]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched/core.c
Merge tag 'devicetree-for-linus' of git://git.secretlab.ca/git/linux-2.6
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67 #include <linux/hrtimer.h>
68 #include <linux/tick.h>
69 #include <linux/debugfs.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/binfmts.h>
75
76 #include <asm/switch_to.h>
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79 #include <asm/mutex.h>
80 #ifdef CONFIG_PARAVIRT
81 #include <asm/paravirt.h>
82 #endif
83
84 #include "sched.h"
85 #include "../workqueue_sched.h"
86
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/sched.h>
89
90 void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
91 {
92 unsigned long delta;
93 ktime_t soft, hard, now;
94
95 for (;;) {
96 if (hrtimer_active(period_timer))
97 break;
98
99 now = hrtimer_cb_get_time(period_timer);
100 hrtimer_forward(period_timer, now, period);
101
102 soft = hrtimer_get_softexpires(period_timer);
103 hard = hrtimer_get_expires(period_timer);
104 delta = ktime_to_ns(ktime_sub(hard, soft));
105 __hrtimer_start_range_ns(period_timer, soft, delta,
106 HRTIMER_MODE_ABS_PINNED, 0);
107 }
108 }
109
110 DEFINE_MUTEX(sched_domains_mutex);
111 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
112
113 static void update_rq_clock_task(struct rq *rq, s64 delta);
114
115 void update_rq_clock(struct rq *rq)
116 {
117 s64 delta;
118
119 if (rq->skip_clock_update > 0)
120 return;
121
122 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
123 rq->clock += delta;
124 update_rq_clock_task(rq, delta);
125 }
126
127 /*
128 * Debugging: various feature bits
129 */
130
131 #define SCHED_FEAT(name, enabled) \
132 (1UL << __SCHED_FEAT_##name) * enabled |
133
134 const_debug unsigned int sysctl_sched_features =
135 #include "features.h"
136 0;
137
138 #undef SCHED_FEAT
139
140 #ifdef CONFIG_SCHED_DEBUG
141 #define SCHED_FEAT(name, enabled) \
142 #name ,
143
144 static __read_mostly char *sched_feat_names[] = {
145 #include "features.h"
146 NULL
147 };
148
149 #undef SCHED_FEAT
150
151 static int sched_feat_show(struct seq_file *m, void *v)
152 {
153 int i;
154
155 for (i = 0; i < __SCHED_FEAT_NR; i++) {
156 if (!(sysctl_sched_features & (1UL << i)))
157 seq_puts(m, "NO_");
158 seq_printf(m, "%s ", sched_feat_names[i]);
159 }
160 seq_puts(m, "\n");
161
162 return 0;
163 }
164
165 #ifdef HAVE_JUMP_LABEL
166
167 #define jump_label_key__true STATIC_KEY_INIT_TRUE
168 #define jump_label_key__false STATIC_KEY_INIT_FALSE
169
170 #define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
172
173 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174 #include "features.h"
175 };
176
177 #undef SCHED_FEAT
178
179 static void sched_feat_disable(int i)
180 {
181 if (static_key_enabled(&sched_feat_keys[i]))
182 static_key_slow_dec(&sched_feat_keys[i]);
183 }
184
185 static void sched_feat_enable(int i)
186 {
187 if (!static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_inc(&sched_feat_keys[i]);
189 }
190 #else
191 static void sched_feat_disable(int i) { };
192 static void sched_feat_enable(int i) { };
193 #endif /* HAVE_JUMP_LABEL */
194
195 static ssize_t
196 sched_feat_write(struct file *filp, const char __user *ubuf,
197 size_t cnt, loff_t *ppos)
198 {
199 char buf[64];
200 char *cmp;
201 int neg = 0;
202 int i;
203
204 if (cnt > 63)
205 cnt = 63;
206
207 if (copy_from_user(&buf, ubuf, cnt))
208 return -EFAULT;
209
210 buf[cnt] = 0;
211 cmp = strstrip(buf);
212
213 if (strncmp(cmp, "NO_", 3) == 0) {
214 neg = 1;
215 cmp += 3;
216 }
217
218 for (i = 0; i < __SCHED_FEAT_NR; i++) {
219 if (strcmp(cmp, sched_feat_names[i]) == 0) {
220 if (neg) {
221 sysctl_sched_features &= ~(1UL << i);
222 sched_feat_disable(i);
223 } else {
224 sysctl_sched_features |= (1UL << i);
225 sched_feat_enable(i);
226 }
227 break;
228 }
229 }
230
231 if (i == __SCHED_FEAT_NR)
232 return -EINVAL;
233
234 *ppos += cnt;
235
236 return cnt;
237 }
238
239 static int sched_feat_open(struct inode *inode, struct file *filp)
240 {
241 return single_open(filp, sched_feat_show, NULL);
242 }
243
244 static const struct file_operations sched_feat_fops = {
245 .open = sched_feat_open,
246 .write = sched_feat_write,
247 .read = seq_read,
248 .llseek = seq_lseek,
249 .release = single_release,
250 };
251
252 static __init int sched_init_debug(void)
253 {
254 debugfs_create_file("sched_features", 0644, NULL, NULL,
255 &sched_feat_fops);
256
257 return 0;
258 }
259 late_initcall(sched_init_debug);
260 #endif /* CONFIG_SCHED_DEBUG */
261
262 /*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266 const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
268 /*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
276 /*
277 * period over which we measure -rt task cpu usage in us.
278 * default: 1s
279 */
280 unsigned int sysctl_sched_rt_period = 1000000;
281
282 __read_mostly int scheduler_running;
283
284 /*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288 int sysctl_sched_rt_runtime = 950000;
289
290
291
292 /*
293 * __task_rq_lock - lock the rq @p resides on.
294 */
295 static inline struct rq *__task_rq_lock(struct task_struct *p)
296 __acquires(rq->lock)
297 {
298 struct rq *rq;
299
300 lockdep_assert_held(&p->pi_lock);
301
302 for (;;) {
303 rq = task_rq(p);
304 raw_spin_lock(&rq->lock);
305 if (likely(rq == task_rq(p)))
306 return rq;
307 raw_spin_unlock(&rq->lock);
308 }
309 }
310
311 /*
312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313 */
314 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315 __acquires(p->pi_lock)
316 __acquires(rq->lock)
317 {
318 struct rq *rq;
319
320 for (;;) {
321 raw_spin_lock_irqsave(&p->pi_lock, *flags);
322 rq = task_rq(p);
323 raw_spin_lock(&rq->lock);
324 if (likely(rq == task_rq(p)))
325 return rq;
326 raw_spin_unlock(&rq->lock);
327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328 }
329 }
330
331 static void __task_rq_unlock(struct rq *rq)
332 __releases(rq->lock)
333 {
334 raw_spin_unlock(&rq->lock);
335 }
336
337 static inline void
338 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339 __releases(rq->lock)
340 __releases(p->pi_lock)
341 {
342 raw_spin_unlock(&rq->lock);
343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344 }
345
346 /*
347 * this_rq_lock - lock this runqueue and disable interrupts.
348 */
349 static struct rq *this_rq_lock(void)
350 __acquires(rq->lock)
351 {
352 struct rq *rq;
353
354 local_irq_disable();
355 rq = this_rq();
356 raw_spin_lock(&rq->lock);
357
358 return rq;
359 }
360
361 #ifdef CONFIG_SCHED_HRTICK
362 /*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
372
373 static void hrtick_clear(struct rq *rq)
374 {
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377 }
378
379 /*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383 static enum hrtimer_restart hrtick(struct hrtimer *timer)
384 {
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389 raw_spin_lock(&rq->lock);
390 update_rq_clock(rq);
391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 raw_spin_unlock(&rq->lock);
393
394 return HRTIMER_NORESTART;
395 }
396
397 #ifdef CONFIG_SMP
398 /*
399 * called from hardirq (IPI) context
400 */
401 static void __hrtick_start(void *arg)
402 {
403 struct rq *rq = arg;
404
405 raw_spin_lock(&rq->lock);
406 hrtimer_restart(&rq->hrtick_timer);
407 rq->hrtick_csd_pending = 0;
408 raw_spin_unlock(&rq->lock);
409 }
410
411 /*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
416 void hrtick_start(struct rq *rq, u64 delay)
417 {
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420
421 hrtimer_set_expires(timer, time);
422
423 if (rq == this_rq()) {
424 hrtimer_restart(timer);
425 } else if (!rq->hrtick_csd_pending) {
426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 rq->hrtick_csd_pending = 1;
428 }
429 }
430
431 static int
432 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433 {
434 int cpu = (int)(long)hcpu;
435
436 switch (action) {
437 case CPU_UP_CANCELED:
438 case CPU_UP_CANCELED_FROZEN:
439 case CPU_DOWN_PREPARE:
440 case CPU_DOWN_PREPARE_FROZEN:
441 case CPU_DEAD:
442 case CPU_DEAD_FROZEN:
443 hrtick_clear(cpu_rq(cpu));
444 return NOTIFY_OK;
445 }
446
447 return NOTIFY_DONE;
448 }
449
450 static __init void init_hrtick(void)
451 {
452 hotcpu_notifier(hotplug_hrtick, 0);
453 }
454 #else
455 /*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
460 void hrtick_start(struct rq *rq, u64 delay)
461 {
462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463 HRTIMER_MODE_REL_PINNED, 0);
464 }
465
466 static inline void init_hrtick(void)
467 {
468 }
469 #endif /* CONFIG_SMP */
470
471 static void init_rq_hrtick(struct rq *rq)
472 {
473 #ifdef CONFIG_SMP
474 rq->hrtick_csd_pending = 0;
475
476 rq->hrtick_csd.flags = 0;
477 rq->hrtick_csd.func = __hrtick_start;
478 rq->hrtick_csd.info = rq;
479 #endif
480
481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 rq->hrtick_timer.function = hrtick;
483 }
484 #else /* CONFIG_SCHED_HRTICK */
485 static inline void hrtick_clear(struct rq *rq)
486 {
487 }
488
489 static inline void init_rq_hrtick(struct rq *rq)
490 {
491 }
492
493 static inline void init_hrtick(void)
494 {
495 }
496 #endif /* CONFIG_SCHED_HRTICK */
497
498 /*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505 #ifdef CONFIG_SMP
506
507 #ifndef tsk_is_polling
508 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509 #endif
510
511 void resched_task(struct task_struct *p)
512 {
513 int cpu;
514
515 assert_raw_spin_locked(&task_rq(p)->lock);
516
517 if (test_tsk_need_resched(p))
518 return;
519
520 set_tsk_need_resched(p);
521
522 cpu = task_cpu(p);
523 if (cpu == smp_processor_id())
524 return;
525
526 /* NEED_RESCHED must be visible before we test polling */
527 smp_mb();
528 if (!tsk_is_polling(p))
529 smp_send_reschedule(cpu);
530 }
531
532 void resched_cpu(int cpu)
533 {
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
537 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538 return;
539 resched_task(cpu_curr(cpu));
540 raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542
543 #ifdef CONFIG_NO_HZ
544 /*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu. This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552 int get_nohz_timer_target(void)
553 {
554 int cpu = smp_processor_id();
555 int i;
556 struct sched_domain *sd;
557
558 rcu_read_lock();
559 for_each_domain(cpu, sd) {
560 for_each_cpu(i, sched_domain_span(sd)) {
561 if (!idle_cpu(i)) {
562 cpu = i;
563 goto unlock;
564 }
565 }
566 }
567 unlock:
568 rcu_read_unlock();
569 return cpu;
570 }
571 /*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581 void wake_up_idle_cpu(int cpu)
582 {
583 struct rq *rq = cpu_rq(cpu);
584
585 if (cpu == smp_processor_id())
586 return;
587
588 /*
589 * This is safe, as this function is called with the timer
590 * wheel base lock of (cpu) held. When the CPU is on the way
591 * to idle and has not yet set rq->curr to idle then it will
592 * be serialized on the timer wheel base lock and take the new
593 * timer into account automatically.
594 */
595 if (rq->curr != rq->idle)
596 return;
597
598 /*
599 * We can set TIF_RESCHED on the idle task of the other CPU
600 * lockless. The worst case is that the other CPU runs the
601 * idle task through an additional NOOP schedule()
602 */
603 set_tsk_need_resched(rq->idle);
604
605 /* NEED_RESCHED must be visible before we test polling */
606 smp_mb();
607 if (!tsk_is_polling(rq->idle))
608 smp_send_reschedule(cpu);
609 }
610
611 static inline bool got_nohz_idle_kick(void)
612 {
613 int cpu = smp_processor_id();
614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615 }
616
617 #else /* CONFIG_NO_HZ */
618
619 static inline bool got_nohz_idle_kick(void)
620 {
621 return false;
622 }
623
624 #endif /* CONFIG_NO_HZ */
625
626 void sched_avg_update(struct rq *rq)
627 {
628 s64 period = sched_avg_period();
629
630 while ((s64)(rq->clock - rq->age_stamp) > period) {
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
640 }
641
642 #else /* !CONFIG_SMP */
643 void resched_task(struct task_struct *p)
644 {
645 assert_raw_spin_locked(&task_rq(p)->lock);
646 set_tsk_need_resched(p);
647 }
648 #endif /* CONFIG_SMP */
649
650 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652 /*
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
657 */
658 int walk_tg_tree_from(struct task_group *from,
659 tg_visitor down, tg_visitor up, void *data)
660 {
661 struct task_group *parent, *child;
662 int ret;
663
664 parent = from;
665
666 down:
667 ret = (*down)(parent, data);
668 if (ret)
669 goto out;
670 list_for_each_entry_rcu(child, &parent->children, siblings) {
671 parent = child;
672 goto down;
673
674 up:
675 continue;
676 }
677 ret = (*up)(parent, data);
678 if (ret || parent == from)
679 goto out;
680
681 child = parent;
682 parent = parent->parent;
683 if (parent)
684 goto up;
685 out:
686 return ret;
687 }
688
689 int tg_nop(struct task_group *tg, void *data)
690 {
691 return 0;
692 }
693 #endif
694
695 void update_cpu_load(struct rq *this_rq);
696
697 static void set_load_weight(struct task_struct *p)
698 {
699 int prio = p->static_prio - MAX_RT_PRIO;
700 struct load_weight *load = &p->se.load;
701
702 /*
703 * SCHED_IDLE tasks get minimal weight:
704 */
705 if (p->policy == SCHED_IDLE) {
706 load->weight = scale_load(WEIGHT_IDLEPRIO);
707 load->inv_weight = WMULT_IDLEPRIO;
708 return;
709 }
710
711 load->weight = scale_load(prio_to_weight[prio]);
712 load->inv_weight = prio_to_wmult[prio];
713 }
714
715 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
716 {
717 update_rq_clock(rq);
718 sched_info_queued(p);
719 p->sched_class->enqueue_task(rq, p, flags);
720 }
721
722 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
723 {
724 update_rq_clock(rq);
725 sched_info_dequeued(p);
726 p->sched_class->dequeue_task(rq, p, flags);
727 }
728
729 void activate_task(struct rq *rq, struct task_struct *p, int flags)
730 {
731 if (task_contributes_to_load(p))
732 rq->nr_uninterruptible--;
733
734 enqueue_task(rq, p, flags);
735 }
736
737 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
738 {
739 if (task_contributes_to_load(p))
740 rq->nr_uninterruptible++;
741
742 dequeue_task(rq, p, flags);
743 }
744
745 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
746
747 /*
748 * There are no locks covering percpu hardirq/softirq time.
749 * They are only modified in account_system_vtime, on corresponding CPU
750 * with interrupts disabled. So, writes are safe.
751 * They are read and saved off onto struct rq in update_rq_clock().
752 * This may result in other CPU reading this CPU's irq time and can
753 * race with irq/account_system_vtime on this CPU. We would either get old
754 * or new value with a side effect of accounting a slice of irq time to wrong
755 * task when irq is in progress while we read rq->clock. That is a worthy
756 * compromise in place of having locks on each irq in account_system_time.
757 */
758 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
759 static DEFINE_PER_CPU(u64, cpu_softirq_time);
760
761 static DEFINE_PER_CPU(u64, irq_start_time);
762 static int sched_clock_irqtime;
763
764 void enable_sched_clock_irqtime(void)
765 {
766 sched_clock_irqtime = 1;
767 }
768
769 void disable_sched_clock_irqtime(void)
770 {
771 sched_clock_irqtime = 0;
772 }
773
774 #ifndef CONFIG_64BIT
775 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
776
777 static inline void irq_time_write_begin(void)
778 {
779 __this_cpu_inc(irq_time_seq.sequence);
780 smp_wmb();
781 }
782
783 static inline void irq_time_write_end(void)
784 {
785 smp_wmb();
786 __this_cpu_inc(irq_time_seq.sequence);
787 }
788
789 static inline u64 irq_time_read(int cpu)
790 {
791 u64 irq_time;
792 unsigned seq;
793
794 do {
795 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
796 irq_time = per_cpu(cpu_softirq_time, cpu) +
797 per_cpu(cpu_hardirq_time, cpu);
798 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
799
800 return irq_time;
801 }
802 #else /* CONFIG_64BIT */
803 static inline void irq_time_write_begin(void)
804 {
805 }
806
807 static inline void irq_time_write_end(void)
808 {
809 }
810
811 static inline u64 irq_time_read(int cpu)
812 {
813 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
814 }
815 #endif /* CONFIG_64BIT */
816
817 /*
818 * Called before incrementing preempt_count on {soft,}irq_enter
819 * and before decrementing preempt_count on {soft,}irq_exit.
820 */
821 void account_system_vtime(struct task_struct *curr)
822 {
823 unsigned long flags;
824 s64 delta;
825 int cpu;
826
827 if (!sched_clock_irqtime)
828 return;
829
830 local_irq_save(flags);
831
832 cpu = smp_processor_id();
833 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
834 __this_cpu_add(irq_start_time, delta);
835
836 irq_time_write_begin();
837 /*
838 * We do not account for softirq time from ksoftirqd here.
839 * We want to continue accounting softirq time to ksoftirqd thread
840 * in that case, so as not to confuse scheduler with a special task
841 * that do not consume any time, but still wants to run.
842 */
843 if (hardirq_count())
844 __this_cpu_add(cpu_hardirq_time, delta);
845 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
846 __this_cpu_add(cpu_softirq_time, delta);
847
848 irq_time_write_end();
849 local_irq_restore(flags);
850 }
851 EXPORT_SYMBOL_GPL(account_system_vtime);
852
853 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
854
855 #ifdef CONFIG_PARAVIRT
856 static inline u64 steal_ticks(u64 steal)
857 {
858 if (unlikely(steal > NSEC_PER_SEC))
859 return div_u64(steal, TICK_NSEC);
860
861 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
862 }
863 #endif
864
865 static void update_rq_clock_task(struct rq *rq, s64 delta)
866 {
867 /*
868 * In theory, the compile should just see 0 here, and optimize out the call
869 * to sched_rt_avg_update. But I don't trust it...
870 */
871 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
872 s64 steal = 0, irq_delta = 0;
873 #endif
874 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
875 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
876
877 /*
878 * Since irq_time is only updated on {soft,}irq_exit, we might run into
879 * this case when a previous update_rq_clock() happened inside a
880 * {soft,}irq region.
881 *
882 * When this happens, we stop ->clock_task and only update the
883 * prev_irq_time stamp to account for the part that fit, so that a next
884 * update will consume the rest. This ensures ->clock_task is
885 * monotonic.
886 *
887 * It does however cause some slight miss-attribution of {soft,}irq
888 * time, a more accurate solution would be to update the irq_time using
889 * the current rq->clock timestamp, except that would require using
890 * atomic ops.
891 */
892 if (irq_delta > delta)
893 irq_delta = delta;
894
895 rq->prev_irq_time += irq_delta;
896 delta -= irq_delta;
897 #endif
898 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
899 if (static_key_false((&paravirt_steal_rq_enabled))) {
900 u64 st;
901
902 steal = paravirt_steal_clock(cpu_of(rq));
903 steal -= rq->prev_steal_time_rq;
904
905 if (unlikely(steal > delta))
906 steal = delta;
907
908 st = steal_ticks(steal);
909 steal = st * TICK_NSEC;
910
911 rq->prev_steal_time_rq += steal;
912
913 delta -= steal;
914 }
915 #endif
916
917 rq->clock_task += delta;
918
919 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
920 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
921 sched_rt_avg_update(rq, irq_delta + steal);
922 #endif
923 }
924
925 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
926 static int irqtime_account_hi_update(void)
927 {
928 u64 *cpustat = kcpustat_this_cpu->cpustat;
929 unsigned long flags;
930 u64 latest_ns;
931 int ret = 0;
932
933 local_irq_save(flags);
934 latest_ns = this_cpu_read(cpu_hardirq_time);
935 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
936 ret = 1;
937 local_irq_restore(flags);
938 return ret;
939 }
940
941 static int irqtime_account_si_update(void)
942 {
943 u64 *cpustat = kcpustat_this_cpu->cpustat;
944 unsigned long flags;
945 u64 latest_ns;
946 int ret = 0;
947
948 local_irq_save(flags);
949 latest_ns = this_cpu_read(cpu_softirq_time);
950 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
951 ret = 1;
952 local_irq_restore(flags);
953 return ret;
954 }
955
956 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
957
958 #define sched_clock_irqtime (0)
959
960 #endif
961
962 void sched_set_stop_task(int cpu, struct task_struct *stop)
963 {
964 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
965 struct task_struct *old_stop = cpu_rq(cpu)->stop;
966
967 if (stop) {
968 /*
969 * Make it appear like a SCHED_FIFO task, its something
970 * userspace knows about and won't get confused about.
971 *
972 * Also, it will make PI more or less work without too
973 * much confusion -- but then, stop work should not
974 * rely on PI working anyway.
975 */
976 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
977
978 stop->sched_class = &stop_sched_class;
979 }
980
981 cpu_rq(cpu)->stop = stop;
982
983 if (old_stop) {
984 /*
985 * Reset it back to a normal scheduling class so that
986 * it can die in pieces.
987 */
988 old_stop->sched_class = &rt_sched_class;
989 }
990 }
991
992 /*
993 * __normal_prio - return the priority that is based on the static prio
994 */
995 static inline int __normal_prio(struct task_struct *p)
996 {
997 return p->static_prio;
998 }
999
1000 /*
1001 * Calculate the expected normal priority: i.e. priority
1002 * without taking RT-inheritance into account. Might be
1003 * boosted by interactivity modifiers. Changes upon fork,
1004 * setprio syscalls, and whenever the interactivity
1005 * estimator recalculates.
1006 */
1007 static inline int normal_prio(struct task_struct *p)
1008 {
1009 int prio;
1010
1011 if (task_has_rt_policy(p))
1012 prio = MAX_RT_PRIO-1 - p->rt_priority;
1013 else
1014 prio = __normal_prio(p);
1015 return prio;
1016 }
1017
1018 /*
1019 * Calculate the current priority, i.e. the priority
1020 * taken into account by the scheduler. This value might
1021 * be boosted by RT tasks, or might be boosted by
1022 * interactivity modifiers. Will be RT if the task got
1023 * RT-boosted. If not then it returns p->normal_prio.
1024 */
1025 static int effective_prio(struct task_struct *p)
1026 {
1027 p->normal_prio = normal_prio(p);
1028 /*
1029 * If we are RT tasks or we were boosted to RT priority,
1030 * keep the priority unchanged. Otherwise, update priority
1031 * to the normal priority:
1032 */
1033 if (!rt_prio(p->prio))
1034 return p->normal_prio;
1035 return p->prio;
1036 }
1037
1038 /**
1039 * task_curr - is this task currently executing on a CPU?
1040 * @p: the task in question.
1041 */
1042 inline int task_curr(const struct task_struct *p)
1043 {
1044 return cpu_curr(task_cpu(p)) == p;
1045 }
1046
1047 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1048 const struct sched_class *prev_class,
1049 int oldprio)
1050 {
1051 if (prev_class != p->sched_class) {
1052 if (prev_class->switched_from)
1053 prev_class->switched_from(rq, p);
1054 p->sched_class->switched_to(rq, p);
1055 } else if (oldprio != p->prio)
1056 p->sched_class->prio_changed(rq, p, oldprio);
1057 }
1058
1059 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1060 {
1061 const struct sched_class *class;
1062
1063 if (p->sched_class == rq->curr->sched_class) {
1064 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1065 } else {
1066 for_each_class(class) {
1067 if (class == rq->curr->sched_class)
1068 break;
1069 if (class == p->sched_class) {
1070 resched_task(rq->curr);
1071 break;
1072 }
1073 }
1074 }
1075
1076 /*
1077 * A queue event has occurred, and we're going to schedule. In
1078 * this case, we can save a useless back to back clock update.
1079 */
1080 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1081 rq->skip_clock_update = 1;
1082 }
1083
1084 #ifdef CONFIG_SMP
1085 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1086 {
1087 #ifdef CONFIG_SCHED_DEBUG
1088 /*
1089 * We should never call set_task_cpu() on a blocked task,
1090 * ttwu() will sort out the placement.
1091 */
1092 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1093 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1094
1095 #ifdef CONFIG_LOCKDEP
1096 /*
1097 * The caller should hold either p->pi_lock or rq->lock, when changing
1098 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1099 *
1100 * sched_move_task() holds both and thus holding either pins the cgroup,
1101 * see set_task_rq().
1102 *
1103 * Furthermore, all task_rq users should acquire both locks, see
1104 * task_rq_lock().
1105 */
1106 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1107 lockdep_is_held(&task_rq(p)->lock)));
1108 #endif
1109 #endif
1110
1111 trace_sched_migrate_task(p, new_cpu);
1112
1113 if (task_cpu(p) != new_cpu) {
1114 p->se.nr_migrations++;
1115 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1116 }
1117
1118 __set_task_cpu(p, new_cpu);
1119 }
1120
1121 struct migration_arg {
1122 struct task_struct *task;
1123 int dest_cpu;
1124 };
1125
1126 static int migration_cpu_stop(void *data);
1127
1128 /*
1129 * wait_task_inactive - wait for a thread to unschedule.
1130 *
1131 * If @match_state is nonzero, it's the @p->state value just checked and
1132 * not expected to change. If it changes, i.e. @p might have woken up,
1133 * then return zero. When we succeed in waiting for @p to be off its CPU,
1134 * we return a positive number (its total switch count). If a second call
1135 * a short while later returns the same number, the caller can be sure that
1136 * @p has remained unscheduled the whole time.
1137 *
1138 * The caller must ensure that the task *will* unschedule sometime soon,
1139 * else this function might spin for a *long* time. This function can't
1140 * be called with interrupts off, or it may introduce deadlock with
1141 * smp_call_function() if an IPI is sent by the same process we are
1142 * waiting to become inactive.
1143 */
1144 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1145 {
1146 unsigned long flags;
1147 int running, on_rq;
1148 unsigned long ncsw;
1149 struct rq *rq;
1150
1151 for (;;) {
1152 /*
1153 * We do the initial early heuristics without holding
1154 * any task-queue locks at all. We'll only try to get
1155 * the runqueue lock when things look like they will
1156 * work out!
1157 */
1158 rq = task_rq(p);
1159
1160 /*
1161 * If the task is actively running on another CPU
1162 * still, just relax and busy-wait without holding
1163 * any locks.
1164 *
1165 * NOTE! Since we don't hold any locks, it's not
1166 * even sure that "rq" stays as the right runqueue!
1167 * But we don't care, since "task_running()" will
1168 * return false if the runqueue has changed and p
1169 * is actually now running somewhere else!
1170 */
1171 while (task_running(rq, p)) {
1172 if (match_state && unlikely(p->state != match_state))
1173 return 0;
1174 cpu_relax();
1175 }
1176
1177 /*
1178 * Ok, time to look more closely! We need the rq
1179 * lock now, to be *sure*. If we're wrong, we'll
1180 * just go back and repeat.
1181 */
1182 rq = task_rq_lock(p, &flags);
1183 trace_sched_wait_task(p);
1184 running = task_running(rq, p);
1185 on_rq = p->on_rq;
1186 ncsw = 0;
1187 if (!match_state || p->state == match_state)
1188 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1189 task_rq_unlock(rq, p, &flags);
1190
1191 /*
1192 * If it changed from the expected state, bail out now.
1193 */
1194 if (unlikely(!ncsw))
1195 break;
1196
1197 /*
1198 * Was it really running after all now that we
1199 * checked with the proper locks actually held?
1200 *
1201 * Oops. Go back and try again..
1202 */
1203 if (unlikely(running)) {
1204 cpu_relax();
1205 continue;
1206 }
1207
1208 /*
1209 * It's not enough that it's not actively running,
1210 * it must be off the runqueue _entirely_, and not
1211 * preempted!
1212 *
1213 * So if it was still runnable (but just not actively
1214 * running right now), it's preempted, and we should
1215 * yield - it could be a while.
1216 */
1217 if (unlikely(on_rq)) {
1218 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1219
1220 set_current_state(TASK_UNINTERRUPTIBLE);
1221 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1222 continue;
1223 }
1224
1225 /*
1226 * Ahh, all good. It wasn't running, and it wasn't
1227 * runnable, which means that it will never become
1228 * running in the future either. We're all done!
1229 */
1230 break;
1231 }
1232
1233 return ncsw;
1234 }
1235
1236 /***
1237 * kick_process - kick a running thread to enter/exit the kernel
1238 * @p: the to-be-kicked thread
1239 *
1240 * Cause a process which is running on another CPU to enter
1241 * kernel-mode, without any delay. (to get signals handled.)
1242 *
1243 * NOTE: this function doesn't have to take the runqueue lock,
1244 * because all it wants to ensure is that the remote task enters
1245 * the kernel. If the IPI races and the task has been migrated
1246 * to another CPU then no harm is done and the purpose has been
1247 * achieved as well.
1248 */
1249 void kick_process(struct task_struct *p)
1250 {
1251 int cpu;
1252
1253 preempt_disable();
1254 cpu = task_cpu(p);
1255 if ((cpu != smp_processor_id()) && task_curr(p))
1256 smp_send_reschedule(cpu);
1257 preempt_enable();
1258 }
1259 EXPORT_SYMBOL_GPL(kick_process);
1260 #endif /* CONFIG_SMP */
1261
1262 #ifdef CONFIG_SMP
1263 /*
1264 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1265 */
1266 static int select_fallback_rq(int cpu, struct task_struct *p)
1267 {
1268 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1269 enum { cpuset, possible, fail } state = cpuset;
1270 int dest_cpu;
1271
1272 /* Look for allowed, online CPU in same node. */
1273 for_each_cpu_mask(dest_cpu, *nodemask) {
1274 if (!cpu_online(dest_cpu))
1275 continue;
1276 if (!cpu_active(dest_cpu))
1277 continue;
1278 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1279 return dest_cpu;
1280 }
1281
1282 for (;;) {
1283 /* Any allowed, online CPU? */
1284 for_each_cpu_mask(dest_cpu, *tsk_cpus_allowed(p)) {
1285 if (!cpu_online(dest_cpu))
1286 continue;
1287 if (!cpu_active(dest_cpu))
1288 continue;
1289 goto out;
1290 }
1291
1292 switch (state) {
1293 case cpuset:
1294 /* No more Mr. Nice Guy. */
1295 cpuset_cpus_allowed_fallback(p);
1296 state = possible;
1297 break;
1298
1299 case possible:
1300 do_set_cpus_allowed(p, cpu_possible_mask);
1301 state = fail;
1302 break;
1303
1304 case fail:
1305 BUG();
1306 break;
1307 }
1308 }
1309
1310 out:
1311 if (state != cpuset) {
1312 /*
1313 * Don't tell them about moving exiting tasks or
1314 * kernel threads (both mm NULL), since they never
1315 * leave kernel.
1316 */
1317 if (p->mm && printk_ratelimit()) {
1318 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1319 task_pid_nr(p), p->comm, cpu);
1320 }
1321 }
1322
1323 return dest_cpu;
1324 }
1325
1326 /*
1327 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1328 */
1329 static inline
1330 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1331 {
1332 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1333
1334 /*
1335 * In order not to call set_task_cpu() on a blocking task we need
1336 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1337 * cpu.
1338 *
1339 * Since this is common to all placement strategies, this lives here.
1340 *
1341 * [ this allows ->select_task() to simply return task_cpu(p) and
1342 * not worry about this generic constraint ]
1343 */
1344 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1345 !cpu_online(cpu)))
1346 cpu = select_fallback_rq(task_cpu(p), p);
1347
1348 return cpu;
1349 }
1350
1351 static void update_avg(u64 *avg, u64 sample)
1352 {
1353 s64 diff = sample - *avg;
1354 *avg += diff >> 3;
1355 }
1356 #endif
1357
1358 static void
1359 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1360 {
1361 #ifdef CONFIG_SCHEDSTATS
1362 struct rq *rq = this_rq();
1363
1364 #ifdef CONFIG_SMP
1365 int this_cpu = smp_processor_id();
1366
1367 if (cpu == this_cpu) {
1368 schedstat_inc(rq, ttwu_local);
1369 schedstat_inc(p, se.statistics.nr_wakeups_local);
1370 } else {
1371 struct sched_domain *sd;
1372
1373 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1374 rcu_read_lock();
1375 for_each_domain(this_cpu, sd) {
1376 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1377 schedstat_inc(sd, ttwu_wake_remote);
1378 break;
1379 }
1380 }
1381 rcu_read_unlock();
1382 }
1383
1384 if (wake_flags & WF_MIGRATED)
1385 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1386
1387 #endif /* CONFIG_SMP */
1388
1389 schedstat_inc(rq, ttwu_count);
1390 schedstat_inc(p, se.statistics.nr_wakeups);
1391
1392 if (wake_flags & WF_SYNC)
1393 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1394
1395 #endif /* CONFIG_SCHEDSTATS */
1396 }
1397
1398 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1399 {
1400 activate_task(rq, p, en_flags);
1401 p->on_rq = 1;
1402
1403 /* if a worker is waking up, notify workqueue */
1404 if (p->flags & PF_WQ_WORKER)
1405 wq_worker_waking_up(p, cpu_of(rq));
1406 }
1407
1408 /*
1409 * Mark the task runnable and perform wakeup-preemption.
1410 */
1411 static void
1412 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1413 {
1414 trace_sched_wakeup(p, true);
1415 check_preempt_curr(rq, p, wake_flags);
1416
1417 p->state = TASK_RUNNING;
1418 #ifdef CONFIG_SMP
1419 if (p->sched_class->task_woken)
1420 p->sched_class->task_woken(rq, p);
1421
1422 if (rq->idle_stamp) {
1423 u64 delta = rq->clock - rq->idle_stamp;
1424 u64 max = 2*sysctl_sched_migration_cost;
1425
1426 if (delta > max)
1427 rq->avg_idle = max;
1428 else
1429 update_avg(&rq->avg_idle, delta);
1430 rq->idle_stamp = 0;
1431 }
1432 #endif
1433 }
1434
1435 static void
1436 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1437 {
1438 #ifdef CONFIG_SMP
1439 if (p->sched_contributes_to_load)
1440 rq->nr_uninterruptible--;
1441 #endif
1442
1443 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1444 ttwu_do_wakeup(rq, p, wake_flags);
1445 }
1446
1447 /*
1448 * Called in case the task @p isn't fully descheduled from its runqueue,
1449 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1450 * since all we need to do is flip p->state to TASK_RUNNING, since
1451 * the task is still ->on_rq.
1452 */
1453 static int ttwu_remote(struct task_struct *p, int wake_flags)
1454 {
1455 struct rq *rq;
1456 int ret = 0;
1457
1458 rq = __task_rq_lock(p);
1459 if (p->on_rq) {
1460 ttwu_do_wakeup(rq, p, wake_flags);
1461 ret = 1;
1462 }
1463 __task_rq_unlock(rq);
1464
1465 return ret;
1466 }
1467
1468 #ifdef CONFIG_SMP
1469 static void sched_ttwu_pending(void)
1470 {
1471 struct rq *rq = this_rq();
1472 struct llist_node *llist = llist_del_all(&rq->wake_list);
1473 struct task_struct *p;
1474
1475 raw_spin_lock(&rq->lock);
1476
1477 while (llist) {
1478 p = llist_entry(llist, struct task_struct, wake_entry);
1479 llist = llist_next(llist);
1480 ttwu_do_activate(rq, p, 0);
1481 }
1482
1483 raw_spin_unlock(&rq->lock);
1484 }
1485
1486 void scheduler_ipi(void)
1487 {
1488 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1489 return;
1490
1491 /*
1492 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1493 * traditionally all their work was done from the interrupt return
1494 * path. Now that we actually do some work, we need to make sure
1495 * we do call them.
1496 *
1497 * Some archs already do call them, luckily irq_enter/exit nest
1498 * properly.
1499 *
1500 * Arguably we should visit all archs and update all handlers,
1501 * however a fair share of IPIs are still resched only so this would
1502 * somewhat pessimize the simple resched case.
1503 */
1504 irq_enter();
1505 sched_ttwu_pending();
1506
1507 /*
1508 * Check if someone kicked us for doing the nohz idle load balance.
1509 */
1510 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1511 this_rq()->idle_balance = 1;
1512 raise_softirq_irqoff(SCHED_SOFTIRQ);
1513 }
1514 irq_exit();
1515 }
1516
1517 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1518 {
1519 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1520 smp_send_reschedule(cpu);
1521 }
1522
1523 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1524 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1525 {
1526 struct rq *rq;
1527 int ret = 0;
1528
1529 rq = __task_rq_lock(p);
1530 if (p->on_cpu) {
1531 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1532 ttwu_do_wakeup(rq, p, wake_flags);
1533 ret = 1;
1534 }
1535 __task_rq_unlock(rq);
1536
1537 return ret;
1538
1539 }
1540 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1541
1542 bool cpus_share_cache(int this_cpu, int that_cpu)
1543 {
1544 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1545 }
1546 #endif /* CONFIG_SMP */
1547
1548 static void ttwu_queue(struct task_struct *p, int cpu)
1549 {
1550 struct rq *rq = cpu_rq(cpu);
1551
1552 #if defined(CONFIG_SMP)
1553 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1554 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1555 ttwu_queue_remote(p, cpu);
1556 return;
1557 }
1558 #endif
1559
1560 raw_spin_lock(&rq->lock);
1561 ttwu_do_activate(rq, p, 0);
1562 raw_spin_unlock(&rq->lock);
1563 }
1564
1565 /**
1566 * try_to_wake_up - wake up a thread
1567 * @p: the thread to be awakened
1568 * @state: the mask of task states that can be woken
1569 * @wake_flags: wake modifier flags (WF_*)
1570 *
1571 * Put it on the run-queue if it's not already there. The "current"
1572 * thread is always on the run-queue (except when the actual
1573 * re-schedule is in progress), and as such you're allowed to do
1574 * the simpler "current->state = TASK_RUNNING" to mark yourself
1575 * runnable without the overhead of this.
1576 *
1577 * Returns %true if @p was woken up, %false if it was already running
1578 * or @state didn't match @p's state.
1579 */
1580 static int
1581 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1582 {
1583 unsigned long flags;
1584 int cpu, success = 0;
1585
1586 smp_wmb();
1587 raw_spin_lock_irqsave(&p->pi_lock, flags);
1588 if (!(p->state & state))
1589 goto out;
1590
1591 success = 1; /* we're going to change ->state */
1592 cpu = task_cpu(p);
1593
1594 if (p->on_rq && ttwu_remote(p, wake_flags))
1595 goto stat;
1596
1597 #ifdef CONFIG_SMP
1598 /*
1599 * If the owning (remote) cpu is still in the middle of schedule() with
1600 * this task as prev, wait until its done referencing the task.
1601 */
1602 while (p->on_cpu) {
1603 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1604 /*
1605 * In case the architecture enables interrupts in
1606 * context_switch(), we cannot busy wait, since that
1607 * would lead to deadlocks when an interrupt hits and
1608 * tries to wake up @prev. So bail and do a complete
1609 * remote wakeup.
1610 */
1611 if (ttwu_activate_remote(p, wake_flags))
1612 goto stat;
1613 #else
1614 cpu_relax();
1615 #endif
1616 }
1617 /*
1618 * Pairs with the smp_wmb() in finish_lock_switch().
1619 */
1620 smp_rmb();
1621
1622 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1623 p->state = TASK_WAKING;
1624
1625 if (p->sched_class->task_waking)
1626 p->sched_class->task_waking(p);
1627
1628 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1629 if (task_cpu(p) != cpu) {
1630 wake_flags |= WF_MIGRATED;
1631 set_task_cpu(p, cpu);
1632 }
1633 #endif /* CONFIG_SMP */
1634
1635 ttwu_queue(p, cpu);
1636 stat:
1637 ttwu_stat(p, cpu, wake_flags);
1638 out:
1639 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1640
1641 return success;
1642 }
1643
1644 /**
1645 * try_to_wake_up_local - try to wake up a local task with rq lock held
1646 * @p: the thread to be awakened
1647 *
1648 * Put @p on the run-queue if it's not already there. The caller must
1649 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1650 * the current task.
1651 */
1652 static void try_to_wake_up_local(struct task_struct *p)
1653 {
1654 struct rq *rq = task_rq(p);
1655
1656 BUG_ON(rq != this_rq());
1657 BUG_ON(p == current);
1658 lockdep_assert_held(&rq->lock);
1659
1660 if (!raw_spin_trylock(&p->pi_lock)) {
1661 raw_spin_unlock(&rq->lock);
1662 raw_spin_lock(&p->pi_lock);
1663 raw_spin_lock(&rq->lock);
1664 }
1665
1666 if (!(p->state & TASK_NORMAL))
1667 goto out;
1668
1669 if (!p->on_rq)
1670 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1671
1672 ttwu_do_wakeup(rq, p, 0);
1673 ttwu_stat(p, smp_processor_id(), 0);
1674 out:
1675 raw_spin_unlock(&p->pi_lock);
1676 }
1677
1678 /**
1679 * wake_up_process - Wake up a specific process
1680 * @p: The process to be woken up.
1681 *
1682 * Attempt to wake up the nominated process and move it to the set of runnable
1683 * processes. Returns 1 if the process was woken up, 0 if it was already
1684 * running.
1685 *
1686 * It may be assumed that this function implies a write memory barrier before
1687 * changing the task state if and only if any tasks are woken up.
1688 */
1689 int wake_up_process(struct task_struct *p)
1690 {
1691 return try_to_wake_up(p, TASK_ALL, 0);
1692 }
1693 EXPORT_SYMBOL(wake_up_process);
1694
1695 int wake_up_state(struct task_struct *p, unsigned int state)
1696 {
1697 return try_to_wake_up(p, state, 0);
1698 }
1699
1700 /*
1701 * Perform scheduler related setup for a newly forked process p.
1702 * p is forked by current.
1703 *
1704 * __sched_fork() is basic setup used by init_idle() too:
1705 */
1706 static void __sched_fork(struct task_struct *p)
1707 {
1708 p->on_rq = 0;
1709
1710 p->se.on_rq = 0;
1711 p->se.exec_start = 0;
1712 p->se.sum_exec_runtime = 0;
1713 p->se.prev_sum_exec_runtime = 0;
1714 p->se.nr_migrations = 0;
1715 p->se.vruntime = 0;
1716 INIT_LIST_HEAD(&p->se.group_node);
1717
1718 #ifdef CONFIG_SCHEDSTATS
1719 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1720 #endif
1721
1722 INIT_LIST_HEAD(&p->rt.run_list);
1723
1724 #ifdef CONFIG_PREEMPT_NOTIFIERS
1725 INIT_HLIST_HEAD(&p->preempt_notifiers);
1726 #endif
1727 }
1728
1729 /*
1730 * fork()/clone()-time setup:
1731 */
1732 void sched_fork(struct task_struct *p)
1733 {
1734 unsigned long flags;
1735 int cpu = get_cpu();
1736
1737 __sched_fork(p);
1738 /*
1739 * We mark the process as running here. This guarantees that
1740 * nobody will actually run it, and a signal or other external
1741 * event cannot wake it up and insert it on the runqueue either.
1742 */
1743 p->state = TASK_RUNNING;
1744
1745 /*
1746 * Make sure we do not leak PI boosting priority to the child.
1747 */
1748 p->prio = current->normal_prio;
1749
1750 /*
1751 * Revert to default priority/policy on fork if requested.
1752 */
1753 if (unlikely(p->sched_reset_on_fork)) {
1754 if (task_has_rt_policy(p)) {
1755 p->policy = SCHED_NORMAL;
1756 p->static_prio = NICE_TO_PRIO(0);
1757 p->rt_priority = 0;
1758 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1759 p->static_prio = NICE_TO_PRIO(0);
1760
1761 p->prio = p->normal_prio = __normal_prio(p);
1762 set_load_weight(p);
1763
1764 /*
1765 * We don't need the reset flag anymore after the fork. It has
1766 * fulfilled its duty:
1767 */
1768 p->sched_reset_on_fork = 0;
1769 }
1770
1771 if (!rt_prio(p->prio))
1772 p->sched_class = &fair_sched_class;
1773
1774 if (p->sched_class->task_fork)
1775 p->sched_class->task_fork(p);
1776
1777 /*
1778 * The child is not yet in the pid-hash so no cgroup attach races,
1779 * and the cgroup is pinned to this child due to cgroup_fork()
1780 * is ran before sched_fork().
1781 *
1782 * Silence PROVE_RCU.
1783 */
1784 raw_spin_lock_irqsave(&p->pi_lock, flags);
1785 set_task_cpu(p, cpu);
1786 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1787
1788 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1789 if (likely(sched_info_on()))
1790 memset(&p->sched_info, 0, sizeof(p->sched_info));
1791 #endif
1792 #if defined(CONFIG_SMP)
1793 p->on_cpu = 0;
1794 #endif
1795 #ifdef CONFIG_PREEMPT_COUNT
1796 /* Want to start with kernel preemption disabled. */
1797 task_thread_info(p)->preempt_count = 1;
1798 #endif
1799 #ifdef CONFIG_SMP
1800 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1801 #endif
1802
1803 put_cpu();
1804 }
1805
1806 /*
1807 * wake_up_new_task - wake up a newly created task for the first time.
1808 *
1809 * This function will do some initial scheduler statistics housekeeping
1810 * that must be done for every newly created context, then puts the task
1811 * on the runqueue and wakes it.
1812 */
1813 void wake_up_new_task(struct task_struct *p)
1814 {
1815 unsigned long flags;
1816 struct rq *rq;
1817
1818 raw_spin_lock_irqsave(&p->pi_lock, flags);
1819 #ifdef CONFIG_SMP
1820 /*
1821 * Fork balancing, do it here and not earlier because:
1822 * - cpus_allowed can change in the fork path
1823 * - any previously selected cpu might disappear through hotplug
1824 */
1825 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1826 #endif
1827
1828 rq = __task_rq_lock(p);
1829 activate_task(rq, p, 0);
1830 p->on_rq = 1;
1831 trace_sched_wakeup_new(p, true);
1832 check_preempt_curr(rq, p, WF_FORK);
1833 #ifdef CONFIG_SMP
1834 if (p->sched_class->task_woken)
1835 p->sched_class->task_woken(rq, p);
1836 #endif
1837 task_rq_unlock(rq, p, &flags);
1838 }
1839
1840 #ifdef CONFIG_PREEMPT_NOTIFIERS
1841
1842 /**
1843 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1844 * @notifier: notifier struct to register
1845 */
1846 void preempt_notifier_register(struct preempt_notifier *notifier)
1847 {
1848 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1849 }
1850 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1851
1852 /**
1853 * preempt_notifier_unregister - no longer interested in preemption notifications
1854 * @notifier: notifier struct to unregister
1855 *
1856 * This is safe to call from within a preemption notifier.
1857 */
1858 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1859 {
1860 hlist_del(&notifier->link);
1861 }
1862 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1863
1864 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1865 {
1866 struct preempt_notifier *notifier;
1867 struct hlist_node *node;
1868
1869 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1870 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1871 }
1872
1873 static void
1874 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1875 struct task_struct *next)
1876 {
1877 struct preempt_notifier *notifier;
1878 struct hlist_node *node;
1879
1880 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1881 notifier->ops->sched_out(notifier, next);
1882 }
1883
1884 #else /* !CONFIG_PREEMPT_NOTIFIERS */
1885
1886 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1887 {
1888 }
1889
1890 static void
1891 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1892 struct task_struct *next)
1893 {
1894 }
1895
1896 #endif /* CONFIG_PREEMPT_NOTIFIERS */
1897
1898 /**
1899 * prepare_task_switch - prepare to switch tasks
1900 * @rq: the runqueue preparing to switch
1901 * @prev: the current task that is being switched out
1902 * @next: the task we are going to switch to.
1903 *
1904 * This is called with the rq lock held and interrupts off. It must
1905 * be paired with a subsequent finish_task_switch after the context
1906 * switch.
1907 *
1908 * prepare_task_switch sets up locking and calls architecture specific
1909 * hooks.
1910 */
1911 static inline void
1912 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1913 struct task_struct *next)
1914 {
1915 sched_info_switch(prev, next);
1916 perf_event_task_sched_out(prev, next);
1917 fire_sched_out_preempt_notifiers(prev, next);
1918 prepare_lock_switch(rq, next);
1919 prepare_arch_switch(next);
1920 trace_sched_switch(prev, next);
1921 }
1922
1923 /**
1924 * finish_task_switch - clean up after a task-switch
1925 * @rq: runqueue associated with task-switch
1926 * @prev: the thread we just switched away from.
1927 *
1928 * finish_task_switch must be called after the context switch, paired
1929 * with a prepare_task_switch call before the context switch.
1930 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1931 * and do any other architecture-specific cleanup actions.
1932 *
1933 * Note that we may have delayed dropping an mm in context_switch(). If
1934 * so, we finish that here outside of the runqueue lock. (Doing it
1935 * with the lock held can cause deadlocks; see schedule() for
1936 * details.)
1937 */
1938 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1939 __releases(rq->lock)
1940 {
1941 struct mm_struct *mm = rq->prev_mm;
1942 long prev_state;
1943
1944 rq->prev_mm = NULL;
1945
1946 /*
1947 * A task struct has one reference for the use as "current".
1948 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1949 * schedule one last time. The schedule call will never return, and
1950 * the scheduled task must drop that reference.
1951 * The test for TASK_DEAD must occur while the runqueue locks are
1952 * still held, otherwise prev could be scheduled on another cpu, die
1953 * there before we look at prev->state, and then the reference would
1954 * be dropped twice.
1955 * Manfred Spraul <manfred@colorfullife.com>
1956 */
1957 prev_state = prev->state;
1958 finish_arch_switch(prev);
1959 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1960 local_irq_disable();
1961 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1962 perf_event_task_sched_in(prev, current);
1963 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1964 local_irq_enable();
1965 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
1966 finish_lock_switch(rq, prev);
1967
1968 fire_sched_in_preempt_notifiers(current);
1969 if (mm)
1970 mmdrop(mm);
1971 if (unlikely(prev_state == TASK_DEAD)) {
1972 /*
1973 * Remove function-return probe instances associated with this
1974 * task and put them back on the free list.
1975 */
1976 kprobe_flush_task(prev);
1977 put_task_struct(prev);
1978 }
1979 }
1980
1981 #ifdef CONFIG_SMP
1982
1983 /* assumes rq->lock is held */
1984 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1985 {
1986 if (prev->sched_class->pre_schedule)
1987 prev->sched_class->pre_schedule(rq, prev);
1988 }
1989
1990 /* rq->lock is NOT held, but preemption is disabled */
1991 static inline void post_schedule(struct rq *rq)
1992 {
1993 if (rq->post_schedule) {
1994 unsigned long flags;
1995
1996 raw_spin_lock_irqsave(&rq->lock, flags);
1997 if (rq->curr->sched_class->post_schedule)
1998 rq->curr->sched_class->post_schedule(rq);
1999 raw_spin_unlock_irqrestore(&rq->lock, flags);
2000
2001 rq->post_schedule = 0;
2002 }
2003 }
2004
2005 #else
2006
2007 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2008 {
2009 }
2010
2011 static inline void post_schedule(struct rq *rq)
2012 {
2013 }
2014
2015 #endif
2016
2017 /**
2018 * schedule_tail - first thing a freshly forked thread must call.
2019 * @prev: the thread we just switched away from.
2020 */
2021 asmlinkage void schedule_tail(struct task_struct *prev)
2022 __releases(rq->lock)
2023 {
2024 struct rq *rq = this_rq();
2025
2026 finish_task_switch(rq, prev);
2027
2028 /*
2029 * FIXME: do we need to worry about rq being invalidated by the
2030 * task_switch?
2031 */
2032 post_schedule(rq);
2033
2034 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2035 /* In this case, finish_task_switch does not reenable preemption */
2036 preempt_enable();
2037 #endif
2038 if (current->set_child_tid)
2039 put_user(task_pid_vnr(current), current->set_child_tid);
2040 }
2041
2042 /*
2043 * context_switch - switch to the new MM and the new
2044 * thread's register state.
2045 */
2046 static inline void
2047 context_switch(struct rq *rq, struct task_struct *prev,
2048 struct task_struct *next)
2049 {
2050 struct mm_struct *mm, *oldmm;
2051
2052 prepare_task_switch(rq, prev, next);
2053
2054 mm = next->mm;
2055 oldmm = prev->active_mm;
2056 /*
2057 * For paravirt, this is coupled with an exit in switch_to to
2058 * combine the page table reload and the switch backend into
2059 * one hypercall.
2060 */
2061 arch_start_context_switch(prev);
2062
2063 if (!mm) {
2064 next->active_mm = oldmm;
2065 atomic_inc(&oldmm->mm_count);
2066 enter_lazy_tlb(oldmm, next);
2067 } else
2068 switch_mm(oldmm, mm, next);
2069
2070 if (!prev->mm) {
2071 prev->active_mm = NULL;
2072 rq->prev_mm = oldmm;
2073 }
2074 /*
2075 * Since the runqueue lock will be released by the next
2076 * task (which is an invalid locking op but in the case
2077 * of the scheduler it's an obvious special-case), so we
2078 * do an early lockdep release here:
2079 */
2080 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2081 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2082 #endif
2083
2084 /* Here we just switch the register state and the stack. */
2085 switch_to(prev, next, prev);
2086
2087 barrier();
2088 /*
2089 * this_rq must be evaluated again because prev may have moved
2090 * CPUs since it called schedule(), thus the 'rq' on its stack
2091 * frame will be invalid.
2092 */
2093 finish_task_switch(this_rq(), prev);
2094 }
2095
2096 /*
2097 * nr_running, nr_uninterruptible and nr_context_switches:
2098 *
2099 * externally visible scheduler statistics: current number of runnable
2100 * threads, current number of uninterruptible-sleeping threads, total
2101 * number of context switches performed since bootup.
2102 */
2103 unsigned long nr_running(void)
2104 {
2105 unsigned long i, sum = 0;
2106
2107 for_each_online_cpu(i)
2108 sum += cpu_rq(i)->nr_running;
2109
2110 return sum;
2111 }
2112
2113 unsigned long nr_uninterruptible(void)
2114 {
2115 unsigned long i, sum = 0;
2116
2117 for_each_possible_cpu(i)
2118 sum += cpu_rq(i)->nr_uninterruptible;
2119
2120 /*
2121 * Since we read the counters lockless, it might be slightly
2122 * inaccurate. Do not allow it to go below zero though:
2123 */
2124 if (unlikely((long)sum < 0))
2125 sum = 0;
2126
2127 return sum;
2128 }
2129
2130 unsigned long long nr_context_switches(void)
2131 {
2132 int i;
2133 unsigned long long sum = 0;
2134
2135 for_each_possible_cpu(i)
2136 sum += cpu_rq(i)->nr_switches;
2137
2138 return sum;
2139 }
2140
2141 unsigned long nr_iowait(void)
2142 {
2143 unsigned long i, sum = 0;
2144
2145 for_each_possible_cpu(i)
2146 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2147
2148 return sum;
2149 }
2150
2151 unsigned long nr_iowait_cpu(int cpu)
2152 {
2153 struct rq *this = cpu_rq(cpu);
2154 return atomic_read(&this->nr_iowait);
2155 }
2156
2157 unsigned long this_cpu_load(void)
2158 {
2159 struct rq *this = this_rq();
2160 return this->cpu_load[0];
2161 }
2162
2163
2164 /* Variables and functions for calc_load */
2165 static atomic_long_t calc_load_tasks;
2166 static unsigned long calc_load_update;
2167 unsigned long avenrun[3];
2168 EXPORT_SYMBOL(avenrun);
2169
2170 static long calc_load_fold_active(struct rq *this_rq)
2171 {
2172 long nr_active, delta = 0;
2173
2174 nr_active = this_rq->nr_running;
2175 nr_active += (long) this_rq->nr_uninterruptible;
2176
2177 if (nr_active != this_rq->calc_load_active) {
2178 delta = nr_active - this_rq->calc_load_active;
2179 this_rq->calc_load_active = nr_active;
2180 }
2181
2182 return delta;
2183 }
2184
2185 static unsigned long
2186 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2187 {
2188 load *= exp;
2189 load += active * (FIXED_1 - exp);
2190 load += 1UL << (FSHIFT - 1);
2191 return load >> FSHIFT;
2192 }
2193
2194 #ifdef CONFIG_NO_HZ
2195 /*
2196 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2197 *
2198 * When making the ILB scale, we should try to pull this in as well.
2199 */
2200 static atomic_long_t calc_load_tasks_idle;
2201
2202 void calc_load_account_idle(struct rq *this_rq)
2203 {
2204 long delta;
2205
2206 delta = calc_load_fold_active(this_rq);
2207 if (delta)
2208 atomic_long_add(delta, &calc_load_tasks_idle);
2209 }
2210
2211 static long calc_load_fold_idle(void)
2212 {
2213 long delta = 0;
2214
2215 /*
2216 * Its got a race, we don't care...
2217 */
2218 if (atomic_long_read(&calc_load_tasks_idle))
2219 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2220
2221 return delta;
2222 }
2223
2224 /**
2225 * fixed_power_int - compute: x^n, in O(log n) time
2226 *
2227 * @x: base of the power
2228 * @frac_bits: fractional bits of @x
2229 * @n: power to raise @x to.
2230 *
2231 * By exploiting the relation between the definition of the natural power
2232 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2233 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2234 * (where: n_i \elem {0, 1}, the binary vector representing n),
2235 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2236 * of course trivially computable in O(log_2 n), the length of our binary
2237 * vector.
2238 */
2239 static unsigned long
2240 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2241 {
2242 unsigned long result = 1UL << frac_bits;
2243
2244 if (n) for (;;) {
2245 if (n & 1) {
2246 result *= x;
2247 result += 1UL << (frac_bits - 1);
2248 result >>= frac_bits;
2249 }
2250 n >>= 1;
2251 if (!n)
2252 break;
2253 x *= x;
2254 x += 1UL << (frac_bits - 1);
2255 x >>= frac_bits;
2256 }
2257
2258 return result;
2259 }
2260
2261 /*
2262 * a1 = a0 * e + a * (1 - e)
2263 *
2264 * a2 = a1 * e + a * (1 - e)
2265 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2266 * = a0 * e^2 + a * (1 - e) * (1 + e)
2267 *
2268 * a3 = a2 * e + a * (1 - e)
2269 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2270 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2271 *
2272 * ...
2273 *
2274 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2275 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2276 * = a0 * e^n + a * (1 - e^n)
2277 *
2278 * [1] application of the geometric series:
2279 *
2280 * n 1 - x^(n+1)
2281 * S_n := \Sum x^i = -------------
2282 * i=0 1 - x
2283 */
2284 static unsigned long
2285 calc_load_n(unsigned long load, unsigned long exp,
2286 unsigned long active, unsigned int n)
2287 {
2288
2289 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2290 }
2291
2292 /*
2293 * NO_HZ can leave us missing all per-cpu ticks calling
2294 * calc_load_account_active(), but since an idle CPU folds its delta into
2295 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2296 * in the pending idle delta if our idle period crossed a load cycle boundary.
2297 *
2298 * Once we've updated the global active value, we need to apply the exponential
2299 * weights adjusted to the number of cycles missed.
2300 */
2301 static void calc_global_nohz(void)
2302 {
2303 long delta, active, n;
2304
2305 /*
2306 * If we crossed a calc_load_update boundary, make sure to fold
2307 * any pending idle changes, the respective CPUs might have
2308 * missed the tick driven calc_load_account_active() update
2309 * due to NO_HZ.
2310 */
2311 delta = calc_load_fold_idle();
2312 if (delta)
2313 atomic_long_add(delta, &calc_load_tasks);
2314
2315 /*
2316 * It could be the one fold was all it took, we done!
2317 */
2318 if (time_before(jiffies, calc_load_update + 10))
2319 return;
2320
2321 /*
2322 * Catch-up, fold however many we are behind still
2323 */
2324 delta = jiffies - calc_load_update - 10;
2325 n = 1 + (delta / LOAD_FREQ);
2326
2327 active = atomic_long_read(&calc_load_tasks);
2328 active = active > 0 ? active * FIXED_1 : 0;
2329
2330 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2331 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2332 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2333
2334 calc_load_update += n * LOAD_FREQ;
2335 }
2336 #else
2337 void calc_load_account_idle(struct rq *this_rq)
2338 {
2339 }
2340
2341 static inline long calc_load_fold_idle(void)
2342 {
2343 return 0;
2344 }
2345
2346 static void calc_global_nohz(void)
2347 {
2348 }
2349 #endif
2350
2351 /**
2352 * get_avenrun - get the load average array
2353 * @loads: pointer to dest load array
2354 * @offset: offset to add
2355 * @shift: shift count to shift the result left
2356 *
2357 * These values are estimates at best, so no need for locking.
2358 */
2359 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2360 {
2361 loads[0] = (avenrun[0] + offset) << shift;
2362 loads[1] = (avenrun[1] + offset) << shift;
2363 loads[2] = (avenrun[2] + offset) << shift;
2364 }
2365
2366 /*
2367 * calc_load - update the avenrun load estimates 10 ticks after the
2368 * CPUs have updated calc_load_tasks.
2369 */
2370 void calc_global_load(unsigned long ticks)
2371 {
2372 long active;
2373
2374 if (time_before(jiffies, calc_load_update + 10))
2375 return;
2376
2377 active = atomic_long_read(&calc_load_tasks);
2378 active = active > 0 ? active * FIXED_1 : 0;
2379
2380 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2381 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2382 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2383
2384 calc_load_update += LOAD_FREQ;
2385
2386 /*
2387 * Account one period with whatever state we found before
2388 * folding in the nohz state and ageing the entire idle period.
2389 *
2390 * This avoids loosing a sample when we go idle between
2391 * calc_load_account_active() (10 ticks ago) and now and thus
2392 * under-accounting.
2393 */
2394 calc_global_nohz();
2395 }
2396
2397 /*
2398 * Called from update_cpu_load() to periodically update this CPU's
2399 * active count.
2400 */
2401 static void calc_load_account_active(struct rq *this_rq)
2402 {
2403 long delta;
2404
2405 if (time_before(jiffies, this_rq->calc_load_update))
2406 return;
2407
2408 delta = calc_load_fold_active(this_rq);
2409 delta += calc_load_fold_idle();
2410 if (delta)
2411 atomic_long_add(delta, &calc_load_tasks);
2412
2413 this_rq->calc_load_update += LOAD_FREQ;
2414 }
2415
2416 /*
2417 * The exact cpuload at various idx values, calculated at every tick would be
2418 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2419 *
2420 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2421 * on nth tick when cpu may be busy, then we have:
2422 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2423 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2424 *
2425 * decay_load_missed() below does efficient calculation of
2426 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2427 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2428 *
2429 * The calculation is approximated on a 128 point scale.
2430 * degrade_zero_ticks is the number of ticks after which load at any
2431 * particular idx is approximated to be zero.
2432 * degrade_factor is a precomputed table, a row for each load idx.
2433 * Each column corresponds to degradation factor for a power of two ticks,
2434 * based on 128 point scale.
2435 * Example:
2436 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2437 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2438 *
2439 * With this power of 2 load factors, we can degrade the load n times
2440 * by looking at 1 bits in n and doing as many mult/shift instead of
2441 * n mult/shifts needed by the exact degradation.
2442 */
2443 #define DEGRADE_SHIFT 7
2444 static const unsigned char
2445 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2446 static const unsigned char
2447 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2448 {0, 0, 0, 0, 0, 0, 0, 0},
2449 {64, 32, 8, 0, 0, 0, 0, 0},
2450 {96, 72, 40, 12, 1, 0, 0},
2451 {112, 98, 75, 43, 15, 1, 0},
2452 {120, 112, 98, 76, 45, 16, 2} };
2453
2454 /*
2455 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2456 * would be when CPU is idle and so we just decay the old load without
2457 * adding any new load.
2458 */
2459 static unsigned long
2460 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2461 {
2462 int j = 0;
2463
2464 if (!missed_updates)
2465 return load;
2466
2467 if (missed_updates >= degrade_zero_ticks[idx])
2468 return 0;
2469
2470 if (idx == 1)
2471 return load >> missed_updates;
2472
2473 while (missed_updates) {
2474 if (missed_updates % 2)
2475 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2476
2477 missed_updates >>= 1;
2478 j++;
2479 }
2480 return load;
2481 }
2482
2483 /*
2484 * Update rq->cpu_load[] statistics. This function is usually called every
2485 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2486 * every tick. We fix it up based on jiffies.
2487 */
2488 void update_cpu_load(struct rq *this_rq)
2489 {
2490 unsigned long this_load = this_rq->load.weight;
2491 unsigned long curr_jiffies = jiffies;
2492 unsigned long pending_updates;
2493 int i, scale;
2494
2495 this_rq->nr_load_updates++;
2496
2497 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
2498 if (curr_jiffies == this_rq->last_load_update_tick)
2499 return;
2500
2501 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2502 this_rq->last_load_update_tick = curr_jiffies;
2503
2504 /* Update our load: */
2505 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2506 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2507 unsigned long old_load, new_load;
2508
2509 /* scale is effectively 1 << i now, and >> i divides by scale */
2510
2511 old_load = this_rq->cpu_load[i];
2512 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2513 new_load = this_load;
2514 /*
2515 * Round up the averaging division if load is increasing. This
2516 * prevents us from getting stuck on 9 if the load is 10, for
2517 * example.
2518 */
2519 if (new_load > old_load)
2520 new_load += scale - 1;
2521
2522 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2523 }
2524
2525 sched_avg_update(this_rq);
2526 }
2527
2528 static void update_cpu_load_active(struct rq *this_rq)
2529 {
2530 update_cpu_load(this_rq);
2531
2532 calc_load_account_active(this_rq);
2533 }
2534
2535 #ifdef CONFIG_SMP
2536
2537 /*
2538 * sched_exec - execve() is a valuable balancing opportunity, because at
2539 * this point the task has the smallest effective memory and cache footprint.
2540 */
2541 void sched_exec(void)
2542 {
2543 struct task_struct *p = current;
2544 unsigned long flags;
2545 int dest_cpu;
2546
2547 raw_spin_lock_irqsave(&p->pi_lock, flags);
2548 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2549 if (dest_cpu == smp_processor_id())
2550 goto unlock;
2551
2552 if (likely(cpu_active(dest_cpu))) {
2553 struct migration_arg arg = { p, dest_cpu };
2554
2555 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2556 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2557 return;
2558 }
2559 unlock:
2560 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2561 }
2562
2563 #endif
2564
2565 DEFINE_PER_CPU(struct kernel_stat, kstat);
2566 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2567
2568 EXPORT_PER_CPU_SYMBOL(kstat);
2569 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2570
2571 /*
2572 * Return any ns on the sched_clock that have not yet been accounted in
2573 * @p in case that task is currently running.
2574 *
2575 * Called with task_rq_lock() held on @rq.
2576 */
2577 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2578 {
2579 u64 ns = 0;
2580
2581 if (task_current(rq, p)) {
2582 update_rq_clock(rq);
2583 ns = rq->clock_task - p->se.exec_start;
2584 if ((s64)ns < 0)
2585 ns = 0;
2586 }
2587
2588 return ns;
2589 }
2590
2591 unsigned long long task_delta_exec(struct task_struct *p)
2592 {
2593 unsigned long flags;
2594 struct rq *rq;
2595 u64 ns = 0;
2596
2597 rq = task_rq_lock(p, &flags);
2598 ns = do_task_delta_exec(p, rq);
2599 task_rq_unlock(rq, p, &flags);
2600
2601 return ns;
2602 }
2603
2604 /*
2605 * Return accounted runtime for the task.
2606 * In case the task is currently running, return the runtime plus current's
2607 * pending runtime that have not been accounted yet.
2608 */
2609 unsigned long long task_sched_runtime(struct task_struct *p)
2610 {
2611 unsigned long flags;
2612 struct rq *rq;
2613 u64 ns = 0;
2614
2615 rq = task_rq_lock(p, &flags);
2616 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2617 task_rq_unlock(rq, p, &flags);
2618
2619 return ns;
2620 }
2621
2622 #ifdef CONFIG_CGROUP_CPUACCT
2623 struct cgroup_subsys cpuacct_subsys;
2624 struct cpuacct root_cpuacct;
2625 #endif
2626
2627 static inline void task_group_account_field(struct task_struct *p, int index,
2628 u64 tmp)
2629 {
2630 #ifdef CONFIG_CGROUP_CPUACCT
2631 struct kernel_cpustat *kcpustat;
2632 struct cpuacct *ca;
2633 #endif
2634 /*
2635 * Since all updates are sure to touch the root cgroup, we
2636 * get ourselves ahead and touch it first. If the root cgroup
2637 * is the only cgroup, then nothing else should be necessary.
2638 *
2639 */
2640 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2641
2642 #ifdef CONFIG_CGROUP_CPUACCT
2643 if (unlikely(!cpuacct_subsys.active))
2644 return;
2645
2646 rcu_read_lock();
2647 ca = task_ca(p);
2648 while (ca && (ca != &root_cpuacct)) {
2649 kcpustat = this_cpu_ptr(ca->cpustat);
2650 kcpustat->cpustat[index] += tmp;
2651 ca = parent_ca(ca);
2652 }
2653 rcu_read_unlock();
2654 #endif
2655 }
2656
2657
2658 /*
2659 * Account user cpu time to a process.
2660 * @p: the process that the cpu time gets accounted to
2661 * @cputime: the cpu time spent in user space since the last update
2662 * @cputime_scaled: cputime scaled by cpu frequency
2663 */
2664 void account_user_time(struct task_struct *p, cputime_t cputime,
2665 cputime_t cputime_scaled)
2666 {
2667 int index;
2668
2669 /* Add user time to process. */
2670 p->utime += cputime;
2671 p->utimescaled += cputime_scaled;
2672 account_group_user_time(p, cputime);
2673
2674 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
2675
2676 /* Add user time to cpustat. */
2677 task_group_account_field(p, index, (__force u64) cputime);
2678
2679 /* Account for user time used */
2680 acct_update_integrals(p);
2681 }
2682
2683 /*
2684 * Account guest cpu time to a process.
2685 * @p: the process that the cpu time gets accounted to
2686 * @cputime: the cpu time spent in virtual machine since the last update
2687 * @cputime_scaled: cputime scaled by cpu frequency
2688 */
2689 static void account_guest_time(struct task_struct *p, cputime_t cputime,
2690 cputime_t cputime_scaled)
2691 {
2692 u64 *cpustat = kcpustat_this_cpu->cpustat;
2693
2694 /* Add guest time to process. */
2695 p->utime += cputime;
2696 p->utimescaled += cputime_scaled;
2697 account_group_user_time(p, cputime);
2698 p->gtime += cputime;
2699
2700 /* Add guest time to cpustat. */
2701 if (TASK_NICE(p) > 0) {
2702 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2703 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
2704 } else {
2705 cpustat[CPUTIME_USER] += (__force u64) cputime;
2706 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
2707 }
2708 }
2709
2710 /*
2711 * Account system cpu time to a process and desired cpustat field
2712 * @p: the process that the cpu time gets accounted to
2713 * @cputime: the cpu time spent in kernel space since the last update
2714 * @cputime_scaled: cputime scaled by cpu frequency
2715 * @target_cputime64: pointer to cpustat field that has to be updated
2716 */
2717 static inline
2718 void __account_system_time(struct task_struct *p, cputime_t cputime,
2719 cputime_t cputime_scaled, int index)
2720 {
2721 /* Add system time to process. */
2722 p->stime += cputime;
2723 p->stimescaled += cputime_scaled;
2724 account_group_system_time(p, cputime);
2725
2726 /* Add system time to cpustat. */
2727 task_group_account_field(p, index, (__force u64) cputime);
2728
2729 /* Account for system time used */
2730 acct_update_integrals(p);
2731 }
2732
2733 /*
2734 * Account system cpu time to a process.
2735 * @p: the process that the cpu time gets accounted to
2736 * @hardirq_offset: the offset to subtract from hardirq_count()
2737 * @cputime: the cpu time spent in kernel space since the last update
2738 * @cputime_scaled: cputime scaled by cpu frequency
2739 */
2740 void account_system_time(struct task_struct *p, int hardirq_offset,
2741 cputime_t cputime, cputime_t cputime_scaled)
2742 {
2743 int index;
2744
2745 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
2746 account_guest_time(p, cputime, cputime_scaled);
2747 return;
2748 }
2749
2750 if (hardirq_count() - hardirq_offset)
2751 index = CPUTIME_IRQ;
2752 else if (in_serving_softirq())
2753 index = CPUTIME_SOFTIRQ;
2754 else
2755 index = CPUTIME_SYSTEM;
2756
2757 __account_system_time(p, cputime, cputime_scaled, index);
2758 }
2759
2760 /*
2761 * Account for involuntary wait time.
2762 * @cputime: the cpu time spent in involuntary wait
2763 */
2764 void account_steal_time(cputime_t cputime)
2765 {
2766 u64 *cpustat = kcpustat_this_cpu->cpustat;
2767
2768 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
2769 }
2770
2771 /*
2772 * Account for idle time.
2773 * @cputime: the cpu time spent in idle wait
2774 */
2775 void account_idle_time(cputime_t cputime)
2776 {
2777 u64 *cpustat = kcpustat_this_cpu->cpustat;
2778 struct rq *rq = this_rq();
2779
2780 if (atomic_read(&rq->nr_iowait) > 0)
2781 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
2782 else
2783 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
2784 }
2785
2786 static __always_inline bool steal_account_process_tick(void)
2787 {
2788 #ifdef CONFIG_PARAVIRT
2789 if (static_key_false(&paravirt_steal_enabled)) {
2790 u64 steal, st = 0;
2791
2792 steal = paravirt_steal_clock(smp_processor_id());
2793 steal -= this_rq()->prev_steal_time;
2794
2795 st = steal_ticks(steal);
2796 this_rq()->prev_steal_time += st * TICK_NSEC;
2797
2798 account_steal_time(st);
2799 return st;
2800 }
2801 #endif
2802 return false;
2803 }
2804
2805 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
2806
2807 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2808 /*
2809 * Account a tick to a process and cpustat
2810 * @p: the process that the cpu time gets accounted to
2811 * @user_tick: is the tick from userspace
2812 * @rq: the pointer to rq
2813 *
2814 * Tick demultiplexing follows the order
2815 * - pending hardirq update
2816 * - pending softirq update
2817 * - user_time
2818 * - idle_time
2819 * - system time
2820 * - check for guest_time
2821 * - else account as system_time
2822 *
2823 * Check for hardirq is done both for system and user time as there is
2824 * no timer going off while we are on hardirq and hence we may never get an
2825 * opportunity to update it solely in system time.
2826 * p->stime and friends are only updated on system time and not on irq
2827 * softirq as those do not count in task exec_runtime any more.
2828 */
2829 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2830 struct rq *rq)
2831 {
2832 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2833 u64 *cpustat = kcpustat_this_cpu->cpustat;
2834
2835 if (steal_account_process_tick())
2836 return;
2837
2838 if (irqtime_account_hi_update()) {
2839 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
2840 } else if (irqtime_account_si_update()) {
2841 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
2842 } else if (this_cpu_ksoftirqd() == p) {
2843 /*
2844 * ksoftirqd time do not get accounted in cpu_softirq_time.
2845 * So, we have to handle it separately here.
2846 * Also, p->stime needs to be updated for ksoftirqd.
2847 */
2848 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2849 CPUTIME_SOFTIRQ);
2850 } else if (user_tick) {
2851 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2852 } else if (p == rq->idle) {
2853 account_idle_time(cputime_one_jiffy);
2854 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2855 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2856 } else {
2857 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
2858 CPUTIME_SYSTEM);
2859 }
2860 }
2861
2862 static void irqtime_account_idle_ticks(int ticks)
2863 {
2864 int i;
2865 struct rq *rq = this_rq();
2866
2867 for (i = 0; i < ticks; i++)
2868 irqtime_account_process_tick(current, 0, rq);
2869 }
2870 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2871 static void irqtime_account_idle_ticks(int ticks) {}
2872 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2873 struct rq *rq) {}
2874 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2875
2876 /*
2877 * Account a single tick of cpu time.
2878 * @p: the process that the cpu time gets accounted to
2879 * @user_tick: indicates if the tick is a user or a system tick
2880 */
2881 void account_process_tick(struct task_struct *p, int user_tick)
2882 {
2883 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
2884 struct rq *rq = this_rq();
2885
2886 if (sched_clock_irqtime) {
2887 irqtime_account_process_tick(p, user_tick, rq);
2888 return;
2889 }
2890
2891 if (steal_account_process_tick())
2892 return;
2893
2894 if (user_tick)
2895 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2896 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
2897 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
2898 one_jiffy_scaled);
2899 else
2900 account_idle_time(cputime_one_jiffy);
2901 }
2902
2903 /*
2904 * Account multiple ticks of steal time.
2905 * @p: the process from which the cpu time has been stolen
2906 * @ticks: number of stolen ticks
2907 */
2908 void account_steal_ticks(unsigned long ticks)
2909 {
2910 account_steal_time(jiffies_to_cputime(ticks));
2911 }
2912
2913 /*
2914 * Account multiple ticks of idle time.
2915 * @ticks: number of stolen ticks
2916 */
2917 void account_idle_ticks(unsigned long ticks)
2918 {
2919
2920 if (sched_clock_irqtime) {
2921 irqtime_account_idle_ticks(ticks);
2922 return;
2923 }
2924
2925 account_idle_time(jiffies_to_cputime(ticks));
2926 }
2927
2928 #endif
2929
2930 /*
2931 * Use precise platform statistics if available:
2932 */
2933 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
2934 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2935 {
2936 *ut = p->utime;
2937 *st = p->stime;
2938 }
2939
2940 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2941 {
2942 struct task_cputime cputime;
2943
2944 thread_group_cputime(p, &cputime);
2945
2946 *ut = cputime.utime;
2947 *st = cputime.stime;
2948 }
2949 #else
2950
2951 #ifndef nsecs_to_cputime
2952 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
2953 #endif
2954
2955 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2956 {
2957 cputime_t rtime, utime = p->utime, total = utime + p->stime;
2958
2959 /*
2960 * Use CFS's precise accounting:
2961 */
2962 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
2963
2964 if (total) {
2965 u64 temp = (__force u64) rtime;
2966
2967 temp *= (__force u64) utime;
2968 do_div(temp, (__force u32) total);
2969 utime = (__force cputime_t) temp;
2970 } else
2971 utime = rtime;
2972
2973 /*
2974 * Compare with previous values, to keep monotonicity:
2975 */
2976 p->prev_utime = max(p->prev_utime, utime);
2977 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
2978
2979 *ut = p->prev_utime;
2980 *st = p->prev_stime;
2981 }
2982
2983 /*
2984 * Must be called with siglock held.
2985 */
2986 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
2987 {
2988 struct signal_struct *sig = p->signal;
2989 struct task_cputime cputime;
2990 cputime_t rtime, utime, total;
2991
2992 thread_group_cputime(p, &cputime);
2993
2994 total = cputime.utime + cputime.stime;
2995 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
2996
2997 if (total) {
2998 u64 temp = (__force u64) rtime;
2999
3000 temp *= (__force u64) cputime.utime;
3001 do_div(temp, (__force u32) total);
3002 utime = (__force cputime_t) temp;
3003 } else
3004 utime = rtime;
3005
3006 sig->prev_utime = max(sig->prev_utime, utime);
3007 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
3008
3009 *ut = sig->prev_utime;
3010 *st = sig->prev_stime;
3011 }
3012 #endif
3013
3014 /*
3015 * This function gets called by the timer code, with HZ frequency.
3016 * We call it with interrupts disabled.
3017 */
3018 void scheduler_tick(void)
3019 {
3020 int cpu = smp_processor_id();
3021 struct rq *rq = cpu_rq(cpu);
3022 struct task_struct *curr = rq->curr;
3023
3024 sched_clock_tick();
3025
3026 raw_spin_lock(&rq->lock);
3027 update_rq_clock(rq);
3028 update_cpu_load_active(rq);
3029 curr->sched_class->task_tick(rq, curr, 0);
3030 raw_spin_unlock(&rq->lock);
3031
3032 perf_event_task_tick();
3033
3034 #ifdef CONFIG_SMP
3035 rq->idle_balance = idle_cpu(cpu);
3036 trigger_load_balance(rq, cpu);
3037 #endif
3038 }
3039
3040 notrace unsigned long get_parent_ip(unsigned long addr)
3041 {
3042 if (in_lock_functions(addr)) {
3043 addr = CALLER_ADDR2;
3044 if (in_lock_functions(addr))
3045 addr = CALLER_ADDR3;
3046 }
3047 return addr;
3048 }
3049
3050 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3051 defined(CONFIG_PREEMPT_TRACER))
3052
3053 void __kprobes add_preempt_count(int val)
3054 {
3055 #ifdef CONFIG_DEBUG_PREEMPT
3056 /*
3057 * Underflow?
3058 */
3059 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3060 return;
3061 #endif
3062 preempt_count() += val;
3063 #ifdef CONFIG_DEBUG_PREEMPT
3064 /*
3065 * Spinlock count overflowing soon?
3066 */
3067 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3068 PREEMPT_MASK - 10);
3069 #endif
3070 if (preempt_count() == val)
3071 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3072 }
3073 EXPORT_SYMBOL(add_preempt_count);
3074
3075 void __kprobes sub_preempt_count(int val)
3076 {
3077 #ifdef CONFIG_DEBUG_PREEMPT
3078 /*
3079 * Underflow?
3080 */
3081 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3082 return;
3083 /*
3084 * Is the spinlock portion underflowing?
3085 */
3086 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3087 !(preempt_count() & PREEMPT_MASK)))
3088 return;
3089 #endif
3090
3091 if (preempt_count() == val)
3092 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3093 preempt_count() -= val;
3094 }
3095 EXPORT_SYMBOL(sub_preempt_count);
3096
3097 #endif
3098
3099 /*
3100 * Print scheduling while atomic bug:
3101 */
3102 static noinline void __schedule_bug(struct task_struct *prev)
3103 {
3104 struct pt_regs *regs = get_irq_regs();
3105
3106 if (oops_in_progress)
3107 return;
3108
3109 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3110 prev->comm, prev->pid, preempt_count());
3111
3112 debug_show_held_locks(prev);
3113 print_modules();
3114 if (irqs_disabled())
3115 print_irqtrace_events(prev);
3116
3117 if (regs)
3118 show_regs(regs);
3119 else
3120 dump_stack();
3121 }
3122
3123 /*
3124 * Various schedule()-time debugging checks and statistics:
3125 */
3126 static inline void schedule_debug(struct task_struct *prev)
3127 {
3128 /*
3129 * Test if we are atomic. Since do_exit() needs to call into
3130 * schedule() atomically, we ignore that path for now.
3131 * Otherwise, whine if we are scheduling when we should not be.
3132 */
3133 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3134 __schedule_bug(prev);
3135 rcu_sleep_check();
3136
3137 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3138
3139 schedstat_inc(this_rq(), sched_count);
3140 }
3141
3142 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3143 {
3144 if (prev->on_rq || rq->skip_clock_update < 0)
3145 update_rq_clock(rq);
3146 prev->sched_class->put_prev_task(rq, prev);
3147 }
3148
3149 /*
3150 * Pick up the highest-prio task:
3151 */
3152 static inline struct task_struct *
3153 pick_next_task(struct rq *rq)
3154 {
3155 const struct sched_class *class;
3156 struct task_struct *p;
3157
3158 /*
3159 * Optimization: we know that if all tasks are in
3160 * the fair class we can call that function directly:
3161 */
3162 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
3163 p = fair_sched_class.pick_next_task(rq);
3164 if (likely(p))
3165 return p;
3166 }
3167
3168 for_each_class(class) {
3169 p = class->pick_next_task(rq);
3170 if (p)
3171 return p;
3172 }
3173
3174 BUG(); /* the idle class will always have a runnable task */
3175 }
3176
3177 /*
3178 * __schedule() is the main scheduler function.
3179 */
3180 static void __sched __schedule(void)
3181 {
3182 struct task_struct *prev, *next;
3183 unsigned long *switch_count;
3184 struct rq *rq;
3185 int cpu;
3186
3187 need_resched:
3188 preempt_disable();
3189 cpu = smp_processor_id();
3190 rq = cpu_rq(cpu);
3191 rcu_note_context_switch(cpu);
3192 prev = rq->curr;
3193
3194 schedule_debug(prev);
3195
3196 if (sched_feat(HRTICK))
3197 hrtick_clear(rq);
3198
3199 raw_spin_lock_irq(&rq->lock);
3200
3201 switch_count = &prev->nivcsw;
3202 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3203 if (unlikely(signal_pending_state(prev->state, prev))) {
3204 prev->state = TASK_RUNNING;
3205 } else {
3206 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3207 prev->on_rq = 0;
3208
3209 /*
3210 * If a worker went to sleep, notify and ask workqueue
3211 * whether it wants to wake up a task to maintain
3212 * concurrency.
3213 */
3214 if (prev->flags & PF_WQ_WORKER) {
3215 struct task_struct *to_wakeup;
3216
3217 to_wakeup = wq_worker_sleeping(prev, cpu);
3218 if (to_wakeup)
3219 try_to_wake_up_local(to_wakeup);
3220 }
3221 }
3222 switch_count = &prev->nvcsw;
3223 }
3224
3225 pre_schedule(rq, prev);
3226
3227 if (unlikely(!rq->nr_running))
3228 idle_balance(cpu, rq);
3229
3230 put_prev_task(rq, prev);
3231 next = pick_next_task(rq);
3232 clear_tsk_need_resched(prev);
3233 rq->skip_clock_update = 0;
3234
3235 if (likely(prev != next)) {
3236 rq->nr_switches++;
3237 rq->curr = next;
3238 ++*switch_count;
3239
3240 context_switch(rq, prev, next); /* unlocks the rq */
3241 /*
3242 * The context switch have flipped the stack from under us
3243 * and restored the local variables which were saved when
3244 * this task called schedule() in the past. prev == current
3245 * is still correct, but it can be moved to another cpu/rq.
3246 */
3247 cpu = smp_processor_id();
3248 rq = cpu_rq(cpu);
3249 } else
3250 raw_spin_unlock_irq(&rq->lock);
3251
3252 post_schedule(rq);
3253
3254 sched_preempt_enable_no_resched();
3255 if (need_resched())
3256 goto need_resched;
3257 }
3258
3259 static inline void sched_submit_work(struct task_struct *tsk)
3260 {
3261 if (!tsk->state || tsk_is_pi_blocked(tsk))
3262 return;
3263 /*
3264 * If we are going to sleep and we have plugged IO queued,
3265 * make sure to submit it to avoid deadlocks.
3266 */
3267 if (blk_needs_flush_plug(tsk))
3268 blk_schedule_flush_plug(tsk);
3269 }
3270
3271 asmlinkage void __sched schedule(void)
3272 {
3273 struct task_struct *tsk = current;
3274
3275 sched_submit_work(tsk);
3276 __schedule();
3277 }
3278 EXPORT_SYMBOL(schedule);
3279
3280 /**
3281 * schedule_preempt_disabled - called with preemption disabled
3282 *
3283 * Returns with preemption disabled. Note: preempt_count must be 1
3284 */
3285 void __sched schedule_preempt_disabled(void)
3286 {
3287 sched_preempt_enable_no_resched();
3288 schedule();
3289 preempt_disable();
3290 }
3291
3292 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3293
3294 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3295 {
3296 if (lock->owner != owner)
3297 return false;
3298
3299 /*
3300 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3301 * lock->owner still matches owner, if that fails, owner might
3302 * point to free()d memory, if it still matches, the rcu_read_lock()
3303 * ensures the memory stays valid.
3304 */
3305 barrier();
3306
3307 return owner->on_cpu;
3308 }
3309
3310 /*
3311 * Look out! "owner" is an entirely speculative pointer
3312 * access and not reliable.
3313 */
3314 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3315 {
3316 if (!sched_feat(OWNER_SPIN))
3317 return 0;
3318
3319 rcu_read_lock();
3320 while (owner_running(lock, owner)) {
3321 if (need_resched())
3322 break;
3323
3324 arch_mutex_cpu_relax();
3325 }
3326 rcu_read_unlock();
3327
3328 /*
3329 * We break out the loop above on need_resched() and when the
3330 * owner changed, which is a sign for heavy contention. Return
3331 * success only when lock->owner is NULL.
3332 */
3333 return lock->owner == NULL;
3334 }
3335 #endif
3336
3337 #ifdef CONFIG_PREEMPT
3338 /*
3339 * this is the entry point to schedule() from in-kernel preemption
3340 * off of preempt_enable. Kernel preemptions off return from interrupt
3341 * occur there and call schedule directly.
3342 */
3343 asmlinkage void __sched notrace preempt_schedule(void)
3344 {
3345 struct thread_info *ti = current_thread_info();
3346
3347 /*
3348 * If there is a non-zero preempt_count or interrupts are disabled,
3349 * we do not want to preempt the current task. Just return..
3350 */
3351 if (likely(ti->preempt_count || irqs_disabled()))
3352 return;
3353
3354 do {
3355 add_preempt_count_notrace(PREEMPT_ACTIVE);
3356 __schedule();
3357 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3358
3359 /*
3360 * Check again in case we missed a preemption opportunity
3361 * between schedule and now.
3362 */
3363 barrier();
3364 } while (need_resched());
3365 }
3366 EXPORT_SYMBOL(preempt_schedule);
3367
3368 /*
3369 * this is the entry point to schedule() from kernel preemption
3370 * off of irq context.
3371 * Note, that this is called and return with irqs disabled. This will
3372 * protect us against recursive calling from irq.
3373 */
3374 asmlinkage void __sched preempt_schedule_irq(void)
3375 {
3376 struct thread_info *ti = current_thread_info();
3377
3378 /* Catch callers which need to be fixed */
3379 BUG_ON(ti->preempt_count || !irqs_disabled());
3380
3381 do {
3382 add_preempt_count(PREEMPT_ACTIVE);
3383 local_irq_enable();
3384 __schedule();
3385 local_irq_disable();
3386 sub_preempt_count(PREEMPT_ACTIVE);
3387
3388 /*
3389 * Check again in case we missed a preemption opportunity
3390 * between schedule and now.
3391 */
3392 barrier();
3393 } while (need_resched());
3394 }
3395
3396 #endif /* CONFIG_PREEMPT */
3397
3398 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3399 void *key)
3400 {
3401 return try_to_wake_up(curr->private, mode, wake_flags);
3402 }
3403 EXPORT_SYMBOL(default_wake_function);
3404
3405 /*
3406 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3407 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3408 * number) then we wake all the non-exclusive tasks and one exclusive task.
3409 *
3410 * There are circumstances in which we can try to wake a task which has already
3411 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3412 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3413 */
3414 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3415 int nr_exclusive, int wake_flags, void *key)
3416 {
3417 wait_queue_t *curr, *next;
3418
3419 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3420 unsigned flags = curr->flags;
3421
3422 if (curr->func(curr, mode, wake_flags, key) &&
3423 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3424 break;
3425 }
3426 }
3427
3428 /**
3429 * __wake_up - wake up threads blocked on a waitqueue.
3430 * @q: the waitqueue
3431 * @mode: which threads
3432 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3433 * @key: is directly passed to the wakeup function
3434 *
3435 * It may be assumed that this function implies a write memory barrier before
3436 * changing the task state if and only if any tasks are woken up.
3437 */
3438 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3439 int nr_exclusive, void *key)
3440 {
3441 unsigned long flags;
3442
3443 spin_lock_irqsave(&q->lock, flags);
3444 __wake_up_common(q, mode, nr_exclusive, 0, key);
3445 spin_unlock_irqrestore(&q->lock, flags);
3446 }
3447 EXPORT_SYMBOL(__wake_up);
3448
3449 /*
3450 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3451 */
3452 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3453 {
3454 __wake_up_common(q, mode, nr, 0, NULL);
3455 }
3456 EXPORT_SYMBOL_GPL(__wake_up_locked);
3457
3458 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3459 {
3460 __wake_up_common(q, mode, 1, 0, key);
3461 }
3462 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3463
3464 /**
3465 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3466 * @q: the waitqueue
3467 * @mode: which threads
3468 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3469 * @key: opaque value to be passed to wakeup targets
3470 *
3471 * The sync wakeup differs that the waker knows that it will schedule
3472 * away soon, so while the target thread will be woken up, it will not
3473 * be migrated to another CPU - ie. the two threads are 'synchronized'
3474 * with each other. This can prevent needless bouncing between CPUs.
3475 *
3476 * On UP it can prevent extra preemption.
3477 *
3478 * It may be assumed that this function implies a write memory barrier before
3479 * changing the task state if and only if any tasks are woken up.
3480 */
3481 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3482 int nr_exclusive, void *key)
3483 {
3484 unsigned long flags;
3485 int wake_flags = WF_SYNC;
3486
3487 if (unlikely(!q))
3488 return;
3489
3490 if (unlikely(!nr_exclusive))
3491 wake_flags = 0;
3492
3493 spin_lock_irqsave(&q->lock, flags);
3494 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3495 spin_unlock_irqrestore(&q->lock, flags);
3496 }
3497 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3498
3499 /*
3500 * __wake_up_sync - see __wake_up_sync_key()
3501 */
3502 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3503 {
3504 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3505 }
3506 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3507
3508 /**
3509 * complete: - signals a single thread waiting on this completion
3510 * @x: holds the state of this particular completion
3511 *
3512 * This will wake up a single thread waiting on this completion. Threads will be
3513 * awakened in the same order in which they were queued.
3514 *
3515 * See also complete_all(), wait_for_completion() and related routines.
3516 *
3517 * It may be assumed that this function implies a write memory barrier before
3518 * changing the task state if and only if any tasks are woken up.
3519 */
3520 void complete(struct completion *x)
3521 {
3522 unsigned long flags;
3523
3524 spin_lock_irqsave(&x->wait.lock, flags);
3525 x->done++;
3526 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3527 spin_unlock_irqrestore(&x->wait.lock, flags);
3528 }
3529 EXPORT_SYMBOL(complete);
3530
3531 /**
3532 * complete_all: - signals all threads waiting on this completion
3533 * @x: holds the state of this particular completion
3534 *
3535 * This will wake up all threads waiting on this particular completion event.
3536 *
3537 * It may be assumed that this function implies a write memory barrier before
3538 * changing the task state if and only if any tasks are woken up.
3539 */
3540 void complete_all(struct completion *x)
3541 {
3542 unsigned long flags;
3543
3544 spin_lock_irqsave(&x->wait.lock, flags);
3545 x->done += UINT_MAX/2;
3546 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3547 spin_unlock_irqrestore(&x->wait.lock, flags);
3548 }
3549 EXPORT_SYMBOL(complete_all);
3550
3551 static inline long __sched
3552 do_wait_for_common(struct completion *x, long timeout, int state)
3553 {
3554 if (!x->done) {
3555 DECLARE_WAITQUEUE(wait, current);
3556
3557 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3558 do {
3559 if (signal_pending_state(state, current)) {
3560 timeout = -ERESTARTSYS;
3561 break;
3562 }
3563 __set_current_state(state);
3564 spin_unlock_irq(&x->wait.lock);
3565 timeout = schedule_timeout(timeout);
3566 spin_lock_irq(&x->wait.lock);
3567 } while (!x->done && timeout);
3568 __remove_wait_queue(&x->wait, &wait);
3569 if (!x->done)
3570 return timeout;
3571 }
3572 x->done--;
3573 return timeout ?: 1;
3574 }
3575
3576 static long __sched
3577 wait_for_common(struct completion *x, long timeout, int state)
3578 {
3579 might_sleep();
3580
3581 spin_lock_irq(&x->wait.lock);
3582 timeout = do_wait_for_common(x, timeout, state);
3583 spin_unlock_irq(&x->wait.lock);
3584 return timeout;
3585 }
3586
3587 /**
3588 * wait_for_completion: - waits for completion of a task
3589 * @x: holds the state of this particular completion
3590 *
3591 * This waits to be signaled for completion of a specific task. It is NOT
3592 * interruptible and there is no timeout.
3593 *
3594 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3595 * and interrupt capability. Also see complete().
3596 */
3597 void __sched wait_for_completion(struct completion *x)
3598 {
3599 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3600 }
3601 EXPORT_SYMBOL(wait_for_completion);
3602
3603 /**
3604 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3605 * @x: holds the state of this particular completion
3606 * @timeout: timeout value in jiffies
3607 *
3608 * This waits for either a completion of a specific task to be signaled or for a
3609 * specified timeout to expire. The timeout is in jiffies. It is not
3610 * interruptible.
3611 *
3612 * The return value is 0 if timed out, and positive (at least 1, or number of
3613 * jiffies left till timeout) if completed.
3614 */
3615 unsigned long __sched
3616 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3617 {
3618 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3619 }
3620 EXPORT_SYMBOL(wait_for_completion_timeout);
3621
3622 /**
3623 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3624 * @x: holds the state of this particular completion
3625 *
3626 * This waits for completion of a specific task to be signaled. It is
3627 * interruptible.
3628 *
3629 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3630 */
3631 int __sched wait_for_completion_interruptible(struct completion *x)
3632 {
3633 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3634 if (t == -ERESTARTSYS)
3635 return t;
3636 return 0;
3637 }
3638 EXPORT_SYMBOL(wait_for_completion_interruptible);
3639
3640 /**
3641 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3642 * @x: holds the state of this particular completion
3643 * @timeout: timeout value in jiffies
3644 *
3645 * This waits for either a completion of a specific task to be signaled or for a
3646 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3647 *
3648 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3649 * positive (at least 1, or number of jiffies left till timeout) if completed.
3650 */
3651 long __sched
3652 wait_for_completion_interruptible_timeout(struct completion *x,
3653 unsigned long timeout)
3654 {
3655 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3656 }
3657 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3658
3659 /**
3660 * wait_for_completion_killable: - waits for completion of a task (killable)
3661 * @x: holds the state of this particular completion
3662 *
3663 * This waits to be signaled for completion of a specific task. It can be
3664 * interrupted by a kill signal.
3665 *
3666 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3667 */
3668 int __sched wait_for_completion_killable(struct completion *x)
3669 {
3670 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3671 if (t == -ERESTARTSYS)
3672 return t;
3673 return 0;
3674 }
3675 EXPORT_SYMBOL(wait_for_completion_killable);
3676
3677 /**
3678 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3679 * @x: holds the state of this particular completion
3680 * @timeout: timeout value in jiffies
3681 *
3682 * This waits for either a completion of a specific task to be
3683 * signaled or for a specified timeout to expire. It can be
3684 * interrupted by a kill signal. The timeout is in jiffies.
3685 *
3686 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3687 * positive (at least 1, or number of jiffies left till timeout) if completed.
3688 */
3689 long __sched
3690 wait_for_completion_killable_timeout(struct completion *x,
3691 unsigned long timeout)
3692 {
3693 return wait_for_common(x, timeout, TASK_KILLABLE);
3694 }
3695 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3696
3697 /**
3698 * try_wait_for_completion - try to decrement a completion without blocking
3699 * @x: completion structure
3700 *
3701 * Returns: 0 if a decrement cannot be done without blocking
3702 * 1 if a decrement succeeded.
3703 *
3704 * If a completion is being used as a counting completion,
3705 * attempt to decrement the counter without blocking. This
3706 * enables us to avoid waiting if the resource the completion
3707 * is protecting is not available.
3708 */
3709 bool try_wait_for_completion(struct completion *x)
3710 {
3711 unsigned long flags;
3712 int ret = 1;
3713
3714 spin_lock_irqsave(&x->wait.lock, flags);
3715 if (!x->done)
3716 ret = 0;
3717 else
3718 x->done--;
3719 spin_unlock_irqrestore(&x->wait.lock, flags);
3720 return ret;
3721 }
3722 EXPORT_SYMBOL(try_wait_for_completion);
3723
3724 /**
3725 * completion_done - Test to see if a completion has any waiters
3726 * @x: completion structure
3727 *
3728 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3729 * 1 if there are no waiters.
3730 *
3731 */
3732 bool completion_done(struct completion *x)
3733 {
3734 unsigned long flags;
3735 int ret = 1;
3736
3737 spin_lock_irqsave(&x->wait.lock, flags);
3738 if (!x->done)
3739 ret = 0;
3740 spin_unlock_irqrestore(&x->wait.lock, flags);
3741 return ret;
3742 }
3743 EXPORT_SYMBOL(completion_done);
3744
3745 static long __sched
3746 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3747 {
3748 unsigned long flags;
3749 wait_queue_t wait;
3750
3751 init_waitqueue_entry(&wait, current);
3752
3753 __set_current_state(state);
3754
3755 spin_lock_irqsave(&q->lock, flags);
3756 __add_wait_queue(q, &wait);
3757 spin_unlock(&q->lock);
3758 timeout = schedule_timeout(timeout);
3759 spin_lock_irq(&q->lock);
3760 __remove_wait_queue(q, &wait);
3761 spin_unlock_irqrestore(&q->lock, flags);
3762
3763 return timeout;
3764 }
3765
3766 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3767 {
3768 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3769 }
3770 EXPORT_SYMBOL(interruptible_sleep_on);
3771
3772 long __sched
3773 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3774 {
3775 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3776 }
3777 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3778
3779 void __sched sleep_on(wait_queue_head_t *q)
3780 {
3781 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3782 }
3783 EXPORT_SYMBOL(sleep_on);
3784
3785 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3786 {
3787 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3788 }
3789 EXPORT_SYMBOL(sleep_on_timeout);
3790
3791 #ifdef CONFIG_RT_MUTEXES
3792
3793 /*
3794 * rt_mutex_setprio - set the current priority of a task
3795 * @p: task
3796 * @prio: prio value (kernel-internal form)
3797 *
3798 * This function changes the 'effective' priority of a task. It does
3799 * not touch ->normal_prio like __setscheduler().
3800 *
3801 * Used by the rt_mutex code to implement priority inheritance logic.
3802 */
3803 void rt_mutex_setprio(struct task_struct *p, int prio)
3804 {
3805 int oldprio, on_rq, running;
3806 struct rq *rq;
3807 const struct sched_class *prev_class;
3808
3809 BUG_ON(prio < 0 || prio > MAX_PRIO);
3810
3811 rq = __task_rq_lock(p);
3812
3813 /*
3814 * Idle task boosting is a nono in general. There is one
3815 * exception, when PREEMPT_RT and NOHZ is active:
3816 *
3817 * The idle task calls get_next_timer_interrupt() and holds
3818 * the timer wheel base->lock on the CPU and another CPU wants
3819 * to access the timer (probably to cancel it). We can safely
3820 * ignore the boosting request, as the idle CPU runs this code
3821 * with interrupts disabled and will complete the lock
3822 * protected section without being interrupted. So there is no
3823 * real need to boost.
3824 */
3825 if (unlikely(p == rq->idle)) {
3826 WARN_ON(p != rq->curr);
3827 WARN_ON(p->pi_blocked_on);
3828 goto out_unlock;
3829 }
3830
3831 trace_sched_pi_setprio(p, prio);
3832 oldprio = p->prio;
3833 prev_class = p->sched_class;
3834 on_rq = p->on_rq;
3835 running = task_current(rq, p);
3836 if (on_rq)
3837 dequeue_task(rq, p, 0);
3838 if (running)
3839 p->sched_class->put_prev_task(rq, p);
3840
3841 if (rt_prio(prio))
3842 p->sched_class = &rt_sched_class;
3843 else
3844 p->sched_class = &fair_sched_class;
3845
3846 p->prio = prio;
3847
3848 if (running)
3849 p->sched_class->set_curr_task(rq);
3850 if (on_rq)
3851 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3852
3853 check_class_changed(rq, p, prev_class, oldprio);
3854 out_unlock:
3855 __task_rq_unlock(rq);
3856 }
3857 #endif
3858 void set_user_nice(struct task_struct *p, long nice)
3859 {
3860 int old_prio, delta, on_rq;
3861 unsigned long flags;
3862 struct rq *rq;
3863
3864 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3865 return;
3866 /*
3867 * We have to be careful, if called from sys_setpriority(),
3868 * the task might be in the middle of scheduling on another CPU.
3869 */
3870 rq = task_rq_lock(p, &flags);
3871 /*
3872 * The RT priorities are set via sched_setscheduler(), but we still
3873 * allow the 'normal' nice value to be set - but as expected
3874 * it wont have any effect on scheduling until the task is
3875 * SCHED_FIFO/SCHED_RR:
3876 */
3877 if (task_has_rt_policy(p)) {
3878 p->static_prio = NICE_TO_PRIO(nice);
3879 goto out_unlock;
3880 }
3881 on_rq = p->on_rq;
3882 if (on_rq)
3883 dequeue_task(rq, p, 0);
3884
3885 p->static_prio = NICE_TO_PRIO(nice);
3886 set_load_weight(p);
3887 old_prio = p->prio;
3888 p->prio = effective_prio(p);
3889 delta = p->prio - old_prio;
3890
3891 if (on_rq) {
3892 enqueue_task(rq, p, 0);
3893 /*
3894 * If the task increased its priority or is running and
3895 * lowered its priority, then reschedule its CPU:
3896 */
3897 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3898 resched_task(rq->curr);
3899 }
3900 out_unlock:
3901 task_rq_unlock(rq, p, &flags);
3902 }
3903 EXPORT_SYMBOL(set_user_nice);
3904
3905 /*
3906 * can_nice - check if a task can reduce its nice value
3907 * @p: task
3908 * @nice: nice value
3909 */
3910 int can_nice(const struct task_struct *p, const int nice)
3911 {
3912 /* convert nice value [19,-20] to rlimit style value [1,40] */
3913 int nice_rlim = 20 - nice;
3914
3915 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3916 capable(CAP_SYS_NICE));
3917 }
3918
3919 #ifdef __ARCH_WANT_SYS_NICE
3920
3921 /*
3922 * sys_nice - change the priority of the current process.
3923 * @increment: priority increment
3924 *
3925 * sys_setpriority is a more generic, but much slower function that
3926 * does similar things.
3927 */
3928 SYSCALL_DEFINE1(nice, int, increment)
3929 {
3930 long nice, retval;
3931
3932 /*
3933 * Setpriority might change our priority at the same moment.
3934 * We don't have to worry. Conceptually one call occurs first
3935 * and we have a single winner.
3936 */
3937 if (increment < -40)
3938 increment = -40;
3939 if (increment > 40)
3940 increment = 40;
3941
3942 nice = TASK_NICE(current) + increment;
3943 if (nice < -20)
3944 nice = -20;
3945 if (nice > 19)
3946 nice = 19;
3947
3948 if (increment < 0 && !can_nice(current, nice))
3949 return -EPERM;
3950
3951 retval = security_task_setnice(current, nice);
3952 if (retval)
3953 return retval;
3954
3955 set_user_nice(current, nice);
3956 return 0;
3957 }
3958
3959 #endif
3960
3961 /**
3962 * task_prio - return the priority value of a given task.
3963 * @p: the task in question.
3964 *
3965 * This is the priority value as seen by users in /proc.
3966 * RT tasks are offset by -200. Normal tasks are centered
3967 * around 0, value goes from -16 to +15.
3968 */
3969 int task_prio(const struct task_struct *p)
3970 {
3971 return p->prio - MAX_RT_PRIO;
3972 }
3973
3974 /**
3975 * task_nice - return the nice value of a given task.
3976 * @p: the task in question.
3977 */
3978 int task_nice(const struct task_struct *p)
3979 {
3980 return TASK_NICE(p);
3981 }
3982 EXPORT_SYMBOL(task_nice);
3983
3984 /**
3985 * idle_cpu - is a given cpu idle currently?
3986 * @cpu: the processor in question.
3987 */
3988 int idle_cpu(int cpu)
3989 {
3990 struct rq *rq = cpu_rq(cpu);
3991
3992 if (rq->curr != rq->idle)
3993 return 0;
3994
3995 if (rq->nr_running)
3996 return 0;
3997
3998 #ifdef CONFIG_SMP
3999 if (!llist_empty(&rq->wake_list))
4000 return 0;
4001 #endif
4002
4003 return 1;
4004 }
4005
4006 /**
4007 * idle_task - return the idle task for a given cpu.
4008 * @cpu: the processor in question.
4009 */
4010 struct task_struct *idle_task(int cpu)
4011 {
4012 return cpu_rq(cpu)->idle;
4013 }
4014
4015 /**
4016 * find_process_by_pid - find a process with a matching PID value.
4017 * @pid: the pid in question.
4018 */
4019 static struct task_struct *find_process_by_pid(pid_t pid)
4020 {
4021 return pid ? find_task_by_vpid(pid) : current;
4022 }
4023
4024 /* Actually do priority change: must hold rq lock. */
4025 static void
4026 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4027 {
4028 p->policy = policy;
4029 p->rt_priority = prio;
4030 p->normal_prio = normal_prio(p);
4031 /* we are holding p->pi_lock already */
4032 p->prio = rt_mutex_getprio(p);
4033 if (rt_prio(p->prio))
4034 p->sched_class = &rt_sched_class;
4035 else
4036 p->sched_class = &fair_sched_class;
4037 set_load_weight(p);
4038 }
4039
4040 /*
4041 * check the target process has a UID that matches the current process's
4042 */
4043 static bool check_same_owner(struct task_struct *p)
4044 {
4045 const struct cred *cred = current_cred(), *pcred;
4046 bool match;
4047
4048 rcu_read_lock();
4049 pcred = __task_cred(p);
4050 if (cred->user->user_ns == pcred->user->user_ns)
4051 match = (cred->euid == pcred->euid ||
4052 cred->euid == pcred->uid);
4053 else
4054 match = false;
4055 rcu_read_unlock();
4056 return match;
4057 }
4058
4059 static int __sched_setscheduler(struct task_struct *p, int policy,
4060 const struct sched_param *param, bool user)
4061 {
4062 int retval, oldprio, oldpolicy = -1, on_rq, running;
4063 unsigned long flags;
4064 const struct sched_class *prev_class;
4065 struct rq *rq;
4066 int reset_on_fork;
4067
4068 /* may grab non-irq protected spin_locks */
4069 BUG_ON(in_interrupt());
4070 recheck:
4071 /* double check policy once rq lock held */
4072 if (policy < 0) {
4073 reset_on_fork = p->sched_reset_on_fork;
4074 policy = oldpolicy = p->policy;
4075 } else {
4076 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4077 policy &= ~SCHED_RESET_ON_FORK;
4078
4079 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4080 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4081 policy != SCHED_IDLE)
4082 return -EINVAL;
4083 }
4084
4085 /*
4086 * Valid priorities for SCHED_FIFO and SCHED_RR are
4087 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4088 * SCHED_BATCH and SCHED_IDLE is 0.
4089 */
4090 if (param->sched_priority < 0 ||
4091 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4092 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4093 return -EINVAL;
4094 if (rt_policy(policy) != (param->sched_priority != 0))
4095 return -EINVAL;
4096
4097 /*
4098 * Allow unprivileged RT tasks to decrease priority:
4099 */
4100 if (user && !capable(CAP_SYS_NICE)) {
4101 if (rt_policy(policy)) {
4102 unsigned long rlim_rtprio =
4103 task_rlimit(p, RLIMIT_RTPRIO);
4104
4105 /* can't set/change the rt policy */
4106 if (policy != p->policy && !rlim_rtprio)
4107 return -EPERM;
4108
4109 /* can't increase priority */
4110 if (param->sched_priority > p->rt_priority &&
4111 param->sched_priority > rlim_rtprio)
4112 return -EPERM;
4113 }
4114
4115 /*
4116 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4117 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4118 */
4119 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4120 if (!can_nice(p, TASK_NICE(p)))
4121 return -EPERM;
4122 }
4123
4124 /* can't change other user's priorities */
4125 if (!check_same_owner(p))
4126 return -EPERM;
4127
4128 /* Normal users shall not reset the sched_reset_on_fork flag */
4129 if (p->sched_reset_on_fork && !reset_on_fork)
4130 return -EPERM;
4131 }
4132
4133 if (user) {
4134 retval = security_task_setscheduler(p);
4135 if (retval)
4136 return retval;
4137 }
4138
4139 /*
4140 * make sure no PI-waiters arrive (or leave) while we are
4141 * changing the priority of the task:
4142 *
4143 * To be able to change p->policy safely, the appropriate
4144 * runqueue lock must be held.
4145 */
4146 rq = task_rq_lock(p, &flags);
4147
4148 /*
4149 * Changing the policy of the stop threads its a very bad idea
4150 */
4151 if (p == rq->stop) {
4152 task_rq_unlock(rq, p, &flags);
4153 return -EINVAL;
4154 }
4155
4156 /*
4157 * If not changing anything there's no need to proceed further:
4158 */
4159 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4160 param->sched_priority == p->rt_priority))) {
4161
4162 __task_rq_unlock(rq);
4163 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4164 return 0;
4165 }
4166
4167 #ifdef CONFIG_RT_GROUP_SCHED
4168 if (user) {
4169 /*
4170 * Do not allow realtime tasks into groups that have no runtime
4171 * assigned.
4172 */
4173 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4174 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4175 !task_group_is_autogroup(task_group(p))) {
4176 task_rq_unlock(rq, p, &flags);
4177 return -EPERM;
4178 }
4179 }
4180 #endif
4181
4182 /* recheck policy now with rq lock held */
4183 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4184 policy = oldpolicy = -1;
4185 task_rq_unlock(rq, p, &flags);
4186 goto recheck;
4187 }
4188 on_rq = p->on_rq;
4189 running = task_current(rq, p);
4190 if (on_rq)
4191 dequeue_task(rq, p, 0);
4192 if (running)
4193 p->sched_class->put_prev_task(rq, p);
4194
4195 p->sched_reset_on_fork = reset_on_fork;
4196
4197 oldprio = p->prio;
4198 prev_class = p->sched_class;
4199 __setscheduler(rq, p, policy, param->sched_priority);
4200
4201 if (running)
4202 p->sched_class->set_curr_task(rq);
4203 if (on_rq)
4204 enqueue_task(rq, p, 0);
4205
4206 check_class_changed(rq, p, prev_class, oldprio);
4207 task_rq_unlock(rq, p, &flags);
4208
4209 rt_mutex_adjust_pi(p);
4210
4211 return 0;
4212 }
4213
4214 /**
4215 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4216 * @p: the task in question.
4217 * @policy: new policy.
4218 * @param: structure containing the new RT priority.
4219 *
4220 * NOTE that the task may be already dead.
4221 */
4222 int sched_setscheduler(struct task_struct *p, int policy,
4223 const struct sched_param *param)
4224 {
4225 return __sched_setscheduler(p, policy, param, true);
4226 }
4227 EXPORT_SYMBOL_GPL(sched_setscheduler);
4228
4229 /**
4230 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4231 * @p: the task in question.
4232 * @policy: new policy.
4233 * @param: structure containing the new RT priority.
4234 *
4235 * Just like sched_setscheduler, only don't bother checking if the
4236 * current context has permission. For example, this is needed in
4237 * stop_machine(): we create temporary high priority worker threads,
4238 * but our caller might not have that capability.
4239 */
4240 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4241 const struct sched_param *param)
4242 {
4243 return __sched_setscheduler(p, policy, param, false);
4244 }
4245
4246 static int
4247 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4248 {
4249 struct sched_param lparam;
4250 struct task_struct *p;
4251 int retval;
4252
4253 if (!param || pid < 0)
4254 return -EINVAL;
4255 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4256 return -EFAULT;
4257
4258 rcu_read_lock();
4259 retval = -ESRCH;
4260 p = find_process_by_pid(pid);
4261 if (p != NULL)
4262 retval = sched_setscheduler(p, policy, &lparam);
4263 rcu_read_unlock();
4264
4265 return retval;
4266 }
4267
4268 /**
4269 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4270 * @pid: the pid in question.
4271 * @policy: new policy.
4272 * @param: structure containing the new RT priority.
4273 */
4274 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4275 struct sched_param __user *, param)
4276 {
4277 /* negative values for policy are not valid */
4278 if (policy < 0)
4279 return -EINVAL;
4280
4281 return do_sched_setscheduler(pid, policy, param);
4282 }
4283
4284 /**
4285 * sys_sched_setparam - set/change the RT priority of a thread
4286 * @pid: the pid in question.
4287 * @param: structure containing the new RT priority.
4288 */
4289 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4290 {
4291 return do_sched_setscheduler(pid, -1, param);
4292 }
4293
4294 /**
4295 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4296 * @pid: the pid in question.
4297 */
4298 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4299 {
4300 struct task_struct *p;
4301 int retval;
4302
4303 if (pid < 0)
4304 return -EINVAL;
4305
4306 retval = -ESRCH;
4307 rcu_read_lock();
4308 p = find_process_by_pid(pid);
4309 if (p) {
4310 retval = security_task_getscheduler(p);
4311 if (!retval)
4312 retval = p->policy
4313 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4314 }
4315 rcu_read_unlock();
4316 return retval;
4317 }
4318
4319 /**
4320 * sys_sched_getparam - get the RT priority of a thread
4321 * @pid: the pid in question.
4322 * @param: structure containing the RT priority.
4323 */
4324 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4325 {
4326 struct sched_param lp;
4327 struct task_struct *p;
4328 int retval;
4329
4330 if (!param || pid < 0)
4331 return -EINVAL;
4332
4333 rcu_read_lock();
4334 p = find_process_by_pid(pid);
4335 retval = -ESRCH;
4336 if (!p)
4337 goto out_unlock;
4338
4339 retval = security_task_getscheduler(p);
4340 if (retval)
4341 goto out_unlock;
4342
4343 lp.sched_priority = p->rt_priority;
4344 rcu_read_unlock();
4345
4346 /*
4347 * This one might sleep, we cannot do it with a spinlock held ...
4348 */
4349 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4350
4351 return retval;
4352
4353 out_unlock:
4354 rcu_read_unlock();
4355 return retval;
4356 }
4357
4358 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4359 {
4360 cpumask_var_t cpus_allowed, new_mask;
4361 struct task_struct *p;
4362 int retval;
4363
4364 get_online_cpus();
4365 rcu_read_lock();
4366
4367 p = find_process_by_pid(pid);
4368 if (!p) {
4369 rcu_read_unlock();
4370 put_online_cpus();
4371 return -ESRCH;
4372 }
4373
4374 /* Prevent p going away */
4375 get_task_struct(p);
4376 rcu_read_unlock();
4377
4378 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4379 retval = -ENOMEM;
4380 goto out_put_task;
4381 }
4382 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4383 retval = -ENOMEM;
4384 goto out_free_cpus_allowed;
4385 }
4386 retval = -EPERM;
4387 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4388 goto out_unlock;
4389
4390 retval = security_task_setscheduler(p);
4391 if (retval)
4392 goto out_unlock;
4393
4394 cpuset_cpus_allowed(p, cpus_allowed);
4395 cpumask_and(new_mask, in_mask, cpus_allowed);
4396 again:
4397 retval = set_cpus_allowed_ptr(p, new_mask);
4398
4399 if (!retval) {
4400 cpuset_cpus_allowed(p, cpus_allowed);
4401 if (!cpumask_subset(new_mask, cpus_allowed)) {
4402 /*
4403 * We must have raced with a concurrent cpuset
4404 * update. Just reset the cpus_allowed to the
4405 * cpuset's cpus_allowed
4406 */
4407 cpumask_copy(new_mask, cpus_allowed);
4408 goto again;
4409 }
4410 }
4411 out_unlock:
4412 free_cpumask_var(new_mask);
4413 out_free_cpus_allowed:
4414 free_cpumask_var(cpus_allowed);
4415 out_put_task:
4416 put_task_struct(p);
4417 put_online_cpus();
4418 return retval;
4419 }
4420
4421 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4422 struct cpumask *new_mask)
4423 {
4424 if (len < cpumask_size())
4425 cpumask_clear(new_mask);
4426 else if (len > cpumask_size())
4427 len = cpumask_size();
4428
4429 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4430 }
4431
4432 /**
4433 * sys_sched_setaffinity - set the cpu affinity of a process
4434 * @pid: pid of the process
4435 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4436 * @user_mask_ptr: user-space pointer to the new cpu mask
4437 */
4438 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4439 unsigned long __user *, user_mask_ptr)
4440 {
4441 cpumask_var_t new_mask;
4442 int retval;
4443
4444 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4445 return -ENOMEM;
4446
4447 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4448 if (retval == 0)
4449 retval = sched_setaffinity(pid, new_mask);
4450 free_cpumask_var(new_mask);
4451 return retval;
4452 }
4453
4454 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4455 {
4456 struct task_struct *p;
4457 unsigned long flags;
4458 int retval;
4459
4460 get_online_cpus();
4461 rcu_read_lock();
4462
4463 retval = -ESRCH;
4464 p = find_process_by_pid(pid);
4465 if (!p)
4466 goto out_unlock;
4467
4468 retval = security_task_getscheduler(p);
4469 if (retval)
4470 goto out_unlock;
4471
4472 raw_spin_lock_irqsave(&p->pi_lock, flags);
4473 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4474 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4475
4476 out_unlock:
4477 rcu_read_unlock();
4478 put_online_cpus();
4479
4480 return retval;
4481 }
4482
4483 /**
4484 * sys_sched_getaffinity - get the cpu affinity of a process
4485 * @pid: pid of the process
4486 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4487 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4488 */
4489 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4490 unsigned long __user *, user_mask_ptr)
4491 {
4492 int ret;
4493 cpumask_var_t mask;
4494
4495 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4496 return -EINVAL;
4497 if (len & (sizeof(unsigned long)-1))
4498 return -EINVAL;
4499
4500 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4501 return -ENOMEM;
4502
4503 ret = sched_getaffinity(pid, mask);
4504 if (ret == 0) {
4505 size_t retlen = min_t(size_t, len, cpumask_size());
4506
4507 if (copy_to_user(user_mask_ptr, mask, retlen))
4508 ret = -EFAULT;
4509 else
4510 ret = retlen;
4511 }
4512 free_cpumask_var(mask);
4513
4514 return ret;
4515 }
4516
4517 /**
4518 * sys_sched_yield - yield the current processor to other threads.
4519 *
4520 * This function yields the current CPU to other tasks. If there are no
4521 * other threads running on this CPU then this function will return.
4522 */
4523 SYSCALL_DEFINE0(sched_yield)
4524 {
4525 struct rq *rq = this_rq_lock();
4526
4527 schedstat_inc(rq, yld_count);
4528 current->sched_class->yield_task(rq);
4529
4530 /*
4531 * Since we are going to call schedule() anyway, there's
4532 * no need to preempt or enable interrupts:
4533 */
4534 __release(rq->lock);
4535 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4536 do_raw_spin_unlock(&rq->lock);
4537 sched_preempt_enable_no_resched();
4538
4539 schedule();
4540
4541 return 0;
4542 }
4543
4544 static inline int should_resched(void)
4545 {
4546 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4547 }
4548
4549 static void __cond_resched(void)
4550 {
4551 add_preempt_count(PREEMPT_ACTIVE);
4552 __schedule();
4553 sub_preempt_count(PREEMPT_ACTIVE);
4554 }
4555
4556 int __sched _cond_resched(void)
4557 {
4558 if (should_resched()) {
4559 __cond_resched();
4560 return 1;
4561 }
4562 return 0;
4563 }
4564 EXPORT_SYMBOL(_cond_resched);
4565
4566 /*
4567 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4568 * call schedule, and on return reacquire the lock.
4569 *
4570 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4571 * operations here to prevent schedule() from being called twice (once via
4572 * spin_unlock(), once by hand).
4573 */
4574 int __cond_resched_lock(spinlock_t *lock)
4575 {
4576 int resched = should_resched();
4577 int ret = 0;
4578
4579 lockdep_assert_held(lock);
4580
4581 if (spin_needbreak(lock) || resched) {
4582 spin_unlock(lock);
4583 if (resched)
4584 __cond_resched();
4585 else
4586 cpu_relax();
4587 ret = 1;
4588 spin_lock(lock);
4589 }
4590 return ret;
4591 }
4592 EXPORT_SYMBOL(__cond_resched_lock);
4593
4594 int __sched __cond_resched_softirq(void)
4595 {
4596 BUG_ON(!in_softirq());
4597
4598 if (should_resched()) {
4599 local_bh_enable();
4600 __cond_resched();
4601 local_bh_disable();
4602 return 1;
4603 }
4604 return 0;
4605 }
4606 EXPORT_SYMBOL(__cond_resched_softirq);
4607
4608 /**
4609 * yield - yield the current processor to other threads.
4610 *
4611 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4612 *
4613 * The scheduler is at all times free to pick the calling task as the most
4614 * eligible task to run, if removing the yield() call from your code breaks
4615 * it, its already broken.
4616 *
4617 * Typical broken usage is:
4618 *
4619 * while (!event)
4620 * yield();
4621 *
4622 * where one assumes that yield() will let 'the other' process run that will
4623 * make event true. If the current task is a SCHED_FIFO task that will never
4624 * happen. Never use yield() as a progress guarantee!!
4625 *
4626 * If you want to use yield() to wait for something, use wait_event().
4627 * If you want to use yield() to be 'nice' for others, use cond_resched().
4628 * If you still want to use yield(), do not!
4629 */
4630 void __sched yield(void)
4631 {
4632 set_current_state(TASK_RUNNING);
4633 sys_sched_yield();
4634 }
4635 EXPORT_SYMBOL(yield);
4636
4637 /**
4638 * yield_to - yield the current processor to another thread in
4639 * your thread group, or accelerate that thread toward the
4640 * processor it's on.
4641 * @p: target task
4642 * @preempt: whether task preemption is allowed or not
4643 *
4644 * It's the caller's job to ensure that the target task struct
4645 * can't go away on us before we can do any checks.
4646 *
4647 * Returns true if we indeed boosted the target task.
4648 */
4649 bool __sched yield_to(struct task_struct *p, bool preempt)
4650 {
4651 struct task_struct *curr = current;
4652 struct rq *rq, *p_rq;
4653 unsigned long flags;
4654 bool yielded = 0;
4655
4656 local_irq_save(flags);
4657 rq = this_rq();
4658
4659 again:
4660 p_rq = task_rq(p);
4661 double_rq_lock(rq, p_rq);
4662 while (task_rq(p) != p_rq) {
4663 double_rq_unlock(rq, p_rq);
4664 goto again;
4665 }
4666
4667 if (!curr->sched_class->yield_to_task)
4668 goto out;
4669
4670 if (curr->sched_class != p->sched_class)
4671 goto out;
4672
4673 if (task_running(p_rq, p) || p->state)
4674 goto out;
4675
4676 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4677 if (yielded) {
4678 schedstat_inc(rq, yld_count);
4679 /*
4680 * Make p's CPU reschedule; pick_next_entity takes care of
4681 * fairness.
4682 */
4683 if (preempt && rq != p_rq)
4684 resched_task(p_rq->curr);
4685 } else {
4686 /*
4687 * We might have set it in task_yield_fair(), but are
4688 * not going to schedule(), so don't want to skip
4689 * the next update.
4690 */
4691 rq->skip_clock_update = 0;
4692 }
4693
4694 out:
4695 double_rq_unlock(rq, p_rq);
4696 local_irq_restore(flags);
4697
4698 if (yielded)
4699 schedule();
4700
4701 return yielded;
4702 }
4703 EXPORT_SYMBOL_GPL(yield_to);
4704
4705 /*
4706 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4707 * that process accounting knows that this is a task in IO wait state.
4708 */
4709 void __sched io_schedule(void)
4710 {
4711 struct rq *rq = raw_rq();
4712
4713 delayacct_blkio_start();
4714 atomic_inc(&rq->nr_iowait);
4715 blk_flush_plug(current);
4716 current->in_iowait = 1;
4717 schedule();
4718 current->in_iowait = 0;
4719 atomic_dec(&rq->nr_iowait);
4720 delayacct_blkio_end();
4721 }
4722 EXPORT_SYMBOL(io_schedule);
4723
4724 long __sched io_schedule_timeout(long timeout)
4725 {
4726 struct rq *rq = raw_rq();
4727 long ret;
4728
4729 delayacct_blkio_start();
4730 atomic_inc(&rq->nr_iowait);
4731 blk_flush_plug(current);
4732 current->in_iowait = 1;
4733 ret = schedule_timeout(timeout);
4734 current->in_iowait = 0;
4735 atomic_dec(&rq->nr_iowait);
4736 delayacct_blkio_end();
4737 return ret;
4738 }
4739
4740 /**
4741 * sys_sched_get_priority_max - return maximum RT priority.
4742 * @policy: scheduling class.
4743 *
4744 * this syscall returns the maximum rt_priority that can be used
4745 * by a given scheduling class.
4746 */
4747 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4748 {
4749 int ret = -EINVAL;
4750
4751 switch (policy) {
4752 case SCHED_FIFO:
4753 case SCHED_RR:
4754 ret = MAX_USER_RT_PRIO-1;
4755 break;
4756 case SCHED_NORMAL:
4757 case SCHED_BATCH:
4758 case SCHED_IDLE:
4759 ret = 0;
4760 break;
4761 }
4762 return ret;
4763 }
4764
4765 /**
4766 * sys_sched_get_priority_min - return minimum RT priority.
4767 * @policy: scheduling class.
4768 *
4769 * this syscall returns the minimum rt_priority that can be used
4770 * by a given scheduling class.
4771 */
4772 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4773 {
4774 int ret = -EINVAL;
4775
4776 switch (policy) {
4777 case SCHED_FIFO:
4778 case SCHED_RR:
4779 ret = 1;
4780 break;
4781 case SCHED_NORMAL:
4782 case SCHED_BATCH:
4783 case SCHED_IDLE:
4784 ret = 0;
4785 }
4786 return ret;
4787 }
4788
4789 /**
4790 * sys_sched_rr_get_interval - return the default timeslice of a process.
4791 * @pid: pid of the process.
4792 * @interval: userspace pointer to the timeslice value.
4793 *
4794 * this syscall writes the default timeslice value of a given process
4795 * into the user-space timespec buffer. A value of '0' means infinity.
4796 */
4797 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4798 struct timespec __user *, interval)
4799 {
4800 struct task_struct *p;
4801 unsigned int time_slice;
4802 unsigned long flags;
4803 struct rq *rq;
4804 int retval;
4805 struct timespec t;
4806
4807 if (pid < 0)
4808 return -EINVAL;
4809
4810 retval = -ESRCH;
4811 rcu_read_lock();
4812 p = find_process_by_pid(pid);
4813 if (!p)
4814 goto out_unlock;
4815
4816 retval = security_task_getscheduler(p);
4817 if (retval)
4818 goto out_unlock;
4819
4820 rq = task_rq_lock(p, &flags);
4821 time_slice = p->sched_class->get_rr_interval(rq, p);
4822 task_rq_unlock(rq, p, &flags);
4823
4824 rcu_read_unlock();
4825 jiffies_to_timespec(time_slice, &t);
4826 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4827 return retval;
4828
4829 out_unlock:
4830 rcu_read_unlock();
4831 return retval;
4832 }
4833
4834 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4835
4836 void sched_show_task(struct task_struct *p)
4837 {
4838 unsigned long free = 0;
4839 unsigned state;
4840
4841 state = p->state ? __ffs(p->state) + 1 : 0;
4842 printk(KERN_INFO "%-15.15s %c", p->comm,
4843 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4844 #if BITS_PER_LONG == 32
4845 if (state == TASK_RUNNING)
4846 printk(KERN_CONT " running ");
4847 else
4848 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4849 #else
4850 if (state == TASK_RUNNING)
4851 printk(KERN_CONT " running task ");
4852 else
4853 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4854 #endif
4855 #ifdef CONFIG_DEBUG_STACK_USAGE
4856 free = stack_not_used(p);
4857 #endif
4858 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4859 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4860 (unsigned long)task_thread_info(p)->flags);
4861
4862 show_stack(p, NULL);
4863 }
4864
4865 void show_state_filter(unsigned long state_filter)
4866 {
4867 struct task_struct *g, *p;
4868
4869 #if BITS_PER_LONG == 32
4870 printk(KERN_INFO
4871 " task PC stack pid father\n");
4872 #else
4873 printk(KERN_INFO
4874 " task PC stack pid father\n");
4875 #endif
4876 rcu_read_lock();
4877 do_each_thread(g, p) {
4878 /*
4879 * reset the NMI-timeout, listing all files on a slow
4880 * console might take a lot of time:
4881 */
4882 touch_nmi_watchdog();
4883 if (!state_filter || (p->state & state_filter))
4884 sched_show_task(p);
4885 } while_each_thread(g, p);
4886
4887 touch_all_softlockup_watchdogs();
4888
4889 #ifdef CONFIG_SCHED_DEBUG
4890 sysrq_sched_debug_show();
4891 #endif
4892 rcu_read_unlock();
4893 /*
4894 * Only show locks if all tasks are dumped:
4895 */
4896 if (!state_filter)
4897 debug_show_all_locks();
4898 }
4899
4900 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4901 {
4902 idle->sched_class = &idle_sched_class;
4903 }
4904
4905 /**
4906 * init_idle - set up an idle thread for a given CPU
4907 * @idle: task in question
4908 * @cpu: cpu the idle task belongs to
4909 *
4910 * NOTE: this function does not set the idle thread's NEED_RESCHED
4911 * flag, to make booting more robust.
4912 */
4913 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4914 {
4915 struct rq *rq = cpu_rq(cpu);
4916 unsigned long flags;
4917
4918 raw_spin_lock_irqsave(&rq->lock, flags);
4919
4920 __sched_fork(idle);
4921 idle->state = TASK_RUNNING;
4922 idle->se.exec_start = sched_clock();
4923
4924 do_set_cpus_allowed(idle, cpumask_of(cpu));
4925 /*
4926 * We're having a chicken and egg problem, even though we are
4927 * holding rq->lock, the cpu isn't yet set to this cpu so the
4928 * lockdep check in task_group() will fail.
4929 *
4930 * Similar case to sched_fork(). / Alternatively we could
4931 * use task_rq_lock() here and obtain the other rq->lock.
4932 *
4933 * Silence PROVE_RCU
4934 */
4935 rcu_read_lock();
4936 __set_task_cpu(idle, cpu);
4937 rcu_read_unlock();
4938
4939 rq->curr = rq->idle = idle;
4940 #if defined(CONFIG_SMP)
4941 idle->on_cpu = 1;
4942 #endif
4943 raw_spin_unlock_irqrestore(&rq->lock, flags);
4944
4945 /* Set the preempt count _outside_ the spinlocks! */
4946 task_thread_info(idle)->preempt_count = 0;
4947
4948 /*
4949 * The idle tasks have their own, simple scheduling class:
4950 */
4951 idle->sched_class = &idle_sched_class;
4952 ftrace_graph_init_idle_task(idle, cpu);
4953 #if defined(CONFIG_SMP)
4954 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4955 #endif
4956 }
4957
4958 #ifdef CONFIG_SMP
4959 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4960 {
4961 if (p->sched_class && p->sched_class->set_cpus_allowed)
4962 p->sched_class->set_cpus_allowed(p, new_mask);
4963
4964 cpumask_copy(&p->cpus_allowed, new_mask);
4965 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
4966 }
4967
4968 /*
4969 * This is how migration works:
4970 *
4971 * 1) we invoke migration_cpu_stop() on the target CPU using
4972 * stop_one_cpu().
4973 * 2) stopper starts to run (implicitly forcing the migrated thread
4974 * off the CPU)
4975 * 3) it checks whether the migrated task is still in the wrong runqueue.
4976 * 4) if it's in the wrong runqueue then the migration thread removes
4977 * it and puts it into the right queue.
4978 * 5) stopper completes and stop_one_cpu() returns and the migration
4979 * is done.
4980 */
4981
4982 /*
4983 * Change a given task's CPU affinity. Migrate the thread to a
4984 * proper CPU and schedule it away if the CPU it's executing on
4985 * is removed from the allowed bitmask.
4986 *
4987 * NOTE: the caller must have a valid reference to the task, the
4988 * task must not exit() & deallocate itself prematurely. The
4989 * call is not atomic; no spinlocks may be held.
4990 */
4991 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4992 {
4993 unsigned long flags;
4994 struct rq *rq;
4995 unsigned int dest_cpu;
4996 int ret = 0;
4997
4998 rq = task_rq_lock(p, &flags);
4999
5000 if (cpumask_equal(&p->cpus_allowed, new_mask))
5001 goto out;
5002
5003 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5004 ret = -EINVAL;
5005 goto out;
5006 }
5007
5008 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
5009 ret = -EINVAL;
5010 goto out;
5011 }
5012
5013 do_set_cpus_allowed(p, new_mask);
5014
5015 /* Can the task run on the task's current CPU? If so, we're done */
5016 if (cpumask_test_cpu(task_cpu(p), new_mask))
5017 goto out;
5018
5019 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5020 if (p->on_rq) {
5021 struct migration_arg arg = { p, dest_cpu };
5022 /* Need help from migration thread: drop lock and wait. */
5023 task_rq_unlock(rq, p, &flags);
5024 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5025 tlb_migrate_finish(p->mm);
5026 return 0;
5027 }
5028 out:
5029 task_rq_unlock(rq, p, &flags);
5030
5031 return ret;
5032 }
5033 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5034
5035 /*
5036 * Move (not current) task off this cpu, onto dest cpu. We're doing
5037 * this because either it can't run here any more (set_cpus_allowed()
5038 * away from this CPU, or CPU going down), or because we're
5039 * attempting to rebalance this task on exec (sched_exec).
5040 *
5041 * So we race with normal scheduler movements, but that's OK, as long
5042 * as the task is no longer on this CPU.
5043 *
5044 * Returns non-zero if task was successfully migrated.
5045 */
5046 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5047 {
5048 struct rq *rq_dest, *rq_src;
5049 int ret = 0;
5050
5051 if (unlikely(!cpu_active(dest_cpu)))
5052 return ret;
5053
5054 rq_src = cpu_rq(src_cpu);
5055 rq_dest = cpu_rq(dest_cpu);
5056
5057 raw_spin_lock(&p->pi_lock);
5058 double_rq_lock(rq_src, rq_dest);
5059 /* Already moved. */
5060 if (task_cpu(p) != src_cpu)
5061 goto done;
5062 /* Affinity changed (again). */
5063 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5064 goto fail;
5065
5066 /*
5067 * If we're not on a rq, the next wake-up will ensure we're
5068 * placed properly.
5069 */
5070 if (p->on_rq) {
5071 dequeue_task(rq_src, p, 0);
5072 set_task_cpu(p, dest_cpu);
5073 enqueue_task(rq_dest, p, 0);
5074 check_preempt_curr(rq_dest, p, 0);
5075 }
5076 done:
5077 ret = 1;
5078 fail:
5079 double_rq_unlock(rq_src, rq_dest);
5080 raw_spin_unlock(&p->pi_lock);
5081 return ret;
5082 }
5083
5084 /*
5085 * migration_cpu_stop - this will be executed by a highprio stopper thread
5086 * and performs thread migration by bumping thread off CPU then
5087 * 'pushing' onto another runqueue.
5088 */
5089 static int migration_cpu_stop(void *data)
5090 {
5091 struct migration_arg *arg = data;
5092
5093 /*
5094 * The original target cpu might have gone down and we might
5095 * be on another cpu but it doesn't matter.
5096 */
5097 local_irq_disable();
5098 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5099 local_irq_enable();
5100 return 0;
5101 }
5102
5103 #ifdef CONFIG_HOTPLUG_CPU
5104
5105 /*
5106 * Ensures that the idle task is using init_mm right before its cpu goes
5107 * offline.
5108 */
5109 void idle_task_exit(void)
5110 {
5111 struct mm_struct *mm = current->active_mm;
5112
5113 BUG_ON(cpu_online(smp_processor_id()));
5114
5115 if (mm != &init_mm)
5116 switch_mm(mm, &init_mm, current);
5117 mmdrop(mm);
5118 }
5119
5120 /*
5121 * While a dead CPU has no uninterruptible tasks queued at this point,
5122 * it might still have a nonzero ->nr_uninterruptible counter, because
5123 * for performance reasons the counter is not stricly tracking tasks to
5124 * their home CPUs. So we just add the counter to another CPU's counter,
5125 * to keep the global sum constant after CPU-down:
5126 */
5127 static void migrate_nr_uninterruptible(struct rq *rq_src)
5128 {
5129 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5130
5131 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5132 rq_src->nr_uninterruptible = 0;
5133 }
5134
5135 /*
5136 * remove the tasks which were accounted by rq from calc_load_tasks.
5137 */
5138 static void calc_global_load_remove(struct rq *rq)
5139 {
5140 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5141 rq->calc_load_active = 0;
5142 }
5143
5144 /*
5145 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5146 * try_to_wake_up()->select_task_rq().
5147 *
5148 * Called with rq->lock held even though we'er in stop_machine() and
5149 * there's no concurrency possible, we hold the required locks anyway
5150 * because of lock validation efforts.
5151 */
5152 static void migrate_tasks(unsigned int dead_cpu)
5153 {
5154 struct rq *rq = cpu_rq(dead_cpu);
5155 struct task_struct *next, *stop = rq->stop;
5156 int dest_cpu;
5157
5158 /*
5159 * Fudge the rq selection such that the below task selection loop
5160 * doesn't get stuck on the currently eligible stop task.
5161 *
5162 * We're currently inside stop_machine() and the rq is either stuck
5163 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5164 * either way we should never end up calling schedule() until we're
5165 * done here.
5166 */
5167 rq->stop = NULL;
5168
5169 /* Ensure any throttled groups are reachable by pick_next_task */
5170 unthrottle_offline_cfs_rqs(rq);
5171
5172 for ( ; ; ) {
5173 /*
5174 * There's this thread running, bail when that's the only
5175 * remaining thread.
5176 */
5177 if (rq->nr_running == 1)
5178 break;
5179
5180 next = pick_next_task(rq);
5181 BUG_ON(!next);
5182 next->sched_class->put_prev_task(rq, next);
5183
5184 /* Find suitable destination for @next, with force if needed. */
5185 dest_cpu = select_fallback_rq(dead_cpu, next);
5186 raw_spin_unlock(&rq->lock);
5187
5188 __migrate_task(next, dead_cpu, dest_cpu);
5189
5190 raw_spin_lock(&rq->lock);
5191 }
5192
5193 rq->stop = stop;
5194 }
5195
5196 #endif /* CONFIG_HOTPLUG_CPU */
5197
5198 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5199
5200 static struct ctl_table sd_ctl_dir[] = {
5201 {
5202 .procname = "sched_domain",
5203 .mode = 0555,
5204 },
5205 {}
5206 };
5207
5208 static struct ctl_table sd_ctl_root[] = {
5209 {
5210 .procname = "kernel",
5211 .mode = 0555,
5212 .child = sd_ctl_dir,
5213 },
5214 {}
5215 };
5216
5217 static struct ctl_table *sd_alloc_ctl_entry(int n)
5218 {
5219 struct ctl_table *entry =
5220 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5221
5222 return entry;
5223 }
5224
5225 static void sd_free_ctl_entry(struct ctl_table **tablep)
5226 {
5227 struct ctl_table *entry;
5228
5229 /*
5230 * In the intermediate directories, both the child directory and
5231 * procname are dynamically allocated and could fail but the mode
5232 * will always be set. In the lowest directory the names are
5233 * static strings and all have proc handlers.
5234 */
5235 for (entry = *tablep; entry->mode; entry++) {
5236 if (entry->child)
5237 sd_free_ctl_entry(&entry->child);
5238 if (entry->proc_handler == NULL)
5239 kfree(entry->procname);
5240 }
5241
5242 kfree(*tablep);
5243 *tablep = NULL;
5244 }
5245
5246 static void
5247 set_table_entry(struct ctl_table *entry,
5248 const char *procname, void *data, int maxlen,
5249 umode_t mode, proc_handler *proc_handler)
5250 {
5251 entry->procname = procname;
5252 entry->data = data;
5253 entry->maxlen = maxlen;
5254 entry->mode = mode;
5255 entry->proc_handler = proc_handler;
5256 }
5257
5258 static struct ctl_table *
5259 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5260 {
5261 struct ctl_table *table = sd_alloc_ctl_entry(13);
5262
5263 if (table == NULL)
5264 return NULL;
5265
5266 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5267 sizeof(long), 0644, proc_doulongvec_minmax);
5268 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5269 sizeof(long), 0644, proc_doulongvec_minmax);
5270 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5271 sizeof(int), 0644, proc_dointvec_minmax);
5272 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5273 sizeof(int), 0644, proc_dointvec_minmax);
5274 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5275 sizeof(int), 0644, proc_dointvec_minmax);
5276 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5277 sizeof(int), 0644, proc_dointvec_minmax);
5278 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5279 sizeof(int), 0644, proc_dointvec_minmax);
5280 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5281 sizeof(int), 0644, proc_dointvec_minmax);
5282 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5283 sizeof(int), 0644, proc_dointvec_minmax);
5284 set_table_entry(&table[9], "cache_nice_tries",
5285 &sd->cache_nice_tries,
5286 sizeof(int), 0644, proc_dointvec_minmax);
5287 set_table_entry(&table[10], "flags", &sd->flags,
5288 sizeof(int), 0644, proc_dointvec_minmax);
5289 set_table_entry(&table[11], "name", sd->name,
5290 CORENAME_MAX_SIZE, 0444, proc_dostring);
5291 /* &table[12] is terminator */
5292
5293 return table;
5294 }
5295
5296 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5297 {
5298 struct ctl_table *entry, *table;
5299 struct sched_domain *sd;
5300 int domain_num = 0, i;
5301 char buf[32];
5302
5303 for_each_domain(cpu, sd)
5304 domain_num++;
5305 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5306 if (table == NULL)
5307 return NULL;
5308
5309 i = 0;
5310 for_each_domain(cpu, sd) {
5311 snprintf(buf, 32, "domain%d", i);
5312 entry->procname = kstrdup(buf, GFP_KERNEL);
5313 entry->mode = 0555;
5314 entry->child = sd_alloc_ctl_domain_table(sd);
5315 entry++;
5316 i++;
5317 }
5318 return table;
5319 }
5320
5321 static struct ctl_table_header *sd_sysctl_header;
5322 static void register_sched_domain_sysctl(void)
5323 {
5324 int i, cpu_num = num_possible_cpus();
5325 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5326 char buf[32];
5327
5328 WARN_ON(sd_ctl_dir[0].child);
5329 sd_ctl_dir[0].child = entry;
5330
5331 if (entry == NULL)
5332 return;
5333
5334 for_each_possible_cpu(i) {
5335 snprintf(buf, 32, "cpu%d", i);
5336 entry->procname = kstrdup(buf, GFP_KERNEL);
5337 entry->mode = 0555;
5338 entry->child = sd_alloc_ctl_cpu_table(i);
5339 entry++;
5340 }
5341
5342 WARN_ON(sd_sysctl_header);
5343 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5344 }
5345
5346 /* may be called multiple times per register */
5347 static void unregister_sched_domain_sysctl(void)
5348 {
5349 if (sd_sysctl_header)
5350 unregister_sysctl_table(sd_sysctl_header);
5351 sd_sysctl_header = NULL;
5352 if (sd_ctl_dir[0].child)
5353 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5354 }
5355 #else
5356 static void register_sched_domain_sysctl(void)
5357 {
5358 }
5359 static void unregister_sched_domain_sysctl(void)
5360 {
5361 }
5362 #endif
5363
5364 static void set_rq_online(struct rq *rq)
5365 {
5366 if (!rq->online) {
5367 const struct sched_class *class;
5368
5369 cpumask_set_cpu(rq->cpu, rq->rd->online);
5370 rq->online = 1;
5371
5372 for_each_class(class) {
5373 if (class->rq_online)
5374 class->rq_online(rq);
5375 }
5376 }
5377 }
5378
5379 static void set_rq_offline(struct rq *rq)
5380 {
5381 if (rq->online) {
5382 const struct sched_class *class;
5383
5384 for_each_class(class) {
5385 if (class->rq_offline)
5386 class->rq_offline(rq);
5387 }
5388
5389 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5390 rq->online = 0;
5391 }
5392 }
5393
5394 /*
5395 * migration_call - callback that gets triggered when a CPU is added.
5396 * Here we can start up the necessary migration thread for the new CPU.
5397 */
5398 static int __cpuinit
5399 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5400 {
5401 int cpu = (long)hcpu;
5402 unsigned long flags;
5403 struct rq *rq = cpu_rq(cpu);
5404
5405 switch (action & ~CPU_TASKS_FROZEN) {
5406
5407 case CPU_UP_PREPARE:
5408 rq->calc_load_update = calc_load_update;
5409 break;
5410
5411 case CPU_ONLINE:
5412 /* Update our root-domain */
5413 raw_spin_lock_irqsave(&rq->lock, flags);
5414 if (rq->rd) {
5415 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5416
5417 set_rq_online(rq);
5418 }
5419 raw_spin_unlock_irqrestore(&rq->lock, flags);
5420 break;
5421
5422 #ifdef CONFIG_HOTPLUG_CPU
5423 case CPU_DYING:
5424 sched_ttwu_pending();
5425 /* Update our root-domain */
5426 raw_spin_lock_irqsave(&rq->lock, flags);
5427 if (rq->rd) {
5428 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5429 set_rq_offline(rq);
5430 }
5431 migrate_tasks(cpu);
5432 BUG_ON(rq->nr_running != 1); /* the migration thread */
5433 raw_spin_unlock_irqrestore(&rq->lock, flags);
5434
5435 migrate_nr_uninterruptible(rq);
5436 calc_global_load_remove(rq);
5437 break;
5438 #endif
5439 }
5440
5441 update_max_interval();
5442
5443 return NOTIFY_OK;
5444 }
5445
5446 /*
5447 * Register at high priority so that task migration (migrate_all_tasks)
5448 * happens before everything else. This has to be lower priority than
5449 * the notifier in the perf_event subsystem, though.
5450 */
5451 static struct notifier_block __cpuinitdata migration_notifier = {
5452 .notifier_call = migration_call,
5453 .priority = CPU_PRI_MIGRATION,
5454 };
5455
5456 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5457 unsigned long action, void *hcpu)
5458 {
5459 switch (action & ~CPU_TASKS_FROZEN) {
5460 case CPU_STARTING:
5461 case CPU_DOWN_FAILED:
5462 set_cpu_active((long)hcpu, true);
5463 return NOTIFY_OK;
5464 default:
5465 return NOTIFY_DONE;
5466 }
5467 }
5468
5469 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5470 unsigned long action, void *hcpu)
5471 {
5472 switch (action & ~CPU_TASKS_FROZEN) {
5473 case CPU_DOWN_PREPARE:
5474 set_cpu_active((long)hcpu, false);
5475 return NOTIFY_OK;
5476 default:
5477 return NOTIFY_DONE;
5478 }
5479 }
5480
5481 static int __init migration_init(void)
5482 {
5483 void *cpu = (void *)(long)smp_processor_id();
5484 int err;
5485
5486 /* Initialize migration for the boot CPU */
5487 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5488 BUG_ON(err == NOTIFY_BAD);
5489 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5490 register_cpu_notifier(&migration_notifier);
5491
5492 /* Register cpu active notifiers */
5493 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5494 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5495
5496 return 0;
5497 }
5498 early_initcall(migration_init);
5499 #endif
5500
5501 #ifdef CONFIG_SMP
5502
5503 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5504
5505 #ifdef CONFIG_SCHED_DEBUG
5506
5507 static __read_mostly int sched_domain_debug_enabled;
5508
5509 static int __init sched_domain_debug_setup(char *str)
5510 {
5511 sched_domain_debug_enabled = 1;
5512
5513 return 0;
5514 }
5515 early_param("sched_debug", sched_domain_debug_setup);
5516
5517 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5518 struct cpumask *groupmask)
5519 {
5520 struct sched_group *group = sd->groups;
5521 char str[256];
5522
5523 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5524 cpumask_clear(groupmask);
5525
5526 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5527
5528 if (!(sd->flags & SD_LOAD_BALANCE)) {
5529 printk("does not load-balance\n");
5530 if (sd->parent)
5531 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5532 " has parent");
5533 return -1;
5534 }
5535
5536 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5537
5538 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5539 printk(KERN_ERR "ERROR: domain->span does not contain "
5540 "CPU%d\n", cpu);
5541 }
5542 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5543 printk(KERN_ERR "ERROR: domain->groups does not contain"
5544 " CPU%d\n", cpu);
5545 }
5546
5547 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5548 do {
5549 if (!group) {
5550 printk("\n");
5551 printk(KERN_ERR "ERROR: group is NULL\n");
5552 break;
5553 }
5554
5555 if (!group->sgp->power) {
5556 printk(KERN_CONT "\n");
5557 printk(KERN_ERR "ERROR: domain->cpu_power not "
5558 "set\n");
5559 break;
5560 }
5561
5562 if (!cpumask_weight(sched_group_cpus(group))) {
5563 printk(KERN_CONT "\n");
5564 printk(KERN_ERR "ERROR: empty group\n");
5565 break;
5566 }
5567
5568 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5569 printk(KERN_CONT "\n");
5570 printk(KERN_ERR "ERROR: repeated CPUs\n");
5571 break;
5572 }
5573
5574 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5575
5576 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5577
5578 printk(KERN_CONT " %s", str);
5579 if (group->sgp->power != SCHED_POWER_SCALE) {
5580 printk(KERN_CONT " (cpu_power = %d)",
5581 group->sgp->power);
5582 }
5583
5584 group = group->next;
5585 } while (group != sd->groups);
5586 printk(KERN_CONT "\n");
5587
5588 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5589 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5590
5591 if (sd->parent &&
5592 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5593 printk(KERN_ERR "ERROR: parent span is not a superset "
5594 "of domain->span\n");
5595 return 0;
5596 }
5597
5598 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5599 {
5600 int level = 0;
5601
5602 if (!sched_domain_debug_enabled)
5603 return;
5604
5605 if (!sd) {
5606 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5607 return;
5608 }
5609
5610 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5611
5612 for (;;) {
5613 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5614 break;
5615 level++;
5616 sd = sd->parent;
5617 if (!sd)
5618 break;
5619 }
5620 }
5621 #else /* !CONFIG_SCHED_DEBUG */
5622 # define sched_domain_debug(sd, cpu) do { } while (0)
5623 #endif /* CONFIG_SCHED_DEBUG */
5624
5625 static int sd_degenerate(struct sched_domain *sd)
5626 {
5627 if (cpumask_weight(sched_domain_span(sd)) == 1)
5628 return 1;
5629
5630 /* Following flags need at least 2 groups */
5631 if (sd->flags & (SD_LOAD_BALANCE |
5632 SD_BALANCE_NEWIDLE |
5633 SD_BALANCE_FORK |
5634 SD_BALANCE_EXEC |
5635 SD_SHARE_CPUPOWER |
5636 SD_SHARE_PKG_RESOURCES)) {
5637 if (sd->groups != sd->groups->next)
5638 return 0;
5639 }
5640
5641 /* Following flags don't use groups */
5642 if (sd->flags & (SD_WAKE_AFFINE))
5643 return 0;
5644
5645 return 1;
5646 }
5647
5648 static int
5649 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5650 {
5651 unsigned long cflags = sd->flags, pflags = parent->flags;
5652
5653 if (sd_degenerate(parent))
5654 return 1;
5655
5656 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5657 return 0;
5658
5659 /* Flags needing groups don't count if only 1 group in parent */
5660 if (parent->groups == parent->groups->next) {
5661 pflags &= ~(SD_LOAD_BALANCE |
5662 SD_BALANCE_NEWIDLE |
5663 SD_BALANCE_FORK |
5664 SD_BALANCE_EXEC |
5665 SD_SHARE_CPUPOWER |
5666 SD_SHARE_PKG_RESOURCES);
5667 if (nr_node_ids == 1)
5668 pflags &= ~SD_SERIALIZE;
5669 }
5670 if (~cflags & pflags)
5671 return 0;
5672
5673 return 1;
5674 }
5675
5676 static void free_rootdomain(struct rcu_head *rcu)
5677 {
5678 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5679
5680 cpupri_cleanup(&rd->cpupri);
5681 free_cpumask_var(rd->rto_mask);
5682 free_cpumask_var(rd->online);
5683 free_cpumask_var(rd->span);
5684 kfree(rd);
5685 }
5686
5687 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5688 {
5689 struct root_domain *old_rd = NULL;
5690 unsigned long flags;
5691
5692 raw_spin_lock_irqsave(&rq->lock, flags);
5693
5694 if (rq->rd) {
5695 old_rd = rq->rd;
5696
5697 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5698 set_rq_offline(rq);
5699
5700 cpumask_clear_cpu(rq->cpu, old_rd->span);
5701
5702 /*
5703 * If we dont want to free the old_rt yet then
5704 * set old_rd to NULL to skip the freeing later
5705 * in this function:
5706 */
5707 if (!atomic_dec_and_test(&old_rd->refcount))
5708 old_rd = NULL;
5709 }
5710
5711 atomic_inc(&rd->refcount);
5712 rq->rd = rd;
5713
5714 cpumask_set_cpu(rq->cpu, rd->span);
5715 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5716 set_rq_online(rq);
5717
5718 raw_spin_unlock_irqrestore(&rq->lock, flags);
5719
5720 if (old_rd)
5721 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5722 }
5723
5724 static int init_rootdomain(struct root_domain *rd)
5725 {
5726 memset(rd, 0, sizeof(*rd));
5727
5728 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5729 goto out;
5730 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5731 goto free_span;
5732 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5733 goto free_online;
5734
5735 if (cpupri_init(&rd->cpupri) != 0)
5736 goto free_rto_mask;
5737 return 0;
5738
5739 free_rto_mask:
5740 free_cpumask_var(rd->rto_mask);
5741 free_online:
5742 free_cpumask_var(rd->online);
5743 free_span:
5744 free_cpumask_var(rd->span);
5745 out:
5746 return -ENOMEM;
5747 }
5748
5749 /*
5750 * By default the system creates a single root-domain with all cpus as
5751 * members (mimicking the global state we have today).
5752 */
5753 struct root_domain def_root_domain;
5754
5755 static void init_defrootdomain(void)
5756 {
5757 init_rootdomain(&def_root_domain);
5758
5759 atomic_set(&def_root_domain.refcount, 1);
5760 }
5761
5762 static struct root_domain *alloc_rootdomain(void)
5763 {
5764 struct root_domain *rd;
5765
5766 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5767 if (!rd)
5768 return NULL;
5769
5770 if (init_rootdomain(rd) != 0) {
5771 kfree(rd);
5772 return NULL;
5773 }
5774
5775 return rd;
5776 }
5777
5778 static void free_sched_groups(struct sched_group *sg, int free_sgp)
5779 {
5780 struct sched_group *tmp, *first;
5781
5782 if (!sg)
5783 return;
5784
5785 first = sg;
5786 do {
5787 tmp = sg->next;
5788
5789 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5790 kfree(sg->sgp);
5791
5792 kfree(sg);
5793 sg = tmp;
5794 } while (sg != first);
5795 }
5796
5797 static void free_sched_domain(struct rcu_head *rcu)
5798 {
5799 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5800
5801 /*
5802 * If its an overlapping domain it has private groups, iterate and
5803 * nuke them all.
5804 */
5805 if (sd->flags & SD_OVERLAP) {
5806 free_sched_groups(sd->groups, 1);
5807 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5808 kfree(sd->groups->sgp);
5809 kfree(sd->groups);
5810 }
5811 kfree(sd);
5812 }
5813
5814 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5815 {
5816 call_rcu(&sd->rcu, free_sched_domain);
5817 }
5818
5819 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5820 {
5821 for (; sd; sd = sd->parent)
5822 destroy_sched_domain(sd, cpu);
5823 }
5824
5825 /*
5826 * Keep a special pointer to the highest sched_domain that has
5827 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5828 * allows us to avoid some pointer chasing select_idle_sibling().
5829 *
5830 * Also keep a unique ID per domain (we use the first cpu number in
5831 * the cpumask of the domain), this allows us to quickly tell if
5832 * two cpus are in the same cache domain, see cpus_share_cache().
5833 */
5834 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5835 DEFINE_PER_CPU(int, sd_llc_id);
5836
5837 static void update_top_cache_domain(int cpu)
5838 {
5839 struct sched_domain *sd;
5840 int id = cpu;
5841
5842 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5843 if (sd)
5844 id = cpumask_first(sched_domain_span(sd));
5845
5846 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5847 per_cpu(sd_llc_id, cpu) = id;
5848 }
5849
5850 /*
5851 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5852 * hold the hotplug lock.
5853 */
5854 static void
5855 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5856 {
5857 struct rq *rq = cpu_rq(cpu);
5858 struct sched_domain *tmp;
5859
5860 /* Remove the sched domains which do not contribute to scheduling. */
5861 for (tmp = sd; tmp; ) {
5862 struct sched_domain *parent = tmp->parent;
5863 if (!parent)
5864 break;
5865
5866 if (sd_parent_degenerate(tmp, parent)) {
5867 tmp->parent = parent->parent;
5868 if (parent->parent)
5869 parent->parent->child = tmp;
5870 destroy_sched_domain(parent, cpu);
5871 } else
5872 tmp = tmp->parent;
5873 }
5874
5875 if (sd && sd_degenerate(sd)) {
5876 tmp = sd;
5877 sd = sd->parent;
5878 destroy_sched_domain(tmp, cpu);
5879 if (sd)
5880 sd->child = NULL;
5881 }
5882
5883 sched_domain_debug(sd, cpu);
5884
5885 rq_attach_root(rq, rd);
5886 tmp = rq->sd;
5887 rcu_assign_pointer(rq->sd, sd);
5888 destroy_sched_domains(tmp, cpu);
5889
5890 update_top_cache_domain(cpu);
5891 }
5892
5893 /* cpus with isolated domains */
5894 static cpumask_var_t cpu_isolated_map;
5895
5896 /* Setup the mask of cpus configured for isolated domains */
5897 static int __init isolated_cpu_setup(char *str)
5898 {
5899 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5900 cpulist_parse(str, cpu_isolated_map);
5901 return 1;
5902 }
5903
5904 __setup("isolcpus=", isolated_cpu_setup);
5905
5906 #ifdef CONFIG_NUMA
5907
5908 /**
5909 * find_next_best_node - find the next node to include in a sched_domain
5910 * @node: node whose sched_domain we're building
5911 * @used_nodes: nodes already in the sched_domain
5912 *
5913 * Find the next node to include in a given scheduling domain. Simply
5914 * finds the closest node not already in the @used_nodes map.
5915 *
5916 * Should use nodemask_t.
5917 */
5918 static int find_next_best_node(int node, nodemask_t *used_nodes)
5919 {
5920 int i, n, val, min_val, best_node = -1;
5921
5922 min_val = INT_MAX;
5923
5924 for (i = 0; i < nr_node_ids; i++) {
5925 /* Start at @node */
5926 n = (node + i) % nr_node_ids;
5927
5928 if (!nr_cpus_node(n))
5929 continue;
5930
5931 /* Skip already used nodes */
5932 if (node_isset(n, *used_nodes))
5933 continue;
5934
5935 /* Simple min distance search */
5936 val = node_distance(node, n);
5937
5938 if (val < min_val) {
5939 min_val = val;
5940 best_node = n;
5941 }
5942 }
5943
5944 if (best_node != -1)
5945 node_set(best_node, *used_nodes);
5946 return best_node;
5947 }
5948
5949 /**
5950 * sched_domain_node_span - get a cpumask for a node's sched_domain
5951 * @node: node whose cpumask we're constructing
5952 * @span: resulting cpumask
5953 *
5954 * Given a node, construct a good cpumask for its sched_domain to span. It
5955 * should be one that prevents unnecessary balancing, but also spreads tasks
5956 * out optimally.
5957 */
5958 static void sched_domain_node_span(int node, struct cpumask *span)
5959 {
5960 nodemask_t used_nodes;
5961 int i;
5962
5963 cpumask_clear(span);
5964 nodes_clear(used_nodes);
5965
5966 cpumask_or(span, span, cpumask_of_node(node));
5967 node_set(node, used_nodes);
5968
5969 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5970 int next_node = find_next_best_node(node, &used_nodes);
5971 if (next_node < 0)
5972 break;
5973 cpumask_or(span, span, cpumask_of_node(next_node));
5974 }
5975 }
5976
5977 static const struct cpumask *cpu_node_mask(int cpu)
5978 {
5979 lockdep_assert_held(&sched_domains_mutex);
5980
5981 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
5982
5983 return sched_domains_tmpmask;
5984 }
5985
5986 static const struct cpumask *cpu_allnodes_mask(int cpu)
5987 {
5988 return cpu_possible_mask;
5989 }
5990 #endif /* CONFIG_NUMA */
5991
5992 static const struct cpumask *cpu_cpu_mask(int cpu)
5993 {
5994 return cpumask_of_node(cpu_to_node(cpu));
5995 }
5996
5997 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5998
5999 struct sd_data {
6000 struct sched_domain **__percpu sd;
6001 struct sched_group **__percpu sg;
6002 struct sched_group_power **__percpu sgp;
6003 };
6004
6005 struct s_data {
6006 struct sched_domain ** __percpu sd;
6007 struct root_domain *rd;
6008 };
6009
6010 enum s_alloc {
6011 sa_rootdomain,
6012 sa_sd,
6013 sa_sd_storage,
6014 sa_none,
6015 };
6016
6017 struct sched_domain_topology_level;
6018
6019 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6020 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6021
6022 #define SDTL_OVERLAP 0x01
6023
6024 struct sched_domain_topology_level {
6025 sched_domain_init_f init;
6026 sched_domain_mask_f mask;
6027 int flags;
6028 struct sd_data data;
6029 };
6030
6031 static int
6032 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6033 {
6034 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6035 const struct cpumask *span = sched_domain_span(sd);
6036 struct cpumask *covered = sched_domains_tmpmask;
6037 struct sd_data *sdd = sd->private;
6038 struct sched_domain *child;
6039 int i;
6040
6041 cpumask_clear(covered);
6042
6043 for_each_cpu(i, span) {
6044 struct cpumask *sg_span;
6045
6046 if (cpumask_test_cpu(i, covered))
6047 continue;
6048
6049 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6050 GFP_KERNEL, cpu_to_node(cpu));
6051
6052 if (!sg)
6053 goto fail;
6054
6055 sg_span = sched_group_cpus(sg);
6056
6057 child = *per_cpu_ptr(sdd->sd, i);
6058 if (child->child) {
6059 child = child->child;
6060 cpumask_copy(sg_span, sched_domain_span(child));
6061 } else
6062 cpumask_set_cpu(i, sg_span);
6063
6064 cpumask_or(covered, covered, sg_span);
6065
6066 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
6067 atomic_inc(&sg->sgp->ref);
6068
6069 if (cpumask_test_cpu(cpu, sg_span))
6070 groups = sg;
6071
6072 if (!first)
6073 first = sg;
6074 if (last)
6075 last->next = sg;
6076 last = sg;
6077 last->next = first;
6078 }
6079 sd->groups = groups;
6080
6081 return 0;
6082
6083 fail:
6084 free_sched_groups(first, 0);
6085
6086 return -ENOMEM;
6087 }
6088
6089 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6090 {
6091 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6092 struct sched_domain *child = sd->child;
6093
6094 if (child)
6095 cpu = cpumask_first(sched_domain_span(child));
6096
6097 if (sg) {
6098 *sg = *per_cpu_ptr(sdd->sg, cpu);
6099 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
6100 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
6101 }
6102
6103 return cpu;
6104 }
6105
6106 /*
6107 * build_sched_groups will build a circular linked list of the groups
6108 * covered by the given span, and will set each group's ->cpumask correctly,
6109 * and ->cpu_power to 0.
6110 *
6111 * Assumes the sched_domain tree is fully constructed
6112 */
6113 static int
6114 build_sched_groups(struct sched_domain *sd, int cpu)
6115 {
6116 struct sched_group *first = NULL, *last = NULL;
6117 struct sd_data *sdd = sd->private;
6118 const struct cpumask *span = sched_domain_span(sd);
6119 struct cpumask *covered;
6120 int i;
6121
6122 get_group(cpu, sdd, &sd->groups);
6123 atomic_inc(&sd->groups->ref);
6124
6125 if (cpu != cpumask_first(sched_domain_span(sd)))
6126 return 0;
6127
6128 lockdep_assert_held(&sched_domains_mutex);
6129 covered = sched_domains_tmpmask;
6130
6131 cpumask_clear(covered);
6132
6133 for_each_cpu(i, span) {
6134 struct sched_group *sg;
6135 int group = get_group(i, sdd, &sg);
6136 int j;
6137
6138 if (cpumask_test_cpu(i, covered))
6139 continue;
6140
6141 cpumask_clear(sched_group_cpus(sg));
6142 sg->sgp->power = 0;
6143
6144 for_each_cpu(j, span) {
6145 if (get_group(j, sdd, NULL) != group)
6146 continue;
6147
6148 cpumask_set_cpu(j, covered);
6149 cpumask_set_cpu(j, sched_group_cpus(sg));
6150 }
6151
6152 if (!first)
6153 first = sg;
6154 if (last)
6155 last->next = sg;
6156 last = sg;
6157 }
6158 last->next = first;
6159
6160 return 0;
6161 }
6162
6163 /*
6164 * Initialize sched groups cpu_power.
6165 *
6166 * cpu_power indicates the capacity of sched group, which is used while
6167 * distributing the load between different sched groups in a sched domain.
6168 * Typically cpu_power for all the groups in a sched domain will be same unless
6169 * there are asymmetries in the topology. If there are asymmetries, group
6170 * having more cpu_power will pickup more load compared to the group having
6171 * less cpu_power.
6172 */
6173 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6174 {
6175 struct sched_group *sg = sd->groups;
6176
6177 WARN_ON(!sd || !sg);
6178
6179 do {
6180 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6181 sg = sg->next;
6182 } while (sg != sd->groups);
6183
6184 if (cpu != group_first_cpu(sg))
6185 return;
6186
6187 update_group_power(sd, cpu);
6188 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
6189 }
6190
6191 int __weak arch_sd_sibling_asym_packing(void)
6192 {
6193 return 0*SD_ASYM_PACKING;
6194 }
6195
6196 /*
6197 * Initializers for schedule domains
6198 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6199 */
6200
6201 #ifdef CONFIG_SCHED_DEBUG
6202 # define SD_INIT_NAME(sd, type) sd->name = #type
6203 #else
6204 # define SD_INIT_NAME(sd, type) do { } while (0)
6205 #endif
6206
6207 #define SD_INIT_FUNC(type) \
6208 static noinline struct sched_domain * \
6209 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6210 { \
6211 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6212 *sd = SD_##type##_INIT; \
6213 SD_INIT_NAME(sd, type); \
6214 sd->private = &tl->data; \
6215 return sd; \
6216 }
6217
6218 SD_INIT_FUNC(CPU)
6219 #ifdef CONFIG_NUMA
6220 SD_INIT_FUNC(ALLNODES)
6221 SD_INIT_FUNC(NODE)
6222 #endif
6223 #ifdef CONFIG_SCHED_SMT
6224 SD_INIT_FUNC(SIBLING)
6225 #endif
6226 #ifdef CONFIG_SCHED_MC
6227 SD_INIT_FUNC(MC)
6228 #endif
6229 #ifdef CONFIG_SCHED_BOOK
6230 SD_INIT_FUNC(BOOK)
6231 #endif
6232
6233 static int default_relax_domain_level = -1;
6234 int sched_domain_level_max;
6235
6236 static int __init setup_relax_domain_level(char *str)
6237 {
6238 unsigned long val;
6239
6240 val = simple_strtoul(str, NULL, 0);
6241 if (val < sched_domain_level_max)
6242 default_relax_domain_level = val;
6243
6244 return 1;
6245 }
6246 __setup("relax_domain_level=", setup_relax_domain_level);
6247
6248 static void set_domain_attribute(struct sched_domain *sd,
6249 struct sched_domain_attr *attr)
6250 {
6251 int request;
6252
6253 if (!attr || attr->relax_domain_level < 0) {
6254 if (default_relax_domain_level < 0)
6255 return;
6256 else
6257 request = default_relax_domain_level;
6258 } else
6259 request = attr->relax_domain_level;
6260 if (request < sd->level) {
6261 /* turn off idle balance on this domain */
6262 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6263 } else {
6264 /* turn on idle balance on this domain */
6265 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6266 }
6267 }
6268
6269 static void __sdt_free(const struct cpumask *cpu_map);
6270 static int __sdt_alloc(const struct cpumask *cpu_map);
6271
6272 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6273 const struct cpumask *cpu_map)
6274 {
6275 switch (what) {
6276 case sa_rootdomain:
6277 if (!atomic_read(&d->rd->refcount))
6278 free_rootdomain(&d->rd->rcu); /* fall through */
6279 case sa_sd:
6280 free_percpu(d->sd); /* fall through */
6281 case sa_sd_storage:
6282 __sdt_free(cpu_map); /* fall through */
6283 case sa_none:
6284 break;
6285 }
6286 }
6287
6288 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6289 const struct cpumask *cpu_map)
6290 {
6291 memset(d, 0, sizeof(*d));
6292
6293 if (__sdt_alloc(cpu_map))
6294 return sa_sd_storage;
6295 d->sd = alloc_percpu(struct sched_domain *);
6296 if (!d->sd)
6297 return sa_sd_storage;
6298 d->rd = alloc_rootdomain();
6299 if (!d->rd)
6300 return sa_sd;
6301 return sa_rootdomain;
6302 }
6303
6304 /*
6305 * NULL the sd_data elements we've used to build the sched_domain and
6306 * sched_group structure so that the subsequent __free_domain_allocs()
6307 * will not free the data we're using.
6308 */
6309 static void claim_allocations(int cpu, struct sched_domain *sd)
6310 {
6311 struct sd_data *sdd = sd->private;
6312
6313 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6314 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6315
6316 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6317 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6318
6319 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
6320 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
6321 }
6322
6323 #ifdef CONFIG_SCHED_SMT
6324 static const struct cpumask *cpu_smt_mask(int cpu)
6325 {
6326 return topology_thread_cpumask(cpu);
6327 }
6328 #endif
6329
6330 /*
6331 * Topology list, bottom-up.
6332 */
6333 static struct sched_domain_topology_level default_topology[] = {
6334 #ifdef CONFIG_SCHED_SMT
6335 { sd_init_SIBLING, cpu_smt_mask, },
6336 #endif
6337 #ifdef CONFIG_SCHED_MC
6338 { sd_init_MC, cpu_coregroup_mask, },
6339 #endif
6340 #ifdef CONFIG_SCHED_BOOK
6341 { sd_init_BOOK, cpu_book_mask, },
6342 #endif
6343 { sd_init_CPU, cpu_cpu_mask, },
6344 #ifdef CONFIG_NUMA
6345 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
6346 { sd_init_ALLNODES, cpu_allnodes_mask, },
6347 #endif
6348 { NULL, },
6349 };
6350
6351 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6352
6353 static int __sdt_alloc(const struct cpumask *cpu_map)
6354 {
6355 struct sched_domain_topology_level *tl;
6356 int j;
6357
6358 for (tl = sched_domain_topology; tl->init; tl++) {
6359 struct sd_data *sdd = &tl->data;
6360
6361 sdd->sd = alloc_percpu(struct sched_domain *);
6362 if (!sdd->sd)
6363 return -ENOMEM;
6364
6365 sdd->sg = alloc_percpu(struct sched_group *);
6366 if (!sdd->sg)
6367 return -ENOMEM;
6368
6369 sdd->sgp = alloc_percpu(struct sched_group_power *);
6370 if (!sdd->sgp)
6371 return -ENOMEM;
6372
6373 for_each_cpu(j, cpu_map) {
6374 struct sched_domain *sd;
6375 struct sched_group *sg;
6376 struct sched_group_power *sgp;
6377
6378 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6379 GFP_KERNEL, cpu_to_node(j));
6380 if (!sd)
6381 return -ENOMEM;
6382
6383 *per_cpu_ptr(sdd->sd, j) = sd;
6384
6385 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6386 GFP_KERNEL, cpu_to_node(j));
6387 if (!sg)
6388 return -ENOMEM;
6389
6390 *per_cpu_ptr(sdd->sg, j) = sg;
6391
6392 sgp = kzalloc_node(sizeof(struct sched_group_power),
6393 GFP_KERNEL, cpu_to_node(j));
6394 if (!sgp)
6395 return -ENOMEM;
6396
6397 *per_cpu_ptr(sdd->sgp, j) = sgp;
6398 }
6399 }
6400
6401 return 0;
6402 }
6403
6404 static void __sdt_free(const struct cpumask *cpu_map)
6405 {
6406 struct sched_domain_topology_level *tl;
6407 int j;
6408
6409 for (tl = sched_domain_topology; tl->init; tl++) {
6410 struct sd_data *sdd = &tl->data;
6411
6412 for_each_cpu(j, cpu_map) {
6413 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
6414 if (sd && (sd->flags & SD_OVERLAP))
6415 free_sched_groups(sd->groups, 0);
6416 kfree(*per_cpu_ptr(sdd->sd, j));
6417 kfree(*per_cpu_ptr(sdd->sg, j));
6418 kfree(*per_cpu_ptr(sdd->sgp, j));
6419 }
6420 free_percpu(sdd->sd);
6421 free_percpu(sdd->sg);
6422 free_percpu(sdd->sgp);
6423 }
6424 }
6425
6426 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6427 struct s_data *d, const struct cpumask *cpu_map,
6428 struct sched_domain_attr *attr, struct sched_domain *child,
6429 int cpu)
6430 {
6431 struct sched_domain *sd = tl->init(tl, cpu);
6432 if (!sd)
6433 return child;
6434
6435 set_domain_attribute(sd, attr);
6436 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6437 if (child) {
6438 sd->level = child->level + 1;
6439 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6440 child->parent = sd;
6441 }
6442 sd->child = child;
6443
6444 return sd;
6445 }
6446
6447 /*
6448 * Build sched domains for a given set of cpus and attach the sched domains
6449 * to the individual cpus
6450 */
6451 static int build_sched_domains(const struct cpumask *cpu_map,
6452 struct sched_domain_attr *attr)
6453 {
6454 enum s_alloc alloc_state = sa_none;
6455 struct sched_domain *sd;
6456 struct s_data d;
6457 int i, ret = -ENOMEM;
6458
6459 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6460 if (alloc_state != sa_rootdomain)
6461 goto error;
6462
6463 /* Set up domains for cpus specified by the cpu_map. */
6464 for_each_cpu(i, cpu_map) {
6465 struct sched_domain_topology_level *tl;
6466
6467 sd = NULL;
6468 for (tl = sched_domain_topology; tl->init; tl++) {
6469 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6470 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6471 sd->flags |= SD_OVERLAP;
6472 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6473 break;
6474 }
6475
6476 while (sd->child)
6477 sd = sd->child;
6478
6479 *per_cpu_ptr(d.sd, i) = sd;
6480 }
6481
6482 /* Build the groups for the domains */
6483 for_each_cpu(i, cpu_map) {
6484 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6485 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6486 if (sd->flags & SD_OVERLAP) {
6487 if (build_overlap_sched_groups(sd, i))
6488 goto error;
6489 } else {
6490 if (build_sched_groups(sd, i))
6491 goto error;
6492 }
6493 }
6494 }
6495
6496 /* Calculate CPU power for physical packages and nodes */
6497 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6498 if (!cpumask_test_cpu(i, cpu_map))
6499 continue;
6500
6501 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6502 claim_allocations(i, sd);
6503 init_sched_groups_power(i, sd);
6504 }
6505 }
6506
6507 /* Attach the domains */
6508 rcu_read_lock();
6509 for_each_cpu(i, cpu_map) {
6510 sd = *per_cpu_ptr(d.sd, i);
6511 cpu_attach_domain(sd, d.rd, i);
6512 }
6513 rcu_read_unlock();
6514
6515 ret = 0;
6516 error:
6517 __free_domain_allocs(&d, alloc_state, cpu_map);
6518 return ret;
6519 }
6520
6521 static cpumask_var_t *doms_cur; /* current sched domains */
6522 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6523 static struct sched_domain_attr *dattr_cur;
6524 /* attribues of custom domains in 'doms_cur' */
6525
6526 /*
6527 * Special case: If a kmalloc of a doms_cur partition (array of
6528 * cpumask) fails, then fallback to a single sched domain,
6529 * as determined by the single cpumask fallback_doms.
6530 */
6531 static cpumask_var_t fallback_doms;
6532
6533 /*
6534 * arch_update_cpu_topology lets virtualized architectures update the
6535 * cpu core maps. It is supposed to return 1 if the topology changed
6536 * or 0 if it stayed the same.
6537 */
6538 int __attribute__((weak)) arch_update_cpu_topology(void)
6539 {
6540 return 0;
6541 }
6542
6543 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6544 {
6545 int i;
6546 cpumask_var_t *doms;
6547
6548 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6549 if (!doms)
6550 return NULL;
6551 for (i = 0; i < ndoms; i++) {
6552 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6553 free_sched_domains(doms, i);
6554 return NULL;
6555 }
6556 }
6557 return doms;
6558 }
6559
6560 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6561 {
6562 unsigned int i;
6563 for (i = 0; i < ndoms; i++)
6564 free_cpumask_var(doms[i]);
6565 kfree(doms);
6566 }
6567
6568 /*
6569 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6570 * For now this just excludes isolated cpus, but could be used to
6571 * exclude other special cases in the future.
6572 */
6573 static int init_sched_domains(const struct cpumask *cpu_map)
6574 {
6575 int err;
6576
6577 arch_update_cpu_topology();
6578 ndoms_cur = 1;
6579 doms_cur = alloc_sched_domains(ndoms_cur);
6580 if (!doms_cur)
6581 doms_cur = &fallback_doms;
6582 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6583 dattr_cur = NULL;
6584 err = build_sched_domains(doms_cur[0], NULL);
6585 register_sched_domain_sysctl();
6586
6587 return err;
6588 }
6589
6590 /*
6591 * Detach sched domains from a group of cpus specified in cpu_map
6592 * These cpus will now be attached to the NULL domain
6593 */
6594 static void detach_destroy_domains(const struct cpumask *cpu_map)
6595 {
6596 int i;
6597
6598 rcu_read_lock();
6599 for_each_cpu(i, cpu_map)
6600 cpu_attach_domain(NULL, &def_root_domain, i);
6601 rcu_read_unlock();
6602 }
6603
6604 /* handle null as "default" */
6605 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6606 struct sched_domain_attr *new, int idx_new)
6607 {
6608 struct sched_domain_attr tmp;
6609
6610 /* fast path */
6611 if (!new && !cur)
6612 return 1;
6613
6614 tmp = SD_ATTR_INIT;
6615 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6616 new ? (new + idx_new) : &tmp,
6617 sizeof(struct sched_domain_attr));
6618 }
6619
6620 /*
6621 * Partition sched domains as specified by the 'ndoms_new'
6622 * cpumasks in the array doms_new[] of cpumasks. This compares
6623 * doms_new[] to the current sched domain partitioning, doms_cur[].
6624 * It destroys each deleted domain and builds each new domain.
6625 *
6626 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6627 * The masks don't intersect (don't overlap.) We should setup one
6628 * sched domain for each mask. CPUs not in any of the cpumasks will
6629 * not be load balanced. If the same cpumask appears both in the
6630 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6631 * it as it is.
6632 *
6633 * The passed in 'doms_new' should be allocated using
6634 * alloc_sched_domains. This routine takes ownership of it and will
6635 * free_sched_domains it when done with it. If the caller failed the
6636 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6637 * and partition_sched_domains() will fallback to the single partition
6638 * 'fallback_doms', it also forces the domains to be rebuilt.
6639 *
6640 * If doms_new == NULL it will be replaced with cpu_online_mask.
6641 * ndoms_new == 0 is a special case for destroying existing domains,
6642 * and it will not create the default domain.
6643 *
6644 * Call with hotplug lock held
6645 */
6646 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6647 struct sched_domain_attr *dattr_new)
6648 {
6649 int i, j, n;
6650 int new_topology;
6651
6652 mutex_lock(&sched_domains_mutex);
6653
6654 /* always unregister in case we don't destroy any domains */
6655 unregister_sched_domain_sysctl();
6656
6657 /* Let architecture update cpu core mappings. */
6658 new_topology = arch_update_cpu_topology();
6659
6660 n = doms_new ? ndoms_new : 0;
6661
6662 /* Destroy deleted domains */
6663 for (i = 0; i < ndoms_cur; i++) {
6664 for (j = 0; j < n && !new_topology; j++) {
6665 if (cpumask_equal(doms_cur[i], doms_new[j])
6666 && dattrs_equal(dattr_cur, i, dattr_new, j))
6667 goto match1;
6668 }
6669 /* no match - a current sched domain not in new doms_new[] */
6670 detach_destroy_domains(doms_cur[i]);
6671 match1:
6672 ;
6673 }
6674
6675 if (doms_new == NULL) {
6676 ndoms_cur = 0;
6677 doms_new = &fallback_doms;
6678 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6679 WARN_ON_ONCE(dattr_new);
6680 }
6681
6682 /* Build new domains */
6683 for (i = 0; i < ndoms_new; i++) {
6684 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6685 if (cpumask_equal(doms_new[i], doms_cur[j])
6686 && dattrs_equal(dattr_new, i, dattr_cur, j))
6687 goto match2;
6688 }
6689 /* no match - add a new doms_new */
6690 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6691 match2:
6692 ;
6693 }
6694
6695 /* Remember the new sched domains */
6696 if (doms_cur != &fallback_doms)
6697 free_sched_domains(doms_cur, ndoms_cur);
6698 kfree(dattr_cur); /* kfree(NULL) is safe */
6699 doms_cur = doms_new;
6700 dattr_cur = dattr_new;
6701 ndoms_cur = ndoms_new;
6702
6703 register_sched_domain_sysctl();
6704
6705 mutex_unlock(&sched_domains_mutex);
6706 }
6707
6708 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6709 static void reinit_sched_domains(void)
6710 {
6711 get_online_cpus();
6712
6713 /* Destroy domains first to force the rebuild */
6714 partition_sched_domains(0, NULL, NULL);
6715
6716 rebuild_sched_domains();
6717 put_online_cpus();
6718 }
6719
6720 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6721 {
6722 unsigned int level = 0;
6723
6724 if (sscanf(buf, "%u", &level) != 1)
6725 return -EINVAL;
6726
6727 /*
6728 * level is always be positive so don't check for
6729 * level < POWERSAVINGS_BALANCE_NONE which is 0
6730 * What happens on 0 or 1 byte write,
6731 * need to check for count as well?
6732 */
6733
6734 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
6735 return -EINVAL;
6736
6737 if (smt)
6738 sched_smt_power_savings = level;
6739 else
6740 sched_mc_power_savings = level;
6741
6742 reinit_sched_domains();
6743
6744 return count;
6745 }
6746
6747 #ifdef CONFIG_SCHED_MC
6748 static ssize_t sched_mc_power_savings_show(struct device *dev,
6749 struct device_attribute *attr,
6750 char *buf)
6751 {
6752 return sprintf(buf, "%u\n", sched_mc_power_savings);
6753 }
6754 static ssize_t sched_mc_power_savings_store(struct device *dev,
6755 struct device_attribute *attr,
6756 const char *buf, size_t count)
6757 {
6758 return sched_power_savings_store(buf, count, 0);
6759 }
6760 static DEVICE_ATTR(sched_mc_power_savings, 0644,
6761 sched_mc_power_savings_show,
6762 sched_mc_power_savings_store);
6763 #endif
6764
6765 #ifdef CONFIG_SCHED_SMT
6766 static ssize_t sched_smt_power_savings_show(struct device *dev,
6767 struct device_attribute *attr,
6768 char *buf)
6769 {
6770 return sprintf(buf, "%u\n", sched_smt_power_savings);
6771 }
6772 static ssize_t sched_smt_power_savings_store(struct device *dev,
6773 struct device_attribute *attr,
6774 const char *buf, size_t count)
6775 {
6776 return sched_power_savings_store(buf, count, 1);
6777 }
6778 static DEVICE_ATTR(sched_smt_power_savings, 0644,
6779 sched_smt_power_savings_show,
6780 sched_smt_power_savings_store);
6781 #endif
6782
6783 int __init sched_create_sysfs_power_savings_entries(struct device *dev)
6784 {
6785 int err = 0;
6786
6787 #ifdef CONFIG_SCHED_SMT
6788 if (smt_capable())
6789 err = device_create_file(dev, &dev_attr_sched_smt_power_savings);
6790 #endif
6791 #ifdef CONFIG_SCHED_MC
6792 if (!err && mc_capable())
6793 err = device_create_file(dev, &dev_attr_sched_mc_power_savings);
6794 #endif
6795 return err;
6796 }
6797 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
6798
6799 /*
6800 * Update cpusets according to cpu_active mask. If cpusets are
6801 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6802 * around partition_sched_domains().
6803 */
6804 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6805 void *hcpu)
6806 {
6807 switch (action & ~CPU_TASKS_FROZEN) {
6808 case CPU_ONLINE:
6809 case CPU_DOWN_FAILED:
6810 cpuset_update_active_cpus();
6811 return NOTIFY_OK;
6812 default:
6813 return NOTIFY_DONE;
6814 }
6815 }
6816
6817 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6818 void *hcpu)
6819 {
6820 switch (action & ~CPU_TASKS_FROZEN) {
6821 case CPU_DOWN_PREPARE:
6822 cpuset_update_active_cpus();
6823 return NOTIFY_OK;
6824 default:
6825 return NOTIFY_DONE;
6826 }
6827 }
6828
6829 void __init sched_init_smp(void)
6830 {
6831 cpumask_var_t non_isolated_cpus;
6832
6833 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6834 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6835
6836 get_online_cpus();
6837 mutex_lock(&sched_domains_mutex);
6838 init_sched_domains(cpu_active_mask);
6839 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6840 if (cpumask_empty(non_isolated_cpus))
6841 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6842 mutex_unlock(&sched_domains_mutex);
6843 put_online_cpus();
6844
6845 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6846 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6847
6848 /* RT runtime code needs to handle some hotplug events */
6849 hotcpu_notifier(update_runtime, 0);
6850
6851 init_hrtick();
6852
6853 /* Move init over to a non-isolated CPU */
6854 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6855 BUG();
6856 sched_init_granularity();
6857 free_cpumask_var(non_isolated_cpus);
6858
6859 init_sched_rt_class();
6860 }
6861 #else
6862 void __init sched_init_smp(void)
6863 {
6864 sched_init_granularity();
6865 }
6866 #endif /* CONFIG_SMP */
6867
6868 const_debug unsigned int sysctl_timer_migration = 1;
6869
6870 int in_sched_functions(unsigned long addr)
6871 {
6872 return in_lock_functions(addr) ||
6873 (addr >= (unsigned long)__sched_text_start
6874 && addr < (unsigned long)__sched_text_end);
6875 }
6876
6877 #ifdef CONFIG_CGROUP_SCHED
6878 struct task_group root_task_group;
6879 #endif
6880
6881 DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6882
6883 void __init sched_init(void)
6884 {
6885 int i, j;
6886 unsigned long alloc_size = 0, ptr;
6887
6888 #ifdef CONFIG_FAIR_GROUP_SCHED
6889 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6890 #endif
6891 #ifdef CONFIG_RT_GROUP_SCHED
6892 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6893 #endif
6894 #ifdef CONFIG_CPUMASK_OFFSTACK
6895 alloc_size += num_possible_cpus() * cpumask_size();
6896 #endif
6897 if (alloc_size) {
6898 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6899
6900 #ifdef CONFIG_FAIR_GROUP_SCHED
6901 root_task_group.se = (struct sched_entity **)ptr;
6902 ptr += nr_cpu_ids * sizeof(void **);
6903
6904 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6905 ptr += nr_cpu_ids * sizeof(void **);
6906
6907 #endif /* CONFIG_FAIR_GROUP_SCHED */
6908 #ifdef CONFIG_RT_GROUP_SCHED
6909 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6910 ptr += nr_cpu_ids * sizeof(void **);
6911
6912 root_task_group.rt_rq = (struct rt_rq **)ptr;
6913 ptr += nr_cpu_ids * sizeof(void **);
6914
6915 #endif /* CONFIG_RT_GROUP_SCHED */
6916 #ifdef CONFIG_CPUMASK_OFFSTACK
6917 for_each_possible_cpu(i) {
6918 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6919 ptr += cpumask_size();
6920 }
6921 #endif /* CONFIG_CPUMASK_OFFSTACK */
6922 }
6923
6924 #ifdef CONFIG_SMP
6925 init_defrootdomain();
6926 #endif
6927
6928 init_rt_bandwidth(&def_rt_bandwidth,
6929 global_rt_period(), global_rt_runtime());
6930
6931 #ifdef CONFIG_RT_GROUP_SCHED
6932 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6933 global_rt_period(), global_rt_runtime());
6934 #endif /* CONFIG_RT_GROUP_SCHED */
6935
6936 #ifdef CONFIG_CGROUP_SCHED
6937 list_add(&root_task_group.list, &task_groups);
6938 INIT_LIST_HEAD(&root_task_group.children);
6939 INIT_LIST_HEAD(&root_task_group.siblings);
6940 autogroup_init(&init_task);
6941
6942 #endif /* CONFIG_CGROUP_SCHED */
6943
6944 #ifdef CONFIG_CGROUP_CPUACCT
6945 root_cpuacct.cpustat = &kernel_cpustat;
6946 root_cpuacct.cpuusage = alloc_percpu(u64);
6947 /* Too early, not expected to fail */
6948 BUG_ON(!root_cpuacct.cpuusage);
6949 #endif
6950 for_each_possible_cpu(i) {
6951 struct rq *rq;
6952
6953 rq = cpu_rq(i);
6954 raw_spin_lock_init(&rq->lock);
6955 rq->nr_running = 0;
6956 rq->calc_load_active = 0;
6957 rq->calc_load_update = jiffies + LOAD_FREQ;
6958 init_cfs_rq(&rq->cfs);
6959 init_rt_rq(&rq->rt, rq);
6960 #ifdef CONFIG_FAIR_GROUP_SCHED
6961 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6962 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6963 /*
6964 * How much cpu bandwidth does root_task_group get?
6965 *
6966 * In case of task-groups formed thr' the cgroup filesystem, it
6967 * gets 100% of the cpu resources in the system. This overall
6968 * system cpu resource is divided among the tasks of
6969 * root_task_group and its child task-groups in a fair manner,
6970 * based on each entity's (task or task-group's) weight
6971 * (se->load.weight).
6972 *
6973 * In other words, if root_task_group has 10 tasks of weight
6974 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6975 * then A0's share of the cpu resource is:
6976 *
6977 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6978 *
6979 * We achieve this by letting root_task_group's tasks sit
6980 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6981 */
6982 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6983 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6984 #endif /* CONFIG_FAIR_GROUP_SCHED */
6985
6986 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6987 #ifdef CONFIG_RT_GROUP_SCHED
6988 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6989 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6990 #endif
6991
6992 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6993 rq->cpu_load[j] = 0;
6994
6995 rq->last_load_update_tick = jiffies;
6996
6997 #ifdef CONFIG_SMP
6998 rq->sd = NULL;
6999 rq->rd = NULL;
7000 rq->cpu_power = SCHED_POWER_SCALE;
7001 rq->post_schedule = 0;
7002 rq->active_balance = 0;
7003 rq->next_balance = jiffies;
7004 rq->push_cpu = 0;
7005 rq->cpu = i;
7006 rq->online = 0;
7007 rq->idle_stamp = 0;
7008 rq->avg_idle = 2*sysctl_sched_migration_cost;
7009
7010 INIT_LIST_HEAD(&rq->cfs_tasks);
7011
7012 rq_attach_root(rq, &def_root_domain);
7013 #ifdef CONFIG_NO_HZ
7014 rq->nohz_flags = 0;
7015 #endif
7016 #endif
7017 init_rq_hrtick(rq);
7018 atomic_set(&rq->nr_iowait, 0);
7019 }
7020
7021 set_load_weight(&init_task);
7022
7023 #ifdef CONFIG_PREEMPT_NOTIFIERS
7024 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7025 #endif
7026
7027 #ifdef CONFIG_RT_MUTEXES
7028 plist_head_init(&init_task.pi_waiters);
7029 #endif
7030
7031 /*
7032 * The boot idle thread does lazy MMU switching as well:
7033 */
7034 atomic_inc(&init_mm.mm_count);
7035 enter_lazy_tlb(&init_mm, current);
7036
7037 /*
7038 * Make us the idle thread. Technically, schedule() should not be
7039 * called from this thread, however somewhere below it might be,
7040 * but because we are the idle thread, we just pick up running again
7041 * when this runqueue becomes "idle".
7042 */
7043 init_idle(current, smp_processor_id());
7044
7045 calc_load_update = jiffies + LOAD_FREQ;
7046
7047 /*
7048 * During early bootup we pretend to be a normal task:
7049 */
7050 current->sched_class = &fair_sched_class;
7051
7052 #ifdef CONFIG_SMP
7053 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7054 /* May be allocated at isolcpus cmdline parse time */
7055 if (cpu_isolated_map == NULL)
7056 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7057 #endif
7058 init_sched_fair_class();
7059
7060 scheduler_running = 1;
7061 }
7062
7063 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7064 static inline int preempt_count_equals(int preempt_offset)
7065 {
7066 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7067
7068 return (nested == preempt_offset);
7069 }
7070
7071 void __might_sleep(const char *file, int line, int preempt_offset)
7072 {
7073 static unsigned long prev_jiffy; /* ratelimiting */
7074
7075 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7076 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7077 system_state != SYSTEM_RUNNING || oops_in_progress)
7078 return;
7079 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7080 return;
7081 prev_jiffy = jiffies;
7082
7083 printk(KERN_ERR
7084 "BUG: sleeping function called from invalid context at %s:%d\n",
7085 file, line);
7086 printk(KERN_ERR
7087 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7088 in_atomic(), irqs_disabled(),
7089 current->pid, current->comm);
7090
7091 debug_show_held_locks(current);
7092 if (irqs_disabled())
7093 print_irqtrace_events(current);
7094 dump_stack();
7095 }
7096 EXPORT_SYMBOL(__might_sleep);
7097 #endif
7098
7099 #ifdef CONFIG_MAGIC_SYSRQ
7100 static void normalize_task(struct rq *rq, struct task_struct *p)
7101 {
7102 const struct sched_class *prev_class = p->sched_class;
7103 int old_prio = p->prio;
7104 int on_rq;
7105
7106 on_rq = p->on_rq;
7107 if (on_rq)
7108 dequeue_task(rq, p, 0);
7109 __setscheduler(rq, p, SCHED_NORMAL, 0);
7110 if (on_rq) {
7111 enqueue_task(rq, p, 0);
7112 resched_task(rq->curr);
7113 }
7114
7115 check_class_changed(rq, p, prev_class, old_prio);
7116 }
7117
7118 void normalize_rt_tasks(void)
7119 {
7120 struct task_struct *g, *p;
7121 unsigned long flags;
7122 struct rq *rq;
7123
7124 read_lock_irqsave(&tasklist_lock, flags);
7125 do_each_thread(g, p) {
7126 /*
7127 * Only normalize user tasks:
7128 */
7129 if (!p->mm)
7130 continue;
7131
7132 p->se.exec_start = 0;
7133 #ifdef CONFIG_SCHEDSTATS
7134 p->se.statistics.wait_start = 0;
7135 p->se.statistics.sleep_start = 0;
7136 p->se.statistics.block_start = 0;
7137 #endif
7138
7139 if (!rt_task(p)) {
7140 /*
7141 * Renice negative nice level userspace
7142 * tasks back to 0:
7143 */
7144 if (TASK_NICE(p) < 0 && p->mm)
7145 set_user_nice(p, 0);
7146 continue;
7147 }
7148
7149 raw_spin_lock(&p->pi_lock);
7150 rq = __task_rq_lock(p);
7151
7152 normalize_task(rq, p);
7153
7154 __task_rq_unlock(rq);
7155 raw_spin_unlock(&p->pi_lock);
7156 } while_each_thread(g, p);
7157
7158 read_unlock_irqrestore(&tasklist_lock, flags);
7159 }
7160
7161 #endif /* CONFIG_MAGIC_SYSRQ */
7162
7163 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7164 /*
7165 * These functions are only useful for the IA64 MCA handling, or kdb.
7166 *
7167 * They can only be called when the whole system has been
7168 * stopped - every CPU needs to be quiescent, and no scheduling
7169 * activity can take place. Using them for anything else would
7170 * be a serious bug, and as a result, they aren't even visible
7171 * under any other configuration.
7172 */
7173
7174 /**
7175 * curr_task - return the current task for a given cpu.
7176 * @cpu: the processor in question.
7177 *
7178 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7179 */
7180 struct task_struct *curr_task(int cpu)
7181 {
7182 return cpu_curr(cpu);
7183 }
7184
7185 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7186
7187 #ifdef CONFIG_IA64
7188 /**
7189 * set_curr_task - set the current task for a given cpu.
7190 * @cpu: the processor in question.
7191 * @p: the task pointer to set.
7192 *
7193 * Description: This function must only be used when non-maskable interrupts
7194 * are serviced on a separate stack. It allows the architecture to switch the
7195 * notion of the current task on a cpu in a non-blocking manner. This function
7196 * must be called with all CPU's synchronized, and interrupts disabled, the
7197 * and caller must save the original value of the current task (see
7198 * curr_task() above) and restore that value before reenabling interrupts and
7199 * re-starting the system.
7200 *
7201 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7202 */
7203 void set_curr_task(int cpu, struct task_struct *p)
7204 {
7205 cpu_curr(cpu) = p;
7206 }
7207
7208 #endif
7209
7210 #ifdef CONFIG_CGROUP_SCHED
7211 /* task_group_lock serializes the addition/removal of task groups */
7212 static DEFINE_SPINLOCK(task_group_lock);
7213
7214 static void free_sched_group(struct task_group *tg)
7215 {
7216 free_fair_sched_group(tg);
7217 free_rt_sched_group(tg);
7218 autogroup_free(tg);
7219 kfree(tg);
7220 }
7221
7222 /* allocate runqueue etc for a new task group */
7223 struct task_group *sched_create_group(struct task_group *parent)
7224 {
7225 struct task_group *tg;
7226 unsigned long flags;
7227
7228 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7229 if (!tg)
7230 return ERR_PTR(-ENOMEM);
7231
7232 if (!alloc_fair_sched_group(tg, parent))
7233 goto err;
7234
7235 if (!alloc_rt_sched_group(tg, parent))
7236 goto err;
7237
7238 spin_lock_irqsave(&task_group_lock, flags);
7239 list_add_rcu(&tg->list, &task_groups);
7240
7241 WARN_ON(!parent); /* root should already exist */
7242
7243 tg->parent = parent;
7244 INIT_LIST_HEAD(&tg->children);
7245 list_add_rcu(&tg->siblings, &parent->children);
7246 spin_unlock_irqrestore(&task_group_lock, flags);
7247
7248 return tg;
7249
7250 err:
7251 free_sched_group(tg);
7252 return ERR_PTR(-ENOMEM);
7253 }
7254
7255 /* rcu callback to free various structures associated with a task group */
7256 static void free_sched_group_rcu(struct rcu_head *rhp)
7257 {
7258 /* now it should be safe to free those cfs_rqs */
7259 free_sched_group(container_of(rhp, struct task_group, rcu));
7260 }
7261
7262 /* Destroy runqueue etc associated with a task group */
7263 void sched_destroy_group(struct task_group *tg)
7264 {
7265 unsigned long flags;
7266 int i;
7267
7268 /* end participation in shares distribution */
7269 for_each_possible_cpu(i)
7270 unregister_fair_sched_group(tg, i);
7271
7272 spin_lock_irqsave(&task_group_lock, flags);
7273 list_del_rcu(&tg->list);
7274 list_del_rcu(&tg->siblings);
7275 spin_unlock_irqrestore(&task_group_lock, flags);
7276
7277 /* wait for possible concurrent references to cfs_rqs complete */
7278 call_rcu(&tg->rcu, free_sched_group_rcu);
7279 }
7280
7281 /* change task's runqueue when it moves between groups.
7282 * The caller of this function should have put the task in its new group
7283 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7284 * reflect its new group.
7285 */
7286 void sched_move_task(struct task_struct *tsk)
7287 {
7288 int on_rq, running;
7289 unsigned long flags;
7290 struct rq *rq;
7291
7292 rq = task_rq_lock(tsk, &flags);
7293
7294 running = task_current(rq, tsk);
7295 on_rq = tsk->on_rq;
7296
7297 if (on_rq)
7298 dequeue_task(rq, tsk, 0);
7299 if (unlikely(running))
7300 tsk->sched_class->put_prev_task(rq, tsk);
7301
7302 #ifdef CONFIG_FAIR_GROUP_SCHED
7303 if (tsk->sched_class->task_move_group)
7304 tsk->sched_class->task_move_group(tsk, on_rq);
7305 else
7306 #endif
7307 set_task_rq(tsk, task_cpu(tsk));
7308
7309 if (unlikely(running))
7310 tsk->sched_class->set_curr_task(rq);
7311 if (on_rq)
7312 enqueue_task(rq, tsk, 0);
7313
7314 task_rq_unlock(rq, tsk, &flags);
7315 }
7316 #endif /* CONFIG_CGROUP_SCHED */
7317
7318 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7319 static unsigned long to_ratio(u64 period, u64 runtime)
7320 {
7321 if (runtime == RUNTIME_INF)
7322 return 1ULL << 20;
7323
7324 return div64_u64(runtime << 20, period);
7325 }
7326 #endif
7327
7328 #ifdef CONFIG_RT_GROUP_SCHED
7329 /*
7330 * Ensure that the real time constraints are schedulable.
7331 */
7332 static DEFINE_MUTEX(rt_constraints_mutex);
7333
7334 /* Must be called with tasklist_lock held */
7335 static inline int tg_has_rt_tasks(struct task_group *tg)
7336 {
7337 struct task_struct *g, *p;
7338
7339 do_each_thread(g, p) {
7340 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7341 return 1;
7342 } while_each_thread(g, p);
7343
7344 return 0;
7345 }
7346
7347 struct rt_schedulable_data {
7348 struct task_group *tg;
7349 u64 rt_period;
7350 u64 rt_runtime;
7351 };
7352
7353 static int tg_rt_schedulable(struct task_group *tg, void *data)
7354 {
7355 struct rt_schedulable_data *d = data;
7356 struct task_group *child;
7357 unsigned long total, sum = 0;
7358 u64 period, runtime;
7359
7360 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7361 runtime = tg->rt_bandwidth.rt_runtime;
7362
7363 if (tg == d->tg) {
7364 period = d->rt_period;
7365 runtime = d->rt_runtime;
7366 }
7367
7368 /*
7369 * Cannot have more runtime than the period.
7370 */
7371 if (runtime > period && runtime != RUNTIME_INF)
7372 return -EINVAL;
7373
7374 /*
7375 * Ensure we don't starve existing RT tasks.
7376 */
7377 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7378 return -EBUSY;
7379
7380 total = to_ratio(period, runtime);
7381
7382 /*
7383 * Nobody can have more than the global setting allows.
7384 */
7385 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7386 return -EINVAL;
7387
7388 /*
7389 * The sum of our children's runtime should not exceed our own.
7390 */
7391 list_for_each_entry_rcu(child, &tg->children, siblings) {
7392 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7393 runtime = child->rt_bandwidth.rt_runtime;
7394
7395 if (child == d->tg) {
7396 period = d->rt_period;
7397 runtime = d->rt_runtime;
7398 }
7399
7400 sum += to_ratio(period, runtime);
7401 }
7402
7403 if (sum > total)
7404 return -EINVAL;
7405
7406 return 0;
7407 }
7408
7409 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7410 {
7411 int ret;
7412
7413 struct rt_schedulable_data data = {
7414 .tg = tg,
7415 .rt_period = period,
7416 .rt_runtime = runtime,
7417 };
7418
7419 rcu_read_lock();
7420 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7421 rcu_read_unlock();
7422
7423 return ret;
7424 }
7425
7426 static int tg_set_rt_bandwidth(struct task_group *tg,
7427 u64 rt_period, u64 rt_runtime)
7428 {
7429 int i, err = 0;
7430
7431 mutex_lock(&rt_constraints_mutex);
7432 read_lock(&tasklist_lock);
7433 err = __rt_schedulable(tg, rt_period, rt_runtime);
7434 if (err)
7435 goto unlock;
7436
7437 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7438 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7439 tg->rt_bandwidth.rt_runtime = rt_runtime;
7440
7441 for_each_possible_cpu(i) {
7442 struct rt_rq *rt_rq = tg->rt_rq[i];
7443
7444 raw_spin_lock(&rt_rq->rt_runtime_lock);
7445 rt_rq->rt_runtime = rt_runtime;
7446 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7447 }
7448 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7449 unlock:
7450 read_unlock(&tasklist_lock);
7451 mutex_unlock(&rt_constraints_mutex);
7452
7453 return err;
7454 }
7455
7456 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7457 {
7458 u64 rt_runtime, rt_period;
7459
7460 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7461 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7462 if (rt_runtime_us < 0)
7463 rt_runtime = RUNTIME_INF;
7464
7465 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7466 }
7467
7468 long sched_group_rt_runtime(struct task_group *tg)
7469 {
7470 u64 rt_runtime_us;
7471
7472 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7473 return -1;
7474
7475 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7476 do_div(rt_runtime_us, NSEC_PER_USEC);
7477 return rt_runtime_us;
7478 }
7479
7480 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7481 {
7482 u64 rt_runtime, rt_period;
7483
7484 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7485 rt_runtime = tg->rt_bandwidth.rt_runtime;
7486
7487 if (rt_period == 0)
7488 return -EINVAL;
7489
7490 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7491 }
7492
7493 long sched_group_rt_period(struct task_group *tg)
7494 {
7495 u64 rt_period_us;
7496
7497 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7498 do_div(rt_period_us, NSEC_PER_USEC);
7499 return rt_period_us;
7500 }
7501
7502 static int sched_rt_global_constraints(void)
7503 {
7504 u64 runtime, period;
7505 int ret = 0;
7506
7507 if (sysctl_sched_rt_period <= 0)
7508 return -EINVAL;
7509
7510 runtime = global_rt_runtime();
7511 period = global_rt_period();
7512
7513 /*
7514 * Sanity check on the sysctl variables.
7515 */
7516 if (runtime > period && runtime != RUNTIME_INF)
7517 return -EINVAL;
7518
7519 mutex_lock(&rt_constraints_mutex);
7520 read_lock(&tasklist_lock);
7521 ret = __rt_schedulable(NULL, 0, 0);
7522 read_unlock(&tasklist_lock);
7523 mutex_unlock(&rt_constraints_mutex);
7524
7525 return ret;
7526 }
7527
7528 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7529 {
7530 /* Don't accept realtime tasks when there is no way for them to run */
7531 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7532 return 0;
7533
7534 return 1;
7535 }
7536
7537 #else /* !CONFIG_RT_GROUP_SCHED */
7538 static int sched_rt_global_constraints(void)
7539 {
7540 unsigned long flags;
7541 int i;
7542
7543 if (sysctl_sched_rt_period <= 0)
7544 return -EINVAL;
7545
7546 /*
7547 * There's always some RT tasks in the root group
7548 * -- migration, kstopmachine etc..
7549 */
7550 if (sysctl_sched_rt_runtime == 0)
7551 return -EBUSY;
7552
7553 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7554 for_each_possible_cpu(i) {
7555 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7556
7557 raw_spin_lock(&rt_rq->rt_runtime_lock);
7558 rt_rq->rt_runtime = global_rt_runtime();
7559 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7560 }
7561 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7562
7563 return 0;
7564 }
7565 #endif /* CONFIG_RT_GROUP_SCHED */
7566
7567 int sched_rt_handler(struct ctl_table *table, int write,
7568 void __user *buffer, size_t *lenp,
7569 loff_t *ppos)
7570 {
7571 int ret;
7572 int old_period, old_runtime;
7573 static DEFINE_MUTEX(mutex);
7574
7575 mutex_lock(&mutex);
7576 old_period = sysctl_sched_rt_period;
7577 old_runtime = sysctl_sched_rt_runtime;
7578
7579 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7580
7581 if (!ret && write) {
7582 ret = sched_rt_global_constraints();
7583 if (ret) {
7584 sysctl_sched_rt_period = old_period;
7585 sysctl_sched_rt_runtime = old_runtime;
7586 } else {
7587 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7588 def_rt_bandwidth.rt_period =
7589 ns_to_ktime(global_rt_period());
7590 }
7591 }
7592 mutex_unlock(&mutex);
7593
7594 return ret;
7595 }
7596
7597 #ifdef CONFIG_CGROUP_SCHED
7598
7599 /* return corresponding task_group object of a cgroup */
7600 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7601 {
7602 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7603 struct task_group, css);
7604 }
7605
7606 static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7607 {
7608 struct task_group *tg, *parent;
7609
7610 if (!cgrp->parent) {
7611 /* This is early initialization for the top cgroup */
7612 return &root_task_group.css;
7613 }
7614
7615 parent = cgroup_tg(cgrp->parent);
7616 tg = sched_create_group(parent);
7617 if (IS_ERR(tg))
7618 return ERR_PTR(-ENOMEM);
7619
7620 return &tg->css;
7621 }
7622
7623 static void cpu_cgroup_destroy(struct cgroup *cgrp)
7624 {
7625 struct task_group *tg = cgroup_tg(cgrp);
7626
7627 sched_destroy_group(tg);
7628 }
7629
7630 static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7631 struct cgroup_taskset *tset)
7632 {
7633 struct task_struct *task;
7634
7635 cgroup_taskset_for_each(task, cgrp, tset) {
7636 #ifdef CONFIG_RT_GROUP_SCHED
7637 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7638 return -EINVAL;
7639 #else
7640 /* We don't support RT-tasks being in separate groups */
7641 if (task->sched_class != &fair_sched_class)
7642 return -EINVAL;
7643 #endif
7644 }
7645 return 0;
7646 }
7647
7648 static void cpu_cgroup_attach(struct cgroup *cgrp,
7649 struct cgroup_taskset *tset)
7650 {
7651 struct task_struct *task;
7652
7653 cgroup_taskset_for_each(task, cgrp, tset)
7654 sched_move_task(task);
7655 }
7656
7657 static void
7658 cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7659 struct task_struct *task)
7660 {
7661 /*
7662 * cgroup_exit() is called in the copy_process() failure path.
7663 * Ignore this case since the task hasn't ran yet, this avoids
7664 * trying to poke a half freed task state from generic code.
7665 */
7666 if (!(task->flags & PF_EXITING))
7667 return;
7668
7669 sched_move_task(task);
7670 }
7671
7672 #ifdef CONFIG_FAIR_GROUP_SCHED
7673 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7674 u64 shareval)
7675 {
7676 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7677 }
7678
7679 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7680 {
7681 struct task_group *tg = cgroup_tg(cgrp);
7682
7683 return (u64) scale_load_down(tg->shares);
7684 }
7685
7686 #ifdef CONFIG_CFS_BANDWIDTH
7687 static DEFINE_MUTEX(cfs_constraints_mutex);
7688
7689 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7690 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7691
7692 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7693
7694 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7695 {
7696 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7697 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7698
7699 if (tg == &root_task_group)
7700 return -EINVAL;
7701
7702 /*
7703 * Ensure we have at some amount of bandwidth every period. This is
7704 * to prevent reaching a state of large arrears when throttled via
7705 * entity_tick() resulting in prolonged exit starvation.
7706 */
7707 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7708 return -EINVAL;
7709
7710 /*
7711 * Likewise, bound things on the otherside by preventing insane quota
7712 * periods. This also allows us to normalize in computing quota
7713 * feasibility.
7714 */
7715 if (period > max_cfs_quota_period)
7716 return -EINVAL;
7717
7718 mutex_lock(&cfs_constraints_mutex);
7719 ret = __cfs_schedulable(tg, period, quota);
7720 if (ret)
7721 goto out_unlock;
7722
7723 runtime_enabled = quota != RUNTIME_INF;
7724 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7725 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7726 raw_spin_lock_irq(&cfs_b->lock);
7727 cfs_b->period = ns_to_ktime(period);
7728 cfs_b->quota = quota;
7729
7730 __refill_cfs_bandwidth_runtime(cfs_b);
7731 /* restart the period timer (if active) to handle new period expiry */
7732 if (runtime_enabled && cfs_b->timer_active) {
7733 /* force a reprogram */
7734 cfs_b->timer_active = 0;
7735 __start_cfs_bandwidth(cfs_b);
7736 }
7737 raw_spin_unlock_irq(&cfs_b->lock);
7738
7739 for_each_possible_cpu(i) {
7740 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7741 struct rq *rq = cfs_rq->rq;
7742
7743 raw_spin_lock_irq(&rq->lock);
7744 cfs_rq->runtime_enabled = runtime_enabled;
7745 cfs_rq->runtime_remaining = 0;
7746
7747 if (cfs_rq->throttled)
7748 unthrottle_cfs_rq(cfs_rq);
7749 raw_spin_unlock_irq(&rq->lock);
7750 }
7751 out_unlock:
7752 mutex_unlock(&cfs_constraints_mutex);
7753
7754 return ret;
7755 }
7756
7757 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7758 {
7759 u64 quota, period;
7760
7761 period = ktime_to_ns(tg->cfs_bandwidth.period);
7762 if (cfs_quota_us < 0)
7763 quota = RUNTIME_INF;
7764 else
7765 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7766
7767 return tg_set_cfs_bandwidth(tg, period, quota);
7768 }
7769
7770 long tg_get_cfs_quota(struct task_group *tg)
7771 {
7772 u64 quota_us;
7773
7774 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7775 return -1;
7776
7777 quota_us = tg->cfs_bandwidth.quota;
7778 do_div(quota_us, NSEC_PER_USEC);
7779
7780 return quota_us;
7781 }
7782
7783 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7784 {
7785 u64 quota, period;
7786
7787 period = (u64)cfs_period_us * NSEC_PER_USEC;
7788 quota = tg->cfs_bandwidth.quota;
7789
7790 return tg_set_cfs_bandwidth(tg, period, quota);
7791 }
7792
7793 long tg_get_cfs_period(struct task_group *tg)
7794 {
7795 u64 cfs_period_us;
7796
7797 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7798 do_div(cfs_period_us, NSEC_PER_USEC);
7799
7800 return cfs_period_us;
7801 }
7802
7803 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7804 {
7805 return tg_get_cfs_quota(cgroup_tg(cgrp));
7806 }
7807
7808 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7809 s64 cfs_quota_us)
7810 {
7811 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7812 }
7813
7814 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7815 {
7816 return tg_get_cfs_period(cgroup_tg(cgrp));
7817 }
7818
7819 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7820 u64 cfs_period_us)
7821 {
7822 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7823 }
7824
7825 struct cfs_schedulable_data {
7826 struct task_group *tg;
7827 u64 period, quota;
7828 };
7829
7830 /*
7831 * normalize group quota/period to be quota/max_period
7832 * note: units are usecs
7833 */
7834 static u64 normalize_cfs_quota(struct task_group *tg,
7835 struct cfs_schedulable_data *d)
7836 {
7837 u64 quota, period;
7838
7839 if (tg == d->tg) {
7840 period = d->period;
7841 quota = d->quota;
7842 } else {
7843 period = tg_get_cfs_period(tg);
7844 quota = tg_get_cfs_quota(tg);
7845 }
7846
7847 /* note: these should typically be equivalent */
7848 if (quota == RUNTIME_INF || quota == -1)
7849 return RUNTIME_INF;
7850
7851 return to_ratio(period, quota);
7852 }
7853
7854 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7855 {
7856 struct cfs_schedulable_data *d = data;
7857 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7858 s64 quota = 0, parent_quota = -1;
7859
7860 if (!tg->parent) {
7861 quota = RUNTIME_INF;
7862 } else {
7863 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7864
7865 quota = normalize_cfs_quota(tg, d);
7866 parent_quota = parent_b->hierarchal_quota;
7867
7868 /*
7869 * ensure max(child_quota) <= parent_quota, inherit when no
7870 * limit is set
7871 */
7872 if (quota == RUNTIME_INF)
7873 quota = parent_quota;
7874 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7875 return -EINVAL;
7876 }
7877 cfs_b->hierarchal_quota = quota;
7878
7879 return 0;
7880 }
7881
7882 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7883 {
7884 int ret;
7885 struct cfs_schedulable_data data = {
7886 .tg = tg,
7887 .period = period,
7888 .quota = quota,
7889 };
7890
7891 if (quota != RUNTIME_INF) {
7892 do_div(data.period, NSEC_PER_USEC);
7893 do_div(data.quota, NSEC_PER_USEC);
7894 }
7895
7896 rcu_read_lock();
7897 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7898 rcu_read_unlock();
7899
7900 return ret;
7901 }
7902
7903 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7904 struct cgroup_map_cb *cb)
7905 {
7906 struct task_group *tg = cgroup_tg(cgrp);
7907 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7908
7909 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7910 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7911 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7912
7913 return 0;
7914 }
7915 #endif /* CONFIG_CFS_BANDWIDTH */
7916 #endif /* CONFIG_FAIR_GROUP_SCHED */
7917
7918 #ifdef CONFIG_RT_GROUP_SCHED
7919 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7920 s64 val)
7921 {
7922 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7923 }
7924
7925 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7926 {
7927 return sched_group_rt_runtime(cgroup_tg(cgrp));
7928 }
7929
7930 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7931 u64 rt_period_us)
7932 {
7933 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7934 }
7935
7936 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7937 {
7938 return sched_group_rt_period(cgroup_tg(cgrp));
7939 }
7940 #endif /* CONFIG_RT_GROUP_SCHED */
7941
7942 static struct cftype cpu_files[] = {
7943 #ifdef CONFIG_FAIR_GROUP_SCHED
7944 {
7945 .name = "shares",
7946 .read_u64 = cpu_shares_read_u64,
7947 .write_u64 = cpu_shares_write_u64,
7948 },
7949 #endif
7950 #ifdef CONFIG_CFS_BANDWIDTH
7951 {
7952 .name = "cfs_quota_us",
7953 .read_s64 = cpu_cfs_quota_read_s64,
7954 .write_s64 = cpu_cfs_quota_write_s64,
7955 },
7956 {
7957 .name = "cfs_period_us",
7958 .read_u64 = cpu_cfs_period_read_u64,
7959 .write_u64 = cpu_cfs_period_write_u64,
7960 },
7961 {
7962 .name = "stat",
7963 .read_map = cpu_stats_show,
7964 },
7965 #endif
7966 #ifdef CONFIG_RT_GROUP_SCHED
7967 {
7968 .name = "rt_runtime_us",
7969 .read_s64 = cpu_rt_runtime_read,
7970 .write_s64 = cpu_rt_runtime_write,
7971 },
7972 {
7973 .name = "rt_period_us",
7974 .read_u64 = cpu_rt_period_read_uint,
7975 .write_u64 = cpu_rt_period_write_uint,
7976 },
7977 #endif
7978 };
7979
7980 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7981 {
7982 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7983 }
7984
7985 struct cgroup_subsys cpu_cgroup_subsys = {
7986 .name = "cpu",
7987 .create = cpu_cgroup_create,
7988 .destroy = cpu_cgroup_destroy,
7989 .can_attach = cpu_cgroup_can_attach,
7990 .attach = cpu_cgroup_attach,
7991 .exit = cpu_cgroup_exit,
7992 .populate = cpu_cgroup_populate,
7993 .subsys_id = cpu_cgroup_subsys_id,
7994 .early_init = 1,
7995 };
7996
7997 #endif /* CONFIG_CGROUP_SCHED */
7998
7999 #ifdef CONFIG_CGROUP_CPUACCT
8000
8001 /*
8002 * CPU accounting code for task groups.
8003 *
8004 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8005 * (balbir@in.ibm.com).
8006 */
8007
8008 /* create a new cpu accounting group */
8009 static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
8010 {
8011 struct cpuacct *ca;
8012
8013 if (!cgrp->parent)
8014 return &root_cpuacct.css;
8015
8016 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8017 if (!ca)
8018 goto out;
8019
8020 ca->cpuusage = alloc_percpu(u64);
8021 if (!ca->cpuusage)
8022 goto out_free_ca;
8023
8024 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8025 if (!ca->cpustat)
8026 goto out_free_cpuusage;
8027
8028 return &ca->css;
8029
8030 out_free_cpuusage:
8031 free_percpu(ca->cpuusage);
8032 out_free_ca:
8033 kfree(ca);
8034 out:
8035 return ERR_PTR(-ENOMEM);
8036 }
8037
8038 /* destroy an existing cpu accounting group */
8039 static void cpuacct_destroy(struct cgroup *cgrp)
8040 {
8041 struct cpuacct *ca = cgroup_ca(cgrp);
8042
8043 free_percpu(ca->cpustat);
8044 free_percpu(ca->cpuusage);
8045 kfree(ca);
8046 }
8047
8048 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8049 {
8050 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8051 u64 data;
8052
8053 #ifndef CONFIG_64BIT
8054 /*
8055 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8056 */
8057 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8058 data = *cpuusage;
8059 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8060 #else
8061 data = *cpuusage;
8062 #endif
8063
8064 return data;
8065 }
8066
8067 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8068 {
8069 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8070
8071 #ifndef CONFIG_64BIT
8072 /*
8073 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8074 */
8075 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8076 *cpuusage = val;
8077 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8078 #else
8079 *cpuusage = val;
8080 #endif
8081 }
8082
8083 /* return total cpu usage (in nanoseconds) of a group */
8084 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8085 {
8086 struct cpuacct *ca = cgroup_ca(cgrp);
8087 u64 totalcpuusage = 0;
8088 int i;
8089
8090 for_each_present_cpu(i)
8091 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8092
8093 return totalcpuusage;
8094 }
8095
8096 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8097 u64 reset)
8098 {
8099 struct cpuacct *ca = cgroup_ca(cgrp);
8100 int err = 0;
8101 int i;
8102
8103 if (reset) {
8104 err = -EINVAL;
8105 goto out;
8106 }
8107
8108 for_each_present_cpu(i)
8109 cpuacct_cpuusage_write(ca, i, 0);
8110
8111 out:
8112 return err;
8113 }
8114
8115 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8116 struct seq_file *m)
8117 {
8118 struct cpuacct *ca = cgroup_ca(cgroup);
8119 u64 percpu;
8120 int i;
8121
8122 for_each_present_cpu(i) {
8123 percpu = cpuacct_cpuusage_read(ca, i);
8124 seq_printf(m, "%llu ", (unsigned long long) percpu);
8125 }
8126 seq_printf(m, "\n");
8127 return 0;
8128 }
8129
8130 static const char *cpuacct_stat_desc[] = {
8131 [CPUACCT_STAT_USER] = "user",
8132 [CPUACCT_STAT_SYSTEM] = "system",
8133 };
8134
8135 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8136 struct cgroup_map_cb *cb)
8137 {
8138 struct cpuacct *ca = cgroup_ca(cgrp);
8139 int cpu;
8140 s64 val = 0;
8141
8142 for_each_online_cpu(cpu) {
8143 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8144 val += kcpustat->cpustat[CPUTIME_USER];
8145 val += kcpustat->cpustat[CPUTIME_NICE];
8146 }
8147 val = cputime64_to_clock_t(val);
8148 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8149
8150 val = 0;
8151 for_each_online_cpu(cpu) {
8152 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8153 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8154 val += kcpustat->cpustat[CPUTIME_IRQ];
8155 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8156 }
8157
8158 val = cputime64_to_clock_t(val);
8159 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8160
8161 return 0;
8162 }
8163
8164 static struct cftype files[] = {
8165 {
8166 .name = "usage",
8167 .read_u64 = cpuusage_read,
8168 .write_u64 = cpuusage_write,
8169 },
8170 {
8171 .name = "usage_percpu",
8172 .read_seq_string = cpuacct_percpu_seq_read,
8173 },
8174 {
8175 .name = "stat",
8176 .read_map = cpuacct_stats_show,
8177 },
8178 };
8179
8180 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8181 {
8182 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8183 }
8184
8185 /*
8186 * charge this task's execution time to its accounting group.
8187 *
8188 * called with rq->lock held.
8189 */
8190 void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8191 {
8192 struct cpuacct *ca;
8193 int cpu;
8194
8195 if (unlikely(!cpuacct_subsys.active))
8196 return;
8197
8198 cpu = task_cpu(tsk);
8199
8200 rcu_read_lock();
8201
8202 ca = task_ca(tsk);
8203
8204 for (; ca; ca = parent_ca(ca)) {
8205 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8206 *cpuusage += cputime;
8207 }
8208
8209 rcu_read_unlock();
8210 }
8211
8212 struct cgroup_subsys cpuacct_subsys = {
8213 .name = "cpuacct",
8214 .create = cpuacct_create,
8215 .destroy = cpuacct_destroy,
8216 .populate = cpuacct_populate,
8217 .subsys_id = cpuacct_subsys_id,
8218 };
8219 #endif /* CONFIG_CGROUP_CPUACCT */