]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/core.c
Merge tag 'locks-v4.4-1' of git://git.samba.org/jlayton/linux
[mirror_ubuntu-artful-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98 void update_rq_clock(struct rq *rq)
99 {
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112 }
113
114 /*
115 * Debugging: various feature bits
116 */
117
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 0;
124
125 #undef SCHED_FEAT
126
127 #ifdef CONFIG_SCHED_DEBUG
128 #define SCHED_FEAT(name, enabled) \
129 #name ,
130
131 static const char * const sched_feat_names[] = {
132 #include "features.h"
133 };
134
135 #undef SCHED_FEAT
136
137 static int sched_feat_show(struct seq_file *m, void *v)
138 {
139 int i;
140
141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
145 }
146 seq_puts(m, "\n");
147
148 return 0;
149 }
150
151 #ifdef HAVE_JUMP_LABEL
152
153 #define jump_label_key__true STATIC_KEY_INIT_TRUE
154 #define jump_label_key__false STATIC_KEY_INIT_FALSE
155
156 #define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
159 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160 #include "features.h"
161 };
162
163 #undef SCHED_FEAT
164
165 static void sched_feat_disable(int i)
166 {
167 static_key_disable(&sched_feat_keys[i]);
168 }
169
170 static void sched_feat_enable(int i)
171 {
172 static_key_enable(&sched_feat_keys[i]);
173 }
174 #else
175 static void sched_feat_disable(int i) { };
176 static void sched_feat_enable(int i) { };
177 #endif /* HAVE_JUMP_LABEL */
178
179 static int sched_feat_set(char *cmp)
180 {
181 int i;
182 int neg = 0;
183
184 if (strncmp(cmp, "NO_", 3) == 0) {
185 neg = 1;
186 cmp += 3;
187 }
188
189 for (i = 0; i < __SCHED_FEAT_NR; i++) {
190 if (strcmp(cmp, sched_feat_names[i]) == 0) {
191 if (neg) {
192 sysctl_sched_features &= ~(1UL << i);
193 sched_feat_disable(i);
194 } else {
195 sysctl_sched_features |= (1UL << i);
196 sched_feat_enable(i);
197 }
198 break;
199 }
200 }
201
202 return i;
203 }
204
205 static ssize_t
206 sched_feat_write(struct file *filp, const char __user *ubuf,
207 size_t cnt, loff_t *ppos)
208 {
209 char buf[64];
210 char *cmp;
211 int i;
212 struct inode *inode;
213
214 if (cnt > 63)
215 cnt = 63;
216
217 if (copy_from_user(&buf, ubuf, cnt))
218 return -EFAULT;
219
220 buf[cnt] = 0;
221 cmp = strstrip(buf);
222
223 /* Ensure the static_key remains in a consistent state */
224 inode = file_inode(filp);
225 mutex_lock(&inode->i_mutex);
226 i = sched_feat_set(cmp);
227 mutex_unlock(&inode->i_mutex);
228 if (i == __SCHED_FEAT_NR)
229 return -EINVAL;
230
231 *ppos += cnt;
232
233 return cnt;
234 }
235
236 static int sched_feat_open(struct inode *inode, struct file *filp)
237 {
238 return single_open(filp, sched_feat_show, NULL);
239 }
240
241 static const struct file_operations sched_feat_fops = {
242 .open = sched_feat_open,
243 .write = sched_feat_write,
244 .read = seq_read,
245 .llseek = seq_lseek,
246 .release = single_release,
247 };
248
249 static __init int sched_init_debug(void)
250 {
251 debugfs_create_file("sched_features", 0644, NULL, NULL,
252 &sched_feat_fops);
253
254 return 0;
255 }
256 late_initcall(sched_init_debug);
257 #endif /* CONFIG_SCHED_DEBUG */
258
259 /*
260 * Number of tasks to iterate in a single balance run.
261 * Limited because this is done with IRQs disabled.
262 */
263 const_debug unsigned int sysctl_sched_nr_migrate = 32;
264
265 /*
266 * period over which we average the RT time consumption, measured
267 * in ms.
268 *
269 * default: 1s
270 */
271 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
272
273 /*
274 * period over which we measure -rt task cpu usage in us.
275 * default: 1s
276 */
277 unsigned int sysctl_sched_rt_period = 1000000;
278
279 __read_mostly int scheduler_running;
280
281 /*
282 * part of the period that we allow rt tasks to run in us.
283 * default: 0.95s
284 */
285 int sysctl_sched_rt_runtime = 950000;
286
287 /* cpus with isolated domains */
288 cpumask_var_t cpu_isolated_map;
289
290 /*
291 * this_rq_lock - lock this runqueue and disable interrupts.
292 */
293 static struct rq *this_rq_lock(void)
294 __acquires(rq->lock)
295 {
296 struct rq *rq;
297
298 local_irq_disable();
299 rq = this_rq();
300 raw_spin_lock(&rq->lock);
301
302 return rq;
303 }
304
305 #ifdef CONFIG_SCHED_HRTICK
306 /*
307 * Use HR-timers to deliver accurate preemption points.
308 */
309
310 static void hrtick_clear(struct rq *rq)
311 {
312 if (hrtimer_active(&rq->hrtick_timer))
313 hrtimer_cancel(&rq->hrtick_timer);
314 }
315
316 /*
317 * High-resolution timer tick.
318 * Runs from hardirq context with interrupts disabled.
319 */
320 static enum hrtimer_restart hrtick(struct hrtimer *timer)
321 {
322 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
323
324 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
325
326 raw_spin_lock(&rq->lock);
327 update_rq_clock(rq);
328 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
329 raw_spin_unlock(&rq->lock);
330
331 return HRTIMER_NORESTART;
332 }
333
334 #ifdef CONFIG_SMP
335
336 static void __hrtick_restart(struct rq *rq)
337 {
338 struct hrtimer *timer = &rq->hrtick_timer;
339
340 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
341 }
342
343 /*
344 * called from hardirq (IPI) context
345 */
346 static void __hrtick_start(void *arg)
347 {
348 struct rq *rq = arg;
349
350 raw_spin_lock(&rq->lock);
351 __hrtick_restart(rq);
352 rq->hrtick_csd_pending = 0;
353 raw_spin_unlock(&rq->lock);
354 }
355
356 /*
357 * Called to set the hrtick timer state.
358 *
359 * called with rq->lock held and irqs disabled
360 */
361 void hrtick_start(struct rq *rq, u64 delay)
362 {
363 struct hrtimer *timer = &rq->hrtick_timer;
364 ktime_t time;
365 s64 delta;
366
367 /*
368 * Don't schedule slices shorter than 10000ns, that just
369 * doesn't make sense and can cause timer DoS.
370 */
371 delta = max_t(s64, delay, 10000LL);
372 time = ktime_add_ns(timer->base->get_time(), delta);
373
374 hrtimer_set_expires(timer, time);
375
376 if (rq == this_rq()) {
377 __hrtick_restart(rq);
378 } else if (!rq->hrtick_csd_pending) {
379 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
380 rq->hrtick_csd_pending = 1;
381 }
382 }
383
384 static int
385 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
386 {
387 int cpu = (int)(long)hcpu;
388
389 switch (action) {
390 case CPU_UP_CANCELED:
391 case CPU_UP_CANCELED_FROZEN:
392 case CPU_DOWN_PREPARE:
393 case CPU_DOWN_PREPARE_FROZEN:
394 case CPU_DEAD:
395 case CPU_DEAD_FROZEN:
396 hrtick_clear(cpu_rq(cpu));
397 return NOTIFY_OK;
398 }
399
400 return NOTIFY_DONE;
401 }
402
403 static __init void init_hrtick(void)
404 {
405 hotcpu_notifier(hotplug_hrtick, 0);
406 }
407 #else
408 /*
409 * Called to set the hrtick timer state.
410 *
411 * called with rq->lock held and irqs disabled
412 */
413 void hrtick_start(struct rq *rq, u64 delay)
414 {
415 /*
416 * Don't schedule slices shorter than 10000ns, that just
417 * doesn't make sense. Rely on vruntime for fairness.
418 */
419 delay = max_t(u64, delay, 10000LL);
420 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
421 HRTIMER_MODE_REL_PINNED);
422 }
423
424 static inline void init_hrtick(void)
425 {
426 }
427 #endif /* CONFIG_SMP */
428
429 static void init_rq_hrtick(struct rq *rq)
430 {
431 #ifdef CONFIG_SMP
432 rq->hrtick_csd_pending = 0;
433
434 rq->hrtick_csd.flags = 0;
435 rq->hrtick_csd.func = __hrtick_start;
436 rq->hrtick_csd.info = rq;
437 #endif
438
439 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
440 rq->hrtick_timer.function = hrtick;
441 }
442 #else /* CONFIG_SCHED_HRTICK */
443 static inline void hrtick_clear(struct rq *rq)
444 {
445 }
446
447 static inline void init_rq_hrtick(struct rq *rq)
448 {
449 }
450
451 static inline void init_hrtick(void)
452 {
453 }
454 #endif /* CONFIG_SCHED_HRTICK */
455
456 /*
457 * cmpxchg based fetch_or, macro so it works for different integer types
458 */
459 #define fetch_or(ptr, val) \
460 ({ typeof(*(ptr)) __old, __val = *(ptr); \
461 for (;;) { \
462 __old = cmpxchg((ptr), __val, __val | (val)); \
463 if (__old == __val) \
464 break; \
465 __val = __old; \
466 } \
467 __old; \
468 })
469
470 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
471 /*
472 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
473 * this avoids any races wrt polling state changes and thereby avoids
474 * spurious IPIs.
475 */
476 static bool set_nr_and_not_polling(struct task_struct *p)
477 {
478 struct thread_info *ti = task_thread_info(p);
479 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
480 }
481
482 /*
483 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
484 *
485 * If this returns true, then the idle task promises to call
486 * sched_ttwu_pending() and reschedule soon.
487 */
488 static bool set_nr_if_polling(struct task_struct *p)
489 {
490 struct thread_info *ti = task_thread_info(p);
491 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
492
493 for (;;) {
494 if (!(val & _TIF_POLLING_NRFLAG))
495 return false;
496 if (val & _TIF_NEED_RESCHED)
497 return true;
498 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
499 if (old == val)
500 break;
501 val = old;
502 }
503 return true;
504 }
505
506 #else
507 static bool set_nr_and_not_polling(struct task_struct *p)
508 {
509 set_tsk_need_resched(p);
510 return true;
511 }
512
513 #ifdef CONFIG_SMP
514 static bool set_nr_if_polling(struct task_struct *p)
515 {
516 return false;
517 }
518 #endif
519 #endif
520
521 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
522 {
523 struct wake_q_node *node = &task->wake_q;
524
525 /*
526 * Atomically grab the task, if ->wake_q is !nil already it means
527 * its already queued (either by us or someone else) and will get the
528 * wakeup due to that.
529 *
530 * This cmpxchg() implies a full barrier, which pairs with the write
531 * barrier implied by the wakeup in wake_up_list().
532 */
533 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
534 return;
535
536 get_task_struct(task);
537
538 /*
539 * The head is context local, there can be no concurrency.
540 */
541 *head->lastp = node;
542 head->lastp = &node->next;
543 }
544
545 void wake_up_q(struct wake_q_head *head)
546 {
547 struct wake_q_node *node = head->first;
548
549 while (node != WAKE_Q_TAIL) {
550 struct task_struct *task;
551
552 task = container_of(node, struct task_struct, wake_q);
553 BUG_ON(!task);
554 /* task can safely be re-inserted now */
555 node = node->next;
556 task->wake_q.next = NULL;
557
558 /*
559 * wake_up_process() implies a wmb() to pair with the queueing
560 * in wake_q_add() so as not to miss wakeups.
561 */
562 wake_up_process(task);
563 put_task_struct(task);
564 }
565 }
566
567 /*
568 * resched_curr - mark rq's current task 'to be rescheduled now'.
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
574 void resched_curr(struct rq *rq)
575 {
576 struct task_struct *curr = rq->curr;
577 int cpu;
578
579 lockdep_assert_held(&rq->lock);
580
581 if (test_tsk_need_resched(curr))
582 return;
583
584 cpu = cpu_of(rq);
585
586 if (cpu == smp_processor_id()) {
587 set_tsk_need_resched(curr);
588 set_preempt_need_resched();
589 return;
590 }
591
592 if (set_nr_and_not_polling(curr))
593 smp_send_reschedule(cpu);
594 else
595 trace_sched_wake_idle_without_ipi(cpu);
596 }
597
598 void resched_cpu(int cpu)
599 {
600 struct rq *rq = cpu_rq(cpu);
601 unsigned long flags;
602
603 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
604 return;
605 resched_curr(rq);
606 raw_spin_unlock_irqrestore(&rq->lock, flags);
607 }
608
609 #ifdef CONFIG_SMP
610 #ifdef CONFIG_NO_HZ_COMMON
611 /*
612 * In the semi idle case, use the nearest busy cpu for migrating timers
613 * from an idle cpu. This is good for power-savings.
614 *
615 * We don't do similar optimization for completely idle system, as
616 * selecting an idle cpu will add more delays to the timers than intended
617 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
618 */
619 int get_nohz_timer_target(void)
620 {
621 int i, cpu = smp_processor_id();
622 struct sched_domain *sd;
623
624 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
625 return cpu;
626
627 rcu_read_lock();
628 for_each_domain(cpu, sd) {
629 for_each_cpu(i, sched_domain_span(sd)) {
630 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
631 cpu = i;
632 goto unlock;
633 }
634 }
635 }
636
637 if (!is_housekeeping_cpu(cpu))
638 cpu = housekeeping_any_cpu();
639 unlock:
640 rcu_read_unlock();
641 return cpu;
642 }
643 /*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
653 static void wake_up_idle_cpu(int cpu)
654 {
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
660 if (set_nr_and_not_polling(rq->idle))
661 smp_send_reschedule(cpu);
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
664 }
665
666 static bool wake_up_full_nohz_cpu(int cpu)
667 {
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
674 if (tick_nohz_full_cpu(cpu)) {
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
677 tick_nohz_full_kick_cpu(cpu);
678 return true;
679 }
680
681 return false;
682 }
683
684 void wake_up_nohz_cpu(int cpu)
685 {
686 if (!wake_up_full_nohz_cpu(cpu))
687 wake_up_idle_cpu(cpu);
688 }
689
690 static inline bool got_nohz_idle_kick(void)
691 {
692 int cpu = smp_processor_id();
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
706 }
707
708 #else /* CONFIG_NO_HZ_COMMON */
709
710 static inline bool got_nohz_idle_kick(void)
711 {
712 return false;
713 }
714
715 #endif /* CONFIG_NO_HZ_COMMON */
716
717 #ifdef CONFIG_NO_HZ_FULL
718 bool sched_can_stop_tick(void)
719 {
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
734 return rt_se->run_list.prev == rt_se->run_list.next;
735 }
736
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
742 if (this_rq()->nr_running > 1)
743 return false;
744
745 return true;
746 }
747 #endif /* CONFIG_NO_HZ_FULL */
748
749 void sched_avg_update(struct rq *rq)
750 {
751 s64 period = sched_avg_period();
752
753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
763 }
764
765 #endif /* CONFIG_SMP */
766
767 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769 /*
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
774 */
775 int walk_tg_tree_from(struct task_group *from,
776 tg_visitor down, tg_visitor up, void *data)
777 {
778 struct task_group *parent, *child;
779 int ret;
780
781 parent = from;
782
783 down:
784 ret = (*down)(parent, data);
785 if (ret)
786 goto out;
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791 up:
792 continue;
793 }
794 ret = (*up)(parent, data);
795 if (ret || parent == from)
796 goto out;
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
802 out:
803 return ret;
804 }
805
806 int tg_nop(struct task_group *tg, void *data)
807 {
808 return 0;
809 }
810 #endif
811
812 static void set_load_weight(struct task_struct *p)
813 {
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
820 if (idle_policy(p->policy)) {
821 load->weight = scale_load(WEIGHT_IDLEPRIO);
822 load->inv_weight = WMULT_IDLEPRIO;
823 return;
824 }
825
826 load->weight = scale_load(prio_to_weight[prio]);
827 load->inv_weight = prio_to_wmult[prio];
828 }
829
830 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831 {
832 update_rq_clock(rq);
833 if (!(flags & ENQUEUE_RESTORE))
834 sched_info_queued(rq, p);
835 p->sched_class->enqueue_task(rq, p, flags);
836 }
837
838 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
839 {
840 update_rq_clock(rq);
841 if (!(flags & DEQUEUE_SAVE))
842 sched_info_dequeued(rq, p);
843 p->sched_class->dequeue_task(rq, p, flags);
844 }
845
846 void activate_task(struct rq *rq, struct task_struct *p, int flags)
847 {
848 if (task_contributes_to_load(p))
849 rq->nr_uninterruptible--;
850
851 enqueue_task(rq, p, flags);
852 }
853
854 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
855 {
856 if (task_contributes_to_load(p))
857 rq->nr_uninterruptible++;
858
859 dequeue_task(rq, p, flags);
860 }
861
862 static void update_rq_clock_task(struct rq *rq, s64 delta)
863 {
864 /*
865 * In theory, the compile should just see 0 here, and optimize out the call
866 * to sched_rt_avg_update. But I don't trust it...
867 */
868 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
869 s64 steal = 0, irq_delta = 0;
870 #endif
871 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
872 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
873
874 /*
875 * Since irq_time is only updated on {soft,}irq_exit, we might run into
876 * this case when a previous update_rq_clock() happened inside a
877 * {soft,}irq region.
878 *
879 * When this happens, we stop ->clock_task and only update the
880 * prev_irq_time stamp to account for the part that fit, so that a next
881 * update will consume the rest. This ensures ->clock_task is
882 * monotonic.
883 *
884 * It does however cause some slight miss-attribution of {soft,}irq
885 * time, a more accurate solution would be to update the irq_time using
886 * the current rq->clock timestamp, except that would require using
887 * atomic ops.
888 */
889 if (irq_delta > delta)
890 irq_delta = delta;
891
892 rq->prev_irq_time += irq_delta;
893 delta -= irq_delta;
894 #endif
895 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
896 if (static_key_false((&paravirt_steal_rq_enabled))) {
897 steal = paravirt_steal_clock(cpu_of(rq));
898 steal -= rq->prev_steal_time_rq;
899
900 if (unlikely(steal > delta))
901 steal = delta;
902
903 rq->prev_steal_time_rq += steal;
904 delta -= steal;
905 }
906 #endif
907
908 rq->clock_task += delta;
909
910 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
911 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
912 sched_rt_avg_update(rq, irq_delta + steal);
913 #endif
914 }
915
916 void sched_set_stop_task(int cpu, struct task_struct *stop)
917 {
918 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
919 struct task_struct *old_stop = cpu_rq(cpu)->stop;
920
921 if (stop) {
922 /*
923 * Make it appear like a SCHED_FIFO task, its something
924 * userspace knows about and won't get confused about.
925 *
926 * Also, it will make PI more or less work without too
927 * much confusion -- but then, stop work should not
928 * rely on PI working anyway.
929 */
930 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
931
932 stop->sched_class = &stop_sched_class;
933 }
934
935 cpu_rq(cpu)->stop = stop;
936
937 if (old_stop) {
938 /*
939 * Reset it back to a normal scheduling class so that
940 * it can die in pieces.
941 */
942 old_stop->sched_class = &rt_sched_class;
943 }
944 }
945
946 /*
947 * __normal_prio - return the priority that is based on the static prio
948 */
949 static inline int __normal_prio(struct task_struct *p)
950 {
951 return p->static_prio;
952 }
953
954 /*
955 * Calculate the expected normal priority: i.e. priority
956 * without taking RT-inheritance into account. Might be
957 * boosted by interactivity modifiers. Changes upon fork,
958 * setprio syscalls, and whenever the interactivity
959 * estimator recalculates.
960 */
961 static inline int normal_prio(struct task_struct *p)
962 {
963 int prio;
964
965 if (task_has_dl_policy(p))
966 prio = MAX_DL_PRIO-1;
967 else if (task_has_rt_policy(p))
968 prio = MAX_RT_PRIO-1 - p->rt_priority;
969 else
970 prio = __normal_prio(p);
971 return prio;
972 }
973
974 /*
975 * Calculate the current priority, i.e. the priority
976 * taken into account by the scheduler. This value might
977 * be boosted by RT tasks, or might be boosted by
978 * interactivity modifiers. Will be RT if the task got
979 * RT-boosted. If not then it returns p->normal_prio.
980 */
981 static int effective_prio(struct task_struct *p)
982 {
983 p->normal_prio = normal_prio(p);
984 /*
985 * If we are RT tasks or we were boosted to RT priority,
986 * keep the priority unchanged. Otherwise, update priority
987 * to the normal priority:
988 */
989 if (!rt_prio(p->prio))
990 return p->normal_prio;
991 return p->prio;
992 }
993
994 /**
995 * task_curr - is this task currently executing on a CPU?
996 * @p: the task in question.
997 *
998 * Return: 1 if the task is currently executing. 0 otherwise.
999 */
1000 inline int task_curr(const struct task_struct *p)
1001 {
1002 return cpu_curr(task_cpu(p)) == p;
1003 }
1004
1005 /*
1006 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1007 * use the balance_callback list if you want balancing.
1008 *
1009 * this means any call to check_class_changed() must be followed by a call to
1010 * balance_callback().
1011 */
1012 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1013 const struct sched_class *prev_class,
1014 int oldprio)
1015 {
1016 if (prev_class != p->sched_class) {
1017 if (prev_class->switched_from)
1018 prev_class->switched_from(rq, p);
1019
1020 p->sched_class->switched_to(rq, p);
1021 } else if (oldprio != p->prio || dl_task(p))
1022 p->sched_class->prio_changed(rq, p, oldprio);
1023 }
1024
1025 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1026 {
1027 const struct sched_class *class;
1028
1029 if (p->sched_class == rq->curr->sched_class) {
1030 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1031 } else {
1032 for_each_class(class) {
1033 if (class == rq->curr->sched_class)
1034 break;
1035 if (class == p->sched_class) {
1036 resched_curr(rq);
1037 break;
1038 }
1039 }
1040 }
1041
1042 /*
1043 * A queue event has occurred, and we're going to schedule. In
1044 * this case, we can save a useless back to back clock update.
1045 */
1046 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1047 rq_clock_skip_update(rq, true);
1048 }
1049
1050 #ifdef CONFIG_SMP
1051 /*
1052 * This is how migration works:
1053 *
1054 * 1) we invoke migration_cpu_stop() on the target CPU using
1055 * stop_one_cpu().
1056 * 2) stopper starts to run (implicitly forcing the migrated thread
1057 * off the CPU)
1058 * 3) it checks whether the migrated task is still in the wrong runqueue.
1059 * 4) if it's in the wrong runqueue then the migration thread removes
1060 * it and puts it into the right queue.
1061 * 5) stopper completes and stop_one_cpu() returns and the migration
1062 * is done.
1063 */
1064
1065 /*
1066 * move_queued_task - move a queued task to new rq.
1067 *
1068 * Returns (locked) new rq. Old rq's lock is released.
1069 */
1070 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1071 {
1072 lockdep_assert_held(&rq->lock);
1073
1074 dequeue_task(rq, p, 0);
1075 p->on_rq = TASK_ON_RQ_MIGRATING;
1076 set_task_cpu(p, new_cpu);
1077 raw_spin_unlock(&rq->lock);
1078
1079 rq = cpu_rq(new_cpu);
1080
1081 raw_spin_lock(&rq->lock);
1082 BUG_ON(task_cpu(p) != new_cpu);
1083 p->on_rq = TASK_ON_RQ_QUEUED;
1084 enqueue_task(rq, p, 0);
1085 check_preempt_curr(rq, p, 0);
1086
1087 return rq;
1088 }
1089
1090 struct migration_arg {
1091 struct task_struct *task;
1092 int dest_cpu;
1093 };
1094
1095 /*
1096 * Move (not current) task off this cpu, onto dest cpu. We're doing
1097 * this because either it can't run here any more (set_cpus_allowed()
1098 * away from this CPU, or CPU going down), or because we're
1099 * attempting to rebalance this task on exec (sched_exec).
1100 *
1101 * So we race with normal scheduler movements, but that's OK, as long
1102 * as the task is no longer on this CPU.
1103 */
1104 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1105 {
1106 if (unlikely(!cpu_active(dest_cpu)))
1107 return rq;
1108
1109 /* Affinity changed (again). */
1110 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1111 return rq;
1112
1113 rq = move_queued_task(rq, p, dest_cpu);
1114
1115 return rq;
1116 }
1117
1118 /*
1119 * migration_cpu_stop - this will be executed by a highprio stopper thread
1120 * and performs thread migration by bumping thread off CPU then
1121 * 'pushing' onto another runqueue.
1122 */
1123 static int migration_cpu_stop(void *data)
1124 {
1125 struct migration_arg *arg = data;
1126 struct task_struct *p = arg->task;
1127 struct rq *rq = this_rq();
1128
1129 /*
1130 * The original target cpu might have gone down and we might
1131 * be on another cpu but it doesn't matter.
1132 */
1133 local_irq_disable();
1134 /*
1135 * We need to explicitly wake pending tasks before running
1136 * __migrate_task() such that we will not miss enforcing cpus_allowed
1137 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1138 */
1139 sched_ttwu_pending();
1140
1141 raw_spin_lock(&p->pi_lock);
1142 raw_spin_lock(&rq->lock);
1143 /*
1144 * If task_rq(p) != rq, it cannot be migrated here, because we're
1145 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1146 * we're holding p->pi_lock.
1147 */
1148 if (task_rq(p) == rq && task_on_rq_queued(p))
1149 rq = __migrate_task(rq, p, arg->dest_cpu);
1150 raw_spin_unlock(&rq->lock);
1151 raw_spin_unlock(&p->pi_lock);
1152
1153 local_irq_enable();
1154 return 0;
1155 }
1156
1157 /*
1158 * sched_class::set_cpus_allowed must do the below, but is not required to
1159 * actually call this function.
1160 */
1161 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1162 {
1163 cpumask_copy(&p->cpus_allowed, new_mask);
1164 p->nr_cpus_allowed = cpumask_weight(new_mask);
1165 }
1166
1167 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1168 {
1169 struct rq *rq = task_rq(p);
1170 bool queued, running;
1171
1172 lockdep_assert_held(&p->pi_lock);
1173
1174 queued = task_on_rq_queued(p);
1175 running = task_current(rq, p);
1176
1177 if (queued) {
1178 /*
1179 * Because __kthread_bind() calls this on blocked tasks without
1180 * holding rq->lock.
1181 */
1182 lockdep_assert_held(&rq->lock);
1183 dequeue_task(rq, p, DEQUEUE_SAVE);
1184 }
1185 if (running)
1186 put_prev_task(rq, p);
1187
1188 p->sched_class->set_cpus_allowed(p, new_mask);
1189
1190 if (running)
1191 p->sched_class->set_curr_task(rq);
1192 if (queued)
1193 enqueue_task(rq, p, ENQUEUE_RESTORE);
1194 }
1195
1196 /*
1197 * Change a given task's CPU affinity. Migrate the thread to a
1198 * proper CPU and schedule it away if the CPU it's executing on
1199 * is removed from the allowed bitmask.
1200 *
1201 * NOTE: the caller must have a valid reference to the task, the
1202 * task must not exit() & deallocate itself prematurely. The
1203 * call is not atomic; no spinlocks may be held.
1204 */
1205 static int __set_cpus_allowed_ptr(struct task_struct *p,
1206 const struct cpumask *new_mask, bool check)
1207 {
1208 unsigned long flags;
1209 struct rq *rq;
1210 unsigned int dest_cpu;
1211 int ret = 0;
1212
1213 rq = task_rq_lock(p, &flags);
1214
1215 /*
1216 * Must re-check here, to close a race against __kthread_bind(),
1217 * sched_setaffinity() is not guaranteed to observe the flag.
1218 */
1219 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1220 ret = -EINVAL;
1221 goto out;
1222 }
1223
1224 if (cpumask_equal(&p->cpus_allowed, new_mask))
1225 goto out;
1226
1227 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1228 ret = -EINVAL;
1229 goto out;
1230 }
1231
1232 do_set_cpus_allowed(p, new_mask);
1233
1234 /* Can the task run on the task's current CPU? If so, we're done */
1235 if (cpumask_test_cpu(task_cpu(p), new_mask))
1236 goto out;
1237
1238 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1239 if (task_running(rq, p) || p->state == TASK_WAKING) {
1240 struct migration_arg arg = { p, dest_cpu };
1241 /* Need help from migration thread: drop lock and wait. */
1242 task_rq_unlock(rq, p, &flags);
1243 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1244 tlb_migrate_finish(p->mm);
1245 return 0;
1246 } else if (task_on_rq_queued(p)) {
1247 /*
1248 * OK, since we're going to drop the lock immediately
1249 * afterwards anyway.
1250 */
1251 lockdep_unpin_lock(&rq->lock);
1252 rq = move_queued_task(rq, p, dest_cpu);
1253 lockdep_pin_lock(&rq->lock);
1254 }
1255 out:
1256 task_rq_unlock(rq, p, &flags);
1257
1258 return ret;
1259 }
1260
1261 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1262 {
1263 return __set_cpus_allowed_ptr(p, new_mask, false);
1264 }
1265 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1266
1267 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1268 {
1269 #ifdef CONFIG_SCHED_DEBUG
1270 /*
1271 * We should never call set_task_cpu() on a blocked task,
1272 * ttwu() will sort out the placement.
1273 */
1274 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1275 !p->on_rq);
1276
1277 #ifdef CONFIG_LOCKDEP
1278 /*
1279 * The caller should hold either p->pi_lock or rq->lock, when changing
1280 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1281 *
1282 * sched_move_task() holds both and thus holding either pins the cgroup,
1283 * see task_group().
1284 *
1285 * Furthermore, all task_rq users should acquire both locks, see
1286 * task_rq_lock().
1287 */
1288 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1289 lockdep_is_held(&task_rq(p)->lock)));
1290 #endif
1291 #endif
1292
1293 trace_sched_migrate_task(p, new_cpu);
1294
1295 if (task_cpu(p) != new_cpu) {
1296 if (p->sched_class->migrate_task_rq)
1297 p->sched_class->migrate_task_rq(p);
1298 p->se.nr_migrations++;
1299 perf_event_task_migrate(p);
1300 }
1301
1302 __set_task_cpu(p, new_cpu);
1303 }
1304
1305 static void __migrate_swap_task(struct task_struct *p, int cpu)
1306 {
1307 if (task_on_rq_queued(p)) {
1308 struct rq *src_rq, *dst_rq;
1309
1310 src_rq = task_rq(p);
1311 dst_rq = cpu_rq(cpu);
1312
1313 deactivate_task(src_rq, p, 0);
1314 set_task_cpu(p, cpu);
1315 activate_task(dst_rq, p, 0);
1316 check_preempt_curr(dst_rq, p, 0);
1317 } else {
1318 /*
1319 * Task isn't running anymore; make it appear like we migrated
1320 * it before it went to sleep. This means on wakeup we make the
1321 * previous cpu our targer instead of where it really is.
1322 */
1323 p->wake_cpu = cpu;
1324 }
1325 }
1326
1327 struct migration_swap_arg {
1328 struct task_struct *src_task, *dst_task;
1329 int src_cpu, dst_cpu;
1330 };
1331
1332 static int migrate_swap_stop(void *data)
1333 {
1334 struct migration_swap_arg *arg = data;
1335 struct rq *src_rq, *dst_rq;
1336 int ret = -EAGAIN;
1337
1338 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1339 return -EAGAIN;
1340
1341 src_rq = cpu_rq(arg->src_cpu);
1342 dst_rq = cpu_rq(arg->dst_cpu);
1343
1344 double_raw_lock(&arg->src_task->pi_lock,
1345 &arg->dst_task->pi_lock);
1346 double_rq_lock(src_rq, dst_rq);
1347
1348 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1349 goto unlock;
1350
1351 if (task_cpu(arg->src_task) != arg->src_cpu)
1352 goto unlock;
1353
1354 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1355 goto unlock;
1356
1357 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1358 goto unlock;
1359
1360 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1361 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1362
1363 ret = 0;
1364
1365 unlock:
1366 double_rq_unlock(src_rq, dst_rq);
1367 raw_spin_unlock(&arg->dst_task->pi_lock);
1368 raw_spin_unlock(&arg->src_task->pi_lock);
1369
1370 return ret;
1371 }
1372
1373 /*
1374 * Cross migrate two tasks
1375 */
1376 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1377 {
1378 struct migration_swap_arg arg;
1379 int ret = -EINVAL;
1380
1381 arg = (struct migration_swap_arg){
1382 .src_task = cur,
1383 .src_cpu = task_cpu(cur),
1384 .dst_task = p,
1385 .dst_cpu = task_cpu(p),
1386 };
1387
1388 if (arg.src_cpu == arg.dst_cpu)
1389 goto out;
1390
1391 /*
1392 * These three tests are all lockless; this is OK since all of them
1393 * will be re-checked with proper locks held further down the line.
1394 */
1395 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1396 goto out;
1397
1398 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1399 goto out;
1400
1401 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1402 goto out;
1403
1404 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1405 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1406
1407 out:
1408 return ret;
1409 }
1410
1411 /*
1412 * wait_task_inactive - wait for a thread to unschedule.
1413 *
1414 * If @match_state is nonzero, it's the @p->state value just checked and
1415 * not expected to change. If it changes, i.e. @p might have woken up,
1416 * then return zero. When we succeed in waiting for @p to be off its CPU,
1417 * we return a positive number (its total switch count). If a second call
1418 * a short while later returns the same number, the caller can be sure that
1419 * @p has remained unscheduled the whole time.
1420 *
1421 * The caller must ensure that the task *will* unschedule sometime soon,
1422 * else this function might spin for a *long* time. This function can't
1423 * be called with interrupts off, or it may introduce deadlock with
1424 * smp_call_function() if an IPI is sent by the same process we are
1425 * waiting to become inactive.
1426 */
1427 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1428 {
1429 unsigned long flags;
1430 int running, queued;
1431 unsigned long ncsw;
1432 struct rq *rq;
1433
1434 for (;;) {
1435 /*
1436 * We do the initial early heuristics without holding
1437 * any task-queue locks at all. We'll only try to get
1438 * the runqueue lock when things look like they will
1439 * work out!
1440 */
1441 rq = task_rq(p);
1442
1443 /*
1444 * If the task is actively running on another CPU
1445 * still, just relax and busy-wait without holding
1446 * any locks.
1447 *
1448 * NOTE! Since we don't hold any locks, it's not
1449 * even sure that "rq" stays as the right runqueue!
1450 * But we don't care, since "task_running()" will
1451 * return false if the runqueue has changed and p
1452 * is actually now running somewhere else!
1453 */
1454 while (task_running(rq, p)) {
1455 if (match_state && unlikely(p->state != match_state))
1456 return 0;
1457 cpu_relax();
1458 }
1459
1460 /*
1461 * Ok, time to look more closely! We need the rq
1462 * lock now, to be *sure*. If we're wrong, we'll
1463 * just go back and repeat.
1464 */
1465 rq = task_rq_lock(p, &flags);
1466 trace_sched_wait_task(p);
1467 running = task_running(rq, p);
1468 queued = task_on_rq_queued(p);
1469 ncsw = 0;
1470 if (!match_state || p->state == match_state)
1471 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1472 task_rq_unlock(rq, p, &flags);
1473
1474 /*
1475 * If it changed from the expected state, bail out now.
1476 */
1477 if (unlikely(!ncsw))
1478 break;
1479
1480 /*
1481 * Was it really running after all now that we
1482 * checked with the proper locks actually held?
1483 *
1484 * Oops. Go back and try again..
1485 */
1486 if (unlikely(running)) {
1487 cpu_relax();
1488 continue;
1489 }
1490
1491 /*
1492 * It's not enough that it's not actively running,
1493 * it must be off the runqueue _entirely_, and not
1494 * preempted!
1495 *
1496 * So if it was still runnable (but just not actively
1497 * running right now), it's preempted, and we should
1498 * yield - it could be a while.
1499 */
1500 if (unlikely(queued)) {
1501 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1502
1503 set_current_state(TASK_UNINTERRUPTIBLE);
1504 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1505 continue;
1506 }
1507
1508 /*
1509 * Ahh, all good. It wasn't running, and it wasn't
1510 * runnable, which means that it will never become
1511 * running in the future either. We're all done!
1512 */
1513 break;
1514 }
1515
1516 return ncsw;
1517 }
1518
1519 /***
1520 * kick_process - kick a running thread to enter/exit the kernel
1521 * @p: the to-be-kicked thread
1522 *
1523 * Cause a process which is running on another CPU to enter
1524 * kernel-mode, without any delay. (to get signals handled.)
1525 *
1526 * NOTE: this function doesn't have to take the runqueue lock,
1527 * because all it wants to ensure is that the remote task enters
1528 * the kernel. If the IPI races and the task has been migrated
1529 * to another CPU then no harm is done and the purpose has been
1530 * achieved as well.
1531 */
1532 void kick_process(struct task_struct *p)
1533 {
1534 int cpu;
1535
1536 preempt_disable();
1537 cpu = task_cpu(p);
1538 if ((cpu != smp_processor_id()) && task_curr(p))
1539 smp_send_reschedule(cpu);
1540 preempt_enable();
1541 }
1542 EXPORT_SYMBOL_GPL(kick_process);
1543
1544 /*
1545 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1546 */
1547 static int select_fallback_rq(int cpu, struct task_struct *p)
1548 {
1549 int nid = cpu_to_node(cpu);
1550 const struct cpumask *nodemask = NULL;
1551 enum { cpuset, possible, fail } state = cpuset;
1552 int dest_cpu;
1553
1554 /*
1555 * If the node that the cpu is on has been offlined, cpu_to_node()
1556 * will return -1. There is no cpu on the node, and we should
1557 * select the cpu on the other node.
1558 */
1559 if (nid != -1) {
1560 nodemask = cpumask_of_node(nid);
1561
1562 /* Look for allowed, online CPU in same node. */
1563 for_each_cpu(dest_cpu, nodemask) {
1564 if (!cpu_online(dest_cpu))
1565 continue;
1566 if (!cpu_active(dest_cpu))
1567 continue;
1568 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1569 return dest_cpu;
1570 }
1571 }
1572
1573 for (;;) {
1574 /* Any allowed, online CPU? */
1575 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1576 if (!cpu_online(dest_cpu))
1577 continue;
1578 if (!cpu_active(dest_cpu))
1579 continue;
1580 goto out;
1581 }
1582
1583 /* No more Mr. Nice Guy. */
1584 switch (state) {
1585 case cpuset:
1586 if (IS_ENABLED(CONFIG_CPUSETS)) {
1587 cpuset_cpus_allowed_fallback(p);
1588 state = possible;
1589 break;
1590 }
1591 /* fall-through */
1592 case possible:
1593 do_set_cpus_allowed(p, cpu_possible_mask);
1594 state = fail;
1595 break;
1596
1597 case fail:
1598 BUG();
1599 break;
1600 }
1601 }
1602
1603 out:
1604 if (state != cpuset) {
1605 /*
1606 * Don't tell them about moving exiting tasks or
1607 * kernel threads (both mm NULL), since they never
1608 * leave kernel.
1609 */
1610 if (p->mm && printk_ratelimit()) {
1611 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1612 task_pid_nr(p), p->comm, cpu);
1613 }
1614 }
1615
1616 return dest_cpu;
1617 }
1618
1619 /*
1620 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1621 */
1622 static inline
1623 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1624 {
1625 lockdep_assert_held(&p->pi_lock);
1626
1627 if (p->nr_cpus_allowed > 1)
1628 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1629
1630 /*
1631 * In order not to call set_task_cpu() on a blocking task we need
1632 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1633 * cpu.
1634 *
1635 * Since this is common to all placement strategies, this lives here.
1636 *
1637 * [ this allows ->select_task() to simply return task_cpu(p) and
1638 * not worry about this generic constraint ]
1639 */
1640 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1641 !cpu_online(cpu)))
1642 cpu = select_fallback_rq(task_cpu(p), p);
1643
1644 return cpu;
1645 }
1646
1647 static void update_avg(u64 *avg, u64 sample)
1648 {
1649 s64 diff = sample - *avg;
1650 *avg += diff >> 3;
1651 }
1652
1653 #else
1654
1655 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1656 const struct cpumask *new_mask, bool check)
1657 {
1658 return set_cpus_allowed_ptr(p, new_mask);
1659 }
1660
1661 #endif /* CONFIG_SMP */
1662
1663 static void
1664 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1665 {
1666 #ifdef CONFIG_SCHEDSTATS
1667 struct rq *rq = this_rq();
1668
1669 #ifdef CONFIG_SMP
1670 int this_cpu = smp_processor_id();
1671
1672 if (cpu == this_cpu) {
1673 schedstat_inc(rq, ttwu_local);
1674 schedstat_inc(p, se.statistics.nr_wakeups_local);
1675 } else {
1676 struct sched_domain *sd;
1677
1678 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1679 rcu_read_lock();
1680 for_each_domain(this_cpu, sd) {
1681 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1682 schedstat_inc(sd, ttwu_wake_remote);
1683 break;
1684 }
1685 }
1686 rcu_read_unlock();
1687 }
1688
1689 if (wake_flags & WF_MIGRATED)
1690 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1691
1692 #endif /* CONFIG_SMP */
1693
1694 schedstat_inc(rq, ttwu_count);
1695 schedstat_inc(p, se.statistics.nr_wakeups);
1696
1697 if (wake_flags & WF_SYNC)
1698 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1699
1700 #endif /* CONFIG_SCHEDSTATS */
1701 }
1702
1703 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1704 {
1705 activate_task(rq, p, en_flags);
1706 p->on_rq = TASK_ON_RQ_QUEUED;
1707
1708 /* if a worker is waking up, notify workqueue */
1709 if (p->flags & PF_WQ_WORKER)
1710 wq_worker_waking_up(p, cpu_of(rq));
1711 }
1712
1713 /*
1714 * Mark the task runnable and perform wakeup-preemption.
1715 */
1716 static void
1717 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1718 {
1719 check_preempt_curr(rq, p, wake_flags);
1720 p->state = TASK_RUNNING;
1721 trace_sched_wakeup(p);
1722
1723 #ifdef CONFIG_SMP
1724 if (p->sched_class->task_woken) {
1725 /*
1726 * Our task @p is fully woken up and running; so its safe to
1727 * drop the rq->lock, hereafter rq is only used for statistics.
1728 */
1729 lockdep_unpin_lock(&rq->lock);
1730 p->sched_class->task_woken(rq, p);
1731 lockdep_pin_lock(&rq->lock);
1732 }
1733
1734 if (rq->idle_stamp) {
1735 u64 delta = rq_clock(rq) - rq->idle_stamp;
1736 u64 max = 2*rq->max_idle_balance_cost;
1737
1738 update_avg(&rq->avg_idle, delta);
1739
1740 if (rq->avg_idle > max)
1741 rq->avg_idle = max;
1742
1743 rq->idle_stamp = 0;
1744 }
1745 #endif
1746 }
1747
1748 static void
1749 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1750 {
1751 lockdep_assert_held(&rq->lock);
1752
1753 #ifdef CONFIG_SMP
1754 if (p->sched_contributes_to_load)
1755 rq->nr_uninterruptible--;
1756 #endif
1757
1758 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1759 ttwu_do_wakeup(rq, p, wake_flags);
1760 }
1761
1762 /*
1763 * Called in case the task @p isn't fully descheduled from its runqueue,
1764 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1765 * since all we need to do is flip p->state to TASK_RUNNING, since
1766 * the task is still ->on_rq.
1767 */
1768 static int ttwu_remote(struct task_struct *p, int wake_flags)
1769 {
1770 struct rq *rq;
1771 int ret = 0;
1772
1773 rq = __task_rq_lock(p);
1774 if (task_on_rq_queued(p)) {
1775 /* check_preempt_curr() may use rq clock */
1776 update_rq_clock(rq);
1777 ttwu_do_wakeup(rq, p, wake_flags);
1778 ret = 1;
1779 }
1780 __task_rq_unlock(rq);
1781
1782 return ret;
1783 }
1784
1785 #ifdef CONFIG_SMP
1786 void sched_ttwu_pending(void)
1787 {
1788 struct rq *rq = this_rq();
1789 struct llist_node *llist = llist_del_all(&rq->wake_list);
1790 struct task_struct *p;
1791 unsigned long flags;
1792
1793 if (!llist)
1794 return;
1795
1796 raw_spin_lock_irqsave(&rq->lock, flags);
1797 lockdep_pin_lock(&rq->lock);
1798
1799 while (llist) {
1800 p = llist_entry(llist, struct task_struct, wake_entry);
1801 llist = llist_next(llist);
1802 ttwu_do_activate(rq, p, 0);
1803 }
1804
1805 lockdep_unpin_lock(&rq->lock);
1806 raw_spin_unlock_irqrestore(&rq->lock, flags);
1807 }
1808
1809 void scheduler_ipi(void)
1810 {
1811 /*
1812 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1813 * TIF_NEED_RESCHED remotely (for the first time) will also send
1814 * this IPI.
1815 */
1816 preempt_fold_need_resched();
1817
1818 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1819 return;
1820
1821 /*
1822 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1823 * traditionally all their work was done from the interrupt return
1824 * path. Now that we actually do some work, we need to make sure
1825 * we do call them.
1826 *
1827 * Some archs already do call them, luckily irq_enter/exit nest
1828 * properly.
1829 *
1830 * Arguably we should visit all archs and update all handlers,
1831 * however a fair share of IPIs are still resched only so this would
1832 * somewhat pessimize the simple resched case.
1833 */
1834 irq_enter();
1835 sched_ttwu_pending();
1836
1837 /*
1838 * Check if someone kicked us for doing the nohz idle load balance.
1839 */
1840 if (unlikely(got_nohz_idle_kick())) {
1841 this_rq()->idle_balance = 1;
1842 raise_softirq_irqoff(SCHED_SOFTIRQ);
1843 }
1844 irq_exit();
1845 }
1846
1847 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1848 {
1849 struct rq *rq = cpu_rq(cpu);
1850
1851 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1852 if (!set_nr_if_polling(rq->idle))
1853 smp_send_reschedule(cpu);
1854 else
1855 trace_sched_wake_idle_without_ipi(cpu);
1856 }
1857 }
1858
1859 void wake_up_if_idle(int cpu)
1860 {
1861 struct rq *rq = cpu_rq(cpu);
1862 unsigned long flags;
1863
1864 rcu_read_lock();
1865
1866 if (!is_idle_task(rcu_dereference(rq->curr)))
1867 goto out;
1868
1869 if (set_nr_if_polling(rq->idle)) {
1870 trace_sched_wake_idle_without_ipi(cpu);
1871 } else {
1872 raw_spin_lock_irqsave(&rq->lock, flags);
1873 if (is_idle_task(rq->curr))
1874 smp_send_reschedule(cpu);
1875 /* Else cpu is not in idle, do nothing here */
1876 raw_spin_unlock_irqrestore(&rq->lock, flags);
1877 }
1878
1879 out:
1880 rcu_read_unlock();
1881 }
1882
1883 bool cpus_share_cache(int this_cpu, int that_cpu)
1884 {
1885 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1886 }
1887 #endif /* CONFIG_SMP */
1888
1889 static void ttwu_queue(struct task_struct *p, int cpu)
1890 {
1891 struct rq *rq = cpu_rq(cpu);
1892
1893 #if defined(CONFIG_SMP)
1894 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1895 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1896 ttwu_queue_remote(p, cpu);
1897 return;
1898 }
1899 #endif
1900
1901 raw_spin_lock(&rq->lock);
1902 lockdep_pin_lock(&rq->lock);
1903 ttwu_do_activate(rq, p, 0);
1904 lockdep_unpin_lock(&rq->lock);
1905 raw_spin_unlock(&rq->lock);
1906 }
1907
1908 /**
1909 * try_to_wake_up - wake up a thread
1910 * @p: the thread to be awakened
1911 * @state: the mask of task states that can be woken
1912 * @wake_flags: wake modifier flags (WF_*)
1913 *
1914 * Put it on the run-queue if it's not already there. The "current"
1915 * thread is always on the run-queue (except when the actual
1916 * re-schedule is in progress), and as such you're allowed to do
1917 * the simpler "current->state = TASK_RUNNING" to mark yourself
1918 * runnable without the overhead of this.
1919 *
1920 * Return: %true if @p was woken up, %false if it was already running.
1921 * or @state didn't match @p's state.
1922 */
1923 static int
1924 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1925 {
1926 unsigned long flags;
1927 int cpu, success = 0;
1928
1929 /*
1930 * If we are going to wake up a thread waiting for CONDITION we
1931 * need to ensure that CONDITION=1 done by the caller can not be
1932 * reordered with p->state check below. This pairs with mb() in
1933 * set_current_state() the waiting thread does.
1934 */
1935 smp_mb__before_spinlock();
1936 raw_spin_lock_irqsave(&p->pi_lock, flags);
1937 if (!(p->state & state))
1938 goto out;
1939
1940 trace_sched_waking(p);
1941
1942 success = 1; /* we're going to change ->state */
1943 cpu = task_cpu(p);
1944
1945 if (p->on_rq && ttwu_remote(p, wake_flags))
1946 goto stat;
1947
1948 #ifdef CONFIG_SMP
1949 /*
1950 * If the owning (remote) cpu is still in the middle of schedule() with
1951 * this task as prev, wait until its done referencing the task.
1952 */
1953 while (p->on_cpu)
1954 cpu_relax();
1955 /*
1956 * Pairs with the smp_wmb() in finish_lock_switch().
1957 */
1958 smp_rmb();
1959
1960 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1961 p->state = TASK_WAKING;
1962
1963 if (p->sched_class->task_waking)
1964 p->sched_class->task_waking(p);
1965
1966 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1967 if (task_cpu(p) != cpu) {
1968 wake_flags |= WF_MIGRATED;
1969 set_task_cpu(p, cpu);
1970 }
1971 #endif /* CONFIG_SMP */
1972
1973 ttwu_queue(p, cpu);
1974 stat:
1975 ttwu_stat(p, cpu, wake_flags);
1976 out:
1977 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1978
1979 return success;
1980 }
1981
1982 /**
1983 * try_to_wake_up_local - try to wake up a local task with rq lock held
1984 * @p: the thread to be awakened
1985 *
1986 * Put @p on the run-queue if it's not already there. The caller must
1987 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1988 * the current task.
1989 */
1990 static void try_to_wake_up_local(struct task_struct *p)
1991 {
1992 struct rq *rq = task_rq(p);
1993
1994 if (WARN_ON_ONCE(rq != this_rq()) ||
1995 WARN_ON_ONCE(p == current))
1996 return;
1997
1998 lockdep_assert_held(&rq->lock);
1999
2000 if (!raw_spin_trylock(&p->pi_lock)) {
2001 /*
2002 * This is OK, because current is on_cpu, which avoids it being
2003 * picked for load-balance and preemption/IRQs are still
2004 * disabled avoiding further scheduler activity on it and we've
2005 * not yet picked a replacement task.
2006 */
2007 lockdep_unpin_lock(&rq->lock);
2008 raw_spin_unlock(&rq->lock);
2009 raw_spin_lock(&p->pi_lock);
2010 raw_spin_lock(&rq->lock);
2011 lockdep_pin_lock(&rq->lock);
2012 }
2013
2014 if (!(p->state & TASK_NORMAL))
2015 goto out;
2016
2017 trace_sched_waking(p);
2018
2019 if (!task_on_rq_queued(p))
2020 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2021
2022 ttwu_do_wakeup(rq, p, 0);
2023 ttwu_stat(p, smp_processor_id(), 0);
2024 out:
2025 raw_spin_unlock(&p->pi_lock);
2026 }
2027
2028 /**
2029 * wake_up_process - Wake up a specific process
2030 * @p: The process to be woken up.
2031 *
2032 * Attempt to wake up the nominated process and move it to the set of runnable
2033 * processes.
2034 *
2035 * Return: 1 if the process was woken up, 0 if it was already running.
2036 *
2037 * It may be assumed that this function implies a write memory barrier before
2038 * changing the task state if and only if any tasks are woken up.
2039 */
2040 int wake_up_process(struct task_struct *p)
2041 {
2042 WARN_ON(task_is_stopped_or_traced(p));
2043 return try_to_wake_up(p, TASK_NORMAL, 0);
2044 }
2045 EXPORT_SYMBOL(wake_up_process);
2046
2047 int wake_up_state(struct task_struct *p, unsigned int state)
2048 {
2049 return try_to_wake_up(p, state, 0);
2050 }
2051
2052 /*
2053 * This function clears the sched_dl_entity static params.
2054 */
2055 void __dl_clear_params(struct task_struct *p)
2056 {
2057 struct sched_dl_entity *dl_se = &p->dl;
2058
2059 dl_se->dl_runtime = 0;
2060 dl_se->dl_deadline = 0;
2061 dl_se->dl_period = 0;
2062 dl_se->flags = 0;
2063 dl_se->dl_bw = 0;
2064
2065 dl_se->dl_throttled = 0;
2066 dl_se->dl_new = 1;
2067 dl_se->dl_yielded = 0;
2068 }
2069
2070 /*
2071 * Perform scheduler related setup for a newly forked process p.
2072 * p is forked by current.
2073 *
2074 * __sched_fork() is basic setup used by init_idle() too:
2075 */
2076 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2077 {
2078 p->on_rq = 0;
2079
2080 p->se.on_rq = 0;
2081 p->se.exec_start = 0;
2082 p->se.sum_exec_runtime = 0;
2083 p->se.prev_sum_exec_runtime = 0;
2084 p->se.nr_migrations = 0;
2085 p->se.vruntime = 0;
2086 INIT_LIST_HEAD(&p->se.group_node);
2087
2088 #ifdef CONFIG_SCHEDSTATS
2089 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2090 #endif
2091
2092 RB_CLEAR_NODE(&p->dl.rb_node);
2093 init_dl_task_timer(&p->dl);
2094 __dl_clear_params(p);
2095
2096 INIT_LIST_HEAD(&p->rt.run_list);
2097
2098 #ifdef CONFIG_PREEMPT_NOTIFIERS
2099 INIT_HLIST_HEAD(&p->preempt_notifiers);
2100 #endif
2101
2102 #ifdef CONFIG_NUMA_BALANCING
2103 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2104 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2105 p->mm->numa_scan_seq = 0;
2106 }
2107
2108 if (clone_flags & CLONE_VM)
2109 p->numa_preferred_nid = current->numa_preferred_nid;
2110 else
2111 p->numa_preferred_nid = -1;
2112
2113 p->node_stamp = 0ULL;
2114 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2115 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2116 p->numa_work.next = &p->numa_work;
2117 p->numa_faults = NULL;
2118 p->last_task_numa_placement = 0;
2119 p->last_sum_exec_runtime = 0;
2120
2121 p->numa_group = NULL;
2122 #endif /* CONFIG_NUMA_BALANCING */
2123 }
2124
2125 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2126
2127 #ifdef CONFIG_NUMA_BALANCING
2128
2129 void set_numabalancing_state(bool enabled)
2130 {
2131 if (enabled)
2132 static_branch_enable(&sched_numa_balancing);
2133 else
2134 static_branch_disable(&sched_numa_balancing);
2135 }
2136
2137 #ifdef CONFIG_PROC_SYSCTL
2138 int sysctl_numa_balancing(struct ctl_table *table, int write,
2139 void __user *buffer, size_t *lenp, loff_t *ppos)
2140 {
2141 struct ctl_table t;
2142 int err;
2143 int state = static_branch_likely(&sched_numa_balancing);
2144
2145 if (write && !capable(CAP_SYS_ADMIN))
2146 return -EPERM;
2147
2148 t = *table;
2149 t.data = &state;
2150 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2151 if (err < 0)
2152 return err;
2153 if (write)
2154 set_numabalancing_state(state);
2155 return err;
2156 }
2157 #endif
2158 #endif
2159
2160 /*
2161 * fork()/clone()-time setup:
2162 */
2163 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2164 {
2165 unsigned long flags;
2166 int cpu = get_cpu();
2167
2168 __sched_fork(clone_flags, p);
2169 /*
2170 * We mark the process as running here. This guarantees that
2171 * nobody will actually run it, and a signal or other external
2172 * event cannot wake it up and insert it on the runqueue either.
2173 */
2174 p->state = TASK_RUNNING;
2175
2176 /*
2177 * Make sure we do not leak PI boosting priority to the child.
2178 */
2179 p->prio = current->normal_prio;
2180
2181 /*
2182 * Revert to default priority/policy on fork if requested.
2183 */
2184 if (unlikely(p->sched_reset_on_fork)) {
2185 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2186 p->policy = SCHED_NORMAL;
2187 p->static_prio = NICE_TO_PRIO(0);
2188 p->rt_priority = 0;
2189 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2190 p->static_prio = NICE_TO_PRIO(0);
2191
2192 p->prio = p->normal_prio = __normal_prio(p);
2193 set_load_weight(p);
2194
2195 /*
2196 * We don't need the reset flag anymore after the fork. It has
2197 * fulfilled its duty:
2198 */
2199 p->sched_reset_on_fork = 0;
2200 }
2201
2202 if (dl_prio(p->prio)) {
2203 put_cpu();
2204 return -EAGAIN;
2205 } else if (rt_prio(p->prio)) {
2206 p->sched_class = &rt_sched_class;
2207 } else {
2208 p->sched_class = &fair_sched_class;
2209 }
2210
2211 if (p->sched_class->task_fork)
2212 p->sched_class->task_fork(p);
2213
2214 /*
2215 * The child is not yet in the pid-hash so no cgroup attach races,
2216 * and the cgroup is pinned to this child due to cgroup_fork()
2217 * is ran before sched_fork().
2218 *
2219 * Silence PROVE_RCU.
2220 */
2221 raw_spin_lock_irqsave(&p->pi_lock, flags);
2222 set_task_cpu(p, cpu);
2223 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2224
2225 #ifdef CONFIG_SCHED_INFO
2226 if (likely(sched_info_on()))
2227 memset(&p->sched_info, 0, sizeof(p->sched_info));
2228 #endif
2229 #if defined(CONFIG_SMP)
2230 p->on_cpu = 0;
2231 #endif
2232 init_task_preempt_count(p);
2233 #ifdef CONFIG_SMP
2234 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2235 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2236 #endif
2237
2238 put_cpu();
2239 return 0;
2240 }
2241
2242 unsigned long to_ratio(u64 period, u64 runtime)
2243 {
2244 if (runtime == RUNTIME_INF)
2245 return 1ULL << 20;
2246
2247 /*
2248 * Doing this here saves a lot of checks in all
2249 * the calling paths, and returning zero seems
2250 * safe for them anyway.
2251 */
2252 if (period == 0)
2253 return 0;
2254
2255 return div64_u64(runtime << 20, period);
2256 }
2257
2258 #ifdef CONFIG_SMP
2259 inline struct dl_bw *dl_bw_of(int i)
2260 {
2261 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2262 "sched RCU must be held");
2263 return &cpu_rq(i)->rd->dl_bw;
2264 }
2265
2266 static inline int dl_bw_cpus(int i)
2267 {
2268 struct root_domain *rd = cpu_rq(i)->rd;
2269 int cpus = 0;
2270
2271 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2272 "sched RCU must be held");
2273 for_each_cpu_and(i, rd->span, cpu_active_mask)
2274 cpus++;
2275
2276 return cpus;
2277 }
2278 #else
2279 inline struct dl_bw *dl_bw_of(int i)
2280 {
2281 return &cpu_rq(i)->dl.dl_bw;
2282 }
2283
2284 static inline int dl_bw_cpus(int i)
2285 {
2286 return 1;
2287 }
2288 #endif
2289
2290 /*
2291 * We must be sure that accepting a new task (or allowing changing the
2292 * parameters of an existing one) is consistent with the bandwidth
2293 * constraints. If yes, this function also accordingly updates the currently
2294 * allocated bandwidth to reflect the new situation.
2295 *
2296 * This function is called while holding p's rq->lock.
2297 *
2298 * XXX we should delay bw change until the task's 0-lag point, see
2299 * __setparam_dl().
2300 */
2301 static int dl_overflow(struct task_struct *p, int policy,
2302 const struct sched_attr *attr)
2303 {
2304
2305 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2306 u64 period = attr->sched_period ?: attr->sched_deadline;
2307 u64 runtime = attr->sched_runtime;
2308 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2309 int cpus, err = -1;
2310
2311 if (new_bw == p->dl.dl_bw)
2312 return 0;
2313
2314 /*
2315 * Either if a task, enters, leave, or stays -deadline but changes
2316 * its parameters, we may need to update accordingly the total
2317 * allocated bandwidth of the container.
2318 */
2319 raw_spin_lock(&dl_b->lock);
2320 cpus = dl_bw_cpus(task_cpu(p));
2321 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2322 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2323 __dl_add(dl_b, new_bw);
2324 err = 0;
2325 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2326 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2327 __dl_clear(dl_b, p->dl.dl_bw);
2328 __dl_add(dl_b, new_bw);
2329 err = 0;
2330 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2331 __dl_clear(dl_b, p->dl.dl_bw);
2332 err = 0;
2333 }
2334 raw_spin_unlock(&dl_b->lock);
2335
2336 return err;
2337 }
2338
2339 extern void init_dl_bw(struct dl_bw *dl_b);
2340
2341 /*
2342 * wake_up_new_task - wake up a newly created task for the first time.
2343 *
2344 * This function will do some initial scheduler statistics housekeeping
2345 * that must be done for every newly created context, then puts the task
2346 * on the runqueue and wakes it.
2347 */
2348 void wake_up_new_task(struct task_struct *p)
2349 {
2350 unsigned long flags;
2351 struct rq *rq;
2352
2353 raw_spin_lock_irqsave(&p->pi_lock, flags);
2354 /* Initialize new task's runnable average */
2355 init_entity_runnable_average(&p->se);
2356 #ifdef CONFIG_SMP
2357 /*
2358 * Fork balancing, do it here and not earlier because:
2359 * - cpus_allowed can change in the fork path
2360 * - any previously selected cpu might disappear through hotplug
2361 */
2362 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2363 #endif
2364
2365 rq = __task_rq_lock(p);
2366 activate_task(rq, p, 0);
2367 p->on_rq = TASK_ON_RQ_QUEUED;
2368 trace_sched_wakeup_new(p);
2369 check_preempt_curr(rq, p, WF_FORK);
2370 #ifdef CONFIG_SMP
2371 if (p->sched_class->task_woken) {
2372 /*
2373 * Nothing relies on rq->lock after this, so its fine to
2374 * drop it.
2375 */
2376 lockdep_unpin_lock(&rq->lock);
2377 p->sched_class->task_woken(rq, p);
2378 lockdep_pin_lock(&rq->lock);
2379 }
2380 #endif
2381 task_rq_unlock(rq, p, &flags);
2382 }
2383
2384 #ifdef CONFIG_PREEMPT_NOTIFIERS
2385
2386 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2387
2388 void preempt_notifier_inc(void)
2389 {
2390 static_key_slow_inc(&preempt_notifier_key);
2391 }
2392 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2393
2394 void preempt_notifier_dec(void)
2395 {
2396 static_key_slow_dec(&preempt_notifier_key);
2397 }
2398 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2399
2400 /**
2401 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2402 * @notifier: notifier struct to register
2403 */
2404 void preempt_notifier_register(struct preempt_notifier *notifier)
2405 {
2406 if (!static_key_false(&preempt_notifier_key))
2407 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2408
2409 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2410 }
2411 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2412
2413 /**
2414 * preempt_notifier_unregister - no longer interested in preemption notifications
2415 * @notifier: notifier struct to unregister
2416 *
2417 * This is *not* safe to call from within a preemption notifier.
2418 */
2419 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2420 {
2421 hlist_del(&notifier->link);
2422 }
2423 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2424
2425 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2426 {
2427 struct preempt_notifier *notifier;
2428
2429 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2430 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2431 }
2432
2433 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2434 {
2435 if (static_key_false(&preempt_notifier_key))
2436 __fire_sched_in_preempt_notifiers(curr);
2437 }
2438
2439 static void
2440 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2441 struct task_struct *next)
2442 {
2443 struct preempt_notifier *notifier;
2444
2445 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2446 notifier->ops->sched_out(notifier, next);
2447 }
2448
2449 static __always_inline void
2450 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2451 struct task_struct *next)
2452 {
2453 if (static_key_false(&preempt_notifier_key))
2454 __fire_sched_out_preempt_notifiers(curr, next);
2455 }
2456
2457 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2458
2459 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2460 {
2461 }
2462
2463 static inline void
2464 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2465 struct task_struct *next)
2466 {
2467 }
2468
2469 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2470
2471 /**
2472 * prepare_task_switch - prepare to switch tasks
2473 * @rq: the runqueue preparing to switch
2474 * @prev: the current task that is being switched out
2475 * @next: the task we are going to switch to.
2476 *
2477 * This is called with the rq lock held and interrupts off. It must
2478 * be paired with a subsequent finish_task_switch after the context
2479 * switch.
2480 *
2481 * prepare_task_switch sets up locking and calls architecture specific
2482 * hooks.
2483 */
2484 static inline void
2485 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2486 struct task_struct *next)
2487 {
2488 sched_info_switch(rq, prev, next);
2489 perf_event_task_sched_out(prev, next);
2490 fire_sched_out_preempt_notifiers(prev, next);
2491 prepare_lock_switch(rq, next);
2492 prepare_arch_switch(next);
2493 }
2494
2495 /**
2496 * finish_task_switch - clean up after a task-switch
2497 * @prev: the thread we just switched away from.
2498 *
2499 * finish_task_switch must be called after the context switch, paired
2500 * with a prepare_task_switch call before the context switch.
2501 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2502 * and do any other architecture-specific cleanup actions.
2503 *
2504 * Note that we may have delayed dropping an mm in context_switch(). If
2505 * so, we finish that here outside of the runqueue lock. (Doing it
2506 * with the lock held can cause deadlocks; see schedule() for
2507 * details.)
2508 *
2509 * The context switch have flipped the stack from under us and restored the
2510 * local variables which were saved when this task called schedule() in the
2511 * past. prev == current is still correct but we need to recalculate this_rq
2512 * because prev may have moved to another CPU.
2513 */
2514 static struct rq *finish_task_switch(struct task_struct *prev)
2515 __releases(rq->lock)
2516 {
2517 struct rq *rq = this_rq();
2518 struct mm_struct *mm = rq->prev_mm;
2519 long prev_state;
2520
2521 /*
2522 * The previous task will have left us with a preempt_count of 2
2523 * because it left us after:
2524 *
2525 * schedule()
2526 * preempt_disable(); // 1
2527 * __schedule()
2528 * raw_spin_lock_irq(&rq->lock) // 2
2529 *
2530 * Also, see FORK_PREEMPT_COUNT.
2531 */
2532 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2533 "corrupted preempt_count: %s/%d/0x%x\n",
2534 current->comm, current->pid, preempt_count()))
2535 preempt_count_set(FORK_PREEMPT_COUNT);
2536
2537 rq->prev_mm = NULL;
2538
2539 /*
2540 * A task struct has one reference for the use as "current".
2541 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2542 * schedule one last time. The schedule call will never return, and
2543 * the scheduled task must drop that reference.
2544 *
2545 * We must observe prev->state before clearing prev->on_cpu (in
2546 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2547 * running on another CPU and we could rave with its RUNNING -> DEAD
2548 * transition, resulting in a double drop.
2549 */
2550 prev_state = prev->state;
2551 vtime_task_switch(prev);
2552 perf_event_task_sched_in(prev, current);
2553 finish_lock_switch(rq, prev);
2554 finish_arch_post_lock_switch();
2555
2556 fire_sched_in_preempt_notifiers(current);
2557 if (mm)
2558 mmdrop(mm);
2559 if (unlikely(prev_state == TASK_DEAD)) {
2560 if (prev->sched_class->task_dead)
2561 prev->sched_class->task_dead(prev);
2562
2563 /*
2564 * Remove function-return probe instances associated with this
2565 * task and put them back on the free list.
2566 */
2567 kprobe_flush_task(prev);
2568 put_task_struct(prev);
2569 }
2570
2571 tick_nohz_task_switch();
2572 return rq;
2573 }
2574
2575 #ifdef CONFIG_SMP
2576
2577 /* rq->lock is NOT held, but preemption is disabled */
2578 static void __balance_callback(struct rq *rq)
2579 {
2580 struct callback_head *head, *next;
2581 void (*func)(struct rq *rq);
2582 unsigned long flags;
2583
2584 raw_spin_lock_irqsave(&rq->lock, flags);
2585 head = rq->balance_callback;
2586 rq->balance_callback = NULL;
2587 while (head) {
2588 func = (void (*)(struct rq *))head->func;
2589 next = head->next;
2590 head->next = NULL;
2591 head = next;
2592
2593 func(rq);
2594 }
2595 raw_spin_unlock_irqrestore(&rq->lock, flags);
2596 }
2597
2598 static inline void balance_callback(struct rq *rq)
2599 {
2600 if (unlikely(rq->balance_callback))
2601 __balance_callback(rq);
2602 }
2603
2604 #else
2605
2606 static inline void balance_callback(struct rq *rq)
2607 {
2608 }
2609
2610 #endif
2611
2612 /**
2613 * schedule_tail - first thing a freshly forked thread must call.
2614 * @prev: the thread we just switched away from.
2615 */
2616 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2617 __releases(rq->lock)
2618 {
2619 struct rq *rq;
2620
2621 /*
2622 * New tasks start with FORK_PREEMPT_COUNT, see there and
2623 * finish_task_switch() for details.
2624 *
2625 * finish_task_switch() will drop rq->lock() and lower preempt_count
2626 * and the preempt_enable() will end up enabling preemption (on
2627 * PREEMPT_COUNT kernels).
2628 */
2629
2630 rq = finish_task_switch(prev);
2631 balance_callback(rq);
2632 preempt_enable();
2633
2634 if (current->set_child_tid)
2635 put_user(task_pid_vnr(current), current->set_child_tid);
2636 }
2637
2638 /*
2639 * context_switch - switch to the new MM and the new thread's register state.
2640 */
2641 static inline struct rq *
2642 context_switch(struct rq *rq, struct task_struct *prev,
2643 struct task_struct *next)
2644 {
2645 struct mm_struct *mm, *oldmm;
2646
2647 prepare_task_switch(rq, prev, next);
2648
2649 mm = next->mm;
2650 oldmm = prev->active_mm;
2651 /*
2652 * For paravirt, this is coupled with an exit in switch_to to
2653 * combine the page table reload and the switch backend into
2654 * one hypercall.
2655 */
2656 arch_start_context_switch(prev);
2657
2658 if (!mm) {
2659 next->active_mm = oldmm;
2660 atomic_inc(&oldmm->mm_count);
2661 enter_lazy_tlb(oldmm, next);
2662 } else
2663 switch_mm(oldmm, mm, next);
2664
2665 if (!prev->mm) {
2666 prev->active_mm = NULL;
2667 rq->prev_mm = oldmm;
2668 }
2669 /*
2670 * Since the runqueue lock will be released by the next
2671 * task (which is an invalid locking op but in the case
2672 * of the scheduler it's an obvious special-case), so we
2673 * do an early lockdep release here:
2674 */
2675 lockdep_unpin_lock(&rq->lock);
2676 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2677
2678 /* Here we just switch the register state and the stack. */
2679 switch_to(prev, next, prev);
2680 barrier();
2681
2682 return finish_task_switch(prev);
2683 }
2684
2685 /*
2686 * nr_running and nr_context_switches:
2687 *
2688 * externally visible scheduler statistics: current number of runnable
2689 * threads, total number of context switches performed since bootup.
2690 */
2691 unsigned long nr_running(void)
2692 {
2693 unsigned long i, sum = 0;
2694
2695 for_each_online_cpu(i)
2696 sum += cpu_rq(i)->nr_running;
2697
2698 return sum;
2699 }
2700
2701 /*
2702 * Check if only the current task is running on the cpu.
2703 *
2704 * Caution: this function does not check that the caller has disabled
2705 * preemption, thus the result might have a time-of-check-to-time-of-use
2706 * race. The caller is responsible to use it correctly, for example:
2707 *
2708 * - from a non-preemptable section (of course)
2709 *
2710 * - from a thread that is bound to a single CPU
2711 *
2712 * - in a loop with very short iterations (e.g. a polling loop)
2713 */
2714 bool single_task_running(void)
2715 {
2716 return raw_rq()->nr_running == 1;
2717 }
2718 EXPORT_SYMBOL(single_task_running);
2719
2720 unsigned long long nr_context_switches(void)
2721 {
2722 int i;
2723 unsigned long long sum = 0;
2724
2725 for_each_possible_cpu(i)
2726 sum += cpu_rq(i)->nr_switches;
2727
2728 return sum;
2729 }
2730
2731 unsigned long nr_iowait(void)
2732 {
2733 unsigned long i, sum = 0;
2734
2735 for_each_possible_cpu(i)
2736 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2737
2738 return sum;
2739 }
2740
2741 unsigned long nr_iowait_cpu(int cpu)
2742 {
2743 struct rq *this = cpu_rq(cpu);
2744 return atomic_read(&this->nr_iowait);
2745 }
2746
2747 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2748 {
2749 struct rq *rq = this_rq();
2750 *nr_waiters = atomic_read(&rq->nr_iowait);
2751 *load = rq->load.weight;
2752 }
2753
2754 #ifdef CONFIG_SMP
2755
2756 /*
2757 * sched_exec - execve() is a valuable balancing opportunity, because at
2758 * this point the task has the smallest effective memory and cache footprint.
2759 */
2760 void sched_exec(void)
2761 {
2762 struct task_struct *p = current;
2763 unsigned long flags;
2764 int dest_cpu;
2765
2766 raw_spin_lock_irqsave(&p->pi_lock, flags);
2767 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2768 if (dest_cpu == smp_processor_id())
2769 goto unlock;
2770
2771 if (likely(cpu_active(dest_cpu))) {
2772 struct migration_arg arg = { p, dest_cpu };
2773
2774 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2775 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2776 return;
2777 }
2778 unlock:
2779 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2780 }
2781
2782 #endif
2783
2784 DEFINE_PER_CPU(struct kernel_stat, kstat);
2785 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2786
2787 EXPORT_PER_CPU_SYMBOL(kstat);
2788 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2789
2790 /*
2791 * Return accounted runtime for the task.
2792 * In case the task is currently running, return the runtime plus current's
2793 * pending runtime that have not been accounted yet.
2794 */
2795 unsigned long long task_sched_runtime(struct task_struct *p)
2796 {
2797 unsigned long flags;
2798 struct rq *rq;
2799 u64 ns;
2800
2801 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2802 /*
2803 * 64-bit doesn't need locks to atomically read a 64bit value.
2804 * So we have a optimization chance when the task's delta_exec is 0.
2805 * Reading ->on_cpu is racy, but this is ok.
2806 *
2807 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2808 * If we race with it entering cpu, unaccounted time is 0. This is
2809 * indistinguishable from the read occurring a few cycles earlier.
2810 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2811 * been accounted, so we're correct here as well.
2812 */
2813 if (!p->on_cpu || !task_on_rq_queued(p))
2814 return p->se.sum_exec_runtime;
2815 #endif
2816
2817 rq = task_rq_lock(p, &flags);
2818 /*
2819 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2820 * project cycles that may never be accounted to this
2821 * thread, breaking clock_gettime().
2822 */
2823 if (task_current(rq, p) && task_on_rq_queued(p)) {
2824 update_rq_clock(rq);
2825 p->sched_class->update_curr(rq);
2826 }
2827 ns = p->se.sum_exec_runtime;
2828 task_rq_unlock(rq, p, &flags);
2829
2830 return ns;
2831 }
2832
2833 /*
2834 * This function gets called by the timer code, with HZ frequency.
2835 * We call it with interrupts disabled.
2836 */
2837 void scheduler_tick(void)
2838 {
2839 int cpu = smp_processor_id();
2840 struct rq *rq = cpu_rq(cpu);
2841 struct task_struct *curr = rq->curr;
2842
2843 sched_clock_tick();
2844
2845 raw_spin_lock(&rq->lock);
2846 update_rq_clock(rq);
2847 curr->sched_class->task_tick(rq, curr, 0);
2848 update_cpu_load_active(rq);
2849 calc_global_load_tick(rq);
2850 raw_spin_unlock(&rq->lock);
2851
2852 perf_event_task_tick();
2853
2854 #ifdef CONFIG_SMP
2855 rq->idle_balance = idle_cpu(cpu);
2856 trigger_load_balance(rq);
2857 #endif
2858 rq_last_tick_reset(rq);
2859 }
2860
2861 #ifdef CONFIG_NO_HZ_FULL
2862 /**
2863 * scheduler_tick_max_deferment
2864 *
2865 * Keep at least one tick per second when a single
2866 * active task is running because the scheduler doesn't
2867 * yet completely support full dynticks environment.
2868 *
2869 * This makes sure that uptime, CFS vruntime, load
2870 * balancing, etc... continue to move forward, even
2871 * with a very low granularity.
2872 *
2873 * Return: Maximum deferment in nanoseconds.
2874 */
2875 u64 scheduler_tick_max_deferment(void)
2876 {
2877 struct rq *rq = this_rq();
2878 unsigned long next, now = READ_ONCE(jiffies);
2879
2880 next = rq->last_sched_tick + HZ;
2881
2882 if (time_before_eq(next, now))
2883 return 0;
2884
2885 return jiffies_to_nsecs(next - now);
2886 }
2887 #endif
2888
2889 notrace unsigned long get_parent_ip(unsigned long addr)
2890 {
2891 if (in_lock_functions(addr)) {
2892 addr = CALLER_ADDR2;
2893 if (in_lock_functions(addr))
2894 addr = CALLER_ADDR3;
2895 }
2896 return addr;
2897 }
2898
2899 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2900 defined(CONFIG_PREEMPT_TRACER))
2901
2902 void preempt_count_add(int val)
2903 {
2904 #ifdef CONFIG_DEBUG_PREEMPT
2905 /*
2906 * Underflow?
2907 */
2908 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2909 return;
2910 #endif
2911 __preempt_count_add(val);
2912 #ifdef CONFIG_DEBUG_PREEMPT
2913 /*
2914 * Spinlock count overflowing soon?
2915 */
2916 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2917 PREEMPT_MASK - 10);
2918 #endif
2919 if (preempt_count() == val) {
2920 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2921 #ifdef CONFIG_DEBUG_PREEMPT
2922 current->preempt_disable_ip = ip;
2923 #endif
2924 trace_preempt_off(CALLER_ADDR0, ip);
2925 }
2926 }
2927 EXPORT_SYMBOL(preempt_count_add);
2928 NOKPROBE_SYMBOL(preempt_count_add);
2929
2930 void preempt_count_sub(int val)
2931 {
2932 #ifdef CONFIG_DEBUG_PREEMPT
2933 /*
2934 * Underflow?
2935 */
2936 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2937 return;
2938 /*
2939 * Is the spinlock portion underflowing?
2940 */
2941 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2942 !(preempt_count() & PREEMPT_MASK)))
2943 return;
2944 #endif
2945
2946 if (preempt_count() == val)
2947 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2948 __preempt_count_sub(val);
2949 }
2950 EXPORT_SYMBOL(preempt_count_sub);
2951 NOKPROBE_SYMBOL(preempt_count_sub);
2952
2953 #endif
2954
2955 /*
2956 * Print scheduling while atomic bug:
2957 */
2958 static noinline void __schedule_bug(struct task_struct *prev)
2959 {
2960 if (oops_in_progress)
2961 return;
2962
2963 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2964 prev->comm, prev->pid, preempt_count());
2965
2966 debug_show_held_locks(prev);
2967 print_modules();
2968 if (irqs_disabled())
2969 print_irqtrace_events(prev);
2970 #ifdef CONFIG_DEBUG_PREEMPT
2971 if (in_atomic_preempt_off()) {
2972 pr_err("Preemption disabled at:");
2973 print_ip_sym(current->preempt_disable_ip);
2974 pr_cont("\n");
2975 }
2976 #endif
2977 dump_stack();
2978 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2979 }
2980
2981 /*
2982 * Various schedule()-time debugging checks and statistics:
2983 */
2984 static inline void schedule_debug(struct task_struct *prev)
2985 {
2986 #ifdef CONFIG_SCHED_STACK_END_CHECK
2987 BUG_ON(task_stack_end_corrupted(prev));
2988 #endif
2989
2990 if (unlikely(in_atomic_preempt_off())) {
2991 __schedule_bug(prev);
2992 preempt_count_set(PREEMPT_DISABLED);
2993 }
2994 rcu_sleep_check();
2995
2996 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2997
2998 schedstat_inc(this_rq(), sched_count);
2999 }
3000
3001 /*
3002 * Pick up the highest-prio task:
3003 */
3004 static inline struct task_struct *
3005 pick_next_task(struct rq *rq, struct task_struct *prev)
3006 {
3007 const struct sched_class *class = &fair_sched_class;
3008 struct task_struct *p;
3009
3010 /*
3011 * Optimization: we know that if all tasks are in
3012 * the fair class we can call that function directly:
3013 */
3014 if (likely(prev->sched_class == class &&
3015 rq->nr_running == rq->cfs.h_nr_running)) {
3016 p = fair_sched_class.pick_next_task(rq, prev);
3017 if (unlikely(p == RETRY_TASK))
3018 goto again;
3019
3020 /* assumes fair_sched_class->next == idle_sched_class */
3021 if (unlikely(!p))
3022 p = idle_sched_class.pick_next_task(rq, prev);
3023
3024 return p;
3025 }
3026
3027 again:
3028 for_each_class(class) {
3029 p = class->pick_next_task(rq, prev);
3030 if (p) {
3031 if (unlikely(p == RETRY_TASK))
3032 goto again;
3033 return p;
3034 }
3035 }
3036
3037 BUG(); /* the idle class will always have a runnable task */
3038 }
3039
3040 /*
3041 * __schedule() is the main scheduler function.
3042 *
3043 * The main means of driving the scheduler and thus entering this function are:
3044 *
3045 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3046 *
3047 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3048 * paths. For example, see arch/x86/entry_64.S.
3049 *
3050 * To drive preemption between tasks, the scheduler sets the flag in timer
3051 * interrupt handler scheduler_tick().
3052 *
3053 * 3. Wakeups don't really cause entry into schedule(). They add a
3054 * task to the run-queue and that's it.
3055 *
3056 * Now, if the new task added to the run-queue preempts the current
3057 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3058 * called on the nearest possible occasion:
3059 *
3060 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3061 *
3062 * - in syscall or exception context, at the next outmost
3063 * preempt_enable(). (this might be as soon as the wake_up()'s
3064 * spin_unlock()!)
3065 *
3066 * - in IRQ context, return from interrupt-handler to
3067 * preemptible context
3068 *
3069 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3070 * then at the next:
3071 *
3072 * - cond_resched() call
3073 * - explicit schedule() call
3074 * - return from syscall or exception to user-space
3075 * - return from interrupt-handler to user-space
3076 *
3077 * WARNING: must be called with preemption disabled!
3078 */
3079 static void __sched notrace __schedule(bool preempt)
3080 {
3081 struct task_struct *prev, *next;
3082 unsigned long *switch_count;
3083 struct rq *rq;
3084 int cpu;
3085
3086 cpu = smp_processor_id();
3087 rq = cpu_rq(cpu);
3088 rcu_note_context_switch();
3089 prev = rq->curr;
3090
3091 /*
3092 * do_exit() calls schedule() with preemption disabled as an exception;
3093 * however we must fix that up, otherwise the next task will see an
3094 * inconsistent (higher) preempt count.
3095 *
3096 * It also avoids the below schedule_debug() test from complaining
3097 * about this.
3098 */
3099 if (unlikely(prev->state == TASK_DEAD))
3100 preempt_enable_no_resched_notrace();
3101
3102 schedule_debug(prev);
3103
3104 if (sched_feat(HRTICK))
3105 hrtick_clear(rq);
3106
3107 /*
3108 * Make sure that signal_pending_state()->signal_pending() below
3109 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3110 * done by the caller to avoid the race with signal_wake_up().
3111 */
3112 smp_mb__before_spinlock();
3113 raw_spin_lock_irq(&rq->lock);
3114 lockdep_pin_lock(&rq->lock);
3115
3116 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3117
3118 switch_count = &prev->nivcsw;
3119 if (!preempt && prev->state) {
3120 if (unlikely(signal_pending_state(prev->state, prev))) {
3121 prev->state = TASK_RUNNING;
3122 } else {
3123 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3124 prev->on_rq = 0;
3125
3126 /*
3127 * If a worker went to sleep, notify and ask workqueue
3128 * whether it wants to wake up a task to maintain
3129 * concurrency.
3130 */
3131 if (prev->flags & PF_WQ_WORKER) {
3132 struct task_struct *to_wakeup;
3133
3134 to_wakeup = wq_worker_sleeping(prev, cpu);
3135 if (to_wakeup)
3136 try_to_wake_up_local(to_wakeup);
3137 }
3138 }
3139 switch_count = &prev->nvcsw;
3140 }
3141
3142 if (task_on_rq_queued(prev))
3143 update_rq_clock(rq);
3144
3145 next = pick_next_task(rq, prev);
3146 clear_tsk_need_resched(prev);
3147 clear_preempt_need_resched();
3148 rq->clock_skip_update = 0;
3149
3150 if (likely(prev != next)) {
3151 rq->nr_switches++;
3152 rq->curr = next;
3153 ++*switch_count;
3154
3155 trace_sched_switch(preempt, prev, next);
3156 rq = context_switch(rq, prev, next); /* unlocks the rq */
3157 cpu = cpu_of(rq);
3158 } else {
3159 lockdep_unpin_lock(&rq->lock);
3160 raw_spin_unlock_irq(&rq->lock);
3161 }
3162
3163 balance_callback(rq);
3164 }
3165
3166 static inline void sched_submit_work(struct task_struct *tsk)
3167 {
3168 if (!tsk->state || tsk_is_pi_blocked(tsk))
3169 return;
3170 /*
3171 * If we are going to sleep and we have plugged IO queued,
3172 * make sure to submit it to avoid deadlocks.
3173 */
3174 if (blk_needs_flush_plug(tsk))
3175 blk_schedule_flush_plug(tsk);
3176 }
3177
3178 asmlinkage __visible void __sched schedule(void)
3179 {
3180 struct task_struct *tsk = current;
3181
3182 sched_submit_work(tsk);
3183 do {
3184 preempt_disable();
3185 __schedule(false);
3186 sched_preempt_enable_no_resched();
3187 } while (need_resched());
3188 }
3189 EXPORT_SYMBOL(schedule);
3190
3191 #ifdef CONFIG_CONTEXT_TRACKING
3192 asmlinkage __visible void __sched schedule_user(void)
3193 {
3194 /*
3195 * If we come here after a random call to set_need_resched(),
3196 * or we have been woken up remotely but the IPI has not yet arrived,
3197 * we haven't yet exited the RCU idle mode. Do it here manually until
3198 * we find a better solution.
3199 *
3200 * NB: There are buggy callers of this function. Ideally we
3201 * should warn if prev_state != CONTEXT_USER, but that will trigger
3202 * too frequently to make sense yet.
3203 */
3204 enum ctx_state prev_state = exception_enter();
3205 schedule();
3206 exception_exit(prev_state);
3207 }
3208 #endif
3209
3210 /**
3211 * schedule_preempt_disabled - called with preemption disabled
3212 *
3213 * Returns with preemption disabled. Note: preempt_count must be 1
3214 */
3215 void __sched schedule_preempt_disabled(void)
3216 {
3217 sched_preempt_enable_no_resched();
3218 schedule();
3219 preempt_disable();
3220 }
3221
3222 static void __sched notrace preempt_schedule_common(void)
3223 {
3224 do {
3225 preempt_disable_notrace();
3226 __schedule(true);
3227 preempt_enable_no_resched_notrace();
3228
3229 /*
3230 * Check again in case we missed a preemption opportunity
3231 * between schedule and now.
3232 */
3233 } while (need_resched());
3234 }
3235
3236 #ifdef CONFIG_PREEMPT
3237 /*
3238 * this is the entry point to schedule() from in-kernel preemption
3239 * off of preempt_enable. Kernel preemptions off return from interrupt
3240 * occur there and call schedule directly.
3241 */
3242 asmlinkage __visible void __sched notrace preempt_schedule(void)
3243 {
3244 /*
3245 * If there is a non-zero preempt_count or interrupts are disabled,
3246 * we do not want to preempt the current task. Just return..
3247 */
3248 if (likely(!preemptible()))
3249 return;
3250
3251 preempt_schedule_common();
3252 }
3253 NOKPROBE_SYMBOL(preempt_schedule);
3254 EXPORT_SYMBOL(preempt_schedule);
3255
3256 /**
3257 * preempt_schedule_notrace - preempt_schedule called by tracing
3258 *
3259 * The tracing infrastructure uses preempt_enable_notrace to prevent
3260 * recursion and tracing preempt enabling caused by the tracing
3261 * infrastructure itself. But as tracing can happen in areas coming
3262 * from userspace or just about to enter userspace, a preempt enable
3263 * can occur before user_exit() is called. This will cause the scheduler
3264 * to be called when the system is still in usermode.
3265 *
3266 * To prevent this, the preempt_enable_notrace will use this function
3267 * instead of preempt_schedule() to exit user context if needed before
3268 * calling the scheduler.
3269 */
3270 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3271 {
3272 enum ctx_state prev_ctx;
3273
3274 if (likely(!preemptible()))
3275 return;
3276
3277 do {
3278 preempt_disable_notrace();
3279 /*
3280 * Needs preempt disabled in case user_exit() is traced
3281 * and the tracer calls preempt_enable_notrace() causing
3282 * an infinite recursion.
3283 */
3284 prev_ctx = exception_enter();
3285 __schedule(true);
3286 exception_exit(prev_ctx);
3287
3288 preempt_enable_no_resched_notrace();
3289 } while (need_resched());
3290 }
3291 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3292
3293 #endif /* CONFIG_PREEMPT */
3294
3295 /*
3296 * this is the entry point to schedule() from kernel preemption
3297 * off of irq context.
3298 * Note, that this is called and return with irqs disabled. This will
3299 * protect us against recursive calling from irq.
3300 */
3301 asmlinkage __visible void __sched preempt_schedule_irq(void)
3302 {
3303 enum ctx_state prev_state;
3304
3305 /* Catch callers which need to be fixed */
3306 BUG_ON(preempt_count() || !irqs_disabled());
3307
3308 prev_state = exception_enter();
3309
3310 do {
3311 preempt_disable();
3312 local_irq_enable();
3313 __schedule(true);
3314 local_irq_disable();
3315 sched_preempt_enable_no_resched();
3316 } while (need_resched());
3317
3318 exception_exit(prev_state);
3319 }
3320
3321 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3322 void *key)
3323 {
3324 return try_to_wake_up(curr->private, mode, wake_flags);
3325 }
3326 EXPORT_SYMBOL(default_wake_function);
3327
3328 #ifdef CONFIG_RT_MUTEXES
3329
3330 /*
3331 * rt_mutex_setprio - set the current priority of a task
3332 * @p: task
3333 * @prio: prio value (kernel-internal form)
3334 *
3335 * This function changes the 'effective' priority of a task. It does
3336 * not touch ->normal_prio like __setscheduler().
3337 *
3338 * Used by the rt_mutex code to implement priority inheritance
3339 * logic. Call site only calls if the priority of the task changed.
3340 */
3341 void rt_mutex_setprio(struct task_struct *p, int prio)
3342 {
3343 int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
3344 struct rq *rq;
3345 const struct sched_class *prev_class;
3346
3347 BUG_ON(prio > MAX_PRIO);
3348
3349 rq = __task_rq_lock(p);
3350
3351 /*
3352 * Idle task boosting is a nono in general. There is one
3353 * exception, when PREEMPT_RT and NOHZ is active:
3354 *
3355 * The idle task calls get_next_timer_interrupt() and holds
3356 * the timer wheel base->lock on the CPU and another CPU wants
3357 * to access the timer (probably to cancel it). We can safely
3358 * ignore the boosting request, as the idle CPU runs this code
3359 * with interrupts disabled and will complete the lock
3360 * protected section without being interrupted. So there is no
3361 * real need to boost.
3362 */
3363 if (unlikely(p == rq->idle)) {
3364 WARN_ON(p != rq->curr);
3365 WARN_ON(p->pi_blocked_on);
3366 goto out_unlock;
3367 }
3368
3369 trace_sched_pi_setprio(p, prio);
3370 oldprio = p->prio;
3371 prev_class = p->sched_class;
3372 queued = task_on_rq_queued(p);
3373 running = task_current(rq, p);
3374 if (queued)
3375 dequeue_task(rq, p, DEQUEUE_SAVE);
3376 if (running)
3377 put_prev_task(rq, p);
3378
3379 /*
3380 * Boosting condition are:
3381 * 1. -rt task is running and holds mutex A
3382 * --> -dl task blocks on mutex A
3383 *
3384 * 2. -dl task is running and holds mutex A
3385 * --> -dl task blocks on mutex A and could preempt the
3386 * running task
3387 */
3388 if (dl_prio(prio)) {
3389 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3390 if (!dl_prio(p->normal_prio) ||
3391 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3392 p->dl.dl_boosted = 1;
3393 enqueue_flag |= ENQUEUE_REPLENISH;
3394 } else
3395 p->dl.dl_boosted = 0;
3396 p->sched_class = &dl_sched_class;
3397 } else if (rt_prio(prio)) {
3398 if (dl_prio(oldprio))
3399 p->dl.dl_boosted = 0;
3400 if (oldprio < prio)
3401 enqueue_flag |= ENQUEUE_HEAD;
3402 p->sched_class = &rt_sched_class;
3403 } else {
3404 if (dl_prio(oldprio))
3405 p->dl.dl_boosted = 0;
3406 if (rt_prio(oldprio))
3407 p->rt.timeout = 0;
3408 p->sched_class = &fair_sched_class;
3409 }
3410
3411 p->prio = prio;
3412
3413 if (running)
3414 p->sched_class->set_curr_task(rq);
3415 if (queued)
3416 enqueue_task(rq, p, enqueue_flag);
3417
3418 check_class_changed(rq, p, prev_class, oldprio);
3419 out_unlock:
3420 preempt_disable(); /* avoid rq from going away on us */
3421 __task_rq_unlock(rq);
3422
3423 balance_callback(rq);
3424 preempt_enable();
3425 }
3426 #endif
3427
3428 void set_user_nice(struct task_struct *p, long nice)
3429 {
3430 int old_prio, delta, queued;
3431 unsigned long flags;
3432 struct rq *rq;
3433
3434 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3435 return;
3436 /*
3437 * We have to be careful, if called from sys_setpriority(),
3438 * the task might be in the middle of scheduling on another CPU.
3439 */
3440 rq = task_rq_lock(p, &flags);
3441 /*
3442 * The RT priorities are set via sched_setscheduler(), but we still
3443 * allow the 'normal' nice value to be set - but as expected
3444 * it wont have any effect on scheduling until the task is
3445 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3446 */
3447 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3448 p->static_prio = NICE_TO_PRIO(nice);
3449 goto out_unlock;
3450 }
3451 queued = task_on_rq_queued(p);
3452 if (queued)
3453 dequeue_task(rq, p, DEQUEUE_SAVE);
3454
3455 p->static_prio = NICE_TO_PRIO(nice);
3456 set_load_weight(p);
3457 old_prio = p->prio;
3458 p->prio = effective_prio(p);
3459 delta = p->prio - old_prio;
3460
3461 if (queued) {
3462 enqueue_task(rq, p, ENQUEUE_RESTORE);
3463 /*
3464 * If the task increased its priority or is running and
3465 * lowered its priority, then reschedule its CPU:
3466 */
3467 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3468 resched_curr(rq);
3469 }
3470 out_unlock:
3471 task_rq_unlock(rq, p, &flags);
3472 }
3473 EXPORT_SYMBOL(set_user_nice);
3474
3475 /*
3476 * can_nice - check if a task can reduce its nice value
3477 * @p: task
3478 * @nice: nice value
3479 */
3480 int can_nice(const struct task_struct *p, const int nice)
3481 {
3482 /* convert nice value [19,-20] to rlimit style value [1,40] */
3483 int nice_rlim = nice_to_rlimit(nice);
3484
3485 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3486 capable(CAP_SYS_NICE));
3487 }
3488
3489 #ifdef __ARCH_WANT_SYS_NICE
3490
3491 /*
3492 * sys_nice - change the priority of the current process.
3493 * @increment: priority increment
3494 *
3495 * sys_setpriority is a more generic, but much slower function that
3496 * does similar things.
3497 */
3498 SYSCALL_DEFINE1(nice, int, increment)
3499 {
3500 long nice, retval;
3501
3502 /*
3503 * Setpriority might change our priority at the same moment.
3504 * We don't have to worry. Conceptually one call occurs first
3505 * and we have a single winner.
3506 */
3507 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3508 nice = task_nice(current) + increment;
3509
3510 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3511 if (increment < 0 && !can_nice(current, nice))
3512 return -EPERM;
3513
3514 retval = security_task_setnice(current, nice);
3515 if (retval)
3516 return retval;
3517
3518 set_user_nice(current, nice);
3519 return 0;
3520 }
3521
3522 #endif
3523
3524 /**
3525 * task_prio - return the priority value of a given task.
3526 * @p: the task in question.
3527 *
3528 * Return: The priority value as seen by users in /proc.
3529 * RT tasks are offset by -200. Normal tasks are centered
3530 * around 0, value goes from -16 to +15.
3531 */
3532 int task_prio(const struct task_struct *p)
3533 {
3534 return p->prio - MAX_RT_PRIO;
3535 }
3536
3537 /**
3538 * idle_cpu - is a given cpu idle currently?
3539 * @cpu: the processor in question.
3540 *
3541 * Return: 1 if the CPU is currently idle. 0 otherwise.
3542 */
3543 int idle_cpu(int cpu)
3544 {
3545 struct rq *rq = cpu_rq(cpu);
3546
3547 if (rq->curr != rq->idle)
3548 return 0;
3549
3550 if (rq->nr_running)
3551 return 0;
3552
3553 #ifdef CONFIG_SMP
3554 if (!llist_empty(&rq->wake_list))
3555 return 0;
3556 #endif
3557
3558 return 1;
3559 }
3560
3561 /**
3562 * idle_task - return the idle task for a given cpu.
3563 * @cpu: the processor in question.
3564 *
3565 * Return: The idle task for the cpu @cpu.
3566 */
3567 struct task_struct *idle_task(int cpu)
3568 {
3569 return cpu_rq(cpu)->idle;
3570 }
3571
3572 /**
3573 * find_process_by_pid - find a process with a matching PID value.
3574 * @pid: the pid in question.
3575 *
3576 * The task of @pid, if found. %NULL otherwise.
3577 */
3578 static struct task_struct *find_process_by_pid(pid_t pid)
3579 {
3580 return pid ? find_task_by_vpid(pid) : current;
3581 }
3582
3583 /*
3584 * This function initializes the sched_dl_entity of a newly becoming
3585 * SCHED_DEADLINE task.
3586 *
3587 * Only the static values are considered here, the actual runtime and the
3588 * absolute deadline will be properly calculated when the task is enqueued
3589 * for the first time with its new policy.
3590 */
3591 static void
3592 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3593 {
3594 struct sched_dl_entity *dl_se = &p->dl;
3595
3596 dl_se->dl_runtime = attr->sched_runtime;
3597 dl_se->dl_deadline = attr->sched_deadline;
3598 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3599 dl_se->flags = attr->sched_flags;
3600 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3601
3602 /*
3603 * Changing the parameters of a task is 'tricky' and we're not doing
3604 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3605 *
3606 * What we SHOULD do is delay the bandwidth release until the 0-lag
3607 * point. This would include retaining the task_struct until that time
3608 * and change dl_overflow() to not immediately decrement the current
3609 * amount.
3610 *
3611 * Instead we retain the current runtime/deadline and let the new
3612 * parameters take effect after the current reservation period lapses.
3613 * This is safe (albeit pessimistic) because the 0-lag point is always
3614 * before the current scheduling deadline.
3615 *
3616 * We can still have temporary overloads because we do not delay the
3617 * change in bandwidth until that time; so admission control is
3618 * not on the safe side. It does however guarantee tasks will never
3619 * consume more than promised.
3620 */
3621 }
3622
3623 /*
3624 * sched_setparam() passes in -1 for its policy, to let the functions
3625 * it calls know not to change it.
3626 */
3627 #define SETPARAM_POLICY -1
3628
3629 static void __setscheduler_params(struct task_struct *p,
3630 const struct sched_attr *attr)
3631 {
3632 int policy = attr->sched_policy;
3633
3634 if (policy == SETPARAM_POLICY)
3635 policy = p->policy;
3636
3637 p->policy = policy;
3638
3639 if (dl_policy(policy))
3640 __setparam_dl(p, attr);
3641 else if (fair_policy(policy))
3642 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3643
3644 /*
3645 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3646 * !rt_policy. Always setting this ensures that things like
3647 * getparam()/getattr() don't report silly values for !rt tasks.
3648 */
3649 p->rt_priority = attr->sched_priority;
3650 p->normal_prio = normal_prio(p);
3651 set_load_weight(p);
3652 }
3653
3654 /* Actually do priority change: must hold pi & rq lock. */
3655 static void __setscheduler(struct rq *rq, struct task_struct *p,
3656 const struct sched_attr *attr, bool keep_boost)
3657 {
3658 __setscheduler_params(p, attr);
3659
3660 /*
3661 * Keep a potential priority boosting if called from
3662 * sched_setscheduler().
3663 */
3664 if (keep_boost)
3665 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3666 else
3667 p->prio = normal_prio(p);
3668
3669 if (dl_prio(p->prio))
3670 p->sched_class = &dl_sched_class;
3671 else if (rt_prio(p->prio))
3672 p->sched_class = &rt_sched_class;
3673 else
3674 p->sched_class = &fair_sched_class;
3675 }
3676
3677 static void
3678 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3679 {
3680 struct sched_dl_entity *dl_se = &p->dl;
3681
3682 attr->sched_priority = p->rt_priority;
3683 attr->sched_runtime = dl_se->dl_runtime;
3684 attr->sched_deadline = dl_se->dl_deadline;
3685 attr->sched_period = dl_se->dl_period;
3686 attr->sched_flags = dl_se->flags;
3687 }
3688
3689 /*
3690 * This function validates the new parameters of a -deadline task.
3691 * We ask for the deadline not being zero, and greater or equal
3692 * than the runtime, as well as the period of being zero or
3693 * greater than deadline. Furthermore, we have to be sure that
3694 * user parameters are above the internal resolution of 1us (we
3695 * check sched_runtime only since it is always the smaller one) and
3696 * below 2^63 ns (we have to check both sched_deadline and
3697 * sched_period, as the latter can be zero).
3698 */
3699 static bool
3700 __checkparam_dl(const struct sched_attr *attr)
3701 {
3702 /* deadline != 0 */
3703 if (attr->sched_deadline == 0)
3704 return false;
3705
3706 /*
3707 * Since we truncate DL_SCALE bits, make sure we're at least
3708 * that big.
3709 */
3710 if (attr->sched_runtime < (1ULL << DL_SCALE))
3711 return false;
3712
3713 /*
3714 * Since we use the MSB for wrap-around and sign issues, make
3715 * sure it's not set (mind that period can be equal to zero).
3716 */
3717 if (attr->sched_deadline & (1ULL << 63) ||
3718 attr->sched_period & (1ULL << 63))
3719 return false;
3720
3721 /* runtime <= deadline <= period (if period != 0) */
3722 if ((attr->sched_period != 0 &&
3723 attr->sched_period < attr->sched_deadline) ||
3724 attr->sched_deadline < attr->sched_runtime)
3725 return false;
3726
3727 return true;
3728 }
3729
3730 /*
3731 * check the target process has a UID that matches the current process's
3732 */
3733 static bool check_same_owner(struct task_struct *p)
3734 {
3735 const struct cred *cred = current_cred(), *pcred;
3736 bool match;
3737
3738 rcu_read_lock();
3739 pcred = __task_cred(p);
3740 match = (uid_eq(cred->euid, pcred->euid) ||
3741 uid_eq(cred->euid, pcred->uid));
3742 rcu_read_unlock();
3743 return match;
3744 }
3745
3746 static bool dl_param_changed(struct task_struct *p,
3747 const struct sched_attr *attr)
3748 {
3749 struct sched_dl_entity *dl_se = &p->dl;
3750
3751 if (dl_se->dl_runtime != attr->sched_runtime ||
3752 dl_se->dl_deadline != attr->sched_deadline ||
3753 dl_se->dl_period != attr->sched_period ||
3754 dl_se->flags != attr->sched_flags)
3755 return true;
3756
3757 return false;
3758 }
3759
3760 static int __sched_setscheduler(struct task_struct *p,
3761 const struct sched_attr *attr,
3762 bool user, bool pi)
3763 {
3764 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3765 MAX_RT_PRIO - 1 - attr->sched_priority;
3766 int retval, oldprio, oldpolicy = -1, queued, running;
3767 int new_effective_prio, policy = attr->sched_policy;
3768 unsigned long flags;
3769 const struct sched_class *prev_class;
3770 struct rq *rq;
3771 int reset_on_fork;
3772
3773 /* may grab non-irq protected spin_locks */
3774 BUG_ON(in_interrupt());
3775 recheck:
3776 /* double check policy once rq lock held */
3777 if (policy < 0) {
3778 reset_on_fork = p->sched_reset_on_fork;
3779 policy = oldpolicy = p->policy;
3780 } else {
3781 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3782
3783 if (!valid_policy(policy))
3784 return -EINVAL;
3785 }
3786
3787 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3788 return -EINVAL;
3789
3790 /*
3791 * Valid priorities for SCHED_FIFO and SCHED_RR are
3792 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3793 * SCHED_BATCH and SCHED_IDLE is 0.
3794 */
3795 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3796 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3797 return -EINVAL;
3798 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3799 (rt_policy(policy) != (attr->sched_priority != 0)))
3800 return -EINVAL;
3801
3802 /*
3803 * Allow unprivileged RT tasks to decrease priority:
3804 */
3805 if (user && !capable(CAP_SYS_NICE)) {
3806 if (fair_policy(policy)) {
3807 if (attr->sched_nice < task_nice(p) &&
3808 !can_nice(p, attr->sched_nice))
3809 return -EPERM;
3810 }
3811
3812 if (rt_policy(policy)) {
3813 unsigned long rlim_rtprio =
3814 task_rlimit(p, RLIMIT_RTPRIO);
3815
3816 /* can't set/change the rt policy */
3817 if (policy != p->policy && !rlim_rtprio)
3818 return -EPERM;
3819
3820 /* can't increase priority */
3821 if (attr->sched_priority > p->rt_priority &&
3822 attr->sched_priority > rlim_rtprio)
3823 return -EPERM;
3824 }
3825
3826 /*
3827 * Can't set/change SCHED_DEADLINE policy at all for now
3828 * (safest behavior); in the future we would like to allow
3829 * unprivileged DL tasks to increase their relative deadline
3830 * or reduce their runtime (both ways reducing utilization)
3831 */
3832 if (dl_policy(policy))
3833 return -EPERM;
3834
3835 /*
3836 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3837 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3838 */
3839 if (idle_policy(p->policy) && !idle_policy(policy)) {
3840 if (!can_nice(p, task_nice(p)))
3841 return -EPERM;
3842 }
3843
3844 /* can't change other user's priorities */
3845 if (!check_same_owner(p))
3846 return -EPERM;
3847
3848 /* Normal users shall not reset the sched_reset_on_fork flag */
3849 if (p->sched_reset_on_fork && !reset_on_fork)
3850 return -EPERM;
3851 }
3852
3853 if (user) {
3854 retval = security_task_setscheduler(p);
3855 if (retval)
3856 return retval;
3857 }
3858
3859 /*
3860 * make sure no PI-waiters arrive (or leave) while we are
3861 * changing the priority of the task:
3862 *
3863 * To be able to change p->policy safely, the appropriate
3864 * runqueue lock must be held.
3865 */
3866 rq = task_rq_lock(p, &flags);
3867
3868 /*
3869 * Changing the policy of the stop threads its a very bad idea
3870 */
3871 if (p == rq->stop) {
3872 task_rq_unlock(rq, p, &flags);
3873 return -EINVAL;
3874 }
3875
3876 /*
3877 * If not changing anything there's no need to proceed further,
3878 * but store a possible modification of reset_on_fork.
3879 */
3880 if (unlikely(policy == p->policy)) {
3881 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3882 goto change;
3883 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3884 goto change;
3885 if (dl_policy(policy) && dl_param_changed(p, attr))
3886 goto change;
3887
3888 p->sched_reset_on_fork = reset_on_fork;
3889 task_rq_unlock(rq, p, &flags);
3890 return 0;
3891 }
3892 change:
3893
3894 if (user) {
3895 #ifdef CONFIG_RT_GROUP_SCHED
3896 /*
3897 * Do not allow realtime tasks into groups that have no runtime
3898 * assigned.
3899 */
3900 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3901 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3902 !task_group_is_autogroup(task_group(p))) {
3903 task_rq_unlock(rq, p, &flags);
3904 return -EPERM;
3905 }
3906 #endif
3907 #ifdef CONFIG_SMP
3908 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3909 cpumask_t *span = rq->rd->span;
3910
3911 /*
3912 * Don't allow tasks with an affinity mask smaller than
3913 * the entire root_domain to become SCHED_DEADLINE. We
3914 * will also fail if there's no bandwidth available.
3915 */
3916 if (!cpumask_subset(span, &p->cpus_allowed) ||
3917 rq->rd->dl_bw.bw == 0) {
3918 task_rq_unlock(rq, p, &flags);
3919 return -EPERM;
3920 }
3921 }
3922 #endif
3923 }
3924
3925 /* recheck policy now with rq lock held */
3926 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3927 policy = oldpolicy = -1;
3928 task_rq_unlock(rq, p, &flags);
3929 goto recheck;
3930 }
3931
3932 /*
3933 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3934 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3935 * is available.
3936 */
3937 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3938 task_rq_unlock(rq, p, &flags);
3939 return -EBUSY;
3940 }
3941
3942 p->sched_reset_on_fork = reset_on_fork;
3943 oldprio = p->prio;
3944
3945 if (pi) {
3946 /*
3947 * Take priority boosted tasks into account. If the new
3948 * effective priority is unchanged, we just store the new
3949 * normal parameters and do not touch the scheduler class and
3950 * the runqueue. This will be done when the task deboost
3951 * itself.
3952 */
3953 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3954 if (new_effective_prio == oldprio) {
3955 __setscheduler_params(p, attr);
3956 task_rq_unlock(rq, p, &flags);
3957 return 0;
3958 }
3959 }
3960
3961 queued = task_on_rq_queued(p);
3962 running = task_current(rq, p);
3963 if (queued)
3964 dequeue_task(rq, p, DEQUEUE_SAVE);
3965 if (running)
3966 put_prev_task(rq, p);
3967
3968 prev_class = p->sched_class;
3969 __setscheduler(rq, p, attr, pi);
3970
3971 if (running)
3972 p->sched_class->set_curr_task(rq);
3973 if (queued) {
3974 int enqueue_flags = ENQUEUE_RESTORE;
3975 /*
3976 * We enqueue to tail when the priority of a task is
3977 * increased (user space view).
3978 */
3979 if (oldprio <= p->prio)
3980 enqueue_flags |= ENQUEUE_HEAD;
3981
3982 enqueue_task(rq, p, enqueue_flags);
3983 }
3984
3985 check_class_changed(rq, p, prev_class, oldprio);
3986 preempt_disable(); /* avoid rq from going away on us */
3987 task_rq_unlock(rq, p, &flags);
3988
3989 if (pi)
3990 rt_mutex_adjust_pi(p);
3991
3992 /*
3993 * Run balance callbacks after we've adjusted the PI chain.
3994 */
3995 balance_callback(rq);
3996 preempt_enable();
3997
3998 return 0;
3999 }
4000
4001 static int _sched_setscheduler(struct task_struct *p, int policy,
4002 const struct sched_param *param, bool check)
4003 {
4004 struct sched_attr attr = {
4005 .sched_policy = policy,
4006 .sched_priority = param->sched_priority,
4007 .sched_nice = PRIO_TO_NICE(p->static_prio),
4008 };
4009
4010 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4011 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4012 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4013 policy &= ~SCHED_RESET_ON_FORK;
4014 attr.sched_policy = policy;
4015 }
4016
4017 return __sched_setscheduler(p, &attr, check, true);
4018 }
4019 /**
4020 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4021 * @p: the task in question.
4022 * @policy: new policy.
4023 * @param: structure containing the new RT priority.
4024 *
4025 * Return: 0 on success. An error code otherwise.
4026 *
4027 * NOTE that the task may be already dead.
4028 */
4029 int sched_setscheduler(struct task_struct *p, int policy,
4030 const struct sched_param *param)
4031 {
4032 return _sched_setscheduler(p, policy, param, true);
4033 }
4034 EXPORT_SYMBOL_GPL(sched_setscheduler);
4035
4036 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4037 {
4038 return __sched_setscheduler(p, attr, true, true);
4039 }
4040 EXPORT_SYMBOL_GPL(sched_setattr);
4041
4042 /**
4043 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4044 * @p: the task in question.
4045 * @policy: new policy.
4046 * @param: structure containing the new RT priority.
4047 *
4048 * Just like sched_setscheduler, only don't bother checking if the
4049 * current context has permission. For example, this is needed in
4050 * stop_machine(): we create temporary high priority worker threads,
4051 * but our caller might not have that capability.
4052 *
4053 * Return: 0 on success. An error code otherwise.
4054 */
4055 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4056 const struct sched_param *param)
4057 {
4058 return _sched_setscheduler(p, policy, param, false);
4059 }
4060 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4061
4062 static int
4063 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4064 {
4065 struct sched_param lparam;
4066 struct task_struct *p;
4067 int retval;
4068
4069 if (!param || pid < 0)
4070 return -EINVAL;
4071 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4072 return -EFAULT;
4073
4074 rcu_read_lock();
4075 retval = -ESRCH;
4076 p = find_process_by_pid(pid);
4077 if (p != NULL)
4078 retval = sched_setscheduler(p, policy, &lparam);
4079 rcu_read_unlock();
4080
4081 return retval;
4082 }
4083
4084 /*
4085 * Mimics kernel/events/core.c perf_copy_attr().
4086 */
4087 static int sched_copy_attr(struct sched_attr __user *uattr,
4088 struct sched_attr *attr)
4089 {
4090 u32 size;
4091 int ret;
4092
4093 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4094 return -EFAULT;
4095
4096 /*
4097 * zero the full structure, so that a short copy will be nice.
4098 */
4099 memset(attr, 0, sizeof(*attr));
4100
4101 ret = get_user(size, &uattr->size);
4102 if (ret)
4103 return ret;
4104
4105 if (size > PAGE_SIZE) /* silly large */
4106 goto err_size;
4107
4108 if (!size) /* abi compat */
4109 size = SCHED_ATTR_SIZE_VER0;
4110
4111 if (size < SCHED_ATTR_SIZE_VER0)
4112 goto err_size;
4113
4114 /*
4115 * If we're handed a bigger struct than we know of,
4116 * ensure all the unknown bits are 0 - i.e. new
4117 * user-space does not rely on any kernel feature
4118 * extensions we dont know about yet.
4119 */
4120 if (size > sizeof(*attr)) {
4121 unsigned char __user *addr;
4122 unsigned char __user *end;
4123 unsigned char val;
4124
4125 addr = (void __user *)uattr + sizeof(*attr);
4126 end = (void __user *)uattr + size;
4127
4128 for (; addr < end; addr++) {
4129 ret = get_user(val, addr);
4130 if (ret)
4131 return ret;
4132 if (val)
4133 goto err_size;
4134 }
4135 size = sizeof(*attr);
4136 }
4137
4138 ret = copy_from_user(attr, uattr, size);
4139 if (ret)
4140 return -EFAULT;
4141
4142 /*
4143 * XXX: do we want to be lenient like existing syscalls; or do we want
4144 * to be strict and return an error on out-of-bounds values?
4145 */
4146 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4147
4148 return 0;
4149
4150 err_size:
4151 put_user(sizeof(*attr), &uattr->size);
4152 return -E2BIG;
4153 }
4154
4155 /**
4156 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4157 * @pid: the pid in question.
4158 * @policy: new policy.
4159 * @param: structure containing the new RT priority.
4160 *
4161 * Return: 0 on success. An error code otherwise.
4162 */
4163 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4164 struct sched_param __user *, param)
4165 {
4166 /* negative values for policy are not valid */
4167 if (policy < 0)
4168 return -EINVAL;
4169
4170 return do_sched_setscheduler(pid, policy, param);
4171 }
4172
4173 /**
4174 * sys_sched_setparam - set/change the RT priority of a thread
4175 * @pid: the pid in question.
4176 * @param: structure containing the new RT priority.
4177 *
4178 * Return: 0 on success. An error code otherwise.
4179 */
4180 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4181 {
4182 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4183 }
4184
4185 /**
4186 * sys_sched_setattr - same as above, but with extended sched_attr
4187 * @pid: the pid in question.
4188 * @uattr: structure containing the extended parameters.
4189 * @flags: for future extension.
4190 */
4191 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4192 unsigned int, flags)
4193 {
4194 struct sched_attr attr;
4195 struct task_struct *p;
4196 int retval;
4197
4198 if (!uattr || pid < 0 || flags)
4199 return -EINVAL;
4200
4201 retval = sched_copy_attr(uattr, &attr);
4202 if (retval)
4203 return retval;
4204
4205 if ((int)attr.sched_policy < 0)
4206 return -EINVAL;
4207
4208 rcu_read_lock();
4209 retval = -ESRCH;
4210 p = find_process_by_pid(pid);
4211 if (p != NULL)
4212 retval = sched_setattr(p, &attr);
4213 rcu_read_unlock();
4214
4215 return retval;
4216 }
4217
4218 /**
4219 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4220 * @pid: the pid in question.
4221 *
4222 * Return: On success, the policy of the thread. Otherwise, a negative error
4223 * code.
4224 */
4225 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4226 {
4227 struct task_struct *p;
4228 int retval;
4229
4230 if (pid < 0)
4231 return -EINVAL;
4232
4233 retval = -ESRCH;
4234 rcu_read_lock();
4235 p = find_process_by_pid(pid);
4236 if (p) {
4237 retval = security_task_getscheduler(p);
4238 if (!retval)
4239 retval = p->policy
4240 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4241 }
4242 rcu_read_unlock();
4243 return retval;
4244 }
4245
4246 /**
4247 * sys_sched_getparam - get the RT priority of a thread
4248 * @pid: the pid in question.
4249 * @param: structure containing the RT priority.
4250 *
4251 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4252 * code.
4253 */
4254 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4255 {
4256 struct sched_param lp = { .sched_priority = 0 };
4257 struct task_struct *p;
4258 int retval;
4259
4260 if (!param || pid < 0)
4261 return -EINVAL;
4262
4263 rcu_read_lock();
4264 p = find_process_by_pid(pid);
4265 retval = -ESRCH;
4266 if (!p)
4267 goto out_unlock;
4268
4269 retval = security_task_getscheduler(p);
4270 if (retval)
4271 goto out_unlock;
4272
4273 if (task_has_rt_policy(p))
4274 lp.sched_priority = p->rt_priority;
4275 rcu_read_unlock();
4276
4277 /*
4278 * This one might sleep, we cannot do it with a spinlock held ...
4279 */
4280 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4281
4282 return retval;
4283
4284 out_unlock:
4285 rcu_read_unlock();
4286 return retval;
4287 }
4288
4289 static int sched_read_attr(struct sched_attr __user *uattr,
4290 struct sched_attr *attr,
4291 unsigned int usize)
4292 {
4293 int ret;
4294
4295 if (!access_ok(VERIFY_WRITE, uattr, usize))
4296 return -EFAULT;
4297
4298 /*
4299 * If we're handed a smaller struct than we know of,
4300 * ensure all the unknown bits are 0 - i.e. old
4301 * user-space does not get uncomplete information.
4302 */
4303 if (usize < sizeof(*attr)) {
4304 unsigned char *addr;
4305 unsigned char *end;
4306
4307 addr = (void *)attr + usize;
4308 end = (void *)attr + sizeof(*attr);
4309
4310 for (; addr < end; addr++) {
4311 if (*addr)
4312 return -EFBIG;
4313 }
4314
4315 attr->size = usize;
4316 }
4317
4318 ret = copy_to_user(uattr, attr, attr->size);
4319 if (ret)
4320 return -EFAULT;
4321
4322 return 0;
4323 }
4324
4325 /**
4326 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4327 * @pid: the pid in question.
4328 * @uattr: structure containing the extended parameters.
4329 * @size: sizeof(attr) for fwd/bwd comp.
4330 * @flags: for future extension.
4331 */
4332 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4333 unsigned int, size, unsigned int, flags)
4334 {
4335 struct sched_attr attr = {
4336 .size = sizeof(struct sched_attr),
4337 };
4338 struct task_struct *p;
4339 int retval;
4340
4341 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4342 size < SCHED_ATTR_SIZE_VER0 || flags)
4343 return -EINVAL;
4344
4345 rcu_read_lock();
4346 p = find_process_by_pid(pid);
4347 retval = -ESRCH;
4348 if (!p)
4349 goto out_unlock;
4350
4351 retval = security_task_getscheduler(p);
4352 if (retval)
4353 goto out_unlock;
4354
4355 attr.sched_policy = p->policy;
4356 if (p->sched_reset_on_fork)
4357 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4358 if (task_has_dl_policy(p))
4359 __getparam_dl(p, &attr);
4360 else if (task_has_rt_policy(p))
4361 attr.sched_priority = p->rt_priority;
4362 else
4363 attr.sched_nice = task_nice(p);
4364
4365 rcu_read_unlock();
4366
4367 retval = sched_read_attr(uattr, &attr, size);
4368 return retval;
4369
4370 out_unlock:
4371 rcu_read_unlock();
4372 return retval;
4373 }
4374
4375 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4376 {
4377 cpumask_var_t cpus_allowed, new_mask;
4378 struct task_struct *p;
4379 int retval;
4380
4381 rcu_read_lock();
4382
4383 p = find_process_by_pid(pid);
4384 if (!p) {
4385 rcu_read_unlock();
4386 return -ESRCH;
4387 }
4388
4389 /* Prevent p going away */
4390 get_task_struct(p);
4391 rcu_read_unlock();
4392
4393 if (p->flags & PF_NO_SETAFFINITY) {
4394 retval = -EINVAL;
4395 goto out_put_task;
4396 }
4397 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4398 retval = -ENOMEM;
4399 goto out_put_task;
4400 }
4401 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4402 retval = -ENOMEM;
4403 goto out_free_cpus_allowed;
4404 }
4405 retval = -EPERM;
4406 if (!check_same_owner(p)) {
4407 rcu_read_lock();
4408 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4409 rcu_read_unlock();
4410 goto out_free_new_mask;
4411 }
4412 rcu_read_unlock();
4413 }
4414
4415 retval = security_task_setscheduler(p);
4416 if (retval)
4417 goto out_free_new_mask;
4418
4419
4420 cpuset_cpus_allowed(p, cpus_allowed);
4421 cpumask_and(new_mask, in_mask, cpus_allowed);
4422
4423 /*
4424 * Since bandwidth control happens on root_domain basis,
4425 * if admission test is enabled, we only admit -deadline
4426 * tasks allowed to run on all the CPUs in the task's
4427 * root_domain.
4428 */
4429 #ifdef CONFIG_SMP
4430 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4431 rcu_read_lock();
4432 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4433 retval = -EBUSY;
4434 rcu_read_unlock();
4435 goto out_free_new_mask;
4436 }
4437 rcu_read_unlock();
4438 }
4439 #endif
4440 again:
4441 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4442
4443 if (!retval) {
4444 cpuset_cpus_allowed(p, cpus_allowed);
4445 if (!cpumask_subset(new_mask, cpus_allowed)) {
4446 /*
4447 * We must have raced with a concurrent cpuset
4448 * update. Just reset the cpus_allowed to the
4449 * cpuset's cpus_allowed
4450 */
4451 cpumask_copy(new_mask, cpus_allowed);
4452 goto again;
4453 }
4454 }
4455 out_free_new_mask:
4456 free_cpumask_var(new_mask);
4457 out_free_cpus_allowed:
4458 free_cpumask_var(cpus_allowed);
4459 out_put_task:
4460 put_task_struct(p);
4461 return retval;
4462 }
4463
4464 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4465 struct cpumask *new_mask)
4466 {
4467 if (len < cpumask_size())
4468 cpumask_clear(new_mask);
4469 else if (len > cpumask_size())
4470 len = cpumask_size();
4471
4472 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4473 }
4474
4475 /**
4476 * sys_sched_setaffinity - set the cpu affinity of a process
4477 * @pid: pid of the process
4478 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4479 * @user_mask_ptr: user-space pointer to the new cpu mask
4480 *
4481 * Return: 0 on success. An error code otherwise.
4482 */
4483 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4484 unsigned long __user *, user_mask_ptr)
4485 {
4486 cpumask_var_t new_mask;
4487 int retval;
4488
4489 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4490 return -ENOMEM;
4491
4492 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4493 if (retval == 0)
4494 retval = sched_setaffinity(pid, new_mask);
4495 free_cpumask_var(new_mask);
4496 return retval;
4497 }
4498
4499 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4500 {
4501 struct task_struct *p;
4502 unsigned long flags;
4503 int retval;
4504
4505 rcu_read_lock();
4506
4507 retval = -ESRCH;
4508 p = find_process_by_pid(pid);
4509 if (!p)
4510 goto out_unlock;
4511
4512 retval = security_task_getscheduler(p);
4513 if (retval)
4514 goto out_unlock;
4515
4516 raw_spin_lock_irqsave(&p->pi_lock, flags);
4517 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4518 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4519
4520 out_unlock:
4521 rcu_read_unlock();
4522
4523 return retval;
4524 }
4525
4526 /**
4527 * sys_sched_getaffinity - get the cpu affinity of a process
4528 * @pid: pid of the process
4529 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4530 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4531 *
4532 * Return: 0 on success. An error code otherwise.
4533 */
4534 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4535 unsigned long __user *, user_mask_ptr)
4536 {
4537 int ret;
4538 cpumask_var_t mask;
4539
4540 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4541 return -EINVAL;
4542 if (len & (sizeof(unsigned long)-1))
4543 return -EINVAL;
4544
4545 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4546 return -ENOMEM;
4547
4548 ret = sched_getaffinity(pid, mask);
4549 if (ret == 0) {
4550 size_t retlen = min_t(size_t, len, cpumask_size());
4551
4552 if (copy_to_user(user_mask_ptr, mask, retlen))
4553 ret = -EFAULT;
4554 else
4555 ret = retlen;
4556 }
4557 free_cpumask_var(mask);
4558
4559 return ret;
4560 }
4561
4562 /**
4563 * sys_sched_yield - yield the current processor to other threads.
4564 *
4565 * This function yields the current CPU to other tasks. If there are no
4566 * other threads running on this CPU then this function will return.
4567 *
4568 * Return: 0.
4569 */
4570 SYSCALL_DEFINE0(sched_yield)
4571 {
4572 struct rq *rq = this_rq_lock();
4573
4574 schedstat_inc(rq, yld_count);
4575 current->sched_class->yield_task(rq);
4576
4577 /*
4578 * Since we are going to call schedule() anyway, there's
4579 * no need to preempt or enable interrupts:
4580 */
4581 __release(rq->lock);
4582 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4583 do_raw_spin_unlock(&rq->lock);
4584 sched_preempt_enable_no_resched();
4585
4586 schedule();
4587
4588 return 0;
4589 }
4590
4591 int __sched _cond_resched(void)
4592 {
4593 if (should_resched(0)) {
4594 preempt_schedule_common();
4595 return 1;
4596 }
4597 return 0;
4598 }
4599 EXPORT_SYMBOL(_cond_resched);
4600
4601 /*
4602 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4603 * call schedule, and on return reacquire the lock.
4604 *
4605 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4606 * operations here to prevent schedule() from being called twice (once via
4607 * spin_unlock(), once by hand).
4608 */
4609 int __cond_resched_lock(spinlock_t *lock)
4610 {
4611 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4612 int ret = 0;
4613
4614 lockdep_assert_held(lock);
4615
4616 if (spin_needbreak(lock) || resched) {
4617 spin_unlock(lock);
4618 if (resched)
4619 preempt_schedule_common();
4620 else
4621 cpu_relax();
4622 ret = 1;
4623 spin_lock(lock);
4624 }
4625 return ret;
4626 }
4627 EXPORT_SYMBOL(__cond_resched_lock);
4628
4629 int __sched __cond_resched_softirq(void)
4630 {
4631 BUG_ON(!in_softirq());
4632
4633 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4634 local_bh_enable();
4635 preempt_schedule_common();
4636 local_bh_disable();
4637 return 1;
4638 }
4639 return 0;
4640 }
4641 EXPORT_SYMBOL(__cond_resched_softirq);
4642
4643 /**
4644 * yield - yield the current processor to other threads.
4645 *
4646 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4647 *
4648 * The scheduler is at all times free to pick the calling task as the most
4649 * eligible task to run, if removing the yield() call from your code breaks
4650 * it, its already broken.
4651 *
4652 * Typical broken usage is:
4653 *
4654 * while (!event)
4655 * yield();
4656 *
4657 * where one assumes that yield() will let 'the other' process run that will
4658 * make event true. If the current task is a SCHED_FIFO task that will never
4659 * happen. Never use yield() as a progress guarantee!!
4660 *
4661 * If you want to use yield() to wait for something, use wait_event().
4662 * If you want to use yield() to be 'nice' for others, use cond_resched().
4663 * If you still want to use yield(), do not!
4664 */
4665 void __sched yield(void)
4666 {
4667 set_current_state(TASK_RUNNING);
4668 sys_sched_yield();
4669 }
4670 EXPORT_SYMBOL(yield);
4671
4672 /**
4673 * yield_to - yield the current processor to another thread in
4674 * your thread group, or accelerate that thread toward the
4675 * processor it's on.
4676 * @p: target task
4677 * @preempt: whether task preemption is allowed or not
4678 *
4679 * It's the caller's job to ensure that the target task struct
4680 * can't go away on us before we can do any checks.
4681 *
4682 * Return:
4683 * true (>0) if we indeed boosted the target task.
4684 * false (0) if we failed to boost the target.
4685 * -ESRCH if there's no task to yield to.
4686 */
4687 int __sched yield_to(struct task_struct *p, bool preempt)
4688 {
4689 struct task_struct *curr = current;
4690 struct rq *rq, *p_rq;
4691 unsigned long flags;
4692 int yielded = 0;
4693
4694 local_irq_save(flags);
4695 rq = this_rq();
4696
4697 again:
4698 p_rq = task_rq(p);
4699 /*
4700 * If we're the only runnable task on the rq and target rq also
4701 * has only one task, there's absolutely no point in yielding.
4702 */
4703 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4704 yielded = -ESRCH;
4705 goto out_irq;
4706 }
4707
4708 double_rq_lock(rq, p_rq);
4709 if (task_rq(p) != p_rq) {
4710 double_rq_unlock(rq, p_rq);
4711 goto again;
4712 }
4713
4714 if (!curr->sched_class->yield_to_task)
4715 goto out_unlock;
4716
4717 if (curr->sched_class != p->sched_class)
4718 goto out_unlock;
4719
4720 if (task_running(p_rq, p) || p->state)
4721 goto out_unlock;
4722
4723 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4724 if (yielded) {
4725 schedstat_inc(rq, yld_count);
4726 /*
4727 * Make p's CPU reschedule; pick_next_entity takes care of
4728 * fairness.
4729 */
4730 if (preempt && rq != p_rq)
4731 resched_curr(p_rq);
4732 }
4733
4734 out_unlock:
4735 double_rq_unlock(rq, p_rq);
4736 out_irq:
4737 local_irq_restore(flags);
4738
4739 if (yielded > 0)
4740 schedule();
4741
4742 return yielded;
4743 }
4744 EXPORT_SYMBOL_GPL(yield_to);
4745
4746 /*
4747 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4748 * that process accounting knows that this is a task in IO wait state.
4749 */
4750 long __sched io_schedule_timeout(long timeout)
4751 {
4752 int old_iowait = current->in_iowait;
4753 struct rq *rq;
4754 long ret;
4755
4756 current->in_iowait = 1;
4757 blk_schedule_flush_plug(current);
4758
4759 delayacct_blkio_start();
4760 rq = raw_rq();
4761 atomic_inc(&rq->nr_iowait);
4762 ret = schedule_timeout(timeout);
4763 current->in_iowait = old_iowait;
4764 atomic_dec(&rq->nr_iowait);
4765 delayacct_blkio_end();
4766
4767 return ret;
4768 }
4769 EXPORT_SYMBOL(io_schedule_timeout);
4770
4771 /**
4772 * sys_sched_get_priority_max - return maximum RT priority.
4773 * @policy: scheduling class.
4774 *
4775 * Return: On success, this syscall returns the maximum
4776 * rt_priority that can be used by a given scheduling class.
4777 * On failure, a negative error code is returned.
4778 */
4779 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4780 {
4781 int ret = -EINVAL;
4782
4783 switch (policy) {
4784 case SCHED_FIFO:
4785 case SCHED_RR:
4786 ret = MAX_USER_RT_PRIO-1;
4787 break;
4788 case SCHED_DEADLINE:
4789 case SCHED_NORMAL:
4790 case SCHED_BATCH:
4791 case SCHED_IDLE:
4792 ret = 0;
4793 break;
4794 }
4795 return ret;
4796 }
4797
4798 /**
4799 * sys_sched_get_priority_min - return minimum RT priority.
4800 * @policy: scheduling class.
4801 *
4802 * Return: On success, this syscall returns the minimum
4803 * rt_priority that can be used by a given scheduling class.
4804 * On failure, a negative error code is returned.
4805 */
4806 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4807 {
4808 int ret = -EINVAL;
4809
4810 switch (policy) {
4811 case SCHED_FIFO:
4812 case SCHED_RR:
4813 ret = 1;
4814 break;
4815 case SCHED_DEADLINE:
4816 case SCHED_NORMAL:
4817 case SCHED_BATCH:
4818 case SCHED_IDLE:
4819 ret = 0;
4820 }
4821 return ret;
4822 }
4823
4824 /**
4825 * sys_sched_rr_get_interval - return the default timeslice of a process.
4826 * @pid: pid of the process.
4827 * @interval: userspace pointer to the timeslice value.
4828 *
4829 * this syscall writes the default timeslice value of a given process
4830 * into the user-space timespec buffer. A value of '0' means infinity.
4831 *
4832 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4833 * an error code.
4834 */
4835 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4836 struct timespec __user *, interval)
4837 {
4838 struct task_struct *p;
4839 unsigned int time_slice;
4840 unsigned long flags;
4841 struct rq *rq;
4842 int retval;
4843 struct timespec t;
4844
4845 if (pid < 0)
4846 return -EINVAL;
4847
4848 retval = -ESRCH;
4849 rcu_read_lock();
4850 p = find_process_by_pid(pid);
4851 if (!p)
4852 goto out_unlock;
4853
4854 retval = security_task_getscheduler(p);
4855 if (retval)
4856 goto out_unlock;
4857
4858 rq = task_rq_lock(p, &flags);
4859 time_slice = 0;
4860 if (p->sched_class->get_rr_interval)
4861 time_slice = p->sched_class->get_rr_interval(rq, p);
4862 task_rq_unlock(rq, p, &flags);
4863
4864 rcu_read_unlock();
4865 jiffies_to_timespec(time_slice, &t);
4866 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4867 return retval;
4868
4869 out_unlock:
4870 rcu_read_unlock();
4871 return retval;
4872 }
4873
4874 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4875
4876 void sched_show_task(struct task_struct *p)
4877 {
4878 unsigned long free = 0;
4879 int ppid;
4880 unsigned long state = p->state;
4881
4882 if (state)
4883 state = __ffs(state) + 1;
4884 printk(KERN_INFO "%-15.15s %c", p->comm,
4885 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4886 #if BITS_PER_LONG == 32
4887 if (state == TASK_RUNNING)
4888 printk(KERN_CONT " running ");
4889 else
4890 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4891 #else
4892 if (state == TASK_RUNNING)
4893 printk(KERN_CONT " running task ");
4894 else
4895 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4896 #endif
4897 #ifdef CONFIG_DEBUG_STACK_USAGE
4898 free = stack_not_used(p);
4899 #endif
4900 ppid = 0;
4901 rcu_read_lock();
4902 if (pid_alive(p))
4903 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4904 rcu_read_unlock();
4905 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4906 task_pid_nr(p), ppid,
4907 (unsigned long)task_thread_info(p)->flags);
4908
4909 print_worker_info(KERN_INFO, p);
4910 show_stack(p, NULL);
4911 }
4912
4913 void show_state_filter(unsigned long state_filter)
4914 {
4915 struct task_struct *g, *p;
4916
4917 #if BITS_PER_LONG == 32
4918 printk(KERN_INFO
4919 " task PC stack pid father\n");
4920 #else
4921 printk(KERN_INFO
4922 " task PC stack pid father\n");
4923 #endif
4924 rcu_read_lock();
4925 for_each_process_thread(g, p) {
4926 /*
4927 * reset the NMI-timeout, listing all files on a slow
4928 * console might take a lot of time:
4929 */
4930 touch_nmi_watchdog();
4931 if (!state_filter || (p->state & state_filter))
4932 sched_show_task(p);
4933 }
4934
4935 touch_all_softlockup_watchdogs();
4936
4937 #ifdef CONFIG_SCHED_DEBUG
4938 sysrq_sched_debug_show();
4939 #endif
4940 rcu_read_unlock();
4941 /*
4942 * Only show locks if all tasks are dumped:
4943 */
4944 if (!state_filter)
4945 debug_show_all_locks();
4946 }
4947
4948 void init_idle_bootup_task(struct task_struct *idle)
4949 {
4950 idle->sched_class = &idle_sched_class;
4951 }
4952
4953 /**
4954 * init_idle - set up an idle thread for a given CPU
4955 * @idle: task in question
4956 * @cpu: cpu the idle task belongs to
4957 *
4958 * NOTE: this function does not set the idle thread's NEED_RESCHED
4959 * flag, to make booting more robust.
4960 */
4961 void init_idle(struct task_struct *idle, int cpu)
4962 {
4963 struct rq *rq = cpu_rq(cpu);
4964 unsigned long flags;
4965
4966 raw_spin_lock_irqsave(&idle->pi_lock, flags);
4967 raw_spin_lock(&rq->lock);
4968
4969 __sched_fork(0, idle);
4970 idle->state = TASK_RUNNING;
4971 idle->se.exec_start = sched_clock();
4972
4973 #ifdef CONFIG_SMP
4974 /*
4975 * Its possible that init_idle() gets called multiple times on a task,
4976 * in that case do_set_cpus_allowed() will not do the right thing.
4977 *
4978 * And since this is boot we can forgo the serialization.
4979 */
4980 set_cpus_allowed_common(idle, cpumask_of(cpu));
4981 #endif
4982 /*
4983 * We're having a chicken and egg problem, even though we are
4984 * holding rq->lock, the cpu isn't yet set to this cpu so the
4985 * lockdep check in task_group() will fail.
4986 *
4987 * Similar case to sched_fork(). / Alternatively we could
4988 * use task_rq_lock() here and obtain the other rq->lock.
4989 *
4990 * Silence PROVE_RCU
4991 */
4992 rcu_read_lock();
4993 __set_task_cpu(idle, cpu);
4994 rcu_read_unlock();
4995
4996 rq->curr = rq->idle = idle;
4997 idle->on_rq = TASK_ON_RQ_QUEUED;
4998 #ifdef CONFIG_SMP
4999 idle->on_cpu = 1;
5000 #endif
5001 raw_spin_unlock(&rq->lock);
5002 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5003
5004 /* Set the preempt count _outside_ the spinlocks! */
5005 init_idle_preempt_count(idle, cpu);
5006
5007 /*
5008 * The idle tasks have their own, simple scheduling class:
5009 */
5010 idle->sched_class = &idle_sched_class;
5011 ftrace_graph_init_idle_task(idle, cpu);
5012 vtime_init_idle(idle, cpu);
5013 #ifdef CONFIG_SMP
5014 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5015 #endif
5016 }
5017
5018 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5019 const struct cpumask *trial)
5020 {
5021 int ret = 1, trial_cpus;
5022 struct dl_bw *cur_dl_b;
5023 unsigned long flags;
5024
5025 if (!cpumask_weight(cur))
5026 return ret;
5027
5028 rcu_read_lock_sched();
5029 cur_dl_b = dl_bw_of(cpumask_any(cur));
5030 trial_cpus = cpumask_weight(trial);
5031
5032 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5033 if (cur_dl_b->bw != -1 &&
5034 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5035 ret = 0;
5036 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5037 rcu_read_unlock_sched();
5038
5039 return ret;
5040 }
5041
5042 int task_can_attach(struct task_struct *p,
5043 const struct cpumask *cs_cpus_allowed)
5044 {
5045 int ret = 0;
5046
5047 /*
5048 * Kthreads which disallow setaffinity shouldn't be moved
5049 * to a new cpuset; we don't want to change their cpu
5050 * affinity and isolating such threads by their set of
5051 * allowed nodes is unnecessary. Thus, cpusets are not
5052 * applicable for such threads. This prevents checking for
5053 * success of set_cpus_allowed_ptr() on all attached tasks
5054 * before cpus_allowed may be changed.
5055 */
5056 if (p->flags & PF_NO_SETAFFINITY) {
5057 ret = -EINVAL;
5058 goto out;
5059 }
5060
5061 #ifdef CONFIG_SMP
5062 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5063 cs_cpus_allowed)) {
5064 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5065 cs_cpus_allowed);
5066 struct dl_bw *dl_b;
5067 bool overflow;
5068 int cpus;
5069 unsigned long flags;
5070
5071 rcu_read_lock_sched();
5072 dl_b = dl_bw_of(dest_cpu);
5073 raw_spin_lock_irqsave(&dl_b->lock, flags);
5074 cpus = dl_bw_cpus(dest_cpu);
5075 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5076 if (overflow)
5077 ret = -EBUSY;
5078 else {
5079 /*
5080 * We reserve space for this task in the destination
5081 * root_domain, as we can't fail after this point.
5082 * We will free resources in the source root_domain
5083 * later on (see set_cpus_allowed_dl()).
5084 */
5085 __dl_add(dl_b, p->dl.dl_bw);
5086 }
5087 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5088 rcu_read_unlock_sched();
5089
5090 }
5091 #endif
5092 out:
5093 return ret;
5094 }
5095
5096 #ifdef CONFIG_SMP
5097
5098 #ifdef CONFIG_NUMA_BALANCING
5099 /* Migrate current task p to target_cpu */
5100 int migrate_task_to(struct task_struct *p, int target_cpu)
5101 {
5102 struct migration_arg arg = { p, target_cpu };
5103 int curr_cpu = task_cpu(p);
5104
5105 if (curr_cpu == target_cpu)
5106 return 0;
5107
5108 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5109 return -EINVAL;
5110
5111 /* TODO: This is not properly updating schedstats */
5112
5113 trace_sched_move_numa(p, curr_cpu, target_cpu);
5114 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5115 }
5116
5117 /*
5118 * Requeue a task on a given node and accurately track the number of NUMA
5119 * tasks on the runqueues
5120 */
5121 void sched_setnuma(struct task_struct *p, int nid)
5122 {
5123 struct rq *rq;
5124 unsigned long flags;
5125 bool queued, running;
5126
5127 rq = task_rq_lock(p, &flags);
5128 queued = task_on_rq_queued(p);
5129 running = task_current(rq, p);
5130
5131 if (queued)
5132 dequeue_task(rq, p, DEQUEUE_SAVE);
5133 if (running)
5134 put_prev_task(rq, p);
5135
5136 p->numa_preferred_nid = nid;
5137
5138 if (running)
5139 p->sched_class->set_curr_task(rq);
5140 if (queued)
5141 enqueue_task(rq, p, ENQUEUE_RESTORE);
5142 task_rq_unlock(rq, p, &flags);
5143 }
5144 #endif /* CONFIG_NUMA_BALANCING */
5145
5146 #ifdef CONFIG_HOTPLUG_CPU
5147 /*
5148 * Ensures that the idle task is using init_mm right before its cpu goes
5149 * offline.
5150 */
5151 void idle_task_exit(void)
5152 {
5153 struct mm_struct *mm = current->active_mm;
5154
5155 BUG_ON(cpu_online(smp_processor_id()));
5156
5157 if (mm != &init_mm) {
5158 switch_mm(mm, &init_mm, current);
5159 finish_arch_post_lock_switch();
5160 }
5161 mmdrop(mm);
5162 }
5163
5164 /*
5165 * Since this CPU is going 'away' for a while, fold any nr_active delta
5166 * we might have. Assumes we're called after migrate_tasks() so that the
5167 * nr_active count is stable.
5168 *
5169 * Also see the comment "Global load-average calculations".
5170 */
5171 static void calc_load_migrate(struct rq *rq)
5172 {
5173 long delta = calc_load_fold_active(rq);
5174 if (delta)
5175 atomic_long_add(delta, &calc_load_tasks);
5176 }
5177
5178 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5179 {
5180 }
5181
5182 static const struct sched_class fake_sched_class = {
5183 .put_prev_task = put_prev_task_fake,
5184 };
5185
5186 static struct task_struct fake_task = {
5187 /*
5188 * Avoid pull_{rt,dl}_task()
5189 */
5190 .prio = MAX_PRIO + 1,
5191 .sched_class = &fake_sched_class,
5192 };
5193
5194 /*
5195 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5196 * try_to_wake_up()->select_task_rq().
5197 *
5198 * Called with rq->lock held even though we'er in stop_machine() and
5199 * there's no concurrency possible, we hold the required locks anyway
5200 * because of lock validation efforts.
5201 */
5202 static void migrate_tasks(struct rq *dead_rq)
5203 {
5204 struct rq *rq = dead_rq;
5205 struct task_struct *next, *stop = rq->stop;
5206 int dest_cpu;
5207
5208 /*
5209 * Fudge the rq selection such that the below task selection loop
5210 * doesn't get stuck on the currently eligible stop task.
5211 *
5212 * We're currently inside stop_machine() and the rq is either stuck
5213 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5214 * either way we should never end up calling schedule() until we're
5215 * done here.
5216 */
5217 rq->stop = NULL;
5218
5219 /*
5220 * put_prev_task() and pick_next_task() sched
5221 * class method both need to have an up-to-date
5222 * value of rq->clock[_task]
5223 */
5224 update_rq_clock(rq);
5225
5226 for (;;) {
5227 /*
5228 * There's this thread running, bail when that's the only
5229 * remaining thread.
5230 */
5231 if (rq->nr_running == 1)
5232 break;
5233
5234 /*
5235 * pick_next_task assumes pinned rq->lock.
5236 */
5237 lockdep_pin_lock(&rq->lock);
5238 next = pick_next_task(rq, &fake_task);
5239 BUG_ON(!next);
5240 next->sched_class->put_prev_task(rq, next);
5241
5242 /*
5243 * Rules for changing task_struct::cpus_allowed are holding
5244 * both pi_lock and rq->lock, such that holding either
5245 * stabilizes the mask.
5246 *
5247 * Drop rq->lock is not quite as disastrous as it usually is
5248 * because !cpu_active at this point, which means load-balance
5249 * will not interfere. Also, stop-machine.
5250 */
5251 lockdep_unpin_lock(&rq->lock);
5252 raw_spin_unlock(&rq->lock);
5253 raw_spin_lock(&next->pi_lock);
5254 raw_spin_lock(&rq->lock);
5255
5256 /*
5257 * Since we're inside stop-machine, _nothing_ should have
5258 * changed the task, WARN if weird stuff happened, because in
5259 * that case the above rq->lock drop is a fail too.
5260 */
5261 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5262 raw_spin_unlock(&next->pi_lock);
5263 continue;
5264 }
5265
5266 /* Find suitable destination for @next, with force if needed. */
5267 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5268
5269 rq = __migrate_task(rq, next, dest_cpu);
5270 if (rq != dead_rq) {
5271 raw_spin_unlock(&rq->lock);
5272 rq = dead_rq;
5273 raw_spin_lock(&rq->lock);
5274 }
5275 raw_spin_unlock(&next->pi_lock);
5276 }
5277
5278 rq->stop = stop;
5279 }
5280 #endif /* CONFIG_HOTPLUG_CPU */
5281
5282 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5283
5284 static struct ctl_table sd_ctl_dir[] = {
5285 {
5286 .procname = "sched_domain",
5287 .mode = 0555,
5288 },
5289 {}
5290 };
5291
5292 static struct ctl_table sd_ctl_root[] = {
5293 {
5294 .procname = "kernel",
5295 .mode = 0555,
5296 .child = sd_ctl_dir,
5297 },
5298 {}
5299 };
5300
5301 static struct ctl_table *sd_alloc_ctl_entry(int n)
5302 {
5303 struct ctl_table *entry =
5304 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5305
5306 return entry;
5307 }
5308
5309 static void sd_free_ctl_entry(struct ctl_table **tablep)
5310 {
5311 struct ctl_table *entry;
5312
5313 /*
5314 * In the intermediate directories, both the child directory and
5315 * procname are dynamically allocated and could fail but the mode
5316 * will always be set. In the lowest directory the names are
5317 * static strings and all have proc handlers.
5318 */
5319 for (entry = *tablep; entry->mode; entry++) {
5320 if (entry->child)
5321 sd_free_ctl_entry(&entry->child);
5322 if (entry->proc_handler == NULL)
5323 kfree(entry->procname);
5324 }
5325
5326 kfree(*tablep);
5327 *tablep = NULL;
5328 }
5329
5330 static int min_load_idx = 0;
5331 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5332
5333 static void
5334 set_table_entry(struct ctl_table *entry,
5335 const char *procname, void *data, int maxlen,
5336 umode_t mode, proc_handler *proc_handler,
5337 bool load_idx)
5338 {
5339 entry->procname = procname;
5340 entry->data = data;
5341 entry->maxlen = maxlen;
5342 entry->mode = mode;
5343 entry->proc_handler = proc_handler;
5344
5345 if (load_idx) {
5346 entry->extra1 = &min_load_idx;
5347 entry->extra2 = &max_load_idx;
5348 }
5349 }
5350
5351 static struct ctl_table *
5352 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5353 {
5354 struct ctl_table *table = sd_alloc_ctl_entry(14);
5355
5356 if (table == NULL)
5357 return NULL;
5358
5359 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5360 sizeof(long), 0644, proc_doulongvec_minmax, false);
5361 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5362 sizeof(long), 0644, proc_doulongvec_minmax, false);
5363 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5364 sizeof(int), 0644, proc_dointvec_minmax, true);
5365 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5366 sizeof(int), 0644, proc_dointvec_minmax, true);
5367 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5368 sizeof(int), 0644, proc_dointvec_minmax, true);
5369 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5370 sizeof(int), 0644, proc_dointvec_minmax, true);
5371 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5372 sizeof(int), 0644, proc_dointvec_minmax, true);
5373 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5374 sizeof(int), 0644, proc_dointvec_minmax, false);
5375 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5376 sizeof(int), 0644, proc_dointvec_minmax, false);
5377 set_table_entry(&table[9], "cache_nice_tries",
5378 &sd->cache_nice_tries,
5379 sizeof(int), 0644, proc_dointvec_minmax, false);
5380 set_table_entry(&table[10], "flags", &sd->flags,
5381 sizeof(int), 0644, proc_dointvec_minmax, false);
5382 set_table_entry(&table[11], "max_newidle_lb_cost",
5383 &sd->max_newidle_lb_cost,
5384 sizeof(long), 0644, proc_doulongvec_minmax, false);
5385 set_table_entry(&table[12], "name", sd->name,
5386 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5387 /* &table[13] is terminator */
5388
5389 return table;
5390 }
5391
5392 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5393 {
5394 struct ctl_table *entry, *table;
5395 struct sched_domain *sd;
5396 int domain_num = 0, i;
5397 char buf[32];
5398
5399 for_each_domain(cpu, sd)
5400 domain_num++;
5401 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5402 if (table == NULL)
5403 return NULL;
5404
5405 i = 0;
5406 for_each_domain(cpu, sd) {
5407 snprintf(buf, 32, "domain%d", i);
5408 entry->procname = kstrdup(buf, GFP_KERNEL);
5409 entry->mode = 0555;
5410 entry->child = sd_alloc_ctl_domain_table(sd);
5411 entry++;
5412 i++;
5413 }
5414 return table;
5415 }
5416
5417 static struct ctl_table_header *sd_sysctl_header;
5418 static void register_sched_domain_sysctl(void)
5419 {
5420 int i, cpu_num = num_possible_cpus();
5421 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5422 char buf[32];
5423
5424 WARN_ON(sd_ctl_dir[0].child);
5425 sd_ctl_dir[0].child = entry;
5426
5427 if (entry == NULL)
5428 return;
5429
5430 for_each_possible_cpu(i) {
5431 snprintf(buf, 32, "cpu%d", i);
5432 entry->procname = kstrdup(buf, GFP_KERNEL);
5433 entry->mode = 0555;
5434 entry->child = sd_alloc_ctl_cpu_table(i);
5435 entry++;
5436 }
5437
5438 WARN_ON(sd_sysctl_header);
5439 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5440 }
5441
5442 /* may be called multiple times per register */
5443 static void unregister_sched_domain_sysctl(void)
5444 {
5445 unregister_sysctl_table(sd_sysctl_header);
5446 sd_sysctl_header = NULL;
5447 if (sd_ctl_dir[0].child)
5448 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5449 }
5450 #else
5451 static void register_sched_domain_sysctl(void)
5452 {
5453 }
5454 static void unregister_sched_domain_sysctl(void)
5455 {
5456 }
5457 #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
5458
5459 static void set_rq_online(struct rq *rq)
5460 {
5461 if (!rq->online) {
5462 const struct sched_class *class;
5463
5464 cpumask_set_cpu(rq->cpu, rq->rd->online);
5465 rq->online = 1;
5466
5467 for_each_class(class) {
5468 if (class->rq_online)
5469 class->rq_online(rq);
5470 }
5471 }
5472 }
5473
5474 static void set_rq_offline(struct rq *rq)
5475 {
5476 if (rq->online) {
5477 const struct sched_class *class;
5478
5479 for_each_class(class) {
5480 if (class->rq_offline)
5481 class->rq_offline(rq);
5482 }
5483
5484 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5485 rq->online = 0;
5486 }
5487 }
5488
5489 /*
5490 * migration_call - callback that gets triggered when a CPU is added.
5491 * Here we can start up the necessary migration thread for the new CPU.
5492 */
5493 static int
5494 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5495 {
5496 int cpu = (long)hcpu;
5497 unsigned long flags;
5498 struct rq *rq = cpu_rq(cpu);
5499
5500 switch (action & ~CPU_TASKS_FROZEN) {
5501
5502 case CPU_UP_PREPARE:
5503 rq->calc_load_update = calc_load_update;
5504 break;
5505
5506 case CPU_ONLINE:
5507 /* Update our root-domain */
5508 raw_spin_lock_irqsave(&rq->lock, flags);
5509 if (rq->rd) {
5510 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5511
5512 set_rq_online(rq);
5513 }
5514 raw_spin_unlock_irqrestore(&rq->lock, flags);
5515 break;
5516
5517 #ifdef CONFIG_HOTPLUG_CPU
5518 case CPU_DYING:
5519 sched_ttwu_pending();
5520 /* Update our root-domain */
5521 raw_spin_lock_irqsave(&rq->lock, flags);
5522 if (rq->rd) {
5523 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5524 set_rq_offline(rq);
5525 }
5526 migrate_tasks(rq);
5527 BUG_ON(rq->nr_running != 1); /* the migration thread */
5528 raw_spin_unlock_irqrestore(&rq->lock, flags);
5529 break;
5530
5531 case CPU_DEAD:
5532 calc_load_migrate(rq);
5533 break;
5534 #endif
5535 }
5536
5537 update_max_interval();
5538
5539 return NOTIFY_OK;
5540 }
5541
5542 /*
5543 * Register at high priority so that task migration (migrate_all_tasks)
5544 * happens before everything else. This has to be lower priority than
5545 * the notifier in the perf_event subsystem, though.
5546 */
5547 static struct notifier_block migration_notifier = {
5548 .notifier_call = migration_call,
5549 .priority = CPU_PRI_MIGRATION,
5550 };
5551
5552 static void set_cpu_rq_start_time(void)
5553 {
5554 int cpu = smp_processor_id();
5555 struct rq *rq = cpu_rq(cpu);
5556 rq->age_stamp = sched_clock_cpu(cpu);
5557 }
5558
5559 static int sched_cpu_active(struct notifier_block *nfb,
5560 unsigned long action, void *hcpu)
5561 {
5562 int cpu = (long)hcpu;
5563
5564 switch (action & ~CPU_TASKS_FROZEN) {
5565 case CPU_STARTING:
5566 set_cpu_rq_start_time();
5567 return NOTIFY_OK;
5568
5569 case CPU_ONLINE:
5570 /*
5571 * At this point a starting CPU has marked itself as online via
5572 * set_cpu_online(). But it might not yet have marked itself
5573 * as active, which is essential from here on.
5574 */
5575 set_cpu_active(cpu, true);
5576 stop_machine_unpark(cpu);
5577 return NOTIFY_OK;
5578
5579 case CPU_DOWN_FAILED:
5580 set_cpu_active(cpu, true);
5581 return NOTIFY_OK;
5582
5583 default:
5584 return NOTIFY_DONE;
5585 }
5586 }
5587
5588 static int sched_cpu_inactive(struct notifier_block *nfb,
5589 unsigned long action, void *hcpu)
5590 {
5591 switch (action & ~CPU_TASKS_FROZEN) {
5592 case CPU_DOWN_PREPARE:
5593 set_cpu_active((long)hcpu, false);
5594 return NOTIFY_OK;
5595 default:
5596 return NOTIFY_DONE;
5597 }
5598 }
5599
5600 static int __init migration_init(void)
5601 {
5602 void *cpu = (void *)(long)smp_processor_id();
5603 int err;
5604
5605 /* Initialize migration for the boot CPU */
5606 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5607 BUG_ON(err == NOTIFY_BAD);
5608 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5609 register_cpu_notifier(&migration_notifier);
5610
5611 /* Register cpu active notifiers */
5612 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5613 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5614
5615 return 0;
5616 }
5617 early_initcall(migration_init);
5618
5619 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5620
5621 #ifdef CONFIG_SCHED_DEBUG
5622
5623 static __read_mostly int sched_debug_enabled;
5624
5625 static int __init sched_debug_setup(char *str)
5626 {
5627 sched_debug_enabled = 1;
5628
5629 return 0;
5630 }
5631 early_param("sched_debug", sched_debug_setup);
5632
5633 static inline bool sched_debug(void)
5634 {
5635 return sched_debug_enabled;
5636 }
5637
5638 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5639 struct cpumask *groupmask)
5640 {
5641 struct sched_group *group = sd->groups;
5642
5643 cpumask_clear(groupmask);
5644
5645 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5646
5647 if (!(sd->flags & SD_LOAD_BALANCE)) {
5648 printk("does not load-balance\n");
5649 if (sd->parent)
5650 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5651 " has parent");
5652 return -1;
5653 }
5654
5655 printk(KERN_CONT "span %*pbl level %s\n",
5656 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5657
5658 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5659 printk(KERN_ERR "ERROR: domain->span does not contain "
5660 "CPU%d\n", cpu);
5661 }
5662 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5663 printk(KERN_ERR "ERROR: domain->groups does not contain"
5664 " CPU%d\n", cpu);
5665 }
5666
5667 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5668 do {
5669 if (!group) {
5670 printk("\n");
5671 printk(KERN_ERR "ERROR: group is NULL\n");
5672 break;
5673 }
5674
5675 if (!cpumask_weight(sched_group_cpus(group))) {
5676 printk(KERN_CONT "\n");
5677 printk(KERN_ERR "ERROR: empty group\n");
5678 break;
5679 }
5680
5681 if (!(sd->flags & SD_OVERLAP) &&
5682 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5683 printk(KERN_CONT "\n");
5684 printk(KERN_ERR "ERROR: repeated CPUs\n");
5685 break;
5686 }
5687
5688 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5689
5690 printk(KERN_CONT " %*pbl",
5691 cpumask_pr_args(sched_group_cpus(group)));
5692 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5693 printk(KERN_CONT " (cpu_capacity = %d)",
5694 group->sgc->capacity);
5695 }
5696
5697 group = group->next;
5698 } while (group != sd->groups);
5699 printk(KERN_CONT "\n");
5700
5701 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5702 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5703
5704 if (sd->parent &&
5705 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5706 printk(KERN_ERR "ERROR: parent span is not a superset "
5707 "of domain->span\n");
5708 return 0;
5709 }
5710
5711 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5712 {
5713 int level = 0;
5714
5715 if (!sched_debug_enabled)
5716 return;
5717
5718 if (!sd) {
5719 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5720 return;
5721 }
5722
5723 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5724
5725 for (;;) {
5726 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5727 break;
5728 level++;
5729 sd = sd->parent;
5730 if (!sd)
5731 break;
5732 }
5733 }
5734 #else /* !CONFIG_SCHED_DEBUG */
5735 # define sched_domain_debug(sd, cpu) do { } while (0)
5736 static inline bool sched_debug(void)
5737 {
5738 return false;
5739 }
5740 #endif /* CONFIG_SCHED_DEBUG */
5741
5742 static int sd_degenerate(struct sched_domain *sd)
5743 {
5744 if (cpumask_weight(sched_domain_span(sd)) == 1)
5745 return 1;
5746
5747 /* Following flags need at least 2 groups */
5748 if (sd->flags & (SD_LOAD_BALANCE |
5749 SD_BALANCE_NEWIDLE |
5750 SD_BALANCE_FORK |
5751 SD_BALANCE_EXEC |
5752 SD_SHARE_CPUCAPACITY |
5753 SD_SHARE_PKG_RESOURCES |
5754 SD_SHARE_POWERDOMAIN)) {
5755 if (sd->groups != sd->groups->next)
5756 return 0;
5757 }
5758
5759 /* Following flags don't use groups */
5760 if (sd->flags & (SD_WAKE_AFFINE))
5761 return 0;
5762
5763 return 1;
5764 }
5765
5766 static int
5767 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5768 {
5769 unsigned long cflags = sd->flags, pflags = parent->flags;
5770
5771 if (sd_degenerate(parent))
5772 return 1;
5773
5774 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5775 return 0;
5776
5777 /* Flags needing groups don't count if only 1 group in parent */
5778 if (parent->groups == parent->groups->next) {
5779 pflags &= ~(SD_LOAD_BALANCE |
5780 SD_BALANCE_NEWIDLE |
5781 SD_BALANCE_FORK |
5782 SD_BALANCE_EXEC |
5783 SD_SHARE_CPUCAPACITY |
5784 SD_SHARE_PKG_RESOURCES |
5785 SD_PREFER_SIBLING |
5786 SD_SHARE_POWERDOMAIN);
5787 if (nr_node_ids == 1)
5788 pflags &= ~SD_SERIALIZE;
5789 }
5790 if (~cflags & pflags)
5791 return 0;
5792
5793 return 1;
5794 }
5795
5796 static void free_rootdomain(struct rcu_head *rcu)
5797 {
5798 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5799
5800 cpupri_cleanup(&rd->cpupri);
5801 cpudl_cleanup(&rd->cpudl);
5802 free_cpumask_var(rd->dlo_mask);
5803 free_cpumask_var(rd->rto_mask);
5804 free_cpumask_var(rd->online);
5805 free_cpumask_var(rd->span);
5806 kfree(rd);
5807 }
5808
5809 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5810 {
5811 struct root_domain *old_rd = NULL;
5812 unsigned long flags;
5813
5814 raw_spin_lock_irqsave(&rq->lock, flags);
5815
5816 if (rq->rd) {
5817 old_rd = rq->rd;
5818
5819 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5820 set_rq_offline(rq);
5821
5822 cpumask_clear_cpu(rq->cpu, old_rd->span);
5823
5824 /*
5825 * If we dont want to free the old_rd yet then
5826 * set old_rd to NULL to skip the freeing later
5827 * in this function:
5828 */
5829 if (!atomic_dec_and_test(&old_rd->refcount))
5830 old_rd = NULL;
5831 }
5832
5833 atomic_inc(&rd->refcount);
5834 rq->rd = rd;
5835
5836 cpumask_set_cpu(rq->cpu, rd->span);
5837 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5838 set_rq_online(rq);
5839
5840 raw_spin_unlock_irqrestore(&rq->lock, flags);
5841
5842 if (old_rd)
5843 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5844 }
5845
5846 static int init_rootdomain(struct root_domain *rd)
5847 {
5848 memset(rd, 0, sizeof(*rd));
5849
5850 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5851 goto out;
5852 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5853 goto free_span;
5854 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5855 goto free_online;
5856 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5857 goto free_dlo_mask;
5858
5859 init_dl_bw(&rd->dl_bw);
5860 if (cpudl_init(&rd->cpudl) != 0)
5861 goto free_dlo_mask;
5862
5863 if (cpupri_init(&rd->cpupri) != 0)
5864 goto free_rto_mask;
5865 return 0;
5866
5867 free_rto_mask:
5868 free_cpumask_var(rd->rto_mask);
5869 free_dlo_mask:
5870 free_cpumask_var(rd->dlo_mask);
5871 free_online:
5872 free_cpumask_var(rd->online);
5873 free_span:
5874 free_cpumask_var(rd->span);
5875 out:
5876 return -ENOMEM;
5877 }
5878
5879 /*
5880 * By default the system creates a single root-domain with all cpus as
5881 * members (mimicking the global state we have today).
5882 */
5883 struct root_domain def_root_domain;
5884
5885 static void init_defrootdomain(void)
5886 {
5887 init_rootdomain(&def_root_domain);
5888
5889 atomic_set(&def_root_domain.refcount, 1);
5890 }
5891
5892 static struct root_domain *alloc_rootdomain(void)
5893 {
5894 struct root_domain *rd;
5895
5896 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5897 if (!rd)
5898 return NULL;
5899
5900 if (init_rootdomain(rd) != 0) {
5901 kfree(rd);
5902 return NULL;
5903 }
5904
5905 return rd;
5906 }
5907
5908 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5909 {
5910 struct sched_group *tmp, *first;
5911
5912 if (!sg)
5913 return;
5914
5915 first = sg;
5916 do {
5917 tmp = sg->next;
5918
5919 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5920 kfree(sg->sgc);
5921
5922 kfree(sg);
5923 sg = tmp;
5924 } while (sg != first);
5925 }
5926
5927 static void free_sched_domain(struct rcu_head *rcu)
5928 {
5929 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5930
5931 /*
5932 * If its an overlapping domain it has private groups, iterate and
5933 * nuke them all.
5934 */
5935 if (sd->flags & SD_OVERLAP) {
5936 free_sched_groups(sd->groups, 1);
5937 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5938 kfree(sd->groups->sgc);
5939 kfree(sd->groups);
5940 }
5941 kfree(sd);
5942 }
5943
5944 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5945 {
5946 call_rcu(&sd->rcu, free_sched_domain);
5947 }
5948
5949 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5950 {
5951 for (; sd; sd = sd->parent)
5952 destroy_sched_domain(sd, cpu);
5953 }
5954
5955 /*
5956 * Keep a special pointer to the highest sched_domain that has
5957 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5958 * allows us to avoid some pointer chasing select_idle_sibling().
5959 *
5960 * Also keep a unique ID per domain (we use the first cpu number in
5961 * the cpumask of the domain), this allows us to quickly tell if
5962 * two cpus are in the same cache domain, see cpus_share_cache().
5963 */
5964 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5965 DEFINE_PER_CPU(int, sd_llc_size);
5966 DEFINE_PER_CPU(int, sd_llc_id);
5967 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5968 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5969 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5970
5971 static void update_top_cache_domain(int cpu)
5972 {
5973 struct sched_domain *sd;
5974 struct sched_domain *busy_sd = NULL;
5975 int id = cpu;
5976 int size = 1;
5977
5978 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5979 if (sd) {
5980 id = cpumask_first(sched_domain_span(sd));
5981 size = cpumask_weight(sched_domain_span(sd));
5982 busy_sd = sd->parent; /* sd_busy */
5983 }
5984 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5985
5986 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5987 per_cpu(sd_llc_size, cpu) = size;
5988 per_cpu(sd_llc_id, cpu) = id;
5989
5990 sd = lowest_flag_domain(cpu, SD_NUMA);
5991 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5992
5993 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5994 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5995 }
5996
5997 /*
5998 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5999 * hold the hotplug lock.
6000 */
6001 static void
6002 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6003 {
6004 struct rq *rq = cpu_rq(cpu);
6005 struct sched_domain *tmp;
6006
6007 /* Remove the sched domains which do not contribute to scheduling. */
6008 for (tmp = sd; tmp; ) {
6009 struct sched_domain *parent = tmp->parent;
6010 if (!parent)
6011 break;
6012
6013 if (sd_parent_degenerate(tmp, parent)) {
6014 tmp->parent = parent->parent;
6015 if (parent->parent)
6016 parent->parent->child = tmp;
6017 /*
6018 * Transfer SD_PREFER_SIBLING down in case of a
6019 * degenerate parent; the spans match for this
6020 * so the property transfers.
6021 */
6022 if (parent->flags & SD_PREFER_SIBLING)
6023 tmp->flags |= SD_PREFER_SIBLING;
6024 destroy_sched_domain(parent, cpu);
6025 } else
6026 tmp = tmp->parent;
6027 }
6028
6029 if (sd && sd_degenerate(sd)) {
6030 tmp = sd;
6031 sd = sd->parent;
6032 destroy_sched_domain(tmp, cpu);
6033 if (sd)
6034 sd->child = NULL;
6035 }
6036
6037 sched_domain_debug(sd, cpu);
6038
6039 rq_attach_root(rq, rd);
6040 tmp = rq->sd;
6041 rcu_assign_pointer(rq->sd, sd);
6042 destroy_sched_domains(tmp, cpu);
6043
6044 update_top_cache_domain(cpu);
6045 }
6046
6047 /* Setup the mask of cpus configured for isolated domains */
6048 static int __init isolated_cpu_setup(char *str)
6049 {
6050 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6051 cpulist_parse(str, cpu_isolated_map);
6052 return 1;
6053 }
6054
6055 __setup("isolcpus=", isolated_cpu_setup);
6056
6057 struct s_data {
6058 struct sched_domain ** __percpu sd;
6059 struct root_domain *rd;
6060 };
6061
6062 enum s_alloc {
6063 sa_rootdomain,
6064 sa_sd,
6065 sa_sd_storage,
6066 sa_none,
6067 };
6068
6069 /*
6070 * Build an iteration mask that can exclude certain CPUs from the upwards
6071 * domain traversal.
6072 *
6073 * Asymmetric node setups can result in situations where the domain tree is of
6074 * unequal depth, make sure to skip domains that already cover the entire
6075 * range.
6076 *
6077 * In that case build_sched_domains() will have terminated the iteration early
6078 * and our sibling sd spans will be empty. Domains should always include the
6079 * cpu they're built on, so check that.
6080 *
6081 */
6082 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6083 {
6084 const struct cpumask *span = sched_domain_span(sd);
6085 struct sd_data *sdd = sd->private;
6086 struct sched_domain *sibling;
6087 int i;
6088
6089 for_each_cpu(i, span) {
6090 sibling = *per_cpu_ptr(sdd->sd, i);
6091 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6092 continue;
6093
6094 cpumask_set_cpu(i, sched_group_mask(sg));
6095 }
6096 }
6097
6098 /*
6099 * Return the canonical balance cpu for this group, this is the first cpu
6100 * of this group that's also in the iteration mask.
6101 */
6102 int group_balance_cpu(struct sched_group *sg)
6103 {
6104 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6105 }
6106
6107 static int
6108 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6109 {
6110 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6111 const struct cpumask *span = sched_domain_span(sd);
6112 struct cpumask *covered = sched_domains_tmpmask;
6113 struct sd_data *sdd = sd->private;
6114 struct sched_domain *sibling;
6115 int i;
6116
6117 cpumask_clear(covered);
6118
6119 for_each_cpu(i, span) {
6120 struct cpumask *sg_span;
6121
6122 if (cpumask_test_cpu(i, covered))
6123 continue;
6124
6125 sibling = *per_cpu_ptr(sdd->sd, i);
6126
6127 /* See the comment near build_group_mask(). */
6128 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6129 continue;
6130
6131 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6132 GFP_KERNEL, cpu_to_node(cpu));
6133
6134 if (!sg)
6135 goto fail;
6136
6137 sg_span = sched_group_cpus(sg);
6138 if (sibling->child)
6139 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6140 else
6141 cpumask_set_cpu(i, sg_span);
6142
6143 cpumask_or(covered, covered, sg_span);
6144
6145 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6146 if (atomic_inc_return(&sg->sgc->ref) == 1)
6147 build_group_mask(sd, sg);
6148
6149 /*
6150 * Initialize sgc->capacity such that even if we mess up the
6151 * domains and no possible iteration will get us here, we won't
6152 * die on a /0 trap.
6153 */
6154 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6155
6156 /*
6157 * Make sure the first group of this domain contains the
6158 * canonical balance cpu. Otherwise the sched_domain iteration
6159 * breaks. See update_sg_lb_stats().
6160 */
6161 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6162 group_balance_cpu(sg) == cpu)
6163 groups = sg;
6164
6165 if (!first)
6166 first = sg;
6167 if (last)
6168 last->next = sg;
6169 last = sg;
6170 last->next = first;
6171 }
6172 sd->groups = groups;
6173
6174 return 0;
6175
6176 fail:
6177 free_sched_groups(first, 0);
6178
6179 return -ENOMEM;
6180 }
6181
6182 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6183 {
6184 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6185 struct sched_domain *child = sd->child;
6186
6187 if (child)
6188 cpu = cpumask_first(sched_domain_span(child));
6189
6190 if (sg) {
6191 *sg = *per_cpu_ptr(sdd->sg, cpu);
6192 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6193 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6194 }
6195
6196 return cpu;
6197 }
6198
6199 /*
6200 * build_sched_groups will build a circular linked list of the groups
6201 * covered by the given span, and will set each group's ->cpumask correctly,
6202 * and ->cpu_capacity to 0.
6203 *
6204 * Assumes the sched_domain tree is fully constructed
6205 */
6206 static int
6207 build_sched_groups(struct sched_domain *sd, int cpu)
6208 {
6209 struct sched_group *first = NULL, *last = NULL;
6210 struct sd_data *sdd = sd->private;
6211 const struct cpumask *span = sched_domain_span(sd);
6212 struct cpumask *covered;
6213 int i;
6214
6215 get_group(cpu, sdd, &sd->groups);
6216 atomic_inc(&sd->groups->ref);
6217
6218 if (cpu != cpumask_first(span))
6219 return 0;
6220
6221 lockdep_assert_held(&sched_domains_mutex);
6222 covered = sched_domains_tmpmask;
6223
6224 cpumask_clear(covered);
6225
6226 for_each_cpu(i, span) {
6227 struct sched_group *sg;
6228 int group, j;
6229
6230 if (cpumask_test_cpu(i, covered))
6231 continue;
6232
6233 group = get_group(i, sdd, &sg);
6234 cpumask_setall(sched_group_mask(sg));
6235
6236 for_each_cpu(j, span) {
6237 if (get_group(j, sdd, NULL) != group)
6238 continue;
6239
6240 cpumask_set_cpu(j, covered);
6241 cpumask_set_cpu(j, sched_group_cpus(sg));
6242 }
6243
6244 if (!first)
6245 first = sg;
6246 if (last)
6247 last->next = sg;
6248 last = sg;
6249 }
6250 last->next = first;
6251
6252 return 0;
6253 }
6254
6255 /*
6256 * Initialize sched groups cpu_capacity.
6257 *
6258 * cpu_capacity indicates the capacity of sched group, which is used while
6259 * distributing the load between different sched groups in a sched domain.
6260 * Typically cpu_capacity for all the groups in a sched domain will be same
6261 * unless there are asymmetries in the topology. If there are asymmetries,
6262 * group having more cpu_capacity will pickup more load compared to the
6263 * group having less cpu_capacity.
6264 */
6265 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6266 {
6267 struct sched_group *sg = sd->groups;
6268
6269 WARN_ON(!sg);
6270
6271 do {
6272 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6273 sg = sg->next;
6274 } while (sg != sd->groups);
6275
6276 if (cpu != group_balance_cpu(sg))
6277 return;
6278
6279 update_group_capacity(sd, cpu);
6280 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6281 }
6282
6283 /*
6284 * Initializers for schedule domains
6285 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6286 */
6287
6288 static int default_relax_domain_level = -1;
6289 int sched_domain_level_max;
6290
6291 static int __init setup_relax_domain_level(char *str)
6292 {
6293 if (kstrtoint(str, 0, &default_relax_domain_level))
6294 pr_warn("Unable to set relax_domain_level\n");
6295
6296 return 1;
6297 }
6298 __setup("relax_domain_level=", setup_relax_domain_level);
6299
6300 static void set_domain_attribute(struct sched_domain *sd,
6301 struct sched_domain_attr *attr)
6302 {
6303 int request;
6304
6305 if (!attr || attr->relax_domain_level < 0) {
6306 if (default_relax_domain_level < 0)
6307 return;
6308 else
6309 request = default_relax_domain_level;
6310 } else
6311 request = attr->relax_domain_level;
6312 if (request < sd->level) {
6313 /* turn off idle balance on this domain */
6314 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6315 } else {
6316 /* turn on idle balance on this domain */
6317 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6318 }
6319 }
6320
6321 static void __sdt_free(const struct cpumask *cpu_map);
6322 static int __sdt_alloc(const struct cpumask *cpu_map);
6323
6324 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6325 const struct cpumask *cpu_map)
6326 {
6327 switch (what) {
6328 case sa_rootdomain:
6329 if (!atomic_read(&d->rd->refcount))
6330 free_rootdomain(&d->rd->rcu); /* fall through */
6331 case sa_sd:
6332 free_percpu(d->sd); /* fall through */
6333 case sa_sd_storage:
6334 __sdt_free(cpu_map); /* fall through */
6335 case sa_none:
6336 break;
6337 }
6338 }
6339
6340 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6341 const struct cpumask *cpu_map)
6342 {
6343 memset(d, 0, sizeof(*d));
6344
6345 if (__sdt_alloc(cpu_map))
6346 return sa_sd_storage;
6347 d->sd = alloc_percpu(struct sched_domain *);
6348 if (!d->sd)
6349 return sa_sd_storage;
6350 d->rd = alloc_rootdomain();
6351 if (!d->rd)
6352 return sa_sd;
6353 return sa_rootdomain;
6354 }
6355
6356 /*
6357 * NULL the sd_data elements we've used to build the sched_domain and
6358 * sched_group structure so that the subsequent __free_domain_allocs()
6359 * will not free the data we're using.
6360 */
6361 static void claim_allocations(int cpu, struct sched_domain *sd)
6362 {
6363 struct sd_data *sdd = sd->private;
6364
6365 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6366 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6367
6368 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6369 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6370
6371 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6372 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6373 }
6374
6375 #ifdef CONFIG_NUMA
6376 static int sched_domains_numa_levels;
6377 enum numa_topology_type sched_numa_topology_type;
6378 static int *sched_domains_numa_distance;
6379 int sched_max_numa_distance;
6380 static struct cpumask ***sched_domains_numa_masks;
6381 static int sched_domains_curr_level;
6382 #endif
6383
6384 /*
6385 * SD_flags allowed in topology descriptions.
6386 *
6387 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6388 * SD_SHARE_PKG_RESOURCES - describes shared caches
6389 * SD_NUMA - describes NUMA topologies
6390 * SD_SHARE_POWERDOMAIN - describes shared power domain
6391 *
6392 * Odd one out:
6393 * SD_ASYM_PACKING - describes SMT quirks
6394 */
6395 #define TOPOLOGY_SD_FLAGS \
6396 (SD_SHARE_CPUCAPACITY | \
6397 SD_SHARE_PKG_RESOURCES | \
6398 SD_NUMA | \
6399 SD_ASYM_PACKING | \
6400 SD_SHARE_POWERDOMAIN)
6401
6402 static struct sched_domain *
6403 sd_init(struct sched_domain_topology_level *tl, int cpu)
6404 {
6405 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6406 int sd_weight, sd_flags = 0;
6407
6408 #ifdef CONFIG_NUMA
6409 /*
6410 * Ugly hack to pass state to sd_numa_mask()...
6411 */
6412 sched_domains_curr_level = tl->numa_level;
6413 #endif
6414
6415 sd_weight = cpumask_weight(tl->mask(cpu));
6416
6417 if (tl->sd_flags)
6418 sd_flags = (*tl->sd_flags)();
6419 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6420 "wrong sd_flags in topology description\n"))
6421 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6422
6423 *sd = (struct sched_domain){
6424 .min_interval = sd_weight,
6425 .max_interval = 2*sd_weight,
6426 .busy_factor = 32,
6427 .imbalance_pct = 125,
6428
6429 .cache_nice_tries = 0,
6430 .busy_idx = 0,
6431 .idle_idx = 0,
6432 .newidle_idx = 0,
6433 .wake_idx = 0,
6434 .forkexec_idx = 0,
6435
6436 .flags = 1*SD_LOAD_BALANCE
6437 | 1*SD_BALANCE_NEWIDLE
6438 | 1*SD_BALANCE_EXEC
6439 | 1*SD_BALANCE_FORK
6440 | 0*SD_BALANCE_WAKE
6441 | 1*SD_WAKE_AFFINE
6442 | 0*SD_SHARE_CPUCAPACITY
6443 | 0*SD_SHARE_PKG_RESOURCES
6444 | 0*SD_SERIALIZE
6445 | 0*SD_PREFER_SIBLING
6446 | 0*SD_NUMA
6447 | sd_flags
6448 ,
6449
6450 .last_balance = jiffies,
6451 .balance_interval = sd_weight,
6452 .smt_gain = 0,
6453 .max_newidle_lb_cost = 0,
6454 .next_decay_max_lb_cost = jiffies,
6455 #ifdef CONFIG_SCHED_DEBUG
6456 .name = tl->name,
6457 #endif
6458 };
6459
6460 /*
6461 * Convert topological properties into behaviour.
6462 */
6463
6464 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6465 sd->flags |= SD_PREFER_SIBLING;
6466 sd->imbalance_pct = 110;
6467 sd->smt_gain = 1178; /* ~15% */
6468
6469 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6470 sd->imbalance_pct = 117;
6471 sd->cache_nice_tries = 1;
6472 sd->busy_idx = 2;
6473
6474 #ifdef CONFIG_NUMA
6475 } else if (sd->flags & SD_NUMA) {
6476 sd->cache_nice_tries = 2;
6477 sd->busy_idx = 3;
6478 sd->idle_idx = 2;
6479
6480 sd->flags |= SD_SERIALIZE;
6481 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6482 sd->flags &= ~(SD_BALANCE_EXEC |
6483 SD_BALANCE_FORK |
6484 SD_WAKE_AFFINE);
6485 }
6486
6487 #endif
6488 } else {
6489 sd->flags |= SD_PREFER_SIBLING;
6490 sd->cache_nice_tries = 1;
6491 sd->busy_idx = 2;
6492 sd->idle_idx = 1;
6493 }
6494
6495 sd->private = &tl->data;
6496
6497 return sd;
6498 }
6499
6500 /*
6501 * Topology list, bottom-up.
6502 */
6503 static struct sched_domain_topology_level default_topology[] = {
6504 #ifdef CONFIG_SCHED_SMT
6505 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6506 #endif
6507 #ifdef CONFIG_SCHED_MC
6508 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6509 #endif
6510 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6511 { NULL, },
6512 };
6513
6514 static struct sched_domain_topology_level *sched_domain_topology =
6515 default_topology;
6516
6517 #define for_each_sd_topology(tl) \
6518 for (tl = sched_domain_topology; tl->mask; tl++)
6519
6520 void set_sched_topology(struct sched_domain_topology_level *tl)
6521 {
6522 sched_domain_topology = tl;
6523 }
6524
6525 #ifdef CONFIG_NUMA
6526
6527 static const struct cpumask *sd_numa_mask(int cpu)
6528 {
6529 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6530 }
6531
6532 static void sched_numa_warn(const char *str)
6533 {
6534 static int done = false;
6535 int i,j;
6536
6537 if (done)
6538 return;
6539
6540 done = true;
6541
6542 printk(KERN_WARNING "ERROR: %s\n\n", str);
6543
6544 for (i = 0; i < nr_node_ids; i++) {
6545 printk(KERN_WARNING " ");
6546 for (j = 0; j < nr_node_ids; j++)
6547 printk(KERN_CONT "%02d ", node_distance(i,j));
6548 printk(KERN_CONT "\n");
6549 }
6550 printk(KERN_WARNING "\n");
6551 }
6552
6553 bool find_numa_distance(int distance)
6554 {
6555 int i;
6556
6557 if (distance == node_distance(0, 0))
6558 return true;
6559
6560 for (i = 0; i < sched_domains_numa_levels; i++) {
6561 if (sched_domains_numa_distance[i] == distance)
6562 return true;
6563 }
6564
6565 return false;
6566 }
6567
6568 /*
6569 * A system can have three types of NUMA topology:
6570 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6571 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6572 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6573 *
6574 * The difference between a glueless mesh topology and a backplane
6575 * topology lies in whether communication between not directly
6576 * connected nodes goes through intermediary nodes (where programs
6577 * could run), or through backplane controllers. This affects
6578 * placement of programs.
6579 *
6580 * The type of topology can be discerned with the following tests:
6581 * - If the maximum distance between any nodes is 1 hop, the system
6582 * is directly connected.
6583 * - If for two nodes A and B, located N > 1 hops away from each other,
6584 * there is an intermediary node C, which is < N hops away from both
6585 * nodes A and B, the system is a glueless mesh.
6586 */
6587 static void init_numa_topology_type(void)
6588 {
6589 int a, b, c, n;
6590
6591 n = sched_max_numa_distance;
6592
6593 if (sched_domains_numa_levels <= 1) {
6594 sched_numa_topology_type = NUMA_DIRECT;
6595 return;
6596 }
6597
6598 for_each_online_node(a) {
6599 for_each_online_node(b) {
6600 /* Find two nodes furthest removed from each other. */
6601 if (node_distance(a, b) < n)
6602 continue;
6603
6604 /* Is there an intermediary node between a and b? */
6605 for_each_online_node(c) {
6606 if (node_distance(a, c) < n &&
6607 node_distance(b, c) < n) {
6608 sched_numa_topology_type =
6609 NUMA_GLUELESS_MESH;
6610 return;
6611 }
6612 }
6613
6614 sched_numa_topology_type = NUMA_BACKPLANE;
6615 return;
6616 }
6617 }
6618 }
6619
6620 static void sched_init_numa(void)
6621 {
6622 int next_distance, curr_distance = node_distance(0, 0);
6623 struct sched_domain_topology_level *tl;
6624 int level = 0;
6625 int i, j, k;
6626
6627 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6628 if (!sched_domains_numa_distance)
6629 return;
6630
6631 /*
6632 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6633 * unique distances in the node_distance() table.
6634 *
6635 * Assumes node_distance(0,j) includes all distances in
6636 * node_distance(i,j) in order to avoid cubic time.
6637 */
6638 next_distance = curr_distance;
6639 for (i = 0; i < nr_node_ids; i++) {
6640 for (j = 0; j < nr_node_ids; j++) {
6641 for (k = 0; k < nr_node_ids; k++) {
6642 int distance = node_distance(i, k);
6643
6644 if (distance > curr_distance &&
6645 (distance < next_distance ||
6646 next_distance == curr_distance))
6647 next_distance = distance;
6648
6649 /*
6650 * While not a strong assumption it would be nice to know
6651 * about cases where if node A is connected to B, B is not
6652 * equally connected to A.
6653 */
6654 if (sched_debug() && node_distance(k, i) != distance)
6655 sched_numa_warn("Node-distance not symmetric");
6656
6657 if (sched_debug() && i && !find_numa_distance(distance))
6658 sched_numa_warn("Node-0 not representative");
6659 }
6660 if (next_distance != curr_distance) {
6661 sched_domains_numa_distance[level++] = next_distance;
6662 sched_domains_numa_levels = level;
6663 curr_distance = next_distance;
6664 } else break;
6665 }
6666
6667 /*
6668 * In case of sched_debug() we verify the above assumption.
6669 */
6670 if (!sched_debug())
6671 break;
6672 }
6673
6674 if (!level)
6675 return;
6676
6677 /*
6678 * 'level' contains the number of unique distances, excluding the
6679 * identity distance node_distance(i,i).
6680 *
6681 * The sched_domains_numa_distance[] array includes the actual distance
6682 * numbers.
6683 */
6684
6685 /*
6686 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6687 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6688 * the array will contain less then 'level' members. This could be
6689 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6690 * in other functions.
6691 *
6692 * We reset it to 'level' at the end of this function.
6693 */
6694 sched_domains_numa_levels = 0;
6695
6696 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6697 if (!sched_domains_numa_masks)
6698 return;
6699
6700 /*
6701 * Now for each level, construct a mask per node which contains all
6702 * cpus of nodes that are that many hops away from us.
6703 */
6704 for (i = 0; i < level; i++) {
6705 sched_domains_numa_masks[i] =
6706 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6707 if (!sched_domains_numa_masks[i])
6708 return;
6709
6710 for (j = 0; j < nr_node_ids; j++) {
6711 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6712 if (!mask)
6713 return;
6714
6715 sched_domains_numa_masks[i][j] = mask;
6716
6717 for (k = 0; k < nr_node_ids; k++) {
6718 if (node_distance(j, k) > sched_domains_numa_distance[i])
6719 continue;
6720
6721 cpumask_or(mask, mask, cpumask_of_node(k));
6722 }
6723 }
6724 }
6725
6726 /* Compute default topology size */
6727 for (i = 0; sched_domain_topology[i].mask; i++);
6728
6729 tl = kzalloc((i + level + 1) *
6730 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6731 if (!tl)
6732 return;
6733
6734 /*
6735 * Copy the default topology bits..
6736 */
6737 for (i = 0; sched_domain_topology[i].mask; i++)
6738 tl[i] = sched_domain_topology[i];
6739
6740 /*
6741 * .. and append 'j' levels of NUMA goodness.
6742 */
6743 for (j = 0; j < level; i++, j++) {
6744 tl[i] = (struct sched_domain_topology_level){
6745 .mask = sd_numa_mask,
6746 .sd_flags = cpu_numa_flags,
6747 .flags = SDTL_OVERLAP,
6748 .numa_level = j,
6749 SD_INIT_NAME(NUMA)
6750 };
6751 }
6752
6753 sched_domain_topology = tl;
6754
6755 sched_domains_numa_levels = level;
6756 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6757
6758 init_numa_topology_type();
6759 }
6760
6761 static void sched_domains_numa_masks_set(int cpu)
6762 {
6763 int i, j;
6764 int node = cpu_to_node(cpu);
6765
6766 for (i = 0; i < sched_domains_numa_levels; i++) {
6767 for (j = 0; j < nr_node_ids; j++) {
6768 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6769 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6770 }
6771 }
6772 }
6773
6774 static void sched_domains_numa_masks_clear(int cpu)
6775 {
6776 int i, j;
6777 for (i = 0; i < sched_domains_numa_levels; i++) {
6778 for (j = 0; j < nr_node_ids; j++)
6779 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6780 }
6781 }
6782
6783 /*
6784 * Update sched_domains_numa_masks[level][node] array when new cpus
6785 * are onlined.
6786 */
6787 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6788 unsigned long action,
6789 void *hcpu)
6790 {
6791 int cpu = (long)hcpu;
6792
6793 switch (action & ~CPU_TASKS_FROZEN) {
6794 case CPU_ONLINE:
6795 sched_domains_numa_masks_set(cpu);
6796 break;
6797
6798 case CPU_DEAD:
6799 sched_domains_numa_masks_clear(cpu);
6800 break;
6801
6802 default:
6803 return NOTIFY_DONE;
6804 }
6805
6806 return NOTIFY_OK;
6807 }
6808 #else
6809 static inline void sched_init_numa(void)
6810 {
6811 }
6812
6813 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6814 unsigned long action,
6815 void *hcpu)
6816 {
6817 return 0;
6818 }
6819 #endif /* CONFIG_NUMA */
6820
6821 static int __sdt_alloc(const struct cpumask *cpu_map)
6822 {
6823 struct sched_domain_topology_level *tl;
6824 int j;
6825
6826 for_each_sd_topology(tl) {
6827 struct sd_data *sdd = &tl->data;
6828
6829 sdd->sd = alloc_percpu(struct sched_domain *);
6830 if (!sdd->sd)
6831 return -ENOMEM;
6832
6833 sdd->sg = alloc_percpu(struct sched_group *);
6834 if (!sdd->sg)
6835 return -ENOMEM;
6836
6837 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6838 if (!sdd->sgc)
6839 return -ENOMEM;
6840
6841 for_each_cpu(j, cpu_map) {
6842 struct sched_domain *sd;
6843 struct sched_group *sg;
6844 struct sched_group_capacity *sgc;
6845
6846 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6847 GFP_KERNEL, cpu_to_node(j));
6848 if (!sd)
6849 return -ENOMEM;
6850
6851 *per_cpu_ptr(sdd->sd, j) = sd;
6852
6853 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6854 GFP_KERNEL, cpu_to_node(j));
6855 if (!sg)
6856 return -ENOMEM;
6857
6858 sg->next = sg;
6859
6860 *per_cpu_ptr(sdd->sg, j) = sg;
6861
6862 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6863 GFP_KERNEL, cpu_to_node(j));
6864 if (!sgc)
6865 return -ENOMEM;
6866
6867 *per_cpu_ptr(sdd->sgc, j) = sgc;
6868 }
6869 }
6870
6871 return 0;
6872 }
6873
6874 static void __sdt_free(const struct cpumask *cpu_map)
6875 {
6876 struct sched_domain_topology_level *tl;
6877 int j;
6878
6879 for_each_sd_topology(tl) {
6880 struct sd_data *sdd = &tl->data;
6881
6882 for_each_cpu(j, cpu_map) {
6883 struct sched_domain *sd;
6884
6885 if (sdd->sd) {
6886 sd = *per_cpu_ptr(sdd->sd, j);
6887 if (sd && (sd->flags & SD_OVERLAP))
6888 free_sched_groups(sd->groups, 0);
6889 kfree(*per_cpu_ptr(sdd->sd, j));
6890 }
6891
6892 if (sdd->sg)
6893 kfree(*per_cpu_ptr(sdd->sg, j));
6894 if (sdd->sgc)
6895 kfree(*per_cpu_ptr(sdd->sgc, j));
6896 }
6897 free_percpu(sdd->sd);
6898 sdd->sd = NULL;
6899 free_percpu(sdd->sg);
6900 sdd->sg = NULL;
6901 free_percpu(sdd->sgc);
6902 sdd->sgc = NULL;
6903 }
6904 }
6905
6906 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6907 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6908 struct sched_domain *child, int cpu)
6909 {
6910 struct sched_domain *sd = sd_init(tl, cpu);
6911 if (!sd)
6912 return child;
6913
6914 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6915 if (child) {
6916 sd->level = child->level + 1;
6917 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6918 child->parent = sd;
6919 sd->child = child;
6920
6921 if (!cpumask_subset(sched_domain_span(child),
6922 sched_domain_span(sd))) {
6923 pr_err("BUG: arch topology borken\n");
6924 #ifdef CONFIG_SCHED_DEBUG
6925 pr_err(" the %s domain not a subset of the %s domain\n",
6926 child->name, sd->name);
6927 #endif
6928 /* Fixup, ensure @sd has at least @child cpus. */
6929 cpumask_or(sched_domain_span(sd),
6930 sched_domain_span(sd),
6931 sched_domain_span(child));
6932 }
6933
6934 }
6935 set_domain_attribute(sd, attr);
6936
6937 return sd;
6938 }
6939
6940 /*
6941 * Build sched domains for a given set of cpus and attach the sched domains
6942 * to the individual cpus
6943 */
6944 static int build_sched_domains(const struct cpumask *cpu_map,
6945 struct sched_domain_attr *attr)
6946 {
6947 enum s_alloc alloc_state;
6948 struct sched_domain *sd;
6949 struct s_data d;
6950 int i, ret = -ENOMEM;
6951
6952 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6953 if (alloc_state != sa_rootdomain)
6954 goto error;
6955
6956 /* Set up domains for cpus specified by the cpu_map. */
6957 for_each_cpu(i, cpu_map) {
6958 struct sched_domain_topology_level *tl;
6959
6960 sd = NULL;
6961 for_each_sd_topology(tl) {
6962 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6963 if (tl == sched_domain_topology)
6964 *per_cpu_ptr(d.sd, i) = sd;
6965 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6966 sd->flags |= SD_OVERLAP;
6967 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6968 break;
6969 }
6970 }
6971
6972 /* Build the groups for the domains */
6973 for_each_cpu(i, cpu_map) {
6974 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6975 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6976 if (sd->flags & SD_OVERLAP) {
6977 if (build_overlap_sched_groups(sd, i))
6978 goto error;
6979 } else {
6980 if (build_sched_groups(sd, i))
6981 goto error;
6982 }
6983 }
6984 }
6985
6986 /* Calculate CPU capacity for physical packages and nodes */
6987 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6988 if (!cpumask_test_cpu(i, cpu_map))
6989 continue;
6990
6991 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6992 claim_allocations(i, sd);
6993 init_sched_groups_capacity(i, sd);
6994 }
6995 }
6996
6997 /* Attach the domains */
6998 rcu_read_lock();
6999 for_each_cpu(i, cpu_map) {
7000 sd = *per_cpu_ptr(d.sd, i);
7001 cpu_attach_domain(sd, d.rd, i);
7002 }
7003 rcu_read_unlock();
7004
7005 ret = 0;
7006 error:
7007 __free_domain_allocs(&d, alloc_state, cpu_map);
7008 return ret;
7009 }
7010
7011 static cpumask_var_t *doms_cur; /* current sched domains */
7012 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7013 static struct sched_domain_attr *dattr_cur;
7014 /* attribues of custom domains in 'doms_cur' */
7015
7016 /*
7017 * Special case: If a kmalloc of a doms_cur partition (array of
7018 * cpumask) fails, then fallback to a single sched domain,
7019 * as determined by the single cpumask fallback_doms.
7020 */
7021 static cpumask_var_t fallback_doms;
7022
7023 /*
7024 * arch_update_cpu_topology lets virtualized architectures update the
7025 * cpu core maps. It is supposed to return 1 if the topology changed
7026 * or 0 if it stayed the same.
7027 */
7028 int __weak arch_update_cpu_topology(void)
7029 {
7030 return 0;
7031 }
7032
7033 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7034 {
7035 int i;
7036 cpumask_var_t *doms;
7037
7038 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7039 if (!doms)
7040 return NULL;
7041 for (i = 0; i < ndoms; i++) {
7042 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7043 free_sched_domains(doms, i);
7044 return NULL;
7045 }
7046 }
7047 return doms;
7048 }
7049
7050 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7051 {
7052 unsigned int i;
7053 for (i = 0; i < ndoms; i++)
7054 free_cpumask_var(doms[i]);
7055 kfree(doms);
7056 }
7057
7058 /*
7059 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7060 * For now this just excludes isolated cpus, but could be used to
7061 * exclude other special cases in the future.
7062 */
7063 static int init_sched_domains(const struct cpumask *cpu_map)
7064 {
7065 int err;
7066
7067 arch_update_cpu_topology();
7068 ndoms_cur = 1;
7069 doms_cur = alloc_sched_domains(ndoms_cur);
7070 if (!doms_cur)
7071 doms_cur = &fallback_doms;
7072 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7073 err = build_sched_domains(doms_cur[0], NULL);
7074 register_sched_domain_sysctl();
7075
7076 return err;
7077 }
7078
7079 /*
7080 * Detach sched domains from a group of cpus specified in cpu_map
7081 * These cpus will now be attached to the NULL domain
7082 */
7083 static void detach_destroy_domains(const struct cpumask *cpu_map)
7084 {
7085 int i;
7086
7087 rcu_read_lock();
7088 for_each_cpu(i, cpu_map)
7089 cpu_attach_domain(NULL, &def_root_domain, i);
7090 rcu_read_unlock();
7091 }
7092
7093 /* handle null as "default" */
7094 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7095 struct sched_domain_attr *new, int idx_new)
7096 {
7097 struct sched_domain_attr tmp;
7098
7099 /* fast path */
7100 if (!new && !cur)
7101 return 1;
7102
7103 tmp = SD_ATTR_INIT;
7104 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7105 new ? (new + idx_new) : &tmp,
7106 sizeof(struct sched_domain_attr));
7107 }
7108
7109 /*
7110 * Partition sched domains as specified by the 'ndoms_new'
7111 * cpumasks in the array doms_new[] of cpumasks. This compares
7112 * doms_new[] to the current sched domain partitioning, doms_cur[].
7113 * It destroys each deleted domain and builds each new domain.
7114 *
7115 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7116 * The masks don't intersect (don't overlap.) We should setup one
7117 * sched domain for each mask. CPUs not in any of the cpumasks will
7118 * not be load balanced. If the same cpumask appears both in the
7119 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7120 * it as it is.
7121 *
7122 * The passed in 'doms_new' should be allocated using
7123 * alloc_sched_domains. This routine takes ownership of it and will
7124 * free_sched_domains it when done with it. If the caller failed the
7125 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7126 * and partition_sched_domains() will fallback to the single partition
7127 * 'fallback_doms', it also forces the domains to be rebuilt.
7128 *
7129 * If doms_new == NULL it will be replaced with cpu_online_mask.
7130 * ndoms_new == 0 is a special case for destroying existing domains,
7131 * and it will not create the default domain.
7132 *
7133 * Call with hotplug lock held
7134 */
7135 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7136 struct sched_domain_attr *dattr_new)
7137 {
7138 int i, j, n;
7139 int new_topology;
7140
7141 mutex_lock(&sched_domains_mutex);
7142
7143 /* always unregister in case we don't destroy any domains */
7144 unregister_sched_domain_sysctl();
7145
7146 /* Let architecture update cpu core mappings. */
7147 new_topology = arch_update_cpu_topology();
7148
7149 n = doms_new ? ndoms_new : 0;
7150
7151 /* Destroy deleted domains */
7152 for (i = 0; i < ndoms_cur; i++) {
7153 for (j = 0; j < n && !new_topology; j++) {
7154 if (cpumask_equal(doms_cur[i], doms_new[j])
7155 && dattrs_equal(dattr_cur, i, dattr_new, j))
7156 goto match1;
7157 }
7158 /* no match - a current sched domain not in new doms_new[] */
7159 detach_destroy_domains(doms_cur[i]);
7160 match1:
7161 ;
7162 }
7163
7164 n = ndoms_cur;
7165 if (doms_new == NULL) {
7166 n = 0;
7167 doms_new = &fallback_doms;
7168 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7169 WARN_ON_ONCE(dattr_new);
7170 }
7171
7172 /* Build new domains */
7173 for (i = 0; i < ndoms_new; i++) {
7174 for (j = 0; j < n && !new_topology; j++) {
7175 if (cpumask_equal(doms_new[i], doms_cur[j])
7176 && dattrs_equal(dattr_new, i, dattr_cur, j))
7177 goto match2;
7178 }
7179 /* no match - add a new doms_new */
7180 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7181 match2:
7182 ;
7183 }
7184
7185 /* Remember the new sched domains */
7186 if (doms_cur != &fallback_doms)
7187 free_sched_domains(doms_cur, ndoms_cur);
7188 kfree(dattr_cur); /* kfree(NULL) is safe */
7189 doms_cur = doms_new;
7190 dattr_cur = dattr_new;
7191 ndoms_cur = ndoms_new;
7192
7193 register_sched_domain_sysctl();
7194
7195 mutex_unlock(&sched_domains_mutex);
7196 }
7197
7198 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7199
7200 /*
7201 * Update cpusets according to cpu_active mask. If cpusets are
7202 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7203 * around partition_sched_domains().
7204 *
7205 * If we come here as part of a suspend/resume, don't touch cpusets because we
7206 * want to restore it back to its original state upon resume anyway.
7207 */
7208 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7209 void *hcpu)
7210 {
7211 switch (action) {
7212 case CPU_ONLINE_FROZEN:
7213 case CPU_DOWN_FAILED_FROZEN:
7214
7215 /*
7216 * num_cpus_frozen tracks how many CPUs are involved in suspend
7217 * resume sequence. As long as this is not the last online
7218 * operation in the resume sequence, just build a single sched
7219 * domain, ignoring cpusets.
7220 */
7221 num_cpus_frozen--;
7222 if (likely(num_cpus_frozen)) {
7223 partition_sched_domains(1, NULL, NULL);
7224 break;
7225 }
7226
7227 /*
7228 * This is the last CPU online operation. So fall through and
7229 * restore the original sched domains by considering the
7230 * cpuset configurations.
7231 */
7232
7233 case CPU_ONLINE:
7234 cpuset_update_active_cpus(true);
7235 break;
7236 default:
7237 return NOTIFY_DONE;
7238 }
7239 return NOTIFY_OK;
7240 }
7241
7242 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7243 void *hcpu)
7244 {
7245 unsigned long flags;
7246 long cpu = (long)hcpu;
7247 struct dl_bw *dl_b;
7248 bool overflow;
7249 int cpus;
7250
7251 switch (action) {
7252 case CPU_DOWN_PREPARE:
7253 rcu_read_lock_sched();
7254 dl_b = dl_bw_of(cpu);
7255
7256 raw_spin_lock_irqsave(&dl_b->lock, flags);
7257 cpus = dl_bw_cpus(cpu);
7258 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7259 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7260
7261 rcu_read_unlock_sched();
7262
7263 if (overflow)
7264 return notifier_from_errno(-EBUSY);
7265 cpuset_update_active_cpus(false);
7266 break;
7267 case CPU_DOWN_PREPARE_FROZEN:
7268 num_cpus_frozen++;
7269 partition_sched_domains(1, NULL, NULL);
7270 break;
7271 default:
7272 return NOTIFY_DONE;
7273 }
7274 return NOTIFY_OK;
7275 }
7276
7277 void __init sched_init_smp(void)
7278 {
7279 cpumask_var_t non_isolated_cpus;
7280
7281 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7282 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7283
7284 sched_init_numa();
7285
7286 /*
7287 * There's no userspace yet to cause hotplug operations; hence all the
7288 * cpu masks are stable and all blatant races in the below code cannot
7289 * happen.
7290 */
7291 mutex_lock(&sched_domains_mutex);
7292 init_sched_domains(cpu_active_mask);
7293 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7294 if (cpumask_empty(non_isolated_cpus))
7295 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7296 mutex_unlock(&sched_domains_mutex);
7297
7298 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7299 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7300 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7301
7302 init_hrtick();
7303
7304 /* Move init over to a non-isolated CPU */
7305 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7306 BUG();
7307 sched_init_granularity();
7308 free_cpumask_var(non_isolated_cpus);
7309
7310 init_sched_rt_class();
7311 init_sched_dl_class();
7312 }
7313 #else
7314 void __init sched_init_smp(void)
7315 {
7316 sched_init_granularity();
7317 }
7318 #endif /* CONFIG_SMP */
7319
7320 int in_sched_functions(unsigned long addr)
7321 {
7322 return in_lock_functions(addr) ||
7323 (addr >= (unsigned long)__sched_text_start
7324 && addr < (unsigned long)__sched_text_end);
7325 }
7326
7327 #ifdef CONFIG_CGROUP_SCHED
7328 /*
7329 * Default task group.
7330 * Every task in system belongs to this group at bootup.
7331 */
7332 struct task_group root_task_group;
7333 LIST_HEAD(task_groups);
7334 #endif
7335
7336 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7337
7338 void __init sched_init(void)
7339 {
7340 int i, j;
7341 unsigned long alloc_size = 0, ptr;
7342
7343 #ifdef CONFIG_FAIR_GROUP_SCHED
7344 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7345 #endif
7346 #ifdef CONFIG_RT_GROUP_SCHED
7347 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7348 #endif
7349 if (alloc_size) {
7350 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7351
7352 #ifdef CONFIG_FAIR_GROUP_SCHED
7353 root_task_group.se = (struct sched_entity **)ptr;
7354 ptr += nr_cpu_ids * sizeof(void **);
7355
7356 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7357 ptr += nr_cpu_ids * sizeof(void **);
7358
7359 #endif /* CONFIG_FAIR_GROUP_SCHED */
7360 #ifdef CONFIG_RT_GROUP_SCHED
7361 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7362 ptr += nr_cpu_ids * sizeof(void **);
7363
7364 root_task_group.rt_rq = (struct rt_rq **)ptr;
7365 ptr += nr_cpu_ids * sizeof(void **);
7366
7367 #endif /* CONFIG_RT_GROUP_SCHED */
7368 }
7369 #ifdef CONFIG_CPUMASK_OFFSTACK
7370 for_each_possible_cpu(i) {
7371 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7372 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7373 }
7374 #endif /* CONFIG_CPUMASK_OFFSTACK */
7375
7376 init_rt_bandwidth(&def_rt_bandwidth,
7377 global_rt_period(), global_rt_runtime());
7378 init_dl_bandwidth(&def_dl_bandwidth,
7379 global_rt_period(), global_rt_runtime());
7380
7381 #ifdef CONFIG_SMP
7382 init_defrootdomain();
7383 #endif
7384
7385 #ifdef CONFIG_RT_GROUP_SCHED
7386 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7387 global_rt_period(), global_rt_runtime());
7388 #endif /* CONFIG_RT_GROUP_SCHED */
7389
7390 #ifdef CONFIG_CGROUP_SCHED
7391 list_add(&root_task_group.list, &task_groups);
7392 INIT_LIST_HEAD(&root_task_group.children);
7393 INIT_LIST_HEAD(&root_task_group.siblings);
7394 autogroup_init(&init_task);
7395
7396 #endif /* CONFIG_CGROUP_SCHED */
7397
7398 for_each_possible_cpu(i) {
7399 struct rq *rq;
7400
7401 rq = cpu_rq(i);
7402 raw_spin_lock_init(&rq->lock);
7403 rq->nr_running = 0;
7404 rq->calc_load_active = 0;
7405 rq->calc_load_update = jiffies + LOAD_FREQ;
7406 init_cfs_rq(&rq->cfs);
7407 init_rt_rq(&rq->rt);
7408 init_dl_rq(&rq->dl);
7409 #ifdef CONFIG_FAIR_GROUP_SCHED
7410 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7411 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7412 /*
7413 * How much cpu bandwidth does root_task_group get?
7414 *
7415 * In case of task-groups formed thr' the cgroup filesystem, it
7416 * gets 100% of the cpu resources in the system. This overall
7417 * system cpu resource is divided among the tasks of
7418 * root_task_group and its child task-groups in a fair manner,
7419 * based on each entity's (task or task-group's) weight
7420 * (se->load.weight).
7421 *
7422 * In other words, if root_task_group has 10 tasks of weight
7423 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7424 * then A0's share of the cpu resource is:
7425 *
7426 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7427 *
7428 * We achieve this by letting root_task_group's tasks sit
7429 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7430 */
7431 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7432 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7433 #endif /* CONFIG_FAIR_GROUP_SCHED */
7434
7435 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7436 #ifdef CONFIG_RT_GROUP_SCHED
7437 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7438 #endif
7439
7440 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7441 rq->cpu_load[j] = 0;
7442
7443 rq->last_load_update_tick = jiffies;
7444
7445 #ifdef CONFIG_SMP
7446 rq->sd = NULL;
7447 rq->rd = NULL;
7448 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7449 rq->balance_callback = NULL;
7450 rq->active_balance = 0;
7451 rq->next_balance = jiffies;
7452 rq->push_cpu = 0;
7453 rq->cpu = i;
7454 rq->online = 0;
7455 rq->idle_stamp = 0;
7456 rq->avg_idle = 2*sysctl_sched_migration_cost;
7457 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7458
7459 INIT_LIST_HEAD(&rq->cfs_tasks);
7460
7461 rq_attach_root(rq, &def_root_domain);
7462 #ifdef CONFIG_NO_HZ_COMMON
7463 rq->nohz_flags = 0;
7464 #endif
7465 #ifdef CONFIG_NO_HZ_FULL
7466 rq->last_sched_tick = 0;
7467 #endif
7468 #endif
7469 init_rq_hrtick(rq);
7470 atomic_set(&rq->nr_iowait, 0);
7471 }
7472
7473 set_load_weight(&init_task);
7474
7475 #ifdef CONFIG_PREEMPT_NOTIFIERS
7476 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7477 #endif
7478
7479 /*
7480 * The boot idle thread does lazy MMU switching as well:
7481 */
7482 atomic_inc(&init_mm.mm_count);
7483 enter_lazy_tlb(&init_mm, current);
7484
7485 /*
7486 * During early bootup we pretend to be a normal task:
7487 */
7488 current->sched_class = &fair_sched_class;
7489
7490 /*
7491 * Make us the idle thread. Technically, schedule() should not be
7492 * called from this thread, however somewhere below it might be,
7493 * but because we are the idle thread, we just pick up running again
7494 * when this runqueue becomes "idle".
7495 */
7496 init_idle(current, smp_processor_id());
7497
7498 calc_load_update = jiffies + LOAD_FREQ;
7499
7500 #ifdef CONFIG_SMP
7501 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7502 /* May be allocated at isolcpus cmdline parse time */
7503 if (cpu_isolated_map == NULL)
7504 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7505 idle_thread_set_boot_cpu();
7506 set_cpu_rq_start_time();
7507 #endif
7508 init_sched_fair_class();
7509
7510 scheduler_running = 1;
7511 }
7512
7513 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7514 static inline int preempt_count_equals(int preempt_offset)
7515 {
7516 int nested = preempt_count() + rcu_preempt_depth();
7517
7518 return (nested == preempt_offset);
7519 }
7520
7521 void __might_sleep(const char *file, int line, int preempt_offset)
7522 {
7523 /*
7524 * Blocking primitives will set (and therefore destroy) current->state,
7525 * since we will exit with TASK_RUNNING make sure we enter with it,
7526 * otherwise we will destroy state.
7527 */
7528 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7529 "do not call blocking ops when !TASK_RUNNING; "
7530 "state=%lx set at [<%p>] %pS\n",
7531 current->state,
7532 (void *)current->task_state_change,
7533 (void *)current->task_state_change);
7534
7535 ___might_sleep(file, line, preempt_offset);
7536 }
7537 EXPORT_SYMBOL(__might_sleep);
7538
7539 void ___might_sleep(const char *file, int line, int preempt_offset)
7540 {
7541 static unsigned long prev_jiffy; /* ratelimiting */
7542
7543 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7544 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7545 !is_idle_task(current)) ||
7546 system_state != SYSTEM_RUNNING || oops_in_progress)
7547 return;
7548 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7549 return;
7550 prev_jiffy = jiffies;
7551
7552 printk(KERN_ERR
7553 "BUG: sleeping function called from invalid context at %s:%d\n",
7554 file, line);
7555 printk(KERN_ERR
7556 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7557 in_atomic(), irqs_disabled(),
7558 current->pid, current->comm);
7559
7560 if (task_stack_end_corrupted(current))
7561 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7562
7563 debug_show_held_locks(current);
7564 if (irqs_disabled())
7565 print_irqtrace_events(current);
7566 #ifdef CONFIG_DEBUG_PREEMPT
7567 if (!preempt_count_equals(preempt_offset)) {
7568 pr_err("Preemption disabled at:");
7569 print_ip_sym(current->preempt_disable_ip);
7570 pr_cont("\n");
7571 }
7572 #endif
7573 dump_stack();
7574 }
7575 EXPORT_SYMBOL(___might_sleep);
7576 #endif
7577
7578 #ifdef CONFIG_MAGIC_SYSRQ
7579 void normalize_rt_tasks(void)
7580 {
7581 struct task_struct *g, *p;
7582 struct sched_attr attr = {
7583 .sched_policy = SCHED_NORMAL,
7584 };
7585
7586 read_lock(&tasklist_lock);
7587 for_each_process_thread(g, p) {
7588 /*
7589 * Only normalize user tasks:
7590 */
7591 if (p->flags & PF_KTHREAD)
7592 continue;
7593
7594 p->se.exec_start = 0;
7595 #ifdef CONFIG_SCHEDSTATS
7596 p->se.statistics.wait_start = 0;
7597 p->se.statistics.sleep_start = 0;
7598 p->se.statistics.block_start = 0;
7599 #endif
7600
7601 if (!dl_task(p) && !rt_task(p)) {
7602 /*
7603 * Renice negative nice level userspace
7604 * tasks back to 0:
7605 */
7606 if (task_nice(p) < 0)
7607 set_user_nice(p, 0);
7608 continue;
7609 }
7610
7611 __sched_setscheduler(p, &attr, false, false);
7612 }
7613 read_unlock(&tasklist_lock);
7614 }
7615
7616 #endif /* CONFIG_MAGIC_SYSRQ */
7617
7618 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7619 /*
7620 * These functions are only useful for the IA64 MCA handling, or kdb.
7621 *
7622 * They can only be called when the whole system has been
7623 * stopped - every CPU needs to be quiescent, and no scheduling
7624 * activity can take place. Using them for anything else would
7625 * be a serious bug, and as a result, they aren't even visible
7626 * under any other configuration.
7627 */
7628
7629 /**
7630 * curr_task - return the current task for a given cpu.
7631 * @cpu: the processor in question.
7632 *
7633 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7634 *
7635 * Return: The current task for @cpu.
7636 */
7637 struct task_struct *curr_task(int cpu)
7638 {
7639 return cpu_curr(cpu);
7640 }
7641
7642 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7643
7644 #ifdef CONFIG_IA64
7645 /**
7646 * set_curr_task - set the current task for a given cpu.
7647 * @cpu: the processor in question.
7648 * @p: the task pointer to set.
7649 *
7650 * Description: This function must only be used when non-maskable interrupts
7651 * are serviced on a separate stack. It allows the architecture to switch the
7652 * notion of the current task on a cpu in a non-blocking manner. This function
7653 * must be called with all CPU's synchronized, and interrupts disabled, the
7654 * and caller must save the original value of the current task (see
7655 * curr_task() above) and restore that value before reenabling interrupts and
7656 * re-starting the system.
7657 *
7658 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7659 */
7660 void set_curr_task(int cpu, struct task_struct *p)
7661 {
7662 cpu_curr(cpu) = p;
7663 }
7664
7665 #endif
7666
7667 #ifdef CONFIG_CGROUP_SCHED
7668 /* task_group_lock serializes the addition/removal of task groups */
7669 static DEFINE_SPINLOCK(task_group_lock);
7670
7671 static void free_sched_group(struct task_group *tg)
7672 {
7673 free_fair_sched_group(tg);
7674 free_rt_sched_group(tg);
7675 autogroup_free(tg);
7676 kfree(tg);
7677 }
7678
7679 /* allocate runqueue etc for a new task group */
7680 struct task_group *sched_create_group(struct task_group *parent)
7681 {
7682 struct task_group *tg;
7683
7684 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7685 if (!tg)
7686 return ERR_PTR(-ENOMEM);
7687
7688 if (!alloc_fair_sched_group(tg, parent))
7689 goto err;
7690
7691 if (!alloc_rt_sched_group(tg, parent))
7692 goto err;
7693
7694 return tg;
7695
7696 err:
7697 free_sched_group(tg);
7698 return ERR_PTR(-ENOMEM);
7699 }
7700
7701 void sched_online_group(struct task_group *tg, struct task_group *parent)
7702 {
7703 unsigned long flags;
7704
7705 spin_lock_irqsave(&task_group_lock, flags);
7706 list_add_rcu(&tg->list, &task_groups);
7707
7708 WARN_ON(!parent); /* root should already exist */
7709
7710 tg->parent = parent;
7711 INIT_LIST_HEAD(&tg->children);
7712 list_add_rcu(&tg->siblings, &parent->children);
7713 spin_unlock_irqrestore(&task_group_lock, flags);
7714 }
7715
7716 /* rcu callback to free various structures associated with a task group */
7717 static void free_sched_group_rcu(struct rcu_head *rhp)
7718 {
7719 /* now it should be safe to free those cfs_rqs */
7720 free_sched_group(container_of(rhp, struct task_group, rcu));
7721 }
7722
7723 /* Destroy runqueue etc associated with a task group */
7724 void sched_destroy_group(struct task_group *tg)
7725 {
7726 /* wait for possible concurrent references to cfs_rqs complete */
7727 call_rcu(&tg->rcu, free_sched_group_rcu);
7728 }
7729
7730 void sched_offline_group(struct task_group *tg)
7731 {
7732 unsigned long flags;
7733 int i;
7734
7735 /* end participation in shares distribution */
7736 for_each_possible_cpu(i)
7737 unregister_fair_sched_group(tg, i);
7738
7739 spin_lock_irqsave(&task_group_lock, flags);
7740 list_del_rcu(&tg->list);
7741 list_del_rcu(&tg->siblings);
7742 spin_unlock_irqrestore(&task_group_lock, flags);
7743 }
7744
7745 /* change task's runqueue when it moves between groups.
7746 * The caller of this function should have put the task in its new group
7747 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7748 * reflect its new group.
7749 */
7750 void sched_move_task(struct task_struct *tsk)
7751 {
7752 struct task_group *tg;
7753 int queued, running;
7754 unsigned long flags;
7755 struct rq *rq;
7756
7757 rq = task_rq_lock(tsk, &flags);
7758
7759 running = task_current(rq, tsk);
7760 queued = task_on_rq_queued(tsk);
7761
7762 if (queued)
7763 dequeue_task(rq, tsk, DEQUEUE_SAVE);
7764 if (unlikely(running))
7765 put_prev_task(rq, tsk);
7766
7767 /*
7768 * All callers are synchronized by task_rq_lock(); we do not use RCU
7769 * which is pointless here. Thus, we pass "true" to task_css_check()
7770 * to prevent lockdep warnings.
7771 */
7772 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7773 struct task_group, css);
7774 tg = autogroup_task_group(tsk, tg);
7775 tsk->sched_task_group = tg;
7776
7777 #ifdef CONFIG_FAIR_GROUP_SCHED
7778 if (tsk->sched_class->task_move_group)
7779 tsk->sched_class->task_move_group(tsk);
7780 else
7781 #endif
7782 set_task_rq(tsk, task_cpu(tsk));
7783
7784 if (unlikely(running))
7785 tsk->sched_class->set_curr_task(rq);
7786 if (queued)
7787 enqueue_task(rq, tsk, ENQUEUE_RESTORE);
7788
7789 task_rq_unlock(rq, tsk, &flags);
7790 }
7791 #endif /* CONFIG_CGROUP_SCHED */
7792
7793 #ifdef CONFIG_RT_GROUP_SCHED
7794 /*
7795 * Ensure that the real time constraints are schedulable.
7796 */
7797 static DEFINE_MUTEX(rt_constraints_mutex);
7798
7799 /* Must be called with tasklist_lock held */
7800 static inline int tg_has_rt_tasks(struct task_group *tg)
7801 {
7802 struct task_struct *g, *p;
7803
7804 /*
7805 * Autogroups do not have RT tasks; see autogroup_create().
7806 */
7807 if (task_group_is_autogroup(tg))
7808 return 0;
7809
7810 for_each_process_thread(g, p) {
7811 if (rt_task(p) && task_group(p) == tg)
7812 return 1;
7813 }
7814
7815 return 0;
7816 }
7817
7818 struct rt_schedulable_data {
7819 struct task_group *tg;
7820 u64 rt_period;
7821 u64 rt_runtime;
7822 };
7823
7824 static int tg_rt_schedulable(struct task_group *tg, void *data)
7825 {
7826 struct rt_schedulable_data *d = data;
7827 struct task_group *child;
7828 unsigned long total, sum = 0;
7829 u64 period, runtime;
7830
7831 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7832 runtime = tg->rt_bandwidth.rt_runtime;
7833
7834 if (tg == d->tg) {
7835 period = d->rt_period;
7836 runtime = d->rt_runtime;
7837 }
7838
7839 /*
7840 * Cannot have more runtime than the period.
7841 */
7842 if (runtime > period && runtime != RUNTIME_INF)
7843 return -EINVAL;
7844
7845 /*
7846 * Ensure we don't starve existing RT tasks.
7847 */
7848 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7849 return -EBUSY;
7850
7851 total = to_ratio(period, runtime);
7852
7853 /*
7854 * Nobody can have more than the global setting allows.
7855 */
7856 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7857 return -EINVAL;
7858
7859 /*
7860 * The sum of our children's runtime should not exceed our own.
7861 */
7862 list_for_each_entry_rcu(child, &tg->children, siblings) {
7863 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7864 runtime = child->rt_bandwidth.rt_runtime;
7865
7866 if (child == d->tg) {
7867 period = d->rt_period;
7868 runtime = d->rt_runtime;
7869 }
7870
7871 sum += to_ratio(period, runtime);
7872 }
7873
7874 if (sum > total)
7875 return -EINVAL;
7876
7877 return 0;
7878 }
7879
7880 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7881 {
7882 int ret;
7883
7884 struct rt_schedulable_data data = {
7885 .tg = tg,
7886 .rt_period = period,
7887 .rt_runtime = runtime,
7888 };
7889
7890 rcu_read_lock();
7891 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7892 rcu_read_unlock();
7893
7894 return ret;
7895 }
7896
7897 static int tg_set_rt_bandwidth(struct task_group *tg,
7898 u64 rt_period, u64 rt_runtime)
7899 {
7900 int i, err = 0;
7901
7902 /*
7903 * Disallowing the root group RT runtime is BAD, it would disallow the
7904 * kernel creating (and or operating) RT threads.
7905 */
7906 if (tg == &root_task_group && rt_runtime == 0)
7907 return -EINVAL;
7908
7909 /* No period doesn't make any sense. */
7910 if (rt_period == 0)
7911 return -EINVAL;
7912
7913 mutex_lock(&rt_constraints_mutex);
7914 read_lock(&tasklist_lock);
7915 err = __rt_schedulable(tg, rt_period, rt_runtime);
7916 if (err)
7917 goto unlock;
7918
7919 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7920 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7921 tg->rt_bandwidth.rt_runtime = rt_runtime;
7922
7923 for_each_possible_cpu(i) {
7924 struct rt_rq *rt_rq = tg->rt_rq[i];
7925
7926 raw_spin_lock(&rt_rq->rt_runtime_lock);
7927 rt_rq->rt_runtime = rt_runtime;
7928 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7929 }
7930 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7931 unlock:
7932 read_unlock(&tasklist_lock);
7933 mutex_unlock(&rt_constraints_mutex);
7934
7935 return err;
7936 }
7937
7938 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7939 {
7940 u64 rt_runtime, rt_period;
7941
7942 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7943 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7944 if (rt_runtime_us < 0)
7945 rt_runtime = RUNTIME_INF;
7946
7947 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7948 }
7949
7950 static long sched_group_rt_runtime(struct task_group *tg)
7951 {
7952 u64 rt_runtime_us;
7953
7954 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7955 return -1;
7956
7957 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7958 do_div(rt_runtime_us, NSEC_PER_USEC);
7959 return rt_runtime_us;
7960 }
7961
7962 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7963 {
7964 u64 rt_runtime, rt_period;
7965
7966 rt_period = rt_period_us * NSEC_PER_USEC;
7967 rt_runtime = tg->rt_bandwidth.rt_runtime;
7968
7969 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7970 }
7971
7972 static long sched_group_rt_period(struct task_group *tg)
7973 {
7974 u64 rt_period_us;
7975
7976 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7977 do_div(rt_period_us, NSEC_PER_USEC);
7978 return rt_period_us;
7979 }
7980 #endif /* CONFIG_RT_GROUP_SCHED */
7981
7982 #ifdef CONFIG_RT_GROUP_SCHED
7983 static int sched_rt_global_constraints(void)
7984 {
7985 int ret = 0;
7986
7987 mutex_lock(&rt_constraints_mutex);
7988 read_lock(&tasklist_lock);
7989 ret = __rt_schedulable(NULL, 0, 0);
7990 read_unlock(&tasklist_lock);
7991 mutex_unlock(&rt_constraints_mutex);
7992
7993 return ret;
7994 }
7995
7996 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7997 {
7998 /* Don't accept realtime tasks when there is no way for them to run */
7999 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8000 return 0;
8001
8002 return 1;
8003 }
8004
8005 #else /* !CONFIG_RT_GROUP_SCHED */
8006 static int sched_rt_global_constraints(void)
8007 {
8008 unsigned long flags;
8009 int i, ret = 0;
8010
8011 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8012 for_each_possible_cpu(i) {
8013 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8014
8015 raw_spin_lock(&rt_rq->rt_runtime_lock);
8016 rt_rq->rt_runtime = global_rt_runtime();
8017 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8018 }
8019 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8020
8021 return ret;
8022 }
8023 #endif /* CONFIG_RT_GROUP_SCHED */
8024
8025 static int sched_dl_global_validate(void)
8026 {
8027 u64 runtime = global_rt_runtime();
8028 u64 period = global_rt_period();
8029 u64 new_bw = to_ratio(period, runtime);
8030 struct dl_bw *dl_b;
8031 int cpu, ret = 0;
8032 unsigned long flags;
8033
8034 /*
8035 * Here we want to check the bandwidth not being set to some
8036 * value smaller than the currently allocated bandwidth in
8037 * any of the root_domains.
8038 *
8039 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8040 * cycling on root_domains... Discussion on different/better
8041 * solutions is welcome!
8042 */
8043 for_each_possible_cpu(cpu) {
8044 rcu_read_lock_sched();
8045 dl_b = dl_bw_of(cpu);
8046
8047 raw_spin_lock_irqsave(&dl_b->lock, flags);
8048 if (new_bw < dl_b->total_bw)
8049 ret = -EBUSY;
8050 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8051
8052 rcu_read_unlock_sched();
8053
8054 if (ret)
8055 break;
8056 }
8057
8058 return ret;
8059 }
8060
8061 static void sched_dl_do_global(void)
8062 {
8063 u64 new_bw = -1;
8064 struct dl_bw *dl_b;
8065 int cpu;
8066 unsigned long flags;
8067
8068 def_dl_bandwidth.dl_period = global_rt_period();
8069 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8070
8071 if (global_rt_runtime() != RUNTIME_INF)
8072 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8073
8074 /*
8075 * FIXME: As above...
8076 */
8077 for_each_possible_cpu(cpu) {
8078 rcu_read_lock_sched();
8079 dl_b = dl_bw_of(cpu);
8080
8081 raw_spin_lock_irqsave(&dl_b->lock, flags);
8082 dl_b->bw = new_bw;
8083 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8084
8085 rcu_read_unlock_sched();
8086 }
8087 }
8088
8089 static int sched_rt_global_validate(void)
8090 {
8091 if (sysctl_sched_rt_period <= 0)
8092 return -EINVAL;
8093
8094 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8095 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8096 return -EINVAL;
8097
8098 return 0;
8099 }
8100
8101 static void sched_rt_do_global(void)
8102 {
8103 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8104 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8105 }
8106
8107 int sched_rt_handler(struct ctl_table *table, int write,
8108 void __user *buffer, size_t *lenp,
8109 loff_t *ppos)
8110 {
8111 int old_period, old_runtime;
8112 static DEFINE_MUTEX(mutex);
8113 int ret;
8114
8115 mutex_lock(&mutex);
8116 old_period = sysctl_sched_rt_period;
8117 old_runtime = sysctl_sched_rt_runtime;
8118
8119 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8120
8121 if (!ret && write) {
8122 ret = sched_rt_global_validate();
8123 if (ret)
8124 goto undo;
8125
8126 ret = sched_dl_global_validate();
8127 if (ret)
8128 goto undo;
8129
8130 ret = sched_rt_global_constraints();
8131 if (ret)
8132 goto undo;
8133
8134 sched_rt_do_global();
8135 sched_dl_do_global();
8136 }
8137 if (0) {
8138 undo:
8139 sysctl_sched_rt_period = old_period;
8140 sysctl_sched_rt_runtime = old_runtime;
8141 }
8142 mutex_unlock(&mutex);
8143
8144 return ret;
8145 }
8146
8147 int sched_rr_handler(struct ctl_table *table, int write,
8148 void __user *buffer, size_t *lenp,
8149 loff_t *ppos)
8150 {
8151 int ret;
8152 static DEFINE_MUTEX(mutex);
8153
8154 mutex_lock(&mutex);
8155 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8156 /* make sure that internally we keep jiffies */
8157 /* also, writing zero resets timeslice to default */
8158 if (!ret && write) {
8159 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8160 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8161 }
8162 mutex_unlock(&mutex);
8163 return ret;
8164 }
8165
8166 #ifdef CONFIG_CGROUP_SCHED
8167
8168 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8169 {
8170 return css ? container_of(css, struct task_group, css) : NULL;
8171 }
8172
8173 static struct cgroup_subsys_state *
8174 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8175 {
8176 struct task_group *parent = css_tg(parent_css);
8177 struct task_group *tg;
8178
8179 if (!parent) {
8180 /* This is early initialization for the top cgroup */
8181 return &root_task_group.css;
8182 }
8183
8184 tg = sched_create_group(parent);
8185 if (IS_ERR(tg))
8186 return ERR_PTR(-ENOMEM);
8187
8188 return &tg->css;
8189 }
8190
8191 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8192 {
8193 struct task_group *tg = css_tg(css);
8194 struct task_group *parent = css_tg(css->parent);
8195
8196 if (parent)
8197 sched_online_group(tg, parent);
8198 return 0;
8199 }
8200
8201 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8202 {
8203 struct task_group *tg = css_tg(css);
8204
8205 sched_destroy_group(tg);
8206 }
8207
8208 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8209 {
8210 struct task_group *tg = css_tg(css);
8211
8212 sched_offline_group(tg);
8213 }
8214
8215 static void cpu_cgroup_fork(struct task_struct *task, void *private)
8216 {
8217 sched_move_task(task);
8218 }
8219
8220 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8221 struct cgroup_taskset *tset)
8222 {
8223 struct task_struct *task;
8224
8225 cgroup_taskset_for_each(task, tset) {
8226 #ifdef CONFIG_RT_GROUP_SCHED
8227 if (!sched_rt_can_attach(css_tg(css), task))
8228 return -EINVAL;
8229 #else
8230 /* We don't support RT-tasks being in separate groups */
8231 if (task->sched_class != &fair_sched_class)
8232 return -EINVAL;
8233 #endif
8234 }
8235 return 0;
8236 }
8237
8238 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8239 struct cgroup_taskset *tset)
8240 {
8241 struct task_struct *task;
8242
8243 cgroup_taskset_for_each(task, tset)
8244 sched_move_task(task);
8245 }
8246
8247 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8248 struct cgroup_subsys_state *old_css,
8249 struct task_struct *task)
8250 {
8251 sched_move_task(task);
8252 }
8253
8254 #ifdef CONFIG_FAIR_GROUP_SCHED
8255 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8256 struct cftype *cftype, u64 shareval)
8257 {
8258 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8259 }
8260
8261 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8262 struct cftype *cft)
8263 {
8264 struct task_group *tg = css_tg(css);
8265
8266 return (u64) scale_load_down(tg->shares);
8267 }
8268
8269 #ifdef CONFIG_CFS_BANDWIDTH
8270 static DEFINE_MUTEX(cfs_constraints_mutex);
8271
8272 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8273 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8274
8275 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8276
8277 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8278 {
8279 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8280 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8281
8282 if (tg == &root_task_group)
8283 return -EINVAL;
8284
8285 /*
8286 * Ensure we have at some amount of bandwidth every period. This is
8287 * to prevent reaching a state of large arrears when throttled via
8288 * entity_tick() resulting in prolonged exit starvation.
8289 */
8290 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8291 return -EINVAL;
8292
8293 /*
8294 * Likewise, bound things on the otherside by preventing insane quota
8295 * periods. This also allows us to normalize in computing quota
8296 * feasibility.
8297 */
8298 if (period > max_cfs_quota_period)
8299 return -EINVAL;
8300
8301 /*
8302 * Prevent race between setting of cfs_rq->runtime_enabled and
8303 * unthrottle_offline_cfs_rqs().
8304 */
8305 get_online_cpus();
8306 mutex_lock(&cfs_constraints_mutex);
8307 ret = __cfs_schedulable(tg, period, quota);
8308 if (ret)
8309 goto out_unlock;
8310
8311 runtime_enabled = quota != RUNTIME_INF;
8312 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8313 /*
8314 * If we need to toggle cfs_bandwidth_used, off->on must occur
8315 * before making related changes, and on->off must occur afterwards
8316 */
8317 if (runtime_enabled && !runtime_was_enabled)
8318 cfs_bandwidth_usage_inc();
8319 raw_spin_lock_irq(&cfs_b->lock);
8320 cfs_b->period = ns_to_ktime(period);
8321 cfs_b->quota = quota;
8322
8323 __refill_cfs_bandwidth_runtime(cfs_b);
8324 /* restart the period timer (if active) to handle new period expiry */
8325 if (runtime_enabled)
8326 start_cfs_bandwidth(cfs_b);
8327 raw_spin_unlock_irq(&cfs_b->lock);
8328
8329 for_each_online_cpu(i) {
8330 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8331 struct rq *rq = cfs_rq->rq;
8332
8333 raw_spin_lock_irq(&rq->lock);
8334 cfs_rq->runtime_enabled = runtime_enabled;
8335 cfs_rq->runtime_remaining = 0;
8336
8337 if (cfs_rq->throttled)
8338 unthrottle_cfs_rq(cfs_rq);
8339 raw_spin_unlock_irq(&rq->lock);
8340 }
8341 if (runtime_was_enabled && !runtime_enabled)
8342 cfs_bandwidth_usage_dec();
8343 out_unlock:
8344 mutex_unlock(&cfs_constraints_mutex);
8345 put_online_cpus();
8346
8347 return ret;
8348 }
8349
8350 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8351 {
8352 u64 quota, period;
8353
8354 period = ktime_to_ns(tg->cfs_bandwidth.period);
8355 if (cfs_quota_us < 0)
8356 quota = RUNTIME_INF;
8357 else
8358 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8359
8360 return tg_set_cfs_bandwidth(tg, period, quota);
8361 }
8362
8363 long tg_get_cfs_quota(struct task_group *tg)
8364 {
8365 u64 quota_us;
8366
8367 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8368 return -1;
8369
8370 quota_us = tg->cfs_bandwidth.quota;
8371 do_div(quota_us, NSEC_PER_USEC);
8372
8373 return quota_us;
8374 }
8375
8376 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8377 {
8378 u64 quota, period;
8379
8380 period = (u64)cfs_period_us * NSEC_PER_USEC;
8381 quota = tg->cfs_bandwidth.quota;
8382
8383 return tg_set_cfs_bandwidth(tg, period, quota);
8384 }
8385
8386 long tg_get_cfs_period(struct task_group *tg)
8387 {
8388 u64 cfs_period_us;
8389
8390 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8391 do_div(cfs_period_us, NSEC_PER_USEC);
8392
8393 return cfs_period_us;
8394 }
8395
8396 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8397 struct cftype *cft)
8398 {
8399 return tg_get_cfs_quota(css_tg(css));
8400 }
8401
8402 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8403 struct cftype *cftype, s64 cfs_quota_us)
8404 {
8405 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8406 }
8407
8408 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8409 struct cftype *cft)
8410 {
8411 return tg_get_cfs_period(css_tg(css));
8412 }
8413
8414 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8415 struct cftype *cftype, u64 cfs_period_us)
8416 {
8417 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8418 }
8419
8420 struct cfs_schedulable_data {
8421 struct task_group *tg;
8422 u64 period, quota;
8423 };
8424
8425 /*
8426 * normalize group quota/period to be quota/max_period
8427 * note: units are usecs
8428 */
8429 static u64 normalize_cfs_quota(struct task_group *tg,
8430 struct cfs_schedulable_data *d)
8431 {
8432 u64 quota, period;
8433
8434 if (tg == d->tg) {
8435 period = d->period;
8436 quota = d->quota;
8437 } else {
8438 period = tg_get_cfs_period(tg);
8439 quota = tg_get_cfs_quota(tg);
8440 }
8441
8442 /* note: these should typically be equivalent */
8443 if (quota == RUNTIME_INF || quota == -1)
8444 return RUNTIME_INF;
8445
8446 return to_ratio(period, quota);
8447 }
8448
8449 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8450 {
8451 struct cfs_schedulable_data *d = data;
8452 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8453 s64 quota = 0, parent_quota = -1;
8454
8455 if (!tg->parent) {
8456 quota = RUNTIME_INF;
8457 } else {
8458 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8459
8460 quota = normalize_cfs_quota(tg, d);
8461 parent_quota = parent_b->hierarchical_quota;
8462
8463 /*
8464 * ensure max(child_quota) <= parent_quota, inherit when no
8465 * limit is set
8466 */
8467 if (quota == RUNTIME_INF)
8468 quota = parent_quota;
8469 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8470 return -EINVAL;
8471 }
8472 cfs_b->hierarchical_quota = quota;
8473
8474 return 0;
8475 }
8476
8477 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8478 {
8479 int ret;
8480 struct cfs_schedulable_data data = {
8481 .tg = tg,
8482 .period = period,
8483 .quota = quota,
8484 };
8485
8486 if (quota != RUNTIME_INF) {
8487 do_div(data.period, NSEC_PER_USEC);
8488 do_div(data.quota, NSEC_PER_USEC);
8489 }
8490
8491 rcu_read_lock();
8492 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8493 rcu_read_unlock();
8494
8495 return ret;
8496 }
8497
8498 static int cpu_stats_show(struct seq_file *sf, void *v)
8499 {
8500 struct task_group *tg = css_tg(seq_css(sf));
8501 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8502
8503 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8504 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8505 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8506
8507 return 0;
8508 }
8509 #endif /* CONFIG_CFS_BANDWIDTH */
8510 #endif /* CONFIG_FAIR_GROUP_SCHED */
8511
8512 #ifdef CONFIG_RT_GROUP_SCHED
8513 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8514 struct cftype *cft, s64 val)
8515 {
8516 return sched_group_set_rt_runtime(css_tg(css), val);
8517 }
8518
8519 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8520 struct cftype *cft)
8521 {
8522 return sched_group_rt_runtime(css_tg(css));
8523 }
8524
8525 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8526 struct cftype *cftype, u64 rt_period_us)
8527 {
8528 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8529 }
8530
8531 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8532 struct cftype *cft)
8533 {
8534 return sched_group_rt_period(css_tg(css));
8535 }
8536 #endif /* CONFIG_RT_GROUP_SCHED */
8537
8538 static struct cftype cpu_files[] = {
8539 #ifdef CONFIG_FAIR_GROUP_SCHED
8540 {
8541 .name = "shares",
8542 .read_u64 = cpu_shares_read_u64,
8543 .write_u64 = cpu_shares_write_u64,
8544 },
8545 #endif
8546 #ifdef CONFIG_CFS_BANDWIDTH
8547 {
8548 .name = "cfs_quota_us",
8549 .read_s64 = cpu_cfs_quota_read_s64,
8550 .write_s64 = cpu_cfs_quota_write_s64,
8551 },
8552 {
8553 .name = "cfs_period_us",
8554 .read_u64 = cpu_cfs_period_read_u64,
8555 .write_u64 = cpu_cfs_period_write_u64,
8556 },
8557 {
8558 .name = "stat",
8559 .seq_show = cpu_stats_show,
8560 },
8561 #endif
8562 #ifdef CONFIG_RT_GROUP_SCHED
8563 {
8564 .name = "rt_runtime_us",
8565 .read_s64 = cpu_rt_runtime_read,
8566 .write_s64 = cpu_rt_runtime_write,
8567 },
8568 {
8569 .name = "rt_period_us",
8570 .read_u64 = cpu_rt_period_read_uint,
8571 .write_u64 = cpu_rt_period_write_uint,
8572 },
8573 #endif
8574 { } /* terminate */
8575 };
8576
8577 struct cgroup_subsys cpu_cgrp_subsys = {
8578 .css_alloc = cpu_cgroup_css_alloc,
8579 .css_free = cpu_cgroup_css_free,
8580 .css_online = cpu_cgroup_css_online,
8581 .css_offline = cpu_cgroup_css_offline,
8582 .fork = cpu_cgroup_fork,
8583 .can_attach = cpu_cgroup_can_attach,
8584 .attach = cpu_cgroup_attach,
8585 .exit = cpu_cgroup_exit,
8586 .legacy_cftypes = cpu_files,
8587 .early_init = 1,
8588 };
8589
8590 #endif /* CONFIG_CGROUP_SCHED */
8591
8592 void dump_cpu_task(int cpu)
8593 {
8594 pr_info("Task dump for CPU %d:\n", cpu);
8595 sched_show_task(cpu_curr(cpu));
8596 }