]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched/core.c
sched/core: Convert nohz_flags to atomic_t
[mirror_ubuntu-kernels.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Core kernel scheduler code and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 */
8 #include "sched.h"
9
10 #include <asm/switch_to.h>
11 #include <asm/tlb.h>
12
13 #include "../workqueue_internal.h"
14 #include "../smpboot.h"
15
16 #define CREATE_TRACE_POINTS
17 #include <trace/events/sched.h>
18
19 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
20
21 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
22 /*
23 * Debugging: various feature bits
24 *
25 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
26 * sysctl_sched_features, defined in sched.h, to allow constants propagation
27 * at compile time and compiler optimization based on features default.
28 */
29 #define SCHED_FEAT(name, enabled) \
30 (1UL << __SCHED_FEAT_##name) * enabled |
31 const_debug unsigned int sysctl_sched_features =
32 #include "features.h"
33 0;
34 #undef SCHED_FEAT
35 #endif
36
37 /*
38 * Number of tasks to iterate in a single balance run.
39 * Limited because this is done with IRQs disabled.
40 */
41 const_debug unsigned int sysctl_sched_nr_migrate = 32;
42
43 /*
44 * period over which we average the RT time consumption, measured
45 * in ms.
46 *
47 * default: 1s
48 */
49 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
50
51 /*
52 * period over which we measure -rt task CPU usage in us.
53 * default: 1s
54 */
55 unsigned int sysctl_sched_rt_period = 1000000;
56
57 __read_mostly int scheduler_running;
58
59 /*
60 * part of the period that we allow rt tasks to run in us.
61 * default: 0.95s
62 */
63 int sysctl_sched_rt_runtime = 950000;
64
65 /*
66 * __task_rq_lock - lock the rq @p resides on.
67 */
68 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
69 __acquires(rq->lock)
70 {
71 struct rq *rq;
72
73 lockdep_assert_held(&p->pi_lock);
74
75 for (;;) {
76 rq = task_rq(p);
77 raw_spin_lock(&rq->lock);
78 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
79 rq_pin_lock(rq, rf);
80 return rq;
81 }
82 raw_spin_unlock(&rq->lock);
83
84 while (unlikely(task_on_rq_migrating(p)))
85 cpu_relax();
86 }
87 }
88
89 /*
90 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
91 */
92 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
93 __acquires(p->pi_lock)
94 __acquires(rq->lock)
95 {
96 struct rq *rq;
97
98 for (;;) {
99 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
100 rq = task_rq(p);
101 raw_spin_lock(&rq->lock);
102 /*
103 * move_queued_task() task_rq_lock()
104 *
105 * ACQUIRE (rq->lock)
106 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
107 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
108 * [S] ->cpu = new_cpu [L] task_rq()
109 * [L] ->on_rq
110 * RELEASE (rq->lock)
111 *
112 * If we observe the old CPU in task_rq_lock, the acquire of
113 * the old rq->lock will fully serialize against the stores.
114 *
115 * If we observe the new CPU in task_rq_lock, the acquire will
116 * pair with the WMB to ensure we must then also see migrating.
117 */
118 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
119 rq_pin_lock(rq, rf);
120 return rq;
121 }
122 raw_spin_unlock(&rq->lock);
123 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
124
125 while (unlikely(task_on_rq_migrating(p)))
126 cpu_relax();
127 }
128 }
129
130 /*
131 * RQ-clock updating methods:
132 */
133
134 static void update_rq_clock_task(struct rq *rq, s64 delta)
135 {
136 /*
137 * In theory, the compile should just see 0 here, and optimize out the call
138 * to sched_rt_avg_update. But I don't trust it...
139 */
140 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
141 s64 steal = 0, irq_delta = 0;
142 #endif
143 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
144 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
145
146 /*
147 * Since irq_time is only updated on {soft,}irq_exit, we might run into
148 * this case when a previous update_rq_clock() happened inside a
149 * {soft,}irq region.
150 *
151 * When this happens, we stop ->clock_task and only update the
152 * prev_irq_time stamp to account for the part that fit, so that a next
153 * update will consume the rest. This ensures ->clock_task is
154 * monotonic.
155 *
156 * It does however cause some slight miss-attribution of {soft,}irq
157 * time, a more accurate solution would be to update the irq_time using
158 * the current rq->clock timestamp, except that would require using
159 * atomic ops.
160 */
161 if (irq_delta > delta)
162 irq_delta = delta;
163
164 rq->prev_irq_time += irq_delta;
165 delta -= irq_delta;
166 #endif
167 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
168 if (static_key_false((&paravirt_steal_rq_enabled))) {
169 steal = paravirt_steal_clock(cpu_of(rq));
170 steal -= rq->prev_steal_time_rq;
171
172 if (unlikely(steal > delta))
173 steal = delta;
174
175 rq->prev_steal_time_rq += steal;
176 delta -= steal;
177 }
178 #endif
179
180 rq->clock_task += delta;
181
182 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
183 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
184 sched_rt_avg_update(rq, irq_delta + steal);
185 #endif
186 }
187
188 void update_rq_clock(struct rq *rq)
189 {
190 s64 delta;
191
192 lockdep_assert_held(&rq->lock);
193
194 if (rq->clock_update_flags & RQCF_ACT_SKIP)
195 return;
196
197 #ifdef CONFIG_SCHED_DEBUG
198 if (sched_feat(WARN_DOUBLE_CLOCK))
199 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
200 rq->clock_update_flags |= RQCF_UPDATED;
201 #endif
202
203 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
204 if (delta < 0)
205 return;
206 rq->clock += delta;
207 update_rq_clock_task(rq, delta);
208 }
209
210
211 #ifdef CONFIG_SCHED_HRTICK
212 /*
213 * Use HR-timers to deliver accurate preemption points.
214 */
215
216 static void hrtick_clear(struct rq *rq)
217 {
218 if (hrtimer_active(&rq->hrtick_timer))
219 hrtimer_cancel(&rq->hrtick_timer);
220 }
221
222 /*
223 * High-resolution timer tick.
224 * Runs from hardirq context with interrupts disabled.
225 */
226 static enum hrtimer_restart hrtick(struct hrtimer *timer)
227 {
228 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
229 struct rq_flags rf;
230
231 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
232
233 rq_lock(rq, &rf);
234 update_rq_clock(rq);
235 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
236 rq_unlock(rq, &rf);
237
238 return HRTIMER_NORESTART;
239 }
240
241 #ifdef CONFIG_SMP
242
243 static void __hrtick_restart(struct rq *rq)
244 {
245 struct hrtimer *timer = &rq->hrtick_timer;
246
247 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
248 }
249
250 /*
251 * called from hardirq (IPI) context
252 */
253 static void __hrtick_start(void *arg)
254 {
255 struct rq *rq = arg;
256 struct rq_flags rf;
257
258 rq_lock(rq, &rf);
259 __hrtick_restart(rq);
260 rq->hrtick_csd_pending = 0;
261 rq_unlock(rq, &rf);
262 }
263
264 /*
265 * Called to set the hrtick timer state.
266 *
267 * called with rq->lock held and irqs disabled
268 */
269 void hrtick_start(struct rq *rq, u64 delay)
270 {
271 struct hrtimer *timer = &rq->hrtick_timer;
272 ktime_t time;
273 s64 delta;
274
275 /*
276 * Don't schedule slices shorter than 10000ns, that just
277 * doesn't make sense and can cause timer DoS.
278 */
279 delta = max_t(s64, delay, 10000LL);
280 time = ktime_add_ns(timer->base->get_time(), delta);
281
282 hrtimer_set_expires(timer, time);
283
284 if (rq == this_rq()) {
285 __hrtick_restart(rq);
286 } else if (!rq->hrtick_csd_pending) {
287 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
288 rq->hrtick_csd_pending = 1;
289 }
290 }
291
292 #else
293 /*
294 * Called to set the hrtick timer state.
295 *
296 * called with rq->lock held and irqs disabled
297 */
298 void hrtick_start(struct rq *rq, u64 delay)
299 {
300 /*
301 * Don't schedule slices shorter than 10000ns, that just
302 * doesn't make sense. Rely on vruntime for fairness.
303 */
304 delay = max_t(u64, delay, 10000LL);
305 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
306 HRTIMER_MODE_REL_PINNED);
307 }
308 #endif /* CONFIG_SMP */
309
310 static void hrtick_rq_init(struct rq *rq)
311 {
312 #ifdef CONFIG_SMP
313 rq->hrtick_csd_pending = 0;
314
315 rq->hrtick_csd.flags = 0;
316 rq->hrtick_csd.func = __hrtick_start;
317 rq->hrtick_csd.info = rq;
318 #endif
319
320 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
321 rq->hrtick_timer.function = hrtick;
322 }
323 #else /* CONFIG_SCHED_HRTICK */
324 static inline void hrtick_clear(struct rq *rq)
325 {
326 }
327
328 static inline void hrtick_rq_init(struct rq *rq)
329 {
330 }
331 #endif /* CONFIG_SCHED_HRTICK */
332
333 /*
334 * cmpxchg based fetch_or, macro so it works for different integer types
335 */
336 #define fetch_or(ptr, mask) \
337 ({ \
338 typeof(ptr) _ptr = (ptr); \
339 typeof(mask) _mask = (mask); \
340 typeof(*_ptr) _old, _val = *_ptr; \
341 \
342 for (;;) { \
343 _old = cmpxchg(_ptr, _val, _val | _mask); \
344 if (_old == _val) \
345 break; \
346 _val = _old; \
347 } \
348 _old; \
349 })
350
351 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
352 /*
353 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
354 * this avoids any races wrt polling state changes and thereby avoids
355 * spurious IPIs.
356 */
357 static bool set_nr_and_not_polling(struct task_struct *p)
358 {
359 struct thread_info *ti = task_thread_info(p);
360 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
361 }
362
363 /*
364 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
365 *
366 * If this returns true, then the idle task promises to call
367 * sched_ttwu_pending() and reschedule soon.
368 */
369 static bool set_nr_if_polling(struct task_struct *p)
370 {
371 struct thread_info *ti = task_thread_info(p);
372 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
373
374 for (;;) {
375 if (!(val & _TIF_POLLING_NRFLAG))
376 return false;
377 if (val & _TIF_NEED_RESCHED)
378 return true;
379 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
380 if (old == val)
381 break;
382 val = old;
383 }
384 return true;
385 }
386
387 #else
388 static bool set_nr_and_not_polling(struct task_struct *p)
389 {
390 set_tsk_need_resched(p);
391 return true;
392 }
393
394 #ifdef CONFIG_SMP
395 static bool set_nr_if_polling(struct task_struct *p)
396 {
397 return false;
398 }
399 #endif
400 #endif
401
402 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
403 {
404 struct wake_q_node *node = &task->wake_q;
405
406 /*
407 * Atomically grab the task, if ->wake_q is !nil already it means
408 * its already queued (either by us or someone else) and will get the
409 * wakeup due to that.
410 *
411 * This cmpxchg() implies a full barrier, which pairs with the write
412 * barrier implied by the wakeup in wake_up_q().
413 */
414 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
415 return;
416
417 get_task_struct(task);
418
419 /*
420 * The head is context local, there can be no concurrency.
421 */
422 *head->lastp = node;
423 head->lastp = &node->next;
424 }
425
426 void wake_up_q(struct wake_q_head *head)
427 {
428 struct wake_q_node *node = head->first;
429
430 while (node != WAKE_Q_TAIL) {
431 struct task_struct *task;
432
433 task = container_of(node, struct task_struct, wake_q);
434 BUG_ON(!task);
435 /* Task can safely be re-inserted now: */
436 node = node->next;
437 task->wake_q.next = NULL;
438
439 /*
440 * wake_up_process() implies a wmb() to pair with the queueing
441 * in wake_q_add() so as not to miss wakeups.
442 */
443 wake_up_process(task);
444 put_task_struct(task);
445 }
446 }
447
448 /*
449 * resched_curr - mark rq's current task 'to be rescheduled now'.
450 *
451 * On UP this means the setting of the need_resched flag, on SMP it
452 * might also involve a cross-CPU call to trigger the scheduler on
453 * the target CPU.
454 */
455 void resched_curr(struct rq *rq)
456 {
457 struct task_struct *curr = rq->curr;
458 int cpu;
459
460 lockdep_assert_held(&rq->lock);
461
462 if (test_tsk_need_resched(curr))
463 return;
464
465 cpu = cpu_of(rq);
466
467 if (cpu == smp_processor_id()) {
468 set_tsk_need_resched(curr);
469 set_preempt_need_resched();
470 return;
471 }
472
473 if (set_nr_and_not_polling(curr))
474 smp_send_reschedule(cpu);
475 else
476 trace_sched_wake_idle_without_ipi(cpu);
477 }
478
479 void resched_cpu(int cpu)
480 {
481 struct rq *rq = cpu_rq(cpu);
482 unsigned long flags;
483
484 raw_spin_lock_irqsave(&rq->lock, flags);
485 if (cpu_online(cpu) || cpu == smp_processor_id())
486 resched_curr(rq);
487 raw_spin_unlock_irqrestore(&rq->lock, flags);
488 }
489
490 #ifdef CONFIG_SMP
491 #ifdef CONFIG_NO_HZ_COMMON
492 /*
493 * In the semi idle case, use the nearest busy CPU for migrating timers
494 * from an idle CPU. This is good for power-savings.
495 *
496 * We don't do similar optimization for completely idle system, as
497 * selecting an idle CPU will add more delays to the timers than intended
498 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
499 */
500 int get_nohz_timer_target(void)
501 {
502 int i, cpu = smp_processor_id();
503 struct sched_domain *sd;
504
505 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
506 return cpu;
507
508 rcu_read_lock();
509 for_each_domain(cpu, sd) {
510 for_each_cpu(i, sched_domain_span(sd)) {
511 if (cpu == i)
512 continue;
513
514 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
515 cpu = i;
516 goto unlock;
517 }
518 }
519 }
520
521 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
522 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
523 unlock:
524 rcu_read_unlock();
525 return cpu;
526 }
527
528 /*
529 * When add_timer_on() enqueues a timer into the timer wheel of an
530 * idle CPU then this timer might expire before the next timer event
531 * which is scheduled to wake up that CPU. In case of a completely
532 * idle system the next event might even be infinite time into the
533 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
534 * leaves the inner idle loop so the newly added timer is taken into
535 * account when the CPU goes back to idle and evaluates the timer
536 * wheel for the next timer event.
537 */
538 static void wake_up_idle_cpu(int cpu)
539 {
540 struct rq *rq = cpu_rq(cpu);
541
542 if (cpu == smp_processor_id())
543 return;
544
545 if (set_nr_and_not_polling(rq->idle))
546 smp_send_reschedule(cpu);
547 else
548 trace_sched_wake_idle_without_ipi(cpu);
549 }
550
551 static bool wake_up_full_nohz_cpu(int cpu)
552 {
553 /*
554 * We just need the target to call irq_exit() and re-evaluate
555 * the next tick. The nohz full kick at least implies that.
556 * If needed we can still optimize that later with an
557 * empty IRQ.
558 */
559 if (cpu_is_offline(cpu))
560 return true; /* Don't try to wake offline CPUs. */
561 if (tick_nohz_full_cpu(cpu)) {
562 if (cpu != smp_processor_id() ||
563 tick_nohz_tick_stopped())
564 tick_nohz_full_kick_cpu(cpu);
565 return true;
566 }
567
568 return false;
569 }
570
571 /*
572 * Wake up the specified CPU. If the CPU is going offline, it is the
573 * caller's responsibility to deal with the lost wakeup, for example,
574 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
575 */
576 void wake_up_nohz_cpu(int cpu)
577 {
578 if (!wake_up_full_nohz_cpu(cpu))
579 wake_up_idle_cpu(cpu);
580 }
581
582 static inline bool got_nohz_idle_kick(void)
583 {
584 int cpu = smp_processor_id();
585
586 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_BALANCE_KICK))
587 return false;
588
589 if (idle_cpu(cpu) && !need_resched())
590 return true;
591
592 /*
593 * We can't run Idle Load Balance on this CPU for this time so we
594 * cancel it and clear NOHZ_BALANCE_KICK
595 */
596 atomic_andnot(NOHZ_BALANCE_KICK, nohz_flags(cpu));
597 return false;
598 }
599
600 #else /* CONFIG_NO_HZ_COMMON */
601
602 static inline bool got_nohz_idle_kick(void)
603 {
604 return false;
605 }
606
607 #endif /* CONFIG_NO_HZ_COMMON */
608
609 #ifdef CONFIG_NO_HZ_FULL
610 bool sched_can_stop_tick(struct rq *rq)
611 {
612 int fifo_nr_running;
613
614 /* Deadline tasks, even if single, need the tick */
615 if (rq->dl.dl_nr_running)
616 return false;
617
618 /*
619 * If there are more than one RR tasks, we need the tick to effect the
620 * actual RR behaviour.
621 */
622 if (rq->rt.rr_nr_running) {
623 if (rq->rt.rr_nr_running == 1)
624 return true;
625 else
626 return false;
627 }
628
629 /*
630 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
631 * forced preemption between FIFO tasks.
632 */
633 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
634 if (fifo_nr_running)
635 return true;
636
637 /*
638 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
639 * if there's more than one we need the tick for involuntary
640 * preemption.
641 */
642 if (rq->nr_running > 1)
643 return false;
644
645 return true;
646 }
647 #endif /* CONFIG_NO_HZ_FULL */
648
649 void sched_avg_update(struct rq *rq)
650 {
651 s64 period = sched_avg_period();
652
653 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
654 /*
655 * Inline assembly required to prevent the compiler
656 * optimising this loop into a divmod call.
657 * See __iter_div_u64_rem() for another example of this.
658 */
659 asm("" : "+rm" (rq->age_stamp));
660 rq->age_stamp += period;
661 rq->rt_avg /= 2;
662 }
663 }
664
665 #endif /* CONFIG_SMP */
666
667 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
668 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
669 /*
670 * Iterate task_group tree rooted at *from, calling @down when first entering a
671 * node and @up when leaving it for the final time.
672 *
673 * Caller must hold rcu_lock or sufficient equivalent.
674 */
675 int walk_tg_tree_from(struct task_group *from,
676 tg_visitor down, tg_visitor up, void *data)
677 {
678 struct task_group *parent, *child;
679 int ret;
680
681 parent = from;
682
683 down:
684 ret = (*down)(parent, data);
685 if (ret)
686 goto out;
687 list_for_each_entry_rcu(child, &parent->children, siblings) {
688 parent = child;
689 goto down;
690
691 up:
692 continue;
693 }
694 ret = (*up)(parent, data);
695 if (ret || parent == from)
696 goto out;
697
698 child = parent;
699 parent = parent->parent;
700 if (parent)
701 goto up;
702 out:
703 return ret;
704 }
705
706 int tg_nop(struct task_group *tg, void *data)
707 {
708 return 0;
709 }
710 #endif
711
712 static void set_load_weight(struct task_struct *p, bool update_load)
713 {
714 int prio = p->static_prio - MAX_RT_PRIO;
715 struct load_weight *load = &p->se.load;
716
717 /*
718 * SCHED_IDLE tasks get minimal weight:
719 */
720 if (idle_policy(p->policy)) {
721 load->weight = scale_load(WEIGHT_IDLEPRIO);
722 load->inv_weight = WMULT_IDLEPRIO;
723 return;
724 }
725
726 /*
727 * SCHED_OTHER tasks have to update their load when changing their
728 * weight
729 */
730 if (update_load && p->sched_class == &fair_sched_class) {
731 reweight_task(p, prio);
732 } else {
733 load->weight = scale_load(sched_prio_to_weight[prio]);
734 load->inv_weight = sched_prio_to_wmult[prio];
735 }
736 }
737
738 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
739 {
740 if (!(flags & ENQUEUE_NOCLOCK))
741 update_rq_clock(rq);
742
743 if (!(flags & ENQUEUE_RESTORE))
744 sched_info_queued(rq, p);
745
746 p->sched_class->enqueue_task(rq, p, flags);
747 }
748
749 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
750 {
751 if (!(flags & DEQUEUE_NOCLOCK))
752 update_rq_clock(rq);
753
754 if (!(flags & DEQUEUE_SAVE))
755 sched_info_dequeued(rq, p);
756
757 p->sched_class->dequeue_task(rq, p, flags);
758 }
759
760 void activate_task(struct rq *rq, struct task_struct *p, int flags)
761 {
762 if (task_contributes_to_load(p))
763 rq->nr_uninterruptible--;
764
765 enqueue_task(rq, p, flags);
766 }
767
768 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
769 {
770 if (task_contributes_to_load(p))
771 rq->nr_uninterruptible++;
772
773 dequeue_task(rq, p, flags);
774 }
775
776 /*
777 * __normal_prio - return the priority that is based on the static prio
778 */
779 static inline int __normal_prio(struct task_struct *p)
780 {
781 return p->static_prio;
782 }
783
784 /*
785 * Calculate the expected normal priority: i.e. priority
786 * without taking RT-inheritance into account. Might be
787 * boosted by interactivity modifiers. Changes upon fork,
788 * setprio syscalls, and whenever the interactivity
789 * estimator recalculates.
790 */
791 static inline int normal_prio(struct task_struct *p)
792 {
793 int prio;
794
795 if (task_has_dl_policy(p))
796 prio = MAX_DL_PRIO-1;
797 else if (task_has_rt_policy(p))
798 prio = MAX_RT_PRIO-1 - p->rt_priority;
799 else
800 prio = __normal_prio(p);
801 return prio;
802 }
803
804 /*
805 * Calculate the current priority, i.e. the priority
806 * taken into account by the scheduler. This value might
807 * be boosted by RT tasks, or might be boosted by
808 * interactivity modifiers. Will be RT if the task got
809 * RT-boosted. If not then it returns p->normal_prio.
810 */
811 static int effective_prio(struct task_struct *p)
812 {
813 p->normal_prio = normal_prio(p);
814 /*
815 * If we are RT tasks or we were boosted to RT priority,
816 * keep the priority unchanged. Otherwise, update priority
817 * to the normal priority:
818 */
819 if (!rt_prio(p->prio))
820 return p->normal_prio;
821 return p->prio;
822 }
823
824 /**
825 * task_curr - is this task currently executing on a CPU?
826 * @p: the task in question.
827 *
828 * Return: 1 if the task is currently executing. 0 otherwise.
829 */
830 inline int task_curr(const struct task_struct *p)
831 {
832 return cpu_curr(task_cpu(p)) == p;
833 }
834
835 /*
836 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
837 * use the balance_callback list if you want balancing.
838 *
839 * this means any call to check_class_changed() must be followed by a call to
840 * balance_callback().
841 */
842 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
843 const struct sched_class *prev_class,
844 int oldprio)
845 {
846 if (prev_class != p->sched_class) {
847 if (prev_class->switched_from)
848 prev_class->switched_from(rq, p);
849
850 p->sched_class->switched_to(rq, p);
851 } else if (oldprio != p->prio || dl_task(p))
852 p->sched_class->prio_changed(rq, p, oldprio);
853 }
854
855 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
856 {
857 const struct sched_class *class;
858
859 if (p->sched_class == rq->curr->sched_class) {
860 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
861 } else {
862 for_each_class(class) {
863 if (class == rq->curr->sched_class)
864 break;
865 if (class == p->sched_class) {
866 resched_curr(rq);
867 break;
868 }
869 }
870 }
871
872 /*
873 * A queue event has occurred, and we're going to schedule. In
874 * this case, we can save a useless back to back clock update.
875 */
876 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
877 rq_clock_skip_update(rq, true);
878 }
879
880 #ifdef CONFIG_SMP
881 /*
882 * This is how migration works:
883 *
884 * 1) we invoke migration_cpu_stop() on the target CPU using
885 * stop_one_cpu().
886 * 2) stopper starts to run (implicitly forcing the migrated thread
887 * off the CPU)
888 * 3) it checks whether the migrated task is still in the wrong runqueue.
889 * 4) if it's in the wrong runqueue then the migration thread removes
890 * it and puts it into the right queue.
891 * 5) stopper completes and stop_one_cpu() returns and the migration
892 * is done.
893 */
894
895 /*
896 * move_queued_task - move a queued task to new rq.
897 *
898 * Returns (locked) new rq. Old rq's lock is released.
899 */
900 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
901 struct task_struct *p, int new_cpu)
902 {
903 lockdep_assert_held(&rq->lock);
904
905 p->on_rq = TASK_ON_RQ_MIGRATING;
906 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
907 set_task_cpu(p, new_cpu);
908 rq_unlock(rq, rf);
909
910 rq = cpu_rq(new_cpu);
911
912 rq_lock(rq, rf);
913 BUG_ON(task_cpu(p) != new_cpu);
914 enqueue_task(rq, p, 0);
915 p->on_rq = TASK_ON_RQ_QUEUED;
916 check_preempt_curr(rq, p, 0);
917
918 return rq;
919 }
920
921 struct migration_arg {
922 struct task_struct *task;
923 int dest_cpu;
924 };
925
926 /*
927 * Move (not current) task off this CPU, onto the destination CPU. We're doing
928 * this because either it can't run here any more (set_cpus_allowed()
929 * away from this CPU, or CPU going down), or because we're
930 * attempting to rebalance this task on exec (sched_exec).
931 *
932 * So we race with normal scheduler movements, but that's OK, as long
933 * as the task is no longer on this CPU.
934 */
935 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
936 struct task_struct *p, int dest_cpu)
937 {
938 if (p->flags & PF_KTHREAD) {
939 if (unlikely(!cpu_online(dest_cpu)))
940 return rq;
941 } else {
942 if (unlikely(!cpu_active(dest_cpu)))
943 return rq;
944 }
945
946 /* Affinity changed (again). */
947 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
948 return rq;
949
950 update_rq_clock(rq);
951 rq = move_queued_task(rq, rf, p, dest_cpu);
952
953 return rq;
954 }
955
956 /*
957 * migration_cpu_stop - this will be executed by a highprio stopper thread
958 * and performs thread migration by bumping thread off CPU then
959 * 'pushing' onto another runqueue.
960 */
961 static int migration_cpu_stop(void *data)
962 {
963 struct migration_arg *arg = data;
964 struct task_struct *p = arg->task;
965 struct rq *rq = this_rq();
966 struct rq_flags rf;
967
968 /*
969 * The original target CPU might have gone down and we might
970 * be on another CPU but it doesn't matter.
971 */
972 local_irq_disable();
973 /*
974 * We need to explicitly wake pending tasks before running
975 * __migrate_task() such that we will not miss enforcing cpus_allowed
976 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
977 */
978 sched_ttwu_pending();
979
980 raw_spin_lock(&p->pi_lock);
981 rq_lock(rq, &rf);
982 /*
983 * If task_rq(p) != rq, it cannot be migrated here, because we're
984 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
985 * we're holding p->pi_lock.
986 */
987 if (task_rq(p) == rq) {
988 if (task_on_rq_queued(p))
989 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
990 else
991 p->wake_cpu = arg->dest_cpu;
992 }
993 rq_unlock(rq, &rf);
994 raw_spin_unlock(&p->pi_lock);
995
996 local_irq_enable();
997 return 0;
998 }
999
1000 /*
1001 * sched_class::set_cpus_allowed must do the below, but is not required to
1002 * actually call this function.
1003 */
1004 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1005 {
1006 cpumask_copy(&p->cpus_allowed, new_mask);
1007 p->nr_cpus_allowed = cpumask_weight(new_mask);
1008 }
1009
1010 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1011 {
1012 struct rq *rq = task_rq(p);
1013 bool queued, running;
1014
1015 lockdep_assert_held(&p->pi_lock);
1016
1017 queued = task_on_rq_queued(p);
1018 running = task_current(rq, p);
1019
1020 if (queued) {
1021 /*
1022 * Because __kthread_bind() calls this on blocked tasks without
1023 * holding rq->lock.
1024 */
1025 lockdep_assert_held(&rq->lock);
1026 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1027 }
1028 if (running)
1029 put_prev_task(rq, p);
1030
1031 p->sched_class->set_cpus_allowed(p, new_mask);
1032
1033 if (queued)
1034 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1035 if (running)
1036 set_curr_task(rq, p);
1037 }
1038
1039 /*
1040 * Change a given task's CPU affinity. Migrate the thread to a
1041 * proper CPU and schedule it away if the CPU it's executing on
1042 * is removed from the allowed bitmask.
1043 *
1044 * NOTE: the caller must have a valid reference to the task, the
1045 * task must not exit() & deallocate itself prematurely. The
1046 * call is not atomic; no spinlocks may be held.
1047 */
1048 static int __set_cpus_allowed_ptr(struct task_struct *p,
1049 const struct cpumask *new_mask, bool check)
1050 {
1051 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1052 unsigned int dest_cpu;
1053 struct rq_flags rf;
1054 struct rq *rq;
1055 int ret = 0;
1056
1057 rq = task_rq_lock(p, &rf);
1058 update_rq_clock(rq);
1059
1060 if (p->flags & PF_KTHREAD) {
1061 /*
1062 * Kernel threads are allowed on online && !active CPUs
1063 */
1064 cpu_valid_mask = cpu_online_mask;
1065 }
1066
1067 /*
1068 * Must re-check here, to close a race against __kthread_bind(),
1069 * sched_setaffinity() is not guaranteed to observe the flag.
1070 */
1071 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1072 ret = -EINVAL;
1073 goto out;
1074 }
1075
1076 if (cpumask_equal(&p->cpus_allowed, new_mask))
1077 goto out;
1078
1079 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1080 ret = -EINVAL;
1081 goto out;
1082 }
1083
1084 do_set_cpus_allowed(p, new_mask);
1085
1086 if (p->flags & PF_KTHREAD) {
1087 /*
1088 * For kernel threads that do indeed end up on online &&
1089 * !active we want to ensure they are strict per-CPU threads.
1090 */
1091 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1092 !cpumask_intersects(new_mask, cpu_active_mask) &&
1093 p->nr_cpus_allowed != 1);
1094 }
1095
1096 /* Can the task run on the task's current CPU? If so, we're done */
1097 if (cpumask_test_cpu(task_cpu(p), new_mask))
1098 goto out;
1099
1100 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1101 if (task_running(rq, p) || p->state == TASK_WAKING) {
1102 struct migration_arg arg = { p, dest_cpu };
1103 /* Need help from migration thread: drop lock and wait. */
1104 task_rq_unlock(rq, p, &rf);
1105 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1106 tlb_migrate_finish(p->mm);
1107 return 0;
1108 } else if (task_on_rq_queued(p)) {
1109 /*
1110 * OK, since we're going to drop the lock immediately
1111 * afterwards anyway.
1112 */
1113 rq = move_queued_task(rq, &rf, p, dest_cpu);
1114 }
1115 out:
1116 task_rq_unlock(rq, p, &rf);
1117
1118 return ret;
1119 }
1120
1121 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1122 {
1123 return __set_cpus_allowed_ptr(p, new_mask, false);
1124 }
1125 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1126
1127 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1128 {
1129 #ifdef CONFIG_SCHED_DEBUG
1130 /*
1131 * We should never call set_task_cpu() on a blocked task,
1132 * ttwu() will sort out the placement.
1133 */
1134 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1135 !p->on_rq);
1136
1137 /*
1138 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1139 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1140 * time relying on p->on_rq.
1141 */
1142 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1143 p->sched_class == &fair_sched_class &&
1144 (p->on_rq && !task_on_rq_migrating(p)));
1145
1146 #ifdef CONFIG_LOCKDEP
1147 /*
1148 * The caller should hold either p->pi_lock or rq->lock, when changing
1149 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1150 *
1151 * sched_move_task() holds both and thus holding either pins the cgroup,
1152 * see task_group().
1153 *
1154 * Furthermore, all task_rq users should acquire both locks, see
1155 * task_rq_lock().
1156 */
1157 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1158 lockdep_is_held(&task_rq(p)->lock)));
1159 #endif
1160 /*
1161 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1162 */
1163 WARN_ON_ONCE(!cpu_online(new_cpu));
1164 #endif
1165
1166 trace_sched_migrate_task(p, new_cpu);
1167
1168 if (task_cpu(p) != new_cpu) {
1169 if (p->sched_class->migrate_task_rq)
1170 p->sched_class->migrate_task_rq(p);
1171 p->se.nr_migrations++;
1172 perf_event_task_migrate(p);
1173 }
1174
1175 __set_task_cpu(p, new_cpu);
1176 }
1177
1178 static void __migrate_swap_task(struct task_struct *p, int cpu)
1179 {
1180 if (task_on_rq_queued(p)) {
1181 struct rq *src_rq, *dst_rq;
1182 struct rq_flags srf, drf;
1183
1184 src_rq = task_rq(p);
1185 dst_rq = cpu_rq(cpu);
1186
1187 rq_pin_lock(src_rq, &srf);
1188 rq_pin_lock(dst_rq, &drf);
1189
1190 p->on_rq = TASK_ON_RQ_MIGRATING;
1191 deactivate_task(src_rq, p, 0);
1192 set_task_cpu(p, cpu);
1193 activate_task(dst_rq, p, 0);
1194 p->on_rq = TASK_ON_RQ_QUEUED;
1195 check_preempt_curr(dst_rq, p, 0);
1196
1197 rq_unpin_lock(dst_rq, &drf);
1198 rq_unpin_lock(src_rq, &srf);
1199
1200 } else {
1201 /*
1202 * Task isn't running anymore; make it appear like we migrated
1203 * it before it went to sleep. This means on wakeup we make the
1204 * previous CPU our target instead of where it really is.
1205 */
1206 p->wake_cpu = cpu;
1207 }
1208 }
1209
1210 struct migration_swap_arg {
1211 struct task_struct *src_task, *dst_task;
1212 int src_cpu, dst_cpu;
1213 };
1214
1215 static int migrate_swap_stop(void *data)
1216 {
1217 struct migration_swap_arg *arg = data;
1218 struct rq *src_rq, *dst_rq;
1219 int ret = -EAGAIN;
1220
1221 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1222 return -EAGAIN;
1223
1224 src_rq = cpu_rq(arg->src_cpu);
1225 dst_rq = cpu_rq(arg->dst_cpu);
1226
1227 double_raw_lock(&arg->src_task->pi_lock,
1228 &arg->dst_task->pi_lock);
1229 double_rq_lock(src_rq, dst_rq);
1230
1231 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1232 goto unlock;
1233
1234 if (task_cpu(arg->src_task) != arg->src_cpu)
1235 goto unlock;
1236
1237 if (!cpumask_test_cpu(arg->dst_cpu, &arg->src_task->cpus_allowed))
1238 goto unlock;
1239
1240 if (!cpumask_test_cpu(arg->src_cpu, &arg->dst_task->cpus_allowed))
1241 goto unlock;
1242
1243 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1244 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1245
1246 ret = 0;
1247
1248 unlock:
1249 double_rq_unlock(src_rq, dst_rq);
1250 raw_spin_unlock(&arg->dst_task->pi_lock);
1251 raw_spin_unlock(&arg->src_task->pi_lock);
1252
1253 return ret;
1254 }
1255
1256 /*
1257 * Cross migrate two tasks
1258 */
1259 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1260 {
1261 struct migration_swap_arg arg;
1262 int ret = -EINVAL;
1263
1264 arg = (struct migration_swap_arg){
1265 .src_task = cur,
1266 .src_cpu = task_cpu(cur),
1267 .dst_task = p,
1268 .dst_cpu = task_cpu(p),
1269 };
1270
1271 if (arg.src_cpu == arg.dst_cpu)
1272 goto out;
1273
1274 /*
1275 * These three tests are all lockless; this is OK since all of them
1276 * will be re-checked with proper locks held further down the line.
1277 */
1278 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1279 goto out;
1280
1281 if (!cpumask_test_cpu(arg.dst_cpu, &arg.src_task->cpus_allowed))
1282 goto out;
1283
1284 if (!cpumask_test_cpu(arg.src_cpu, &arg.dst_task->cpus_allowed))
1285 goto out;
1286
1287 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1288 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1289
1290 out:
1291 return ret;
1292 }
1293
1294 /*
1295 * wait_task_inactive - wait for a thread to unschedule.
1296 *
1297 * If @match_state is nonzero, it's the @p->state value just checked and
1298 * not expected to change. If it changes, i.e. @p might have woken up,
1299 * then return zero. When we succeed in waiting for @p to be off its CPU,
1300 * we return a positive number (its total switch count). If a second call
1301 * a short while later returns the same number, the caller can be sure that
1302 * @p has remained unscheduled the whole time.
1303 *
1304 * The caller must ensure that the task *will* unschedule sometime soon,
1305 * else this function might spin for a *long* time. This function can't
1306 * be called with interrupts off, or it may introduce deadlock with
1307 * smp_call_function() if an IPI is sent by the same process we are
1308 * waiting to become inactive.
1309 */
1310 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1311 {
1312 int running, queued;
1313 struct rq_flags rf;
1314 unsigned long ncsw;
1315 struct rq *rq;
1316
1317 for (;;) {
1318 /*
1319 * We do the initial early heuristics without holding
1320 * any task-queue locks at all. We'll only try to get
1321 * the runqueue lock when things look like they will
1322 * work out!
1323 */
1324 rq = task_rq(p);
1325
1326 /*
1327 * If the task is actively running on another CPU
1328 * still, just relax and busy-wait without holding
1329 * any locks.
1330 *
1331 * NOTE! Since we don't hold any locks, it's not
1332 * even sure that "rq" stays as the right runqueue!
1333 * But we don't care, since "task_running()" will
1334 * return false if the runqueue has changed and p
1335 * is actually now running somewhere else!
1336 */
1337 while (task_running(rq, p)) {
1338 if (match_state && unlikely(p->state != match_state))
1339 return 0;
1340 cpu_relax();
1341 }
1342
1343 /*
1344 * Ok, time to look more closely! We need the rq
1345 * lock now, to be *sure*. If we're wrong, we'll
1346 * just go back and repeat.
1347 */
1348 rq = task_rq_lock(p, &rf);
1349 trace_sched_wait_task(p);
1350 running = task_running(rq, p);
1351 queued = task_on_rq_queued(p);
1352 ncsw = 0;
1353 if (!match_state || p->state == match_state)
1354 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1355 task_rq_unlock(rq, p, &rf);
1356
1357 /*
1358 * If it changed from the expected state, bail out now.
1359 */
1360 if (unlikely(!ncsw))
1361 break;
1362
1363 /*
1364 * Was it really running after all now that we
1365 * checked with the proper locks actually held?
1366 *
1367 * Oops. Go back and try again..
1368 */
1369 if (unlikely(running)) {
1370 cpu_relax();
1371 continue;
1372 }
1373
1374 /*
1375 * It's not enough that it's not actively running,
1376 * it must be off the runqueue _entirely_, and not
1377 * preempted!
1378 *
1379 * So if it was still runnable (but just not actively
1380 * running right now), it's preempted, and we should
1381 * yield - it could be a while.
1382 */
1383 if (unlikely(queued)) {
1384 ktime_t to = NSEC_PER_SEC / HZ;
1385
1386 set_current_state(TASK_UNINTERRUPTIBLE);
1387 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1388 continue;
1389 }
1390
1391 /*
1392 * Ahh, all good. It wasn't running, and it wasn't
1393 * runnable, which means that it will never become
1394 * running in the future either. We're all done!
1395 */
1396 break;
1397 }
1398
1399 return ncsw;
1400 }
1401
1402 /***
1403 * kick_process - kick a running thread to enter/exit the kernel
1404 * @p: the to-be-kicked thread
1405 *
1406 * Cause a process which is running on another CPU to enter
1407 * kernel-mode, without any delay. (to get signals handled.)
1408 *
1409 * NOTE: this function doesn't have to take the runqueue lock,
1410 * because all it wants to ensure is that the remote task enters
1411 * the kernel. If the IPI races and the task has been migrated
1412 * to another CPU then no harm is done and the purpose has been
1413 * achieved as well.
1414 */
1415 void kick_process(struct task_struct *p)
1416 {
1417 int cpu;
1418
1419 preempt_disable();
1420 cpu = task_cpu(p);
1421 if ((cpu != smp_processor_id()) && task_curr(p))
1422 smp_send_reschedule(cpu);
1423 preempt_enable();
1424 }
1425 EXPORT_SYMBOL_GPL(kick_process);
1426
1427 /*
1428 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1429 *
1430 * A few notes on cpu_active vs cpu_online:
1431 *
1432 * - cpu_active must be a subset of cpu_online
1433 *
1434 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1435 * see __set_cpus_allowed_ptr(). At this point the newly online
1436 * CPU isn't yet part of the sched domains, and balancing will not
1437 * see it.
1438 *
1439 * - on CPU-down we clear cpu_active() to mask the sched domains and
1440 * avoid the load balancer to place new tasks on the to be removed
1441 * CPU. Existing tasks will remain running there and will be taken
1442 * off.
1443 *
1444 * This means that fallback selection must not select !active CPUs.
1445 * And can assume that any active CPU must be online. Conversely
1446 * select_task_rq() below may allow selection of !active CPUs in order
1447 * to satisfy the above rules.
1448 */
1449 static int select_fallback_rq(int cpu, struct task_struct *p)
1450 {
1451 int nid = cpu_to_node(cpu);
1452 const struct cpumask *nodemask = NULL;
1453 enum { cpuset, possible, fail } state = cpuset;
1454 int dest_cpu;
1455
1456 /*
1457 * If the node that the CPU is on has been offlined, cpu_to_node()
1458 * will return -1. There is no CPU on the node, and we should
1459 * select the CPU on the other node.
1460 */
1461 if (nid != -1) {
1462 nodemask = cpumask_of_node(nid);
1463
1464 /* Look for allowed, online CPU in same node. */
1465 for_each_cpu(dest_cpu, nodemask) {
1466 if (!cpu_active(dest_cpu))
1467 continue;
1468 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
1469 return dest_cpu;
1470 }
1471 }
1472
1473 for (;;) {
1474 /* Any allowed, online CPU? */
1475 for_each_cpu(dest_cpu, &p->cpus_allowed) {
1476 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1477 continue;
1478 if (!cpu_online(dest_cpu))
1479 continue;
1480 goto out;
1481 }
1482
1483 /* No more Mr. Nice Guy. */
1484 switch (state) {
1485 case cpuset:
1486 if (IS_ENABLED(CONFIG_CPUSETS)) {
1487 cpuset_cpus_allowed_fallback(p);
1488 state = possible;
1489 break;
1490 }
1491 /* Fall-through */
1492 case possible:
1493 do_set_cpus_allowed(p, cpu_possible_mask);
1494 state = fail;
1495 break;
1496
1497 case fail:
1498 BUG();
1499 break;
1500 }
1501 }
1502
1503 out:
1504 if (state != cpuset) {
1505 /*
1506 * Don't tell them about moving exiting tasks or
1507 * kernel threads (both mm NULL), since they never
1508 * leave kernel.
1509 */
1510 if (p->mm && printk_ratelimit()) {
1511 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1512 task_pid_nr(p), p->comm, cpu);
1513 }
1514 }
1515
1516 return dest_cpu;
1517 }
1518
1519 /*
1520 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1521 */
1522 static inline
1523 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1524 {
1525 lockdep_assert_held(&p->pi_lock);
1526
1527 if (p->nr_cpus_allowed > 1)
1528 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1529 else
1530 cpu = cpumask_any(&p->cpus_allowed);
1531
1532 /*
1533 * In order not to call set_task_cpu() on a blocking task we need
1534 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1535 * CPU.
1536 *
1537 * Since this is common to all placement strategies, this lives here.
1538 *
1539 * [ this allows ->select_task() to simply return task_cpu(p) and
1540 * not worry about this generic constraint ]
1541 */
1542 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
1543 !cpu_online(cpu)))
1544 cpu = select_fallback_rq(task_cpu(p), p);
1545
1546 return cpu;
1547 }
1548
1549 static void update_avg(u64 *avg, u64 sample)
1550 {
1551 s64 diff = sample - *avg;
1552 *avg += diff >> 3;
1553 }
1554
1555 void sched_set_stop_task(int cpu, struct task_struct *stop)
1556 {
1557 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1558 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1559
1560 if (stop) {
1561 /*
1562 * Make it appear like a SCHED_FIFO task, its something
1563 * userspace knows about and won't get confused about.
1564 *
1565 * Also, it will make PI more or less work without too
1566 * much confusion -- but then, stop work should not
1567 * rely on PI working anyway.
1568 */
1569 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1570
1571 stop->sched_class = &stop_sched_class;
1572 }
1573
1574 cpu_rq(cpu)->stop = stop;
1575
1576 if (old_stop) {
1577 /*
1578 * Reset it back to a normal scheduling class so that
1579 * it can die in pieces.
1580 */
1581 old_stop->sched_class = &rt_sched_class;
1582 }
1583 }
1584
1585 #else
1586
1587 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1588 const struct cpumask *new_mask, bool check)
1589 {
1590 return set_cpus_allowed_ptr(p, new_mask);
1591 }
1592
1593 #endif /* CONFIG_SMP */
1594
1595 static void
1596 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1597 {
1598 struct rq *rq;
1599
1600 if (!schedstat_enabled())
1601 return;
1602
1603 rq = this_rq();
1604
1605 #ifdef CONFIG_SMP
1606 if (cpu == rq->cpu) {
1607 __schedstat_inc(rq->ttwu_local);
1608 __schedstat_inc(p->se.statistics.nr_wakeups_local);
1609 } else {
1610 struct sched_domain *sd;
1611
1612 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
1613 rcu_read_lock();
1614 for_each_domain(rq->cpu, sd) {
1615 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1616 __schedstat_inc(sd->ttwu_wake_remote);
1617 break;
1618 }
1619 }
1620 rcu_read_unlock();
1621 }
1622
1623 if (wake_flags & WF_MIGRATED)
1624 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1625 #endif /* CONFIG_SMP */
1626
1627 __schedstat_inc(rq->ttwu_count);
1628 __schedstat_inc(p->se.statistics.nr_wakeups);
1629
1630 if (wake_flags & WF_SYNC)
1631 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
1632 }
1633
1634 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1635 {
1636 activate_task(rq, p, en_flags);
1637 p->on_rq = TASK_ON_RQ_QUEUED;
1638
1639 /* If a worker is waking up, notify the workqueue: */
1640 if (p->flags & PF_WQ_WORKER)
1641 wq_worker_waking_up(p, cpu_of(rq));
1642 }
1643
1644 /*
1645 * Mark the task runnable and perform wakeup-preemption.
1646 */
1647 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1648 struct rq_flags *rf)
1649 {
1650 check_preempt_curr(rq, p, wake_flags);
1651 p->state = TASK_RUNNING;
1652 trace_sched_wakeup(p);
1653
1654 #ifdef CONFIG_SMP
1655 if (p->sched_class->task_woken) {
1656 /*
1657 * Our task @p is fully woken up and running; so its safe to
1658 * drop the rq->lock, hereafter rq is only used for statistics.
1659 */
1660 rq_unpin_lock(rq, rf);
1661 p->sched_class->task_woken(rq, p);
1662 rq_repin_lock(rq, rf);
1663 }
1664
1665 if (rq->idle_stamp) {
1666 u64 delta = rq_clock(rq) - rq->idle_stamp;
1667 u64 max = 2*rq->max_idle_balance_cost;
1668
1669 update_avg(&rq->avg_idle, delta);
1670
1671 if (rq->avg_idle > max)
1672 rq->avg_idle = max;
1673
1674 rq->idle_stamp = 0;
1675 }
1676 #endif
1677 }
1678
1679 static void
1680 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1681 struct rq_flags *rf)
1682 {
1683 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
1684
1685 lockdep_assert_held(&rq->lock);
1686
1687 #ifdef CONFIG_SMP
1688 if (p->sched_contributes_to_load)
1689 rq->nr_uninterruptible--;
1690
1691 if (wake_flags & WF_MIGRATED)
1692 en_flags |= ENQUEUE_MIGRATED;
1693 #endif
1694
1695 ttwu_activate(rq, p, en_flags);
1696 ttwu_do_wakeup(rq, p, wake_flags, rf);
1697 }
1698
1699 /*
1700 * Called in case the task @p isn't fully descheduled from its runqueue,
1701 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1702 * since all we need to do is flip p->state to TASK_RUNNING, since
1703 * the task is still ->on_rq.
1704 */
1705 static int ttwu_remote(struct task_struct *p, int wake_flags)
1706 {
1707 struct rq_flags rf;
1708 struct rq *rq;
1709 int ret = 0;
1710
1711 rq = __task_rq_lock(p, &rf);
1712 if (task_on_rq_queued(p)) {
1713 /* check_preempt_curr() may use rq clock */
1714 update_rq_clock(rq);
1715 ttwu_do_wakeup(rq, p, wake_flags, &rf);
1716 ret = 1;
1717 }
1718 __task_rq_unlock(rq, &rf);
1719
1720 return ret;
1721 }
1722
1723 #ifdef CONFIG_SMP
1724 void sched_ttwu_pending(void)
1725 {
1726 struct rq *rq = this_rq();
1727 struct llist_node *llist = llist_del_all(&rq->wake_list);
1728 struct task_struct *p, *t;
1729 struct rq_flags rf;
1730
1731 if (!llist)
1732 return;
1733
1734 rq_lock_irqsave(rq, &rf);
1735 update_rq_clock(rq);
1736
1737 llist_for_each_entry_safe(p, t, llist, wake_entry)
1738 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
1739
1740 rq_unlock_irqrestore(rq, &rf);
1741 }
1742
1743 void scheduler_ipi(void)
1744 {
1745 /*
1746 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1747 * TIF_NEED_RESCHED remotely (for the first time) will also send
1748 * this IPI.
1749 */
1750 preempt_fold_need_resched();
1751
1752 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1753 return;
1754
1755 /*
1756 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1757 * traditionally all their work was done from the interrupt return
1758 * path. Now that we actually do some work, we need to make sure
1759 * we do call them.
1760 *
1761 * Some archs already do call them, luckily irq_enter/exit nest
1762 * properly.
1763 *
1764 * Arguably we should visit all archs and update all handlers,
1765 * however a fair share of IPIs are still resched only so this would
1766 * somewhat pessimize the simple resched case.
1767 */
1768 irq_enter();
1769 sched_ttwu_pending();
1770
1771 /*
1772 * Check if someone kicked us for doing the nohz idle load balance.
1773 */
1774 if (unlikely(got_nohz_idle_kick())) {
1775 this_rq()->idle_balance = 1;
1776 raise_softirq_irqoff(SCHED_SOFTIRQ);
1777 }
1778 irq_exit();
1779 }
1780
1781 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1782 {
1783 struct rq *rq = cpu_rq(cpu);
1784
1785 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1786
1787 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1788 if (!set_nr_if_polling(rq->idle))
1789 smp_send_reschedule(cpu);
1790 else
1791 trace_sched_wake_idle_without_ipi(cpu);
1792 }
1793 }
1794
1795 void wake_up_if_idle(int cpu)
1796 {
1797 struct rq *rq = cpu_rq(cpu);
1798 struct rq_flags rf;
1799
1800 rcu_read_lock();
1801
1802 if (!is_idle_task(rcu_dereference(rq->curr)))
1803 goto out;
1804
1805 if (set_nr_if_polling(rq->idle)) {
1806 trace_sched_wake_idle_without_ipi(cpu);
1807 } else {
1808 rq_lock_irqsave(rq, &rf);
1809 if (is_idle_task(rq->curr))
1810 smp_send_reschedule(cpu);
1811 /* Else CPU is not idle, do nothing here: */
1812 rq_unlock_irqrestore(rq, &rf);
1813 }
1814
1815 out:
1816 rcu_read_unlock();
1817 }
1818
1819 bool cpus_share_cache(int this_cpu, int that_cpu)
1820 {
1821 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1822 }
1823 #endif /* CONFIG_SMP */
1824
1825 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1826 {
1827 struct rq *rq = cpu_rq(cpu);
1828 struct rq_flags rf;
1829
1830 #if defined(CONFIG_SMP)
1831 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1832 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
1833 ttwu_queue_remote(p, cpu, wake_flags);
1834 return;
1835 }
1836 #endif
1837
1838 rq_lock(rq, &rf);
1839 update_rq_clock(rq);
1840 ttwu_do_activate(rq, p, wake_flags, &rf);
1841 rq_unlock(rq, &rf);
1842 }
1843
1844 /*
1845 * Notes on Program-Order guarantees on SMP systems.
1846 *
1847 * MIGRATION
1848 *
1849 * The basic program-order guarantee on SMP systems is that when a task [t]
1850 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1851 * execution on its new CPU [c1].
1852 *
1853 * For migration (of runnable tasks) this is provided by the following means:
1854 *
1855 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1856 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1857 * rq(c1)->lock (if not at the same time, then in that order).
1858 * C) LOCK of the rq(c1)->lock scheduling in task
1859 *
1860 * Transitivity guarantees that B happens after A and C after B.
1861 * Note: we only require RCpc transitivity.
1862 * Note: the CPU doing B need not be c0 or c1
1863 *
1864 * Example:
1865 *
1866 * CPU0 CPU1 CPU2
1867 *
1868 * LOCK rq(0)->lock
1869 * sched-out X
1870 * sched-in Y
1871 * UNLOCK rq(0)->lock
1872 *
1873 * LOCK rq(0)->lock // orders against CPU0
1874 * dequeue X
1875 * UNLOCK rq(0)->lock
1876 *
1877 * LOCK rq(1)->lock
1878 * enqueue X
1879 * UNLOCK rq(1)->lock
1880 *
1881 * LOCK rq(1)->lock // orders against CPU2
1882 * sched-out Z
1883 * sched-in X
1884 * UNLOCK rq(1)->lock
1885 *
1886 *
1887 * BLOCKING -- aka. SLEEP + WAKEUP
1888 *
1889 * For blocking we (obviously) need to provide the same guarantee as for
1890 * migration. However the means are completely different as there is no lock
1891 * chain to provide order. Instead we do:
1892 *
1893 * 1) smp_store_release(X->on_cpu, 0)
1894 * 2) smp_cond_load_acquire(!X->on_cpu)
1895 *
1896 * Example:
1897 *
1898 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1899 *
1900 * LOCK rq(0)->lock LOCK X->pi_lock
1901 * dequeue X
1902 * sched-out X
1903 * smp_store_release(X->on_cpu, 0);
1904 *
1905 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1906 * X->state = WAKING
1907 * set_task_cpu(X,2)
1908 *
1909 * LOCK rq(2)->lock
1910 * enqueue X
1911 * X->state = RUNNING
1912 * UNLOCK rq(2)->lock
1913 *
1914 * LOCK rq(2)->lock // orders against CPU1
1915 * sched-out Z
1916 * sched-in X
1917 * UNLOCK rq(2)->lock
1918 *
1919 * UNLOCK X->pi_lock
1920 * UNLOCK rq(0)->lock
1921 *
1922 *
1923 * However; for wakeups there is a second guarantee we must provide, namely we
1924 * must observe the state that lead to our wakeup. That is, not only must our
1925 * task observe its own prior state, it must also observe the stores prior to
1926 * its wakeup.
1927 *
1928 * This means that any means of doing remote wakeups must order the CPU doing
1929 * the wakeup against the CPU the task is going to end up running on. This,
1930 * however, is already required for the regular Program-Order guarantee above,
1931 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1932 *
1933 */
1934
1935 /**
1936 * try_to_wake_up - wake up a thread
1937 * @p: the thread to be awakened
1938 * @state: the mask of task states that can be woken
1939 * @wake_flags: wake modifier flags (WF_*)
1940 *
1941 * If (@state & @p->state) @p->state = TASK_RUNNING.
1942 *
1943 * If the task was not queued/runnable, also place it back on a runqueue.
1944 *
1945 * Atomic against schedule() which would dequeue a task, also see
1946 * set_current_state().
1947 *
1948 * Return: %true if @p->state changes (an actual wakeup was done),
1949 * %false otherwise.
1950 */
1951 static int
1952 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1953 {
1954 unsigned long flags;
1955 int cpu, success = 0;
1956
1957 /*
1958 * If we are going to wake up a thread waiting for CONDITION we
1959 * need to ensure that CONDITION=1 done by the caller can not be
1960 * reordered with p->state check below. This pairs with mb() in
1961 * set_current_state() the waiting thread does.
1962 */
1963 raw_spin_lock_irqsave(&p->pi_lock, flags);
1964 smp_mb__after_spinlock();
1965 if (!(p->state & state))
1966 goto out;
1967
1968 trace_sched_waking(p);
1969
1970 /* We're going to change ->state: */
1971 success = 1;
1972 cpu = task_cpu(p);
1973
1974 /*
1975 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1976 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1977 * in smp_cond_load_acquire() below.
1978 *
1979 * sched_ttwu_pending() try_to_wake_up()
1980 * [S] p->on_rq = 1; [L] P->state
1981 * UNLOCK rq->lock -----.
1982 * \
1983 * +--- RMB
1984 * schedule() /
1985 * LOCK rq->lock -----'
1986 * UNLOCK rq->lock
1987 *
1988 * [task p]
1989 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
1990 *
1991 * Pairs with the UNLOCK+LOCK on rq->lock from the
1992 * last wakeup of our task and the schedule that got our task
1993 * current.
1994 */
1995 smp_rmb();
1996 if (p->on_rq && ttwu_remote(p, wake_flags))
1997 goto stat;
1998
1999 #ifdef CONFIG_SMP
2000 /*
2001 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2002 * possible to, falsely, observe p->on_cpu == 0.
2003 *
2004 * One must be running (->on_cpu == 1) in order to remove oneself
2005 * from the runqueue.
2006 *
2007 * [S] ->on_cpu = 1; [L] ->on_rq
2008 * UNLOCK rq->lock
2009 * RMB
2010 * LOCK rq->lock
2011 * [S] ->on_rq = 0; [L] ->on_cpu
2012 *
2013 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2014 * from the consecutive calls to schedule(); the first switching to our
2015 * task, the second putting it to sleep.
2016 */
2017 smp_rmb();
2018
2019 /*
2020 * If the owning (remote) CPU is still in the middle of schedule() with
2021 * this task as prev, wait until its done referencing the task.
2022 *
2023 * Pairs with the smp_store_release() in finish_task().
2024 *
2025 * This ensures that tasks getting woken will be fully ordered against
2026 * their previous state and preserve Program Order.
2027 */
2028 smp_cond_load_acquire(&p->on_cpu, !VAL);
2029
2030 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2031 p->state = TASK_WAKING;
2032
2033 if (p->in_iowait) {
2034 delayacct_blkio_end(p);
2035 atomic_dec(&task_rq(p)->nr_iowait);
2036 }
2037
2038 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2039 if (task_cpu(p) != cpu) {
2040 wake_flags |= WF_MIGRATED;
2041 set_task_cpu(p, cpu);
2042 }
2043
2044 #else /* CONFIG_SMP */
2045
2046 if (p->in_iowait) {
2047 delayacct_blkio_end(p);
2048 atomic_dec(&task_rq(p)->nr_iowait);
2049 }
2050
2051 #endif /* CONFIG_SMP */
2052
2053 ttwu_queue(p, cpu, wake_flags);
2054 stat:
2055 ttwu_stat(p, cpu, wake_flags);
2056 out:
2057 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2058
2059 return success;
2060 }
2061
2062 /**
2063 * try_to_wake_up_local - try to wake up a local task with rq lock held
2064 * @p: the thread to be awakened
2065 * @rf: request-queue flags for pinning
2066 *
2067 * Put @p on the run-queue if it's not already there. The caller must
2068 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2069 * the current task.
2070 */
2071 static void try_to_wake_up_local(struct task_struct *p, struct rq_flags *rf)
2072 {
2073 struct rq *rq = task_rq(p);
2074
2075 if (WARN_ON_ONCE(rq != this_rq()) ||
2076 WARN_ON_ONCE(p == current))
2077 return;
2078
2079 lockdep_assert_held(&rq->lock);
2080
2081 if (!raw_spin_trylock(&p->pi_lock)) {
2082 /*
2083 * This is OK, because current is on_cpu, which avoids it being
2084 * picked for load-balance and preemption/IRQs are still
2085 * disabled avoiding further scheduler activity on it and we've
2086 * not yet picked a replacement task.
2087 */
2088 rq_unlock(rq, rf);
2089 raw_spin_lock(&p->pi_lock);
2090 rq_relock(rq, rf);
2091 }
2092
2093 if (!(p->state & TASK_NORMAL))
2094 goto out;
2095
2096 trace_sched_waking(p);
2097
2098 if (!task_on_rq_queued(p)) {
2099 if (p->in_iowait) {
2100 delayacct_blkio_end(p);
2101 atomic_dec(&rq->nr_iowait);
2102 }
2103 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK);
2104 }
2105
2106 ttwu_do_wakeup(rq, p, 0, rf);
2107 ttwu_stat(p, smp_processor_id(), 0);
2108 out:
2109 raw_spin_unlock(&p->pi_lock);
2110 }
2111
2112 /**
2113 * wake_up_process - Wake up a specific process
2114 * @p: The process to be woken up.
2115 *
2116 * Attempt to wake up the nominated process and move it to the set of runnable
2117 * processes.
2118 *
2119 * Return: 1 if the process was woken up, 0 if it was already running.
2120 *
2121 * It may be assumed that this function implies a write memory barrier before
2122 * changing the task state if and only if any tasks are woken up.
2123 */
2124 int wake_up_process(struct task_struct *p)
2125 {
2126 return try_to_wake_up(p, TASK_NORMAL, 0);
2127 }
2128 EXPORT_SYMBOL(wake_up_process);
2129
2130 int wake_up_state(struct task_struct *p, unsigned int state)
2131 {
2132 return try_to_wake_up(p, state, 0);
2133 }
2134
2135 /*
2136 * Perform scheduler related setup for a newly forked process p.
2137 * p is forked by current.
2138 *
2139 * __sched_fork() is basic setup used by init_idle() too:
2140 */
2141 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2142 {
2143 p->on_rq = 0;
2144
2145 p->se.on_rq = 0;
2146 p->se.exec_start = 0;
2147 p->se.sum_exec_runtime = 0;
2148 p->se.prev_sum_exec_runtime = 0;
2149 p->se.nr_migrations = 0;
2150 p->se.vruntime = 0;
2151 INIT_LIST_HEAD(&p->se.group_node);
2152
2153 #ifdef CONFIG_FAIR_GROUP_SCHED
2154 p->se.cfs_rq = NULL;
2155 #endif
2156
2157 #ifdef CONFIG_SCHEDSTATS
2158 /* Even if schedstat is disabled, there should not be garbage */
2159 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2160 #endif
2161
2162 RB_CLEAR_NODE(&p->dl.rb_node);
2163 init_dl_task_timer(&p->dl);
2164 init_dl_inactive_task_timer(&p->dl);
2165 __dl_clear_params(p);
2166
2167 INIT_LIST_HEAD(&p->rt.run_list);
2168 p->rt.timeout = 0;
2169 p->rt.time_slice = sched_rr_timeslice;
2170 p->rt.on_rq = 0;
2171 p->rt.on_list = 0;
2172
2173 #ifdef CONFIG_PREEMPT_NOTIFIERS
2174 INIT_HLIST_HEAD(&p->preempt_notifiers);
2175 #endif
2176
2177 #ifdef CONFIG_NUMA_BALANCING
2178 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2179 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2180 p->mm->numa_scan_seq = 0;
2181 }
2182
2183 if (clone_flags & CLONE_VM)
2184 p->numa_preferred_nid = current->numa_preferred_nid;
2185 else
2186 p->numa_preferred_nid = -1;
2187
2188 p->node_stamp = 0ULL;
2189 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2190 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2191 p->numa_work.next = &p->numa_work;
2192 p->numa_faults = NULL;
2193 p->last_task_numa_placement = 0;
2194 p->last_sum_exec_runtime = 0;
2195
2196 p->numa_group = NULL;
2197 #endif /* CONFIG_NUMA_BALANCING */
2198 }
2199
2200 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2201
2202 #ifdef CONFIG_NUMA_BALANCING
2203
2204 void set_numabalancing_state(bool enabled)
2205 {
2206 if (enabled)
2207 static_branch_enable(&sched_numa_balancing);
2208 else
2209 static_branch_disable(&sched_numa_balancing);
2210 }
2211
2212 #ifdef CONFIG_PROC_SYSCTL
2213 int sysctl_numa_balancing(struct ctl_table *table, int write,
2214 void __user *buffer, size_t *lenp, loff_t *ppos)
2215 {
2216 struct ctl_table t;
2217 int err;
2218 int state = static_branch_likely(&sched_numa_balancing);
2219
2220 if (write && !capable(CAP_SYS_ADMIN))
2221 return -EPERM;
2222
2223 t = *table;
2224 t.data = &state;
2225 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2226 if (err < 0)
2227 return err;
2228 if (write)
2229 set_numabalancing_state(state);
2230 return err;
2231 }
2232 #endif
2233 #endif
2234
2235 #ifdef CONFIG_SCHEDSTATS
2236
2237 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2238 static bool __initdata __sched_schedstats = false;
2239
2240 static void set_schedstats(bool enabled)
2241 {
2242 if (enabled)
2243 static_branch_enable(&sched_schedstats);
2244 else
2245 static_branch_disable(&sched_schedstats);
2246 }
2247
2248 void force_schedstat_enabled(void)
2249 {
2250 if (!schedstat_enabled()) {
2251 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2252 static_branch_enable(&sched_schedstats);
2253 }
2254 }
2255
2256 static int __init setup_schedstats(char *str)
2257 {
2258 int ret = 0;
2259 if (!str)
2260 goto out;
2261
2262 /*
2263 * This code is called before jump labels have been set up, so we can't
2264 * change the static branch directly just yet. Instead set a temporary
2265 * variable so init_schedstats() can do it later.
2266 */
2267 if (!strcmp(str, "enable")) {
2268 __sched_schedstats = true;
2269 ret = 1;
2270 } else if (!strcmp(str, "disable")) {
2271 __sched_schedstats = false;
2272 ret = 1;
2273 }
2274 out:
2275 if (!ret)
2276 pr_warn("Unable to parse schedstats=\n");
2277
2278 return ret;
2279 }
2280 __setup("schedstats=", setup_schedstats);
2281
2282 static void __init init_schedstats(void)
2283 {
2284 set_schedstats(__sched_schedstats);
2285 }
2286
2287 #ifdef CONFIG_PROC_SYSCTL
2288 int sysctl_schedstats(struct ctl_table *table, int write,
2289 void __user *buffer, size_t *lenp, loff_t *ppos)
2290 {
2291 struct ctl_table t;
2292 int err;
2293 int state = static_branch_likely(&sched_schedstats);
2294
2295 if (write && !capable(CAP_SYS_ADMIN))
2296 return -EPERM;
2297
2298 t = *table;
2299 t.data = &state;
2300 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2301 if (err < 0)
2302 return err;
2303 if (write)
2304 set_schedstats(state);
2305 return err;
2306 }
2307 #endif /* CONFIG_PROC_SYSCTL */
2308 #else /* !CONFIG_SCHEDSTATS */
2309 static inline void init_schedstats(void) {}
2310 #endif /* CONFIG_SCHEDSTATS */
2311
2312 /*
2313 * fork()/clone()-time setup:
2314 */
2315 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2316 {
2317 unsigned long flags;
2318 int cpu = get_cpu();
2319
2320 __sched_fork(clone_flags, p);
2321 /*
2322 * We mark the process as NEW here. This guarantees that
2323 * nobody will actually run it, and a signal or other external
2324 * event cannot wake it up and insert it on the runqueue either.
2325 */
2326 p->state = TASK_NEW;
2327
2328 /*
2329 * Make sure we do not leak PI boosting priority to the child.
2330 */
2331 p->prio = current->normal_prio;
2332
2333 /*
2334 * Revert to default priority/policy on fork if requested.
2335 */
2336 if (unlikely(p->sched_reset_on_fork)) {
2337 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2338 p->policy = SCHED_NORMAL;
2339 p->static_prio = NICE_TO_PRIO(0);
2340 p->rt_priority = 0;
2341 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2342 p->static_prio = NICE_TO_PRIO(0);
2343
2344 p->prio = p->normal_prio = __normal_prio(p);
2345 set_load_weight(p, false);
2346
2347 /*
2348 * We don't need the reset flag anymore after the fork. It has
2349 * fulfilled its duty:
2350 */
2351 p->sched_reset_on_fork = 0;
2352 }
2353
2354 if (dl_prio(p->prio)) {
2355 put_cpu();
2356 return -EAGAIN;
2357 } else if (rt_prio(p->prio)) {
2358 p->sched_class = &rt_sched_class;
2359 } else {
2360 p->sched_class = &fair_sched_class;
2361 }
2362
2363 init_entity_runnable_average(&p->se);
2364
2365 /*
2366 * The child is not yet in the pid-hash so no cgroup attach races,
2367 * and the cgroup is pinned to this child due to cgroup_fork()
2368 * is ran before sched_fork().
2369 *
2370 * Silence PROVE_RCU.
2371 */
2372 raw_spin_lock_irqsave(&p->pi_lock, flags);
2373 /*
2374 * We're setting the CPU for the first time, we don't migrate,
2375 * so use __set_task_cpu().
2376 */
2377 __set_task_cpu(p, cpu);
2378 if (p->sched_class->task_fork)
2379 p->sched_class->task_fork(p);
2380 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2381
2382 #ifdef CONFIG_SCHED_INFO
2383 if (likely(sched_info_on()))
2384 memset(&p->sched_info, 0, sizeof(p->sched_info));
2385 #endif
2386 #if defined(CONFIG_SMP)
2387 p->on_cpu = 0;
2388 #endif
2389 init_task_preempt_count(p);
2390 #ifdef CONFIG_SMP
2391 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2392 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2393 #endif
2394
2395 put_cpu();
2396 return 0;
2397 }
2398
2399 unsigned long to_ratio(u64 period, u64 runtime)
2400 {
2401 if (runtime == RUNTIME_INF)
2402 return BW_UNIT;
2403
2404 /*
2405 * Doing this here saves a lot of checks in all
2406 * the calling paths, and returning zero seems
2407 * safe for them anyway.
2408 */
2409 if (period == 0)
2410 return 0;
2411
2412 return div64_u64(runtime << BW_SHIFT, period);
2413 }
2414
2415 /*
2416 * wake_up_new_task - wake up a newly created task for the first time.
2417 *
2418 * This function will do some initial scheduler statistics housekeeping
2419 * that must be done for every newly created context, then puts the task
2420 * on the runqueue and wakes it.
2421 */
2422 void wake_up_new_task(struct task_struct *p)
2423 {
2424 struct rq_flags rf;
2425 struct rq *rq;
2426
2427 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2428 p->state = TASK_RUNNING;
2429 #ifdef CONFIG_SMP
2430 /*
2431 * Fork balancing, do it here and not earlier because:
2432 * - cpus_allowed can change in the fork path
2433 * - any previously selected CPU might disappear through hotplug
2434 *
2435 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2436 * as we're not fully set-up yet.
2437 */
2438 p->recent_used_cpu = task_cpu(p);
2439 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2440 #endif
2441 rq = __task_rq_lock(p, &rf);
2442 update_rq_clock(rq);
2443 post_init_entity_util_avg(&p->se);
2444
2445 activate_task(rq, p, ENQUEUE_NOCLOCK);
2446 p->on_rq = TASK_ON_RQ_QUEUED;
2447 trace_sched_wakeup_new(p);
2448 check_preempt_curr(rq, p, WF_FORK);
2449 #ifdef CONFIG_SMP
2450 if (p->sched_class->task_woken) {
2451 /*
2452 * Nothing relies on rq->lock after this, so its fine to
2453 * drop it.
2454 */
2455 rq_unpin_lock(rq, &rf);
2456 p->sched_class->task_woken(rq, p);
2457 rq_repin_lock(rq, &rf);
2458 }
2459 #endif
2460 task_rq_unlock(rq, p, &rf);
2461 }
2462
2463 #ifdef CONFIG_PREEMPT_NOTIFIERS
2464
2465 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2466
2467 void preempt_notifier_inc(void)
2468 {
2469 static_key_slow_inc(&preempt_notifier_key);
2470 }
2471 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2472
2473 void preempt_notifier_dec(void)
2474 {
2475 static_key_slow_dec(&preempt_notifier_key);
2476 }
2477 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2478
2479 /**
2480 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2481 * @notifier: notifier struct to register
2482 */
2483 void preempt_notifier_register(struct preempt_notifier *notifier)
2484 {
2485 if (!static_key_false(&preempt_notifier_key))
2486 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2487
2488 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2489 }
2490 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2491
2492 /**
2493 * preempt_notifier_unregister - no longer interested in preemption notifications
2494 * @notifier: notifier struct to unregister
2495 *
2496 * This is *not* safe to call from within a preemption notifier.
2497 */
2498 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2499 {
2500 hlist_del(&notifier->link);
2501 }
2502 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2503
2504 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2505 {
2506 struct preempt_notifier *notifier;
2507
2508 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2509 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2510 }
2511
2512 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2513 {
2514 if (static_key_false(&preempt_notifier_key))
2515 __fire_sched_in_preempt_notifiers(curr);
2516 }
2517
2518 static void
2519 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2520 struct task_struct *next)
2521 {
2522 struct preempt_notifier *notifier;
2523
2524 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2525 notifier->ops->sched_out(notifier, next);
2526 }
2527
2528 static __always_inline void
2529 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2530 struct task_struct *next)
2531 {
2532 if (static_key_false(&preempt_notifier_key))
2533 __fire_sched_out_preempt_notifiers(curr, next);
2534 }
2535
2536 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2537
2538 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2539 {
2540 }
2541
2542 static inline void
2543 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2544 struct task_struct *next)
2545 {
2546 }
2547
2548 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2549
2550 static inline void prepare_task(struct task_struct *next)
2551 {
2552 #ifdef CONFIG_SMP
2553 /*
2554 * Claim the task as running, we do this before switching to it
2555 * such that any running task will have this set.
2556 */
2557 next->on_cpu = 1;
2558 #endif
2559 }
2560
2561 static inline void finish_task(struct task_struct *prev)
2562 {
2563 #ifdef CONFIG_SMP
2564 /*
2565 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2566 * We must ensure this doesn't happen until the switch is completely
2567 * finished.
2568 *
2569 * In particular, the load of prev->state in finish_task_switch() must
2570 * happen before this.
2571 *
2572 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2573 */
2574 smp_store_release(&prev->on_cpu, 0);
2575 #endif
2576 }
2577
2578 static inline void
2579 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
2580 {
2581 /*
2582 * Since the runqueue lock will be released by the next
2583 * task (which is an invalid locking op but in the case
2584 * of the scheduler it's an obvious special-case), so we
2585 * do an early lockdep release here:
2586 */
2587 rq_unpin_lock(rq, rf);
2588 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2589 #ifdef CONFIG_DEBUG_SPINLOCK
2590 /* this is a valid case when another task releases the spinlock */
2591 rq->lock.owner = next;
2592 #endif
2593 }
2594
2595 static inline void finish_lock_switch(struct rq *rq)
2596 {
2597 /*
2598 * If we are tracking spinlock dependencies then we have to
2599 * fix up the runqueue lock - which gets 'carried over' from
2600 * prev into current:
2601 */
2602 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
2603 raw_spin_unlock_irq(&rq->lock);
2604 }
2605
2606 /*
2607 * NOP if the arch has not defined these:
2608 */
2609
2610 #ifndef prepare_arch_switch
2611 # define prepare_arch_switch(next) do { } while (0)
2612 #endif
2613
2614 #ifndef finish_arch_post_lock_switch
2615 # define finish_arch_post_lock_switch() do { } while (0)
2616 #endif
2617
2618 /**
2619 * prepare_task_switch - prepare to switch tasks
2620 * @rq: the runqueue preparing to switch
2621 * @prev: the current task that is being switched out
2622 * @next: the task we are going to switch to.
2623 *
2624 * This is called with the rq lock held and interrupts off. It must
2625 * be paired with a subsequent finish_task_switch after the context
2626 * switch.
2627 *
2628 * prepare_task_switch sets up locking and calls architecture specific
2629 * hooks.
2630 */
2631 static inline void
2632 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2633 struct task_struct *next)
2634 {
2635 sched_info_switch(rq, prev, next);
2636 perf_event_task_sched_out(prev, next);
2637 fire_sched_out_preempt_notifiers(prev, next);
2638 prepare_task(next);
2639 prepare_arch_switch(next);
2640 }
2641
2642 /**
2643 * finish_task_switch - clean up after a task-switch
2644 * @prev: the thread we just switched away from.
2645 *
2646 * finish_task_switch must be called after the context switch, paired
2647 * with a prepare_task_switch call before the context switch.
2648 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2649 * and do any other architecture-specific cleanup actions.
2650 *
2651 * Note that we may have delayed dropping an mm in context_switch(). If
2652 * so, we finish that here outside of the runqueue lock. (Doing it
2653 * with the lock held can cause deadlocks; see schedule() for
2654 * details.)
2655 *
2656 * The context switch have flipped the stack from under us and restored the
2657 * local variables which were saved when this task called schedule() in the
2658 * past. prev == current is still correct but we need to recalculate this_rq
2659 * because prev may have moved to another CPU.
2660 */
2661 static struct rq *finish_task_switch(struct task_struct *prev)
2662 __releases(rq->lock)
2663 {
2664 struct rq *rq = this_rq();
2665 struct mm_struct *mm = rq->prev_mm;
2666 long prev_state;
2667
2668 /*
2669 * The previous task will have left us with a preempt_count of 2
2670 * because it left us after:
2671 *
2672 * schedule()
2673 * preempt_disable(); // 1
2674 * __schedule()
2675 * raw_spin_lock_irq(&rq->lock) // 2
2676 *
2677 * Also, see FORK_PREEMPT_COUNT.
2678 */
2679 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2680 "corrupted preempt_count: %s/%d/0x%x\n",
2681 current->comm, current->pid, preempt_count()))
2682 preempt_count_set(FORK_PREEMPT_COUNT);
2683
2684 rq->prev_mm = NULL;
2685
2686 /*
2687 * A task struct has one reference for the use as "current".
2688 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2689 * schedule one last time. The schedule call will never return, and
2690 * the scheduled task must drop that reference.
2691 *
2692 * We must observe prev->state before clearing prev->on_cpu (in
2693 * finish_task), otherwise a concurrent wakeup can get prev
2694 * running on another CPU and we could rave with its RUNNING -> DEAD
2695 * transition, resulting in a double drop.
2696 */
2697 prev_state = prev->state;
2698 vtime_task_switch(prev);
2699 perf_event_task_sched_in(prev, current);
2700 finish_task(prev);
2701 finish_lock_switch(rq);
2702 finish_arch_post_lock_switch();
2703
2704 fire_sched_in_preempt_notifiers(current);
2705 /*
2706 * When switching through a kernel thread, the loop in
2707 * membarrier_{private,global}_expedited() may have observed that
2708 * kernel thread and not issued an IPI. It is therefore possible to
2709 * schedule between user->kernel->user threads without passing though
2710 * switch_mm(). Membarrier requires a barrier after storing to
2711 * rq->curr, before returning to userspace, so provide them here:
2712 *
2713 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2714 * provided by mmdrop(),
2715 * - a sync_core for SYNC_CORE.
2716 */
2717 if (mm) {
2718 membarrier_mm_sync_core_before_usermode(mm);
2719 mmdrop(mm);
2720 }
2721 if (unlikely(prev_state == TASK_DEAD)) {
2722 if (prev->sched_class->task_dead)
2723 prev->sched_class->task_dead(prev);
2724
2725 /*
2726 * Remove function-return probe instances associated with this
2727 * task and put them back on the free list.
2728 */
2729 kprobe_flush_task(prev);
2730
2731 /* Task is done with its stack. */
2732 put_task_stack(prev);
2733
2734 put_task_struct(prev);
2735 }
2736
2737 tick_nohz_task_switch();
2738 return rq;
2739 }
2740
2741 #ifdef CONFIG_SMP
2742
2743 /* rq->lock is NOT held, but preemption is disabled */
2744 static void __balance_callback(struct rq *rq)
2745 {
2746 struct callback_head *head, *next;
2747 void (*func)(struct rq *rq);
2748 unsigned long flags;
2749
2750 raw_spin_lock_irqsave(&rq->lock, flags);
2751 head = rq->balance_callback;
2752 rq->balance_callback = NULL;
2753 while (head) {
2754 func = (void (*)(struct rq *))head->func;
2755 next = head->next;
2756 head->next = NULL;
2757 head = next;
2758
2759 func(rq);
2760 }
2761 raw_spin_unlock_irqrestore(&rq->lock, flags);
2762 }
2763
2764 static inline void balance_callback(struct rq *rq)
2765 {
2766 if (unlikely(rq->balance_callback))
2767 __balance_callback(rq);
2768 }
2769
2770 #else
2771
2772 static inline void balance_callback(struct rq *rq)
2773 {
2774 }
2775
2776 #endif
2777
2778 /**
2779 * schedule_tail - first thing a freshly forked thread must call.
2780 * @prev: the thread we just switched away from.
2781 */
2782 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2783 __releases(rq->lock)
2784 {
2785 struct rq *rq;
2786
2787 /*
2788 * New tasks start with FORK_PREEMPT_COUNT, see there and
2789 * finish_task_switch() for details.
2790 *
2791 * finish_task_switch() will drop rq->lock() and lower preempt_count
2792 * and the preempt_enable() will end up enabling preemption (on
2793 * PREEMPT_COUNT kernels).
2794 */
2795
2796 rq = finish_task_switch(prev);
2797 balance_callback(rq);
2798 preempt_enable();
2799
2800 if (current->set_child_tid)
2801 put_user(task_pid_vnr(current), current->set_child_tid);
2802 }
2803
2804 /*
2805 * context_switch - switch to the new MM and the new thread's register state.
2806 */
2807 static __always_inline struct rq *
2808 context_switch(struct rq *rq, struct task_struct *prev,
2809 struct task_struct *next, struct rq_flags *rf)
2810 {
2811 struct mm_struct *mm, *oldmm;
2812
2813 prepare_task_switch(rq, prev, next);
2814
2815 mm = next->mm;
2816 oldmm = prev->active_mm;
2817 /*
2818 * For paravirt, this is coupled with an exit in switch_to to
2819 * combine the page table reload and the switch backend into
2820 * one hypercall.
2821 */
2822 arch_start_context_switch(prev);
2823
2824 /*
2825 * If mm is non-NULL, we pass through switch_mm(). If mm is
2826 * NULL, we will pass through mmdrop() in finish_task_switch().
2827 * Both of these contain the full memory barrier required by
2828 * membarrier after storing to rq->curr, before returning to
2829 * user-space.
2830 */
2831 if (!mm) {
2832 next->active_mm = oldmm;
2833 mmgrab(oldmm);
2834 enter_lazy_tlb(oldmm, next);
2835 } else
2836 switch_mm_irqs_off(oldmm, mm, next);
2837
2838 if (!prev->mm) {
2839 prev->active_mm = NULL;
2840 rq->prev_mm = oldmm;
2841 }
2842
2843 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
2844
2845 prepare_lock_switch(rq, next, rf);
2846
2847 /* Here we just switch the register state and the stack. */
2848 switch_to(prev, next, prev);
2849 barrier();
2850
2851 return finish_task_switch(prev);
2852 }
2853
2854 /*
2855 * nr_running and nr_context_switches:
2856 *
2857 * externally visible scheduler statistics: current number of runnable
2858 * threads, total number of context switches performed since bootup.
2859 */
2860 unsigned long nr_running(void)
2861 {
2862 unsigned long i, sum = 0;
2863
2864 for_each_online_cpu(i)
2865 sum += cpu_rq(i)->nr_running;
2866
2867 return sum;
2868 }
2869
2870 /*
2871 * Check if only the current task is running on the CPU.
2872 *
2873 * Caution: this function does not check that the caller has disabled
2874 * preemption, thus the result might have a time-of-check-to-time-of-use
2875 * race. The caller is responsible to use it correctly, for example:
2876 *
2877 * - from a non-preemptable section (of course)
2878 *
2879 * - from a thread that is bound to a single CPU
2880 *
2881 * - in a loop with very short iterations (e.g. a polling loop)
2882 */
2883 bool single_task_running(void)
2884 {
2885 return raw_rq()->nr_running == 1;
2886 }
2887 EXPORT_SYMBOL(single_task_running);
2888
2889 unsigned long long nr_context_switches(void)
2890 {
2891 int i;
2892 unsigned long long sum = 0;
2893
2894 for_each_possible_cpu(i)
2895 sum += cpu_rq(i)->nr_switches;
2896
2897 return sum;
2898 }
2899
2900 /*
2901 * IO-wait accounting, and how its mostly bollocks (on SMP).
2902 *
2903 * The idea behind IO-wait account is to account the idle time that we could
2904 * have spend running if it were not for IO. That is, if we were to improve the
2905 * storage performance, we'd have a proportional reduction in IO-wait time.
2906 *
2907 * This all works nicely on UP, where, when a task blocks on IO, we account
2908 * idle time as IO-wait, because if the storage were faster, it could've been
2909 * running and we'd not be idle.
2910 *
2911 * This has been extended to SMP, by doing the same for each CPU. This however
2912 * is broken.
2913 *
2914 * Imagine for instance the case where two tasks block on one CPU, only the one
2915 * CPU will have IO-wait accounted, while the other has regular idle. Even
2916 * though, if the storage were faster, both could've ran at the same time,
2917 * utilising both CPUs.
2918 *
2919 * This means, that when looking globally, the current IO-wait accounting on
2920 * SMP is a lower bound, by reason of under accounting.
2921 *
2922 * Worse, since the numbers are provided per CPU, they are sometimes
2923 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2924 * associated with any one particular CPU, it can wake to another CPU than it
2925 * blocked on. This means the per CPU IO-wait number is meaningless.
2926 *
2927 * Task CPU affinities can make all that even more 'interesting'.
2928 */
2929
2930 unsigned long nr_iowait(void)
2931 {
2932 unsigned long i, sum = 0;
2933
2934 for_each_possible_cpu(i)
2935 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2936
2937 return sum;
2938 }
2939
2940 /*
2941 * Consumers of these two interfaces, like for example the cpufreq menu
2942 * governor are using nonsensical data. Boosting frequency for a CPU that has
2943 * IO-wait which might not even end up running the task when it does become
2944 * runnable.
2945 */
2946
2947 unsigned long nr_iowait_cpu(int cpu)
2948 {
2949 struct rq *this = cpu_rq(cpu);
2950 return atomic_read(&this->nr_iowait);
2951 }
2952
2953 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2954 {
2955 struct rq *rq = this_rq();
2956 *nr_waiters = atomic_read(&rq->nr_iowait);
2957 *load = rq->load.weight;
2958 }
2959
2960 #ifdef CONFIG_SMP
2961
2962 /*
2963 * sched_exec - execve() is a valuable balancing opportunity, because at
2964 * this point the task has the smallest effective memory and cache footprint.
2965 */
2966 void sched_exec(void)
2967 {
2968 struct task_struct *p = current;
2969 unsigned long flags;
2970 int dest_cpu;
2971
2972 raw_spin_lock_irqsave(&p->pi_lock, flags);
2973 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2974 if (dest_cpu == smp_processor_id())
2975 goto unlock;
2976
2977 if (likely(cpu_active(dest_cpu))) {
2978 struct migration_arg arg = { p, dest_cpu };
2979
2980 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2981 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2982 return;
2983 }
2984 unlock:
2985 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2986 }
2987
2988 #endif
2989
2990 DEFINE_PER_CPU(struct kernel_stat, kstat);
2991 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2992
2993 EXPORT_PER_CPU_SYMBOL(kstat);
2994 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2995
2996 /*
2997 * The function fair_sched_class.update_curr accesses the struct curr
2998 * and its field curr->exec_start; when called from task_sched_runtime(),
2999 * we observe a high rate of cache misses in practice.
3000 * Prefetching this data results in improved performance.
3001 */
3002 static inline void prefetch_curr_exec_start(struct task_struct *p)
3003 {
3004 #ifdef CONFIG_FAIR_GROUP_SCHED
3005 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3006 #else
3007 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3008 #endif
3009 prefetch(curr);
3010 prefetch(&curr->exec_start);
3011 }
3012
3013 /*
3014 * Return accounted runtime for the task.
3015 * In case the task is currently running, return the runtime plus current's
3016 * pending runtime that have not been accounted yet.
3017 */
3018 unsigned long long task_sched_runtime(struct task_struct *p)
3019 {
3020 struct rq_flags rf;
3021 struct rq *rq;
3022 u64 ns;
3023
3024 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3025 /*
3026 * 64-bit doesn't need locks to atomically read a 64-bit value.
3027 * So we have a optimization chance when the task's delta_exec is 0.
3028 * Reading ->on_cpu is racy, but this is ok.
3029 *
3030 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3031 * If we race with it entering CPU, unaccounted time is 0. This is
3032 * indistinguishable from the read occurring a few cycles earlier.
3033 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3034 * been accounted, so we're correct here as well.
3035 */
3036 if (!p->on_cpu || !task_on_rq_queued(p))
3037 return p->se.sum_exec_runtime;
3038 #endif
3039
3040 rq = task_rq_lock(p, &rf);
3041 /*
3042 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3043 * project cycles that may never be accounted to this
3044 * thread, breaking clock_gettime().
3045 */
3046 if (task_current(rq, p) && task_on_rq_queued(p)) {
3047 prefetch_curr_exec_start(p);
3048 update_rq_clock(rq);
3049 p->sched_class->update_curr(rq);
3050 }
3051 ns = p->se.sum_exec_runtime;
3052 task_rq_unlock(rq, p, &rf);
3053
3054 return ns;
3055 }
3056
3057 /*
3058 * This function gets called by the timer code, with HZ frequency.
3059 * We call it with interrupts disabled.
3060 */
3061 void scheduler_tick(void)
3062 {
3063 int cpu = smp_processor_id();
3064 struct rq *rq = cpu_rq(cpu);
3065 struct task_struct *curr = rq->curr;
3066 struct rq_flags rf;
3067
3068 sched_clock_tick();
3069
3070 rq_lock(rq, &rf);
3071
3072 update_rq_clock(rq);
3073 curr->sched_class->task_tick(rq, curr, 0);
3074 cpu_load_update_active(rq);
3075 calc_global_load_tick(rq);
3076
3077 rq_unlock(rq, &rf);
3078
3079 perf_event_task_tick();
3080
3081 #ifdef CONFIG_SMP
3082 rq->idle_balance = idle_cpu(cpu);
3083 trigger_load_balance(rq);
3084 #endif
3085 }
3086
3087 #ifdef CONFIG_NO_HZ_FULL
3088
3089 struct tick_work {
3090 int cpu;
3091 struct delayed_work work;
3092 };
3093
3094 static struct tick_work __percpu *tick_work_cpu;
3095
3096 static void sched_tick_remote(struct work_struct *work)
3097 {
3098 struct delayed_work *dwork = to_delayed_work(work);
3099 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3100 int cpu = twork->cpu;
3101 struct rq *rq = cpu_rq(cpu);
3102 struct rq_flags rf;
3103
3104 /*
3105 * Handle the tick only if it appears the remote CPU is running in full
3106 * dynticks mode. The check is racy by nature, but missing a tick or
3107 * having one too much is no big deal because the scheduler tick updates
3108 * statistics and checks timeslices in a time-independent way, regardless
3109 * of when exactly it is running.
3110 */
3111 if (!idle_cpu(cpu) && tick_nohz_tick_stopped_cpu(cpu)) {
3112 struct task_struct *curr;
3113 u64 delta;
3114
3115 rq_lock_irq(rq, &rf);
3116 update_rq_clock(rq);
3117 curr = rq->curr;
3118 delta = rq_clock_task(rq) - curr->se.exec_start;
3119
3120 /*
3121 * Make sure the next tick runs within a reasonable
3122 * amount of time.
3123 */
3124 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3125 curr->sched_class->task_tick(rq, curr, 0);
3126 rq_unlock_irq(rq, &rf);
3127 }
3128
3129 /*
3130 * Run the remote tick once per second (1Hz). This arbitrary
3131 * frequency is large enough to avoid overload but short enough
3132 * to keep scheduler internal stats reasonably up to date.
3133 */
3134 queue_delayed_work(system_unbound_wq, dwork, HZ);
3135 }
3136
3137 static void sched_tick_start(int cpu)
3138 {
3139 struct tick_work *twork;
3140
3141 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3142 return;
3143
3144 WARN_ON_ONCE(!tick_work_cpu);
3145
3146 twork = per_cpu_ptr(tick_work_cpu, cpu);
3147 twork->cpu = cpu;
3148 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3149 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3150 }
3151
3152 #ifdef CONFIG_HOTPLUG_CPU
3153 static void sched_tick_stop(int cpu)
3154 {
3155 struct tick_work *twork;
3156
3157 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3158 return;
3159
3160 WARN_ON_ONCE(!tick_work_cpu);
3161
3162 twork = per_cpu_ptr(tick_work_cpu, cpu);
3163 cancel_delayed_work_sync(&twork->work);
3164 }
3165 #endif /* CONFIG_HOTPLUG_CPU */
3166
3167 int __init sched_tick_offload_init(void)
3168 {
3169 tick_work_cpu = alloc_percpu(struct tick_work);
3170 BUG_ON(!tick_work_cpu);
3171
3172 return 0;
3173 }
3174
3175 #else /* !CONFIG_NO_HZ_FULL */
3176 static inline void sched_tick_start(int cpu) { }
3177 static inline void sched_tick_stop(int cpu) { }
3178 #endif
3179
3180 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3181 defined(CONFIG_PREEMPT_TRACER))
3182 /*
3183 * If the value passed in is equal to the current preempt count
3184 * then we just disabled preemption. Start timing the latency.
3185 */
3186 static inline void preempt_latency_start(int val)
3187 {
3188 if (preempt_count() == val) {
3189 unsigned long ip = get_lock_parent_ip();
3190 #ifdef CONFIG_DEBUG_PREEMPT
3191 current->preempt_disable_ip = ip;
3192 #endif
3193 trace_preempt_off(CALLER_ADDR0, ip);
3194 }
3195 }
3196
3197 void preempt_count_add(int val)
3198 {
3199 #ifdef CONFIG_DEBUG_PREEMPT
3200 /*
3201 * Underflow?
3202 */
3203 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3204 return;
3205 #endif
3206 __preempt_count_add(val);
3207 #ifdef CONFIG_DEBUG_PREEMPT
3208 /*
3209 * Spinlock count overflowing soon?
3210 */
3211 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3212 PREEMPT_MASK - 10);
3213 #endif
3214 preempt_latency_start(val);
3215 }
3216 EXPORT_SYMBOL(preempt_count_add);
3217 NOKPROBE_SYMBOL(preempt_count_add);
3218
3219 /*
3220 * If the value passed in equals to the current preempt count
3221 * then we just enabled preemption. Stop timing the latency.
3222 */
3223 static inline void preempt_latency_stop(int val)
3224 {
3225 if (preempt_count() == val)
3226 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3227 }
3228
3229 void preempt_count_sub(int val)
3230 {
3231 #ifdef CONFIG_DEBUG_PREEMPT
3232 /*
3233 * Underflow?
3234 */
3235 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3236 return;
3237 /*
3238 * Is the spinlock portion underflowing?
3239 */
3240 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3241 !(preempt_count() & PREEMPT_MASK)))
3242 return;
3243 #endif
3244
3245 preempt_latency_stop(val);
3246 __preempt_count_sub(val);
3247 }
3248 EXPORT_SYMBOL(preempt_count_sub);
3249 NOKPROBE_SYMBOL(preempt_count_sub);
3250
3251 #else
3252 static inline void preempt_latency_start(int val) { }
3253 static inline void preempt_latency_stop(int val) { }
3254 #endif
3255
3256 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3257 {
3258 #ifdef CONFIG_DEBUG_PREEMPT
3259 return p->preempt_disable_ip;
3260 #else
3261 return 0;
3262 #endif
3263 }
3264
3265 /*
3266 * Print scheduling while atomic bug:
3267 */
3268 static noinline void __schedule_bug(struct task_struct *prev)
3269 {
3270 /* Save this before calling printk(), since that will clobber it */
3271 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3272
3273 if (oops_in_progress)
3274 return;
3275
3276 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3277 prev->comm, prev->pid, preempt_count());
3278
3279 debug_show_held_locks(prev);
3280 print_modules();
3281 if (irqs_disabled())
3282 print_irqtrace_events(prev);
3283 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3284 && in_atomic_preempt_off()) {
3285 pr_err("Preemption disabled at:");
3286 print_ip_sym(preempt_disable_ip);
3287 pr_cont("\n");
3288 }
3289 if (panic_on_warn)
3290 panic("scheduling while atomic\n");
3291
3292 dump_stack();
3293 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3294 }
3295
3296 /*
3297 * Various schedule()-time debugging checks and statistics:
3298 */
3299 static inline void schedule_debug(struct task_struct *prev)
3300 {
3301 #ifdef CONFIG_SCHED_STACK_END_CHECK
3302 if (task_stack_end_corrupted(prev))
3303 panic("corrupted stack end detected inside scheduler\n");
3304 #endif
3305
3306 if (unlikely(in_atomic_preempt_off())) {
3307 __schedule_bug(prev);
3308 preempt_count_set(PREEMPT_DISABLED);
3309 }
3310 rcu_sleep_check();
3311
3312 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3313
3314 schedstat_inc(this_rq()->sched_count);
3315 }
3316
3317 /*
3318 * Pick up the highest-prio task:
3319 */
3320 static inline struct task_struct *
3321 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3322 {
3323 const struct sched_class *class;
3324 struct task_struct *p;
3325
3326 /*
3327 * Optimization: we know that if all tasks are in the fair class we can
3328 * call that function directly, but only if the @prev task wasn't of a
3329 * higher scheduling class, because otherwise those loose the
3330 * opportunity to pull in more work from other CPUs.
3331 */
3332 if (likely((prev->sched_class == &idle_sched_class ||
3333 prev->sched_class == &fair_sched_class) &&
3334 rq->nr_running == rq->cfs.h_nr_running)) {
3335
3336 p = fair_sched_class.pick_next_task(rq, prev, rf);
3337 if (unlikely(p == RETRY_TASK))
3338 goto again;
3339
3340 /* Assumes fair_sched_class->next == idle_sched_class */
3341 if (unlikely(!p))
3342 p = idle_sched_class.pick_next_task(rq, prev, rf);
3343
3344 return p;
3345 }
3346
3347 again:
3348 for_each_class(class) {
3349 p = class->pick_next_task(rq, prev, rf);
3350 if (p) {
3351 if (unlikely(p == RETRY_TASK))
3352 goto again;
3353 return p;
3354 }
3355 }
3356
3357 /* The idle class should always have a runnable task: */
3358 BUG();
3359 }
3360
3361 /*
3362 * __schedule() is the main scheduler function.
3363 *
3364 * The main means of driving the scheduler and thus entering this function are:
3365 *
3366 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3367 *
3368 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3369 * paths. For example, see arch/x86/entry_64.S.
3370 *
3371 * To drive preemption between tasks, the scheduler sets the flag in timer
3372 * interrupt handler scheduler_tick().
3373 *
3374 * 3. Wakeups don't really cause entry into schedule(). They add a
3375 * task to the run-queue and that's it.
3376 *
3377 * Now, if the new task added to the run-queue preempts the current
3378 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3379 * called on the nearest possible occasion:
3380 *
3381 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3382 *
3383 * - in syscall or exception context, at the next outmost
3384 * preempt_enable(). (this might be as soon as the wake_up()'s
3385 * spin_unlock()!)
3386 *
3387 * - in IRQ context, return from interrupt-handler to
3388 * preemptible context
3389 *
3390 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3391 * then at the next:
3392 *
3393 * - cond_resched() call
3394 * - explicit schedule() call
3395 * - return from syscall or exception to user-space
3396 * - return from interrupt-handler to user-space
3397 *
3398 * WARNING: must be called with preemption disabled!
3399 */
3400 static void __sched notrace __schedule(bool preempt)
3401 {
3402 struct task_struct *prev, *next;
3403 unsigned long *switch_count;
3404 struct rq_flags rf;
3405 struct rq *rq;
3406 int cpu;
3407
3408 cpu = smp_processor_id();
3409 rq = cpu_rq(cpu);
3410 prev = rq->curr;
3411
3412 schedule_debug(prev);
3413
3414 if (sched_feat(HRTICK))
3415 hrtick_clear(rq);
3416
3417 local_irq_disable();
3418 rcu_note_context_switch(preempt);
3419
3420 /*
3421 * Make sure that signal_pending_state()->signal_pending() below
3422 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3423 * done by the caller to avoid the race with signal_wake_up().
3424 *
3425 * The membarrier system call requires a full memory barrier
3426 * after coming from user-space, before storing to rq->curr.
3427 */
3428 rq_lock(rq, &rf);
3429 smp_mb__after_spinlock();
3430
3431 /* Promote REQ to ACT */
3432 rq->clock_update_flags <<= 1;
3433 update_rq_clock(rq);
3434
3435 switch_count = &prev->nivcsw;
3436 if (!preempt && prev->state) {
3437 if (unlikely(signal_pending_state(prev->state, prev))) {
3438 prev->state = TASK_RUNNING;
3439 } else {
3440 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
3441 prev->on_rq = 0;
3442
3443 if (prev->in_iowait) {
3444 atomic_inc(&rq->nr_iowait);
3445 delayacct_blkio_start();
3446 }
3447
3448 /*
3449 * If a worker went to sleep, notify and ask workqueue
3450 * whether it wants to wake up a task to maintain
3451 * concurrency.
3452 */
3453 if (prev->flags & PF_WQ_WORKER) {
3454 struct task_struct *to_wakeup;
3455
3456 to_wakeup = wq_worker_sleeping(prev);
3457 if (to_wakeup)
3458 try_to_wake_up_local(to_wakeup, &rf);
3459 }
3460 }
3461 switch_count = &prev->nvcsw;
3462 }
3463
3464 next = pick_next_task(rq, prev, &rf);
3465 clear_tsk_need_resched(prev);
3466 clear_preempt_need_resched();
3467
3468 if (likely(prev != next)) {
3469 rq->nr_switches++;
3470 rq->curr = next;
3471 /*
3472 * The membarrier system call requires each architecture
3473 * to have a full memory barrier after updating
3474 * rq->curr, before returning to user-space.
3475 *
3476 * Here are the schemes providing that barrier on the
3477 * various architectures:
3478 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3479 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3480 * - finish_lock_switch() for weakly-ordered
3481 * architectures where spin_unlock is a full barrier,
3482 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3483 * is a RELEASE barrier),
3484 */
3485 ++*switch_count;
3486
3487 trace_sched_switch(preempt, prev, next);
3488
3489 /* Also unlocks the rq: */
3490 rq = context_switch(rq, prev, next, &rf);
3491 } else {
3492 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3493 rq_unlock_irq(rq, &rf);
3494 }
3495
3496 balance_callback(rq);
3497 }
3498
3499 void __noreturn do_task_dead(void)
3500 {
3501 /*
3502 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3503 * when the following two conditions become true.
3504 * - There is race condition of mmap_sem (It is acquired by
3505 * exit_mm()), and
3506 * - SMI occurs before setting TASK_RUNINNG.
3507 * (or hypervisor of virtual machine switches to other guest)
3508 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3509 *
3510 * To avoid it, we have to wait for releasing tsk->pi_lock which
3511 * is held by try_to_wake_up()
3512 */
3513 raw_spin_lock_irq(&current->pi_lock);
3514 raw_spin_unlock_irq(&current->pi_lock);
3515
3516 /* Causes final put_task_struct in finish_task_switch(): */
3517 __set_current_state(TASK_DEAD);
3518
3519 /* Tell freezer to ignore us: */
3520 current->flags |= PF_NOFREEZE;
3521
3522 __schedule(false);
3523 BUG();
3524
3525 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3526 for (;;)
3527 cpu_relax();
3528 }
3529
3530 static inline void sched_submit_work(struct task_struct *tsk)
3531 {
3532 if (!tsk->state || tsk_is_pi_blocked(tsk))
3533 return;
3534 /*
3535 * If we are going to sleep and we have plugged IO queued,
3536 * make sure to submit it to avoid deadlocks.
3537 */
3538 if (blk_needs_flush_plug(tsk))
3539 blk_schedule_flush_plug(tsk);
3540 }
3541
3542 asmlinkage __visible void __sched schedule(void)
3543 {
3544 struct task_struct *tsk = current;
3545
3546 sched_submit_work(tsk);
3547 do {
3548 preempt_disable();
3549 __schedule(false);
3550 sched_preempt_enable_no_resched();
3551 } while (need_resched());
3552 }
3553 EXPORT_SYMBOL(schedule);
3554
3555 /*
3556 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3557 * state (have scheduled out non-voluntarily) by making sure that all
3558 * tasks have either left the run queue or have gone into user space.
3559 * As idle tasks do not do either, they must not ever be preempted
3560 * (schedule out non-voluntarily).
3561 *
3562 * schedule_idle() is similar to schedule_preempt_disable() except that it
3563 * never enables preemption because it does not call sched_submit_work().
3564 */
3565 void __sched schedule_idle(void)
3566 {
3567 /*
3568 * As this skips calling sched_submit_work(), which the idle task does
3569 * regardless because that function is a nop when the task is in a
3570 * TASK_RUNNING state, make sure this isn't used someplace that the
3571 * current task can be in any other state. Note, idle is always in the
3572 * TASK_RUNNING state.
3573 */
3574 WARN_ON_ONCE(current->state);
3575 do {
3576 __schedule(false);
3577 } while (need_resched());
3578 }
3579
3580 #ifdef CONFIG_CONTEXT_TRACKING
3581 asmlinkage __visible void __sched schedule_user(void)
3582 {
3583 /*
3584 * If we come here after a random call to set_need_resched(),
3585 * or we have been woken up remotely but the IPI has not yet arrived,
3586 * we haven't yet exited the RCU idle mode. Do it here manually until
3587 * we find a better solution.
3588 *
3589 * NB: There are buggy callers of this function. Ideally we
3590 * should warn if prev_state != CONTEXT_USER, but that will trigger
3591 * too frequently to make sense yet.
3592 */
3593 enum ctx_state prev_state = exception_enter();
3594 schedule();
3595 exception_exit(prev_state);
3596 }
3597 #endif
3598
3599 /**
3600 * schedule_preempt_disabled - called with preemption disabled
3601 *
3602 * Returns with preemption disabled. Note: preempt_count must be 1
3603 */
3604 void __sched schedule_preempt_disabled(void)
3605 {
3606 sched_preempt_enable_no_resched();
3607 schedule();
3608 preempt_disable();
3609 }
3610
3611 static void __sched notrace preempt_schedule_common(void)
3612 {
3613 do {
3614 /*
3615 * Because the function tracer can trace preempt_count_sub()
3616 * and it also uses preempt_enable/disable_notrace(), if
3617 * NEED_RESCHED is set, the preempt_enable_notrace() called
3618 * by the function tracer will call this function again and
3619 * cause infinite recursion.
3620 *
3621 * Preemption must be disabled here before the function
3622 * tracer can trace. Break up preempt_disable() into two
3623 * calls. One to disable preemption without fear of being
3624 * traced. The other to still record the preemption latency,
3625 * which can also be traced by the function tracer.
3626 */
3627 preempt_disable_notrace();
3628 preempt_latency_start(1);
3629 __schedule(true);
3630 preempt_latency_stop(1);
3631 preempt_enable_no_resched_notrace();
3632
3633 /*
3634 * Check again in case we missed a preemption opportunity
3635 * between schedule and now.
3636 */
3637 } while (need_resched());
3638 }
3639
3640 #ifdef CONFIG_PREEMPT
3641 /*
3642 * this is the entry point to schedule() from in-kernel preemption
3643 * off of preempt_enable. Kernel preemptions off return from interrupt
3644 * occur there and call schedule directly.
3645 */
3646 asmlinkage __visible void __sched notrace preempt_schedule(void)
3647 {
3648 /*
3649 * If there is a non-zero preempt_count or interrupts are disabled,
3650 * we do not want to preempt the current task. Just return..
3651 */
3652 if (likely(!preemptible()))
3653 return;
3654
3655 preempt_schedule_common();
3656 }
3657 NOKPROBE_SYMBOL(preempt_schedule);
3658 EXPORT_SYMBOL(preempt_schedule);
3659
3660 /**
3661 * preempt_schedule_notrace - preempt_schedule called by tracing
3662 *
3663 * The tracing infrastructure uses preempt_enable_notrace to prevent
3664 * recursion and tracing preempt enabling caused by the tracing
3665 * infrastructure itself. But as tracing can happen in areas coming
3666 * from userspace or just about to enter userspace, a preempt enable
3667 * can occur before user_exit() is called. This will cause the scheduler
3668 * to be called when the system is still in usermode.
3669 *
3670 * To prevent this, the preempt_enable_notrace will use this function
3671 * instead of preempt_schedule() to exit user context if needed before
3672 * calling the scheduler.
3673 */
3674 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3675 {
3676 enum ctx_state prev_ctx;
3677
3678 if (likely(!preemptible()))
3679 return;
3680
3681 do {
3682 /*
3683 * Because the function tracer can trace preempt_count_sub()
3684 * and it also uses preempt_enable/disable_notrace(), if
3685 * NEED_RESCHED is set, the preempt_enable_notrace() called
3686 * by the function tracer will call this function again and
3687 * cause infinite recursion.
3688 *
3689 * Preemption must be disabled here before the function
3690 * tracer can trace. Break up preempt_disable() into two
3691 * calls. One to disable preemption without fear of being
3692 * traced. The other to still record the preemption latency,
3693 * which can also be traced by the function tracer.
3694 */
3695 preempt_disable_notrace();
3696 preempt_latency_start(1);
3697 /*
3698 * Needs preempt disabled in case user_exit() is traced
3699 * and the tracer calls preempt_enable_notrace() causing
3700 * an infinite recursion.
3701 */
3702 prev_ctx = exception_enter();
3703 __schedule(true);
3704 exception_exit(prev_ctx);
3705
3706 preempt_latency_stop(1);
3707 preempt_enable_no_resched_notrace();
3708 } while (need_resched());
3709 }
3710 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3711
3712 #endif /* CONFIG_PREEMPT */
3713
3714 /*
3715 * this is the entry point to schedule() from kernel preemption
3716 * off of irq context.
3717 * Note, that this is called and return with irqs disabled. This will
3718 * protect us against recursive calling from irq.
3719 */
3720 asmlinkage __visible void __sched preempt_schedule_irq(void)
3721 {
3722 enum ctx_state prev_state;
3723
3724 /* Catch callers which need to be fixed */
3725 BUG_ON(preempt_count() || !irqs_disabled());
3726
3727 prev_state = exception_enter();
3728
3729 do {
3730 preempt_disable();
3731 local_irq_enable();
3732 __schedule(true);
3733 local_irq_disable();
3734 sched_preempt_enable_no_resched();
3735 } while (need_resched());
3736
3737 exception_exit(prev_state);
3738 }
3739
3740 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
3741 void *key)
3742 {
3743 return try_to_wake_up(curr->private, mode, wake_flags);
3744 }
3745 EXPORT_SYMBOL(default_wake_function);
3746
3747 #ifdef CONFIG_RT_MUTEXES
3748
3749 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3750 {
3751 if (pi_task)
3752 prio = min(prio, pi_task->prio);
3753
3754 return prio;
3755 }
3756
3757 static inline int rt_effective_prio(struct task_struct *p, int prio)
3758 {
3759 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3760
3761 return __rt_effective_prio(pi_task, prio);
3762 }
3763
3764 /*
3765 * rt_mutex_setprio - set the current priority of a task
3766 * @p: task to boost
3767 * @pi_task: donor task
3768 *
3769 * This function changes the 'effective' priority of a task. It does
3770 * not touch ->normal_prio like __setscheduler().
3771 *
3772 * Used by the rt_mutex code to implement priority inheritance
3773 * logic. Call site only calls if the priority of the task changed.
3774 */
3775 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
3776 {
3777 int prio, oldprio, queued, running, queue_flag =
3778 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
3779 const struct sched_class *prev_class;
3780 struct rq_flags rf;
3781 struct rq *rq;
3782
3783 /* XXX used to be waiter->prio, not waiter->task->prio */
3784 prio = __rt_effective_prio(pi_task, p->normal_prio);
3785
3786 /*
3787 * If nothing changed; bail early.
3788 */
3789 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
3790 return;
3791
3792 rq = __task_rq_lock(p, &rf);
3793 update_rq_clock(rq);
3794 /*
3795 * Set under pi_lock && rq->lock, such that the value can be used under
3796 * either lock.
3797 *
3798 * Note that there is loads of tricky to make this pointer cache work
3799 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3800 * ensure a task is de-boosted (pi_task is set to NULL) before the
3801 * task is allowed to run again (and can exit). This ensures the pointer
3802 * points to a blocked task -- which guaratees the task is present.
3803 */
3804 p->pi_top_task = pi_task;
3805
3806 /*
3807 * For FIFO/RR we only need to set prio, if that matches we're done.
3808 */
3809 if (prio == p->prio && !dl_prio(prio))
3810 goto out_unlock;
3811
3812 /*
3813 * Idle task boosting is a nono in general. There is one
3814 * exception, when PREEMPT_RT and NOHZ is active:
3815 *
3816 * The idle task calls get_next_timer_interrupt() and holds
3817 * the timer wheel base->lock on the CPU and another CPU wants
3818 * to access the timer (probably to cancel it). We can safely
3819 * ignore the boosting request, as the idle CPU runs this code
3820 * with interrupts disabled and will complete the lock
3821 * protected section without being interrupted. So there is no
3822 * real need to boost.
3823 */
3824 if (unlikely(p == rq->idle)) {
3825 WARN_ON(p != rq->curr);
3826 WARN_ON(p->pi_blocked_on);
3827 goto out_unlock;
3828 }
3829
3830 trace_sched_pi_setprio(p, pi_task);
3831 oldprio = p->prio;
3832
3833 if (oldprio == prio)
3834 queue_flag &= ~DEQUEUE_MOVE;
3835
3836 prev_class = p->sched_class;
3837 queued = task_on_rq_queued(p);
3838 running = task_current(rq, p);
3839 if (queued)
3840 dequeue_task(rq, p, queue_flag);
3841 if (running)
3842 put_prev_task(rq, p);
3843
3844 /*
3845 * Boosting condition are:
3846 * 1. -rt task is running and holds mutex A
3847 * --> -dl task blocks on mutex A
3848 *
3849 * 2. -dl task is running and holds mutex A
3850 * --> -dl task blocks on mutex A and could preempt the
3851 * running task
3852 */
3853 if (dl_prio(prio)) {
3854 if (!dl_prio(p->normal_prio) ||
3855 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3856 p->dl.dl_boosted = 1;
3857 queue_flag |= ENQUEUE_REPLENISH;
3858 } else
3859 p->dl.dl_boosted = 0;
3860 p->sched_class = &dl_sched_class;
3861 } else if (rt_prio(prio)) {
3862 if (dl_prio(oldprio))
3863 p->dl.dl_boosted = 0;
3864 if (oldprio < prio)
3865 queue_flag |= ENQUEUE_HEAD;
3866 p->sched_class = &rt_sched_class;
3867 } else {
3868 if (dl_prio(oldprio))
3869 p->dl.dl_boosted = 0;
3870 if (rt_prio(oldprio))
3871 p->rt.timeout = 0;
3872 p->sched_class = &fair_sched_class;
3873 }
3874
3875 p->prio = prio;
3876
3877 if (queued)
3878 enqueue_task(rq, p, queue_flag);
3879 if (running)
3880 set_curr_task(rq, p);
3881
3882 check_class_changed(rq, p, prev_class, oldprio);
3883 out_unlock:
3884 /* Avoid rq from going away on us: */
3885 preempt_disable();
3886 __task_rq_unlock(rq, &rf);
3887
3888 balance_callback(rq);
3889 preempt_enable();
3890 }
3891 #else
3892 static inline int rt_effective_prio(struct task_struct *p, int prio)
3893 {
3894 return prio;
3895 }
3896 #endif
3897
3898 void set_user_nice(struct task_struct *p, long nice)
3899 {
3900 bool queued, running;
3901 int old_prio, delta;
3902 struct rq_flags rf;
3903 struct rq *rq;
3904
3905 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3906 return;
3907 /*
3908 * We have to be careful, if called from sys_setpriority(),
3909 * the task might be in the middle of scheduling on another CPU.
3910 */
3911 rq = task_rq_lock(p, &rf);
3912 update_rq_clock(rq);
3913
3914 /*
3915 * The RT priorities are set via sched_setscheduler(), but we still
3916 * allow the 'normal' nice value to be set - but as expected
3917 * it wont have any effect on scheduling until the task is
3918 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3919 */
3920 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3921 p->static_prio = NICE_TO_PRIO(nice);
3922 goto out_unlock;
3923 }
3924 queued = task_on_rq_queued(p);
3925 running = task_current(rq, p);
3926 if (queued)
3927 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
3928 if (running)
3929 put_prev_task(rq, p);
3930
3931 p->static_prio = NICE_TO_PRIO(nice);
3932 set_load_weight(p, true);
3933 old_prio = p->prio;
3934 p->prio = effective_prio(p);
3935 delta = p->prio - old_prio;
3936
3937 if (queued) {
3938 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
3939 /*
3940 * If the task increased its priority or is running and
3941 * lowered its priority, then reschedule its CPU:
3942 */
3943 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3944 resched_curr(rq);
3945 }
3946 if (running)
3947 set_curr_task(rq, p);
3948 out_unlock:
3949 task_rq_unlock(rq, p, &rf);
3950 }
3951 EXPORT_SYMBOL(set_user_nice);
3952
3953 /*
3954 * can_nice - check if a task can reduce its nice value
3955 * @p: task
3956 * @nice: nice value
3957 */
3958 int can_nice(const struct task_struct *p, const int nice)
3959 {
3960 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
3961 int nice_rlim = nice_to_rlimit(nice);
3962
3963 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3964 capable(CAP_SYS_NICE));
3965 }
3966
3967 #ifdef __ARCH_WANT_SYS_NICE
3968
3969 /*
3970 * sys_nice - change the priority of the current process.
3971 * @increment: priority increment
3972 *
3973 * sys_setpriority is a more generic, but much slower function that
3974 * does similar things.
3975 */
3976 SYSCALL_DEFINE1(nice, int, increment)
3977 {
3978 long nice, retval;
3979
3980 /*
3981 * Setpriority might change our priority at the same moment.
3982 * We don't have to worry. Conceptually one call occurs first
3983 * and we have a single winner.
3984 */
3985 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3986 nice = task_nice(current) + increment;
3987
3988 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3989 if (increment < 0 && !can_nice(current, nice))
3990 return -EPERM;
3991
3992 retval = security_task_setnice(current, nice);
3993 if (retval)
3994 return retval;
3995
3996 set_user_nice(current, nice);
3997 return 0;
3998 }
3999
4000 #endif
4001
4002 /**
4003 * task_prio - return the priority value of a given task.
4004 * @p: the task in question.
4005 *
4006 * Return: The priority value as seen by users in /proc.
4007 * RT tasks are offset by -200. Normal tasks are centered
4008 * around 0, value goes from -16 to +15.
4009 */
4010 int task_prio(const struct task_struct *p)
4011 {
4012 return p->prio - MAX_RT_PRIO;
4013 }
4014
4015 /**
4016 * idle_cpu - is a given CPU idle currently?
4017 * @cpu: the processor in question.
4018 *
4019 * Return: 1 if the CPU is currently idle. 0 otherwise.
4020 */
4021 int idle_cpu(int cpu)
4022 {
4023 struct rq *rq = cpu_rq(cpu);
4024
4025 if (rq->curr != rq->idle)
4026 return 0;
4027
4028 if (rq->nr_running)
4029 return 0;
4030
4031 #ifdef CONFIG_SMP
4032 if (!llist_empty(&rq->wake_list))
4033 return 0;
4034 #endif
4035
4036 return 1;
4037 }
4038
4039 /**
4040 * idle_task - return the idle task for a given CPU.
4041 * @cpu: the processor in question.
4042 *
4043 * Return: The idle task for the CPU @cpu.
4044 */
4045 struct task_struct *idle_task(int cpu)
4046 {
4047 return cpu_rq(cpu)->idle;
4048 }
4049
4050 /**
4051 * find_process_by_pid - find a process with a matching PID value.
4052 * @pid: the pid in question.
4053 *
4054 * The task of @pid, if found. %NULL otherwise.
4055 */
4056 static struct task_struct *find_process_by_pid(pid_t pid)
4057 {
4058 return pid ? find_task_by_vpid(pid) : current;
4059 }
4060
4061 /*
4062 * sched_setparam() passes in -1 for its policy, to let the functions
4063 * it calls know not to change it.
4064 */
4065 #define SETPARAM_POLICY -1
4066
4067 static void __setscheduler_params(struct task_struct *p,
4068 const struct sched_attr *attr)
4069 {
4070 int policy = attr->sched_policy;
4071
4072 if (policy == SETPARAM_POLICY)
4073 policy = p->policy;
4074
4075 p->policy = policy;
4076
4077 if (dl_policy(policy))
4078 __setparam_dl(p, attr);
4079 else if (fair_policy(policy))
4080 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4081
4082 /*
4083 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4084 * !rt_policy. Always setting this ensures that things like
4085 * getparam()/getattr() don't report silly values for !rt tasks.
4086 */
4087 p->rt_priority = attr->sched_priority;
4088 p->normal_prio = normal_prio(p);
4089 set_load_weight(p, true);
4090 }
4091
4092 /* Actually do priority change: must hold pi & rq lock. */
4093 static void __setscheduler(struct rq *rq, struct task_struct *p,
4094 const struct sched_attr *attr, bool keep_boost)
4095 {
4096 __setscheduler_params(p, attr);
4097
4098 /*
4099 * Keep a potential priority boosting if called from
4100 * sched_setscheduler().
4101 */
4102 p->prio = normal_prio(p);
4103 if (keep_boost)
4104 p->prio = rt_effective_prio(p, p->prio);
4105
4106 if (dl_prio(p->prio))
4107 p->sched_class = &dl_sched_class;
4108 else if (rt_prio(p->prio))
4109 p->sched_class = &rt_sched_class;
4110 else
4111 p->sched_class = &fair_sched_class;
4112 }
4113
4114 /*
4115 * Check the target process has a UID that matches the current process's:
4116 */
4117 static bool check_same_owner(struct task_struct *p)
4118 {
4119 const struct cred *cred = current_cred(), *pcred;
4120 bool match;
4121
4122 rcu_read_lock();
4123 pcred = __task_cred(p);
4124 match = (uid_eq(cred->euid, pcred->euid) ||
4125 uid_eq(cred->euid, pcred->uid));
4126 rcu_read_unlock();
4127 return match;
4128 }
4129
4130 static int __sched_setscheduler(struct task_struct *p,
4131 const struct sched_attr *attr,
4132 bool user, bool pi)
4133 {
4134 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4135 MAX_RT_PRIO - 1 - attr->sched_priority;
4136 int retval, oldprio, oldpolicy = -1, queued, running;
4137 int new_effective_prio, policy = attr->sched_policy;
4138 const struct sched_class *prev_class;
4139 struct rq_flags rf;
4140 int reset_on_fork;
4141 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4142 struct rq *rq;
4143
4144 /* The pi code expects interrupts enabled */
4145 BUG_ON(pi && in_interrupt());
4146 recheck:
4147 /* Double check policy once rq lock held: */
4148 if (policy < 0) {
4149 reset_on_fork = p->sched_reset_on_fork;
4150 policy = oldpolicy = p->policy;
4151 } else {
4152 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4153
4154 if (!valid_policy(policy))
4155 return -EINVAL;
4156 }
4157
4158 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4159 return -EINVAL;
4160
4161 /*
4162 * Valid priorities for SCHED_FIFO and SCHED_RR are
4163 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4164 * SCHED_BATCH and SCHED_IDLE is 0.
4165 */
4166 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4167 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4168 return -EINVAL;
4169 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4170 (rt_policy(policy) != (attr->sched_priority != 0)))
4171 return -EINVAL;
4172
4173 /*
4174 * Allow unprivileged RT tasks to decrease priority:
4175 */
4176 if (user && !capable(CAP_SYS_NICE)) {
4177 if (fair_policy(policy)) {
4178 if (attr->sched_nice < task_nice(p) &&
4179 !can_nice(p, attr->sched_nice))
4180 return -EPERM;
4181 }
4182
4183 if (rt_policy(policy)) {
4184 unsigned long rlim_rtprio =
4185 task_rlimit(p, RLIMIT_RTPRIO);
4186
4187 /* Can't set/change the rt policy: */
4188 if (policy != p->policy && !rlim_rtprio)
4189 return -EPERM;
4190
4191 /* Can't increase priority: */
4192 if (attr->sched_priority > p->rt_priority &&
4193 attr->sched_priority > rlim_rtprio)
4194 return -EPERM;
4195 }
4196
4197 /*
4198 * Can't set/change SCHED_DEADLINE policy at all for now
4199 * (safest behavior); in the future we would like to allow
4200 * unprivileged DL tasks to increase their relative deadline
4201 * or reduce their runtime (both ways reducing utilization)
4202 */
4203 if (dl_policy(policy))
4204 return -EPERM;
4205
4206 /*
4207 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4208 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4209 */
4210 if (idle_policy(p->policy) && !idle_policy(policy)) {
4211 if (!can_nice(p, task_nice(p)))
4212 return -EPERM;
4213 }
4214
4215 /* Can't change other user's priorities: */
4216 if (!check_same_owner(p))
4217 return -EPERM;
4218
4219 /* Normal users shall not reset the sched_reset_on_fork flag: */
4220 if (p->sched_reset_on_fork && !reset_on_fork)
4221 return -EPERM;
4222 }
4223
4224 if (user) {
4225 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4226 return -EINVAL;
4227
4228 retval = security_task_setscheduler(p);
4229 if (retval)
4230 return retval;
4231 }
4232
4233 /*
4234 * Make sure no PI-waiters arrive (or leave) while we are
4235 * changing the priority of the task:
4236 *
4237 * To be able to change p->policy safely, the appropriate
4238 * runqueue lock must be held.
4239 */
4240 rq = task_rq_lock(p, &rf);
4241 update_rq_clock(rq);
4242
4243 /*
4244 * Changing the policy of the stop threads its a very bad idea:
4245 */
4246 if (p == rq->stop) {
4247 task_rq_unlock(rq, p, &rf);
4248 return -EINVAL;
4249 }
4250
4251 /*
4252 * If not changing anything there's no need to proceed further,
4253 * but store a possible modification of reset_on_fork.
4254 */
4255 if (unlikely(policy == p->policy)) {
4256 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4257 goto change;
4258 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4259 goto change;
4260 if (dl_policy(policy) && dl_param_changed(p, attr))
4261 goto change;
4262
4263 p->sched_reset_on_fork = reset_on_fork;
4264 task_rq_unlock(rq, p, &rf);
4265 return 0;
4266 }
4267 change:
4268
4269 if (user) {
4270 #ifdef CONFIG_RT_GROUP_SCHED
4271 /*
4272 * Do not allow realtime tasks into groups that have no runtime
4273 * assigned.
4274 */
4275 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4276 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4277 !task_group_is_autogroup(task_group(p))) {
4278 task_rq_unlock(rq, p, &rf);
4279 return -EPERM;
4280 }
4281 #endif
4282 #ifdef CONFIG_SMP
4283 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4284 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4285 cpumask_t *span = rq->rd->span;
4286
4287 /*
4288 * Don't allow tasks with an affinity mask smaller than
4289 * the entire root_domain to become SCHED_DEADLINE. We
4290 * will also fail if there's no bandwidth available.
4291 */
4292 if (!cpumask_subset(span, &p->cpus_allowed) ||
4293 rq->rd->dl_bw.bw == 0) {
4294 task_rq_unlock(rq, p, &rf);
4295 return -EPERM;
4296 }
4297 }
4298 #endif
4299 }
4300
4301 /* Re-check policy now with rq lock held: */
4302 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4303 policy = oldpolicy = -1;
4304 task_rq_unlock(rq, p, &rf);
4305 goto recheck;
4306 }
4307
4308 /*
4309 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4310 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4311 * is available.
4312 */
4313 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4314 task_rq_unlock(rq, p, &rf);
4315 return -EBUSY;
4316 }
4317
4318 p->sched_reset_on_fork = reset_on_fork;
4319 oldprio = p->prio;
4320
4321 if (pi) {
4322 /*
4323 * Take priority boosted tasks into account. If the new
4324 * effective priority is unchanged, we just store the new
4325 * normal parameters and do not touch the scheduler class and
4326 * the runqueue. This will be done when the task deboost
4327 * itself.
4328 */
4329 new_effective_prio = rt_effective_prio(p, newprio);
4330 if (new_effective_prio == oldprio)
4331 queue_flags &= ~DEQUEUE_MOVE;
4332 }
4333
4334 queued = task_on_rq_queued(p);
4335 running = task_current(rq, p);
4336 if (queued)
4337 dequeue_task(rq, p, queue_flags);
4338 if (running)
4339 put_prev_task(rq, p);
4340
4341 prev_class = p->sched_class;
4342 __setscheduler(rq, p, attr, pi);
4343
4344 if (queued) {
4345 /*
4346 * We enqueue to tail when the priority of a task is
4347 * increased (user space view).
4348 */
4349 if (oldprio < p->prio)
4350 queue_flags |= ENQUEUE_HEAD;
4351
4352 enqueue_task(rq, p, queue_flags);
4353 }
4354 if (running)
4355 set_curr_task(rq, p);
4356
4357 check_class_changed(rq, p, prev_class, oldprio);
4358
4359 /* Avoid rq from going away on us: */
4360 preempt_disable();
4361 task_rq_unlock(rq, p, &rf);
4362
4363 if (pi)
4364 rt_mutex_adjust_pi(p);
4365
4366 /* Run balance callbacks after we've adjusted the PI chain: */
4367 balance_callback(rq);
4368 preempt_enable();
4369
4370 return 0;
4371 }
4372
4373 static int _sched_setscheduler(struct task_struct *p, int policy,
4374 const struct sched_param *param, bool check)
4375 {
4376 struct sched_attr attr = {
4377 .sched_policy = policy,
4378 .sched_priority = param->sched_priority,
4379 .sched_nice = PRIO_TO_NICE(p->static_prio),
4380 };
4381
4382 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4383 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4384 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4385 policy &= ~SCHED_RESET_ON_FORK;
4386 attr.sched_policy = policy;
4387 }
4388
4389 return __sched_setscheduler(p, &attr, check, true);
4390 }
4391 /**
4392 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4393 * @p: the task in question.
4394 * @policy: new policy.
4395 * @param: structure containing the new RT priority.
4396 *
4397 * Return: 0 on success. An error code otherwise.
4398 *
4399 * NOTE that the task may be already dead.
4400 */
4401 int sched_setscheduler(struct task_struct *p, int policy,
4402 const struct sched_param *param)
4403 {
4404 return _sched_setscheduler(p, policy, param, true);
4405 }
4406 EXPORT_SYMBOL_GPL(sched_setscheduler);
4407
4408 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4409 {
4410 return __sched_setscheduler(p, attr, true, true);
4411 }
4412 EXPORT_SYMBOL_GPL(sched_setattr);
4413
4414 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
4415 {
4416 return __sched_setscheduler(p, attr, false, true);
4417 }
4418
4419 /**
4420 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4421 * @p: the task in question.
4422 * @policy: new policy.
4423 * @param: structure containing the new RT priority.
4424 *
4425 * Just like sched_setscheduler, only don't bother checking if the
4426 * current context has permission. For example, this is needed in
4427 * stop_machine(): we create temporary high priority worker threads,
4428 * but our caller might not have that capability.
4429 *
4430 * Return: 0 on success. An error code otherwise.
4431 */
4432 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4433 const struct sched_param *param)
4434 {
4435 return _sched_setscheduler(p, policy, param, false);
4436 }
4437 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4438
4439 static int
4440 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4441 {
4442 struct sched_param lparam;
4443 struct task_struct *p;
4444 int retval;
4445
4446 if (!param || pid < 0)
4447 return -EINVAL;
4448 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4449 return -EFAULT;
4450
4451 rcu_read_lock();
4452 retval = -ESRCH;
4453 p = find_process_by_pid(pid);
4454 if (p != NULL)
4455 retval = sched_setscheduler(p, policy, &lparam);
4456 rcu_read_unlock();
4457
4458 return retval;
4459 }
4460
4461 /*
4462 * Mimics kernel/events/core.c perf_copy_attr().
4463 */
4464 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
4465 {
4466 u32 size;
4467 int ret;
4468
4469 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4470 return -EFAULT;
4471
4472 /* Zero the full structure, so that a short copy will be nice: */
4473 memset(attr, 0, sizeof(*attr));
4474
4475 ret = get_user(size, &uattr->size);
4476 if (ret)
4477 return ret;
4478
4479 /* Bail out on silly large: */
4480 if (size > PAGE_SIZE)
4481 goto err_size;
4482
4483 /* ABI compatibility quirk: */
4484 if (!size)
4485 size = SCHED_ATTR_SIZE_VER0;
4486
4487 if (size < SCHED_ATTR_SIZE_VER0)
4488 goto err_size;
4489
4490 /*
4491 * If we're handed a bigger struct than we know of,
4492 * ensure all the unknown bits are 0 - i.e. new
4493 * user-space does not rely on any kernel feature
4494 * extensions we dont know about yet.
4495 */
4496 if (size > sizeof(*attr)) {
4497 unsigned char __user *addr;
4498 unsigned char __user *end;
4499 unsigned char val;
4500
4501 addr = (void __user *)uattr + sizeof(*attr);
4502 end = (void __user *)uattr + size;
4503
4504 for (; addr < end; addr++) {
4505 ret = get_user(val, addr);
4506 if (ret)
4507 return ret;
4508 if (val)
4509 goto err_size;
4510 }
4511 size = sizeof(*attr);
4512 }
4513
4514 ret = copy_from_user(attr, uattr, size);
4515 if (ret)
4516 return -EFAULT;
4517
4518 /*
4519 * XXX: Do we want to be lenient like existing syscalls; or do we want
4520 * to be strict and return an error on out-of-bounds values?
4521 */
4522 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4523
4524 return 0;
4525
4526 err_size:
4527 put_user(sizeof(*attr), &uattr->size);
4528 return -E2BIG;
4529 }
4530
4531 /**
4532 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4533 * @pid: the pid in question.
4534 * @policy: new policy.
4535 * @param: structure containing the new RT priority.
4536 *
4537 * Return: 0 on success. An error code otherwise.
4538 */
4539 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
4540 {
4541 if (policy < 0)
4542 return -EINVAL;
4543
4544 return do_sched_setscheduler(pid, policy, param);
4545 }
4546
4547 /**
4548 * sys_sched_setparam - set/change the RT priority of a thread
4549 * @pid: the pid in question.
4550 * @param: structure containing the new RT priority.
4551 *
4552 * Return: 0 on success. An error code otherwise.
4553 */
4554 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4555 {
4556 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4557 }
4558
4559 /**
4560 * sys_sched_setattr - same as above, but with extended sched_attr
4561 * @pid: the pid in question.
4562 * @uattr: structure containing the extended parameters.
4563 * @flags: for future extension.
4564 */
4565 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4566 unsigned int, flags)
4567 {
4568 struct sched_attr attr;
4569 struct task_struct *p;
4570 int retval;
4571
4572 if (!uattr || pid < 0 || flags)
4573 return -EINVAL;
4574
4575 retval = sched_copy_attr(uattr, &attr);
4576 if (retval)
4577 return retval;
4578
4579 if ((int)attr.sched_policy < 0)
4580 return -EINVAL;
4581
4582 rcu_read_lock();
4583 retval = -ESRCH;
4584 p = find_process_by_pid(pid);
4585 if (p != NULL)
4586 retval = sched_setattr(p, &attr);
4587 rcu_read_unlock();
4588
4589 return retval;
4590 }
4591
4592 /**
4593 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4594 * @pid: the pid in question.
4595 *
4596 * Return: On success, the policy of the thread. Otherwise, a negative error
4597 * code.
4598 */
4599 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4600 {
4601 struct task_struct *p;
4602 int retval;
4603
4604 if (pid < 0)
4605 return -EINVAL;
4606
4607 retval = -ESRCH;
4608 rcu_read_lock();
4609 p = find_process_by_pid(pid);
4610 if (p) {
4611 retval = security_task_getscheduler(p);
4612 if (!retval)
4613 retval = p->policy
4614 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4615 }
4616 rcu_read_unlock();
4617 return retval;
4618 }
4619
4620 /**
4621 * sys_sched_getparam - get the RT priority of a thread
4622 * @pid: the pid in question.
4623 * @param: structure containing the RT priority.
4624 *
4625 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4626 * code.
4627 */
4628 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4629 {
4630 struct sched_param lp = { .sched_priority = 0 };
4631 struct task_struct *p;
4632 int retval;
4633
4634 if (!param || pid < 0)
4635 return -EINVAL;
4636
4637 rcu_read_lock();
4638 p = find_process_by_pid(pid);
4639 retval = -ESRCH;
4640 if (!p)
4641 goto out_unlock;
4642
4643 retval = security_task_getscheduler(p);
4644 if (retval)
4645 goto out_unlock;
4646
4647 if (task_has_rt_policy(p))
4648 lp.sched_priority = p->rt_priority;
4649 rcu_read_unlock();
4650
4651 /*
4652 * This one might sleep, we cannot do it with a spinlock held ...
4653 */
4654 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4655
4656 return retval;
4657
4658 out_unlock:
4659 rcu_read_unlock();
4660 return retval;
4661 }
4662
4663 static int sched_read_attr(struct sched_attr __user *uattr,
4664 struct sched_attr *attr,
4665 unsigned int usize)
4666 {
4667 int ret;
4668
4669 if (!access_ok(VERIFY_WRITE, uattr, usize))
4670 return -EFAULT;
4671
4672 /*
4673 * If we're handed a smaller struct than we know of,
4674 * ensure all the unknown bits are 0 - i.e. old
4675 * user-space does not get uncomplete information.
4676 */
4677 if (usize < sizeof(*attr)) {
4678 unsigned char *addr;
4679 unsigned char *end;
4680
4681 addr = (void *)attr + usize;
4682 end = (void *)attr + sizeof(*attr);
4683
4684 for (; addr < end; addr++) {
4685 if (*addr)
4686 return -EFBIG;
4687 }
4688
4689 attr->size = usize;
4690 }
4691
4692 ret = copy_to_user(uattr, attr, attr->size);
4693 if (ret)
4694 return -EFAULT;
4695
4696 return 0;
4697 }
4698
4699 /**
4700 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4701 * @pid: the pid in question.
4702 * @uattr: structure containing the extended parameters.
4703 * @size: sizeof(attr) for fwd/bwd comp.
4704 * @flags: for future extension.
4705 */
4706 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4707 unsigned int, size, unsigned int, flags)
4708 {
4709 struct sched_attr attr = {
4710 .size = sizeof(struct sched_attr),
4711 };
4712 struct task_struct *p;
4713 int retval;
4714
4715 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4716 size < SCHED_ATTR_SIZE_VER0 || flags)
4717 return -EINVAL;
4718
4719 rcu_read_lock();
4720 p = find_process_by_pid(pid);
4721 retval = -ESRCH;
4722 if (!p)
4723 goto out_unlock;
4724
4725 retval = security_task_getscheduler(p);
4726 if (retval)
4727 goto out_unlock;
4728
4729 attr.sched_policy = p->policy;
4730 if (p->sched_reset_on_fork)
4731 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4732 if (task_has_dl_policy(p))
4733 __getparam_dl(p, &attr);
4734 else if (task_has_rt_policy(p))
4735 attr.sched_priority = p->rt_priority;
4736 else
4737 attr.sched_nice = task_nice(p);
4738
4739 rcu_read_unlock();
4740
4741 retval = sched_read_attr(uattr, &attr, size);
4742 return retval;
4743
4744 out_unlock:
4745 rcu_read_unlock();
4746 return retval;
4747 }
4748
4749 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4750 {
4751 cpumask_var_t cpus_allowed, new_mask;
4752 struct task_struct *p;
4753 int retval;
4754
4755 rcu_read_lock();
4756
4757 p = find_process_by_pid(pid);
4758 if (!p) {
4759 rcu_read_unlock();
4760 return -ESRCH;
4761 }
4762
4763 /* Prevent p going away */
4764 get_task_struct(p);
4765 rcu_read_unlock();
4766
4767 if (p->flags & PF_NO_SETAFFINITY) {
4768 retval = -EINVAL;
4769 goto out_put_task;
4770 }
4771 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4772 retval = -ENOMEM;
4773 goto out_put_task;
4774 }
4775 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4776 retval = -ENOMEM;
4777 goto out_free_cpus_allowed;
4778 }
4779 retval = -EPERM;
4780 if (!check_same_owner(p)) {
4781 rcu_read_lock();
4782 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4783 rcu_read_unlock();
4784 goto out_free_new_mask;
4785 }
4786 rcu_read_unlock();
4787 }
4788
4789 retval = security_task_setscheduler(p);
4790 if (retval)
4791 goto out_free_new_mask;
4792
4793
4794 cpuset_cpus_allowed(p, cpus_allowed);
4795 cpumask_and(new_mask, in_mask, cpus_allowed);
4796
4797 /*
4798 * Since bandwidth control happens on root_domain basis,
4799 * if admission test is enabled, we only admit -deadline
4800 * tasks allowed to run on all the CPUs in the task's
4801 * root_domain.
4802 */
4803 #ifdef CONFIG_SMP
4804 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4805 rcu_read_lock();
4806 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4807 retval = -EBUSY;
4808 rcu_read_unlock();
4809 goto out_free_new_mask;
4810 }
4811 rcu_read_unlock();
4812 }
4813 #endif
4814 again:
4815 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4816
4817 if (!retval) {
4818 cpuset_cpus_allowed(p, cpus_allowed);
4819 if (!cpumask_subset(new_mask, cpus_allowed)) {
4820 /*
4821 * We must have raced with a concurrent cpuset
4822 * update. Just reset the cpus_allowed to the
4823 * cpuset's cpus_allowed
4824 */
4825 cpumask_copy(new_mask, cpus_allowed);
4826 goto again;
4827 }
4828 }
4829 out_free_new_mask:
4830 free_cpumask_var(new_mask);
4831 out_free_cpus_allowed:
4832 free_cpumask_var(cpus_allowed);
4833 out_put_task:
4834 put_task_struct(p);
4835 return retval;
4836 }
4837
4838 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4839 struct cpumask *new_mask)
4840 {
4841 if (len < cpumask_size())
4842 cpumask_clear(new_mask);
4843 else if (len > cpumask_size())
4844 len = cpumask_size();
4845
4846 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4847 }
4848
4849 /**
4850 * sys_sched_setaffinity - set the CPU affinity of a process
4851 * @pid: pid of the process
4852 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4853 * @user_mask_ptr: user-space pointer to the new CPU mask
4854 *
4855 * Return: 0 on success. An error code otherwise.
4856 */
4857 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4858 unsigned long __user *, user_mask_ptr)
4859 {
4860 cpumask_var_t new_mask;
4861 int retval;
4862
4863 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4864 return -ENOMEM;
4865
4866 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4867 if (retval == 0)
4868 retval = sched_setaffinity(pid, new_mask);
4869 free_cpumask_var(new_mask);
4870 return retval;
4871 }
4872
4873 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4874 {
4875 struct task_struct *p;
4876 unsigned long flags;
4877 int retval;
4878
4879 rcu_read_lock();
4880
4881 retval = -ESRCH;
4882 p = find_process_by_pid(pid);
4883 if (!p)
4884 goto out_unlock;
4885
4886 retval = security_task_getscheduler(p);
4887 if (retval)
4888 goto out_unlock;
4889
4890 raw_spin_lock_irqsave(&p->pi_lock, flags);
4891 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4892 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4893
4894 out_unlock:
4895 rcu_read_unlock();
4896
4897 return retval;
4898 }
4899
4900 /**
4901 * sys_sched_getaffinity - get the CPU affinity of a process
4902 * @pid: pid of the process
4903 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4904 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4905 *
4906 * Return: size of CPU mask copied to user_mask_ptr on success. An
4907 * error code otherwise.
4908 */
4909 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4910 unsigned long __user *, user_mask_ptr)
4911 {
4912 int ret;
4913 cpumask_var_t mask;
4914
4915 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4916 return -EINVAL;
4917 if (len & (sizeof(unsigned long)-1))
4918 return -EINVAL;
4919
4920 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4921 return -ENOMEM;
4922
4923 ret = sched_getaffinity(pid, mask);
4924 if (ret == 0) {
4925 unsigned int retlen = min(len, cpumask_size());
4926
4927 if (copy_to_user(user_mask_ptr, mask, retlen))
4928 ret = -EFAULT;
4929 else
4930 ret = retlen;
4931 }
4932 free_cpumask_var(mask);
4933
4934 return ret;
4935 }
4936
4937 /**
4938 * sys_sched_yield - yield the current processor to other threads.
4939 *
4940 * This function yields the current CPU to other tasks. If there are no
4941 * other threads running on this CPU then this function will return.
4942 *
4943 * Return: 0.
4944 */
4945 SYSCALL_DEFINE0(sched_yield)
4946 {
4947 struct rq_flags rf;
4948 struct rq *rq;
4949
4950 local_irq_disable();
4951 rq = this_rq();
4952 rq_lock(rq, &rf);
4953
4954 schedstat_inc(rq->yld_count);
4955 current->sched_class->yield_task(rq);
4956
4957 /*
4958 * Since we are going to call schedule() anyway, there's
4959 * no need to preempt or enable interrupts:
4960 */
4961 preempt_disable();
4962 rq_unlock(rq, &rf);
4963 sched_preempt_enable_no_resched();
4964
4965 schedule();
4966
4967 return 0;
4968 }
4969
4970 #ifndef CONFIG_PREEMPT
4971 int __sched _cond_resched(void)
4972 {
4973 if (should_resched(0)) {
4974 preempt_schedule_common();
4975 return 1;
4976 }
4977 rcu_all_qs();
4978 return 0;
4979 }
4980 EXPORT_SYMBOL(_cond_resched);
4981 #endif
4982
4983 /*
4984 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4985 * call schedule, and on return reacquire the lock.
4986 *
4987 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4988 * operations here to prevent schedule() from being called twice (once via
4989 * spin_unlock(), once by hand).
4990 */
4991 int __cond_resched_lock(spinlock_t *lock)
4992 {
4993 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4994 int ret = 0;
4995
4996 lockdep_assert_held(lock);
4997
4998 if (spin_needbreak(lock) || resched) {
4999 spin_unlock(lock);
5000 if (resched)
5001 preempt_schedule_common();
5002 else
5003 cpu_relax();
5004 ret = 1;
5005 spin_lock(lock);
5006 }
5007 return ret;
5008 }
5009 EXPORT_SYMBOL(__cond_resched_lock);
5010
5011 int __sched __cond_resched_softirq(void)
5012 {
5013 BUG_ON(!in_softirq());
5014
5015 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
5016 local_bh_enable();
5017 preempt_schedule_common();
5018 local_bh_disable();
5019 return 1;
5020 }
5021 return 0;
5022 }
5023 EXPORT_SYMBOL(__cond_resched_softirq);
5024
5025 /**
5026 * yield - yield the current processor to other threads.
5027 *
5028 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5029 *
5030 * The scheduler is at all times free to pick the calling task as the most
5031 * eligible task to run, if removing the yield() call from your code breaks
5032 * it, its already broken.
5033 *
5034 * Typical broken usage is:
5035 *
5036 * while (!event)
5037 * yield();
5038 *
5039 * where one assumes that yield() will let 'the other' process run that will
5040 * make event true. If the current task is a SCHED_FIFO task that will never
5041 * happen. Never use yield() as a progress guarantee!!
5042 *
5043 * If you want to use yield() to wait for something, use wait_event().
5044 * If you want to use yield() to be 'nice' for others, use cond_resched().
5045 * If you still want to use yield(), do not!
5046 */
5047 void __sched yield(void)
5048 {
5049 set_current_state(TASK_RUNNING);
5050 sys_sched_yield();
5051 }
5052 EXPORT_SYMBOL(yield);
5053
5054 /**
5055 * yield_to - yield the current processor to another thread in
5056 * your thread group, or accelerate that thread toward the
5057 * processor it's on.
5058 * @p: target task
5059 * @preempt: whether task preemption is allowed or not
5060 *
5061 * It's the caller's job to ensure that the target task struct
5062 * can't go away on us before we can do any checks.
5063 *
5064 * Return:
5065 * true (>0) if we indeed boosted the target task.
5066 * false (0) if we failed to boost the target.
5067 * -ESRCH if there's no task to yield to.
5068 */
5069 int __sched yield_to(struct task_struct *p, bool preempt)
5070 {
5071 struct task_struct *curr = current;
5072 struct rq *rq, *p_rq;
5073 unsigned long flags;
5074 int yielded = 0;
5075
5076 local_irq_save(flags);
5077 rq = this_rq();
5078
5079 again:
5080 p_rq = task_rq(p);
5081 /*
5082 * If we're the only runnable task on the rq and target rq also
5083 * has only one task, there's absolutely no point in yielding.
5084 */
5085 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5086 yielded = -ESRCH;
5087 goto out_irq;
5088 }
5089
5090 double_rq_lock(rq, p_rq);
5091 if (task_rq(p) != p_rq) {
5092 double_rq_unlock(rq, p_rq);
5093 goto again;
5094 }
5095
5096 if (!curr->sched_class->yield_to_task)
5097 goto out_unlock;
5098
5099 if (curr->sched_class != p->sched_class)
5100 goto out_unlock;
5101
5102 if (task_running(p_rq, p) || p->state)
5103 goto out_unlock;
5104
5105 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5106 if (yielded) {
5107 schedstat_inc(rq->yld_count);
5108 /*
5109 * Make p's CPU reschedule; pick_next_entity takes care of
5110 * fairness.
5111 */
5112 if (preempt && rq != p_rq)
5113 resched_curr(p_rq);
5114 }
5115
5116 out_unlock:
5117 double_rq_unlock(rq, p_rq);
5118 out_irq:
5119 local_irq_restore(flags);
5120
5121 if (yielded > 0)
5122 schedule();
5123
5124 return yielded;
5125 }
5126 EXPORT_SYMBOL_GPL(yield_to);
5127
5128 int io_schedule_prepare(void)
5129 {
5130 int old_iowait = current->in_iowait;
5131
5132 current->in_iowait = 1;
5133 blk_schedule_flush_plug(current);
5134
5135 return old_iowait;
5136 }
5137
5138 void io_schedule_finish(int token)
5139 {
5140 current->in_iowait = token;
5141 }
5142
5143 /*
5144 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5145 * that process accounting knows that this is a task in IO wait state.
5146 */
5147 long __sched io_schedule_timeout(long timeout)
5148 {
5149 int token;
5150 long ret;
5151
5152 token = io_schedule_prepare();
5153 ret = schedule_timeout(timeout);
5154 io_schedule_finish(token);
5155
5156 return ret;
5157 }
5158 EXPORT_SYMBOL(io_schedule_timeout);
5159
5160 void io_schedule(void)
5161 {
5162 int token;
5163
5164 token = io_schedule_prepare();
5165 schedule();
5166 io_schedule_finish(token);
5167 }
5168 EXPORT_SYMBOL(io_schedule);
5169
5170 /**
5171 * sys_sched_get_priority_max - return maximum RT priority.
5172 * @policy: scheduling class.
5173 *
5174 * Return: On success, this syscall returns the maximum
5175 * rt_priority that can be used by a given scheduling class.
5176 * On failure, a negative error code is returned.
5177 */
5178 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5179 {
5180 int ret = -EINVAL;
5181
5182 switch (policy) {
5183 case SCHED_FIFO:
5184 case SCHED_RR:
5185 ret = MAX_USER_RT_PRIO-1;
5186 break;
5187 case SCHED_DEADLINE:
5188 case SCHED_NORMAL:
5189 case SCHED_BATCH:
5190 case SCHED_IDLE:
5191 ret = 0;
5192 break;
5193 }
5194 return ret;
5195 }
5196
5197 /**
5198 * sys_sched_get_priority_min - return minimum RT priority.
5199 * @policy: scheduling class.
5200 *
5201 * Return: On success, this syscall returns the minimum
5202 * rt_priority that can be used by a given scheduling class.
5203 * On failure, a negative error code is returned.
5204 */
5205 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5206 {
5207 int ret = -EINVAL;
5208
5209 switch (policy) {
5210 case SCHED_FIFO:
5211 case SCHED_RR:
5212 ret = 1;
5213 break;
5214 case SCHED_DEADLINE:
5215 case SCHED_NORMAL:
5216 case SCHED_BATCH:
5217 case SCHED_IDLE:
5218 ret = 0;
5219 }
5220 return ret;
5221 }
5222
5223 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5224 {
5225 struct task_struct *p;
5226 unsigned int time_slice;
5227 struct rq_flags rf;
5228 struct rq *rq;
5229 int retval;
5230
5231 if (pid < 0)
5232 return -EINVAL;
5233
5234 retval = -ESRCH;
5235 rcu_read_lock();
5236 p = find_process_by_pid(pid);
5237 if (!p)
5238 goto out_unlock;
5239
5240 retval = security_task_getscheduler(p);
5241 if (retval)
5242 goto out_unlock;
5243
5244 rq = task_rq_lock(p, &rf);
5245 time_slice = 0;
5246 if (p->sched_class->get_rr_interval)
5247 time_slice = p->sched_class->get_rr_interval(rq, p);
5248 task_rq_unlock(rq, p, &rf);
5249
5250 rcu_read_unlock();
5251 jiffies_to_timespec64(time_slice, t);
5252 return 0;
5253
5254 out_unlock:
5255 rcu_read_unlock();
5256 return retval;
5257 }
5258
5259 /**
5260 * sys_sched_rr_get_interval - return the default timeslice of a process.
5261 * @pid: pid of the process.
5262 * @interval: userspace pointer to the timeslice value.
5263 *
5264 * this syscall writes the default timeslice value of a given process
5265 * into the user-space timespec buffer. A value of '0' means infinity.
5266 *
5267 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5268 * an error code.
5269 */
5270 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5271 struct timespec __user *, interval)
5272 {
5273 struct timespec64 t;
5274 int retval = sched_rr_get_interval(pid, &t);
5275
5276 if (retval == 0)
5277 retval = put_timespec64(&t, interval);
5278
5279 return retval;
5280 }
5281
5282 #ifdef CONFIG_COMPAT
5283 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval,
5284 compat_pid_t, pid,
5285 struct compat_timespec __user *, interval)
5286 {
5287 struct timespec64 t;
5288 int retval = sched_rr_get_interval(pid, &t);
5289
5290 if (retval == 0)
5291 retval = compat_put_timespec64(&t, interval);
5292 return retval;
5293 }
5294 #endif
5295
5296 void sched_show_task(struct task_struct *p)
5297 {
5298 unsigned long free = 0;
5299 int ppid;
5300
5301 if (!try_get_task_stack(p))
5302 return;
5303
5304 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5305
5306 if (p->state == TASK_RUNNING)
5307 printk(KERN_CONT " running task ");
5308 #ifdef CONFIG_DEBUG_STACK_USAGE
5309 free = stack_not_used(p);
5310 #endif
5311 ppid = 0;
5312 rcu_read_lock();
5313 if (pid_alive(p))
5314 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5315 rcu_read_unlock();
5316 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5317 task_pid_nr(p), ppid,
5318 (unsigned long)task_thread_info(p)->flags);
5319
5320 print_worker_info(KERN_INFO, p);
5321 show_stack(p, NULL);
5322 put_task_stack(p);
5323 }
5324 EXPORT_SYMBOL_GPL(sched_show_task);
5325
5326 static inline bool
5327 state_filter_match(unsigned long state_filter, struct task_struct *p)
5328 {
5329 /* no filter, everything matches */
5330 if (!state_filter)
5331 return true;
5332
5333 /* filter, but doesn't match */
5334 if (!(p->state & state_filter))
5335 return false;
5336
5337 /*
5338 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5339 * TASK_KILLABLE).
5340 */
5341 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5342 return false;
5343
5344 return true;
5345 }
5346
5347
5348 void show_state_filter(unsigned long state_filter)
5349 {
5350 struct task_struct *g, *p;
5351
5352 #if BITS_PER_LONG == 32
5353 printk(KERN_INFO
5354 " task PC stack pid father\n");
5355 #else
5356 printk(KERN_INFO
5357 " task PC stack pid father\n");
5358 #endif
5359 rcu_read_lock();
5360 for_each_process_thread(g, p) {
5361 /*
5362 * reset the NMI-timeout, listing all files on a slow
5363 * console might take a lot of time:
5364 * Also, reset softlockup watchdogs on all CPUs, because
5365 * another CPU might be blocked waiting for us to process
5366 * an IPI.
5367 */
5368 touch_nmi_watchdog();
5369 touch_all_softlockup_watchdogs();
5370 if (state_filter_match(state_filter, p))
5371 sched_show_task(p);
5372 }
5373
5374 #ifdef CONFIG_SCHED_DEBUG
5375 if (!state_filter)
5376 sysrq_sched_debug_show();
5377 #endif
5378 rcu_read_unlock();
5379 /*
5380 * Only show locks if all tasks are dumped:
5381 */
5382 if (!state_filter)
5383 debug_show_all_locks();
5384 }
5385
5386 /**
5387 * init_idle - set up an idle thread for a given CPU
5388 * @idle: task in question
5389 * @cpu: CPU the idle task belongs to
5390 *
5391 * NOTE: this function does not set the idle thread's NEED_RESCHED
5392 * flag, to make booting more robust.
5393 */
5394 void init_idle(struct task_struct *idle, int cpu)
5395 {
5396 struct rq *rq = cpu_rq(cpu);
5397 unsigned long flags;
5398
5399 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5400 raw_spin_lock(&rq->lock);
5401
5402 __sched_fork(0, idle);
5403 idle->state = TASK_RUNNING;
5404 idle->se.exec_start = sched_clock();
5405 idle->flags |= PF_IDLE;
5406
5407 kasan_unpoison_task_stack(idle);
5408
5409 #ifdef CONFIG_SMP
5410 /*
5411 * Its possible that init_idle() gets called multiple times on a task,
5412 * in that case do_set_cpus_allowed() will not do the right thing.
5413 *
5414 * And since this is boot we can forgo the serialization.
5415 */
5416 set_cpus_allowed_common(idle, cpumask_of(cpu));
5417 #endif
5418 /*
5419 * We're having a chicken and egg problem, even though we are
5420 * holding rq->lock, the CPU isn't yet set to this CPU so the
5421 * lockdep check in task_group() will fail.
5422 *
5423 * Similar case to sched_fork(). / Alternatively we could
5424 * use task_rq_lock() here and obtain the other rq->lock.
5425 *
5426 * Silence PROVE_RCU
5427 */
5428 rcu_read_lock();
5429 __set_task_cpu(idle, cpu);
5430 rcu_read_unlock();
5431
5432 rq->curr = rq->idle = idle;
5433 idle->on_rq = TASK_ON_RQ_QUEUED;
5434 #ifdef CONFIG_SMP
5435 idle->on_cpu = 1;
5436 #endif
5437 raw_spin_unlock(&rq->lock);
5438 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5439
5440 /* Set the preempt count _outside_ the spinlocks! */
5441 init_idle_preempt_count(idle, cpu);
5442
5443 /*
5444 * The idle tasks have their own, simple scheduling class:
5445 */
5446 idle->sched_class = &idle_sched_class;
5447 ftrace_graph_init_idle_task(idle, cpu);
5448 vtime_init_idle(idle, cpu);
5449 #ifdef CONFIG_SMP
5450 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5451 #endif
5452 }
5453
5454 #ifdef CONFIG_SMP
5455
5456 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5457 const struct cpumask *trial)
5458 {
5459 int ret = 1;
5460
5461 if (!cpumask_weight(cur))
5462 return ret;
5463
5464 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
5465
5466 return ret;
5467 }
5468
5469 int task_can_attach(struct task_struct *p,
5470 const struct cpumask *cs_cpus_allowed)
5471 {
5472 int ret = 0;
5473
5474 /*
5475 * Kthreads which disallow setaffinity shouldn't be moved
5476 * to a new cpuset; we don't want to change their CPU
5477 * affinity and isolating such threads by their set of
5478 * allowed nodes is unnecessary. Thus, cpusets are not
5479 * applicable for such threads. This prevents checking for
5480 * success of set_cpus_allowed_ptr() on all attached tasks
5481 * before cpus_allowed may be changed.
5482 */
5483 if (p->flags & PF_NO_SETAFFINITY) {
5484 ret = -EINVAL;
5485 goto out;
5486 }
5487
5488 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5489 cs_cpus_allowed))
5490 ret = dl_task_can_attach(p, cs_cpus_allowed);
5491
5492 out:
5493 return ret;
5494 }
5495
5496 bool sched_smp_initialized __read_mostly;
5497
5498 #ifdef CONFIG_NUMA_BALANCING
5499 /* Migrate current task p to target_cpu */
5500 int migrate_task_to(struct task_struct *p, int target_cpu)
5501 {
5502 struct migration_arg arg = { p, target_cpu };
5503 int curr_cpu = task_cpu(p);
5504
5505 if (curr_cpu == target_cpu)
5506 return 0;
5507
5508 if (!cpumask_test_cpu(target_cpu, &p->cpus_allowed))
5509 return -EINVAL;
5510
5511 /* TODO: This is not properly updating schedstats */
5512
5513 trace_sched_move_numa(p, curr_cpu, target_cpu);
5514 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5515 }
5516
5517 /*
5518 * Requeue a task on a given node and accurately track the number of NUMA
5519 * tasks on the runqueues
5520 */
5521 void sched_setnuma(struct task_struct *p, int nid)
5522 {
5523 bool queued, running;
5524 struct rq_flags rf;
5525 struct rq *rq;
5526
5527 rq = task_rq_lock(p, &rf);
5528 queued = task_on_rq_queued(p);
5529 running = task_current(rq, p);
5530
5531 if (queued)
5532 dequeue_task(rq, p, DEQUEUE_SAVE);
5533 if (running)
5534 put_prev_task(rq, p);
5535
5536 p->numa_preferred_nid = nid;
5537
5538 if (queued)
5539 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5540 if (running)
5541 set_curr_task(rq, p);
5542 task_rq_unlock(rq, p, &rf);
5543 }
5544 #endif /* CONFIG_NUMA_BALANCING */
5545
5546 #ifdef CONFIG_HOTPLUG_CPU
5547 /*
5548 * Ensure that the idle task is using init_mm right before its CPU goes
5549 * offline.
5550 */
5551 void idle_task_exit(void)
5552 {
5553 struct mm_struct *mm = current->active_mm;
5554
5555 BUG_ON(cpu_online(smp_processor_id()));
5556
5557 if (mm != &init_mm) {
5558 switch_mm(mm, &init_mm, current);
5559 finish_arch_post_lock_switch();
5560 }
5561 mmdrop(mm);
5562 }
5563
5564 /*
5565 * Since this CPU is going 'away' for a while, fold any nr_active delta
5566 * we might have. Assumes we're called after migrate_tasks() so that the
5567 * nr_active count is stable. We need to take the teardown thread which
5568 * is calling this into account, so we hand in adjust = 1 to the load
5569 * calculation.
5570 *
5571 * Also see the comment "Global load-average calculations".
5572 */
5573 static void calc_load_migrate(struct rq *rq)
5574 {
5575 long delta = calc_load_fold_active(rq, 1);
5576 if (delta)
5577 atomic_long_add(delta, &calc_load_tasks);
5578 }
5579
5580 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5581 {
5582 }
5583
5584 static const struct sched_class fake_sched_class = {
5585 .put_prev_task = put_prev_task_fake,
5586 };
5587
5588 static struct task_struct fake_task = {
5589 /*
5590 * Avoid pull_{rt,dl}_task()
5591 */
5592 .prio = MAX_PRIO + 1,
5593 .sched_class = &fake_sched_class,
5594 };
5595
5596 /*
5597 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5598 * try_to_wake_up()->select_task_rq().
5599 *
5600 * Called with rq->lock held even though we'er in stop_machine() and
5601 * there's no concurrency possible, we hold the required locks anyway
5602 * because of lock validation efforts.
5603 */
5604 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
5605 {
5606 struct rq *rq = dead_rq;
5607 struct task_struct *next, *stop = rq->stop;
5608 struct rq_flags orf = *rf;
5609 int dest_cpu;
5610
5611 /*
5612 * Fudge the rq selection such that the below task selection loop
5613 * doesn't get stuck on the currently eligible stop task.
5614 *
5615 * We're currently inside stop_machine() and the rq is either stuck
5616 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5617 * either way we should never end up calling schedule() until we're
5618 * done here.
5619 */
5620 rq->stop = NULL;
5621
5622 /*
5623 * put_prev_task() and pick_next_task() sched
5624 * class method both need to have an up-to-date
5625 * value of rq->clock[_task]
5626 */
5627 update_rq_clock(rq);
5628
5629 for (;;) {
5630 /*
5631 * There's this thread running, bail when that's the only
5632 * remaining thread:
5633 */
5634 if (rq->nr_running == 1)
5635 break;
5636
5637 /*
5638 * pick_next_task() assumes pinned rq->lock:
5639 */
5640 next = pick_next_task(rq, &fake_task, rf);
5641 BUG_ON(!next);
5642 put_prev_task(rq, next);
5643
5644 /*
5645 * Rules for changing task_struct::cpus_allowed are holding
5646 * both pi_lock and rq->lock, such that holding either
5647 * stabilizes the mask.
5648 *
5649 * Drop rq->lock is not quite as disastrous as it usually is
5650 * because !cpu_active at this point, which means load-balance
5651 * will not interfere. Also, stop-machine.
5652 */
5653 rq_unlock(rq, rf);
5654 raw_spin_lock(&next->pi_lock);
5655 rq_relock(rq, rf);
5656
5657 /*
5658 * Since we're inside stop-machine, _nothing_ should have
5659 * changed the task, WARN if weird stuff happened, because in
5660 * that case the above rq->lock drop is a fail too.
5661 */
5662 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5663 raw_spin_unlock(&next->pi_lock);
5664 continue;
5665 }
5666
5667 /* Find suitable destination for @next, with force if needed. */
5668 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5669 rq = __migrate_task(rq, rf, next, dest_cpu);
5670 if (rq != dead_rq) {
5671 rq_unlock(rq, rf);
5672 rq = dead_rq;
5673 *rf = orf;
5674 rq_relock(rq, rf);
5675 }
5676 raw_spin_unlock(&next->pi_lock);
5677 }
5678
5679 rq->stop = stop;
5680 }
5681 #endif /* CONFIG_HOTPLUG_CPU */
5682
5683 void set_rq_online(struct rq *rq)
5684 {
5685 if (!rq->online) {
5686 const struct sched_class *class;
5687
5688 cpumask_set_cpu(rq->cpu, rq->rd->online);
5689 rq->online = 1;
5690
5691 for_each_class(class) {
5692 if (class->rq_online)
5693 class->rq_online(rq);
5694 }
5695 }
5696 }
5697
5698 void set_rq_offline(struct rq *rq)
5699 {
5700 if (rq->online) {
5701 const struct sched_class *class;
5702
5703 for_each_class(class) {
5704 if (class->rq_offline)
5705 class->rq_offline(rq);
5706 }
5707
5708 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5709 rq->online = 0;
5710 }
5711 }
5712
5713 static void set_cpu_rq_start_time(unsigned int cpu)
5714 {
5715 struct rq *rq = cpu_rq(cpu);
5716
5717 rq->age_stamp = sched_clock_cpu(cpu);
5718 }
5719
5720 /*
5721 * used to mark begin/end of suspend/resume:
5722 */
5723 static int num_cpus_frozen;
5724
5725 /*
5726 * Update cpusets according to cpu_active mask. If cpusets are
5727 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5728 * around partition_sched_domains().
5729 *
5730 * If we come here as part of a suspend/resume, don't touch cpusets because we
5731 * want to restore it back to its original state upon resume anyway.
5732 */
5733 static void cpuset_cpu_active(void)
5734 {
5735 if (cpuhp_tasks_frozen) {
5736 /*
5737 * num_cpus_frozen tracks how many CPUs are involved in suspend
5738 * resume sequence. As long as this is not the last online
5739 * operation in the resume sequence, just build a single sched
5740 * domain, ignoring cpusets.
5741 */
5742 partition_sched_domains(1, NULL, NULL);
5743 if (--num_cpus_frozen)
5744 return;
5745 /*
5746 * This is the last CPU online operation. So fall through and
5747 * restore the original sched domains by considering the
5748 * cpuset configurations.
5749 */
5750 cpuset_force_rebuild();
5751 }
5752 cpuset_update_active_cpus();
5753 }
5754
5755 static int cpuset_cpu_inactive(unsigned int cpu)
5756 {
5757 if (!cpuhp_tasks_frozen) {
5758 if (dl_cpu_busy(cpu))
5759 return -EBUSY;
5760 cpuset_update_active_cpus();
5761 } else {
5762 num_cpus_frozen++;
5763 partition_sched_domains(1, NULL, NULL);
5764 }
5765 return 0;
5766 }
5767
5768 int sched_cpu_activate(unsigned int cpu)
5769 {
5770 struct rq *rq = cpu_rq(cpu);
5771 struct rq_flags rf;
5772
5773 set_cpu_active(cpu, true);
5774
5775 if (sched_smp_initialized) {
5776 sched_domains_numa_masks_set(cpu);
5777 cpuset_cpu_active();
5778 }
5779
5780 /*
5781 * Put the rq online, if not already. This happens:
5782 *
5783 * 1) In the early boot process, because we build the real domains
5784 * after all CPUs have been brought up.
5785 *
5786 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5787 * domains.
5788 */
5789 rq_lock_irqsave(rq, &rf);
5790 if (rq->rd) {
5791 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5792 set_rq_online(rq);
5793 }
5794 rq_unlock_irqrestore(rq, &rf);
5795
5796 update_max_interval();
5797
5798 return 0;
5799 }
5800
5801 int sched_cpu_deactivate(unsigned int cpu)
5802 {
5803 int ret;
5804
5805 set_cpu_active(cpu, false);
5806 /*
5807 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5808 * users of this state to go away such that all new such users will
5809 * observe it.
5810 *
5811 * Do sync before park smpboot threads to take care the rcu boost case.
5812 */
5813 synchronize_rcu_mult(call_rcu, call_rcu_sched);
5814
5815 if (!sched_smp_initialized)
5816 return 0;
5817
5818 ret = cpuset_cpu_inactive(cpu);
5819 if (ret) {
5820 set_cpu_active(cpu, true);
5821 return ret;
5822 }
5823 sched_domains_numa_masks_clear(cpu);
5824 return 0;
5825 }
5826
5827 static void sched_rq_cpu_starting(unsigned int cpu)
5828 {
5829 struct rq *rq = cpu_rq(cpu);
5830
5831 rq->calc_load_update = calc_load_update;
5832 update_max_interval();
5833 }
5834
5835 int sched_cpu_starting(unsigned int cpu)
5836 {
5837 set_cpu_rq_start_time(cpu);
5838 sched_rq_cpu_starting(cpu);
5839 sched_tick_start(cpu);
5840 return 0;
5841 }
5842
5843 #ifdef CONFIG_HOTPLUG_CPU
5844 int sched_cpu_dying(unsigned int cpu)
5845 {
5846 struct rq *rq = cpu_rq(cpu);
5847 struct rq_flags rf;
5848
5849 /* Handle pending wakeups and then migrate everything off */
5850 sched_ttwu_pending();
5851 sched_tick_stop(cpu);
5852
5853 rq_lock_irqsave(rq, &rf);
5854 if (rq->rd) {
5855 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5856 set_rq_offline(rq);
5857 }
5858 migrate_tasks(rq, &rf);
5859 BUG_ON(rq->nr_running != 1);
5860 rq_unlock_irqrestore(rq, &rf);
5861
5862 calc_load_migrate(rq);
5863 update_max_interval();
5864 nohz_balance_exit_idle(cpu);
5865 hrtick_clear(rq);
5866 return 0;
5867 }
5868 #endif
5869
5870 #ifdef CONFIG_SCHED_SMT
5871 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5872
5873 static void sched_init_smt(void)
5874 {
5875 /*
5876 * We've enumerated all CPUs and will assume that if any CPU
5877 * has SMT siblings, CPU0 will too.
5878 */
5879 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5880 static_branch_enable(&sched_smt_present);
5881 }
5882 #else
5883 static inline void sched_init_smt(void) { }
5884 #endif
5885
5886 void __init sched_init_smp(void)
5887 {
5888 sched_init_numa();
5889
5890 /*
5891 * There's no userspace yet to cause hotplug operations; hence all the
5892 * CPU masks are stable and all blatant races in the below code cannot
5893 * happen.
5894 */
5895 mutex_lock(&sched_domains_mutex);
5896 sched_init_domains(cpu_active_mask);
5897 mutex_unlock(&sched_domains_mutex);
5898
5899 /* Move init over to a non-isolated CPU */
5900 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
5901 BUG();
5902 sched_init_granularity();
5903
5904 init_sched_rt_class();
5905 init_sched_dl_class();
5906
5907 sched_init_smt();
5908
5909 sched_smp_initialized = true;
5910 }
5911
5912 static int __init migration_init(void)
5913 {
5914 sched_rq_cpu_starting(smp_processor_id());
5915 return 0;
5916 }
5917 early_initcall(migration_init);
5918
5919 #else
5920 void __init sched_init_smp(void)
5921 {
5922 sched_init_granularity();
5923 }
5924 #endif /* CONFIG_SMP */
5925
5926 int in_sched_functions(unsigned long addr)
5927 {
5928 return in_lock_functions(addr) ||
5929 (addr >= (unsigned long)__sched_text_start
5930 && addr < (unsigned long)__sched_text_end);
5931 }
5932
5933 #ifdef CONFIG_CGROUP_SCHED
5934 /*
5935 * Default task group.
5936 * Every task in system belongs to this group at bootup.
5937 */
5938 struct task_group root_task_group;
5939 LIST_HEAD(task_groups);
5940
5941 /* Cacheline aligned slab cache for task_group */
5942 static struct kmem_cache *task_group_cache __read_mostly;
5943 #endif
5944
5945 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
5946 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
5947
5948 void __init sched_init(void)
5949 {
5950 int i, j;
5951 unsigned long alloc_size = 0, ptr;
5952
5953 sched_clock_init();
5954 wait_bit_init();
5955
5956 #ifdef CONFIG_FAIR_GROUP_SCHED
5957 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5958 #endif
5959 #ifdef CONFIG_RT_GROUP_SCHED
5960 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
5961 #endif
5962 if (alloc_size) {
5963 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
5964
5965 #ifdef CONFIG_FAIR_GROUP_SCHED
5966 root_task_group.se = (struct sched_entity **)ptr;
5967 ptr += nr_cpu_ids * sizeof(void **);
5968
5969 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
5970 ptr += nr_cpu_ids * sizeof(void **);
5971
5972 #endif /* CONFIG_FAIR_GROUP_SCHED */
5973 #ifdef CONFIG_RT_GROUP_SCHED
5974 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
5975 ptr += nr_cpu_ids * sizeof(void **);
5976
5977 root_task_group.rt_rq = (struct rt_rq **)ptr;
5978 ptr += nr_cpu_ids * sizeof(void **);
5979
5980 #endif /* CONFIG_RT_GROUP_SCHED */
5981 }
5982 #ifdef CONFIG_CPUMASK_OFFSTACK
5983 for_each_possible_cpu(i) {
5984 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
5985 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5986 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
5987 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
5988 }
5989 #endif /* CONFIG_CPUMASK_OFFSTACK */
5990
5991 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
5992 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
5993
5994 #ifdef CONFIG_SMP
5995 init_defrootdomain();
5996 #endif
5997
5998 #ifdef CONFIG_RT_GROUP_SCHED
5999 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6000 global_rt_period(), global_rt_runtime());
6001 #endif /* CONFIG_RT_GROUP_SCHED */
6002
6003 #ifdef CONFIG_CGROUP_SCHED
6004 task_group_cache = KMEM_CACHE(task_group, 0);
6005
6006 list_add(&root_task_group.list, &task_groups);
6007 INIT_LIST_HEAD(&root_task_group.children);
6008 INIT_LIST_HEAD(&root_task_group.siblings);
6009 autogroup_init(&init_task);
6010 #endif /* CONFIG_CGROUP_SCHED */
6011
6012 for_each_possible_cpu(i) {
6013 struct rq *rq;
6014
6015 rq = cpu_rq(i);
6016 raw_spin_lock_init(&rq->lock);
6017 rq->nr_running = 0;
6018 rq->calc_load_active = 0;
6019 rq->calc_load_update = jiffies + LOAD_FREQ;
6020 init_cfs_rq(&rq->cfs);
6021 init_rt_rq(&rq->rt);
6022 init_dl_rq(&rq->dl);
6023 #ifdef CONFIG_FAIR_GROUP_SCHED
6024 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6025 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6026 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6027 /*
6028 * How much CPU bandwidth does root_task_group get?
6029 *
6030 * In case of task-groups formed thr' the cgroup filesystem, it
6031 * gets 100% of the CPU resources in the system. This overall
6032 * system CPU resource is divided among the tasks of
6033 * root_task_group and its child task-groups in a fair manner,
6034 * based on each entity's (task or task-group's) weight
6035 * (se->load.weight).
6036 *
6037 * In other words, if root_task_group has 10 tasks of weight
6038 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6039 * then A0's share of the CPU resource is:
6040 *
6041 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6042 *
6043 * We achieve this by letting root_task_group's tasks sit
6044 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6045 */
6046 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6047 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6048 #endif /* CONFIG_FAIR_GROUP_SCHED */
6049
6050 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6051 #ifdef CONFIG_RT_GROUP_SCHED
6052 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6053 #endif
6054
6055 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6056 rq->cpu_load[j] = 0;
6057
6058 #ifdef CONFIG_SMP
6059 rq->sd = NULL;
6060 rq->rd = NULL;
6061 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6062 rq->balance_callback = NULL;
6063 rq->active_balance = 0;
6064 rq->next_balance = jiffies;
6065 rq->push_cpu = 0;
6066 rq->cpu = i;
6067 rq->online = 0;
6068 rq->idle_stamp = 0;
6069 rq->avg_idle = 2*sysctl_sched_migration_cost;
6070 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6071
6072 INIT_LIST_HEAD(&rq->cfs_tasks);
6073
6074 rq_attach_root(rq, &def_root_domain);
6075 #ifdef CONFIG_NO_HZ_COMMON
6076 rq->last_load_update_tick = jiffies;
6077 atomic_set(&rq->nohz_flags, 0);
6078 #endif
6079 #endif /* CONFIG_SMP */
6080 hrtick_rq_init(rq);
6081 atomic_set(&rq->nr_iowait, 0);
6082 }
6083
6084 set_load_weight(&init_task, false);
6085
6086 /*
6087 * The boot idle thread does lazy MMU switching as well:
6088 */
6089 mmgrab(&init_mm);
6090 enter_lazy_tlb(&init_mm, current);
6091
6092 /*
6093 * Make us the idle thread. Technically, schedule() should not be
6094 * called from this thread, however somewhere below it might be,
6095 * but because we are the idle thread, we just pick up running again
6096 * when this runqueue becomes "idle".
6097 */
6098 init_idle(current, smp_processor_id());
6099
6100 calc_load_update = jiffies + LOAD_FREQ;
6101
6102 #ifdef CONFIG_SMP
6103 idle_thread_set_boot_cpu();
6104 set_cpu_rq_start_time(smp_processor_id());
6105 #endif
6106 init_sched_fair_class();
6107
6108 init_schedstats();
6109
6110 scheduler_running = 1;
6111 }
6112
6113 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6114 static inline int preempt_count_equals(int preempt_offset)
6115 {
6116 int nested = preempt_count() + rcu_preempt_depth();
6117
6118 return (nested == preempt_offset);
6119 }
6120
6121 void __might_sleep(const char *file, int line, int preempt_offset)
6122 {
6123 /*
6124 * Blocking primitives will set (and therefore destroy) current->state,
6125 * since we will exit with TASK_RUNNING make sure we enter with it,
6126 * otherwise we will destroy state.
6127 */
6128 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6129 "do not call blocking ops when !TASK_RUNNING; "
6130 "state=%lx set at [<%p>] %pS\n",
6131 current->state,
6132 (void *)current->task_state_change,
6133 (void *)current->task_state_change);
6134
6135 ___might_sleep(file, line, preempt_offset);
6136 }
6137 EXPORT_SYMBOL(__might_sleep);
6138
6139 void ___might_sleep(const char *file, int line, int preempt_offset)
6140 {
6141 /* Ratelimiting timestamp: */
6142 static unsigned long prev_jiffy;
6143
6144 unsigned long preempt_disable_ip;
6145
6146 /* WARN_ON_ONCE() by default, no rate limit required: */
6147 rcu_sleep_check();
6148
6149 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6150 !is_idle_task(current)) ||
6151 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6152 oops_in_progress)
6153 return;
6154
6155 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6156 return;
6157 prev_jiffy = jiffies;
6158
6159 /* Save this before calling printk(), since that will clobber it: */
6160 preempt_disable_ip = get_preempt_disable_ip(current);
6161
6162 printk(KERN_ERR
6163 "BUG: sleeping function called from invalid context at %s:%d\n",
6164 file, line);
6165 printk(KERN_ERR
6166 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6167 in_atomic(), irqs_disabled(),
6168 current->pid, current->comm);
6169
6170 if (task_stack_end_corrupted(current))
6171 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6172
6173 debug_show_held_locks(current);
6174 if (irqs_disabled())
6175 print_irqtrace_events(current);
6176 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6177 && !preempt_count_equals(preempt_offset)) {
6178 pr_err("Preemption disabled at:");
6179 print_ip_sym(preempt_disable_ip);
6180 pr_cont("\n");
6181 }
6182 dump_stack();
6183 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6184 }
6185 EXPORT_SYMBOL(___might_sleep);
6186 #endif
6187
6188 #ifdef CONFIG_MAGIC_SYSRQ
6189 void normalize_rt_tasks(void)
6190 {
6191 struct task_struct *g, *p;
6192 struct sched_attr attr = {
6193 .sched_policy = SCHED_NORMAL,
6194 };
6195
6196 read_lock(&tasklist_lock);
6197 for_each_process_thread(g, p) {
6198 /*
6199 * Only normalize user tasks:
6200 */
6201 if (p->flags & PF_KTHREAD)
6202 continue;
6203
6204 p->se.exec_start = 0;
6205 schedstat_set(p->se.statistics.wait_start, 0);
6206 schedstat_set(p->se.statistics.sleep_start, 0);
6207 schedstat_set(p->se.statistics.block_start, 0);
6208
6209 if (!dl_task(p) && !rt_task(p)) {
6210 /*
6211 * Renice negative nice level userspace
6212 * tasks back to 0:
6213 */
6214 if (task_nice(p) < 0)
6215 set_user_nice(p, 0);
6216 continue;
6217 }
6218
6219 __sched_setscheduler(p, &attr, false, false);
6220 }
6221 read_unlock(&tasklist_lock);
6222 }
6223
6224 #endif /* CONFIG_MAGIC_SYSRQ */
6225
6226 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6227 /*
6228 * These functions are only useful for the IA64 MCA handling, or kdb.
6229 *
6230 * They can only be called when the whole system has been
6231 * stopped - every CPU needs to be quiescent, and no scheduling
6232 * activity can take place. Using them for anything else would
6233 * be a serious bug, and as a result, they aren't even visible
6234 * under any other configuration.
6235 */
6236
6237 /**
6238 * curr_task - return the current task for a given CPU.
6239 * @cpu: the processor in question.
6240 *
6241 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6242 *
6243 * Return: The current task for @cpu.
6244 */
6245 struct task_struct *curr_task(int cpu)
6246 {
6247 return cpu_curr(cpu);
6248 }
6249
6250 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6251
6252 #ifdef CONFIG_IA64
6253 /**
6254 * set_curr_task - set the current task for a given CPU.
6255 * @cpu: the processor in question.
6256 * @p: the task pointer to set.
6257 *
6258 * Description: This function must only be used when non-maskable interrupts
6259 * are serviced on a separate stack. It allows the architecture to switch the
6260 * notion of the current task on a CPU in a non-blocking manner. This function
6261 * must be called with all CPU's synchronized, and interrupts disabled, the
6262 * and caller must save the original value of the current task (see
6263 * curr_task() above) and restore that value before reenabling interrupts and
6264 * re-starting the system.
6265 *
6266 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6267 */
6268 void ia64_set_curr_task(int cpu, struct task_struct *p)
6269 {
6270 cpu_curr(cpu) = p;
6271 }
6272
6273 #endif
6274
6275 #ifdef CONFIG_CGROUP_SCHED
6276 /* task_group_lock serializes the addition/removal of task groups */
6277 static DEFINE_SPINLOCK(task_group_lock);
6278
6279 static void sched_free_group(struct task_group *tg)
6280 {
6281 free_fair_sched_group(tg);
6282 free_rt_sched_group(tg);
6283 autogroup_free(tg);
6284 kmem_cache_free(task_group_cache, tg);
6285 }
6286
6287 /* allocate runqueue etc for a new task group */
6288 struct task_group *sched_create_group(struct task_group *parent)
6289 {
6290 struct task_group *tg;
6291
6292 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6293 if (!tg)
6294 return ERR_PTR(-ENOMEM);
6295
6296 if (!alloc_fair_sched_group(tg, parent))
6297 goto err;
6298
6299 if (!alloc_rt_sched_group(tg, parent))
6300 goto err;
6301
6302 return tg;
6303
6304 err:
6305 sched_free_group(tg);
6306 return ERR_PTR(-ENOMEM);
6307 }
6308
6309 void sched_online_group(struct task_group *tg, struct task_group *parent)
6310 {
6311 unsigned long flags;
6312
6313 spin_lock_irqsave(&task_group_lock, flags);
6314 list_add_rcu(&tg->list, &task_groups);
6315
6316 /* Root should already exist: */
6317 WARN_ON(!parent);
6318
6319 tg->parent = parent;
6320 INIT_LIST_HEAD(&tg->children);
6321 list_add_rcu(&tg->siblings, &parent->children);
6322 spin_unlock_irqrestore(&task_group_lock, flags);
6323
6324 online_fair_sched_group(tg);
6325 }
6326
6327 /* rcu callback to free various structures associated with a task group */
6328 static void sched_free_group_rcu(struct rcu_head *rhp)
6329 {
6330 /* Now it should be safe to free those cfs_rqs: */
6331 sched_free_group(container_of(rhp, struct task_group, rcu));
6332 }
6333
6334 void sched_destroy_group(struct task_group *tg)
6335 {
6336 /* Wait for possible concurrent references to cfs_rqs complete: */
6337 call_rcu(&tg->rcu, sched_free_group_rcu);
6338 }
6339
6340 void sched_offline_group(struct task_group *tg)
6341 {
6342 unsigned long flags;
6343
6344 /* End participation in shares distribution: */
6345 unregister_fair_sched_group(tg);
6346
6347 spin_lock_irqsave(&task_group_lock, flags);
6348 list_del_rcu(&tg->list);
6349 list_del_rcu(&tg->siblings);
6350 spin_unlock_irqrestore(&task_group_lock, flags);
6351 }
6352
6353 static void sched_change_group(struct task_struct *tsk, int type)
6354 {
6355 struct task_group *tg;
6356
6357 /*
6358 * All callers are synchronized by task_rq_lock(); we do not use RCU
6359 * which is pointless here. Thus, we pass "true" to task_css_check()
6360 * to prevent lockdep warnings.
6361 */
6362 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
6363 struct task_group, css);
6364 tg = autogroup_task_group(tsk, tg);
6365 tsk->sched_task_group = tg;
6366
6367 #ifdef CONFIG_FAIR_GROUP_SCHED
6368 if (tsk->sched_class->task_change_group)
6369 tsk->sched_class->task_change_group(tsk, type);
6370 else
6371 #endif
6372 set_task_rq(tsk, task_cpu(tsk));
6373 }
6374
6375 /*
6376 * Change task's runqueue when it moves between groups.
6377 *
6378 * The caller of this function should have put the task in its new group by
6379 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6380 * its new group.
6381 */
6382 void sched_move_task(struct task_struct *tsk)
6383 {
6384 int queued, running, queue_flags =
6385 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6386 struct rq_flags rf;
6387 struct rq *rq;
6388
6389 rq = task_rq_lock(tsk, &rf);
6390 update_rq_clock(rq);
6391
6392 running = task_current(rq, tsk);
6393 queued = task_on_rq_queued(tsk);
6394
6395 if (queued)
6396 dequeue_task(rq, tsk, queue_flags);
6397 if (running)
6398 put_prev_task(rq, tsk);
6399
6400 sched_change_group(tsk, TASK_MOVE_GROUP);
6401
6402 if (queued)
6403 enqueue_task(rq, tsk, queue_flags);
6404 if (running)
6405 set_curr_task(rq, tsk);
6406
6407 task_rq_unlock(rq, tsk, &rf);
6408 }
6409
6410 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
6411 {
6412 return css ? container_of(css, struct task_group, css) : NULL;
6413 }
6414
6415 static struct cgroup_subsys_state *
6416 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6417 {
6418 struct task_group *parent = css_tg(parent_css);
6419 struct task_group *tg;
6420
6421 if (!parent) {
6422 /* This is early initialization for the top cgroup */
6423 return &root_task_group.css;
6424 }
6425
6426 tg = sched_create_group(parent);
6427 if (IS_ERR(tg))
6428 return ERR_PTR(-ENOMEM);
6429
6430 return &tg->css;
6431 }
6432
6433 /* Expose task group only after completing cgroup initialization */
6434 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
6435 {
6436 struct task_group *tg = css_tg(css);
6437 struct task_group *parent = css_tg(css->parent);
6438
6439 if (parent)
6440 sched_online_group(tg, parent);
6441 return 0;
6442 }
6443
6444 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
6445 {
6446 struct task_group *tg = css_tg(css);
6447
6448 sched_offline_group(tg);
6449 }
6450
6451 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
6452 {
6453 struct task_group *tg = css_tg(css);
6454
6455 /*
6456 * Relies on the RCU grace period between css_released() and this.
6457 */
6458 sched_free_group(tg);
6459 }
6460
6461 /*
6462 * This is called before wake_up_new_task(), therefore we really only
6463 * have to set its group bits, all the other stuff does not apply.
6464 */
6465 static void cpu_cgroup_fork(struct task_struct *task)
6466 {
6467 struct rq_flags rf;
6468 struct rq *rq;
6469
6470 rq = task_rq_lock(task, &rf);
6471
6472 update_rq_clock(rq);
6473 sched_change_group(task, TASK_SET_GROUP);
6474
6475 task_rq_unlock(rq, task, &rf);
6476 }
6477
6478 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
6479 {
6480 struct task_struct *task;
6481 struct cgroup_subsys_state *css;
6482 int ret = 0;
6483
6484 cgroup_taskset_for_each(task, css, tset) {
6485 #ifdef CONFIG_RT_GROUP_SCHED
6486 if (!sched_rt_can_attach(css_tg(css), task))
6487 return -EINVAL;
6488 #else
6489 /* We don't support RT-tasks being in separate groups */
6490 if (task->sched_class != &fair_sched_class)
6491 return -EINVAL;
6492 #endif
6493 /*
6494 * Serialize against wake_up_new_task() such that if its
6495 * running, we're sure to observe its full state.
6496 */
6497 raw_spin_lock_irq(&task->pi_lock);
6498 /*
6499 * Avoid calling sched_move_task() before wake_up_new_task()
6500 * has happened. This would lead to problems with PELT, due to
6501 * move wanting to detach+attach while we're not attached yet.
6502 */
6503 if (task->state == TASK_NEW)
6504 ret = -EINVAL;
6505 raw_spin_unlock_irq(&task->pi_lock);
6506
6507 if (ret)
6508 break;
6509 }
6510 return ret;
6511 }
6512
6513 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
6514 {
6515 struct task_struct *task;
6516 struct cgroup_subsys_state *css;
6517
6518 cgroup_taskset_for_each(task, css, tset)
6519 sched_move_task(task);
6520 }
6521
6522 #ifdef CONFIG_FAIR_GROUP_SCHED
6523 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
6524 struct cftype *cftype, u64 shareval)
6525 {
6526 return sched_group_set_shares(css_tg(css), scale_load(shareval));
6527 }
6528
6529 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
6530 struct cftype *cft)
6531 {
6532 struct task_group *tg = css_tg(css);
6533
6534 return (u64) scale_load_down(tg->shares);
6535 }
6536
6537 #ifdef CONFIG_CFS_BANDWIDTH
6538 static DEFINE_MUTEX(cfs_constraints_mutex);
6539
6540 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
6541 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
6542
6543 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
6544
6545 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
6546 {
6547 int i, ret = 0, runtime_enabled, runtime_was_enabled;
6548 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6549
6550 if (tg == &root_task_group)
6551 return -EINVAL;
6552
6553 /*
6554 * Ensure we have at some amount of bandwidth every period. This is
6555 * to prevent reaching a state of large arrears when throttled via
6556 * entity_tick() resulting in prolonged exit starvation.
6557 */
6558 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
6559 return -EINVAL;
6560
6561 /*
6562 * Likewise, bound things on the otherside by preventing insane quota
6563 * periods. This also allows us to normalize in computing quota
6564 * feasibility.
6565 */
6566 if (period > max_cfs_quota_period)
6567 return -EINVAL;
6568
6569 /*
6570 * Prevent race between setting of cfs_rq->runtime_enabled and
6571 * unthrottle_offline_cfs_rqs().
6572 */
6573 get_online_cpus();
6574 mutex_lock(&cfs_constraints_mutex);
6575 ret = __cfs_schedulable(tg, period, quota);
6576 if (ret)
6577 goto out_unlock;
6578
6579 runtime_enabled = quota != RUNTIME_INF;
6580 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
6581 /*
6582 * If we need to toggle cfs_bandwidth_used, off->on must occur
6583 * before making related changes, and on->off must occur afterwards
6584 */
6585 if (runtime_enabled && !runtime_was_enabled)
6586 cfs_bandwidth_usage_inc();
6587 raw_spin_lock_irq(&cfs_b->lock);
6588 cfs_b->period = ns_to_ktime(period);
6589 cfs_b->quota = quota;
6590
6591 __refill_cfs_bandwidth_runtime(cfs_b);
6592
6593 /* Restart the period timer (if active) to handle new period expiry: */
6594 if (runtime_enabled)
6595 start_cfs_bandwidth(cfs_b);
6596
6597 raw_spin_unlock_irq(&cfs_b->lock);
6598
6599 for_each_online_cpu(i) {
6600 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
6601 struct rq *rq = cfs_rq->rq;
6602 struct rq_flags rf;
6603
6604 rq_lock_irq(rq, &rf);
6605 cfs_rq->runtime_enabled = runtime_enabled;
6606 cfs_rq->runtime_remaining = 0;
6607
6608 if (cfs_rq->throttled)
6609 unthrottle_cfs_rq(cfs_rq);
6610 rq_unlock_irq(rq, &rf);
6611 }
6612 if (runtime_was_enabled && !runtime_enabled)
6613 cfs_bandwidth_usage_dec();
6614 out_unlock:
6615 mutex_unlock(&cfs_constraints_mutex);
6616 put_online_cpus();
6617
6618 return ret;
6619 }
6620
6621 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
6622 {
6623 u64 quota, period;
6624
6625 period = ktime_to_ns(tg->cfs_bandwidth.period);
6626 if (cfs_quota_us < 0)
6627 quota = RUNTIME_INF;
6628 else
6629 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
6630
6631 return tg_set_cfs_bandwidth(tg, period, quota);
6632 }
6633
6634 long tg_get_cfs_quota(struct task_group *tg)
6635 {
6636 u64 quota_us;
6637
6638 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
6639 return -1;
6640
6641 quota_us = tg->cfs_bandwidth.quota;
6642 do_div(quota_us, NSEC_PER_USEC);
6643
6644 return quota_us;
6645 }
6646
6647 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
6648 {
6649 u64 quota, period;
6650
6651 period = (u64)cfs_period_us * NSEC_PER_USEC;
6652 quota = tg->cfs_bandwidth.quota;
6653
6654 return tg_set_cfs_bandwidth(tg, period, quota);
6655 }
6656
6657 long tg_get_cfs_period(struct task_group *tg)
6658 {
6659 u64 cfs_period_us;
6660
6661 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
6662 do_div(cfs_period_us, NSEC_PER_USEC);
6663
6664 return cfs_period_us;
6665 }
6666
6667 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
6668 struct cftype *cft)
6669 {
6670 return tg_get_cfs_quota(css_tg(css));
6671 }
6672
6673 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
6674 struct cftype *cftype, s64 cfs_quota_us)
6675 {
6676 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
6677 }
6678
6679 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
6680 struct cftype *cft)
6681 {
6682 return tg_get_cfs_period(css_tg(css));
6683 }
6684
6685 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
6686 struct cftype *cftype, u64 cfs_period_us)
6687 {
6688 return tg_set_cfs_period(css_tg(css), cfs_period_us);
6689 }
6690
6691 struct cfs_schedulable_data {
6692 struct task_group *tg;
6693 u64 period, quota;
6694 };
6695
6696 /*
6697 * normalize group quota/period to be quota/max_period
6698 * note: units are usecs
6699 */
6700 static u64 normalize_cfs_quota(struct task_group *tg,
6701 struct cfs_schedulable_data *d)
6702 {
6703 u64 quota, period;
6704
6705 if (tg == d->tg) {
6706 period = d->period;
6707 quota = d->quota;
6708 } else {
6709 period = tg_get_cfs_period(tg);
6710 quota = tg_get_cfs_quota(tg);
6711 }
6712
6713 /* note: these should typically be equivalent */
6714 if (quota == RUNTIME_INF || quota == -1)
6715 return RUNTIME_INF;
6716
6717 return to_ratio(period, quota);
6718 }
6719
6720 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
6721 {
6722 struct cfs_schedulable_data *d = data;
6723 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6724 s64 quota = 0, parent_quota = -1;
6725
6726 if (!tg->parent) {
6727 quota = RUNTIME_INF;
6728 } else {
6729 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
6730
6731 quota = normalize_cfs_quota(tg, d);
6732 parent_quota = parent_b->hierarchical_quota;
6733
6734 /*
6735 * Ensure max(child_quota) <= parent_quota, inherit when no
6736 * limit is set:
6737 */
6738 if (quota == RUNTIME_INF)
6739 quota = parent_quota;
6740 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
6741 return -EINVAL;
6742 }
6743 cfs_b->hierarchical_quota = quota;
6744
6745 return 0;
6746 }
6747
6748 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
6749 {
6750 int ret;
6751 struct cfs_schedulable_data data = {
6752 .tg = tg,
6753 .period = period,
6754 .quota = quota,
6755 };
6756
6757 if (quota != RUNTIME_INF) {
6758 do_div(data.period, NSEC_PER_USEC);
6759 do_div(data.quota, NSEC_PER_USEC);
6760 }
6761
6762 rcu_read_lock();
6763 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
6764 rcu_read_unlock();
6765
6766 return ret;
6767 }
6768
6769 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
6770 {
6771 struct task_group *tg = css_tg(seq_css(sf));
6772 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6773
6774 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
6775 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
6776 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
6777
6778 return 0;
6779 }
6780 #endif /* CONFIG_CFS_BANDWIDTH */
6781 #endif /* CONFIG_FAIR_GROUP_SCHED */
6782
6783 #ifdef CONFIG_RT_GROUP_SCHED
6784 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
6785 struct cftype *cft, s64 val)
6786 {
6787 return sched_group_set_rt_runtime(css_tg(css), val);
6788 }
6789
6790 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
6791 struct cftype *cft)
6792 {
6793 return sched_group_rt_runtime(css_tg(css));
6794 }
6795
6796 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
6797 struct cftype *cftype, u64 rt_period_us)
6798 {
6799 return sched_group_set_rt_period(css_tg(css), rt_period_us);
6800 }
6801
6802 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
6803 struct cftype *cft)
6804 {
6805 return sched_group_rt_period(css_tg(css));
6806 }
6807 #endif /* CONFIG_RT_GROUP_SCHED */
6808
6809 static struct cftype cpu_legacy_files[] = {
6810 #ifdef CONFIG_FAIR_GROUP_SCHED
6811 {
6812 .name = "shares",
6813 .read_u64 = cpu_shares_read_u64,
6814 .write_u64 = cpu_shares_write_u64,
6815 },
6816 #endif
6817 #ifdef CONFIG_CFS_BANDWIDTH
6818 {
6819 .name = "cfs_quota_us",
6820 .read_s64 = cpu_cfs_quota_read_s64,
6821 .write_s64 = cpu_cfs_quota_write_s64,
6822 },
6823 {
6824 .name = "cfs_period_us",
6825 .read_u64 = cpu_cfs_period_read_u64,
6826 .write_u64 = cpu_cfs_period_write_u64,
6827 },
6828 {
6829 .name = "stat",
6830 .seq_show = cpu_cfs_stat_show,
6831 },
6832 #endif
6833 #ifdef CONFIG_RT_GROUP_SCHED
6834 {
6835 .name = "rt_runtime_us",
6836 .read_s64 = cpu_rt_runtime_read,
6837 .write_s64 = cpu_rt_runtime_write,
6838 },
6839 {
6840 .name = "rt_period_us",
6841 .read_u64 = cpu_rt_period_read_uint,
6842 .write_u64 = cpu_rt_period_write_uint,
6843 },
6844 #endif
6845 { } /* Terminate */
6846 };
6847
6848 static int cpu_extra_stat_show(struct seq_file *sf,
6849 struct cgroup_subsys_state *css)
6850 {
6851 #ifdef CONFIG_CFS_BANDWIDTH
6852 {
6853 struct task_group *tg = css_tg(css);
6854 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6855 u64 throttled_usec;
6856
6857 throttled_usec = cfs_b->throttled_time;
6858 do_div(throttled_usec, NSEC_PER_USEC);
6859
6860 seq_printf(sf, "nr_periods %d\n"
6861 "nr_throttled %d\n"
6862 "throttled_usec %llu\n",
6863 cfs_b->nr_periods, cfs_b->nr_throttled,
6864 throttled_usec);
6865 }
6866 #endif
6867 return 0;
6868 }
6869
6870 #ifdef CONFIG_FAIR_GROUP_SCHED
6871 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
6872 struct cftype *cft)
6873 {
6874 struct task_group *tg = css_tg(css);
6875 u64 weight = scale_load_down(tg->shares);
6876
6877 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
6878 }
6879
6880 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
6881 struct cftype *cft, u64 weight)
6882 {
6883 /*
6884 * cgroup weight knobs should use the common MIN, DFL and MAX
6885 * values which are 1, 100 and 10000 respectively. While it loses
6886 * a bit of range on both ends, it maps pretty well onto the shares
6887 * value used by scheduler and the round-trip conversions preserve
6888 * the original value over the entire range.
6889 */
6890 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
6891 return -ERANGE;
6892
6893 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
6894
6895 return sched_group_set_shares(css_tg(css), scale_load(weight));
6896 }
6897
6898 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
6899 struct cftype *cft)
6900 {
6901 unsigned long weight = scale_load_down(css_tg(css)->shares);
6902 int last_delta = INT_MAX;
6903 int prio, delta;
6904
6905 /* find the closest nice value to the current weight */
6906 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
6907 delta = abs(sched_prio_to_weight[prio] - weight);
6908 if (delta >= last_delta)
6909 break;
6910 last_delta = delta;
6911 }
6912
6913 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
6914 }
6915
6916 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
6917 struct cftype *cft, s64 nice)
6918 {
6919 unsigned long weight;
6920
6921 if (nice < MIN_NICE || nice > MAX_NICE)
6922 return -ERANGE;
6923
6924 weight = sched_prio_to_weight[NICE_TO_PRIO(nice) - MAX_RT_PRIO];
6925 return sched_group_set_shares(css_tg(css), scale_load(weight));
6926 }
6927 #endif
6928
6929 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
6930 long period, long quota)
6931 {
6932 if (quota < 0)
6933 seq_puts(sf, "max");
6934 else
6935 seq_printf(sf, "%ld", quota);
6936
6937 seq_printf(sf, " %ld\n", period);
6938 }
6939
6940 /* caller should put the current value in *@periodp before calling */
6941 static int __maybe_unused cpu_period_quota_parse(char *buf,
6942 u64 *periodp, u64 *quotap)
6943 {
6944 char tok[21]; /* U64_MAX */
6945
6946 if (!sscanf(buf, "%s %llu", tok, periodp))
6947 return -EINVAL;
6948
6949 *periodp *= NSEC_PER_USEC;
6950
6951 if (sscanf(tok, "%llu", quotap))
6952 *quotap *= NSEC_PER_USEC;
6953 else if (!strcmp(tok, "max"))
6954 *quotap = RUNTIME_INF;
6955 else
6956 return -EINVAL;
6957
6958 return 0;
6959 }
6960
6961 #ifdef CONFIG_CFS_BANDWIDTH
6962 static int cpu_max_show(struct seq_file *sf, void *v)
6963 {
6964 struct task_group *tg = css_tg(seq_css(sf));
6965
6966 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
6967 return 0;
6968 }
6969
6970 static ssize_t cpu_max_write(struct kernfs_open_file *of,
6971 char *buf, size_t nbytes, loff_t off)
6972 {
6973 struct task_group *tg = css_tg(of_css(of));
6974 u64 period = tg_get_cfs_period(tg);
6975 u64 quota;
6976 int ret;
6977
6978 ret = cpu_period_quota_parse(buf, &period, &quota);
6979 if (!ret)
6980 ret = tg_set_cfs_bandwidth(tg, period, quota);
6981 return ret ?: nbytes;
6982 }
6983 #endif
6984
6985 static struct cftype cpu_files[] = {
6986 #ifdef CONFIG_FAIR_GROUP_SCHED
6987 {
6988 .name = "weight",
6989 .flags = CFTYPE_NOT_ON_ROOT,
6990 .read_u64 = cpu_weight_read_u64,
6991 .write_u64 = cpu_weight_write_u64,
6992 },
6993 {
6994 .name = "weight.nice",
6995 .flags = CFTYPE_NOT_ON_ROOT,
6996 .read_s64 = cpu_weight_nice_read_s64,
6997 .write_s64 = cpu_weight_nice_write_s64,
6998 },
6999 #endif
7000 #ifdef CONFIG_CFS_BANDWIDTH
7001 {
7002 .name = "max",
7003 .flags = CFTYPE_NOT_ON_ROOT,
7004 .seq_show = cpu_max_show,
7005 .write = cpu_max_write,
7006 },
7007 #endif
7008 { } /* terminate */
7009 };
7010
7011 struct cgroup_subsys cpu_cgrp_subsys = {
7012 .css_alloc = cpu_cgroup_css_alloc,
7013 .css_online = cpu_cgroup_css_online,
7014 .css_released = cpu_cgroup_css_released,
7015 .css_free = cpu_cgroup_css_free,
7016 .css_extra_stat_show = cpu_extra_stat_show,
7017 .fork = cpu_cgroup_fork,
7018 .can_attach = cpu_cgroup_can_attach,
7019 .attach = cpu_cgroup_attach,
7020 .legacy_cftypes = cpu_legacy_files,
7021 .dfl_cftypes = cpu_files,
7022 .early_init = true,
7023 .threaded = true,
7024 };
7025
7026 #endif /* CONFIG_CGROUP_SCHED */
7027
7028 void dump_cpu_task(int cpu)
7029 {
7030 pr_info("Task dump for CPU %d:\n", cpu);
7031 sched_show_task(cpu_curr(cpu));
7032 }
7033
7034 /*
7035 * Nice levels are multiplicative, with a gentle 10% change for every
7036 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7037 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7038 * that remained on nice 0.
7039 *
7040 * The "10% effect" is relative and cumulative: from _any_ nice level,
7041 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7042 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7043 * If a task goes up by ~10% and another task goes down by ~10% then
7044 * the relative distance between them is ~25%.)
7045 */
7046 const int sched_prio_to_weight[40] = {
7047 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7048 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7049 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7050 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7051 /* 0 */ 1024, 820, 655, 526, 423,
7052 /* 5 */ 335, 272, 215, 172, 137,
7053 /* 10 */ 110, 87, 70, 56, 45,
7054 /* 15 */ 36, 29, 23, 18, 15,
7055 };
7056
7057 /*
7058 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7059 *
7060 * In cases where the weight does not change often, we can use the
7061 * precalculated inverse to speed up arithmetics by turning divisions
7062 * into multiplications:
7063 */
7064 const u32 sched_prio_to_wmult[40] = {
7065 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7066 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7067 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7068 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7069 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7070 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7071 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7072 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7073 };
7074
7075 #undef CREATE_TRACE_POINTS