT_LIST_HEAD(&root_task_group.children);
6908 INIT_LIST_HEAD(&root_task_group.siblings);
6909 autogroup_init(&init_task);
6910
6911 #endif /* CONFIG_CGROUP_SCHED */
6912
6913 #ifdef CONFIG_CGROUP_CPUACCT
6914 root_cpuacct.cpustat = &kernel_cpustat;
6915 root_cpuacct.cpuusage = alloc_percpu(u64);
6916 /* Too early, not expected to fail */
6917 BUG_ON(!root_cpuacct.cpuusage);
6918 #endif
6919 for_each_possible_cpu(i) {
6920 struct rq *rq;
6921
6922 rq = cpu_rq(i);
6923 raw_spin_lock_init(&rq->lock);
6924 rq->nr_running = 0;
6925 rq->calc_load_active = 0;
6926 rq->calc_load_update = jiffies + LOAD_FREQ;
6927 init_cfs_rq(&rq->cfs);
6928 init_rt_rq(&rq->rt, rq);
6929 #ifdef CONFIG_FAIR_GROUP_SCHED
6930 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6931 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6932 /*
6933 * How much cpu bandwidth does root_task_group get?
6934 *
6935 * In case of task-groups formed thr' the cgroup filesystem, it
6936 * gets 100% of the cpu resources in the system. This overall
6937 * system cpu resource is divided among the tasks of
6938 * root_task_group and its child task-groups in a fair manner,
6939 * based on each entity's (task or task-group's) weight
6940 * (se->load.weight).
6941 *
6942 * In other words, if root_task_group has 10 tasks of weight
6943 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6944 * then A0's share of the cpu resource is:
6945 *
6946 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6947 *
6948 * We achieve this by letting root_task_group's tasks sit
6949 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6950 */
6951 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6952 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6953 #endif /* CONFIG_FAIR_GROUP_SCHED */
6954
6955 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6956 #ifdef CONFIG_RT_GROUP_SCHED
6957 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6958 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6959 #endif
6960
6961 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6962 rq->cpu_load[j] = 0;
6963
6964 rq->last_load_update_tick = jiffies;
6965
6966 #ifdef CONFIG_SMP
6967 rq->sd = NULL;
6968 rq->rd = NULL;
6969 rq->cpu_power = SCHED_POWER_SCALE;
6970 rq->post_schedule = 0;
6971 rq->active_balance = 0;
6972 rq->next_balance = jiffies;
6973 rq->push_cpu = 0;
6974 rq->cpu = i;
6975 rq->online = 0;
6976 rq->idle_stamp = 0;
6977 rq->avg_idle = 2*sysctl_sched_migration_cost;
6978
6979 INIT_LIST_HEAD(&rq->cfs_tasks);
6980
6981 rq_attach_root(rq, &def_root_domain);
6982 #ifdef CONFIG_NO_HZ
6983 rq->nohz_flags = 0;
6984 #endif
6985 #endif
6986 init_rq_hrtick(rq);
6987 atomic_set(&rq->nr_iowait, 0);
6988 }
6989
6990 set_load_weight(&init_task);
6991
6992 #ifdef CONFIG_PREEMPT_NOTIFIERS
6993 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6994 #endif
6995
6996 #ifdef CONFIG_RT_MUTEXES
6997 plist_head_init(&init_task.pi_waiters);
6998 #endif
6999
7000 /*
7001 * The boot idle thread does lazy MMU switching as well:
7002 */
7003 atomic_inc(&init_mm.mm_count);
7004 enter_lazy_tlb(&init_mm, current);
7005
7006 /*
7007 * Make us the idle thread. Technically, schedule() should not be
7008 * called from this thread, however somewhere below it might be,
7009 * but because we are the idle thread, we just pick up running again
7010 * when this runqueue becomes "idle".
7011 */
7012 init_idle(current, smp_processor_id());
7013
7014 calc_load_update = jiffies + LOAD_FREQ;
7015
7016 /*
7017 * During early bootup we pretend to be a normal task:
7018 */
7019 current->sched_class = &fair_sched_class;
7020
7021 #ifdef CONFIG_SMP
7022 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7023 /* May be allocated at isolcpus cmdline parse time */
7024 if (cpu_isolated_map == NULL)
7025 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7026 #endif
7027 init_sched_fair_class();
7028
7029 scheduler_running = 1;
7030 }
7031
7032 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7033 static inline int preempt_count_equals(int preempt_offset)
7034 {
7035 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7036
7037 return (nested == preempt_offset);
7038 }
7039
7040 void __might_sleep(const char *file, int line, int preempt_offset)
7041 {
7042 static unsigned long prev_jiffy; /* ratelimiting */
7043
7044 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7045 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7046 system_state != SYSTEM_RUNNING || oops_in_progress)
7047 return;
7048 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7049 return;
7050 prev_jiffy = jiffies;
7051
7052 printk(KERN_ERR
7053 "BUG: sleeping function called from invalid context at %s:%d\n",
7054 file, line);
7055 printk(KERN_ERR
7056 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7057 in_atomic(), irqs_disabled(),
7058 current->pid, current->comm);
7059
7060 debug_show_held_locks(current);
7061 if (irqs_disabled())
7062 print_irqtrace_events(current);
7063 dump_stack();
7064 }
7065 EXPORT_SYMBOL(__might_sleep);
7066 #endif
7067
7068 #ifdef CONFIG_MAGIC_SYSRQ
7069 static void normalize_task(struct rq *rq, struct task_struct *p)
7070 {
7071 const struct sched_class *prev_class = p->sched_class;
7072 int old_prio = p->prio;
7073 int on_rq;
7074
7075 on_rq = p->on_rq;
7076 if (on_rq)
7077 dequeue_task(rq, p, 0);
7078 __setscheduler(rq, p, SCHED_NORMAL, 0);
7079 if (on_rq) {
7080 enqueue_task(rq, p, 0);
7081 resched_task(rq->curr);
7082 }
7083
7084 check_class_changed(rq, p, prev_class, old_prio);
7085 }
7086
7087 void normalize_rt_tasks(void)
7088 {
7089 struct task_struct *g, *p;
7090 unsigned long flags;
7091 struct rq *rq;
7092
7093 read_lock_irqsave(&tasklist_lock, flags);
7094 do_each_thread(g, p) {
7095 /*
7096 * Only normalize user tasks:
7097 */
7098 if (!p->mm)
7099 continue;
7100
7101 p->se.exec_start = 0;
7102 #ifdef CONFIG_SCHEDSTATS
7103 p->se.statistics.wait_start = 0;
7104 p->se.statistics.sleep_start = 0;
7105 p->se.statistics.block_start = 0;
7106 #endif
7107
7108 if (!rt_task(p)) {
7109 /*
7110 * Renice negative nice level userspace
7111 * tasks back to 0:
7112 */
7113 if (TASK_NICE(p) < 0 && p->mm)
7114 set_user_nice(p, 0);
7115 continue;
7116 }
7117
7118 raw_spin_lock(&p->pi_lock);
7119 rq = __task_rq_lock(p);
7120
7121 normalize_task(rq, p);
7122
7123 __task_rq_unlock(rq);
7124 raw_spin_unlock(&p->pi_lock);
7125 } while_each_thread(g, p);
7126
7127 read_unlock_irqrestore(&tasklist_lock, flags);
7128 }
7129
7130 #endif /* CONFIG_MAGIC_SYSRQ */
7131
7132 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7133 /*
7134 * These functions are only useful for the IA64 MCA handling, or kdb.
7135 *
7136 * They can only be called when the whole system has been
7137 * stopped - every CPU needs to be quiescent, and no scheduling
7138 * activity can take place. Using them for anything else would
7139 * be a serious bug, and as a result, they aren't even visible
7140 * under any other configuration.
7141 */
7142
7143 /**
7144 * curr_task - return the current task for a given cpu.
7145 * @cpu: the processor in question.
7146 *
7147 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7148 */
7149 struct task_struct *curr_task(int cpu)
7150 {
7151 return cpu_curr(cpu);
7152 }
7153
7154 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7155
7156 #ifdef CONFIG_IA64
7157 /**
7158 * set_curr_task - set the current task for a given cpu.
7159 * @cpu: the processor in question.
7160 * @p: the task pointer to set.
7161 *
7162 * Description: This function must only be used when non-maskable interrupts
7163 * are serviced on a separate stack. It allows the architecture to switch the
7164 * notion of the current task on a cpu in a non-blocking manner. This function
7165 * must be called with all CPU's synchronized, and interrupts disabled, the
7166 * and caller must save the original value of the current task (see
7167 * curr_task() above) and restore that value before reenabling interrupts and
7168 * re-starting the system.
7169 *
7170 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7171 */
7172 void set_curr_task(int cpu, struct task_struct *p)
7173 {
7174 cpu_curr(cpu) = p;
7175 }
7176
7177 #endif
7178
7179 #ifdef CONFIG_CGROUP_SCHED
7180 /* task_group_lock serializes the addition/removal of task groups */
7181 static DEFINE_SPINLOCK(task_group_lock);
7182
7183 static void free_sched_group(struct task_group *tg)
7184 {
7185 free_fair_sched_group(tg);
7186 free_rt_sched_group(tg);
7187 autogroup_free(tg);
7188 kfree(tg);
7189 }
7190
7191 /* allocate runqueue etc for a new task group */
7192 struct task_group *sched_create_group(struct task_group *parent)
7193 {
7194 struct task_group *tg;
7195 unsigned long flags;
7196
7197 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7198 if (!tg)
7199 return ERR_PTR(-ENOMEM);
7200
7201 if (!alloc_fair_sched_group(tg, parent))
7202 goto err;
7203
7204 if (!alloc_rt_sched_group(tg, parent))
7205 goto err;
7206
7207 spin_lock_irqsave(&task_group_lock, flags);
7208 list_add_rcu(&tg->list, &task_groups);
7209
7210 WARN_ON(!parent); /* root should already exist */
7211
7212 tg->parent = parent;
7213 INIT_LIST_HEAD(&tg->children);
7214 list_add_rcu(&tg->siblings, &parent->children);
7215 spin_unlock_irqrestore(&task_group_lock, flags);
7216
7217 return tg;
7218
7219 err:
7220 free_sched_group(tg);
7221 return ERR_PTR(-ENOMEM);
7222 }
7223
7224 /* rcu callback to free various structures associated with a task group */
7225 static void free_sched_group_rcu(struct rcu_head *rhp)
7226 {
7227 /* now it should be safe to free those cfs_rqs */
7228 free_sched_group(container_of(rhp, struct task_group, rcu));
7229 }
7230
7231 /* Destroy runqueue etc associated with a task group */
7232 void sched_destroy_group(struct task_group *tg)
7233 {
7234 unsigned long flags;
7235 int i;
7236
7237 /* end participation in shares distribution */
7238 for_each_possible_cpu(i)
7239 unregister_fair_sched_group(tg, i);
7240
7241 spin_lock_irqsave(&task_group_lock, flags);
7242 list_del_rcu(&tg->list);
7243 list_del_rcu(&tg->siblings);
7244 spin_unlock_irqrestore(&task_group_lock, flags);
7245
7246 /* wait for possible concurrent references to cfs_rqs complete */
7247 call_rcu(&tg->rcu, free_sched_group_rcu);
7248 }
7249
7250 /* change task's runqueue when it moves between groups.
7251 * The caller of this function should have put the task in its new group
7252 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7253 * reflect its new group.
7254 */
7255 void sched_move_task(struct task_struct *tsk)
7256 {
7257 int on_rq, running;
7258 unsigned long flags;
7259 struct rq *rq;
7260
7261 rq = task_rq_lock(tsk, &flags);
7262
7263 running = task_current(rq, tsk);
7264 on_rq = tsk->on_rq;
7265
7266 if (on_rq)
7267 dequeue_task(rq, tsk, 0);
7268 if (unlikely(running))
7269 tsk->sched_class->put_prev_task(rq, tsk);
7270
7271 #ifdef CONFIG_FAIR_GROUP_SCHED
7272 if (tsk->sched_class->task_move_group)
7273 tsk->sched_class->task_move_group(tsk, on_rq);
7274 else
7275 #endif
7276 set_task_rq(tsk, task_cpu(tsk));
7277
7278 if (unlikely(running))
7279 tsk->sched_class->set_curr_task(rq);
7280 if (on_rq)
7281 enqueue_task(rq, tsk, 0);
7282
7283 task_rq_unlock(rq, tsk, &flags);
7284 }
7285 #endif /* CONFIG_CGROUP_SCHED */
7286
7287 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7288 static unsigned long to_ratio(u64 period, u64 runtime)
7289 {
7290 if (runtime == RUNTIME_INF)
7291 return 1ULL << 20;
7292
7293 return div64_u64(runtime << 20, period);
7294 }
7295 #endif
7296
7297 #ifdef CONFIG_RT_GROUP_SCHED
7298 /*
7299 * Ensure that the real time constraints are schedulable.
7300 */
7301 static DEFINE_MUTEX(rt_constraints_mutex);
7302
7303 /* Must be called with tasklist_lock held */
7304 static inline int tg_has_rt_tasks(struct task_group *tg)
7305 {
7306 struct task_struct *g, *p;
7307
7308 do_each_thread(g, p) {
7309 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7310 return 1;
7311 } while_each_thread(g, p);
7312
7313 return 0;
7314 }
7315
7316 struct rt_schedulable_data {
7317 struct task_group *tg;
7318 u64 rt_period;
7319 u64 rt_runtime;
7320 };
7321
7322 static int tg_rt_schedulable(struct task_group *tg, void *data)
7323 {
7324 struct rt_schedulable_data *d = data;
7325 struct task_group *child;
7326 unsigned long total, sum = 0;
7327 u64 period, runtime;
7328
7329 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7330 runtime = tg->rt_bandwidth.rt_runtime;
7331
7332 if (tg == d->tg) {
7333 period = d->rt_period;
7334 runtime = d->rt_runtime;
7335 }
7336
7337 /*
7338 * Cannot have more runtime than the period.
7339 */
7340 if (runtime > period && runtime != RUNTIME_INF)
7341 return -EINVAL;
7342
7343 /*
7344 * Ensure we don't starve existing RT tasks.
7345 */
7346 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7347 return -EBUSY;
7348
7349 total = to_ratio(period, runtime);
7350
7351 /*
7352 * Nobody can have more than the global setting allows.
7353 */
7354 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7355 return -EINVAL;
7356
7357 /*
7358 * The sum of our children's runtime should not exceed our own.
7359 */
7360 list_for_each_entry_rcu(child, &tg->children, siblings) {
7361 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7362 runtime = child->rt_bandwidth.rt_runtime;
7363
7364 if (child == d->tg) {
7365 period = d->rt_period;
7366 runtime = d->rt_runtime;
7367 }
7368
7369 sum += to_ratio(period, runtime);
7370 }
7371
7372 if (sum > total)
7373 return -EINVAL;
7374
7375 return 0;
7376 }
7377
7378 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7379 {
7380 int ret;
7381
7382 struct rt_schedulable_data data = {
7383 .tg = tg,
7384 .rt_period = period,
7385 .rt_runtime = runtime,
7386 };
7387
7388 rcu_read_lock();
7389 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7390 rcu_read_unlock();
7391
7392 return ret;
7393 }
7394
7395 static int tg_set_rt_bandwidth(struct task_group *tg,
7396 u64 rt_period, u64 rt_runtime)
7397 {
7398 int i, err = 0;
7399
7400 mutex_lock(&rt_constraints_mutex);
7401 read_lock(&tasklist_lock);
7402 err = __rt_schedulable(tg, rt_period, rt_runtime);
7403 if (err)
7404 goto unlock;
7405
7406 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7407 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7408 tg->rt_bandwidth.rt_runtime = rt_runtime;
7409
7410 for_each_possible_cpu(i) {
7411 struct rt_rq *rt_rq = tg->rt_rq[i];
7412
7413 raw_spin_lock(&rt_rq->rt_runtime_lock);
7414 rt_rq->rt_runtime = rt_runtime;
7415 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7416 }
7417 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7418 unlock:
7419 read_unlock(&tasklist_lock);
7420 mutex_unlock(&rt_constraints_mutex);
7421
7422 return err;
7423 }
7424
7425 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7426 {
7427 u64 rt_runtime, rt_period;
7428
7429 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7430 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7431 if (rt_runtime_us < 0)
7432 rt_runtime = RUNTIME_INF;
7433
7434 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7435 }
7436
7437 long sched_group_rt_runtime(struct task_group *tg)
7438 {
7439 u64 rt_runtime_us;
7440
7441 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7442 return -1;
7443
7444 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7445 do_div(rt_runtime_us, NSEC_PER_USEC);
7446 return rt_runtime_us;
7447 }
7448
7449 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7450 {
7451 u64 rt_runtime, rt_period;
7452
7453 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7454 rt_runtime = tg->rt_bandwidth.rt_runtime;
7455
7456 if (rt_period == 0)
7457 return -EINVAL;
7458
7459 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7460 }
7461
7462 long sched_group_rt_period(struct task_group *tg)
7463 {
7464 u64 rt_period_us;
7465
7466 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7467 do_div(rt_period_us, NSEC_PER_USEC);
7468 return rt_period_us;
7469 }
7470
7471 static int sched_rt_global_constraints(void)
7472 {
7473 u64 runtime, period;
7474 int ret = 0;
7475
7476 if (sysctl_sched_rt_period <= 0)
7477 return -EINVAL;
7478
7479 runtime = global_rt_runtime();
7480 period = global_rt_period();
7481
7482 /*
7483 * Sanity check on the sysctl variables.
7484 */
7485 if (runtime > period && runtime != RUNTIME_INF)
7486 return -EINVAL;
7487
7488 mutex_lock(&rt_constraints_mutex);
7489 read_lock(&tasklist_lock);
7490 ret = __rt_schedulable(NULL, 0, 0);
7491 read_unlock(&tasklist_lock);
7492 mutex_unlock(&rt_constraints_mutex);
7493
7494 return ret;
7495 }
7496
7497 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7498 {
7499 /* Don't accept realtime tasks when there is no way for them to run */
7500 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7501 return 0;
7502
7503 return 1;
7504 }
7505
7506 #else /* !CONFIG_RT_GROUP_SCHED */
7507 static int sched_rt_global_constraints(void)
7508 {
7509 unsigned long flags;
7510 int i;
7511
7512 if (sysctl_sched_rt_period <= 0)
7513 return -EINVAL;
7514
7515 /*
7516 * There's always some RT tasks in the root group
7517 * -- migration, kstopmachine etc..
7518 */
7519 if (sysctl_sched_rt_runtime == 0)
7520 return -EBUSY;
7521
7522 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7523 for_each_possible_cpu(i) {
7524 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7525
7526 raw_spin_lock(&rt_rq->rt_runtime_lock);
7527 rt_rq->rt_runtime = global_rt_runtime();
7528 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7529 }
7530 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7531
7532 return 0;
7533 }
7534 #endif /* CONFIG_RT_GROUP_SCHED */
7535
7536 int sched_rt_handler(struct ctl_table *table, int write,
7537 void __user *buffer, size_t *lenp,
7538 loff_t *ppos)
7539 {
7540 int ret;
7541 int old_period, old_runtime;
7542 static DEFINE_MUTEX(mutex);
7543
7544 mutex_lock(&mutex);
7545 old_period = sysctl_sched_rt_period;
7546 old_runtime = sysctl_sched_rt_runtime;
7547
7548 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7549
7550 if (!ret && write) {
7551 ret = sched_rt_global_constraints();
7552 if (ret) {
7553 sysctl_sched_rt_period = old_period;
7554 sysctl_sched_rt_runtime = old_runtime;
7555 } else {
7556 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7557 def_rt_bandwidth.rt_period =
7558 ns_to_ktime(global_rt_period());
7559 }
7560 }
7561 mutex_unlock(&mutex);
7562
7563 return ret;
7564 }
7565
7566 #ifdef CONFIG_CGROUP_SCHED
7567
7568 /* return corresponding task_group object of a cgroup */
7569 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7570 {
7571 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7572 struct task_group, css);
7573 }
7574
7575 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7576 {
7577 struct task_group *tg, *parent;
7578
7579 if (!cgrp->parent) {
7580 /* This is early initialization for the top cgroup */
7581 return &root_task_group.css;
7582 }
7583
7584 parent = cgroup_tg(cgrp->parent);
7585 tg = sched_create_group(parent);
7586 if (IS_ERR(tg))
7587 return ERR_PTR(-ENOMEM);
7588
7589 return &tg->css;
7590 }
7591
7592 static void cpu_cgroup_destroy(struct cgroup *cgrp)
7593 {
7594 struct task_group *tg = cgroup_tg(cgrp);
7595
7596 sched_destroy_group(tg);
7597 }
7598
7599 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7600 struct cgroup_taskset *tset)
7601 {
7602 struct task_struct *task;
7603
7604 cgroup_taskset_for_each(task, cgrp, tset) {
7605 #ifdef CONFIG_RT_GROUP_SCHED
7606 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7607 return -EINVAL;
7608 #else
7609 /* We don't support RT-tasks being in separate groups */
7610 if (task->sched_class != &fair_sched_class)
7611 return -EINVAL;
7612 #endif
7613 }
7614 return 0;
7615 }
7616
7617 static void cpu_cgroup_attach(struct cgroup *cgrp,
7618 struct cgroup_taskset *tset)
7619 {
7620 struct task_struct *task;
7621
7622 cgroup_taskset_for_each(task, cgrp, tset)
7623 sched_move_task(task);
7624 }
7625
7626 static void
7627 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7628 struct task_struct *task)
7629 {
7630 /*
7631 * cgroup_exit() is called in the copy_process() failure path.
7632 * Ignore this case since the task hasn't ran yet, this avoids
7633 * trying to poke a half freed task state from generic code.
7634 */
7635 if (!(task->flags & PF_EXITING))
7636 return;
7637
7638 sched_move_task(task);
7639 }
7640
7641 #ifdef CONFIG_FAIR_GROUP_SCHED
7642 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7643 u64 shareval)
7644 {
7645 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7646 }
7647
7648 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7649 {
7650 struct task_group *tg = cgroup_tg(cgrp);
7651
7652 return (u64) scale_load_down(tg->shares);
7653 }
7654
7655 #ifdef CONFIG_CFS_BANDWIDTH
7656 static DEFINE_MUTEX(cfs_constraints_mutex);
7657
7658 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7659 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7660
7661 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7662
7663 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7664 {
7665 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7666 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7667
7668 if (tg == &root_task_group)
7669 return -EINVAL;
7670
7671 /*
7672 * Ensure we have at some amount of bandwidth every period. This is
7673 * to prevent reaching a state of large arrears when throttled via
7674 * entity_tick() resulting in prolonged exit starvation.
7675 */
7676 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7677 return -EINVAL;
7678
7679 /*
7680 * Likewise, bound things on the otherside by preventing insane quota
7681 * periods. This also allows us to normalize in computing quota
7682 * feasibility.
7683 */
7684 if (period > max_cfs_quota_period)
7685 return -EINVAL;
7686
7687 mutex_lock(&cfs_constraints_mutex);
7688 ret = __cfs_schedulable(tg, period, quota);
7689 if (ret)
7690 goto out_unlock;
7691
7692 runtime_enabled = quota != RUNTIME_INF;
7693 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7694 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7695 raw_spin_lock_irq(&cfs_b->lock);
7696 cfs_b->period = ns_to_ktime(period);
7697 cfs_b->quota = quota;
7698
7699 __refill_cfs_bandwidth_runtime(cfs_b);
7700 /* restart the period timer (if active) to handle new period expiry */
7701 if (runtime_enabled && cfs_b->timer_active) {
7702 /* force a reprogram */
7703 cfs_b->timer_active = 0;
7704 __start_cfs_bandwidth(cfs_b);
7705 }
7706 raw_spin_unlock_irq(&cfs_b->lock);
7707
7708 for_each_possible_cpu(i) {
7709 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7710 struct rq *rq = cfs_rq->rq;
7711
7712 raw_spin_lock_irq(&rq->lock);
7713 cfs_rq->runtime_enabled = runtime_enabled;
7714 cfs_rq->runtime_remaining = 0;
7715
7716 if (cfs_rq->throttled)
7717 unthrottle_cfs_rq(cfs_rq);
7718 raw_spin_unlock_irq(&rq->lock);
7719 }
7720 out_unlock:
7721 mutex_unlock(&cfs_constraints_mutex);
7722
7723 return ret;
7724 }
7725
7726 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7727 {
7728 u64 quota, period;
7729
7730 period = ktime_to_ns(tg->cfs_bandwidth.period);
7731 if (cfs_quota_us < 0)
7732 quota = RUNTIME_INF;
7733 else
7734 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7735
7736 return tg_set_cfs_bandwidth(tg, period, quota);
7737 }
7738
7739 long tg_get_cfs_quota(struct task_group *tg)
7740 {
7741 u64 quota_us;
7742
7743 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7744 return -1;
7745
7746 quota_us = tg->cfs_bandwidth.quota;
7747 do_div(quota_us, NSEC_PER_USEC);
7748
7749 return quota_us;
7750 }
7751
7752 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7753 {
7754 u64 quota, period;
7755
7756 period = (u64)cfs_period_us * NSEC_PER_USEC;
7757 quota = tg->cfs_bandwidth.quota;
7758
7759 return tg_set_cfs_bandwidth(tg, period, quota);
7760 }
7761
7762 long tg_get_cfs_period(struct task_group *tg)
7763 {
7764 u64 cfs_period_us;
7765
7766 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7767 do_div(cfs_period_us, NSEC_PER_USEC);
7768
7769 return cfs_period_us;
7770 }
7771
7772 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7773 {
7774 return tg_get_cfs_quota(cgroup_tg(cgrp));
7775 }
7776
7777 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7778 s64 cfs_quota_us)
7779 {
7780 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7781 }
7782
7783 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7784 {
7785 return tg_get_cfs_period(cgroup_tg(cgrp));
7786 }
7787
7788 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7789 u64 cfs_period_us)
7790 {
7791 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7792 }
7793
7794 struct cfs_schedulable_data {
7795 struct task_group *tg;
7796 u64 period, quota;
7797 };
7798
7799 /*
7800 * normalize group quota/period to be quota/max_period
7801 * note: units are usecs
7802 */
7803 static u64 normalize_cfs_quota(struct task_group *tg,
7804 struct cfs_schedulable_data *d)
7805 {
7806 u64 quota, period;
7807
7808 if (tg == d->tg) {
7809 period = d->period;
7810 quota = d->quota;
7811 } else {
7812 period = tg_get_cfs_period(tg);
7813 quota = tg_get_cfs_quota(tg);
7814 }
7815
7816 /* note: these should typically be equivalent */
7817 if (quota == RUNTIME_INF || quota == -1)
7818 return RUNTIME_INF;
7819
7820 return to_ratio(period, quota);
7821 }
7822
7823 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7824 {
7825 struct cfs_schedulable_data *d = data;
7826 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7827 s64 quota = 0, parent_quota = -1;
7828
7829 if (!tg->parent) {
7830 quota = RUNTIME_INF;
7831 } else {
7832 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7833
7834 quota = normalize_cfs_quota(tg, d);
7835 parent_quota = parent_b->hierarchal_quota;
7836
7837 /*
7838 * ensure max(child_quota) <= parent_quota, inherit when no
7839 * limit is set
7840 */
7841 if (quota == RUNTIME_INF)
7842 quota = parent_quota;
7843 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7844 return -EINVAL;
7845 }
7846 cfs_b->hierarchal_quota = quota;
7847
7848 return 0;
7849 }
7850
7851 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7852 {
7853 int ret;
7854 struct cfs_schedulable_data data = {
7855 .tg = tg,
7856 .period = period,
7857 .quota = quota,
7858 };
7859
7860 if (quota != RUNTIME_INF) {
7861 do_div(data.period, NSEC_PER_USEC);
7862 do_div(data.quota, NSEC_PER_USEC);
7863 }
7864
7865 rcu_read_lock();
7866 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7867 rcu_read_unlock();
7868
7869 return ret;
7870 }
7871
7872 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7873 struct cgroup_map_cb *cb)
7874 {
7875 struct task_group *tg = cgroup_tg(cgrp);
7876 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7877
7878 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7879 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7880 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7881
7882 return 0;
7883 }
7884 #endif /* CONFIG_CFS_BANDWIDTH */
7885 #endif /* CONFIG_FAIR_GROUP_SCHED */
7886
7887 #ifdef CONFIG_RT_GROUP_SCHED
7888 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7889 s64 val)
7890 {
7891 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7892 }
7893
7894 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7895 {
7896 return sched_group_rt_runtime(cgroup_tg(cgrp));
7897 }
7898
7899 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7900 u64 rt_period_us)
7901 {
7902 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7903 }
7904
7905 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7906 {
7907 return sched_group_rt_period(cgroup_tg(cgrp));
7908 }
7909 #endif /* CONFIG_RT_GROUP_SCHED */
7910
7911 static struct cftype cpu_files[] = {
7912 #ifdef CONFIG_FAIR_GROUP_SCHED
7913 {
7914 .name = "shares",
7915 .read_u64 = cpu_shares_read_u64,
7916 .write_u64 = cpu_shares_write_u64,
7917 },
7918 #endif
7919 #ifdef CONFIG_CFS_BANDWIDTH
7920 {
7921 .name = "cfs_quota_us",
7922 .read_s64 = cpu_cfs_quota_read_s64,
7923 .write_s64 = cpu_cfs_quota_write_s64,
7924 },
7925 {
7926 .name = "cfs_period_us",
7927 .read_u64 = cpu_cfs_period_read_u64,
7928 .write_u64 = cpu_cfs_period_write_u64,
7929 },
7930 {
7931 .name = "stat",
7932 .read_map = cpu_stats_show,
7933 },
7934 #endif
7935 #ifdef CONFIG_RT_GROUP_SCHED
7936 {
7937 .name = "rt_runtime_us",
7938 .read_s64 = cpu_rt_runtime_read,
7939 .write_s64 = cpu_rt_runtime_write,
7940 },
7941 {
7942 .name = "rt_period_us",
7943 .read_u64 = cpu_rt_period_read_uint,
7944 .write_u64 = cpu_rt_period_write_uint,
7945 },
7946 #endif
7947 };
7948
7949 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7950 {
7951 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7952 }
7953
7954 struct cgroup_subsys cpu_cgroup_subsys = {
7955 .name = "cpu",
7956 .create = cpu_cgroup_create,
7957 .destroy = cpu_cgroup_destroy,
7958 .can_attach = cpu_cgroup_can_attach,
7959 .attach = cpu_cgroup_attach,
7960 .exit = cpu_cgroup_exit,
7961 .populate = cpu_cgroup_populate,
7962 .subsys_id = cpu_cgroup_subsys_id,
7963 .early_init = 1,
7964 };
7965
7966 #endif /* CONFIG_CGROUP_SCHED */
7967
7968 #ifdef CONFIG_CGROUP_CPUACCT
7969
7970 /*
7971 * CPU accounting code for task groups.
7972 *
7973 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7974 * (balbir@in.ibm.com).
7975 */
7976
7977 /* create a new cpu accounting group */
7978 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7979 {
7980 struct cpuacct *ca;
7981
7982 if (!cgrp->parent)
7983 return &root_cpuacct.css;
7984
7985 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7986 if (!ca)
7987 goto out;
7988
7989 ca->cpuusage = alloc_percpu(u64);
7990 if (!ca->cpuusage)
7991 goto out_free_ca;
7992
7993 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7994 if (!ca->cpustat)
7995 goto out_free_cpuusage;
7996
7997 return &ca->css;
7998
7999 out_free_cpuusage:
8000 free_percpu(ca->cpuusage);
8001 out_free_ca:
8002 kfree(ca);
8003 out:
8004 return ERR_PTR(-ENOMEM);
8005 }
8006
8007 /* destroy an existing cpu accounting group */
8008 static void cpuacct_destroy(struct cgroup *cgrp)
8009 {
8010 struct cpuacct *ca = cgroup_ca(cgrp);
8011
8012 free_percpu(ca->cpustat);
8013 free_percpu(ca->cpuusage);
8014 kfree(ca);
8015 }
8016
8017 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8018 {
8019 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8020 u64 data;
8021
8022 #ifndef CONFIG_64BIT
8023 /*
8024 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8025 */
8026 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8027 data = *cpuusage;
8028 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8029 #else
8030 data = *cpuusage;
8031 #endif
8032
8033 return data;
8034 }
8035
8036 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8037 {
8038 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8039
8040 #ifndef CONFIG_64BIT
8041 /*
8042 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8043 */
8044 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8045 *cpuusage = val;
8046 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8047 #else
8048 *cpuusage = val;
8049 #endif
8050 }
8051
8052 /* return total cpu usage (in nanoseconds) of a group */
8053 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8054 {
8055 struct cpuacct *ca = cgroup_ca(cgrp);
8056 u64 totalcpuusage = 0;
8057 int i;
8058
8059 for_each_present_cpu(i)
8060 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8061
8062 return totalcpuusage;
8063 }
8064
8065 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8066 u64 reset)
8067 {
8068 struct cpuacct *ca = cgroup_ca(cgrp);
8069 int err = 0;
8070 int i;
8071
8072 if (reset) {
8073 err = -EINVAL;
8074 goto out;
8075 }
8076
8077 for_each_present_cpu(i)
8078 cpuacct_cpuusage_write(ca, i, 0);
8079
8080 out:
8081 return err;
8082 }
8083
8084 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8085 struct seq_file *m)
8086 {
8087 struct cpuacct *ca = cgroup_ca(cgroup);
8088 u64 percpu;
8089 int i;
8090
8091 for_each_present_cpu(i) {
8092 percpu = cpuacct_cpuusage_read(ca, i);
8093 seq_printf(m, "%llu ", (unsigned long long) percpu);
8094 }
8095 seq_printf(m, "\n");
8096 return 0;
8097 }
8098
8099 static const char *cpuacct_stat_desc[] = {
8100 [CPUACCT_STAT_USER] = "user",
8101 [CPUACCT_STAT_SYSTEM] = "system",
8102 };
8103
8104 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8105 struct cgroup_map_cb *cb)
8106 {
8107 struct cpuacct *ca = cgroup_ca(cgrp);
8108 int cpu;
8109 s64 val = 0;
8110
8111 for_each_online_cpu(cpu) {
8112 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8113 val += kcpustat->cpustat[CPUTIME_USER];
8114 val += kcpustat->cpustat[CPUTIME_NICE];
8115 }
8116 val = cputime64_to_clock_t(val);
8117 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8118
8119 val = 0;
8120 for_each_online_cpu(cpu) {
8121 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8122 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8123 val += kcpustat->cpustat[CPUTIME_IRQ];
8124 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8125 }
8126
8127 val = cputime64_to_clock_t(val);
8128 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8129
8130 return 0;
8131 }
8132
8133 static struct cftype files[] = {
8134 {
8135 .name = "usage",
8136 .read_u64 = cpuusage_read,
8137 .write_u64 = cpuusage_write,
8138 },
8139 {
8140 .name = "usage_percpu",
8141 .read_seq_string = cpuacct_percpu_seq_read,
8142 },
8143 {
8144 .name = "stat",
8145 .read_map = cpuacct_stats_show,
8146 },
8147 };
8148
8149 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8150 {
8151 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8152 }
8153
8154 /*
8155 * charge this task's execution time to its accounting group.
8156 *
8157 * called with rq->lock held.
8158 */
8159 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8160 {
8161 struct cpuacct *ca;
8162 int cpu;
8163
8164 if (unlikely(!cpuacct_subsys.active))
8165 return;
8166
8167 cpu = task_cpu(tsk);
8168
8169 rcu_read_lock();
8170
8171 ca = task_ca(tsk);
8172
8173 for (; ca; ca = parent_ca(ca)) {
8174 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8175 *cpuusage += cputime;
8176 }
8177
8178 rcu_read_unlock();
8179 }
8180
8181 struct cgroup_subsys cpuacct_subsys = {
8182 .name = "cpuacct",
8183 .create = cpuacct_create,
8184 .destroy = cpuacct_destroy,
8185 .populate = cpuacct_populate,
8186 .subsys_id = cpuacct_subsys_id,
8187 };
8188 #endif /* CONFIG_CGROUP_CPUACCT */