]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/core.c
Merge remote-tracking branches 'spi/topic/coldfire' and 'spi/topic/dw' into spi-next
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98 void update_rq_clock(struct rq *rq)
99 {
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112 }
113
114 /*
115 * Debugging: various feature bits
116 */
117
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 0;
124
125 #undef SCHED_FEAT
126
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled) \
129 #name ,
130
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
133 };
134
135 #undef SCHED_FEAT
136
137 static int sched_feat_show(struct seq_file *m, void *v)
138 {
139 int i;
140
141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
145 }
146 seq_puts(m, "\n");
147
148 return 0;
149 }
150
151 #ifdef HAVE_JUMP_LABEL
152
153 #define jump_label_key__true STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
155
156 #define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
161 };
162
163 #undef SCHED_FEAT
164
165 static void sched_feat_disable(int i)
166 {
167 static_key_disable(&sched_feat_keys[i]);
168 }
169
170 static void sched_feat_enable(int i)
171 {
172 static_key_enable(&sched_feat_keys[i]);
173 }
174 #else
175 static void sched_feat_disable(int i) { };
176 static void sched_feat_enable(int i) { };
177 #endif /* HAVE_JUMP_LABEL */
178
179 static int sched_feat_set(char *cmp)
180 {
181 int i;
182 int neg = 0;
183
184 if (strncmp(cmp, "NO_", 3) == 0) {
185 neg = 1;
186 cmp += 3;
187 }
188
189 for (i = 0; i < __SCHED_FEAT_NR; i++) {
190 if (strcmp(cmp, sched_feat_names[i]) == 0) {
191 if (neg) {
192 sysctl_sched_features &= ~(1UL << i);
193 sched_feat_disable(i);
194 } else {
195 sysctl_sched_features |= (1UL << i);
196 sched_feat_enable(i);
197 }
198 break;
199 }
200 }
201
202 return i;
203 }
204
205 static ssize_t
206 sched_feat_write(struct file *filp, const char __user *ubuf,
207 size_t cnt, loff_t *ppos)
208 {
209 char buf[64];
210 char *cmp;
211 int i;
212 struct inode *inode;
213
214 if (cnt > 63)
215 cnt = 63;
216
217 if (copy_from_user(&buf, ubuf, cnt))
218 return -EFAULT;
219
220 buf[cnt] = 0;
221 cmp = strstrip(buf);
222
223 /* Ensure the static_key remains in a consistent state */
224 inode = file_inode(filp);
225 mutex_lock(&inode->i_mutex);
226 i = sched_feat_set(cmp);
227 mutex_unlock(&inode->i_mutex);
228 if (i == __SCHED_FEAT_NR)
229 return -EINVAL;
230
231 *ppos += cnt;
232
233 return cnt;
234 }
235
236 static int sched_feat_open(struct inode *inode, struct file *filp)
237 {
238 return single_open(filp, sched_feat_show, NULL);
239 }
240
241 static const struct file_operations sched_feat_fops = {
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
247 };
248
249 static __init int sched_init_debug(void)
250 {
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255 }
256 late_initcall(sched_init_debug);
257 #endif /* CONFIG_SCHED_DEBUG */
258
259 /*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263 const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
265 /*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
273 /*
274 * period over which we measure -rt task cpu usage in us.
275 * default: 1s
276 */
277 unsigned int sysctl_sched_rt_period = 1000000;
278
279 __read_mostly int scheduler_running;
280
281 /*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285 int sysctl_sched_rt_runtime = 950000;
286
287 /* cpus with isolated domains */
288 cpumask_var_t cpu_isolated_map;
289
290 /*
291 * this_rq_lock - lock this runqueue and disable interrupts.
292 */
293 static struct rq *this_rq_lock(void)
294 __acquires(rq->lock)
295 {
296 struct rq *rq;
297
298 local_irq_disable();
299 rq = this_rq();
300 raw_spin_lock(&rq->lock);
301
302 return rq;
303 }
304
305 #ifdef CONFIG_SCHED_HRTICK
306 /*
307 * Use HR-timers to deliver accurate preemption points.
308 */
309
310 static void hrtick_clear(struct rq *rq)
311 {
312 if (hrtimer_active(&rq->hrtick_timer))
313 hrtimer_cancel(&rq->hrtick_timer);
314 }
315
316 /*
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
319 */
320 static enum hrtimer_restart hrtick(struct hrtimer *timer)
321 {
322 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323
324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325
326 raw_spin_lock(&rq->lock);
327 update_rq_clock(rq);
328 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
329 raw_spin_unlock(&rq->lock);
330
331 return HRTIMER_NORESTART;
332 }
333
334 #ifdef CONFIG_SMP
335
336 static void __hrtick_restart(struct rq *rq)
337 {
338 struct hrtimer *timer = &rq->hrtick_timer;
339
340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
341 }
342
343 /*
344 * called from hardirq (IPI) context
345 */
346 static void __hrtick_start(void *arg)
347 {
348 struct rq *rq = arg;
349
350 raw_spin_lock(&rq->lock);
351 __hrtick_restart(rq);
352 rq->hrtick_csd_pending = 0;
353 raw_spin_unlock(&rq->lock);
354 }
355
356 /*
357 * Called to set the hrtick timer state.
358 *
359 * called with rq->lock held and irqs disabled
360 */
361 void hrtick_start(struct rq *rq, u64 delay)
362 {
363 struct hrtimer *timer = &rq->hrtick_timer;
364 ktime_t time;
365 s64 delta;
366
367 /*
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
370 */
371 delta = max_t(s64, delay, 10000LL);
372 time = ktime_add_ns(timer->base->get_time(), delta);
373
374 hrtimer_set_expires(timer, time);
375
376 if (rq == this_rq()) {
377 __hrtick_restart(rq);
378 } else if (!rq->hrtick_csd_pending) {
379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
380 rq->hrtick_csd_pending = 1;
381 }
382 }
383
384 static int
385 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386 {
387 int cpu = (int)(long)hcpu;
388
389 switch (action) {
390 case CPU_UP_CANCELED:
391 case CPU_UP_CANCELED_FROZEN:
392 case CPU_DOWN_PREPARE:
393 case CPU_DOWN_PREPARE_FROZEN:
394 case CPU_DEAD:
395 case CPU_DEAD_FROZEN:
396 hrtick_clear(cpu_rq(cpu));
397 return NOTIFY_OK;
398 }
399
400 return NOTIFY_DONE;
401 }
402
403 static __init void init_hrtick(void)
404 {
405 hotcpu_notifier(hotplug_hrtick, 0);
406 }
407 #else
408 /*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
413 void hrtick_start(struct rq *rq, u64 delay)
414 {
415 /*
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
418 */
419 delay = max_t(u64, delay, 10000LL);
420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 HRTIMER_MODE_REL_PINNED);
422 }
423
424 static inline void init_hrtick(void)
425 {
426 }
427 #endif /* CONFIG_SMP */
428
429 static void init_rq_hrtick(struct rq *rq)
430 {
431 #ifdef CONFIG_SMP
432 rq->hrtick_csd_pending = 0;
433
434 rq->hrtick_csd.flags = 0;
435 rq->hrtick_csd.func = __hrtick_start;
436 rq->hrtick_csd.info = rq;
437 #endif
438
439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 rq->hrtick_timer.function = hrtick;
441 }
442 #else /* CONFIG_SCHED_HRTICK */
443 static inline void hrtick_clear(struct rq *rq)
444 {
445 }
446
447 static inline void init_rq_hrtick(struct rq *rq)
448 {
449 }
450
451 static inline void init_hrtick(void)
452 {
453 }
454 #endif /* CONFIG_SCHED_HRTICK */
455
456 /*
457 * cmpxchg based fetch_or, macro so it works for different integer types
458 */
459 #define fetch_or(ptr, val) \
460 ({ typeof(*(ptr)) __old, __val = *(ptr); \
461 for (;;) { \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
464 break; \
465 __val = __old; \
466 } \
467 __old; \
468 })
469
470 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
471 /*
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
474 * spurious IPIs.
475 */
476 static bool set_nr_and_not_polling(struct task_struct *p)
477 {
478 struct thread_info *ti = task_thread_info(p);
479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480 }
481
482 /*
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484 *
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
487 */
488 static bool set_nr_if_polling(struct task_struct *p)
489 {
490 struct thread_info *ti = task_thread_info(p);
491 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
492
493 for (;;) {
494 if (!(val & _TIF_POLLING_NRFLAG))
495 return false;
496 if (val & _TIF_NEED_RESCHED)
497 return true;
498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 if (old == val)
500 break;
501 val = old;
502 }
503 return true;
504 }
505
506 #else
507 static bool set_nr_and_not_polling(struct task_struct *p)
508 {
509 set_tsk_need_resched(p);
510 return true;
511 }
512
513 #ifdef CONFIG_SMP
514 static bool set_nr_if_polling(struct task_struct *p)
515 {
516 return false;
517 }
518 #endif
519 #endif
520
521 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522 {
523 struct wake_q_node *node = &task->wake_q;
524
525 /*
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
529 *
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
532 */
533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 return;
535
536 get_task_struct(task);
537
538 /*
539 * The head is context local, there can be no concurrency.
540 */
541 *head->lastp = node;
542 head->lastp = &node->next;
543 }
544
545 void wake_up_q(struct wake_q_head *head)
546 {
547 struct wake_q_node *node = head->first;
548
549 while (node != WAKE_Q_TAIL) {
550 struct task_struct *task;
551
552 task = container_of(node, struct task_struct, wake_q);
553 BUG_ON(!task);
554 /* task can safely be re-inserted now */
555 node = node->next;
556 task->wake_q.next = NULL;
557
558 /*
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
561 */
562 wake_up_process(task);
563 put_task_struct(task);
564 }
565 }
566
567 /*
568 * resched_curr - mark rq's current task 'to be rescheduled now'.
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
574 void resched_curr(struct rq *rq)
575 {
576 struct task_struct *curr = rq->curr;
577 int cpu;
578
579 lockdep_assert_held(&rq->lock);
580
581 if (test_tsk_need_resched(curr))
582 return;
583
584 cpu = cpu_of(rq);
585
586 if (cpu == smp_processor_id()) {
587 set_tsk_need_resched(curr);
588 set_preempt_need_resched();
589 return;
590 }
591
592 if (set_nr_and_not_polling(curr))
593 smp_send_reschedule(cpu);
594 else
595 trace_sched_wake_idle_without_ipi(cpu);
596 }
597
598 void resched_cpu(int cpu)
599 {
600 struct rq *rq = cpu_rq(cpu);
601 unsigned long flags;
602
603 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
604 return;
605 resched_curr(rq);
606 raw_spin_unlock_irqrestore(&rq->lock, flags);
607 }
608
609 #ifdef CONFIG_SMP
610 #ifdef CONFIG_NO_HZ_COMMON
611 /*
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
614 *
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618 */
619 int get_nohz_timer_target(void)
620 {
621 int i, cpu = smp_processor_id();
622 struct sched_domain *sd;
623
624 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
625 return cpu;
626
627 rcu_read_lock();
628 for_each_domain(cpu, sd) {
629 for_each_cpu(i, sched_domain_span(sd)) {
630 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
631 cpu = i;
632 goto unlock;
633 }
634 }
635 }
636
637 if (!is_housekeeping_cpu(cpu))
638 cpu = housekeeping_any_cpu();
639 unlock:
640 rcu_read_unlock();
641 return cpu;
642 }
643 /*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
653 static void wake_up_idle_cpu(int cpu)
654 {
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
660 if (set_nr_and_not_polling(rq->idle))
661 smp_send_reschedule(cpu);
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
664 }
665
666 static bool wake_up_full_nohz_cpu(int cpu)
667 {
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
674 if (tick_nohz_full_cpu(cpu)) {
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
677 tick_nohz_full_kick_cpu(cpu);
678 return true;
679 }
680
681 return false;
682 }
683
684 void wake_up_nohz_cpu(int cpu)
685 {
686 if (!wake_up_full_nohz_cpu(cpu))
687 wake_up_idle_cpu(cpu);
688 }
689
690 static inline bool got_nohz_idle_kick(void)
691 {
692 int cpu = smp_processor_id();
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
706 }
707
708 #else /* CONFIG_NO_HZ_COMMON */
709
710 static inline bool got_nohz_idle_kick(void)
711 {
712 return false;
713 }
714
715 #endif /* CONFIG_NO_HZ_COMMON */
716
717 #ifdef CONFIG_NO_HZ_FULL
718 bool sched_can_stop_tick(void)
719 {
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
734 return rt_se->run_list.prev == rt_se->run_list.next;
735 }
736
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
742 if (this_rq()->nr_running > 1)
743 return false;
744
745 return true;
746 }
747 #endif /* CONFIG_NO_HZ_FULL */
748
749 void sched_avg_update(struct rq *rq)
750 {
751 s64 period = sched_avg_period();
752
753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
763 }
764
765 #endif /* CONFIG_SMP */
766
767 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769 /*
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
774 */
775 int walk_tg_tree_from(struct task_group *from,
776 tg_visitor down, tg_visitor up, void *data)
777 {
778 struct task_group *parent, *child;
779 int ret;
780
781 parent = from;
782
783 down:
784 ret = (*down)(parent, data);
785 if (ret)
786 goto out;
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791 up:
792 continue;
793 }
794 ret = (*up)(parent, data);
795 if (ret || parent == from)
796 goto out;
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
802 out:
803 return ret;
804 }
805
806 int tg_nop(struct task_group *tg, void *data)
807 {
808 return 0;
809 }
810 #endif
811
812 static void set_load_weight(struct task_struct *p)
813 {
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
820 if (p->policy == SCHED_IDLE) {
821 load->weight = scale_load(WEIGHT_IDLEPRIO);
822 load->inv_weight = WMULT_IDLEPRIO;
823 return;
824 }
825
826 load->weight = scale_load(prio_to_weight[prio]);
827 load->inv_weight = prio_to_wmult[prio];
828 }
829
830 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831 {
832 update_rq_clock(rq);
833 sched_info_queued(rq, p);
834 p->sched_class->enqueue_task(rq, p, flags);
835 }
836
837 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
838 {
839 update_rq_clock(rq);
840 sched_info_dequeued(rq, p);
841 p->sched_class->dequeue_task(rq, p, flags);
842 }
843
844 void activate_task(struct rq *rq, struct task_struct *p, int flags)
845 {
846 if (task_contributes_to_load(p))
847 rq->nr_uninterruptible--;
848
849 enqueue_task(rq, p, flags);
850 }
851
852 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
853 {
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible++;
856
857 dequeue_task(rq, p, flags);
858 }
859
860 static void update_rq_clock_task(struct rq *rq, s64 delta)
861 {
862 /*
863 * In theory, the compile should just see 0 here, and optimize out the call
864 * to sched_rt_avg_update. But I don't trust it...
865 */
866 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
867 s64 steal = 0, irq_delta = 0;
868 #endif
869 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
870 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
871
872 /*
873 * Since irq_time is only updated on {soft,}irq_exit, we might run into
874 * this case when a previous update_rq_clock() happened inside a
875 * {soft,}irq region.
876 *
877 * When this happens, we stop ->clock_task and only update the
878 * prev_irq_time stamp to account for the part that fit, so that a next
879 * update will consume the rest. This ensures ->clock_task is
880 * monotonic.
881 *
882 * It does however cause some slight miss-attribution of {soft,}irq
883 * time, a more accurate solution would be to update the irq_time using
884 * the current rq->clock timestamp, except that would require using
885 * atomic ops.
886 */
887 if (irq_delta > delta)
888 irq_delta = delta;
889
890 rq->prev_irq_time += irq_delta;
891 delta -= irq_delta;
892 #endif
893 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
894 if (static_key_false((&paravirt_steal_rq_enabled))) {
895 steal = paravirt_steal_clock(cpu_of(rq));
896 steal -= rq->prev_steal_time_rq;
897
898 if (unlikely(steal > delta))
899 steal = delta;
900
901 rq->prev_steal_time_rq += steal;
902 delta -= steal;
903 }
904 #endif
905
906 rq->clock_task += delta;
907
908 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
909 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
910 sched_rt_avg_update(rq, irq_delta + steal);
911 #endif
912 }
913
914 void sched_set_stop_task(int cpu, struct task_struct *stop)
915 {
916 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
917 struct task_struct *old_stop = cpu_rq(cpu)->stop;
918
919 if (stop) {
920 /*
921 * Make it appear like a SCHED_FIFO task, its something
922 * userspace knows about and won't get confused about.
923 *
924 * Also, it will make PI more or less work without too
925 * much confusion -- but then, stop work should not
926 * rely on PI working anyway.
927 */
928 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
929
930 stop->sched_class = &stop_sched_class;
931 }
932
933 cpu_rq(cpu)->stop = stop;
934
935 if (old_stop) {
936 /*
937 * Reset it back to a normal scheduling class so that
938 * it can die in pieces.
939 */
940 old_stop->sched_class = &rt_sched_class;
941 }
942 }
943
944 /*
945 * __normal_prio - return the priority that is based on the static prio
946 */
947 static inline int __normal_prio(struct task_struct *p)
948 {
949 return p->static_prio;
950 }
951
952 /*
953 * Calculate the expected normal priority: i.e. priority
954 * without taking RT-inheritance into account. Might be
955 * boosted by interactivity modifiers. Changes upon fork,
956 * setprio syscalls, and whenever the interactivity
957 * estimator recalculates.
958 */
959 static inline int normal_prio(struct task_struct *p)
960 {
961 int prio;
962
963 if (task_has_dl_policy(p))
964 prio = MAX_DL_PRIO-1;
965 else if (task_has_rt_policy(p))
966 prio = MAX_RT_PRIO-1 - p->rt_priority;
967 else
968 prio = __normal_prio(p);
969 return prio;
970 }
971
972 /*
973 * Calculate the current priority, i.e. the priority
974 * taken into account by the scheduler. This value might
975 * be boosted by RT tasks, or might be boosted by
976 * interactivity modifiers. Will be RT if the task got
977 * RT-boosted. If not then it returns p->normal_prio.
978 */
979 static int effective_prio(struct task_struct *p)
980 {
981 p->normal_prio = normal_prio(p);
982 /*
983 * If we are RT tasks or we were boosted to RT priority,
984 * keep the priority unchanged. Otherwise, update priority
985 * to the normal priority:
986 */
987 if (!rt_prio(p->prio))
988 return p->normal_prio;
989 return p->prio;
990 }
991
992 /**
993 * task_curr - is this task currently executing on a CPU?
994 * @p: the task in question.
995 *
996 * Return: 1 if the task is currently executing. 0 otherwise.
997 */
998 inline int task_curr(const struct task_struct *p)
999 {
1000 return cpu_curr(task_cpu(p)) == p;
1001 }
1002
1003 /*
1004 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1005 * use the balance_callback list if you want balancing.
1006 *
1007 * this means any call to check_class_changed() must be followed by a call to
1008 * balance_callback().
1009 */
1010 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1011 const struct sched_class *prev_class,
1012 int oldprio)
1013 {
1014 if (prev_class != p->sched_class) {
1015 if (prev_class->switched_from)
1016 prev_class->switched_from(rq, p);
1017
1018 p->sched_class->switched_to(rq, p);
1019 } else if (oldprio != p->prio || dl_task(p))
1020 p->sched_class->prio_changed(rq, p, oldprio);
1021 }
1022
1023 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1024 {
1025 const struct sched_class *class;
1026
1027 if (p->sched_class == rq->curr->sched_class) {
1028 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1029 } else {
1030 for_each_class(class) {
1031 if (class == rq->curr->sched_class)
1032 break;
1033 if (class == p->sched_class) {
1034 resched_curr(rq);
1035 break;
1036 }
1037 }
1038 }
1039
1040 /*
1041 * A queue event has occurred, and we're going to schedule. In
1042 * this case, we can save a useless back to back clock update.
1043 */
1044 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1045 rq_clock_skip_update(rq, true);
1046 }
1047
1048 #ifdef CONFIG_SMP
1049 /*
1050 * This is how migration works:
1051 *
1052 * 1) we invoke migration_cpu_stop() on the target CPU using
1053 * stop_one_cpu().
1054 * 2) stopper starts to run (implicitly forcing the migrated thread
1055 * off the CPU)
1056 * 3) it checks whether the migrated task is still in the wrong runqueue.
1057 * 4) if it's in the wrong runqueue then the migration thread removes
1058 * it and puts it into the right queue.
1059 * 5) stopper completes and stop_one_cpu() returns and the migration
1060 * is done.
1061 */
1062
1063 /*
1064 * move_queued_task - move a queued task to new rq.
1065 *
1066 * Returns (locked) new rq. Old rq's lock is released.
1067 */
1068 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1069 {
1070 lockdep_assert_held(&rq->lock);
1071
1072 dequeue_task(rq, p, 0);
1073 p->on_rq = TASK_ON_RQ_MIGRATING;
1074 set_task_cpu(p, new_cpu);
1075 raw_spin_unlock(&rq->lock);
1076
1077 rq = cpu_rq(new_cpu);
1078
1079 raw_spin_lock(&rq->lock);
1080 BUG_ON(task_cpu(p) != new_cpu);
1081 p->on_rq = TASK_ON_RQ_QUEUED;
1082 enqueue_task(rq, p, 0);
1083 check_preempt_curr(rq, p, 0);
1084
1085 return rq;
1086 }
1087
1088 struct migration_arg {
1089 struct task_struct *task;
1090 int dest_cpu;
1091 };
1092
1093 /*
1094 * Move (not current) task off this cpu, onto dest cpu. We're doing
1095 * this because either it can't run here any more (set_cpus_allowed()
1096 * away from this CPU, or CPU going down), or because we're
1097 * attempting to rebalance this task on exec (sched_exec).
1098 *
1099 * So we race with normal scheduler movements, but that's OK, as long
1100 * as the task is no longer on this CPU.
1101 */
1102 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1103 {
1104 if (unlikely(!cpu_active(dest_cpu)))
1105 return rq;
1106
1107 /* Affinity changed (again). */
1108 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1109 return rq;
1110
1111 rq = move_queued_task(rq, p, dest_cpu);
1112
1113 return rq;
1114 }
1115
1116 /*
1117 * migration_cpu_stop - this will be executed by a highprio stopper thread
1118 * and performs thread migration by bumping thread off CPU then
1119 * 'pushing' onto another runqueue.
1120 */
1121 static int migration_cpu_stop(void *data)
1122 {
1123 struct migration_arg *arg = data;
1124 struct task_struct *p = arg->task;
1125 struct rq *rq = this_rq();
1126
1127 /*
1128 * The original target cpu might have gone down and we might
1129 * be on another cpu but it doesn't matter.
1130 */
1131 local_irq_disable();
1132 /*
1133 * We need to explicitly wake pending tasks before running
1134 * __migrate_task() such that we will not miss enforcing cpus_allowed
1135 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1136 */
1137 sched_ttwu_pending();
1138
1139 raw_spin_lock(&p->pi_lock);
1140 raw_spin_lock(&rq->lock);
1141 /*
1142 * If task_rq(p) != rq, it cannot be migrated here, because we're
1143 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1144 * we're holding p->pi_lock.
1145 */
1146 if (task_rq(p) == rq && task_on_rq_queued(p))
1147 rq = __migrate_task(rq, p, arg->dest_cpu);
1148 raw_spin_unlock(&rq->lock);
1149 raw_spin_unlock(&p->pi_lock);
1150
1151 local_irq_enable();
1152 return 0;
1153 }
1154
1155 /*
1156 * sched_class::set_cpus_allowed must do the below, but is not required to
1157 * actually call this function.
1158 */
1159 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1160 {
1161 cpumask_copy(&p->cpus_allowed, new_mask);
1162 p->nr_cpus_allowed = cpumask_weight(new_mask);
1163 }
1164
1165 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1166 {
1167 struct rq *rq = task_rq(p);
1168 bool queued, running;
1169
1170 lockdep_assert_held(&p->pi_lock);
1171
1172 queued = task_on_rq_queued(p);
1173 running = task_current(rq, p);
1174
1175 if (queued) {
1176 /*
1177 * Because __kthread_bind() calls this on blocked tasks without
1178 * holding rq->lock.
1179 */
1180 lockdep_assert_held(&rq->lock);
1181 dequeue_task(rq, p, 0);
1182 }
1183 if (running)
1184 put_prev_task(rq, p);
1185
1186 p->sched_class->set_cpus_allowed(p, new_mask);
1187
1188 if (running)
1189 p->sched_class->set_curr_task(rq);
1190 if (queued)
1191 enqueue_task(rq, p, 0);
1192 }
1193
1194 /*
1195 * Change a given task's CPU affinity. Migrate the thread to a
1196 * proper CPU and schedule it away if the CPU it's executing on
1197 * is removed from the allowed bitmask.
1198 *
1199 * NOTE: the caller must have a valid reference to the task, the
1200 * task must not exit() & deallocate itself prematurely. The
1201 * call is not atomic; no spinlocks may be held.
1202 */
1203 static int __set_cpus_allowed_ptr(struct task_struct *p,
1204 const struct cpumask *new_mask, bool check)
1205 {
1206 unsigned long flags;
1207 struct rq *rq;
1208 unsigned int dest_cpu;
1209 int ret = 0;
1210
1211 rq = task_rq_lock(p, &flags);
1212
1213 /*
1214 * Must re-check here, to close a race against __kthread_bind(),
1215 * sched_setaffinity() is not guaranteed to observe the flag.
1216 */
1217 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1218 ret = -EINVAL;
1219 goto out;
1220 }
1221
1222 if (cpumask_equal(&p->cpus_allowed, new_mask))
1223 goto out;
1224
1225 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1226 ret = -EINVAL;
1227 goto out;
1228 }
1229
1230 do_set_cpus_allowed(p, new_mask);
1231
1232 /* Can the task run on the task's current CPU? If so, we're done */
1233 if (cpumask_test_cpu(task_cpu(p), new_mask))
1234 goto out;
1235
1236 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1237 if (task_running(rq, p) || p->state == TASK_WAKING) {
1238 struct migration_arg arg = { p, dest_cpu };
1239 /* Need help from migration thread: drop lock and wait. */
1240 task_rq_unlock(rq, p, &flags);
1241 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1242 tlb_migrate_finish(p->mm);
1243 return 0;
1244 } else if (task_on_rq_queued(p)) {
1245 /*
1246 * OK, since we're going to drop the lock immediately
1247 * afterwards anyway.
1248 */
1249 lockdep_unpin_lock(&rq->lock);
1250 rq = move_queued_task(rq, p, dest_cpu);
1251 lockdep_pin_lock(&rq->lock);
1252 }
1253 out:
1254 task_rq_unlock(rq, p, &flags);
1255
1256 return ret;
1257 }
1258
1259 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1260 {
1261 return __set_cpus_allowed_ptr(p, new_mask, false);
1262 }
1263 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1264
1265 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1266 {
1267 #ifdef CONFIG_SCHED_DEBUG
1268 /*
1269 * We should never call set_task_cpu() on a blocked task,
1270 * ttwu() will sort out the placement.
1271 */
1272 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1273 !p->on_rq);
1274
1275 #ifdef CONFIG_LOCKDEP
1276 /*
1277 * The caller should hold either p->pi_lock or rq->lock, when changing
1278 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1279 *
1280 * sched_move_task() holds both and thus holding either pins the cgroup,
1281 * see task_group().
1282 *
1283 * Furthermore, all task_rq users should acquire both locks, see
1284 * task_rq_lock().
1285 */
1286 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1287 lockdep_is_held(&task_rq(p)->lock)));
1288 #endif
1289 #endif
1290
1291 trace_sched_migrate_task(p, new_cpu);
1292
1293 if (task_cpu(p) != new_cpu) {
1294 if (p->sched_class->migrate_task_rq)
1295 p->sched_class->migrate_task_rq(p, new_cpu);
1296 p->se.nr_migrations++;
1297 perf_event_task_migrate(p);
1298 }
1299
1300 __set_task_cpu(p, new_cpu);
1301 }
1302
1303 static void __migrate_swap_task(struct task_struct *p, int cpu)
1304 {
1305 if (task_on_rq_queued(p)) {
1306 struct rq *src_rq, *dst_rq;
1307
1308 src_rq = task_rq(p);
1309 dst_rq = cpu_rq(cpu);
1310
1311 deactivate_task(src_rq, p, 0);
1312 set_task_cpu(p, cpu);
1313 activate_task(dst_rq, p, 0);
1314 check_preempt_curr(dst_rq, p, 0);
1315 } else {
1316 /*
1317 * Task isn't running anymore; make it appear like we migrated
1318 * it before it went to sleep. This means on wakeup we make the
1319 * previous cpu our targer instead of where it really is.
1320 */
1321 p->wake_cpu = cpu;
1322 }
1323 }
1324
1325 struct migration_swap_arg {
1326 struct task_struct *src_task, *dst_task;
1327 int src_cpu, dst_cpu;
1328 };
1329
1330 static int migrate_swap_stop(void *data)
1331 {
1332 struct migration_swap_arg *arg = data;
1333 struct rq *src_rq, *dst_rq;
1334 int ret = -EAGAIN;
1335
1336 src_rq = cpu_rq(arg->src_cpu);
1337 dst_rq = cpu_rq(arg->dst_cpu);
1338
1339 double_raw_lock(&arg->src_task->pi_lock,
1340 &arg->dst_task->pi_lock);
1341 double_rq_lock(src_rq, dst_rq);
1342 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1343 goto unlock;
1344
1345 if (task_cpu(arg->src_task) != arg->src_cpu)
1346 goto unlock;
1347
1348 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1349 goto unlock;
1350
1351 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1352 goto unlock;
1353
1354 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1355 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1356
1357 ret = 0;
1358
1359 unlock:
1360 double_rq_unlock(src_rq, dst_rq);
1361 raw_spin_unlock(&arg->dst_task->pi_lock);
1362 raw_spin_unlock(&arg->src_task->pi_lock);
1363
1364 return ret;
1365 }
1366
1367 /*
1368 * Cross migrate two tasks
1369 */
1370 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1371 {
1372 struct migration_swap_arg arg;
1373 int ret = -EINVAL;
1374
1375 arg = (struct migration_swap_arg){
1376 .src_task = cur,
1377 .src_cpu = task_cpu(cur),
1378 .dst_task = p,
1379 .dst_cpu = task_cpu(p),
1380 };
1381
1382 if (arg.src_cpu == arg.dst_cpu)
1383 goto out;
1384
1385 /*
1386 * These three tests are all lockless; this is OK since all of them
1387 * will be re-checked with proper locks held further down the line.
1388 */
1389 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1390 goto out;
1391
1392 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1393 goto out;
1394
1395 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1396 goto out;
1397
1398 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1399 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1400
1401 out:
1402 return ret;
1403 }
1404
1405 /*
1406 * wait_task_inactive - wait for a thread to unschedule.
1407 *
1408 * If @match_state is nonzero, it's the @p->state value just checked and
1409 * not expected to change. If it changes, i.e. @p might have woken up,
1410 * then return zero. When we succeed in waiting for @p to be off its CPU,
1411 * we return a positive number (its total switch count). If a second call
1412 * a short while later returns the same number, the caller can be sure that
1413 * @p has remained unscheduled the whole time.
1414 *
1415 * The caller must ensure that the task *will* unschedule sometime soon,
1416 * else this function might spin for a *long* time. This function can't
1417 * be called with interrupts off, or it may introduce deadlock with
1418 * smp_call_function() if an IPI is sent by the same process we are
1419 * waiting to become inactive.
1420 */
1421 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1422 {
1423 unsigned long flags;
1424 int running, queued;
1425 unsigned long ncsw;
1426 struct rq *rq;
1427
1428 for (;;) {
1429 /*
1430 * We do the initial early heuristics without holding
1431 * any task-queue locks at all. We'll only try to get
1432 * the runqueue lock when things look like they will
1433 * work out!
1434 */
1435 rq = task_rq(p);
1436
1437 /*
1438 * If the task is actively running on another CPU
1439 * still, just relax and busy-wait without holding
1440 * any locks.
1441 *
1442 * NOTE! Since we don't hold any locks, it's not
1443 * even sure that "rq" stays as the right runqueue!
1444 * But we don't care, since "task_running()" will
1445 * return false if the runqueue has changed and p
1446 * is actually now running somewhere else!
1447 */
1448 while (task_running(rq, p)) {
1449 if (match_state && unlikely(p->state != match_state))
1450 return 0;
1451 cpu_relax();
1452 }
1453
1454 /*
1455 * Ok, time to look more closely! We need the rq
1456 * lock now, to be *sure*. If we're wrong, we'll
1457 * just go back and repeat.
1458 */
1459 rq = task_rq_lock(p, &flags);
1460 trace_sched_wait_task(p);
1461 running = task_running(rq, p);
1462 queued = task_on_rq_queued(p);
1463 ncsw = 0;
1464 if (!match_state || p->state == match_state)
1465 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1466 task_rq_unlock(rq, p, &flags);
1467
1468 /*
1469 * If it changed from the expected state, bail out now.
1470 */
1471 if (unlikely(!ncsw))
1472 break;
1473
1474 /*
1475 * Was it really running after all now that we
1476 * checked with the proper locks actually held?
1477 *
1478 * Oops. Go back and try again..
1479 */
1480 if (unlikely(running)) {
1481 cpu_relax();
1482 continue;
1483 }
1484
1485 /*
1486 * It's not enough that it's not actively running,
1487 * it must be off the runqueue _entirely_, and not
1488 * preempted!
1489 *
1490 * So if it was still runnable (but just not actively
1491 * running right now), it's preempted, and we should
1492 * yield - it could be a while.
1493 */
1494 if (unlikely(queued)) {
1495 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1496
1497 set_current_state(TASK_UNINTERRUPTIBLE);
1498 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1499 continue;
1500 }
1501
1502 /*
1503 * Ahh, all good. It wasn't running, and it wasn't
1504 * runnable, which means that it will never become
1505 * running in the future either. We're all done!
1506 */
1507 break;
1508 }
1509
1510 return ncsw;
1511 }
1512
1513 /***
1514 * kick_process - kick a running thread to enter/exit the kernel
1515 * @p: the to-be-kicked thread
1516 *
1517 * Cause a process which is running on another CPU to enter
1518 * kernel-mode, without any delay. (to get signals handled.)
1519 *
1520 * NOTE: this function doesn't have to take the runqueue lock,
1521 * because all it wants to ensure is that the remote task enters
1522 * the kernel. If the IPI races and the task has been migrated
1523 * to another CPU then no harm is done and the purpose has been
1524 * achieved as well.
1525 */
1526 void kick_process(struct task_struct *p)
1527 {
1528 int cpu;
1529
1530 preempt_disable();
1531 cpu = task_cpu(p);
1532 if ((cpu != smp_processor_id()) && task_curr(p))
1533 smp_send_reschedule(cpu);
1534 preempt_enable();
1535 }
1536 EXPORT_SYMBOL_GPL(kick_process);
1537
1538 /*
1539 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1540 */
1541 static int select_fallback_rq(int cpu, struct task_struct *p)
1542 {
1543 int nid = cpu_to_node(cpu);
1544 const struct cpumask *nodemask = NULL;
1545 enum { cpuset, possible, fail } state = cpuset;
1546 int dest_cpu;
1547
1548 /*
1549 * If the node that the cpu is on has been offlined, cpu_to_node()
1550 * will return -1. There is no cpu on the node, and we should
1551 * select the cpu on the other node.
1552 */
1553 if (nid != -1) {
1554 nodemask = cpumask_of_node(nid);
1555
1556 /* Look for allowed, online CPU in same node. */
1557 for_each_cpu(dest_cpu, nodemask) {
1558 if (!cpu_online(dest_cpu))
1559 continue;
1560 if (!cpu_active(dest_cpu))
1561 continue;
1562 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1563 return dest_cpu;
1564 }
1565 }
1566
1567 for (;;) {
1568 /* Any allowed, online CPU? */
1569 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1570 if (!cpu_online(dest_cpu))
1571 continue;
1572 if (!cpu_active(dest_cpu))
1573 continue;
1574 goto out;
1575 }
1576
1577 switch (state) {
1578 case cpuset:
1579 /* No more Mr. Nice Guy. */
1580 cpuset_cpus_allowed_fallback(p);
1581 state = possible;
1582 break;
1583
1584 case possible:
1585 do_set_cpus_allowed(p, cpu_possible_mask);
1586 state = fail;
1587 break;
1588
1589 case fail:
1590 BUG();
1591 break;
1592 }
1593 }
1594
1595 out:
1596 if (state != cpuset) {
1597 /*
1598 * Don't tell them about moving exiting tasks or
1599 * kernel threads (both mm NULL), since they never
1600 * leave kernel.
1601 */
1602 if (p->mm && printk_ratelimit()) {
1603 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1604 task_pid_nr(p), p->comm, cpu);
1605 }
1606 }
1607
1608 return dest_cpu;
1609 }
1610
1611 /*
1612 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1613 */
1614 static inline
1615 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1616 {
1617 lockdep_assert_held(&p->pi_lock);
1618
1619 if (p->nr_cpus_allowed > 1)
1620 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1621
1622 /*
1623 * In order not to call set_task_cpu() on a blocking task we need
1624 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1625 * cpu.
1626 *
1627 * Since this is common to all placement strategies, this lives here.
1628 *
1629 * [ this allows ->select_task() to simply return task_cpu(p) and
1630 * not worry about this generic constraint ]
1631 */
1632 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1633 !cpu_online(cpu)))
1634 cpu = select_fallback_rq(task_cpu(p), p);
1635
1636 return cpu;
1637 }
1638
1639 static void update_avg(u64 *avg, u64 sample)
1640 {
1641 s64 diff = sample - *avg;
1642 *avg += diff >> 3;
1643 }
1644
1645 #else
1646
1647 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1648 const struct cpumask *new_mask, bool check)
1649 {
1650 return set_cpus_allowed_ptr(p, new_mask);
1651 }
1652
1653 #endif /* CONFIG_SMP */
1654
1655 static void
1656 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1657 {
1658 #ifdef CONFIG_SCHEDSTATS
1659 struct rq *rq = this_rq();
1660
1661 #ifdef CONFIG_SMP
1662 int this_cpu = smp_processor_id();
1663
1664 if (cpu == this_cpu) {
1665 schedstat_inc(rq, ttwu_local);
1666 schedstat_inc(p, se.statistics.nr_wakeups_local);
1667 } else {
1668 struct sched_domain *sd;
1669
1670 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1671 rcu_read_lock();
1672 for_each_domain(this_cpu, sd) {
1673 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1674 schedstat_inc(sd, ttwu_wake_remote);
1675 break;
1676 }
1677 }
1678 rcu_read_unlock();
1679 }
1680
1681 if (wake_flags & WF_MIGRATED)
1682 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1683
1684 #endif /* CONFIG_SMP */
1685
1686 schedstat_inc(rq, ttwu_count);
1687 schedstat_inc(p, se.statistics.nr_wakeups);
1688
1689 if (wake_flags & WF_SYNC)
1690 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1691
1692 #endif /* CONFIG_SCHEDSTATS */
1693 }
1694
1695 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1696 {
1697 activate_task(rq, p, en_flags);
1698 p->on_rq = TASK_ON_RQ_QUEUED;
1699
1700 /* if a worker is waking up, notify workqueue */
1701 if (p->flags & PF_WQ_WORKER)
1702 wq_worker_waking_up(p, cpu_of(rq));
1703 }
1704
1705 /*
1706 * Mark the task runnable and perform wakeup-preemption.
1707 */
1708 static void
1709 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1710 {
1711 check_preempt_curr(rq, p, wake_flags);
1712 p->state = TASK_RUNNING;
1713 trace_sched_wakeup(p);
1714
1715 #ifdef CONFIG_SMP
1716 if (p->sched_class->task_woken) {
1717 /*
1718 * Our task @p is fully woken up and running; so its safe to
1719 * drop the rq->lock, hereafter rq is only used for statistics.
1720 */
1721 lockdep_unpin_lock(&rq->lock);
1722 p->sched_class->task_woken(rq, p);
1723 lockdep_pin_lock(&rq->lock);
1724 }
1725
1726 if (rq->idle_stamp) {
1727 u64 delta = rq_clock(rq) - rq->idle_stamp;
1728 u64 max = 2*rq->max_idle_balance_cost;
1729
1730 update_avg(&rq->avg_idle, delta);
1731
1732 if (rq->avg_idle > max)
1733 rq->avg_idle = max;
1734
1735 rq->idle_stamp = 0;
1736 }
1737 #endif
1738 }
1739
1740 static void
1741 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1742 {
1743 lockdep_assert_held(&rq->lock);
1744
1745 #ifdef CONFIG_SMP
1746 if (p->sched_contributes_to_load)
1747 rq->nr_uninterruptible--;
1748 #endif
1749
1750 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1751 ttwu_do_wakeup(rq, p, wake_flags);
1752 }
1753
1754 /*
1755 * Called in case the task @p isn't fully descheduled from its runqueue,
1756 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1757 * since all we need to do is flip p->state to TASK_RUNNING, since
1758 * the task is still ->on_rq.
1759 */
1760 static int ttwu_remote(struct task_struct *p, int wake_flags)
1761 {
1762 struct rq *rq;
1763 int ret = 0;
1764
1765 rq = __task_rq_lock(p);
1766 if (task_on_rq_queued(p)) {
1767 /* check_preempt_curr() may use rq clock */
1768 update_rq_clock(rq);
1769 ttwu_do_wakeup(rq, p, wake_flags);
1770 ret = 1;
1771 }
1772 __task_rq_unlock(rq);
1773
1774 return ret;
1775 }
1776
1777 #ifdef CONFIG_SMP
1778 void sched_ttwu_pending(void)
1779 {
1780 struct rq *rq = this_rq();
1781 struct llist_node *llist = llist_del_all(&rq->wake_list);
1782 struct task_struct *p;
1783 unsigned long flags;
1784
1785 if (!llist)
1786 return;
1787
1788 raw_spin_lock_irqsave(&rq->lock, flags);
1789 lockdep_pin_lock(&rq->lock);
1790
1791 while (llist) {
1792 p = llist_entry(llist, struct task_struct, wake_entry);
1793 llist = llist_next(llist);
1794 ttwu_do_activate(rq, p, 0);
1795 }
1796
1797 lockdep_unpin_lock(&rq->lock);
1798 raw_spin_unlock_irqrestore(&rq->lock, flags);
1799 }
1800
1801 void scheduler_ipi(void)
1802 {
1803 /*
1804 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1805 * TIF_NEED_RESCHED remotely (for the first time) will also send
1806 * this IPI.
1807 */
1808 preempt_fold_need_resched();
1809
1810 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1811 return;
1812
1813 /*
1814 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1815 * traditionally all their work was done from the interrupt return
1816 * path. Now that we actually do some work, we need to make sure
1817 * we do call them.
1818 *
1819 * Some archs already do call them, luckily irq_enter/exit nest
1820 * properly.
1821 *
1822 * Arguably we should visit all archs and update all handlers,
1823 * however a fair share of IPIs are still resched only so this would
1824 * somewhat pessimize the simple resched case.
1825 */
1826 irq_enter();
1827 sched_ttwu_pending();
1828
1829 /*
1830 * Check if someone kicked us for doing the nohz idle load balance.
1831 */
1832 if (unlikely(got_nohz_idle_kick())) {
1833 this_rq()->idle_balance = 1;
1834 raise_softirq_irqoff(SCHED_SOFTIRQ);
1835 }
1836 irq_exit();
1837 }
1838
1839 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1840 {
1841 struct rq *rq = cpu_rq(cpu);
1842
1843 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1844 if (!set_nr_if_polling(rq->idle))
1845 smp_send_reschedule(cpu);
1846 else
1847 trace_sched_wake_idle_without_ipi(cpu);
1848 }
1849 }
1850
1851 void wake_up_if_idle(int cpu)
1852 {
1853 struct rq *rq = cpu_rq(cpu);
1854 unsigned long flags;
1855
1856 rcu_read_lock();
1857
1858 if (!is_idle_task(rcu_dereference(rq->curr)))
1859 goto out;
1860
1861 if (set_nr_if_polling(rq->idle)) {
1862 trace_sched_wake_idle_without_ipi(cpu);
1863 } else {
1864 raw_spin_lock_irqsave(&rq->lock, flags);
1865 if (is_idle_task(rq->curr))
1866 smp_send_reschedule(cpu);
1867 /* Else cpu is not in idle, do nothing here */
1868 raw_spin_unlock_irqrestore(&rq->lock, flags);
1869 }
1870
1871 out:
1872 rcu_read_unlock();
1873 }
1874
1875 bool cpus_share_cache(int this_cpu, int that_cpu)
1876 {
1877 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1878 }
1879 #endif /* CONFIG_SMP */
1880
1881 static void ttwu_queue(struct task_struct *p, int cpu)
1882 {
1883 struct rq *rq = cpu_rq(cpu);
1884
1885 #if defined(CONFIG_SMP)
1886 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1887 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1888 ttwu_queue_remote(p, cpu);
1889 return;
1890 }
1891 #endif
1892
1893 raw_spin_lock(&rq->lock);
1894 lockdep_pin_lock(&rq->lock);
1895 ttwu_do_activate(rq, p, 0);
1896 lockdep_unpin_lock(&rq->lock);
1897 raw_spin_unlock(&rq->lock);
1898 }
1899
1900 /**
1901 * try_to_wake_up - wake up a thread
1902 * @p: the thread to be awakened
1903 * @state: the mask of task states that can be woken
1904 * @wake_flags: wake modifier flags (WF_*)
1905 *
1906 * Put it on the run-queue if it's not already there. The "current"
1907 * thread is always on the run-queue (except when the actual
1908 * re-schedule is in progress), and as such you're allowed to do
1909 * the simpler "current->state = TASK_RUNNING" to mark yourself
1910 * runnable without the overhead of this.
1911 *
1912 * Return: %true if @p was woken up, %false if it was already running.
1913 * or @state didn't match @p's state.
1914 */
1915 static int
1916 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1917 {
1918 unsigned long flags;
1919 int cpu, success = 0;
1920
1921 /*
1922 * If we are going to wake up a thread waiting for CONDITION we
1923 * need to ensure that CONDITION=1 done by the caller can not be
1924 * reordered with p->state check below. This pairs with mb() in
1925 * set_current_state() the waiting thread does.
1926 */
1927 smp_mb__before_spinlock();
1928 raw_spin_lock_irqsave(&p->pi_lock, flags);
1929 if (!(p->state & state))
1930 goto out;
1931
1932 trace_sched_waking(p);
1933
1934 success = 1; /* we're going to change ->state */
1935 cpu = task_cpu(p);
1936
1937 if (p->on_rq && ttwu_remote(p, wake_flags))
1938 goto stat;
1939
1940 #ifdef CONFIG_SMP
1941 /*
1942 * If the owning (remote) cpu is still in the middle of schedule() with
1943 * this task as prev, wait until its done referencing the task.
1944 */
1945 while (p->on_cpu)
1946 cpu_relax();
1947 /*
1948 * Pairs with the smp_wmb() in finish_lock_switch().
1949 */
1950 smp_rmb();
1951
1952 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1953 p->state = TASK_WAKING;
1954
1955 if (p->sched_class->task_waking)
1956 p->sched_class->task_waking(p);
1957
1958 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1959 if (task_cpu(p) != cpu) {
1960 wake_flags |= WF_MIGRATED;
1961 set_task_cpu(p, cpu);
1962 }
1963 #endif /* CONFIG_SMP */
1964
1965 ttwu_queue(p, cpu);
1966 stat:
1967 ttwu_stat(p, cpu, wake_flags);
1968 out:
1969 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1970
1971 return success;
1972 }
1973
1974 /**
1975 * try_to_wake_up_local - try to wake up a local task with rq lock held
1976 * @p: the thread to be awakened
1977 *
1978 * Put @p on the run-queue if it's not already there. The caller must
1979 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1980 * the current task.
1981 */
1982 static void try_to_wake_up_local(struct task_struct *p)
1983 {
1984 struct rq *rq = task_rq(p);
1985
1986 if (WARN_ON_ONCE(rq != this_rq()) ||
1987 WARN_ON_ONCE(p == current))
1988 return;
1989
1990 lockdep_assert_held(&rq->lock);
1991
1992 if (!raw_spin_trylock(&p->pi_lock)) {
1993 /*
1994 * This is OK, because current is on_cpu, which avoids it being
1995 * picked for load-balance and preemption/IRQs are still
1996 * disabled avoiding further scheduler activity on it and we've
1997 * not yet picked a replacement task.
1998 */
1999 lockdep_unpin_lock(&rq->lock);
2000 raw_spin_unlock(&rq->lock);
2001 raw_spin_lock(&p->pi_lock);
2002 raw_spin_lock(&rq->lock);
2003 lockdep_pin_lock(&rq->lock);
2004 }
2005
2006 if (!(p->state & TASK_NORMAL))
2007 goto out;
2008
2009 trace_sched_waking(p);
2010
2011 if (!task_on_rq_queued(p))
2012 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2013
2014 ttwu_do_wakeup(rq, p, 0);
2015 ttwu_stat(p, smp_processor_id(), 0);
2016 out:
2017 raw_spin_unlock(&p->pi_lock);
2018 }
2019
2020 /**
2021 * wake_up_process - Wake up a specific process
2022 * @p: The process to be woken up.
2023 *
2024 * Attempt to wake up the nominated process and move it to the set of runnable
2025 * processes.
2026 *
2027 * Return: 1 if the process was woken up, 0 if it was already running.
2028 *
2029 * It may be assumed that this function implies a write memory barrier before
2030 * changing the task state if and only if any tasks are woken up.
2031 */
2032 int wake_up_process(struct task_struct *p)
2033 {
2034 WARN_ON(task_is_stopped_or_traced(p));
2035 return try_to_wake_up(p, TASK_NORMAL, 0);
2036 }
2037 EXPORT_SYMBOL(wake_up_process);
2038
2039 int wake_up_state(struct task_struct *p, unsigned int state)
2040 {
2041 return try_to_wake_up(p, state, 0);
2042 }
2043
2044 /*
2045 * This function clears the sched_dl_entity static params.
2046 */
2047 void __dl_clear_params(struct task_struct *p)
2048 {
2049 struct sched_dl_entity *dl_se = &p->dl;
2050
2051 dl_se->dl_runtime = 0;
2052 dl_se->dl_deadline = 0;
2053 dl_se->dl_period = 0;
2054 dl_se->flags = 0;
2055 dl_se->dl_bw = 0;
2056
2057 dl_se->dl_throttled = 0;
2058 dl_se->dl_new = 1;
2059 dl_se->dl_yielded = 0;
2060 }
2061
2062 /*
2063 * Perform scheduler related setup for a newly forked process p.
2064 * p is forked by current.
2065 *
2066 * __sched_fork() is basic setup used by init_idle() too:
2067 */
2068 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2069 {
2070 p->on_rq = 0;
2071
2072 p->se.on_rq = 0;
2073 p->se.exec_start = 0;
2074 p->se.sum_exec_runtime = 0;
2075 p->se.prev_sum_exec_runtime = 0;
2076 p->se.nr_migrations = 0;
2077 p->se.vruntime = 0;
2078 INIT_LIST_HEAD(&p->se.group_node);
2079
2080 #ifdef CONFIG_SCHEDSTATS
2081 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2082 #endif
2083
2084 RB_CLEAR_NODE(&p->dl.rb_node);
2085 init_dl_task_timer(&p->dl);
2086 __dl_clear_params(p);
2087
2088 INIT_LIST_HEAD(&p->rt.run_list);
2089
2090 #ifdef CONFIG_PREEMPT_NOTIFIERS
2091 INIT_HLIST_HEAD(&p->preempt_notifiers);
2092 #endif
2093
2094 #ifdef CONFIG_NUMA_BALANCING
2095 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2096 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2097 p->mm->numa_scan_seq = 0;
2098 }
2099
2100 if (clone_flags & CLONE_VM)
2101 p->numa_preferred_nid = current->numa_preferred_nid;
2102 else
2103 p->numa_preferred_nid = -1;
2104
2105 p->node_stamp = 0ULL;
2106 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2107 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2108 p->numa_work.next = &p->numa_work;
2109 p->numa_faults = NULL;
2110 p->last_task_numa_placement = 0;
2111 p->last_sum_exec_runtime = 0;
2112
2113 p->numa_group = NULL;
2114 #endif /* CONFIG_NUMA_BALANCING */
2115 }
2116
2117 #ifdef CONFIG_NUMA_BALANCING
2118 #ifdef CONFIG_SCHED_DEBUG
2119 void set_numabalancing_state(bool enabled)
2120 {
2121 if (enabled)
2122 sched_feat_set("NUMA");
2123 else
2124 sched_feat_set("NO_NUMA");
2125 }
2126 #else
2127 __read_mostly bool numabalancing_enabled;
2128
2129 void set_numabalancing_state(bool enabled)
2130 {
2131 numabalancing_enabled = enabled;
2132 }
2133 #endif /* CONFIG_SCHED_DEBUG */
2134
2135 #ifdef CONFIG_PROC_SYSCTL
2136 int sysctl_numa_balancing(struct ctl_table *table, int write,
2137 void __user *buffer, size_t *lenp, loff_t *ppos)
2138 {
2139 struct ctl_table t;
2140 int err;
2141 int state = numabalancing_enabled;
2142
2143 if (write && !capable(CAP_SYS_ADMIN))
2144 return -EPERM;
2145
2146 t = *table;
2147 t.data = &state;
2148 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2149 if (err < 0)
2150 return err;
2151 if (write)
2152 set_numabalancing_state(state);
2153 return err;
2154 }
2155 #endif
2156 #endif
2157
2158 /*
2159 * fork()/clone()-time setup:
2160 */
2161 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2162 {
2163 unsigned long flags;
2164 int cpu = get_cpu();
2165
2166 __sched_fork(clone_flags, p);
2167 /*
2168 * We mark the process as running here. This guarantees that
2169 * nobody will actually run it, and a signal or other external
2170 * event cannot wake it up and insert it on the runqueue either.
2171 */
2172 p->state = TASK_RUNNING;
2173
2174 /*
2175 * Make sure we do not leak PI boosting priority to the child.
2176 */
2177 p->prio = current->normal_prio;
2178
2179 /*
2180 * Revert to default priority/policy on fork if requested.
2181 */
2182 if (unlikely(p->sched_reset_on_fork)) {
2183 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2184 p->policy = SCHED_NORMAL;
2185 p->static_prio = NICE_TO_PRIO(0);
2186 p->rt_priority = 0;
2187 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2188 p->static_prio = NICE_TO_PRIO(0);
2189
2190 p->prio = p->normal_prio = __normal_prio(p);
2191 set_load_weight(p);
2192
2193 /*
2194 * We don't need the reset flag anymore after the fork. It has
2195 * fulfilled its duty:
2196 */
2197 p->sched_reset_on_fork = 0;
2198 }
2199
2200 if (dl_prio(p->prio)) {
2201 put_cpu();
2202 return -EAGAIN;
2203 } else if (rt_prio(p->prio)) {
2204 p->sched_class = &rt_sched_class;
2205 } else {
2206 p->sched_class = &fair_sched_class;
2207 }
2208
2209 if (p->sched_class->task_fork)
2210 p->sched_class->task_fork(p);
2211
2212 /*
2213 * The child is not yet in the pid-hash so no cgroup attach races,
2214 * and the cgroup is pinned to this child due to cgroup_fork()
2215 * is ran before sched_fork().
2216 *
2217 * Silence PROVE_RCU.
2218 */
2219 raw_spin_lock_irqsave(&p->pi_lock, flags);
2220 set_task_cpu(p, cpu);
2221 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2222
2223 #ifdef CONFIG_SCHED_INFO
2224 if (likely(sched_info_on()))
2225 memset(&p->sched_info, 0, sizeof(p->sched_info));
2226 #endif
2227 #if defined(CONFIG_SMP)
2228 p->on_cpu = 0;
2229 #endif
2230 init_task_preempt_count(p);
2231 #ifdef CONFIG_SMP
2232 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2233 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2234 #endif
2235
2236 put_cpu();
2237 return 0;
2238 }
2239
2240 unsigned long to_ratio(u64 period, u64 runtime)
2241 {
2242 if (runtime == RUNTIME_INF)
2243 return 1ULL << 20;
2244
2245 /*
2246 * Doing this here saves a lot of checks in all
2247 * the calling paths, and returning zero seems
2248 * safe for them anyway.
2249 */
2250 if (period == 0)
2251 return 0;
2252
2253 return div64_u64(runtime << 20, period);
2254 }
2255
2256 #ifdef CONFIG_SMP
2257 inline struct dl_bw *dl_bw_of(int i)
2258 {
2259 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2260 "sched RCU must be held");
2261 return &cpu_rq(i)->rd->dl_bw;
2262 }
2263
2264 static inline int dl_bw_cpus(int i)
2265 {
2266 struct root_domain *rd = cpu_rq(i)->rd;
2267 int cpus = 0;
2268
2269 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2270 "sched RCU must be held");
2271 for_each_cpu_and(i, rd->span, cpu_active_mask)
2272 cpus++;
2273
2274 return cpus;
2275 }
2276 #else
2277 inline struct dl_bw *dl_bw_of(int i)
2278 {
2279 return &cpu_rq(i)->dl.dl_bw;
2280 }
2281
2282 static inline int dl_bw_cpus(int i)
2283 {
2284 return 1;
2285 }
2286 #endif
2287
2288 /*
2289 * We must be sure that accepting a new task (or allowing changing the
2290 * parameters of an existing one) is consistent with the bandwidth
2291 * constraints. If yes, this function also accordingly updates the currently
2292 * allocated bandwidth to reflect the new situation.
2293 *
2294 * This function is called while holding p's rq->lock.
2295 *
2296 * XXX we should delay bw change until the task's 0-lag point, see
2297 * __setparam_dl().
2298 */
2299 static int dl_overflow(struct task_struct *p, int policy,
2300 const struct sched_attr *attr)
2301 {
2302
2303 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2304 u64 period = attr->sched_period ?: attr->sched_deadline;
2305 u64 runtime = attr->sched_runtime;
2306 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2307 int cpus, err = -1;
2308
2309 if (new_bw == p->dl.dl_bw)
2310 return 0;
2311
2312 /*
2313 * Either if a task, enters, leave, or stays -deadline but changes
2314 * its parameters, we may need to update accordingly the total
2315 * allocated bandwidth of the container.
2316 */
2317 raw_spin_lock(&dl_b->lock);
2318 cpus = dl_bw_cpus(task_cpu(p));
2319 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2320 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2321 __dl_add(dl_b, new_bw);
2322 err = 0;
2323 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2324 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2325 __dl_clear(dl_b, p->dl.dl_bw);
2326 __dl_add(dl_b, new_bw);
2327 err = 0;
2328 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2329 __dl_clear(dl_b, p->dl.dl_bw);
2330 err = 0;
2331 }
2332 raw_spin_unlock(&dl_b->lock);
2333
2334 return err;
2335 }
2336
2337 extern void init_dl_bw(struct dl_bw *dl_b);
2338
2339 /*
2340 * wake_up_new_task - wake up a newly created task for the first time.
2341 *
2342 * This function will do some initial scheduler statistics housekeeping
2343 * that must be done for every newly created context, then puts the task
2344 * on the runqueue and wakes it.
2345 */
2346 void wake_up_new_task(struct task_struct *p)
2347 {
2348 unsigned long flags;
2349 struct rq *rq;
2350
2351 raw_spin_lock_irqsave(&p->pi_lock, flags);
2352 #ifdef CONFIG_SMP
2353 /*
2354 * Fork balancing, do it here and not earlier because:
2355 * - cpus_allowed can change in the fork path
2356 * - any previously selected cpu might disappear through hotplug
2357 */
2358 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2359 #endif
2360
2361 /* Initialize new task's runnable average */
2362 init_entity_runnable_average(&p->se);
2363 rq = __task_rq_lock(p);
2364 activate_task(rq, p, 0);
2365 p->on_rq = TASK_ON_RQ_QUEUED;
2366 trace_sched_wakeup_new(p);
2367 check_preempt_curr(rq, p, WF_FORK);
2368 #ifdef CONFIG_SMP
2369 if (p->sched_class->task_woken) {
2370 /*
2371 * Nothing relies on rq->lock after this, so its fine to
2372 * drop it.
2373 */
2374 lockdep_unpin_lock(&rq->lock);
2375 p->sched_class->task_woken(rq, p);
2376 lockdep_pin_lock(&rq->lock);
2377 }
2378 #endif
2379 task_rq_unlock(rq, p, &flags);
2380 }
2381
2382 #ifdef CONFIG_PREEMPT_NOTIFIERS
2383
2384 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2385
2386 void preempt_notifier_inc(void)
2387 {
2388 static_key_slow_inc(&preempt_notifier_key);
2389 }
2390 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2391
2392 void preempt_notifier_dec(void)
2393 {
2394 static_key_slow_dec(&preempt_notifier_key);
2395 }
2396 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2397
2398 /**
2399 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2400 * @notifier: notifier struct to register
2401 */
2402 void preempt_notifier_register(struct preempt_notifier *notifier)
2403 {
2404 if (!static_key_false(&preempt_notifier_key))
2405 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2406
2407 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2408 }
2409 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2410
2411 /**
2412 * preempt_notifier_unregister - no longer interested in preemption notifications
2413 * @notifier: notifier struct to unregister
2414 *
2415 * This is *not* safe to call from within a preemption notifier.
2416 */
2417 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2418 {
2419 hlist_del(&notifier->link);
2420 }
2421 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2422
2423 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2424 {
2425 struct preempt_notifier *notifier;
2426
2427 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2428 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2429 }
2430
2431 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2432 {
2433 if (static_key_false(&preempt_notifier_key))
2434 __fire_sched_in_preempt_notifiers(curr);
2435 }
2436
2437 static void
2438 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2439 struct task_struct *next)
2440 {
2441 struct preempt_notifier *notifier;
2442
2443 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2444 notifier->ops->sched_out(notifier, next);
2445 }
2446
2447 static __always_inline void
2448 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2449 struct task_struct *next)
2450 {
2451 if (static_key_false(&preempt_notifier_key))
2452 __fire_sched_out_preempt_notifiers(curr, next);
2453 }
2454
2455 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2456
2457 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2458 {
2459 }
2460
2461 static inline void
2462 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2463 struct task_struct *next)
2464 {
2465 }
2466
2467 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2468
2469 /**
2470 * prepare_task_switch - prepare to switch tasks
2471 * @rq: the runqueue preparing to switch
2472 * @prev: the current task that is being switched out
2473 * @next: the task we are going to switch to.
2474 *
2475 * This is called with the rq lock held and interrupts off. It must
2476 * be paired with a subsequent finish_task_switch after the context
2477 * switch.
2478 *
2479 * prepare_task_switch sets up locking and calls architecture specific
2480 * hooks.
2481 */
2482 static inline void
2483 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2484 struct task_struct *next)
2485 {
2486 trace_sched_switch(prev, next);
2487 sched_info_switch(rq, prev, next);
2488 perf_event_task_sched_out(prev, next);
2489 fire_sched_out_preempt_notifiers(prev, next);
2490 prepare_lock_switch(rq, next);
2491 prepare_arch_switch(next);
2492 }
2493
2494 /**
2495 * finish_task_switch - clean up after a task-switch
2496 * @prev: the thread we just switched away from.
2497 *
2498 * finish_task_switch must be called after the context switch, paired
2499 * with a prepare_task_switch call before the context switch.
2500 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2501 * and do any other architecture-specific cleanup actions.
2502 *
2503 * Note that we may have delayed dropping an mm in context_switch(). If
2504 * so, we finish that here outside of the runqueue lock. (Doing it
2505 * with the lock held can cause deadlocks; see schedule() for
2506 * details.)
2507 *
2508 * The context switch have flipped the stack from under us and restored the
2509 * local variables which were saved when this task called schedule() in the
2510 * past. prev == current is still correct but we need to recalculate this_rq
2511 * because prev may have moved to another CPU.
2512 */
2513 static struct rq *finish_task_switch(struct task_struct *prev)
2514 __releases(rq->lock)
2515 {
2516 struct rq *rq = this_rq();
2517 struct mm_struct *mm = rq->prev_mm;
2518 long prev_state;
2519
2520 rq->prev_mm = NULL;
2521
2522 /*
2523 * A task struct has one reference for the use as "current".
2524 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2525 * schedule one last time. The schedule call will never return, and
2526 * the scheduled task must drop that reference.
2527 *
2528 * We must observe prev->state before clearing prev->on_cpu (in
2529 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2530 * running on another CPU and we could rave with its RUNNING -> DEAD
2531 * transition, resulting in a double drop.
2532 */
2533 prev_state = prev->state;
2534 vtime_task_switch(prev);
2535 perf_event_task_sched_in(prev, current);
2536 finish_lock_switch(rq, prev);
2537 finish_arch_post_lock_switch();
2538
2539 fire_sched_in_preempt_notifiers(current);
2540 if (mm)
2541 mmdrop(mm);
2542 if (unlikely(prev_state == TASK_DEAD)) {
2543 if (prev->sched_class->task_dead)
2544 prev->sched_class->task_dead(prev);
2545
2546 /*
2547 * Remove function-return probe instances associated with this
2548 * task and put them back on the free list.
2549 */
2550 kprobe_flush_task(prev);
2551 put_task_struct(prev);
2552 }
2553
2554 tick_nohz_task_switch();
2555 return rq;
2556 }
2557
2558 #ifdef CONFIG_SMP
2559
2560 /* rq->lock is NOT held, but preemption is disabled */
2561 static void __balance_callback(struct rq *rq)
2562 {
2563 struct callback_head *head, *next;
2564 void (*func)(struct rq *rq);
2565 unsigned long flags;
2566
2567 raw_spin_lock_irqsave(&rq->lock, flags);
2568 head = rq->balance_callback;
2569 rq->balance_callback = NULL;
2570 while (head) {
2571 func = (void (*)(struct rq *))head->func;
2572 next = head->next;
2573 head->next = NULL;
2574 head = next;
2575
2576 func(rq);
2577 }
2578 raw_spin_unlock_irqrestore(&rq->lock, flags);
2579 }
2580
2581 static inline void balance_callback(struct rq *rq)
2582 {
2583 if (unlikely(rq->balance_callback))
2584 __balance_callback(rq);
2585 }
2586
2587 #else
2588
2589 static inline void balance_callback(struct rq *rq)
2590 {
2591 }
2592
2593 #endif
2594
2595 /**
2596 * schedule_tail - first thing a freshly forked thread must call.
2597 * @prev: the thread we just switched away from.
2598 */
2599 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2600 __releases(rq->lock)
2601 {
2602 struct rq *rq;
2603
2604 /* finish_task_switch() drops rq->lock and enables preemtion */
2605 preempt_disable();
2606 rq = finish_task_switch(prev);
2607 balance_callback(rq);
2608 preempt_enable();
2609
2610 if (current->set_child_tid)
2611 put_user(task_pid_vnr(current), current->set_child_tid);
2612 }
2613
2614 /*
2615 * context_switch - switch to the new MM and the new thread's register state.
2616 */
2617 static inline struct rq *
2618 context_switch(struct rq *rq, struct task_struct *prev,
2619 struct task_struct *next)
2620 {
2621 struct mm_struct *mm, *oldmm;
2622
2623 prepare_task_switch(rq, prev, next);
2624
2625 mm = next->mm;
2626 oldmm = prev->active_mm;
2627 /*
2628 * For paravirt, this is coupled with an exit in switch_to to
2629 * combine the page table reload and the switch backend into
2630 * one hypercall.
2631 */
2632 arch_start_context_switch(prev);
2633
2634 if (!mm) {
2635 next->active_mm = oldmm;
2636 atomic_inc(&oldmm->mm_count);
2637 enter_lazy_tlb(oldmm, next);
2638 } else
2639 switch_mm(oldmm, mm, next);
2640
2641 if (!prev->mm) {
2642 prev->active_mm = NULL;
2643 rq->prev_mm = oldmm;
2644 }
2645 /*
2646 * Since the runqueue lock will be released by the next
2647 * task (which is an invalid locking op but in the case
2648 * of the scheduler it's an obvious special-case), so we
2649 * do an early lockdep release here:
2650 */
2651 lockdep_unpin_lock(&rq->lock);
2652 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2653
2654 /* Here we just switch the register state and the stack. */
2655 switch_to(prev, next, prev);
2656 barrier();
2657
2658 return finish_task_switch(prev);
2659 }
2660
2661 /*
2662 * nr_running and nr_context_switches:
2663 *
2664 * externally visible scheduler statistics: current number of runnable
2665 * threads, total number of context switches performed since bootup.
2666 */
2667 unsigned long nr_running(void)
2668 {
2669 unsigned long i, sum = 0;
2670
2671 for_each_online_cpu(i)
2672 sum += cpu_rq(i)->nr_running;
2673
2674 return sum;
2675 }
2676
2677 /*
2678 * Check if only the current task is running on the cpu.
2679 *
2680 * Caution: this function does not check that the caller has disabled
2681 * preemption, thus the result might have a time-of-check-to-time-of-use
2682 * race. The caller is responsible to use it correctly, for example:
2683 *
2684 * - from a non-preemptable section (of course)
2685 *
2686 * - from a thread that is bound to a single CPU
2687 *
2688 * - in a loop with very short iterations (e.g. a polling loop)
2689 */
2690 bool single_task_running(void)
2691 {
2692 return raw_rq()->nr_running == 1;
2693 }
2694 EXPORT_SYMBOL(single_task_running);
2695
2696 unsigned long long nr_context_switches(void)
2697 {
2698 int i;
2699 unsigned long long sum = 0;
2700
2701 for_each_possible_cpu(i)
2702 sum += cpu_rq(i)->nr_switches;
2703
2704 return sum;
2705 }
2706
2707 unsigned long nr_iowait(void)
2708 {
2709 unsigned long i, sum = 0;
2710
2711 for_each_possible_cpu(i)
2712 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2713
2714 return sum;
2715 }
2716
2717 unsigned long nr_iowait_cpu(int cpu)
2718 {
2719 struct rq *this = cpu_rq(cpu);
2720 return atomic_read(&this->nr_iowait);
2721 }
2722
2723 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2724 {
2725 struct rq *rq = this_rq();
2726 *nr_waiters = atomic_read(&rq->nr_iowait);
2727 *load = rq->load.weight;
2728 }
2729
2730 #ifdef CONFIG_SMP
2731
2732 /*
2733 * sched_exec - execve() is a valuable balancing opportunity, because at
2734 * this point the task has the smallest effective memory and cache footprint.
2735 */
2736 void sched_exec(void)
2737 {
2738 struct task_struct *p = current;
2739 unsigned long flags;
2740 int dest_cpu;
2741
2742 raw_spin_lock_irqsave(&p->pi_lock, flags);
2743 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2744 if (dest_cpu == smp_processor_id())
2745 goto unlock;
2746
2747 if (likely(cpu_active(dest_cpu))) {
2748 struct migration_arg arg = { p, dest_cpu };
2749
2750 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2751 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2752 return;
2753 }
2754 unlock:
2755 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2756 }
2757
2758 #endif
2759
2760 DEFINE_PER_CPU(struct kernel_stat, kstat);
2761 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2762
2763 EXPORT_PER_CPU_SYMBOL(kstat);
2764 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2765
2766 /*
2767 * Return accounted runtime for the task.
2768 * In case the task is currently running, return the runtime plus current's
2769 * pending runtime that have not been accounted yet.
2770 */
2771 unsigned long long task_sched_runtime(struct task_struct *p)
2772 {
2773 unsigned long flags;
2774 struct rq *rq;
2775 u64 ns;
2776
2777 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2778 /*
2779 * 64-bit doesn't need locks to atomically read a 64bit value.
2780 * So we have a optimization chance when the task's delta_exec is 0.
2781 * Reading ->on_cpu is racy, but this is ok.
2782 *
2783 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2784 * If we race with it entering cpu, unaccounted time is 0. This is
2785 * indistinguishable from the read occurring a few cycles earlier.
2786 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2787 * been accounted, so we're correct here as well.
2788 */
2789 if (!p->on_cpu || !task_on_rq_queued(p))
2790 return p->se.sum_exec_runtime;
2791 #endif
2792
2793 rq = task_rq_lock(p, &flags);
2794 /*
2795 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2796 * project cycles that may never be accounted to this
2797 * thread, breaking clock_gettime().
2798 */
2799 if (task_current(rq, p) && task_on_rq_queued(p)) {
2800 update_rq_clock(rq);
2801 p->sched_class->update_curr(rq);
2802 }
2803 ns = p->se.sum_exec_runtime;
2804 task_rq_unlock(rq, p, &flags);
2805
2806 return ns;
2807 }
2808
2809 /*
2810 * This function gets called by the timer code, with HZ frequency.
2811 * We call it with interrupts disabled.
2812 */
2813 void scheduler_tick(void)
2814 {
2815 int cpu = smp_processor_id();
2816 struct rq *rq = cpu_rq(cpu);
2817 struct task_struct *curr = rq->curr;
2818
2819 sched_clock_tick();
2820
2821 raw_spin_lock(&rq->lock);
2822 update_rq_clock(rq);
2823 curr->sched_class->task_tick(rq, curr, 0);
2824 update_cpu_load_active(rq);
2825 calc_global_load_tick(rq);
2826 raw_spin_unlock(&rq->lock);
2827
2828 perf_event_task_tick();
2829
2830 #ifdef CONFIG_SMP
2831 rq->idle_balance = idle_cpu(cpu);
2832 trigger_load_balance(rq);
2833 #endif
2834 rq_last_tick_reset(rq);
2835 }
2836
2837 #ifdef CONFIG_NO_HZ_FULL
2838 /**
2839 * scheduler_tick_max_deferment
2840 *
2841 * Keep at least one tick per second when a single
2842 * active task is running because the scheduler doesn't
2843 * yet completely support full dynticks environment.
2844 *
2845 * This makes sure that uptime, CFS vruntime, load
2846 * balancing, etc... continue to move forward, even
2847 * with a very low granularity.
2848 *
2849 * Return: Maximum deferment in nanoseconds.
2850 */
2851 u64 scheduler_tick_max_deferment(void)
2852 {
2853 struct rq *rq = this_rq();
2854 unsigned long next, now = READ_ONCE(jiffies);
2855
2856 next = rq->last_sched_tick + HZ;
2857
2858 if (time_before_eq(next, now))
2859 return 0;
2860
2861 return jiffies_to_nsecs(next - now);
2862 }
2863 #endif
2864
2865 notrace unsigned long get_parent_ip(unsigned long addr)
2866 {
2867 if (in_lock_functions(addr)) {
2868 addr = CALLER_ADDR2;
2869 if (in_lock_functions(addr))
2870 addr = CALLER_ADDR3;
2871 }
2872 return addr;
2873 }
2874
2875 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2876 defined(CONFIG_PREEMPT_TRACER))
2877
2878 void preempt_count_add(int val)
2879 {
2880 #ifdef CONFIG_DEBUG_PREEMPT
2881 /*
2882 * Underflow?
2883 */
2884 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2885 return;
2886 #endif
2887 __preempt_count_add(val);
2888 #ifdef CONFIG_DEBUG_PREEMPT
2889 /*
2890 * Spinlock count overflowing soon?
2891 */
2892 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2893 PREEMPT_MASK - 10);
2894 #endif
2895 if (preempt_count() == val) {
2896 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2897 #ifdef CONFIG_DEBUG_PREEMPT
2898 current->preempt_disable_ip = ip;
2899 #endif
2900 trace_preempt_off(CALLER_ADDR0, ip);
2901 }
2902 }
2903 EXPORT_SYMBOL(preempt_count_add);
2904 NOKPROBE_SYMBOL(preempt_count_add);
2905
2906 void preempt_count_sub(int val)
2907 {
2908 #ifdef CONFIG_DEBUG_PREEMPT
2909 /*
2910 * Underflow?
2911 */
2912 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2913 return;
2914 /*
2915 * Is the spinlock portion underflowing?
2916 */
2917 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2918 !(preempt_count() & PREEMPT_MASK)))
2919 return;
2920 #endif
2921
2922 if (preempt_count() == val)
2923 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2924 __preempt_count_sub(val);
2925 }
2926 EXPORT_SYMBOL(preempt_count_sub);
2927 NOKPROBE_SYMBOL(preempt_count_sub);
2928
2929 #endif
2930
2931 /*
2932 * Print scheduling while atomic bug:
2933 */
2934 static noinline void __schedule_bug(struct task_struct *prev)
2935 {
2936 if (oops_in_progress)
2937 return;
2938
2939 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2940 prev->comm, prev->pid, preempt_count());
2941
2942 debug_show_held_locks(prev);
2943 print_modules();
2944 if (irqs_disabled())
2945 print_irqtrace_events(prev);
2946 #ifdef CONFIG_DEBUG_PREEMPT
2947 if (in_atomic_preempt_off()) {
2948 pr_err("Preemption disabled at:");
2949 print_ip_sym(current->preempt_disable_ip);
2950 pr_cont("\n");
2951 }
2952 #endif
2953 dump_stack();
2954 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2955 }
2956
2957 /*
2958 * Various schedule()-time debugging checks and statistics:
2959 */
2960 static inline void schedule_debug(struct task_struct *prev)
2961 {
2962 #ifdef CONFIG_SCHED_STACK_END_CHECK
2963 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2964 #endif
2965 /*
2966 * Test if we are atomic. Since do_exit() needs to call into
2967 * schedule() atomically, we ignore that path. Otherwise whine
2968 * if we are scheduling when we should not.
2969 */
2970 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2971 __schedule_bug(prev);
2972 rcu_sleep_check();
2973
2974 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2975
2976 schedstat_inc(this_rq(), sched_count);
2977 }
2978
2979 /*
2980 * Pick up the highest-prio task:
2981 */
2982 static inline struct task_struct *
2983 pick_next_task(struct rq *rq, struct task_struct *prev)
2984 {
2985 const struct sched_class *class = &fair_sched_class;
2986 struct task_struct *p;
2987
2988 /*
2989 * Optimization: we know that if all tasks are in
2990 * the fair class we can call that function directly:
2991 */
2992 if (likely(prev->sched_class == class &&
2993 rq->nr_running == rq->cfs.h_nr_running)) {
2994 p = fair_sched_class.pick_next_task(rq, prev);
2995 if (unlikely(p == RETRY_TASK))
2996 goto again;
2997
2998 /* assumes fair_sched_class->next == idle_sched_class */
2999 if (unlikely(!p))
3000 p = idle_sched_class.pick_next_task(rq, prev);
3001
3002 return p;
3003 }
3004
3005 again:
3006 for_each_class(class) {
3007 p = class->pick_next_task(rq, prev);
3008 if (p) {
3009 if (unlikely(p == RETRY_TASK))
3010 goto again;
3011 return p;
3012 }
3013 }
3014
3015 BUG(); /* the idle class will always have a runnable task */
3016 }
3017
3018 /*
3019 * __schedule() is the main scheduler function.
3020 *
3021 * The main means of driving the scheduler and thus entering this function are:
3022 *
3023 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3024 *
3025 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3026 * paths. For example, see arch/x86/entry_64.S.
3027 *
3028 * To drive preemption between tasks, the scheduler sets the flag in timer
3029 * interrupt handler scheduler_tick().
3030 *
3031 * 3. Wakeups don't really cause entry into schedule(). They add a
3032 * task to the run-queue and that's it.
3033 *
3034 * Now, if the new task added to the run-queue preempts the current
3035 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3036 * called on the nearest possible occasion:
3037 *
3038 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3039 *
3040 * - in syscall or exception context, at the next outmost
3041 * preempt_enable(). (this might be as soon as the wake_up()'s
3042 * spin_unlock()!)
3043 *
3044 * - in IRQ context, return from interrupt-handler to
3045 * preemptible context
3046 *
3047 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3048 * then at the next:
3049 *
3050 * - cond_resched() call
3051 * - explicit schedule() call
3052 * - return from syscall or exception to user-space
3053 * - return from interrupt-handler to user-space
3054 *
3055 * WARNING: must be called with preemption disabled!
3056 */
3057 static void __sched __schedule(void)
3058 {
3059 struct task_struct *prev, *next;
3060 unsigned long *switch_count;
3061 struct rq *rq;
3062 int cpu;
3063
3064 cpu = smp_processor_id();
3065 rq = cpu_rq(cpu);
3066 rcu_note_context_switch();
3067 prev = rq->curr;
3068
3069 schedule_debug(prev);
3070
3071 if (sched_feat(HRTICK))
3072 hrtick_clear(rq);
3073
3074 /*
3075 * Make sure that signal_pending_state()->signal_pending() below
3076 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3077 * done by the caller to avoid the race with signal_wake_up().
3078 */
3079 smp_mb__before_spinlock();
3080 raw_spin_lock_irq(&rq->lock);
3081 lockdep_pin_lock(&rq->lock);
3082
3083 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3084
3085 switch_count = &prev->nivcsw;
3086 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3087 if (unlikely(signal_pending_state(prev->state, prev))) {
3088 prev->state = TASK_RUNNING;
3089 } else {
3090 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3091 prev->on_rq = 0;
3092
3093 /*
3094 * If a worker went to sleep, notify and ask workqueue
3095 * whether it wants to wake up a task to maintain
3096 * concurrency.
3097 */
3098 if (prev->flags & PF_WQ_WORKER) {
3099 struct task_struct *to_wakeup;
3100
3101 to_wakeup = wq_worker_sleeping(prev, cpu);
3102 if (to_wakeup)
3103 try_to_wake_up_local(to_wakeup);
3104 }
3105 }
3106 switch_count = &prev->nvcsw;
3107 }
3108
3109 if (task_on_rq_queued(prev))
3110 update_rq_clock(rq);
3111
3112 next = pick_next_task(rq, prev);
3113 clear_tsk_need_resched(prev);
3114 clear_preempt_need_resched();
3115 rq->clock_skip_update = 0;
3116
3117 if (likely(prev != next)) {
3118 rq->nr_switches++;
3119 rq->curr = next;
3120 ++*switch_count;
3121
3122 rq = context_switch(rq, prev, next); /* unlocks the rq */
3123 cpu = cpu_of(rq);
3124 } else {
3125 lockdep_unpin_lock(&rq->lock);
3126 raw_spin_unlock_irq(&rq->lock);
3127 }
3128
3129 balance_callback(rq);
3130 }
3131
3132 static inline void sched_submit_work(struct task_struct *tsk)
3133 {
3134 if (!tsk->state || tsk_is_pi_blocked(tsk))
3135 return;
3136 /*
3137 * If we are going to sleep and we have plugged IO queued,
3138 * make sure to submit it to avoid deadlocks.
3139 */
3140 if (blk_needs_flush_plug(tsk))
3141 blk_schedule_flush_plug(tsk);
3142 }
3143
3144 asmlinkage __visible void __sched schedule(void)
3145 {
3146 struct task_struct *tsk = current;
3147
3148 sched_submit_work(tsk);
3149 do {
3150 preempt_disable();
3151 __schedule();
3152 sched_preempt_enable_no_resched();
3153 } while (need_resched());
3154 }
3155 EXPORT_SYMBOL(schedule);
3156
3157 #ifdef CONFIG_CONTEXT_TRACKING
3158 asmlinkage __visible void __sched schedule_user(void)
3159 {
3160 /*
3161 * If we come here after a random call to set_need_resched(),
3162 * or we have been woken up remotely but the IPI has not yet arrived,
3163 * we haven't yet exited the RCU idle mode. Do it here manually until
3164 * we find a better solution.
3165 *
3166 * NB: There are buggy callers of this function. Ideally we
3167 * should warn if prev_state != CONTEXT_USER, but that will trigger
3168 * too frequently to make sense yet.
3169 */
3170 enum ctx_state prev_state = exception_enter();
3171 schedule();
3172 exception_exit(prev_state);
3173 }
3174 #endif
3175
3176 /**
3177 * schedule_preempt_disabled - called with preemption disabled
3178 *
3179 * Returns with preemption disabled. Note: preempt_count must be 1
3180 */
3181 void __sched schedule_preempt_disabled(void)
3182 {
3183 sched_preempt_enable_no_resched();
3184 schedule();
3185 preempt_disable();
3186 }
3187
3188 static void __sched notrace preempt_schedule_common(void)
3189 {
3190 do {
3191 preempt_active_enter();
3192 __schedule();
3193 preempt_active_exit();
3194
3195 /*
3196 * Check again in case we missed a preemption opportunity
3197 * between schedule and now.
3198 */
3199 } while (need_resched());
3200 }
3201
3202 #ifdef CONFIG_PREEMPT
3203 /*
3204 * this is the entry point to schedule() from in-kernel preemption
3205 * off of preempt_enable. Kernel preemptions off return from interrupt
3206 * occur there and call schedule directly.
3207 */
3208 asmlinkage __visible void __sched notrace preempt_schedule(void)
3209 {
3210 /*
3211 * If there is a non-zero preempt_count or interrupts are disabled,
3212 * we do not want to preempt the current task. Just return..
3213 */
3214 if (likely(!preemptible()))
3215 return;
3216
3217 preempt_schedule_common();
3218 }
3219 NOKPROBE_SYMBOL(preempt_schedule);
3220 EXPORT_SYMBOL(preempt_schedule);
3221
3222 /**
3223 * preempt_schedule_notrace - preempt_schedule called by tracing
3224 *
3225 * The tracing infrastructure uses preempt_enable_notrace to prevent
3226 * recursion and tracing preempt enabling caused by the tracing
3227 * infrastructure itself. But as tracing can happen in areas coming
3228 * from userspace or just about to enter userspace, a preempt enable
3229 * can occur before user_exit() is called. This will cause the scheduler
3230 * to be called when the system is still in usermode.
3231 *
3232 * To prevent this, the preempt_enable_notrace will use this function
3233 * instead of preempt_schedule() to exit user context if needed before
3234 * calling the scheduler.
3235 */
3236 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3237 {
3238 enum ctx_state prev_ctx;
3239
3240 if (likely(!preemptible()))
3241 return;
3242
3243 do {
3244 /*
3245 * Use raw __prempt_count() ops that don't call function.
3246 * We can't call functions before disabling preemption which
3247 * disarm preemption tracing recursions.
3248 */
3249 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3250 barrier();
3251 /*
3252 * Needs preempt disabled in case user_exit() is traced
3253 * and the tracer calls preempt_enable_notrace() causing
3254 * an infinite recursion.
3255 */
3256 prev_ctx = exception_enter();
3257 __schedule();
3258 exception_exit(prev_ctx);
3259
3260 barrier();
3261 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
3262 } while (need_resched());
3263 }
3264 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3265
3266 #endif /* CONFIG_PREEMPT */
3267
3268 /*
3269 * this is the entry point to schedule() from kernel preemption
3270 * off of irq context.
3271 * Note, that this is called and return with irqs disabled. This will
3272 * protect us against recursive calling from irq.
3273 */
3274 asmlinkage __visible void __sched preempt_schedule_irq(void)
3275 {
3276 enum ctx_state prev_state;
3277
3278 /* Catch callers which need to be fixed */
3279 BUG_ON(preempt_count() || !irqs_disabled());
3280
3281 prev_state = exception_enter();
3282
3283 do {
3284 preempt_active_enter();
3285 local_irq_enable();
3286 __schedule();
3287 local_irq_disable();
3288 preempt_active_exit();
3289 } while (need_resched());
3290
3291 exception_exit(prev_state);
3292 }
3293
3294 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3295 void *key)
3296 {
3297 return try_to_wake_up(curr->private, mode, wake_flags);
3298 }
3299 EXPORT_SYMBOL(default_wake_function);
3300
3301 #ifdef CONFIG_RT_MUTEXES
3302
3303 /*
3304 * rt_mutex_setprio - set the current priority of a task
3305 * @p: task
3306 * @prio: prio value (kernel-internal form)
3307 *
3308 * This function changes the 'effective' priority of a task. It does
3309 * not touch ->normal_prio like __setscheduler().
3310 *
3311 * Used by the rt_mutex code to implement priority inheritance
3312 * logic. Call site only calls if the priority of the task changed.
3313 */
3314 void rt_mutex_setprio(struct task_struct *p, int prio)
3315 {
3316 int oldprio, queued, running, enqueue_flag = 0;
3317 struct rq *rq;
3318 const struct sched_class *prev_class;
3319
3320 BUG_ON(prio > MAX_PRIO);
3321
3322 rq = __task_rq_lock(p);
3323
3324 /*
3325 * Idle task boosting is a nono in general. There is one
3326 * exception, when PREEMPT_RT and NOHZ is active:
3327 *
3328 * The idle task calls get_next_timer_interrupt() and holds
3329 * the timer wheel base->lock on the CPU and another CPU wants
3330 * to access the timer (probably to cancel it). We can safely
3331 * ignore the boosting request, as the idle CPU runs this code
3332 * with interrupts disabled and will complete the lock
3333 * protected section without being interrupted. So there is no
3334 * real need to boost.
3335 */
3336 if (unlikely(p == rq->idle)) {
3337 WARN_ON(p != rq->curr);
3338 WARN_ON(p->pi_blocked_on);
3339 goto out_unlock;
3340 }
3341
3342 trace_sched_pi_setprio(p, prio);
3343 oldprio = p->prio;
3344 prev_class = p->sched_class;
3345 queued = task_on_rq_queued(p);
3346 running = task_current(rq, p);
3347 if (queued)
3348 dequeue_task(rq, p, 0);
3349 if (running)
3350 put_prev_task(rq, p);
3351
3352 /*
3353 * Boosting condition are:
3354 * 1. -rt task is running and holds mutex A
3355 * --> -dl task blocks on mutex A
3356 *
3357 * 2. -dl task is running and holds mutex A
3358 * --> -dl task blocks on mutex A and could preempt the
3359 * running task
3360 */
3361 if (dl_prio(prio)) {
3362 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3363 if (!dl_prio(p->normal_prio) ||
3364 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3365 p->dl.dl_boosted = 1;
3366 enqueue_flag = ENQUEUE_REPLENISH;
3367 } else
3368 p->dl.dl_boosted = 0;
3369 p->sched_class = &dl_sched_class;
3370 } else if (rt_prio(prio)) {
3371 if (dl_prio(oldprio))
3372 p->dl.dl_boosted = 0;
3373 if (oldprio < prio)
3374 enqueue_flag = ENQUEUE_HEAD;
3375 p->sched_class = &rt_sched_class;
3376 } else {
3377 if (dl_prio(oldprio))
3378 p->dl.dl_boosted = 0;
3379 if (rt_prio(oldprio))
3380 p->rt.timeout = 0;
3381 p->sched_class = &fair_sched_class;
3382 }
3383
3384 p->prio = prio;
3385
3386 if (running)
3387 p->sched_class->set_curr_task(rq);
3388 if (queued)
3389 enqueue_task(rq, p, enqueue_flag);
3390
3391 check_class_changed(rq, p, prev_class, oldprio);
3392 out_unlock:
3393 preempt_disable(); /* avoid rq from going away on us */
3394 __task_rq_unlock(rq);
3395
3396 balance_callback(rq);
3397 preempt_enable();
3398 }
3399 #endif
3400
3401 void set_user_nice(struct task_struct *p, long nice)
3402 {
3403 int old_prio, delta, queued;
3404 unsigned long flags;
3405 struct rq *rq;
3406
3407 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3408 return;
3409 /*
3410 * We have to be careful, if called from sys_setpriority(),
3411 * the task might be in the middle of scheduling on another CPU.
3412 */
3413 rq = task_rq_lock(p, &flags);
3414 /*
3415 * The RT priorities are set via sched_setscheduler(), but we still
3416 * allow the 'normal' nice value to be set - but as expected
3417 * it wont have any effect on scheduling until the task is
3418 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3419 */
3420 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3421 p->static_prio = NICE_TO_PRIO(nice);
3422 goto out_unlock;
3423 }
3424 queued = task_on_rq_queued(p);
3425 if (queued)
3426 dequeue_task(rq, p, 0);
3427
3428 p->static_prio = NICE_TO_PRIO(nice);
3429 set_load_weight(p);
3430 old_prio = p->prio;
3431 p->prio = effective_prio(p);
3432 delta = p->prio - old_prio;
3433
3434 if (queued) {
3435 enqueue_task(rq, p, 0);
3436 /*
3437 * If the task increased its priority or is running and
3438 * lowered its priority, then reschedule its CPU:
3439 */
3440 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3441 resched_curr(rq);
3442 }
3443 out_unlock:
3444 task_rq_unlock(rq, p, &flags);
3445 }
3446 EXPORT_SYMBOL(set_user_nice);
3447
3448 /*
3449 * can_nice - check if a task can reduce its nice value
3450 * @p: task
3451 * @nice: nice value
3452 */
3453 int can_nice(const struct task_struct *p, const int nice)
3454 {
3455 /* convert nice value [19,-20] to rlimit style value [1,40] */
3456 int nice_rlim = nice_to_rlimit(nice);
3457
3458 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3459 capable(CAP_SYS_NICE));
3460 }
3461
3462 #ifdef __ARCH_WANT_SYS_NICE
3463
3464 /*
3465 * sys_nice - change the priority of the current process.
3466 * @increment: priority increment
3467 *
3468 * sys_setpriority is a more generic, but much slower function that
3469 * does similar things.
3470 */
3471 SYSCALL_DEFINE1(nice, int, increment)
3472 {
3473 long nice, retval;
3474
3475 /*
3476 * Setpriority might change our priority at the same moment.
3477 * We don't have to worry. Conceptually one call occurs first
3478 * and we have a single winner.
3479 */
3480 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3481 nice = task_nice(current) + increment;
3482
3483 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3484 if (increment < 0 && !can_nice(current, nice))
3485 return -EPERM;
3486
3487 retval = security_task_setnice(current, nice);
3488 if (retval)
3489 return retval;
3490
3491 set_user_nice(current, nice);
3492 return 0;
3493 }
3494
3495 #endif
3496
3497 /**
3498 * task_prio - return the priority value of a given task.
3499 * @p: the task in question.
3500 *
3501 * Return: The priority value as seen by users in /proc.
3502 * RT tasks are offset by -200. Normal tasks are centered
3503 * around 0, value goes from -16 to +15.
3504 */
3505 int task_prio(const struct task_struct *p)
3506 {
3507 return p->prio - MAX_RT_PRIO;
3508 }
3509
3510 /**
3511 * idle_cpu - is a given cpu idle currently?
3512 * @cpu: the processor in question.
3513 *
3514 * Return: 1 if the CPU is currently idle. 0 otherwise.
3515 */
3516 int idle_cpu(int cpu)
3517 {
3518 struct rq *rq = cpu_rq(cpu);
3519
3520 if (rq->curr != rq->idle)
3521 return 0;
3522
3523 if (rq->nr_running)
3524 return 0;
3525
3526 #ifdef CONFIG_SMP
3527 if (!llist_empty(&rq->wake_list))
3528 return 0;
3529 #endif
3530
3531 return 1;
3532 }
3533
3534 /**
3535 * idle_task - return the idle task for a given cpu.
3536 * @cpu: the processor in question.
3537 *
3538 * Return: The idle task for the cpu @cpu.
3539 */
3540 struct task_struct *idle_task(int cpu)
3541 {
3542 return cpu_rq(cpu)->idle;
3543 }
3544
3545 /**
3546 * find_process_by_pid - find a process with a matching PID value.
3547 * @pid: the pid in question.
3548 *
3549 * The task of @pid, if found. %NULL otherwise.
3550 */
3551 static struct task_struct *find_process_by_pid(pid_t pid)
3552 {
3553 return pid ? find_task_by_vpid(pid) : current;
3554 }
3555
3556 /*
3557 * This function initializes the sched_dl_entity of a newly becoming
3558 * SCHED_DEADLINE task.
3559 *
3560 * Only the static values are considered here, the actual runtime and the
3561 * absolute deadline will be properly calculated when the task is enqueued
3562 * for the first time with its new policy.
3563 */
3564 static void
3565 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3566 {
3567 struct sched_dl_entity *dl_se = &p->dl;
3568
3569 dl_se->dl_runtime = attr->sched_runtime;
3570 dl_se->dl_deadline = attr->sched_deadline;
3571 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3572 dl_se->flags = attr->sched_flags;
3573 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3574
3575 /*
3576 * Changing the parameters of a task is 'tricky' and we're not doing
3577 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3578 *
3579 * What we SHOULD do is delay the bandwidth release until the 0-lag
3580 * point. This would include retaining the task_struct until that time
3581 * and change dl_overflow() to not immediately decrement the current
3582 * amount.
3583 *
3584 * Instead we retain the current runtime/deadline and let the new
3585 * parameters take effect after the current reservation period lapses.
3586 * This is safe (albeit pessimistic) because the 0-lag point is always
3587 * before the current scheduling deadline.
3588 *
3589 * We can still have temporary overloads because we do not delay the
3590 * change in bandwidth until that time; so admission control is
3591 * not on the safe side. It does however guarantee tasks will never
3592 * consume more than promised.
3593 */
3594 }
3595
3596 /*
3597 * sched_setparam() passes in -1 for its policy, to let the functions
3598 * it calls know not to change it.
3599 */
3600 #define SETPARAM_POLICY -1
3601
3602 static void __setscheduler_params(struct task_struct *p,
3603 const struct sched_attr *attr)
3604 {
3605 int policy = attr->sched_policy;
3606
3607 if (policy == SETPARAM_POLICY)
3608 policy = p->policy;
3609
3610 p->policy = policy;
3611
3612 if (dl_policy(policy))
3613 __setparam_dl(p, attr);
3614 else if (fair_policy(policy))
3615 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3616
3617 /*
3618 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3619 * !rt_policy. Always setting this ensures that things like
3620 * getparam()/getattr() don't report silly values for !rt tasks.
3621 */
3622 p->rt_priority = attr->sched_priority;
3623 p->normal_prio = normal_prio(p);
3624 set_load_weight(p);
3625 }
3626
3627 /* Actually do priority change: must hold pi & rq lock. */
3628 static void __setscheduler(struct rq *rq, struct task_struct *p,
3629 const struct sched_attr *attr, bool keep_boost)
3630 {
3631 __setscheduler_params(p, attr);
3632
3633 /*
3634 * Keep a potential priority boosting if called from
3635 * sched_setscheduler().
3636 */
3637 if (keep_boost)
3638 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3639 else
3640 p->prio = normal_prio(p);
3641
3642 if (dl_prio(p->prio))
3643 p->sched_class = &dl_sched_class;
3644 else if (rt_prio(p->prio))
3645 p->sched_class = &rt_sched_class;
3646 else
3647 p->sched_class = &fair_sched_class;
3648 }
3649
3650 static void
3651 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3652 {
3653 struct sched_dl_entity *dl_se = &p->dl;
3654
3655 attr->sched_priority = p->rt_priority;
3656 attr->sched_runtime = dl_se->dl_runtime;
3657 attr->sched_deadline = dl_se->dl_deadline;
3658 attr->sched_period = dl_se->dl_period;
3659 attr->sched_flags = dl_se->flags;
3660 }
3661
3662 /*
3663 * This function validates the new parameters of a -deadline task.
3664 * We ask for the deadline not being zero, and greater or equal
3665 * than the runtime, as well as the period of being zero or
3666 * greater than deadline. Furthermore, we have to be sure that
3667 * user parameters are above the internal resolution of 1us (we
3668 * check sched_runtime only since it is always the smaller one) and
3669 * below 2^63 ns (we have to check both sched_deadline and
3670 * sched_period, as the latter can be zero).
3671 */
3672 static bool
3673 __checkparam_dl(const struct sched_attr *attr)
3674 {
3675 /* deadline != 0 */
3676 if (attr->sched_deadline == 0)
3677 return false;
3678
3679 /*
3680 * Since we truncate DL_SCALE bits, make sure we're at least
3681 * that big.
3682 */
3683 if (attr->sched_runtime < (1ULL << DL_SCALE))
3684 return false;
3685
3686 /*
3687 * Since we use the MSB for wrap-around and sign issues, make
3688 * sure it's not set (mind that period can be equal to zero).
3689 */
3690 if (attr->sched_deadline & (1ULL << 63) ||
3691 attr->sched_period & (1ULL << 63))
3692 return false;
3693
3694 /* runtime <= deadline <= period (if period != 0) */
3695 if ((attr->sched_period != 0 &&
3696 attr->sched_period < attr->sched_deadline) ||
3697 attr->sched_deadline < attr->sched_runtime)
3698 return false;
3699
3700 return true;
3701 }
3702
3703 /*
3704 * check the target process has a UID that matches the current process's
3705 */
3706 static bool check_same_owner(struct task_struct *p)
3707 {
3708 const struct cred *cred = current_cred(), *pcred;
3709 bool match;
3710
3711 rcu_read_lock();
3712 pcred = __task_cred(p);
3713 match = (uid_eq(cred->euid, pcred->euid) ||
3714 uid_eq(cred->euid, pcred->uid));
3715 rcu_read_unlock();
3716 return match;
3717 }
3718
3719 static bool dl_param_changed(struct task_struct *p,
3720 const struct sched_attr *attr)
3721 {
3722 struct sched_dl_entity *dl_se = &p->dl;
3723
3724 if (dl_se->dl_runtime != attr->sched_runtime ||
3725 dl_se->dl_deadline != attr->sched_deadline ||
3726 dl_se->dl_period != attr->sched_period ||
3727 dl_se->flags != attr->sched_flags)
3728 return true;
3729
3730 return false;
3731 }
3732
3733 static int __sched_setscheduler(struct task_struct *p,
3734 const struct sched_attr *attr,
3735 bool user, bool pi)
3736 {
3737 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3738 MAX_RT_PRIO - 1 - attr->sched_priority;
3739 int retval, oldprio, oldpolicy = -1, queued, running;
3740 int new_effective_prio, policy = attr->sched_policy;
3741 unsigned long flags;
3742 const struct sched_class *prev_class;
3743 struct rq *rq;
3744 int reset_on_fork;
3745
3746 /* may grab non-irq protected spin_locks */
3747 BUG_ON(in_interrupt());
3748 recheck:
3749 /* double check policy once rq lock held */
3750 if (policy < 0) {
3751 reset_on_fork = p->sched_reset_on_fork;
3752 policy = oldpolicy = p->policy;
3753 } else {
3754 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3755
3756 if (policy != SCHED_DEADLINE &&
3757 policy != SCHED_FIFO && policy != SCHED_RR &&
3758 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3759 policy != SCHED_IDLE)
3760 return -EINVAL;
3761 }
3762
3763 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3764 return -EINVAL;
3765
3766 /*
3767 * Valid priorities for SCHED_FIFO and SCHED_RR are
3768 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3769 * SCHED_BATCH and SCHED_IDLE is 0.
3770 */
3771 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3772 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3773 return -EINVAL;
3774 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3775 (rt_policy(policy) != (attr->sched_priority != 0)))
3776 return -EINVAL;
3777
3778 /*
3779 * Allow unprivileged RT tasks to decrease priority:
3780 */
3781 if (user && !capable(CAP_SYS_NICE)) {
3782 if (fair_policy(policy)) {
3783 if (attr->sched_nice < task_nice(p) &&
3784 !can_nice(p, attr->sched_nice))
3785 return -EPERM;
3786 }
3787
3788 if (rt_policy(policy)) {
3789 unsigned long rlim_rtprio =
3790 task_rlimit(p, RLIMIT_RTPRIO);
3791
3792 /* can't set/change the rt policy */
3793 if (policy != p->policy && !rlim_rtprio)
3794 return -EPERM;
3795
3796 /* can't increase priority */
3797 if (attr->sched_priority > p->rt_priority &&
3798 attr->sched_priority > rlim_rtprio)
3799 return -EPERM;
3800 }
3801
3802 /*
3803 * Can't set/change SCHED_DEADLINE policy at all for now
3804 * (safest behavior); in the future we would like to allow
3805 * unprivileged DL tasks to increase their relative deadline
3806 * or reduce their runtime (both ways reducing utilization)
3807 */
3808 if (dl_policy(policy))
3809 return -EPERM;
3810
3811 /*
3812 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3813 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3814 */
3815 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3816 if (!can_nice(p, task_nice(p)))
3817 return -EPERM;
3818 }
3819
3820 /* can't change other user's priorities */
3821 if (!check_same_owner(p))
3822 return -EPERM;
3823
3824 /* Normal users shall not reset the sched_reset_on_fork flag */
3825 if (p->sched_reset_on_fork && !reset_on_fork)
3826 return -EPERM;
3827 }
3828
3829 if (user) {
3830 retval = security_task_setscheduler(p);
3831 if (retval)
3832 return retval;
3833 }
3834
3835 /*
3836 * make sure no PI-waiters arrive (or leave) while we are
3837 * changing the priority of the task:
3838 *
3839 * To be able to change p->policy safely, the appropriate
3840 * runqueue lock must be held.
3841 */
3842 rq = task_rq_lock(p, &flags);
3843
3844 /*
3845 * Changing the policy of the stop threads its a very bad idea
3846 */
3847 if (p == rq->stop) {
3848 task_rq_unlock(rq, p, &flags);
3849 return -EINVAL;
3850 }
3851
3852 /*
3853 * If not changing anything there's no need to proceed further,
3854 * but store a possible modification of reset_on_fork.
3855 */
3856 if (unlikely(policy == p->policy)) {
3857 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3858 goto change;
3859 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3860 goto change;
3861 if (dl_policy(policy) && dl_param_changed(p, attr))
3862 goto change;
3863
3864 p->sched_reset_on_fork = reset_on_fork;
3865 task_rq_unlock(rq, p, &flags);
3866 return 0;
3867 }
3868 change:
3869
3870 if (user) {
3871 #ifdef CONFIG_RT_GROUP_SCHED
3872 /*
3873 * Do not allow realtime tasks into groups that have no runtime
3874 * assigned.
3875 */
3876 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3877 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3878 !task_group_is_autogroup(task_group(p))) {
3879 task_rq_unlock(rq, p, &flags);
3880 return -EPERM;
3881 }
3882 #endif
3883 #ifdef CONFIG_SMP
3884 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3885 cpumask_t *span = rq->rd->span;
3886
3887 /*
3888 * Don't allow tasks with an affinity mask smaller than
3889 * the entire root_domain to become SCHED_DEADLINE. We
3890 * will also fail if there's no bandwidth available.
3891 */
3892 if (!cpumask_subset(span, &p->cpus_allowed) ||
3893 rq->rd->dl_bw.bw == 0) {
3894 task_rq_unlock(rq, p, &flags);
3895 return -EPERM;
3896 }
3897 }
3898 #endif
3899 }
3900
3901 /* recheck policy now with rq lock held */
3902 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3903 policy = oldpolicy = -1;
3904 task_rq_unlock(rq, p, &flags);
3905 goto recheck;
3906 }
3907
3908 /*
3909 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3910 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3911 * is available.
3912 */
3913 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3914 task_rq_unlock(rq, p, &flags);
3915 return -EBUSY;
3916 }
3917
3918 p->sched_reset_on_fork = reset_on_fork;
3919 oldprio = p->prio;
3920
3921 if (pi) {
3922 /*
3923 * Take priority boosted tasks into account. If the new
3924 * effective priority is unchanged, we just store the new
3925 * normal parameters and do not touch the scheduler class and
3926 * the runqueue. This will be done when the task deboost
3927 * itself.
3928 */
3929 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3930 if (new_effective_prio == oldprio) {
3931 __setscheduler_params(p, attr);
3932 task_rq_unlock(rq, p, &flags);
3933 return 0;
3934 }
3935 }
3936
3937 queued = task_on_rq_queued(p);
3938 running = task_current(rq, p);
3939 if (queued)
3940 dequeue_task(rq, p, 0);
3941 if (running)
3942 put_prev_task(rq, p);
3943
3944 prev_class = p->sched_class;
3945 __setscheduler(rq, p, attr, pi);
3946
3947 if (running)
3948 p->sched_class->set_curr_task(rq);
3949 if (queued) {
3950 /*
3951 * We enqueue to tail when the priority of a task is
3952 * increased (user space view).
3953 */
3954 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3955 }
3956
3957 check_class_changed(rq, p, prev_class, oldprio);
3958 preempt_disable(); /* avoid rq from going away on us */
3959 task_rq_unlock(rq, p, &flags);
3960
3961 if (pi)
3962 rt_mutex_adjust_pi(p);
3963
3964 /*
3965 * Run balance callbacks after we've adjusted the PI chain.
3966 */
3967 balance_callback(rq);
3968 preempt_enable();
3969
3970 return 0;
3971 }
3972
3973 static int _sched_setscheduler(struct task_struct *p, int policy,
3974 const struct sched_param *param, bool check)
3975 {
3976 struct sched_attr attr = {
3977 .sched_policy = policy,
3978 .sched_priority = param->sched_priority,
3979 .sched_nice = PRIO_TO_NICE(p->static_prio),
3980 };
3981
3982 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3983 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3984 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3985 policy &= ~SCHED_RESET_ON_FORK;
3986 attr.sched_policy = policy;
3987 }
3988
3989 return __sched_setscheduler(p, &attr, check, true);
3990 }
3991 /**
3992 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3993 * @p: the task in question.
3994 * @policy: new policy.
3995 * @param: structure containing the new RT priority.
3996 *
3997 * Return: 0 on success. An error code otherwise.
3998 *
3999 * NOTE that the task may be already dead.
4000 */
4001 int sched_setscheduler(struct task_struct *p, int policy,
4002 const struct sched_param *param)
4003 {
4004 return _sched_setscheduler(p, policy, param, true);
4005 }
4006 EXPORT_SYMBOL_GPL(sched_setscheduler);
4007
4008 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4009 {
4010 return __sched_setscheduler(p, attr, true, true);
4011 }
4012 EXPORT_SYMBOL_GPL(sched_setattr);
4013
4014 /**
4015 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4016 * @p: the task in question.
4017 * @policy: new policy.
4018 * @param: structure containing the new RT priority.
4019 *
4020 * Just like sched_setscheduler, only don't bother checking if the
4021 * current context has permission. For example, this is needed in
4022 * stop_machine(): we create temporary high priority worker threads,
4023 * but our caller might not have that capability.
4024 *
4025 * Return: 0 on success. An error code otherwise.
4026 */
4027 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4028 const struct sched_param *param)
4029 {
4030 return _sched_setscheduler(p, policy, param, false);
4031 }
4032
4033 static int
4034 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4035 {
4036 struct sched_param lparam;
4037 struct task_struct *p;
4038 int retval;
4039
4040 if (!param || pid < 0)
4041 return -EINVAL;
4042 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4043 return -EFAULT;
4044
4045 rcu_read_lock();
4046 retval = -ESRCH;
4047 p = find_process_by_pid(pid);
4048 if (p != NULL)
4049 retval = sched_setscheduler(p, policy, &lparam);
4050 rcu_read_unlock();
4051
4052 return retval;
4053 }
4054
4055 /*
4056 * Mimics kernel/events/core.c perf_copy_attr().
4057 */
4058 static int sched_copy_attr(struct sched_attr __user *uattr,
4059 struct sched_attr *attr)
4060 {
4061 u32 size;
4062 int ret;
4063
4064 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4065 return -EFAULT;
4066
4067 /*
4068 * zero the full structure, so that a short copy will be nice.
4069 */
4070 memset(attr, 0, sizeof(*attr));
4071
4072 ret = get_user(size, &uattr->size);
4073 if (ret)
4074 return ret;
4075
4076 if (size > PAGE_SIZE) /* silly large */
4077 goto err_size;
4078
4079 if (!size) /* abi compat */
4080 size = SCHED_ATTR_SIZE_VER0;
4081
4082 if (size < SCHED_ATTR_SIZE_VER0)
4083 goto err_size;
4084
4085 /*
4086 * If we're handed a bigger struct than we know of,
4087 * ensure all the unknown bits are 0 - i.e. new
4088 * user-space does not rely on any kernel feature
4089 * extensions we dont know about yet.
4090 */
4091 if (size > sizeof(*attr)) {
4092 unsigned char __user *addr;
4093 unsigned char __user *end;
4094 unsigned char val;
4095
4096 addr = (void __user *)uattr + sizeof(*attr);
4097 end = (void __user *)uattr + size;
4098
4099 for (; addr < end; addr++) {
4100 ret = get_user(val, addr);
4101 if (ret)
4102 return ret;
4103 if (val)
4104 goto err_size;
4105 }
4106 size = sizeof(*attr);
4107 }
4108
4109 ret = copy_from_user(attr, uattr, size);
4110 if (ret)
4111 return -EFAULT;
4112
4113 /*
4114 * XXX: do we want to be lenient like existing syscalls; or do we want
4115 * to be strict and return an error on out-of-bounds values?
4116 */
4117 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4118
4119 return 0;
4120
4121 err_size:
4122 put_user(sizeof(*attr), &uattr->size);
4123 return -E2BIG;
4124 }
4125
4126 /**
4127 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4128 * @pid: the pid in question.
4129 * @policy: new policy.
4130 * @param: structure containing the new RT priority.
4131 *
4132 * Return: 0 on success. An error code otherwise.
4133 */
4134 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4135 struct sched_param __user *, param)
4136 {
4137 /* negative values for policy are not valid */
4138 if (policy < 0)
4139 return -EINVAL;
4140
4141 return do_sched_setscheduler(pid, policy, param);
4142 }
4143
4144 /**
4145 * sys_sched_setparam - set/change the RT priority of a thread
4146 * @pid: the pid in question.
4147 * @param: structure containing the new RT priority.
4148 *
4149 * Return: 0 on success. An error code otherwise.
4150 */
4151 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4152 {
4153 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4154 }
4155
4156 /**
4157 * sys_sched_setattr - same as above, but with extended sched_attr
4158 * @pid: the pid in question.
4159 * @uattr: structure containing the extended parameters.
4160 * @flags: for future extension.
4161 */
4162 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4163 unsigned int, flags)
4164 {
4165 struct sched_attr attr;
4166 struct task_struct *p;
4167 int retval;
4168
4169 if (!uattr || pid < 0 || flags)
4170 return -EINVAL;
4171
4172 retval = sched_copy_attr(uattr, &attr);
4173 if (retval)
4174 return retval;
4175
4176 if ((int)attr.sched_policy < 0)
4177 return -EINVAL;
4178
4179 rcu_read_lock();
4180 retval = -ESRCH;
4181 p = find_process_by_pid(pid);
4182 if (p != NULL)
4183 retval = sched_setattr(p, &attr);
4184 rcu_read_unlock();
4185
4186 return retval;
4187 }
4188
4189 /**
4190 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4191 * @pid: the pid in question.
4192 *
4193 * Return: On success, the policy of the thread. Otherwise, a negative error
4194 * code.
4195 */
4196 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4197 {
4198 struct task_struct *p;
4199 int retval;
4200
4201 if (pid < 0)
4202 return -EINVAL;
4203
4204 retval = -ESRCH;
4205 rcu_read_lock();
4206 p = find_process_by_pid(pid);
4207 if (p) {
4208 retval = security_task_getscheduler(p);
4209 if (!retval)
4210 retval = p->policy
4211 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4212 }
4213 rcu_read_unlock();
4214 return retval;
4215 }
4216
4217 /**
4218 * sys_sched_getparam - get the RT priority of a thread
4219 * @pid: the pid in question.
4220 * @param: structure containing the RT priority.
4221 *
4222 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4223 * code.
4224 */
4225 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4226 {
4227 struct sched_param lp = { .sched_priority = 0 };
4228 struct task_struct *p;
4229 int retval;
4230
4231 if (!param || pid < 0)
4232 return -EINVAL;
4233
4234 rcu_read_lock();
4235 p = find_process_by_pid(pid);
4236 retval = -ESRCH;
4237 if (!p)
4238 goto out_unlock;
4239
4240 retval = security_task_getscheduler(p);
4241 if (retval)
4242 goto out_unlock;
4243
4244 if (task_has_rt_policy(p))
4245 lp.sched_priority = p->rt_priority;
4246 rcu_read_unlock();
4247
4248 /*
4249 * This one might sleep, we cannot do it with a spinlock held ...
4250 */
4251 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4252
4253 return retval;
4254
4255 out_unlock:
4256 rcu_read_unlock();
4257 return retval;
4258 }
4259
4260 static int sched_read_attr(struct sched_attr __user *uattr,
4261 struct sched_attr *attr,
4262 unsigned int usize)
4263 {
4264 int ret;
4265
4266 if (!access_ok(VERIFY_WRITE, uattr, usize))
4267 return -EFAULT;
4268
4269 /*
4270 * If we're handed a smaller struct than we know of,
4271 * ensure all the unknown bits are 0 - i.e. old
4272 * user-space does not get uncomplete information.
4273 */
4274 if (usize < sizeof(*attr)) {
4275 unsigned char *addr;
4276 unsigned char *end;
4277
4278 addr = (void *)attr + usize;
4279 end = (void *)attr + sizeof(*attr);
4280
4281 for (; addr < end; addr++) {
4282 if (*addr)
4283 return -EFBIG;
4284 }
4285
4286 attr->size = usize;
4287 }
4288
4289 ret = copy_to_user(uattr, attr, attr->size);
4290 if (ret)
4291 return -EFAULT;
4292
4293 return 0;
4294 }
4295
4296 /**
4297 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4298 * @pid: the pid in question.
4299 * @uattr: structure containing the extended parameters.
4300 * @size: sizeof(attr) for fwd/bwd comp.
4301 * @flags: for future extension.
4302 */
4303 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4304 unsigned int, size, unsigned int, flags)
4305 {
4306 struct sched_attr attr = {
4307 .size = sizeof(struct sched_attr),
4308 };
4309 struct task_struct *p;
4310 int retval;
4311
4312 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4313 size < SCHED_ATTR_SIZE_VER0 || flags)
4314 return -EINVAL;
4315
4316 rcu_read_lock();
4317 p = find_process_by_pid(pid);
4318 retval = -ESRCH;
4319 if (!p)
4320 goto out_unlock;
4321
4322 retval = security_task_getscheduler(p);
4323 if (retval)
4324 goto out_unlock;
4325
4326 attr.sched_policy = p->policy;
4327 if (p->sched_reset_on_fork)
4328 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4329 if (task_has_dl_policy(p))
4330 __getparam_dl(p, &attr);
4331 else if (task_has_rt_policy(p))
4332 attr.sched_priority = p->rt_priority;
4333 else
4334 attr.sched_nice = task_nice(p);
4335
4336 rcu_read_unlock();
4337
4338 retval = sched_read_attr(uattr, &attr, size);
4339 return retval;
4340
4341 out_unlock:
4342 rcu_read_unlock();
4343 return retval;
4344 }
4345
4346 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4347 {
4348 cpumask_var_t cpus_allowed, new_mask;
4349 struct task_struct *p;
4350 int retval;
4351
4352 rcu_read_lock();
4353
4354 p = find_process_by_pid(pid);
4355 if (!p) {
4356 rcu_read_unlock();
4357 return -ESRCH;
4358 }
4359
4360 /* Prevent p going away */
4361 get_task_struct(p);
4362 rcu_read_unlock();
4363
4364 if (p->flags & PF_NO_SETAFFINITY) {
4365 retval = -EINVAL;
4366 goto out_put_task;
4367 }
4368 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4369 retval = -ENOMEM;
4370 goto out_put_task;
4371 }
4372 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4373 retval = -ENOMEM;
4374 goto out_free_cpus_allowed;
4375 }
4376 retval = -EPERM;
4377 if (!check_same_owner(p)) {
4378 rcu_read_lock();
4379 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4380 rcu_read_unlock();
4381 goto out_free_new_mask;
4382 }
4383 rcu_read_unlock();
4384 }
4385
4386 retval = security_task_setscheduler(p);
4387 if (retval)
4388 goto out_free_new_mask;
4389
4390
4391 cpuset_cpus_allowed(p, cpus_allowed);
4392 cpumask_and(new_mask, in_mask, cpus_allowed);
4393
4394 /*
4395 * Since bandwidth control happens on root_domain basis,
4396 * if admission test is enabled, we only admit -deadline
4397 * tasks allowed to run on all the CPUs in the task's
4398 * root_domain.
4399 */
4400 #ifdef CONFIG_SMP
4401 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4402 rcu_read_lock();
4403 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4404 retval = -EBUSY;
4405 rcu_read_unlock();
4406 goto out_free_new_mask;
4407 }
4408 rcu_read_unlock();
4409 }
4410 #endif
4411 again:
4412 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4413
4414 if (!retval) {
4415 cpuset_cpus_allowed(p, cpus_allowed);
4416 if (!cpumask_subset(new_mask, cpus_allowed)) {
4417 /*
4418 * We must have raced with a concurrent cpuset
4419 * update. Just reset the cpus_allowed to the
4420 * cpuset's cpus_allowed
4421 */
4422 cpumask_copy(new_mask, cpus_allowed);
4423 goto again;
4424 }
4425 }
4426 out_free_new_mask:
4427 free_cpumask_var(new_mask);
4428 out_free_cpus_allowed:
4429 free_cpumask_var(cpus_allowed);
4430 out_put_task:
4431 put_task_struct(p);
4432 return retval;
4433 }
4434
4435 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4436 struct cpumask *new_mask)
4437 {
4438 if (len < cpumask_size())
4439 cpumask_clear(new_mask);
4440 else if (len > cpumask_size())
4441 len = cpumask_size();
4442
4443 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4444 }
4445
4446 /**
4447 * sys_sched_setaffinity - set the cpu affinity of a process
4448 * @pid: pid of the process
4449 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4450 * @user_mask_ptr: user-space pointer to the new cpu mask
4451 *
4452 * Return: 0 on success. An error code otherwise.
4453 */
4454 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4455 unsigned long __user *, user_mask_ptr)
4456 {
4457 cpumask_var_t new_mask;
4458 int retval;
4459
4460 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4461 return -ENOMEM;
4462
4463 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4464 if (retval == 0)
4465 retval = sched_setaffinity(pid, new_mask);
4466 free_cpumask_var(new_mask);
4467 return retval;
4468 }
4469
4470 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4471 {
4472 struct task_struct *p;
4473 unsigned long flags;
4474 int retval;
4475
4476 rcu_read_lock();
4477
4478 retval = -ESRCH;
4479 p = find_process_by_pid(pid);
4480 if (!p)
4481 goto out_unlock;
4482
4483 retval = security_task_getscheduler(p);
4484 if (retval)
4485 goto out_unlock;
4486
4487 raw_spin_lock_irqsave(&p->pi_lock, flags);
4488 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4489 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4490
4491 out_unlock:
4492 rcu_read_unlock();
4493
4494 return retval;
4495 }
4496
4497 /**
4498 * sys_sched_getaffinity - get the cpu affinity of a process
4499 * @pid: pid of the process
4500 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4501 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4502 *
4503 * Return: 0 on success. An error code otherwise.
4504 */
4505 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4506 unsigned long __user *, user_mask_ptr)
4507 {
4508 int ret;
4509 cpumask_var_t mask;
4510
4511 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4512 return -EINVAL;
4513 if (len & (sizeof(unsigned long)-1))
4514 return -EINVAL;
4515
4516 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4517 return -ENOMEM;
4518
4519 ret = sched_getaffinity(pid, mask);
4520 if (ret == 0) {
4521 size_t retlen = min_t(size_t, len, cpumask_size());
4522
4523 if (copy_to_user(user_mask_ptr, mask, retlen))
4524 ret = -EFAULT;
4525 else
4526 ret = retlen;
4527 }
4528 free_cpumask_var(mask);
4529
4530 return ret;
4531 }
4532
4533 /**
4534 * sys_sched_yield - yield the current processor to other threads.
4535 *
4536 * This function yields the current CPU to other tasks. If there are no
4537 * other threads running on this CPU then this function will return.
4538 *
4539 * Return: 0.
4540 */
4541 SYSCALL_DEFINE0(sched_yield)
4542 {
4543 struct rq *rq = this_rq_lock();
4544
4545 schedstat_inc(rq, yld_count);
4546 current->sched_class->yield_task(rq);
4547
4548 /*
4549 * Since we are going to call schedule() anyway, there's
4550 * no need to preempt or enable interrupts:
4551 */
4552 __release(rq->lock);
4553 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4554 do_raw_spin_unlock(&rq->lock);
4555 sched_preempt_enable_no_resched();
4556
4557 schedule();
4558
4559 return 0;
4560 }
4561
4562 int __sched _cond_resched(void)
4563 {
4564 if (should_resched(0)) {
4565 preempt_schedule_common();
4566 return 1;
4567 }
4568 return 0;
4569 }
4570 EXPORT_SYMBOL(_cond_resched);
4571
4572 /*
4573 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4574 * call schedule, and on return reacquire the lock.
4575 *
4576 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4577 * operations here to prevent schedule() from being called twice (once via
4578 * spin_unlock(), once by hand).
4579 */
4580 int __cond_resched_lock(spinlock_t *lock)
4581 {
4582 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4583 int ret = 0;
4584
4585 lockdep_assert_held(lock);
4586
4587 if (spin_needbreak(lock) || resched) {
4588 spin_unlock(lock);
4589 if (resched)
4590 preempt_schedule_common();
4591 else
4592 cpu_relax();
4593 ret = 1;
4594 spin_lock(lock);
4595 }
4596 return ret;
4597 }
4598 EXPORT_SYMBOL(__cond_resched_lock);
4599
4600 int __sched __cond_resched_softirq(void)
4601 {
4602 BUG_ON(!in_softirq());
4603
4604 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4605 local_bh_enable();
4606 preempt_schedule_common();
4607 local_bh_disable();
4608 return 1;
4609 }
4610 return 0;
4611 }
4612 EXPORT_SYMBOL(__cond_resched_softirq);
4613
4614 /**
4615 * yield - yield the current processor to other threads.
4616 *
4617 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4618 *
4619 * The scheduler is at all times free to pick the calling task as the most
4620 * eligible task to run, if removing the yield() call from your code breaks
4621 * it, its already broken.
4622 *
4623 * Typical broken usage is:
4624 *
4625 * while (!event)
4626 * yield();
4627 *
4628 * where one assumes that yield() will let 'the other' process run that will
4629 * make event true. If the current task is a SCHED_FIFO task that will never
4630 * happen. Never use yield() as a progress guarantee!!
4631 *
4632 * If you want to use yield() to wait for something, use wait_event().
4633 * If you want to use yield() to be 'nice' for others, use cond_resched().
4634 * If you still want to use yield(), do not!
4635 */
4636 void __sched yield(void)
4637 {
4638 set_current_state(TASK_RUNNING);
4639 sys_sched_yield();
4640 }
4641 EXPORT_SYMBOL(yield);
4642
4643 /**
4644 * yield_to - yield the current processor to another thread in
4645 * your thread group, or accelerate that thread toward the
4646 * processor it's on.
4647 * @p: target task
4648 * @preempt: whether task preemption is allowed or not
4649 *
4650 * It's the caller's job to ensure that the target task struct
4651 * can't go away on us before we can do any checks.
4652 *
4653 * Return:
4654 * true (>0) if we indeed boosted the target task.
4655 * false (0) if we failed to boost the target.
4656 * -ESRCH if there's no task to yield to.
4657 */
4658 int __sched yield_to(struct task_struct *p, bool preempt)
4659 {
4660 struct task_struct *curr = current;
4661 struct rq *rq, *p_rq;
4662 unsigned long flags;
4663 int yielded = 0;
4664
4665 local_irq_save(flags);
4666 rq = this_rq();
4667
4668 again:
4669 p_rq = task_rq(p);
4670 /*
4671 * If we're the only runnable task on the rq and target rq also
4672 * has only one task, there's absolutely no point in yielding.
4673 */
4674 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4675 yielded = -ESRCH;
4676 goto out_irq;
4677 }
4678
4679 double_rq_lock(rq, p_rq);
4680 if (task_rq(p) != p_rq) {
4681 double_rq_unlock(rq, p_rq);
4682 goto again;
4683 }
4684
4685 if (!curr->sched_class->yield_to_task)
4686 goto out_unlock;
4687
4688 if (curr->sched_class != p->sched_class)
4689 goto out_unlock;
4690
4691 if (task_running(p_rq, p) || p->state)
4692 goto out_unlock;
4693
4694 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4695 if (yielded) {
4696 schedstat_inc(rq, yld_count);
4697 /*
4698 * Make p's CPU reschedule; pick_next_entity takes care of
4699 * fairness.
4700 */
4701 if (preempt && rq != p_rq)
4702 resched_curr(p_rq);
4703 }
4704
4705 out_unlock:
4706 double_rq_unlock(rq, p_rq);
4707 out_irq:
4708 local_irq_restore(flags);
4709
4710 if (yielded > 0)
4711 schedule();
4712
4713 return yielded;
4714 }
4715 EXPORT_SYMBOL_GPL(yield_to);
4716
4717 /*
4718 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4719 * that process accounting knows that this is a task in IO wait state.
4720 */
4721 long __sched io_schedule_timeout(long timeout)
4722 {
4723 int old_iowait = current->in_iowait;
4724 struct rq *rq;
4725 long ret;
4726
4727 current->in_iowait = 1;
4728 blk_schedule_flush_plug(current);
4729
4730 delayacct_blkio_start();
4731 rq = raw_rq();
4732 atomic_inc(&rq->nr_iowait);
4733 ret = schedule_timeout(timeout);
4734 current->in_iowait = old_iowait;
4735 atomic_dec(&rq->nr_iowait);
4736 delayacct_blkio_end();
4737
4738 return ret;
4739 }
4740 EXPORT_SYMBOL(io_schedule_timeout);
4741
4742 /**
4743 * sys_sched_get_priority_max - return maximum RT priority.
4744 * @policy: scheduling class.
4745 *
4746 * Return: On success, this syscall returns the maximum
4747 * rt_priority that can be used by a given scheduling class.
4748 * On failure, a negative error code is returned.
4749 */
4750 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4751 {
4752 int ret = -EINVAL;
4753
4754 switch (policy) {
4755 case SCHED_FIFO:
4756 case SCHED_RR:
4757 ret = MAX_USER_RT_PRIO-1;
4758 break;
4759 case SCHED_DEADLINE:
4760 case SCHED_NORMAL:
4761 case SCHED_BATCH:
4762 case SCHED_IDLE:
4763 ret = 0;
4764 break;
4765 }
4766 return ret;
4767 }
4768
4769 /**
4770 * sys_sched_get_priority_min - return minimum RT priority.
4771 * @policy: scheduling class.
4772 *
4773 * Return: On success, this syscall returns the minimum
4774 * rt_priority that can be used by a given scheduling class.
4775 * On failure, a negative error code is returned.
4776 */
4777 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4778 {
4779 int ret = -EINVAL;
4780
4781 switch (policy) {
4782 case SCHED_FIFO:
4783 case SCHED_RR:
4784 ret = 1;
4785 break;
4786 case SCHED_DEADLINE:
4787 case SCHED_NORMAL:
4788 case SCHED_BATCH:
4789 case SCHED_IDLE:
4790 ret = 0;
4791 }
4792 return ret;
4793 }
4794
4795 /**
4796 * sys_sched_rr_get_interval - return the default timeslice of a process.
4797 * @pid: pid of the process.
4798 * @interval: userspace pointer to the timeslice value.
4799 *
4800 * this syscall writes the default timeslice value of a given process
4801 * into the user-space timespec buffer. A value of '0' means infinity.
4802 *
4803 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4804 * an error code.
4805 */
4806 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4807 struct timespec __user *, interval)
4808 {
4809 struct task_struct *p;
4810 unsigned int time_slice;
4811 unsigned long flags;
4812 struct rq *rq;
4813 int retval;
4814 struct timespec t;
4815
4816 if (pid < 0)
4817 return -EINVAL;
4818
4819 retval = -ESRCH;
4820 rcu_read_lock();
4821 p = find_process_by_pid(pid);
4822 if (!p)
4823 goto out_unlock;
4824
4825 retval = security_task_getscheduler(p);
4826 if (retval)
4827 goto out_unlock;
4828
4829 rq = task_rq_lock(p, &flags);
4830 time_slice = 0;
4831 if (p->sched_class->get_rr_interval)
4832 time_slice = p->sched_class->get_rr_interval(rq, p);
4833 task_rq_unlock(rq, p, &flags);
4834
4835 rcu_read_unlock();
4836 jiffies_to_timespec(time_slice, &t);
4837 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4838 return retval;
4839
4840 out_unlock:
4841 rcu_read_unlock();
4842 return retval;
4843 }
4844
4845 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4846
4847 void sched_show_task(struct task_struct *p)
4848 {
4849 unsigned long free = 0;
4850 int ppid;
4851 unsigned long state = p->state;
4852
4853 if (state)
4854 state = __ffs(state) + 1;
4855 printk(KERN_INFO "%-15.15s %c", p->comm,
4856 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4857 #if BITS_PER_LONG == 32
4858 if (state == TASK_RUNNING)
4859 printk(KERN_CONT " running ");
4860 else
4861 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4862 #else
4863 if (state == TASK_RUNNING)
4864 printk(KERN_CONT " running task ");
4865 else
4866 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4867 #endif
4868 #ifdef CONFIG_DEBUG_STACK_USAGE
4869 free = stack_not_used(p);
4870 #endif
4871 ppid = 0;
4872 rcu_read_lock();
4873 if (pid_alive(p))
4874 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4875 rcu_read_unlock();
4876 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4877 task_pid_nr(p), ppid,
4878 (unsigned long)task_thread_info(p)->flags);
4879
4880 print_worker_info(KERN_INFO, p);
4881 show_stack(p, NULL);
4882 }
4883
4884 void show_state_filter(unsigned long state_filter)
4885 {
4886 struct task_struct *g, *p;
4887
4888 #if BITS_PER_LONG == 32
4889 printk(KERN_INFO
4890 " task PC stack pid father\n");
4891 #else
4892 printk(KERN_INFO
4893 " task PC stack pid father\n");
4894 #endif
4895 rcu_read_lock();
4896 for_each_process_thread(g, p) {
4897 /*
4898 * reset the NMI-timeout, listing all files on a slow
4899 * console might take a lot of time:
4900 */
4901 touch_nmi_watchdog();
4902 if (!state_filter || (p->state & state_filter))
4903 sched_show_task(p);
4904 }
4905
4906 touch_all_softlockup_watchdogs();
4907
4908 #ifdef CONFIG_SCHED_DEBUG
4909 sysrq_sched_debug_show();
4910 #endif
4911 rcu_read_unlock();
4912 /*
4913 * Only show locks if all tasks are dumped:
4914 */
4915 if (!state_filter)
4916 debug_show_all_locks();
4917 }
4918
4919 void init_idle_bootup_task(struct task_struct *idle)
4920 {
4921 idle->sched_class = &idle_sched_class;
4922 }
4923
4924 /**
4925 * init_idle - set up an idle thread for a given CPU
4926 * @idle: task in question
4927 * @cpu: cpu the idle task belongs to
4928 *
4929 * NOTE: this function does not set the idle thread's NEED_RESCHED
4930 * flag, to make booting more robust.
4931 */
4932 void init_idle(struct task_struct *idle, int cpu)
4933 {
4934 struct rq *rq = cpu_rq(cpu);
4935 unsigned long flags;
4936
4937 raw_spin_lock_irqsave(&idle->pi_lock, flags);
4938 raw_spin_lock(&rq->lock);
4939
4940 __sched_fork(0, idle);
4941 idle->state = TASK_RUNNING;
4942 idle->se.exec_start = sched_clock();
4943
4944 #ifdef CONFIG_SMP
4945 /*
4946 * Its possible that init_idle() gets called multiple times on a task,
4947 * in that case do_set_cpus_allowed() will not do the right thing.
4948 *
4949 * And since this is boot we can forgo the serialization.
4950 */
4951 set_cpus_allowed_common(idle, cpumask_of(cpu));
4952 #endif
4953 /*
4954 * We're having a chicken and egg problem, even though we are
4955 * holding rq->lock, the cpu isn't yet set to this cpu so the
4956 * lockdep check in task_group() will fail.
4957 *
4958 * Similar case to sched_fork(). / Alternatively we could
4959 * use task_rq_lock() here and obtain the other rq->lock.
4960 *
4961 * Silence PROVE_RCU
4962 */
4963 rcu_read_lock();
4964 __set_task_cpu(idle, cpu);
4965 rcu_read_unlock();
4966
4967 rq->curr = rq->idle = idle;
4968 idle->on_rq = TASK_ON_RQ_QUEUED;
4969 #ifdef CONFIG_SMP
4970 idle->on_cpu = 1;
4971 #endif
4972 raw_spin_unlock(&rq->lock);
4973 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
4974
4975 /* Set the preempt count _outside_ the spinlocks! */
4976 init_idle_preempt_count(idle, cpu);
4977
4978 /*
4979 * The idle tasks have their own, simple scheduling class:
4980 */
4981 idle->sched_class = &idle_sched_class;
4982 ftrace_graph_init_idle_task(idle, cpu);
4983 vtime_init_idle(idle, cpu);
4984 #ifdef CONFIG_SMP
4985 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4986 #endif
4987 }
4988
4989 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4990 const struct cpumask *trial)
4991 {
4992 int ret = 1, trial_cpus;
4993 struct dl_bw *cur_dl_b;
4994 unsigned long flags;
4995
4996 if (!cpumask_weight(cur))
4997 return ret;
4998
4999 rcu_read_lock_sched();
5000 cur_dl_b = dl_bw_of(cpumask_any(cur));
5001 trial_cpus = cpumask_weight(trial);
5002
5003 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5004 if (cur_dl_b->bw != -1 &&
5005 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5006 ret = 0;
5007 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5008 rcu_read_unlock_sched();
5009
5010 return ret;
5011 }
5012
5013 int task_can_attach(struct task_struct *p,
5014 const struct cpumask *cs_cpus_allowed)
5015 {
5016 int ret = 0;
5017
5018 /*
5019 * Kthreads which disallow setaffinity shouldn't be moved
5020 * to a new cpuset; we don't want to change their cpu
5021 * affinity and isolating such threads by their set of
5022 * allowed nodes is unnecessary. Thus, cpusets are not
5023 * applicable for such threads. This prevents checking for
5024 * success of set_cpus_allowed_ptr() on all attached tasks
5025 * before cpus_allowed may be changed.
5026 */
5027 if (p->flags & PF_NO_SETAFFINITY) {
5028 ret = -EINVAL;
5029 goto out;
5030 }
5031
5032 #ifdef CONFIG_SMP
5033 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5034 cs_cpus_allowed)) {
5035 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5036 cs_cpus_allowed);
5037 struct dl_bw *dl_b;
5038 bool overflow;
5039 int cpus;
5040 unsigned long flags;
5041
5042 rcu_read_lock_sched();
5043 dl_b = dl_bw_of(dest_cpu);
5044 raw_spin_lock_irqsave(&dl_b->lock, flags);
5045 cpus = dl_bw_cpus(dest_cpu);
5046 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5047 if (overflow)
5048 ret = -EBUSY;
5049 else {
5050 /*
5051 * We reserve space for this task in the destination
5052 * root_domain, as we can't fail after this point.
5053 * We will free resources in the source root_domain
5054 * later on (see set_cpus_allowed_dl()).
5055 */
5056 __dl_add(dl_b, p->dl.dl_bw);
5057 }
5058 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5059 rcu_read_unlock_sched();
5060
5061 }
5062 #endif
5063 out:
5064 return ret;
5065 }
5066
5067 #ifdef CONFIG_SMP
5068
5069 #ifdef CONFIG_NUMA_BALANCING
5070 /* Migrate current task p to target_cpu */
5071 int migrate_task_to(struct task_struct *p, int target_cpu)
5072 {
5073 struct migration_arg arg = { p, target_cpu };
5074 int curr_cpu = task_cpu(p);
5075
5076 if (curr_cpu == target_cpu)
5077 return 0;
5078
5079 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5080 return -EINVAL;
5081
5082 /* TODO: This is not properly updating schedstats */
5083
5084 trace_sched_move_numa(p, curr_cpu, target_cpu);
5085 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5086 }
5087
5088 /*
5089 * Requeue a task on a given node and accurately track the number of NUMA
5090 * tasks on the runqueues
5091 */
5092 void sched_setnuma(struct task_struct *p, int nid)
5093 {
5094 struct rq *rq;
5095 unsigned long flags;
5096 bool queued, running;
5097
5098 rq = task_rq_lock(p, &flags);
5099 queued = task_on_rq_queued(p);
5100 running = task_current(rq, p);
5101
5102 if (queued)
5103 dequeue_task(rq, p, 0);
5104 if (running)
5105 put_prev_task(rq, p);
5106
5107 p->numa_preferred_nid = nid;
5108
5109 if (running)
5110 p->sched_class->set_curr_task(rq);
5111 if (queued)
5112 enqueue_task(rq, p, 0);
5113 task_rq_unlock(rq, p, &flags);
5114 }
5115 #endif /* CONFIG_NUMA_BALANCING */
5116
5117 #ifdef CONFIG_HOTPLUG_CPU
5118 /*
5119 * Ensures that the idle task is using init_mm right before its cpu goes
5120 * offline.
5121 */
5122 void idle_task_exit(void)
5123 {
5124 struct mm_struct *mm = current->active_mm;
5125
5126 BUG_ON(cpu_online(smp_processor_id()));
5127
5128 if (mm != &init_mm) {
5129 switch_mm(mm, &init_mm, current);
5130 finish_arch_post_lock_switch();
5131 }
5132 mmdrop(mm);
5133 }
5134
5135 /*
5136 * Since this CPU is going 'away' for a while, fold any nr_active delta
5137 * we might have. Assumes we're called after migrate_tasks() so that the
5138 * nr_active count is stable.
5139 *
5140 * Also see the comment "Global load-average calculations".
5141 */
5142 static void calc_load_migrate(struct rq *rq)
5143 {
5144 long delta = calc_load_fold_active(rq);
5145 if (delta)
5146 atomic_long_add(delta, &calc_load_tasks);
5147 }
5148
5149 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5150 {
5151 }
5152
5153 static const struct sched_class fake_sched_class = {
5154 .put_prev_task = put_prev_task_fake,
5155 };
5156
5157 static struct task_struct fake_task = {
5158 /*
5159 * Avoid pull_{rt,dl}_task()
5160 */
5161 .prio = MAX_PRIO + 1,
5162 .sched_class = &fake_sched_class,
5163 };
5164
5165 /*
5166 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5167 * try_to_wake_up()->select_task_rq().
5168 *
5169 * Called with rq->lock held even though we'er in stop_machine() and
5170 * there's no concurrency possible, we hold the required locks anyway
5171 * because of lock validation efforts.
5172 */
5173 static void migrate_tasks(struct rq *dead_rq)
5174 {
5175 struct rq *rq = dead_rq;
5176 struct task_struct *next, *stop = rq->stop;
5177 int dest_cpu;
5178
5179 /*
5180 * Fudge the rq selection such that the below task selection loop
5181 * doesn't get stuck on the currently eligible stop task.
5182 *
5183 * We're currently inside stop_machine() and the rq is either stuck
5184 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5185 * either way we should never end up calling schedule() until we're
5186 * done here.
5187 */
5188 rq->stop = NULL;
5189
5190 /*
5191 * put_prev_task() and pick_next_task() sched
5192 * class method both need to have an up-to-date
5193 * value of rq->clock[_task]
5194 */
5195 update_rq_clock(rq);
5196
5197 for (;;) {
5198 /*
5199 * There's this thread running, bail when that's the only
5200 * remaining thread.
5201 */
5202 if (rq->nr_running == 1)
5203 break;
5204
5205 /*
5206 * pick_next_task assumes pinned rq->lock.
5207 */
5208 lockdep_pin_lock(&rq->lock);
5209 next = pick_next_task(rq, &fake_task);
5210 BUG_ON(!next);
5211 next->sched_class->put_prev_task(rq, next);
5212
5213 /*
5214 * Rules for changing task_struct::cpus_allowed are holding
5215 * both pi_lock and rq->lock, such that holding either
5216 * stabilizes the mask.
5217 *
5218 * Drop rq->lock is not quite as disastrous as it usually is
5219 * because !cpu_active at this point, which means load-balance
5220 * will not interfere. Also, stop-machine.
5221 */
5222 lockdep_unpin_lock(&rq->lock);
5223 raw_spin_unlock(&rq->lock);
5224 raw_spin_lock(&next->pi_lock);
5225 raw_spin_lock(&rq->lock);
5226
5227 /*
5228 * Since we're inside stop-machine, _nothing_ should have
5229 * changed the task, WARN if weird stuff happened, because in
5230 * that case the above rq->lock drop is a fail too.
5231 */
5232 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5233 raw_spin_unlock(&next->pi_lock);
5234 continue;
5235 }
5236
5237 /* Find suitable destination for @next, with force if needed. */
5238 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5239
5240 rq = __migrate_task(rq, next, dest_cpu);
5241 if (rq != dead_rq) {
5242 raw_spin_unlock(&rq->lock);
5243 rq = dead_rq;
5244 raw_spin_lock(&rq->lock);
5245 }
5246 raw_spin_unlock(&next->pi_lock);
5247 }
5248
5249 rq->stop = stop;
5250 }
5251 #endif /* CONFIG_HOTPLUG_CPU */
5252
5253 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5254
5255 static struct ctl_table sd_ctl_dir[] = {
5256 {
5257 .procname = "sched_domain",
5258 .mode = 0555,
5259 },
5260 {}
5261 };
5262
5263 static struct ctl_table sd_ctl_root[] = {
5264 {
5265 .procname = "kernel",
5266 .mode = 0555,
5267 .child = sd_ctl_dir,
5268 },
5269 {}
5270 };
5271
5272 static struct ctl_table *sd_alloc_ctl_entry(int n)
5273 {
5274 struct ctl_table *entry =
5275 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5276
5277 return entry;
5278 }
5279
5280 static void sd_free_ctl_entry(struct ctl_table **tablep)
5281 {
5282 struct ctl_table *entry;
5283
5284 /*
5285 * In the intermediate directories, both the child directory and
5286 * procname are dynamically allocated and could fail but the mode
5287 * will always be set. In the lowest directory the names are
5288 * static strings and all have proc handlers.
5289 */
5290 for (entry = *tablep; entry->mode; entry++) {
5291 if (entry->child)
5292 sd_free_ctl_entry(&entry->child);
5293 if (entry->proc_handler == NULL)
5294 kfree(entry->procname);
5295 }
5296
5297 kfree(*tablep);
5298 *tablep = NULL;
5299 }
5300
5301 static int min_load_idx = 0;
5302 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5303
5304 static void
5305 set_table_entry(struct ctl_table *entry,
5306 const char *procname, void *data, int maxlen,
5307 umode_t mode, proc_handler *proc_handler,
5308 bool load_idx)
5309 {
5310 entry->procname = procname;
5311 entry->data = data;
5312 entry->maxlen = maxlen;
5313 entry->mode = mode;
5314 entry->proc_handler = proc_handler;
5315
5316 if (load_idx) {
5317 entry->extra1 = &min_load_idx;
5318 entry->extra2 = &max_load_idx;
5319 }
5320 }
5321
5322 static struct ctl_table *
5323 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5324 {
5325 struct ctl_table *table = sd_alloc_ctl_entry(14);
5326
5327 if (table == NULL)
5328 return NULL;
5329
5330 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5331 sizeof(long), 0644, proc_doulongvec_minmax, false);
5332 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5333 sizeof(long), 0644, proc_doulongvec_minmax, false);
5334 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5335 sizeof(int), 0644, proc_dointvec_minmax, true);
5336 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5337 sizeof(int), 0644, proc_dointvec_minmax, true);
5338 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5339 sizeof(int), 0644, proc_dointvec_minmax, true);
5340 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5341 sizeof(int), 0644, proc_dointvec_minmax, true);
5342 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5343 sizeof(int), 0644, proc_dointvec_minmax, true);
5344 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5345 sizeof(int), 0644, proc_dointvec_minmax, false);
5346 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5347 sizeof(int), 0644, proc_dointvec_minmax, false);
5348 set_table_entry(&table[9], "cache_nice_tries",
5349 &sd->cache_nice_tries,
5350 sizeof(int), 0644, proc_dointvec_minmax, false);
5351 set_table_entry(&table[10], "flags", &sd->flags,
5352 sizeof(int), 0644, proc_dointvec_minmax, false);
5353 set_table_entry(&table[11], "max_newidle_lb_cost",
5354 &sd->max_newidle_lb_cost,
5355 sizeof(long), 0644, proc_doulongvec_minmax, false);
5356 set_table_entry(&table[12], "name", sd->name,
5357 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5358 /* &table[13] is terminator */
5359
5360 return table;
5361 }
5362
5363 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5364 {
5365 struct ctl_table *entry, *table;
5366 struct sched_domain *sd;
5367 int domain_num = 0, i;
5368 char buf[32];
5369
5370 for_each_domain(cpu, sd)
5371 domain_num++;
5372 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5373 if (table == NULL)
5374 return NULL;
5375
5376 i = 0;
5377 for_each_domain(cpu, sd) {
5378 snprintf(buf, 32, "domain%d", i);
5379 entry->procname = kstrdup(buf, GFP_KERNEL);
5380 entry->mode = 0555;
5381 entry->child = sd_alloc_ctl_domain_table(sd);
5382 entry++;
5383 i++;
5384 }
5385 return table;
5386 }
5387
5388 static struct ctl_table_header *sd_sysctl_header;
5389 static void register_sched_domain_sysctl(void)
5390 {
5391 int i, cpu_num = num_possible_cpus();
5392 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5393 char buf[32];
5394
5395 WARN_ON(sd_ctl_dir[0].child);
5396 sd_ctl_dir[0].child = entry;
5397
5398 if (entry == NULL)
5399 return;
5400
5401 for_each_possible_cpu(i) {
5402 snprintf(buf, 32, "cpu%d", i);
5403 entry->procname = kstrdup(buf, GFP_KERNEL);
5404 entry->mode = 0555;
5405 entry->child = sd_alloc_ctl_cpu_table(i);
5406 entry++;
5407 }
5408
5409 WARN_ON(sd_sysctl_header);
5410 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5411 }
5412
5413 /* may be called multiple times per register */
5414 static void unregister_sched_domain_sysctl(void)
5415 {
5416 unregister_sysctl_table(sd_sysctl_header);
5417 sd_sysctl_header = NULL;
5418 if (sd_ctl_dir[0].child)
5419 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5420 }
5421 #else
5422 static void register_sched_domain_sysctl(void)
5423 {
5424 }
5425 static void unregister_sched_domain_sysctl(void)
5426 {
5427 }
5428 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5429
5430 static void set_rq_online(struct rq *rq)
5431 {
5432 if (!rq->online) {
5433 const struct sched_class *class;
5434
5435 cpumask_set_cpu(rq->cpu, rq->rd->online);
5436 rq->online = 1;
5437
5438 for_each_class(class) {
5439 if (class->rq_online)
5440 class->rq_online(rq);
5441 }
5442 }
5443 }
5444
5445 static void set_rq_offline(struct rq *rq)
5446 {
5447 if (rq->online) {
5448 const struct sched_class *class;
5449
5450 for_each_class(class) {
5451 if (class->rq_offline)
5452 class->rq_offline(rq);
5453 }
5454
5455 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5456 rq->online = 0;
5457 }
5458 }
5459
5460 /*
5461 * migration_call - callback that gets triggered when a CPU is added.
5462 * Here we can start up the necessary migration thread for the new CPU.
5463 */
5464 static int
5465 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5466 {
5467 int cpu = (long)hcpu;
5468 unsigned long flags;
5469 struct rq *rq = cpu_rq(cpu);
5470
5471 switch (action & ~CPU_TASKS_FROZEN) {
5472
5473 case CPU_UP_PREPARE:
5474 rq->calc_load_update = calc_load_update;
5475 break;
5476
5477 case CPU_ONLINE:
5478 /* Update our root-domain */
5479 raw_spin_lock_irqsave(&rq->lock, flags);
5480 if (rq->rd) {
5481 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5482
5483 set_rq_online(rq);
5484 }
5485 raw_spin_unlock_irqrestore(&rq->lock, flags);
5486 break;
5487
5488 #ifdef CONFIG_HOTPLUG_CPU
5489 case CPU_DYING:
5490 sched_ttwu_pending();
5491 /* Update our root-domain */
5492 raw_spin_lock_irqsave(&rq->lock, flags);
5493 if (rq->rd) {
5494 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5495 set_rq_offline(rq);
5496 }
5497 migrate_tasks(rq);
5498 BUG_ON(rq->nr_running != 1); /* the migration thread */
5499 raw_spin_unlock_irqrestore(&rq->lock, flags);
5500 break;
5501
5502 case CPU_DEAD:
5503 calc_load_migrate(rq);
5504 break;
5505 #endif
5506 }
5507
5508 update_max_interval();
5509
5510 return NOTIFY_OK;
5511 }
5512
5513 /*
5514 * Register at high priority so that task migration (migrate_all_tasks)
5515 * happens before everything else. This has to be lower priority than
5516 * the notifier in the perf_event subsystem, though.
5517 */
5518 static struct notifier_block migration_notifier = {
5519 .notifier_call = migration_call,
5520 .priority = CPU_PRI_MIGRATION,
5521 };
5522
5523 static void set_cpu_rq_start_time(void)
5524 {
5525 int cpu = smp_processor_id();
5526 struct rq *rq = cpu_rq(cpu);
5527 rq->age_stamp = sched_clock_cpu(cpu);
5528 }
5529
5530 static int sched_cpu_active(struct notifier_block *nfb,
5531 unsigned long action, void *hcpu)
5532 {
5533 switch (action & ~CPU_TASKS_FROZEN) {
5534 case CPU_STARTING:
5535 set_cpu_rq_start_time();
5536 return NOTIFY_OK;
5537 case CPU_ONLINE:
5538 /*
5539 * At this point a starting CPU has marked itself as online via
5540 * set_cpu_online(). But it might not yet have marked itself
5541 * as active, which is essential from here on.
5542 *
5543 * Thus, fall-through and help the starting CPU along.
5544 */
5545 case CPU_DOWN_FAILED:
5546 set_cpu_active((long)hcpu, true);
5547 return NOTIFY_OK;
5548 default:
5549 return NOTIFY_DONE;
5550 }
5551 }
5552
5553 static int sched_cpu_inactive(struct notifier_block *nfb,
5554 unsigned long action, void *hcpu)
5555 {
5556 switch (action & ~CPU_TASKS_FROZEN) {
5557 case CPU_DOWN_PREPARE:
5558 set_cpu_active((long)hcpu, false);
5559 return NOTIFY_OK;
5560 default:
5561 return NOTIFY_DONE;
5562 }
5563 }
5564
5565 static int __init migration_init(void)
5566 {
5567 void *cpu = (void *)(long)smp_processor_id();
5568 int err;
5569
5570 /* Initialize migration for the boot CPU */
5571 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5572 BUG_ON(err == NOTIFY_BAD);
5573 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5574 register_cpu_notifier(&migration_notifier);
5575
5576 /* Register cpu active notifiers */
5577 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5578 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5579
5580 return 0;
5581 }
5582 early_initcall(migration_init);
5583
5584 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5585
5586 #ifdef CONFIG_SCHED_DEBUG
5587
5588 static __read_mostly int sched_debug_enabled;
5589
5590 static int __init sched_debug_setup(char *str)
5591 {
5592 sched_debug_enabled = 1;
5593
5594 return 0;
5595 }
5596 early_param("sched_debug", sched_debug_setup);
5597
5598 static inline bool sched_debug(void)
5599 {
5600 return sched_debug_enabled;
5601 }
5602
5603 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5604 struct cpumask *groupmask)
5605 {
5606 struct sched_group *group = sd->groups;
5607
5608 cpumask_clear(groupmask);
5609
5610 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5611
5612 if (!(sd->flags & SD_LOAD_BALANCE)) {
5613 printk("does not load-balance\n");
5614 if (sd->parent)
5615 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5616 " has parent");
5617 return -1;
5618 }
5619
5620 printk(KERN_CONT "span %*pbl level %s\n",
5621 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5622
5623 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5624 printk(KERN_ERR "ERROR: domain->span does not contain "
5625 "CPU%d\n", cpu);
5626 }
5627 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5628 printk(KERN_ERR "ERROR: domain->groups does not contain"
5629 " CPU%d\n", cpu);
5630 }
5631
5632 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5633 do {
5634 if (!group) {
5635 printk("\n");
5636 printk(KERN_ERR "ERROR: group is NULL\n");
5637 break;
5638 }
5639
5640 if (!cpumask_weight(sched_group_cpus(group))) {
5641 printk(KERN_CONT "\n");
5642 printk(KERN_ERR "ERROR: empty group\n");
5643 break;
5644 }
5645
5646 if (!(sd->flags & SD_OVERLAP) &&
5647 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5648 printk(KERN_CONT "\n");
5649 printk(KERN_ERR "ERROR: repeated CPUs\n");
5650 break;
5651 }
5652
5653 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5654
5655 printk(KERN_CONT " %*pbl",
5656 cpumask_pr_args(sched_group_cpus(group)));
5657 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5658 printk(KERN_CONT " (cpu_capacity = %d)",
5659 group->sgc->capacity);
5660 }
5661
5662 group = group->next;
5663 } while (group != sd->groups);
5664 printk(KERN_CONT "\n");
5665
5666 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5667 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5668
5669 if (sd->parent &&
5670 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5671 printk(KERN_ERR "ERROR: parent span is not a superset "
5672 "of domain->span\n");
5673 return 0;
5674 }
5675
5676 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5677 {
5678 int level = 0;
5679
5680 if (!sched_debug_enabled)
5681 return;
5682
5683 if (!sd) {
5684 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5685 return;
5686 }
5687
5688 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5689
5690 for (;;) {
5691 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5692 break;
5693 level++;
5694 sd = sd->parent;
5695 if (!sd)
5696 break;
5697 }
5698 }
5699 #else /* !CONFIG_SCHED_DEBUG */
5700 # define sched_domain_debug(sd, cpu) do { } while (0)
5701 static inline bool sched_debug(void)
5702 {
5703 return false;
5704 }
5705 #endif /* CONFIG_SCHED_DEBUG */
5706
5707 static int sd_degenerate(struct sched_domain *sd)
5708 {
5709 if (cpumask_weight(sched_domain_span(sd)) == 1)
5710 return 1;
5711
5712 /* Following flags need at least 2 groups */
5713 if (sd->flags & (SD_LOAD_BALANCE |
5714 SD_BALANCE_NEWIDLE |
5715 SD_BALANCE_FORK |
5716 SD_BALANCE_EXEC |
5717 SD_SHARE_CPUCAPACITY |
5718 SD_SHARE_PKG_RESOURCES |
5719 SD_SHARE_POWERDOMAIN)) {
5720 if (sd->groups != sd->groups->next)
5721 return 0;
5722 }
5723
5724 /* Following flags don't use groups */
5725 if (sd->flags & (SD_WAKE_AFFINE))
5726 return 0;
5727
5728 return 1;
5729 }
5730
5731 static int
5732 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5733 {
5734 unsigned long cflags = sd->flags, pflags = parent->flags;
5735
5736 if (sd_degenerate(parent))
5737 return 1;
5738
5739 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5740 return 0;
5741
5742 /* Flags needing groups don't count if only 1 group in parent */
5743 if (parent->groups == parent->groups->next) {
5744 pflags &= ~(SD_LOAD_BALANCE |
5745 SD_BALANCE_NEWIDLE |
5746 SD_BALANCE_FORK |
5747 SD_BALANCE_EXEC |
5748 SD_SHARE_CPUCAPACITY |
5749 SD_SHARE_PKG_RESOURCES |
5750 SD_PREFER_SIBLING |
5751 SD_SHARE_POWERDOMAIN);
5752 if (nr_node_ids == 1)
5753 pflags &= ~SD_SERIALIZE;
5754 }
5755 if (~cflags & pflags)
5756 return 0;
5757
5758 return 1;
5759 }
5760
5761 static void free_rootdomain(struct rcu_head *rcu)
5762 {
5763 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5764
5765 cpupri_cleanup(&rd->cpupri);
5766 cpudl_cleanup(&rd->cpudl);
5767 free_cpumask_var(rd->dlo_mask);
5768 free_cpumask_var(rd->rto_mask);
5769 free_cpumask_var(rd->online);
5770 free_cpumask_var(rd->span);
5771 kfree(rd);
5772 }
5773
5774 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5775 {
5776 struct root_domain *old_rd = NULL;
5777 unsigned long flags;
5778
5779 raw_spin_lock_irqsave(&rq->lock, flags);
5780
5781 if (rq->rd) {
5782 old_rd = rq->rd;
5783
5784 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5785 set_rq_offline(rq);
5786
5787 cpumask_clear_cpu(rq->cpu, old_rd->span);
5788
5789 /*
5790 * If we dont want to free the old_rd yet then
5791 * set old_rd to NULL to skip the freeing later
5792 * in this function:
5793 */
5794 if (!atomic_dec_and_test(&old_rd->refcount))
5795 old_rd = NULL;
5796 }
5797
5798 atomic_inc(&rd->refcount);
5799 rq->rd = rd;
5800
5801 cpumask_set_cpu(rq->cpu, rd->span);
5802 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5803 set_rq_online(rq);
5804
5805 raw_spin_unlock_irqrestore(&rq->lock, flags);
5806
5807 if (old_rd)
5808 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5809 }
5810
5811 static int init_rootdomain(struct root_domain *rd)
5812 {
5813 memset(rd, 0, sizeof(*rd));
5814
5815 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5816 goto out;
5817 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5818 goto free_span;
5819 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5820 goto free_online;
5821 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5822 goto free_dlo_mask;
5823
5824 init_dl_bw(&rd->dl_bw);
5825 if (cpudl_init(&rd->cpudl) != 0)
5826 goto free_dlo_mask;
5827
5828 if (cpupri_init(&rd->cpupri) != 0)
5829 goto free_rto_mask;
5830 return 0;
5831
5832 free_rto_mask:
5833 free_cpumask_var(rd->rto_mask);
5834 free_dlo_mask:
5835 free_cpumask_var(rd->dlo_mask);
5836 free_online:
5837 free_cpumask_var(rd->online);
5838 free_span:
5839 free_cpumask_var(rd->span);
5840 out:
5841 return -ENOMEM;
5842 }
5843
5844 /*
5845 * By default the system creates a single root-domain with all cpus as
5846 * members (mimicking the global state we have today).
5847 */
5848 struct root_domain def_root_domain;
5849
5850 static void init_defrootdomain(void)
5851 {
5852 init_rootdomain(&def_root_domain);
5853
5854 atomic_set(&def_root_domain.refcount, 1);
5855 }
5856
5857 static struct root_domain *alloc_rootdomain(void)
5858 {
5859 struct root_domain *rd;
5860
5861 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5862 if (!rd)
5863 return NULL;
5864
5865 if (init_rootdomain(rd) != 0) {
5866 kfree(rd);
5867 return NULL;
5868 }
5869
5870 return rd;
5871 }
5872
5873 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5874 {
5875 struct sched_group *tmp, *first;
5876
5877 if (!sg)
5878 return;
5879
5880 first = sg;
5881 do {
5882 tmp = sg->next;
5883
5884 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5885 kfree(sg->sgc);
5886
5887 kfree(sg);
5888 sg = tmp;
5889 } while (sg != first);
5890 }
5891
5892 static void free_sched_domain(struct rcu_head *rcu)
5893 {
5894 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5895
5896 /*
5897 * If its an overlapping domain it has private groups, iterate and
5898 * nuke them all.
5899 */
5900 if (sd->flags & SD_OVERLAP) {
5901 free_sched_groups(sd->groups, 1);
5902 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5903 kfree(sd->groups->sgc);
5904 kfree(sd->groups);
5905 }
5906 kfree(sd);
5907 }
5908
5909 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5910 {
5911 call_rcu(&sd->rcu, free_sched_domain);
5912 }
5913
5914 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5915 {
5916 for (; sd; sd = sd->parent)
5917 destroy_sched_domain(sd, cpu);
5918 }
5919
5920 /*
5921 * Keep a special pointer to the highest sched_domain that has
5922 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5923 * allows us to avoid some pointer chasing select_idle_sibling().
5924 *
5925 * Also keep a unique ID per domain (we use the first cpu number in
5926 * the cpumask of the domain), this allows us to quickly tell if
5927 * two cpus are in the same cache domain, see cpus_share_cache().
5928 */
5929 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5930 DEFINE_PER_CPU(int, sd_llc_size);
5931 DEFINE_PER_CPU(int, sd_llc_id);
5932 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5933 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5934 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5935
5936 static void update_top_cache_domain(int cpu)
5937 {
5938 struct sched_domain *sd;
5939 struct sched_domain *busy_sd = NULL;
5940 int id = cpu;
5941 int size = 1;
5942
5943 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5944 if (sd) {
5945 id = cpumask_first(sched_domain_span(sd));
5946 size = cpumask_weight(sched_domain_span(sd));
5947 busy_sd = sd->parent; /* sd_busy */
5948 }
5949 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5950
5951 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5952 per_cpu(sd_llc_size, cpu) = size;
5953 per_cpu(sd_llc_id, cpu) = id;
5954
5955 sd = lowest_flag_domain(cpu, SD_NUMA);
5956 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5957
5958 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5959 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5960 }
5961
5962 /*
5963 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5964 * hold the hotplug lock.
5965 */
5966 static void
5967 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5968 {
5969 struct rq *rq = cpu_rq(cpu);
5970 struct sched_domain *tmp;
5971
5972 /* Remove the sched domains which do not contribute to scheduling. */
5973 for (tmp = sd; tmp; ) {
5974 struct sched_domain *parent = tmp->parent;
5975 if (!parent)
5976 break;
5977
5978 if (sd_parent_degenerate(tmp, parent)) {
5979 tmp->parent = parent->parent;
5980 if (parent->parent)
5981 parent->parent->child = tmp;
5982 /*
5983 * Transfer SD_PREFER_SIBLING down in case of a
5984 * degenerate parent; the spans match for this
5985 * so the property transfers.
5986 */
5987 if (parent->flags & SD_PREFER_SIBLING)
5988 tmp->flags |= SD_PREFER_SIBLING;
5989 destroy_sched_domain(parent, cpu);
5990 } else
5991 tmp = tmp->parent;
5992 }
5993
5994 if (sd && sd_degenerate(sd)) {
5995 tmp = sd;
5996 sd = sd->parent;
5997 destroy_sched_domain(tmp, cpu);
5998 if (sd)
5999 sd->child = NULL;
6000 }
6001
6002 sched_domain_debug(sd, cpu);
6003
6004 rq_attach_root(rq, rd);
6005 tmp = rq->sd;
6006 rcu_assign_pointer(rq->sd, sd);
6007 destroy_sched_domains(tmp, cpu);
6008
6009 update_top_cache_domain(cpu);
6010 }
6011
6012 /* Setup the mask of cpus configured for isolated domains */
6013 static int __init isolated_cpu_setup(char *str)
6014 {
6015 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6016 cpulist_parse(str, cpu_isolated_map);
6017 return 1;
6018 }
6019
6020 __setup("isolcpus=", isolated_cpu_setup);
6021
6022 struct s_data {
6023 struct sched_domain ** __percpu sd;
6024 struct root_domain *rd;
6025 };
6026
6027 enum s_alloc {
6028 sa_rootdomain,
6029 sa_sd,
6030 sa_sd_storage,
6031 sa_none,
6032 };
6033
6034 /*
6035 * Build an iteration mask that can exclude certain CPUs from the upwards
6036 * domain traversal.
6037 *
6038 * Asymmetric node setups can result in situations where the domain tree is of
6039 * unequal depth, make sure to skip domains that already cover the entire
6040 * range.
6041 *
6042 * In that case build_sched_domains() will have terminated the iteration early
6043 * and our sibling sd spans will be empty. Domains should always include the
6044 * cpu they're built on, so check that.
6045 *
6046 */
6047 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6048 {
6049 const struct cpumask *span = sched_domain_span(sd);
6050 struct sd_data *sdd = sd->private;
6051 struct sched_domain *sibling;
6052 int i;
6053
6054 for_each_cpu(i, span) {
6055 sibling = *per_cpu_ptr(sdd->sd, i);
6056 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6057 continue;
6058
6059 cpumask_set_cpu(i, sched_group_mask(sg));
6060 }
6061 }
6062
6063 /*
6064 * Return the canonical balance cpu for this group, this is the first cpu
6065 * of this group that's also in the iteration mask.
6066 */
6067 int group_balance_cpu(struct sched_group *sg)
6068 {
6069 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6070 }
6071
6072 static int
6073 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6074 {
6075 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6076 const struct cpumask *span = sched_domain_span(sd);
6077 struct cpumask *covered = sched_domains_tmpmask;
6078 struct sd_data *sdd = sd->private;
6079 struct sched_domain *sibling;
6080 int i;
6081
6082 cpumask_clear(covered);
6083
6084 for_each_cpu(i, span) {
6085 struct cpumask *sg_span;
6086
6087 if (cpumask_test_cpu(i, covered))
6088 continue;
6089
6090 sibling = *per_cpu_ptr(sdd->sd, i);
6091
6092 /* See the comment near build_group_mask(). */
6093 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6094 continue;
6095
6096 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6097 GFP_KERNEL, cpu_to_node(cpu));
6098
6099 if (!sg)
6100 goto fail;
6101
6102 sg_span = sched_group_cpus(sg);
6103 if (sibling->child)
6104 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6105 else
6106 cpumask_set_cpu(i, sg_span);
6107
6108 cpumask_or(covered, covered, sg_span);
6109
6110 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6111 if (atomic_inc_return(&sg->sgc->ref) == 1)
6112 build_group_mask(sd, sg);
6113
6114 /*
6115 * Initialize sgc->capacity such that even if we mess up the
6116 * domains and no possible iteration will get us here, we won't
6117 * die on a /0 trap.
6118 */
6119 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6120
6121 /*
6122 * Make sure the first group of this domain contains the
6123 * canonical balance cpu. Otherwise the sched_domain iteration
6124 * breaks. See update_sg_lb_stats().
6125 */
6126 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6127 group_balance_cpu(sg) == cpu)
6128 groups = sg;
6129
6130 if (!first)
6131 first = sg;
6132 if (last)
6133 last->next = sg;
6134 last = sg;
6135 last->next = first;
6136 }
6137 sd->groups = groups;
6138
6139 return 0;
6140
6141 fail:
6142 free_sched_groups(first, 0);
6143
6144 return -ENOMEM;
6145 }
6146
6147 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6148 {
6149 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6150 struct sched_domain *child = sd->child;
6151
6152 if (child)
6153 cpu = cpumask_first(sched_domain_span(child));
6154
6155 if (sg) {
6156 *sg = *per_cpu_ptr(sdd->sg, cpu);
6157 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6158 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6159 }
6160
6161 return cpu;
6162 }
6163
6164 /*
6165 * build_sched_groups will build a circular linked list of the groups
6166 * covered by the given span, and will set each group's ->cpumask correctly,
6167 * and ->cpu_capacity to 0.
6168 *
6169 * Assumes the sched_domain tree is fully constructed
6170 */
6171 static int
6172 build_sched_groups(struct sched_domain *sd, int cpu)
6173 {
6174 struct sched_group *first = NULL, *last = NULL;
6175 struct sd_data *sdd = sd->private;
6176 const struct cpumask *span = sched_domain_span(sd);
6177 struct cpumask *covered;
6178 int i;
6179
6180 get_group(cpu, sdd, &sd->groups);
6181 atomic_inc(&sd->groups->ref);
6182
6183 if (cpu != cpumask_first(span))
6184 return 0;
6185
6186 lockdep_assert_held(&sched_domains_mutex);
6187 covered = sched_domains_tmpmask;
6188
6189 cpumask_clear(covered);
6190
6191 for_each_cpu(i, span) {
6192 struct sched_group *sg;
6193 int group, j;
6194
6195 if (cpumask_test_cpu(i, covered))
6196 continue;
6197
6198 group = get_group(i, sdd, &sg);
6199 cpumask_setall(sched_group_mask(sg));
6200
6201 for_each_cpu(j, span) {
6202 if (get_group(j, sdd, NULL) != group)
6203 continue;
6204
6205 cpumask_set_cpu(j, covered);
6206 cpumask_set_cpu(j, sched_group_cpus(sg));
6207 }
6208
6209 if (!first)
6210 first = sg;
6211 if (last)
6212 last->next = sg;
6213 last = sg;
6214 }
6215 last->next = first;
6216
6217 return 0;
6218 }
6219
6220 /*
6221 * Initialize sched groups cpu_capacity.
6222 *
6223 * cpu_capacity indicates the capacity of sched group, which is used while
6224 * distributing the load between different sched groups in a sched domain.
6225 * Typically cpu_capacity for all the groups in a sched domain will be same
6226 * unless there are asymmetries in the topology. If there are asymmetries,
6227 * group having more cpu_capacity will pickup more load compared to the
6228 * group having less cpu_capacity.
6229 */
6230 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6231 {
6232 struct sched_group *sg = sd->groups;
6233
6234 WARN_ON(!sg);
6235
6236 do {
6237 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6238 sg = sg->next;
6239 } while (sg != sd->groups);
6240
6241 if (cpu != group_balance_cpu(sg))
6242 return;
6243
6244 update_group_capacity(sd, cpu);
6245 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6246 }
6247
6248 /*
6249 * Initializers for schedule domains
6250 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6251 */
6252
6253 static int default_relax_domain_level = -1;
6254 int sched_domain_level_max;
6255
6256 static int __init setup_relax_domain_level(char *str)
6257 {
6258 if (kstrtoint(str, 0, &default_relax_domain_level))
6259 pr_warn("Unable to set relax_domain_level\n");
6260
6261 return 1;
6262 }
6263 __setup("relax_domain_level=", setup_relax_domain_level);
6264
6265 static void set_domain_attribute(struct sched_domain *sd,
6266 struct sched_domain_attr *attr)
6267 {
6268 int request;
6269
6270 if (!attr || attr->relax_domain_level < 0) {
6271 if (default_relax_domain_level < 0)
6272 return;
6273 else
6274 request = default_relax_domain_level;
6275 } else
6276 request = attr->relax_domain_level;
6277 if (request < sd->level) {
6278 /* turn off idle balance on this domain */
6279 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6280 } else {
6281 /* turn on idle balance on this domain */
6282 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6283 }
6284 }
6285
6286 static void __sdt_free(const struct cpumask *cpu_map);
6287 static int __sdt_alloc(const struct cpumask *cpu_map);
6288
6289 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6290 const struct cpumask *cpu_map)
6291 {
6292 switch (what) {
6293 case sa_rootdomain:
6294 if (!atomic_read(&d->rd->refcount))
6295 free_rootdomain(&d->rd->rcu); /* fall through */
6296 case sa_sd:
6297 free_percpu(d->sd); /* fall through */
6298 case sa_sd_storage:
6299 __sdt_free(cpu_map); /* fall through */
6300 case sa_none:
6301 break;
6302 }
6303 }
6304
6305 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6306 const struct cpumask *cpu_map)
6307 {
6308 memset(d, 0, sizeof(*d));
6309
6310 if (__sdt_alloc(cpu_map))
6311 return sa_sd_storage;
6312 d->sd = alloc_percpu(struct sched_domain *);
6313 if (!d->sd)
6314 return sa_sd_storage;
6315 d->rd = alloc_rootdomain();
6316 if (!d->rd)
6317 return sa_sd;
6318 return sa_rootdomain;
6319 }
6320
6321 /*
6322 * NULL the sd_data elements we've used to build the sched_domain and
6323 * sched_group structure so that the subsequent __free_domain_allocs()
6324 * will not free the data we're using.
6325 */
6326 static void claim_allocations(int cpu, struct sched_domain *sd)
6327 {
6328 struct sd_data *sdd = sd->private;
6329
6330 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6331 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6332
6333 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6334 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6335
6336 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6337 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6338 }
6339
6340 #ifdef CONFIG_NUMA
6341 static int sched_domains_numa_levels;
6342 enum numa_topology_type sched_numa_topology_type;
6343 static int *sched_domains_numa_distance;
6344 int sched_max_numa_distance;
6345 static struct cpumask ***sched_domains_numa_masks;
6346 static int sched_domains_curr_level;
6347 #endif
6348
6349 /*
6350 * SD_flags allowed in topology descriptions.
6351 *
6352 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6353 * SD_SHARE_PKG_RESOURCES - describes shared caches
6354 * SD_NUMA - describes NUMA topologies
6355 * SD_SHARE_POWERDOMAIN - describes shared power domain
6356 *
6357 * Odd one out:
6358 * SD_ASYM_PACKING - describes SMT quirks
6359 */
6360 #define TOPOLOGY_SD_FLAGS \
6361 (SD_SHARE_CPUCAPACITY | \
6362 SD_SHARE_PKG_RESOURCES | \
6363 SD_NUMA | \
6364 SD_ASYM_PACKING | \
6365 SD_SHARE_POWERDOMAIN)
6366
6367 static struct sched_domain *
6368 sd_init(struct sched_domain_topology_level *tl, int cpu)
6369 {
6370 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6371 int sd_weight, sd_flags = 0;
6372
6373 #ifdef CONFIG_NUMA
6374 /*
6375 * Ugly hack to pass state to sd_numa_mask()...
6376 */
6377 sched_domains_curr_level = tl->numa_level;
6378 #endif
6379
6380 sd_weight = cpumask_weight(tl->mask(cpu));
6381
6382 if (tl->sd_flags)
6383 sd_flags = (*tl->sd_flags)();
6384 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6385 "wrong sd_flags in topology description\n"))
6386 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6387
6388 *sd = (struct sched_domain){
6389 .min_interval = sd_weight,
6390 .max_interval = 2*sd_weight,
6391 .busy_factor = 32,
6392 .imbalance_pct = 125,
6393
6394 .cache_nice_tries = 0,
6395 .busy_idx = 0,
6396 .idle_idx = 0,
6397 .newidle_idx = 0,
6398 .wake_idx = 0,
6399 .forkexec_idx = 0,
6400
6401 .flags = 1*SD_LOAD_BALANCE
6402 | 1*SD_BALANCE_NEWIDLE
6403 | 1*SD_BALANCE_EXEC
6404 | 1*SD_BALANCE_FORK
6405 | 0*SD_BALANCE_WAKE
6406 | 1*SD_WAKE_AFFINE
6407 | 0*SD_SHARE_CPUCAPACITY
6408 | 0*SD_SHARE_PKG_RESOURCES
6409 | 0*SD_SERIALIZE
6410 | 0*SD_PREFER_SIBLING
6411 | 0*SD_NUMA
6412 | sd_flags
6413 ,
6414
6415 .last_balance = jiffies,
6416 .balance_interval = sd_weight,
6417 .smt_gain = 0,
6418 .max_newidle_lb_cost = 0,
6419 .next_decay_max_lb_cost = jiffies,
6420 #ifdef CONFIG_SCHED_DEBUG
6421 .name = tl->name,
6422 #endif
6423 };
6424
6425 /*
6426 * Convert topological properties into behaviour.
6427 */
6428
6429 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6430 sd->flags |= SD_PREFER_SIBLING;
6431 sd->imbalance_pct = 110;
6432 sd->smt_gain = 1178; /* ~15% */
6433
6434 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6435 sd->imbalance_pct = 117;
6436 sd->cache_nice_tries = 1;
6437 sd->busy_idx = 2;
6438
6439 #ifdef CONFIG_NUMA
6440 } else if (sd->flags & SD_NUMA) {
6441 sd->cache_nice_tries = 2;
6442 sd->busy_idx = 3;
6443 sd->idle_idx = 2;
6444
6445 sd->flags |= SD_SERIALIZE;
6446 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6447 sd->flags &= ~(SD_BALANCE_EXEC |
6448 SD_BALANCE_FORK |
6449 SD_WAKE_AFFINE);
6450 }
6451
6452 #endif
6453 } else {
6454 sd->flags |= SD_PREFER_SIBLING;
6455 sd->cache_nice_tries = 1;
6456 sd->busy_idx = 2;
6457 sd->idle_idx = 1;
6458 }
6459
6460 sd->private = &tl->data;
6461
6462 return sd;
6463 }
6464
6465 /*
6466 * Topology list, bottom-up.
6467 */
6468 static struct sched_domain_topology_level default_topology[] = {
6469 #ifdef CONFIG_SCHED_SMT
6470 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6471 #endif
6472 #ifdef CONFIG_SCHED_MC
6473 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6474 #endif
6475 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6476 { NULL, },
6477 };
6478
6479 struct sched_domain_topology_level *sched_domain_topology = default_topology;
6480
6481 #define for_each_sd_topology(tl) \
6482 for (tl = sched_domain_topology; tl->mask; tl++)
6483
6484 void set_sched_topology(struct sched_domain_topology_level *tl)
6485 {
6486 sched_domain_topology = tl;
6487 }
6488
6489 #ifdef CONFIG_NUMA
6490
6491 static const struct cpumask *sd_numa_mask(int cpu)
6492 {
6493 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6494 }
6495
6496 static void sched_numa_warn(const char *str)
6497 {
6498 static int done = false;
6499 int i,j;
6500
6501 if (done)
6502 return;
6503
6504 done = true;
6505
6506 printk(KERN_WARNING "ERROR: %s\n\n", str);
6507
6508 for (i = 0; i < nr_node_ids; i++) {
6509 printk(KERN_WARNING " ");
6510 for (j = 0; j < nr_node_ids; j++)
6511 printk(KERN_CONT "%02d ", node_distance(i,j));
6512 printk(KERN_CONT "\n");
6513 }
6514 printk(KERN_WARNING "\n");
6515 }
6516
6517 bool find_numa_distance(int distance)
6518 {
6519 int i;
6520
6521 if (distance == node_distance(0, 0))
6522 return true;
6523
6524 for (i = 0; i < sched_domains_numa_levels; i++) {
6525 if (sched_domains_numa_distance[i] == distance)
6526 return true;
6527 }
6528
6529 return false;
6530 }
6531
6532 /*
6533 * A system can have three types of NUMA topology:
6534 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6535 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6536 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6537 *
6538 * The difference between a glueless mesh topology and a backplane
6539 * topology lies in whether communication between not directly
6540 * connected nodes goes through intermediary nodes (where programs
6541 * could run), or through backplane controllers. This affects
6542 * placement of programs.
6543 *
6544 * The type of topology can be discerned with the following tests:
6545 * - If the maximum distance between any nodes is 1 hop, the system
6546 * is directly connected.
6547 * - If for two nodes A and B, located N > 1 hops away from each other,
6548 * there is an intermediary node C, which is < N hops away from both
6549 * nodes A and B, the system is a glueless mesh.
6550 */
6551 static void init_numa_topology_type(void)
6552 {
6553 int a, b, c, n;
6554
6555 n = sched_max_numa_distance;
6556
6557 if (sched_domains_numa_levels <= 1) {
6558 sched_numa_topology_type = NUMA_DIRECT;
6559 return;
6560 }
6561
6562 for_each_online_node(a) {
6563 for_each_online_node(b) {
6564 /* Find two nodes furthest removed from each other. */
6565 if (node_distance(a, b) < n)
6566 continue;
6567
6568 /* Is there an intermediary node between a and b? */
6569 for_each_online_node(c) {
6570 if (node_distance(a, c) < n &&
6571 node_distance(b, c) < n) {
6572 sched_numa_topology_type =
6573 NUMA_GLUELESS_MESH;
6574 return;
6575 }
6576 }
6577
6578 sched_numa_topology_type = NUMA_BACKPLANE;
6579 return;
6580 }
6581 }
6582 }
6583
6584 static void sched_init_numa(void)
6585 {
6586 int next_distance, curr_distance = node_distance(0, 0);
6587 struct sched_domain_topology_level *tl;
6588 int level = 0;
6589 int i, j, k;
6590
6591 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6592 if (!sched_domains_numa_distance)
6593 return;
6594
6595 /*
6596 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6597 * unique distances in the node_distance() table.
6598 *
6599 * Assumes node_distance(0,j) includes all distances in
6600 * node_distance(i,j) in order to avoid cubic time.
6601 */
6602 next_distance = curr_distance;
6603 for (i = 0; i < nr_node_ids; i++) {
6604 for (j = 0; j < nr_node_ids; j++) {
6605 for (k = 0; k < nr_node_ids; k++) {
6606 int distance = node_distance(i, k);
6607
6608 if (distance > curr_distance &&
6609 (distance < next_distance ||
6610 next_distance == curr_distance))
6611 next_distance = distance;
6612
6613 /*
6614 * While not a strong assumption it would be nice to know
6615 * about cases where if node A is connected to B, B is not
6616 * equally connected to A.
6617 */
6618 if (sched_debug() && node_distance(k, i) != distance)
6619 sched_numa_warn("Node-distance not symmetric");
6620
6621 if (sched_debug() && i && !find_numa_distance(distance))
6622 sched_numa_warn("Node-0 not representative");
6623 }
6624 if (next_distance != curr_distance) {
6625 sched_domains_numa_distance[level++] = next_distance;
6626 sched_domains_numa_levels = level;
6627 curr_distance = next_distance;
6628 } else break;
6629 }
6630
6631 /*
6632 * In case of sched_debug() we verify the above assumption.
6633 */
6634 if (!sched_debug())
6635 break;
6636 }
6637
6638 if (!level)
6639 return;
6640
6641 /*
6642 * 'level' contains the number of unique distances, excluding the
6643 * identity distance node_distance(i,i).
6644 *
6645 * The sched_domains_numa_distance[] array includes the actual distance
6646 * numbers.
6647 */
6648
6649 /*
6650 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6651 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6652 * the array will contain less then 'level' members. This could be
6653 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6654 * in other functions.
6655 *
6656 * We reset it to 'level' at the end of this function.
6657 */
6658 sched_domains_numa_levels = 0;
6659
6660 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6661 if (!sched_domains_numa_masks)
6662 return;
6663
6664 /*
6665 * Now for each level, construct a mask per node which contains all
6666 * cpus of nodes that are that many hops away from us.
6667 */
6668 for (i = 0; i < level; i++) {
6669 sched_domains_numa_masks[i] =
6670 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6671 if (!sched_domains_numa_masks[i])
6672 return;
6673
6674 for (j = 0; j < nr_node_ids; j++) {
6675 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6676 if (!mask)
6677 return;
6678
6679 sched_domains_numa_masks[i][j] = mask;
6680
6681 for (k = 0; k < nr_node_ids; k++) {
6682 if (node_distance(j, k) > sched_domains_numa_distance[i])
6683 continue;
6684
6685 cpumask_or(mask, mask, cpumask_of_node(k));
6686 }
6687 }
6688 }
6689
6690 /* Compute default topology size */
6691 for (i = 0; sched_domain_topology[i].mask; i++);
6692
6693 tl = kzalloc((i + level + 1) *
6694 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6695 if (!tl)
6696 return;
6697
6698 /*
6699 * Copy the default topology bits..
6700 */
6701 for (i = 0; sched_domain_topology[i].mask; i++)
6702 tl[i] = sched_domain_topology[i];
6703
6704 /*
6705 * .. and append 'j' levels of NUMA goodness.
6706 */
6707 for (j = 0; j < level; i++, j++) {
6708 tl[i] = (struct sched_domain_topology_level){
6709 .mask = sd_numa_mask,
6710 .sd_flags = cpu_numa_flags,
6711 .flags = SDTL_OVERLAP,
6712 .numa_level = j,
6713 SD_INIT_NAME(NUMA)
6714 };
6715 }
6716
6717 sched_domain_topology = tl;
6718
6719 sched_domains_numa_levels = level;
6720 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6721
6722 init_numa_topology_type();
6723 }
6724
6725 static void sched_domains_numa_masks_set(int cpu)
6726 {
6727 int i, j;
6728 int node = cpu_to_node(cpu);
6729
6730 for (i = 0; i < sched_domains_numa_levels; i++) {
6731 for (j = 0; j < nr_node_ids; j++) {
6732 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6733 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6734 }
6735 }
6736 }
6737
6738 static void sched_domains_numa_masks_clear(int cpu)
6739 {
6740 int i, j;
6741 for (i = 0; i < sched_domains_numa_levels; i++) {
6742 for (j = 0; j < nr_node_ids; j++)
6743 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6744 }
6745 }
6746
6747 /*
6748 * Update sched_domains_numa_masks[level][node] array when new cpus
6749 * are onlined.
6750 */
6751 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6752 unsigned long action,
6753 void *hcpu)
6754 {
6755 int cpu = (long)hcpu;
6756
6757 switch (action & ~CPU_TASKS_FROZEN) {
6758 case CPU_ONLINE:
6759 sched_domains_numa_masks_set(cpu);
6760 break;
6761
6762 case CPU_DEAD:
6763 sched_domains_numa_masks_clear(cpu);
6764 break;
6765
6766 default:
6767 return NOTIFY_DONE;
6768 }
6769
6770 return NOTIFY_OK;
6771 }
6772 #else
6773 static inline void sched_init_numa(void)
6774 {
6775 }
6776
6777 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6778 unsigned long action,
6779 void *hcpu)
6780 {
6781 return 0;
6782 }
6783 #endif /* CONFIG_NUMA */
6784
6785 static int __sdt_alloc(const struct cpumask *cpu_map)
6786 {
6787 struct sched_domain_topology_level *tl;
6788 int j;
6789
6790 for_each_sd_topology(tl) {
6791 struct sd_data *sdd = &tl->data;
6792
6793 sdd->sd = alloc_percpu(struct sched_domain *);
6794 if (!sdd->sd)
6795 return -ENOMEM;
6796
6797 sdd->sg = alloc_percpu(struct sched_group *);
6798 if (!sdd->sg)
6799 return -ENOMEM;
6800
6801 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6802 if (!sdd->sgc)
6803 return -ENOMEM;
6804
6805 for_each_cpu(j, cpu_map) {
6806 struct sched_domain *sd;
6807 struct sched_group *sg;
6808 struct sched_group_capacity *sgc;
6809
6810 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6811 GFP_KERNEL, cpu_to_node(j));
6812 if (!sd)
6813 return -ENOMEM;
6814
6815 *per_cpu_ptr(sdd->sd, j) = sd;
6816
6817 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6818 GFP_KERNEL, cpu_to_node(j));
6819 if (!sg)
6820 return -ENOMEM;
6821
6822 sg->next = sg;
6823
6824 *per_cpu_ptr(sdd->sg, j) = sg;
6825
6826 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6827 GFP_KERNEL, cpu_to_node(j));
6828 if (!sgc)
6829 return -ENOMEM;
6830
6831 *per_cpu_ptr(sdd->sgc, j) = sgc;
6832 }
6833 }
6834
6835 return 0;
6836 }
6837
6838 static void __sdt_free(const struct cpumask *cpu_map)
6839 {
6840 struct sched_domain_topology_level *tl;
6841 int j;
6842
6843 for_each_sd_topology(tl) {
6844 struct sd_data *sdd = &tl->data;
6845
6846 for_each_cpu(j, cpu_map) {
6847 struct sched_domain *sd;
6848
6849 if (sdd->sd) {
6850 sd = *per_cpu_ptr(sdd->sd, j);
6851 if (sd && (sd->flags & SD_OVERLAP))
6852 free_sched_groups(sd->groups, 0);
6853 kfree(*per_cpu_ptr(sdd->sd, j));
6854 }
6855
6856 if (sdd->sg)
6857 kfree(*per_cpu_ptr(sdd->sg, j));
6858 if (sdd->sgc)
6859 kfree(*per_cpu_ptr(sdd->sgc, j));
6860 }
6861 free_percpu(sdd->sd);
6862 sdd->sd = NULL;
6863 free_percpu(sdd->sg);
6864 sdd->sg = NULL;
6865 free_percpu(sdd->sgc);
6866 sdd->sgc = NULL;
6867 }
6868 }
6869
6870 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6871 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6872 struct sched_domain *child, int cpu)
6873 {
6874 struct sched_domain *sd = sd_init(tl, cpu);
6875 if (!sd)
6876 return child;
6877
6878 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6879 if (child) {
6880 sd->level = child->level + 1;
6881 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6882 child->parent = sd;
6883 sd->child = child;
6884
6885 if (!cpumask_subset(sched_domain_span(child),
6886 sched_domain_span(sd))) {
6887 pr_err("BUG: arch topology borken\n");
6888 #ifdef CONFIG_SCHED_DEBUG
6889 pr_err(" the %s domain not a subset of the %s domain\n",
6890 child->name, sd->name);
6891 #endif
6892 /* Fixup, ensure @sd has at least @child cpus. */
6893 cpumask_or(sched_domain_span(sd),
6894 sched_domain_span(sd),
6895 sched_domain_span(child));
6896 }
6897
6898 }
6899 set_domain_attribute(sd, attr);
6900
6901 return sd;
6902 }
6903
6904 /*
6905 * Build sched domains for a given set of cpus and attach the sched domains
6906 * to the individual cpus
6907 */
6908 static int build_sched_domains(const struct cpumask *cpu_map,
6909 struct sched_domain_attr *attr)
6910 {
6911 enum s_alloc alloc_state;
6912 struct sched_domain *sd;
6913 struct s_data d;
6914 int i, ret = -ENOMEM;
6915
6916 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6917 if (alloc_state != sa_rootdomain)
6918 goto error;
6919
6920 /* Set up domains for cpus specified by the cpu_map. */
6921 for_each_cpu(i, cpu_map) {
6922 struct sched_domain_topology_level *tl;
6923
6924 sd = NULL;
6925 for_each_sd_topology(tl) {
6926 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6927 if (tl == sched_domain_topology)
6928 *per_cpu_ptr(d.sd, i) = sd;
6929 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6930 sd->flags |= SD_OVERLAP;
6931 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6932 break;
6933 }
6934 }
6935
6936 /* Build the groups for the domains */
6937 for_each_cpu(i, cpu_map) {
6938 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6939 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6940 if (sd->flags & SD_OVERLAP) {
6941 if (build_overlap_sched_groups(sd, i))
6942 goto error;
6943 } else {
6944 if (build_sched_groups(sd, i))
6945 goto error;
6946 }
6947 }
6948 }
6949
6950 /* Calculate CPU capacity for physical packages and nodes */
6951 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6952 if (!cpumask_test_cpu(i, cpu_map))
6953 continue;
6954
6955 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6956 claim_allocations(i, sd);
6957 init_sched_groups_capacity(i, sd);
6958 }
6959 }
6960
6961 /* Attach the domains */
6962 rcu_read_lock();
6963 for_each_cpu(i, cpu_map) {
6964 sd = *per_cpu_ptr(d.sd, i);
6965 cpu_attach_domain(sd, d.rd, i);
6966 }
6967 rcu_read_unlock();
6968
6969 ret = 0;
6970 error:
6971 __free_domain_allocs(&d, alloc_state, cpu_map);
6972 return ret;
6973 }
6974
6975 static cpumask_var_t *doms_cur; /* current sched domains */
6976 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6977 static struct sched_domain_attr *dattr_cur;
6978 /* attribues of custom domains in 'doms_cur' */
6979
6980 /*
6981 * Special case: If a kmalloc of a doms_cur partition (array of
6982 * cpumask) fails, then fallback to a single sched domain,
6983 * as determined by the single cpumask fallback_doms.
6984 */
6985 static cpumask_var_t fallback_doms;
6986
6987 /*
6988 * arch_update_cpu_topology lets virtualized architectures update the
6989 * cpu core maps. It is supposed to return 1 if the topology changed
6990 * or 0 if it stayed the same.
6991 */
6992 int __weak arch_update_cpu_topology(void)
6993 {
6994 return 0;
6995 }
6996
6997 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6998 {
6999 int i;
7000 cpumask_var_t *doms;
7001
7002 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7003 if (!doms)
7004 return NULL;
7005 for (i = 0; i < ndoms; i++) {
7006 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7007 free_sched_domains(doms, i);
7008 return NULL;
7009 }
7010 }
7011 return doms;
7012 }
7013
7014 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7015 {
7016 unsigned int i;
7017 for (i = 0; i < ndoms; i++)
7018 free_cpumask_var(doms[i]);
7019 kfree(doms);
7020 }
7021
7022 /*
7023 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7024 * For now this just excludes isolated cpus, but could be used to
7025 * exclude other special cases in the future.
7026 */
7027 static int init_sched_domains(const struct cpumask *cpu_map)
7028 {
7029 int err;
7030
7031 arch_update_cpu_topology();
7032 ndoms_cur = 1;
7033 doms_cur = alloc_sched_domains(ndoms_cur);
7034 if (!doms_cur)
7035 doms_cur = &fallback_doms;
7036 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7037 err = build_sched_domains(doms_cur[0], NULL);
7038 register_sched_domain_sysctl();
7039
7040 return err;
7041 }
7042
7043 /*
7044 * Detach sched domains from a group of cpus specified in cpu_map
7045 * These cpus will now be attached to the NULL domain
7046 */
7047 static void detach_destroy_domains(const struct cpumask *cpu_map)
7048 {
7049 int i;
7050
7051 rcu_read_lock();
7052 for_each_cpu(i, cpu_map)
7053 cpu_attach_domain(NULL, &def_root_domain, i);
7054 rcu_read_unlock();
7055 }
7056
7057 /* handle null as "default" */
7058 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7059 struct sched_domain_attr *new, int idx_new)
7060 {
7061 struct sched_domain_attr tmp;
7062
7063 /* fast path */
7064 if (!new && !cur)
7065 return 1;
7066
7067 tmp = SD_ATTR_INIT;
7068 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7069 new ? (new + idx_new) : &tmp,
7070 sizeof(struct sched_domain_attr));
7071 }
7072
7073 /*
7074 * Partition sched domains as specified by the 'ndoms_new'
7075 * cpumasks in the array doms_new[] of cpumasks. This compares
7076 * doms_new[] to the current sched domain partitioning, doms_cur[].
7077 * It destroys each deleted domain and builds each new domain.
7078 *
7079 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7080 * The masks don't intersect (don't overlap.) We should setup one
7081 * sched domain for each mask. CPUs not in any of the cpumasks will
7082 * not be load balanced. If the same cpumask appears both in the
7083 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7084 * it as it is.
7085 *
7086 * The passed in 'doms_new' should be allocated using
7087 * alloc_sched_domains. This routine takes ownership of it and will
7088 * free_sched_domains it when done with it. If the caller failed the
7089 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7090 * and partition_sched_domains() will fallback to the single partition
7091 * 'fallback_doms', it also forces the domains to be rebuilt.
7092 *
7093 * If doms_new == NULL it will be replaced with cpu_online_mask.
7094 * ndoms_new == 0 is a special case for destroying existing domains,
7095 * and it will not create the default domain.
7096 *
7097 * Call with hotplug lock held
7098 */
7099 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7100 struct sched_domain_attr *dattr_new)
7101 {
7102 int i, j, n;
7103 int new_topology;
7104
7105 mutex_lock(&sched_domains_mutex);
7106
7107 /* always unregister in case we don't destroy any domains */
7108 unregister_sched_domain_sysctl();
7109
7110 /* Let architecture update cpu core mappings. */
7111 new_topology = arch_update_cpu_topology();
7112
7113 n = doms_new ? ndoms_new : 0;
7114
7115 /* Destroy deleted domains */
7116 for (i = 0; i < ndoms_cur; i++) {
7117 for (j = 0; j < n && !new_topology; j++) {
7118 if (cpumask_equal(doms_cur[i], doms_new[j])
7119 && dattrs_equal(dattr_cur, i, dattr_new, j))
7120 goto match1;
7121 }
7122 /* no match - a current sched domain not in new doms_new[] */
7123 detach_destroy_domains(doms_cur[i]);
7124 match1:
7125 ;
7126 }
7127
7128 n = ndoms_cur;
7129 if (doms_new == NULL) {
7130 n = 0;
7131 doms_new = &fallback_doms;
7132 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7133 WARN_ON_ONCE(dattr_new);
7134 }
7135
7136 /* Build new domains */
7137 for (i = 0; i < ndoms_new; i++) {
7138 for (j = 0; j < n && !new_topology; j++) {
7139 if (cpumask_equal(doms_new[i], doms_cur[j])
7140 && dattrs_equal(dattr_new, i, dattr_cur, j))
7141 goto match2;
7142 }
7143 /* no match - add a new doms_new */
7144 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7145 match2:
7146 ;
7147 }
7148
7149 /* Remember the new sched domains */
7150 if (doms_cur != &fallback_doms)
7151 free_sched_domains(doms_cur, ndoms_cur);
7152 kfree(dattr_cur); /* kfree(NULL) is safe */
7153 doms_cur = doms_new;
7154 dattr_cur = dattr_new;
7155 ndoms_cur = ndoms_new;
7156
7157 register_sched_domain_sysctl();
7158
7159 mutex_unlock(&sched_domains_mutex);
7160 }
7161
7162 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7163
7164 /*
7165 * Update cpusets according to cpu_active mask. If cpusets are
7166 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7167 * around partition_sched_domains().
7168 *
7169 * If we come here as part of a suspend/resume, don't touch cpusets because we
7170 * want to restore it back to its original state upon resume anyway.
7171 */
7172 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7173 void *hcpu)
7174 {
7175 switch (action) {
7176 case CPU_ONLINE_FROZEN:
7177 case CPU_DOWN_FAILED_FROZEN:
7178
7179 /*
7180 * num_cpus_frozen tracks how many CPUs are involved in suspend
7181 * resume sequence. As long as this is not the last online
7182 * operation in the resume sequence, just build a single sched
7183 * domain, ignoring cpusets.
7184 */
7185 num_cpus_frozen--;
7186 if (likely(num_cpus_frozen)) {
7187 partition_sched_domains(1, NULL, NULL);
7188 break;
7189 }
7190
7191 /*
7192 * This is the last CPU online operation. So fall through and
7193 * restore the original sched domains by considering the
7194 * cpuset configurations.
7195 */
7196
7197 case CPU_ONLINE:
7198 cpuset_update_active_cpus(true);
7199 break;
7200 default:
7201 return NOTIFY_DONE;
7202 }
7203 return NOTIFY_OK;
7204 }
7205
7206 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7207 void *hcpu)
7208 {
7209 unsigned long flags;
7210 long cpu = (long)hcpu;
7211 struct dl_bw *dl_b;
7212 bool overflow;
7213 int cpus;
7214
7215 switch (action) {
7216 case CPU_DOWN_PREPARE:
7217 rcu_read_lock_sched();
7218 dl_b = dl_bw_of(cpu);
7219
7220 raw_spin_lock_irqsave(&dl_b->lock, flags);
7221 cpus = dl_bw_cpus(cpu);
7222 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7223 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7224
7225 rcu_read_unlock_sched();
7226
7227 if (overflow)
7228 return notifier_from_errno(-EBUSY);
7229 cpuset_update_active_cpus(false);
7230 break;
7231 case CPU_DOWN_PREPARE_FROZEN:
7232 num_cpus_frozen++;
7233 partition_sched_domains(1, NULL, NULL);
7234 break;
7235 default:
7236 return NOTIFY_DONE;
7237 }
7238 return NOTIFY_OK;
7239 }
7240
7241 void __init sched_init_smp(void)
7242 {
7243 cpumask_var_t non_isolated_cpus;
7244
7245 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7246 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7247
7248 sched_init_numa();
7249
7250 /*
7251 * There's no userspace yet to cause hotplug operations; hence all the
7252 * cpu masks are stable and all blatant races in the below code cannot
7253 * happen.
7254 */
7255 mutex_lock(&sched_domains_mutex);
7256 init_sched_domains(cpu_active_mask);
7257 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7258 if (cpumask_empty(non_isolated_cpus))
7259 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7260 mutex_unlock(&sched_domains_mutex);
7261
7262 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7263 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7264 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7265
7266 init_hrtick();
7267
7268 /* Move init over to a non-isolated CPU */
7269 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7270 BUG();
7271 sched_init_granularity();
7272 free_cpumask_var(non_isolated_cpus);
7273
7274 init_sched_rt_class();
7275 init_sched_dl_class();
7276 }
7277 #else
7278 void __init sched_init_smp(void)
7279 {
7280 sched_init_granularity();
7281 }
7282 #endif /* CONFIG_SMP */
7283
7284 int in_sched_functions(unsigned long addr)
7285 {
7286 return in_lock_functions(addr) ||
7287 (addr >= (unsigned long)__sched_text_start
7288 && addr < (unsigned long)__sched_text_end);
7289 }
7290
7291 #ifdef CONFIG_CGROUP_SCHED
7292 /*
7293 * Default task group.
7294 * Every task in system belongs to this group at bootup.
7295 */
7296 struct task_group root_task_group;
7297 LIST_HEAD(task_groups);
7298 #endif
7299
7300 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7301
7302 void __init sched_init(void)
7303 {
7304 int i, j;
7305 unsigned long alloc_size = 0, ptr;
7306
7307 #ifdef CONFIG_FAIR_GROUP_SCHED
7308 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7309 #endif
7310 #ifdef CONFIG_RT_GROUP_SCHED
7311 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7312 #endif
7313 if (alloc_size) {
7314 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7315
7316 #ifdef CONFIG_FAIR_GROUP_SCHED
7317 root_task_group.se = (struct sched_entity **)ptr;
7318 ptr += nr_cpu_ids * sizeof(void **);
7319
7320 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7321 ptr += nr_cpu_ids * sizeof(void **);
7322
7323 #endif /* CONFIG_FAIR_GROUP_SCHED */
7324 #ifdef CONFIG_RT_GROUP_SCHED
7325 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7326 ptr += nr_cpu_ids * sizeof(void **);
7327
7328 root_task_group.rt_rq = (struct rt_rq **)ptr;
7329 ptr += nr_cpu_ids * sizeof(void **);
7330
7331 #endif /* CONFIG_RT_GROUP_SCHED */
7332 }
7333 #ifdef CONFIG_CPUMASK_OFFSTACK
7334 for_each_possible_cpu(i) {
7335 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7336 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7337 }
7338 #endif /* CONFIG_CPUMASK_OFFSTACK */
7339
7340 init_rt_bandwidth(&def_rt_bandwidth,
7341 global_rt_period(), global_rt_runtime());
7342 init_dl_bandwidth(&def_dl_bandwidth,
7343 global_rt_period(), global_rt_runtime());
7344
7345 #ifdef CONFIG_SMP
7346 init_defrootdomain();
7347 #endif
7348
7349 #ifdef CONFIG_RT_GROUP_SCHED
7350 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7351 global_rt_period(), global_rt_runtime());
7352 #endif /* CONFIG_RT_GROUP_SCHED */
7353
7354 #ifdef CONFIG_CGROUP_SCHED
7355 list_add(&root_task_group.list, &task_groups);
7356 INIT_LIST_HEAD(&root_task_group.children);
7357 INIT_LIST_HEAD(&root_task_group.siblings);
7358 autogroup_init(&init_task);
7359
7360 #endif /* CONFIG_CGROUP_SCHED */
7361
7362 for_each_possible_cpu(i) {
7363 struct rq *rq;
7364
7365 rq = cpu_rq(i);
7366 raw_spin_lock_init(&rq->lock);
7367 rq->nr_running = 0;
7368 rq->calc_load_active = 0;
7369 rq->calc_load_update = jiffies + LOAD_FREQ;
7370 init_cfs_rq(&rq->cfs);
7371 init_rt_rq(&rq->rt);
7372 init_dl_rq(&rq->dl);
7373 #ifdef CONFIG_FAIR_GROUP_SCHED
7374 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7375 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7376 /*
7377 * How much cpu bandwidth does root_task_group get?
7378 *
7379 * In case of task-groups formed thr' the cgroup filesystem, it
7380 * gets 100% of the cpu resources in the system. This overall
7381 * system cpu resource is divided among the tasks of
7382 * root_task_group and its child task-groups in a fair manner,
7383 * based on each entity's (task or task-group's) weight
7384 * (se->load.weight).
7385 *
7386 * In other words, if root_task_group has 10 tasks of weight
7387 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7388 * then A0's share of the cpu resource is:
7389 *
7390 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7391 *
7392 * We achieve this by letting root_task_group's tasks sit
7393 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7394 */
7395 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7396 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7397 #endif /* CONFIG_FAIR_GROUP_SCHED */
7398
7399 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7400 #ifdef CONFIG_RT_GROUP_SCHED
7401 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7402 #endif
7403
7404 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7405 rq->cpu_load[j] = 0;
7406
7407 rq->last_load_update_tick = jiffies;
7408
7409 #ifdef CONFIG_SMP
7410 rq->sd = NULL;
7411 rq->rd = NULL;
7412 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7413 rq->balance_callback = NULL;
7414 rq->active_balance = 0;
7415 rq->next_balance = jiffies;
7416 rq->push_cpu = 0;
7417 rq->cpu = i;
7418 rq->online = 0;
7419 rq->idle_stamp = 0;
7420 rq->avg_idle = 2*sysctl_sched_migration_cost;
7421 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7422
7423 INIT_LIST_HEAD(&rq->cfs_tasks);
7424
7425 rq_attach_root(rq, &def_root_domain);
7426 #ifdef CONFIG_NO_HZ_COMMON
7427 rq->nohz_flags = 0;
7428 #endif
7429 #ifdef CONFIG_NO_HZ_FULL
7430 rq->last_sched_tick = 0;
7431 #endif
7432 #endif
7433 init_rq_hrtick(rq);
7434 atomic_set(&rq->nr_iowait, 0);
7435 }
7436
7437 set_load_weight(&init_task);
7438
7439 #ifdef CONFIG_PREEMPT_NOTIFIERS
7440 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7441 #endif
7442
7443 /*
7444 * The boot idle thread does lazy MMU switching as well:
7445 */
7446 atomic_inc(&init_mm.mm_count);
7447 enter_lazy_tlb(&init_mm, current);
7448
7449 /*
7450 * During early bootup we pretend to be a normal task:
7451 */
7452 current->sched_class = &fair_sched_class;
7453
7454 /*
7455 * Make us the idle thread. Technically, schedule() should not be
7456 * called from this thread, however somewhere below it might be,
7457 * but because we are the idle thread, we just pick up running again
7458 * when this runqueue becomes "idle".
7459 */
7460 init_idle(current, smp_processor_id());
7461
7462 calc_load_update = jiffies + LOAD_FREQ;
7463
7464 #ifdef CONFIG_SMP
7465 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7466 /* May be allocated at isolcpus cmdline parse time */
7467 if (cpu_isolated_map == NULL)
7468 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7469 idle_thread_set_boot_cpu();
7470 set_cpu_rq_start_time();
7471 #endif
7472 init_sched_fair_class();
7473
7474 scheduler_running = 1;
7475 }
7476
7477 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7478 static inline int preempt_count_equals(int preempt_offset)
7479 {
7480 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7481
7482 return (nested == preempt_offset);
7483 }
7484
7485 void __might_sleep(const char *file, int line, int preempt_offset)
7486 {
7487 /*
7488 * Blocking primitives will set (and therefore destroy) current->state,
7489 * since we will exit with TASK_RUNNING make sure we enter with it,
7490 * otherwise we will destroy state.
7491 */
7492 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7493 "do not call blocking ops when !TASK_RUNNING; "
7494 "state=%lx set at [<%p>] %pS\n",
7495 current->state,
7496 (void *)current->task_state_change,
7497 (void *)current->task_state_change);
7498
7499 ___might_sleep(file, line, preempt_offset);
7500 }
7501 EXPORT_SYMBOL(__might_sleep);
7502
7503 void ___might_sleep(const char *file, int line, int preempt_offset)
7504 {
7505 static unsigned long prev_jiffy; /* ratelimiting */
7506
7507 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7508 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7509 !is_idle_task(current)) ||
7510 system_state != SYSTEM_RUNNING || oops_in_progress)
7511 return;
7512 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7513 return;
7514 prev_jiffy = jiffies;
7515
7516 printk(KERN_ERR
7517 "BUG: sleeping function called from invalid context at %s:%d\n",
7518 file, line);
7519 printk(KERN_ERR
7520 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7521 in_atomic(), irqs_disabled(),
7522 current->pid, current->comm);
7523
7524 if (task_stack_end_corrupted(current))
7525 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7526
7527 debug_show_held_locks(current);
7528 if (irqs_disabled())
7529 print_irqtrace_events(current);
7530 #ifdef CONFIG_DEBUG_PREEMPT
7531 if (!preempt_count_equals(preempt_offset)) {
7532 pr_err("Preemption disabled at:");
7533 print_ip_sym(current->preempt_disable_ip);
7534 pr_cont("\n");
7535 }
7536 #endif
7537 dump_stack();
7538 }
7539 EXPORT_SYMBOL(___might_sleep);
7540 #endif
7541
7542 #ifdef CONFIG_MAGIC_SYSRQ
7543 void normalize_rt_tasks(void)
7544 {
7545 struct task_struct *g, *p;
7546 struct sched_attr attr = {
7547 .sched_policy = SCHED_NORMAL,
7548 };
7549
7550 read_lock(&tasklist_lock);
7551 for_each_process_thread(g, p) {
7552 /*
7553 * Only normalize user tasks:
7554 */
7555 if (p->flags & PF_KTHREAD)
7556 continue;
7557
7558 p->se.exec_start = 0;
7559 #ifdef CONFIG_SCHEDSTATS
7560 p->se.statistics.wait_start = 0;
7561 p->se.statistics.sleep_start = 0;
7562 p->se.statistics.block_start = 0;
7563 #endif
7564
7565 if (!dl_task(p) && !rt_task(p)) {
7566 /*
7567 * Renice negative nice level userspace
7568 * tasks back to 0:
7569 */
7570 if (task_nice(p) < 0)
7571 set_user_nice(p, 0);
7572 continue;
7573 }
7574
7575 __sched_setscheduler(p, &attr, false, false);
7576 }
7577 read_unlock(&tasklist_lock);
7578 }
7579
7580 #endif /* CONFIG_MAGIC_SYSRQ */
7581
7582 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7583 /*
7584 * These functions are only useful for the IA64 MCA handling, or kdb.
7585 *
7586 * They can only be called when the whole system has been
7587 * stopped - every CPU needs to be quiescent, and no scheduling
7588 * activity can take place. Using them for anything else would
7589 * be a serious bug, and as a result, they aren't even visible
7590 * under any other configuration.
7591 */
7592
7593 /**
7594 * curr_task - return the current task for a given cpu.
7595 * @cpu: the processor in question.
7596 *
7597 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7598 *
7599 * Return: The current task for @cpu.
7600 */
7601 struct task_struct *curr_task(int cpu)
7602 {
7603 return cpu_curr(cpu);
7604 }
7605
7606 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7607
7608 #ifdef CONFIG_IA64
7609 /**
7610 * set_curr_task - set the current task for a given cpu.
7611 * @cpu: the processor in question.
7612 * @p: the task pointer to set.
7613 *
7614 * Description: This function must only be used when non-maskable interrupts
7615 * are serviced on a separate stack. It allows the architecture to switch the
7616 * notion of the current task on a cpu in a non-blocking manner. This function
7617 * must be called with all CPU's synchronized, and interrupts disabled, the
7618 * and caller must save the original value of the current task (see
7619 * curr_task() above) and restore that value before reenabling interrupts and
7620 * re-starting the system.
7621 *
7622 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7623 */
7624 void set_curr_task(int cpu, struct task_struct *p)
7625 {
7626 cpu_curr(cpu) = p;
7627 }
7628
7629 #endif
7630
7631 #ifdef CONFIG_CGROUP_SCHED
7632 /* task_group_lock serializes the addition/removal of task groups */
7633 static DEFINE_SPINLOCK(task_group_lock);
7634
7635 static void free_sched_group(struct task_group *tg)
7636 {
7637 free_fair_sched_group(tg);
7638 free_rt_sched_group(tg);
7639 autogroup_free(tg);
7640 kfree(tg);
7641 }
7642
7643 /* allocate runqueue etc for a new task group */
7644 struct task_group *sched_create_group(struct task_group *parent)
7645 {
7646 struct task_group *tg;
7647
7648 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7649 if (!tg)
7650 return ERR_PTR(-ENOMEM);
7651
7652 if (!alloc_fair_sched_group(tg, parent))
7653 goto err;
7654
7655 if (!alloc_rt_sched_group(tg, parent))
7656 goto err;
7657
7658 return tg;
7659
7660 err:
7661 free_sched_group(tg);
7662 return ERR_PTR(-ENOMEM);
7663 }
7664
7665 void sched_online_group(struct task_group *tg, struct task_group *parent)
7666 {
7667 unsigned long flags;
7668
7669 spin_lock_irqsave(&task_group_lock, flags);
7670 list_add_rcu(&tg->list, &task_groups);
7671
7672 WARN_ON(!parent); /* root should already exist */
7673
7674 tg->parent = parent;
7675 INIT_LIST_HEAD(&tg->children);
7676 list_add_rcu(&tg->siblings, &parent->children);
7677 spin_unlock_irqrestore(&task_group_lock, flags);
7678 }
7679
7680 /* rcu callback to free various structures associated with a task group */
7681 static void free_sched_group_rcu(struct rcu_head *rhp)
7682 {
7683 /* now it should be safe to free those cfs_rqs */
7684 free_sched_group(container_of(rhp, struct task_group, rcu));
7685 }
7686
7687 /* Destroy runqueue etc associated with a task group */
7688 void sched_destroy_group(struct task_group *tg)
7689 {
7690 /* wait for possible concurrent references to cfs_rqs complete */
7691 call_rcu(&tg->rcu, free_sched_group_rcu);
7692 }
7693
7694 void sched_offline_group(struct task_group *tg)
7695 {
7696 unsigned long flags;
7697 int i;
7698
7699 /* end participation in shares distribution */
7700 for_each_possible_cpu(i)
7701 unregister_fair_sched_group(tg, i);
7702
7703 spin_lock_irqsave(&task_group_lock, flags);
7704 list_del_rcu(&tg->list);
7705 list_del_rcu(&tg->siblings);
7706 spin_unlock_irqrestore(&task_group_lock, flags);
7707 }
7708
7709 /* change task's runqueue when it moves between groups.
7710 * The caller of this function should have put the task in its new group
7711 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7712 * reflect its new group.
7713 */
7714 void sched_move_task(struct task_struct *tsk)
7715 {
7716 struct task_group *tg;
7717 int queued, running;
7718 unsigned long flags;
7719 struct rq *rq;
7720
7721 rq = task_rq_lock(tsk, &flags);
7722
7723 running = task_current(rq, tsk);
7724 queued = task_on_rq_queued(tsk);
7725
7726 if (queued)
7727 dequeue_task(rq, tsk, 0);
7728 if (unlikely(running))
7729 put_prev_task(rq, tsk);
7730
7731 /*
7732 * All callers are synchronized by task_rq_lock(); we do not use RCU
7733 * which is pointless here. Thus, we pass "true" to task_css_check()
7734 * to prevent lockdep warnings.
7735 */
7736 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7737 struct task_group, css);
7738 tg = autogroup_task_group(tsk, tg);
7739 tsk->sched_task_group = tg;
7740
7741 #ifdef CONFIG_FAIR_GROUP_SCHED
7742 if (tsk->sched_class->task_move_group)
7743 tsk->sched_class->task_move_group(tsk, queued);
7744 else
7745 #endif
7746 set_task_rq(tsk, task_cpu(tsk));
7747
7748 if (unlikely(running))
7749 tsk->sched_class->set_curr_task(rq);
7750 if (queued)
7751 enqueue_task(rq, tsk, 0);
7752
7753 task_rq_unlock(rq, tsk, &flags);
7754 }
7755 #endif /* CONFIG_CGROUP_SCHED */
7756
7757 #ifdef CONFIG_RT_GROUP_SCHED
7758 /*
7759 * Ensure that the real time constraints are schedulable.
7760 */
7761 static DEFINE_MUTEX(rt_constraints_mutex);
7762
7763 /* Must be called with tasklist_lock held */
7764 static inline int tg_has_rt_tasks(struct task_group *tg)
7765 {
7766 struct task_struct *g, *p;
7767
7768 /*
7769 * Autogroups do not have RT tasks; see autogroup_create().
7770 */
7771 if (task_group_is_autogroup(tg))
7772 return 0;
7773
7774 for_each_process_thread(g, p) {
7775 if (rt_task(p) && task_group(p) == tg)
7776 return 1;
7777 }
7778
7779 return 0;
7780 }
7781
7782 struct rt_schedulable_data {
7783 struct task_group *tg;
7784 u64 rt_period;
7785 u64 rt_runtime;
7786 };
7787
7788 static int tg_rt_schedulable(struct task_group *tg, void *data)
7789 {
7790 struct rt_schedulable_data *d = data;
7791 struct task_group *child;
7792 unsigned long total, sum = 0;
7793 u64 period, runtime;
7794
7795 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7796 runtime = tg->rt_bandwidth.rt_runtime;
7797
7798 if (tg == d->tg) {
7799 period = d->rt_period;
7800 runtime = d->rt_runtime;
7801 }
7802
7803 /*
7804 * Cannot have more runtime than the period.
7805 */
7806 if (runtime > period && runtime != RUNTIME_INF)
7807 return -EINVAL;
7808
7809 /*
7810 * Ensure we don't starve existing RT tasks.
7811 */
7812 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7813 return -EBUSY;
7814
7815 total = to_ratio(period, runtime);
7816
7817 /*
7818 * Nobody can have more than the global setting allows.
7819 */
7820 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7821 return -EINVAL;
7822
7823 /*
7824 * The sum of our children's runtime should not exceed our own.
7825 */
7826 list_for_each_entry_rcu(child, &tg->children, siblings) {
7827 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7828 runtime = child->rt_bandwidth.rt_runtime;
7829
7830 if (child == d->tg) {
7831 period = d->rt_period;
7832 runtime = d->rt_runtime;
7833 }
7834
7835 sum += to_ratio(period, runtime);
7836 }
7837
7838 if (sum > total)
7839 return -EINVAL;
7840
7841 return 0;
7842 }
7843
7844 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7845 {
7846 int ret;
7847
7848 struct rt_schedulable_data data = {
7849 .tg = tg,
7850 .rt_period = period,
7851 .rt_runtime = runtime,
7852 };
7853
7854 rcu_read_lock();
7855 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7856 rcu_read_unlock();
7857
7858 return ret;
7859 }
7860
7861 static int tg_set_rt_bandwidth(struct task_group *tg,
7862 u64 rt_period, u64 rt_runtime)
7863 {
7864 int i, err = 0;
7865
7866 /*
7867 * Disallowing the root group RT runtime is BAD, it would disallow the
7868 * kernel creating (and or operating) RT threads.
7869 */
7870 if (tg == &root_task_group && rt_runtime == 0)
7871 return -EINVAL;
7872
7873 /* No period doesn't make any sense. */
7874 if (rt_period == 0)
7875 return -EINVAL;
7876
7877 mutex_lock(&rt_constraints_mutex);
7878 read_lock(&tasklist_lock);
7879 err = __rt_schedulable(tg, rt_period, rt_runtime);
7880 if (err)
7881 goto unlock;
7882
7883 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7884 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7885 tg->rt_bandwidth.rt_runtime = rt_runtime;
7886
7887 for_each_possible_cpu(i) {
7888 struct rt_rq *rt_rq = tg->rt_rq[i];
7889
7890 raw_spin_lock(&rt_rq->rt_runtime_lock);
7891 rt_rq->rt_runtime = rt_runtime;
7892 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7893 }
7894 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7895 unlock:
7896 read_unlock(&tasklist_lock);
7897 mutex_unlock(&rt_constraints_mutex);
7898
7899 return err;
7900 }
7901
7902 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7903 {
7904 u64 rt_runtime, rt_period;
7905
7906 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7907 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7908 if (rt_runtime_us < 0)
7909 rt_runtime = RUNTIME_INF;
7910
7911 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7912 }
7913
7914 static long sched_group_rt_runtime(struct task_group *tg)
7915 {
7916 u64 rt_runtime_us;
7917
7918 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7919 return -1;
7920
7921 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7922 do_div(rt_runtime_us, NSEC_PER_USEC);
7923 return rt_runtime_us;
7924 }
7925
7926 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7927 {
7928 u64 rt_runtime, rt_period;
7929
7930 rt_period = rt_period_us * NSEC_PER_USEC;
7931 rt_runtime = tg->rt_bandwidth.rt_runtime;
7932
7933 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7934 }
7935
7936 static long sched_group_rt_period(struct task_group *tg)
7937 {
7938 u64 rt_period_us;
7939
7940 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7941 do_div(rt_period_us, NSEC_PER_USEC);
7942 return rt_period_us;
7943 }
7944 #endif /* CONFIG_RT_GROUP_SCHED */
7945
7946 #ifdef CONFIG_RT_GROUP_SCHED
7947 static int sched_rt_global_constraints(void)
7948 {
7949 int ret = 0;
7950
7951 mutex_lock(&rt_constraints_mutex);
7952 read_lock(&tasklist_lock);
7953 ret = __rt_schedulable(NULL, 0, 0);
7954 read_unlock(&tasklist_lock);
7955 mutex_unlock(&rt_constraints_mutex);
7956
7957 return ret;
7958 }
7959
7960 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7961 {
7962 /* Don't accept realtime tasks when there is no way for them to run */
7963 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7964 return 0;
7965
7966 return 1;
7967 }
7968
7969 #else /* !CONFIG_RT_GROUP_SCHED */
7970 static int sched_rt_global_constraints(void)
7971 {
7972 unsigned long flags;
7973 int i, ret = 0;
7974
7975 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7976 for_each_possible_cpu(i) {
7977 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7978
7979 raw_spin_lock(&rt_rq->rt_runtime_lock);
7980 rt_rq->rt_runtime = global_rt_runtime();
7981 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7982 }
7983 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7984
7985 return ret;
7986 }
7987 #endif /* CONFIG_RT_GROUP_SCHED */
7988
7989 static int sched_dl_global_validate(void)
7990 {
7991 u64 runtime = global_rt_runtime();
7992 u64 period = global_rt_period();
7993 u64 new_bw = to_ratio(period, runtime);
7994 struct dl_bw *dl_b;
7995 int cpu, ret = 0;
7996 unsigned long flags;
7997
7998 /*
7999 * Here we want to check the bandwidth not being set to some
8000 * value smaller than the currently allocated bandwidth in
8001 * any of the root_domains.
8002 *
8003 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8004 * cycling on root_domains... Discussion on different/better
8005 * solutions is welcome!
8006 */
8007 for_each_possible_cpu(cpu) {
8008 rcu_read_lock_sched();
8009 dl_b = dl_bw_of(cpu);
8010
8011 raw_spin_lock_irqsave(&dl_b->lock, flags);
8012 if (new_bw < dl_b->total_bw)
8013 ret = -EBUSY;
8014 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8015
8016 rcu_read_unlock_sched();
8017
8018 if (ret)
8019 break;
8020 }
8021
8022 return ret;
8023 }
8024
8025 static void sched_dl_do_global(void)
8026 {
8027 u64 new_bw = -1;
8028 struct dl_bw *dl_b;
8029 int cpu;
8030 unsigned long flags;
8031
8032 def_dl_bandwidth.dl_period = global_rt_period();
8033 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8034
8035 if (global_rt_runtime() != RUNTIME_INF)
8036 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8037
8038 /*
8039 * FIXME: As above...
8040 */
8041 for_each_possible_cpu(cpu) {
8042 rcu_read_lock_sched();
8043 dl_b = dl_bw_of(cpu);
8044
8045 raw_spin_lock_irqsave(&dl_b->lock, flags);
8046 dl_b->bw = new_bw;
8047 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8048
8049 rcu_read_unlock_sched();
8050 }
8051 }
8052
8053 static int sched_rt_global_validate(void)
8054 {
8055 if (sysctl_sched_rt_period <= 0)
8056 return -EINVAL;
8057
8058 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8059 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8060 return -EINVAL;
8061
8062 return 0;
8063 }
8064
8065 static void sched_rt_do_global(void)
8066 {
8067 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8068 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8069 }
8070
8071 int sched_rt_handler(struct ctl_table *table, int write,
8072 void __user *buffer, size_t *lenp,
8073 loff_t *ppos)
8074 {
8075 int old_period, old_runtime;
8076 static DEFINE_MUTEX(mutex);
8077 int ret;
8078
8079 mutex_lock(&mutex);
8080 old_period = sysctl_sched_rt_period;
8081 old_runtime = sysctl_sched_rt_runtime;
8082
8083 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8084
8085 if (!ret && write) {
8086 ret = sched_rt_global_validate();
8087 if (ret)
8088 goto undo;
8089
8090 ret = sched_dl_global_validate();
8091 if (ret)
8092 goto undo;
8093
8094 ret = sched_rt_global_constraints();
8095 if (ret)
8096 goto undo;
8097
8098 sched_rt_do_global();
8099 sched_dl_do_global();
8100 }
8101 if (0) {
8102 undo:
8103 sysctl_sched_rt_period = old_period;
8104 sysctl_sched_rt_runtime = old_runtime;
8105 }
8106 mutex_unlock(&mutex);
8107
8108 return ret;
8109 }
8110
8111 int sched_rr_handler(struct ctl_table *table, int write,
8112 void __user *buffer, size_t *lenp,
8113 loff_t *ppos)
8114 {
8115 int ret;
8116 static DEFINE_MUTEX(mutex);
8117
8118 mutex_lock(&mutex);
8119 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8120 /* make sure that internally we keep jiffies */
8121 /* also, writing zero resets timeslice to default */
8122 if (!ret && write) {
8123 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8124 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8125 }
8126 mutex_unlock(&mutex);
8127 return ret;
8128 }
8129
8130 #ifdef CONFIG_CGROUP_SCHED
8131
8132 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8133 {
8134 return css ? container_of(css, struct task_group, css) : NULL;
8135 }
8136
8137 static struct cgroup_subsys_state *
8138 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8139 {
8140 struct task_group *parent = css_tg(parent_css);
8141 struct task_group *tg;
8142
8143 if (!parent) {
8144 /* This is early initialization for the top cgroup */
8145 return &root_task_group.css;
8146 }
8147
8148 tg = sched_create_group(parent);
8149 if (IS_ERR(tg))
8150 return ERR_PTR(-ENOMEM);
8151
8152 return &tg->css;
8153 }
8154
8155 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8156 {
8157 struct task_group *tg = css_tg(css);
8158 struct task_group *parent = css_tg(css->parent);
8159
8160 if (parent)
8161 sched_online_group(tg, parent);
8162 return 0;
8163 }
8164
8165 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8166 {
8167 struct task_group *tg = css_tg(css);
8168
8169 sched_destroy_group(tg);
8170 }
8171
8172 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8173 {
8174 struct task_group *tg = css_tg(css);
8175
8176 sched_offline_group(tg);
8177 }
8178
8179 static void cpu_cgroup_fork(struct task_struct *task, void *private)
8180 {
8181 sched_move_task(task);
8182 }
8183
8184 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8185 struct cgroup_taskset *tset)
8186 {
8187 struct task_struct *task;
8188
8189 cgroup_taskset_for_each(task, tset) {
8190 #ifdef CONFIG_RT_GROUP_SCHED
8191 if (!sched_rt_can_attach(css_tg(css), task))
8192 return -EINVAL;
8193 #else
8194 /* We don't support RT-tasks being in separate groups */
8195 if (task->sched_class != &fair_sched_class)
8196 return -EINVAL;
8197 #endif
8198 }
8199 return 0;
8200 }
8201
8202 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8203 struct cgroup_taskset *tset)
8204 {
8205 struct task_struct *task;
8206
8207 cgroup_taskset_for_each(task, tset)
8208 sched_move_task(task);
8209 }
8210
8211 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8212 struct cgroup_subsys_state *old_css,
8213 struct task_struct *task)
8214 {
8215 /*
8216 * cgroup_exit() is called in the copy_process() failure path.
8217 * Ignore this case since the task hasn't ran yet, this avoids
8218 * trying to poke a half freed task state from generic code.
8219 */
8220 if (!(task->flags & PF_EXITING))
8221 return;
8222
8223 sched_move_task(task);
8224 }
8225
8226 #ifdef CONFIG_FAIR_GROUP_SCHED
8227 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8228 struct cftype *cftype, u64 shareval)
8229 {
8230 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8231 }
8232
8233 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8234 struct cftype *cft)
8235 {
8236 struct task_group *tg = css_tg(css);
8237
8238 return (u64) scale_load_down(tg->shares);
8239 }
8240
8241 #ifdef CONFIG_CFS_BANDWIDTH
8242 static DEFINE_MUTEX(cfs_constraints_mutex);
8243
8244 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8245 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8246
8247 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8248
8249 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8250 {
8251 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8252 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8253
8254 if (tg == &root_task_group)
8255 return -EINVAL;
8256
8257 /*
8258 * Ensure we have at some amount of bandwidth every period. This is
8259 * to prevent reaching a state of large arrears when throttled via
8260 * entity_tick() resulting in prolonged exit starvation.
8261 */
8262 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8263 return -EINVAL;
8264
8265 /*
8266 * Likewise, bound things on the otherside by preventing insane quota
8267 * periods. This also allows us to normalize in computing quota
8268 * feasibility.
8269 */
8270 if (period > max_cfs_quota_period)
8271 return -EINVAL;
8272
8273 /*
8274 * Prevent race between setting of cfs_rq->runtime_enabled and
8275 * unthrottle_offline_cfs_rqs().
8276 */
8277 get_online_cpus();
8278 mutex_lock(&cfs_constraints_mutex);
8279 ret = __cfs_schedulable(tg, period, quota);
8280 if (ret)
8281 goto out_unlock;
8282
8283 runtime_enabled = quota != RUNTIME_INF;
8284 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8285 /*
8286 * If we need to toggle cfs_bandwidth_used, off->on must occur
8287 * before making related changes, and on->off must occur afterwards
8288 */
8289 if (runtime_enabled && !runtime_was_enabled)
8290 cfs_bandwidth_usage_inc();
8291 raw_spin_lock_irq(&cfs_b->lock);
8292 cfs_b->period = ns_to_ktime(period);
8293 cfs_b->quota = quota;
8294
8295 __refill_cfs_bandwidth_runtime(cfs_b);
8296 /* restart the period timer (if active) to handle new period expiry */
8297 if (runtime_enabled)
8298 start_cfs_bandwidth(cfs_b);
8299 raw_spin_unlock_irq(&cfs_b->lock);
8300
8301 for_each_online_cpu(i) {
8302 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8303 struct rq *rq = cfs_rq->rq;
8304
8305 raw_spin_lock_irq(&rq->lock);
8306 cfs_rq->runtime_enabled = runtime_enabled;
8307 cfs_rq->runtime_remaining = 0;
8308
8309 if (cfs_rq->throttled)
8310 unthrottle_cfs_rq(cfs_rq);
8311 raw_spin_unlock_irq(&rq->lock);
8312 }
8313 if (runtime_was_enabled && !runtime_enabled)
8314 cfs_bandwidth_usage_dec();
8315 out_unlock:
8316 mutex_unlock(&cfs_constraints_mutex);
8317 put_online_cpus();
8318
8319 return ret;
8320 }
8321
8322 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8323 {
8324 u64 quota, period;
8325
8326 period = ktime_to_ns(tg->cfs_bandwidth.period);
8327 if (cfs_quota_us < 0)
8328 quota = RUNTIME_INF;
8329 else
8330 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8331
8332 return tg_set_cfs_bandwidth(tg, period, quota);
8333 }
8334
8335 long tg_get_cfs_quota(struct task_group *tg)
8336 {
8337 u64 quota_us;
8338
8339 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8340 return -1;
8341
8342 quota_us = tg->cfs_bandwidth.quota;
8343 do_div(quota_us, NSEC_PER_USEC);
8344
8345 return quota_us;
8346 }
8347
8348 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8349 {
8350 u64 quota, period;
8351
8352 period = (u64)cfs_period_us * NSEC_PER_USEC;
8353 quota = tg->cfs_bandwidth.quota;
8354
8355 return tg_set_cfs_bandwidth(tg, period, quota);
8356 }
8357
8358 long tg_get_cfs_period(struct task_group *tg)
8359 {
8360 u64 cfs_period_us;
8361
8362 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8363 do_div(cfs_period_us, NSEC_PER_USEC);
8364
8365 return cfs_period_us;
8366 }
8367
8368 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8369 struct cftype *cft)
8370 {
8371 return tg_get_cfs_quota(css_tg(css));
8372 }
8373
8374 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8375 struct cftype *cftype, s64 cfs_quota_us)
8376 {
8377 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8378 }
8379
8380 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8381 struct cftype *cft)
8382 {
8383 return tg_get_cfs_period(css_tg(css));
8384 }
8385
8386 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8387 struct cftype *cftype, u64 cfs_period_us)
8388 {
8389 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8390 }
8391
8392 struct cfs_schedulable_data {
8393 struct task_group *tg;
8394 u64 period, quota;
8395 };
8396
8397 /*
8398 * normalize group quota/period to be quota/max_period
8399 * note: units are usecs
8400 */
8401 static u64 normalize_cfs_quota(struct task_group *tg,
8402 struct cfs_schedulable_data *d)
8403 {
8404 u64 quota, period;
8405
8406 if (tg == d->tg) {
8407 period = d->period;
8408 quota = d->quota;
8409 } else {
8410 period = tg_get_cfs_period(tg);
8411 quota = tg_get_cfs_quota(tg);
8412 }
8413
8414 /* note: these should typically be equivalent */
8415 if (quota == RUNTIME_INF || quota == -1)
8416 return RUNTIME_INF;
8417
8418 return to_ratio(period, quota);
8419 }
8420
8421 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8422 {
8423 struct cfs_schedulable_data *d = data;
8424 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8425 s64 quota = 0, parent_quota = -1;
8426
8427 if (!tg->parent) {
8428 quota = RUNTIME_INF;
8429 } else {
8430 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8431
8432 quota = normalize_cfs_quota(tg, d);
8433 parent_quota = parent_b->hierarchical_quota;
8434
8435 /*
8436 * ensure max(child_quota) <= parent_quota, inherit when no
8437 * limit is set
8438 */
8439 if (quota == RUNTIME_INF)
8440 quota = parent_quota;
8441 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8442 return -EINVAL;
8443 }
8444 cfs_b->hierarchical_quota = quota;
8445
8446 return 0;
8447 }
8448
8449 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8450 {
8451 int ret;
8452 struct cfs_schedulable_data data = {
8453 .tg = tg,
8454 .period = period,
8455 .quota = quota,
8456 };
8457
8458 if (quota != RUNTIME_INF) {
8459 do_div(data.period, NSEC_PER_USEC);
8460 do_div(data.quota, NSEC_PER_USEC);
8461 }
8462
8463 rcu_read_lock();
8464 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8465 rcu_read_unlock();
8466
8467 return ret;
8468 }
8469
8470 static int cpu_stats_show(struct seq_file *sf, void *v)
8471 {
8472 struct task_group *tg = css_tg(seq_css(sf));
8473 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8474
8475 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8476 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8477 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8478
8479 return 0;
8480 }
8481 #endif /* CONFIG_CFS_BANDWIDTH */
8482 #endif /* CONFIG_FAIR_GROUP_SCHED */
8483
8484 #ifdef CONFIG_RT_GROUP_SCHED
8485 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8486 struct cftype *cft, s64 val)
8487 {
8488 return sched_group_set_rt_runtime(css_tg(css), val);
8489 }
8490
8491 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8492 struct cftype *cft)
8493 {
8494 return sched_group_rt_runtime(css_tg(css));
8495 }
8496
8497 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8498 struct cftype *cftype, u64 rt_period_us)
8499 {
8500 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8501 }
8502
8503 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8504 struct cftype *cft)
8505 {
8506 return sched_group_rt_period(css_tg(css));
8507 }
8508 #endif /* CONFIG_RT_GROUP_SCHED */
8509
8510 static struct cftype cpu_files[] = {
8511 #ifdef CONFIG_FAIR_GROUP_SCHED
8512 {
8513 .name = "shares",
8514 .read_u64 = cpu_shares_read_u64,
8515 .write_u64 = cpu_shares_write_u64,
8516 },
8517 #endif
8518 #ifdef CONFIG_CFS_BANDWIDTH
8519 {
8520 .name = "cfs_quota_us",
8521 .read_s64 = cpu_cfs_quota_read_s64,
8522 .write_s64 = cpu_cfs_quota_write_s64,
8523 },
8524 {
8525 .name = "cfs_period_us",
8526 .read_u64 = cpu_cfs_period_read_u64,
8527 .write_u64 = cpu_cfs_period_write_u64,
8528 },
8529 {
8530 .name = "stat",
8531 .seq_show = cpu_stats_show,
8532 },
8533 #endif
8534 #ifdef CONFIG_RT_GROUP_SCHED
8535 {
8536 .name = "rt_runtime_us",
8537 .read_s64 = cpu_rt_runtime_read,
8538 .write_s64 = cpu_rt_runtime_write,
8539 },
8540 {
8541 .name = "rt_period_us",
8542 .read_u64 = cpu_rt_period_read_uint,
8543 .write_u64 = cpu_rt_period_write_uint,
8544 },
8545 #endif
8546 { } /* terminate */
8547 };
8548
8549 struct cgroup_subsys cpu_cgrp_subsys = {
8550 .css_alloc = cpu_cgroup_css_alloc,
8551 .css_free = cpu_cgroup_css_free,
8552 .css_online = cpu_cgroup_css_online,
8553 .css_offline = cpu_cgroup_css_offline,
8554 .fork = cpu_cgroup_fork,
8555 .can_attach = cpu_cgroup_can_attach,
8556 .attach = cpu_cgroup_attach,
8557 .exit = cpu_cgroup_exit,
8558 .legacy_cftypes = cpu_files,
8559 .early_init = 1,
8560 };
8561
8562 #endif /* CONFIG_CGROUP_SCHED */
8563
8564 void dump_cpu_task(int cpu)
8565 {
8566 pr_info("Task dump for CPU %d:\n", cpu);
8567 sched_show_task(cpu_curr(cpu));
8568 }