]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched/core.c
Merge tag 'docs-5.13-2' of git://git.lwn.net/linux
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12
13 #include "sched.h"
14
15 #include <linux/nospec.h>
16
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19
20 #include <asm/switch_to.h>
21 #include <asm/tlb.h>
22
23 #include "../workqueue_internal.h"
24 #include "../../fs/io-wq.h"
25 #include "../smpboot.h"
26
27 #include "pelt.h"
28 #include "smp.h"
29
30 /*
31 * Export tracepoints that act as a bare tracehook (ie: have no trace event
32 * associated with them) to allow external modules to probe them.
33 */
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
44
45 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
46
47 #ifdef CONFIG_SCHED_DEBUG
48 /*
49 * Debugging: various feature bits
50 *
51 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
52 * sysctl_sched_features, defined in sched.h, to allow constants propagation
53 * at compile time and compiler optimization based on features default.
54 */
55 #define SCHED_FEAT(name, enabled) \
56 (1UL << __SCHED_FEAT_##name) * enabled |
57 const_debug unsigned int sysctl_sched_features =
58 #include "features.h"
59 0;
60 #undef SCHED_FEAT
61
62 /*
63 * Print a warning if need_resched is set for the given duration (if
64 * LATENCY_WARN is enabled).
65 *
66 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
67 * per boot.
68 */
69 __read_mostly int sysctl_resched_latency_warn_ms = 100;
70 __read_mostly int sysctl_resched_latency_warn_once = 1;
71 #endif /* CONFIG_SCHED_DEBUG */
72
73 /*
74 * Number of tasks to iterate in a single balance run.
75 * Limited because this is done with IRQs disabled.
76 */
77 const_debug unsigned int sysctl_sched_nr_migrate = 32;
78
79 /*
80 * period over which we measure -rt task CPU usage in us.
81 * default: 1s
82 */
83 unsigned int sysctl_sched_rt_period = 1000000;
84
85 __read_mostly int scheduler_running;
86
87 /*
88 * part of the period that we allow rt tasks to run in us.
89 * default: 0.95s
90 */
91 int sysctl_sched_rt_runtime = 950000;
92
93
94 /*
95 * Serialization rules:
96 *
97 * Lock order:
98 *
99 * p->pi_lock
100 * rq->lock
101 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
102 *
103 * rq1->lock
104 * rq2->lock where: rq1 < rq2
105 *
106 * Regular state:
107 *
108 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
109 * local CPU's rq->lock, it optionally removes the task from the runqueue and
110 * always looks at the local rq data structures to find the most eligible task
111 * to run next.
112 *
113 * Task enqueue is also under rq->lock, possibly taken from another CPU.
114 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
115 * the local CPU to avoid bouncing the runqueue state around [ see
116 * ttwu_queue_wakelist() ]
117 *
118 * Task wakeup, specifically wakeups that involve migration, are horribly
119 * complicated to avoid having to take two rq->locks.
120 *
121 * Special state:
122 *
123 * System-calls and anything external will use task_rq_lock() which acquires
124 * both p->pi_lock and rq->lock. As a consequence the state they change is
125 * stable while holding either lock:
126 *
127 * - sched_setaffinity()/
128 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
129 * - set_user_nice(): p->se.load, p->*prio
130 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
131 * p->se.load, p->rt_priority,
132 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
133 * - sched_setnuma(): p->numa_preferred_nid
134 * - sched_move_task()/
135 * cpu_cgroup_fork(): p->sched_task_group
136 * - uclamp_update_active() p->uclamp*
137 *
138 * p->state <- TASK_*:
139 *
140 * is changed locklessly using set_current_state(), __set_current_state() or
141 * set_special_state(), see their respective comments, or by
142 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
143 * concurrent self.
144 *
145 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
146 *
147 * is set by activate_task() and cleared by deactivate_task(), under
148 * rq->lock. Non-zero indicates the task is runnable, the special
149 * ON_RQ_MIGRATING state is used for migration without holding both
150 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
151 *
152 * p->on_cpu <- { 0, 1 }:
153 *
154 * is set by prepare_task() and cleared by finish_task() such that it will be
155 * set before p is scheduled-in and cleared after p is scheduled-out, both
156 * under rq->lock. Non-zero indicates the task is running on its CPU.
157 *
158 * [ The astute reader will observe that it is possible for two tasks on one
159 * CPU to have ->on_cpu = 1 at the same time. ]
160 *
161 * task_cpu(p): is changed by set_task_cpu(), the rules are:
162 *
163 * - Don't call set_task_cpu() on a blocked task:
164 *
165 * We don't care what CPU we're not running on, this simplifies hotplug,
166 * the CPU assignment of blocked tasks isn't required to be valid.
167 *
168 * - for try_to_wake_up(), called under p->pi_lock:
169 *
170 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
171 *
172 * - for migration called under rq->lock:
173 * [ see task_on_rq_migrating() in task_rq_lock() ]
174 *
175 * o move_queued_task()
176 * o detach_task()
177 *
178 * - for migration called under double_rq_lock():
179 *
180 * o __migrate_swap_task()
181 * o push_rt_task() / pull_rt_task()
182 * o push_dl_task() / pull_dl_task()
183 * o dl_task_offline_migration()
184 *
185 */
186
187 /*
188 * __task_rq_lock - lock the rq @p resides on.
189 */
190 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
191 __acquires(rq->lock)
192 {
193 struct rq *rq;
194
195 lockdep_assert_held(&p->pi_lock);
196
197 for (;;) {
198 rq = task_rq(p);
199 raw_spin_lock(&rq->lock);
200 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
201 rq_pin_lock(rq, rf);
202 return rq;
203 }
204 raw_spin_unlock(&rq->lock);
205
206 while (unlikely(task_on_rq_migrating(p)))
207 cpu_relax();
208 }
209 }
210
211 /*
212 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
213 */
214 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
215 __acquires(p->pi_lock)
216 __acquires(rq->lock)
217 {
218 struct rq *rq;
219
220 for (;;) {
221 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
222 rq = task_rq(p);
223 raw_spin_lock(&rq->lock);
224 /*
225 * move_queued_task() task_rq_lock()
226 *
227 * ACQUIRE (rq->lock)
228 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
229 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
230 * [S] ->cpu = new_cpu [L] task_rq()
231 * [L] ->on_rq
232 * RELEASE (rq->lock)
233 *
234 * If we observe the old CPU in task_rq_lock(), the acquire of
235 * the old rq->lock will fully serialize against the stores.
236 *
237 * If we observe the new CPU in task_rq_lock(), the address
238 * dependency headed by '[L] rq = task_rq()' and the acquire
239 * will pair with the WMB to ensure we then also see migrating.
240 */
241 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
242 rq_pin_lock(rq, rf);
243 return rq;
244 }
245 raw_spin_unlock(&rq->lock);
246 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
247
248 while (unlikely(task_on_rq_migrating(p)))
249 cpu_relax();
250 }
251 }
252
253 /*
254 * RQ-clock updating methods:
255 */
256
257 static void update_rq_clock_task(struct rq *rq, s64 delta)
258 {
259 /*
260 * In theory, the compile should just see 0 here, and optimize out the call
261 * to sched_rt_avg_update. But I don't trust it...
262 */
263 s64 __maybe_unused steal = 0, irq_delta = 0;
264
265 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
266 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
267
268 /*
269 * Since irq_time is only updated on {soft,}irq_exit, we might run into
270 * this case when a previous update_rq_clock() happened inside a
271 * {soft,}irq region.
272 *
273 * When this happens, we stop ->clock_task and only update the
274 * prev_irq_time stamp to account for the part that fit, so that a next
275 * update will consume the rest. This ensures ->clock_task is
276 * monotonic.
277 *
278 * It does however cause some slight miss-attribution of {soft,}irq
279 * time, a more accurate solution would be to update the irq_time using
280 * the current rq->clock timestamp, except that would require using
281 * atomic ops.
282 */
283 if (irq_delta > delta)
284 irq_delta = delta;
285
286 rq->prev_irq_time += irq_delta;
287 delta -= irq_delta;
288 #endif
289 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
290 if (static_key_false((&paravirt_steal_rq_enabled))) {
291 steal = paravirt_steal_clock(cpu_of(rq));
292 steal -= rq->prev_steal_time_rq;
293
294 if (unlikely(steal > delta))
295 steal = delta;
296
297 rq->prev_steal_time_rq += steal;
298 delta -= steal;
299 }
300 #endif
301
302 rq->clock_task += delta;
303
304 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
305 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
306 update_irq_load_avg(rq, irq_delta + steal);
307 #endif
308 update_rq_clock_pelt(rq, delta);
309 }
310
311 void update_rq_clock(struct rq *rq)
312 {
313 s64 delta;
314
315 lockdep_assert_held(&rq->lock);
316
317 if (rq->clock_update_flags & RQCF_ACT_SKIP)
318 return;
319
320 #ifdef CONFIG_SCHED_DEBUG
321 if (sched_feat(WARN_DOUBLE_CLOCK))
322 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
323 rq->clock_update_flags |= RQCF_UPDATED;
324 #endif
325
326 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
327 if (delta < 0)
328 return;
329 rq->clock += delta;
330 update_rq_clock_task(rq, delta);
331 }
332
333 #ifdef CONFIG_SCHED_HRTICK
334 /*
335 * Use HR-timers to deliver accurate preemption points.
336 */
337
338 static void hrtick_clear(struct rq *rq)
339 {
340 if (hrtimer_active(&rq->hrtick_timer))
341 hrtimer_cancel(&rq->hrtick_timer);
342 }
343
344 /*
345 * High-resolution timer tick.
346 * Runs from hardirq context with interrupts disabled.
347 */
348 static enum hrtimer_restart hrtick(struct hrtimer *timer)
349 {
350 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
351 struct rq_flags rf;
352
353 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
354
355 rq_lock(rq, &rf);
356 update_rq_clock(rq);
357 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
358 rq_unlock(rq, &rf);
359
360 return HRTIMER_NORESTART;
361 }
362
363 #ifdef CONFIG_SMP
364
365 static void __hrtick_restart(struct rq *rq)
366 {
367 struct hrtimer *timer = &rq->hrtick_timer;
368 ktime_t time = rq->hrtick_time;
369
370 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
371 }
372
373 /*
374 * called from hardirq (IPI) context
375 */
376 static void __hrtick_start(void *arg)
377 {
378 struct rq *rq = arg;
379 struct rq_flags rf;
380
381 rq_lock(rq, &rf);
382 __hrtick_restart(rq);
383 rq_unlock(rq, &rf);
384 }
385
386 /*
387 * Called to set the hrtick timer state.
388 *
389 * called with rq->lock held and irqs disabled
390 */
391 void hrtick_start(struct rq *rq, u64 delay)
392 {
393 struct hrtimer *timer = &rq->hrtick_timer;
394 s64 delta;
395
396 /*
397 * Don't schedule slices shorter than 10000ns, that just
398 * doesn't make sense and can cause timer DoS.
399 */
400 delta = max_t(s64, delay, 10000LL);
401 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
402
403 if (rq == this_rq())
404 __hrtick_restart(rq);
405 else
406 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
407 }
408
409 #else
410 /*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
415 void hrtick_start(struct rq *rq, u64 delay)
416 {
417 /*
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
420 */
421 delay = max_t(u64, delay, 10000LL);
422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 HRTIMER_MODE_REL_PINNED_HARD);
424 }
425
426 #endif /* CONFIG_SMP */
427
428 static void hrtick_rq_init(struct rq *rq)
429 {
430 #ifdef CONFIG_SMP
431 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
432 #endif
433 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
434 rq->hrtick_timer.function = hrtick;
435 }
436 #else /* CONFIG_SCHED_HRTICK */
437 static inline void hrtick_clear(struct rq *rq)
438 {
439 }
440
441 static inline void hrtick_rq_init(struct rq *rq)
442 {
443 }
444 #endif /* CONFIG_SCHED_HRTICK */
445
446 /*
447 * cmpxchg based fetch_or, macro so it works for different integer types
448 */
449 #define fetch_or(ptr, mask) \
450 ({ \
451 typeof(ptr) _ptr = (ptr); \
452 typeof(mask) _mask = (mask); \
453 typeof(*_ptr) _old, _val = *_ptr; \
454 \
455 for (;;) { \
456 _old = cmpxchg(_ptr, _val, _val | _mask); \
457 if (_old == _val) \
458 break; \
459 _val = _old; \
460 } \
461 _old; \
462 })
463
464 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
465 /*
466 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
467 * this avoids any races wrt polling state changes and thereby avoids
468 * spurious IPIs.
469 */
470 static bool set_nr_and_not_polling(struct task_struct *p)
471 {
472 struct thread_info *ti = task_thread_info(p);
473 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
474 }
475
476 /*
477 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
478 *
479 * If this returns true, then the idle task promises to call
480 * sched_ttwu_pending() and reschedule soon.
481 */
482 static bool set_nr_if_polling(struct task_struct *p)
483 {
484 struct thread_info *ti = task_thread_info(p);
485 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
486
487 for (;;) {
488 if (!(val & _TIF_POLLING_NRFLAG))
489 return false;
490 if (val & _TIF_NEED_RESCHED)
491 return true;
492 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
493 if (old == val)
494 break;
495 val = old;
496 }
497 return true;
498 }
499
500 #else
501 static bool set_nr_and_not_polling(struct task_struct *p)
502 {
503 set_tsk_need_resched(p);
504 return true;
505 }
506
507 #ifdef CONFIG_SMP
508 static bool set_nr_if_polling(struct task_struct *p)
509 {
510 return false;
511 }
512 #endif
513 #endif
514
515 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
516 {
517 struct wake_q_node *node = &task->wake_q;
518
519 /*
520 * Atomically grab the task, if ->wake_q is !nil already it means
521 * it's already queued (either by us or someone else) and will get the
522 * wakeup due to that.
523 *
524 * In order to ensure that a pending wakeup will observe our pending
525 * state, even in the failed case, an explicit smp_mb() must be used.
526 */
527 smp_mb__before_atomic();
528 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
529 return false;
530
531 /*
532 * The head is context local, there can be no concurrency.
533 */
534 *head->lastp = node;
535 head->lastp = &node->next;
536 return true;
537 }
538
539 /**
540 * wake_q_add() - queue a wakeup for 'later' waking.
541 * @head: the wake_q_head to add @task to
542 * @task: the task to queue for 'later' wakeup
543 *
544 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
545 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
546 * instantly.
547 *
548 * This function must be used as-if it were wake_up_process(); IOW the task
549 * must be ready to be woken at this location.
550 */
551 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
552 {
553 if (__wake_q_add(head, task))
554 get_task_struct(task);
555 }
556
557 /**
558 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
559 * @head: the wake_q_head to add @task to
560 * @task: the task to queue for 'later' wakeup
561 *
562 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
563 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
564 * instantly.
565 *
566 * This function must be used as-if it were wake_up_process(); IOW the task
567 * must be ready to be woken at this location.
568 *
569 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
570 * that already hold reference to @task can call the 'safe' version and trust
571 * wake_q to do the right thing depending whether or not the @task is already
572 * queued for wakeup.
573 */
574 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
575 {
576 if (!__wake_q_add(head, task))
577 put_task_struct(task);
578 }
579
580 void wake_up_q(struct wake_q_head *head)
581 {
582 struct wake_q_node *node = head->first;
583
584 while (node != WAKE_Q_TAIL) {
585 struct task_struct *task;
586
587 task = container_of(node, struct task_struct, wake_q);
588 BUG_ON(!task);
589 /* Task can safely be re-inserted now: */
590 node = node->next;
591 task->wake_q.next = NULL;
592
593 /*
594 * wake_up_process() executes a full barrier, which pairs with
595 * the queueing in wake_q_add() so as not to miss wakeups.
596 */
597 wake_up_process(task);
598 put_task_struct(task);
599 }
600 }
601
602 /*
603 * resched_curr - mark rq's current task 'to be rescheduled now'.
604 *
605 * On UP this means the setting of the need_resched flag, on SMP it
606 * might also involve a cross-CPU call to trigger the scheduler on
607 * the target CPU.
608 */
609 void resched_curr(struct rq *rq)
610 {
611 struct task_struct *curr = rq->curr;
612 int cpu;
613
614 lockdep_assert_held(&rq->lock);
615
616 if (test_tsk_need_resched(curr))
617 return;
618
619 cpu = cpu_of(rq);
620
621 if (cpu == smp_processor_id()) {
622 set_tsk_need_resched(curr);
623 set_preempt_need_resched();
624 return;
625 }
626
627 if (set_nr_and_not_polling(curr))
628 smp_send_reschedule(cpu);
629 else
630 trace_sched_wake_idle_without_ipi(cpu);
631 }
632
633 void resched_cpu(int cpu)
634 {
635 struct rq *rq = cpu_rq(cpu);
636 unsigned long flags;
637
638 raw_spin_lock_irqsave(&rq->lock, flags);
639 if (cpu_online(cpu) || cpu == smp_processor_id())
640 resched_curr(rq);
641 raw_spin_unlock_irqrestore(&rq->lock, flags);
642 }
643
644 #ifdef CONFIG_SMP
645 #ifdef CONFIG_NO_HZ_COMMON
646 /*
647 * In the semi idle case, use the nearest busy CPU for migrating timers
648 * from an idle CPU. This is good for power-savings.
649 *
650 * We don't do similar optimization for completely idle system, as
651 * selecting an idle CPU will add more delays to the timers than intended
652 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
653 */
654 int get_nohz_timer_target(void)
655 {
656 int i, cpu = smp_processor_id(), default_cpu = -1;
657 struct sched_domain *sd;
658
659 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
660 if (!idle_cpu(cpu))
661 return cpu;
662 default_cpu = cpu;
663 }
664
665 rcu_read_lock();
666 for_each_domain(cpu, sd) {
667 for_each_cpu_and(i, sched_domain_span(sd),
668 housekeeping_cpumask(HK_FLAG_TIMER)) {
669 if (cpu == i)
670 continue;
671
672 if (!idle_cpu(i)) {
673 cpu = i;
674 goto unlock;
675 }
676 }
677 }
678
679 if (default_cpu == -1)
680 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
681 cpu = default_cpu;
682 unlock:
683 rcu_read_unlock();
684 return cpu;
685 }
686
687 /*
688 * When add_timer_on() enqueues a timer into the timer wheel of an
689 * idle CPU then this timer might expire before the next timer event
690 * which is scheduled to wake up that CPU. In case of a completely
691 * idle system the next event might even be infinite time into the
692 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
693 * leaves the inner idle loop so the newly added timer is taken into
694 * account when the CPU goes back to idle and evaluates the timer
695 * wheel for the next timer event.
696 */
697 static void wake_up_idle_cpu(int cpu)
698 {
699 struct rq *rq = cpu_rq(cpu);
700
701 if (cpu == smp_processor_id())
702 return;
703
704 if (set_nr_and_not_polling(rq->idle))
705 smp_send_reschedule(cpu);
706 else
707 trace_sched_wake_idle_without_ipi(cpu);
708 }
709
710 static bool wake_up_full_nohz_cpu(int cpu)
711 {
712 /*
713 * We just need the target to call irq_exit() and re-evaluate
714 * the next tick. The nohz full kick at least implies that.
715 * If needed we can still optimize that later with an
716 * empty IRQ.
717 */
718 if (cpu_is_offline(cpu))
719 return true; /* Don't try to wake offline CPUs. */
720 if (tick_nohz_full_cpu(cpu)) {
721 if (cpu != smp_processor_id() ||
722 tick_nohz_tick_stopped())
723 tick_nohz_full_kick_cpu(cpu);
724 return true;
725 }
726
727 return false;
728 }
729
730 /*
731 * Wake up the specified CPU. If the CPU is going offline, it is the
732 * caller's responsibility to deal with the lost wakeup, for example,
733 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
734 */
735 void wake_up_nohz_cpu(int cpu)
736 {
737 if (!wake_up_full_nohz_cpu(cpu))
738 wake_up_idle_cpu(cpu);
739 }
740
741 static void nohz_csd_func(void *info)
742 {
743 struct rq *rq = info;
744 int cpu = cpu_of(rq);
745 unsigned int flags;
746
747 /*
748 * Release the rq::nohz_csd.
749 */
750 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
751 WARN_ON(!(flags & NOHZ_KICK_MASK));
752
753 rq->idle_balance = idle_cpu(cpu);
754 if (rq->idle_balance && !need_resched()) {
755 rq->nohz_idle_balance = flags;
756 raise_softirq_irqoff(SCHED_SOFTIRQ);
757 }
758 }
759
760 #endif /* CONFIG_NO_HZ_COMMON */
761
762 #ifdef CONFIG_NO_HZ_FULL
763 bool sched_can_stop_tick(struct rq *rq)
764 {
765 int fifo_nr_running;
766
767 /* Deadline tasks, even if single, need the tick */
768 if (rq->dl.dl_nr_running)
769 return false;
770
771 /*
772 * If there are more than one RR tasks, we need the tick to affect the
773 * actual RR behaviour.
774 */
775 if (rq->rt.rr_nr_running) {
776 if (rq->rt.rr_nr_running == 1)
777 return true;
778 else
779 return false;
780 }
781
782 /*
783 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
784 * forced preemption between FIFO tasks.
785 */
786 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
787 if (fifo_nr_running)
788 return true;
789
790 /*
791 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
792 * if there's more than one we need the tick for involuntary
793 * preemption.
794 */
795 if (rq->nr_running > 1)
796 return false;
797
798 return true;
799 }
800 #endif /* CONFIG_NO_HZ_FULL */
801 #endif /* CONFIG_SMP */
802
803 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
804 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
805 /*
806 * Iterate task_group tree rooted at *from, calling @down when first entering a
807 * node and @up when leaving it for the final time.
808 *
809 * Caller must hold rcu_lock or sufficient equivalent.
810 */
811 int walk_tg_tree_from(struct task_group *from,
812 tg_visitor down, tg_visitor up, void *data)
813 {
814 struct task_group *parent, *child;
815 int ret;
816
817 parent = from;
818
819 down:
820 ret = (*down)(parent, data);
821 if (ret)
822 goto out;
823 list_for_each_entry_rcu(child, &parent->children, siblings) {
824 parent = child;
825 goto down;
826
827 up:
828 continue;
829 }
830 ret = (*up)(parent, data);
831 if (ret || parent == from)
832 goto out;
833
834 child = parent;
835 parent = parent->parent;
836 if (parent)
837 goto up;
838 out:
839 return ret;
840 }
841
842 int tg_nop(struct task_group *tg, void *data)
843 {
844 return 0;
845 }
846 #endif
847
848 static void set_load_weight(struct task_struct *p, bool update_load)
849 {
850 int prio = p->static_prio - MAX_RT_PRIO;
851 struct load_weight *load = &p->se.load;
852
853 /*
854 * SCHED_IDLE tasks get minimal weight:
855 */
856 if (task_has_idle_policy(p)) {
857 load->weight = scale_load(WEIGHT_IDLEPRIO);
858 load->inv_weight = WMULT_IDLEPRIO;
859 return;
860 }
861
862 /*
863 * SCHED_OTHER tasks have to update their load when changing their
864 * weight
865 */
866 if (update_load && p->sched_class == &fair_sched_class) {
867 reweight_task(p, prio);
868 } else {
869 load->weight = scale_load(sched_prio_to_weight[prio]);
870 load->inv_weight = sched_prio_to_wmult[prio];
871 }
872 }
873
874 #ifdef CONFIG_UCLAMP_TASK
875 /*
876 * Serializes updates of utilization clamp values
877 *
878 * The (slow-path) user-space triggers utilization clamp value updates which
879 * can require updates on (fast-path) scheduler's data structures used to
880 * support enqueue/dequeue operations.
881 * While the per-CPU rq lock protects fast-path update operations, user-space
882 * requests are serialized using a mutex to reduce the risk of conflicting
883 * updates or API abuses.
884 */
885 static DEFINE_MUTEX(uclamp_mutex);
886
887 /* Max allowed minimum utilization */
888 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
889
890 /* Max allowed maximum utilization */
891 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
892
893 /*
894 * By default RT tasks run at the maximum performance point/capacity of the
895 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
896 * SCHED_CAPACITY_SCALE.
897 *
898 * This knob allows admins to change the default behavior when uclamp is being
899 * used. In battery powered devices, particularly, running at the maximum
900 * capacity and frequency will increase energy consumption and shorten the
901 * battery life.
902 *
903 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
904 *
905 * This knob will not override the system default sched_util_clamp_min defined
906 * above.
907 */
908 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
909
910 /* All clamps are required to be less or equal than these values */
911 static struct uclamp_se uclamp_default[UCLAMP_CNT];
912
913 /*
914 * This static key is used to reduce the uclamp overhead in the fast path. It
915 * primarily disables the call to uclamp_rq_{inc, dec}() in
916 * enqueue/dequeue_task().
917 *
918 * This allows users to continue to enable uclamp in their kernel config with
919 * minimum uclamp overhead in the fast path.
920 *
921 * As soon as userspace modifies any of the uclamp knobs, the static key is
922 * enabled, since we have an actual users that make use of uclamp
923 * functionality.
924 *
925 * The knobs that would enable this static key are:
926 *
927 * * A task modifying its uclamp value with sched_setattr().
928 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
929 * * An admin modifying the cgroup cpu.uclamp.{min, max}
930 */
931 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
932
933 /* Integer rounded range for each bucket */
934 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
935
936 #define for_each_clamp_id(clamp_id) \
937 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
938
939 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
940 {
941 return clamp_value / UCLAMP_BUCKET_DELTA;
942 }
943
944 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
945 {
946 if (clamp_id == UCLAMP_MIN)
947 return 0;
948 return SCHED_CAPACITY_SCALE;
949 }
950
951 static inline void uclamp_se_set(struct uclamp_se *uc_se,
952 unsigned int value, bool user_defined)
953 {
954 uc_se->value = value;
955 uc_se->bucket_id = uclamp_bucket_id(value);
956 uc_se->user_defined = user_defined;
957 }
958
959 static inline unsigned int
960 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
961 unsigned int clamp_value)
962 {
963 /*
964 * Avoid blocked utilization pushing up the frequency when we go
965 * idle (which drops the max-clamp) by retaining the last known
966 * max-clamp.
967 */
968 if (clamp_id == UCLAMP_MAX) {
969 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
970 return clamp_value;
971 }
972
973 return uclamp_none(UCLAMP_MIN);
974 }
975
976 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
977 unsigned int clamp_value)
978 {
979 /* Reset max-clamp retention only on idle exit */
980 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
981 return;
982
983 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
984 }
985
986 static inline
987 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
988 unsigned int clamp_value)
989 {
990 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
991 int bucket_id = UCLAMP_BUCKETS - 1;
992
993 /*
994 * Since both min and max clamps are max aggregated, find the
995 * top most bucket with tasks in.
996 */
997 for ( ; bucket_id >= 0; bucket_id--) {
998 if (!bucket[bucket_id].tasks)
999 continue;
1000 return bucket[bucket_id].value;
1001 }
1002
1003 /* No tasks -- default clamp values */
1004 return uclamp_idle_value(rq, clamp_id, clamp_value);
1005 }
1006
1007 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1008 {
1009 unsigned int default_util_min;
1010 struct uclamp_se *uc_se;
1011
1012 lockdep_assert_held(&p->pi_lock);
1013
1014 uc_se = &p->uclamp_req[UCLAMP_MIN];
1015
1016 /* Only sync if user didn't override the default */
1017 if (uc_se->user_defined)
1018 return;
1019
1020 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1021 uclamp_se_set(uc_se, default_util_min, false);
1022 }
1023
1024 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1025 {
1026 struct rq_flags rf;
1027 struct rq *rq;
1028
1029 if (!rt_task(p))
1030 return;
1031
1032 /* Protect updates to p->uclamp_* */
1033 rq = task_rq_lock(p, &rf);
1034 __uclamp_update_util_min_rt_default(p);
1035 task_rq_unlock(rq, p, &rf);
1036 }
1037
1038 static void uclamp_sync_util_min_rt_default(void)
1039 {
1040 struct task_struct *g, *p;
1041
1042 /*
1043 * copy_process() sysctl_uclamp
1044 * uclamp_min_rt = X;
1045 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1046 * // link thread smp_mb__after_spinlock()
1047 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1048 * sched_post_fork() for_each_process_thread()
1049 * __uclamp_sync_rt() __uclamp_sync_rt()
1050 *
1051 * Ensures that either sched_post_fork() will observe the new
1052 * uclamp_min_rt or for_each_process_thread() will observe the new
1053 * task.
1054 */
1055 read_lock(&tasklist_lock);
1056 smp_mb__after_spinlock();
1057 read_unlock(&tasklist_lock);
1058
1059 rcu_read_lock();
1060 for_each_process_thread(g, p)
1061 uclamp_update_util_min_rt_default(p);
1062 rcu_read_unlock();
1063 }
1064
1065 static inline struct uclamp_se
1066 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1067 {
1068 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1069 #ifdef CONFIG_UCLAMP_TASK_GROUP
1070 struct uclamp_se uc_max;
1071
1072 /*
1073 * Tasks in autogroups or root task group will be
1074 * restricted by system defaults.
1075 */
1076 if (task_group_is_autogroup(task_group(p)))
1077 return uc_req;
1078 if (task_group(p) == &root_task_group)
1079 return uc_req;
1080
1081 uc_max = task_group(p)->uclamp[clamp_id];
1082 if (uc_req.value > uc_max.value || !uc_req.user_defined)
1083 return uc_max;
1084 #endif
1085
1086 return uc_req;
1087 }
1088
1089 /*
1090 * The effective clamp bucket index of a task depends on, by increasing
1091 * priority:
1092 * - the task specific clamp value, when explicitly requested from userspace
1093 * - the task group effective clamp value, for tasks not either in the root
1094 * group or in an autogroup
1095 * - the system default clamp value, defined by the sysadmin
1096 */
1097 static inline struct uclamp_se
1098 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1099 {
1100 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1101 struct uclamp_se uc_max = uclamp_default[clamp_id];
1102
1103 /* System default restrictions always apply */
1104 if (unlikely(uc_req.value > uc_max.value))
1105 return uc_max;
1106
1107 return uc_req;
1108 }
1109
1110 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1111 {
1112 struct uclamp_se uc_eff;
1113
1114 /* Task currently refcounted: use back-annotated (effective) value */
1115 if (p->uclamp[clamp_id].active)
1116 return (unsigned long)p->uclamp[clamp_id].value;
1117
1118 uc_eff = uclamp_eff_get(p, clamp_id);
1119
1120 return (unsigned long)uc_eff.value;
1121 }
1122
1123 /*
1124 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1125 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1126 * updates the rq's clamp value if required.
1127 *
1128 * Tasks can have a task-specific value requested from user-space, track
1129 * within each bucket the maximum value for tasks refcounted in it.
1130 * This "local max aggregation" allows to track the exact "requested" value
1131 * for each bucket when all its RUNNABLE tasks require the same clamp.
1132 */
1133 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1134 enum uclamp_id clamp_id)
1135 {
1136 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1137 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1138 struct uclamp_bucket *bucket;
1139
1140 lockdep_assert_held(&rq->lock);
1141
1142 /* Update task effective clamp */
1143 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1144
1145 bucket = &uc_rq->bucket[uc_se->bucket_id];
1146 bucket->tasks++;
1147 uc_se->active = true;
1148
1149 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1150
1151 /*
1152 * Local max aggregation: rq buckets always track the max
1153 * "requested" clamp value of its RUNNABLE tasks.
1154 */
1155 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1156 bucket->value = uc_se->value;
1157
1158 if (uc_se->value > READ_ONCE(uc_rq->value))
1159 WRITE_ONCE(uc_rq->value, uc_se->value);
1160 }
1161
1162 /*
1163 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1164 * is released. If this is the last task reference counting the rq's max
1165 * active clamp value, then the rq's clamp value is updated.
1166 *
1167 * Both refcounted tasks and rq's cached clamp values are expected to be
1168 * always valid. If it's detected they are not, as defensive programming,
1169 * enforce the expected state and warn.
1170 */
1171 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1172 enum uclamp_id clamp_id)
1173 {
1174 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1175 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1176 struct uclamp_bucket *bucket;
1177 unsigned int bkt_clamp;
1178 unsigned int rq_clamp;
1179
1180 lockdep_assert_held(&rq->lock);
1181
1182 /*
1183 * If sched_uclamp_used was enabled after task @p was enqueued,
1184 * we could end up with unbalanced call to uclamp_rq_dec_id().
1185 *
1186 * In this case the uc_se->active flag should be false since no uclamp
1187 * accounting was performed at enqueue time and we can just return
1188 * here.
1189 *
1190 * Need to be careful of the following enqueue/dequeue ordering
1191 * problem too
1192 *
1193 * enqueue(taskA)
1194 * // sched_uclamp_used gets enabled
1195 * enqueue(taskB)
1196 * dequeue(taskA)
1197 * // Must not decrement bucket->tasks here
1198 * dequeue(taskB)
1199 *
1200 * where we could end up with stale data in uc_se and
1201 * bucket[uc_se->bucket_id].
1202 *
1203 * The following check here eliminates the possibility of such race.
1204 */
1205 if (unlikely(!uc_se->active))
1206 return;
1207
1208 bucket = &uc_rq->bucket[uc_se->bucket_id];
1209
1210 SCHED_WARN_ON(!bucket->tasks);
1211 if (likely(bucket->tasks))
1212 bucket->tasks--;
1213
1214 uc_se->active = false;
1215
1216 /*
1217 * Keep "local max aggregation" simple and accept to (possibly)
1218 * overboost some RUNNABLE tasks in the same bucket.
1219 * The rq clamp bucket value is reset to its base value whenever
1220 * there are no more RUNNABLE tasks refcounting it.
1221 */
1222 if (likely(bucket->tasks))
1223 return;
1224
1225 rq_clamp = READ_ONCE(uc_rq->value);
1226 /*
1227 * Defensive programming: this should never happen. If it happens,
1228 * e.g. due to future modification, warn and fixup the expected value.
1229 */
1230 SCHED_WARN_ON(bucket->value > rq_clamp);
1231 if (bucket->value >= rq_clamp) {
1232 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1233 WRITE_ONCE(uc_rq->value, bkt_clamp);
1234 }
1235 }
1236
1237 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1238 {
1239 enum uclamp_id clamp_id;
1240
1241 /*
1242 * Avoid any overhead until uclamp is actually used by the userspace.
1243 *
1244 * The condition is constructed such that a NOP is generated when
1245 * sched_uclamp_used is disabled.
1246 */
1247 if (!static_branch_unlikely(&sched_uclamp_used))
1248 return;
1249
1250 if (unlikely(!p->sched_class->uclamp_enabled))
1251 return;
1252
1253 for_each_clamp_id(clamp_id)
1254 uclamp_rq_inc_id(rq, p, clamp_id);
1255
1256 /* Reset clamp idle holding when there is one RUNNABLE task */
1257 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1258 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1259 }
1260
1261 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1262 {
1263 enum uclamp_id clamp_id;
1264
1265 /*
1266 * Avoid any overhead until uclamp is actually used by the userspace.
1267 *
1268 * The condition is constructed such that a NOP is generated when
1269 * sched_uclamp_used is disabled.
1270 */
1271 if (!static_branch_unlikely(&sched_uclamp_used))
1272 return;
1273
1274 if (unlikely(!p->sched_class->uclamp_enabled))
1275 return;
1276
1277 for_each_clamp_id(clamp_id)
1278 uclamp_rq_dec_id(rq, p, clamp_id);
1279 }
1280
1281 static inline void
1282 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1283 {
1284 struct rq_flags rf;
1285 struct rq *rq;
1286
1287 /*
1288 * Lock the task and the rq where the task is (or was) queued.
1289 *
1290 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1291 * price to pay to safely serialize util_{min,max} updates with
1292 * enqueues, dequeues and migration operations.
1293 * This is the same locking schema used by __set_cpus_allowed_ptr().
1294 */
1295 rq = task_rq_lock(p, &rf);
1296
1297 /*
1298 * Setting the clamp bucket is serialized by task_rq_lock().
1299 * If the task is not yet RUNNABLE and its task_struct is not
1300 * affecting a valid clamp bucket, the next time it's enqueued,
1301 * it will already see the updated clamp bucket value.
1302 */
1303 if (p->uclamp[clamp_id].active) {
1304 uclamp_rq_dec_id(rq, p, clamp_id);
1305 uclamp_rq_inc_id(rq, p, clamp_id);
1306 }
1307
1308 task_rq_unlock(rq, p, &rf);
1309 }
1310
1311 #ifdef CONFIG_UCLAMP_TASK_GROUP
1312 static inline void
1313 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1314 unsigned int clamps)
1315 {
1316 enum uclamp_id clamp_id;
1317 struct css_task_iter it;
1318 struct task_struct *p;
1319
1320 css_task_iter_start(css, 0, &it);
1321 while ((p = css_task_iter_next(&it))) {
1322 for_each_clamp_id(clamp_id) {
1323 if ((0x1 << clamp_id) & clamps)
1324 uclamp_update_active(p, clamp_id);
1325 }
1326 }
1327 css_task_iter_end(&it);
1328 }
1329
1330 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1331 static void uclamp_update_root_tg(void)
1332 {
1333 struct task_group *tg = &root_task_group;
1334
1335 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1336 sysctl_sched_uclamp_util_min, false);
1337 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1338 sysctl_sched_uclamp_util_max, false);
1339
1340 rcu_read_lock();
1341 cpu_util_update_eff(&root_task_group.css);
1342 rcu_read_unlock();
1343 }
1344 #else
1345 static void uclamp_update_root_tg(void) { }
1346 #endif
1347
1348 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1349 void *buffer, size_t *lenp, loff_t *ppos)
1350 {
1351 bool update_root_tg = false;
1352 int old_min, old_max, old_min_rt;
1353 int result;
1354
1355 mutex_lock(&uclamp_mutex);
1356 old_min = sysctl_sched_uclamp_util_min;
1357 old_max = sysctl_sched_uclamp_util_max;
1358 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1359
1360 result = proc_dointvec(table, write, buffer, lenp, ppos);
1361 if (result)
1362 goto undo;
1363 if (!write)
1364 goto done;
1365
1366 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1367 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1368 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1369
1370 result = -EINVAL;
1371 goto undo;
1372 }
1373
1374 if (old_min != sysctl_sched_uclamp_util_min) {
1375 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1376 sysctl_sched_uclamp_util_min, false);
1377 update_root_tg = true;
1378 }
1379 if (old_max != sysctl_sched_uclamp_util_max) {
1380 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1381 sysctl_sched_uclamp_util_max, false);
1382 update_root_tg = true;
1383 }
1384
1385 if (update_root_tg) {
1386 static_branch_enable(&sched_uclamp_used);
1387 uclamp_update_root_tg();
1388 }
1389
1390 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1391 static_branch_enable(&sched_uclamp_used);
1392 uclamp_sync_util_min_rt_default();
1393 }
1394
1395 /*
1396 * We update all RUNNABLE tasks only when task groups are in use.
1397 * Otherwise, keep it simple and do just a lazy update at each next
1398 * task enqueue time.
1399 */
1400
1401 goto done;
1402
1403 undo:
1404 sysctl_sched_uclamp_util_min = old_min;
1405 sysctl_sched_uclamp_util_max = old_max;
1406 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1407 done:
1408 mutex_unlock(&uclamp_mutex);
1409
1410 return result;
1411 }
1412
1413 static int uclamp_validate(struct task_struct *p,
1414 const struct sched_attr *attr)
1415 {
1416 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1417 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1418
1419 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1420 util_min = attr->sched_util_min;
1421
1422 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1423 return -EINVAL;
1424 }
1425
1426 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1427 util_max = attr->sched_util_max;
1428
1429 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1430 return -EINVAL;
1431 }
1432
1433 if (util_min != -1 && util_max != -1 && util_min > util_max)
1434 return -EINVAL;
1435
1436 /*
1437 * We have valid uclamp attributes; make sure uclamp is enabled.
1438 *
1439 * We need to do that here, because enabling static branches is a
1440 * blocking operation which obviously cannot be done while holding
1441 * scheduler locks.
1442 */
1443 static_branch_enable(&sched_uclamp_used);
1444
1445 return 0;
1446 }
1447
1448 static bool uclamp_reset(const struct sched_attr *attr,
1449 enum uclamp_id clamp_id,
1450 struct uclamp_se *uc_se)
1451 {
1452 /* Reset on sched class change for a non user-defined clamp value. */
1453 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1454 !uc_se->user_defined)
1455 return true;
1456
1457 /* Reset on sched_util_{min,max} == -1. */
1458 if (clamp_id == UCLAMP_MIN &&
1459 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1460 attr->sched_util_min == -1) {
1461 return true;
1462 }
1463
1464 if (clamp_id == UCLAMP_MAX &&
1465 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1466 attr->sched_util_max == -1) {
1467 return true;
1468 }
1469
1470 return false;
1471 }
1472
1473 static void __setscheduler_uclamp(struct task_struct *p,
1474 const struct sched_attr *attr)
1475 {
1476 enum uclamp_id clamp_id;
1477
1478 for_each_clamp_id(clamp_id) {
1479 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1480 unsigned int value;
1481
1482 if (!uclamp_reset(attr, clamp_id, uc_se))
1483 continue;
1484
1485 /*
1486 * RT by default have a 100% boost value that could be modified
1487 * at runtime.
1488 */
1489 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1490 value = sysctl_sched_uclamp_util_min_rt_default;
1491 else
1492 value = uclamp_none(clamp_id);
1493
1494 uclamp_se_set(uc_se, value, false);
1495
1496 }
1497
1498 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1499 return;
1500
1501 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1502 attr->sched_util_min != -1) {
1503 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1504 attr->sched_util_min, true);
1505 }
1506
1507 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1508 attr->sched_util_max != -1) {
1509 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1510 attr->sched_util_max, true);
1511 }
1512 }
1513
1514 static void uclamp_fork(struct task_struct *p)
1515 {
1516 enum uclamp_id clamp_id;
1517
1518 /*
1519 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1520 * as the task is still at its early fork stages.
1521 */
1522 for_each_clamp_id(clamp_id)
1523 p->uclamp[clamp_id].active = false;
1524
1525 if (likely(!p->sched_reset_on_fork))
1526 return;
1527
1528 for_each_clamp_id(clamp_id) {
1529 uclamp_se_set(&p->uclamp_req[clamp_id],
1530 uclamp_none(clamp_id), false);
1531 }
1532 }
1533
1534 static void uclamp_post_fork(struct task_struct *p)
1535 {
1536 uclamp_update_util_min_rt_default(p);
1537 }
1538
1539 static void __init init_uclamp_rq(struct rq *rq)
1540 {
1541 enum uclamp_id clamp_id;
1542 struct uclamp_rq *uc_rq = rq->uclamp;
1543
1544 for_each_clamp_id(clamp_id) {
1545 uc_rq[clamp_id] = (struct uclamp_rq) {
1546 .value = uclamp_none(clamp_id)
1547 };
1548 }
1549
1550 rq->uclamp_flags = 0;
1551 }
1552
1553 static void __init init_uclamp(void)
1554 {
1555 struct uclamp_se uc_max = {};
1556 enum uclamp_id clamp_id;
1557 int cpu;
1558
1559 for_each_possible_cpu(cpu)
1560 init_uclamp_rq(cpu_rq(cpu));
1561
1562 for_each_clamp_id(clamp_id) {
1563 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1564 uclamp_none(clamp_id), false);
1565 }
1566
1567 /* System defaults allow max clamp values for both indexes */
1568 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1569 for_each_clamp_id(clamp_id) {
1570 uclamp_default[clamp_id] = uc_max;
1571 #ifdef CONFIG_UCLAMP_TASK_GROUP
1572 root_task_group.uclamp_req[clamp_id] = uc_max;
1573 root_task_group.uclamp[clamp_id] = uc_max;
1574 #endif
1575 }
1576 }
1577
1578 #else /* CONFIG_UCLAMP_TASK */
1579 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1580 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1581 static inline int uclamp_validate(struct task_struct *p,
1582 const struct sched_attr *attr)
1583 {
1584 return -EOPNOTSUPP;
1585 }
1586 static void __setscheduler_uclamp(struct task_struct *p,
1587 const struct sched_attr *attr) { }
1588 static inline void uclamp_fork(struct task_struct *p) { }
1589 static inline void uclamp_post_fork(struct task_struct *p) { }
1590 static inline void init_uclamp(void) { }
1591 #endif /* CONFIG_UCLAMP_TASK */
1592
1593 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1594 {
1595 if (!(flags & ENQUEUE_NOCLOCK))
1596 update_rq_clock(rq);
1597
1598 if (!(flags & ENQUEUE_RESTORE)) {
1599 sched_info_queued(rq, p);
1600 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1601 }
1602
1603 uclamp_rq_inc(rq, p);
1604 p->sched_class->enqueue_task(rq, p, flags);
1605 }
1606
1607 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1608 {
1609 if (!(flags & DEQUEUE_NOCLOCK))
1610 update_rq_clock(rq);
1611
1612 if (!(flags & DEQUEUE_SAVE)) {
1613 sched_info_dequeued(rq, p);
1614 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1615 }
1616
1617 uclamp_rq_dec(rq, p);
1618 p->sched_class->dequeue_task(rq, p, flags);
1619 }
1620
1621 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1622 {
1623 enqueue_task(rq, p, flags);
1624
1625 p->on_rq = TASK_ON_RQ_QUEUED;
1626 }
1627
1628 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1629 {
1630 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1631
1632 dequeue_task(rq, p, flags);
1633 }
1634
1635 /*
1636 * __normal_prio - return the priority that is based on the static prio
1637 */
1638 static inline int __normal_prio(struct task_struct *p)
1639 {
1640 return p->static_prio;
1641 }
1642
1643 /*
1644 * Calculate the expected normal priority: i.e. priority
1645 * without taking RT-inheritance into account. Might be
1646 * boosted by interactivity modifiers. Changes upon fork,
1647 * setprio syscalls, and whenever the interactivity
1648 * estimator recalculates.
1649 */
1650 static inline int normal_prio(struct task_struct *p)
1651 {
1652 int prio;
1653
1654 if (task_has_dl_policy(p))
1655 prio = MAX_DL_PRIO-1;
1656 else if (task_has_rt_policy(p))
1657 prio = MAX_RT_PRIO-1 - p->rt_priority;
1658 else
1659 prio = __normal_prio(p);
1660 return prio;
1661 }
1662
1663 /*
1664 * Calculate the current priority, i.e. the priority
1665 * taken into account by the scheduler. This value might
1666 * be boosted by RT tasks, or might be boosted by
1667 * interactivity modifiers. Will be RT if the task got
1668 * RT-boosted. If not then it returns p->normal_prio.
1669 */
1670 static int effective_prio(struct task_struct *p)
1671 {
1672 p->normal_prio = normal_prio(p);
1673 /*
1674 * If we are RT tasks or we were boosted to RT priority,
1675 * keep the priority unchanged. Otherwise, update priority
1676 * to the normal priority:
1677 */
1678 if (!rt_prio(p->prio))
1679 return p->normal_prio;
1680 return p->prio;
1681 }
1682
1683 /**
1684 * task_curr - is this task currently executing on a CPU?
1685 * @p: the task in question.
1686 *
1687 * Return: 1 if the task is currently executing. 0 otherwise.
1688 */
1689 inline int task_curr(const struct task_struct *p)
1690 {
1691 return cpu_curr(task_cpu(p)) == p;
1692 }
1693
1694 /*
1695 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1696 * use the balance_callback list if you want balancing.
1697 *
1698 * this means any call to check_class_changed() must be followed by a call to
1699 * balance_callback().
1700 */
1701 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1702 const struct sched_class *prev_class,
1703 int oldprio)
1704 {
1705 if (prev_class != p->sched_class) {
1706 if (prev_class->switched_from)
1707 prev_class->switched_from(rq, p);
1708
1709 p->sched_class->switched_to(rq, p);
1710 } else if (oldprio != p->prio || dl_task(p))
1711 p->sched_class->prio_changed(rq, p, oldprio);
1712 }
1713
1714 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1715 {
1716 if (p->sched_class == rq->curr->sched_class)
1717 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1718 else if (p->sched_class > rq->curr->sched_class)
1719 resched_curr(rq);
1720
1721 /*
1722 * A queue event has occurred, and we're going to schedule. In
1723 * this case, we can save a useless back to back clock update.
1724 */
1725 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1726 rq_clock_skip_update(rq);
1727 }
1728
1729 #ifdef CONFIG_SMP
1730
1731 static void
1732 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
1733
1734 static int __set_cpus_allowed_ptr(struct task_struct *p,
1735 const struct cpumask *new_mask,
1736 u32 flags);
1737
1738 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
1739 {
1740 if (likely(!p->migration_disabled))
1741 return;
1742
1743 if (p->cpus_ptr != &p->cpus_mask)
1744 return;
1745
1746 /*
1747 * Violates locking rules! see comment in __do_set_cpus_allowed().
1748 */
1749 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
1750 }
1751
1752 void migrate_disable(void)
1753 {
1754 struct task_struct *p = current;
1755
1756 if (p->migration_disabled) {
1757 p->migration_disabled++;
1758 return;
1759 }
1760
1761 preempt_disable();
1762 this_rq()->nr_pinned++;
1763 p->migration_disabled = 1;
1764 preempt_enable();
1765 }
1766 EXPORT_SYMBOL_GPL(migrate_disable);
1767
1768 void migrate_enable(void)
1769 {
1770 struct task_struct *p = current;
1771
1772 if (p->migration_disabled > 1) {
1773 p->migration_disabled--;
1774 return;
1775 }
1776
1777 /*
1778 * Ensure stop_task runs either before or after this, and that
1779 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
1780 */
1781 preempt_disable();
1782 if (p->cpus_ptr != &p->cpus_mask)
1783 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
1784 /*
1785 * Mustn't clear migration_disabled() until cpus_ptr points back at the
1786 * regular cpus_mask, otherwise things that race (eg.
1787 * select_fallback_rq) get confused.
1788 */
1789 barrier();
1790 p->migration_disabled = 0;
1791 this_rq()->nr_pinned--;
1792 preempt_enable();
1793 }
1794 EXPORT_SYMBOL_GPL(migrate_enable);
1795
1796 static inline bool rq_has_pinned_tasks(struct rq *rq)
1797 {
1798 return rq->nr_pinned;
1799 }
1800
1801 /*
1802 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1803 * __set_cpus_allowed_ptr() and select_fallback_rq().
1804 */
1805 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1806 {
1807 /* When not in the task's cpumask, no point in looking further. */
1808 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1809 return false;
1810
1811 /* migrate_disabled() must be allowed to finish. */
1812 if (is_migration_disabled(p))
1813 return cpu_online(cpu);
1814
1815 /* Non kernel threads are not allowed during either online or offline. */
1816 if (!(p->flags & PF_KTHREAD))
1817 return cpu_active(cpu);
1818
1819 /* KTHREAD_IS_PER_CPU is always allowed. */
1820 if (kthread_is_per_cpu(p))
1821 return cpu_online(cpu);
1822
1823 /* Regular kernel threads don't get to stay during offline. */
1824 if (cpu_dying(cpu))
1825 return false;
1826
1827 /* But are allowed during online. */
1828 return cpu_online(cpu);
1829 }
1830
1831 /*
1832 * This is how migration works:
1833 *
1834 * 1) we invoke migration_cpu_stop() on the target CPU using
1835 * stop_one_cpu().
1836 * 2) stopper starts to run (implicitly forcing the migrated thread
1837 * off the CPU)
1838 * 3) it checks whether the migrated task is still in the wrong runqueue.
1839 * 4) if it's in the wrong runqueue then the migration thread removes
1840 * it and puts it into the right queue.
1841 * 5) stopper completes and stop_one_cpu() returns and the migration
1842 * is done.
1843 */
1844
1845 /*
1846 * move_queued_task - move a queued task to new rq.
1847 *
1848 * Returns (locked) new rq. Old rq's lock is released.
1849 */
1850 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1851 struct task_struct *p, int new_cpu)
1852 {
1853 lockdep_assert_held(&rq->lock);
1854
1855 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1856 set_task_cpu(p, new_cpu);
1857 rq_unlock(rq, rf);
1858
1859 rq = cpu_rq(new_cpu);
1860
1861 rq_lock(rq, rf);
1862 BUG_ON(task_cpu(p) != new_cpu);
1863 activate_task(rq, p, 0);
1864 check_preempt_curr(rq, p, 0);
1865
1866 return rq;
1867 }
1868
1869 struct migration_arg {
1870 struct task_struct *task;
1871 int dest_cpu;
1872 struct set_affinity_pending *pending;
1873 };
1874
1875 /*
1876 * @refs: number of wait_for_completion()
1877 * @stop_pending: is @stop_work in use
1878 */
1879 struct set_affinity_pending {
1880 refcount_t refs;
1881 unsigned int stop_pending;
1882 struct completion done;
1883 struct cpu_stop_work stop_work;
1884 struct migration_arg arg;
1885 };
1886
1887 /*
1888 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1889 * this because either it can't run here any more (set_cpus_allowed()
1890 * away from this CPU, or CPU going down), or because we're
1891 * attempting to rebalance this task on exec (sched_exec).
1892 *
1893 * So we race with normal scheduler movements, but that's OK, as long
1894 * as the task is no longer on this CPU.
1895 */
1896 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1897 struct task_struct *p, int dest_cpu)
1898 {
1899 /* Affinity changed (again). */
1900 if (!is_cpu_allowed(p, dest_cpu))
1901 return rq;
1902
1903 update_rq_clock(rq);
1904 rq = move_queued_task(rq, rf, p, dest_cpu);
1905
1906 return rq;
1907 }
1908
1909 /*
1910 * migration_cpu_stop - this will be executed by a highprio stopper thread
1911 * and performs thread migration by bumping thread off CPU then
1912 * 'pushing' onto another runqueue.
1913 */
1914 static int migration_cpu_stop(void *data)
1915 {
1916 struct migration_arg *arg = data;
1917 struct set_affinity_pending *pending = arg->pending;
1918 struct task_struct *p = arg->task;
1919 int dest_cpu = arg->dest_cpu;
1920 struct rq *rq = this_rq();
1921 bool complete = false;
1922 struct rq_flags rf;
1923
1924 /*
1925 * The original target CPU might have gone down and we might
1926 * be on another CPU but it doesn't matter.
1927 */
1928 local_irq_save(rf.flags);
1929 /*
1930 * We need to explicitly wake pending tasks before running
1931 * __migrate_task() such that we will not miss enforcing cpus_ptr
1932 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1933 */
1934 flush_smp_call_function_from_idle();
1935
1936 raw_spin_lock(&p->pi_lock);
1937 rq_lock(rq, &rf);
1938
1939 /*
1940 * If we were passed a pending, then ->stop_pending was set, thus
1941 * p->migration_pending must have remained stable.
1942 */
1943 WARN_ON_ONCE(pending && pending != p->migration_pending);
1944
1945 /*
1946 * If task_rq(p) != rq, it cannot be migrated here, because we're
1947 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1948 * we're holding p->pi_lock.
1949 */
1950 if (task_rq(p) == rq) {
1951 if (is_migration_disabled(p))
1952 goto out;
1953
1954 if (pending) {
1955 p->migration_pending = NULL;
1956 complete = true;
1957 }
1958
1959 if (dest_cpu < 0) {
1960 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
1961 goto out;
1962
1963 dest_cpu = cpumask_any_distribute(&p->cpus_mask);
1964 }
1965
1966 if (task_on_rq_queued(p))
1967 rq = __migrate_task(rq, &rf, p, dest_cpu);
1968 else
1969 p->wake_cpu = dest_cpu;
1970
1971 /*
1972 * XXX __migrate_task() can fail, at which point we might end
1973 * up running on a dodgy CPU, AFAICT this can only happen
1974 * during CPU hotplug, at which point we'll get pushed out
1975 * anyway, so it's probably not a big deal.
1976 */
1977
1978 } else if (pending) {
1979 /*
1980 * This happens when we get migrated between migrate_enable()'s
1981 * preempt_enable() and scheduling the stopper task. At that
1982 * point we're a regular task again and not current anymore.
1983 *
1984 * A !PREEMPT kernel has a giant hole here, which makes it far
1985 * more likely.
1986 */
1987
1988 /*
1989 * The task moved before the stopper got to run. We're holding
1990 * ->pi_lock, so the allowed mask is stable - if it got
1991 * somewhere allowed, we're done.
1992 */
1993 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
1994 p->migration_pending = NULL;
1995 complete = true;
1996 goto out;
1997 }
1998
1999 /*
2000 * When migrate_enable() hits a rq mis-match we can't reliably
2001 * determine is_migration_disabled() and so have to chase after
2002 * it.
2003 */
2004 WARN_ON_ONCE(!pending->stop_pending);
2005 task_rq_unlock(rq, p, &rf);
2006 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2007 &pending->arg, &pending->stop_work);
2008 return 0;
2009 }
2010 out:
2011 if (pending)
2012 pending->stop_pending = false;
2013 task_rq_unlock(rq, p, &rf);
2014
2015 if (complete)
2016 complete_all(&pending->done);
2017
2018 return 0;
2019 }
2020
2021 int push_cpu_stop(void *arg)
2022 {
2023 struct rq *lowest_rq = NULL, *rq = this_rq();
2024 struct task_struct *p = arg;
2025
2026 raw_spin_lock_irq(&p->pi_lock);
2027 raw_spin_lock(&rq->lock);
2028
2029 if (task_rq(p) != rq)
2030 goto out_unlock;
2031
2032 if (is_migration_disabled(p)) {
2033 p->migration_flags |= MDF_PUSH;
2034 goto out_unlock;
2035 }
2036
2037 p->migration_flags &= ~MDF_PUSH;
2038
2039 if (p->sched_class->find_lock_rq)
2040 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2041
2042 if (!lowest_rq)
2043 goto out_unlock;
2044
2045 // XXX validate p is still the highest prio task
2046 if (task_rq(p) == rq) {
2047 deactivate_task(rq, p, 0);
2048 set_task_cpu(p, lowest_rq->cpu);
2049 activate_task(lowest_rq, p, 0);
2050 resched_curr(lowest_rq);
2051 }
2052
2053 double_unlock_balance(rq, lowest_rq);
2054
2055 out_unlock:
2056 rq->push_busy = false;
2057 raw_spin_unlock(&rq->lock);
2058 raw_spin_unlock_irq(&p->pi_lock);
2059
2060 put_task_struct(p);
2061 return 0;
2062 }
2063
2064 /*
2065 * sched_class::set_cpus_allowed must do the below, but is not required to
2066 * actually call this function.
2067 */
2068 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2069 {
2070 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2071 p->cpus_ptr = new_mask;
2072 return;
2073 }
2074
2075 cpumask_copy(&p->cpus_mask, new_mask);
2076 p->nr_cpus_allowed = cpumask_weight(new_mask);
2077 }
2078
2079 static void
2080 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2081 {
2082 struct rq *rq = task_rq(p);
2083 bool queued, running;
2084
2085 /*
2086 * This here violates the locking rules for affinity, since we're only
2087 * supposed to change these variables while holding both rq->lock and
2088 * p->pi_lock.
2089 *
2090 * HOWEVER, it magically works, because ttwu() is the only code that
2091 * accesses these variables under p->pi_lock and only does so after
2092 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2093 * before finish_task().
2094 *
2095 * XXX do further audits, this smells like something putrid.
2096 */
2097 if (flags & SCA_MIGRATE_DISABLE)
2098 SCHED_WARN_ON(!p->on_cpu);
2099 else
2100 lockdep_assert_held(&p->pi_lock);
2101
2102 queued = task_on_rq_queued(p);
2103 running = task_current(rq, p);
2104
2105 if (queued) {
2106 /*
2107 * Because __kthread_bind() calls this on blocked tasks without
2108 * holding rq->lock.
2109 */
2110 lockdep_assert_held(&rq->lock);
2111 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2112 }
2113 if (running)
2114 put_prev_task(rq, p);
2115
2116 p->sched_class->set_cpus_allowed(p, new_mask, flags);
2117
2118 if (queued)
2119 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2120 if (running)
2121 set_next_task(rq, p);
2122 }
2123
2124 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2125 {
2126 __do_set_cpus_allowed(p, new_mask, 0);
2127 }
2128
2129 /*
2130 * This function is wildly self concurrent; here be dragons.
2131 *
2132 *
2133 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2134 * designated task is enqueued on an allowed CPU. If that task is currently
2135 * running, we have to kick it out using the CPU stopper.
2136 *
2137 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2138 * Consider:
2139 *
2140 * Initial conditions: P0->cpus_mask = [0, 1]
2141 *
2142 * P0@CPU0 P1
2143 *
2144 * migrate_disable();
2145 * <preempted>
2146 * set_cpus_allowed_ptr(P0, [1]);
2147 *
2148 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2149 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2150 * This means we need the following scheme:
2151 *
2152 * P0@CPU0 P1
2153 *
2154 * migrate_disable();
2155 * <preempted>
2156 * set_cpus_allowed_ptr(P0, [1]);
2157 * <blocks>
2158 * <resumes>
2159 * migrate_enable();
2160 * __set_cpus_allowed_ptr();
2161 * <wakes local stopper>
2162 * `--> <woken on migration completion>
2163 *
2164 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2165 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2166 * task p are serialized by p->pi_lock, which we can leverage: the one that
2167 * should come into effect at the end of the Migrate-Disable region is the last
2168 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2169 * but we still need to properly signal those waiting tasks at the appropriate
2170 * moment.
2171 *
2172 * This is implemented using struct set_affinity_pending. The first
2173 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2174 * setup an instance of that struct and install it on the targeted task_struct.
2175 * Any and all further callers will reuse that instance. Those then wait for
2176 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2177 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2178 *
2179 *
2180 * (1) In the cases covered above. There is one more where the completion is
2181 * signaled within affine_move_task() itself: when a subsequent affinity request
2182 * occurs after the stopper bailed out due to the targeted task still being
2183 * Migrate-Disable. Consider:
2184 *
2185 * Initial conditions: P0->cpus_mask = [0, 1]
2186 *
2187 * CPU0 P1 P2
2188 * <P0>
2189 * migrate_disable();
2190 * <preempted>
2191 * set_cpus_allowed_ptr(P0, [1]);
2192 * <blocks>
2193 * <migration/0>
2194 * migration_cpu_stop()
2195 * is_migration_disabled()
2196 * <bails>
2197 * set_cpus_allowed_ptr(P0, [0, 1]);
2198 * <signal completion>
2199 * <awakes>
2200 *
2201 * Note that the above is safe vs a concurrent migrate_enable(), as any
2202 * pending affinity completion is preceded by an uninstallation of
2203 * p->migration_pending done with p->pi_lock held.
2204 */
2205 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2206 int dest_cpu, unsigned int flags)
2207 {
2208 struct set_affinity_pending my_pending = { }, *pending = NULL;
2209 bool stop_pending, complete = false;
2210
2211 /* Can the task run on the task's current CPU? If so, we're done */
2212 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2213 struct task_struct *push_task = NULL;
2214
2215 if ((flags & SCA_MIGRATE_ENABLE) &&
2216 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2217 rq->push_busy = true;
2218 push_task = get_task_struct(p);
2219 }
2220
2221 /*
2222 * If there are pending waiters, but no pending stop_work,
2223 * then complete now.
2224 */
2225 pending = p->migration_pending;
2226 if (pending && !pending->stop_pending) {
2227 p->migration_pending = NULL;
2228 complete = true;
2229 }
2230
2231 task_rq_unlock(rq, p, rf);
2232
2233 if (push_task) {
2234 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2235 p, &rq->push_work);
2236 }
2237
2238 if (complete)
2239 complete_all(&pending->done);
2240
2241 return 0;
2242 }
2243
2244 if (!(flags & SCA_MIGRATE_ENABLE)) {
2245 /* serialized by p->pi_lock */
2246 if (!p->migration_pending) {
2247 /* Install the request */
2248 refcount_set(&my_pending.refs, 1);
2249 init_completion(&my_pending.done);
2250 my_pending.arg = (struct migration_arg) {
2251 .task = p,
2252 .dest_cpu = -1, /* any */
2253 .pending = &my_pending,
2254 };
2255
2256 p->migration_pending = &my_pending;
2257 } else {
2258 pending = p->migration_pending;
2259 refcount_inc(&pending->refs);
2260 }
2261 }
2262 pending = p->migration_pending;
2263 /*
2264 * - !MIGRATE_ENABLE:
2265 * we'll have installed a pending if there wasn't one already.
2266 *
2267 * - MIGRATE_ENABLE:
2268 * we're here because the current CPU isn't matching anymore,
2269 * the only way that can happen is because of a concurrent
2270 * set_cpus_allowed_ptr() call, which should then still be
2271 * pending completion.
2272 *
2273 * Either way, we really should have a @pending here.
2274 */
2275 if (WARN_ON_ONCE(!pending)) {
2276 task_rq_unlock(rq, p, rf);
2277 return -EINVAL;
2278 }
2279
2280 if (task_running(rq, p) || p->state == TASK_WAKING) {
2281 /*
2282 * MIGRATE_ENABLE gets here because 'p == current', but for
2283 * anything else we cannot do is_migration_disabled(), punt
2284 * and have the stopper function handle it all race-free.
2285 */
2286 stop_pending = pending->stop_pending;
2287 if (!stop_pending)
2288 pending->stop_pending = true;
2289
2290 if (flags & SCA_MIGRATE_ENABLE)
2291 p->migration_flags &= ~MDF_PUSH;
2292
2293 task_rq_unlock(rq, p, rf);
2294
2295 if (!stop_pending) {
2296 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2297 &pending->arg, &pending->stop_work);
2298 }
2299
2300 if (flags & SCA_MIGRATE_ENABLE)
2301 return 0;
2302 } else {
2303
2304 if (!is_migration_disabled(p)) {
2305 if (task_on_rq_queued(p))
2306 rq = move_queued_task(rq, rf, p, dest_cpu);
2307
2308 if (!pending->stop_pending) {
2309 p->migration_pending = NULL;
2310 complete = true;
2311 }
2312 }
2313 task_rq_unlock(rq, p, rf);
2314
2315 if (complete)
2316 complete_all(&pending->done);
2317 }
2318
2319 wait_for_completion(&pending->done);
2320
2321 if (refcount_dec_and_test(&pending->refs))
2322 wake_up_var(&pending->refs); /* No UaF, just an address */
2323
2324 /*
2325 * Block the original owner of &pending until all subsequent callers
2326 * have seen the completion and decremented the refcount
2327 */
2328 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2329
2330 /* ARGH */
2331 WARN_ON_ONCE(my_pending.stop_pending);
2332
2333 return 0;
2334 }
2335
2336 /*
2337 * Change a given task's CPU affinity. Migrate the thread to a
2338 * proper CPU and schedule it away if the CPU it's executing on
2339 * is removed from the allowed bitmask.
2340 *
2341 * NOTE: the caller must have a valid reference to the task, the
2342 * task must not exit() & deallocate itself prematurely. The
2343 * call is not atomic; no spinlocks may be held.
2344 */
2345 static int __set_cpus_allowed_ptr(struct task_struct *p,
2346 const struct cpumask *new_mask,
2347 u32 flags)
2348 {
2349 const struct cpumask *cpu_valid_mask = cpu_active_mask;
2350 unsigned int dest_cpu;
2351 struct rq_flags rf;
2352 struct rq *rq;
2353 int ret = 0;
2354
2355 rq = task_rq_lock(p, &rf);
2356 update_rq_clock(rq);
2357
2358 if (p->flags & PF_KTHREAD || is_migration_disabled(p)) {
2359 /*
2360 * Kernel threads are allowed on online && !active CPUs,
2361 * however, during cpu-hot-unplug, even these might get pushed
2362 * away if not KTHREAD_IS_PER_CPU.
2363 *
2364 * Specifically, migration_disabled() tasks must not fail the
2365 * cpumask_any_and_distribute() pick below, esp. so on
2366 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2367 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2368 */
2369 cpu_valid_mask = cpu_online_mask;
2370 }
2371
2372 /*
2373 * Must re-check here, to close a race against __kthread_bind(),
2374 * sched_setaffinity() is not guaranteed to observe the flag.
2375 */
2376 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2377 ret = -EINVAL;
2378 goto out;
2379 }
2380
2381 if (!(flags & SCA_MIGRATE_ENABLE)) {
2382 if (cpumask_equal(&p->cpus_mask, new_mask))
2383 goto out;
2384
2385 if (WARN_ON_ONCE(p == current &&
2386 is_migration_disabled(p) &&
2387 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2388 ret = -EBUSY;
2389 goto out;
2390 }
2391 }
2392
2393 /*
2394 * Picking a ~random cpu helps in cases where we are changing affinity
2395 * for groups of tasks (ie. cpuset), so that load balancing is not
2396 * immediately required to distribute the tasks within their new mask.
2397 */
2398 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2399 if (dest_cpu >= nr_cpu_ids) {
2400 ret = -EINVAL;
2401 goto out;
2402 }
2403
2404 __do_set_cpus_allowed(p, new_mask, flags);
2405
2406 return affine_move_task(rq, p, &rf, dest_cpu, flags);
2407
2408 out:
2409 task_rq_unlock(rq, p, &rf);
2410
2411 return ret;
2412 }
2413
2414 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2415 {
2416 return __set_cpus_allowed_ptr(p, new_mask, 0);
2417 }
2418 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2419
2420 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2421 {
2422 #ifdef CONFIG_SCHED_DEBUG
2423 /*
2424 * We should never call set_task_cpu() on a blocked task,
2425 * ttwu() will sort out the placement.
2426 */
2427 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2428 !p->on_rq);
2429
2430 /*
2431 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2432 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2433 * time relying on p->on_rq.
2434 */
2435 WARN_ON_ONCE(p->state == TASK_RUNNING &&
2436 p->sched_class == &fair_sched_class &&
2437 (p->on_rq && !task_on_rq_migrating(p)));
2438
2439 #ifdef CONFIG_LOCKDEP
2440 /*
2441 * The caller should hold either p->pi_lock or rq->lock, when changing
2442 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2443 *
2444 * sched_move_task() holds both and thus holding either pins the cgroup,
2445 * see task_group().
2446 *
2447 * Furthermore, all task_rq users should acquire both locks, see
2448 * task_rq_lock().
2449 */
2450 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2451 lockdep_is_held(&task_rq(p)->lock)));
2452 #endif
2453 /*
2454 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2455 */
2456 WARN_ON_ONCE(!cpu_online(new_cpu));
2457
2458 WARN_ON_ONCE(is_migration_disabled(p));
2459 #endif
2460
2461 trace_sched_migrate_task(p, new_cpu);
2462
2463 if (task_cpu(p) != new_cpu) {
2464 if (p->sched_class->migrate_task_rq)
2465 p->sched_class->migrate_task_rq(p, new_cpu);
2466 p->se.nr_migrations++;
2467 rseq_migrate(p);
2468 perf_event_task_migrate(p);
2469 }
2470
2471 __set_task_cpu(p, new_cpu);
2472 }
2473
2474 #ifdef CONFIG_NUMA_BALANCING
2475 static void __migrate_swap_task(struct task_struct *p, int cpu)
2476 {
2477 if (task_on_rq_queued(p)) {
2478 struct rq *src_rq, *dst_rq;
2479 struct rq_flags srf, drf;
2480
2481 src_rq = task_rq(p);
2482 dst_rq = cpu_rq(cpu);
2483
2484 rq_pin_lock(src_rq, &srf);
2485 rq_pin_lock(dst_rq, &drf);
2486
2487 deactivate_task(src_rq, p, 0);
2488 set_task_cpu(p, cpu);
2489 activate_task(dst_rq, p, 0);
2490 check_preempt_curr(dst_rq, p, 0);
2491
2492 rq_unpin_lock(dst_rq, &drf);
2493 rq_unpin_lock(src_rq, &srf);
2494
2495 } else {
2496 /*
2497 * Task isn't running anymore; make it appear like we migrated
2498 * it before it went to sleep. This means on wakeup we make the
2499 * previous CPU our target instead of where it really is.
2500 */
2501 p->wake_cpu = cpu;
2502 }
2503 }
2504
2505 struct migration_swap_arg {
2506 struct task_struct *src_task, *dst_task;
2507 int src_cpu, dst_cpu;
2508 };
2509
2510 static int migrate_swap_stop(void *data)
2511 {
2512 struct migration_swap_arg *arg = data;
2513 struct rq *src_rq, *dst_rq;
2514 int ret = -EAGAIN;
2515
2516 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2517 return -EAGAIN;
2518
2519 src_rq = cpu_rq(arg->src_cpu);
2520 dst_rq = cpu_rq(arg->dst_cpu);
2521
2522 double_raw_lock(&arg->src_task->pi_lock,
2523 &arg->dst_task->pi_lock);
2524 double_rq_lock(src_rq, dst_rq);
2525
2526 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2527 goto unlock;
2528
2529 if (task_cpu(arg->src_task) != arg->src_cpu)
2530 goto unlock;
2531
2532 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2533 goto unlock;
2534
2535 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2536 goto unlock;
2537
2538 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2539 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2540
2541 ret = 0;
2542
2543 unlock:
2544 double_rq_unlock(src_rq, dst_rq);
2545 raw_spin_unlock(&arg->dst_task->pi_lock);
2546 raw_spin_unlock(&arg->src_task->pi_lock);
2547
2548 return ret;
2549 }
2550
2551 /*
2552 * Cross migrate two tasks
2553 */
2554 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2555 int target_cpu, int curr_cpu)
2556 {
2557 struct migration_swap_arg arg;
2558 int ret = -EINVAL;
2559
2560 arg = (struct migration_swap_arg){
2561 .src_task = cur,
2562 .src_cpu = curr_cpu,
2563 .dst_task = p,
2564 .dst_cpu = target_cpu,
2565 };
2566
2567 if (arg.src_cpu == arg.dst_cpu)
2568 goto out;
2569
2570 /*
2571 * These three tests are all lockless; this is OK since all of them
2572 * will be re-checked with proper locks held further down the line.
2573 */
2574 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2575 goto out;
2576
2577 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2578 goto out;
2579
2580 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2581 goto out;
2582
2583 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2584 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2585
2586 out:
2587 return ret;
2588 }
2589 #endif /* CONFIG_NUMA_BALANCING */
2590
2591 /*
2592 * wait_task_inactive - wait for a thread to unschedule.
2593 *
2594 * If @match_state is nonzero, it's the @p->state value just checked and
2595 * not expected to change. If it changes, i.e. @p might have woken up,
2596 * then return zero. When we succeed in waiting for @p to be off its CPU,
2597 * we return a positive number (its total switch count). If a second call
2598 * a short while later returns the same number, the caller can be sure that
2599 * @p has remained unscheduled the whole time.
2600 *
2601 * The caller must ensure that the task *will* unschedule sometime soon,
2602 * else this function might spin for a *long* time. This function can't
2603 * be called with interrupts off, or it may introduce deadlock with
2604 * smp_call_function() if an IPI is sent by the same process we are
2605 * waiting to become inactive.
2606 */
2607 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2608 {
2609 int running, queued;
2610 struct rq_flags rf;
2611 unsigned long ncsw;
2612 struct rq *rq;
2613
2614 for (;;) {
2615 /*
2616 * We do the initial early heuristics without holding
2617 * any task-queue locks at all. We'll only try to get
2618 * the runqueue lock when things look like they will
2619 * work out!
2620 */
2621 rq = task_rq(p);
2622
2623 /*
2624 * If the task is actively running on another CPU
2625 * still, just relax and busy-wait without holding
2626 * any locks.
2627 *
2628 * NOTE! Since we don't hold any locks, it's not
2629 * even sure that "rq" stays as the right runqueue!
2630 * But we don't care, since "task_running()" will
2631 * return false if the runqueue has changed and p
2632 * is actually now running somewhere else!
2633 */
2634 while (task_running(rq, p)) {
2635 if (match_state && unlikely(p->state != match_state))
2636 return 0;
2637 cpu_relax();
2638 }
2639
2640 /*
2641 * Ok, time to look more closely! We need the rq
2642 * lock now, to be *sure*. If we're wrong, we'll
2643 * just go back and repeat.
2644 */
2645 rq = task_rq_lock(p, &rf);
2646 trace_sched_wait_task(p);
2647 running = task_running(rq, p);
2648 queued = task_on_rq_queued(p);
2649 ncsw = 0;
2650 if (!match_state || p->state == match_state)
2651 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2652 task_rq_unlock(rq, p, &rf);
2653
2654 /*
2655 * If it changed from the expected state, bail out now.
2656 */
2657 if (unlikely(!ncsw))
2658 break;
2659
2660 /*
2661 * Was it really running after all now that we
2662 * checked with the proper locks actually held?
2663 *
2664 * Oops. Go back and try again..
2665 */
2666 if (unlikely(running)) {
2667 cpu_relax();
2668 continue;
2669 }
2670
2671 /*
2672 * It's not enough that it's not actively running,
2673 * it must be off the runqueue _entirely_, and not
2674 * preempted!
2675 *
2676 * So if it was still runnable (but just not actively
2677 * running right now), it's preempted, and we should
2678 * yield - it could be a while.
2679 */
2680 if (unlikely(queued)) {
2681 ktime_t to = NSEC_PER_SEC / HZ;
2682
2683 set_current_state(TASK_UNINTERRUPTIBLE);
2684 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2685 continue;
2686 }
2687
2688 /*
2689 * Ahh, all good. It wasn't running, and it wasn't
2690 * runnable, which means that it will never become
2691 * running in the future either. We're all done!
2692 */
2693 break;
2694 }
2695
2696 return ncsw;
2697 }
2698
2699 /***
2700 * kick_process - kick a running thread to enter/exit the kernel
2701 * @p: the to-be-kicked thread
2702 *
2703 * Cause a process which is running on another CPU to enter
2704 * kernel-mode, without any delay. (to get signals handled.)
2705 *
2706 * NOTE: this function doesn't have to take the runqueue lock,
2707 * because all it wants to ensure is that the remote task enters
2708 * the kernel. If the IPI races and the task has been migrated
2709 * to another CPU then no harm is done and the purpose has been
2710 * achieved as well.
2711 */
2712 void kick_process(struct task_struct *p)
2713 {
2714 int cpu;
2715
2716 preempt_disable();
2717 cpu = task_cpu(p);
2718 if ((cpu != smp_processor_id()) && task_curr(p))
2719 smp_send_reschedule(cpu);
2720 preempt_enable();
2721 }
2722 EXPORT_SYMBOL_GPL(kick_process);
2723
2724 /*
2725 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2726 *
2727 * A few notes on cpu_active vs cpu_online:
2728 *
2729 * - cpu_active must be a subset of cpu_online
2730 *
2731 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2732 * see __set_cpus_allowed_ptr(). At this point the newly online
2733 * CPU isn't yet part of the sched domains, and balancing will not
2734 * see it.
2735 *
2736 * - on CPU-down we clear cpu_active() to mask the sched domains and
2737 * avoid the load balancer to place new tasks on the to be removed
2738 * CPU. Existing tasks will remain running there and will be taken
2739 * off.
2740 *
2741 * This means that fallback selection must not select !active CPUs.
2742 * And can assume that any active CPU must be online. Conversely
2743 * select_task_rq() below may allow selection of !active CPUs in order
2744 * to satisfy the above rules.
2745 */
2746 static int select_fallback_rq(int cpu, struct task_struct *p)
2747 {
2748 int nid = cpu_to_node(cpu);
2749 const struct cpumask *nodemask = NULL;
2750 enum { cpuset, possible, fail } state = cpuset;
2751 int dest_cpu;
2752
2753 /*
2754 * If the node that the CPU is on has been offlined, cpu_to_node()
2755 * will return -1. There is no CPU on the node, and we should
2756 * select the CPU on the other node.
2757 */
2758 if (nid != -1) {
2759 nodemask = cpumask_of_node(nid);
2760
2761 /* Look for allowed, online CPU in same node. */
2762 for_each_cpu(dest_cpu, nodemask) {
2763 if (!cpu_active(dest_cpu))
2764 continue;
2765 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2766 return dest_cpu;
2767 }
2768 }
2769
2770 for (;;) {
2771 /* Any allowed, online CPU? */
2772 for_each_cpu(dest_cpu, p->cpus_ptr) {
2773 if (!is_cpu_allowed(p, dest_cpu))
2774 continue;
2775
2776 goto out;
2777 }
2778
2779 /* No more Mr. Nice Guy. */
2780 switch (state) {
2781 case cpuset:
2782 if (IS_ENABLED(CONFIG_CPUSETS)) {
2783 cpuset_cpus_allowed_fallback(p);
2784 state = possible;
2785 break;
2786 }
2787 fallthrough;
2788 case possible:
2789 /*
2790 * XXX When called from select_task_rq() we only
2791 * hold p->pi_lock and again violate locking order.
2792 *
2793 * More yuck to audit.
2794 */
2795 do_set_cpus_allowed(p, cpu_possible_mask);
2796 state = fail;
2797 break;
2798
2799 case fail:
2800 BUG();
2801 break;
2802 }
2803 }
2804
2805 out:
2806 if (state != cpuset) {
2807 /*
2808 * Don't tell them about moving exiting tasks or
2809 * kernel threads (both mm NULL), since they never
2810 * leave kernel.
2811 */
2812 if (p->mm && printk_ratelimit()) {
2813 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2814 task_pid_nr(p), p->comm, cpu);
2815 }
2816 }
2817
2818 return dest_cpu;
2819 }
2820
2821 /*
2822 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2823 */
2824 static inline
2825 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
2826 {
2827 lockdep_assert_held(&p->pi_lock);
2828
2829 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
2830 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
2831 else
2832 cpu = cpumask_any(p->cpus_ptr);
2833
2834 /*
2835 * In order not to call set_task_cpu() on a blocking task we need
2836 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2837 * CPU.
2838 *
2839 * Since this is common to all placement strategies, this lives here.
2840 *
2841 * [ this allows ->select_task() to simply return task_cpu(p) and
2842 * not worry about this generic constraint ]
2843 */
2844 if (unlikely(!is_cpu_allowed(p, cpu)))
2845 cpu = select_fallback_rq(task_cpu(p), p);
2846
2847 return cpu;
2848 }
2849
2850 void sched_set_stop_task(int cpu, struct task_struct *stop)
2851 {
2852 static struct lock_class_key stop_pi_lock;
2853 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2854 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2855
2856 if (stop) {
2857 /*
2858 * Make it appear like a SCHED_FIFO task, its something
2859 * userspace knows about and won't get confused about.
2860 *
2861 * Also, it will make PI more or less work without too
2862 * much confusion -- but then, stop work should not
2863 * rely on PI working anyway.
2864 */
2865 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2866
2867 stop->sched_class = &stop_sched_class;
2868
2869 /*
2870 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
2871 * adjust the effective priority of a task. As a result,
2872 * rt_mutex_setprio() can trigger (RT) balancing operations,
2873 * which can then trigger wakeups of the stop thread to push
2874 * around the current task.
2875 *
2876 * The stop task itself will never be part of the PI-chain, it
2877 * never blocks, therefore that ->pi_lock recursion is safe.
2878 * Tell lockdep about this by placing the stop->pi_lock in its
2879 * own class.
2880 */
2881 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
2882 }
2883
2884 cpu_rq(cpu)->stop = stop;
2885
2886 if (old_stop) {
2887 /*
2888 * Reset it back to a normal scheduling class so that
2889 * it can die in pieces.
2890 */
2891 old_stop->sched_class = &rt_sched_class;
2892 }
2893 }
2894
2895 #else /* CONFIG_SMP */
2896
2897 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2898 const struct cpumask *new_mask,
2899 u32 flags)
2900 {
2901 return set_cpus_allowed_ptr(p, new_mask);
2902 }
2903
2904 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
2905
2906 static inline bool rq_has_pinned_tasks(struct rq *rq)
2907 {
2908 return false;
2909 }
2910
2911 #endif /* !CONFIG_SMP */
2912
2913 static void
2914 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2915 {
2916 struct rq *rq;
2917
2918 if (!schedstat_enabled())
2919 return;
2920
2921 rq = this_rq();
2922
2923 #ifdef CONFIG_SMP
2924 if (cpu == rq->cpu) {
2925 __schedstat_inc(rq->ttwu_local);
2926 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2927 } else {
2928 struct sched_domain *sd;
2929
2930 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2931 rcu_read_lock();
2932 for_each_domain(rq->cpu, sd) {
2933 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2934 __schedstat_inc(sd->ttwu_wake_remote);
2935 break;
2936 }
2937 }
2938 rcu_read_unlock();
2939 }
2940
2941 if (wake_flags & WF_MIGRATED)
2942 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2943 #endif /* CONFIG_SMP */
2944
2945 __schedstat_inc(rq->ttwu_count);
2946 __schedstat_inc(p->se.statistics.nr_wakeups);
2947
2948 if (wake_flags & WF_SYNC)
2949 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2950 }
2951
2952 /*
2953 * Mark the task runnable and perform wakeup-preemption.
2954 */
2955 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2956 struct rq_flags *rf)
2957 {
2958 check_preempt_curr(rq, p, wake_flags);
2959 p->state = TASK_RUNNING;
2960 trace_sched_wakeup(p);
2961
2962 #ifdef CONFIG_SMP
2963 if (p->sched_class->task_woken) {
2964 /*
2965 * Our task @p is fully woken up and running; so it's safe to
2966 * drop the rq->lock, hereafter rq is only used for statistics.
2967 */
2968 rq_unpin_lock(rq, rf);
2969 p->sched_class->task_woken(rq, p);
2970 rq_repin_lock(rq, rf);
2971 }
2972
2973 if (rq->idle_stamp) {
2974 u64 delta = rq_clock(rq) - rq->idle_stamp;
2975 u64 max = 2*rq->max_idle_balance_cost;
2976
2977 update_avg(&rq->avg_idle, delta);
2978
2979 if (rq->avg_idle > max)
2980 rq->avg_idle = max;
2981
2982 rq->idle_stamp = 0;
2983 }
2984 #endif
2985 }
2986
2987 static void
2988 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2989 struct rq_flags *rf)
2990 {
2991 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2992
2993 lockdep_assert_held(&rq->lock);
2994
2995 if (p->sched_contributes_to_load)
2996 rq->nr_uninterruptible--;
2997
2998 #ifdef CONFIG_SMP
2999 if (wake_flags & WF_MIGRATED)
3000 en_flags |= ENQUEUE_MIGRATED;
3001 else
3002 #endif
3003 if (p->in_iowait) {
3004 delayacct_blkio_end(p);
3005 atomic_dec(&task_rq(p)->nr_iowait);
3006 }
3007
3008 activate_task(rq, p, en_flags);
3009 ttwu_do_wakeup(rq, p, wake_flags, rf);
3010 }
3011
3012 /*
3013 * Consider @p being inside a wait loop:
3014 *
3015 * for (;;) {
3016 * set_current_state(TASK_UNINTERRUPTIBLE);
3017 *
3018 * if (CONDITION)
3019 * break;
3020 *
3021 * schedule();
3022 * }
3023 * __set_current_state(TASK_RUNNING);
3024 *
3025 * between set_current_state() and schedule(). In this case @p is still
3026 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3027 * an atomic manner.
3028 *
3029 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3030 * then schedule() must still happen and p->state can be changed to
3031 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3032 * need to do a full wakeup with enqueue.
3033 *
3034 * Returns: %true when the wakeup is done,
3035 * %false otherwise.
3036 */
3037 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3038 {
3039 struct rq_flags rf;
3040 struct rq *rq;
3041 int ret = 0;
3042
3043 rq = __task_rq_lock(p, &rf);
3044 if (task_on_rq_queued(p)) {
3045 /* check_preempt_curr() may use rq clock */
3046 update_rq_clock(rq);
3047 ttwu_do_wakeup(rq, p, wake_flags, &rf);
3048 ret = 1;
3049 }
3050 __task_rq_unlock(rq, &rf);
3051
3052 return ret;
3053 }
3054
3055 #ifdef CONFIG_SMP
3056 void sched_ttwu_pending(void *arg)
3057 {
3058 struct llist_node *llist = arg;
3059 struct rq *rq = this_rq();
3060 struct task_struct *p, *t;
3061 struct rq_flags rf;
3062
3063 if (!llist)
3064 return;
3065
3066 /*
3067 * rq::ttwu_pending racy indication of out-standing wakeups.
3068 * Races such that false-negatives are possible, since they
3069 * are shorter lived that false-positives would be.
3070 */
3071 WRITE_ONCE(rq->ttwu_pending, 0);
3072
3073 rq_lock_irqsave(rq, &rf);
3074 update_rq_clock(rq);
3075
3076 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3077 if (WARN_ON_ONCE(p->on_cpu))
3078 smp_cond_load_acquire(&p->on_cpu, !VAL);
3079
3080 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3081 set_task_cpu(p, cpu_of(rq));
3082
3083 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3084 }
3085
3086 rq_unlock_irqrestore(rq, &rf);
3087 }
3088
3089 void send_call_function_single_ipi(int cpu)
3090 {
3091 struct rq *rq = cpu_rq(cpu);
3092
3093 if (!set_nr_if_polling(rq->idle))
3094 arch_send_call_function_single_ipi(cpu);
3095 else
3096 trace_sched_wake_idle_without_ipi(cpu);
3097 }
3098
3099 /*
3100 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3101 * necessary. The wakee CPU on receipt of the IPI will queue the task
3102 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3103 * of the wakeup instead of the waker.
3104 */
3105 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3106 {
3107 struct rq *rq = cpu_rq(cpu);
3108
3109 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3110
3111 WRITE_ONCE(rq->ttwu_pending, 1);
3112 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3113 }
3114
3115 void wake_up_if_idle(int cpu)
3116 {
3117 struct rq *rq = cpu_rq(cpu);
3118 struct rq_flags rf;
3119
3120 rcu_read_lock();
3121
3122 if (!is_idle_task(rcu_dereference(rq->curr)))
3123 goto out;
3124
3125 if (set_nr_if_polling(rq->idle)) {
3126 trace_sched_wake_idle_without_ipi(cpu);
3127 } else {
3128 rq_lock_irqsave(rq, &rf);
3129 if (is_idle_task(rq->curr))
3130 smp_send_reschedule(cpu);
3131 /* Else CPU is not idle, do nothing here: */
3132 rq_unlock_irqrestore(rq, &rf);
3133 }
3134
3135 out:
3136 rcu_read_unlock();
3137 }
3138
3139 bool cpus_share_cache(int this_cpu, int that_cpu)
3140 {
3141 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3142 }
3143
3144 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
3145 {
3146 /*
3147 * Do not complicate things with the async wake_list while the CPU is
3148 * in hotplug state.
3149 */
3150 if (!cpu_active(cpu))
3151 return false;
3152
3153 /*
3154 * If the CPU does not share cache, then queue the task on the
3155 * remote rqs wakelist to avoid accessing remote data.
3156 */
3157 if (!cpus_share_cache(smp_processor_id(), cpu))
3158 return true;
3159
3160 /*
3161 * If the task is descheduling and the only running task on the
3162 * CPU then use the wakelist to offload the task activation to
3163 * the soon-to-be-idle CPU as the current CPU is likely busy.
3164 * nr_running is checked to avoid unnecessary task stacking.
3165 */
3166 if ((wake_flags & WF_ON_CPU) && cpu_rq(cpu)->nr_running <= 1)
3167 return true;
3168
3169 return false;
3170 }
3171
3172 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3173 {
3174 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
3175 if (WARN_ON_ONCE(cpu == smp_processor_id()))
3176 return false;
3177
3178 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3179 __ttwu_queue_wakelist(p, cpu, wake_flags);
3180 return true;
3181 }
3182
3183 return false;
3184 }
3185
3186 #else /* !CONFIG_SMP */
3187
3188 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3189 {
3190 return false;
3191 }
3192
3193 #endif /* CONFIG_SMP */
3194
3195 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3196 {
3197 struct rq *rq = cpu_rq(cpu);
3198 struct rq_flags rf;
3199
3200 if (ttwu_queue_wakelist(p, cpu, wake_flags))
3201 return;
3202
3203 rq_lock(rq, &rf);
3204 update_rq_clock(rq);
3205 ttwu_do_activate(rq, p, wake_flags, &rf);
3206 rq_unlock(rq, &rf);
3207 }
3208
3209 /*
3210 * Notes on Program-Order guarantees on SMP systems.
3211 *
3212 * MIGRATION
3213 *
3214 * The basic program-order guarantee on SMP systems is that when a task [t]
3215 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3216 * execution on its new CPU [c1].
3217 *
3218 * For migration (of runnable tasks) this is provided by the following means:
3219 *
3220 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3221 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3222 * rq(c1)->lock (if not at the same time, then in that order).
3223 * C) LOCK of the rq(c1)->lock scheduling in task
3224 *
3225 * Release/acquire chaining guarantees that B happens after A and C after B.
3226 * Note: the CPU doing B need not be c0 or c1
3227 *
3228 * Example:
3229 *
3230 * CPU0 CPU1 CPU2
3231 *
3232 * LOCK rq(0)->lock
3233 * sched-out X
3234 * sched-in Y
3235 * UNLOCK rq(0)->lock
3236 *
3237 * LOCK rq(0)->lock // orders against CPU0
3238 * dequeue X
3239 * UNLOCK rq(0)->lock
3240 *
3241 * LOCK rq(1)->lock
3242 * enqueue X
3243 * UNLOCK rq(1)->lock
3244 *
3245 * LOCK rq(1)->lock // orders against CPU2
3246 * sched-out Z
3247 * sched-in X
3248 * UNLOCK rq(1)->lock
3249 *
3250 *
3251 * BLOCKING -- aka. SLEEP + WAKEUP
3252 *
3253 * For blocking we (obviously) need to provide the same guarantee as for
3254 * migration. However the means are completely different as there is no lock
3255 * chain to provide order. Instead we do:
3256 *
3257 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3258 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3259 *
3260 * Example:
3261 *
3262 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3263 *
3264 * LOCK rq(0)->lock LOCK X->pi_lock
3265 * dequeue X
3266 * sched-out X
3267 * smp_store_release(X->on_cpu, 0);
3268 *
3269 * smp_cond_load_acquire(&X->on_cpu, !VAL);
3270 * X->state = WAKING
3271 * set_task_cpu(X,2)
3272 *
3273 * LOCK rq(2)->lock
3274 * enqueue X
3275 * X->state = RUNNING
3276 * UNLOCK rq(2)->lock
3277 *
3278 * LOCK rq(2)->lock // orders against CPU1
3279 * sched-out Z
3280 * sched-in X
3281 * UNLOCK rq(2)->lock
3282 *
3283 * UNLOCK X->pi_lock
3284 * UNLOCK rq(0)->lock
3285 *
3286 *
3287 * However, for wakeups there is a second guarantee we must provide, namely we
3288 * must ensure that CONDITION=1 done by the caller can not be reordered with
3289 * accesses to the task state; see try_to_wake_up() and set_current_state().
3290 */
3291
3292 /**
3293 * try_to_wake_up - wake up a thread
3294 * @p: the thread to be awakened
3295 * @state: the mask of task states that can be woken
3296 * @wake_flags: wake modifier flags (WF_*)
3297 *
3298 * Conceptually does:
3299 *
3300 * If (@state & @p->state) @p->state = TASK_RUNNING.
3301 *
3302 * If the task was not queued/runnable, also place it back on a runqueue.
3303 *
3304 * This function is atomic against schedule() which would dequeue the task.
3305 *
3306 * It issues a full memory barrier before accessing @p->state, see the comment
3307 * with set_current_state().
3308 *
3309 * Uses p->pi_lock to serialize against concurrent wake-ups.
3310 *
3311 * Relies on p->pi_lock stabilizing:
3312 * - p->sched_class
3313 * - p->cpus_ptr
3314 * - p->sched_task_group
3315 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
3316 *
3317 * Tries really hard to only take one task_rq(p)->lock for performance.
3318 * Takes rq->lock in:
3319 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
3320 * - ttwu_queue() -- new rq, for enqueue of the task;
3321 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
3322 *
3323 * As a consequence we race really badly with just about everything. See the
3324 * many memory barriers and their comments for details.
3325 *
3326 * Return: %true if @p->state changes (an actual wakeup was done),
3327 * %false otherwise.
3328 */
3329 static int
3330 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
3331 {
3332 unsigned long flags;
3333 int cpu, success = 0;
3334
3335 preempt_disable();
3336 if (p == current) {
3337 /*
3338 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
3339 * == smp_processor_id()'. Together this means we can special
3340 * case the whole 'p->on_rq && ttwu_runnable()' case below
3341 * without taking any locks.
3342 *
3343 * In particular:
3344 * - we rely on Program-Order guarantees for all the ordering,
3345 * - we're serialized against set_special_state() by virtue of
3346 * it disabling IRQs (this allows not taking ->pi_lock).
3347 */
3348 if (!(p->state & state))
3349 goto out;
3350
3351 success = 1;
3352 trace_sched_waking(p);
3353 p->state = TASK_RUNNING;
3354 trace_sched_wakeup(p);
3355 goto out;
3356 }
3357
3358 /*
3359 * If we are going to wake up a thread waiting for CONDITION we
3360 * need to ensure that CONDITION=1 done by the caller can not be
3361 * reordered with p->state check below. This pairs with smp_store_mb()
3362 * in set_current_state() that the waiting thread does.
3363 */
3364 raw_spin_lock_irqsave(&p->pi_lock, flags);
3365 smp_mb__after_spinlock();
3366 if (!(p->state & state))
3367 goto unlock;
3368
3369 trace_sched_waking(p);
3370
3371 /* We're going to change ->state: */
3372 success = 1;
3373
3374 /*
3375 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3376 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3377 * in smp_cond_load_acquire() below.
3378 *
3379 * sched_ttwu_pending() try_to_wake_up()
3380 * STORE p->on_rq = 1 LOAD p->state
3381 * UNLOCK rq->lock
3382 *
3383 * __schedule() (switch to task 'p')
3384 * LOCK rq->lock smp_rmb();
3385 * smp_mb__after_spinlock();
3386 * UNLOCK rq->lock
3387 *
3388 * [task p]
3389 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
3390 *
3391 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3392 * __schedule(). See the comment for smp_mb__after_spinlock().
3393 *
3394 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3395 */
3396 smp_rmb();
3397 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3398 goto unlock;
3399
3400 #ifdef CONFIG_SMP
3401 /*
3402 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3403 * possible to, falsely, observe p->on_cpu == 0.
3404 *
3405 * One must be running (->on_cpu == 1) in order to remove oneself
3406 * from the runqueue.
3407 *
3408 * __schedule() (switch to task 'p') try_to_wake_up()
3409 * STORE p->on_cpu = 1 LOAD p->on_rq
3410 * UNLOCK rq->lock
3411 *
3412 * __schedule() (put 'p' to sleep)
3413 * LOCK rq->lock smp_rmb();
3414 * smp_mb__after_spinlock();
3415 * STORE p->on_rq = 0 LOAD p->on_cpu
3416 *
3417 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3418 * __schedule(). See the comment for smp_mb__after_spinlock().
3419 *
3420 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3421 * schedule()'s deactivate_task() has 'happened' and p will no longer
3422 * care about it's own p->state. See the comment in __schedule().
3423 */
3424 smp_acquire__after_ctrl_dep();
3425
3426 /*
3427 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3428 * == 0), which means we need to do an enqueue, change p->state to
3429 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3430 * enqueue, such as ttwu_queue_wakelist().
3431 */
3432 p->state = TASK_WAKING;
3433
3434 /*
3435 * If the owning (remote) CPU is still in the middle of schedule() with
3436 * this task as prev, considering queueing p on the remote CPUs wake_list
3437 * which potentially sends an IPI instead of spinning on p->on_cpu to
3438 * let the waker make forward progress. This is safe because IRQs are
3439 * disabled and the IPI will deliver after on_cpu is cleared.
3440 *
3441 * Ensure we load task_cpu(p) after p->on_cpu:
3442 *
3443 * set_task_cpu(p, cpu);
3444 * STORE p->cpu = @cpu
3445 * __schedule() (switch to task 'p')
3446 * LOCK rq->lock
3447 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
3448 * STORE p->on_cpu = 1 LOAD p->cpu
3449 *
3450 * to ensure we observe the correct CPU on which the task is currently
3451 * scheduling.
3452 */
3453 if (smp_load_acquire(&p->on_cpu) &&
3454 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3455 goto unlock;
3456
3457 /*
3458 * If the owning (remote) CPU is still in the middle of schedule() with
3459 * this task as prev, wait until it's done referencing the task.
3460 *
3461 * Pairs with the smp_store_release() in finish_task().
3462 *
3463 * This ensures that tasks getting woken will be fully ordered against
3464 * their previous state and preserve Program Order.
3465 */
3466 smp_cond_load_acquire(&p->on_cpu, !VAL);
3467
3468 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
3469 if (task_cpu(p) != cpu) {
3470 if (p->in_iowait) {
3471 delayacct_blkio_end(p);
3472 atomic_dec(&task_rq(p)->nr_iowait);
3473 }
3474
3475 wake_flags |= WF_MIGRATED;
3476 psi_ttwu_dequeue(p);
3477 set_task_cpu(p, cpu);
3478 }
3479 #else
3480 cpu = task_cpu(p);
3481 #endif /* CONFIG_SMP */
3482
3483 ttwu_queue(p, cpu, wake_flags);
3484 unlock:
3485 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3486 out:
3487 if (success)
3488 ttwu_stat(p, task_cpu(p), wake_flags);
3489 preempt_enable();
3490
3491 return success;
3492 }
3493
3494 /**
3495 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3496 * @p: Process for which the function is to be invoked, can be @current.
3497 * @func: Function to invoke.
3498 * @arg: Argument to function.
3499 *
3500 * If the specified task can be quickly locked into a definite state
3501 * (either sleeping or on a given runqueue), arrange to keep it in that
3502 * state while invoking @func(@arg). This function can use ->on_rq and
3503 * task_curr() to work out what the state is, if required. Given that
3504 * @func can be invoked with a runqueue lock held, it had better be quite
3505 * lightweight.
3506 *
3507 * Returns:
3508 * @false if the task slipped out from under the locks.
3509 * @true if the task was locked onto a runqueue or is sleeping.
3510 * However, @func can override this by returning @false.
3511 */
3512 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3513 {
3514 struct rq_flags rf;
3515 bool ret = false;
3516 struct rq *rq;
3517
3518 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3519 if (p->on_rq) {
3520 rq = __task_rq_lock(p, &rf);
3521 if (task_rq(p) == rq)
3522 ret = func(p, arg);
3523 rq_unlock(rq, &rf);
3524 } else {
3525 switch (p->state) {
3526 case TASK_RUNNING:
3527 case TASK_WAKING:
3528 break;
3529 default:
3530 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3531 if (!p->on_rq)
3532 ret = func(p, arg);
3533 }
3534 }
3535 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3536 return ret;
3537 }
3538
3539 /**
3540 * wake_up_process - Wake up a specific process
3541 * @p: The process to be woken up.
3542 *
3543 * Attempt to wake up the nominated process and move it to the set of runnable
3544 * processes.
3545 *
3546 * Return: 1 if the process was woken up, 0 if it was already running.
3547 *
3548 * This function executes a full memory barrier before accessing the task state.
3549 */
3550 int wake_up_process(struct task_struct *p)
3551 {
3552 return try_to_wake_up(p, TASK_NORMAL, 0);
3553 }
3554 EXPORT_SYMBOL(wake_up_process);
3555
3556 int wake_up_state(struct task_struct *p, unsigned int state)
3557 {
3558 return try_to_wake_up(p, state, 0);
3559 }
3560
3561 /*
3562 * Perform scheduler related setup for a newly forked process p.
3563 * p is forked by current.
3564 *
3565 * __sched_fork() is basic setup used by init_idle() too:
3566 */
3567 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3568 {
3569 p->on_rq = 0;
3570
3571 p->se.on_rq = 0;
3572 p->se.exec_start = 0;
3573 p->se.sum_exec_runtime = 0;
3574 p->se.prev_sum_exec_runtime = 0;
3575 p->se.nr_migrations = 0;
3576 p->se.vruntime = 0;
3577 INIT_LIST_HEAD(&p->se.group_node);
3578
3579 #ifdef CONFIG_FAIR_GROUP_SCHED
3580 p->se.cfs_rq = NULL;
3581 #endif
3582
3583 #ifdef CONFIG_SCHEDSTATS
3584 /* Even if schedstat is disabled, there should not be garbage */
3585 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3586 #endif
3587
3588 RB_CLEAR_NODE(&p->dl.rb_node);
3589 init_dl_task_timer(&p->dl);
3590 init_dl_inactive_task_timer(&p->dl);
3591 __dl_clear_params(p);
3592
3593 INIT_LIST_HEAD(&p->rt.run_list);
3594 p->rt.timeout = 0;
3595 p->rt.time_slice = sched_rr_timeslice;
3596 p->rt.on_rq = 0;
3597 p->rt.on_list = 0;
3598
3599 #ifdef CONFIG_PREEMPT_NOTIFIERS
3600 INIT_HLIST_HEAD(&p->preempt_notifiers);
3601 #endif
3602
3603 #ifdef CONFIG_COMPACTION
3604 p->capture_control = NULL;
3605 #endif
3606 init_numa_balancing(clone_flags, p);
3607 #ifdef CONFIG_SMP
3608 p->wake_entry.u_flags = CSD_TYPE_TTWU;
3609 p->migration_pending = NULL;
3610 #endif
3611 }
3612
3613 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3614
3615 #ifdef CONFIG_NUMA_BALANCING
3616
3617 void set_numabalancing_state(bool enabled)
3618 {
3619 if (enabled)
3620 static_branch_enable(&sched_numa_balancing);
3621 else
3622 static_branch_disable(&sched_numa_balancing);
3623 }
3624
3625 #ifdef CONFIG_PROC_SYSCTL
3626 int sysctl_numa_balancing(struct ctl_table *table, int write,
3627 void *buffer, size_t *lenp, loff_t *ppos)
3628 {
3629 struct ctl_table t;
3630 int err;
3631 int state = static_branch_likely(&sched_numa_balancing);
3632
3633 if (write && !capable(CAP_SYS_ADMIN))
3634 return -EPERM;
3635
3636 t = *table;
3637 t.data = &state;
3638 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3639 if (err < 0)
3640 return err;
3641 if (write)
3642 set_numabalancing_state(state);
3643 return err;
3644 }
3645 #endif
3646 #endif
3647
3648 #ifdef CONFIG_SCHEDSTATS
3649
3650 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3651 static bool __initdata __sched_schedstats = false;
3652
3653 static void set_schedstats(bool enabled)
3654 {
3655 if (enabled)
3656 static_branch_enable(&sched_schedstats);
3657 else
3658 static_branch_disable(&sched_schedstats);
3659 }
3660
3661 void force_schedstat_enabled(void)
3662 {
3663 if (!schedstat_enabled()) {
3664 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3665 static_branch_enable(&sched_schedstats);
3666 }
3667 }
3668
3669 static int __init setup_schedstats(char *str)
3670 {
3671 int ret = 0;
3672 if (!str)
3673 goto out;
3674
3675 /*
3676 * This code is called before jump labels have been set up, so we can't
3677 * change the static branch directly just yet. Instead set a temporary
3678 * variable so init_schedstats() can do it later.
3679 */
3680 if (!strcmp(str, "enable")) {
3681 __sched_schedstats = true;
3682 ret = 1;
3683 } else if (!strcmp(str, "disable")) {
3684 __sched_schedstats = false;
3685 ret = 1;
3686 }
3687 out:
3688 if (!ret)
3689 pr_warn("Unable to parse schedstats=\n");
3690
3691 return ret;
3692 }
3693 __setup("schedstats=", setup_schedstats);
3694
3695 static void __init init_schedstats(void)
3696 {
3697 set_schedstats(__sched_schedstats);
3698 }
3699
3700 #ifdef CONFIG_PROC_SYSCTL
3701 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3702 size_t *lenp, loff_t *ppos)
3703 {
3704 struct ctl_table t;
3705 int err;
3706 int state = static_branch_likely(&sched_schedstats);
3707
3708 if (write && !capable(CAP_SYS_ADMIN))
3709 return -EPERM;
3710
3711 t = *table;
3712 t.data = &state;
3713 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3714 if (err < 0)
3715 return err;
3716 if (write)
3717 set_schedstats(state);
3718 return err;
3719 }
3720 #endif /* CONFIG_PROC_SYSCTL */
3721 #else /* !CONFIG_SCHEDSTATS */
3722 static inline void init_schedstats(void) {}
3723 #endif /* CONFIG_SCHEDSTATS */
3724
3725 /*
3726 * fork()/clone()-time setup:
3727 */
3728 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3729 {
3730 unsigned long flags;
3731
3732 __sched_fork(clone_flags, p);
3733 /*
3734 * We mark the process as NEW here. This guarantees that
3735 * nobody will actually run it, and a signal or other external
3736 * event cannot wake it up and insert it on the runqueue either.
3737 */
3738 p->state = TASK_NEW;
3739
3740 /*
3741 * Make sure we do not leak PI boosting priority to the child.
3742 */
3743 p->prio = current->normal_prio;
3744
3745 uclamp_fork(p);
3746
3747 /*
3748 * Revert to default priority/policy on fork if requested.
3749 */
3750 if (unlikely(p->sched_reset_on_fork)) {
3751 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3752 p->policy = SCHED_NORMAL;
3753 p->static_prio = NICE_TO_PRIO(0);
3754 p->rt_priority = 0;
3755 } else if (PRIO_TO_NICE(p->static_prio) < 0)
3756 p->static_prio = NICE_TO_PRIO(0);
3757
3758 p->prio = p->normal_prio = __normal_prio(p);
3759 set_load_weight(p, false);
3760
3761 /*
3762 * We don't need the reset flag anymore after the fork. It has
3763 * fulfilled its duty:
3764 */
3765 p->sched_reset_on_fork = 0;
3766 }
3767
3768 if (dl_prio(p->prio))
3769 return -EAGAIN;
3770 else if (rt_prio(p->prio))
3771 p->sched_class = &rt_sched_class;
3772 else
3773 p->sched_class = &fair_sched_class;
3774
3775 init_entity_runnable_average(&p->se);
3776
3777 /*
3778 * The child is not yet in the pid-hash so no cgroup attach races,
3779 * and the cgroup is pinned to this child due to cgroup_fork()
3780 * is ran before sched_fork().
3781 *
3782 * Silence PROVE_RCU.
3783 */
3784 raw_spin_lock_irqsave(&p->pi_lock, flags);
3785 rseq_migrate(p);
3786 /*
3787 * We're setting the CPU for the first time, we don't migrate,
3788 * so use __set_task_cpu().
3789 */
3790 __set_task_cpu(p, smp_processor_id());
3791 if (p->sched_class->task_fork)
3792 p->sched_class->task_fork(p);
3793 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3794
3795 #ifdef CONFIG_SCHED_INFO
3796 if (likely(sched_info_on()))
3797 memset(&p->sched_info, 0, sizeof(p->sched_info));
3798 #endif
3799 #if defined(CONFIG_SMP)
3800 p->on_cpu = 0;
3801 #endif
3802 init_task_preempt_count(p);
3803 #ifdef CONFIG_SMP
3804 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3805 RB_CLEAR_NODE(&p->pushable_dl_tasks);
3806 #endif
3807 return 0;
3808 }
3809
3810 void sched_post_fork(struct task_struct *p)
3811 {
3812 uclamp_post_fork(p);
3813 }
3814
3815 unsigned long to_ratio(u64 period, u64 runtime)
3816 {
3817 if (runtime == RUNTIME_INF)
3818 return BW_UNIT;
3819
3820 /*
3821 * Doing this here saves a lot of checks in all
3822 * the calling paths, and returning zero seems
3823 * safe for them anyway.
3824 */
3825 if (period == 0)
3826 return 0;
3827
3828 return div64_u64(runtime << BW_SHIFT, period);
3829 }
3830
3831 /*
3832 * wake_up_new_task - wake up a newly created task for the first time.
3833 *
3834 * This function will do some initial scheduler statistics housekeeping
3835 * that must be done for every newly created context, then puts the task
3836 * on the runqueue and wakes it.
3837 */
3838 void wake_up_new_task(struct task_struct *p)
3839 {
3840 struct rq_flags rf;
3841 struct rq *rq;
3842
3843 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3844 p->state = TASK_RUNNING;
3845 #ifdef CONFIG_SMP
3846 /*
3847 * Fork balancing, do it here and not earlier because:
3848 * - cpus_ptr can change in the fork path
3849 * - any previously selected CPU might disappear through hotplug
3850 *
3851 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3852 * as we're not fully set-up yet.
3853 */
3854 p->recent_used_cpu = task_cpu(p);
3855 rseq_migrate(p);
3856 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
3857 #endif
3858 rq = __task_rq_lock(p, &rf);
3859 update_rq_clock(rq);
3860 post_init_entity_util_avg(p);
3861
3862 activate_task(rq, p, ENQUEUE_NOCLOCK);
3863 trace_sched_wakeup_new(p);
3864 check_preempt_curr(rq, p, WF_FORK);
3865 #ifdef CONFIG_SMP
3866 if (p->sched_class->task_woken) {
3867 /*
3868 * Nothing relies on rq->lock after this, so it's fine to
3869 * drop it.
3870 */
3871 rq_unpin_lock(rq, &rf);
3872 p->sched_class->task_woken(rq, p);
3873 rq_repin_lock(rq, &rf);
3874 }
3875 #endif
3876 task_rq_unlock(rq, p, &rf);
3877 }
3878
3879 #ifdef CONFIG_PREEMPT_NOTIFIERS
3880
3881 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3882
3883 void preempt_notifier_inc(void)
3884 {
3885 static_branch_inc(&preempt_notifier_key);
3886 }
3887 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3888
3889 void preempt_notifier_dec(void)
3890 {
3891 static_branch_dec(&preempt_notifier_key);
3892 }
3893 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3894
3895 /**
3896 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3897 * @notifier: notifier struct to register
3898 */
3899 void preempt_notifier_register(struct preempt_notifier *notifier)
3900 {
3901 if (!static_branch_unlikely(&preempt_notifier_key))
3902 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3903
3904 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3905 }
3906 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3907
3908 /**
3909 * preempt_notifier_unregister - no longer interested in preemption notifications
3910 * @notifier: notifier struct to unregister
3911 *
3912 * This is *not* safe to call from within a preemption notifier.
3913 */
3914 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3915 {
3916 hlist_del(&notifier->link);
3917 }
3918 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3919
3920 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3921 {
3922 struct preempt_notifier *notifier;
3923
3924 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3925 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3926 }
3927
3928 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3929 {
3930 if (static_branch_unlikely(&preempt_notifier_key))
3931 __fire_sched_in_preempt_notifiers(curr);
3932 }
3933
3934 static void
3935 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3936 struct task_struct *next)
3937 {
3938 struct preempt_notifier *notifier;
3939
3940 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3941 notifier->ops->sched_out(notifier, next);
3942 }
3943
3944 static __always_inline void
3945 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3946 struct task_struct *next)
3947 {
3948 if (static_branch_unlikely(&preempt_notifier_key))
3949 __fire_sched_out_preempt_notifiers(curr, next);
3950 }
3951
3952 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3953
3954 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3955 {
3956 }
3957
3958 static inline void
3959 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3960 struct task_struct *next)
3961 {
3962 }
3963
3964 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3965
3966 static inline void prepare_task(struct task_struct *next)
3967 {
3968 #ifdef CONFIG_SMP
3969 /*
3970 * Claim the task as running, we do this before switching to it
3971 * such that any running task will have this set.
3972 *
3973 * See the ttwu() WF_ON_CPU case and its ordering comment.
3974 */
3975 WRITE_ONCE(next->on_cpu, 1);
3976 #endif
3977 }
3978
3979 static inline void finish_task(struct task_struct *prev)
3980 {
3981 #ifdef CONFIG_SMP
3982 /*
3983 * This must be the very last reference to @prev from this CPU. After
3984 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3985 * must ensure this doesn't happen until the switch is completely
3986 * finished.
3987 *
3988 * In particular, the load of prev->state in finish_task_switch() must
3989 * happen before this.
3990 *
3991 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3992 */
3993 smp_store_release(&prev->on_cpu, 0);
3994 #endif
3995 }
3996
3997 #ifdef CONFIG_SMP
3998
3999 static void do_balance_callbacks(struct rq *rq, struct callback_head *head)
4000 {
4001 void (*func)(struct rq *rq);
4002 struct callback_head *next;
4003
4004 lockdep_assert_held(&rq->lock);
4005
4006 while (head) {
4007 func = (void (*)(struct rq *))head->func;
4008 next = head->next;
4009 head->next = NULL;
4010 head = next;
4011
4012 func(rq);
4013 }
4014 }
4015
4016 static void balance_push(struct rq *rq);
4017
4018 struct callback_head balance_push_callback = {
4019 .next = NULL,
4020 .func = (void (*)(struct callback_head *))balance_push,
4021 };
4022
4023 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4024 {
4025 struct callback_head *head = rq->balance_callback;
4026
4027 lockdep_assert_held(&rq->lock);
4028 if (head)
4029 rq->balance_callback = NULL;
4030
4031 return head;
4032 }
4033
4034 static void __balance_callbacks(struct rq *rq)
4035 {
4036 do_balance_callbacks(rq, splice_balance_callbacks(rq));
4037 }
4038
4039 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4040 {
4041 unsigned long flags;
4042
4043 if (unlikely(head)) {
4044 raw_spin_lock_irqsave(&rq->lock, flags);
4045 do_balance_callbacks(rq, head);
4046 raw_spin_unlock_irqrestore(&rq->lock, flags);
4047 }
4048 }
4049
4050 #else
4051
4052 static inline void __balance_callbacks(struct rq *rq)
4053 {
4054 }
4055
4056 static inline struct callback_head *splice_balance_callbacks(struct rq *rq)
4057 {
4058 return NULL;
4059 }
4060
4061 static inline void balance_callbacks(struct rq *rq, struct callback_head *head)
4062 {
4063 }
4064
4065 #endif
4066
4067 static inline void
4068 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4069 {
4070 /*
4071 * Since the runqueue lock will be released by the next
4072 * task (which is an invalid locking op but in the case
4073 * of the scheduler it's an obvious special-case), so we
4074 * do an early lockdep release here:
4075 */
4076 rq_unpin_lock(rq, rf);
4077 spin_release(&rq->lock.dep_map, _THIS_IP_);
4078 #ifdef CONFIG_DEBUG_SPINLOCK
4079 /* this is a valid case when another task releases the spinlock */
4080 rq->lock.owner = next;
4081 #endif
4082 }
4083
4084 static inline void finish_lock_switch(struct rq *rq)
4085 {
4086 /*
4087 * If we are tracking spinlock dependencies then we have to
4088 * fix up the runqueue lock - which gets 'carried over' from
4089 * prev into current:
4090 */
4091 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
4092 __balance_callbacks(rq);
4093 raw_spin_unlock_irq(&rq->lock);
4094 }
4095
4096 /*
4097 * NOP if the arch has not defined these:
4098 */
4099
4100 #ifndef prepare_arch_switch
4101 # define prepare_arch_switch(next) do { } while (0)
4102 #endif
4103
4104 #ifndef finish_arch_post_lock_switch
4105 # define finish_arch_post_lock_switch() do { } while (0)
4106 #endif
4107
4108 static inline void kmap_local_sched_out(void)
4109 {
4110 #ifdef CONFIG_KMAP_LOCAL
4111 if (unlikely(current->kmap_ctrl.idx))
4112 __kmap_local_sched_out();
4113 #endif
4114 }
4115
4116 static inline void kmap_local_sched_in(void)
4117 {
4118 #ifdef CONFIG_KMAP_LOCAL
4119 if (unlikely(current->kmap_ctrl.idx))
4120 __kmap_local_sched_in();
4121 #endif
4122 }
4123
4124 /**
4125 * prepare_task_switch - prepare to switch tasks
4126 * @rq: the runqueue preparing to switch
4127 * @prev: the current task that is being switched out
4128 * @next: the task we are going to switch to.
4129 *
4130 * This is called with the rq lock held and interrupts off. It must
4131 * be paired with a subsequent finish_task_switch after the context
4132 * switch.
4133 *
4134 * prepare_task_switch sets up locking and calls architecture specific
4135 * hooks.
4136 */
4137 static inline void
4138 prepare_task_switch(struct rq *rq, struct task_struct *prev,
4139 struct task_struct *next)
4140 {
4141 kcov_prepare_switch(prev);
4142 sched_info_switch(rq, prev, next);
4143 perf_event_task_sched_out(prev, next);
4144 rseq_preempt(prev);
4145 fire_sched_out_preempt_notifiers(prev, next);
4146 kmap_local_sched_out();
4147 prepare_task(next);
4148 prepare_arch_switch(next);
4149 }
4150
4151 /**
4152 * finish_task_switch - clean up after a task-switch
4153 * @prev: the thread we just switched away from.
4154 *
4155 * finish_task_switch must be called after the context switch, paired
4156 * with a prepare_task_switch call before the context switch.
4157 * finish_task_switch will reconcile locking set up by prepare_task_switch,
4158 * and do any other architecture-specific cleanup actions.
4159 *
4160 * Note that we may have delayed dropping an mm in context_switch(). If
4161 * so, we finish that here outside of the runqueue lock. (Doing it
4162 * with the lock held can cause deadlocks; see schedule() for
4163 * details.)
4164 *
4165 * The context switch have flipped the stack from under us and restored the
4166 * local variables which were saved when this task called schedule() in the
4167 * past. prev == current is still correct but we need to recalculate this_rq
4168 * because prev may have moved to another CPU.
4169 */
4170 static struct rq *finish_task_switch(struct task_struct *prev)
4171 __releases(rq->lock)
4172 {
4173 struct rq *rq = this_rq();
4174 struct mm_struct *mm = rq->prev_mm;
4175 long prev_state;
4176
4177 /*
4178 * The previous task will have left us with a preempt_count of 2
4179 * because it left us after:
4180 *
4181 * schedule()
4182 * preempt_disable(); // 1
4183 * __schedule()
4184 * raw_spin_lock_irq(&rq->lock) // 2
4185 *
4186 * Also, see FORK_PREEMPT_COUNT.
4187 */
4188 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
4189 "corrupted preempt_count: %s/%d/0x%x\n",
4190 current->comm, current->pid, preempt_count()))
4191 preempt_count_set(FORK_PREEMPT_COUNT);
4192
4193 rq->prev_mm = NULL;
4194
4195 /*
4196 * A task struct has one reference for the use as "current".
4197 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
4198 * schedule one last time. The schedule call will never return, and
4199 * the scheduled task must drop that reference.
4200 *
4201 * We must observe prev->state before clearing prev->on_cpu (in
4202 * finish_task), otherwise a concurrent wakeup can get prev
4203 * running on another CPU and we could rave with its RUNNING -> DEAD
4204 * transition, resulting in a double drop.
4205 */
4206 prev_state = prev->state;
4207 vtime_task_switch(prev);
4208 perf_event_task_sched_in(prev, current);
4209 finish_task(prev);
4210 finish_lock_switch(rq);
4211 finish_arch_post_lock_switch();
4212 kcov_finish_switch(current);
4213 /*
4214 * kmap_local_sched_out() is invoked with rq::lock held and
4215 * interrupts disabled. There is no requirement for that, but the
4216 * sched out code does not have an interrupt enabled section.
4217 * Restoring the maps on sched in does not require interrupts being
4218 * disabled either.
4219 */
4220 kmap_local_sched_in();
4221
4222 fire_sched_in_preempt_notifiers(current);
4223 /*
4224 * When switching through a kernel thread, the loop in
4225 * membarrier_{private,global}_expedited() may have observed that
4226 * kernel thread and not issued an IPI. It is therefore possible to
4227 * schedule between user->kernel->user threads without passing though
4228 * switch_mm(). Membarrier requires a barrier after storing to
4229 * rq->curr, before returning to userspace, so provide them here:
4230 *
4231 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
4232 * provided by mmdrop(),
4233 * - a sync_core for SYNC_CORE.
4234 */
4235 if (mm) {
4236 membarrier_mm_sync_core_before_usermode(mm);
4237 mmdrop(mm);
4238 }
4239 if (unlikely(prev_state == TASK_DEAD)) {
4240 if (prev->sched_class->task_dead)
4241 prev->sched_class->task_dead(prev);
4242
4243 /*
4244 * Remove function-return probe instances associated with this
4245 * task and put them back on the free list.
4246 */
4247 kprobe_flush_task(prev);
4248
4249 /* Task is done with its stack. */
4250 put_task_stack(prev);
4251
4252 put_task_struct_rcu_user(prev);
4253 }
4254
4255 tick_nohz_task_switch();
4256 return rq;
4257 }
4258
4259 /**
4260 * schedule_tail - first thing a freshly forked thread must call.
4261 * @prev: the thread we just switched away from.
4262 */
4263 asmlinkage __visible void schedule_tail(struct task_struct *prev)
4264 __releases(rq->lock)
4265 {
4266 /*
4267 * New tasks start with FORK_PREEMPT_COUNT, see there and
4268 * finish_task_switch() for details.
4269 *
4270 * finish_task_switch() will drop rq->lock() and lower preempt_count
4271 * and the preempt_enable() will end up enabling preemption (on
4272 * PREEMPT_COUNT kernels).
4273 */
4274
4275 finish_task_switch(prev);
4276 preempt_enable();
4277
4278 if (current->set_child_tid)
4279 put_user(task_pid_vnr(current), current->set_child_tid);
4280
4281 calculate_sigpending();
4282 }
4283
4284 /*
4285 * context_switch - switch to the new MM and the new thread's register state.
4286 */
4287 static __always_inline struct rq *
4288 context_switch(struct rq *rq, struct task_struct *prev,
4289 struct task_struct *next, struct rq_flags *rf)
4290 {
4291 prepare_task_switch(rq, prev, next);
4292
4293 /*
4294 * For paravirt, this is coupled with an exit in switch_to to
4295 * combine the page table reload and the switch backend into
4296 * one hypercall.
4297 */
4298 arch_start_context_switch(prev);
4299
4300 /*
4301 * kernel -> kernel lazy + transfer active
4302 * user -> kernel lazy + mmgrab() active
4303 *
4304 * kernel -> user switch + mmdrop() active
4305 * user -> user switch
4306 */
4307 if (!next->mm) { // to kernel
4308 enter_lazy_tlb(prev->active_mm, next);
4309
4310 next->active_mm = prev->active_mm;
4311 if (prev->mm) // from user
4312 mmgrab(prev->active_mm);
4313 else
4314 prev->active_mm = NULL;
4315 } else { // to user
4316 membarrier_switch_mm(rq, prev->active_mm, next->mm);
4317 /*
4318 * sys_membarrier() requires an smp_mb() between setting
4319 * rq->curr / membarrier_switch_mm() and returning to userspace.
4320 *
4321 * The below provides this either through switch_mm(), or in
4322 * case 'prev->active_mm == next->mm' through
4323 * finish_task_switch()'s mmdrop().
4324 */
4325 switch_mm_irqs_off(prev->active_mm, next->mm, next);
4326
4327 if (!prev->mm) { // from kernel
4328 /* will mmdrop() in finish_task_switch(). */
4329 rq->prev_mm = prev->active_mm;
4330 prev->active_mm = NULL;
4331 }
4332 }
4333
4334 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4335
4336 prepare_lock_switch(rq, next, rf);
4337
4338 /* Here we just switch the register state and the stack. */
4339 switch_to(prev, next, prev);
4340 barrier();
4341
4342 return finish_task_switch(prev);
4343 }
4344
4345 /*
4346 * nr_running and nr_context_switches:
4347 *
4348 * externally visible scheduler statistics: current number of runnable
4349 * threads, total number of context switches performed since bootup.
4350 */
4351 unsigned long nr_running(void)
4352 {
4353 unsigned long i, sum = 0;
4354
4355 for_each_online_cpu(i)
4356 sum += cpu_rq(i)->nr_running;
4357
4358 return sum;
4359 }
4360
4361 /*
4362 * Check if only the current task is running on the CPU.
4363 *
4364 * Caution: this function does not check that the caller has disabled
4365 * preemption, thus the result might have a time-of-check-to-time-of-use
4366 * race. The caller is responsible to use it correctly, for example:
4367 *
4368 * - from a non-preemptible section (of course)
4369 *
4370 * - from a thread that is bound to a single CPU
4371 *
4372 * - in a loop with very short iterations (e.g. a polling loop)
4373 */
4374 bool single_task_running(void)
4375 {
4376 return raw_rq()->nr_running == 1;
4377 }
4378 EXPORT_SYMBOL(single_task_running);
4379
4380 unsigned long long nr_context_switches(void)
4381 {
4382 int i;
4383 unsigned long long sum = 0;
4384
4385 for_each_possible_cpu(i)
4386 sum += cpu_rq(i)->nr_switches;
4387
4388 return sum;
4389 }
4390
4391 /*
4392 * Consumers of these two interfaces, like for example the cpuidle menu
4393 * governor, are using nonsensical data. Preferring shallow idle state selection
4394 * for a CPU that has IO-wait which might not even end up running the task when
4395 * it does become runnable.
4396 */
4397
4398 unsigned long nr_iowait_cpu(int cpu)
4399 {
4400 return atomic_read(&cpu_rq(cpu)->nr_iowait);
4401 }
4402
4403 /*
4404 * IO-wait accounting, and how it's mostly bollocks (on SMP).
4405 *
4406 * The idea behind IO-wait account is to account the idle time that we could
4407 * have spend running if it were not for IO. That is, if we were to improve the
4408 * storage performance, we'd have a proportional reduction in IO-wait time.
4409 *
4410 * This all works nicely on UP, where, when a task blocks on IO, we account
4411 * idle time as IO-wait, because if the storage were faster, it could've been
4412 * running and we'd not be idle.
4413 *
4414 * This has been extended to SMP, by doing the same for each CPU. This however
4415 * is broken.
4416 *
4417 * Imagine for instance the case where two tasks block on one CPU, only the one
4418 * CPU will have IO-wait accounted, while the other has regular idle. Even
4419 * though, if the storage were faster, both could've ran at the same time,
4420 * utilising both CPUs.
4421 *
4422 * This means, that when looking globally, the current IO-wait accounting on
4423 * SMP is a lower bound, by reason of under accounting.
4424 *
4425 * Worse, since the numbers are provided per CPU, they are sometimes
4426 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4427 * associated with any one particular CPU, it can wake to another CPU than it
4428 * blocked on. This means the per CPU IO-wait number is meaningless.
4429 *
4430 * Task CPU affinities can make all that even more 'interesting'.
4431 */
4432
4433 unsigned long nr_iowait(void)
4434 {
4435 unsigned long i, sum = 0;
4436
4437 for_each_possible_cpu(i)
4438 sum += nr_iowait_cpu(i);
4439
4440 return sum;
4441 }
4442
4443 #ifdef CONFIG_SMP
4444
4445 /*
4446 * sched_exec - execve() is a valuable balancing opportunity, because at
4447 * this point the task has the smallest effective memory and cache footprint.
4448 */
4449 void sched_exec(void)
4450 {
4451 struct task_struct *p = current;
4452 unsigned long flags;
4453 int dest_cpu;
4454
4455 raw_spin_lock_irqsave(&p->pi_lock, flags);
4456 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
4457 if (dest_cpu == smp_processor_id())
4458 goto unlock;
4459
4460 if (likely(cpu_active(dest_cpu))) {
4461 struct migration_arg arg = { p, dest_cpu };
4462
4463 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4464 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4465 return;
4466 }
4467 unlock:
4468 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4469 }
4470
4471 #endif
4472
4473 DEFINE_PER_CPU(struct kernel_stat, kstat);
4474 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4475
4476 EXPORT_PER_CPU_SYMBOL(kstat);
4477 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4478
4479 /*
4480 * The function fair_sched_class.update_curr accesses the struct curr
4481 * and its field curr->exec_start; when called from task_sched_runtime(),
4482 * we observe a high rate of cache misses in practice.
4483 * Prefetching this data results in improved performance.
4484 */
4485 static inline void prefetch_curr_exec_start(struct task_struct *p)
4486 {
4487 #ifdef CONFIG_FAIR_GROUP_SCHED
4488 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4489 #else
4490 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4491 #endif
4492 prefetch(curr);
4493 prefetch(&curr->exec_start);
4494 }
4495
4496 /*
4497 * Return accounted runtime for the task.
4498 * In case the task is currently running, return the runtime plus current's
4499 * pending runtime that have not been accounted yet.
4500 */
4501 unsigned long long task_sched_runtime(struct task_struct *p)
4502 {
4503 struct rq_flags rf;
4504 struct rq *rq;
4505 u64 ns;
4506
4507 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4508 /*
4509 * 64-bit doesn't need locks to atomically read a 64-bit value.
4510 * So we have a optimization chance when the task's delta_exec is 0.
4511 * Reading ->on_cpu is racy, but this is ok.
4512 *
4513 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4514 * If we race with it entering CPU, unaccounted time is 0. This is
4515 * indistinguishable from the read occurring a few cycles earlier.
4516 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4517 * been accounted, so we're correct here as well.
4518 */
4519 if (!p->on_cpu || !task_on_rq_queued(p))
4520 return p->se.sum_exec_runtime;
4521 #endif
4522
4523 rq = task_rq_lock(p, &rf);
4524 /*
4525 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4526 * project cycles that may never be accounted to this
4527 * thread, breaking clock_gettime().
4528 */
4529 if (task_current(rq, p) && task_on_rq_queued(p)) {
4530 prefetch_curr_exec_start(p);
4531 update_rq_clock(rq);
4532 p->sched_class->update_curr(rq);
4533 }
4534 ns = p->se.sum_exec_runtime;
4535 task_rq_unlock(rq, p, &rf);
4536
4537 return ns;
4538 }
4539
4540 #ifdef CONFIG_SCHED_DEBUG
4541 static u64 cpu_resched_latency(struct rq *rq)
4542 {
4543 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
4544 u64 resched_latency, now = rq_clock(rq);
4545 static bool warned_once;
4546
4547 if (sysctl_resched_latency_warn_once && warned_once)
4548 return 0;
4549
4550 if (!need_resched() || !latency_warn_ms)
4551 return 0;
4552
4553 if (system_state == SYSTEM_BOOTING)
4554 return 0;
4555
4556 if (!rq->last_seen_need_resched_ns) {
4557 rq->last_seen_need_resched_ns = now;
4558 rq->ticks_without_resched = 0;
4559 return 0;
4560 }
4561
4562 rq->ticks_without_resched++;
4563 resched_latency = now - rq->last_seen_need_resched_ns;
4564 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
4565 return 0;
4566
4567 warned_once = true;
4568
4569 return resched_latency;
4570 }
4571
4572 static int __init setup_resched_latency_warn_ms(char *str)
4573 {
4574 long val;
4575
4576 if ((kstrtol(str, 0, &val))) {
4577 pr_warn("Unable to set resched_latency_warn_ms\n");
4578 return 1;
4579 }
4580
4581 sysctl_resched_latency_warn_ms = val;
4582 return 1;
4583 }
4584 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
4585 #else
4586 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
4587 #endif /* CONFIG_SCHED_DEBUG */
4588
4589 /*
4590 * This function gets called by the timer code, with HZ frequency.
4591 * We call it with interrupts disabled.
4592 */
4593 void scheduler_tick(void)
4594 {
4595 int cpu = smp_processor_id();
4596 struct rq *rq = cpu_rq(cpu);
4597 struct task_struct *curr = rq->curr;
4598 struct rq_flags rf;
4599 unsigned long thermal_pressure;
4600 u64 resched_latency;
4601
4602 arch_scale_freq_tick();
4603 sched_clock_tick();
4604
4605 rq_lock(rq, &rf);
4606
4607 update_rq_clock(rq);
4608 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4609 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4610 curr->sched_class->task_tick(rq, curr, 0);
4611 if (sched_feat(LATENCY_WARN))
4612 resched_latency = cpu_resched_latency(rq);
4613 calc_global_load_tick(rq);
4614
4615 rq_unlock(rq, &rf);
4616
4617 if (sched_feat(LATENCY_WARN) && resched_latency)
4618 resched_latency_warn(cpu, resched_latency);
4619
4620 perf_event_task_tick();
4621
4622 #ifdef CONFIG_SMP
4623 rq->idle_balance = idle_cpu(cpu);
4624 trigger_load_balance(rq);
4625 #endif
4626 }
4627
4628 #ifdef CONFIG_NO_HZ_FULL
4629
4630 struct tick_work {
4631 int cpu;
4632 atomic_t state;
4633 struct delayed_work work;
4634 };
4635 /* Values for ->state, see diagram below. */
4636 #define TICK_SCHED_REMOTE_OFFLINE 0
4637 #define TICK_SCHED_REMOTE_OFFLINING 1
4638 #define TICK_SCHED_REMOTE_RUNNING 2
4639
4640 /*
4641 * State diagram for ->state:
4642 *
4643 *
4644 * TICK_SCHED_REMOTE_OFFLINE
4645 * | ^
4646 * | |
4647 * | | sched_tick_remote()
4648 * | |
4649 * | |
4650 * +--TICK_SCHED_REMOTE_OFFLINING
4651 * | ^
4652 * | |
4653 * sched_tick_start() | | sched_tick_stop()
4654 * | |
4655 * V |
4656 * TICK_SCHED_REMOTE_RUNNING
4657 *
4658 *
4659 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4660 * and sched_tick_start() are happy to leave the state in RUNNING.
4661 */
4662
4663 static struct tick_work __percpu *tick_work_cpu;
4664
4665 static void sched_tick_remote(struct work_struct *work)
4666 {
4667 struct delayed_work *dwork = to_delayed_work(work);
4668 struct tick_work *twork = container_of(dwork, struct tick_work, work);
4669 int cpu = twork->cpu;
4670 struct rq *rq = cpu_rq(cpu);
4671 struct task_struct *curr;
4672 struct rq_flags rf;
4673 u64 delta;
4674 int os;
4675
4676 /*
4677 * Handle the tick only if it appears the remote CPU is running in full
4678 * dynticks mode. The check is racy by nature, but missing a tick or
4679 * having one too much is no big deal because the scheduler tick updates
4680 * statistics and checks timeslices in a time-independent way, regardless
4681 * of when exactly it is running.
4682 */
4683 if (!tick_nohz_tick_stopped_cpu(cpu))
4684 goto out_requeue;
4685
4686 rq_lock_irq(rq, &rf);
4687 curr = rq->curr;
4688 if (cpu_is_offline(cpu))
4689 goto out_unlock;
4690
4691 update_rq_clock(rq);
4692
4693 if (!is_idle_task(curr)) {
4694 /*
4695 * Make sure the next tick runs within a reasonable
4696 * amount of time.
4697 */
4698 delta = rq_clock_task(rq) - curr->se.exec_start;
4699 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4700 }
4701 curr->sched_class->task_tick(rq, curr, 0);
4702
4703 calc_load_nohz_remote(rq);
4704 out_unlock:
4705 rq_unlock_irq(rq, &rf);
4706 out_requeue:
4707
4708 /*
4709 * Run the remote tick once per second (1Hz). This arbitrary
4710 * frequency is large enough to avoid overload but short enough
4711 * to keep scheduler internal stats reasonably up to date. But
4712 * first update state to reflect hotplug activity if required.
4713 */
4714 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4715 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4716 if (os == TICK_SCHED_REMOTE_RUNNING)
4717 queue_delayed_work(system_unbound_wq, dwork, HZ);
4718 }
4719
4720 static void sched_tick_start(int cpu)
4721 {
4722 int os;
4723 struct tick_work *twork;
4724
4725 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4726 return;
4727
4728 WARN_ON_ONCE(!tick_work_cpu);
4729
4730 twork = per_cpu_ptr(tick_work_cpu, cpu);
4731 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4732 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4733 if (os == TICK_SCHED_REMOTE_OFFLINE) {
4734 twork->cpu = cpu;
4735 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4736 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4737 }
4738 }
4739
4740 #ifdef CONFIG_HOTPLUG_CPU
4741 static void sched_tick_stop(int cpu)
4742 {
4743 struct tick_work *twork;
4744 int os;
4745
4746 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4747 return;
4748
4749 WARN_ON_ONCE(!tick_work_cpu);
4750
4751 twork = per_cpu_ptr(tick_work_cpu, cpu);
4752 /* There cannot be competing actions, but don't rely on stop-machine. */
4753 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4754 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4755 /* Don't cancel, as this would mess up the state machine. */
4756 }
4757 #endif /* CONFIG_HOTPLUG_CPU */
4758
4759 int __init sched_tick_offload_init(void)
4760 {
4761 tick_work_cpu = alloc_percpu(struct tick_work);
4762 BUG_ON(!tick_work_cpu);
4763 return 0;
4764 }
4765
4766 #else /* !CONFIG_NO_HZ_FULL */
4767 static inline void sched_tick_start(int cpu) { }
4768 static inline void sched_tick_stop(int cpu) { }
4769 #endif
4770
4771 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4772 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4773 /*
4774 * If the value passed in is equal to the current preempt count
4775 * then we just disabled preemption. Start timing the latency.
4776 */
4777 static inline void preempt_latency_start(int val)
4778 {
4779 if (preempt_count() == val) {
4780 unsigned long ip = get_lock_parent_ip();
4781 #ifdef CONFIG_DEBUG_PREEMPT
4782 current->preempt_disable_ip = ip;
4783 #endif
4784 trace_preempt_off(CALLER_ADDR0, ip);
4785 }
4786 }
4787
4788 void preempt_count_add(int val)
4789 {
4790 #ifdef CONFIG_DEBUG_PREEMPT
4791 /*
4792 * Underflow?
4793 */
4794 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4795 return;
4796 #endif
4797 __preempt_count_add(val);
4798 #ifdef CONFIG_DEBUG_PREEMPT
4799 /*
4800 * Spinlock count overflowing soon?
4801 */
4802 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4803 PREEMPT_MASK - 10);
4804 #endif
4805 preempt_latency_start(val);
4806 }
4807 EXPORT_SYMBOL(preempt_count_add);
4808 NOKPROBE_SYMBOL(preempt_count_add);
4809
4810 /*
4811 * If the value passed in equals to the current preempt count
4812 * then we just enabled preemption. Stop timing the latency.
4813 */
4814 static inline void preempt_latency_stop(int val)
4815 {
4816 if (preempt_count() == val)
4817 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4818 }
4819
4820 void preempt_count_sub(int val)
4821 {
4822 #ifdef CONFIG_DEBUG_PREEMPT
4823 /*
4824 * Underflow?
4825 */
4826 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4827 return;
4828 /*
4829 * Is the spinlock portion underflowing?
4830 */
4831 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4832 !(preempt_count() & PREEMPT_MASK)))
4833 return;
4834 #endif
4835
4836 preempt_latency_stop(val);
4837 __preempt_count_sub(val);
4838 }
4839 EXPORT_SYMBOL(preempt_count_sub);
4840 NOKPROBE_SYMBOL(preempt_count_sub);
4841
4842 #else
4843 static inline void preempt_latency_start(int val) { }
4844 static inline void preempt_latency_stop(int val) { }
4845 #endif
4846
4847 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4848 {
4849 #ifdef CONFIG_DEBUG_PREEMPT
4850 return p->preempt_disable_ip;
4851 #else
4852 return 0;
4853 #endif
4854 }
4855
4856 /*
4857 * Print scheduling while atomic bug:
4858 */
4859 static noinline void __schedule_bug(struct task_struct *prev)
4860 {
4861 /* Save this before calling printk(), since that will clobber it */
4862 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4863
4864 if (oops_in_progress)
4865 return;
4866
4867 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4868 prev->comm, prev->pid, preempt_count());
4869
4870 debug_show_held_locks(prev);
4871 print_modules();
4872 if (irqs_disabled())
4873 print_irqtrace_events(prev);
4874 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4875 && in_atomic_preempt_off()) {
4876 pr_err("Preemption disabled at:");
4877 print_ip_sym(KERN_ERR, preempt_disable_ip);
4878 }
4879 if (panic_on_warn)
4880 panic("scheduling while atomic\n");
4881
4882 dump_stack();
4883 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4884 }
4885
4886 /*
4887 * Various schedule()-time debugging checks and statistics:
4888 */
4889 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4890 {
4891 #ifdef CONFIG_SCHED_STACK_END_CHECK
4892 if (task_stack_end_corrupted(prev))
4893 panic("corrupted stack end detected inside scheduler\n");
4894
4895 if (task_scs_end_corrupted(prev))
4896 panic("corrupted shadow stack detected inside scheduler\n");
4897 #endif
4898
4899 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4900 if (!preempt && prev->state && prev->non_block_count) {
4901 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4902 prev->comm, prev->pid, prev->non_block_count);
4903 dump_stack();
4904 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4905 }
4906 #endif
4907
4908 if (unlikely(in_atomic_preempt_off())) {
4909 __schedule_bug(prev);
4910 preempt_count_set(PREEMPT_DISABLED);
4911 }
4912 rcu_sleep_check();
4913 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
4914
4915 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4916
4917 schedstat_inc(this_rq()->sched_count);
4918 }
4919
4920 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4921 struct rq_flags *rf)
4922 {
4923 #ifdef CONFIG_SMP
4924 const struct sched_class *class;
4925 /*
4926 * We must do the balancing pass before put_prev_task(), such
4927 * that when we release the rq->lock the task is in the same
4928 * state as before we took rq->lock.
4929 *
4930 * We can terminate the balance pass as soon as we know there is
4931 * a runnable task of @class priority or higher.
4932 */
4933 for_class_range(class, prev->sched_class, &idle_sched_class) {
4934 if (class->balance(rq, prev, rf))
4935 break;
4936 }
4937 #endif
4938
4939 put_prev_task(rq, prev);
4940 }
4941
4942 /*
4943 * Pick up the highest-prio task:
4944 */
4945 static inline struct task_struct *
4946 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4947 {
4948 const struct sched_class *class;
4949 struct task_struct *p;
4950
4951 /*
4952 * Optimization: we know that if all tasks are in the fair class we can
4953 * call that function directly, but only if the @prev task wasn't of a
4954 * higher scheduling class, because otherwise those lose the
4955 * opportunity to pull in more work from other CPUs.
4956 */
4957 if (likely(prev->sched_class <= &fair_sched_class &&
4958 rq->nr_running == rq->cfs.h_nr_running)) {
4959
4960 p = pick_next_task_fair(rq, prev, rf);
4961 if (unlikely(p == RETRY_TASK))
4962 goto restart;
4963
4964 /* Assumes fair_sched_class->next == idle_sched_class */
4965 if (!p) {
4966 put_prev_task(rq, prev);
4967 p = pick_next_task_idle(rq);
4968 }
4969
4970 return p;
4971 }
4972
4973 restart:
4974 put_prev_task_balance(rq, prev, rf);
4975
4976 for_each_class(class) {
4977 p = class->pick_next_task(rq);
4978 if (p)
4979 return p;
4980 }
4981
4982 /* The idle class should always have a runnable task: */
4983 BUG();
4984 }
4985
4986 /*
4987 * __schedule() is the main scheduler function.
4988 *
4989 * The main means of driving the scheduler and thus entering this function are:
4990 *
4991 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4992 *
4993 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4994 * paths. For example, see arch/x86/entry_64.S.
4995 *
4996 * To drive preemption between tasks, the scheduler sets the flag in timer
4997 * interrupt handler scheduler_tick().
4998 *
4999 * 3. Wakeups don't really cause entry into schedule(). They add a
5000 * task to the run-queue and that's it.
5001 *
5002 * Now, if the new task added to the run-queue preempts the current
5003 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
5004 * called on the nearest possible occasion:
5005 *
5006 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
5007 *
5008 * - in syscall or exception context, at the next outmost
5009 * preempt_enable(). (this might be as soon as the wake_up()'s
5010 * spin_unlock()!)
5011 *
5012 * - in IRQ context, return from interrupt-handler to
5013 * preemptible context
5014 *
5015 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
5016 * then at the next:
5017 *
5018 * - cond_resched() call
5019 * - explicit schedule() call
5020 * - return from syscall or exception to user-space
5021 * - return from interrupt-handler to user-space
5022 *
5023 * WARNING: must be called with preemption disabled!
5024 */
5025 static void __sched notrace __schedule(bool preempt)
5026 {
5027 struct task_struct *prev, *next;
5028 unsigned long *switch_count;
5029 unsigned long prev_state;
5030 struct rq_flags rf;
5031 struct rq *rq;
5032 int cpu;
5033
5034 cpu = smp_processor_id();
5035 rq = cpu_rq(cpu);
5036 prev = rq->curr;
5037
5038 schedule_debug(prev, preempt);
5039
5040 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
5041 hrtick_clear(rq);
5042
5043 local_irq_disable();
5044 rcu_note_context_switch(preempt);
5045
5046 /*
5047 * Make sure that signal_pending_state()->signal_pending() below
5048 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
5049 * done by the caller to avoid the race with signal_wake_up():
5050 *
5051 * __set_current_state(@state) signal_wake_up()
5052 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
5053 * wake_up_state(p, state)
5054 * LOCK rq->lock LOCK p->pi_state
5055 * smp_mb__after_spinlock() smp_mb__after_spinlock()
5056 * if (signal_pending_state()) if (p->state & @state)
5057 *
5058 * Also, the membarrier system call requires a full memory barrier
5059 * after coming from user-space, before storing to rq->curr.
5060 */
5061 rq_lock(rq, &rf);
5062 smp_mb__after_spinlock();
5063
5064 /* Promote REQ to ACT */
5065 rq->clock_update_flags <<= 1;
5066 update_rq_clock(rq);
5067
5068 switch_count = &prev->nivcsw;
5069
5070 /*
5071 * We must load prev->state once (task_struct::state is volatile), such
5072 * that:
5073 *
5074 * - we form a control dependency vs deactivate_task() below.
5075 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
5076 */
5077 prev_state = prev->state;
5078 if (!preempt && prev_state) {
5079 if (signal_pending_state(prev_state, prev)) {
5080 prev->state = TASK_RUNNING;
5081 } else {
5082 prev->sched_contributes_to_load =
5083 (prev_state & TASK_UNINTERRUPTIBLE) &&
5084 !(prev_state & TASK_NOLOAD) &&
5085 !(prev->flags & PF_FROZEN);
5086
5087 if (prev->sched_contributes_to_load)
5088 rq->nr_uninterruptible++;
5089
5090 /*
5091 * __schedule() ttwu()
5092 * prev_state = prev->state; if (p->on_rq && ...)
5093 * if (prev_state) goto out;
5094 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
5095 * p->state = TASK_WAKING
5096 *
5097 * Where __schedule() and ttwu() have matching control dependencies.
5098 *
5099 * After this, schedule() must not care about p->state any more.
5100 */
5101 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
5102
5103 if (prev->in_iowait) {
5104 atomic_inc(&rq->nr_iowait);
5105 delayacct_blkio_start();
5106 }
5107 }
5108 switch_count = &prev->nvcsw;
5109 }
5110
5111 next = pick_next_task(rq, prev, &rf);
5112 clear_tsk_need_resched(prev);
5113 clear_preempt_need_resched();
5114 #ifdef CONFIG_SCHED_DEBUG
5115 rq->last_seen_need_resched_ns = 0;
5116 #endif
5117
5118 if (likely(prev != next)) {
5119 rq->nr_switches++;
5120 /*
5121 * RCU users of rcu_dereference(rq->curr) may not see
5122 * changes to task_struct made by pick_next_task().
5123 */
5124 RCU_INIT_POINTER(rq->curr, next);
5125 /*
5126 * The membarrier system call requires each architecture
5127 * to have a full memory barrier after updating
5128 * rq->curr, before returning to user-space.
5129 *
5130 * Here are the schemes providing that barrier on the
5131 * various architectures:
5132 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
5133 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
5134 * - finish_lock_switch() for weakly-ordered
5135 * architectures where spin_unlock is a full barrier,
5136 * - switch_to() for arm64 (weakly-ordered, spin_unlock
5137 * is a RELEASE barrier),
5138 */
5139 ++*switch_count;
5140
5141 migrate_disable_switch(rq, prev);
5142 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
5143
5144 trace_sched_switch(preempt, prev, next);
5145
5146 /* Also unlocks the rq: */
5147 rq = context_switch(rq, prev, next, &rf);
5148 } else {
5149 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5150
5151 rq_unpin_lock(rq, &rf);
5152 __balance_callbacks(rq);
5153 raw_spin_unlock_irq(&rq->lock);
5154 }
5155 }
5156
5157 void __noreturn do_task_dead(void)
5158 {
5159 /* Causes final put_task_struct in finish_task_switch(): */
5160 set_special_state(TASK_DEAD);
5161
5162 /* Tell freezer to ignore us: */
5163 current->flags |= PF_NOFREEZE;
5164
5165 __schedule(false);
5166 BUG();
5167
5168 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
5169 for (;;)
5170 cpu_relax();
5171 }
5172
5173 static inline void sched_submit_work(struct task_struct *tsk)
5174 {
5175 unsigned int task_flags;
5176
5177 if (!tsk->state)
5178 return;
5179
5180 task_flags = tsk->flags;
5181 /*
5182 * If a worker went to sleep, notify and ask workqueue whether
5183 * it wants to wake up a task to maintain concurrency.
5184 * As this function is called inside the schedule() context,
5185 * we disable preemption to avoid it calling schedule() again
5186 * in the possible wakeup of a kworker and because wq_worker_sleeping()
5187 * requires it.
5188 */
5189 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5190 preempt_disable();
5191 if (task_flags & PF_WQ_WORKER)
5192 wq_worker_sleeping(tsk);
5193 else
5194 io_wq_worker_sleeping(tsk);
5195 preempt_enable_no_resched();
5196 }
5197
5198 if (tsk_is_pi_blocked(tsk))
5199 return;
5200
5201 /*
5202 * If we are going to sleep and we have plugged IO queued,
5203 * make sure to submit it to avoid deadlocks.
5204 */
5205 if (blk_needs_flush_plug(tsk))
5206 blk_schedule_flush_plug(tsk);
5207 }
5208
5209 static void sched_update_worker(struct task_struct *tsk)
5210 {
5211 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
5212 if (tsk->flags & PF_WQ_WORKER)
5213 wq_worker_running(tsk);
5214 else
5215 io_wq_worker_running(tsk);
5216 }
5217 }
5218
5219 asmlinkage __visible void __sched schedule(void)
5220 {
5221 struct task_struct *tsk = current;
5222
5223 sched_submit_work(tsk);
5224 do {
5225 preempt_disable();
5226 __schedule(false);
5227 sched_preempt_enable_no_resched();
5228 } while (need_resched());
5229 sched_update_worker(tsk);
5230 }
5231 EXPORT_SYMBOL(schedule);
5232
5233 /*
5234 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
5235 * state (have scheduled out non-voluntarily) by making sure that all
5236 * tasks have either left the run queue or have gone into user space.
5237 * As idle tasks do not do either, they must not ever be preempted
5238 * (schedule out non-voluntarily).
5239 *
5240 * schedule_idle() is similar to schedule_preempt_disable() except that it
5241 * never enables preemption because it does not call sched_submit_work().
5242 */
5243 void __sched schedule_idle(void)
5244 {
5245 /*
5246 * As this skips calling sched_submit_work(), which the idle task does
5247 * regardless because that function is a nop when the task is in a
5248 * TASK_RUNNING state, make sure this isn't used someplace that the
5249 * current task can be in any other state. Note, idle is always in the
5250 * TASK_RUNNING state.
5251 */
5252 WARN_ON_ONCE(current->state);
5253 do {
5254 __schedule(false);
5255 } while (need_resched());
5256 }
5257
5258 #if defined(CONFIG_CONTEXT_TRACKING) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK)
5259 asmlinkage __visible void __sched schedule_user(void)
5260 {
5261 /*
5262 * If we come here after a random call to set_need_resched(),
5263 * or we have been woken up remotely but the IPI has not yet arrived,
5264 * we haven't yet exited the RCU idle mode. Do it here manually until
5265 * we find a better solution.
5266 *
5267 * NB: There are buggy callers of this function. Ideally we
5268 * should warn if prev_state != CONTEXT_USER, but that will trigger
5269 * too frequently to make sense yet.
5270 */
5271 enum ctx_state prev_state = exception_enter();
5272 schedule();
5273 exception_exit(prev_state);
5274 }
5275 #endif
5276
5277 /**
5278 * schedule_preempt_disabled - called with preemption disabled
5279 *
5280 * Returns with preemption disabled. Note: preempt_count must be 1
5281 */
5282 void __sched schedule_preempt_disabled(void)
5283 {
5284 sched_preempt_enable_no_resched();
5285 schedule();
5286 preempt_disable();
5287 }
5288
5289 static void __sched notrace preempt_schedule_common(void)
5290 {
5291 do {
5292 /*
5293 * Because the function tracer can trace preempt_count_sub()
5294 * and it also uses preempt_enable/disable_notrace(), if
5295 * NEED_RESCHED is set, the preempt_enable_notrace() called
5296 * by the function tracer will call this function again and
5297 * cause infinite recursion.
5298 *
5299 * Preemption must be disabled here before the function
5300 * tracer can trace. Break up preempt_disable() into two
5301 * calls. One to disable preemption without fear of being
5302 * traced. The other to still record the preemption latency,
5303 * which can also be traced by the function tracer.
5304 */
5305 preempt_disable_notrace();
5306 preempt_latency_start(1);
5307 __schedule(true);
5308 preempt_latency_stop(1);
5309 preempt_enable_no_resched_notrace();
5310
5311 /*
5312 * Check again in case we missed a preemption opportunity
5313 * between schedule and now.
5314 */
5315 } while (need_resched());
5316 }
5317
5318 #ifdef CONFIG_PREEMPTION
5319 /*
5320 * This is the entry point to schedule() from in-kernel preemption
5321 * off of preempt_enable.
5322 */
5323 asmlinkage __visible void __sched notrace preempt_schedule(void)
5324 {
5325 /*
5326 * If there is a non-zero preempt_count or interrupts are disabled,
5327 * we do not want to preempt the current task. Just return..
5328 */
5329 if (likely(!preemptible()))
5330 return;
5331
5332 preempt_schedule_common();
5333 }
5334 NOKPROBE_SYMBOL(preempt_schedule);
5335 EXPORT_SYMBOL(preempt_schedule);
5336
5337 #ifdef CONFIG_PREEMPT_DYNAMIC
5338 DEFINE_STATIC_CALL(preempt_schedule, __preempt_schedule_func);
5339 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
5340 #endif
5341
5342
5343 /**
5344 * preempt_schedule_notrace - preempt_schedule called by tracing
5345 *
5346 * The tracing infrastructure uses preempt_enable_notrace to prevent
5347 * recursion and tracing preempt enabling caused by the tracing
5348 * infrastructure itself. But as tracing can happen in areas coming
5349 * from userspace or just about to enter userspace, a preempt enable
5350 * can occur before user_exit() is called. This will cause the scheduler
5351 * to be called when the system is still in usermode.
5352 *
5353 * To prevent this, the preempt_enable_notrace will use this function
5354 * instead of preempt_schedule() to exit user context if needed before
5355 * calling the scheduler.
5356 */
5357 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
5358 {
5359 enum ctx_state prev_ctx;
5360
5361 if (likely(!preemptible()))
5362 return;
5363
5364 do {
5365 /*
5366 * Because the function tracer can trace preempt_count_sub()
5367 * and it also uses preempt_enable/disable_notrace(), if
5368 * NEED_RESCHED is set, the preempt_enable_notrace() called
5369 * by the function tracer will call this function again and
5370 * cause infinite recursion.
5371 *
5372 * Preemption must be disabled here before the function
5373 * tracer can trace. Break up preempt_disable() into two
5374 * calls. One to disable preemption without fear of being
5375 * traced. The other to still record the preemption latency,
5376 * which can also be traced by the function tracer.
5377 */
5378 preempt_disable_notrace();
5379 preempt_latency_start(1);
5380 /*
5381 * Needs preempt disabled in case user_exit() is traced
5382 * and the tracer calls preempt_enable_notrace() causing
5383 * an infinite recursion.
5384 */
5385 prev_ctx = exception_enter();
5386 __schedule(true);
5387 exception_exit(prev_ctx);
5388
5389 preempt_latency_stop(1);
5390 preempt_enable_no_resched_notrace();
5391 } while (need_resched());
5392 }
5393 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
5394
5395 #ifdef CONFIG_PREEMPT_DYNAMIC
5396 DEFINE_STATIC_CALL(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5397 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
5398 #endif
5399
5400 #endif /* CONFIG_PREEMPTION */
5401
5402 #ifdef CONFIG_PREEMPT_DYNAMIC
5403
5404 #include <linux/entry-common.h>
5405
5406 /*
5407 * SC:cond_resched
5408 * SC:might_resched
5409 * SC:preempt_schedule
5410 * SC:preempt_schedule_notrace
5411 * SC:irqentry_exit_cond_resched
5412 *
5413 *
5414 * NONE:
5415 * cond_resched <- __cond_resched
5416 * might_resched <- RET0
5417 * preempt_schedule <- NOP
5418 * preempt_schedule_notrace <- NOP
5419 * irqentry_exit_cond_resched <- NOP
5420 *
5421 * VOLUNTARY:
5422 * cond_resched <- __cond_resched
5423 * might_resched <- __cond_resched
5424 * preempt_schedule <- NOP
5425 * preempt_schedule_notrace <- NOP
5426 * irqentry_exit_cond_resched <- NOP
5427 *
5428 * FULL:
5429 * cond_resched <- RET0
5430 * might_resched <- RET0
5431 * preempt_schedule <- preempt_schedule
5432 * preempt_schedule_notrace <- preempt_schedule_notrace
5433 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
5434 */
5435
5436 enum {
5437 preempt_dynamic_none = 0,
5438 preempt_dynamic_voluntary,
5439 preempt_dynamic_full,
5440 };
5441
5442 int preempt_dynamic_mode = preempt_dynamic_full;
5443
5444 int sched_dynamic_mode(const char *str)
5445 {
5446 if (!strcmp(str, "none"))
5447 return preempt_dynamic_none;
5448
5449 if (!strcmp(str, "voluntary"))
5450 return preempt_dynamic_voluntary;
5451
5452 if (!strcmp(str, "full"))
5453 return preempt_dynamic_full;
5454
5455 return -EINVAL;
5456 }
5457
5458 void sched_dynamic_update(int mode)
5459 {
5460 /*
5461 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
5462 * the ZERO state, which is invalid.
5463 */
5464 static_call_update(cond_resched, __cond_resched);
5465 static_call_update(might_resched, __cond_resched);
5466 static_call_update(preempt_schedule, __preempt_schedule_func);
5467 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5468 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
5469
5470 switch (mode) {
5471 case preempt_dynamic_none:
5472 static_call_update(cond_resched, __cond_resched);
5473 static_call_update(might_resched, (void *)&__static_call_return0);
5474 static_call_update(preempt_schedule, NULL);
5475 static_call_update(preempt_schedule_notrace, NULL);
5476 static_call_update(irqentry_exit_cond_resched, NULL);
5477 pr_info("Dynamic Preempt: none\n");
5478 break;
5479
5480 case preempt_dynamic_voluntary:
5481 static_call_update(cond_resched, __cond_resched);
5482 static_call_update(might_resched, __cond_resched);
5483 static_call_update(preempt_schedule, NULL);
5484 static_call_update(preempt_schedule_notrace, NULL);
5485 static_call_update(irqentry_exit_cond_resched, NULL);
5486 pr_info("Dynamic Preempt: voluntary\n");
5487 break;
5488
5489 case preempt_dynamic_full:
5490 static_call_update(cond_resched, (void *)&__static_call_return0);
5491 static_call_update(might_resched, (void *)&__static_call_return0);
5492 static_call_update(preempt_schedule, __preempt_schedule_func);
5493 static_call_update(preempt_schedule_notrace, __preempt_schedule_notrace_func);
5494 static_call_update(irqentry_exit_cond_resched, irqentry_exit_cond_resched);
5495 pr_info("Dynamic Preempt: full\n");
5496 break;
5497 }
5498
5499 preempt_dynamic_mode = mode;
5500 }
5501
5502 static int __init setup_preempt_mode(char *str)
5503 {
5504 int mode = sched_dynamic_mode(str);
5505 if (mode < 0) {
5506 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
5507 return 1;
5508 }
5509
5510 sched_dynamic_update(mode);
5511 return 0;
5512 }
5513 __setup("preempt=", setup_preempt_mode);
5514
5515 #endif /* CONFIG_PREEMPT_DYNAMIC */
5516
5517 /*
5518 * This is the entry point to schedule() from kernel preemption
5519 * off of irq context.
5520 * Note, that this is called and return with irqs disabled. This will
5521 * protect us against recursive calling from irq.
5522 */
5523 asmlinkage __visible void __sched preempt_schedule_irq(void)
5524 {
5525 enum ctx_state prev_state;
5526
5527 /* Catch callers which need to be fixed */
5528 BUG_ON(preempt_count() || !irqs_disabled());
5529
5530 prev_state = exception_enter();
5531
5532 do {
5533 preempt_disable();
5534 local_irq_enable();
5535 __schedule(true);
5536 local_irq_disable();
5537 sched_preempt_enable_no_resched();
5538 } while (need_resched());
5539
5540 exception_exit(prev_state);
5541 }
5542
5543 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
5544 void *key)
5545 {
5546 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
5547 return try_to_wake_up(curr->private, mode, wake_flags);
5548 }
5549 EXPORT_SYMBOL(default_wake_function);
5550
5551 #ifdef CONFIG_RT_MUTEXES
5552
5553 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5554 {
5555 if (pi_task)
5556 prio = min(prio, pi_task->prio);
5557
5558 return prio;
5559 }
5560
5561 static inline int rt_effective_prio(struct task_struct *p, int prio)
5562 {
5563 struct task_struct *pi_task = rt_mutex_get_top_task(p);
5564
5565 return __rt_effective_prio(pi_task, prio);
5566 }
5567
5568 /*
5569 * rt_mutex_setprio - set the current priority of a task
5570 * @p: task to boost
5571 * @pi_task: donor task
5572 *
5573 * This function changes the 'effective' priority of a task. It does
5574 * not touch ->normal_prio like __setscheduler().
5575 *
5576 * Used by the rt_mutex code to implement priority inheritance
5577 * logic. Call site only calls if the priority of the task changed.
5578 */
5579 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
5580 {
5581 int prio, oldprio, queued, running, queue_flag =
5582 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5583 const struct sched_class *prev_class;
5584 struct rq_flags rf;
5585 struct rq *rq;
5586
5587 /* XXX used to be waiter->prio, not waiter->task->prio */
5588 prio = __rt_effective_prio(pi_task, p->normal_prio);
5589
5590 /*
5591 * If nothing changed; bail early.
5592 */
5593 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5594 return;
5595
5596 rq = __task_rq_lock(p, &rf);
5597 update_rq_clock(rq);
5598 /*
5599 * Set under pi_lock && rq->lock, such that the value can be used under
5600 * either lock.
5601 *
5602 * Note that there is loads of tricky to make this pointer cache work
5603 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5604 * ensure a task is de-boosted (pi_task is set to NULL) before the
5605 * task is allowed to run again (and can exit). This ensures the pointer
5606 * points to a blocked task -- which guarantees the task is present.
5607 */
5608 p->pi_top_task = pi_task;
5609
5610 /*
5611 * For FIFO/RR we only need to set prio, if that matches we're done.
5612 */
5613 if (prio == p->prio && !dl_prio(prio))
5614 goto out_unlock;
5615
5616 /*
5617 * Idle task boosting is a nono in general. There is one
5618 * exception, when PREEMPT_RT and NOHZ is active:
5619 *
5620 * The idle task calls get_next_timer_interrupt() and holds
5621 * the timer wheel base->lock on the CPU and another CPU wants
5622 * to access the timer (probably to cancel it). We can safely
5623 * ignore the boosting request, as the idle CPU runs this code
5624 * with interrupts disabled and will complete the lock
5625 * protected section without being interrupted. So there is no
5626 * real need to boost.
5627 */
5628 if (unlikely(p == rq->idle)) {
5629 WARN_ON(p != rq->curr);
5630 WARN_ON(p->pi_blocked_on);
5631 goto out_unlock;
5632 }
5633
5634 trace_sched_pi_setprio(p, pi_task);
5635 oldprio = p->prio;
5636
5637 if (oldprio == prio)
5638 queue_flag &= ~DEQUEUE_MOVE;
5639
5640 prev_class = p->sched_class;
5641 queued = task_on_rq_queued(p);
5642 running = task_current(rq, p);
5643 if (queued)
5644 dequeue_task(rq, p, queue_flag);
5645 if (running)
5646 put_prev_task(rq, p);
5647
5648 /*
5649 * Boosting condition are:
5650 * 1. -rt task is running and holds mutex A
5651 * --> -dl task blocks on mutex A
5652 *
5653 * 2. -dl task is running and holds mutex A
5654 * --> -dl task blocks on mutex A and could preempt the
5655 * running task
5656 */
5657 if (dl_prio(prio)) {
5658 if (!dl_prio(p->normal_prio) ||
5659 (pi_task && dl_prio(pi_task->prio) &&
5660 dl_entity_preempt(&pi_task->dl, &p->dl))) {
5661 p->dl.pi_se = pi_task->dl.pi_se;
5662 queue_flag |= ENQUEUE_REPLENISH;
5663 } else {
5664 p->dl.pi_se = &p->dl;
5665 }
5666 p->sched_class = &dl_sched_class;
5667 } else if (rt_prio(prio)) {
5668 if (dl_prio(oldprio))
5669 p->dl.pi_se = &p->dl;
5670 if (oldprio < prio)
5671 queue_flag |= ENQUEUE_HEAD;
5672 p->sched_class = &rt_sched_class;
5673 } else {
5674 if (dl_prio(oldprio))
5675 p->dl.pi_se = &p->dl;
5676 if (rt_prio(oldprio))
5677 p->rt.timeout = 0;
5678 p->sched_class = &fair_sched_class;
5679 }
5680
5681 p->prio = prio;
5682
5683 if (queued)
5684 enqueue_task(rq, p, queue_flag);
5685 if (running)
5686 set_next_task(rq, p);
5687
5688 check_class_changed(rq, p, prev_class, oldprio);
5689 out_unlock:
5690 /* Avoid rq from going away on us: */
5691 preempt_disable();
5692
5693 rq_unpin_lock(rq, &rf);
5694 __balance_callbacks(rq);
5695 raw_spin_unlock(&rq->lock);
5696
5697 preempt_enable();
5698 }
5699 #else
5700 static inline int rt_effective_prio(struct task_struct *p, int prio)
5701 {
5702 return prio;
5703 }
5704 #endif
5705
5706 void set_user_nice(struct task_struct *p, long nice)
5707 {
5708 bool queued, running;
5709 int old_prio;
5710 struct rq_flags rf;
5711 struct rq *rq;
5712
5713 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
5714 return;
5715 /*
5716 * We have to be careful, if called from sys_setpriority(),
5717 * the task might be in the middle of scheduling on another CPU.
5718 */
5719 rq = task_rq_lock(p, &rf);
5720 update_rq_clock(rq);
5721
5722 /*
5723 * The RT priorities are set via sched_setscheduler(), but we still
5724 * allow the 'normal' nice value to be set - but as expected
5725 * it won't have any effect on scheduling until the task is
5726 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
5727 */
5728 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5729 p->static_prio = NICE_TO_PRIO(nice);
5730 goto out_unlock;
5731 }
5732 queued = task_on_rq_queued(p);
5733 running = task_current(rq, p);
5734 if (queued)
5735 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
5736 if (running)
5737 put_prev_task(rq, p);
5738
5739 p->static_prio = NICE_TO_PRIO(nice);
5740 set_load_weight(p, true);
5741 old_prio = p->prio;
5742 p->prio = effective_prio(p);
5743
5744 if (queued)
5745 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5746 if (running)
5747 set_next_task(rq, p);
5748
5749 /*
5750 * If the task increased its priority or is running and
5751 * lowered its priority, then reschedule its CPU:
5752 */
5753 p->sched_class->prio_changed(rq, p, old_prio);
5754
5755 out_unlock:
5756 task_rq_unlock(rq, p, &rf);
5757 }
5758 EXPORT_SYMBOL(set_user_nice);
5759
5760 /*
5761 * can_nice - check if a task can reduce its nice value
5762 * @p: task
5763 * @nice: nice value
5764 */
5765 int can_nice(const struct task_struct *p, const int nice)
5766 {
5767 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
5768 int nice_rlim = nice_to_rlimit(nice);
5769
5770 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5771 capable(CAP_SYS_NICE));
5772 }
5773
5774 #ifdef __ARCH_WANT_SYS_NICE
5775
5776 /*
5777 * sys_nice - change the priority of the current process.
5778 * @increment: priority increment
5779 *
5780 * sys_setpriority is a more generic, but much slower function that
5781 * does similar things.
5782 */
5783 SYSCALL_DEFINE1(nice, int, increment)
5784 {
5785 long nice, retval;
5786
5787 /*
5788 * Setpriority might change our priority at the same moment.
5789 * We don't have to worry. Conceptually one call occurs first
5790 * and we have a single winner.
5791 */
5792 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5793 nice = task_nice(current) + increment;
5794
5795 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5796 if (increment < 0 && !can_nice(current, nice))
5797 return -EPERM;
5798
5799 retval = security_task_setnice(current, nice);
5800 if (retval)
5801 return retval;
5802
5803 set_user_nice(current, nice);
5804 return 0;
5805 }
5806
5807 #endif
5808
5809 /**
5810 * task_prio - return the priority value of a given task.
5811 * @p: the task in question.
5812 *
5813 * Return: The priority value as seen by users in /proc.
5814 *
5815 * sched policy return value kernel prio user prio/nice
5816 *
5817 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
5818 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
5819 * deadline -101 -1 0
5820 */
5821 int task_prio(const struct task_struct *p)
5822 {
5823 return p->prio - MAX_RT_PRIO;
5824 }
5825
5826 /**
5827 * idle_cpu - is a given CPU idle currently?
5828 * @cpu: the processor in question.
5829 *
5830 * Return: 1 if the CPU is currently idle. 0 otherwise.
5831 */
5832 int idle_cpu(int cpu)
5833 {
5834 struct rq *rq = cpu_rq(cpu);
5835
5836 if (rq->curr != rq->idle)
5837 return 0;
5838
5839 if (rq->nr_running)
5840 return 0;
5841
5842 #ifdef CONFIG_SMP
5843 if (rq->ttwu_pending)
5844 return 0;
5845 #endif
5846
5847 return 1;
5848 }
5849
5850 /**
5851 * available_idle_cpu - is a given CPU idle for enqueuing work.
5852 * @cpu: the CPU in question.
5853 *
5854 * Return: 1 if the CPU is currently idle. 0 otherwise.
5855 */
5856 int available_idle_cpu(int cpu)
5857 {
5858 if (!idle_cpu(cpu))
5859 return 0;
5860
5861 if (vcpu_is_preempted(cpu))
5862 return 0;
5863
5864 return 1;
5865 }
5866
5867 /**
5868 * idle_task - return the idle task for a given CPU.
5869 * @cpu: the processor in question.
5870 *
5871 * Return: The idle task for the CPU @cpu.
5872 */
5873 struct task_struct *idle_task(int cpu)
5874 {
5875 return cpu_rq(cpu)->idle;
5876 }
5877
5878 #ifdef CONFIG_SMP
5879 /*
5880 * This function computes an effective utilization for the given CPU, to be
5881 * used for frequency selection given the linear relation: f = u * f_max.
5882 *
5883 * The scheduler tracks the following metrics:
5884 *
5885 * cpu_util_{cfs,rt,dl,irq}()
5886 * cpu_bw_dl()
5887 *
5888 * Where the cfs,rt and dl util numbers are tracked with the same metric and
5889 * synchronized windows and are thus directly comparable.
5890 *
5891 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
5892 * which excludes things like IRQ and steal-time. These latter are then accrued
5893 * in the irq utilization.
5894 *
5895 * The DL bandwidth number otoh is not a measured metric but a value computed
5896 * based on the task model parameters and gives the minimal utilization
5897 * required to meet deadlines.
5898 */
5899 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
5900 unsigned long max, enum cpu_util_type type,
5901 struct task_struct *p)
5902 {
5903 unsigned long dl_util, util, irq;
5904 struct rq *rq = cpu_rq(cpu);
5905
5906 if (!uclamp_is_used() &&
5907 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
5908 return max;
5909 }
5910
5911 /*
5912 * Early check to see if IRQ/steal time saturates the CPU, can be
5913 * because of inaccuracies in how we track these -- see
5914 * update_irq_load_avg().
5915 */
5916 irq = cpu_util_irq(rq);
5917 if (unlikely(irq >= max))
5918 return max;
5919
5920 /*
5921 * Because the time spend on RT/DL tasks is visible as 'lost' time to
5922 * CFS tasks and we use the same metric to track the effective
5923 * utilization (PELT windows are synchronized) we can directly add them
5924 * to obtain the CPU's actual utilization.
5925 *
5926 * CFS and RT utilization can be boosted or capped, depending on
5927 * utilization clamp constraints requested by currently RUNNABLE
5928 * tasks.
5929 * When there are no CFS RUNNABLE tasks, clamps are released and
5930 * frequency will be gracefully reduced with the utilization decay.
5931 */
5932 util = util_cfs + cpu_util_rt(rq);
5933 if (type == FREQUENCY_UTIL)
5934 util = uclamp_rq_util_with(rq, util, p);
5935
5936 dl_util = cpu_util_dl(rq);
5937
5938 /*
5939 * For frequency selection we do not make cpu_util_dl() a permanent part
5940 * of this sum because we want to use cpu_bw_dl() later on, but we need
5941 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
5942 * that we select f_max when there is no idle time.
5943 *
5944 * NOTE: numerical errors or stop class might cause us to not quite hit
5945 * saturation when we should -- something for later.
5946 */
5947 if (util + dl_util >= max)
5948 return max;
5949
5950 /*
5951 * OTOH, for energy computation we need the estimated running time, so
5952 * include util_dl and ignore dl_bw.
5953 */
5954 if (type == ENERGY_UTIL)
5955 util += dl_util;
5956
5957 /*
5958 * There is still idle time; further improve the number by using the
5959 * irq metric. Because IRQ/steal time is hidden from the task clock we
5960 * need to scale the task numbers:
5961 *
5962 * max - irq
5963 * U' = irq + --------- * U
5964 * max
5965 */
5966 util = scale_irq_capacity(util, irq, max);
5967 util += irq;
5968
5969 /*
5970 * Bandwidth required by DEADLINE must always be granted while, for
5971 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
5972 * to gracefully reduce the frequency when no tasks show up for longer
5973 * periods of time.
5974 *
5975 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
5976 * bw_dl as requested freq. However, cpufreq is not yet ready for such
5977 * an interface. So, we only do the latter for now.
5978 */
5979 if (type == FREQUENCY_UTIL)
5980 util += cpu_bw_dl(rq);
5981
5982 return min(max, util);
5983 }
5984
5985 unsigned long sched_cpu_util(int cpu, unsigned long max)
5986 {
5987 return effective_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
5988 ENERGY_UTIL, NULL);
5989 }
5990 #endif /* CONFIG_SMP */
5991
5992 /**
5993 * find_process_by_pid - find a process with a matching PID value.
5994 * @pid: the pid in question.
5995 *
5996 * The task of @pid, if found. %NULL otherwise.
5997 */
5998 static struct task_struct *find_process_by_pid(pid_t pid)
5999 {
6000 return pid ? find_task_by_vpid(pid) : current;
6001 }
6002
6003 /*
6004 * sched_setparam() passes in -1 for its policy, to let the functions
6005 * it calls know not to change it.
6006 */
6007 #define SETPARAM_POLICY -1
6008
6009 static void __setscheduler_params(struct task_struct *p,
6010 const struct sched_attr *attr)
6011 {
6012 int policy = attr->sched_policy;
6013
6014 if (policy == SETPARAM_POLICY)
6015 policy = p->policy;
6016
6017 p->policy = policy;
6018
6019 if (dl_policy(policy))
6020 __setparam_dl(p, attr);
6021 else if (fair_policy(policy))
6022 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
6023
6024 /*
6025 * __sched_setscheduler() ensures attr->sched_priority == 0 when
6026 * !rt_policy. Always setting this ensures that things like
6027 * getparam()/getattr() don't report silly values for !rt tasks.
6028 */
6029 p->rt_priority = attr->sched_priority;
6030 p->normal_prio = normal_prio(p);
6031 set_load_weight(p, true);
6032 }
6033
6034 /* Actually do priority change: must hold pi & rq lock. */
6035 static void __setscheduler(struct rq *rq, struct task_struct *p,
6036 const struct sched_attr *attr, bool keep_boost)
6037 {
6038 /*
6039 * If params can't change scheduling class changes aren't allowed
6040 * either.
6041 */
6042 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
6043 return;
6044
6045 __setscheduler_params(p, attr);
6046
6047 /*
6048 * Keep a potential priority boosting if called from
6049 * sched_setscheduler().
6050 */
6051 p->prio = normal_prio(p);
6052 if (keep_boost)
6053 p->prio = rt_effective_prio(p, p->prio);
6054
6055 if (dl_prio(p->prio))
6056 p->sched_class = &dl_sched_class;
6057 else if (rt_prio(p->prio))
6058 p->sched_class = &rt_sched_class;
6059 else
6060 p->sched_class = &fair_sched_class;
6061 }
6062
6063 /*
6064 * Check the target process has a UID that matches the current process's:
6065 */
6066 static bool check_same_owner(struct task_struct *p)
6067 {
6068 const struct cred *cred = current_cred(), *pcred;
6069 bool match;
6070
6071 rcu_read_lock();
6072 pcred = __task_cred(p);
6073 match = (uid_eq(cred->euid, pcred->euid) ||
6074 uid_eq(cred->euid, pcred->uid));
6075 rcu_read_unlock();
6076 return match;
6077 }
6078
6079 static int __sched_setscheduler(struct task_struct *p,
6080 const struct sched_attr *attr,
6081 bool user, bool pi)
6082 {
6083 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
6084 MAX_RT_PRIO - 1 - attr->sched_priority;
6085 int retval, oldprio, oldpolicy = -1, queued, running;
6086 int new_effective_prio, policy = attr->sched_policy;
6087 const struct sched_class *prev_class;
6088 struct callback_head *head;
6089 struct rq_flags rf;
6090 int reset_on_fork;
6091 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6092 struct rq *rq;
6093
6094 /* The pi code expects interrupts enabled */
6095 BUG_ON(pi && in_interrupt());
6096 recheck:
6097 /* Double check policy once rq lock held: */
6098 if (policy < 0) {
6099 reset_on_fork = p->sched_reset_on_fork;
6100 policy = oldpolicy = p->policy;
6101 } else {
6102 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
6103
6104 if (!valid_policy(policy))
6105 return -EINVAL;
6106 }
6107
6108 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
6109 return -EINVAL;
6110
6111 /*
6112 * Valid priorities for SCHED_FIFO and SCHED_RR are
6113 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
6114 * SCHED_BATCH and SCHED_IDLE is 0.
6115 */
6116 if (attr->sched_priority > MAX_RT_PRIO-1)
6117 return -EINVAL;
6118 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
6119 (rt_policy(policy) != (attr->sched_priority != 0)))
6120 return -EINVAL;
6121
6122 /*
6123 * Allow unprivileged RT tasks to decrease priority:
6124 */
6125 if (user && !capable(CAP_SYS_NICE)) {
6126 if (fair_policy(policy)) {
6127 if (attr->sched_nice < task_nice(p) &&
6128 !can_nice(p, attr->sched_nice))
6129 return -EPERM;
6130 }
6131
6132 if (rt_policy(policy)) {
6133 unsigned long rlim_rtprio =
6134 task_rlimit(p, RLIMIT_RTPRIO);
6135
6136 /* Can't set/change the rt policy: */
6137 if (policy != p->policy && !rlim_rtprio)
6138 return -EPERM;
6139
6140 /* Can't increase priority: */
6141 if (attr->sched_priority > p->rt_priority &&
6142 attr->sched_priority > rlim_rtprio)
6143 return -EPERM;
6144 }
6145
6146 /*
6147 * Can't set/change SCHED_DEADLINE policy at all for now
6148 * (safest behavior); in the future we would like to allow
6149 * unprivileged DL tasks to increase their relative deadline
6150 * or reduce their runtime (both ways reducing utilization)
6151 */
6152 if (dl_policy(policy))
6153 return -EPERM;
6154
6155 /*
6156 * Treat SCHED_IDLE as nice 20. Only allow a switch to
6157 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
6158 */
6159 if (task_has_idle_policy(p) && !idle_policy(policy)) {
6160 if (!can_nice(p, task_nice(p)))
6161 return -EPERM;
6162 }
6163
6164 /* Can't change other user's priorities: */
6165 if (!check_same_owner(p))
6166 return -EPERM;
6167
6168 /* Normal users shall not reset the sched_reset_on_fork flag: */
6169 if (p->sched_reset_on_fork && !reset_on_fork)
6170 return -EPERM;
6171 }
6172
6173 if (user) {
6174 if (attr->sched_flags & SCHED_FLAG_SUGOV)
6175 return -EINVAL;
6176
6177 retval = security_task_setscheduler(p);
6178 if (retval)
6179 return retval;
6180 }
6181
6182 /* Update task specific "requested" clamps */
6183 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
6184 retval = uclamp_validate(p, attr);
6185 if (retval)
6186 return retval;
6187 }
6188
6189 if (pi)
6190 cpuset_read_lock();
6191
6192 /*
6193 * Make sure no PI-waiters arrive (or leave) while we are
6194 * changing the priority of the task:
6195 *
6196 * To be able to change p->policy safely, the appropriate
6197 * runqueue lock must be held.
6198 */
6199 rq = task_rq_lock(p, &rf);
6200 update_rq_clock(rq);
6201
6202 /*
6203 * Changing the policy of the stop threads its a very bad idea:
6204 */
6205 if (p == rq->stop) {
6206 retval = -EINVAL;
6207 goto unlock;
6208 }
6209
6210 /*
6211 * If not changing anything there's no need to proceed further,
6212 * but store a possible modification of reset_on_fork.
6213 */
6214 if (unlikely(policy == p->policy)) {
6215 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
6216 goto change;
6217 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
6218 goto change;
6219 if (dl_policy(policy) && dl_param_changed(p, attr))
6220 goto change;
6221 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
6222 goto change;
6223
6224 p->sched_reset_on_fork = reset_on_fork;
6225 retval = 0;
6226 goto unlock;
6227 }
6228 change:
6229
6230 if (user) {
6231 #ifdef CONFIG_RT_GROUP_SCHED
6232 /*
6233 * Do not allow realtime tasks into groups that have no runtime
6234 * assigned.
6235 */
6236 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6237 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
6238 !task_group_is_autogroup(task_group(p))) {
6239 retval = -EPERM;
6240 goto unlock;
6241 }
6242 #endif
6243 #ifdef CONFIG_SMP
6244 if (dl_bandwidth_enabled() && dl_policy(policy) &&
6245 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
6246 cpumask_t *span = rq->rd->span;
6247
6248 /*
6249 * Don't allow tasks with an affinity mask smaller than
6250 * the entire root_domain to become SCHED_DEADLINE. We
6251 * will also fail if there's no bandwidth available.
6252 */
6253 if (!cpumask_subset(span, p->cpus_ptr) ||
6254 rq->rd->dl_bw.bw == 0) {
6255 retval = -EPERM;
6256 goto unlock;
6257 }
6258 }
6259 #endif
6260 }
6261
6262 /* Re-check policy now with rq lock held: */
6263 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6264 policy = oldpolicy = -1;
6265 task_rq_unlock(rq, p, &rf);
6266 if (pi)
6267 cpuset_read_unlock();
6268 goto recheck;
6269 }
6270
6271 /*
6272 * If setscheduling to SCHED_DEADLINE (or changing the parameters
6273 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
6274 * is available.
6275 */
6276 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
6277 retval = -EBUSY;
6278 goto unlock;
6279 }
6280
6281 p->sched_reset_on_fork = reset_on_fork;
6282 oldprio = p->prio;
6283
6284 if (pi) {
6285 /*
6286 * Take priority boosted tasks into account. If the new
6287 * effective priority is unchanged, we just store the new
6288 * normal parameters and do not touch the scheduler class and
6289 * the runqueue. This will be done when the task deboost
6290 * itself.
6291 */
6292 new_effective_prio = rt_effective_prio(p, newprio);
6293 if (new_effective_prio == oldprio)
6294 queue_flags &= ~DEQUEUE_MOVE;
6295 }
6296
6297 queued = task_on_rq_queued(p);
6298 running = task_current(rq, p);
6299 if (queued)
6300 dequeue_task(rq, p, queue_flags);
6301 if (running)
6302 put_prev_task(rq, p);
6303
6304 prev_class = p->sched_class;
6305
6306 __setscheduler(rq, p, attr, pi);
6307 __setscheduler_uclamp(p, attr);
6308
6309 if (queued) {
6310 /*
6311 * We enqueue to tail when the priority of a task is
6312 * increased (user space view).
6313 */
6314 if (oldprio < p->prio)
6315 queue_flags |= ENQUEUE_HEAD;
6316
6317 enqueue_task(rq, p, queue_flags);
6318 }
6319 if (running)
6320 set_next_task(rq, p);
6321
6322 check_class_changed(rq, p, prev_class, oldprio);
6323
6324 /* Avoid rq from going away on us: */
6325 preempt_disable();
6326 head = splice_balance_callbacks(rq);
6327 task_rq_unlock(rq, p, &rf);
6328
6329 if (pi) {
6330 cpuset_read_unlock();
6331 rt_mutex_adjust_pi(p);
6332 }
6333
6334 /* Run balance callbacks after we've adjusted the PI chain: */
6335 balance_callbacks(rq, head);
6336 preempt_enable();
6337
6338 return 0;
6339
6340 unlock:
6341 task_rq_unlock(rq, p, &rf);
6342 if (pi)
6343 cpuset_read_unlock();
6344 return retval;
6345 }
6346
6347 static int _sched_setscheduler(struct task_struct *p, int policy,
6348 const struct sched_param *param, bool check)
6349 {
6350 struct sched_attr attr = {
6351 .sched_policy = policy,
6352 .sched_priority = param->sched_priority,
6353 .sched_nice = PRIO_TO_NICE(p->static_prio),
6354 };
6355
6356 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
6357 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
6358 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6359 policy &= ~SCHED_RESET_ON_FORK;
6360 attr.sched_policy = policy;
6361 }
6362
6363 return __sched_setscheduler(p, &attr, check, true);
6364 }
6365 /**
6366 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6367 * @p: the task in question.
6368 * @policy: new policy.
6369 * @param: structure containing the new RT priority.
6370 *
6371 * Use sched_set_fifo(), read its comment.
6372 *
6373 * Return: 0 on success. An error code otherwise.
6374 *
6375 * NOTE that the task may be already dead.
6376 */
6377 int sched_setscheduler(struct task_struct *p, int policy,
6378 const struct sched_param *param)
6379 {
6380 return _sched_setscheduler(p, policy, param, true);
6381 }
6382
6383 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
6384 {
6385 return __sched_setscheduler(p, attr, true, true);
6386 }
6387
6388 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
6389 {
6390 return __sched_setscheduler(p, attr, false, true);
6391 }
6392 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
6393
6394 /**
6395 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6396 * @p: the task in question.
6397 * @policy: new policy.
6398 * @param: structure containing the new RT priority.
6399 *
6400 * Just like sched_setscheduler, only don't bother checking if the
6401 * current context has permission. For example, this is needed in
6402 * stop_machine(): we create temporary high priority worker threads,
6403 * but our caller might not have that capability.
6404 *
6405 * Return: 0 on success. An error code otherwise.
6406 */
6407 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6408 const struct sched_param *param)
6409 {
6410 return _sched_setscheduler(p, policy, param, false);
6411 }
6412
6413 /*
6414 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
6415 * incapable of resource management, which is the one thing an OS really should
6416 * be doing.
6417 *
6418 * This is of course the reason it is limited to privileged users only.
6419 *
6420 * Worse still; it is fundamentally impossible to compose static priority
6421 * workloads. You cannot take two correctly working static prio workloads
6422 * and smash them together and still expect them to work.
6423 *
6424 * For this reason 'all' FIFO tasks the kernel creates are basically at:
6425 *
6426 * MAX_RT_PRIO / 2
6427 *
6428 * The administrator _MUST_ configure the system, the kernel simply doesn't
6429 * know enough information to make a sensible choice.
6430 */
6431 void sched_set_fifo(struct task_struct *p)
6432 {
6433 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
6434 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6435 }
6436 EXPORT_SYMBOL_GPL(sched_set_fifo);
6437
6438 /*
6439 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
6440 */
6441 void sched_set_fifo_low(struct task_struct *p)
6442 {
6443 struct sched_param sp = { .sched_priority = 1 };
6444 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
6445 }
6446 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
6447
6448 void sched_set_normal(struct task_struct *p, int nice)
6449 {
6450 struct sched_attr attr = {
6451 .sched_policy = SCHED_NORMAL,
6452 .sched_nice = nice,
6453 };
6454 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
6455 }
6456 EXPORT_SYMBOL_GPL(sched_set_normal);
6457
6458 static int
6459 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6460 {
6461 struct sched_param lparam;
6462 struct task_struct *p;
6463 int retval;
6464
6465 if (!param || pid < 0)
6466 return -EINVAL;
6467 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6468 return -EFAULT;
6469
6470 rcu_read_lock();
6471 retval = -ESRCH;
6472 p = find_process_by_pid(pid);
6473 if (likely(p))
6474 get_task_struct(p);
6475 rcu_read_unlock();
6476
6477 if (likely(p)) {
6478 retval = sched_setscheduler(p, policy, &lparam);
6479 put_task_struct(p);
6480 }
6481
6482 return retval;
6483 }
6484
6485 /*
6486 * Mimics kernel/events/core.c perf_copy_attr().
6487 */
6488 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
6489 {
6490 u32 size;
6491 int ret;
6492
6493 /* Zero the full structure, so that a short copy will be nice: */
6494 memset(attr, 0, sizeof(*attr));
6495
6496 ret = get_user(size, &uattr->size);
6497 if (ret)
6498 return ret;
6499
6500 /* ABI compatibility quirk: */
6501 if (!size)
6502 size = SCHED_ATTR_SIZE_VER0;
6503 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
6504 goto err_size;
6505
6506 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
6507 if (ret) {
6508 if (ret == -E2BIG)
6509 goto err_size;
6510 return ret;
6511 }
6512
6513 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
6514 size < SCHED_ATTR_SIZE_VER1)
6515 return -EINVAL;
6516
6517 /*
6518 * XXX: Do we want to be lenient like existing syscalls; or do we want
6519 * to be strict and return an error on out-of-bounds values?
6520 */
6521 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
6522
6523 return 0;
6524
6525 err_size:
6526 put_user(sizeof(*attr), &uattr->size);
6527 return -E2BIG;
6528 }
6529
6530 /**
6531 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6532 * @pid: the pid in question.
6533 * @policy: new policy.
6534 * @param: structure containing the new RT priority.
6535 *
6536 * Return: 0 on success. An error code otherwise.
6537 */
6538 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
6539 {
6540 if (policy < 0)
6541 return -EINVAL;
6542
6543 return do_sched_setscheduler(pid, policy, param);
6544 }
6545
6546 /**
6547 * sys_sched_setparam - set/change the RT priority of a thread
6548 * @pid: the pid in question.
6549 * @param: structure containing the new RT priority.
6550 *
6551 * Return: 0 on success. An error code otherwise.
6552 */
6553 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6554 {
6555 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
6556 }
6557
6558 /**
6559 * sys_sched_setattr - same as above, but with extended sched_attr
6560 * @pid: the pid in question.
6561 * @uattr: structure containing the extended parameters.
6562 * @flags: for future extension.
6563 */
6564 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
6565 unsigned int, flags)
6566 {
6567 struct sched_attr attr;
6568 struct task_struct *p;
6569 int retval;
6570
6571 if (!uattr || pid < 0 || flags)
6572 return -EINVAL;
6573
6574 retval = sched_copy_attr(uattr, &attr);
6575 if (retval)
6576 return retval;
6577
6578 if ((int)attr.sched_policy < 0)
6579 return -EINVAL;
6580 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
6581 attr.sched_policy = SETPARAM_POLICY;
6582
6583 rcu_read_lock();
6584 retval = -ESRCH;
6585 p = find_process_by_pid(pid);
6586 if (likely(p))
6587 get_task_struct(p);
6588 rcu_read_unlock();
6589
6590 if (likely(p)) {
6591 retval = sched_setattr(p, &attr);
6592 put_task_struct(p);
6593 }
6594
6595 return retval;
6596 }
6597
6598 /**
6599 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6600 * @pid: the pid in question.
6601 *
6602 * Return: On success, the policy of the thread. Otherwise, a negative error
6603 * code.
6604 */
6605 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6606 {
6607 struct task_struct *p;
6608 int retval;
6609
6610 if (pid < 0)
6611 return -EINVAL;
6612
6613 retval = -ESRCH;
6614 rcu_read_lock();
6615 p = find_process_by_pid(pid);
6616 if (p) {
6617 retval = security_task_getscheduler(p);
6618 if (!retval)
6619 retval = p->policy
6620 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6621 }
6622 rcu_read_unlock();
6623 return retval;
6624 }
6625
6626 /**
6627 * sys_sched_getparam - get the RT priority of a thread
6628 * @pid: the pid in question.
6629 * @param: structure containing the RT priority.
6630 *
6631 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
6632 * code.
6633 */
6634 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6635 {
6636 struct sched_param lp = { .sched_priority = 0 };
6637 struct task_struct *p;
6638 int retval;
6639
6640 if (!param || pid < 0)
6641 return -EINVAL;
6642
6643 rcu_read_lock();
6644 p = find_process_by_pid(pid);
6645 retval = -ESRCH;
6646 if (!p)
6647 goto out_unlock;
6648
6649 retval = security_task_getscheduler(p);
6650 if (retval)
6651 goto out_unlock;
6652
6653 if (task_has_rt_policy(p))
6654 lp.sched_priority = p->rt_priority;
6655 rcu_read_unlock();
6656
6657 /*
6658 * This one might sleep, we cannot do it with a spinlock held ...
6659 */
6660 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6661
6662 return retval;
6663
6664 out_unlock:
6665 rcu_read_unlock();
6666 return retval;
6667 }
6668
6669 /*
6670 * Copy the kernel size attribute structure (which might be larger
6671 * than what user-space knows about) to user-space.
6672 *
6673 * Note that all cases are valid: user-space buffer can be larger or
6674 * smaller than the kernel-space buffer. The usual case is that both
6675 * have the same size.
6676 */
6677 static int
6678 sched_attr_copy_to_user(struct sched_attr __user *uattr,
6679 struct sched_attr *kattr,
6680 unsigned int usize)
6681 {
6682 unsigned int ksize = sizeof(*kattr);
6683
6684 if (!access_ok(uattr, usize))
6685 return -EFAULT;
6686
6687 /*
6688 * sched_getattr() ABI forwards and backwards compatibility:
6689 *
6690 * If usize == ksize then we just copy everything to user-space and all is good.
6691 *
6692 * If usize < ksize then we only copy as much as user-space has space for,
6693 * this keeps ABI compatibility as well. We skip the rest.
6694 *
6695 * If usize > ksize then user-space is using a newer version of the ABI,
6696 * which part the kernel doesn't know about. Just ignore it - tooling can
6697 * detect the kernel's knowledge of attributes from the attr->size value
6698 * which is set to ksize in this case.
6699 */
6700 kattr->size = min(usize, ksize);
6701
6702 if (copy_to_user(uattr, kattr, kattr->size))
6703 return -EFAULT;
6704
6705 return 0;
6706 }
6707
6708 /**
6709 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
6710 * @pid: the pid in question.
6711 * @uattr: structure containing the extended parameters.
6712 * @usize: sizeof(attr) for fwd/bwd comp.
6713 * @flags: for future extension.
6714 */
6715 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
6716 unsigned int, usize, unsigned int, flags)
6717 {
6718 struct sched_attr kattr = { };
6719 struct task_struct *p;
6720 int retval;
6721
6722 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6723 usize < SCHED_ATTR_SIZE_VER0 || flags)
6724 return -EINVAL;
6725
6726 rcu_read_lock();
6727 p = find_process_by_pid(pid);
6728 retval = -ESRCH;
6729 if (!p)
6730 goto out_unlock;
6731
6732 retval = security_task_getscheduler(p);
6733 if (retval)
6734 goto out_unlock;
6735
6736 kattr.sched_policy = p->policy;
6737 if (p->sched_reset_on_fork)
6738 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6739 if (task_has_dl_policy(p))
6740 __getparam_dl(p, &kattr);
6741 else if (task_has_rt_policy(p))
6742 kattr.sched_priority = p->rt_priority;
6743 else
6744 kattr.sched_nice = task_nice(p);
6745
6746 #ifdef CONFIG_UCLAMP_TASK
6747 /*
6748 * This could race with another potential updater, but this is fine
6749 * because it'll correctly read the old or the new value. We don't need
6750 * to guarantee who wins the race as long as it doesn't return garbage.
6751 */
6752 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6753 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
6754 #endif
6755
6756 rcu_read_unlock();
6757
6758 return sched_attr_copy_to_user(uattr, &kattr, usize);
6759
6760 out_unlock:
6761 rcu_read_unlock();
6762 return retval;
6763 }
6764
6765 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6766 {
6767 cpumask_var_t cpus_allowed, new_mask;
6768 struct task_struct *p;
6769 int retval;
6770
6771 rcu_read_lock();
6772
6773 p = find_process_by_pid(pid);
6774 if (!p) {
6775 rcu_read_unlock();
6776 return -ESRCH;
6777 }
6778
6779 /* Prevent p going away */
6780 get_task_struct(p);
6781 rcu_read_unlock();
6782
6783 if (p->flags & PF_NO_SETAFFINITY) {
6784 retval = -EINVAL;
6785 goto out_put_task;
6786 }
6787 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6788 retval = -ENOMEM;
6789 goto out_put_task;
6790 }
6791 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6792 retval = -ENOMEM;
6793 goto out_free_cpus_allowed;
6794 }
6795 retval = -EPERM;
6796 if (!check_same_owner(p)) {
6797 rcu_read_lock();
6798 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6799 rcu_read_unlock();
6800 goto out_free_new_mask;
6801 }
6802 rcu_read_unlock();
6803 }
6804
6805 retval = security_task_setscheduler(p);
6806 if (retval)
6807 goto out_free_new_mask;
6808
6809
6810 cpuset_cpus_allowed(p, cpus_allowed);
6811 cpumask_and(new_mask, in_mask, cpus_allowed);
6812
6813 /*
6814 * Since bandwidth control happens on root_domain basis,
6815 * if admission test is enabled, we only admit -deadline
6816 * tasks allowed to run on all the CPUs in the task's
6817 * root_domain.
6818 */
6819 #ifdef CONFIG_SMP
6820 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6821 rcu_read_lock();
6822 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
6823 retval = -EBUSY;
6824 rcu_read_unlock();
6825 goto out_free_new_mask;
6826 }
6827 rcu_read_unlock();
6828 }
6829 #endif
6830 again:
6831 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK);
6832
6833 if (!retval) {
6834 cpuset_cpus_allowed(p, cpus_allowed);
6835 if (!cpumask_subset(new_mask, cpus_allowed)) {
6836 /*
6837 * We must have raced with a concurrent cpuset
6838 * update. Just reset the cpus_allowed to the
6839 * cpuset's cpus_allowed
6840 */
6841 cpumask_copy(new_mask, cpus_allowed);
6842 goto again;
6843 }
6844 }
6845 out_free_new_mask:
6846 free_cpumask_var(new_mask);
6847 out_free_cpus_allowed:
6848 free_cpumask_var(cpus_allowed);
6849 out_put_task:
6850 put_task_struct(p);
6851 return retval;
6852 }
6853
6854 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6855 struct cpumask *new_mask)
6856 {
6857 if (len < cpumask_size())
6858 cpumask_clear(new_mask);
6859 else if (len > cpumask_size())
6860 len = cpumask_size();
6861
6862 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6863 }
6864
6865 /**
6866 * sys_sched_setaffinity - set the CPU affinity of a process
6867 * @pid: pid of the process
6868 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6869 * @user_mask_ptr: user-space pointer to the new CPU mask
6870 *
6871 * Return: 0 on success. An error code otherwise.
6872 */
6873 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6874 unsigned long __user *, user_mask_ptr)
6875 {
6876 cpumask_var_t new_mask;
6877 int retval;
6878
6879 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6880 return -ENOMEM;
6881
6882 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6883 if (retval == 0)
6884 retval = sched_setaffinity(pid, new_mask);
6885 free_cpumask_var(new_mask);
6886 return retval;
6887 }
6888
6889 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6890 {
6891 struct task_struct *p;
6892 unsigned long flags;
6893 int retval;
6894
6895 rcu_read_lock();
6896
6897 retval = -ESRCH;
6898 p = find_process_by_pid(pid);
6899 if (!p)
6900 goto out_unlock;
6901
6902 retval = security_task_getscheduler(p);
6903 if (retval)
6904 goto out_unlock;
6905
6906 raw_spin_lock_irqsave(&p->pi_lock, flags);
6907 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6908 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6909
6910 out_unlock:
6911 rcu_read_unlock();
6912
6913 return retval;
6914 }
6915
6916 /**
6917 * sys_sched_getaffinity - get the CPU affinity of a process
6918 * @pid: pid of the process
6919 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6920 * @user_mask_ptr: user-space pointer to hold the current CPU mask
6921 *
6922 * Return: size of CPU mask copied to user_mask_ptr on success. An
6923 * error code otherwise.
6924 */
6925 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6926 unsigned long __user *, user_mask_ptr)
6927 {
6928 int ret;
6929 cpumask_var_t mask;
6930
6931 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6932 return -EINVAL;
6933 if (len & (sizeof(unsigned long)-1))
6934 return -EINVAL;
6935
6936 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6937 return -ENOMEM;
6938
6939 ret = sched_getaffinity(pid, mask);
6940 if (ret == 0) {
6941 unsigned int retlen = min(len, cpumask_size());
6942
6943 if (copy_to_user(user_mask_ptr, mask, retlen))
6944 ret = -EFAULT;
6945 else
6946 ret = retlen;
6947 }
6948 free_cpumask_var(mask);
6949
6950 return ret;
6951 }
6952
6953 static void do_sched_yield(void)
6954 {
6955 struct rq_flags rf;
6956 struct rq *rq;
6957
6958 rq = this_rq_lock_irq(&rf);
6959
6960 schedstat_inc(rq->yld_count);
6961 current->sched_class->yield_task(rq);
6962
6963 preempt_disable();
6964 rq_unlock_irq(rq, &rf);
6965 sched_preempt_enable_no_resched();
6966
6967 schedule();
6968 }
6969
6970 /**
6971 * sys_sched_yield - yield the current processor to other threads.
6972 *
6973 * This function yields the current CPU to other tasks. If there are no
6974 * other threads running on this CPU then this function will return.
6975 *
6976 * Return: 0.
6977 */
6978 SYSCALL_DEFINE0(sched_yield)
6979 {
6980 do_sched_yield();
6981 return 0;
6982 }
6983
6984 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
6985 int __sched __cond_resched(void)
6986 {
6987 if (should_resched(0)) {
6988 preempt_schedule_common();
6989 return 1;
6990 }
6991 #ifndef CONFIG_PREEMPT_RCU
6992 rcu_all_qs();
6993 #endif
6994 return 0;
6995 }
6996 EXPORT_SYMBOL(__cond_resched);
6997 #endif
6998
6999 #ifdef CONFIG_PREEMPT_DYNAMIC
7000 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
7001 EXPORT_STATIC_CALL_TRAMP(cond_resched);
7002
7003 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
7004 EXPORT_STATIC_CALL_TRAMP(might_resched);
7005 #endif
7006
7007 /*
7008 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
7009 * call schedule, and on return reacquire the lock.
7010 *
7011 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
7012 * operations here to prevent schedule() from being called twice (once via
7013 * spin_unlock(), once by hand).
7014 */
7015 int __cond_resched_lock(spinlock_t *lock)
7016 {
7017 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7018 int ret = 0;
7019
7020 lockdep_assert_held(lock);
7021
7022 if (spin_needbreak(lock) || resched) {
7023 spin_unlock(lock);
7024 if (resched)
7025 preempt_schedule_common();
7026 else
7027 cpu_relax();
7028 ret = 1;
7029 spin_lock(lock);
7030 }
7031 return ret;
7032 }
7033 EXPORT_SYMBOL(__cond_resched_lock);
7034
7035 int __cond_resched_rwlock_read(rwlock_t *lock)
7036 {
7037 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7038 int ret = 0;
7039
7040 lockdep_assert_held_read(lock);
7041
7042 if (rwlock_needbreak(lock) || resched) {
7043 read_unlock(lock);
7044 if (resched)
7045 preempt_schedule_common();
7046 else
7047 cpu_relax();
7048 ret = 1;
7049 read_lock(lock);
7050 }
7051 return ret;
7052 }
7053 EXPORT_SYMBOL(__cond_resched_rwlock_read);
7054
7055 int __cond_resched_rwlock_write(rwlock_t *lock)
7056 {
7057 int resched = should_resched(PREEMPT_LOCK_OFFSET);
7058 int ret = 0;
7059
7060 lockdep_assert_held_write(lock);
7061
7062 if (rwlock_needbreak(lock) || resched) {
7063 write_unlock(lock);
7064 if (resched)
7065 preempt_schedule_common();
7066 else
7067 cpu_relax();
7068 ret = 1;
7069 write_lock(lock);
7070 }
7071 return ret;
7072 }
7073 EXPORT_SYMBOL(__cond_resched_rwlock_write);
7074
7075 /**
7076 * yield - yield the current processor to other threads.
7077 *
7078 * Do not ever use this function, there's a 99% chance you're doing it wrong.
7079 *
7080 * The scheduler is at all times free to pick the calling task as the most
7081 * eligible task to run, if removing the yield() call from your code breaks
7082 * it, it's already broken.
7083 *
7084 * Typical broken usage is:
7085 *
7086 * while (!event)
7087 * yield();
7088 *
7089 * where one assumes that yield() will let 'the other' process run that will
7090 * make event true. If the current task is a SCHED_FIFO task that will never
7091 * happen. Never use yield() as a progress guarantee!!
7092 *
7093 * If you want to use yield() to wait for something, use wait_event().
7094 * If you want to use yield() to be 'nice' for others, use cond_resched().
7095 * If you still want to use yield(), do not!
7096 */
7097 void __sched yield(void)
7098 {
7099 set_current_state(TASK_RUNNING);
7100 do_sched_yield();
7101 }
7102 EXPORT_SYMBOL(yield);
7103
7104 /**
7105 * yield_to - yield the current processor to another thread in
7106 * your thread group, or accelerate that thread toward the
7107 * processor it's on.
7108 * @p: target task
7109 * @preempt: whether task preemption is allowed or not
7110 *
7111 * It's the caller's job to ensure that the target task struct
7112 * can't go away on us before we can do any checks.
7113 *
7114 * Return:
7115 * true (>0) if we indeed boosted the target task.
7116 * false (0) if we failed to boost the target.
7117 * -ESRCH if there's no task to yield to.
7118 */
7119 int __sched yield_to(struct task_struct *p, bool preempt)
7120 {
7121 struct task_struct *curr = current;
7122 struct rq *rq, *p_rq;
7123 unsigned long flags;
7124 int yielded = 0;
7125
7126 local_irq_save(flags);
7127 rq = this_rq();
7128
7129 again:
7130 p_rq = task_rq(p);
7131 /*
7132 * If we're the only runnable task on the rq and target rq also
7133 * has only one task, there's absolutely no point in yielding.
7134 */
7135 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
7136 yielded = -ESRCH;
7137 goto out_irq;
7138 }
7139
7140 double_rq_lock(rq, p_rq);
7141 if (task_rq(p) != p_rq) {
7142 double_rq_unlock(rq, p_rq);
7143 goto again;
7144 }
7145
7146 if (!curr->sched_class->yield_to_task)
7147 goto out_unlock;
7148
7149 if (curr->sched_class != p->sched_class)
7150 goto out_unlock;
7151
7152 if (task_running(p_rq, p) || p->state)
7153 goto out_unlock;
7154
7155 yielded = curr->sched_class->yield_to_task(rq, p);
7156 if (yielded) {
7157 schedstat_inc(rq->yld_count);
7158 /*
7159 * Make p's CPU reschedule; pick_next_entity takes care of
7160 * fairness.
7161 */
7162 if (preempt && rq != p_rq)
7163 resched_curr(p_rq);
7164 }
7165
7166 out_unlock:
7167 double_rq_unlock(rq, p_rq);
7168 out_irq:
7169 local_irq_restore(flags);
7170
7171 if (yielded > 0)
7172 schedule();
7173
7174 return yielded;
7175 }
7176 EXPORT_SYMBOL_GPL(yield_to);
7177
7178 int io_schedule_prepare(void)
7179 {
7180 int old_iowait = current->in_iowait;
7181
7182 current->in_iowait = 1;
7183 blk_schedule_flush_plug(current);
7184
7185 return old_iowait;
7186 }
7187
7188 void io_schedule_finish(int token)
7189 {
7190 current->in_iowait = token;
7191 }
7192
7193 /*
7194 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
7195 * that process accounting knows that this is a task in IO wait state.
7196 */
7197 long __sched io_schedule_timeout(long timeout)
7198 {
7199 int token;
7200 long ret;
7201
7202 token = io_schedule_prepare();
7203 ret = schedule_timeout(timeout);
7204 io_schedule_finish(token);
7205
7206 return ret;
7207 }
7208 EXPORT_SYMBOL(io_schedule_timeout);
7209
7210 void __sched io_schedule(void)
7211 {
7212 int token;
7213
7214 token = io_schedule_prepare();
7215 schedule();
7216 io_schedule_finish(token);
7217 }
7218 EXPORT_SYMBOL(io_schedule);
7219
7220 /**
7221 * sys_sched_get_priority_max - return maximum RT priority.
7222 * @policy: scheduling class.
7223 *
7224 * Return: On success, this syscall returns the maximum
7225 * rt_priority that can be used by a given scheduling class.
7226 * On failure, a negative error code is returned.
7227 */
7228 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
7229 {
7230 int ret = -EINVAL;
7231
7232 switch (policy) {
7233 case SCHED_FIFO:
7234 case SCHED_RR:
7235 ret = MAX_RT_PRIO-1;
7236 break;
7237 case SCHED_DEADLINE:
7238 case SCHED_NORMAL:
7239 case SCHED_BATCH:
7240 case SCHED_IDLE:
7241 ret = 0;
7242 break;
7243 }
7244 return ret;
7245 }
7246
7247 /**
7248 * sys_sched_get_priority_min - return minimum RT priority.
7249 * @policy: scheduling class.
7250 *
7251 * Return: On success, this syscall returns the minimum
7252 * rt_priority that can be used by a given scheduling class.
7253 * On failure, a negative error code is returned.
7254 */
7255 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
7256 {
7257 int ret = -EINVAL;
7258
7259 switch (policy) {
7260 case SCHED_FIFO:
7261 case SCHED_RR:
7262 ret = 1;
7263 break;
7264 case SCHED_DEADLINE:
7265 case SCHED_NORMAL:
7266 case SCHED_BATCH:
7267 case SCHED_IDLE:
7268 ret = 0;
7269 }
7270 return ret;
7271 }
7272
7273 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
7274 {
7275 struct task_struct *p;
7276 unsigned int time_slice;
7277 struct rq_flags rf;
7278 struct rq *rq;
7279 int retval;
7280
7281 if (pid < 0)
7282 return -EINVAL;
7283
7284 retval = -ESRCH;
7285 rcu_read_lock();
7286 p = find_process_by_pid(pid);
7287 if (!p)
7288 goto out_unlock;
7289
7290 retval = security_task_getscheduler(p);
7291 if (retval)
7292 goto out_unlock;
7293
7294 rq = task_rq_lock(p, &rf);
7295 time_slice = 0;
7296 if (p->sched_class->get_rr_interval)
7297 time_slice = p->sched_class->get_rr_interval(rq, p);
7298 task_rq_unlock(rq, p, &rf);
7299
7300 rcu_read_unlock();
7301 jiffies_to_timespec64(time_slice, t);
7302 return 0;
7303
7304 out_unlock:
7305 rcu_read_unlock();
7306 return retval;
7307 }
7308
7309 /**
7310 * sys_sched_rr_get_interval - return the default timeslice of a process.
7311 * @pid: pid of the process.
7312 * @interval: userspace pointer to the timeslice value.
7313 *
7314 * this syscall writes the default timeslice value of a given process
7315 * into the user-space timespec buffer. A value of '0' means infinity.
7316 *
7317 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
7318 * an error code.
7319 */
7320 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
7321 struct __kernel_timespec __user *, interval)
7322 {
7323 struct timespec64 t;
7324 int retval = sched_rr_get_interval(pid, &t);
7325
7326 if (retval == 0)
7327 retval = put_timespec64(&t, interval);
7328
7329 return retval;
7330 }
7331
7332 #ifdef CONFIG_COMPAT_32BIT_TIME
7333 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
7334 struct old_timespec32 __user *, interval)
7335 {
7336 struct timespec64 t;
7337 int retval = sched_rr_get_interval(pid, &t);
7338
7339 if (retval == 0)
7340 retval = put_old_timespec32(&t, interval);
7341 return retval;
7342 }
7343 #endif
7344
7345 void sched_show_task(struct task_struct *p)
7346 {
7347 unsigned long free = 0;
7348 int ppid;
7349
7350 if (!try_get_task_stack(p))
7351 return;
7352
7353 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
7354
7355 if (p->state == TASK_RUNNING)
7356 pr_cont(" running task ");
7357 #ifdef CONFIG_DEBUG_STACK_USAGE
7358 free = stack_not_used(p);
7359 #endif
7360 ppid = 0;
7361 rcu_read_lock();
7362 if (pid_alive(p))
7363 ppid = task_pid_nr(rcu_dereference(p->real_parent));
7364 rcu_read_unlock();
7365 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
7366 free, task_pid_nr(p), ppid,
7367 (unsigned long)task_thread_info(p)->flags);
7368
7369 print_worker_info(KERN_INFO, p);
7370 print_stop_info(KERN_INFO, p);
7371 show_stack(p, NULL, KERN_INFO);
7372 put_task_stack(p);
7373 }
7374 EXPORT_SYMBOL_GPL(sched_show_task);
7375
7376 static inline bool
7377 state_filter_match(unsigned long state_filter, struct task_struct *p)
7378 {
7379 /* no filter, everything matches */
7380 if (!state_filter)
7381 return true;
7382
7383 /* filter, but doesn't match */
7384 if (!(p->state & state_filter))
7385 return false;
7386
7387 /*
7388 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
7389 * TASK_KILLABLE).
7390 */
7391 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
7392 return false;
7393
7394 return true;
7395 }
7396
7397
7398 void show_state_filter(unsigned long state_filter)
7399 {
7400 struct task_struct *g, *p;
7401
7402 rcu_read_lock();
7403 for_each_process_thread(g, p) {
7404 /*
7405 * reset the NMI-timeout, listing all files on a slow
7406 * console might take a lot of time:
7407 * Also, reset softlockup watchdogs on all CPUs, because
7408 * another CPU might be blocked waiting for us to process
7409 * an IPI.
7410 */
7411 touch_nmi_watchdog();
7412 touch_all_softlockup_watchdogs();
7413 if (state_filter_match(state_filter, p))
7414 sched_show_task(p);
7415 }
7416
7417 #ifdef CONFIG_SCHED_DEBUG
7418 if (!state_filter)
7419 sysrq_sched_debug_show();
7420 #endif
7421 rcu_read_unlock();
7422 /*
7423 * Only show locks if all tasks are dumped:
7424 */
7425 if (!state_filter)
7426 debug_show_all_locks();
7427 }
7428
7429 /**
7430 * init_idle - set up an idle thread for a given CPU
7431 * @idle: task in question
7432 * @cpu: CPU the idle task belongs to
7433 *
7434 * NOTE: this function does not set the idle thread's NEED_RESCHED
7435 * flag, to make booting more robust.
7436 */
7437 void init_idle(struct task_struct *idle, int cpu)
7438 {
7439 struct rq *rq = cpu_rq(cpu);
7440 unsigned long flags;
7441
7442 __sched_fork(0, idle);
7443
7444 raw_spin_lock_irqsave(&idle->pi_lock, flags);
7445 raw_spin_lock(&rq->lock);
7446
7447 idle->state = TASK_RUNNING;
7448 idle->se.exec_start = sched_clock();
7449 idle->flags |= PF_IDLE;
7450
7451 scs_task_reset(idle);
7452 kasan_unpoison_task_stack(idle);
7453
7454 #ifdef CONFIG_SMP
7455 /*
7456 * It's possible that init_idle() gets called multiple times on a task,
7457 * in that case do_set_cpus_allowed() will not do the right thing.
7458 *
7459 * And since this is boot we can forgo the serialization.
7460 */
7461 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
7462 #endif
7463 /*
7464 * We're having a chicken and egg problem, even though we are
7465 * holding rq->lock, the CPU isn't yet set to this CPU so the
7466 * lockdep check in task_group() will fail.
7467 *
7468 * Similar case to sched_fork(). / Alternatively we could
7469 * use task_rq_lock() here and obtain the other rq->lock.
7470 *
7471 * Silence PROVE_RCU
7472 */
7473 rcu_read_lock();
7474 __set_task_cpu(idle, cpu);
7475 rcu_read_unlock();
7476
7477 rq->idle = idle;
7478 rcu_assign_pointer(rq->curr, idle);
7479 idle->on_rq = TASK_ON_RQ_QUEUED;
7480 #ifdef CONFIG_SMP
7481 idle->on_cpu = 1;
7482 #endif
7483 raw_spin_unlock(&rq->lock);
7484 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
7485
7486 /* Set the preempt count _outside_ the spinlocks! */
7487 init_idle_preempt_count(idle, cpu);
7488
7489 /*
7490 * The idle tasks have their own, simple scheduling class:
7491 */
7492 idle->sched_class = &idle_sched_class;
7493 ftrace_graph_init_idle_task(idle, cpu);
7494 vtime_init_idle(idle, cpu);
7495 #ifdef CONFIG_SMP
7496 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
7497 #endif
7498 }
7499
7500 #ifdef CONFIG_SMP
7501
7502 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
7503 const struct cpumask *trial)
7504 {
7505 int ret = 1;
7506
7507 if (!cpumask_weight(cur))
7508 return ret;
7509
7510 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
7511
7512 return ret;
7513 }
7514
7515 int task_can_attach(struct task_struct *p,
7516 const struct cpumask *cs_cpus_allowed)
7517 {
7518 int ret = 0;
7519
7520 /*
7521 * Kthreads which disallow setaffinity shouldn't be moved
7522 * to a new cpuset; we don't want to change their CPU
7523 * affinity and isolating such threads by their set of
7524 * allowed nodes is unnecessary. Thus, cpusets are not
7525 * applicable for such threads. This prevents checking for
7526 * success of set_cpus_allowed_ptr() on all attached tasks
7527 * before cpus_mask may be changed.
7528 */
7529 if (p->flags & PF_NO_SETAFFINITY) {
7530 ret = -EINVAL;
7531 goto out;
7532 }
7533
7534 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
7535 cs_cpus_allowed))
7536 ret = dl_task_can_attach(p, cs_cpus_allowed);
7537
7538 out:
7539 return ret;
7540 }
7541
7542 bool sched_smp_initialized __read_mostly;
7543
7544 #ifdef CONFIG_NUMA_BALANCING
7545 /* Migrate current task p to target_cpu */
7546 int migrate_task_to(struct task_struct *p, int target_cpu)
7547 {
7548 struct migration_arg arg = { p, target_cpu };
7549 int curr_cpu = task_cpu(p);
7550
7551 if (curr_cpu == target_cpu)
7552 return 0;
7553
7554 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
7555 return -EINVAL;
7556
7557 /* TODO: This is not properly updating schedstats */
7558
7559 trace_sched_move_numa(p, curr_cpu, target_cpu);
7560 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
7561 }
7562
7563 /*
7564 * Requeue a task on a given node and accurately track the number of NUMA
7565 * tasks on the runqueues
7566 */
7567 void sched_setnuma(struct task_struct *p, int nid)
7568 {
7569 bool queued, running;
7570 struct rq_flags rf;
7571 struct rq *rq;
7572
7573 rq = task_rq_lock(p, &rf);
7574 queued = task_on_rq_queued(p);
7575 running = task_current(rq, p);
7576
7577 if (queued)
7578 dequeue_task(rq, p, DEQUEUE_SAVE);
7579 if (running)
7580 put_prev_task(rq, p);
7581
7582 p->numa_preferred_nid = nid;
7583
7584 if (queued)
7585 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7586 if (running)
7587 set_next_task(rq, p);
7588 task_rq_unlock(rq, p, &rf);
7589 }
7590 #endif /* CONFIG_NUMA_BALANCING */
7591
7592 #ifdef CONFIG_HOTPLUG_CPU
7593 /*
7594 * Ensure that the idle task is using init_mm right before its CPU goes
7595 * offline.
7596 */
7597 void idle_task_exit(void)
7598 {
7599 struct mm_struct *mm = current->active_mm;
7600
7601 BUG_ON(cpu_online(smp_processor_id()));
7602 BUG_ON(current != this_rq()->idle);
7603
7604 if (mm != &init_mm) {
7605 switch_mm(mm, &init_mm, current);
7606 finish_arch_post_lock_switch();
7607 }
7608
7609 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
7610 }
7611
7612 static int __balance_push_cpu_stop(void *arg)
7613 {
7614 struct task_struct *p = arg;
7615 struct rq *rq = this_rq();
7616 struct rq_flags rf;
7617 int cpu;
7618
7619 raw_spin_lock_irq(&p->pi_lock);
7620 rq_lock(rq, &rf);
7621
7622 update_rq_clock(rq);
7623
7624 if (task_rq(p) == rq && task_on_rq_queued(p)) {
7625 cpu = select_fallback_rq(rq->cpu, p);
7626 rq = __migrate_task(rq, &rf, p, cpu);
7627 }
7628
7629 rq_unlock(rq, &rf);
7630 raw_spin_unlock_irq(&p->pi_lock);
7631
7632 put_task_struct(p);
7633
7634 return 0;
7635 }
7636
7637 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
7638
7639 /*
7640 * Ensure we only run per-cpu kthreads once the CPU goes !active.
7641 *
7642 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
7643 * effective when the hotplug motion is down.
7644 */
7645 static void balance_push(struct rq *rq)
7646 {
7647 struct task_struct *push_task = rq->curr;
7648
7649 lockdep_assert_held(&rq->lock);
7650 SCHED_WARN_ON(rq->cpu != smp_processor_id());
7651
7652 /*
7653 * Ensure the thing is persistent until balance_push_set(.on = false);
7654 */
7655 rq->balance_callback = &balance_push_callback;
7656
7657 /*
7658 * Only active while going offline.
7659 */
7660 if (!cpu_dying(rq->cpu))
7661 return;
7662
7663 /*
7664 * Both the cpu-hotplug and stop task are in this case and are
7665 * required to complete the hotplug process.
7666 *
7667 * XXX: the idle task does not match kthread_is_per_cpu() due to
7668 * histerical raisins.
7669 */
7670 if (rq->idle == push_task ||
7671 kthread_is_per_cpu(push_task) ||
7672 is_migration_disabled(push_task)) {
7673
7674 /*
7675 * If this is the idle task on the outgoing CPU try to wake
7676 * up the hotplug control thread which might wait for the
7677 * last task to vanish. The rcuwait_active() check is
7678 * accurate here because the waiter is pinned on this CPU
7679 * and can't obviously be running in parallel.
7680 *
7681 * On RT kernels this also has to check whether there are
7682 * pinned and scheduled out tasks on the runqueue. They
7683 * need to leave the migrate disabled section first.
7684 */
7685 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
7686 rcuwait_active(&rq->hotplug_wait)) {
7687 raw_spin_unlock(&rq->lock);
7688 rcuwait_wake_up(&rq->hotplug_wait);
7689 raw_spin_lock(&rq->lock);
7690 }
7691 return;
7692 }
7693
7694 get_task_struct(push_task);
7695 /*
7696 * Temporarily drop rq->lock such that we can wake-up the stop task.
7697 * Both preemption and IRQs are still disabled.
7698 */
7699 raw_spin_unlock(&rq->lock);
7700 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
7701 this_cpu_ptr(&push_work));
7702 /*
7703 * At this point need_resched() is true and we'll take the loop in
7704 * schedule(). The next pick is obviously going to be the stop task
7705 * which kthread_is_per_cpu() and will push this task away.
7706 */
7707 raw_spin_lock(&rq->lock);
7708 }
7709
7710 static void balance_push_set(int cpu, bool on)
7711 {
7712 struct rq *rq = cpu_rq(cpu);
7713 struct rq_flags rf;
7714
7715 rq_lock_irqsave(rq, &rf);
7716 if (on) {
7717 WARN_ON_ONCE(rq->balance_callback);
7718 rq->balance_callback = &balance_push_callback;
7719 } else if (rq->balance_callback == &balance_push_callback) {
7720 rq->balance_callback = NULL;
7721 }
7722 rq_unlock_irqrestore(rq, &rf);
7723 }
7724
7725 /*
7726 * Invoked from a CPUs hotplug control thread after the CPU has been marked
7727 * inactive. All tasks which are not per CPU kernel threads are either
7728 * pushed off this CPU now via balance_push() or placed on a different CPU
7729 * during wakeup. Wait until the CPU is quiescent.
7730 */
7731 static void balance_hotplug_wait(void)
7732 {
7733 struct rq *rq = this_rq();
7734
7735 rcuwait_wait_event(&rq->hotplug_wait,
7736 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
7737 TASK_UNINTERRUPTIBLE);
7738 }
7739
7740 #else
7741
7742 static inline void balance_push(struct rq *rq)
7743 {
7744 }
7745
7746 static inline void balance_push_set(int cpu, bool on)
7747 {
7748 }
7749
7750 static inline void balance_hotplug_wait(void)
7751 {
7752 }
7753
7754 #endif /* CONFIG_HOTPLUG_CPU */
7755
7756 void set_rq_online(struct rq *rq)
7757 {
7758 if (!rq->online) {
7759 const struct sched_class *class;
7760
7761 cpumask_set_cpu(rq->cpu, rq->rd->online);
7762 rq->online = 1;
7763
7764 for_each_class(class) {
7765 if (class->rq_online)
7766 class->rq_online(rq);
7767 }
7768 }
7769 }
7770
7771 void set_rq_offline(struct rq *rq)
7772 {
7773 if (rq->online) {
7774 const struct sched_class *class;
7775
7776 for_each_class(class) {
7777 if (class->rq_offline)
7778 class->rq_offline(rq);
7779 }
7780
7781 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7782 rq->online = 0;
7783 }
7784 }
7785
7786 /*
7787 * used to mark begin/end of suspend/resume:
7788 */
7789 static int num_cpus_frozen;
7790
7791 /*
7792 * Update cpusets according to cpu_active mask. If cpusets are
7793 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7794 * around partition_sched_domains().
7795 *
7796 * If we come here as part of a suspend/resume, don't touch cpusets because we
7797 * want to restore it back to its original state upon resume anyway.
7798 */
7799 static void cpuset_cpu_active(void)
7800 {
7801 if (cpuhp_tasks_frozen) {
7802 /*
7803 * num_cpus_frozen tracks how many CPUs are involved in suspend
7804 * resume sequence. As long as this is not the last online
7805 * operation in the resume sequence, just build a single sched
7806 * domain, ignoring cpusets.
7807 */
7808 partition_sched_domains(1, NULL, NULL);
7809 if (--num_cpus_frozen)
7810 return;
7811 /*
7812 * This is the last CPU online operation. So fall through and
7813 * restore the original sched domains by considering the
7814 * cpuset configurations.
7815 */
7816 cpuset_force_rebuild();
7817 }
7818 cpuset_update_active_cpus();
7819 }
7820
7821 static int cpuset_cpu_inactive(unsigned int cpu)
7822 {
7823 if (!cpuhp_tasks_frozen) {
7824 if (dl_cpu_busy(cpu))
7825 return -EBUSY;
7826 cpuset_update_active_cpus();
7827 } else {
7828 num_cpus_frozen++;
7829 partition_sched_domains(1, NULL, NULL);
7830 }
7831 return 0;
7832 }
7833
7834 int sched_cpu_activate(unsigned int cpu)
7835 {
7836 struct rq *rq = cpu_rq(cpu);
7837 struct rq_flags rf;
7838
7839 /*
7840 * Clear the balance_push callback and prepare to schedule
7841 * regular tasks.
7842 */
7843 balance_push_set(cpu, false);
7844
7845 #ifdef CONFIG_SCHED_SMT
7846 /*
7847 * When going up, increment the number of cores with SMT present.
7848 */
7849 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7850 static_branch_inc_cpuslocked(&sched_smt_present);
7851 #endif
7852 set_cpu_active(cpu, true);
7853
7854 if (sched_smp_initialized) {
7855 sched_domains_numa_masks_set(cpu);
7856 cpuset_cpu_active();
7857 }
7858
7859 /*
7860 * Put the rq online, if not already. This happens:
7861 *
7862 * 1) In the early boot process, because we build the real domains
7863 * after all CPUs have been brought up.
7864 *
7865 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7866 * domains.
7867 */
7868 rq_lock_irqsave(rq, &rf);
7869 if (rq->rd) {
7870 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7871 set_rq_online(rq);
7872 }
7873 rq_unlock_irqrestore(rq, &rf);
7874
7875 return 0;
7876 }
7877
7878 int sched_cpu_deactivate(unsigned int cpu)
7879 {
7880 struct rq *rq = cpu_rq(cpu);
7881 struct rq_flags rf;
7882 int ret;
7883
7884 /*
7885 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
7886 * load balancing when not active
7887 */
7888 nohz_balance_exit_idle(rq);
7889
7890 set_cpu_active(cpu, false);
7891
7892 /*
7893 * From this point forward, this CPU will refuse to run any task that
7894 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
7895 * push those tasks away until this gets cleared, see
7896 * sched_cpu_dying().
7897 */
7898 balance_push_set(cpu, true);
7899
7900 /*
7901 * We've cleared cpu_active_mask / set balance_push, wait for all
7902 * preempt-disabled and RCU users of this state to go away such that
7903 * all new such users will observe it.
7904 *
7905 * Specifically, we rely on ttwu to no longer target this CPU, see
7906 * ttwu_queue_cond() and is_cpu_allowed().
7907 *
7908 * Do sync before park smpboot threads to take care the rcu boost case.
7909 */
7910 synchronize_rcu();
7911
7912 rq_lock_irqsave(rq, &rf);
7913 if (rq->rd) {
7914 update_rq_clock(rq);
7915 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7916 set_rq_offline(rq);
7917 }
7918 rq_unlock_irqrestore(rq, &rf);
7919
7920 #ifdef CONFIG_SCHED_SMT
7921 /*
7922 * When going down, decrement the number of cores with SMT present.
7923 */
7924 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7925 static_branch_dec_cpuslocked(&sched_smt_present);
7926 #endif
7927
7928 if (!sched_smp_initialized)
7929 return 0;
7930
7931 ret = cpuset_cpu_inactive(cpu);
7932 if (ret) {
7933 balance_push_set(cpu, false);
7934 set_cpu_active(cpu, true);
7935 return ret;
7936 }
7937 sched_domains_numa_masks_clear(cpu);
7938 return 0;
7939 }
7940
7941 static void sched_rq_cpu_starting(unsigned int cpu)
7942 {
7943 struct rq *rq = cpu_rq(cpu);
7944
7945 rq->calc_load_update = calc_load_update;
7946 update_max_interval();
7947 }
7948
7949 int sched_cpu_starting(unsigned int cpu)
7950 {
7951 sched_rq_cpu_starting(cpu);
7952 sched_tick_start(cpu);
7953 return 0;
7954 }
7955
7956 #ifdef CONFIG_HOTPLUG_CPU
7957
7958 /*
7959 * Invoked immediately before the stopper thread is invoked to bring the
7960 * CPU down completely. At this point all per CPU kthreads except the
7961 * hotplug thread (current) and the stopper thread (inactive) have been
7962 * either parked or have been unbound from the outgoing CPU. Ensure that
7963 * any of those which might be on the way out are gone.
7964 *
7965 * If after this point a bound task is being woken on this CPU then the
7966 * responsible hotplug callback has failed to do it's job.
7967 * sched_cpu_dying() will catch it with the appropriate fireworks.
7968 */
7969 int sched_cpu_wait_empty(unsigned int cpu)
7970 {
7971 balance_hotplug_wait();
7972 return 0;
7973 }
7974
7975 /*
7976 * Since this CPU is going 'away' for a while, fold any nr_active delta we
7977 * might have. Called from the CPU stopper task after ensuring that the
7978 * stopper is the last running task on the CPU, so nr_active count is
7979 * stable. We need to take the teardown thread which is calling this into
7980 * account, so we hand in adjust = 1 to the load calculation.
7981 *
7982 * Also see the comment "Global load-average calculations".
7983 */
7984 static void calc_load_migrate(struct rq *rq)
7985 {
7986 long delta = calc_load_fold_active(rq, 1);
7987
7988 if (delta)
7989 atomic_long_add(delta, &calc_load_tasks);
7990 }
7991
7992 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
7993 {
7994 struct task_struct *g, *p;
7995 int cpu = cpu_of(rq);
7996
7997 lockdep_assert_held(&rq->lock);
7998
7999 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
8000 for_each_process_thread(g, p) {
8001 if (task_cpu(p) != cpu)
8002 continue;
8003
8004 if (!task_on_rq_queued(p))
8005 continue;
8006
8007 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
8008 }
8009 }
8010
8011 int sched_cpu_dying(unsigned int cpu)
8012 {
8013 struct rq *rq = cpu_rq(cpu);
8014 struct rq_flags rf;
8015
8016 /* Handle pending wakeups and then migrate everything off */
8017 sched_tick_stop(cpu);
8018
8019 rq_lock_irqsave(rq, &rf);
8020 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
8021 WARN(true, "Dying CPU not properly vacated!");
8022 dump_rq_tasks(rq, KERN_WARNING);
8023 }
8024 rq_unlock_irqrestore(rq, &rf);
8025
8026 calc_load_migrate(rq);
8027 update_max_interval();
8028 hrtick_clear(rq);
8029 return 0;
8030 }
8031 #endif
8032
8033 void __init sched_init_smp(void)
8034 {
8035 sched_init_numa();
8036
8037 /*
8038 * There's no userspace yet to cause hotplug operations; hence all the
8039 * CPU masks are stable and all blatant races in the below code cannot
8040 * happen.
8041 */
8042 mutex_lock(&sched_domains_mutex);
8043 sched_init_domains(cpu_active_mask);
8044 mutex_unlock(&sched_domains_mutex);
8045
8046 /* Move init over to a non-isolated CPU */
8047 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
8048 BUG();
8049 sched_init_granularity();
8050
8051 init_sched_rt_class();
8052 init_sched_dl_class();
8053
8054 sched_smp_initialized = true;
8055 }
8056
8057 static int __init migration_init(void)
8058 {
8059 sched_cpu_starting(smp_processor_id());
8060 return 0;
8061 }
8062 early_initcall(migration_init);
8063
8064 #else
8065 void __init sched_init_smp(void)
8066 {
8067 sched_init_granularity();
8068 }
8069 #endif /* CONFIG_SMP */
8070
8071 int in_sched_functions(unsigned long addr)
8072 {
8073 return in_lock_functions(addr) ||
8074 (addr >= (unsigned long)__sched_text_start
8075 && addr < (unsigned long)__sched_text_end);
8076 }
8077
8078 #ifdef CONFIG_CGROUP_SCHED
8079 /*
8080 * Default task group.
8081 * Every task in system belongs to this group at bootup.
8082 */
8083 struct task_group root_task_group;
8084 LIST_HEAD(task_groups);
8085
8086 /* Cacheline aligned slab cache for task_group */
8087 static struct kmem_cache *task_group_cache __read_mostly;
8088 #endif
8089
8090 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
8091 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
8092
8093 void __init sched_init(void)
8094 {
8095 unsigned long ptr = 0;
8096 int i;
8097
8098 /* Make sure the linker didn't screw up */
8099 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
8100 &fair_sched_class + 1 != &rt_sched_class ||
8101 &rt_sched_class + 1 != &dl_sched_class);
8102 #ifdef CONFIG_SMP
8103 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
8104 #endif
8105
8106 wait_bit_init();
8107
8108 #ifdef CONFIG_FAIR_GROUP_SCHED
8109 ptr += 2 * nr_cpu_ids * sizeof(void **);
8110 #endif
8111 #ifdef CONFIG_RT_GROUP_SCHED
8112 ptr += 2 * nr_cpu_ids * sizeof(void **);
8113 #endif
8114 if (ptr) {
8115 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
8116
8117 #ifdef CONFIG_FAIR_GROUP_SCHED
8118 root_task_group.se = (struct sched_entity **)ptr;
8119 ptr += nr_cpu_ids * sizeof(void **);
8120
8121 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8122 ptr += nr_cpu_ids * sizeof(void **);
8123
8124 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
8125 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
8126 #endif /* CONFIG_FAIR_GROUP_SCHED */
8127 #ifdef CONFIG_RT_GROUP_SCHED
8128 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8129 ptr += nr_cpu_ids * sizeof(void **);
8130
8131 root_task_group.rt_rq = (struct rt_rq **)ptr;
8132 ptr += nr_cpu_ids * sizeof(void **);
8133
8134 #endif /* CONFIG_RT_GROUP_SCHED */
8135 }
8136 #ifdef CONFIG_CPUMASK_OFFSTACK
8137 for_each_possible_cpu(i) {
8138 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
8139 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
8140 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
8141 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
8142 }
8143 #endif /* CONFIG_CPUMASK_OFFSTACK */
8144
8145 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
8146 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
8147
8148 #ifdef CONFIG_SMP
8149 init_defrootdomain();
8150 #endif
8151
8152 #ifdef CONFIG_RT_GROUP_SCHED
8153 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8154 global_rt_period(), global_rt_runtime());
8155 #endif /* CONFIG_RT_GROUP_SCHED */
8156
8157 #ifdef CONFIG_CGROUP_SCHED
8158 task_group_cache = KMEM_CACHE(task_group, 0);
8159
8160 list_add(&root_task_group.list, &task_groups);
8161 INIT_LIST_HEAD(&root_task_group.children);
8162 INIT_LIST_HEAD(&root_task_group.siblings);
8163 autogroup_init(&init_task);
8164 #endif /* CONFIG_CGROUP_SCHED */
8165
8166 for_each_possible_cpu(i) {
8167 struct rq *rq;
8168
8169 rq = cpu_rq(i);
8170 raw_spin_lock_init(&rq->lock);
8171 rq->nr_running = 0;
8172 rq->calc_load_active = 0;
8173 rq->calc_load_update = jiffies + LOAD_FREQ;
8174 init_cfs_rq(&rq->cfs);
8175 init_rt_rq(&rq->rt);
8176 init_dl_rq(&rq->dl);
8177 #ifdef CONFIG_FAIR_GROUP_SCHED
8178 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8179 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
8180 /*
8181 * How much CPU bandwidth does root_task_group get?
8182 *
8183 * In case of task-groups formed thr' the cgroup filesystem, it
8184 * gets 100% of the CPU resources in the system. This overall
8185 * system CPU resource is divided among the tasks of
8186 * root_task_group and its child task-groups in a fair manner,
8187 * based on each entity's (task or task-group's) weight
8188 * (se->load.weight).
8189 *
8190 * In other words, if root_task_group has 10 tasks of weight
8191 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8192 * then A0's share of the CPU resource is:
8193 *
8194 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8195 *
8196 * We achieve this by letting root_task_group's tasks sit
8197 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8198 */
8199 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8200 #endif /* CONFIG_FAIR_GROUP_SCHED */
8201
8202 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8203 #ifdef CONFIG_RT_GROUP_SCHED
8204 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8205 #endif
8206 #ifdef CONFIG_SMP
8207 rq->sd = NULL;
8208 rq->rd = NULL;
8209 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
8210 rq->balance_callback = &balance_push_callback;
8211 rq->active_balance = 0;
8212 rq->next_balance = jiffies;
8213 rq->push_cpu = 0;
8214 rq->cpu = i;
8215 rq->online = 0;
8216 rq->idle_stamp = 0;
8217 rq->avg_idle = 2*sysctl_sched_migration_cost;
8218 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
8219
8220 INIT_LIST_HEAD(&rq->cfs_tasks);
8221
8222 rq_attach_root(rq, &def_root_domain);
8223 #ifdef CONFIG_NO_HZ_COMMON
8224 rq->last_blocked_load_update_tick = jiffies;
8225 atomic_set(&rq->nohz_flags, 0);
8226
8227 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
8228 #endif
8229 #ifdef CONFIG_HOTPLUG_CPU
8230 rcuwait_init(&rq->hotplug_wait);
8231 #endif
8232 #endif /* CONFIG_SMP */
8233 hrtick_rq_init(rq);
8234 atomic_set(&rq->nr_iowait, 0);
8235 }
8236
8237 set_load_weight(&init_task, false);
8238
8239 /*
8240 * The boot idle thread does lazy MMU switching as well:
8241 */
8242 mmgrab(&init_mm);
8243 enter_lazy_tlb(&init_mm, current);
8244
8245 /*
8246 * Make us the idle thread. Technically, schedule() should not be
8247 * called from this thread, however somewhere below it might be,
8248 * but because we are the idle thread, we just pick up running again
8249 * when this runqueue becomes "idle".
8250 */
8251 init_idle(current, smp_processor_id());
8252
8253 calc_load_update = jiffies + LOAD_FREQ;
8254
8255 #ifdef CONFIG_SMP
8256 idle_thread_set_boot_cpu();
8257 balance_push_set(smp_processor_id(), false);
8258 #endif
8259 init_sched_fair_class();
8260
8261 init_schedstats();
8262
8263 psi_init();
8264
8265 init_uclamp();
8266
8267 scheduler_running = 1;
8268 }
8269
8270 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8271 static inline int preempt_count_equals(int preempt_offset)
8272 {
8273 int nested = preempt_count() + rcu_preempt_depth();
8274
8275 return (nested == preempt_offset);
8276 }
8277
8278 void __might_sleep(const char *file, int line, int preempt_offset)
8279 {
8280 /*
8281 * Blocking primitives will set (and therefore destroy) current->state,
8282 * since we will exit with TASK_RUNNING make sure we enter with it,
8283 * otherwise we will destroy state.
8284 */
8285 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8286 "do not call blocking ops when !TASK_RUNNING; "
8287 "state=%lx set at [<%p>] %pS\n",
8288 current->state,
8289 (void *)current->task_state_change,
8290 (void *)current->task_state_change);
8291
8292 ___might_sleep(file, line, preempt_offset);
8293 }
8294 EXPORT_SYMBOL(__might_sleep);
8295
8296 void ___might_sleep(const char *file, int line, int preempt_offset)
8297 {
8298 /* Ratelimiting timestamp: */
8299 static unsigned long prev_jiffy;
8300
8301 unsigned long preempt_disable_ip;
8302
8303 /* WARN_ON_ONCE() by default, no rate limit required: */
8304 rcu_sleep_check();
8305
8306 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
8307 !is_idle_task(current) && !current->non_block_count) ||
8308 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
8309 oops_in_progress)
8310 return;
8311
8312 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8313 return;
8314 prev_jiffy = jiffies;
8315
8316 /* Save this before calling printk(), since that will clobber it: */
8317 preempt_disable_ip = get_preempt_disable_ip(current);
8318
8319 printk(KERN_ERR
8320 "BUG: sleeping function called from invalid context at %s:%d\n",
8321 file, line);
8322 printk(KERN_ERR
8323 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
8324 in_atomic(), irqs_disabled(), current->non_block_count,
8325 current->pid, current->comm);
8326
8327 if (task_stack_end_corrupted(current))
8328 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
8329
8330 debug_show_held_locks(current);
8331 if (irqs_disabled())
8332 print_irqtrace_events(current);
8333 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
8334 && !preempt_count_equals(preempt_offset)) {
8335 pr_err("Preemption disabled at:");
8336 print_ip_sym(KERN_ERR, preempt_disable_ip);
8337 }
8338 dump_stack();
8339 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8340 }
8341 EXPORT_SYMBOL(___might_sleep);
8342
8343 void __cant_sleep(const char *file, int line, int preempt_offset)
8344 {
8345 static unsigned long prev_jiffy;
8346
8347 if (irqs_disabled())
8348 return;
8349
8350 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8351 return;
8352
8353 if (preempt_count() > preempt_offset)
8354 return;
8355
8356 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8357 return;
8358 prev_jiffy = jiffies;
8359
8360 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
8361 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8362 in_atomic(), irqs_disabled(),
8363 current->pid, current->comm);
8364
8365 debug_show_held_locks(current);
8366 dump_stack();
8367 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8368 }
8369 EXPORT_SYMBOL_GPL(__cant_sleep);
8370
8371 #ifdef CONFIG_SMP
8372 void __cant_migrate(const char *file, int line)
8373 {
8374 static unsigned long prev_jiffy;
8375
8376 if (irqs_disabled())
8377 return;
8378
8379 if (is_migration_disabled(current))
8380 return;
8381
8382 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
8383 return;
8384
8385 if (preempt_count() > 0)
8386 return;
8387
8388 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8389 return;
8390 prev_jiffy = jiffies;
8391
8392 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
8393 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
8394 in_atomic(), irqs_disabled(), is_migration_disabled(current),
8395 current->pid, current->comm);
8396
8397 debug_show_held_locks(current);
8398 dump_stack();
8399 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
8400 }
8401 EXPORT_SYMBOL_GPL(__cant_migrate);
8402 #endif
8403 #endif
8404
8405 #ifdef CONFIG_MAGIC_SYSRQ
8406 void normalize_rt_tasks(void)
8407 {
8408 struct task_struct *g, *p;
8409 struct sched_attr attr = {
8410 .sched_policy = SCHED_NORMAL,
8411 };
8412
8413 read_lock(&tasklist_lock);
8414 for_each_process_thread(g, p) {
8415 /*
8416 * Only normalize user tasks:
8417 */
8418 if (p->flags & PF_KTHREAD)
8419 continue;
8420
8421 p->se.exec_start = 0;
8422 schedstat_set(p->se.statistics.wait_start, 0);
8423 schedstat_set(p->se.statistics.sleep_start, 0);
8424 schedstat_set(p->se.statistics.block_start, 0);
8425
8426 if (!dl_task(p) && !rt_task(p)) {
8427 /*
8428 * Renice negative nice level userspace
8429 * tasks back to 0:
8430 */
8431 if (task_nice(p) < 0)
8432 set_user_nice(p, 0);
8433 continue;
8434 }
8435
8436 __sched_setscheduler(p, &attr, false, false);
8437 }
8438 read_unlock(&tasklist_lock);
8439 }
8440
8441 #endif /* CONFIG_MAGIC_SYSRQ */
8442
8443 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8444 /*
8445 * These functions are only useful for the IA64 MCA handling, or kdb.
8446 *
8447 * They can only be called when the whole system has been
8448 * stopped - every CPU needs to be quiescent, and no scheduling
8449 * activity can take place. Using them for anything else would
8450 * be a serious bug, and as a result, they aren't even visible
8451 * under any other configuration.
8452 */
8453
8454 /**
8455 * curr_task - return the current task for a given CPU.
8456 * @cpu: the processor in question.
8457 *
8458 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8459 *
8460 * Return: The current task for @cpu.
8461 */
8462 struct task_struct *curr_task(int cpu)
8463 {
8464 return cpu_curr(cpu);
8465 }
8466
8467 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8468
8469 #ifdef CONFIG_IA64
8470 /**
8471 * ia64_set_curr_task - set the current task for a given CPU.
8472 * @cpu: the processor in question.
8473 * @p: the task pointer to set.
8474 *
8475 * Description: This function must only be used when non-maskable interrupts
8476 * are serviced on a separate stack. It allows the architecture to switch the
8477 * notion of the current task on a CPU in a non-blocking manner. This function
8478 * must be called with all CPU's synchronized, and interrupts disabled, the
8479 * and caller must save the original value of the current task (see
8480 * curr_task() above) and restore that value before reenabling interrupts and
8481 * re-starting the system.
8482 *
8483 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8484 */
8485 void ia64_set_curr_task(int cpu, struct task_struct *p)
8486 {
8487 cpu_curr(cpu) = p;
8488 }
8489
8490 #endif
8491
8492 #ifdef CONFIG_CGROUP_SCHED
8493 /* task_group_lock serializes the addition/removal of task groups */
8494 static DEFINE_SPINLOCK(task_group_lock);
8495
8496 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8497 struct task_group *parent)
8498 {
8499 #ifdef CONFIG_UCLAMP_TASK_GROUP
8500 enum uclamp_id clamp_id;
8501
8502 for_each_clamp_id(clamp_id) {
8503 uclamp_se_set(&tg->uclamp_req[clamp_id],
8504 uclamp_none(clamp_id), false);
8505 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8506 }
8507 #endif
8508 }
8509
8510 static void sched_free_group(struct task_group *tg)
8511 {
8512 free_fair_sched_group(tg);
8513 free_rt_sched_group(tg);
8514 autogroup_free(tg);
8515 kmem_cache_free(task_group_cache, tg);
8516 }
8517
8518 /* allocate runqueue etc for a new task group */
8519 struct task_group *sched_create_group(struct task_group *parent)
8520 {
8521 struct task_group *tg;
8522
8523 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8524 if (!tg)
8525 return ERR_PTR(-ENOMEM);
8526
8527 if (!alloc_fair_sched_group(tg, parent))
8528 goto err;
8529
8530 if (!alloc_rt_sched_group(tg, parent))
8531 goto err;
8532
8533 alloc_uclamp_sched_group(tg, parent);
8534
8535 return tg;
8536
8537 err:
8538 sched_free_group(tg);
8539 return ERR_PTR(-ENOMEM);
8540 }
8541
8542 void sched_online_group(struct task_group *tg, struct task_group *parent)
8543 {
8544 unsigned long flags;
8545
8546 spin_lock_irqsave(&task_group_lock, flags);
8547 list_add_rcu(&tg->list, &task_groups);
8548
8549 /* Root should already exist: */
8550 WARN_ON(!parent);
8551
8552 tg->parent = parent;
8553 INIT_LIST_HEAD(&tg->children);
8554 list_add_rcu(&tg->siblings, &parent->children);
8555 spin_unlock_irqrestore(&task_group_lock, flags);
8556
8557 online_fair_sched_group(tg);
8558 }
8559
8560 /* rcu callback to free various structures associated with a task group */
8561 static void sched_free_group_rcu(struct rcu_head *rhp)
8562 {
8563 /* Now it should be safe to free those cfs_rqs: */
8564 sched_free_group(container_of(rhp, struct task_group, rcu));
8565 }
8566
8567 void sched_destroy_group(struct task_group *tg)
8568 {
8569 /* Wait for possible concurrent references to cfs_rqs complete: */
8570 call_rcu(&tg->rcu, sched_free_group_rcu);
8571 }
8572
8573 void sched_offline_group(struct task_group *tg)
8574 {
8575 unsigned long flags;
8576
8577 /* End participation in shares distribution: */
8578 unregister_fair_sched_group(tg);
8579
8580 spin_lock_irqsave(&task_group_lock, flags);
8581 list_del_rcu(&tg->list);
8582 list_del_rcu(&tg->siblings);
8583 spin_unlock_irqrestore(&task_group_lock, flags);
8584 }
8585
8586 static void sched_change_group(struct task_struct *tsk, int type)
8587 {
8588 struct task_group *tg;
8589
8590 /*
8591 * All callers are synchronized by task_rq_lock(); we do not use RCU
8592 * which is pointless here. Thus, we pass "true" to task_css_check()
8593 * to prevent lockdep warnings.
8594 */
8595 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8596 struct task_group, css);
8597 tg = autogroup_task_group(tsk, tg);
8598 tsk->sched_task_group = tg;
8599
8600 #ifdef CONFIG_FAIR_GROUP_SCHED
8601 if (tsk->sched_class->task_change_group)
8602 tsk->sched_class->task_change_group(tsk, type);
8603 else
8604 #endif
8605 set_task_rq(tsk, task_cpu(tsk));
8606 }
8607
8608 /*
8609 * Change task's runqueue when it moves between groups.
8610 *
8611 * The caller of this function should have put the task in its new group by
8612 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8613 * its new group.
8614 */
8615 void sched_move_task(struct task_struct *tsk)
8616 {
8617 int queued, running, queue_flags =
8618 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8619 struct rq_flags rf;
8620 struct rq *rq;
8621
8622 rq = task_rq_lock(tsk, &rf);
8623 update_rq_clock(rq);
8624
8625 running = task_current(rq, tsk);
8626 queued = task_on_rq_queued(tsk);
8627
8628 if (queued)
8629 dequeue_task(rq, tsk, queue_flags);
8630 if (running)
8631 put_prev_task(rq, tsk);
8632
8633 sched_change_group(tsk, TASK_MOVE_GROUP);
8634
8635 if (queued)
8636 enqueue_task(rq, tsk, queue_flags);
8637 if (running) {
8638 set_next_task(rq, tsk);
8639 /*
8640 * After changing group, the running task may have joined a
8641 * throttled one but it's still the running task. Trigger a
8642 * resched to make sure that task can still run.
8643 */
8644 resched_curr(rq);
8645 }
8646
8647 task_rq_unlock(rq, tsk, &rf);
8648 }
8649
8650 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8651 {
8652 return css ? container_of(css, struct task_group, css) : NULL;
8653 }
8654
8655 static struct cgroup_subsys_state *
8656 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8657 {
8658 struct task_group *parent = css_tg(parent_css);
8659 struct task_group *tg;
8660
8661 if (!parent) {
8662 /* This is early initialization for the top cgroup */
8663 return &root_task_group.css;
8664 }
8665
8666 tg = sched_create_group(parent);
8667 if (IS_ERR(tg))
8668 return ERR_PTR(-ENOMEM);
8669
8670 return &tg->css;
8671 }
8672
8673 /* Expose task group only after completing cgroup initialization */
8674 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8675 {
8676 struct task_group *tg = css_tg(css);
8677 struct task_group *parent = css_tg(css->parent);
8678
8679 if (parent)
8680 sched_online_group(tg, parent);
8681
8682 #ifdef CONFIG_UCLAMP_TASK_GROUP
8683 /* Propagate the effective uclamp value for the new group */
8684 cpu_util_update_eff(css);
8685 #endif
8686
8687 return 0;
8688 }
8689
8690 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8691 {
8692 struct task_group *tg = css_tg(css);
8693
8694 sched_offline_group(tg);
8695 }
8696
8697 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8698 {
8699 struct task_group *tg = css_tg(css);
8700
8701 /*
8702 * Relies on the RCU grace period between css_released() and this.
8703 */
8704 sched_free_group(tg);
8705 }
8706
8707 /*
8708 * This is called before wake_up_new_task(), therefore we really only
8709 * have to set its group bits, all the other stuff does not apply.
8710 */
8711 static void cpu_cgroup_fork(struct task_struct *task)
8712 {
8713 struct rq_flags rf;
8714 struct rq *rq;
8715
8716 rq = task_rq_lock(task, &rf);
8717
8718 update_rq_clock(rq);
8719 sched_change_group(task, TASK_SET_GROUP);
8720
8721 task_rq_unlock(rq, task, &rf);
8722 }
8723
8724 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8725 {
8726 struct task_struct *task;
8727 struct cgroup_subsys_state *css;
8728 int ret = 0;
8729
8730 cgroup_taskset_for_each(task, css, tset) {
8731 #ifdef CONFIG_RT_GROUP_SCHED
8732 if (!sched_rt_can_attach(css_tg(css), task))
8733 return -EINVAL;
8734 #endif
8735 /*
8736 * Serialize against wake_up_new_task() such that if it's
8737 * running, we're sure to observe its full state.
8738 */
8739 raw_spin_lock_irq(&task->pi_lock);
8740 /*
8741 * Avoid calling sched_move_task() before wake_up_new_task()
8742 * has happened. This would lead to problems with PELT, due to
8743 * move wanting to detach+attach while we're not attached yet.
8744 */
8745 if (task->state == TASK_NEW)
8746 ret = -EINVAL;
8747 raw_spin_unlock_irq(&task->pi_lock);
8748
8749 if (ret)
8750 break;
8751 }
8752 return ret;
8753 }
8754
8755 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8756 {
8757 struct task_struct *task;
8758 struct cgroup_subsys_state *css;
8759
8760 cgroup_taskset_for_each(task, css, tset)
8761 sched_move_task(task);
8762 }
8763
8764 #ifdef CONFIG_UCLAMP_TASK_GROUP
8765 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8766 {
8767 struct cgroup_subsys_state *top_css = css;
8768 struct uclamp_se *uc_parent = NULL;
8769 struct uclamp_se *uc_se = NULL;
8770 unsigned int eff[UCLAMP_CNT];
8771 enum uclamp_id clamp_id;
8772 unsigned int clamps;
8773
8774 css_for_each_descendant_pre(css, top_css) {
8775 uc_parent = css_tg(css)->parent
8776 ? css_tg(css)->parent->uclamp : NULL;
8777
8778 for_each_clamp_id(clamp_id) {
8779 /* Assume effective clamps matches requested clamps */
8780 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8781 /* Cap effective clamps with parent's effective clamps */
8782 if (uc_parent &&
8783 eff[clamp_id] > uc_parent[clamp_id].value) {
8784 eff[clamp_id] = uc_parent[clamp_id].value;
8785 }
8786 }
8787 /* Ensure protection is always capped by limit */
8788 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8789
8790 /* Propagate most restrictive effective clamps */
8791 clamps = 0x0;
8792 uc_se = css_tg(css)->uclamp;
8793 for_each_clamp_id(clamp_id) {
8794 if (eff[clamp_id] == uc_se[clamp_id].value)
8795 continue;
8796 uc_se[clamp_id].value = eff[clamp_id];
8797 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8798 clamps |= (0x1 << clamp_id);
8799 }
8800 if (!clamps) {
8801 css = css_rightmost_descendant(css);
8802 continue;
8803 }
8804
8805 /* Immediately update descendants RUNNABLE tasks */
8806 uclamp_update_active_tasks(css, clamps);
8807 }
8808 }
8809
8810 /*
8811 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8812 * C expression. Since there is no way to convert a macro argument (N) into a
8813 * character constant, use two levels of macros.
8814 */
8815 #define _POW10(exp) ((unsigned int)1e##exp)
8816 #define POW10(exp) _POW10(exp)
8817
8818 struct uclamp_request {
8819 #define UCLAMP_PERCENT_SHIFT 2
8820 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
8821 s64 percent;
8822 u64 util;
8823 int ret;
8824 };
8825
8826 static inline struct uclamp_request
8827 capacity_from_percent(char *buf)
8828 {
8829 struct uclamp_request req = {
8830 .percent = UCLAMP_PERCENT_SCALE,
8831 .util = SCHED_CAPACITY_SCALE,
8832 .ret = 0,
8833 };
8834
8835 buf = strim(buf);
8836 if (strcmp(buf, "max")) {
8837 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8838 &req.percent);
8839 if (req.ret)
8840 return req;
8841 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8842 req.ret = -ERANGE;
8843 return req;
8844 }
8845
8846 req.util = req.percent << SCHED_CAPACITY_SHIFT;
8847 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8848 }
8849
8850 return req;
8851 }
8852
8853 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8854 size_t nbytes, loff_t off,
8855 enum uclamp_id clamp_id)
8856 {
8857 struct uclamp_request req;
8858 struct task_group *tg;
8859
8860 req = capacity_from_percent(buf);
8861 if (req.ret)
8862 return req.ret;
8863
8864 static_branch_enable(&sched_uclamp_used);
8865
8866 mutex_lock(&uclamp_mutex);
8867 rcu_read_lock();
8868
8869 tg = css_tg(of_css(of));
8870 if (tg->uclamp_req[clamp_id].value != req.util)
8871 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8872
8873 /*
8874 * Because of not recoverable conversion rounding we keep track of the
8875 * exact requested value
8876 */
8877 tg->uclamp_pct[clamp_id] = req.percent;
8878
8879 /* Update effective clamps to track the most restrictive value */
8880 cpu_util_update_eff(of_css(of));
8881
8882 rcu_read_unlock();
8883 mutex_unlock(&uclamp_mutex);
8884
8885 return nbytes;
8886 }
8887
8888 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8889 char *buf, size_t nbytes,
8890 loff_t off)
8891 {
8892 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8893 }
8894
8895 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8896 char *buf, size_t nbytes,
8897 loff_t off)
8898 {
8899 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8900 }
8901
8902 static inline void cpu_uclamp_print(struct seq_file *sf,
8903 enum uclamp_id clamp_id)
8904 {
8905 struct task_group *tg;
8906 u64 util_clamp;
8907 u64 percent;
8908 u32 rem;
8909
8910 rcu_read_lock();
8911 tg = css_tg(seq_css(sf));
8912 util_clamp = tg->uclamp_req[clamp_id].value;
8913 rcu_read_unlock();
8914
8915 if (util_clamp == SCHED_CAPACITY_SCALE) {
8916 seq_puts(sf, "max\n");
8917 return;
8918 }
8919
8920 percent = tg->uclamp_pct[clamp_id];
8921 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8922 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8923 }
8924
8925 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8926 {
8927 cpu_uclamp_print(sf, UCLAMP_MIN);
8928 return 0;
8929 }
8930
8931 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8932 {
8933 cpu_uclamp_print(sf, UCLAMP_MAX);
8934 return 0;
8935 }
8936 #endif /* CONFIG_UCLAMP_TASK_GROUP */
8937
8938 #ifdef CONFIG_FAIR_GROUP_SCHED
8939 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8940 struct cftype *cftype, u64 shareval)
8941 {
8942 if (shareval > scale_load_down(ULONG_MAX))
8943 shareval = MAX_SHARES;
8944 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8945 }
8946
8947 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8948 struct cftype *cft)
8949 {
8950 struct task_group *tg = css_tg(css);
8951
8952 return (u64) scale_load_down(tg->shares);
8953 }
8954
8955 #ifdef CONFIG_CFS_BANDWIDTH
8956 static DEFINE_MUTEX(cfs_constraints_mutex);
8957
8958 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8959 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8960 /* More than 203 days if BW_SHIFT equals 20. */
8961 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
8962
8963 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8964
8965 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8966 {
8967 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8968 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8969
8970 if (tg == &root_task_group)
8971 return -EINVAL;
8972
8973 /*
8974 * Ensure we have at some amount of bandwidth every period. This is
8975 * to prevent reaching a state of large arrears when throttled via
8976 * entity_tick() resulting in prolonged exit starvation.
8977 */
8978 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8979 return -EINVAL;
8980
8981 /*
8982 * Likewise, bound things on the other side by preventing insane quota
8983 * periods. This also allows us to normalize in computing quota
8984 * feasibility.
8985 */
8986 if (period > max_cfs_quota_period)
8987 return -EINVAL;
8988
8989 /*
8990 * Bound quota to defend quota against overflow during bandwidth shift.
8991 */
8992 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8993 return -EINVAL;
8994
8995 /*
8996 * Prevent race between setting of cfs_rq->runtime_enabled and
8997 * unthrottle_offline_cfs_rqs().
8998 */
8999 get_online_cpus();
9000 mutex_lock(&cfs_constraints_mutex);
9001 ret = __cfs_schedulable(tg, period, quota);
9002 if (ret)
9003 goto out_unlock;
9004
9005 runtime_enabled = quota != RUNTIME_INF;
9006 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
9007 /*
9008 * If we need to toggle cfs_bandwidth_used, off->on must occur
9009 * before making related changes, and on->off must occur afterwards
9010 */
9011 if (runtime_enabled && !runtime_was_enabled)
9012 cfs_bandwidth_usage_inc();
9013 raw_spin_lock_irq(&cfs_b->lock);
9014 cfs_b->period = ns_to_ktime(period);
9015 cfs_b->quota = quota;
9016
9017 __refill_cfs_bandwidth_runtime(cfs_b);
9018
9019 /* Restart the period timer (if active) to handle new period expiry: */
9020 if (runtime_enabled)
9021 start_cfs_bandwidth(cfs_b);
9022
9023 raw_spin_unlock_irq(&cfs_b->lock);
9024
9025 for_each_online_cpu(i) {
9026 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9027 struct rq *rq = cfs_rq->rq;
9028 struct rq_flags rf;
9029
9030 rq_lock_irq(rq, &rf);
9031 cfs_rq->runtime_enabled = runtime_enabled;
9032 cfs_rq->runtime_remaining = 0;
9033
9034 if (cfs_rq->throttled)
9035 unthrottle_cfs_rq(cfs_rq);
9036 rq_unlock_irq(rq, &rf);
9037 }
9038 if (runtime_was_enabled && !runtime_enabled)
9039 cfs_bandwidth_usage_dec();
9040 out_unlock:
9041 mutex_unlock(&cfs_constraints_mutex);
9042 put_online_cpus();
9043
9044 return ret;
9045 }
9046
9047 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9048 {
9049 u64 quota, period;
9050
9051 period = ktime_to_ns(tg->cfs_bandwidth.period);
9052 if (cfs_quota_us < 0)
9053 quota = RUNTIME_INF;
9054 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
9055 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9056 else
9057 return -EINVAL;
9058
9059 return tg_set_cfs_bandwidth(tg, period, quota);
9060 }
9061
9062 static long tg_get_cfs_quota(struct task_group *tg)
9063 {
9064 u64 quota_us;
9065
9066 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
9067 return -1;
9068
9069 quota_us = tg->cfs_bandwidth.quota;
9070 do_div(quota_us, NSEC_PER_USEC);
9071
9072 return quota_us;
9073 }
9074
9075 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9076 {
9077 u64 quota, period;
9078
9079 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
9080 return -EINVAL;
9081
9082 period = (u64)cfs_period_us * NSEC_PER_USEC;
9083 quota = tg->cfs_bandwidth.quota;
9084
9085 return tg_set_cfs_bandwidth(tg, period, quota);
9086 }
9087
9088 static long tg_get_cfs_period(struct task_group *tg)
9089 {
9090 u64 cfs_period_us;
9091
9092 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
9093 do_div(cfs_period_us, NSEC_PER_USEC);
9094
9095 return cfs_period_us;
9096 }
9097
9098 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
9099 struct cftype *cft)
9100 {
9101 return tg_get_cfs_quota(css_tg(css));
9102 }
9103
9104 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
9105 struct cftype *cftype, s64 cfs_quota_us)
9106 {
9107 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
9108 }
9109
9110 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
9111 struct cftype *cft)
9112 {
9113 return tg_get_cfs_period(css_tg(css));
9114 }
9115
9116 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
9117 struct cftype *cftype, u64 cfs_period_us)
9118 {
9119 return tg_set_cfs_period(css_tg(css), cfs_period_us);
9120 }
9121
9122 struct cfs_schedulable_data {
9123 struct task_group *tg;
9124 u64 period, quota;
9125 };
9126
9127 /*
9128 * normalize group quota/period to be quota/max_period
9129 * note: units are usecs
9130 */
9131 static u64 normalize_cfs_quota(struct task_group *tg,
9132 struct cfs_schedulable_data *d)
9133 {
9134 u64 quota, period;
9135
9136 if (tg == d->tg) {
9137 period = d->period;
9138 quota = d->quota;
9139 } else {
9140 period = tg_get_cfs_period(tg);
9141 quota = tg_get_cfs_quota(tg);
9142 }
9143
9144 /* note: these should typically be equivalent */
9145 if (quota == RUNTIME_INF || quota == -1)
9146 return RUNTIME_INF;
9147
9148 return to_ratio(period, quota);
9149 }
9150
9151 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9152 {
9153 struct cfs_schedulable_data *d = data;
9154 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9155 s64 quota = 0, parent_quota = -1;
9156
9157 if (!tg->parent) {
9158 quota = RUNTIME_INF;
9159 } else {
9160 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
9161
9162 quota = normalize_cfs_quota(tg, d);
9163 parent_quota = parent_b->hierarchical_quota;
9164
9165 /*
9166 * Ensure max(child_quota) <= parent_quota. On cgroup2,
9167 * always take the min. On cgroup1, only inherit when no
9168 * limit is set:
9169 */
9170 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
9171 quota = min(quota, parent_quota);
9172 } else {
9173 if (quota == RUNTIME_INF)
9174 quota = parent_quota;
9175 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9176 return -EINVAL;
9177 }
9178 }
9179 cfs_b->hierarchical_quota = quota;
9180
9181 return 0;
9182 }
9183
9184 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9185 {
9186 int ret;
9187 struct cfs_schedulable_data data = {
9188 .tg = tg,
9189 .period = period,
9190 .quota = quota,
9191 };
9192
9193 if (quota != RUNTIME_INF) {
9194 do_div(data.period, NSEC_PER_USEC);
9195 do_div(data.quota, NSEC_PER_USEC);
9196 }
9197
9198 rcu_read_lock();
9199 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9200 rcu_read_unlock();
9201
9202 return ret;
9203 }
9204
9205 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
9206 {
9207 struct task_group *tg = css_tg(seq_css(sf));
9208 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9209
9210 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
9211 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
9212 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
9213
9214 if (schedstat_enabled() && tg != &root_task_group) {
9215 u64 ws = 0;
9216 int i;
9217
9218 for_each_possible_cpu(i)
9219 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
9220
9221 seq_printf(sf, "wait_sum %llu\n", ws);
9222 }
9223
9224 return 0;
9225 }
9226 #endif /* CONFIG_CFS_BANDWIDTH */
9227 #endif /* CONFIG_FAIR_GROUP_SCHED */
9228
9229 #ifdef CONFIG_RT_GROUP_SCHED
9230 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
9231 struct cftype *cft, s64 val)
9232 {
9233 return sched_group_set_rt_runtime(css_tg(css), val);
9234 }
9235
9236 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
9237 struct cftype *cft)
9238 {
9239 return sched_group_rt_runtime(css_tg(css));
9240 }
9241
9242 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
9243 struct cftype *cftype, u64 rt_period_us)
9244 {
9245 return sched_group_set_rt_period(css_tg(css), rt_period_us);
9246 }
9247
9248 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
9249 struct cftype *cft)
9250 {
9251 return sched_group_rt_period(css_tg(css));
9252 }
9253 #endif /* CONFIG_RT_GROUP_SCHED */
9254
9255 static struct cftype cpu_legacy_files[] = {
9256 #ifdef CONFIG_FAIR_GROUP_SCHED
9257 {
9258 .name = "shares",
9259 .read_u64 = cpu_shares_read_u64,
9260 .write_u64 = cpu_shares_write_u64,
9261 },
9262 #endif
9263 #ifdef CONFIG_CFS_BANDWIDTH
9264 {
9265 .name = "cfs_quota_us",
9266 .read_s64 = cpu_cfs_quota_read_s64,
9267 .write_s64 = cpu_cfs_quota_write_s64,
9268 },
9269 {
9270 .name = "cfs_period_us",
9271 .read_u64 = cpu_cfs_period_read_u64,
9272 .write_u64 = cpu_cfs_period_write_u64,
9273 },
9274 {
9275 .name = "stat",
9276 .seq_show = cpu_cfs_stat_show,
9277 },
9278 #endif
9279 #ifdef CONFIG_RT_GROUP_SCHED
9280 {
9281 .name = "rt_runtime_us",
9282 .read_s64 = cpu_rt_runtime_read,
9283 .write_s64 = cpu_rt_runtime_write,
9284 },
9285 {
9286 .name = "rt_period_us",
9287 .read_u64 = cpu_rt_period_read_uint,
9288 .write_u64 = cpu_rt_period_write_uint,
9289 },
9290 #endif
9291 #ifdef CONFIG_UCLAMP_TASK_GROUP
9292 {
9293 .name = "uclamp.min",
9294 .flags = CFTYPE_NOT_ON_ROOT,
9295 .seq_show = cpu_uclamp_min_show,
9296 .write = cpu_uclamp_min_write,
9297 },
9298 {
9299 .name = "uclamp.max",
9300 .flags = CFTYPE_NOT_ON_ROOT,
9301 .seq_show = cpu_uclamp_max_show,
9302 .write = cpu_uclamp_max_write,
9303 },
9304 #endif
9305 { } /* Terminate */
9306 };
9307
9308 static int cpu_extra_stat_show(struct seq_file *sf,
9309 struct cgroup_subsys_state *css)
9310 {
9311 #ifdef CONFIG_CFS_BANDWIDTH
9312 {
9313 struct task_group *tg = css_tg(css);
9314 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
9315 u64 throttled_usec;
9316
9317 throttled_usec = cfs_b->throttled_time;
9318 do_div(throttled_usec, NSEC_PER_USEC);
9319
9320 seq_printf(sf, "nr_periods %d\n"
9321 "nr_throttled %d\n"
9322 "throttled_usec %llu\n",
9323 cfs_b->nr_periods, cfs_b->nr_throttled,
9324 throttled_usec);
9325 }
9326 #endif
9327 return 0;
9328 }
9329
9330 #ifdef CONFIG_FAIR_GROUP_SCHED
9331 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
9332 struct cftype *cft)
9333 {
9334 struct task_group *tg = css_tg(css);
9335 u64 weight = scale_load_down(tg->shares);
9336
9337 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
9338 }
9339
9340 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
9341 struct cftype *cft, u64 weight)
9342 {
9343 /*
9344 * cgroup weight knobs should use the common MIN, DFL and MAX
9345 * values which are 1, 100 and 10000 respectively. While it loses
9346 * a bit of range on both ends, it maps pretty well onto the shares
9347 * value used by scheduler and the round-trip conversions preserve
9348 * the original value over the entire range.
9349 */
9350 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
9351 return -ERANGE;
9352
9353 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
9354
9355 return sched_group_set_shares(css_tg(css), scale_load(weight));
9356 }
9357
9358 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
9359 struct cftype *cft)
9360 {
9361 unsigned long weight = scale_load_down(css_tg(css)->shares);
9362 int last_delta = INT_MAX;
9363 int prio, delta;
9364
9365 /* find the closest nice value to the current weight */
9366 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
9367 delta = abs(sched_prio_to_weight[prio] - weight);
9368 if (delta >= last_delta)
9369 break;
9370 last_delta = delta;
9371 }
9372
9373 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
9374 }
9375
9376 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
9377 struct cftype *cft, s64 nice)
9378 {
9379 unsigned long weight;
9380 int idx;
9381
9382 if (nice < MIN_NICE || nice > MAX_NICE)
9383 return -ERANGE;
9384
9385 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
9386 idx = array_index_nospec(idx, 40);
9387 weight = sched_prio_to_weight[idx];
9388
9389 return sched_group_set_shares(css_tg(css), scale_load(weight));
9390 }
9391 #endif
9392
9393 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
9394 long period, long quota)
9395 {
9396 if (quota < 0)
9397 seq_puts(sf, "max");
9398 else
9399 seq_printf(sf, "%ld", quota);
9400
9401 seq_printf(sf, " %ld\n", period);
9402 }
9403
9404 /* caller should put the current value in *@periodp before calling */
9405 static int __maybe_unused cpu_period_quota_parse(char *buf,
9406 u64 *periodp, u64 *quotap)
9407 {
9408 char tok[21]; /* U64_MAX */
9409
9410 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9411 return -EINVAL;
9412
9413 *periodp *= NSEC_PER_USEC;
9414
9415 if (sscanf(tok, "%llu", quotap))
9416 *quotap *= NSEC_PER_USEC;
9417 else if (!strcmp(tok, "max"))
9418 *quotap = RUNTIME_INF;
9419 else
9420 return -EINVAL;
9421
9422 return 0;
9423 }
9424
9425 #ifdef CONFIG_CFS_BANDWIDTH
9426 static int cpu_max_show(struct seq_file *sf, void *v)
9427 {
9428 struct task_group *tg = css_tg(seq_css(sf));
9429
9430 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9431 return 0;
9432 }
9433
9434 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9435 char *buf, size_t nbytes, loff_t off)
9436 {
9437 struct task_group *tg = css_tg(of_css(of));
9438 u64 period = tg_get_cfs_period(tg);
9439 u64 quota;
9440 int ret;
9441
9442 ret = cpu_period_quota_parse(buf, &period, &quota);
9443 if (!ret)
9444 ret = tg_set_cfs_bandwidth(tg, period, quota);
9445 return ret ?: nbytes;
9446 }
9447 #endif
9448
9449 static struct cftype cpu_files[] = {
9450 #ifdef CONFIG_FAIR_GROUP_SCHED
9451 {
9452 .name = "weight",
9453 .flags = CFTYPE_NOT_ON_ROOT,
9454 .read_u64 = cpu_weight_read_u64,
9455 .write_u64 = cpu_weight_write_u64,
9456 },
9457 {
9458 .name = "weight.nice",
9459 .flags = CFTYPE_NOT_ON_ROOT,
9460 .read_s64 = cpu_weight_nice_read_s64,
9461 .write_s64 = cpu_weight_nice_write_s64,
9462 },
9463 #endif
9464 #ifdef CONFIG_CFS_BANDWIDTH
9465 {
9466 .name = "max",
9467 .flags = CFTYPE_NOT_ON_ROOT,
9468 .seq_show = cpu_max_show,
9469 .write = cpu_max_write,
9470 },
9471 #endif
9472 #ifdef CONFIG_UCLAMP_TASK_GROUP
9473 {
9474 .name = "uclamp.min",
9475 .flags = CFTYPE_NOT_ON_ROOT,
9476 .seq_show = cpu_uclamp_min_show,
9477 .write = cpu_uclamp_min_write,
9478 },
9479 {
9480 .name = "uclamp.max",
9481 .flags = CFTYPE_NOT_ON_ROOT,
9482 .seq_show = cpu_uclamp_max_show,
9483 .write = cpu_uclamp_max_write,
9484 },
9485 #endif
9486 { } /* terminate */
9487 };
9488
9489 struct cgroup_subsys cpu_cgrp_subsys = {
9490 .css_alloc = cpu_cgroup_css_alloc,
9491 .css_online = cpu_cgroup_css_online,
9492 .css_released = cpu_cgroup_css_released,
9493 .css_free = cpu_cgroup_css_free,
9494 .css_extra_stat_show = cpu_extra_stat_show,
9495 .fork = cpu_cgroup_fork,
9496 .can_attach = cpu_cgroup_can_attach,
9497 .attach = cpu_cgroup_attach,
9498 .legacy_cftypes = cpu_legacy_files,
9499 .dfl_cftypes = cpu_files,
9500 .early_init = true,
9501 .threaded = true,
9502 };
9503
9504 #endif /* CONFIG_CGROUP_SCHED */
9505
9506 void dump_cpu_task(int cpu)
9507 {
9508 pr_info("Task dump for CPU %d:\n", cpu);
9509 sched_show_task(cpu_curr(cpu));
9510 }
9511
9512 /*
9513 * Nice levels are multiplicative, with a gentle 10% change for every
9514 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9515 * nice 1, it will get ~10% less CPU time than another CPU-bound task
9516 * that remained on nice 0.
9517 *
9518 * The "10% effect" is relative and cumulative: from _any_ nice level,
9519 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9520 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9521 * If a task goes up by ~10% and another task goes down by ~10% then
9522 * the relative distance between them is ~25%.)
9523 */
9524 const int sched_prio_to_weight[40] = {
9525 /* -20 */ 88761, 71755, 56483, 46273, 36291,
9526 /* -15 */ 29154, 23254, 18705, 14949, 11916,
9527 /* -10 */ 9548, 7620, 6100, 4904, 3906,
9528 /* -5 */ 3121, 2501, 1991, 1586, 1277,
9529 /* 0 */ 1024, 820, 655, 526, 423,
9530 /* 5 */ 335, 272, 215, 172, 137,
9531 /* 10 */ 110, 87, 70, 56, 45,
9532 /* 15 */ 36, 29, 23, 18, 15,
9533 };
9534
9535 /*
9536 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9537 *
9538 * In cases where the weight does not change often, we can use the
9539 * precalculated inverse to speed up arithmetics by turning divisions
9540 * into multiplications:
9541 */
9542 const u32 sched_prio_to_wmult[40] = {
9543 /* -20 */ 48388, 59856, 76040, 92818, 118348,
9544 /* -15 */ 147320, 184698, 229616, 287308, 360437,
9545 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
9546 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
9547 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
9548 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
9549 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
9550 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9551 };
9552
9553 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9554 {
9555 trace_sched_update_nr_running_tp(rq, count);
9556 }