]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched/core.c
kprobes: Prohibit probing on .entry.text code
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75 #include <linux/context_tracking.h>
76 #include <linux/compiler.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
94 {
95 unsigned long delta;
96 ktime_t soft, hard, now;
97
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
104
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111 }
112
113 DEFINE_MUTEX(sched_domains_mutex);
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116 static void update_rq_clock_task(struct rq *rq, s64 delta);
117
118 void update_rq_clock(struct rq *rq)
119 {
120 s64 delta;
121
122 if (rq->skip_clock_update > 0)
123 return;
124
125 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
126 rq->clock += delta;
127 update_rq_clock_task(rq, delta);
128 }
129
130 /*
131 * Debugging: various feature bits
132 */
133
134 #define SCHED_FEAT(name, enabled) \
135 (1UL << __SCHED_FEAT_##name) * enabled |
136
137 const_debug unsigned int sysctl_sched_features =
138 #include "features.h"
139 0;
140
141 #undef SCHED_FEAT
142
143 #ifdef CONFIG_SCHED_DEBUG
144 #define SCHED_FEAT(name, enabled) \
145 #name ,
146
147 static const char * const sched_feat_names[] = {
148 #include "features.h"
149 };
150
151 #undef SCHED_FEAT
152
153 static int sched_feat_show(struct seq_file *m, void *v)
154 {
155 int i;
156
157 for (i = 0; i < __SCHED_FEAT_NR; i++) {
158 if (!(sysctl_sched_features & (1UL << i)))
159 seq_puts(m, "NO_");
160 seq_printf(m, "%s ", sched_feat_names[i]);
161 }
162 seq_puts(m, "\n");
163
164 return 0;
165 }
166
167 #ifdef HAVE_JUMP_LABEL
168
169 #define jump_label_key__true STATIC_KEY_INIT_TRUE
170 #define jump_label_key__false STATIC_KEY_INIT_FALSE
171
172 #define SCHED_FEAT(name, enabled) \
173 jump_label_key__##enabled ,
174
175 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
176 #include "features.h"
177 };
178
179 #undef SCHED_FEAT
180
181 static void sched_feat_disable(int i)
182 {
183 if (static_key_enabled(&sched_feat_keys[i]))
184 static_key_slow_dec(&sched_feat_keys[i]);
185 }
186
187 static void sched_feat_enable(int i)
188 {
189 if (!static_key_enabled(&sched_feat_keys[i]))
190 static_key_slow_inc(&sched_feat_keys[i]);
191 }
192 #else
193 static void sched_feat_disable(int i) { };
194 static void sched_feat_enable(int i) { };
195 #endif /* HAVE_JUMP_LABEL */
196
197 static int sched_feat_set(char *cmp)
198 {
199 int i;
200 int neg = 0;
201
202 if (strncmp(cmp, "NO_", 3) == 0) {
203 neg = 1;
204 cmp += 3;
205 }
206
207 for (i = 0; i < __SCHED_FEAT_NR; i++) {
208 if (strcmp(cmp, sched_feat_names[i]) == 0) {
209 if (neg) {
210 sysctl_sched_features &= ~(1UL << i);
211 sched_feat_disable(i);
212 } else {
213 sysctl_sched_features |= (1UL << i);
214 sched_feat_enable(i);
215 }
216 break;
217 }
218 }
219
220 return i;
221 }
222
223 static ssize_t
224 sched_feat_write(struct file *filp, const char __user *ubuf,
225 size_t cnt, loff_t *ppos)
226 {
227 char buf[64];
228 char *cmp;
229 int i;
230
231 if (cnt > 63)
232 cnt = 63;
233
234 if (copy_from_user(&buf, ubuf, cnt))
235 return -EFAULT;
236
237 buf[cnt] = 0;
238 cmp = strstrip(buf);
239
240 i = sched_feat_set(cmp);
241 if (i == __SCHED_FEAT_NR)
242 return -EINVAL;
243
244 *ppos += cnt;
245
246 return cnt;
247 }
248
249 static int sched_feat_open(struct inode *inode, struct file *filp)
250 {
251 return single_open(filp, sched_feat_show, NULL);
252 }
253
254 static const struct file_operations sched_feat_fops = {
255 .open = sched_feat_open,
256 .write = sched_feat_write,
257 .read = seq_read,
258 .llseek = seq_lseek,
259 .release = single_release,
260 };
261
262 static __init int sched_init_debug(void)
263 {
264 debugfs_create_file("sched_features", 0644, NULL, NULL,
265 &sched_feat_fops);
266
267 return 0;
268 }
269 late_initcall(sched_init_debug);
270 #endif /* CONFIG_SCHED_DEBUG */
271
272 /*
273 * Number of tasks to iterate in a single balance run.
274 * Limited because this is done with IRQs disabled.
275 */
276 const_debug unsigned int sysctl_sched_nr_migrate = 32;
277
278 /*
279 * period over which we average the RT time consumption, measured
280 * in ms.
281 *
282 * default: 1s
283 */
284 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
285
286 /*
287 * period over which we measure -rt task cpu usage in us.
288 * default: 1s
289 */
290 unsigned int sysctl_sched_rt_period = 1000000;
291
292 __read_mostly int scheduler_running;
293
294 /*
295 * part of the period that we allow rt tasks to run in us.
296 * default: 0.95s
297 */
298 int sysctl_sched_rt_runtime = 950000;
299
300 /*
301 * __task_rq_lock - lock the rq @p resides on.
302 */
303 static inline struct rq *__task_rq_lock(struct task_struct *p)
304 __acquires(rq->lock)
305 {
306 struct rq *rq;
307
308 lockdep_assert_held(&p->pi_lock);
309
310 for (;;) {
311 rq = task_rq(p);
312 raw_spin_lock(&rq->lock);
313 if (likely(rq == task_rq(p)))
314 return rq;
315 raw_spin_unlock(&rq->lock);
316 }
317 }
318
319 /*
320 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
321 */
322 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
323 __acquires(p->pi_lock)
324 __acquires(rq->lock)
325 {
326 struct rq *rq;
327
328 for (;;) {
329 raw_spin_lock_irqsave(&p->pi_lock, *flags);
330 rq = task_rq(p);
331 raw_spin_lock(&rq->lock);
332 if (likely(rq == task_rq(p)))
333 return rq;
334 raw_spin_unlock(&rq->lock);
335 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
336 }
337 }
338
339 static void __task_rq_unlock(struct rq *rq)
340 __releases(rq->lock)
341 {
342 raw_spin_unlock(&rq->lock);
343 }
344
345 static inline void
346 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
347 __releases(rq->lock)
348 __releases(p->pi_lock)
349 {
350 raw_spin_unlock(&rq->lock);
351 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
352 }
353
354 /*
355 * this_rq_lock - lock this runqueue and disable interrupts.
356 */
357 static struct rq *this_rq_lock(void)
358 __acquires(rq->lock)
359 {
360 struct rq *rq;
361
362 local_irq_disable();
363 rq = this_rq();
364 raw_spin_lock(&rq->lock);
365
366 return rq;
367 }
368
369 #ifdef CONFIG_SCHED_HRTICK
370 /*
371 * Use HR-timers to deliver accurate preemption points.
372 */
373
374 static void hrtick_clear(struct rq *rq)
375 {
376 if (hrtimer_active(&rq->hrtick_timer))
377 hrtimer_cancel(&rq->hrtick_timer);
378 }
379
380 /*
381 * High-resolution timer tick.
382 * Runs from hardirq context with interrupts disabled.
383 */
384 static enum hrtimer_restart hrtick(struct hrtimer *timer)
385 {
386 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
387
388 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
389
390 raw_spin_lock(&rq->lock);
391 update_rq_clock(rq);
392 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
393 raw_spin_unlock(&rq->lock);
394
395 return HRTIMER_NORESTART;
396 }
397
398 #ifdef CONFIG_SMP
399
400 static int __hrtick_restart(struct rq *rq)
401 {
402 struct hrtimer *timer = &rq->hrtick_timer;
403 ktime_t time = hrtimer_get_softexpires(timer);
404
405 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
406 }
407
408 /*
409 * called from hardirq (IPI) context
410 */
411 static void __hrtick_start(void *arg)
412 {
413 struct rq *rq = arg;
414
415 raw_spin_lock(&rq->lock);
416 __hrtick_restart(rq);
417 rq->hrtick_csd_pending = 0;
418 raw_spin_unlock(&rq->lock);
419 }
420
421 /*
422 * Called to set the hrtick timer state.
423 *
424 * called with rq->lock held and irqs disabled
425 */
426 void hrtick_start(struct rq *rq, u64 delay)
427 {
428 struct hrtimer *timer = &rq->hrtick_timer;
429 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
430
431 hrtimer_set_expires(timer, time);
432
433 if (rq == this_rq()) {
434 __hrtick_restart(rq);
435 } else if (!rq->hrtick_csd_pending) {
436 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
437 rq->hrtick_csd_pending = 1;
438 }
439 }
440
441 static int
442 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
443 {
444 int cpu = (int)(long)hcpu;
445
446 switch (action) {
447 case CPU_UP_CANCELED:
448 case CPU_UP_CANCELED_FROZEN:
449 case CPU_DOWN_PREPARE:
450 case CPU_DOWN_PREPARE_FROZEN:
451 case CPU_DEAD:
452 case CPU_DEAD_FROZEN:
453 hrtick_clear(cpu_rq(cpu));
454 return NOTIFY_OK;
455 }
456
457 return NOTIFY_DONE;
458 }
459
460 static __init void init_hrtick(void)
461 {
462 hotcpu_notifier(hotplug_hrtick, 0);
463 }
464 #else
465 /*
466 * Called to set the hrtick timer state.
467 *
468 * called with rq->lock held and irqs disabled
469 */
470 void hrtick_start(struct rq *rq, u64 delay)
471 {
472 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
473 HRTIMER_MODE_REL_PINNED, 0);
474 }
475
476 static inline void init_hrtick(void)
477 {
478 }
479 #endif /* CONFIG_SMP */
480
481 static void init_rq_hrtick(struct rq *rq)
482 {
483 #ifdef CONFIG_SMP
484 rq->hrtick_csd_pending = 0;
485
486 rq->hrtick_csd.flags = 0;
487 rq->hrtick_csd.func = __hrtick_start;
488 rq->hrtick_csd.info = rq;
489 #endif
490
491 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
492 rq->hrtick_timer.function = hrtick;
493 }
494 #else /* CONFIG_SCHED_HRTICK */
495 static inline void hrtick_clear(struct rq *rq)
496 {
497 }
498
499 static inline void init_rq_hrtick(struct rq *rq)
500 {
501 }
502
503 static inline void init_hrtick(void)
504 {
505 }
506 #endif /* CONFIG_SCHED_HRTICK */
507
508 /*
509 * resched_task - mark a task 'to be rescheduled now'.
510 *
511 * On UP this means the setting of the need_resched flag, on SMP it
512 * might also involve a cross-CPU call to trigger the scheduler on
513 * the target CPU.
514 */
515 void resched_task(struct task_struct *p)
516 {
517 int cpu;
518
519 lockdep_assert_held(&task_rq(p)->lock);
520
521 if (test_tsk_need_resched(p))
522 return;
523
524 set_tsk_need_resched(p);
525
526 cpu = task_cpu(p);
527 if (cpu == smp_processor_id()) {
528 set_preempt_need_resched();
529 return;
530 }
531
532 /* NEED_RESCHED must be visible before we test polling */
533 smp_mb();
534 if (!tsk_is_polling(p))
535 smp_send_reschedule(cpu);
536 }
537
538 void resched_cpu(int cpu)
539 {
540 struct rq *rq = cpu_rq(cpu);
541 unsigned long flags;
542
543 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
544 return;
545 resched_task(cpu_curr(cpu));
546 raw_spin_unlock_irqrestore(&rq->lock, flags);
547 }
548
549 #ifdef CONFIG_SMP
550 #ifdef CONFIG_NO_HZ_COMMON
551 /*
552 * In the semi idle case, use the nearest busy cpu for migrating timers
553 * from an idle cpu. This is good for power-savings.
554 *
555 * We don't do similar optimization for completely idle system, as
556 * selecting an idle cpu will add more delays to the timers than intended
557 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
558 */
559 int get_nohz_timer_target(int pinned)
560 {
561 int cpu = smp_processor_id();
562 int i;
563 struct sched_domain *sd;
564
565 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
566 return cpu;
567
568 rcu_read_lock();
569 for_each_domain(cpu, sd) {
570 for_each_cpu(i, sched_domain_span(sd)) {
571 if (!idle_cpu(i)) {
572 cpu = i;
573 goto unlock;
574 }
575 }
576 }
577 unlock:
578 rcu_read_unlock();
579 return cpu;
580 }
581 /*
582 * When add_timer_on() enqueues a timer into the timer wheel of an
583 * idle CPU then this timer might expire before the next timer event
584 * which is scheduled to wake up that CPU. In case of a completely
585 * idle system the next event might even be infinite time into the
586 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
587 * leaves the inner idle loop so the newly added timer is taken into
588 * account when the CPU goes back to idle and evaluates the timer
589 * wheel for the next timer event.
590 */
591 static void wake_up_idle_cpu(int cpu)
592 {
593 struct rq *rq = cpu_rq(cpu);
594
595 if (cpu == smp_processor_id())
596 return;
597
598 /*
599 * This is safe, as this function is called with the timer
600 * wheel base lock of (cpu) held. When the CPU is on the way
601 * to idle and has not yet set rq->curr to idle then it will
602 * be serialized on the timer wheel base lock and take the new
603 * timer into account automatically.
604 */
605 if (rq->curr != rq->idle)
606 return;
607
608 /*
609 * We can set TIF_RESCHED on the idle task of the other CPU
610 * lockless. The worst case is that the other CPU runs the
611 * idle task through an additional NOOP schedule()
612 */
613 set_tsk_need_resched(rq->idle);
614
615 /* NEED_RESCHED must be visible before we test polling */
616 smp_mb();
617 if (!tsk_is_polling(rq->idle))
618 smp_send_reschedule(cpu);
619 }
620
621 static bool wake_up_full_nohz_cpu(int cpu)
622 {
623 if (tick_nohz_full_cpu(cpu)) {
624 if (cpu != smp_processor_id() ||
625 tick_nohz_tick_stopped())
626 smp_send_reschedule(cpu);
627 return true;
628 }
629
630 return false;
631 }
632
633 void wake_up_nohz_cpu(int cpu)
634 {
635 if (!wake_up_full_nohz_cpu(cpu))
636 wake_up_idle_cpu(cpu);
637 }
638
639 static inline bool got_nohz_idle_kick(void)
640 {
641 int cpu = smp_processor_id();
642
643 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
644 return false;
645
646 if (idle_cpu(cpu) && !need_resched())
647 return true;
648
649 /*
650 * We can't run Idle Load Balance on this CPU for this time so we
651 * cancel it and clear NOHZ_BALANCE_KICK
652 */
653 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
654 return false;
655 }
656
657 #else /* CONFIG_NO_HZ_COMMON */
658
659 static inline bool got_nohz_idle_kick(void)
660 {
661 return false;
662 }
663
664 #endif /* CONFIG_NO_HZ_COMMON */
665
666 #ifdef CONFIG_NO_HZ_FULL
667 bool sched_can_stop_tick(void)
668 {
669 struct rq *rq;
670
671 rq = this_rq();
672
673 /* Make sure rq->nr_running update is visible after the IPI */
674 smp_rmb();
675
676 /* More than one running task need preemption */
677 if (rq->nr_running > 1)
678 return false;
679
680 return true;
681 }
682 #endif /* CONFIG_NO_HZ_FULL */
683
684 void sched_avg_update(struct rq *rq)
685 {
686 s64 period = sched_avg_period();
687
688 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
689 /*
690 * Inline assembly required to prevent the compiler
691 * optimising this loop into a divmod call.
692 * See __iter_div_u64_rem() for another example of this.
693 */
694 asm("" : "+rm" (rq->age_stamp));
695 rq->age_stamp += period;
696 rq->rt_avg /= 2;
697 }
698 }
699
700 #endif /* CONFIG_SMP */
701
702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704 /*
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
709 */
710 int walk_tg_tree_from(struct task_group *from,
711 tg_visitor down, tg_visitor up, void *data)
712 {
713 struct task_group *parent, *child;
714 int ret;
715
716 parent = from;
717
718 down:
719 ret = (*down)(parent, data);
720 if (ret)
721 goto out;
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726 up:
727 continue;
728 }
729 ret = (*up)(parent, data);
730 if (ret || parent == from)
731 goto out;
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
737 out:
738 return ret;
739 }
740
741 int tg_nop(struct task_group *tg, void *data)
742 {
743 return 0;
744 }
745 #endif
746
747 static void set_load_weight(struct task_struct *p)
748 {
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
755 if (p->policy == SCHED_IDLE) {
756 load->weight = scale_load(WEIGHT_IDLEPRIO);
757 load->inv_weight = WMULT_IDLEPRIO;
758 return;
759 }
760
761 load->weight = scale_load(prio_to_weight[prio]);
762 load->inv_weight = prio_to_wmult[prio];
763 }
764
765 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
766 {
767 update_rq_clock(rq);
768 sched_info_queued(rq, p);
769 p->sched_class->enqueue_task(rq, p, flags);
770 }
771
772 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
773 {
774 update_rq_clock(rq);
775 sched_info_dequeued(rq, p);
776 p->sched_class->dequeue_task(rq, p, flags);
777 }
778
779 void activate_task(struct rq *rq, struct task_struct *p, int flags)
780 {
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible--;
783
784 enqueue_task(rq, p, flags);
785 }
786
787 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
788 {
789 if (task_contributes_to_load(p))
790 rq->nr_uninterruptible++;
791
792 dequeue_task(rq, p, flags);
793 }
794
795 static void update_rq_clock_task(struct rq *rq, s64 delta)
796 {
797 /*
798 * In theory, the compile should just see 0 here, and optimize out the call
799 * to sched_rt_avg_update. But I don't trust it...
800 */
801 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802 s64 steal = 0, irq_delta = 0;
803 #endif
804 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
805 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
806
807 /*
808 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809 * this case when a previous update_rq_clock() happened inside a
810 * {soft,}irq region.
811 *
812 * When this happens, we stop ->clock_task and only update the
813 * prev_irq_time stamp to account for the part that fit, so that a next
814 * update will consume the rest. This ensures ->clock_task is
815 * monotonic.
816 *
817 * It does however cause some slight miss-attribution of {soft,}irq
818 * time, a more accurate solution would be to update the irq_time using
819 * the current rq->clock timestamp, except that would require using
820 * atomic ops.
821 */
822 if (irq_delta > delta)
823 irq_delta = delta;
824
825 rq->prev_irq_time += irq_delta;
826 delta -= irq_delta;
827 #endif
828 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
829 if (static_key_false((&paravirt_steal_rq_enabled))) {
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
836 rq->prev_steal_time_rq += steal;
837 delta -= steal;
838 }
839 #endif
840
841 rq->clock_task += delta;
842
843 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
844 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
845 sched_rt_avg_update(rq, irq_delta + steal);
846 #endif
847 }
848
849 void sched_set_stop_task(int cpu, struct task_struct *stop)
850 {
851 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
852 struct task_struct *old_stop = cpu_rq(cpu)->stop;
853
854 if (stop) {
855 /*
856 * Make it appear like a SCHED_FIFO task, its something
857 * userspace knows about and won't get confused about.
858 *
859 * Also, it will make PI more or less work without too
860 * much confusion -- but then, stop work should not
861 * rely on PI working anyway.
862 */
863 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
864
865 stop->sched_class = &stop_sched_class;
866 }
867
868 cpu_rq(cpu)->stop = stop;
869
870 if (old_stop) {
871 /*
872 * Reset it back to a normal scheduling class so that
873 * it can die in pieces.
874 */
875 old_stop->sched_class = &rt_sched_class;
876 }
877 }
878
879 /*
880 * __normal_prio - return the priority that is based on the static prio
881 */
882 static inline int __normal_prio(struct task_struct *p)
883 {
884 return p->static_prio;
885 }
886
887 /*
888 * Calculate the expected normal priority: i.e. priority
889 * without taking RT-inheritance into account. Might be
890 * boosted by interactivity modifiers. Changes upon fork,
891 * setprio syscalls, and whenever the interactivity
892 * estimator recalculates.
893 */
894 static inline int normal_prio(struct task_struct *p)
895 {
896 int prio;
897
898 if (task_has_dl_policy(p))
899 prio = MAX_DL_PRIO-1;
900 else if (task_has_rt_policy(p))
901 prio = MAX_RT_PRIO-1 - p->rt_priority;
902 else
903 prio = __normal_prio(p);
904 return prio;
905 }
906
907 /*
908 * Calculate the current priority, i.e. the priority
909 * taken into account by the scheduler. This value might
910 * be boosted by RT tasks, or might be boosted by
911 * interactivity modifiers. Will be RT if the task got
912 * RT-boosted. If not then it returns p->normal_prio.
913 */
914 static int effective_prio(struct task_struct *p)
915 {
916 p->normal_prio = normal_prio(p);
917 /*
918 * If we are RT tasks or we were boosted to RT priority,
919 * keep the priority unchanged. Otherwise, update priority
920 * to the normal priority:
921 */
922 if (!rt_prio(p->prio))
923 return p->normal_prio;
924 return p->prio;
925 }
926
927 /**
928 * task_curr - is this task currently executing on a CPU?
929 * @p: the task in question.
930 *
931 * Return: 1 if the task is currently executing. 0 otherwise.
932 */
933 inline int task_curr(const struct task_struct *p)
934 {
935 return cpu_curr(task_cpu(p)) == p;
936 }
937
938 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
939 const struct sched_class *prev_class,
940 int oldprio)
941 {
942 if (prev_class != p->sched_class) {
943 if (prev_class->switched_from)
944 prev_class->switched_from(rq, p);
945 p->sched_class->switched_to(rq, p);
946 } else if (oldprio != p->prio || dl_task(p))
947 p->sched_class->prio_changed(rq, p, oldprio);
948 }
949
950 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
951 {
952 const struct sched_class *class;
953
954 if (p->sched_class == rq->curr->sched_class) {
955 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
956 } else {
957 for_each_class(class) {
958 if (class == rq->curr->sched_class)
959 break;
960 if (class == p->sched_class) {
961 resched_task(rq->curr);
962 break;
963 }
964 }
965 }
966
967 /*
968 * A queue event has occurred, and we're going to schedule. In
969 * this case, we can save a useless back to back clock update.
970 */
971 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
972 rq->skip_clock_update = 1;
973 }
974
975 #ifdef CONFIG_SMP
976 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
977 {
978 #ifdef CONFIG_SCHED_DEBUG
979 /*
980 * We should never call set_task_cpu() on a blocked task,
981 * ttwu() will sort out the placement.
982 */
983 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
984 !(task_preempt_count(p) & PREEMPT_ACTIVE));
985
986 #ifdef CONFIG_LOCKDEP
987 /*
988 * The caller should hold either p->pi_lock or rq->lock, when changing
989 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
990 *
991 * sched_move_task() holds both and thus holding either pins the cgroup,
992 * see task_group().
993 *
994 * Furthermore, all task_rq users should acquire both locks, see
995 * task_rq_lock().
996 */
997 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
998 lockdep_is_held(&task_rq(p)->lock)));
999 #endif
1000 #endif
1001
1002 trace_sched_migrate_task(p, new_cpu);
1003
1004 if (task_cpu(p) != new_cpu) {
1005 if (p->sched_class->migrate_task_rq)
1006 p->sched_class->migrate_task_rq(p, new_cpu);
1007 p->se.nr_migrations++;
1008 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1009 }
1010
1011 __set_task_cpu(p, new_cpu);
1012 }
1013
1014 static void __migrate_swap_task(struct task_struct *p, int cpu)
1015 {
1016 if (p->on_rq) {
1017 struct rq *src_rq, *dst_rq;
1018
1019 src_rq = task_rq(p);
1020 dst_rq = cpu_rq(cpu);
1021
1022 deactivate_task(src_rq, p, 0);
1023 set_task_cpu(p, cpu);
1024 activate_task(dst_rq, p, 0);
1025 check_preempt_curr(dst_rq, p, 0);
1026 } else {
1027 /*
1028 * Task isn't running anymore; make it appear like we migrated
1029 * it before it went to sleep. This means on wakeup we make the
1030 * previous cpu our targer instead of where it really is.
1031 */
1032 p->wake_cpu = cpu;
1033 }
1034 }
1035
1036 struct migration_swap_arg {
1037 struct task_struct *src_task, *dst_task;
1038 int src_cpu, dst_cpu;
1039 };
1040
1041 static int migrate_swap_stop(void *data)
1042 {
1043 struct migration_swap_arg *arg = data;
1044 struct rq *src_rq, *dst_rq;
1045 int ret = -EAGAIN;
1046
1047 src_rq = cpu_rq(arg->src_cpu);
1048 dst_rq = cpu_rq(arg->dst_cpu);
1049
1050 double_raw_lock(&arg->src_task->pi_lock,
1051 &arg->dst_task->pi_lock);
1052 double_rq_lock(src_rq, dst_rq);
1053 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1054 goto unlock;
1055
1056 if (task_cpu(arg->src_task) != arg->src_cpu)
1057 goto unlock;
1058
1059 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1060 goto unlock;
1061
1062 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1063 goto unlock;
1064
1065 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1066 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1067
1068 ret = 0;
1069
1070 unlock:
1071 double_rq_unlock(src_rq, dst_rq);
1072 raw_spin_unlock(&arg->dst_task->pi_lock);
1073 raw_spin_unlock(&arg->src_task->pi_lock);
1074
1075 return ret;
1076 }
1077
1078 /*
1079 * Cross migrate two tasks
1080 */
1081 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1082 {
1083 struct migration_swap_arg arg;
1084 int ret = -EINVAL;
1085
1086 arg = (struct migration_swap_arg){
1087 .src_task = cur,
1088 .src_cpu = task_cpu(cur),
1089 .dst_task = p,
1090 .dst_cpu = task_cpu(p),
1091 };
1092
1093 if (arg.src_cpu == arg.dst_cpu)
1094 goto out;
1095
1096 /*
1097 * These three tests are all lockless; this is OK since all of them
1098 * will be re-checked with proper locks held further down the line.
1099 */
1100 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1101 goto out;
1102
1103 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1104 goto out;
1105
1106 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1107 goto out;
1108
1109 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1110 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1111
1112 out:
1113 return ret;
1114 }
1115
1116 struct migration_arg {
1117 struct task_struct *task;
1118 int dest_cpu;
1119 };
1120
1121 static int migration_cpu_stop(void *data);
1122
1123 /*
1124 * wait_task_inactive - wait for a thread to unschedule.
1125 *
1126 * If @match_state is nonzero, it's the @p->state value just checked and
1127 * not expected to change. If it changes, i.e. @p might have woken up,
1128 * then return zero. When we succeed in waiting for @p to be off its CPU,
1129 * we return a positive number (its total switch count). If a second call
1130 * a short while later returns the same number, the caller can be sure that
1131 * @p has remained unscheduled the whole time.
1132 *
1133 * The caller must ensure that the task *will* unschedule sometime soon,
1134 * else this function might spin for a *long* time. This function can't
1135 * be called with interrupts off, or it may introduce deadlock with
1136 * smp_call_function() if an IPI is sent by the same process we are
1137 * waiting to become inactive.
1138 */
1139 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1140 {
1141 unsigned long flags;
1142 int running, on_rq;
1143 unsigned long ncsw;
1144 struct rq *rq;
1145
1146 for (;;) {
1147 /*
1148 * We do the initial early heuristics without holding
1149 * any task-queue locks at all. We'll only try to get
1150 * the runqueue lock when things look like they will
1151 * work out!
1152 */
1153 rq = task_rq(p);
1154
1155 /*
1156 * If the task is actively running on another CPU
1157 * still, just relax and busy-wait without holding
1158 * any locks.
1159 *
1160 * NOTE! Since we don't hold any locks, it's not
1161 * even sure that "rq" stays as the right runqueue!
1162 * But we don't care, since "task_running()" will
1163 * return false if the runqueue has changed and p
1164 * is actually now running somewhere else!
1165 */
1166 while (task_running(rq, p)) {
1167 if (match_state && unlikely(p->state != match_state))
1168 return 0;
1169 cpu_relax();
1170 }
1171
1172 /*
1173 * Ok, time to look more closely! We need the rq
1174 * lock now, to be *sure*. If we're wrong, we'll
1175 * just go back and repeat.
1176 */
1177 rq = task_rq_lock(p, &flags);
1178 trace_sched_wait_task(p);
1179 running = task_running(rq, p);
1180 on_rq = p->on_rq;
1181 ncsw = 0;
1182 if (!match_state || p->state == match_state)
1183 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1184 task_rq_unlock(rq, p, &flags);
1185
1186 /*
1187 * If it changed from the expected state, bail out now.
1188 */
1189 if (unlikely(!ncsw))
1190 break;
1191
1192 /*
1193 * Was it really running after all now that we
1194 * checked with the proper locks actually held?
1195 *
1196 * Oops. Go back and try again..
1197 */
1198 if (unlikely(running)) {
1199 cpu_relax();
1200 continue;
1201 }
1202
1203 /*
1204 * It's not enough that it's not actively running,
1205 * it must be off the runqueue _entirely_, and not
1206 * preempted!
1207 *
1208 * So if it was still runnable (but just not actively
1209 * running right now), it's preempted, and we should
1210 * yield - it could be a while.
1211 */
1212 if (unlikely(on_rq)) {
1213 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1214
1215 set_current_state(TASK_UNINTERRUPTIBLE);
1216 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1217 continue;
1218 }
1219
1220 /*
1221 * Ahh, all good. It wasn't running, and it wasn't
1222 * runnable, which means that it will never become
1223 * running in the future either. We're all done!
1224 */
1225 break;
1226 }
1227
1228 return ncsw;
1229 }
1230
1231 /***
1232 * kick_process - kick a running thread to enter/exit the kernel
1233 * @p: the to-be-kicked thread
1234 *
1235 * Cause a process which is running on another CPU to enter
1236 * kernel-mode, without any delay. (to get signals handled.)
1237 *
1238 * NOTE: this function doesn't have to take the runqueue lock,
1239 * because all it wants to ensure is that the remote task enters
1240 * the kernel. If the IPI races and the task has been migrated
1241 * to another CPU then no harm is done and the purpose has been
1242 * achieved as well.
1243 */
1244 void kick_process(struct task_struct *p)
1245 {
1246 int cpu;
1247
1248 preempt_disable();
1249 cpu = task_cpu(p);
1250 if ((cpu != smp_processor_id()) && task_curr(p))
1251 smp_send_reschedule(cpu);
1252 preempt_enable();
1253 }
1254 EXPORT_SYMBOL_GPL(kick_process);
1255 #endif /* CONFIG_SMP */
1256
1257 #ifdef CONFIG_SMP
1258 /*
1259 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1260 */
1261 static int select_fallback_rq(int cpu, struct task_struct *p)
1262 {
1263 int nid = cpu_to_node(cpu);
1264 const struct cpumask *nodemask = NULL;
1265 enum { cpuset, possible, fail } state = cpuset;
1266 int dest_cpu;
1267
1268 /*
1269 * If the node that the cpu is on has been offlined, cpu_to_node()
1270 * will return -1. There is no cpu on the node, and we should
1271 * select the cpu on the other node.
1272 */
1273 if (nid != -1) {
1274 nodemask = cpumask_of_node(nid);
1275
1276 /* Look for allowed, online CPU in same node. */
1277 for_each_cpu(dest_cpu, nodemask) {
1278 if (!cpu_online(dest_cpu))
1279 continue;
1280 if (!cpu_active(dest_cpu))
1281 continue;
1282 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1283 return dest_cpu;
1284 }
1285 }
1286
1287 for (;;) {
1288 /* Any allowed, online CPU? */
1289 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1290 if (!cpu_online(dest_cpu))
1291 continue;
1292 if (!cpu_active(dest_cpu))
1293 continue;
1294 goto out;
1295 }
1296
1297 switch (state) {
1298 case cpuset:
1299 /* No more Mr. Nice Guy. */
1300 cpuset_cpus_allowed_fallback(p);
1301 state = possible;
1302 break;
1303
1304 case possible:
1305 do_set_cpus_allowed(p, cpu_possible_mask);
1306 state = fail;
1307 break;
1308
1309 case fail:
1310 BUG();
1311 break;
1312 }
1313 }
1314
1315 out:
1316 if (state != cpuset) {
1317 /*
1318 * Don't tell them about moving exiting tasks or
1319 * kernel threads (both mm NULL), since they never
1320 * leave kernel.
1321 */
1322 if (p->mm && printk_ratelimit()) {
1323 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1324 task_pid_nr(p), p->comm, cpu);
1325 }
1326 }
1327
1328 return dest_cpu;
1329 }
1330
1331 /*
1332 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1333 */
1334 static inline
1335 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1336 {
1337 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1338
1339 /*
1340 * In order not to call set_task_cpu() on a blocking task we need
1341 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1342 * cpu.
1343 *
1344 * Since this is common to all placement strategies, this lives here.
1345 *
1346 * [ this allows ->select_task() to simply return task_cpu(p) and
1347 * not worry about this generic constraint ]
1348 */
1349 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1350 !cpu_online(cpu)))
1351 cpu = select_fallback_rq(task_cpu(p), p);
1352
1353 return cpu;
1354 }
1355
1356 static void update_avg(u64 *avg, u64 sample)
1357 {
1358 s64 diff = sample - *avg;
1359 *avg += diff >> 3;
1360 }
1361 #endif
1362
1363 static void
1364 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1365 {
1366 #ifdef CONFIG_SCHEDSTATS
1367 struct rq *rq = this_rq();
1368
1369 #ifdef CONFIG_SMP
1370 int this_cpu = smp_processor_id();
1371
1372 if (cpu == this_cpu) {
1373 schedstat_inc(rq, ttwu_local);
1374 schedstat_inc(p, se.statistics.nr_wakeups_local);
1375 } else {
1376 struct sched_domain *sd;
1377
1378 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1379 rcu_read_lock();
1380 for_each_domain(this_cpu, sd) {
1381 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1382 schedstat_inc(sd, ttwu_wake_remote);
1383 break;
1384 }
1385 }
1386 rcu_read_unlock();
1387 }
1388
1389 if (wake_flags & WF_MIGRATED)
1390 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1391
1392 #endif /* CONFIG_SMP */
1393
1394 schedstat_inc(rq, ttwu_count);
1395 schedstat_inc(p, se.statistics.nr_wakeups);
1396
1397 if (wake_flags & WF_SYNC)
1398 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1399
1400 #endif /* CONFIG_SCHEDSTATS */
1401 }
1402
1403 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1404 {
1405 activate_task(rq, p, en_flags);
1406 p->on_rq = 1;
1407
1408 /* if a worker is waking up, notify workqueue */
1409 if (p->flags & PF_WQ_WORKER)
1410 wq_worker_waking_up(p, cpu_of(rq));
1411 }
1412
1413 /*
1414 * Mark the task runnable and perform wakeup-preemption.
1415 */
1416 static void
1417 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1418 {
1419 check_preempt_curr(rq, p, wake_flags);
1420 trace_sched_wakeup(p, true);
1421
1422 p->state = TASK_RUNNING;
1423 #ifdef CONFIG_SMP
1424 if (p->sched_class->task_woken)
1425 p->sched_class->task_woken(rq, p);
1426
1427 if (rq->idle_stamp) {
1428 u64 delta = rq_clock(rq) - rq->idle_stamp;
1429 u64 max = 2*rq->max_idle_balance_cost;
1430
1431 update_avg(&rq->avg_idle, delta);
1432
1433 if (rq->avg_idle > max)
1434 rq->avg_idle = max;
1435
1436 rq->idle_stamp = 0;
1437 }
1438 #endif
1439 }
1440
1441 static void
1442 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1443 {
1444 #ifdef CONFIG_SMP
1445 if (p->sched_contributes_to_load)
1446 rq->nr_uninterruptible--;
1447 #endif
1448
1449 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1450 ttwu_do_wakeup(rq, p, wake_flags);
1451 }
1452
1453 /*
1454 * Called in case the task @p isn't fully descheduled from its runqueue,
1455 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1456 * since all we need to do is flip p->state to TASK_RUNNING, since
1457 * the task is still ->on_rq.
1458 */
1459 static int ttwu_remote(struct task_struct *p, int wake_flags)
1460 {
1461 struct rq *rq;
1462 int ret = 0;
1463
1464 rq = __task_rq_lock(p);
1465 if (p->on_rq) {
1466 /* check_preempt_curr() may use rq clock */
1467 update_rq_clock(rq);
1468 ttwu_do_wakeup(rq, p, wake_flags);
1469 ret = 1;
1470 }
1471 __task_rq_unlock(rq);
1472
1473 return ret;
1474 }
1475
1476 #ifdef CONFIG_SMP
1477 static void sched_ttwu_pending(void)
1478 {
1479 struct rq *rq = this_rq();
1480 struct llist_node *llist = llist_del_all(&rq->wake_list);
1481 struct task_struct *p;
1482
1483 raw_spin_lock(&rq->lock);
1484
1485 while (llist) {
1486 p = llist_entry(llist, struct task_struct, wake_entry);
1487 llist = llist_next(llist);
1488 ttwu_do_activate(rq, p, 0);
1489 }
1490
1491 raw_spin_unlock(&rq->lock);
1492 }
1493
1494 void scheduler_ipi(void)
1495 {
1496 /*
1497 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1498 * TIF_NEED_RESCHED remotely (for the first time) will also send
1499 * this IPI.
1500 */
1501 preempt_fold_need_resched();
1502
1503 if (llist_empty(&this_rq()->wake_list)
1504 && !tick_nohz_full_cpu(smp_processor_id())
1505 && !got_nohz_idle_kick())
1506 return;
1507
1508 /*
1509 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1510 * traditionally all their work was done from the interrupt return
1511 * path. Now that we actually do some work, we need to make sure
1512 * we do call them.
1513 *
1514 * Some archs already do call them, luckily irq_enter/exit nest
1515 * properly.
1516 *
1517 * Arguably we should visit all archs and update all handlers,
1518 * however a fair share of IPIs are still resched only so this would
1519 * somewhat pessimize the simple resched case.
1520 */
1521 irq_enter();
1522 tick_nohz_full_check();
1523 sched_ttwu_pending();
1524
1525 /*
1526 * Check if someone kicked us for doing the nohz idle load balance.
1527 */
1528 if (unlikely(got_nohz_idle_kick())) {
1529 this_rq()->idle_balance = 1;
1530 raise_softirq_irqoff(SCHED_SOFTIRQ);
1531 }
1532 irq_exit();
1533 }
1534
1535 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1536 {
1537 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1538 smp_send_reschedule(cpu);
1539 }
1540
1541 bool cpus_share_cache(int this_cpu, int that_cpu)
1542 {
1543 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1544 }
1545 #endif /* CONFIG_SMP */
1546
1547 static void ttwu_queue(struct task_struct *p, int cpu)
1548 {
1549 struct rq *rq = cpu_rq(cpu);
1550
1551 #if defined(CONFIG_SMP)
1552 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1553 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1554 ttwu_queue_remote(p, cpu);
1555 return;
1556 }
1557 #endif
1558
1559 raw_spin_lock(&rq->lock);
1560 ttwu_do_activate(rq, p, 0);
1561 raw_spin_unlock(&rq->lock);
1562 }
1563
1564 /**
1565 * try_to_wake_up - wake up a thread
1566 * @p: the thread to be awakened
1567 * @state: the mask of task states that can be woken
1568 * @wake_flags: wake modifier flags (WF_*)
1569 *
1570 * Put it on the run-queue if it's not already there. The "current"
1571 * thread is always on the run-queue (except when the actual
1572 * re-schedule is in progress), and as such you're allowed to do
1573 * the simpler "current->state = TASK_RUNNING" to mark yourself
1574 * runnable without the overhead of this.
1575 *
1576 * Return: %true if @p was woken up, %false if it was already running.
1577 * or @state didn't match @p's state.
1578 */
1579 static int
1580 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1581 {
1582 unsigned long flags;
1583 int cpu, success = 0;
1584
1585 /*
1586 * If we are going to wake up a thread waiting for CONDITION we
1587 * need to ensure that CONDITION=1 done by the caller can not be
1588 * reordered with p->state check below. This pairs with mb() in
1589 * set_current_state() the waiting thread does.
1590 */
1591 smp_mb__before_spinlock();
1592 raw_spin_lock_irqsave(&p->pi_lock, flags);
1593 if (!(p->state & state))
1594 goto out;
1595
1596 success = 1; /* we're going to change ->state */
1597 cpu = task_cpu(p);
1598
1599 if (p->on_rq && ttwu_remote(p, wake_flags))
1600 goto stat;
1601
1602 #ifdef CONFIG_SMP
1603 /*
1604 * If the owning (remote) cpu is still in the middle of schedule() with
1605 * this task as prev, wait until its done referencing the task.
1606 */
1607 while (p->on_cpu)
1608 cpu_relax();
1609 /*
1610 * Pairs with the smp_wmb() in finish_lock_switch().
1611 */
1612 smp_rmb();
1613
1614 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1615 p->state = TASK_WAKING;
1616
1617 if (p->sched_class->task_waking)
1618 p->sched_class->task_waking(p);
1619
1620 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1621 if (task_cpu(p) != cpu) {
1622 wake_flags |= WF_MIGRATED;
1623 set_task_cpu(p, cpu);
1624 }
1625 #endif /* CONFIG_SMP */
1626
1627 ttwu_queue(p, cpu);
1628 stat:
1629 ttwu_stat(p, cpu, wake_flags);
1630 out:
1631 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1632
1633 return success;
1634 }
1635
1636 /**
1637 * try_to_wake_up_local - try to wake up a local task with rq lock held
1638 * @p: the thread to be awakened
1639 *
1640 * Put @p on the run-queue if it's not already there. The caller must
1641 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1642 * the current task.
1643 */
1644 static void try_to_wake_up_local(struct task_struct *p)
1645 {
1646 struct rq *rq = task_rq(p);
1647
1648 if (WARN_ON_ONCE(rq != this_rq()) ||
1649 WARN_ON_ONCE(p == current))
1650 return;
1651
1652 lockdep_assert_held(&rq->lock);
1653
1654 if (!raw_spin_trylock(&p->pi_lock)) {
1655 raw_spin_unlock(&rq->lock);
1656 raw_spin_lock(&p->pi_lock);
1657 raw_spin_lock(&rq->lock);
1658 }
1659
1660 if (!(p->state & TASK_NORMAL))
1661 goto out;
1662
1663 if (!p->on_rq)
1664 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1665
1666 ttwu_do_wakeup(rq, p, 0);
1667 ttwu_stat(p, smp_processor_id(), 0);
1668 out:
1669 raw_spin_unlock(&p->pi_lock);
1670 }
1671
1672 /**
1673 * wake_up_process - Wake up a specific process
1674 * @p: The process to be woken up.
1675 *
1676 * Attempt to wake up the nominated process and move it to the set of runnable
1677 * processes.
1678 *
1679 * Return: 1 if the process was woken up, 0 if it was already running.
1680 *
1681 * It may be assumed that this function implies a write memory barrier before
1682 * changing the task state if and only if any tasks are woken up.
1683 */
1684 int wake_up_process(struct task_struct *p)
1685 {
1686 WARN_ON(task_is_stopped_or_traced(p));
1687 return try_to_wake_up(p, TASK_NORMAL, 0);
1688 }
1689 EXPORT_SYMBOL(wake_up_process);
1690
1691 int wake_up_state(struct task_struct *p, unsigned int state)
1692 {
1693 return try_to_wake_up(p, state, 0);
1694 }
1695
1696 /*
1697 * Perform scheduler related setup for a newly forked process p.
1698 * p is forked by current.
1699 *
1700 * __sched_fork() is basic setup used by init_idle() too:
1701 */
1702 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1703 {
1704 p->on_rq = 0;
1705
1706 p->se.on_rq = 0;
1707 p->se.exec_start = 0;
1708 p->se.sum_exec_runtime = 0;
1709 p->se.prev_sum_exec_runtime = 0;
1710 p->se.nr_migrations = 0;
1711 p->se.vruntime = 0;
1712 INIT_LIST_HEAD(&p->se.group_node);
1713
1714 #ifdef CONFIG_SCHEDSTATS
1715 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1716 #endif
1717
1718 RB_CLEAR_NODE(&p->dl.rb_node);
1719 hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1720 p->dl.dl_runtime = p->dl.runtime = 0;
1721 p->dl.dl_deadline = p->dl.deadline = 0;
1722 p->dl.dl_period = 0;
1723 p->dl.flags = 0;
1724
1725 INIT_LIST_HEAD(&p->rt.run_list);
1726
1727 #ifdef CONFIG_PREEMPT_NOTIFIERS
1728 INIT_HLIST_HEAD(&p->preempt_notifiers);
1729 #endif
1730
1731 #ifdef CONFIG_NUMA_BALANCING
1732 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1733 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1734 p->mm->numa_scan_seq = 0;
1735 }
1736
1737 if (clone_flags & CLONE_VM)
1738 p->numa_preferred_nid = current->numa_preferred_nid;
1739 else
1740 p->numa_preferred_nid = -1;
1741
1742 p->node_stamp = 0ULL;
1743 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1744 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1745 p->numa_work.next = &p->numa_work;
1746 p->numa_faults_memory = NULL;
1747 p->numa_faults_buffer_memory = NULL;
1748 p->last_task_numa_placement = 0;
1749 p->last_sum_exec_runtime = 0;
1750
1751 INIT_LIST_HEAD(&p->numa_entry);
1752 p->numa_group = NULL;
1753 #endif /* CONFIG_NUMA_BALANCING */
1754 }
1755
1756 #ifdef CONFIG_NUMA_BALANCING
1757 #ifdef CONFIG_SCHED_DEBUG
1758 void set_numabalancing_state(bool enabled)
1759 {
1760 if (enabled)
1761 sched_feat_set("NUMA");
1762 else
1763 sched_feat_set("NO_NUMA");
1764 }
1765 #else
1766 __read_mostly bool numabalancing_enabled;
1767
1768 void set_numabalancing_state(bool enabled)
1769 {
1770 numabalancing_enabled = enabled;
1771 }
1772 #endif /* CONFIG_SCHED_DEBUG */
1773
1774 #ifdef CONFIG_PROC_SYSCTL
1775 int sysctl_numa_balancing(struct ctl_table *table, int write,
1776 void __user *buffer, size_t *lenp, loff_t *ppos)
1777 {
1778 struct ctl_table t;
1779 int err;
1780 int state = numabalancing_enabled;
1781
1782 if (write && !capable(CAP_SYS_ADMIN))
1783 return -EPERM;
1784
1785 t = *table;
1786 t.data = &state;
1787 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1788 if (err < 0)
1789 return err;
1790 if (write)
1791 set_numabalancing_state(state);
1792 return err;
1793 }
1794 #endif
1795 #endif
1796
1797 /*
1798 * fork()/clone()-time setup:
1799 */
1800 int sched_fork(unsigned long clone_flags, struct task_struct *p)
1801 {
1802 unsigned long flags;
1803 int cpu = get_cpu();
1804
1805 __sched_fork(clone_flags, p);
1806 /*
1807 * We mark the process as running here. This guarantees that
1808 * nobody will actually run it, and a signal or other external
1809 * event cannot wake it up and insert it on the runqueue either.
1810 */
1811 p->state = TASK_RUNNING;
1812
1813 /*
1814 * Make sure we do not leak PI boosting priority to the child.
1815 */
1816 p->prio = current->normal_prio;
1817
1818 /*
1819 * Revert to default priority/policy on fork if requested.
1820 */
1821 if (unlikely(p->sched_reset_on_fork)) {
1822 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1823 p->policy = SCHED_NORMAL;
1824 p->static_prio = NICE_TO_PRIO(0);
1825 p->rt_priority = 0;
1826 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1827 p->static_prio = NICE_TO_PRIO(0);
1828
1829 p->prio = p->normal_prio = __normal_prio(p);
1830 set_load_weight(p);
1831
1832 /*
1833 * We don't need the reset flag anymore after the fork. It has
1834 * fulfilled its duty:
1835 */
1836 p->sched_reset_on_fork = 0;
1837 }
1838
1839 if (dl_prio(p->prio)) {
1840 put_cpu();
1841 return -EAGAIN;
1842 } else if (rt_prio(p->prio)) {
1843 p->sched_class = &rt_sched_class;
1844 } else {
1845 p->sched_class = &fair_sched_class;
1846 }
1847
1848 if (p->sched_class->task_fork)
1849 p->sched_class->task_fork(p);
1850
1851 /*
1852 * The child is not yet in the pid-hash so no cgroup attach races,
1853 * and the cgroup is pinned to this child due to cgroup_fork()
1854 * is ran before sched_fork().
1855 *
1856 * Silence PROVE_RCU.
1857 */
1858 raw_spin_lock_irqsave(&p->pi_lock, flags);
1859 set_task_cpu(p, cpu);
1860 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1861
1862 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1863 if (likely(sched_info_on()))
1864 memset(&p->sched_info, 0, sizeof(p->sched_info));
1865 #endif
1866 #if defined(CONFIG_SMP)
1867 p->on_cpu = 0;
1868 #endif
1869 init_task_preempt_count(p);
1870 #ifdef CONFIG_SMP
1871 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1872 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1873 #endif
1874
1875 put_cpu();
1876 return 0;
1877 }
1878
1879 unsigned long to_ratio(u64 period, u64 runtime)
1880 {
1881 if (runtime == RUNTIME_INF)
1882 return 1ULL << 20;
1883
1884 /*
1885 * Doing this here saves a lot of checks in all
1886 * the calling paths, and returning zero seems
1887 * safe for them anyway.
1888 */
1889 if (period == 0)
1890 return 0;
1891
1892 return div64_u64(runtime << 20, period);
1893 }
1894
1895 #ifdef CONFIG_SMP
1896 inline struct dl_bw *dl_bw_of(int i)
1897 {
1898 return &cpu_rq(i)->rd->dl_bw;
1899 }
1900
1901 static inline int dl_bw_cpus(int i)
1902 {
1903 struct root_domain *rd = cpu_rq(i)->rd;
1904 int cpus = 0;
1905
1906 for_each_cpu_and(i, rd->span, cpu_active_mask)
1907 cpus++;
1908
1909 return cpus;
1910 }
1911 #else
1912 inline struct dl_bw *dl_bw_of(int i)
1913 {
1914 return &cpu_rq(i)->dl.dl_bw;
1915 }
1916
1917 static inline int dl_bw_cpus(int i)
1918 {
1919 return 1;
1920 }
1921 #endif
1922
1923 static inline
1924 void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
1925 {
1926 dl_b->total_bw -= tsk_bw;
1927 }
1928
1929 static inline
1930 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
1931 {
1932 dl_b->total_bw += tsk_bw;
1933 }
1934
1935 static inline
1936 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
1937 {
1938 return dl_b->bw != -1 &&
1939 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
1940 }
1941
1942 /*
1943 * We must be sure that accepting a new task (or allowing changing the
1944 * parameters of an existing one) is consistent with the bandwidth
1945 * constraints. If yes, this function also accordingly updates the currently
1946 * allocated bandwidth to reflect the new situation.
1947 *
1948 * This function is called while holding p's rq->lock.
1949 */
1950 static int dl_overflow(struct task_struct *p, int policy,
1951 const struct sched_attr *attr)
1952 {
1953
1954 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1955 u64 period = attr->sched_period ?: attr->sched_deadline;
1956 u64 runtime = attr->sched_runtime;
1957 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
1958 int cpus, err = -1;
1959
1960 if (new_bw == p->dl.dl_bw)
1961 return 0;
1962
1963 /*
1964 * Either if a task, enters, leave, or stays -deadline but changes
1965 * its parameters, we may need to update accordingly the total
1966 * allocated bandwidth of the container.
1967 */
1968 raw_spin_lock(&dl_b->lock);
1969 cpus = dl_bw_cpus(task_cpu(p));
1970 if (dl_policy(policy) && !task_has_dl_policy(p) &&
1971 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
1972 __dl_add(dl_b, new_bw);
1973 err = 0;
1974 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
1975 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
1976 __dl_clear(dl_b, p->dl.dl_bw);
1977 __dl_add(dl_b, new_bw);
1978 err = 0;
1979 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
1980 __dl_clear(dl_b, p->dl.dl_bw);
1981 err = 0;
1982 }
1983 raw_spin_unlock(&dl_b->lock);
1984
1985 return err;
1986 }
1987
1988 extern void init_dl_bw(struct dl_bw *dl_b);
1989
1990 /*
1991 * wake_up_new_task - wake up a newly created task for the first time.
1992 *
1993 * This function will do some initial scheduler statistics housekeeping
1994 * that must be done for every newly created context, then puts the task
1995 * on the runqueue and wakes it.
1996 */
1997 void wake_up_new_task(struct task_struct *p)
1998 {
1999 unsigned long flags;
2000 struct rq *rq;
2001
2002 raw_spin_lock_irqsave(&p->pi_lock, flags);
2003 #ifdef CONFIG_SMP
2004 /*
2005 * Fork balancing, do it here and not earlier because:
2006 * - cpus_allowed can change in the fork path
2007 * - any previously selected cpu might disappear through hotplug
2008 */
2009 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2010 #endif
2011
2012 /* Initialize new task's runnable average */
2013 init_task_runnable_average(p);
2014 rq = __task_rq_lock(p);
2015 activate_task(rq, p, 0);
2016 p->on_rq = 1;
2017 trace_sched_wakeup_new(p, true);
2018 check_preempt_curr(rq, p, WF_FORK);
2019 #ifdef CONFIG_SMP
2020 if (p->sched_class->task_woken)
2021 p->sched_class->task_woken(rq, p);
2022 #endif
2023 task_rq_unlock(rq, p, &flags);
2024 }
2025
2026 #ifdef CONFIG_PREEMPT_NOTIFIERS
2027
2028 /**
2029 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2030 * @notifier: notifier struct to register
2031 */
2032 void preempt_notifier_register(struct preempt_notifier *notifier)
2033 {
2034 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2035 }
2036 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2037
2038 /**
2039 * preempt_notifier_unregister - no longer interested in preemption notifications
2040 * @notifier: notifier struct to unregister
2041 *
2042 * This is safe to call from within a preemption notifier.
2043 */
2044 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2045 {
2046 hlist_del(&notifier->link);
2047 }
2048 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2049
2050 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2051 {
2052 struct preempt_notifier *notifier;
2053
2054 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2055 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2056 }
2057
2058 static void
2059 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2060 struct task_struct *next)
2061 {
2062 struct preempt_notifier *notifier;
2063
2064 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2065 notifier->ops->sched_out(notifier, next);
2066 }
2067
2068 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2069
2070 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2071 {
2072 }
2073
2074 static void
2075 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2076 struct task_struct *next)
2077 {
2078 }
2079
2080 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2081
2082 /**
2083 * prepare_task_switch - prepare to switch tasks
2084 * @rq: the runqueue preparing to switch
2085 * @prev: the current task that is being switched out
2086 * @next: the task we are going to switch to.
2087 *
2088 * This is called with the rq lock held and interrupts off. It must
2089 * be paired with a subsequent finish_task_switch after the context
2090 * switch.
2091 *
2092 * prepare_task_switch sets up locking and calls architecture specific
2093 * hooks.
2094 */
2095 static inline void
2096 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2097 struct task_struct *next)
2098 {
2099 trace_sched_switch(prev, next);
2100 sched_info_switch(rq, prev, next);
2101 perf_event_task_sched_out(prev, next);
2102 fire_sched_out_preempt_notifiers(prev, next);
2103 prepare_lock_switch(rq, next);
2104 prepare_arch_switch(next);
2105 }
2106
2107 /**
2108 * finish_task_switch - clean up after a task-switch
2109 * @rq: runqueue associated with task-switch
2110 * @prev: the thread we just switched away from.
2111 *
2112 * finish_task_switch must be called after the context switch, paired
2113 * with a prepare_task_switch call before the context switch.
2114 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2115 * and do any other architecture-specific cleanup actions.
2116 *
2117 * Note that we may have delayed dropping an mm in context_switch(). If
2118 * so, we finish that here outside of the runqueue lock. (Doing it
2119 * with the lock held can cause deadlocks; see schedule() for
2120 * details.)
2121 */
2122 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2123 __releases(rq->lock)
2124 {
2125 struct mm_struct *mm = rq->prev_mm;
2126 long prev_state;
2127
2128 rq->prev_mm = NULL;
2129
2130 /*
2131 * A task struct has one reference for the use as "current".
2132 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2133 * schedule one last time. The schedule call will never return, and
2134 * the scheduled task must drop that reference.
2135 * The test for TASK_DEAD must occur while the runqueue locks are
2136 * still held, otherwise prev could be scheduled on another cpu, die
2137 * there before we look at prev->state, and then the reference would
2138 * be dropped twice.
2139 * Manfred Spraul <manfred@colorfullife.com>
2140 */
2141 prev_state = prev->state;
2142 vtime_task_switch(prev);
2143 finish_arch_switch(prev);
2144 perf_event_task_sched_in(prev, current);
2145 finish_lock_switch(rq, prev);
2146 finish_arch_post_lock_switch();
2147
2148 fire_sched_in_preempt_notifiers(current);
2149 if (mm)
2150 mmdrop(mm);
2151 if (unlikely(prev_state == TASK_DEAD)) {
2152 if (prev->sched_class->task_dead)
2153 prev->sched_class->task_dead(prev);
2154
2155 /*
2156 * Remove function-return probe instances associated with this
2157 * task and put them back on the free list.
2158 */
2159 kprobe_flush_task(prev);
2160 put_task_struct(prev);
2161 }
2162
2163 tick_nohz_task_switch(current);
2164 }
2165
2166 #ifdef CONFIG_SMP
2167
2168 /* rq->lock is NOT held, but preemption is disabled */
2169 static inline void post_schedule(struct rq *rq)
2170 {
2171 if (rq->post_schedule) {
2172 unsigned long flags;
2173
2174 raw_spin_lock_irqsave(&rq->lock, flags);
2175 if (rq->curr->sched_class->post_schedule)
2176 rq->curr->sched_class->post_schedule(rq);
2177 raw_spin_unlock_irqrestore(&rq->lock, flags);
2178
2179 rq->post_schedule = 0;
2180 }
2181 }
2182
2183 #else
2184
2185 static inline void post_schedule(struct rq *rq)
2186 {
2187 }
2188
2189 #endif
2190
2191 /**
2192 * schedule_tail - first thing a freshly forked thread must call.
2193 * @prev: the thread we just switched away from.
2194 */
2195 asmlinkage void schedule_tail(struct task_struct *prev)
2196 __releases(rq->lock)
2197 {
2198 struct rq *rq = this_rq();
2199
2200 finish_task_switch(rq, prev);
2201
2202 /*
2203 * FIXME: do we need to worry about rq being invalidated by the
2204 * task_switch?
2205 */
2206 post_schedule(rq);
2207
2208 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2209 /* In this case, finish_task_switch does not reenable preemption */
2210 preempt_enable();
2211 #endif
2212 if (current->set_child_tid)
2213 put_user(task_pid_vnr(current), current->set_child_tid);
2214 }
2215
2216 /*
2217 * context_switch - switch to the new MM and the new
2218 * thread's register state.
2219 */
2220 static inline void
2221 context_switch(struct rq *rq, struct task_struct *prev,
2222 struct task_struct *next)
2223 {
2224 struct mm_struct *mm, *oldmm;
2225
2226 prepare_task_switch(rq, prev, next);
2227
2228 mm = next->mm;
2229 oldmm = prev->active_mm;
2230 /*
2231 * For paravirt, this is coupled with an exit in switch_to to
2232 * combine the page table reload and the switch backend into
2233 * one hypercall.
2234 */
2235 arch_start_context_switch(prev);
2236
2237 if (!mm) {
2238 next->active_mm = oldmm;
2239 atomic_inc(&oldmm->mm_count);
2240 enter_lazy_tlb(oldmm, next);
2241 } else
2242 switch_mm(oldmm, mm, next);
2243
2244 if (!prev->mm) {
2245 prev->active_mm = NULL;
2246 rq->prev_mm = oldmm;
2247 }
2248 /*
2249 * Since the runqueue lock will be released by the next
2250 * task (which is an invalid locking op but in the case
2251 * of the scheduler it's an obvious special-case), so we
2252 * do an early lockdep release here:
2253 */
2254 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2255 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2256 #endif
2257
2258 context_tracking_task_switch(prev, next);
2259 /* Here we just switch the register state and the stack. */
2260 switch_to(prev, next, prev);
2261
2262 barrier();
2263 /*
2264 * this_rq must be evaluated again because prev may have moved
2265 * CPUs since it called schedule(), thus the 'rq' on its stack
2266 * frame will be invalid.
2267 */
2268 finish_task_switch(this_rq(), prev);
2269 }
2270
2271 /*
2272 * nr_running and nr_context_switches:
2273 *
2274 * externally visible scheduler statistics: current number of runnable
2275 * threads, total number of context switches performed since bootup.
2276 */
2277 unsigned long nr_running(void)
2278 {
2279 unsigned long i, sum = 0;
2280
2281 for_each_online_cpu(i)
2282 sum += cpu_rq(i)->nr_running;
2283
2284 return sum;
2285 }
2286
2287 unsigned long long nr_context_switches(void)
2288 {
2289 int i;
2290 unsigned long long sum = 0;
2291
2292 for_each_possible_cpu(i)
2293 sum += cpu_rq(i)->nr_switches;
2294
2295 return sum;
2296 }
2297
2298 unsigned long nr_iowait(void)
2299 {
2300 unsigned long i, sum = 0;
2301
2302 for_each_possible_cpu(i)
2303 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2304
2305 return sum;
2306 }
2307
2308 unsigned long nr_iowait_cpu(int cpu)
2309 {
2310 struct rq *this = cpu_rq(cpu);
2311 return atomic_read(&this->nr_iowait);
2312 }
2313
2314 #ifdef CONFIG_SMP
2315
2316 /*
2317 * sched_exec - execve() is a valuable balancing opportunity, because at
2318 * this point the task has the smallest effective memory and cache footprint.
2319 */
2320 void sched_exec(void)
2321 {
2322 struct task_struct *p = current;
2323 unsigned long flags;
2324 int dest_cpu;
2325
2326 raw_spin_lock_irqsave(&p->pi_lock, flags);
2327 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2328 if (dest_cpu == smp_processor_id())
2329 goto unlock;
2330
2331 if (likely(cpu_active(dest_cpu))) {
2332 struct migration_arg arg = { p, dest_cpu };
2333
2334 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2335 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2336 return;
2337 }
2338 unlock:
2339 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2340 }
2341
2342 #endif
2343
2344 DEFINE_PER_CPU(struct kernel_stat, kstat);
2345 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2346
2347 EXPORT_PER_CPU_SYMBOL(kstat);
2348 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2349
2350 /*
2351 * Return any ns on the sched_clock that have not yet been accounted in
2352 * @p in case that task is currently running.
2353 *
2354 * Called with task_rq_lock() held on @rq.
2355 */
2356 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2357 {
2358 u64 ns = 0;
2359
2360 if (task_current(rq, p)) {
2361 update_rq_clock(rq);
2362 ns = rq_clock_task(rq) - p->se.exec_start;
2363 if ((s64)ns < 0)
2364 ns = 0;
2365 }
2366
2367 return ns;
2368 }
2369
2370 unsigned long long task_delta_exec(struct task_struct *p)
2371 {
2372 unsigned long flags;
2373 struct rq *rq;
2374 u64 ns = 0;
2375
2376 rq = task_rq_lock(p, &flags);
2377 ns = do_task_delta_exec(p, rq);
2378 task_rq_unlock(rq, p, &flags);
2379
2380 return ns;
2381 }
2382
2383 /*
2384 * Return accounted runtime for the task.
2385 * In case the task is currently running, return the runtime plus current's
2386 * pending runtime that have not been accounted yet.
2387 */
2388 unsigned long long task_sched_runtime(struct task_struct *p)
2389 {
2390 unsigned long flags;
2391 struct rq *rq;
2392 u64 ns = 0;
2393
2394 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2395 /*
2396 * 64-bit doesn't need locks to atomically read a 64bit value.
2397 * So we have a optimization chance when the task's delta_exec is 0.
2398 * Reading ->on_cpu is racy, but this is ok.
2399 *
2400 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2401 * If we race with it entering cpu, unaccounted time is 0. This is
2402 * indistinguishable from the read occurring a few cycles earlier.
2403 */
2404 if (!p->on_cpu)
2405 return p->se.sum_exec_runtime;
2406 #endif
2407
2408 rq = task_rq_lock(p, &flags);
2409 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2410 task_rq_unlock(rq, p, &flags);
2411
2412 return ns;
2413 }
2414
2415 /*
2416 * This function gets called by the timer code, with HZ frequency.
2417 * We call it with interrupts disabled.
2418 */
2419 void scheduler_tick(void)
2420 {
2421 int cpu = smp_processor_id();
2422 struct rq *rq = cpu_rq(cpu);
2423 struct task_struct *curr = rq->curr;
2424
2425 sched_clock_tick();
2426
2427 raw_spin_lock(&rq->lock);
2428 update_rq_clock(rq);
2429 curr->sched_class->task_tick(rq, curr, 0);
2430 update_cpu_load_active(rq);
2431 raw_spin_unlock(&rq->lock);
2432
2433 perf_event_task_tick();
2434
2435 #ifdef CONFIG_SMP
2436 rq->idle_balance = idle_cpu(cpu);
2437 trigger_load_balance(rq);
2438 #endif
2439 rq_last_tick_reset(rq);
2440 }
2441
2442 #ifdef CONFIG_NO_HZ_FULL
2443 /**
2444 * scheduler_tick_max_deferment
2445 *
2446 * Keep at least one tick per second when a single
2447 * active task is running because the scheduler doesn't
2448 * yet completely support full dynticks environment.
2449 *
2450 * This makes sure that uptime, CFS vruntime, load
2451 * balancing, etc... continue to move forward, even
2452 * with a very low granularity.
2453 *
2454 * Return: Maximum deferment in nanoseconds.
2455 */
2456 u64 scheduler_tick_max_deferment(void)
2457 {
2458 struct rq *rq = this_rq();
2459 unsigned long next, now = ACCESS_ONCE(jiffies);
2460
2461 next = rq->last_sched_tick + HZ;
2462
2463 if (time_before_eq(next, now))
2464 return 0;
2465
2466 return jiffies_to_nsecs(next - now);
2467 }
2468 #endif
2469
2470 notrace unsigned long get_parent_ip(unsigned long addr)
2471 {
2472 if (in_lock_functions(addr)) {
2473 addr = CALLER_ADDR2;
2474 if (in_lock_functions(addr))
2475 addr = CALLER_ADDR3;
2476 }
2477 return addr;
2478 }
2479
2480 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2481 defined(CONFIG_PREEMPT_TRACER))
2482
2483 void __kprobes preempt_count_add(int val)
2484 {
2485 #ifdef CONFIG_DEBUG_PREEMPT
2486 /*
2487 * Underflow?
2488 */
2489 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2490 return;
2491 #endif
2492 __preempt_count_add(val);
2493 #ifdef CONFIG_DEBUG_PREEMPT
2494 /*
2495 * Spinlock count overflowing soon?
2496 */
2497 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2498 PREEMPT_MASK - 10);
2499 #endif
2500 if (preempt_count() == val) {
2501 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2502 #ifdef CONFIG_DEBUG_PREEMPT
2503 current->preempt_disable_ip = ip;
2504 #endif
2505 trace_preempt_off(CALLER_ADDR0, ip);
2506 }
2507 }
2508 EXPORT_SYMBOL(preempt_count_add);
2509
2510 void __kprobes preempt_count_sub(int val)
2511 {
2512 #ifdef CONFIG_DEBUG_PREEMPT
2513 /*
2514 * Underflow?
2515 */
2516 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2517 return;
2518 /*
2519 * Is the spinlock portion underflowing?
2520 */
2521 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2522 !(preempt_count() & PREEMPT_MASK)))
2523 return;
2524 #endif
2525
2526 if (preempt_count() == val)
2527 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2528 __preempt_count_sub(val);
2529 }
2530 EXPORT_SYMBOL(preempt_count_sub);
2531
2532 #endif
2533
2534 /*
2535 * Print scheduling while atomic bug:
2536 */
2537 static noinline void __schedule_bug(struct task_struct *prev)
2538 {
2539 if (oops_in_progress)
2540 return;
2541
2542 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2543 prev->comm, prev->pid, preempt_count());
2544
2545 debug_show_held_locks(prev);
2546 print_modules();
2547 if (irqs_disabled())
2548 print_irqtrace_events(prev);
2549 #ifdef CONFIG_DEBUG_PREEMPT
2550 if (in_atomic_preempt_off()) {
2551 pr_err("Preemption disabled at:");
2552 print_ip_sym(current->preempt_disable_ip);
2553 pr_cont("\n");
2554 }
2555 #endif
2556 dump_stack();
2557 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2558 }
2559
2560 /*
2561 * Various schedule()-time debugging checks and statistics:
2562 */
2563 static inline void schedule_debug(struct task_struct *prev)
2564 {
2565 /*
2566 * Test if we are atomic. Since do_exit() needs to call into
2567 * schedule() atomically, we ignore that path. Otherwise whine
2568 * if we are scheduling when we should not.
2569 */
2570 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2571 __schedule_bug(prev);
2572 rcu_sleep_check();
2573
2574 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2575
2576 schedstat_inc(this_rq(), sched_count);
2577 }
2578
2579 /*
2580 * Pick up the highest-prio task:
2581 */
2582 static inline struct task_struct *
2583 pick_next_task(struct rq *rq, struct task_struct *prev)
2584 {
2585 const struct sched_class *class = &fair_sched_class;
2586 struct task_struct *p;
2587
2588 /*
2589 * Optimization: we know that if all tasks are in
2590 * the fair class we can call that function directly:
2591 */
2592 if (likely(prev->sched_class == class &&
2593 rq->nr_running == rq->cfs.h_nr_running)) {
2594 p = fair_sched_class.pick_next_task(rq, prev);
2595 if (likely(p && p != RETRY_TASK))
2596 return p;
2597 }
2598
2599 again:
2600 for_each_class(class) {
2601 p = class->pick_next_task(rq, prev);
2602 if (p) {
2603 if (unlikely(p == RETRY_TASK))
2604 goto again;
2605 return p;
2606 }
2607 }
2608
2609 BUG(); /* the idle class will always have a runnable task */
2610 }
2611
2612 /*
2613 * __schedule() is the main scheduler function.
2614 *
2615 * The main means of driving the scheduler and thus entering this function are:
2616 *
2617 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2618 *
2619 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2620 * paths. For example, see arch/x86/entry_64.S.
2621 *
2622 * To drive preemption between tasks, the scheduler sets the flag in timer
2623 * interrupt handler scheduler_tick().
2624 *
2625 * 3. Wakeups don't really cause entry into schedule(). They add a
2626 * task to the run-queue and that's it.
2627 *
2628 * Now, if the new task added to the run-queue preempts the current
2629 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2630 * called on the nearest possible occasion:
2631 *
2632 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2633 *
2634 * - in syscall or exception context, at the next outmost
2635 * preempt_enable(). (this might be as soon as the wake_up()'s
2636 * spin_unlock()!)
2637 *
2638 * - in IRQ context, return from interrupt-handler to
2639 * preemptible context
2640 *
2641 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2642 * then at the next:
2643 *
2644 * - cond_resched() call
2645 * - explicit schedule() call
2646 * - return from syscall or exception to user-space
2647 * - return from interrupt-handler to user-space
2648 */
2649 static void __sched __schedule(void)
2650 {
2651 struct task_struct *prev, *next;
2652 unsigned long *switch_count;
2653 struct rq *rq;
2654 int cpu;
2655
2656 need_resched:
2657 preempt_disable();
2658 cpu = smp_processor_id();
2659 rq = cpu_rq(cpu);
2660 rcu_note_context_switch(cpu);
2661 prev = rq->curr;
2662
2663 schedule_debug(prev);
2664
2665 if (sched_feat(HRTICK))
2666 hrtick_clear(rq);
2667
2668 /*
2669 * Make sure that signal_pending_state()->signal_pending() below
2670 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2671 * done by the caller to avoid the race with signal_wake_up().
2672 */
2673 smp_mb__before_spinlock();
2674 raw_spin_lock_irq(&rq->lock);
2675
2676 switch_count = &prev->nivcsw;
2677 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2678 if (unlikely(signal_pending_state(prev->state, prev))) {
2679 prev->state = TASK_RUNNING;
2680 } else {
2681 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2682 prev->on_rq = 0;
2683
2684 /*
2685 * If a worker went to sleep, notify and ask workqueue
2686 * whether it wants to wake up a task to maintain
2687 * concurrency.
2688 */
2689 if (prev->flags & PF_WQ_WORKER) {
2690 struct task_struct *to_wakeup;
2691
2692 to_wakeup = wq_worker_sleeping(prev, cpu);
2693 if (to_wakeup)
2694 try_to_wake_up_local(to_wakeup);
2695 }
2696 }
2697 switch_count = &prev->nvcsw;
2698 }
2699
2700 if (prev->on_rq || rq->skip_clock_update < 0)
2701 update_rq_clock(rq);
2702
2703 next = pick_next_task(rq, prev);
2704 clear_tsk_need_resched(prev);
2705 clear_preempt_need_resched();
2706 rq->skip_clock_update = 0;
2707
2708 if (likely(prev != next)) {
2709 rq->nr_switches++;
2710 rq->curr = next;
2711 ++*switch_count;
2712
2713 context_switch(rq, prev, next); /* unlocks the rq */
2714 /*
2715 * The context switch have flipped the stack from under us
2716 * and restored the local variables which were saved when
2717 * this task called schedule() in the past. prev == current
2718 * is still correct, but it can be moved to another cpu/rq.
2719 */
2720 cpu = smp_processor_id();
2721 rq = cpu_rq(cpu);
2722 } else
2723 raw_spin_unlock_irq(&rq->lock);
2724
2725 post_schedule(rq);
2726
2727 sched_preempt_enable_no_resched();
2728 if (need_resched())
2729 goto need_resched;
2730 }
2731
2732 static inline void sched_submit_work(struct task_struct *tsk)
2733 {
2734 if (!tsk->state || tsk_is_pi_blocked(tsk))
2735 return;
2736 /*
2737 * If we are going to sleep and we have plugged IO queued,
2738 * make sure to submit it to avoid deadlocks.
2739 */
2740 if (blk_needs_flush_plug(tsk))
2741 blk_schedule_flush_plug(tsk);
2742 }
2743
2744 asmlinkage void __sched schedule(void)
2745 {
2746 struct task_struct *tsk = current;
2747
2748 sched_submit_work(tsk);
2749 __schedule();
2750 }
2751 EXPORT_SYMBOL(schedule);
2752
2753 #ifdef CONFIG_CONTEXT_TRACKING
2754 asmlinkage void __sched schedule_user(void)
2755 {
2756 /*
2757 * If we come here after a random call to set_need_resched(),
2758 * or we have been woken up remotely but the IPI has not yet arrived,
2759 * we haven't yet exited the RCU idle mode. Do it here manually until
2760 * we find a better solution.
2761 */
2762 user_exit();
2763 schedule();
2764 user_enter();
2765 }
2766 #endif
2767
2768 /**
2769 * schedule_preempt_disabled - called with preemption disabled
2770 *
2771 * Returns with preemption disabled. Note: preempt_count must be 1
2772 */
2773 void __sched schedule_preempt_disabled(void)
2774 {
2775 sched_preempt_enable_no_resched();
2776 schedule();
2777 preempt_disable();
2778 }
2779
2780 #ifdef CONFIG_PREEMPT
2781 /*
2782 * this is the entry point to schedule() from in-kernel preemption
2783 * off of preempt_enable. Kernel preemptions off return from interrupt
2784 * occur there and call schedule directly.
2785 */
2786 asmlinkage void __sched notrace preempt_schedule(void)
2787 {
2788 /*
2789 * If there is a non-zero preempt_count or interrupts are disabled,
2790 * we do not want to preempt the current task. Just return..
2791 */
2792 if (likely(!preemptible()))
2793 return;
2794
2795 do {
2796 __preempt_count_add(PREEMPT_ACTIVE);
2797 __schedule();
2798 __preempt_count_sub(PREEMPT_ACTIVE);
2799
2800 /*
2801 * Check again in case we missed a preemption opportunity
2802 * between schedule and now.
2803 */
2804 barrier();
2805 } while (need_resched());
2806 }
2807 EXPORT_SYMBOL(preempt_schedule);
2808 #endif /* CONFIG_PREEMPT */
2809
2810 /*
2811 * this is the entry point to schedule() from kernel preemption
2812 * off of irq context.
2813 * Note, that this is called and return with irqs disabled. This will
2814 * protect us against recursive calling from irq.
2815 */
2816 asmlinkage void __sched preempt_schedule_irq(void)
2817 {
2818 enum ctx_state prev_state;
2819
2820 /* Catch callers which need to be fixed */
2821 BUG_ON(preempt_count() || !irqs_disabled());
2822
2823 prev_state = exception_enter();
2824
2825 do {
2826 __preempt_count_add(PREEMPT_ACTIVE);
2827 local_irq_enable();
2828 __schedule();
2829 local_irq_disable();
2830 __preempt_count_sub(PREEMPT_ACTIVE);
2831
2832 /*
2833 * Check again in case we missed a preemption opportunity
2834 * between schedule and now.
2835 */
2836 barrier();
2837 } while (need_resched());
2838
2839 exception_exit(prev_state);
2840 }
2841
2842 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
2843 void *key)
2844 {
2845 return try_to_wake_up(curr->private, mode, wake_flags);
2846 }
2847 EXPORT_SYMBOL(default_wake_function);
2848
2849 #ifdef CONFIG_RT_MUTEXES
2850
2851 /*
2852 * rt_mutex_setprio - set the current priority of a task
2853 * @p: task
2854 * @prio: prio value (kernel-internal form)
2855 *
2856 * This function changes the 'effective' priority of a task. It does
2857 * not touch ->normal_prio like __setscheduler().
2858 *
2859 * Used by the rt_mutex code to implement priority inheritance
2860 * logic. Call site only calls if the priority of the task changed.
2861 */
2862 void rt_mutex_setprio(struct task_struct *p, int prio)
2863 {
2864 int oldprio, on_rq, running, enqueue_flag = 0;
2865 struct rq *rq;
2866 const struct sched_class *prev_class;
2867
2868 BUG_ON(prio > MAX_PRIO);
2869
2870 rq = __task_rq_lock(p);
2871
2872 /*
2873 * Idle task boosting is a nono in general. There is one
2874 * exception, when PREEMPT_RT and NOHZ is active:
2875 *
2876 * The idle task calls get_next_timer_interrupt() and holds
2877 * the timer wheel base->lock on the CPU and another CPU wants
2878 * to access the timer (probably to cancel it). We can safely
2879 * ignore the boosting request, as the idle CPU runs this code
2880 * with interrupts disabled and will complete the lock
2881 * protected section without being interrupted. So there is no
2882 * real need to boost.
2883 */
2884 if (unlikely(p == rq->idle)) {
2885 WARN_ON(p != rq->curr);
2886 WARN_ON(p->pi_blocked_on);
2887 goto out_unlock;
2888 }
2889
2890 trace_sched_pi_setprio(p, prio);
2891 p->pi_top_task = rt_mutex_get_top_task(p);
2892 oldprio = p->prio;
2893 prev_class = p->sched_class;
2894 on_rq = p->on_rq;
2895 running = task_current(rq, p);
2896 if (on_rq)
2897 dequeue_task(rq, p, 0);
2898 if (running)
2899 p->sched_class->put_prev_task(rq, p);
2900
2901 /*
2902 * Boosting condition are:
2903 * 1. -rt task is running and holds mutex A
2904 * --> -dl task blocks on mutex A
2905 *
2906 * 2. -dl task is running and holds mutex A
2907 * --> -dl task blocks on mutex A and could preempt the
2908 * running task
2909 */
2910 if (dl_prio(prio)) {
2911 if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
2912 dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
2913 p->dl.dl_boosted = 1;
2914 p->dl.dl_throttled = 0;
2915 enqueue_flag = ENQUEUE_REPLENISH;
2916 } else
2917 p->dl.dl_boosted = 0;
2918 p->sched_class = &dl_sched_class;
2919 } else if (rt_prio(prio)) {
2920 if (dl_prio(oldprio))
2921 p->dl.dl_boosted = 0;
2922 if (oldprio < prio)
2923 enqueue_flag = ENQUEUE_HEAD;
2924 p->sched_class = &rt_sched_class;
2925 } else {
2926 if (dl_prio(oldprio))
2927 p->dl.dl_boosted = 0;
2928 p->sched_class = &fair_sched_class;
2929 }
2930
2931 p->prio = prio;
2932
2933 if (running)
2934 p->sched_class->set_curr_task(rq);
2935 if (on_rq)
2936 enqueue_task(rq, p, enqueue_flag);
2937
2938 check_class_changed(rq, p, prev_class, oldprio);
2939 out_unlock:
2940 __task_rq_unlock(rq);
2941 }
2942 #endif
2943
2944 void set_user_nice(struct task_struct *p, long nice)
2945 {
2946 int old_prio, delta, on_rq;
2947 unsigned long flags;
2948 struct rq *rq;
2949
2950 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
2951 return;
2952 /*
2953 * We have to be careful, if called from sys_setpriority(),
2954 * the task might be in the middle of scheduling on another CPU.
2955 */
2956 rq = task_rq_lock(p, &flags);
2957 /*
2958 * The RT priorities are set via sched_setscheduler(), but we still
2959 * allow the 'normal' nice value to be set - but as expected
2960 * it wont have any effect on scheduling until the task is
2961 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
2962 */
2963 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2964 p->static_prio = NICE_TO_PRIO(nice);
2965 goto out_unlock;
2966 }
2967 on_rq = p->on_rq;
2968 if (on_rq)
2969 dequeue_task(rq, p, 0);
2970
2971 p->static_prio = NICE_TO_PRIO(nice);
2972 set_load_weight(p);
2973 old_prio = p->prio;
2974 p->prio = effective_prio(p);
2975 delta = p->prio - old_prio;
2976
2977 if (on_rq) {
2978 enqueue_task(rq, p, 0);
2979 /*
2980 * If the task increased its priority or is running and
2981 * lowered its priority, then reschedule its CPU:
2982 */
2983 if (delta < 0 || (delta > 0 && task_running(rq, p)))
2984 resched_task(rq->curr);
2985 }
2986 out_unlock:
2987 task_rq_unlock(rq, p, &flags);
2988 }
2989 EXPORT_SYMBOL(set_user_nice);
2990
2991 /*
2992 * can_nice - check if a task can reduce its nice value
2993 * @p: task
2994 * @nice: nice value
2995 */
2996 int can_nice(const struct task_struct *p, const int nice)
2997 {
2998 /* convert nice value [19,-20] to rlimit style value [1,40] */
2999 int nice_rlim = 20 - nice;
3000
3001 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3002 capable(CAP_SYS_NICE));
3003 }
3004
3005 #ifdef __ARCH_WANT_SYS_NICE
3006
3007 /*
3008 * sys_nice - change the priority of the current process.
3009 * @increment: priority increment
3010 *
3011 * sys_setpriority is a more generic, but much slower function that
3012 * does similar things.
3013 */
3014 SYSCALL_DEFINE1(nice, int, increment)
3015 {
3016 long nice, retval;
3017
3018 /*
3019 * Setpriority might change our priority at the same moment.
3020 * We don't have to worry. Conceptually one call occurs first
3021 * and we have a single winner.
3022 */
3023 if (increment < -40)
3024 increment = -40;
3025 if (increment > 40)
3026 increment = 40;
3027
3028 nice = task_nice(current) + increment;
3029 if (nice < MIN_NICE)
3030 nice = MIN_NICE;
3031 if (nice > MAX_NICE)
3032 nice = MAX_NICE;
3033
3034 if (increment < 0 && !can_nice(current, nice))
3035 return -EPERM;
3036
3037 retval = security_task_setnice(current, nice);
3038 if (retval)
3039 return retval;
3040
3041 set_user_nice(current, nice);
3042 return 0;
3043 }
3044
3045 #endif
3046
3047 /**
3048 * task_prio - return the priority value of a given task.
3049 * @p: the task in question.
3050 *
3051 * Return: The priority value as seen by users in /proc.
3052 * RT tasks are offset by -200. Normal tasks are centered
3053 * around 0, value goes from -16 to +15.
3054 */
3055 int task_prio(const struct task_struct *p)
3056 {
3057 return p->prio - MAX_RT_PRIO;
3058 }
3059
3060 /**
3061 * idle_cpu - is a given cpu idle currently?
3062 * @cpu: the processor in question.
3063 *
3064 * Return: 1 if the CPU is currently idle. 0 otherwise.
3065 */
3066 int idle_cpu(int cpu)
3067 {
3068 struct rq *rq = cpu_rq(cpu);
3069
3070 if (rq->curr != rq->idle)
3071 return 0;
3072
3073 if (rq->nr_running)
3074 return 0;
3075
3076 #ifdef CONFIG_SMP
3077 if (!llist_empty(&rq->wake_list))
3078 return 0;
3079 #endif
3080
3081 return 1;
3082 }
3083
3084 /**
3085 * idle_task - return the idle task for a given cpu.
3086 * @cpu: the processor in question.
3087 *
3088 * Return: The idle task for the cpu @cpu.
3089 */
3090 struct task_struct *idle_task(int cpu)
3091 {
3092 return cpu_rq(cpu)->idle;
3093 }
3094
3095 /**
3096 * find_process_by_pid - find a process with a matching PID value.
3097 * @pid: the pid in question.
3098 *
3099 * The task of @pid, if found. %NULL otherwise.
3100 */
3101 static struct task_struct *find_process_by_pid(pid_t pid)
3102 {
3103 return pid ? find_task_by_vpid(pid) : current;
3104 }
3105
3106 /*
3107 * This function initializes the sched_dl_entity of a newly becoming
3108 * SCHED_DEADLINE task.
3109 *
3110 * Only the static values are considered here, the actual runtime and the
3111 * absolute deadline will be properly calculated when the task is enqueued
3112 * for the first time with its new policy.
3113 */
3114 static void
3115 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3116 {
3117 struct sched_dl_entity *dl_se = &p->dl;
3118
3119 init_dl_task_timer(dl_se);
3120 dl_se->dl_runtime = attr->sched_runtime;
3121 dl_se->dl_deadline = attr->sched_deadline;
3122 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3123 dl_se->flags = attr->sched_flags;
3124 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3125 dl_se->dl_throttled = 0;
3126 dl_se->dl_new = 1;
3127 }
3128
3129 static void __setscheduler_params(struct task_struct *p,
3130 const struct sched_attr *attr)
3131 {
3132 int policy = attr->sched_policy;
3133
3134 if (policy == -1) /* setparam */
3135 policy = p->policy;
3136
3137 p->policy = policy;
3138
3139 if (dl_policy(policy))
3140 __setparam_dl(p, attr);
3141 else if (fair_policy(policy))
3142 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3143
3144 /*
3145 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3146 * !rt_policy. Always setting this ensures that things like
3147 * getparam()/getattr() don't report silly values for !rt tasks.
3148 */
3149 p->rt_priority = attr->sched_priority;
3150 p->normal_prio = normal_prio(p);
3151 set_load_weight(p);
3152 }
3153
3154 /* Actually do priority change: must hold pi & rq lock. */
3155 static void __setscheduler(struct rq *rq, struct task_struct *p,
3156 const struct sched_attr *attr)
3157 {
3158 __setscheduler_params(p, attr);
3159
3160 /*
3161 * If we get here, there was no pi waiters boosting the
3162 * task. It is safe to use the normal prio.
3163 */
3164 p->prio = normal_prio(p);
3165
3166 if (dl_prio(p->prio))
3167 p->sched_class = &dl_sched_class;
3168 else if (rt_prio(p->prio))
3169 p->sched_class = &rt_sched_class;
3170 else
3171 p->sched_class = &fair_sched_class;
3172 }
3173
3174 static void
3175 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3176 {
3177 struct sched_dl_entity *dl_se = &p->dl;
3178
3179 attr->sched_priority = p->rt_priority;
3180 attr->sched_runtime = dl_se->dl_runtime;
3181 attr->sched_deadline = dl_se->dl_deadline;
3182 attr->sched_period = dl_se->dl_period;
3183 attr->sched_flags = dl_se->flags;
3184 }
3185
3186 /*
3187 * This function validates the new parameters of a -deadline task.
3188 * We ask for the deadline not being zero, and greater or equal
3189 * than the runtime, as well as the period of being zero or
3190 * greater than deadline. Furthermore, we have to be sure that
3191 * user parameters are above the internal resolution (1us); we
3192 * check sched_runtime only since it is always the smaller one.
3193 */
3194 static bool
3195 __checkparam_dl(const struct sched_attr *attr)
3196 {
3197 return attr && attr->sched_deadline != 0 &&
3198 (attr->sched_period == 0 ||
3199 (s64)(attr->sched_period - attr->sched_deadline) >= 0) &&
3200 (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 &&
3201 attr->sched_runtime >= (2 << (DL_SCALE - 1));
3202 }
3203
3204 /*
3205 * check the target process has a UID that matches the current process's
3206 */
3207 static bool check_same_owner(struct task_struct *p)
3208 {
3209 const struct cred *cred = current_cred(), *pcred;
3210 bool match;
3211
3212 rcu_read_lock();
3213 pcred = __task_cred(p);
3214 match = (uid_eq(cred->euid, pcred->euid) ||
3215 uid_eq(cred->euid, pcred->uid));
3216 rcu_read_unlock();
3217 return match;
3218 }
3219
3220 static int __sched_setscheduler(struct task_struct *p,
3221 const struct sched_attr *attr,
3222 bool user)
3223 {
3224 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3225 MAX_RT_PRIO - 1 - attr->sched_priority;
3226 int retval, oldprio, oldpolicy = -1, on_rq, running;
3227 int policy = attr->sched_policy;
3228 unsigned long flags;
3229 const struct sched_class *prev_class;
3230 struct rq *rq;
3231 int reset_on_fork;
3232
3233 /* may grab non-irq protected spin_locks */
3234 BUG_ON(in_interrupt());
3235 recheck:
3236 /* double check policy once rq lock held */
3237 if (policy < 0) {
3238 reset_on_fork = p->sched_reset_on_fork;
3239 policy = oldpolicy = p->policy;
3240 } else {
3241 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3242
3243 if (policy != SCHED_DEADLINE &&
3244 policy != SCHED_FIFO && policy != SCHED_RR &&
3245 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3246 policy != SCHED_IDLE)
3247 return -EINVAL;
3248 }
3249
3250 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3251 return -EINVAL;
3252
3253 /*
3254 * Valid priorities for SCHED_FIFO and SCHED_RR are
3255 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3256 * SCHED_BATCH and SCHED_IDLE is 0.
3257 */
3258 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3259 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3260 return -EINVAL;
3261 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3262 (rt_policy(policy) != (attr->sched_priority != 0)))
3263 return -EINVAL;
3264
3265 /*
3266 * Allow unprivileged RT tasks to decrease priority:
3267 */
3268 if (user && !capable(CAP_SYS_NICE)) {
3269 if (fair_policy(policy)) {
3270 if (attr->sched_nice < task_nice(p) &&
3271 !can_nice(p, attr->sched_nice))
3272 return -EPERM;
3273 }
3274
3275 if (rt_policy(policy)) {
3276 unsigned long rlim_rtprio =
3277 task_rlimit(p, RLIMIT_RTPRIO);
3278
3279 /* can't set/change the rt policy */
3280 if (policy != p->policy && !rlim_rtprio)
3281 return -EPERM;
3282
3283 /* can't increase priority */
3284 if (attr->sched_priority > p->rt_priority &&
3285 attr->sched_priority > rlim_rtprio)
3286 return -EPERM;
3287 }
3288
3289 /*
3290 * Can't set/change SCHED_DEADLINE policy at all for now
3291 * (safest behavior); in the future we would like to allow
3292 * unprivileged DL tasks to increase their relative deadline
3293 * or reduce their runtime (both ways reducing utilization)
3294 */
3295 if (dl_policy(policy))
3296 return -EPERM;
3297
3298 /*
3299 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3300 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3301 */
3302 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3303 if (!can_nice(p, task_nice(p)))
3304 return -EPERM;
3305 }
3306
3307 /* can't change other user's priorities */
3308 if (!check_same_owner(p))
3309 return -EPERM;
3310
3311 /* Normal users shall not reset the sched_reset_on_fork flag */
3312 if (p->sched_reset_on_fork && !reset_on_fork)
3313 return -EPERM;
3314 }
3315
3316 if (user) {
3317 retval = security_task_setscheduler(p);
3318 if (retval)
3319 return retval;
3320 }
3321
3322 /*
3323 * make sure no PI-waiters arrive (or leave) while we are
3324 * changing the priority of the task:
3325 *
3326 * To be able to change p->policy safely, the appropriate
3327 * runqueue lock must be held.
3328 */
3329 rq = task_rq_lock(p, &flags);
3330
3331 /*
3332 * Changing the policy of the stop threads its a very bad idea
3333 */
3334 if (p == rq->stop) {
3335 task_rq_unlock(rq, p, &flags);
3336 return -EINVAL;
3337 }
3338
3339 /*
3340 * If not changing anything there's no need to proceed further,
3341 * but store a possible modification of reset_on_fork.
3342 */
3343 if (unlikely(policy == p->policy)) {
3344 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3345 goto change;
3346 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3347 goto change;
3348 if (dl_policy(policy))
3349 goto change;
3350
3351 p->sched_reset_on_fork = reset_on_fork;
3352 task_rq_unlock(rq, p, &flags);
3353 return 0;
3354 }
3355 change:
3356
3357 if (user) {
3358 #ifdef CONFIG_RT_GROUP_SCHED
3359 /*
3360 * Do not allow realtime tasks into groups that have no runtime
3361 * assigned.
3362 */
3363 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3364 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3365 !task_group_is_autogroup(task_group(p))) {
3366 task_rq_unlock(rq, p, &flags);
3367 return -EPERM;
3368 }
3369 #endif
3370 #ifdef CONFIG_SMP
3371 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3372 cpumask_t *span = rq->rd->span;
3373
3374 /*
3375 * Don't allow tasks with an affinity mask smaller than
3376 * the entire root_domain to become SCHED_DEADLINE. We
3377 * will also fail if there's no bandwidth available.
3378 */
3379 if (!cpumask_subset(span, &p->cpus_allowed) ||
3380 rq->rd->dl_bw.bw == 0) {
3381 task_rq_unlock(rq, p, &flags);
3382 return -EPERM;
3383 }
3384 }
3385 #endif
3386 }
3387
3388 /* recheck policy now with rq lock held */
3389 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3390 policy = oldpolicy = -1;
3391 task_rq_unlock(rq, p, &flags);
3392 goto recheck;
3393 }
3394
3395 /*
3396 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3397 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3398 * is available.
3399 */
3400 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3401 task_rq_unlock(rq, p, &flags);
3402 return -EBUSY;
3403 }
3404
3405 p->sched_reset_on_fork = reset_on_fork;
3406 oldprio = p->prio;
3407
3408 /*
3409 * Special case for priority boosted tasks.
3410 *
3411 * If the new priority is lower or equal (user space view)
3412 * than the current (boosted) priority, we just store the new
3413 * normal parameters and do not touch the scheduler class and
3414 * the runqueue. This will be done when the task deboost
3415 * itself.
3416 */
3417 if (rt_mutex_check_prio(p, newprio)) {
3418 __setscheduler_params(p, attr);
3419 task_rq_unlock(rq, p, &flags);
3420 return 0;
3421 }
3422
3423 on_rq = p->on_rq;
3424 running = task_current(rq, p);
3425 if (on_rq)
3426 dequeue_task(rq, p, 0);
3427 if (running)
3428 p->sched_class->put_prev_task(rq, p);
3429
3430 prev_class = p->sched_class;
3431 __setscheduler(rq, p, attr);
3432
3433 if (running)
3434 p->sched_class->set_curr_task(rq);
3435 if (on_rq) {
3436 /*
3437 * We enqueue to tail when the priority of a task is
3438 * increased (user space view).
3439 */
3440 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3441 }
3442
3443 check_class_changed(rq, p, prev_class, oldprio);
3444 task_rq_unlock(rq, p, &flags);
3445
3446 rt_mutex_adjust_pi(p);
3447
3448 return 0;
3449 }
3450
3451 static int _sched_setscheduler(struct task_struct *p, int policy,
3452 const struct sched_param *param, bool check)
3453 {
3454 struct sched_attr attr = {
3455 .sched_policy = policy,
3456 .sched_priority = param->sched_priority,
3457 .sched_nice = PRIO_TO_NICE(p->static_prio),
3458 };
3459
3460 /*
3461 * Fixup the legacy SCHED_RESET_ON_FORK hack
3462 */
3463 if (policy & SCHED_RESET_ON_FORK) {
3464 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3465 policy &= ~SCHED_RESET_ON_FORK;
3466 attr.sched_policy = policy;
3467 }
3468
3469 return __sched_setscheduler(p, &attr, check);
3470 }
3471 /**
3472 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3473 * @p: the task in question.
3474 * @policy: new policy.
3475 * @param: structure containing the new RT priority.
3476 *
3477 * Return: 0 on success. An error code otherwise.
3478 *
3479 * NOTE that the task may be already dead.
3480 */
3481 int sched_setscheduler(struct task_struct *p, int policy,
3482 const struct sched_param *param)
3483 {
3484 return _sched_setscheduler(p, policy, param, true);
3485 }
3486 EXPORT_SYMBOL_GPL(sched_setscheduler);
3487
3488 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3489 {
3490 return __sched_setscheduler(p, attr, true);
3491 }
3492 EXPORT_SYMBOL_GPL(sched_setattr);
3493
3494 /**
3495 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3496 * @p: the task in question.
3497 * @policy: new policy.
3498 * @param: structure containing the new RT priority.
3499 *
3500 * Just like sched_setscheduler, only don't bother checking if the
3501 * current context has permission. For example, this is needed in
3502 * stop_machine(): we create temporary high priority worker threads,
3503 * but our caller might not have that capability.
3504 *
3505 * Return: 0 on success. An error code otherwise.
3506 */
3507 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3508 const struct sched_param *param)
3509 {
3510 return _sched_setscheduler(p, policy, param, false);
3511 }
3512
3513 static int
3514 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3515 {
3516 struct sched_param lparam;
3517 struct task_struct *p;
3518 int retval;
3519
3520 if (!param || pid < 0)
3521 return -EINVAL;
3522 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3523 return -EFAULT;
3524
3525 rcu_read_lock();
3526 retval = -ESRCH;
3527 p = find_process_by_pid(pid);
3528 if (p != NULL)
3529 retval = sched_setscheduler(p, policy, &lparam);
3530 rcu_read_unlock();
3531
3532 return retval;
3533 }
3534
3535 /*
3536 * Mimics kernel/events/core.c perf_copy_attr().
3537 */
3538 static int sched_copy_attr(struct sched_attr __user *uattr,
3539 struct sched_attr *attr)
3540 {
3541 u32 size;
3542 int ret;
3543
3544 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3545 return -EFAULT;
3546
3547 /*
3548 * zero the full structure, so that a short copy will be nice.
3549 */
3550 memset(attr, 0, sizeof(*attr));
3551
3552 ret = get_user(size, &uattr->size);
3553 if (ret)
3554 return ret;
3555
3556 if (size > PAGE_SIZE) /* silly large */
3557 goto err_size;
3558
3559 if (!size) /* abi compat */
3560 size = SCHED_ATTR_SIZE_VER0;
3561
3562 if (size < SCHED_ATTR_SIZE_VER0)
3563 goto err_size;
3564
3565 /*
3566 * If we're handed a bigger struct than we know of,
3567 * ensure all the unknown bits are 0 - i.e. new
3568 * user-space does not rely on any kernel feature
3569 * extensions we dont know about yet.
3570 */
3571 if (size > sizeof(*attr)) {
3572 unsigned char __user *addr;
3573 unsigned char __user *end;
3574 unsigned char val;
3575
3576 addr = (void __user *)uattr + sizeof(*attr);
3577 end = (void __user *)uattr + size;
3578
3579 for (; addr < end; addr++) {
3580 ret = get_user(val, addr);
3581 if (ret)
3582 return ret;
3583 if (val)
3584 goto err_size;
3585 }
3586 size = sizeof(*attr);
3587 }
3588
3589 ret = copy_from_user(attr, uattr, size);
3590 if (ret)
3591 return -EFAULT;
3592
3593 /*
3594 * XXX: do we want to be lenient like existing syscalls; or do we want
3595 * to be strict and return an error on out-of-bounds values?
3596 */
3597 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3598
3599 out:
3600 return ret;
3601
3602 err_size:
3603 put_user(sizeof(*attr), &uattr->size);
3604 ret = -E2BIG;
3605 goto out;
3606 }
3607
3608 /**
3609 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3610 * @pid: the pid in question.
3611 * @policy: new policy.
3612 * @param: structure containing the new RT priority.
3613 *
3614 * Return: 0 on success. An error code otherwise.
3615 */
3616 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3617 struct sched_param __user *, param)
3618 {
3619 /* negative values for policy are not valid */
3620 if (policy < 0)
3621 return -EINVAL;
3622
3623 return do_sched_setscheduler(pid, policy, param);
3624 }
3625
3626 /**
3627 * sys_sched_setparam - set/change the RT priority of a thread
3628 * @pid: the pid in question.
3629 * @param: structure containing the new RT priority.
3630 *
3631 * Return: 0 on success. An error code otherwise.
3632 */
3633 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3634 {
3635 return do_sched_setscheduler(pid, -1, param);
3636 }
3637
3638 /**
3639 * sys_sched_setattr - same as above, but with extended sched_attr
3640 * @pid: the pid in question.
3641 * @uattr: structure containing the extended parameters.
3642 */
3643 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3644 unsigned int, flags)
3645 {
3646 struct sched_attr attr;
3647 struct task_struct *p;
3648 int retval;
3649
3650 if (!uattr || pid < 0 || flags)
3651 return -EINVAL;
3652
3653 if (sched_copy_attr(uattr, &attr))
3654 return -EFAULT;
3655
3656 rcu_read_lock();
3657 retval = -ESRCH;
3658 p = find_process_by_pid(pid);
3659 if (p != NULL)
3660 retval = sched_setattr(p, &attr);
3661 rcu_read_unlock();
3662
3663 return retval;
3664 }
3665
3666 /**
3667 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3668 * @pid: the pid in question.
3669 *
3670 * Return: On success, the policy of the thread. Otherwise, a negative error
3671 * code.
3672 */
3673 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3674 {
3675 struct task_struct *p;
3676 int retval;
3677
3678 if (pid < 0)
3679 return -EINVAL;
3680
3681 retval = -ESRCH;
3682 rcu_read_lock();
3683 p = find_process_by_pid(pid);
3684 if (p) {
3685 retval = security_task_getscheduler(p);
3686 if (!retval)
3687 retval = p->policy
3688 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3689 }
3690 rcu_read_unlock();
3691 return retval;
3692 }
3693
3694 /**
3695 * sys_sched_getparam - get the RT priority of a thread
3696 * @pid: the pid in question.
3697 * @param: structure containing the RT priority.
3698 *
3699 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3700 * code.
3701 */
3702 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3703 {
3704 struct sched_param lp;
3705 struct task_struct *p;
3706 int retval;
3707
3708 if (!param || pid < 0)
3709 return -EINVAL;
3710
3711 rcu_read_lock();
3712 p = find_process_by_pid(pid);
3713 retval = -ESRCH;
3714 if (!p)
3715 goto out_unlock;
3716
3717 retval = security_task_getscheduler(p);
3718 if (retval)
3719 goto out_unlock;
3720
3721 if (task_has_dl_policy(p)) {
3722 retval = -EINVAL;
3723 goto out_unlock;
3724 }
3725 lp.sched_priority = p->rt_priority;
3726 rcu_read_unlock();
3727
3728 /*
3729 * This one might sleep, we cannot do it with a spinlock held ...
3730 */
3731 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3732
3733 return retval;
3734
3735 out_unlock:
3736 rcu_read_unlock();
3737 return retval;
3738 }
3739
3740 static int sched_read_attr(struct sched_attr __user *uattr,
3741 struct sched_attr *attr,
3742 unsigned int usize)
3743 {
3744 int ret;
3745
3746 if (!access_ok(VERIFY_WRITE, uattr, usize))
3747 return -EFAULT;
3748
3749 /*
3750 * If we're handed a smaller struct than we know of,
3751 * ensure all the unknown bits are 0 - i.e. old
3752 * user-space does not get uncomplete information.
3753 */
3754 if (usize < sizeof(*attr)) {
3755 unsigned char *addr;
3756 unsigned char *end;
3757
3758 addr = (void *)attr + usize;
3759 end = (void *)attr + sizeof(*attr);
3760
3761 for (; addr < end; addr++) {
3762 if (*addr)
3763 goto err_size;
3764 }
3765
3766 attr->size = usize;
3767 }
3768
3769 ret = copy_to_user(uattr, attr, attr->size);
3770 if (ret)
3771 return -EFAULT;
3772
3773 out:
3774 return ret;
3775
3776 err_size:
3777 ret = -E2BIG;
3778 goto out;
3779 }
3780
3781 /**
3782 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3783 * @pid: the pid in question.
3784 * @uattr: structure containing the extended parameters.
3785 * @size: sizeof(attr) for fwd/bwd comp.
3786 */
3787 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3788 unsigned int, size, unsigned int, flags)
3789 {
3790 struct sched_attr attr = {
3791 .size = sizeof(struct sched_attr),
3792 };
3793 struct task_struct *p;
3794 int retval;
3795
3796 if (!uattr || pid < 0 || size > PAGE_SIZE ||
3797 size < SCHED_ATTR_SIZE_VER0 || flags)
3798 return -EINVAL;
3799
3800 rcu_read_lock();
3801 p = find_process_by_pid(pid);
3802 retval = -ESRCH;
3803 if (!p)
3804 goto out_unlock;
3805
3806 retval = security_task_getscheduler(p);
3807 if (retval)
3808 goto out_unlock;
3809
3810 attr.sched_policy = p->policy;
3811 if (p->sched_reset_on_fork)
3812 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3813 if (task_has_dl_policy(p))
3814 __getparam_dl(p, &attr);
3815 else if (task_has_rt_policy(p))
3816 attr.sched_priority = p->rt_priority;
3817 else
3818 attr.sched_nice = task_nice(p);
3819
3820 rcu_read_unlock();
3821
3822 retval = sched_read_attr(uattr, &attr, size);
3823 return retval;
3824
3825 out_unlock:
3826 rcu_read_unlock();
3827 return retval;
3828 }
3829
3830 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
3831 {
3832 cpumask_var_t cpus_allowed, new_mask;
3833 struct task_struct *p;
3834 int retval;
3835
3836 rcu_read_lock();
3837
3838 p = find_process_by_pid(pid);
3839 if (!p) {
3840 rcu_read_unlock();
3841 return -ESRCH;
3842 }
3843
3844 /* Prevent p going away */
3845 get_task_struct(p);
3846 rcu_read_unlock();
3847
3848 if (p->flags & PF_NO_SETAFFINITY) {
3849 retval = -EINVAL;
3850 goto out_put_task;
3851 }
3852 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3853 retval = -ENOMEM;
3854 goto out_put_task;
3855 }
3856 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3857 retval = -ENOMEM;
3858 goto out_free_cpus_allowed;
3859 }
3860 retval = -EPERM;
3861 if (!check_same_owner(p)) {
3862 rcu_read_lock();
3863 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3864 rcu_read_unlock();
3865 goto out_unlock;
3866 }
3867 rcu_read_unlock();
3868 }
3869
3870 retval = security_task_setscheduler(p);
3871 if (retval)
3872 goto out_unlock;
3873
3874
3875 cpuset_cpus_allowed(p, cpus_allowed);
3876 cpumask_and(new_mask, in_mask, cpus_allowed);
3877
3878 /*
3879 * Since bandwidth control happens on root_domain basis,
3880 * if admission test is enabled, we only admit -deadline
3881 * tasks allowed to run on all the CPUs in the task's
3882 * root_domain.
3883 */
3884 #ifdef CONFIG_SMP
3885 if (task_has_dl_policy(p)) {
3886 const struct cpumask *span = task_rq(p)->rd->span;
3887
3888 if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3889 retval = -EBUSY;
3890 goto out_unlock;
3891 }
3892 }
3893 #endif
3894 again:
3895 retval = set_cpus_allowed_ptr(p, new_mask);
3896
3897 if (!retval) {
3898 cpuset_cpus_allowed(p, cpus_allowed);
3899 if (!cpumask_subset(new_mask, cpus_allowed)) {
3900 /*
3901 * We must have raced with a concurrent cpuset
3902 * update. Just reset the cpus_allowed to the
3903 * cpuset's cpus_allowed
3904 */
3905 cpumask_copy(new_mask, cpus_allowed);
3906 goto again;
3907 }
3908 }
3909 out_unlock:
3910 free_cpumask_var(new_mask);
3911 out_free_cpus_allowed:
3912 free_cpumask_var(cpus_allowed);
3913 out_put_task:
3914 put_task_struct(p);
3915 return retval;
3916 }
3917
3918 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3919 struct cpumask *new_mask)
3920 {
3921 if (len < cpumask_size())
3922 cpumask_clear(new_mask);
3923 else if (len > cpumask_size())
3924 len = cpumask_size();
3925
3926 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3927 }
3928
3929 /**
3930 * sys_sched_setaffinity - set the cpu affinity of a process
3931 * @pid: pid of the process
3932 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3933 * @user_mask_ptr: user-space pointer to the new cpu mask
3934 *
3935 * Return: 0 on success. An error code otherwise.
3936 */
3937 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3938 unsigned long __user *, user_mask_ptr)
3939 {
3940 cpumask_var_t new_mask;
3941 int retval;
3942
3943 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3944 return -ENOMEM;
3945
3946 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3947 if (retval == 0)
3948 retval = sched_setaffinity(pid, new_mask);
3949 free_cpumask_var(new_mask);
3950 return retval;
3951 }
3952
3953 long sched_getaffinity(pid_t pid, struct cpumask *mask)
3954 {
3955 struct task_struct *p;
3956 unsigned long flags;
3957 int retval;
3958
3959 rcu_read_lock();
3960
3961 retval = -ESRCH;
3962 p = find_process_by_pid(pid);
3963 if (!p)
3964 goto out_unlock;
3965
3966 retval = security_task_getscheduler(p);
3967 if (retval)
3968 goto out_unlock;
3969
3970 raw_spin_lock_irqsave(&p->pi_lock, flags);
3971 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
3972 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3973
3974 out_unlock:
3975 rcu_read_unlock();
3976
3977 return retval;
3978 }
3979
3980 /**
3981 * sys_sched_getaffinity - get the cpu affinity of a process
3982 * @pid: pid of the process
3983 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3984 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3985 *
3986 * Return: 0 on success. An error code otherwise.
3987 */
3988 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3989 unsigned long __user *, user_mask_ptr)
3990 {
3991 int ret;
3992 cpumask_var_t mask;
3993
3994 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
3995 return -EINVAL;
3996 if (len & (sizeof(unsigned long)-1))
3997 return -EINVAL;
3998
3999 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4000 return -ENOMEM;
4001
4002 ret = sched_getaffinity(pid, mask);
4003 if (ret == 0) {
4004 size_t retlen = min_t(size_t, len, cpumask_size());
4005
4006 if (copy_to_user(user_mask_ptr, mask, retlen))
4007 ret = -EFAULT;
4008 else
4009 ret = retlen;
4010 }
4011 free_cpumask_var(mask);
4012
4013 return ret;
4014 }
4015
4016 /**
4017 * sys_sched_yield - yield the current processor to other threads.
4018 *
4019 * This function yields the current CPU to other tasks. If there are no
4020 * other threads running on this CPU then this function will return.
4021 *
4022 * Return: 0.
4023 */
4024 SYSCALL_DEFINE0(sched_yield)
4025 {
4026 struct rq *rq = this_rq_lock();
4027
4028 schedstat_inc(rq, yld_count);
4029 current->sched_class->yield_task(rq);
4030
4031 /*
4032 * Since we are going to call schedule() anyway, there's
4033 * no need to preempt or enable interrupts:
4034 */
4035 __release(rq->lock);
4036 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4037 do_raw_spin_unlock(&rq->lock);
4038 sched_preempt_enable_no_resched();
4039
4040 schedule();
4041
4042 return 0;
4043 }
4044
4045 static void __cond_resched(void)
4046 {
4047 __preempt_count_add(PREEMPT_ACTIVE);
4048 __schedule();
4049 __preempt_count_sub(PREEMPT_ACTIVE);
4050 }
4051
4052 int __sched _cond_resched(void)
4053 {
4054 if (should_resched()) {
4055 __cond_resched();
4056 return 1;
4057 }
4058 return 0;
4059 }
4060 EXPORT_SYMBOL(_cond_resched);
4061
4062 /*
4063 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4064 * call schedule, and on return reacquire the lock.
4065 *
4066 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4067 * operations here to prevent schedule() from being called twice (once via
4068 * spin_unlock(), once by hand).
4069 */
4070 int __cond_resched_lock(spinlock_t *lock)
4071 {
4072 int resched = should_resched();
4073 int ret = 0;
4074
4075 lockdep_assert_held(lock);
4076
4077 if (spin_needbreak(lock) || resched) {
4078 spin_unlock(lock);
4079 if (resched)
4080 __cond_resched();
4081 else
4082 cpu_relax();
4083 ret = 1;
4084 spin_lock(lock);
4085 }
4086 return ret;
4087 }
4088 EXPORT_SYMBOL(__cond_resched_lock);
4089
4090 int __sched __cond_resched_softirq(void)
4091 {
4092 BUG_ON(!in_softirq());
4093
4094 if (should_resched()) {
4095 local_bh_enable();
4096 __cond_resched();
4097 local_bh_disable();
4098 return 1;
4099 }
4100 return 0;
4101 }
4102 EXPORT_SYMBOL(__cond_resched_softirq);
4103
4104 /**
4105 * yield - yield the current processor to other threads.
4106 *
4107 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4108 *
4109 * The scheduler is at all times free to pick the calling task as the most
4110 * eligible task to run, if removing the yield() call from your code breaks
4111 * it, its already broken.
4112 *
4113 * Typical broken usage is:
4114 *
4115 * while (!event)
4116 * yield();
4117 *
4118 * where one assumes that yield() will let 'the other' process run that will
4119 * make event true. If the current task is a SCHED_FIFO task that will never
4120 * happen. Never use yield() as a progress guarantee!!
4121 *
4122 * If you want to use yield() to wait for something, use wait_event().
4123 * If you want to use yield() to be 'nice' for others, use cond_resched().
4124 * If you still want to use yield(), do not!
4125 */
4126 void __sched yield(void)
4127 {
4128 set_current_state(TASK_RUNNING);
4129 sys_sched_yield();
4130 }
4131 EXPORT_SYMBOL(yield);
4132
4133 /**
4134 * yield_to - yield the current processor to another thread in
4135 * your thread group, or accelerate that thread toward the
4136 * processor it's on.
4137 * @p: target task
4138 * @preempt: whether task preemption is allowed or not
4139 *
4140 * It's the caller's job to ensure that the target task struct
4141 * can't go away on us before we can do any checks.
4142 *
4143 * Return:
4144 * true (>0) if we indeed boosted the target task.
4145 * false (0) if we failed to boost the target.
4146 * -ESRCH if there's no task to yield to.
4147 */
4148 bool __sched yield_to(struct task_struct *p, bool preempt)
4149 {
4150 struct task_struct *curr = current;
4151 struct rq *rq, *p_rq;
4152 unsigned long flags;
4153 int yielded = 0;
4154
4155 local_irq_save(flags);
4156 rq = this_rq();
4157
4158 again:
4159 p_rq = task_rq(p);
4160 /*
4161 * If we're the only runnable task on the rq and target rq also
4162 * has only one task, there's absolutely no point in yielding.
4163 */
4164 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4165 yielded = -ESRCH;
4166 goto out_irq;
4167 }
4168
4169 double_rq_lock(rq, p_rq);
4170 if (task_rq(p) != p_rq) {
4171 double_rq_unlock(rq, p_rq);
4172 goto again;
4173 }
4174
4175 if (!curr->sched_class->yield_to_task)
4176 goto out_unlock;
4177
4178 if (curr->sched_class != p->sched_class)
4179 goto out_unlock;
4180
4181 if (task_running(p_rq, p) || p->state)
4182 goto out_unlock;
4183
4184 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4185 if (yielded) {
4186 schedstat_inc(rq, yld_count);
4187 /*
4188 * Make p's CPU reschedule; pick_next_entity takes care of
4189 * fairness.
4190 */
4191 if (preempt && rq != p_rq)
4192 resched_task(p_rq->curr);
4193 }
4194
4195 out_unlock:
4196 double_rq_unlock(rq, p_rq);
4197 out_irq:
4198 local_irq_restore(flags);
4199
4200 if (yielded > 0)
4201 schedule();
4202
4203 return yielded;
4204 }
4205 EXPORT_SYMBOL_GPL(yield_to);
4206
4207 /*
4208 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4209 * that process accounting knows that this is a task in IO wait state.
4210 */
4211 void __sched io_schedule(void)
4212 {
4213 struct rq *rq = raw_rq();
4214
4215 delayacct_blkio_start();
4216 atomic_inc(&rq->nr_iowait);
4217 blk_flush_plug(current);
4218 current->in_iowait = 1;
4219 schedule();
4220 current->in_iowait = 0;
4221 atomic_dec(&rq->nr_iowait);
4222 delayacct_blkio_end();
4223 }
4224 EXPORT_SYMBOL(io_schedule);
4225
4226 long __sched io_schedule_timeout(long timeout)
4227 {
4228 struct rq *rq = raw_rq();
4229 long ret;
4230
4231 delayacct_blkio_start();
4232 atomic_inc(&rq->nr_iowait);
4233 blk_flush_plug(current);
4234 current->in_iowait = 1;
4235 ret = schedule_timeout(timeout);
4236 current->in_iowait = 0;
4237 atomic_dec(&rq->nr_iowait);
4238 delayacct_blkio_end();
4239 return ret;
4240 }
4241
4242 /**
4243 * sys_sched_get_priority_max - return maximum RT priority.
4244 * @policy: scheduling class.
4245 *
4246 * Return: On success, this syscall returns the maximum
4247 * rt_priority that can be used by a given scheduling class.
4248 * On failure, a negative error code is returned.
4249 */
4250 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4251 {
4252 int ret = -EINVAL;
4253
4254 switch (policy) {
4255 case SCHED_FIFO:
4256 case SCHED_RR:
4257 ret = MAX_USER_RT_PRIO-1;
4258 break;
4259 case SCHED_DEADLINE:
4260 case SCHED_NORMAL:
4261 case SCHED_BATCH:
4262 case SCHED_IDLE:
4263 ret = 0;
4264 break;
4265 }
4266 return ret;
4267 }
4268
4269 /**
4270 * sys_sched_get_priority_min - return minimum RT priority.
4271 * @policy: scheduling class.
4272 *
4273 * Return: On success, this syscall returns the minimum
4274 * rt_priority that can be used by a given scheduling class.
4275 * On failure, a negative error code is returned.
4276 */
4277 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4278 {
4279 int ret = -EINVAL;
4280
4281 switch (policy) {
4282 case SCHED_FIFO:
4283 case SCHED_RR:
4284 ret = 1;
4285 break;
4286 case SCHED_DEADLINE:
4287 case SCHED_NORMAL:
4288 case SCHED_BATCH:
4289 case SCHED_IDLE:
4290 ret = 0;
4291 }
4292 return ret;
4293 }
4294
4295 /**
4296 * sys_sched_rr_get_interval - return the default timeslice of a process.
4297 * @pid: pid of the process.
4298 * @interval: userspace pointer to the timeslice value.
4299 *
4300 * this syscall writes the default timeslice value of a given process
4301 * into the user-space timespec buffer. A value of '0' means infinity.
4302 *
4303 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4304 * an error code.
4305 */
4306 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4307 struct timespec __user *, interval)
4308 {
4309 struct task_struct *p;
4310 unsigned int time_slice;
4311 unsigned long flags;
4312 struct rq *rq;
4313 int retval;
4314 struct timespec t;
4315
4316 if (pid < 0)
4317 return -EINVAL;
4318
4319 retval = -ESRCH;
4320 rcu_read_lock();
4321 p = find_process_by_pid(pid);
4322 if (!p)
4323 goto out_unlock;
4324
4325 retval = security_task_getscheduler(p);
4326 if (retval)
4327 goto out_unlock;
4328
4329 rq = task_rq_lock(p, &flags);
4330 time_slice = 0;
4331 if (p->sched_class->get_rr_interval)
4332 time_slice = p->sched_class->get_rr_interval(rq, p);
4333 task_rq_unlock(rq, p, &flags);
4334
4335 rcu_read_unlock();
4336 jiffies_to_timespec(time_slice, &t);
4337 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4338 return retval;
4339
4340 out_unlock:
4341 rcu_read_unlock();
4342 return retval;
4343 }
4344
4345 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4346
4347 void sched_show_task(struct task_struct *p)
4348 {
4349 unsigned long free = 0;
4350 int ppid;
4351 unsigned state;
4352
4353 state = p->state ? __ffs(p->state) + 1 : 0;
4354 printk(KERN_INFO "%-15.15s %c", p->comm,
4355 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4356 #if BITS_PER_LONG == 32
4357 if (state == TASK_RUNNING)
4358 printk(KERN_CONT " running ");
4359 else
4360 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4361 #else
4362 if (state == TASK_RUNNING)
4363 printk(KERN_CONT " running task ");
4364 else
4365 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4366 #endif
4367 #ifdef CONFIG_DEBUG_STACK_USAGE
4368 free = stack_not_used(p);
4369 #endif
4370 rcu_read_lock();
4371 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4372 rcu_read_unlock();
4373 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4374 task_pid_nr(p), ppid,
4375 (unsigned long)task_thread_info(p)->flags);
4376
4377 print_worker_info(KERN_INFO, p);
4378 show_stack(p, NULL);
4379 }
4380
4381 void show_state_filter(unsigned long state_filter)
4382 {
4383 struct task_struct *g, *p;
4384
4385 #if BITS_PER_LONG == 32
4386 printk(KERN_INFO
4387 " task PC stack pid father\n");
4388 #else
4389 printk(KERN_INFO
4390 " task PC stack pid father\n");
4391 #endif
4392 rcu_read_lock();
4393 do_each_thread(g, p) {
4394 /*
4395 * reset the NMI-timeout, listing all files on a slow
4396 * console might take a lot of time:
4397 */
4398 touch_nmi_watchdog();
4399 if (!state_filter || (p->state & state_filter))
4400 sched_show_task(p);
4401 } while_each_thread(g, p);
4402
4403 touch_all_softlockup_watchdogs();
4404
4405 #ifdef CONFIG_SCHED_DEBUG
4406 sysrq_sched_debug_show();
4407 #endif
4408 rcu_read_unlock();
4409 /*
4410 * Only show locks if all tasks are dumped:
4411 */
4412 if (!state_filter)
4413 debug_show_all_locks();
4414 }
4415
4416 void init_idle_bootup_task(struct task_struct *idle)
4417 {
4418 idle->sched_class = &idle_sched_class;
4419 }
4420
4421 /**
4422 * init_idle - set up an idle thread for a given CPU
4423 * @idle: task in question
4424 * @cpu: cpu the idle task belongs to
4425 *
4426 * NOTE: this function does not set the idle thread's NEED_RESCHED
4427 * flag, to make booting more robust.
4428 */
4429 void init_idle(struct task_struct *idle, int cpu)
4430 {
4431 struct rq *rq = cpu_rq(cpu);
4432 unsigned long flags;
4433
4434 raw_spin_lock_irqsave(&rq->lock, flags);
4435
4436 __sched_fork(0, idle);
4437 idle->state = TASK_RUNNING;
4438 idle->se.exec_start = sched_clock();
4439
4440 do_set_cpus_allowed(idle, cpumask_of(cpu));
4441 /*
4442 * We're having a chicken and egg problem, even though we are
4443 * holding rq->lock, the cpu isn't yet set to this cpu so the
4444 * lockdep check in task_group() will fail.
4445 *
4446 * Similar case to sched_fork(). / Alternatively we could
4447 * use task_rq_lock() here and obtain the other rq->lock.
4448 *
4449 * Silence PROVE_RCU
4450 */
4451 rcu_read_lock();
4452 __set_task_cpu(idle, cpu);
4453 rcu_read_unlock();
4454
4455 rq->curr = rq->idle = idle;
4456 idle->on_rq = 1;
4457 #if defined(CONFIG_SMP)
4458 idle->on_cpu = 1;
4459 #endif
4460 raw_spin_unlock_irqrestore(&rq->lock, flags);
4461
4462 /* Set the preempt count _outside_ the spinlocks! */
4463 init_idle_preempt_count(idle, cpu);
4464
4465 /*
4466 * The idle tasks have their own, simple scheduling class:
4467 */
4468 idle->sched_class = &idle_sched_class;
4469 ftrace_graph_init_idle_task(idle, cpu);
4470 vtime_init_idle(idle, cpu);
4471 #if defined(CONFIG_SMP)
4472 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4473 #endif
4474 }
4475
4476 #ifdef CONFIG_SMP
4477 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4478 {
4479 if (p->sched_class && p->sched_class->set_cpus_allowed)
4480 p->sched_class->set_cpus_allowed(p, new_mask);
4481
4482 cpumask_copy(&p->cpus_allowed, new_mask);
4483 p->nr_cpus_allowed = cpumask_weight(new_mask);
4484 }
4485
4486 /*
4487 * This is how migration works:
4488 *
4489 * 1) we invoke migration_cpu_stop() on the target CPU using
4490 * stop_one_cpu().
4491 * 2) stopper starts to run (implicitly forcing the migrated thread
4492 * off the CPU)
4493 * 3) it checks whether the migrated task is still in the wrong runqueue.
4494 * 4) if it's in the wrong runqueue then the migration thread removes
4495 * it and puts it into the right queue.
4496 * 5) stopper completes and stop_one_cpu() returns and the migration
4497 * is done.
4498 */
4499
4500 /*
4501 * Change a given task's CPU affinity. Migrate the thread to a
4502 * proper CPU and schedule it away if the CPU it's executing on
4503 * is removed from the allowed bitmask.
4504 *
4505 * NOTE: the caller must have a valid reference to the task, the
4506 * task must not exit() & deallocate itself prematurely. The
4507 * call is not atomic; no spinlocks may be held.
4508 */
4509 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4510 {
4511 unsigned long flags;
4512 struct rq *rq;
4513 unsigned int dest_cpu;
4514 int ret = 0;
4515
4516 rq = task_rq_lock(p, &flags);
4517
4518 if (cpumask_equal(&p->cpus_allowed, new_mask))
4519 goto out;
4520
4521 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4522 ret = -EINVAL;
4523 goto out;
4524 }
4525
4526 do_set_cpus_allowed(p, new_mask);
4527
4528 /* Can the task run on the task's current CPU? If so, we're done */
4529 if (cpumask_test_cpu(task_cpu(p), new_mask))
4530 goto out;
4531
4532 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4533 if (p->on_rq) {
4534 struct migration_arg arg = { p, dest_cpu };
4535 /* Need help from migration thread: drop lock and wait. */
4536 task_rq_unlock(rq, p, &flags);
4537 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4538 tlb_migrate_finish(p->mm);
4539 return 0;
4540 }
4541 out:
4542 task_rq_unlock(rq, p, &flags);
4543
4544 return ret;
4545 }
4546 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4547
4548 /*
4549 * Move (not current) task off this cpu, onto dest cpu. We're doing
4550 * this because either it can't run here any more (set_cpus_allowed()
4551 * away from this CPU, or CPU going down), or because we're
4552 * attempting to rebalance this task on exec (sched_exec).
4553 *
4554 * So we race with normal scheduler movements, but that's OK, as long
4555 * as the task is no longer on this CPU.
4556 *
4557 * Returns non-zero if task was successfully migrated.
4558 */
4559 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4560 {
4561 struct rq *rq_dest, *rq_src;
4562 int ret = 0;
4563
4564 if (unlikely(!cpu_active(dest_cpu)))
4565 return ret;
4566
4567 rq_src = cpu_rq(src_cpu);
4568 rq_dest = cpu_rq(dest_cpu);
4569
4570 raw_spin_lock(&p->pi_lock);
4571 double_rq_lock(rq_src, rq_dest);
4572 /* Already moved. */
4573 if (task_cpu(p) != src_cpu)
4574 goto done;
4575 /* Affinity changed (again). */
4576 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4577 goto fail;
4578
4579 /*
4580 * If we're not on a rq, the next wake-up will ensure we're
4581 * placed properly.
4582 */
4583 if (p->on_rq) {
4584 dequeue_task(rq_src, p, 0);
4585 set_task_cpu(p, dest_cpu);
4586 enqueue_task(rq_dest, p, 0);
4587 check_preempt_curr(rq_dest, p, 0);
4588 }
4589 done:
4590 ret = 1;
4591 fail:
4592 double_rq_unlock(rq_src, rq_dest);
4593 raw_spin_unlock(&p->pi_lock);
4594 return ret;
4595 }
4596
4597 #ifdef CONFIG_NUMA_BALANCING
4598 /* Migrate current task p to target_cpu */
4599 int migrate_task_to(struct task_struct *p, int target_cpu)
4600 {
4601 struct migration_arg arg = { p, target_cpu };
4602 int curr_cpu = task_cpu(p);
4603
4604 if (curr_cpu == target_cpu)
4605 return 0;
4606
4607 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4608 return -EINVAL;
4609
4610 /* TODO: This is not properly updating schedstats */
4611
4612 trace_sched_move_numa(p, curr_cpu, target_cpu);
4613 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4614 }
4615
4616 /*
4617 * Requeue a task on a given node and accurately track the number of NUMA
4618 * tasks on the runqueues
4619 */
4620 void sched_setnuma(struct task_struct *p, int nid)
4621 {
4622 struct rq *rq;
4623 unsigned long flags;
4624 bool on_rq, running;
4625
4626 rq = task_rq_lock(p, &flags);
4627 on_rq = p->on_rq;
4628 running = task_current(rq, p);
4629
4630 if (on_rq)
4631 dequeue_task(rq, p, 0);
4632 if (running)
4633 p->sched_class->put_prev_task(rq, p);
4634
4635 p->numa_preferred_nid = nid;
4636
4637 if (running)
4638 p->sched_class->set_curr_task(rq);
4639 if (on_rq)
4640 enqueue_task(rq, p, 0);
4641 task_rq_unlock(rq, p, &flags);
4642 }
4643 #endif
4644
4645 /*
4646 * migration_cpu_stop - this will be executed by a highprio stopper thread
4647 * and performs thread migration by bumping thread off CPU then
4648 * 'pushing' onto another runqueue.
4649 */
4650 static int migration_cpu_stop(void *data)
4651 {
4652 struct migration_arg *arg = data;
4653
4654 /*
4655 * The original target cpu might have gone down and we might
4656 * be on another cpu but it doesn't matter.
4657 */
4658 local_irq_disable();
4659 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4660 local_irq_enable();
4661 return 0;
4662 }
4663
4664 #ifdef CONFIG_HOTPLUG_CPU
4665
4666 /*
4667 * Ensures that the idle task is using init_mm right before its cpu goes
4668 * offline.
4669 */
4670 void idle_task_exit(void)
4671 {
4672 struct mm_struct *mm = current->active_mm;
4673
4674 BUG_ON(cpu_online(smp_processor_id()));
4675
4676 if (mm != &init_mm) {
4677 switch_mm(mm, &init_mm, current);
4678 finish_arch_post_lock_switch();
4679 }
4680 mmdrop(mm);
4681 }
4682
4683 /*
4684 * Since this CPU is going 'away' for a while, fold any nr_active delta
4685 * we might have. Assumes we're called after migrate_tasks() so that the
4686 * nr_active count is stable.
4687 *
4688 * Also see the comment "Global load-average calculations".
4689 */
4690 static void calc_load_migrate(struct rq *rq)
4691 {
4692 long delta = calc_load_fold_active(rq);
4693 if (delta)
4694 atomic_long_add(delta, &calc_load_tasks);
4695 }
4696
4697 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4698 {
4699 }
4700
4701 static const struct sched_class fake_sched_class = {
4702 .put_prev_task = put_prev_task_fake,
4703 };
4704
4705 static struct task_struct fake_task = {
4706 /*
4707 * Avoid pull_{rt,dl}_task()
4708 */
4709 .prio = MAX_PRIO + 1,
4710 .sched_class = &fake_sched_class,
4711 };
4712
4713 /*
4714 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4715 * try_to_wake_up()->select_task_rq().
4716 *
4717 * Called with rq->lock held even though we'er in stop_machine() and
4718 * there's no concurrency possible, we hold the required locks anyway
4719 * because of lock validation efforts.
4720 */
4721 static void migrate_tasks(unsigned int dead_cpu)
4722 {
4723 struct rq *rq = cpu_rq(dead_cpu);
4724 struct task_struct *next, *stop = rq->stop;
4725 int dest_cpu;
4726
4727 /*
4728 * Fudge the rq selection such that the below task selection loop
4729 * doesn't get stuck on the currently eligible stop task.
4730 *
4731 * We're currently inside stop_machine() and the rq is either stuck
4732 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4733 * either way we should never end up calling schedule() until we're
4734 * done here.
4735 */
4736 rq->stop = NULL;
4737
4738 /*
4739 * put_prev_task() and pick_next_task() sched
4740 * class method both need to have an up-to-date
4741 * value of rq->clock[_task]
4742 */
4743 update_rq_clock(rq);
4744
4745 for ( ; ; ) {
4746 /*
4747 * There's this thread running, bail when that's the only
4748 * remaining thread.
4749 */
4750 if (rq->nr_running == 1)
4751 break;
4752
4753 next = pick_next_task(rq, &fake_task);
4754 BUG_ON(!next);
4755 next->sched_class->put_prev_task(rq, next);
4756
4757 /* Find suitable destination for @next, with force if needed. */
4758 dest_cpu = select_fallback_rq(dead_cpu, next);
4759 raw_spin_unlock(&rq->lock);
4760
4761 __migrate_task(next, dead_cpu, dest_cpu);
4762
4763 raw_spin_lock(&rq->lock);
4764 }
4765
4766 rq->stop = stop;
4767 }
4768
4769 #endif /* CONFIG_HOTPLUG_CPU */
4770
4771 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4772
4773 static struct ctl_table sd_ctl_dir[] = {
4774 {
4775 .procname = "sched_domain",
4776 .mode = 0555,
4777 },
4778 {}
4779 };
4780
4781 static struct ctl_table sd_ctl_root[] = {
4782 {
4783 .procname = "kernel",
4784 .mode = 0555,
4785 .child = sd_ctl_dir,
4786 },
4787 {}
4788 };
4789
4790 static struct ctl_table *sd_alloc_ctl_entry(int n)
4791 {
4792 struct ctl_table *entry =
4793 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4794
4795 return entry;
4796 }
4797
4798 static void sd_free_ctl_entry(struct ctl_table **tablep)
4799 {
4800 struct ctl_table *entry;
4801
4802 /*
4803 * In the intermediate directories, both the child directory and
4804 * procname are dynamically allocated and could fail but the mode
4805 * will always be set. In the lowest directory the names are
4806 * static strings and all have proc handlers.
4807 */
4808 for (entry = *tablep; entry->mode; entry++) {
4809 if (entry->child)
4810 sd_free_ctl_entry(&entry->child);
4811 if (entry->proc_handler == NULL)
4812 kfree(entry->procname);
4813 }
4814
4815 kfree(*tablep);
4816 *tablep = NULL;
4817 }
4818
4819 static int min_load_idx = 0;
4820 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4821
4822 static void
4823 set_table_entry(struct ctl_table *entry,
4824 const char *procname, void *data, int maxlen,
4825 umode_t mode, proc_handler *proc_handler,
4826 bool load_idx)
4827 {
4828 entry->procname = procname;
4829 entry->data = data;
4830 entry->maxlen = maxlen;
4831 entry->mode = mode;
4832 entry->proc_handler = proc_handler;
4833
4834 if (load_idx) {
4835 entry->extra1 = &min_load_idx;
4836 entry->extra2 = &max_load_idx;
4837 }
4838 }
4839
4840 static struct ctl_table *
4841 sd_alloc_ctl_domain_table(struct sched_domain *sd)
4842 {
4843 struct ctl_table *table = sd_alloc_ctl_entry(14);
4844
4845 if (table == NULL)
4846 return NULL;
4847
4848 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4849 sizeof(long), 0644, proc_doulongvec_minmax, false);
4850 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4851 sizeof(long), 0644, proc_doulongvec_minmax, false);
4852 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4853 sizeof(int), 0644, proc_dointvec_minmax, true);
4854 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4855 sizeof(int), 0644, proc_dointvec_minmax, true);
4856 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4857 sizeof(int), 0644, proc_dointvec_minmax, true);
4858 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4859 sizeof(int), 0644, proc_dointvec_minmax, true);
4860 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4861 sizeof(int), 0644, proc_dointvec_minmax, true);
4862 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4863 sizeof(int), 0644, proc_dointvec_minmax, false);
4864 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4865 sizeof(int), 0644, proc_dointvec_minmax, false);
4866 set_table_entry(&table[9], "cache_nice_tries",
4867 &sd->cache_nice_tries,
4868 sizeof(int), 0644, proc_dointvec_minmax, false);
4869 set_table_entry(&table[10], "flags", &sd->flags,
4870 sizeof(int), 0644, proc_dointvec_minmax, false);
4871 set_table_entry(&table[11], "max_newidle_lb_cost",
4872 &sd->max_newidle_lb_cost,
4873 sizeof(long), 0644, proc_doulongvec_minmax, false);
4874 set_table_entry(&table[12], "name", sd->name,
4875 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4876 /* &table[13] is terminator */
4877
4878 return table;
4879 }
4880
4881 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4882 {
4883 struct ctl_table *entry, *table;
4884 struct sched_domain *sd;
4885 int domain_num = 0, i;
4886 char buf[32];
4887
4888 for_each_domain(cpu, sd)
4889 domain_num++;
4890 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4891 if (table == NULL)
4892 return NULL;
4893
4894 i = 0;
4895 for_each_domain(cpu, sd) {
4896 snprintf(buf, 32, "domain%d", i);
4897 entry->procname = kstrdup(buf, GFP_KERNEL);
4898 entry->mode = 0555;
4899 entry->child = sd_alloc_ctl_domain_table(sd);
4900 entry++;
4901 i++;
4902 }
4903 return table;
4904 }
4905
4906 static struct ctl_table_header *sd_sysctl_header;
4907 static void register_sched_domain_sysctl(void)
4908 {
4909 int i, cpu_num = num_possible_cpus();
4910 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4911 char buf[32];
4912
4913 WARN_ON(sd_ctl_dir[0].child);
4914 sd_ctl_dir[0].child = entry;
4915
4916 if (entry == NULL)
4917 return;
4918
4919 for_each_possible_cpu(i) {
4920 snprintf(buf, 32, "cpu%d", i);
4921 entry->procname = kstrdup(buf, GFP_KERNEL);
4922 entry->mode = 0555;
4923 entry->child = sd_alloc_ctl_cpu_table(i);
4924 entry++;
4925 }
4926
4927 WARN_ON(sd_sysctl_header);
4928 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4929 }
4930
4931 /* may be called multiple times per register */
4932 static void unregister_sched_domain_sysctl(void)
4933 {
4934 if (sd_sysctl_header)
4935 unregister_sysctl_table(sd_sysctl_header);
4936 sd_sysctl_header = NULL;
4937 if (sd_ctl_dir[0].child)
4938 sd_free_ctl_entry(&sd_ctl_dir[0].child);
4939 }
4940 #else
4941 static void register_sched_domain_sysctl(void)
4942 {
4943 }
4944 static void unregister_sched_domain_sysctl(void)
4945 {
4946 }
4947 #endif
4948
4949 static void set_rq_online(struct rq *rq)
4950 {
4951 if (!rq->online) {
4952 const struct sched_class *class;
4953
4954 cpumask_set_cpu(rq->cpu, rq->rd->online);
4955 rq->online = 1;
4956
4957 for_each_class(class) {
4958 if (class->rq_online)
4959 class->rq_online(rq);
4960 }
4961 }
4962 }
4963
4964 static void set_rq_offline(struct rq *rq)
4965 {
4966 if (rq->online) {
4967 const struct sched_class *class;
4968
4969 for_each_class(class) {
4970 if (class->rq_offline)
4971 class->rq_offline(rq);
4972 }
4973
4974 cpumask_clear_cpu(rq->cpu, rq->rd->online);
4975 rq->online = 0;
4976 }
4977 }
4978
4979 /*
4980 * migration_call - callback that gets triggered when a CPU is added.
4981 * Here we can start up the necessary migration thread for the new CPU.
4982 */
4983 static int
4984 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
4985 {
4986 int cpu = (long)hcpu;
4987 unsigned long flags;
4988 struct rq *rq = cpu_rq(cpu);
4989
4990 switch (action & ~CPU_TASKS_FROZEN) {
4991
4992 case CPU_UP_PREPARE:
4993 rq->calc_load_update = calc_load_update;
4994 break;
4995
4996 case CPU_ONLINE:
4997 /* Update our root-domain */
4998 raw_spin_lock_irqsave(&rq->lock, flags);
4999 if (rq->rd) {
5000 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5001
5002 set_rq_online(rq);
5003 }
5004 raw_spin_unlock_irqrestore(&rq->lock, flags);
5005 break;
5006
5007 #ifdef CONFIG_HOTPLUG_CPU
5008 case CPU_DYING:
5009 sched_ttwu_pending();
5010 /* Update our root-domain */
5011 raw_spin_lock_irqsave(&rq->lock, flags);
5012 if (rq->rd) {
5013 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5014 set_rq_offline(rq);
5015 }
5016 migrate_tasks(cpu);
5017 BUG_ON(rq->nr_running != 1); /* the migration thread */
5018 raw_spin_unlock_irqrestore(&rq->lock, flags);
5019 break;
5020
5021 case CPU_DEAD:
5022 calc_load_migrate(rq);
5023 break;
5024 #endif
5025 }
5026
5027 update_max_interval();
5028
5029 return NOTIFY_OK;
5030 }
5031
5032 /*
5033 * Register at high priority so that task migration (migrate_all_tasks)
5034 * happens before everything else. This has to be lower priority than
5035 * the notifier in the perf_event subsystem, though.
5036 */
5037 static struct notifier_block migration_notifier = {
5038 .notifier_call = migration_call,
5039 .priority = CPU_PRI_MIGRATION,
5040 };
5041
5042 static int sched_cpu_active(struct notifier_block *nfb,
5043 unsigned long action, void *hcpu)
5044 {
5045 switch (action & ~CPU_TASKS_FROZEN) {
5046 case CPU_STARTING:
5047 case CPU_DOWN_FAILED:
5048 set_cpu_active((long)hcpu, true);
5049 return NOTIFY_OK;
5050 default:
5051 return NOTIFY_DONE;
5052 }
5053 }
5054
5055 static int sched_cpu_inactive(struct notifier_block *nfb,
5056 unsigned long action, void *hcpu)
5057 {
5058 unsigned long flags;
5059 long cpu = (long)hcpu;
5060
5061 switch (action & ~CPU_TASKS_FROZEN) {
5062 case CPU_DOWN_PREPARE:
5063 set_cpu_active(cpu, false);
5064
5065 /* explicitly allow suspend */
5066 if (!(action & CPU_TASKS_FROZEN)) {
5067 struct dl_bw *dl_b = dl_bw_of(cpu);
5068 bool overflow;
5069 int cpus;
5070
5071 raw_spin_lock_irqsave(&dl_b->lock, flags);
5072 cpus = dl_bw_cpus(cpu);
5073 overflow = __dl_overflow(dl_b, cpus, 0, 0);
5074 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5075
5076 if (overflow)
5077 return notifier_from_errno(-EBUSY);
5078 }
5079 return NOTIFY_OK;
5080 }
5081
5082 return NOTIFY_DONE;
5083 }
5084
5085 static int __init migration_init(void)
5086 {
5087 void *cpu = (void *)(long)smp_processor_id();
5088 int err;
5089
5090 /* Initialize migration for the boot CPU */
5091 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5092 BUG_ON(err == NOTIFY_BAD);
5093 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5094 register_cpu_notifier(&migration_notifier);
5095
5096 /* Register cpu active notifiers */
5097 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5098 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5099
5100 return 0;
5101 }
5102 early_initcall(migration_init);
5103 #endif
5104
5105 #ifdef CONFIG_SMP
5106
5107 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5108
5109 #ifdef CONFIG_SCHED_DEBUG
5110
5111 static __read_mostly int sched_debug_enabled;
5112
5113 static int __init sched_debug_setup(char *str)
5114 {
5115 sched_debug_enabled = 1;
5116
5117 return 0;
5118 }
5119 early_param("sched_debug", sched_debug_setup);
5120
5121 static inline bool sched_debug(void)
5122 {
5123 return sched_debug_enabled;
5124 }
5125
5126 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5127 struct cpumask *groupmask)
5128 {
5129 struct sched_group *group = sd->groups;
5130 char str[256];
5131
5132 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5133 cpumask_clear(groupmask);
5134
5135 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5136
5137 if (!(sd->flags & SD_LOAD_BALANCE)) {
5138 printk("does not load-balance\n");
5139 if (sd->parent)
5140 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5141 " has parent");
5142 return -1;
5143 }
5144
5145 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5146
5147 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5148 printk(KERN_ERR "ERROR: domain->span does not contain "
5149 "CPU%d\n", cpu);
5150 }
5151 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5152 printk(KERN_ERR "ERROR: domain->groups does not contain"
5153 " CPU%d\n", cpu);
5154 }
5155
5156 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5157 do {
5158 if (!group) {
5159 printk("\n");
5160 printk(KERN_ERR "ERROR: group is NULL\n");
5161 break;
5162 }
5163
5164 /*
5165 * Even though we initialize ->power to something semi-sane,
5166 * we leave power_orig unset. This allows us to detect if
5167 * domain iteration is still funny without causing /0 traps.
5168 */
5169 if (!group->sgp->power_orig) {
5170 printk(KERN_CONT "\n");
5171 printk(KERN_ERR "ERROR: domain->cpu_power not "
5172 "set\n");
5173 break;
5174 }
5175
5176 if (!cpumask_weight(sched_group_cpus(group))) {
5177 printk(KERN_CONT "\n");
5178 printk(KERN_ERR "ERROR: empty group\n");
5179 break;
5180 }
5181
5182 if (!(sd->flags & SD_OVERLAP) &&
5183 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5184 printk(KERN_CONT "\n");
5185 printk(KERN_ERR "ERROR: repeated CPUs\n");
5186 break;
5187 }
5188
5189 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5190
5191 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5192
5193 printk(KERN_CONT " %s", str);
5194 if (group->sgp->power != SCHED_POWER_SCALE) {
5195 printk(KERN_CONT " (cpu_power = %d)",
5196 group->sgp->power);
5197 }
5198
5199 group = group->next;
5200 } while (group != sd->groups);
5201 printk(KERN_CONT "\n");
5202
5203 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5204 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5205
5206 if (sd->parent &&
5207 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5208 printk(KERN_ERR "ERROR: parent span is not a superset "
5209 "of domain->span\n");
5210 return 0;
5211 }
5212
5213 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5214 {
5215 int level = 0;
5216
5217 if (!sched_debug_enabled)
5218 return;
5219
5220 if (!sd) {
5221 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5222 return;
5223 }
5224
5225 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5226
5227 for (;;) {
5228 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5229 break;
5230 level++;
5231 sd = sd->parent;
5232 if (!sd)
5233 break;
5234 }
5235 }
5236 #else /* !CONFIG_SCHED_DEBUG */
5237 # define sched_domain_debug(sd, cpu) do { } while (0)
5238 static inline bool sched_debug(void)
5239 {
5240 return false;
5241 }
5242 #endif /* CONFIG_SCHED_DEBUG */
5243
5244 static int sd_degenerate(struct sched_domain *sd)
5245 {
5246 if (cpumask_weight(sched_domain_span(sd)) == 1)
5247 return 1;
5248
5249 /* Following flags need at least 2 groups */
5250 if (sd->flags & (SD_LOAD_BALANCE |
5251 SD_BALANCE_NEWIDLE |
5252 SD_BALANCE_FORK |
5253 SD_BALANCE_EXEC |
5254 SD_SHARE_CPUPOWER |
5255 SD_SHARE_PKG_RESOURCES)) {
5256 if (sd->groups != sd->groups->next)
5257 return 0;
5258 }
5259
5260 /* Following flags don't use groups */
5261 if (sd->flags & (SD_WAKE_AFFINE))
5262 return 0;
5263
5264 return 1;
5265 }
5266
5267 static int
5268 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5269 {
5270 unsigned long cflags = sd->flags, pflags = parent->flags;
5271
5272 if (sd_degenerate(parent))
5273 return 1;
5274
5275 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5276 return 0;
5277
5278 /* Flags needing groups don't count if only 1 group in parent */
5279 if (parent->groups == parent->groups->next) {
5280 pflags &= ~(SD_LOAD_BALANCE |
5281 SD_BALANCE_NEWIDLE |
5282 SD_BALANCE_FORK |
5283 SD_BALANCE_EXEC |
5284 SD_SHARE_CPUPOWER |
5285 SD_SHARE_PKG_RESOURCES |
5286 SD_PREFER_SIBLING);
5287 if (nr_node_ids == 1)
5288 pflags &= ~SD_SERIALIZE;
5289 }
5290 if (~cflags & pflags)
5291 return 0;
5292
5293 return 1;
5294 }
5295
5296 static void free_rootdomain(struct rcu_head *rcu)
5297 {
5298 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5299
5300 cpupri_cleanup(&rd->cpupri);
5301 cpudl_cleanup(&rd->cpudl);
5302 free_cpumask_var(rd->dlo_mask);
5303 free_cpumask_var(rd->rto_mask);
5304 free_cpumask_var(rd->online);
5305 free_cpumask_var(rd->span);
5306 kfree(rd);
5307 }
5308
5309 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5310 {
5311 struct root_domain *old_rd = NULL;
5312 unsigned long flags;
5313
5314 raw_spin_lock_irqsave(&rq->lock, flags);
5315
5316 if (rq->rd) {
5317 old_rd = rq->rd;
5318
5319 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5320 set_rq_offline(rq);
5321
5322 cpumask_clear_cpu(rq->cpu, old_rd->span);
5323
5324 /*
5325 * If we dont want to free the old_rd yet then
5326 * set old_rd to NULL to skip the freeing later
5327 * in this function:
5328 */
5329 if (!atomic_dec_and_test(&old_rd->refcount))
5330 old_rd = NULL;
5331 }
5332
5333 atomic_inc(&rd->refcount);
5334 rq->rd = rd;
5335
5336 cpumask_set_cpu(rq->cpu, rd->span);
5337 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5338 set_rq_online(rq);
5339
5340 raw_spin_unlock_irqrestore(&rq->lock, flags);
5341
5342 if (old_rd)
5343 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5344 }
5345
5346 static int init_rootdomain(struct root_domain *rd)
5347 {
5348 memset(rd, 0, sizeof(*rd));
5349
5350 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5351 goto out;
5352 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5353 goto free_span;
5354 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5355 goto free_online;
5356 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5357 goto free_dlo_mask;
5358
5359 init_dl_bw(&rd->dl_bw);
5360 if (cpudl_init(&rd->cpudl) != 0)
5361 goto free_dlo_mask;
5362
5363 if (cpupri_init(&rd->cpupri) != 0)
5364 goto free_rto_mask;
5365 return 0;
5366
5367 free_rto_mask:
5368 free_cpumask_var(rd->rto_mask);
5369 free_dlo_mask:
5370 free_cpumask_var(rd->dlo_mask);
5371 free_online:
5372 free_cpumask_var(rd->online);
5373 free_span:
5374 free_cpumask_var(rd->span);
5375 out:
5376 return -ENOMEM;
5377 }
5378
5379 /*
5380 * By default the system creates a single root-domain with all cpus as
5381 * members (mimicking the global state we have today).
5382 */
5383 struct root_domain def_root_domain;
5384
5385 static void init_defrootdomain(void)
5386 {
5387 init_rootdomain(&def_root_domain);
5388
5389 atomic_set(&def_root_domain.refcount, 1);
5390 }
5391
5392 static struct root_domain *alloc_rootdomain(void)
5393 {
5394 struct root_domain *rd;
5395
5396 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5397 if (!rd)
5398 return NULL;
5399
5400 if (init_rootdomain(rd) != 0) {
5401 kfree(rd);
5402 return NULL;
5403 }
5404
5405 return rd;
5406 }
5407
5408 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5409 {
5410 struct sched_group *tmp, *first;
5411
5412 if (!sg)
5413 return;
5414
5415 first = sg;
5416 do {
5417 tmp = sg->next;
5418
5419 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5420 kfree(sg->sgp);
5421
5422 kfree(sg);
5423 sg = tmp;
5424 } while (sg != first);
5425 }
5426
5427 static void free_sched_domain(struct rcu_head *rcu)
5428 {
5429 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5430
5431 /*
5432 * If its an overlapping domain it has private groups, iterate and
5433 * nuke them all.
5434 */
5435 if (sd->flags & SD_OVERLAP) {
5436 free_sched_groups(sd->groups, 1);
5437 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5438 kfree(sd->groups->sgp);
5439 kfree(sd->groups);
5440 }
5441 kfree(sd);
5442 }
5443
5444 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5445 {
5446 call_rcu(&sd->rcu, free_sched_domain);
5447 }
5448
5449 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5450 {
5451 for (; sd; sd = sd->parent)
5452 destroy_sched_domain(sd, cpu);
5453 }
5454
5455 /*
5456 * Keep a special pointer to the highest sched_domain that has
5457 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5458 * allows us to avoid some pointer chasing select_idle_sibling().
5459 *
5460 * Also keep a unique ID per domain (we use the first cpu number in
5461 * the cpumask of the domain), this allows us to quickly tell if
5462 * two cpus are in the same cache domain, see cpus_share_cache().
5463 */
5464 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5465 DEFINE_PER_CPU(int, sd_llc_size);
5466 DEFINE_PER_CPU(int, sd_llc_id);
5467 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5468 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5469 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5470
5471 static void update_top_cache_domain(int cpu)
5472 {
5473 struct sched_domain *sd;
5474 struct sched_domain *busy_sd = NULL;
5475 int id = cpu;
5476 int size = 1;
5477
5478 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5479 if (sd) {
5480 id = cpumask_first(sched_domain_span(sd));
5481 size = cpumask_weight(sched_domain_span(sd));
5482 busy_sd = sd->parent; /* sd_busy */
5483 }
5484 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5485
5486 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5487 per_cpu(sd_llc_size, cpu) = size;
5488 per_cpu(sd_llc_id, cpu) = id;
5489
5490 sd = lowest_flag_domain(cpu, SD_NUMA);
5491 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5492
5493 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5494 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5495 }
5496
5497 /*
5498 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5499 * hold the hotplug lock.
5500 */
5501 static void
5502 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5503 {
5504 struct rq *rq = cpu_rq(cpu);
5505 struct sched_domain *tmp;
5506
5507 /* Remove the sched domains which do not contribute to scheduling. */
5508 for (tmp = sd; tmp; ) {
5509 struct sched_domain *parent = tmp->parent;
5510 if (!parent)
5511 break;
5512
5513 if (sd_parent_degenerate(tmp, parent)) {
5514 tmp->parent = parent->parent;
5515 if (parent->parent)
5516 parent->parent->child = tmp;
5517 /*
5518 * Transfer SD_PREFER_SIBLING down in case of a
5519 * degenerate parent; the spans match for this
5520 * so the property transfers.
5521 */
5522 if (parent->flags & SD_PREFER_SIBLING)
5523 tmp->flags |= SD_PREFER_SIBLING;
5524 destroy_sched_domain(parent, cpu);
5525 } else
5526 tmp = tmp->parent;
5527 }
5528
5529 if (sd && sd_degenerate(sd)) {
5530 tmp = sd;
5531 sd = sd->parent;
5532 destroy_sched_domain(tmp, cpu);
5533 if (sd)
5534 sd->child = NULL;
5535 }
5536
5537 sched_domain_debug(sd, cpu);
5538
5539 rq_attach_root(rq, rd);
5540 tmp = rq->sd;
5541 rcu_assign_pointer(rq->sd, sd);
5542 destroy_sched_domains(tmp, cpu);
5543
5544 update_top_cache_domain(cpu);
5545 }
5546
5547 /* cpus with isolated domains */
5548 static cpumask_var_t cpu_isolated_map;
5549
5550 /* Setup the mask of cpus configured for isolated domains */
5551 static int __init isolated_cpu_setup(char *str)
5552 {
5553 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5554 cpulist_parse(str, cpu_isolated_map);
5555 return 1;
5556 }
5557
5558 __setup("isolcpus=", isolated_cpu_setup);
5559
5560 static const struct cpumask *cpu_cpu_mask(int cpu)
5561 {
5562 return cpumask_of_node(cpu_to_node(cpu));
5563 }
5564
5565 struct sd_data {
5566 struct sched_domain **__percpu sd;
5567 struct sched_group **__percpu sg;
5568 struct sched_group_power **__percpu sgp;
5569 };
5570
5571 struct s_data {
5572 struct sched_domain ** __percpu sd;
5573 struct root_domain *rd;
5574 };
5575
5576 enum s_alloc {
5577 sa_rootdomain,
5578 sa_sd,
5579 sa_sd_storage,
5580 sa_none,
5581 };
5582
5583 struct sched_domain_topology_level;
5584
5585 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5586 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5587
5588 #define SDTL_OVERLAP 0x01
5589
5590 struct sched_domain_topology_level {
5591 sched_domain_init_f init;
5592 sched_domain_mask_f mask;
5593 int flags;
5594 int numa_level;
5595 struct sd_data data;
5596 };
5597
5598 /*
5599 * Build an iteration mask that can exclude certain CPUs from the upwards
5600 * domain traversal.
5601 *
5602 * Asymmetric node setups can result in situations where the domain tree is of
5603 * unequal depth, make sure to skip domains that already cover the entire
5604 * range.
5605 *
5606 * In that case build_sched_domains() will have terminated the iteration early
5607 * and our sibling sd spans will be empty. Domains should always include the
5608 * cpu they're built on, so check that.
5609 *
5610 */
5611 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5612 {
5613 const struct cpumask *span = sched_domain_span(sd);
5614 struct sd_data *sdd = sd->private;
5615 struct sched_domain *sibling;
5616 int i;
5617
5618 for_each_cpu(i, span) {
5619 sibling = *per_cpu_ptr(sdd->sd, i);
5620 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5621 continue;
5622
5623 cpumask_set_cpu(i, sched_group_mask(sg));
5624 }
5625 }
5626
5627 /*
5628 * Return the canonical balance cpu for this group, this is the first cpu
5629 * of this group that's also in the iteration mask.
5630 */
5631 int group_balance_cpu(struct sched_group *sg)
5632 {
5633 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5634 }
5635
5636 static int
5637 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5638 {
5639 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5640 const struct cpumask *span = sched_domain_span(sd);
5641 struct cpumask *covered = sched_domains_tmpmask;
5642 struct sd_data *sdd = sd->private;
5643 struct sched_domain *child;
5644 int i;
5645
5646 cpumask_clear(covered);
5647
5648 for_each_cpu(i, span) {
5649 struct cpumask *sg_span;
5650
5651 if (cpumask_test_cpu(i, covered))
5652 continue;
5653
5654 child = *per_cpu_ptr(sdd->sd, i);
5655
5656 /* See the comment near build_group_mask(). */
5657 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5658 continue;
5659
5660 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5661 GFP_KERNEL, cpu_to_node(cpu));
5662
5663 if (!sg)
5664 goto fail;
5665
5666 sg_span = sched_group_cpus(sg);
5667 if (child->child) {
5668 child = child->child;
5669 cpumask_copy(sg_span, sched_domain_span(child));
5670 } else
5671 cpumask_set_cpu(i, sg_span);
5672
5673 cpumask_or(covered, covered, sg_span);
5674
5675 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5676 if (atomic_inc_return(&sg->sgp->ref) == 1)
5677 build_group_mask(sd, sg);
5678
5679 /*
5680 * Initialize sgp->power such that even if we mess up the
5681 * domains and no possible iteration will get us here, we won't
5682 * die on a /0 trap.
5683 */
5684 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5685 sg->sgp->power_orig = sg->sgp->power;
5686
5687 /*
5688 * Make sure the first group of this domain contains the
5689 * canonical balance cpu. Otherwise the sched_domain iteration
5690 * breaks. See update_sg_lb_stats().
5691 */
5692 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5693 group_balance_cpu(sg) == cpu)
5694 groups = sg;
5695
5696 if (!first)
5697 first = sg;
5698 if (last)
5699 last->next = sg;
5700 last = sg;
5701 last->next = first;
5702 }
5703 sd->groups = groups;
5704
5705 return 0;
5706
5707 fail:
5708 free_sched_groups(first, 0);
5709
5710 return -ENOMEM;
5711 }
5712
5713 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5714 {
5715 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5716 struct sched_domain *child = sd->child;
5717
5718 if (child)
5719 cpu = cpumask_first(sched_domain_span(child));
5720
5721 if (sg) {
5722 *sg = *per_cpu_ptr(sdd->sg, cpu);
5723 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5724 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5725 }
5726
5727 return cpu;
5728 }
5729
5730 /*
5731 * build_sched_groups will build a circular linked list of the groups
5732 * covered by the given span, and will set each group's ->cpumask correctly,
5733 * and ->cpu_power to 0.
5734 *
5735 * Assumes the sched_domain tree is fully constructed
5736 */
5737 static int
5738 build_sched_groups(struct sched_domain *sd, int cpu)
5739 {
5740 struct sched_group *first = NULL, *last = NULL;
5741 struct sd_data *sdd = sd->private;
5742 const struct cpumask *span = sched_domain_span(sd);
5743 struct cpumask *covered;
5744 int i;
5745
5746 get_group(cpu, sdd, &sd->groups);
5747 atomic_inc(&sd->groups->ref);
5748
5749 if (cpu != cpumask_first(span))
5750 return 0;
5751
5752 lockdep_assert_held(&sched_domains_mutex);
5753 covered = sched_domains_tmpmask;
5754
5755 cpumask_clear(covered);
5756
5757 for_each_cpu(i, span) {
5758 struct sched_group *sg;
5759 int group, j;
5760
5761 if (cpumask_test_cpu(i, covered))
5762 continue;
5763
5764 group = get_group(i, sdd, &sg);
5765 cpumask_clear(sched_group_cpus(sg));
5766 sg->sgp->power = 0;
5767 cpumask_setall(sched_group_mask(sg));
5768
5769 for_each_cpu(j, span) {
5770 if (get_group(j, sdd, NULL) != group)
5771 continue;
5772
5773 cpumask_set_cpu(j, covered);
5774 cpumask_set_cpu(j, sched_group_cpus(sg));
5775 }
5776
5777 if (!first)
5778 first = sg;
5779 if (last)
5780 last->next = sg;
5781 last = sg;
5782 }
5783 last->next = first;
5784
5785 return 0;
5786 }
5787
5788 /*
5789 * Initialize sched groups cpu_power.
5790 *
5791 * cpu_power indicates the capacity of sched group, which is used while
5792 * distributing the load between different sched groups in a sched domain.
5793 * Typically cpu_power for all the groups in a sched domain will be same unless
5794 * there are asymmetries in the topology. If there are asymmetries, group
5795 * having more cpu_power will pickup more load compared to the group having
5796 * less cpu_power.
5797 */
5798 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5799 {
5800 struct sched_group *sg = sd->groups;
5801
5802 WARN_ON(!sg);
5803
5804 do {
5805 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5806 sg = sg->next;
5807 } while (sg != sd->groups);
5808
5809 if (cpu != group_balance_cpu(sg))
5810 return;
5811
5812 update_group_power(sd, cpu);
5813 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5814 }
5815
5816 int __weak arch_sd_sibling_asym_packing(void)
5817 {
5818 return 0*SD_ASYM_PACKING;
5819 }
5820
5821 /*
5822 * Initializers for schedule domains
5823 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5824 */
5825
5826 #ifdef CONFIG_SCHED_DEBUG
5827 # define SD_INIT_NAME(sd, type) sd->name = #type
5828 #else
5829 # define SD_INIT_NAME(sd, type) do { } while (0)
5830 #endif
5831
5832 #define SD_INIT_FUNC(type) \
5833 static noinline struct sched_domain * \
5834 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5835 { \
5836 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5837 *sd = SD_##type##_INIT; \
5838 SD_INIT_NAME(sd, type); \
5839 sd->private = &tl->data; \
5840 return sd; \
5841 }
5842
5843 SD_INIT_FUNC(CPU)
5844 #ifdef CONFIG_SCHED_SMT
5845 SD_INIT_FUNC(SIBLING)
5846 #endif
5847 #ifdef CONFIG_SCHED_MC
5848 SD_INIT_FUNC(MC)
5849 #endif
5850 #ifdef CONFIG_SCHED_BOOK
5851 SD_INIT_FUNC(BOOK)
5852 #endif
5853
5854 static int default_relax_domain_level = -1;
5855 int sched_domain_level_max;
5856
5857 static int __init setup_relax_domain_level(char *str)
5858 {
5859 if (kstrtoint(str, 0, &default_relax_domain_level))
5860 pr_warn("Unable to set relax_domain_level\n");
5861
5862 return 1;
5863 }
5864 __setup("relax_domain_level=", setup_relax_domain_level);
5865
5866 static void set_domain_attribute(struct sched_domain *sd,
5867 struct sched_domain_attr *attr)
5868 {
5869 int request;
5870
5871 if (!attr || attr->relax_domain_level < 0) {
5872 if (default_relax_domain_level < 0)
5873 return;
5874 else
5875 request = default_relax_domain_level;
5876 } else
5877 request = attr->relax_domain_level;
5878 if (request < sd->level) {
5879 /* turn off idle balance on this domain */
5880 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5881 } else {
5882 /* turn on idle balance on this domain */
5883 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5884 }
5885 }
5886
5887 static void __sdt_free(const struct cpumask *cpu_map);
5888 static int __sdt_alloc(const struct cpumask *cpu_map);
5889
5890 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5891 const struct cpumask *cpu_map)
5892 {
5893 switch (what) {
5894 case sa_rootdomain:
5895 if (!atomic_read(&d->rd->refcount))
5896 free_rootdomain(&d->rd->rcu); /* fall through */
5897 case sa_sd:
5898 free_percpu(d->sd); /* fall through */
5899 case sa_sd_storage:
5900 __sdt_free(cpu_map); /* fall through */
5901 case sa_none:
5902 break;
5903 }
5904 }
5905
5906 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5907 const struct cpumask *cpu_map)
5908 {
5909 memset(d, 0, sizeof(*d));
5910
5911 if (__sdt_alloc(cpu_map))
5912 return sa_sd_storage;
5913 d->sd = alloc_percpu(struct sched_domain *);
5914 if (!d->sd)
5915 return sa_sd_storage;
5916 d->rd = alloc_rootdomain();
5917 if (!d->rd)
5918 return sa_sd;
5919 return sa_rootdomain;
5920 }
5921
5922 /*
5923 * NULL the sd_data elements we've used to build the sched_domain and
5924 * sched_group structure so that the subsequent __free_domain_allocs()
5925 * will not free the data we're using.
5926 */
5927 static void claim_allocations(int cpu, struct sched_domain *sd)
5928 {
5929 struct sd_data *sdd = sd->private;
5930
5931 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5932 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5933
5934 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5935 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5936
5937 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5938 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5939 }
5940
5941 #ifdef CONFIG_SCHED_SMT
5942 static const struct cpumask *cpu_smt_mask(int cpu)
5943 {
5944 return topology_thread_cpumask(cpu);
5945 }
5946 #endif
5947
5948 /*
5949 * Topology list, bottom-up.
5950 */
5951 static struct sched_domain_topology_level default_topology[] = {
5952 #ifdef CONFIG_SCHED_SMT
5953 { sd_init_SIBLING, cpu_smt_mask, },
5954 #endif
5955 #ifdef CONFIG_SCHED_MC
5956 { sd_init_MC, cpu_coregroup_mask, },
5957 #endif
5958 #ifdef CONFIG_SCHED_BOOK
5959 { sd_init_BOOK, cpu_book_mask, },
5960 #endif
5961 { sd_init_CPU, cpu_cpu_mask, },
5962 { NULL, },
5963 };
5964
5965 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5966
5967 #define for_each_sd_topology(tl) \
5968 for (tl = sched_domain_topology; tl->init; tl++)
5969
5970 #ifdef CONFIG_NUMA
5971
5972 static int sched_domains_numa_levels;
5973 static int *sched_domains_numa_distance;
5974 static struct cpumask ***sched_domains_numa_masks;
5975 static int sched_domains_curr_level;
5976
5977 static inline int sd_local_flags(int level)
5978 {
5979 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5980 return 0;
5981
5982 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5983 }
5984
5985 static struct sched_domain *
5986 sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5987 {
5988 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5989 int level = tl->numa_level;
5990 int sd_weight = cpumask_weight(
5991 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5992
5993 *sd = (struct sched_domain){
5994 .min_interval = sd_weight,
5995 .max_interval = 2*sd_weight,
5996 .busy_factor = 32,
5997 .imbalance_pct = 125,
5998 .cache_nice_tries = 2,
5999 .busy_idx = 3,
6000 .idle_idx = 2,
6001 .newidle_idx = 0,
6002 .wake_idx = 0,
6003 .forkexec_idx = 0,
6004
6005 .flags = 1*SD_LOAD_BALANCE
6006 | 1*SD_BALANCE_NEWIDLE
6007 | 0*SD_BALANCE_EXEC
6008 | 0*SD_BALANCE_FORK
6009 | 0*SD_BALANCE_WAKE
6010 | 0*SD_WAKE_AFFINE
6011 | 0*SD_SHARE_CPUPOWER
6012 | 0*SD_SHARE_PKG_RESOURCES
6013 | 1*SD_SERIALIZE
6014 | 0*SD_PREFER_SIBLING
6015 | 1*SD_NUMA
6016 | sd_local_flags(level)
6017 ,
6018 .last_balance = jiffies,
6019 .balance_interval = sd_weight,
6020 };
6021 SD_INIT_NAME(sd, NUMA);
6022 sd->private = &tl->data;
6023
6024 /*
6025 * Ugly hack to pass state to sd_numa_mask()...
6026 */
6027 sched_domains_curr_level = tl->numa_level;
6028
6029 return sd;
6030 }
6031
6032 static const struct cpumask *sd_numa_mask(int cpu)
6033 {
6034 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6035 }
6036
6037 static void sched_numa_warn(const char *str)
6038 {
6039 static int done = false;
6040 int i,j;
6041
6042 if (done)
6043 return;
6044
6045 done = true;
6046
6047 printk(KERN_WARNING "ERROR: %s\n\n", str);
6048
6049 for (i = 0; i < nr_node_ids; i++) {
6050 printk(KERN_WARNING " ");
6051 for (j = 0; j < nr_node_ids; j++)
6052 printk(KERN_CONT "%02d ", node_distance(i,j));
6053 printk(KERN_CONT "\n");
6054 }
6055 printk(KERN_WARNING "\n");
6056 }
6057
6058 static bool find_numa_distance(int distance)
6059 {
6060 int i;
6061
6062 if (distance == node_distance(0, 0))
6063 return true;
6064
6065 for (i = 0; i < sched_domains_numa_levels; i++) {
6066 if (sched_domains_numa_distance[i] == distance)
6067 return true;
6068 }
6069
6070 return false;
6071 }
6072
6073 static void sched_init_numa(void)
6074 {
6075 int next_distance, curr_distance = node_distance(0, 0);
6076 struct sched_domain_topology_level *tl;
6077 int level = 0;
6078 int i, j, k;
6079
6080 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6081 if (!sched_domains_numa_distance)
6082 return;
6083
6084 /*
6085 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6086 * unique distances in the node_distance() table.
6087 *
6088 * Assumes node_distance(0,j) includes all distances in
6089 * node_distance(i,j) in order to avoid cubic time.
6090 */
6091 next_distance = curr_distance;
6092 for (i = 0; i < nr_node_ids; i++) {
6093 for (j = 0; j < nr_node_ids; j++) {
6094 for (k = 0; k < nr_node_ids; k++) {
6095 int distance = node_distance(i, k);
6096
6097 if (distance > curr_distance &&
6098 (distance < next_distance ||
6099 next_distance == curr_distance))
6100 next_distance = distance;
6101
6102 /*
6103 * While not a strong assumption it would be nice to know
6104 * about cases where if node A is connected to B, B is not
6105 * equally connected to A.
6106 */
6107 if (sched_debug() && node_distance(k, i) != distance)
6108 sched_numa_warn("Node-distance not symmetric");
6109
6110 if (sched_debug() && i && !find_numa_distance(distance))
6111 sched_numa_warn("Node-0 not representative");
6112 }
6113 if (next_distance != curr_distance) {
6114 sched_domains_numa_distance[level++] = next_distance;
6115 sched_domains_numa_levels = level;
6116 curr_distance = next_distance;
6117 } else break;
6118 }
6119
6120 /*
6121 * In case of sched_debug() we verify the above assumption.
6122 */
6123 if (!sched_debug())
6124 break;
6125 }
6126 /*
6127 * 'level' contains the number of unique distances, excluding the
6128 * identity distance node_distance(i,i).
6129 *
6130 * The sched_domains_numa_distance[] array includes the actual distance
6131 * numbers.
6132 */
6133
6134 /*
6135 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6136 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6137 * the array will contain less then 'level' members. This could be
6138 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6139 * in other functions.
6140 *
6141 * We reset it to 'level' at the end of this function.
6142 */
6143 sched_domains_numa_levels = 0;
6144
6145 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6146 if (!sched_domains_numa_masks)
6147 return;
6148
6149 /*
6150 * Now for each level, construct a mask per node which contains all
6151 * cpus of nodes that are that many hops away from us.
6152 */
6153 for (i = 0; i < level; i++) {
6154 sched_domains_numa_masks[i] =
6155 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6156 if (!sched_domains_numa_masks[i])
6157 return;
6158
6159 for (j = 0; j < nr_node_ids; j++) {
6160 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6161 if (!mask)
6162 return;
6163
6164 sched_domains_numa_masks[i][j] = mask;
6165
6166 for (k = 0; k < nr_node_ids; k++) {
6167 if (node_distance(j, k) > sched_domains_numa_distance[i])
6168 continue;
6169
6170 cpumask_or(mask, mask, cpumask_of_node(k));
6171 }
6172 }
6173 }
6174
6175 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6176 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6177 if (!tl)
6178 return;
6179
6180 /*
6181 * Copy the default topology bits..
6182 */
6183 for (i = 0; default_topology[i].init; i++)
6184 tl[i] = default_topology[i];
6185
6186 /*
6187 * .. and append 'j' levels of NUMA goodness.
6188 */
6189 for (j = 0; j < level; i++, j++) {
6190 tl[i] = (struct sched_domain_topology_level){
6191 .init = sd_numa_init,
6192 .mask = sd_numa_mask,
6193 .flags = SDTL_OVERLAP,
6194 .numa_level = j,
6195 };
6196 }
6197
6198 sched_domain_topology = tl;
6199
6200 sched_domains_numa_levels = level;
6201 }
6202
6203 static void sched_domains_numa_masks_set(int cpu)
6204 {
6205 int i, j;
6206 int node = cpu_to_node(cpu);
6207
6208 for (i = 0; i < sched_domains_numa_levels; i++) {
6209 for (j = 0; j < nr_node_ids; j++) {
6210 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6211 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6212 }
6213 }
6214 }
6215
6216 static void sched_domains_numa_masks_clear(int cpu)
6217 {
6218 int i, j;
6219 for (i = 0; i < sched_domains_numa_levels; i++) {
6220 for (j = 0; j < nr_node_ids; j++)
6221 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6222 }
6223 }
6224
6225 /*
6226 * Update sched_domains_numa_masks[level][node] array when new cpus
6227 * are onlined.
6228 */
6229 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6230 unsigned long action,
6231 void *hcpu)
6232 {
6233 int cpu = (long)hcpu;
6234
6235 switch (action & ~CPU_TASKS_FROZEN) {
6236 case CPU_ONLINE:
6237 sched_domains_numa_masks_set(cpu);
6238 break;
6239
6240 case CPU_DEAD:
6241 sched_domains_numa_masks_clear(cpu);
6242 break;
6243
6244 default:
6245 return NOTIFY_DONE;
6246 }
6247
6248 return NOTIFY_OK;
6249 }
6250 #else
6251 static inline void sched_init_numa(void)
6252 {
6253 }
6254
6255 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6256 unsigned long action,
6257 void *hcpu)
6258 {
6259 return 0;
6260 }
6261 #endif /* CONFIG_NUMA */
6262
6263 static int __sdt_alloc(const struct cpumask *cpu_map)
6264 {
6265 struct sched_domain_topology_level *tl;
6266 int j;
6267
6268 for_each_sd_topology(tl) {
6269 struct sd_data *sdd = &tl->data;
6270
6271 sdd->sd = alloc_percpu(struct sched_domain *);
6272 if (!sdd->sd)
6273 return -ENOMEM;
6274
6275 sdd->sg = alloc_percpu(struct sched_group *);
6276 if (!sdd->sg)
6277 return -ENOMEM;
6278
6279 sdd->sgp = alloc_percpu(struct sched_group_power *);
6280 if (!sdd->sgp)
6281 return -ENOMEM;
6282
6283 for_each_cpu(j, cpu_map) {
6284 struct sched_domain *sd;
6285 struct sched_group *sg;
6286 struct sched_group_power *sgp;
6287
6288 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6289 GFP_KERNEL, cpu_to_node(j));
6290 if (!sd)
6291 return -ENOMEM;
6292
6293 *per_cpu_ptr(sdd->sd, j) = sd;
6294
6295 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6296 GFP_KERNEL, cpu_to_node(j));
6297 if (!sg)
6298 return -ENOMEM;
6299
6300 sg->next = sg;
6301
6302 *per_cpu_ptr(sdd->sg, j) = sg;
6303
6304 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6305 GFP_KERNEL, cpu_to_node(j));
6306 if (!sgp)
6307 return -ENOMEM;
6308
6309 *per_cpu_ptr(sdd->sgp, j) = sgp;
6310 }
6311 }
6312
6313 return 0;
6314 }
6315
6316 static void __sdt_free(const struct cpumask *cpu_map)
6317 {
6318 struct sched_domain_topology_level *tl;
6319 int j;
6320
6321 for_each_sd_topology(tl) {
6322 struct sd_data *sdd = &tl->data;
6323
6324 for_each_cpu(j, cpu_map) {
6325 struct sched_domain *sd;
6326
6327 if (sdd->sd) {
6328 sd = *per_cpu_ptr(sdd->sd, j);
6329 if (sd && (sd->flags & SD_OVERLAP))
6330 free_sched_groups(sd->groups, 0);
6331 kfree(*per_cpu_ptr(sdd->sd, j));
6332 }
6333
6334 if (sdd->sg)
6335 kfree(*per_cpu_ptr(sdd->sg, j));
6336 if (sdd->sgp)
6337 kfree(*per_cpu_ptr(sdd->sgp, j));
6338 }
6339 free_percpu(sdd->sd);
6340 sdd->sd = NULL;
6341 free_percpu(sdd->sg);
6342 sdd->sg = NULL;
6343 free_percpu(sdd->sgp);
6344 sdd->sgp = NULL;
6345 }
6346 }
6347
6348 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6349 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6350 struct sched_domain *child, int cpu)
6351 {
6352 struct sched_domain *sd = tl->init(tl, cpu);
6353 if (!sd)
6354 return child;
6355
6356 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6357 if (child) {
6358 sd->level = child->level + 1;
6359 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6360 child->parent = sd;
6361 sd->child = child;
6362 }
6363 set_domain_attribute(sd, attr);
6364
6365 return sd;
6366 }
6367
6368 /*
6369 * Build sched domains for a given set of cpus and attach the sched domains
6370 * to the individual cpus
6371 */
6372 static int build_sched_domains(const struct cpumask *cpu_map,
6373 struct sched_domain_attr *attr)
6374 {
6375 enum s_alloc alloc_state;
6376 struct sched_domain *sd;
6377 struct s_data d;
6378 int i, ret = -ENOMEM;
6379
6380 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6381 if (alloc_state != sa_rootdomain)
6382 goto error;
6383
6384 /* Set up domains for cpus specified by the cpu_map. */
6385 for_each_cpu(i, cpu_map) {
6386 struct sched_domain_topology_level *tl;
6387
6388 sd = NULL;
6389 for_each_sd_topology(tl) {
6390 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6391 if (tl == sched_domain_topology)
6392 *per_cpu_ptr(d.sd, i) = sd;
6393 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6394 sd->flags |= SD_OVERLAP;
6395 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6396 break;
6397 }
6398 }
6399
6400 /* Build the groups for the domains */
6401 for_each_cpu(i, cpu_map) {
6402 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6403 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6404 if (sd->flags & SD_OVERLAP) {
6405 if (build_overlap_sched_groups(sd, i))
6406 goto error;
6407 } else {
6408 if (build_sched_groups(sd, i))
6409 goto error;
6410 }
6411 }
6412 }
6413
6414 /* Calculate CPU power for physical packages and nodes */
6415 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6416 if (!cpumask_test_cpu(i, cpu_map))
6417 continue;
6418
6419 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6420 claim_allocations(i, sd);
6421 init_sched_groups_power(i, sd);
6422 }
6423 }
6424
6425 /* Attach the domains */
6426 rcu_read_lock();
6427 for_each_cpu(i, cpu_map) {
6428 sd = *per_cpu_ptr(d.sd, i);
6429 cpu_attach_domain(sd, d.rd, i);
6430 }
6431 rcu_read_unlock();
6432
6433 ret = 0;
6434 error:
6435 __free_domain_allocs(&d, alloc_state, cpu_map);
6436 return ret;
6437 }
6438
6439 static cpumask_var_t *doms_cur; /* current sched domains */
6440 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6441 static struct sched_domain_attr *dattr_cur;
6442 /* attribues of custom domains in 'doms_cur' */
6443
6444 /*
6445 * Special case: If a kmalloc of a doms_cur partition (array of
6446 * cpumask) fails, then fallback to a single sched domain,
6447 * as determined by the single cpumask fallback_doms.
6448 */
6449 static cpumask_var_t fallback_doms;
6450
6451 /*
6452 * arch_update_cpu_topology lets virtualized architectures update the
6453 * cpu core maps. It is supposed to return 1 if the topology changed
6454 * or 0 if it stayed the same.
6455 */
6456 int __weak arch_update_cpu_topology(void)
6457 {
6458 return 0;
6459 }
6460
6461 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6462 {
6463 int i;
6464 cpumask_var_t *doms;
6465
6466 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6467 if (!doms)
6468 return NULL;
6469 for (i = 0; i < ndoms; i++) {
6470 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6471 free_sched_domains(doms, i);
6472 return NULL;
6473 }
6474 }
6475 return doms;
6476 }
6477
6478 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6479 {
6480 unsigned int i;
6481 for (i = 0; i < ndoms; i++)
6482 free_cpumask_var(doms[i]);
6483 kfree(doms);
6484 }
6485
6486 /*
6487 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6488 * For now this just excludes isolated cpus, but could be used to
6489 * exclude other special cases in the future.
6490 */
6491 static int init_sched_domains(const struct cpumask *cpu_map)
6492 {
6493 int err;
6494
6495 arch_update_cpu_topology();
6496 ndoms_cur = 1;
6497 doms_cur = alloc_sched_domains(ndoms_cur);
6498 if (!doms_cur)
6499 doms_cur = &fallback_doms;
6500 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6501 err = build_sched_domains(doms_cur[0], NULL);
6502 register_sched_domain_sysctl();
6503
6504 return err;
6505 }
6506
6507 /*
6508 * Detach sched domains from a group of cpus specified in cpu_map
6509 * These cpus will now be attached to the NULL domain
6510 */
6511 static void detach_destroy_domains(const struct cpumask *cpu_map)
6512 {
6513 int i;
6514
6515 rcu_read_lock();
6516 for_each_cpu(i, cpu_map)
6517 cpu_attach_domain(NULL, &def_root_domain, i);
6518 rcu_read_unlock();
6519 }
6520
6521 /* handle null as "default" */
6522 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6523 struct sched_domain_attr *new, int idx_new)
6524 {
6525 struct sched_domain_attr tmp;
6526
6527 /* fast path */
6528 if (!new && !cur)
6529 return 1;
6530
6531 tmp = SD_ATTR_INIT;
6532 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6533 new ? (new + idx_new) : &tmp,
6534 sizeof(struct sched_domain_attr));
6535 }
6536
6537 /*
6538 * Partition sched domains as specified by the 'ndoms_new'
6539 * cpumasks in the array doms_new[] of cpumasks. This compares
6540 * doms_new[] to the current sched domain partitioning, doms_cur[].
6541 * It destroys each deleted domain and builds each new domain.
6542 *
6543 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6544 * The masks don't intersect (don't overlap.) We should setup one
6545 * sched domain for each mask. CPUs not in any of the cpumasks will
6546 * not be load balanced. If the same cpumask appears both in the
6547 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6548 * it as it is.
6549 *
6550 * The passed in 'doms_new' should be allocated using
6551 * alloc_sched_domains. This routine takes ownership of it and will
6552 * free_sched_domains it when done with it. If the caller failed the
6553 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6554 * and partition_sched_domains() will fallback to the single partition
6555 * 'fallback_doms', it also forces the domains to be rebuilt.
6556 *
6557 * If doms_new == NULL it will be replaced with cpu_online_mask.
6558 * ndoms_new == 0 is a special case for destroying existing domains,
6559 * and it will not create the default domain.
6560 *
6561 * Call with hotplug lock held
6562 */
6563 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6564 struct sched_domain_attr *dattr_new)
6565 {
6566 int i, j, n;
6567 int new_topology;
6568
6569 mutex_lock(&sched_domains_mutex);
6570
6571 /* always unregister in case we don't destroy any domains */
6572 unregister_sched_domain_sysctl();
6573
6574 /* Let architecture update cpu core mappings. */
6575 new_topology = arch_update_cpu_topology();
6576
6577 n = doms_new ? ndoms_new : 0;
6578
6579 /* Destroy deleted domains */
6580 for (i = 0; i < ndoms_cur; i++) {
6581 for (j = 0; j < n && !new_topology; j++) {
6582 if (cpumask_equal(doms_cur[i], doms_new[j])
6583 && dattrs_equal(dattr_cur, i, dattr_new, j))
6584 goto match1;
6585 }
6586 /* no match - a current sched domain not in new doms_new[] */
6587 detach_destroy_domains(doms_cur[i]);
6588 match1:
6589 ;
6590 }
6591
6592 n = ndoms_cur;
6593 if (doms_new == NULL) {
6594 n = 0;
6595 doms_new = &fallback_doms;
6596 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6597 WARN_ON_ONCE(dattr_new);
6598 }
6599
6600 /* Build new domains */
6601 for (i = 0; i < ndoms_new; i++) {
6602 for (j = 0; j < n && !new_topology; j++) {
6603 if (cpumask_equal(doms_new[i], doms_cur[j])
6604 && dattrs_equal(dattr_new, i, dattr_cur, j))
6605 goto match2;
6606 }
6607 /* no match - add a new doms_new */
6608 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6609 match2:
6610 ;
6611 }
6612
6613 /* Remember the new sched domains */
6614 if (doms_cur != &fallback_doms)
6615 free_sched_domains(doms_cur, ndoms_cur);
6616 kfree(dattr_cur); /* kfree(NULL) is safe */
6617 doms_cur = doms_new;
6618 dattr_cur = dattr_new;
6619 ndoms_cur = ndoms_new;
6620
6621 register_sched_domain_sysctl();
6622
6623 mutex_unlock(&sched_domains_mutex);
6624 }
6625
6626 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6627
6628 /*
6629 * Update cpusets according to cpu_active mask. If cpusets are
6630 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6631 * around partition_sched_domains().
6632 *
6633 * If we come here as part of a suspend/resume, don't touch cpusets because we
6634 * want to restore it back to its original state upon resume anyway.
6635 */
6636 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6637 void *hcpu)
6638 {
6639 switch (action) {
6640 case CPU_ONLINE_FROZEN:
6641 case CPU_DOWN_FAILED_FROZEN:
6642
6643 /*
6644 * num_cpus_frozen tracks how many CPUs are involved in suspend
6645 * resume sequence. As long as this is not the last online
6646 * operation in the resume sequence, just build a single sched
6647 * domain, ignoring cpusets.
6648 */
6649 num_cpus_frozen--;
6650 if (likely(num_cpus_frozen)) {
6651 partition_sched_domains(1, NULL, NULL);
6652 break;
6653 }
6654
6655 /*
6656 * This is the last CPU online operation. So fall through and
6657 * restore the original sched domains by considering the
6658 * cpuset configurations.
6659 */
6660
6661 case CPU_ONLINE:
6662 case CPU_DOWN_FAILED:
6663 cpuset_update_active_cpus(true);
6664 break;
6665 default:
6666 return NOTIFY_DONE;
6667 }
6668 return NOTIFY_OK;
6669 }
6670
6671 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6672 void *hcpu)
6673 {
6674 switch (action) {
6675 case CPU_DOWN_PREPARE:
6676 cpuset_update_active_cpus(false);
6677 break;
6678 case CPU_DOWN_PREPARE_FROZEN:
6679 num_cpus_frozen++;
6680 partition_sched_domains(1, NULL, NULL);
6681 break;
6682 default:
6683 return NOTIFY_DONE;
6684 }
6685 return NOTIFY_OK;
6686 }
6687
6688 void __init sched_init_smp(void)
6689 {
6690 cpumask_var_t non_isolated_cpus;
6691
6692 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6693 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6694
6695 sched_init_numa();
6696
6697 /*
6698 * There's no userspace yet to cause hotplug operations; hence all the
6699 * cpu masks are stable and all blatant races in the below code cannot
6700 * happen.
6701 */
6702 mutex_lock(&sched_domains_mutex);
6703 init_sched_domains(cpu_active_mask);
6704 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6705 if (cpumask_empty(non_isolated_cpus))
6706 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6707 mutex_unlock(&sched_domains_mutex);
6708
6709 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6710 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6711 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6712
6713 init_hrtick();
6714
6715 /* Move init over to a non-isolated CPU */
6716 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6717 BUG();
6718 sched_init_granularity();
6719 free_cpumask_var(non_isolated_cpus);
6720
6721 init_sched_rt_class();
6722 init_sched_dl_class();
6723 }
6724 #else
6725 void __init sched_init_smp(void)
6726 {
6727 sched_init_granularity();
6728 }
6729 #endif /* CONFIG_SMP */
6730
6731 const_debug unsigned int sysctl_timer_migration = 1;
6732
6733 int in_sched_functions(unsigned long addr)
6734 {
6735 return in_lock_functions(addr) ||
6736 (addr >= (unsigned long)__sched_text_start
6737 && addr < (unsigned long)__sched_text_end);
6738 }
6739
6740 #ifdef CONFIG_CGROUP_SCHED
6741 /*
6742 * Default task group.
6743 * Every task in system belongs to this group at bootup.
6744 */
6745 struct task_group root_task_group;
6746 LIST_HEAD(task_groups);
6747 #endif
6748
6749 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6750
6751 void __init sched_init(void)
6752 {
6753 int i, j;
6754 unsigned long alloc_size = 0, ptr;
6755
6756 #ifdef CONFIG_FAIR_GROUP_SCHED
6757 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6758 #endif
6759 #ifdef CONFIG_RT_GROUP_SCHED
6760 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6761 #endif
6762 #ifdef CONFIG_CPUMASK_OFFSTACK
6763 alloc_size += num_possible_cpus() * cpumask_size();
6764 #endif
6765 if (alloc_size) {
6766 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6767
6768 #ifdef CONFIG_FAIR_GROUP_SCHED
6769 root_task_group.se = (struct sched_entity **)ptr;
6770 ptr += nr_cpu_ids * sizeof(void **);
6771
6772 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6773 ptr += nr_cpu_ids * sizeof(void **);
6774
6775 #endif /* CONFIG_FAIR_GROUP_SCHED */
6776 #ifdef CONFIG_RT_GROUP_SCHED
6777 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6778 ptr += nr_cpu_ids * sizeof(void **);
6779
6780 root_task_group.rt_rq = (struct rt_rq **)ptr;
6781 ptr += nr_cpu_ids * sizeof(void **);
6782
6783 #endif /* CONFIG_RT_GROUP_SCHED */
6784 #ifdef CONFIG_CPUMASK_OFFSTACK
6785 for_each_possible_cpu(i) {
6786 per_cpu(load_balance_mask, i) = (void *)ptr;
6787 ptr += cpumask_size();
6788 }
6789 #endif /* CONFIG_CPUMASK_OFFSTACK */
6790 }
6791
6792 init_rt_bandwidth(&def_rt_bandwidth,
6793 global_rt_period(), global_rt_runtime());
6794 init_dl_bandwidth(&def_dl_bandwidth,
6795 global_rt_period(), global_rt_runtime());
6796
6797 #ifdef CONFIG_SMP
6798 init_defrootdomain();
6799 #endif
6800
6801 #ifdef CONFIG_RT_GROUP_SCHED
6802 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6803 global_rt_period(), global_rt_runtime());
6804 #endif /* CONFIG_RT_GROUP_SCHED */
6805
6806 #ifdef CONFIG_CGROUP_SCHED
6807 list_add(&root_task_group.list, &task_groups);
6808 INIT_LIST_HEAD(&root_task_group.children);
6809 INIT_LIST_HEAD(&root_task_group.siblings);
6810 autogroup_init(&init_task);
6811
6812 #endif /* CONFIG_CGROUP_SCHED */
6813
6814 for_each_possible_cpu(i) {
6815 struct rq *rq;
6816
6817 rq = cpu_rq(i);
6818 raw_spin_lock_init(&rq->lock);
6819 rq->nr_running = 0;
6820 rq->calc_load_active = 0;
6821 rq->calc_load_update = jiffies + LOAD_FREQ;
6822 init_cfs_rq(&rq->cfs);
6823 init_rt_rq(&rq->rt, rq);
6824 init_dl_rq(&rq->dl, rq);
6825 #ifdef CONFIG_FAIR_GROUP_SCHED
6826 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6827 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6828 /*
6829 * How much cpu bandwidth does root_task_group get?
6830 *
6831 * In case of task-groups formed thr' the cgroup filesystem, it
6832 * gets 100% of the cpu resources in the system. This overall
6833 * system cpu resource is divided among the tasks of
6834 * root_task_group and its child task-groups in a fair manner,
6835 * based on each entity's (task or task-group's) weight
6836 * (se->load.weight).
6837 *
6838 * In other words, if root_task_group has 10 tasks of weight
6839 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6840 * then A0's share of the cpu resource is:
6841 *
6842 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6843 *
6844 * We achieve this by letting root_task_group's tasks sit
6845 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6846 */
6847 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6848 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6849 #endif /* CONFIG_FAIR_GROUP_SCHED */
6850
6851 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6852 #ifdef CONFIG_RT_GROUP_SCHED
6853 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6854 #endif
6855
6856 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6857 rq->cpu_load[j] = 0;
6858
6859 rq->last_load_update_tick = jiffies;
6860
6861 #ifdef CONFIG_SMP
6862 rq->sd = NULL;
6863 rq->rd = NULL;
6864 rq->cpu_power = SCHED_POWER_SCALE;
6865 rq->post_schedule = 0;
6866 rq->active_balance = 0;
6867 rq->next_balance = jiffies;
6868 rq->push_cpu = 0;
6869 rq->cpu = i;
6870 rq->online = 0;
6871 rq->idle_stamp = 0;
6872 rq->avg_idle = 2*sysctl_sched_migration_cost;
6873 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6874
6875 INIT_LIST_HEAD(&rq->cfs_tasks);
6876
6877 rq_attach_root(rq, &def_root_domain);
6878 #ifdef CONFIG_NO_HZ_COMMON
6879 rq->nohz_flags = 0;
6880 #endif
6881 #ifdef CONFIG_NO_HZ_FULL
6882 rq->last_sched_tick = 0;
6883 #endif
6884 #endif
6885 init_rq_hrtick(rq);
6886 atomic_set(&rq->nr_iowait, 0);
6887 }
6888
6889 set_load_weight(&init_task);
6890
6891 #ifdef CONFIG_PREEMPT_NOTIFIERS
6892 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6893 #endif
6894
6895 /*
6896 * The boot idle thread does lazy MMU switching as well:
6897 */
6898 atomic_inc(&init_mm.mm_count);
6899 enter_lazy_tlb(&init_mm, current);
6900
6901 /*
6902 * Make us the idle thread. Technically, schedule() should not be
6903 * called from this thread, however somewhere below it might be,
6904 * but because we are the idle thread, we just pick up running again
6905 * when this runqueue becomes "idle".
6906 */
6907 init_idle(current, smp_processor_id());
6908
6909 calc_load_update = jiffies + LOAD_FREQ;
6910
6911 /*
6912 * During early bootup we pretend to be a normal task:
6913 */
6914 current->sched_class = &fair_sched_class;
6915
6916 #ifdef CONFIG_SMP
6917 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6918 /* May be allocated at isolcpus cmdline parse time */
6919 if (cpu_isolated_map == NULL)
6920 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6921 idle_thread_set_boot_cpu();
6922 #endif
6923 init_sched_fair_class();
6924
6925 scheduler_running = 1;
6926 }
6927
6928 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6929 static inline int preempt_count_equals(int preempt_offset)
6930 {
6931 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6932
6933 return (nested == preempt_offset);
6934 }
6935
6936 void __might_sleep(const char *file, int line, int preempt_offset)
6937 {
6938 static unsigned long prev_jiffy; /* ratelimiting */
6939
6940 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6941 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6942 !is_idle_task(current)) ||
6943 system_state != SYSTEM_RUNNING || oops_in_progress)
6944 return;
6945 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6946 return;
6947 prev_jiffy = jiffies;
6948
6949 printk(KERN_ERR
6950 "BUG: sleeping function called from invalid context at %s:%d\n",
6951 file, line);
6952 printk(KERN_ERR
6953 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6954 in_atomic(), irqs_disabled(),
6955 current->pid, current->comm);
6956
6957 debug_show_held_locks(current);
6958 if (irqs_disabled())
6959 print_irqtrace_events(current);
6960 #ifdef CONFIG_DEBUG_PREEMPT
6961 if (!preempt_count_equals(preempt_offset)) {
6962 pr_err("Preemption disabled at:");
6963 print_ip_sym(current->preempt_disable_ip);
6964 pr_cont("\n");
6965 }
6966 #endif
6967 dump_stack();
6968 }
6969 EXPORT_SYMBOL(__might_sleep);
6970 #endif
6971
6972 #ifdef CONFIG_MAGIC_SYSRQ
6973 static void normalize_task(struct rq *rq, struct task_struct *p)
6974 {
6975 const struct sched_class *prev_class = p->sched_class;
6976 struct sched_attr attr = {
6977 .sched_policy = SCHED_NORMAL,
6978 };
6979 int old_prio = p->prio;
6980 int on_rq;
6981
6982 on_rq = p->on_rq;
6983 if (on_rq)
6984 dequeue_task(rq, p, 0);
6985 __setscheduler(rq, p, &attr);
6986 if (on_rq) {
6987 enqueue_task(rq, p, 0);
6988 resched_task(rq->curr);
6989 }
6990
6991 check_class_changed(rq, p, prev_class, old_prio);
6992 }
6993
6994 void normalize_rt_tasks(void)
6995 {
6996 struct task_struct *g, *p;
6997 unsigned long flags;
6998 struct rq *rq;
6999
7000 read_lock_irqsave(&tasklist_lock, flags);
7001 do_each_thread(g, p) {
7002 /*
7003 * Only normalize user tasks:
7004 */
7005 if (!p->mm)
7006 continue;
7007
7008 p->se.exec_start = 0;
7009 #ifdef CONFIG_SCHEDSTATS
7010 p->se.statistics.wait_start = 0;
7011 p->se.statistics.sleep_start = 0;
7012 p->se.statistics.block_start = 0;
7013 #endif
7014
7015 if (!dl_task(p) && !rt_task(p)) {
7016 /*
7017 * Renice negative nice level userspace
7018 * tasks back to 0:
7019 */
7020 if (task_nice(p) < 0 && p->mm)
7021 set_user_nice(p, 0);
7022 continue;
7023 }
7024
7025 raw_spin_lock(&p->pi_lock);
7026 rq = __task_rq_lock(p);
7027
7028 normalize_task(rq, p);
7029
7030 __task_rq_unlock(rq);
7031 raw_spin_unlock(&p->pi_lock);
7032 } while_each_thread(g, p);
7033
7034 read_unlock_irqrestore(&tasklist_lock, flags);
7035 }
7036
7037 #endif /* CONFIG_MAGIC_SYSRQ */
7038
7039 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7040 /*
7041 * These functions are only useful for the IA64 MCA handling, or kdb.
7042 *
7043 * They can only be called when the whole system has been
7044 * stopped - every CPU needs to be quiescent, and no scheduling
7045 * activity can take place. Using them for anything else would
7046 * be a serious bug, and as a result, they aren't even visible
7047 * under any other configuration.
7048 */
7049
7050 /**
7051 * curr_task - return the current task for a given cpu.
7052 * @cpu: the processor in question.
7053 *
7054 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7055 *
7056 * Return: The current task for @cpu.
7057 */
7058 struct task_struct *curr_task(int cpu)
7059 {
7060 return cpu_curr(cpu);
7061 }
7062
7063 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7064
7065 #ifdef CONFIG_IA64
7066 /**
7067 * set_curr_task - set the current task for a given cpu.
7068 * @cpu: the processor in question.
7069 * @p: the task pointer to set.
7070 *
7071 * Description: This function must only be used when non-maskable interrupts
7072 * are serviced on a separate stack. It allows the architecture to switch the
7073 * notion of the current task on a cpu in a non-blocking manner. This function
7074 * must be called with all CPU's synchronized, and interrupts disabled, the
7075 * and caller must save the original value of the current task (see
7076 * curr_task() above) and restore that value before reenabling interrupts and
7077 * re-starting the system.
7078 *
7079 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7080 */
7081 void set_curr_task(int cpu, struct task_struct *p)
7082 {
7083 cpu_curr(cpu) = p;
7084 }
7085
7086 #endif
7087
7088 #ifdef CONFIG_CGROUP_SCHED
7089 /* task_group_lock serializes the addition/removal of task groups */
7090 static DEFINE_SPINLOCK(task_group_lock);
7091
7092 static void free_sched_group(struct task_group *tg)
7093 {
7094 free_fair_sched_group(tg);
7095 free_rt_sched_group(tg);
7096 autogroup_free(tg);
7097 kfree(tg);
7098 }
7099
7100 /* allocate runqueue etc for a new task group */
7101 struct task_group *sched_create_group(struct task_group *parent)
7102 {
7103 struct task_group *tg;
7104
7105 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7106 if (!tg)
7107 return ERR_PTR(-ENOMEM);
7108
7109 if (!alloc_fair_sched_group(tg, parent))
7110 goto err;
7111
7112 if (!alloc_rt_sched_group(tg, parent))
7113 goto err;
7114
7115 return tg;
7116
7117 err:
7118 free_sched_group(tg);
7119 return ERR_PTR(-ENOMEM);
7120 }
7121
7122 void sched_online_group(struct task_group *tg, struct task_group *parent)
7123 {
7124 unsigned long flags;
7125
7126 spin_lock_irqsave(&task_group_lock, flags);
7127 list_add_rcu(&tg->list, &task_groups);
7128
7129 WARN_ON(!parent); /* root should already exist */
7130
7131 tg->parent = parent;
7132 INIT_LIST_HEAD(&tg->children);
7133 list_add_rcu(&tg->siblings, &parent->children);
7134 spin_unlock_irqrestore(&task_group_lock, flags);
7135 }
7136
7137 /* rcu callback to free various structures associated with a task group */
7138 static void free_sched_group_rcu(struct rcu_head *rhp)
7139 {
7140 /* now it should be safe to free those cfs_rqs */
7141 free_sched_group(container_of(rhp, struct task_group, rcu));
7142 }
7143
7144 /* Destroy runqueue etc associated with a task group */
7145 void sched_destroy_group(struct task_group *tg)
7146 {
7147 /* wait for possible concurrent references to cfs_rqs complete */
7148 call_rcu(&tg->rcu, free_sched_group_rcu);
7149 }
7150
7151 void sched_offline_group(struct task_group *tg)
7152 {
7153 unsigned long flags;
7154 int i;
7155
7156 /* end participation in shares distribution */
7157 for_each_possible_cpu(i)
7158 unregister_fair_sched_group(tg, i);
7159
7160 spin_lock_irqsave(&task_group_lock, flags);
7161 list_del_rcu(&tg->list);
7162 list_del_rcu(&tg->siblings);
7163 spin_unlock_irqrestore(&task_group_lock, flags);
7164 }
7165
7166 /* change task's runqueue when it moves between groups.
7167 * The caller of this function should have put the task in its new group
7168 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7169 * reflect its new group.
7170 */
7171 void sched_move_task(struct task_struct *tsk)
7172 {
7173 struct task_group *tg;
7174 int on_rq, running;
7175 unsigned long flags;
7176 struct rq *rq;
7177
7178 rq = task_rq_lock(tsk, &flags);
7179
7180 running = task_current(rq, tsk);
7181 on_rq = tsk->on_rq;
7182
7183 if (on_rq)
7184 dequeue_task(rq, tsk, 0);
7185 if (unlikely(running))
7186 tsk->sched_class->put_prev_task(rq, tsk);
7187
7188 tg = container_of(task_css_check(tsk, cpu_cgrp_id,
7189 lockdep_is_held(&tsk->sighand->siglock)),
7190 struct task_group, css);
7191 tg = autogroup_task_group(tsk, tg);
7192 tsk->sched_task_group = tg;
7193
7194 #ifdef CONFIG_FAIR_GROUP_SCHED
7195 if (tsk->sched_class->task_move_group)
7196 tsk->sched_class->task_move_group(tsk, on_rq);
7197 else
7198 #endif
7199 set_task_rq(tsk, task_cpu(tsk));
7200
7201 if (unlikely(running))
7202 tsk->sched_class->set_curr_task(rq);
7203 if (on_rq)
7204 enqueue_task(rq, tsk, 0);
7205
7206 task_rq_unlock(rq, tsk, &flags);
7207 }
7208 #endif /* CONFIG_CGROUP_SCHED */
7209
7210 #ifdef CONFIG_RT_GROUP_SCHED
7211 /*
7212 * Ensure that the real time constraints are schedulable.
7213 */
7214 static DEFINE_MUTEX(rt_constraints_mutex);
7215
7216 /* Must be called with tasklist_lock held */
7217 static inline int tg_has_rt_tasks(struct task_group *tg)
7218 {
7219 struct task_struct *g, *p;
7220
7221 do_each_thread(g, p) {
7222 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7223 return 1;
7224 } while_each_thread(g, p);
7225
7226 return 0;
7227 }
7228
7229 struct rt_schedulable_data {
7230 struct task_group *tg;
7231 u64 rt_period;
7232 u64 rt_runtime;
7233 };
7234
7235 static int tg_rt_schedulable(struct task_group *tg, void *data)
7236 {
7237 struct rt_schedulable_data *d = data;
7238 struct task_group *child;
7239 unsigned long total, sum = 0;
7240 u64 period, runtime;
7241
7242 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7243 runtime = tg->rt_bandwidth.rt_runtime;
7244
7245 if (tg == d->tg) {
7246 period = d->rt_period;
7247 runtime = d->rt_runtime;
7248 }
7249
7250 /*
7251 * Cannot have more runtime than the period.
7252 */
7253 if (runtime > period && runtime != RUNTIME_INF)
7254 return -EINVAL;
7255
7256 /*
7257 * Ensure we don't starve existing RT tasks.
7258 */
7259 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7260 return -EBUSY;
7261
7262 total = to_ratio(period, runtime);
7263
7264 /*
7265 * Nobody can have more than the global setting allows.
7266 */
7267 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7268 return -EINVAL;
7269
7270 /*
7271 * The sum of our children's runtime should not exceed our own.
7272 */
7273 list_for_each_entry_rcu(child, &tg->children, siblings) {
7274 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7275 runtime = child->rt_bandwidth.rt_runtime;
7276
7277 if (child == d->tg) {
7278 period = d->rt_period;
7279 runtime = d->rt_runtime;
7280 }
7281
7282 sum += to_ratio(period, runtime);
7283 }
7284
7285 if (sum > total)
7286 return -EINVAL;
7287
7288 return 0;
7289 }
7290
7291 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7292 {
7293 int ret;
7294
7295 struct rt_schedulable_data data = {
7296 .tg = tg,
7297 .rt_period = period,
7298 .rt_runtime = runtime,
7299 };
7300
7301 rcu_read_lock();
7302 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7303 rcu_read_unlock();
7304
7305 return ret;
7306 }
7307
7308 static int tg_set_rt_bandwidth(struct task_group *tg,
7309 u64 rt_period, u64 rt_runtime)
7310 {
7311 int i, err = 0;
7312
7313 mutex_lock(&rt_constraints_mutex);
7314 read_lock(&tasklist_lock);
7315 err = __rt_schedulable(tg, rt_period, rt_runtime);
7316 if (err)
7317 goto unlock;
7318
7319 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7320 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7321 tg->rt_bandwidth.rt_runtime = rt_runtime;
7322
7323 for_each_possible_cpu(i) {
7324 struct rt_rq *rt_rq = tg->rt_rq[i];
7325
7326 raw_spin_lock(&rt_rq->rt_runtime_lock);
7327 rt_rq->rt_runtime = rt_runtime;
7328 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7329 }
7330 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7331 unlock:
7332 read_unlock(&tasklist_lock);
7333 mutex_unlock(&rt_constraints_mutex);
7334
7335 return err;
7336 }
7337
7338 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7339 {
7340 u64 rt_runtime, rt_period;
7341
7342 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7343 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7344 if (rt_runtime_us < 0)
7345 rt_runtime = RUNTIME_INF;
7346
7347 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7348 }
7349
7350 static long sched_group_rt_runtime(struct task_group *tg)
7351 {
7352 u64 rt_runtime_us;
7353
7354 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7355 return -1;
7356
7357 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7358 do_div(rt_runtime_us, NSEC_PER_USEC);
7359 return rt_runtime_us;
7360 }
7361
7362 static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7363 {
7364 u64 rt_runtime, rt_period;
7365
7366 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7367 rt_runtime = tg->rt_bandwidth.rt_runtime;
7368
7369 if (rt_period == 0)
7370 return -EINVAL;
7371
7372 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7373 }
7374
7375 static long sched_group_rt_period(struct task_group *tg)
7376 {
7377 u64 rt_period_us;
7378
7379 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7380 do_div(rt_period_us, NSEC_PER_USEC);
7381 return rt_period_us;
7382 }
7383 #endif /* CONFIG_RT_GROUP_SCHED */
7384
7385 #ifdef CONFIG_RT_GROUP_SCHED
7386 static int sched_rt_global_constraints(void)
7387 {
7388 int ret = 0;
7389
7390 mutex_lock(&rt_constraints_mutex);
7391 read_lock(&tasklist_lock);
7392 ret = __rt_schedulable(NULL, 0, 0);
7393 read_unlock(&tasklist_lock);
7394 mutex_unlock(&rt_constraints_mutex);
7395
7396 return ret;
7397 }
7398
7399 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7400 {
7401 /* Don't accept realtime tasks when there is no way for them to run */
7402 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7403 return 0;
7404
7405 return 1;
7406 }
7407
7408 #else /* !CONFIG_RT_GROUP_SCHED */
7409 static int sched_rt_global_constraints(void)
7410 {
7411 unsigned long flags;
7412 int i, ret = 0;
7413
7414 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7415 for_each_possible_cpu(i) {
7416 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7417
7418 raw_spin_lock(&rt_rq->rt_runtime_lock);
7419 rt_rq->rt_runtime = global_rt_runtime();
7420 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7421 }
7422 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7423
7424 return ret;
7425 }
7426 #endif /* CONFIG_RT_GROUP_SCHED */
7427
7428 static int sched_dl_global_constraints(void)
7429 {
7430 u64 runtime = global_rt_runtime();
7431 u64 period = global_rt_period();
7432 u64 new_bw = to_ratio(period, runtime);
7433 int cpu, ret = 0;
7434 unsigned long flags;
7435
7436 /*
7437 * Here we want to check the bandwidth not being set to some
7438 * value smaller than the currently allocated bandwidth in
7439 * any of the root_domains.
7440 *
7441 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7442 * cycling on root_domains... Discussion on different/better
7443 * solutions is welcome!
7444 */
7445 for_each_possible_cpu(cpu) {
7446 struct dl_bw *dl_b = dl_bw_of(cpu);
7447
7448 raw_spin_lock_irqsave(&dl_b->lock, flags);
7449 if (new_bw < dl_b->total_bw)
7450 ret = -EBUSY;
7451 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7452
7453 if (ret)
7454 break;
7455 }
7456
7457 return ret;
7458 }
7459
7460 static void sched_dl_do_global(void)
7461 {
7462 u64 new_bw = -1;
7463 int cpu;
7464 unsigned long flags;
7465
7466 def_dl_bandwidth.dl_period = global_rt_period();
7467 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7468
7469 if (global_rt_runtime() != RUNTIME_INF)
7470 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7471
7472 /*
7473 * FIXME: As above...
7474 */
7475 for_each_possible_cpu(cpu) {
7476 struct dl_bw *dl_b = dl_bw_of(cpu);
7477
7478 raw_spin_lock_irqsave(&dl_b->lock, flags);
7479 dl_b->bw = new_bw;
7480 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7481 }
7482 }
7483
7484 static int sched_rt_global_validate(void)
7485 {
7486 if (sysctl_sched_rt_period <= 0)
7487 return -EINVAL;
7488
7489 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7490 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7491 return -EINVAL;
7492
7493 return 0;
7494 }
7495
7496 static void sched_rt_do_global(void)
7497 {
7498 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7499 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7500 }
7501
7502 int sched_rt_handler(struct ctl_table *table, int write,
7503 void __user *buffer, size_t *lenp,
7504 loff_t *ppos)
7505 {
7506 int old_period, old_runtime;
7507 static DEFINE_MUTEX(mutex);
7508 int ret;
7509
7510 mutex_lock(&mutex);
7511 old_period = sysctl_sched_rt_period;
7512 old_runtime = sysctl_sched_rt_runtime;
7513
7514 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7515
7516 if (!ret && write) {
7517 ret = sched_rt_global_validate();
7518 if (ret)
7519 goto undo;
7520
7521 ret = sched_rt_global_constraints();
7522 if (ret)
7523 goto undo;
7524
7525 ret = sched_dl_global_constraints();
7526 if (ret)
7527 goto undo;
7528
7529 sched_rt_do_global();
7530 sched_dl_do_global();
7531 }
7532 if (0) {
7533 undo:
7534 sysctl_sched_rt_period = old_period;
7535 sysctl_sched_rt_runtime = old_runtime;
7536 }
7537 mutex_unlock(&mutex);
7538
7539 return ret;
7540 }
7541
7542 int sched_rr_handler(struct ctl_table *table, int write,
7543 void __user *buffer, size_t *lenp,
7544 loff_t *ppos)
7545 {
7546 int ret;
7547 static DEFINE_MUTEX(mutex);
7548
7549 mutex_lock(&mutex);
7550 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7551 /* make sure that internally we keep jiffies */
7552 /* also, writing zero resets timeslice to default */
7553 if (!ret && write) {
7554 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7555 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7556 }
7557 mutex_unlock(&mutex);
7558 return ret;
7559 }
7560
7561 #ifdef CONFIG_CGROUP_SCHED
7562
7563 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7564 {
7565 return css ? container_of(css, struct task_group, css) : NULL;
7566 }
7567
7568 static struct cgroup_subsys_state *
7569 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7570 {
7571 struct task_group *parent = css_tg(parent_css);
7572 struct task_group *tg;
7573
7574 if (!parent) {
7575 /* This is early initialization for the top cgroup */
7576 return &root_task_group.css;
7577 }
7578
7579 tg = sched_create_group(parent);
7580 if (IS_ERR(tg))
7581 return ERR_PTR(-ENOMEM);
7582
7583 return &tg->css;
7584 }
7585
7586 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7587 {
7588 struct task_group *tg = css_tg(css);
7589 struct task_group *parent = css_tg(css_parent(css));
7590
7591 if (parent)
7592 sched_online_group(tg, parent);
7593 return 0;
7594 }
7595
7596 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7597 {
7598 struct task_group *tg = css_tg(css);
7599
7600 sched_destroy_group(tg);
7601 }
7602
7603 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7604 {
7605 struct task_group *tg = css_tg(css);
7606
7607 sched_offline_group(tg);
7608 }
7609
7610 static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7611 struct cgroup_taskset *tset)
7612 {
7613 struct task_struct *task;
7614
7615 cgroup_taskset_for_each(task, tset) {
7616 #ifdef CONFIG_RT_GROUP_SCHED
7617 if (!sched_rt_can_attach(css_tg(css), task))
7618 return -EINVAL;
7619 #else
7620 /* We don't support RT-tasks being in separate groups */
7621 if (task->sched_class != &fair_sched_class)
7622 return -EINVAL;
7623 #endif
7624 }
7625 return 0;
7626 }
7627
7628 static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7629 struct cgroup_taskset *tset)
7630 {
7631 struct task_struct *task;
7632
7633 cgroup_taskset_for_each(task, tset)
7634 sched_move_task(task);
7635 }
7636
7637 static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7638 struct cgroup_subsys_state *old_css,
7639 struct task_struct *task)
7640 {
7641 /*
7642 * cgroup_exit() is called in the copy_process() failure path.
7643 * Ignore this case since the task hasn't ran yet, this avoids
7644 * trying to poke a half freed task state from generic code.
7645 */
7646 if (!(task->flags & PF_EXITING))
7647 return;
7648
7649 sched_move_task(task);
7650 }
7651
7652 #ifdef CONFIG_FAIR_GROUP_SCHED
7653 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7654 struct cftype *cftype, u64 shareval)
7655 {
7656 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7657 }
7658
7659 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7660 struct cftype *cft)
7661 {
7662 struct task_group *tg = css_tg(css);
7663
7664 return (u64) scale_load_down(tg->shares);
7665 }
7666
7667 #ifdef CONFIG_CFS_BANDWIDTH
7668 static DEFINE_MUTEX(cfs_constraints_mutex);
7669
7670 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7671 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7672
7673 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7674
7675 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7676 {
7677 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7678 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7679
7680 if (tg == &root_task_group)
7681 return -EINVAL;
7682
7683 /*
7684 * Ensure we have at some amount of bandwidth every period. This is
7685 * to prevent reaching a state of large arrears when throttled via
7686 * entity_tick() resulting in prolonged exit starvation.
7687 */
7688 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7689 return -EINVAL;
7690
7691 /*
7692 * Likewise, bound things on the otherside by preventing insane quota
7693 * periods. This also allows us to normalize in computing quota
7694 * feasibility.
7695 */
7696 if (period > max_cfs_quota_period)
7697 return -EINVAL;
7698
7699 mutex_lock(&cfs_constraints_mutex);
7700 ret = __cfs_schedulable(tg, period, quota);
7701 if (ret)
7702 goto out_unlock;
7703
7704 runtime_enabled = quota != RUNTIME_INF;
7705 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7706 /*
7707 * If we need to toggle cfs_bandwidth_used, off->on must occur
7708 * before making related changes, and on->off must occur afterwards
7709 */
7710 if (runtime_enabled && !runtime_was_enabled)
7711 cfs_bandwidth_usage_inc();
7712 raw_spin_lock_irq(&cfs_b->lock);
7713 cfs_b->period = ns_to_ktime(period);
7714 cfs_b->quota = quota;
7715
7716 __refill_cfs_bandwidth_runtime(cfs_b);
7717 /* restart the period timer (if active) to handle new period expiry */
7718 if (runtime_enabled && cfs_b->timer_active) {
7719 /* force a reprogram */
7720 cfs_b->timer_active = 0;
7721 __start_cfs_bandwidth(cfs_b);
7722 }
7723 raw_spin_unlock_irq(&cfs_b->lock);
7724
7725 for_each_possible_cpu(i) {
7726 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7727 struct rq *rq = cfs_rq->rq;
7728
7729 raw_spin_lock_irq(&rq->lock);
7730 cfs_rq->runtime_enabled = runtime_enabled;
7731 cfs_rq->runtime_remaining = 0;
7732
7733 if (cfs_rq->throttled)
7734 unthrottle_cfs_rq(cfs_rq);
7735 raw_spin_unlock_irq(&rq->lock);
7736 }
7737 if (runtime_was_enabled && !runtime_enabled)
7738 cfs_bandwidth_usage_dec();
7739 out_unlock:
7740 mutex_unlock(&cfs_constraints_mutex);
7741
7742 return ret;
7743 }
7744
7745 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7746 {
7747 u64 quota, period;
7748
7749 period = ktime_to_ns(tg->cfs_bandwidth.period);
7750 if (cfs_quota_us < 0)
7751 quota = RUNTIME_INF;
7752 else
7753 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7754
7755 return tg_set_cfs_bandwidth(tg, period, quota);
7756 }
7757
7758 long tg_get_cfs_quota(struct task_group *tg)
7759 {
7760 u64 quota_us;
7761
7762 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7763 return -1;
7764
7765 quota_us = tg->cfs_bandwidth.quota;
7766 do_div(quota_us, NSEC_PER_USEC);
7767
7768 return quota_us;
7769 }
7770
7771 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7772 {
7773 u64 quota, period;
7774
7775 period = (u64)cfs_period_us * NSEC_PER_USEC;
7776 quota = tg->cfs_bandwidth.quota;
7777
7778 return tg_set_cfs_bandwidth(tg, period, quota);
7779 }
7780
7781 long tg_get_cfs_period(struct task_group *tg)
7782 {
7783 u64 cfs_period_us;
7784
7785 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7786 do_div(cfs_period_us, NSEC_PER_USEC);
7787
7788 return cfs_period_us;
7789 }
7790
7791 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7792 struct cftype *cft)
7793 {
7794 return tg_get_cfs_quota(css_tg(css));
7795 }
7796
7797 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7798 struct cftype *cftype, s64 cfs_quota_us)
7799 {
7800 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7801 }
7802
7803 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7804 struct cftype *cft)
7805 {
7806 return tg_get_cfs_period(css_tg(css));
7807 }
7808
7809 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7810 struct cftype *cftype, u64 cfs_period_us)
7811 {
7812 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7813 }
7814
7815 struct cfs_schedulable_data {
7816 struct task_group *tg;
7817 u64 period, quota;
7818 };
7819
7820 /*
7821 * normalize group quota/period to be quota/max_period
7822 * note: units are usecs
7823 */
7824 static u64 normalize_cfs_quota(struct task_group *tg,
7825 struct cfs_schedulable_data *d)
7826 {
7827 u64 quota, period;
7828
7829 if (tg == d->tg) {
7830 period = d->period;
7831 quota = d->quota;
7832 } else {
7833 period = tg_get_cfs_period(tg);
7834 quota = tg_get_cfs_quota(tg);
7835 }
7836
7837 /* note: these should typically be equivalent */
7838 if (quota == RUNTIME_INF || quota == -1)
7839 return RUNTIME_INF;
7840
7841 return to_ratio(period, quota);
7842 }
7843
7844 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7845 {
7846 struct cfs_schedulable_data *d = data;
7847 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7848 s64 quota = 0, parent_quota = -1;
7849
7850 if (!tg->parent) {
7851 quota = RUNTIME_INF;
7852 } else {
7853 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7854
7855 quota = normalize_cfs_quota(tg, d);
7856 parent_quota = parent_b->hierarchal_quota;
7857
7858 /*
7859 * ensure max(child_quota) <= parent_quota, inherit when no
7860 * limit is set
7861 */
7862 if (quota == RUNTIME_INF)
7863 quota = parent_quota;
7864 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7865 return -EINVAL;
7866 }
7867 cfs_b->hierarchal_quota = quota;
7868
7869 return 0;
7870 }
7871
7872 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7873 {
7874 int ret;
7875 struct cfs_schedulable_data data = {
7876 .tg = tg,
7877 .period = period,
7878 .quota = quota,
7879 };
7880
7881 if (quota != RUNTIME_INF) {
7882 do_div(data.period, NSEC_PER_USEC);
7883 do_div(data.quota, NSEC_PER_USEC);
7884 }
7885
7886 rcu_read_lock();
7887 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7888 rcu_read_unlock();
7889
7890 return ret;
7891 }
7892
7893 static int cpu_stats_show(struct seq_file *sf, void *v)
7894 {
7895 struct task_group *tg = css_tg(seq_css(sf));
7896 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7897
7898 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7899 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7900 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7901
7902 return 0;
7903 }
7904 #endif /* CONFIG_CFS_BANDWIDTH */
7905 #endif /* CONFIG_FAIR_GROUP_SCHED */
7906
7907 #ifdef CONFIG_RT_GROUP_SCHED
7908 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7909 struct cftype *cft, s64 val)
7910 {
7911 return sched_group_set_rt_runtime(css_tg(css), val);
7912 }
7913
7914 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7915 struct cftype *cft)
7916 {
7917 return sched_group_rt_runtime(css_tg(css));
7918 }
7919
7920 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7921 struct cftype *cftype, u64 rt_period_us)
7922 {
7923 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7924 }
7925
7926 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7927 struct cftype *cft)
7928 {
7929 return sched_group_rt_period(css_tg(css));
7930 }
7931 #endif /* CONFIG_RT_GROUP_SCHED */
7932
7933 static struct cftype cpu_files[] = {
7934 #ifdef CONFIG_FAIR_GROUP_SCHED
7935 {
7936 .name = "shares",
7937 .read_u64 = cpu_shares_read_u64,
7938 .write_u64 = cpu_shares_write_u64,
7939 },
7940 #endif
7941 #ifdef CONFIG_CFS_BANDWIDTH
7942 {
7943 .name = "cfs_quota_us",
7944 .read_s64 = cpu_cfs_quota_read_s64,
7945 .write_s64 = cpu_cfs_quota_write_s64,
7946 },
7947 {
7948 .name = "cfs_period_us",
7949 .read_u64 = cpu_cfs_period_read_u64,
7950 .write_u64 = cpu_cfs_period_write_u64,
7951 },
7952 {
7953 .name = "stat",
7954 .seq_show = cpu_stats_show,
7955 },
7956 #endif
7957 #ifdef CONFIG_RT_GROUP_SCHED
7958 {
7959 .name = "rt_runtime_us",
7960 .read_s64 = cpu_rt_runtime_read,
7961 .write_s64 = cpu_rt_runtime_write,
7962 },
7963 {
7964 .name = "rt_period_us",
7965 .read_u64 = cpu_rt_period_read_uint,
7966 .write_u64 = cpu_rt_period_write_uint,
7967 },
7968 #endif
7969 { } /* terminate */
7970 };
7971
7972 struct cgroup_subsys cpu_cgrp_subsys = {
7973 .css_alloc = cpu_cgroup_css_alloc,
7974 .css_free = cpu_cgroup_css_free,
7975 .css_online = cpu_cgroup_css_online,
7976 .css_offline = cpu_cgroup_css_offline,
7977 .can_attach = cpu_cgroup_can_attach,
7978 .attach = cpu_cgroup_attach,
7979 .exit = cpu_cgroup_exit,
7980 .base_cftypes = cpu_files,
7981 .early_init = 1,
7982 };
7983
7984 #endif /* CONFIG_CGROUP_SCHED */
7985
7986 void dump_cpu_task(int cpu)
7987 {
7988 pr_info("Task dump for CPU %d:\n", cpu);
7989 sched_show_task(cpu_curr(cpu));
7990 }