]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/sched/core.c
sched/fair: Fix enqueue_task_fair warning
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include "sched.h"
10
11 #include <linux/nospec.h>
12
13 #include <linux/kcov.h>
14
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
17
18 #include "../workqueue_internal.h"
19 #include "../../fs/io-wq.h"
20 #include "../smpboot.h"
21
22 #include "pelt.h"
23
24 #define CREATE_TRACE_POINTS
25 #include <trace/events/sched.h>
26
27 /*
28 * Export tracepoints that act as a bare tracehook (ie: have no trace event
29 * associated with them) to allow external modules to probe them.
30 */
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
37
38 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
39
40 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
41 /*
42 * Debugging: various feature bits
43 *
44 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
45 * sysctl_sched_features, defined in sched.h, to allow constants propagation
46 * at compile time and compiler optimization based on features default.
47 */
48 #define SCHED_FEAT(name, enabled) \
49 (1UL << __SCHED_FEAT_##name) * enabled |
50 const_debug unsigned int sysctl_sched_features =
51 #include "features.h"
52 0;
53 #undef SCHED_FEAT
54 #endif
55
56 /*
57 * Number of tasks to iterate in a single balance run.
58 * Limited because this is done with IRQs disabled.
59 */
60 const_debug unsigned int sysctl_sched_nr_migrate = 32;
61
62 /*
63 * period over which we measure -rt task CPU usage in us.
64 * default: 1s
65 */
66 unsigned int sysctl_sched_rt_period = 1000000;
67
68 __read_mostly int scheduler_running;
69
70 /*
71 * part of the period that we allow rt tasks to run in us.
72 * default: 0.95s
73 */
74 int sysctl_sched_rt_runtime = 950000;
75
76 /*
77 * __task_rq_lock - lock the rq @p resides on.
78 */
79 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
80 __acquires(rq->lock)
81 {
82 struct rq *rq;
83
84 lockdep_assert_held(&p->pi_lock);
85
86 for (;;) {
87 rq = task_rq(p);
88 raw_spin_lock(&rq->lock);
89 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
90 rq_pin_lock(rq, rf);
91 return rq;
92 }
93 raw_spin_unlock(&rq->lock);
94
95 while (unlikely(task_on_rq_migrating(p)))
96 cpu_relax();
97 }
98 }
99
100 /*
101 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
102 */
103 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
104 __acquires(p->pi_lock)
105 __acquires(rq->lock)
106 {
107 struct rq *rq;
108
109 for (;;) {
110 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
111 rq = task_rq(p);
112 raw_spin_lock(&rq->lock);
113 /*
114 * move_queued_task() task_rq_lock()
115 *
116 * ACQUIRE (rq->lock)
117 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
118 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
119 * [S] ->cpu = new_cpu [L] task_rq()
120 * [L] ->on_rq
121 * RELEASE (rq->lock)
122 *
123 * If we observe the old CPU in task_rq_lock(), the acquire of
124 * the old rq->lock will fully serialize against the stores.
125 *
126 * If we observe the new CPU in task_rq_lock(), the address
127 * dependency headed by '[L] rq = task_rq()' and the acquire
128 * will pair with the WMB to ensure we then also see migrating.
129 */
130 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
131 rq_pin_lock(rq, rf);
132 return rq;
133 }
134 raw_spin_unlock(&rq->lock);
135 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
136
137 while (unlikely(task_on_rq_migrating(p)))
138 cpu_relax();
139 }
140 }
141
142 /*
143 * RQ-clock updating methods:
144 */
145
146 static void update_rq_clock_task(struct rq *rq, s64 delta)
147 {
148 /*
149 * In theory, the compile should just see 0 here, and optimize out the call
150 * to sched_rt_avg_update. But I don't trust it...
151 */
152 s64 __maybe_unused steal = 0, irq_delta = 0;
153
154 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
155 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
156
157 /*
158 * Since irq_time is only updated on {soft,}irq_exit, we might run into
159 * this case when a previous update_rq_clock() happened inside a
160 * {soft,}irq region.
161 *
162 * When this happens, we stop ->clock_task and only update the
163 * prev_irq_time stamp to account for the part that fit, so that a next
164 * update will consume the rest. This ensures ->clock_task is
165 * monotonic.
166 *
167 * It does however cause some slight miss-attribution of {soft,}irq
168 * time, a more accurate solution would be to update the irq_time using
169 * the current rq->clock timestamp, except that would require using
170 * atomic ops.
171 */
172 if (irq_delta > delta)
173 irq_delta = delta;
174
175 rq->prev_irq_time += irq_delta;
176 delta -= irq_delta;
177 #endif
178 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
179 if (static_key_false((&paravirt_steal_rq_enabled))) {
180 steal = paravirt_steal_clock(cpu_of(rq));
181 steal -= rq->prev_steal_time_rq;
182
183 if (unlikely(steal > delta))
184 steal = delta;
185
186 rq->prev_steal_time_rq += steal;
187 delta -= steal;
188 }
189 #endif
190
191 rq->clock_task += delta;
192
193 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
194 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
195 update_irq_load_avg(rq, irq_delta + steal);
196 #endif
197 update_rq_clock_pelt(rq, delta);
198 }
199
200 void update_rq_clock(struct rq *rq)
201 {
202 s64 delta;
203
204 lockdep_assert_held(&rq->lock);
205
206 if (rq->clock_update_flags & RQCF_ACT_SKIP)
207 return;
208
209 #ifdef CONFIG_SCHED_DEBUG
210 if (sched_feat(WARN_DOUBLE_CLOCK))
211 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
212 rq->clock_update_flags |= RQCF_UPDATED;
213 #endif
214
215 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
216 if (delta < 0)
217 return;
218 rq->clock += delta;
219 update_rq_clock_task(rq, delta);
220 }
221
222
223 #ifdef CONFIG_SCHED_HRTICK
224 /*
225 * Use HR-timers to deliver accurate preemption points.
226 */
227
228 static void hrtick_clear(struct rq *rq)
229 {
230 if (hrtimer_active(&rq->hrtick_timer))
231 hrtimer_cancel(&rq->hrtick_timer);
232 }
233
234 /*
235 * High-resolution timer tick.
236 * Runs from hardirq context with interrupts disabled.
237 */
238 static enum hrtimer_restart hrtick(struct hrtimer *timer)
239 {
240 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
241 struct rq_flags rf;
242
243 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
244
245 rq_lock(rq, &rf);
246 update_rq_clock(rq);
247 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
248 rq_unlock(rq, &rf);
249
250 return HRTIMER_NORESTART;
251 }
252
253 #ifdef CONFIG_SMP
254
255 static void __hrtick_restart(struct rq *rq)
256 {
257 struct hrtimer *timer = &rq->hrtick_timer;
258
259 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
260 }
261
262 /*
263 * called from hardirq (IPI) context
264 */
265 static void __hrtick_start(void *arg)
266 {
267 struct rq *rq = arg;
268 struct rq_flags rf;
269
270 rq_lock(rq, &rf);
271 __hrtick_restart(rq);
272 rq->hrtick_csd_pending = 0;
273 rq_unlock(rq, &rf);
274 }
275
276 /*
277 * Called to set the hrtick timer state.
278 *
279 * called with rq->lock held and irqs disabled
280 */
281 void hrtick_start(struct rq *rq, u64 delay)
282 {
283 struct hrtimer *timer = &rq->hrtick_timer;
284 ktime_t time;
285 s64 delta;
286
287 /*
288 * Don't schedule slices shorter than 10000ns, that just
289 * doesn't make sense and can cause timer DoS.
290 */
291 delta = max_t(s64, delay, 10000LL);
292 time = ktime_add_ns(timer->base->get_time(), delta);
293
294 hrtimer_set_expires(timer, time);
295
296 if (rq == this_rq()) {
297 __hrtick_restart(rq);
298 } else if (!rq->hrtick_csd_pending) {
299 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
300 rq->hrtick_csd_pending = 1;
301 }
302 }
303
304 #else
305 /*
306 * Called to set the hrtick timer state.
307 *
308 * called with rq->lock held and irqs disabled
309 */
310 void hrtick_start(struct rq *rq, u64 delay)
311 {
312 /*
313 * Don't schedule slices shorter than 10000ns, that just
314 * doesn't make sense. Rely on vruntime for fairness.
315 */
316 delay = max_t(u64, delay, 10000LL);
317 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
318 HRTIMER_MODE_REL_PINNED_HARD);
319 }
320 #endif /* CONFIG_SMP */
321
322 static void hrtick_rq_init(struct rq *rq)
323 {
324 #ifdef CONFIG_SMP
325 rq->hrtick_csd_pending = 0;
326
327 rq->hrtick_csd.flags = 0;
328 rq->hrtick_csd.func = __hrtick_start;
329 rq->hrtick_csd.info = rq;
330 #endif
331
332 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
333 rq->hrtick_timer.function = hrtick;
334 }
335 #else /* CONFIG_SCHED_HRTICK */
336 static inline void hrtick_clear(struct rq *rq)
337 {
338 }
339
340 static inline void hrtick_rq_init(struct rq *rq)
341 {
342 }
343 #endif /* CONFIG_SCHED_HRTICK */
344
345 /*
346 * cmpxchg based fetch_or, macro so it works for different integer types
347 */
348 #define fetch_or(ptr, mask) \
349 ({ \
350 typeof(ptr) _ptr = (ptr); \
351 typeof(mask) _mask = (mask); \
352 typeof(*_ptr) _old, _val = *_ptr; \
353 \
354 for (;;) { \
355 _old = cmpxchg(_ptr, _val, _val | _mask); \
356 if (_old == _val) \
357 break; \
358 _val = _old; \
359 } \
360 _old; \
361 })
362
363 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
364 /*
365 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
366 * this avoids any races wrt polling state changes and thereby avoids
367 * spurious IPIs.
368 */
369 static bool set_nr_and_not_polling(struct task_struct *p)
370 {
371 struct thread_info *ti = task_thread_info(p);
372 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
373 }
374
375 /*
376 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
377 *
378 * If this returns true, then the idle task promises to call
379 * sched_ttwu_pending() and reschedule soon.
380 */
381 static bool set_nr_if_polling(struct task_struct *p)
382 {
383 struct thread_info *ti = task_thread_info(p);
384 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
385
386 for (;;) {
387 if (!(val & _TIF_POLLING_NRFLAG))
388 return false;
389 if (val & _TIF_NEED_RESCHED)
390 return true;
391 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
392 if (old == val)
393 break;
394 val = old;
395 }
396 return true;
397 }
398
399 #else
400 static bool set_nr_and_not_polling(struct task_struct *p)
401 {
402 set_tsk_need_resched(p);
403 return true;
404 }
405
406 #ifdef CONFIG_SMP
407 static bool set_nr_if_polling(struct task_struct *p)
408 {
409 return false;
410 }
411 #endif
412 #endif
413
414 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
415 {
416 struct wake_q_node *node = &task->wake_q;
417
418 /*
419 * Atomically grab the task, if ->wake_q is !nil already it means
420 * its already queued (either by us or someone else) and will get the
421 * wakeup due to that.
422 *
423 * In order to ensure that a pending wakeup will observe our pending
424 * state, even in the failed case, an explicit smp_mb() must be used.
425 */
426 smp_mb__before_atomic();
427 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
428 return false;
429
430 /*
431 * The head is context local, there can be no concurrency.
432 */
433 *head->lastp = node;
434 head->lastp = &node->next;
435 return true;
436 }
437
438 /**
439 * wake_q_add() - queue a wakeup for 'later' waking.
440 * @head: the wake_q_head to add @task to
441 * @task: the task to queue for 'later' wakeup
442 *
443 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
444 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
445 * instantly.
446 *
447 * This function must be used as-if it were wake_up_process(); IOW the task
448 * must be ready to be woken at this location.
449 */
450 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
451 {
452 if (__wake_q_add(head, task))
453 get_task_struct(task);
454 }
455
456 /**
457 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
458 * @head: the wake_q_head to add @task to
459 * @task: the task to queue for 'later' wakeup
460 *
461 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
462 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
463 * instantly.
464 *
465 * This function must be used as-if it were wake_up_process(); IOW the task
466 * must be ready to be woken at this location.
467 *
468 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
469 * that already hold reference to @task can call the 'safe' version and trust
470 * wake_q to do the right thing depending whether or not the @task is already
471 * queued for wakeup.
472 */
473 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
474 {
475 if (!__wake_q_add(head, task))
476 put_task_struct(task);
477 }
478
479 void wake_up_q(struct wake_q_head *head)
480 {
481 struct wake_q_node *node = head->first;
482
483 while (node != WAKE_Q_TAIL) {
484 struct task_struct *task;
485
486 task = container_of(node, struct task_struct, wake_q);
487 BUG_ON(!task);
488 /* Task can safely be re-inserted now: */
489 node = node->next;
490 task->wake_q.next = NULL;
491
492 /*
493 * wake_up_process() executes a full barrier, which pairs with
494 * the queueing in wake_q_add() so as not to miss wakeups.
495 */
496 wake_up_process(task);
497 put_task_struct(task);
498 }
499 }
500
501 /*
502 * resched_curr - mark rq's current task 'to be rescheduled now'.
503 *
504 * On UP this means the setting of the need_resched flag, on SMP it
505 * might also involve a cross-CPU call to trigger the scheduler on
506 * the target CPU.
507 */
508 void resched_curr(struct rq *rq)
509 {
510 struct task_struct *curr = rq->curr;
511 int cpu;
512
513 lockdep_assert_held(&rq->lock);
514
515 if (test_tsk_need_resched(curr))
516 return;
517
518 cpu = cpu_of(rq);
519
520 if (cpu == smp_processor_id()) {
521 set_tsk_need_resched(curr);
522 set_preempt_need_resched();
523 return;
524 }
525
526 if (set_nr_and_not_polling(curr))
527 smp_send_reschedule(cpu);
528 else
529 trace_sched_wake_idle_without_ipi(cpu);
530 }
531
532 void resched_cpu(int cpu)
533 {
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
537 raw_spin_lock_irqsave(&rq->lock, flags);
538 if (cpu_online(cpu) || cpu == smp_processor_id())
539 resched_curr(rq);
540 raw_spin_unlock_irqrestore(&rq->lock, flags);
541 }
542
543 #ifdef CONFIG_SMP
544 #ifdef CONFIG_NO_HZ_COMMON
545 /*
546 * In the semi idle case, use the nearest busy CPU for migrating timers
547 * from an idle CPU. This is good for power-savings.
548 *
549 * We don't do similar optimization for completely idle system, as
550 * selecting an idle CPU will add more delays to the timers than intended
551 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
552 */
553 int get_nohz_timer_target(void)
554 {
555 int i, cpu = smp_processor_id(), default_cpu = -1;
556 struct sched_domain *sd;
557
558 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
559 if (!idle_cpu(cpu))
560 return cpu;
561 default_cpu = cpu;
562 }
563
564 rcu_read_lock();
565 for_each_domain(cpu, sd) {
566 for_each_cpu_and(i, sched_domain_span(sd),
567 housekeeping_cpumask(HK_FLAG_TIMER)) {
568 if (cpu == i)
569 continue;
570
571 if (!idle_cpu(i)) {
572 cpu = i;
573 goto unlock;
574 }
575 }
576 }
577
578 if (default_cpu == -1)
579 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
580 cpu = default_cpu;
581 unlock:
582 rcu_read_unlock();
583 return cpu;
584 }
585
586 /*
587 * When add_timer_on() enqueues a timer into the timer wheel of an
588 * idle CPU then this timer might expire before the next timer event
589 * which is scheduled to wake up that CPU. In case of a completely
590 * idle system the next event might even be infinite time into the
591 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
592 * leaves the inner idle loop so the newly added timer is taken into
593 * account when the CPU goes back to idle and evaluates the timer
594 * wheel for the next timer event.
595 */
596 static void wake_up_idle_cpu(int cpu)
597 {
598 struct rq *rq = cpu_rq(cpu);
599
600 if (cpu == smp_processor_id())
601 return;
602
603 if (set_nr_and_not_polling(rq->idle))
604 smp_send_reschedule(cpu);
605 else
606 trace_sched_wake_idle_without_ipi(cpu);
607 }
608
609 static bool wake_up_full_nohz_cpu(int cpu)
610 {
611 /*
612 * We just need the target to call irq_exit() and re-evaluate
613 * the next tick. The nohz full kick at least implies that.
614 * If needed we can still optimize that later with an
615 * empty IRQ.
616 */
617 if (cpu_is_offline(cpu))
618 return true; /* Don't try to wake offline CPUs. */
619 if (tick_nohz_full_cpu(cpu)) {
620 if (cpu != smp_processor_id() ||
621 tick_nohz_tick_stopped())
622 tick_nohz_full_kick_cpu(cpu);
623 return true;
624 }
625
626 return false;
627 }
628
629 /*
630 * Wake up the specified CPU. If the CPU is going offline, it is the
631 * caller's responsibility to deal with the lost wakeup, for example,
632 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
633 */
634 void wake_up_nohz_cpu(int cpu)
635 {
636 if (!wake_up_full_nohz_cpu(cpu))
637 wake_up_idle_cpu(cpu);
638 }
639
640 static inline bool got_nohz_idle_kick(void)
641 {
642 int cpu = smp_processor_id();
643
644 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
645 return false;
646
647 if (idle_cpu(cpu) && !need_resched())
648 return true;
649
650 /*
651 * We can't run Idle Load Balance on this CPU for this time so we
652 * cancel it and clear NOHZ_BALANCE_KICK
653 */
654 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
655 return false;
656 }
657
658 #else /* CONFIG_NO_HZ_COMMON */
659
660 static inline bool got_nohz_idle_kick(void)
661 {
662 return false;
663 }
664
665 #endif /* CONFIG_NO_HZ_COMMON */
666
667 #ifdef CONFIG_NO_HZ_FULL
668 bool sched_can_stop_tick(struct rq *rq)
669 {
670 int fifo_nr_running;
671
672 /* Deadline tasks, even if single, need the tick */
673 if (rq->dl.dl_nr_running)
674 return false;
675
676 /*
677 * If there are more than one RR tasks, we need the tick to effect the
678 * actual RR behaviour.
679 */
680 if (rq->rt.rr_nr_running) {
681 if (rq->rt.rr_nr_running == 1)
682 return true;
683 else
684 return false;
685 }
686
687 /*
688 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
689 * forced preemption between FIFO tasks.
690 */
691 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
692 if (fifo_nr_running)
693 return true;
694
695 /*
696 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
697 * if there's more than one we need the tick for involuntary
698 * preemption.
699 */
700 if (rq->nr_running > 1)
701 return false;
702
703 return true;
704 }
705 #endif /* CONFIG_NO_HZ_FULL */
706 #endif /* CONFIG_SMP */
707
708 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
709 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
710 /*
711 * Iterate task_group tree rooted at *from, calling @down when first entering a
712 * node and @up when leaving it for the final time.
713 *
714 * Caller must hold rcu_lock or sufficient equivalent.
715 */
716 int walk_tg_tree_from(struct task_group *from,
717 tg_visitor down, tg_visitor up, void *data)
718 {
719 struct task_group *parent, *child;
720 int ret;
721
722 parent = from;
723
724 down:
725 ret = (*down)(parent, data);
726 if (ret)
727 goto out;
728 list_for_each_entry_rcu(child, &parent->children, siblings) {
729 parent = child;
730 goto down;
731
732 up:
733 continue;
734 }
735 ret = (*up)(parent, data);
736 if (ret || parent == from)
737 goto out;
738
739 child = parent;
740 parent = parent->parent;
741 if (parent)
742 goto up;
743 out:
744 return ret;
745 }
746
747 int tg_nop(struct task_group *tg, void *data)
748 {
749 return 0;
750 }
751 #endif
752
753 static void set_load_weight(struct task_struct *p, bool update_load)
754 {
755 int prio = p->static_prio - MAX_RT_PRIO;
756 struct load_weight *load = &p->se.load;
757
758 /*
759 * SCHED_IDLE tasks get minimal weight:
760 */
761 if (task_has_idle_policy(p)) {
762 load->weight = scale_load(WEIGHT_IDLEPRIO);
763 load->inv_weight = WMULT_IDLEPRIO;
764 return;
765 }
766
767 /*
768 * SCHED_OTHER tasks have to update their load when changing their
769 * weight
770 */
771 if (update_load && p->sched_class == &fair_sched_class) {
772 reweight_task(p, prio);
773 } else {
774 load->weight = scale_load(sched_prio_to_weight[prio]);
775 load->inv_weight = sched_prio_to_wmult[prio];
776 }
777 }
778
779 #ifdef CONFIG_UCLAMP_TASK
780 /*
781 * Serializes updates of utilization clamp values
782 *
783 * The (slow-path) user-space triggers utilization clamp value updates which
784 * can require updates on (fast-path) scheduler's data structures used to
785 * support enqueue/dequeue operations.
786 * While the per-CPU rq lock protects fast-path update operations, user-space
787 * requests are serialized using a mutex to reduce the risk of conflicting
788 * updates or API abuses.
789 */
790 static DEFINE_MUTEX(uclamp_mutex);
791
792 /* Max allowed minimum utilization */
793 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
794
795 /* Max allowed maximum utilization */
796 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
797
798 /* All clamps are required to be less or equal than these values */
799 static struct uclamp_se uclamp_default[UCLAMP_CNT];
800
801 /* Integer rounded range for each bucket */
802 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
803
804 #define for_each_clamp_id(clamp_id) \
805 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
806
807 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
808 {
809 return clamp_value / UCLAMP_BUCKET_DELTA;
810 }
811
812 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
813 {
814 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
815 }
816
817 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
818 {
819 if (clamp_id == UCLAMP_MIN)
820 return 0;
821 return SCHED_CAPACITY_SCALE;
822 }
823
824 static inline void uclamp_se_set(struct uclamp_se *uc_se,
825 unsigned int value, bool user_defined)
826 {
827 uc_se->value = value;
828 uc_se->bucket_id = uclamp_bucket_id(value);
829 uc_se->user_defined = user_defined;
830 }
831
832 static inline unsigned int
833 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
834 unsigned int clamp_value)
835 {
836 /*
837 * Avoid blocked utilization pushing up the frequency when we go
838 * idle (which drops the max-clamp) by retaining the last known
839 * max-clamp.
840 */
841 if (clamp_id == UCLAMP_MAX) {
842 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
843 return clamp_value;
844 }
845
846 return uclamp_none(UCLAMP_MIN);
847 }
848
849 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
850 unsigned int clamp_value)
851 {
852 /* Reset max-clamp retention only on idle exit */
853 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
854 return;
855
856 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
857 }
858
859 static inline
860 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
861 unsigned int clamp_value)
862 {
863 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
864 int bucket_id = UCLAMP_BUCKETS - 1;
865
866 /*
867 * Since both min and max clamps are max aggregated, find the
868 * top most bucket with tasks in.
869 */
870 for ( ; bucket_id >= 0; bucket_id--) {
871 if (!bucket[bucket_id].tasks)
872 continue;
873 return bucket[bucket_id].value;
874 }
875
876 /* No tasks -- default clamp values */
877 return uclamp_idle_value(rq, clamp_id, clamp_value);
878 }
879
880 static inline struct uclamp_se
881 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
882 {
883 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
884 #ifdef CONFIG_UCLAMP_TASK_GROUP
885 struct uclamp_se uc_max;
886
887 /*
888 * Tasks in autogroups or root task group will be
889 * restricted by system defaults.
890 */
891 if (task_group_is_autogroup(task_group(p)))
892 return uc_req;
893 if (task_group(p) == &root_task_group)
894 return uc_req;
895
896 uc_max = task_group(p)->uclamp[clamp_id];
897 if (uc_req.value > uc_max.value || !uc_req.user_defined)
898 return uc_max;
899 #endif
900
901 return uc_req;
902 }
903
904 /*
905 * The effective clamp bucket index of a task depends on, by increasing
906 * priority:
907 * - the task specific clamp value, when explicitly requested from userspace
908 * - the task group effective clamp value, for tasks not either in the root
909 * group or in an autogroup
910 * - the system default clamp value, defined by the sysadmin
911 */
912 static inline struct uclamp_se
913 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
914 {
915 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
916 struct uclamp_se uc_max = uclamp_default[clamp_id];
917
918 /* System default restrictions always apply */
919 if (unlikely(uc_req.value > uc_max.value))
920 return uc_max;
921
922 return uc_req;
923 }
924
925 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
926 {
927 struct uclamp_se uc_eff;
928
929 /* Task currently refcounted: use back-annotated (effective) value */
930 if (p->uclamp[clamp_id].active)
931 return (unsigned long)p->uclamp[clamp_id].value;
932
933 uc_eff = uclamp_eff_get(p, clamp_id);
934
935 return (unsigned long)uc_eff.value;
936 }
937
938 /*
939 * When a task is enqueued on a rq, the clamp bucket currently defined by the
940 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
941 * updates the rq's clamp value if required.
942 *
943 * Tasks can have a task-specific value requested from user-space, track
944 * within each bucket the maximum value for tasks refcounted in it.
945 * This "local max aggregation" allows to track the exact "requested" value
946 * for each bucket when all its RUNNABLE tasks require the same clamp.
947 */
948 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
949 enum uclamp_id clamp_id)
950 {
951 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
952 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
953 struct uclamp_bucket *bucket;
954
955 lockdep_assert_held(&rq->lock);
956
957 /* Update task effective clamp */
958 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
959
960 bucket = &uc_rq->bucket[uc_se->bucket_id];
961 bucket->tasks++;
962 uc_se->active = true;
963
964 uclamp_idle_reset(rq, clamp_id, uc_se->value);
965
966 /*
967 * Local max aggregation: rq buckets always track the max
968 * "requested" clamp value of its RUNNABLE tasks.
969 */
970 if (bucket->tasks == 1 || uc_se->value > bucket->value)
971 bucket->value = uc_se->value;
972
973 if (uc_se->value > READ_ONCE(uc_rq->value))
974 WRITE_ONCE(uc_rq->value, uc_se->value);
975 }
976
977 /*
978 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
979 * is released. If this is the last task reference counting the rq's max
980 * active clamp value, then the rq's clamp value is updated.
981 *
982 * Both refcounted tasks and rq's cached clamp values are expected to be
983 * always valid. If it's detected they are not, as defensive programming,
984 * enforce the expected state and warn.
985 */
986 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
987 enum uclamp_id clamp_id)
988 {
989 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
990 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
991 struct uclamp_bucket *bucket;
992 unsigned int bkt_clamp;
993 unsigned int rq_clamp;
994
995 lockdep_assert_held(&rq->lock);
996
997 bucket = &uc_rq->bucket[uc_se->bucket_id];
998 SCHED_WARN_ON(!bucket->tasks);
999 if (likely(bucket->tasks))
1000 bucket->tasks--;
1001 uc_se->active = false;
1002
1003 /*
1004 * Keep "local max aggregation" simple and accept to (possibly)
1005 * overboost some RUNNABLE tasks in the same bucket.
1006 * The rq clamp bucket value is reset to its base value whenever
1007 * there are no more RUNNABLE tasks refcounting it.
1008 */
1009 if (likely(bucket->tasks))
1010 return;
1011
1012 rq_clamp = READ_ONCE(uc_rq->value);
1013 /*
1014 * Defensive programming: this should never happen. If it happens,
1015 * e.g. due to future modification, warn and fixup the expected value.
1016 */
1017 SCHED_WARN_ON(bucket->value > rq_clamp);
1018 if (bucket->value >= rq_clamp) {
1019 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1020 WRITE_ONCE(uc_rq->value, bkt_clamp);
1021 }
1022 }
1023
1024 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1025 {
1026 enum uclamp_id clamp_id;
1027
1028 if (unlikely(!p->sched_class->uclamp_enabled))
1029 return;
1030
1031 for_each_clamp_id(clamp_id)
1032 uclamp_rq_inc_id(rq, p, clamp_id);
1033
1034 /* Reset clamp idle holding when there is one RUNNABLE task */
1035 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1036 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1037 }
1038
1039 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1040 {
1041 enum uclamp_id clamp_id;
1042
1043 if (unlikely(!p->sched_class->uclamp_enabled))
1044 return;
1045
1046 for_each_clamp_id(clamp_id)
1047 uclamp_rq_dec_id(rq, p, clamp_id);
1048 }
1049
1050 static inline void
1051 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1052 {
1053 struct rq_flags rf;
1054 struct rq *rq;
1055
1056 /*
1057 * Lock the task and the rq where the task is (or was) queued.
1058 *
1059 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1060 * price to pay to safely serialize util_{min,max} updates with
1061 * enqueues, dequeues and migration operations.
1062 * This is the same locking schema used by __set_cpus_allowed_ptr().
1063 */
1064 rq = task_rq_lock(p, &rf);
1065
1066 /*
1067 * Setting the clamp bucket is serialized by task_rq_lock().
1068 * If the task is not yet RUNNABLE and its task_struct is not
1069 * affecting a valid clamp bucket, the next time it's enqueued,
1070 * it will already see the updated clamp bucket value.
1071 */
1072 if (p->uclamp[clamp_id].active) {
1073 uclamp_rq_dec_id(rq, p, clamp_id);
1074 uclamp_rq_inc_id(rq, p, clamp_id);
1075 }
1076
1077 task_rq_unlock(rq, p, &rf);
1078 }
1079
1080 #ifdef CONFIG_UCLAMP_TASK_GROUP
1081 static inline void
1082 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1083 unsigned int clamps)
1084 {
1085 enum uclamp_id clamp_id;
1086 struct css_task_iter it;
1087 struct task_struct *p;
1088
1089 css_task_iter_start(css, 0, &it);
1090 while ((p = css_task_iter_next(&it))) {
1091 for_each_clamp_id(clamp_id) {
1092 if ((0x1 << clamp_id) & clamps)
1093 uclamp_update_active(p, clamp_id);
1094 }
1095 }
1096 css_task_iter_end(&it);
1097 }
1098
1099 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1100 static void uclamp_update_root_tg(void)
1101 {
1102 struct task_group *tg = &root_task_group;
1103
1104 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1105 sysctl_sched_uclamp_util_min, false);
1106 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1107 sysctl_sched_uclamp_util_max, false);
1108
1109 rcu_read_lock();
1110 cpu_util_update_eff(&root_task_group.css);
1111 rcu_read_unlock();
1112 }
1113 #else
1114 static void uclamp_update_root_tg(void) { }
1115 #endif
1116
1117 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1118 void __user *buffer, size_t *lenp,
1119 loff_t *ppos)
1120 {
1121 bool update_root_tg = false;
1122 int old_min, old_max;
1123 int result;
1124
1125 mutex_lock(&uclamp_mutex);
1126 old_min = sysctl_sched_uclamp_util_min;
1127 old_max = sysctl_sched_uclamp_util_max;
1128
1129 result = proc_dointvec(table, write, buffer, lenp, ppos);
1130 if (result)
1131 goto undo;
1132 if (!write)
1133 goto done;
1134
1135 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1136 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1137 result = -EINVAL;
1138 goto undo;
1139 }
1140
1141 if (old_min != sysctl_sched_uclamp_util_min) {
1142 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1143 sysctl_sched_uclamp_util_min, false);
1144 update_root_tg = true;
1145 }
1146 if (old_max != sysctl_sched_uclamp_util_max) {
1147 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1148 sysctl_sched_uclamp_util_max, false);
1149 update_root_tg = true;
1150 }
1151
1152 if (update_root_tg)
1153 uclamp_update_root_tg();
1154
1155 /*
1156 * We update all RUNNABLE tasks only when task groups are in use.
1157 * Otherwise, keep it simple and do just a lazy update at each next
1158 * task enqueue time.
1159 */
1160
1161 goto done;
1162
1163 undo:
1164 sysctl_sched_uclamp_util_min = old_min;
1165 sysctl_sched_uclamp_util_max = old_max;
1166 done:
1167 mutex_unlock(&uclamp_mutex);
1168
1169 return result;
1170 }
1171
1172 static int uclamp_validate(struct task_struct *p,
1173 const struct sched_attr *attr)
1174 {
1175 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1176 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1177
1178 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1179 lower_bound = attr->sched_util_min;
1180 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1181 upper_bound = attr->sched_util_max;
1182
1183 if (lower_bound > upper_bound)
1184 return -EINVAL;
1185 if (upper_bound > SCHED_CAPACITY_SCALE)
1186 return -EINVAL;
1187
1188 return 0;
1189 }
1190
1191 static void __setscheduler_uclamp(struct task_struct *p,
1192 const struct sched_attr *attr)
1193 {
1194 enum uclamp_id clamp_id;
1195
1196 /*
1197 * On scheduling class change, reset to default clamps for tasks
1198 * without a task-specific value.
1199 */
1200 for_each_clamp_id(clamp_id) {
1201 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1202 unsigned int clamp_value = uclamp_none(clamp_id);
1203
1204 /* Keep using defined clamps across class changes */
1205 if (uc_se->user_defined)
1206 continue;
1207
1208 /* By default, RT tasks always get 100% boost */
1209 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1210 clamp_value = uclamp_none(UCLAMP_MAX);
1211
1212 uclamp_se_set(uc_se, clamp_value, false);
1213 }
1214
1215 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1216 return;
1217
1218 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1219 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1220 attr->sched_util_min, true);
1221 }
1222
1223 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1224 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1225 attr->sched_util_max, true);
1226 }
1227 }
1228
1229 static void uclamp_fork(struct task_struct *p)
1230 {
1231 enum uclamp_id clamp_id;
1232
1233 for_each_clamp_id(clamp_id)
1234 p->uclamp[clamp_id].active = false;
1235
1236 if (likely(!p->sched_reset_on_fork))
1237 return;
1238
1239 for_each_clamp_id(clamp_id) {
1240 unsigned int clamp_value = uclamp_none(clamp_id);
1241
1242 /* By default, RT tasks always get 100% boost */
1243 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1244 clamp_value = uclamp_none(UCLAMP_MAX);
1245
1246 uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
1247 }
1248 }
1249
1250 static void __init init_uclamp(void)
1251 {
1252 struct uclamp_se uc_max = {};
1253 enum uclamp_id clamp_id;
1254 int cpu;
1255
1256 mutex_init(&uclamp_mutex);
1257
1258 for_each_possible_cpu(cpu) {
1259 memset(&cpu_rq(cpu)->uclamp, 0,
1260 sizeof(struct uclamp_rq)*UCLAMP_CNT);
1261 cpu_rq(cpu)->uclamp_flags = 0;
1262 }
1263
1264 for_each_clamp_id(clamp_id) {
1265 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1266 uclamp_none(clamp_id), false);
1267 }
1268
1269 /* System defaults allow max clamp values for both indexes */
1270 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1271 for_each_clamp_id(clamp_id) {
1272 uclamp_default[clamp_id] = uc_max;
1273 #ifdef CONFIG_UCLAMP_TASK_GROUP
1274 root_task_group.uclamp_req[clamp_id] = uc_max;
1275 root_task_group.uclamp[clamp_id] = uc_max;
1276 #endif
1277 }
1278 }
1279
1280 #else /* CONFIG_UCLAMP_TASK */
1281 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1282 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1283 static inline int uclamp_validate(struct task_struct *p,
1284 const struct sched_attr *attr)
1285 {
1286 return -EOPNOTSUPP;
1287 }
1288 static void __setscheduler_uclamp(struct task_struct *p,
1289 const struct sched_attr *attr) { }
1290 static inline void uclamp_fork(struct task_struct *p) { }
1291 static inline void init_uclamp(void) { }
1292 #endif /* CONFIG_UCLAMP_TASK */
1293
1294 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1295 {
1296 if (!(flags & ENQUEUE_NOCLOCK))
1297 update_rq_clock(rq);
1298
1299 if (!(flags & ENQUEUE_RESTORE)) {
1300 sched_info_queued(rq, p);
1301 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1302 }
1303
1304 uclamp_rq_inc(rq, p);
1305 p->sched_class->enqueue_task(rq, p, flags);
1306 }
1307
1308 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1309 {
1310 if (!(flags & DEQUEUE_NOCLOCK))
1311 update_rq_clock(rq);
1312
1313 if (!(flags & DEQUEUE_SAVE)) {
1314 sched_info_dequeued(rq, p);
1315 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1316 }
1317
1318 uclamp_rq_dec(rq, p);
1319 p->sched_class->dequeue_task(rq, p, flags);
1320 }
1321
1322 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1323 {
1324 if (task_contributes_to_load(p))
1325 rq->nr_uninterruptible--;
1326
1327 enqueue_task(rq, p, flags);
1328
1329 p->on_rq = TASK_ON_RQ_QUEUED;
1330 }
1331
1332 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1333 {
1334 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1335
1336 if (task_contributes_to_load(p))
1337 rq->nr_uninterruptible++;
1338
1339 dequeue_task(rq, p, flags);
1340 }
1341
1342 /*
1343 * __normal_prio - return the priority that is based on the static prio
1344 */
1345 static inline int __normal_prio(struct task_struct *p)
1346 {
1347 return p->static_prio;
1348 }
1349
1350 /*
1351 * Calculate the expected normal priority: i.e. priority
1352 * without taking RT-inheritance into account. Might be
1353 * boosted by interactivity modifiers. Changes upon fork,
1354 * setprio syscalls, and whenever the interactivity
1355 * estimator recalculates.
1356 */
1357 static inline int normal_prio(struct task_struct *p)
1358 {
1359 int prio;
1360
1361 if (task_has_dl_policy(p))
1362 prio = MAX_DL_PRIO-1;
1363 else if (task_has_rt_policy(p))
1364 prio = MAX_RT_PRIO-1 - p->rt_priority;
1365 else
1366 prio = __normal_prio(p);
1367 return prio;
1368 }
1369
1370 /*
1371 * Calculate the current priority, i.e. the priority
1372 * taken into account by the scheduler. This value might
1373 * be boosted by RT tasks, or might be boosted by
1374 * interactivity modifiers. Will be RT if the task got
1375 * RT-boosted. If not then it returns p->normal_prio.
1376 */
1377 static int effective_prio(struct task_struct *p)
1378 {
1379 p->normal_prio = normal_prio(p);
1380 /*
1381 * If we are RT tasks or we were boosted to RT priority,
1382 * keep the priority unchanged. Otherwise, update priority
1383 * to the normal priority:
1384 */
1385 if (!rt_prio(p->prio))
1386 return p->normal_prio;
1387 return p->prio;
1388 }
1389
1390 /**
1391 * task_curr - is this task currently executing on a CPU?
1392 * @p: the task in question.
1393 *
1394 * Return: 1 if the task is currently executing. 0 otherwise.
1395 */
1396 inline int task_curr(const struct task_struct *p)
1397 {
1398 return cpu_curr(task_cpu(p)) == p;
1399 }
1400
1401 /*
1402 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1403 * use the balance_callback list if you want balancing.
1404 *
1405 * this means any call to check_class_changed() must be followed by a call to
1406 * balance_callback().
1407 */
1408 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1409 const struct sched_class *prev_class,
1410 int oldprio)
1411 {
1412 if (prev_class != p->sched_class) {
1413 if (prev_class->switched_from)
1414 prev_class->switched_from(rq, p);
1415
1416 p->sched_class->switched_to(rq, p);
1417 } else if (oldprio != p->prio || dl_task(p))
1418 p->sched_class->prio_changed(rq, p, oldprio);
1419 }
1420
1421 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1422 {
1423 const struct sched_class *class;
1424
1425 if (p->sched_class == rq->curr->sched_class) {
1426 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1427 } else {
1428 for_each_class(class) {
1429 if (class == rq->curr->sched_class)
1430 break;
1431 if (class == p->sched_class) {
1432 resched_curr(rq);
1433 break;
1434 }
1435 }
1436 }
1437
1438 /*
1439 * A queue event has occurred, and we're going to schedule. In
1440 * this case, we can save a useless back to back clock update.
1441 */
1442 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1443 rq_clock_skip_update(rq);
1444 }
1445
1446 #ifdef CONFIG_SMP
1447
1448 /*
1449 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1450 * __set_cpus_allowed_ptr() and select_fallback_rq().
1451 */
1452 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1453 {
1454 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1455 return false;
1456
1457 if (is_per_cpu_kthread(p))
1458 return cpu_online(cpu);
1459
1460 return cpu_active(cpu);
1461 }
1462
1463 /*
1464 * This is how migration works:
1465 *
1466 * 1) we invoke migration_cpu_stop() on the target CPU using
1467 * stop_one_cpu().
1468 * 2) stopper starts to run (implicitly forcing the migrated thread
1469 * off the CPU)
1470 * 3) it checks whether the migrated task is still in the wrong runqueue.
1471 * 4) if it's in the wrong runqueue then the migration thread removes
1472 * it and puts it into the right queue.
1473 * 5) stopper completes and stop_one_cpu() returns and the migration
1474 * is done.
1475 */
1476
1477 /*
1478 * move_queued_task - move a queued task to new rq.
1479 *
1480 * Returns (locked) new rq. Old rq's lock is released.
1481 */
1482 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1483 struct task_struct *p, int new_cpu)
1484 {
1485 lockdep_assert_held(&rq->lock);
1486
1487 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1488 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1489 set_task_cpu(p, new_cpu);
1490 rq_unlock(rq, rf);
1491
1492 rq = cpu_rq(new_cpu);
1493
1494 rq_lock(rq, rf);
1495 BUG_ON(task_cpu(p) != new_cpu);
1496 enqueue_task(rq, p, 0);
1497 p->on_rq = TASK_ON_RQ_QUEUED;
1498 check_preempt_curr(rq, p, 0);
1499
1500 return rq;
1501 }
1502
1503 struct migration_arg {
1504 struct task_struct *task;
1505 int dest_cpu;
1506 };
1507
1508 /*
1509 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1510 * this because either it can't run here any more (set_cpus_allowed()
1511 * away from this CPU, or CPU going down), or because we're
1512 * attempting to rebalance this task on exec (sched_exec).
1513 *
1514 * So we race with normal scheduler movements, but that's OK, as long
1515 * as the task is no longer on this CPU.
1516 */
1517 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1518 struct task_struct *p, int dest_cpu)
1519 {
1520 /* Affinity changed (again). */
1521 if (!is_cpu_allowed(p, dest_cpu))
1522 return rq;
1523
1524 update_rq_clock(rq);
1525 rq = move_queued_task(rq, rf, p, dest_cpu);
1526
1527 return rq;
1528 }
1529
1530 /*
1531 * migration_cpu_stop - this will be executed by a highprio stopper thread
1532 * and performs thread migration by bumping thread off CPU then
1533 * 'pushing' onto another runqueue.
1534 */
1535 static int migration_cpu_stop(void *data)
1536 {
1537 struct migration_arg *arg = data;
1538 struct task_struct *p = arg->task;
1539 struct rq *rq = this_rq();
1540 struct rq_flags rf;
1541
1542 /*
1543 * The original target CPU might have gone down and we might
1544 * be on another CPU but it doesn't matter.
1545 */
1546 local_irq_disable();
1547 /*
1548 * We need to explicitly wake pending tasks before running
1549 * __migrate_task() such that we will not miss enforcing cpus_ptr
1550 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1551 */
1552 sched_ttwu_pending();
1553
1554 raw_spin_lock(&p->pi_lock);
1555 rq_lock(rq, &rf);
1556 /*
1557 * If task_rq(p) != rq, it cannot be migrated here, because we're
1558 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1559 * we're holding p->pi_lock.
1560 */
1561 if (task_rq(p) == rq) {
1562 if (task_on_rq_queued(p))
1563 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1564 else
1565 p->wake_cpu = arg->dest_cpu;
1566 }
1567 rq_unlock(rq, &rf);
1568 raw_spin_unlock(&p->pi_lock);
1569
1570 local_irq_enable();
1571 return 0;
1572 }
1573
1574 /*
1575 * sched_class::set_cpus_allowed must do the below, but is not required to
1576 * actually call this function.
1577 */
1578 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1579 {
1580 cpumask_copy(&p->cpus_mask, new_mask);
1581 p->nr_cpus_allowed = cpumask_weight(new_mask);
1582 }
1583
1584 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1585 {
1586 struct rq *rq = task_rq(p);
1587 bool queued, running;
1588
1589 lockdep_assert_held(&p->pi_lock);
1590
1591 queued = task_on_rq_queued(p);
1592 running = task_current(rq, p);
1593
1594 if (queued) {
1595 /*
1596 * Because __kthread_bind() calls this on blocked tasks without
1597 * holding rq->lock.
1598 */
1599 lockdep_assert_held(&rq->lock);
1600 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1601 }
1602 if (running)
1603 put_prev_task(rq, p);
1604
1605 p->sched_class->set_cpus_allowed(p, new_mask);
1606
1607 if (queued)
1608 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1609 if (running)
1610 set_next_task(rq, p);
1611 }
1612
1613 /*
1614 * Change a given task's CPU affinity. Migrate the thread to a
1615 * proper CPU and schedule it away if the CPU it's executing on
1616 * is removed from the allowed bitmask.
1617 *
1618 * NOTE: the caller must have a valid reference to the task, the
1619 * task must not exit() & deallocate itself prematurely. The
1620 * call is not atomic; no spinlocks may be held.
1621 */
1622 static int __set_cpus_allowed_ptr(struct task_struct *p,
1623 const struct cpumask *new_mask, bool check)
1624 {
1625 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1626 unsigned int dest_cpu;
1627 struct rq_flags rf;
1628 struct rq *rq;
1629 int ret = 0;
1630
1631 rq = task_rq_lock(p, &rf);
1632 update_rq_clock(rq);
1633
1634 if (p->flags & PF_KTHREAD) {
1635 /*
1636 * Kernel threads are allowed on online && !active CPUs
1637 */
1638 cpu_valid_mask = cpu_online_mask;
1639 }
1640
1641 /*
1642 * Must re-check here, to close a race against __kthread_bind(),
1643 * sched_setaffinity() is not guaranteed to observe the flag.
1644 */
1645 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1646 ret = -EINVAL;
1647 goto out;
1648 }
1649
1650 if (cpumask_equal(p->cpus_ptr, new_mask))
1651 goto out;
1652
1653 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1654 if (dest_cpu >= nr_cpu_ids) {
1655 ret = -EINVAL;
1656 goto out;
1657 }
1658
1659 do_set_cpus_allowed(p, new_mask);
1660
1661 if (p->flags & PF_KTHREAD) {
1662 /*
1663 * For kernel threads that do indeed end up on online &&
1664 * !active we want to ensure they are strict per-CPU threads.
1665 */
1666 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1667 !cpumask_intersects(new_mask, cpu_active_mask) &&
1668 p->nr_cpus_allowed != 1);
1669 }
1670
1671 /* Can the task run on the task's current CPU? If so, we're done */
1672 if (cpumask_test_cpu(task_cpu(p), new_mask))
1673 goto out;
1674
1675 if (task_running(rq, p) || p->state == TASK_WAKING) {
1676 struct migration_arg arg = { p, dest_cpu };
1677 /* Need help from migration thread: drop lock and wait. */
1678 task_rq_unlock(rq, p, &rf);
1679 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1680 return 0;
1681 } else if (task_on_rq_queued(p)) {
1682 /*
1683 * OK, since we're going to drop the lock immediately
1684 * afterwards anyway.
1685 */
1686 rq = move_queued_task(rq, &rf, p, dest_cpu);
1687 }
1688 out:
1689 task_rq_unlock(rq, p, &rf);
1690
1691 return ret;
1692 }
1693
1694 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1695 {
1696 return __set_cpus_allowed_ptr(p, new_mask, false);
1697 }
1698 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1699
1700 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1701 {
1702 #ifdef CONFIG_SCHED_DEBUG
1703 /*
1704 * We should never call set_task_cpu() on a blocked task,
1705 * ttwu() will sort out the placement.
1706 */
1707 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1708 !p->on_rq);
1709
1710 /*
1711 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1712 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1713 * time relying on p->on_rq.
1714 */
1715 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1716 p->sched_class == &fair_sched_class &&
1717 (p->on_rq && !task_on_rq_migrating(p)));
1718
1719 #ifdef CONFIG_LOCKDEP
1720 /*
1721 * The caller should hold either p->pi_lock or rq->lock, when changing
1722 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1723 *
1724 * sched_move_task() holds both and thus holding either pins the cgroup,
1725 * see task_group().
1726 *
1727 * Furthermore, all task_rq users should acquire both locks, see
1728 * task_rq_lock().
1729 */
1730 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1731 lockdep_is_held(&task_rq(p)->lock)));
1732 #endif
1733 /*
1734 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1735 */
1736 WARN_ON_ONCE(!cpu_online(new_cpu));
1737 #endif
1738
1739 trace_sched_migrate_task(p, new_cpu);
1740
1741 if (task_cpu(p) != new_cpu) {
1742 if (p->sched_class->migrate_task_rq)
1743 p->sched_class->migrate_task_rq(p, new_cpu);
1744 p->se.nr_migrations++;
1745 rseq_migrate(p);
1746 perf_event_task_migrate(p);
1747 }
1748
1749 __set_task_cpu(p, new_cpu);
1750 }
1751
1752 #ifdef CONFIG_NUMA_BALANCING
1753 static void __migrate_swap_task(struct task_struct *p, int cpu)
1754 {
1755 if (task_on_rq_queued(p)) {
1756 struct rq *src_rq, *dst_rq;
1757 struct rq_flags srf, drf;
1758
1759 src_rq = task_rq(p);
1760 dst_rq = cpu_rq(cpu);
1761
1762 rq_pin_lock(src_rq, &srf);
1763 rq_pin_lock(dst_rq, &drf);
1764
1765 deactivate_task(src_rq, p, 0);
1766 set_task_cpu(p, cpu);
1767 activate_task(dst_rq, p, 0);
1768 check_preempt_curr(dst_rq, p, 0);
1769
1770 rq_unpin_lock(dst_rq, &drf);
1771 rq_unpin_lock(src_rq, &srf);
1772
1773 } else {
1774 /*
1775 * Task isn't running anymore; make it appear like we migrated
1776 * it before it went to sleep. This means on wakeup we make the
1777 * previous CPU our target instead of where it really is.
1778 */
1779 p->wake_cpu = cpu;
1780 }
1781 }
1782
1783 struct migration_swap_arg {
1784 struct task_struct *src_task, *dst_task;
1785 int src_cpu, dst_cpu;
1786 };
1787
1788 static int migrate_swap_stop(void *data)
1789 {
1790 struct migration_swap_arg *arg = data;
1791 struct rq *src_rq, *dst_rq;
1792 int ret = -EAGAIN;
1793
1794 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1795 return -EAGAIN;
1796
1797 src_rq = cpu_rq(arg->src_cpu);
1798 dst_rq = cpu_rq(arg->dst_cpu);
1799
1800 double_raw_lock(&arg->src_task->pi_lock,
1801 &arg->dst_task->pi_lock);
1802 double_rq_lock(src_rq, dst_rq);
1803
1804 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1805 goto unlock;
1806
1807 if (task_cpu(arg->src_task) != arg->src_cpu)
1808 goto unlock;
1809
1810 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1811 goto unlock;
1812
1813 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1814 goto unlock;
1815
1816 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1817 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1818
1819 ret = 0;
1820
1821 unlock:
1822 double_rq_unlock(src_rq, dst_rq);
1823 raw_spin_unlock(&arg->dst_task->pi_lock);
1824 raw_spin_unlock(&arg->src_task->pi_lock);
1825
1826 return ret;
1827 }
1828
1829 /*
1830 * Cross migrate two tasks
1831 */
1832 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1833 int target_cpu, int curr_cpu)
1834 {
1835 struct migration_swap_arg arg;
1836 int ret = -EINVAL;
1837
1838 arg = (struct migration_swap_arg){
1839 .src_task = cur,
1840 .src_cpu = curr_cpu,
1841 .dst_task = p,
1842 .dst_cpu = target_cpu,
1843 };
1844
1845 if (arg.src_cpu == arg.dst_cpu)
1846 goto out;
1847
1848 /*
1849 * These three tests are all lockless; this is OK since all of them
1850 * will be re-checked with proper locks held further down the line.
1851 */
1852 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1853 goto out;
1854
1855 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1856 goto out;
1857
1858 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1859 goto out;
1860
1861 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1862 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1863
1864 out:
1865 return ret;
1866 }
1867 #endif /* CONFIG_NUMA_BALANCING */
1868
1869 /*
1870 * wait_task_inactive - wait for a thread to unschedule.
1871 *
1872 * If @match_state is nonzero, it's the @p->state value just checked and
1873 * not expected to change. If it changes, i.e. @p might have woken up,
1874 * then return zero. When we succeed in waiting for @p to be off its CPU,
1875 * we return a positive number (its total switch count). If a second call
1876 * a short while later returns the same number, the caller can be sure that
1877 * @p has remained unscheduled the whole time.
1878 *
1879 * The caller must ensure that the task *will* unschedule sometime soon,
1880 * else this function might spin for a *long* time. This function can't
1881 * be called with interrupts off, or it may introduce deadlock with
1882 * smp_call_function() if an IPI is sent by the same process we are
1883 * waiting to become inactive.
1884 */
1885 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1886 {
1887 int running, queued;
1888 struct rq_flags rf;
1889 unsigned long ncsw;
1890 struct rq *rq;
1891
1892 for (;;) {
1893 /*
1894 * We do the initial early heuristics without holding
1895 * any task-queue locks at all. We'll only try to get
1896 * the runqueue lock when things look like they will
1897 * work out!
1898 */
1899 rq = task_rq(p);
1900
1901 /*
1902 * If the task is actively running on another CPU
1903 * still, just relax and busy-wait without holding
1904 * any locks.
1905 *
1906 * NOTE! Since we don't hold any locks, it's not
1907 * even sure that "rq" stays as the right runqueue!
1908 * But we don't care, since "task_running()" will
1909 * return false if the runqueue has changed and p
1910 * is actually now running somewhere else!
1911 */
1912 while (task_running(rq, p)) {
1913 if (match_state && unlikely(p->state != match_state))
1914 return 0;
1915 cpu_relax();
1916 }
1917
1918 /*
1919 * Ok, time to look more closely! We need the rq
1920 * lock now, to be *sure*. If we're wrong, we'll
1921 * just go back and repeat.
1922 */
1923 rq = task_rq_lock(p, &rf);
1924 trace_sched_wait_task(p);
1925 running = task_running(rq, p);
1926 queued = task_on_rq_queued(p);
1927 ncsw = 0;
1928 if (!match_state || p->state == match_state)
1929 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1930 task_rq_unlock(rq, p, &rf);
1931
1932 /*
1933 * If it changed from the expected state, bail out now.
1934 */
1935 if (unlikely(!ncsw))
1936 break;
1937
1938 /*
1939 * Was it really running after all now that we
1940 * checked with the proper locks actually held?
1941 *
1942 * Oops. Go back and try again..
1943 */
1944 if (unlikely(running)) {
1945 cpu_relax();
1946 continue;
1947 }
1948
1949 /*
1950 * It's not enough that it's not actively running,
1951 * it must be off the runqueue _entirely_, and not
1952 * preempted!
1953 *
1954 * So if it was still runnable (but just not actively
1955 * running right now), it's preempted, and we should
1956 * yield - it could be a while.
1957 */
1958 if (unlikely(queued)) {
1959 ktime_t to = NSEC_PER_SEC / HZ;
1960
1961 set_current_state(TASK_UNINTERRUPTIBLE);
1962 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1963 continue;
1964 }
1965
1966 /*
1967 * Ahh, all good. It wasn't running, and it wasn't
1968 * runnable, which means that it will never become
1969 * running in the future either. We're all done!
1970 */
1971 break;
1972 }
1973
1974 return ncsw;
1975 }
1976
1977 /***
1978 * kick_process - kick a running thread to enter/exit the kernel
1979 * @p: the to-be-kicked thread
1980 *
1981 * Cause a process which is running on another CPU to enter
1982 * kernel-mode, without any delay. (to get signals handled.)
1983 *
1984 * NOTE: this function doesn't have to take the runqueue lock,
1985 * because all it wants to ensure is that the remote task enters
1986 * the kernel. If the IPI races and the task has been migrated
1987 * to another CPU then no harm is done and the purpose has been
1988 * achieved as well.
1989 */
1990 void kick_process(struct task_struct *p)
1991 {
1992 int cpu;
1993
1994 preempt_disable();
1995 cpu = task_cpu(p);
1996 if ((cpu != smp_processor_id()) && task_curr(p))
1997 smp_send_reschedule(cpu);
1998 preempt_enable();
1999 }
2000 EXPORT_SYMBOL_GPL(kick_process);
2001
2002 /*
2003 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2004 *
2005 * A few notes on cpu_active vs cpu_online:
2006 *
2007 * - cpu_active must be a subset of cpu_online
2008 *
2009 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2010 * see __set_cpus_allowed_ptr(). At this point the newly online
2011 * CPU isn't yet part of the sched domains, and balancing will not
2012 * see it.
2013 *
2014 * - on CPU-down we clear cpu_active() to mask the sched domains and
2015 * avoid the load balancer to place new tasks on the to be removed
2016 * CPU. Existing tasks will remain running there and will be taken
2017 * off.
2018 *
2019 * This means that fallback selection must not select !active CPUs.
2020 * And can assume that any active CPU must be online. Conversely
2021 * select_task_rq() below may allow selection of !active CPUs in order
2022 * to satisfy the above rules.
2023 */
2024 static int select_fallback_rq(int cpu, struct task_struct *p)
2025 {
2026 int nid = cpu_to_node(cpu);
2027 const struct cpumask *nodemask = NULL;
2028 enum { cpuset, possible, fail } state = cpuset;
2029 int dest_cpu;
2030
2031 /*
2032 * If the node that the CPU is on has been offlined, cpu_to_node()
2033 * will return -1. There is no CPU on the node, and we should
2034 * select the CPU on the other node.
2035 */
2036 if (nid != -1) {
2037 nodemask = cpumask_of_node(nid);
2038
2039 /* Look for allowed, online CPU in same node. */
2040 for_each_cpu(dest_cpu, nodemask) {
2041 if (!cpu_active(dest_cpu))
2042 continue;
2043 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2044 return dest_cpu;
2045 }
2046 }
2047
2048 for (;;) {
2049 /* Any allowed, online CPU? */
2050 for_each_cpu(dest_cpu, p->cpus_ptr) {
2051 if (!is_cpu_allowed(p, dest_cpu))
2052 continue;
2053
2054 goto out;
2055 }
2056
2057 /* No more Mr. Nice Guy. */
2058 switch (state) {
2059 case cpuset:
2060 if (IS_ENABLED(CONFIG_CPUSETS)) {
2061 cpuset_cpus_allowed_fallback(p);
2062 state = possible;
2063 break;
2064 }
2065 /* Fall-through */
2066 case possible:
2067 do_set_cpus_allowed(p, cpu_possible_mask);
2068 state = fail;
2069 break;
2070
2071 case fail:
2072 BUG();
2073 break;
2074 }
2075 }
2076
2077 out:
2078 if (state != cpuset) {
2079 /*
2080 * Don't tell them about moving exiting tasks or
2081 * kernel threads (both mm NULL), since they never
2082 * leave kernel.
2083 */
2084 if (p->mm && printk_ratelimit()) {
2085 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2086 task_pid_nr(p), p->comm, cpu);
2087 }
2088 }
2089
2090 return dest_cpu;
2091 }
2092
2093 /*
2094 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2095 */
2096 static inline
2097 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2098 {
2099 lockdep_assert_held(&p->pi_lock);
2100
2101 if (p->nr_cpus_allowed > 1)
2102 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2103 else
2104 cpu = cpumask_any(p->cpus_ptr);
2105
2106 /*
2107 * In order not to call set_task_cpu() on a blocking task we need
2108 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2109 * CPU.
2110 *
2111 * Since this is common to all placement strategies, this lives here.
2112 *
2113 * [ this allows ->select_task() to simply return task_cpu(p) and
2114 * not worry about this generic constraint ]
2115 */
2116 if (unlikely(!is_cpu_allowed(p, cpu)))
2117 cpu = select_fallback_rq(task_cpu(p), p);
2118
2119 return cpu;
2120 }
2121
2122 static void update_avg(u64 *avg, u64 sample)
2123 {
2124 s64 diff = sample - *avg;
2125 *avg += diff >> 3;
2126 }
2127
2128 void sched_set_stop_task(int cpu, struct task_struct *stop)
2129 {
2130 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2131 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2132
2133 if (stop) {
2134 /*
2135 * Make it appear like a SCHED_FIFO task, its something
2136 * userspace knows about and won't get confused about.
2137 *
2138 * Also, it will make PI more or less work without too
2139 * much confusion -- but then, stop work should not
2140 * rely on PI working anyway.
2141 */
2142 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2143
2144 stop->sched_class = &stop_sched_class;
2145 }
2146
2147 cpu_rq(cpu)->stop = stop;
2148
2149 if (old_stop) {
2150 /*
2151 * Reset it back to a normal scheduling class so that
2152 * it can die in pieces.
2153 */
2154 old_stop->sched_class = &rt_sched_class;
2155 }
2156 }
2157
2158 #else
2159
2160 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2161 const struct cpumask *new_mask, bool check)
2162 {
2163 return set_cpus_allowed_ptr(p, new_mask);
2164 }
2165
2166 #endif /* CONFIG_SMP */
2167
2168 static void
2169 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2170 {
2171 struct rq *rq;
2172
2173 if (!schedstat_enabled())
2174 return;
2175
2176 rq = this_rq();
2177
2178 #ifdef CONFIG_SMP
2179 if (cpu == rq->cpu) {
2180 __schedstat_inc(rq->ttwu_local);
2181 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2182 } else {
2183 struct sched_domain *sd;
2184
2185 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2186 rcu_read_lock();
2187 for_each_domain(rq->cpu, sd) {
2188 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2189 __schedstat_inc(sd->ttwu_wake_remote);
2190 break;
2191 }
2192 }
2193 rcu_read_unlock();
2194 }
2195
2196 if (wake_flags & WF_MIGRATED)
2197 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2198 #endif /* CONFIG_SMP */
2199
2200 __schedstat_inc(rq->ttwu_count);
2201 __schedstat_inc(p->se.statistics.nr_wakeups);
2202
2203 if (wake_flags & WF_SYNC)
2204 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2205 }
2206
2207 /*
2208 * Mark the task runnable and perform wakeup-preemption.
2209 */
2210 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2211 struct rq_flags *rf)
2212 {
2213 check_preempt_curr(rq, p, wake_flags);
2214 p->state = TASK_RUNNING;
2215 trace_sched_wakeup(p);
2216
2217 #ifdef CONFIG_SMP
2218 if (p->sched_class->task_woken) {
2219 /*
2220 * Our task @p is fully woken up and running; so its safe to
2221 * drop the rq->lock, hereafter rq is only used for statistics.
2222 */
2223 rq_unpin_lock(rq, rf);
2224 p->sched_class->task_woken(rq, p);
2225 rq_repin_lock(rq, rf);
2226 }
2227
2228 if (rq->idle_stamp) {
2229 u64 delta = rq_clock(rq) - rq->idle_stamp;
2230 u64 max = 2*rq->max_idle_balance_cost;
2231
2232 update_avg(&rq->avg_idle, delta);
2233
2234 if (rq->avg_idle > max)
2235 rq->avg_idle = max;
2236
2237 rq->idle_stamp = 0;
2238 }
2239 #endif
2240 }
2241
2242 static void
2243 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2244 struct rq_flags *rf)
2245 {
2246 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2247
2248 lockdep_assert_held(&rq->lock);
2249
2250 #ifdef CONFIG_SMP
2251 if (p->sched_contributes_to_load)
2252 rq->nr_uninterruptible--;
2253
2254 if (wake_flags & WF_MIGRATED)
2255 en_flags |= ENQUEUE_MIGRATED;
2256 #endif
2257
2258 activate_task(rq, p, en_flags);
2259 ttwu_do_wakeup(rq, p, wake_flags, rf);
2260 }
2261
2262 /*
2263 * Called in case the task @p isn't fully descheduled from its runqueue,
2264 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2265 * since all we need to do is flip p->state to TASK_RUNNING, since
2266 * the task is still ->on_rq.
2267 */
2268 static int ttwu_remote(struct task_struct *p, int wake_flags)
2269 {
2270 struct rq_flags rf;
2271 struct rq *rq;
2272 int ret = 0;
2273
2274 rq = __task_rq_lock(p, &rf);
2275 if (task_on_rq_queued(p)) {
2276 /* check_preempt_curr() may use rq clock */
2277 update_rq_clock(rq);
2278 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2279 ret = 1;
2280 }
2281 __task_rq_unlock(rq, &rf);
2282
2283 return ret;
2284 }
2285
2286 #ifdef CONFIG_SMP
2287 void sched_ttwu_pending(void)
2288 {
2289 struct rq *rq = this_rq();
2290 struct llist_node *llist = llist_del_all(&rq->wake_list);
2291 struct task_struct *p, *t;
2292 struct rq_flags rf;
2293
2294 if (!llist)
2295 return;
2296
2297 rq_lock_irqsave(rq, &rf);
2298 update_rq_clock(rq);
2299
2300 llist_for_each_entry_safe(p, t, llist, wake_entry)
2301 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2302
2303 rq_unlock_irqrestore(rq, &rf);
2304 }
2305
2306 void scheduler_ipi(void)
2307 {
2308 /*
2309 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2310 * TIF_NEED_RESCHED remotely (for the first time) will also send
2311 * this IPI.
2312 */
2313 preempt_fold_need_resched();
2314
2315 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2316 return;
2317
2318 /*
2319 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2320 * traditionally all their work was done from the interrupt return
2321 * path. Now that we actually do some work, we need to make sure
2322 * we do call them.
2323 *
2324 * Some archs already do call them, luckily irq_enter/exit nest
2325 * properly.
2326 *
2327 * Arguably we should visit all archs and update all handlers,
2328 * however a fair share of IPIs are still resched only so this would
2329 * somewhat pessimize the simple resched case.
2330 */
2331 irq_enter();
2332 sched_ttwu_pending();
2333
2334 /*
2335 * Check if someone kicked us for doing the nohz idle load balance.
2336 */
2337 if (unlikely(got_nohz_idle_kick())) {
2338 this_rq()->idle_balance = 1;
2339 raise_softirq_irqoff(SCHED_SOFTIRQ);
2340 }
2341 irq_exit();
2342 }
2343
2344 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2345 {
2346 struct rq *rq = cpu_rq(cpu);
2347
2348 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2349
2350 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2351 if (!set_nr_if_polling(rq->idle))
2352 smp_send_reschedule(cpu);
2353 else
2354 trace_sched_wake_idle_without_ipi(cpu);
2355 }
2356 }
2357
2358 void wake_up_if_idle(int cpu)
2359 {
2360 struct rq *rq = cpu_rq(cpu);
2361 struct rq_flags rf;
2362
2363 rcu_read_lock();
2364
2365 if (!is_idle_task(rcu_dereference(rq->curr)))
2366 goto out;
2367
2368 if (set_nr_if_polling(rq->idle)) {
2369 trace_sched_wake_idle_without_ipi(cpu);
2370 } else {
2371 rq_lock_irqsave(rq, &rf);
2372 if (is_idle_task(rq->curr))
2373 smp_send_reschedule(cpu);
2374 /* Else CPU is not idle, do nothing here: */
2375 rq_unlock_irqrestore(rq, &rf);
2376 }
2377
2378 out:
2379 rcu_read_unlock();
2380 }
2381
2382 bool cpus_share_cache(int this_cpu, int that_cpu)
2383 {
2384 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2385 }
2386 #endif /* CONFIG_SMP */
2387
2388 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2389 {
2390 struct rq *rq = cpu_rq(cpu);
2391 struct rq_flags rf;
2392
2393 #if defined(CONFIG_SMP)
2394 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2395 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2396 ttwu_queue_remote(p, cpu, wake_flags);
2397 return;
2398 }
2399 #endif
2400
2401 rq_lock(rq, &rf);
2402 update_rq_clock(rq);
2403 ttwu_do_activate(rq, p, wake_flags, &rf);
2404 rq_unlock(rq, &rf);
2405 }
2406
2407 /*
2408 * Notes on Program-Order guarantees on SMP systems.
2409 *
2410 * MIGRATION
2411 *
2412 * The basic program-order guarantee on SMP systems is that when a task [t]
2413 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2414 * execution on its new CPU [c1].
2415 *
2416 * For migration (of runnable tasks) this is provided by the following means:
2417 *
2418 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2419 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2420 * rq(c1)->lock (if not at the same time, then in that order).
2421 * C) LOCK of the rq(c1)->lock scheduling in task
2422 *
2423 * Release/acquire chaining guarantees that B happens after A and C after B.
2424 * Note: the CPU doing B need not be c0 or c1
2425 *
2426 * Example:
2427 *
2428 * CPU0 CPU1 CPU2
2429 *
2430 * LOCK rq(0)->lock
2431 * sched-out X
2432 * sched-in Y
2433 * UNLOCK rq(0)->lock
2434 *
2435 * LOCK rq(0)->lock // orders against CPU0
2436 * dequeue X
2437 * UNLOCK rq(0)->lock
2438 *
2439 * LOCK rq(1)->lock
2440 * enqueue X
2441 * UNLOCK rq(1)->lock
2442 *
2443 * LOCK rq(1)->lock // orders against CPU2
2444 * sched-out Z
2445 * sched-in X
2446 * UNLOCK rq(1)->lock
2447 *
2448 *
2449 * BLOCKING -- aka. SLEEP + WAKEUP
2450 *
2451 * For blocking we (obviously) need to provide the same guarantee as for
2452 * migration. However the means are completely different as there is no lock
2453 * chain to provide order. Instead we do:
2454 *
2455 * 1) smp_store_release(X->on_cpu, 0)
2456 * 2) smp_cond_load_acquire(!X->on_cpu)
2457 *
2458 * Example:
2459 *
2460 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2461 *
2462 * LOCK rq(0)->lock LOCK X->pi_lock
2463 * dequeue X
2464 * sched-out X
2465 * smp_store_release(X->on_cpu, 0);
2466 *
2467 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2468 * X->state = WAKING
2469 * set_task_cpu(X,2)
2470 *
2471 * LOCK rq(2)->lock
2472 * enqueue X
2473 * X->state = RUNNING
2474 * UNLOCK rq(2)->lock
2475 *
2476 * LOCK rq(2)->lock // orders against CPU1
2477 * sched-out Z
2478 * sched-in X
2479 * UNLOCK rq(2)->lock
2480 *
2481 * UNLOCK X->pi_lock
2482 * UNLOCK rq(0)->lock
2483 *
2484 *
2485 * However, for wakeups there is a second guarantee we must provide, namely we
2486 * must ensure that CONDITION=1 done by the caller can not be reordered with
2487 * accesses to the task state; see try_to_wake_up() and set_current_state().
2488 */
2489
2490 /**
2491 * try_to_wake_up - wake up a thread
2492 * @p: the thread to be awakened
2493 * @state: the mask of task states that can be woken
2494 * @wake_flags: wake modifier flags (WF_*)
2495 *
2496 * If (@state & @p->state) @p->state = TASK_RUNNING.
2497 *
2498 * If the task was not queued/runnable, also place it back on a runqueue.
2499 *
2500 * Atomic against schedule() which would dequeue a task, also see
2501 * set_current_state().
2502 *
2503 * This function executes a full memory barrier before accessing the task
2504 * state; see set_current_state().
2505 *
2506 * Return: %true if @p->state changes (an actual wakeup was done),
2507 * %false otherwise.
2508 */
2509 static int
2510 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2511 {
2512 unsigned long flags;
2513 int cpu, success = 0;
2514
2515 preempt_disable();
2516 if (p == current) {
2517 /*
2518 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2519 * == smp_processor_id()'. Together this means we can special
2520 * case the whole 'p->on_rq && ttwu_remote()' case below
2521 * without taking any locks.
2522 *
2523 * In particular:
2524 * - we rely on Program-Order guarantees for all the ordering,
2525 * - we're serialized against set_special_state() by virtue of
2526 * it disabling IRQs (this allows not taking ->pi_lock).
2527 */
2528 if (!(p->state & state))
2529 goto out;
2530
2531 success = 1;
2532 cpu = task_cpu(p);
2533 trace_sched_waking(p);
2534 p->state = TASK_RUNNING;
2535 trace_sched_wakeup(p);
2536 goto out;
2537 }
2538
2539 /*
2540 * If we are going to wake up a thread waiting for CONDITION we
2541 * need to ensure that CONDITION=1 done by the caller can not be
2542 * reordered with p->state check below. This pairs with mb() in
2543 * set_current_state() the waiting thread does.
2544 */
2545 raw_spin_lock_irqsave(&p->pi_lock, flags);
2546 smp_mb__after_spinlock();
2547 if (!(p->state & state))
2548 goto unlock;
2549
2550 trace_sched_waking(p);
2551
2552 /* We're going to change ->state: */
2553 success = 1;
2554 cpu = task_cpu(p);
2555
2556 /*
2557 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2558 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2559 * in smp_cond_load_acquire() below.
2560 *
2561 * sched_ttwu_pending() try_to_wake_up()
2562 * STORE p->on_rq = 1 LOAD p->state
2563 * UNLOCK rq->lock
2564 *
2565 * __schedule() (switch to task 'p')
2566 * LOCK rq->lock smp_rmb();
2567 * smp_mb__after_spinlock();
2568 * UNLOCK rq->lock
2569 *
2570 * [task p]
2571 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2572 *
2573 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2574 * __schedule(). See the comment for smp_mb__after_spinlock().
2575 */
2576 smp_rmb();
2577 if (p->on_rq && ttwu_remote(p, wake_flags))
2578 goto unlock;
2579
2580 #ifdef CONFIG_SMP
2581 /*
2582 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2583 * possible to, falsely, observe p->on_cpu == 0.
2584 *
2585 * One must be running (->on_cpu == 1) in order to remove oneself
2586 * from the runqueue.
2587 *
2588 * __schedule() (switch to task 'p') try_to_wake_up()
2589 * STORE p->on_cpu = 1 LOAD p->on_rq
2590 * UNLOCK rq->lock
2591 *
2592 * __schedule() (put 'p' to sleep)
2593 * LOCK rq->lock smp_rmb();
2594 * smp_mb__after_spinlock();
2595 * STORE p->on_rq = 0 LOAD p->on_cpu
2596 *
2597 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2598 * __schedule(). See the comment for smp_mb__after_spinlock().
2599 */
2600 smp_rmb();
2601
2602 /*
2603 * If the owning (remote) CPU is still in the middle of schedule() with
2604 * this task as prev, wait until its done referencing the task.
2605 *
2606 * Pairs with the smp_store_release() in finish_task().
2607 *
2608 * This ensures that tasks getting woken will be fully ordered against
2609 * their previous state and preserve Program Order.
2610 */
2611 smp_cond_load_acquire(&p->on_cpu, !VAL);
2612
2613 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2614 p->state = TASK_WAKING;
2615
2616 if (p->in_iowait) {
2617 delayacct_blkio_end(p);
2618 atomic_dec(&task_rq(p)->nr_iowait);
2619 }
2620
2621 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2622 if (task_cpu(p) != cpu) {
2623 wake_flags |= WF_MIGRATED;
2624 psi_ttwu_dequeue(p);
2625 set_task_cpu(p, cpu);
2626 }
2627
2628 #else /* CONFIG_SMP */
2629
2630 if (p->in_iowait) {
2631 delayacct_blkio_end(p);
2632 atomic_dec(&task_rq(p)->nr_iowait);
2633 }
2634
2635 #endif /* CONFIG_SMP */
2636
2637 ttwu_queue(p, cpu, wake_flags);
2638 unlock:
2639 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2640 out:
2641 if (success)
2642 ttwu_stat(p, cpu, wake_flags);
2643 preempt_enable();
2644
2645 return success;
2646 }
2647
2648 /**
2649 * wake_up_process - Wake up a specific process
2650 * @p: The process to be woken up.
2651 *
2652 * Attempt to wake up the nominated process and move it to the set of runnable
2653 * processes.
2654 *
2655 * Return: 1 if the process was woken up, 0 if it was already running.
2656 *
2657 * This function executes a full memory barrier before accessing the task state.
2658 */
2659 int wake_up_process(struct task_struct *p)
2660 {
2661 return try_to_wake_up(p, TASK_NORMAL, 0);
2662 }
2663 EXPORT_SYMBOL(wake_up_process);
2664
2665 int wake_up_state(struct task_struct *p, unsigned int state)
2666 {
2667 return try_to_wake_up(p, state, 0);
2668 }
2669
2670 /*
2671 * Perform scheduler related setup for a newly forked process p.
2672 * p is forked by current.
2673 *
2674 * __sched_fork() is basic setup used by init_idle() too:
2675 */
2676 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2677 {
2678 p->on_rq = 0;
2679
2680 p->se.on_rq = 0;
2681 p->se.exec_start = 0;
2682 p->se.sum_exec_runtime = 0;
2683 p->se.prev_sum_exec_runtime = 0;
2684 p->se.nr_migrations = 0;
2685 p->se.vruntime = 0;
2686 INIT_LIST_HEAD(&p->se.group_node);
2687
2688 #ifdef CONFIG_FAIR_GROUP_SCHED
2689 p->se.cfs_rq = NULL;
2690 #endif
2691
2692 #ifdef CONFIG_SCHEDSTATS
2693 /* Even if schedstat is disabled, there should not be garbage */
2694 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2695 #endif
2696
2697 RB_CLEAR_NODE(&p->dl.rb_node);
2698 init_dl_task_timer(&p->dl);
2699 init_dl_inactive_task_timer(&p->dl);
2700 __dl_clear_params(p);
2701
2702 INIT_LIST_HEAD(&p->rt.run_list);
2703 p->rt.timeout = 0;
2704 p->rt.time_slice = sched_rr_timeslice;
2705 p->rt.on_rq = 0;
2706 p->rt.on_list = 0;
2707
2708 #ifdef CONFIG_PREEMPT_NOTIFIERS
2709 INIT_HLIST_HEAD(&p->preempt_notifiers);
2710 #endif
2711
2712 #ifdef CONFIG_COMPACTION
2713 p->capture_control = NULL;
2714 #endif
2715 init_numa_balancing(clone_flags, p);
2716 }
2717
2718 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2719
2720 #ifdef CONFIG_NUMA_BALANCING
2721
2722 void set_numabalancing_state(bool enabled)
2723 {
2724 if (enabled)
2725 static_branch_enable(&sched_numa_balancing);
2726 else
2727 static_branch_disable(&sched_numa_balancing);
2728 }
2729
2730 #ifdef CONFIG_PROC_SYSCTL
2731 int sysctl_numa_balancing(struct ctl_table *table, int write,
2732 void __user *buffer, size_t *lenp, loff_t *ppos)
2733 {
2734 struct ctl_table t;
2735 int err;
2736 int state = static_branch_likely(&sched_numa_balancing);
2737
2738 if (write && !capable(CAP_SYS_ADMIN))
2739 return -EPERM;
2740
2741 t = *table;
2742 t.data = &state;
2743 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2744 if (err < 0)
2745 return err;
2746 if (write)
2747 set_numabalancing_state(state);
2748 return err;
2749 }
2750 #endif
2751 #endif
2752
2753 #ifdef CONFIG_SCHEDSTATS
2754
2755 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2756 static bool __initdata __sched_schedstats = false;
2757
2758 static void set_schedstats(bool enabled)
2759 {
2760 if (enabled)
2761 static_branch_enable(&sched_schedstats);
2762 else
2763 static_branch_disable(&sched_schedstats);
2764 }
2765
2766 void force_schedstat_enabled(void)
2767 {
2768 if (!schedstat_enabled()) {
2769 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2770 static_branch_enable(&sched_schedstats);
2771 }
2772 }
2773
2774 static int __init setup_schedstats(char *str)
2775 {
2776 int ret = 0;
2777 if (!str)
2778 goto out;
2779
2780 /*
2781 * This code is called before jump labels have been set up, so we can't
2782 * change the static branch directly just yet. Instead set a temporary
2783 * variable so init_schedstats() can do it later.
2784 */
2785 if (!strcmp(str, "enable")) {
2786 __sched_schedstats = true;
2787 ret = 1;
2788 } else if (!strcmp(str, "disable")) {
2789 __sched_schedstats = false;
2790 ret = 1;
2791 }
2792 out:
2793 if (!ret)
2794 pr_warn("Unable to parse schedstats=\n");
2795
2796 return ret;
2797 }
2798 __setup("schedstats=", setup_schedstats);
2799
2800 static void __init init_schedstats(void)
2801 {
2802 set_schedstats(__sched_schedstats);
2803 }
2804
2805 #ifdef CONFIG_PROC_SYSCTL
2806 int sysctl_schedstats(struct ctl_table *table, int write,
2807 void __user *buffer, size_t *lenp, loff_t *ppos)
2808 {
2809 struct ctl_table t;
2810 int err;
2811 int state = static_branch_likely(&sched_schedstats);
2812
2813 if (write && !capable(CAP_SYS_ADMIN))
2814 return -EPERM;
2815
2816 t = *table;
2817 t.data = &state;
2818 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2819 if (err < 0)
2820 return err;
2821 if (write)
2822 set_schedstats(state);
2823 return err;
2824 }
2825 #endif /* CONFIG_PROC_SYSCTL */
2826 #else /* !CONFIG_SCHEDSTATS */
2827 static inline void init_schedstats(void) {}
2828 #endif /* CONFIG_SCHEDSTATS */
2829
2830 /*
2831 * fork()/clone()-time setup:
2832 */
2833 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2834 {
2835 unsigned long flags;
2836
2837 __sched_fork(clone_flags, p);
2838 /*
2839 * We mark the process as NEW here. This guarantees that
2840 * nobody will actually run it, and a signal or other external
2841 * event cannot wake it up and insert it on the runqueue either.
2842 */
2843 p->state = TASK_NEW;
2844
2845 /*
2846 * Make sure we do not leak PI boosting priority to the child.
2847 */
2848 p->prio = current->normal_prio;
2849
2850 uclamp_fork(p);
2851
2852 /*
2853 * Revert to default priority/policy on fork if requested.
2854 */
2855 if (unlikely(p->sched_reset_on_fork)) {
2856 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2857 p->policy = SCHED_NORMAL;
2858 p->static_prio = NICE_TO_PRIO(0);
2859 p->rt_priority = 0;
2860 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2861 p->static_prio = NICE_TO_PRIO(0);
2862
2863 p->prio = p->normal_prio = __normal_prio(p);
2864 set_load_weight(p, false);
2865
2866 /*
2867 * We don't need the reset flag anymore after the fork. It has
2868 * fulfilled its duty:
2869 */
2870 p->sched_reset_on_fork = 0;
2871 }
2872
2873 if (dl_prio(p->prio))
2874 return -EAGAIN;
2875 else if (rt_prio(p->prio))
2876 p->sched_class = &rt_sched_class;
2877 else
2878 p->sched_class = &fair_sched_class;
2879
2880 init_entity_runnable_average(&p->se);
2881
2882 /*
2883 * The child is not yet in the pid-hash so no cgroup attach races,
2884 * and the cgroup is pinned to this child due to cgroup_fork()
2885 * is ran before sched_fork().
2886 *
2887 * Silence PROVE_RCU.
2888 */
2889 raw_spin_lock_irqsave(&p->pi_lock, flags);
2890 /*
2891 * We're setting the CPU for the first time, we don't migrate,
2892 * so use __set_task_cpu().
2893 */
2894 __set_task_cpu(p, smp_processor_id());
2895 if (p->sched_class->task_fork)
2896 p->sched_class->task_fork(p);
2897 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2898
2899 #ifdef CONFIG_SCHED_INFO
2900 if (likely(sched_info_on()))
2901 memset(&p->sched_info, 0, sizeof(p->sched_info));
2902 #endif
2903 #if defined(CONFIG_SMP)
2904 p->on_cpu = 0;
2905 #endif
2906 init_task_preempt_count(p);
2907 #ifdef CONFIG_SMP
2908 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2909 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2910 #endif
2911 return 0;
2912 }
2913
2914 unsigned long to_ratio(u64 period, u64 runtime)
2915 {
2916 if (runtime == RUNTIME_INF)
2917 return BW_UNIT;
2918
2919 /*
2920 * Doing this here saves a lot of checks in all
2921 * the calling paths, and returning zero seems
2922 * safe for them anyway.
2923 */
2924 if (period == 0)
2925 return 0;
2926
2927 return div64_u64(runtime << BW_SHIFT, period);
2928 }
2929
2930 /*
2931 * wake_up_new_task - wake up a newly created task for the first time.
2932 *
2933 * This function will do some initial scheduler statistics housekeeping
2934 * that must be done for every newly created context, then puts the task
2935 * on the runqueue and wakes it.
2936 */
2937 void wake_up_new_task(struct task_struct *p)
2938 {
2939 struct rq_flags rf;
2940 struct rq *rq;
2941
2942 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2943 p->state = TASK_RUNNING;
2944 #ifdef CONFIG_SMP
2945 /*
2946 * Fork balancing, do it here and not earlier because:
2947 * - cpus_ptr can change in the fork path
2948 * - any previously selected CPU might disappear through hotplug
2949 *
2950 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2951 * as we're not fully set-up yet.
2952 */
2953 p->recent_used_cpu = task_cpu(p);
2954 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2955 #endif
2956 rq = __task_rq_lock(p, &rf);
2957 update_rq_clock(rq);
2958 post_init_entity_util_avg(p);
2959
2960 activate_task(rq, p, ENQUEUE_NOCLOCK);
2961 trace_sched_wakeup_new(p);
2962 check_preempt_curr(rq, p, WF_FORK);
2963 #ifdef CONFIG_SMP
2964 if (p->sched_class->task_woken) {
2965 /*
2966 * Nothing relies on rq->lock after this, so its fine to
2967 * drop it.
2968 */
2969 rq_unpin_lock(rq, &rf);
2970 p->sched_class->task_woken(rq, p);
2971 rq_repin_lock(rq, &rf);
2972 }
2973 #endif
2974 task_rq_unlock(rq, p, &rf);
2975 }
2976
2977 #ifdef CONFIG_PREEMPT_NOTIFIERS
2978
2979 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2980
2981 void preempt_notifier_inc(void)
2982 {
2983 static_branch_inc(&preempt_notifier_key);
2984 }
2985 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2986
2987 void preempt_notifier_dec(void)
2988 {
2989 static_branch_dec(&preempt_notifier_key);
2990 }
2991 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2992
2993 /**
2994 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2995 * @notifier: notifier struct to register
2996 */
2997 void preempt_notifier_register(struct preempt_notifier *notifier)
2998 {
2999 if (!static_branch_unlikely(&preempt_notifier_key))
3000 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3001
3002 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3003 }
3004 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3005
3006 /**
3007 * preempt_notifier_unregister - no longer interested in preemption notifications
3008 * @notifier: notifier struct to unregister
3009 *
3010 * This is *not* safe to call from within a preemption notifier.
3011 */
3012 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3013 {
3014 hlist_del(&notifier->link);
3015 }
3016 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3017
3018 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3019 {
3020 struct preempt_notifier *notifier;
3021
3022 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3023 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3024 }
3025
3026 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3027 {
3028 if (static_branch_unlikely(&preempt_notifier_key))
3029 __fire_sched_in_preempt_notifiers(curr);
3030 }
3031
3032 static void
3033 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3034 struct task_struct *next)
3035 {
3036 struct preempt_notifier *notifier;
3037
3038 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3039 notifier->ops->sched_out(notifier, next);
3040 }
3041
3042 static __always_inline void
3043 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3044 struct task_struct *next)
3045 {
3046 if (static_branch_unlikely(&preempt_notifier_key))
3047 __fire_sched_out_preempt_notifiers(curr, next);
3048 }
3049
3050 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3051
3052 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3053 {
3054 }
3055
3056 static inline void
3057 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3058 struct task_struct *next)
3059 {
3060 }
3061
3062 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3063
3064 static inline void prepare_task(struct task_struct *next)
3065 {
3066 #ifdef CONFIG_SMP
3067 /*
3068 * Claim the task as running, we do this before switching to it
3069 * such that any running task will have this set.
3070 */
3071 next->on_cpu = 1;
3072 #endif
3073 }
3074
3075 static inline void finish_task(struct task_struct *prev)
3076 {
3077 #ifdef CONFIG_SMP
3078 /*
3079 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3080 * We must ensure this doesn't happen until the switch is completely
3081 * finished.
3082 *
3083 * In particular, the load of prev->state in finish_task_switch() must
3084 * happen before this.
3085 *
3086 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3087 */
3088 smp_store_release(&prev->on_cpu, 0);
3089 #endif
3090 }
3091
3092 static inline void
3093 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3094 {
3095 /*
3096 * Since the runqueue lock will be released by the next
3097 * task (which is an invalid locking op but in the case
3098 * of the scheduler it's an obvious special-case), so we
3099 * do an early lockdep release here:
3100 */
3101 rq_unpin_lock(rq, rf);
3102 spin_release(&rq->lock.dep_map, _THIS_IP_);
3103 #ifdef CONFIG_DEBUG_SPINLOCK
3104 /* this is a valid case when another task releases the spinlock */
3105 rq->lock.owner = next;
3106 #endif
3107 }
3108
3109 static inline void finish_lock_switch(struct rq *rq)
3110 {
3111 /*
3112 * If we are tracking spinlock dependencies then we have to
3113 * fix up the runqueue lock - which gets 'carried over' from
3114 * prev into current:
3115 */
3116 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3117 raw_spin_unlock_irq(&rq->lock);
3118 }
3119
3120 /*
3121 * NOP if the arch has not defined these:
3122 */
3123
3124 #ifndef prepare_arch_switch
3125 # define prepare_arch_switch(next) do { } while (0)
3126 #endif
3127
3128 #ifndef finish_arch_post_lock_switch
3129 # define finish_arch_post_lock_switch() do { } while (0)
3130 #endif
3131
3132 /**
3133 * prepare_task_switch - prepare to switch tasks
3134 * @rq: the runqueue preparing to switch
3135 * @prev: the current task that is being switched out
3136 * @next: the task we are going to switch to.
3137 *
3138 * This is called with the rq lock held and interrupts off. It must
3139 * be paired with a subsequent finish_task_switch after the context
3140 * switch.
3141 *
3142 * prepare_task_switch sets up locking and calls architecture specific
3143 * hooks.
3144 */
3145 static inline void
3146 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3147 struct task_struct *next)
3148 {
3149 kcov_prepare_switch(prev);
3150 sched_info_switch(rq, prev, next);
3151 perf_event_task_sched_out(prev, next);
3152 rseq_preempt(prev);
3153 fire_sched_out_preempt_notifiers(prev, next);
3154 prepare_task(next);
3155 prepare_arch_switch(next);
3156 }
3157
3158 /**
3159 * finish_task_switch - clean up after a task-switch
3160 * @prev: the thread we just switched away from.
3161 *
3162 * finish_task_switch must be called after the context switch, paired
3163 * with a prepare_task_switch call before the context switch.
3164 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3165 * and do any other architecture-specific cleanup actions.
3166 *
3167 * Note that we may have delayed dropping an mm in context_switch(). If
3168 * so, we finish that here outside of the runqueue lock. (Doing it
3169 * with the lock held can cause deadlocks; see schedule() for
3170 * details.)
3171 *
3172 * The context switch have flipped the stack from under us and restored the
3173 * local variables which were saved when this task called schedule() in the
3174 * past. prev == current is still correct but we need to recalculate this_rq
3175 * because prev may have moved to another CPU.
3176 */
3177 static struct rq *finish_task_switch(struct task_struct *prev)
3178 __releases(rq->lock)
3179 {
3180 struct rq *rq = this_rq();
3181 struct mm_struct *mm = rq->prev_mm;
3182 long prev_state;
3183
3184 /*
3185 * The previous task will have left us with a preempt_count of 2
3186 * because it left us after:
3187 *
3188 * schedule()
3189 * preempt_disable(); // 1
3190 * __schedule()
3191 * raw_spin_lock_irq(&rq->lock) // 2
3192 *
3193 * Also, see FORK_PREEMPT_COUNT.
3194 */
3195 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3196 "corrupted preempt_count: %s/%d/0x%x\n",
3197 current->comm, current->pid, preempt_count()))
3198 preempt_count_set(FORK_PREEMPT_COUNT);
3199
3200 rq->prev_mm = NULL;
3201
3202 /*
3203 * A task struct has one reference for the use as "current".
3204 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3205 * schedule one last time. The schedule call will never return, and
3206 * the scheduled task must drop that reference.
3207 *
3208 * We must observe prev->state before clearing prev->on_cpu (in
3209 * finish_task), otherwise a concurrent wakeup can get prev
3210 * running on another CPU and we could rave with its RUNNING -> DEAD
3211 * transition, resulting in a double drop.
3212 */
3213 prev_state = prev->state;
3214 vtime_task_switch(prev);
3215 perf_event_task_sched_in(prev, current);
3216 finish_task(prev);
3217 finish_lock_switch(rq);
3218 finish_arch_post_lock_switch();
3219 kcov_finish_switch(current);
3220
3221 fire_sched_in_preempt_notifiers(current);
3222 /*
3223 * When switching through a kernel thread, the loop in
3224 * membarrier_{private,global}_expedited() may have observed that
3225 * kernel thread and not issued an IPI. It is therefore possible to
3226 * schedule between user->kernel->user threads without passing though
3227 * switch_mm(). Membarrier requires a barrier after storing to
3228 * rq->curr, before returning to userspace, so provide them here:
3229 *
3230 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3231 * provided by mmdrop(),
3232 * - a sync_core for SYNC_CORE.
3233 */
3234 if (mm) {
3235 membarrier_mm_sync_core_before_usermode(mm);
3236 mmdrop(mm);
3237 }
3238 if (unlikely(prev_state == TASK_DEAD)) {
3239 if (prev->sched_class->task_dead)
3240 prev->sched_class->task_dead(prev);
3241
3242 /*
3243 * Remove function-return probe instances associated with this
3244 * task and put them back on the free list.
3245 */
3246 kprobe_flush_task(prev);
3247
3248 /* Task is done with its stack. */
3249 put_task_stack(prev);
3250
3251 put_task_struct_rcu_user(prev);
3252 }
3253
3254 tick_nohz_task_switch();
3255 return rq;
3256 }
3257
3258 #ifdef CONFIG_SMP
3259
3260 /* rq->lock is NOT held, but preemption is disabled */
3261 static void __balance_callback(struct rq *rq)
3262 {
3263 struct callback_head *head, *next;
3264 void (*func)(struct rq *rq);
3265 unsigned long flags;
3266
3267 raw_spin_lock_irqsave(&rq->lock, flags);
3268 head = rq->balance_callback;
3269 rq->balance_callback = NULL;
3270 while (head) {
3271 func = (void (*)(struct rq *))head->func;
3272 next = head->next;
3273 head->next = NULL;
3274 head = next;
3275
3276 func(rq);
3277 }
3278 raw_spin_unlock_irqrestore(&rq->lock, flags);
3279 }
3280
3281 static inline void balance_callback(struct rq *rq)
3282 {
3283 if (unlikely(rq->balance_callback))
3284 __balance_callback(rq);
3285 }
3286
3287 #else
3288
3289 static inline void balance_callback(struct rq *rq)
3290 {
3291 }
3292
3293 #endif
3294
3295 /**
3296 * schedule_tail - first thing a freshly forked thread must call.
3297 * @prev: the thread we just switched away from.
3298 */
3299 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3300 __releases(rq->lock)
3301 {
3302 struct rq *rq;
3303
3304 /*
3305 * New tasks start with FORK_PREEMPT_COUNT, see there and
3306 * finish_task_switch() for details.
3307 *
3308 * finish_task_switch() will drop rq->lock() and lower preempt_count
3309 * and the preempt_enable() will end up enabling preemption (on
3310 * PREEMPT_COUNT kernels).
3311 */
3312
3313 rq = finish_task_switch(prev);
3314 balance_callback(rq);
3315 preempt_enable();
3316
3317 if (current->set_child_tid)
3318 put_user(task_pid_vnr(current), current->set_child_tid);
3319
3320 calculate_sigpending();
3321 }
3322
3323 /*
3324 * context_switch - switch to the new MM and the new thread's register state.
3325 */
3326 static __always_inline struct rq *
3327 context_switch(struct rq *rq, struct task_struct *prev,
3328 struct task_struct *next, struct rq_flags *rf)
3329 {
3330 prepare_task_switch(rq, prev, next);
3331
3332 /*
3333 * For paravirt, this is coupled with an exit in switch_to to
3334 * combine the page table reload and the switch backend into
3335 * one hypercall.
3336 */
3337 arch_start_context_switch(prev);
3338
3339 /*
3340 * kernel -> kernel lazy + transfer active
3341 * user -> kernel lazy + mmgrab() active
3342 *
3343 * kernel -> user switch + mmdrop() active
3344 * user -> user switch
3345 */
3346 if (!next->mm) { // to kernel
3347 enter_lazy_tlb(prev->active_mm, next);
3348
3349 next->active_mm = prev->active_mm;
3350 if (prev->mm) // from user
3351 mmgrab(prev->active_mm);
3352 else
3353 prev->active_mm = NULL;
3354 } else { // to user
3355 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3356 /*
3357 * sys_membarrier() requires an smp_mb() between setting
3358 * rq->curr / membarrier_switch_mm() and returning to userspace.
3359 *
3360 * The below provides this either through switch_mm(), or in
3361 * case 'prev->active_mm == next->mm' through
3362 * finish_task_switch()'s mmdrop().
3363 */
3364 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3365
3366 if (!prev->mm) { // from kernel
3367 /* will mmdrop() in finish_task_switch(). */
3368 rq->prev_mm = prev->active_mm;
3369 prev->active_mm = NULL;
3370 }
3371 }
3372
3373 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3374
3375 prepare_lock_switch(rq, next, rf);
3376
3377 /* Here we just switch the register state and the stack. */
3378 switch_to(prev, next, prev);
3379 barrier();
3380
3381 return finish_task_switch(prev);
3382 }
3383
3384 /*
3385 * nr_running and nr_context_switches:
3386 *
3387 * externally visible scheduler statistics: current number of runnable
3388 * threads, total number of context switches performed since bootup.
3389 */
3390 unsigned long nr_running(void)
3391 {
3392 unsigned long i, sum = 0;
3393
3394 for_each_online_cpu(i)
3395 sum += cpu_rq(i)->nr_running;
3396
3397 return sum;
3398 }
3399
3400 /*
3401 * Check if only the current task is running on the CPU.
3402 *
3403 * Caution: this function does not check that the caller has disabled
3404 * preemption, thus the result might have a time-of-check-to-time-of-use
3405 * race. The caller is responsible to use it correctly, for example:
3406 *
3407 * - from a non-preemptible section (of course)
3408 *
3409 * - from a thread that is bound to a single CPU
3410 *
3411 * - in a loop with very short iterations (e.g. a polling loop)
3412 */
3413 bool single_task_running(void)
3414 {
3415 return raw_rq()->nr_running == 1;
3416 }
3417 EXPORT_SYMBOL(single_task_running);
3418
3419 unsigned long long nr_context_switches(void)
3420 {
3421 int i;
3422 unsigned long long sum = 0;
3423
3424 for_each_possible_cpu(i)
3425 sum += cpu_rq(i)->nr_switches;
3426
3427 return sum;
3428 }
3429
3430 /*
3431 * Consumers of these two interfaces, like for example the cpuidle menu
3432 * governor, are using nonsensical data. Preferring shallow idle state selection
3433 * for a CPU that has IO-wait which might not even end up running the task when
3434 * it does become runnable.
3435 */
3436
3437 unsigned long nr_iowait_cpu(int cpu)
3438 {
3439 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3440 }
3441
3442 /*
3443 * IO-wait accounting, and how its mostly bollocks (on SMP).
3444 *
3445 * The idea behind IO-wait account is to account the idle time that we could
3446 * have spend running if it were not for IO. That is, if we were to improve the
3447 * storage performance, we'd have a proportional reduction in IO-wait time.
3448 *
3449 * This all works nicely on UP, where, when a task blocks on IO, we account
3450 * idle time as IO-wait, because if the storage were faster, it could've been
3451 * running and we'd not be idle.
3452 *
3453 * This has been extended to SMP, by doing the same for each CPU. This however
3454 * is broken.
3455 *
3456 * Imagine for instance the case where two tasks block on one CPU, only the one
3457 * CPU will have IO-wait accounted, while the other has regular idle. Even
3458 * though, if the storage were faster, both could've ran at the same time,
3459 * utilising both CPUs.
3460 *
3461 * This means, that when looking globally, the current IO-wait accounting on
3462 * SMP is a lower bound, by reason of under accounting.
3463 *
3464 * Worse, since the numbers are provided per CPU, they are sometimes
3465 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3466 * associated with any one particular CPU, it can wake to another CPU than it
3467 * blocked on. This means the per CPU IO-wait number is meaningless.
3468 *
3469 * Task CPU affinities can make all that even more 'interesting'.
3470 */
3471
3472 unsigned long nr_iowait(void)
3473 {
3474 unsigned long i, sum = 0;
3475
3476 for_each_possible_cpu(i)
3477 sum += nr_iowait_cpu(i);
3478
3479 return sum;
3480 }
3481
3482 #ifdef CONFIG_SMP
3483
3484 /*
3485 * sched_exec - execve() is a valuable balancing opportunity, because at
3486 * this point the task has the smallest effective memory and cache footprint.
3487 */
3488 void sched_exec(void)
3489 {
3490 struct task_struct *p = current;
3491 unsigned long flags;
3492 int dest_cpu;
3493
3494 raw_spin_lock_irqsave(&p->pi_lock, flags);
3495 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3496 if (dest_cpu == smp_processor_id())
3497 goto unlock;
3498
3499 if (likely(cpu_active(dest_cpu))) {
3500 struct migration_arg arg = { p, dest_cpu };
3501
3502 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3503 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3504 return;
3505 }
3506 unlock:
3507 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3508 }
3509
3510 #endif
3511
3512 DEFINE_PER_CPU(struct kernel_stat, kstat);
3513 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3514
3515 EXPORT_PER_CPU_SYMBOL(kstat);
3516 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3517
3518 /*
3519 * The function fair_sched_class.update_curr accesses the struct curr
3520 * and its field curr->exec_start; when called from task_sched_runtime(),
3521 * we observe a high rate of cache misses in practice.
3522 * Prefetching this data results in improved performance.
3523 */
3524 static inline void prefetch_curr_exec_start(struct task_struct *p)
3525 {
3526 #ifdef CONFIG_FAIR_GROUP_SCHED
3527 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3528 #else
3529 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3530 #endif
3531 prefetch(curr);
3532 prefetch(&curr->exec_start);
3533 }
3534
3535 /*
3536 * Return accounted runtime for the task.
3537 * In case the task is currently running, return the runtime plus current's
3538 * pending runtime that have not been accounted yet.
3539 */
3540 unsigned long long task_sched_runtime(struct task_struct *p)
3541 {
3542 struct rq_flags rf;
3543 struct rq *rq;
3544 u64 ns;
3545
3546 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3547 /*
3548 * 64-bit doesn't need locks to atomically read a 64-bit value.
3549 * So we have a optimization chance when the task's delta_exec is 0.
3550 * Reading ->on_cpu is racy, but this is ok.
3551 *
3552 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3553 * If we race with it entering CPU, unaccounted time is 0. This is
3554 * indistinguishable from the read occurring a few cycles earlier.
3555 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3556 * been accounted, so we're correct here as well.
3557 */
3558 if (!p->on_cpu || !task_on_rq_queued(p))
3559 return p->se.sum_exec_runtime;
3560 #endif
3561
3562 rq = task_rq_lock(p, &rf);
3563 /*
3564 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3565 * project cycles that may never be accounted to this
3566 * thread, breaking clock_gettime().
3567 */
3568 if (task_current(rq, p) && task_on_rq_queued(p)) {
3569 prefetch_curr_exec_start(p);
3570 update_rq_clock(rq);
3571 p->sched_class->update_curr(rq);
3572 }
3573 ns = p->se.sum_exec_runtime;
3574 task_rq_unlock(rq, p, &rf);
3575
3576 return ns;
3577 }
3578
3579 DEFINE_PER_CPU(unsigned long, thermal_pressure);
3580
3581 void arch_set_thermal_pressure(struct cpumask *cpus,
3582 unsigned long th_pressure)
3583 {
3584 int cpu;
3585
3586 for_each_cpu(cpu, cpus)
3587 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3588 }
3589
3590 /*
3591 * This function gets called by the timer code, with HZ frequency.
3592 * We call it with interrupts disabled.
3593 */
3594 void scheduler_tick(void)
3595 {
3596 int cpu = smp_processor_id();
3597 struct rq *rq = cpu_rq(cpu);
3598 struct task_struct *curr = rq->curr;
3599 struct rq_flags rf;
3600 unsigned long thermal_pressure;
3601
3602 arch_scale_freq_tick();
3603 sched_clock_tick();
3604
3605 rq_lock(rq, &rf);
3606
3607 update_rq_clock(rq);
3608 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3609 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3610 curr->sched_class->task_tick(rq, curr, 0);
3611 calc_global_load_tick(rq);
3612 psi_task_tick(rq);
3613
3614 rq_unlock(rq, &rf);
3615
3616 perf_event_task_tick();
3617
3618 #ifdef CONFIG_SMP
3619 rq->idle_balance = idle_cpu(cpu);
3620 trigger_load_balance(rq);
3621 #endif
3622 }
3623
3624 #ifdef CONFIG_NO_HZ_FULL
3625
3626 struct tick_work {
3627 int cpu;
3628 atomic_t state;
3629 struct delayed_work work;
3630 };
3631 /* Values for ->state, see diagram below. */
3632 #define TICK_SCHED_REMOTE_OFFLINE 0
3633 #define TICK_SCHED_REMOTE_OFFLINING 1
3634 #define TICK_SCHED_REMOTE_RUNNING 2
3635
3636 /*
3637 * State diagram for ->state:
3638 *
3639 *
3640 * TICK_SCHED_REMOTE_OFFLINE
3641 * | ^
3642 * | |
3643 * | | sched_tick_remote()
3644 * | |
3645 * | |
3646 * +--TICK_SCHED_REMOTE_OFFLINING
3647 * | ^
3648 * | |
3649 * sched_tick_start() | | sched_tick_stop()
3650 * | |
3651 * V |
3652 * TICK_SCHED_REMOTE_RUNNING
3653 *
3654 *
3655 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3656 * and sched_tick_start() are happy to leave the state in RUNNING.
3657 */
3658
3659 static struct tick_work __percpu *tick_work_cpu;
3660
3661 static void sched_tick_remote(struct work_struct *work)
3662 {
3663 struct delayed_work *dwork = to_delayed_work(work);
3664 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3665 int cpu = twork->cpu;
3666 struct rq *rq = cpu_rq(cpu);
3667 struct task_struct *curr;
3668 struct rq_flags rf;
3669 u64 delta;
3670 int os;
3671
3672 /*
3673 * Handle the tick only if it appears the remote CPU is running in full
3674 * dynticks mode. The check is racy by nature, but missing a tick or
3675 * having one too much is no big deal because the scheduler tick updates
3676 * statistics and checks timeslices in a time-independent way, regardless
3677 * of when exactly it is running.
3678 */
3679 if (!tick_nohz_tick_stopped_cpu(cpu))
3680 goto out_requeue;
3681
3682 rq_lock_irq(rq, &rf);
3683 curr = rq->curr;
3684 if (cpu_is_offline(cpu))
3685 goto out_unlock;
3686
3687 update_rq_clock(rq);
3688
3689 if (!is_idle_task(curr)) {
3690 /*
3691 * Make sure the next tick runs within a reasonable
3692 * amount of time.
3693 */
3694 delta = rq_clock_task(rq) - curr->se.exec_start;
3695 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3696 }
3697 curr->sched_class->task_tick(rq, curr, 0);
3698
3699 calc_load_nohz_remote(rq);
3700 out_unlock:
3701 rq_unlock_irq(rq, &rf);
3702 out_requeue:
3703
3704 /*
3705 * Run the remote tick once per second (1Hz). This arbitrary
3706 * frequency is large enough to avoid overload but short enough
3707 * to keep scheduler internal stats reasonably up to date. But
3708 * first update state to reflect hotplug activity if required.
3709 */
3710 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3711 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3712 if (os == TICK_SCHED_REMOTE_RUNNING)
3713 queue_delayed_work(system_unbound_wq, dwork, HZ);
3714 }
3715
3716 static void sched_tick_start(int cpu)
3717 {
3718 int os;
3719 struct tick_work *twork;
3720
3721 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3722 return;
3723
3724 WARN_ON_ONCE(!tick_work_cpu);
3725
3726 twork = per_cpu_ptr(tick_work_cpu, cpu);
3727 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3728 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3729 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3730 twork->cpu = cpu;
3731 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3732 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3733 }
3734 }
3735
3736 #ifdef CONFIG_HOTPLUG_CPU
3737 static void sched_tick_stop(int cpu)
3738 {
3739 struct tick_work *twork;
3740 int os;
3741
3742 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3743 return;
3744
3745 WARN_ON_ONCE(!tick_work_cpu);
3746
3747 twork = per_cpu_ptr(tick_work_cpu, cpu);
3748 /* There cannot be competing actions, but don't rely on stop-machine. */
3749 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3750 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3751 /* Don't cancel, as this would mess up the state machine. */
3752 }
3753 #endif /* CONFIG_HOTPLUG_CPU */
3754
3755 int __init sched_tick_offload_init(void)
3756 {
3757 tick_work_cpu = alloc_percpu(struct tick_work);
3758 BUG_ON(!tick_work_cpu);
3759 return 0;
3760 }
3761
3762 #else /* !CONFIG_NO_HZ_FULL */
3763 static inline void sched_tick_start(int cpu) { }
3764 static inline void sched_tick_stop(int cpu) { }
3765 #endif
3766
3767 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3768 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3769 /*
3770 * If the value passed in is equal to the current preempt count
3771 * then we just disabled preemption. Start timing the latency.
3772 */
3773 static inline void preempt_latency_start(int val)
3774 {
3775 if (preempt_count() == val) {
3776 unsigned long ip = get_lock_parent_ip();
3777 #ifdef CONFIG_DEBUG_PREEMPT
3778 current->preempt_disable_ip = ip;
3779 #endif
3780 trace_preempt_off(CALLER_ADDR0, ip);
3781 }
3782 }
3783
3784 void preempt_count_add(int val)
3785 {
3786 #ifdef CONFIG_DEBUG_PREEMPT
3787 /*
3788 * Underflow?
3789 */
3790 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3791 return;
3792 #endif
3793 __preempt_count_add(val);
3794 #ifdef CONFIG_DEBUG_PREEMPT
3795 /*
3796 * Spinlock count overflowing soon?
3797 */
3798 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3799 PREEMPT_MASK - 10);
3800 #endif
3801 preempt_latency_start(val);
3802 }
3803 EXPORT_SYMBOL(preempt_count_add);
3804 NOKPROBE_SYMBOL(preempt_count_add);
3805
3806 /*
3807 * If the value passed in equals to the current preempt count
3808 * then we just enabled preemption. Stop timing the latency.
3809 */
3810 static inline void preempt_latency_stop(int val)
3811 {
3812 if (preempt_count() == val)
3813 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3814 }
3815
3816 void preempt_count_sub(int val)
3817 {
3818 #ifdef CONFIG_DEBUG_PREEMPT
3819 /*
3820 * Underflow?
3821 */
3822 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3823 return;
3824 /*
3825 * Is the spinlock portion underflowing?
3826 */
3827 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3828 !(preempt_count() & PREEMPT_MASK)))
3829 return;
3830 #endif
3831
3832 preempt_latency_stop(val);
3833 __preempt_count_sub(val);
3834 }
3835 EXPORT_SYMBOL(preempt_count_sub);
3836 NOKPROBE_SYMBOL(preempt_count_sub);
3837
3838 #else
3839 static inline void preempt_latency_start(int val) { }
3840 static inline void preempt_latency_stop(int val) { }
3841 #endif
3842
3843 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3844 {
3845 #ifdef CONFIG_DEBUG_PREEMPT
3846 return p->preempt_disable_ip;
3847 #else
3848 return 0;
3849 #endif
3850 }
3851
3852 /*
3853 * Print scheduling while atomic bug:
3854 */
3855 static noinline void __schedule_bug(struct task_struct *prev)
3856 {
3857 /* Save this before calling printk(), since that will clobber it */
3858 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3859
3860 if (oops_in_progress)
3861 return;
3862
3863 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3864 prev->comm, prev->pid, preempt_count());
3865
3866 debug_show_held_locks(prev);
3867 print_modules();
3868 if (irqs_disabled())
3869 print_irqtrace_events(prev);
3870 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3871 && in_atomic_preempt_off()) {
3872 pr_err("Preemption disabled at:");
3873 print_ip_sym(preempt_disable_ip);
3874 pr_cont("\n");
3875 }
3876 if (panic_on_warn)
3877 panic("scheduling while atomic\n");
3878
3879 dump_stack();
3880 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3881 }
3882
3883 /*
3884 * Various schedule()-time debugging checks and statistics:
3885 */
3886 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3887 {
3888 #ifdef CONFIG_SCHED_STACK_END_CHECK
3889 if (task_stack_end_corrupted(prev))
3890 panic("corrupted stack end detected inside scheduler\n");
3891 #endif
3892
3893 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3894 if (!preempt && prev->state && prev->non_block_count) {
3895 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3896 prev->comm, prev->pid, prev->non_block_count);
3897 dump_stack();
3898 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3899 }
3900 #endif
3901
3902 if (unlikely(in_atomic_preempt_off())) {
3903 __schedule_bug(prev);
3904 preempt_count_set(PREEMPT_DISABLED);
3905 }
3906 rcu_sleep_check();
3907
3908 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3909
3910 schedstat_inc(this_rq()->sched_count);
3911 }
3912
3913 /*
3914 * Pick up the highest-prio task:
3915 */
3916 static inline struct task_struct *
3917 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3918 {
3919 const struct sched_class *class;
3920 struct task_struct *p;
3921
3922 /*
3923 * Optimization: we know that if all tasks are in the fair class we can
3924 * call that function directly, but only if the @prev task wasn't of a
3925 * higher scheduling class, because otherwise those loose the
3926 * opportunity to pull in more work from other CPUs.
3927 */
3928 if (likely((prev->sched_class == &idle_sched_class ||
3929 prev->sched_class == &fair_sched_class) &&
3930 rq->nr_running == rq->cfs.h_nr_running)) {
3931
3932 p = pick_next_task_fair(rq, prev, rf);
3933 if (unlikely(p == RETRY_TASK))
3934 goto restart;
3935
3936 /* Assumes fair_sched_class->next == idle_sched_class */
3937 if (!p) {
3938 put_prev_task(rq, prev);
3939 p = pick_next_task_idle(rq);
3940 }
3941
3942 return p;
3943 }
3944
3945 restart:
3946 #ifdef CONFIG_SMP
3947 /*
3948 * We must do the balancing pass before put_next_task(), such
3949 * that when we release the rq->lock the task is in the same
3950 * state as before we took rq->lock.
3951 *
3952 * We can terminate the balance pass as soon as we know there is
3953 * a runnable task of @class priority or higher.
3954 */
3955 for_class_range(class, prev->sched_class, &idle_sched_class) {
3956 if (class->balance(rq, prev, rf))
3957 break;
3958 }
3959 #endif
3960
3961 put_prev_task(rq, prev);
3962
3963 for_each_class(class) {
3964 p = class->pick_next_task(rq);
3965 if (p)
3966 return p;
3967 }
3968
3969 /* The idle class should always have a runnable task: */
3970 BUG();
3971 }
3972
3973 /*
3974 * __schedule() is the main scheduler function.
3975 *
3976 * The main means of driving the scheduler and thus entering this function are:
3977 *
3978 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3979 *
3980 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3981 * paths. For example, see arch/x86/entry_64.S.
3982 *
3983 * To drive preemption between tasks, the scheduler sets the flag in timer
3984 * interrupt handler scheduler_tick().
3985 *
3986 * 3. Wakeups don't really cause entry into schedule(). They add a
3987 * task to the run-queue and that's it.
3988 *
3989 * Now, if the new task added to the run-queue preempts the current
3990 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3991 * called on the nearest possible occasion:
3992 *
3993 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
3994 *
3995 * - in syscall or exception context, at the next outmost
3996 * preempt_enable(). (this might be as soon as the wake_up()'s
3997 * spin_unlock()!)
3998 *
3999 * - in IRQ context, return from interrupt-handler to
4000 * preemptible context
4001 *
4002 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4003 * then at the next:
4004 *
4005 * - cond_resched() call
4006 * - explicit schedule() call
4007 * - return from syscall or exception to user-space
4008 * - return from interrupt-handler to user-space
4009 *
4010 * WARNING: must be called with preemption disabled!
4011 */
4012 static void __sched notrace __schedule(bool preempt)
4013 {
4014 struct task_struct *prev, *next;
4015 unsigned long *switch_count;
4016 struct rq_flags rf;
4017 struct rq *rq;
4018 int cpu;
4019
4020 cpu = smp_processor_id();
4021 rq = cpu_rq(cpu);
4022 prev = rq->curr;
4023
4024 schedule_debug(prev, preempt);
4025
4026 if (sched_feat(HRTICK))
4027 hrtick_clear(rq);
4028
4029 local_irq_disable();
4030 rcu_note_context_switch(preempt);
4031
4032 /*
4033 * Make sure that signal_pending_state()->signal_pending() below
4034 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4035 * done by the caller to avoid the race with signal_wake_up().
4036 *
4037 * The membarrier system call requires a full memory barrier
4038 * after coming from user-space, before storing to rq->curr.
4039 */
4040 rq_lock(rq, &rf);
4041 smp_mb__after_spinlock();
4042
4043 /* Promote REQ to ACT */
4044 rq->clock_update_flags <<= 1;
4045 update_rq_clock(rq);
4046
4047 switch_count = &prev->nivcsw;
4048 if (!preempt && prev->state) {
4049 if (signal_pending_state(prev->state, prev)) {
4050 prev->state = TASK_RUNNING;
4051 } else {
4052 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4053
4054 if (prev->in_iowait) {
4055 atomic_inc(&rq->nr_iowait);
4056 delayacct_blkio_start();
4057 }
4058 }
4059 switch_count = &prev->nvcsw;
4060 }
4061
4062 next = pick_next_task(rq, prev, &rf);
4063 clear_tsk_need_resched(prev);
4064 clear_preempt_need_resched();
4065
4066 if (likely(prev != next)) {
4067 rq->nr_switches++;
4068 /*
4069 * RCU users of rcu_dereference(rq->curr) may not see
4070 * changes to task_struct made by pick_next_task().
4071 */
4072 RCU_INIT_POINTER(rq->curr, next);
4073 /*
4074 * The membarrier system call requires each architecture
4075 * to have a full memory barrier after updating
4076 * rq->curr, before returning to user-space.
4077 *
4078 * Here are the schemes providing that barrier on the
4079 * various architectures:
4080 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4081 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4082 * - finish_lock_switch() for weakly-ordered
4083 * architectures where spin_unlock is a full barrier,
4084 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4085 * is a RELEASE barrier),
4086 */
4087 ++*switch_count;
4088
4089 trace_sched_switch(preempt, prev, next);
4090
4091 /* Also unlocks the rq: */
4092 rq = context_switch(rq, prev, next, &rf);
4093 } else {
4094 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4095 rq_unlock_irq(rq, &rf);
4096 }
4097
4098 balance_callback(rq);
4099 }
4100
4101 void __noreturn do_task_dead(void)
4102 {
4103 /* Causes final put_task_struct in finish_task_switch(): */
4104 set_special_state(TASK_DEAD);
4105
4106 /* Tell freezer to ignore us: */
4107 current->flags |= PF_NOFREEZE;
4108
4109 __schedule(false);
4110 BUG();
4111
4112 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4113 for (;;)
4114 cpu_relax();
4115 }
4116
4117 static inline void sched_submit_work(struct task_struct *tsk)
4118 {
4119 if (!tsk->state)
4120 return;
4121
4122 /*
4123 * If a worker went to sleep, notify and ask workqueue whether
4124 * it wants to wake up a task to maintain concurrency.
4125 * As this function is called inside the schedule() context,
4126 * we disable preemption to avoid it calling schedule() again
4127 * in the possible wakeup of a kworker.
4128 */
4129 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4130 preempt_disable();
4131 if (tsk->flags & PF_WQ_WORKER)
4132 wq_worker_sleeping(tsk);
4133 else
4134 io_wq_worker_sleeping(tsk);
4135 preempt_enable_no_resched();
4136 }
4137
4138 if (tsk_is_pi_blocked(tsk))
4139 return;
4140
4141 /*
4142 * If we are going to sleep and we have plugged IO queued,
4143 * make sure to submit it to avoid deadlocks.
4144 */
4145 if (blk_needs_flush_plug(tsk))
4146 blk_schedule_flush_plug(tsk);
4147 }
4148
4149 static void sched_update_worker(struct task_struct *tsk)
4150 {
4151 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4152 if (tsk->flags & PF_WQ_WORKER)
4153 wq_worker_running(tsk);
4154 else
4155 io_wq_worker_running(tsk);
4156 }
4157 }
4158
4159 asmlinkage __visible void __sched schedule(void)
4160 {
4161 struct task_struct *tsk = current;
4162
4163 sched_submit_work(tsk);
4164 do {
4165 preempt_disable();
4166 __schedule(false);
4167 sched_preempt_enable_no_resched();
4168 } while (need_resched());
4169 sched_update_worker(tsk);
4170 }
4171 EXPORT_SYMBOL(schedule);
4172
4173 /*
4174 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4175 * state (have scheduled out non-voluntarily) by making sure that all
4176 * tasks have either left the run queue or have gone into user space.
4177 * As idle tasks do not do either, they must not ever be preempted
4178 * (schedule out non-voluntarily).
4179 *
4180 * schedule_idle() is similar to schedule_preempt_disable() except that it
4181 * never enables preemption because it does not call sched_submit_work().
4182 */
4183 void __sched schedule_idle(void)
4184 {
4185 /*
4186 * As this skips calling sched_submit_work(), which the idle task does
4187 * regardless because that function is a nop when the task is in a
4188 * TASK_RUNNING state, make sure this isn't used someplace that the
4189 * current task can be in any other state. Note, idle is always in the
4190 * TASK_RUNNING state.
4191 */
4192 WARN_ON_ONCE(current->state);
4193 do {
4194 __schedule(false);
4195 } while (need_resched());
4196 }
4197
4198 #ifdef CONFIG_CONTEXT_TRACKING
4199 asmlinkage __visible void __sched schedule_user(void)
4200 {
4201 /*
4202 * If we come here after a random call to set_need_resched(),
4203 * or we have been woken up remotely but the IPI has not yet arrived,
4204 * we haven't yet exited the RCU idle mode. Do it here manually until
4205 * we find a better solution.
4206 *
4207 * NB: There are buggy callers of this function. Ideally we
4208 * should warn if prev_state != CONTEXT_USER, but that will trigger
4209 * too frequently to make sense yet.
4210 */
4211 enum ctx_state prev_state = exception_enter();
4212 schedule();
4213 exception_exit(prev_state);
4214 }
4215 #endif
4216
4217 /**
4218 * schedule_preempt_disabled - called with preemption disabled
4219 *
4220 * Returns with preemption disabled. Note: preempt_count must be 1
4221 */
4222 void __sched schedule_preempt_disabled(void)
4223 {
4224 sched_preempt_enable_no_resched();
4225 schedule();
4226 preempt_disable();
4227 }
4228
4229 static void __sched notrace preempt_schedule_common(void)
4230 {
4231 do {
4232 /*
4233 * Because the function tracer can trace preempt_count_sub()
4234 * and it also uses preempt_enable/disable_notrace(), if
4235 * NEED_RESCHED is set, the preempt_enable_notrace() called
4236 * by the function tracer will call this function again and
4237 * cause infinite recursion.
4238 *
4239 * Preemption must be disabled here before the function
4240 * tracer can trace. Break up preempt_disable() into two
4241 * calls. One to disable preemption without fear of being
4242 * traced. The other to still record the preemption latency,
4243 * which can also be traced by the function tracer.
4244 */
4245 preempt_disable_notrace();
4246 preempt_latency_start(1);
4247 __schedule(true);
4248 preempt_latency_stop(1);
4249 preempt_enable_no_resched_notrace();
4250
4251 /*
4252 * Check again in case we missed a preemption opportunity
4253 * between schedule and now.
4254 */
4255 } while (need_resched());
4256 }
4257
4258 #ifdef CONFIG_PREEMPTION
4259 /*
4260 * This is the entry point to schedule() from in-kernel preemption
4261 * off of preempt_enable.
4262 */
4263 asmlinkage __visible void __sched notrace preempt_schedule(void)
4264 {
4265 /*
4266 * If there is a non-zero preempt_count or interrupts are disabled,
4267 * we do not want to preempt the current task. Just return..
4268 */
4269 if (likely(!preemptible()))
4270 return;
4271
4272 preempt_schedule_common();
4273 }
4274 NOKPROBE_SYMBOL(preempt_schedule);
4275 EXPORT_SYMBOL(preempt_schedule);
4276
4277 /**
4278 * preempt_schedule_notrace - preempt_schedule called by tracing
4279 *
4280 * The tracing infrastructure uses preempt_enable_notrace to prevent
4281 * recursion and tracing preempt enabling caused by the tracing
4282 * infrastructure itself. But as tracing can happen in areas coming
4283 * from userspace or just about to enter userspace, a preempt enable
4284 * can occur before user_exit() is called. This will cause the scheduler
4285 * to be called when the system is still in usermode.
4286 *
4287 * To prevent this, the preempt_enable_notrace will use this function
4288 * instead of preempt_schedule() to exit user context if needed before
4289 * calling the scheduler.
4290 */
4291 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4292 {
4293 enum ctx_state prev_ctx;
4294
4295 if (likely(!preemptible()))
4296 return;
4297
4298 do {
4299 /*
4300 * Because the function tracer can trace preempt_count_sub()
4301 * and it also uses preempt_enable/disable_notrace(), if
4302 * NEED_RESCHED is set, the preempt_enable_notrace() called
4303 * by the function tracer will call this function again and
4304 * cause infinite recursion.
4305 *
4306 * Preemption must be disabled here before the function
4307 * tracer can trace. Break up preempt_disable() into two
4308 * calls. One to disable preemption without fear of being
4309 * traced. The other to still record the preemption latency,
4310 * which can also be traced by the function tracer.
4311 */
4312 preempt_disable_notrace();
4313 preempt_latency_start(1);
4314 /*
4315 * Needs preempt disabled in case user_exit() is traced
4316 * and the tracer calls preempt_enable_notrace() causing
4317 * an infinite recursion.
4318 */
4319 prev_ctx = exception_enter();
4320 __schedule(true);
4321 exception_exit(prev_ctx);
4322
4323 preempt_latency_stop(1);
4324 preempt_enable_no_resched_notrace();
4325 } while (need_resched());
4326 }
4327 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4328
4329 #endif /* CONFIG_PREEMPTION */
4330
4331 /*
4332 * This is the entry point to schedule() from kernel preemption
4333 * off of irq context.
4334 * Note, that this is called and return with irqs disabled. This will
4335 * protect us against recursive calling from irq.
4336 */
4337 asmlinkage __visible void __sched preempt_schedule_irq(void)
4338 {
4339 enum ctx_state prev_state;
4340
4341 /* Catch callers which need to be fixed */
4342 BUG_ON(preempt_count() || !irqs_disabled());
4343
4344 prev_state = exception_enter();
4345
4346 do {
4347 preempt_disable();
4348 local_irq_enable();
4349 __schedule(true);
4350 local_irq_disable();
4351 sched_preempt_enable_no_resched();
4352 } while (need_resched());
4353
4354 exception_exit(prev_state);
4355 }
4356
4357 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4358 void *key)
4359 {
4360 return try_to_wake_up(curr->private, mode, wake_flags);
4361 }
4362 EXPORT_SYMBOL(default_wake_function);
4363
4364 #ifdef CONFIG_RT_MUTEXES
4365
4366 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4367 {
4368 if (pi_task)
4369 prio = min(prio, pi_task->prio);
4370
4371 return prio;
4372 }
4373
4374 static inline int rt_effective_prio(struct task_struct *p, int prio)
4375 {
4376 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4377
4378 return __rt_effective_prio(pi_task, prio);
4379 }
4380
4381 /*
4382 * rt_mutex_setprio - set the current priority of a task
4383 * @p: task to boost
4384 * @pi_task: donor task
4385 *
4386 * This function changes the 'effective' priority of a task. It does
4387 * not touch ->normal_prio like __setscheduler().
4388 *
4389 * Used by the rt_mutex code to implement priority inheritance
4390 * logic. Call site only calls if the priority of the task changed.
4391 */
4392 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4393 {
4394 int prio, oldprio, queued, running, queue_flag =
4395 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4396 const struct sched_class *prev_class;
4397 struct rq_flags rf;
4398 struct rq *rq;
4399
4400 /* XXX used to be waiter->prio, not waiter->task->prio */
4401 prio = __rt_effective_prio(pi_task, p->normal_prio);
4402
4403 /*
4404 * If nothing changed; bail early.
4405 */
4406 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4407 return;
4408
4409 rq = __task_rq_lock(p, &rf);
4410 update_rq_clock(rq);
4411 /*
4412 * Set under pi_lock && rq->lock, such that the value can be used under
4413 * either lock.
4414 *
4415 * Note that there is loads of tricky to make this pointer cache work
4416 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4417 * ensure a task is de-boosted (pi_task is set to NULL) before the
4418 * task is allowed to run again (and can exit). This ensures the pointer
4419 * points to a blocked task -- which guaratees the task is present.
4420 */
4421 p->pi_top_task = pi_task;
4422
4423 /*
4424 * For FIFO/RR we only need to set prio, if that matches we're done.
4425 */
4426 if (prio == p->prio && !dl_prio(prio))
4427 goto out_unlock;
4428
4429 /*
4430 * Idle task boosting is a nono in general. There is one
4431 * exception, when PREEMPT_RT and NOHZ is active:
4432 *
4433 * The idle task calls get_next_timer_interrupt() and holds
4434 * the timer wheel base->lock on the CPU and another CPU wants
4435 * to access the timer (probably to cancel it). We can safely
4436 * ignore the boosting request, as the idle CPU runs this code
4437 * with interrupts disabled and will complete the lock
4438 * protected section without being interrupted. So there is no
4439 * real need to boost.
4440 */
4441 if (unlikely(p == rq->idle)) {
4442 WARN_ON(p != rq->curr);
4443 WARN_ON(p->pi_blocked_on);
4444 goto out_unlock;
4445 }
4446
4447 trace_sched_pi_setprio(p, pi_task);
4448 oldprio = p->prio;
4449
4450 if (oldprio == prio)
4451 queue_flag &= ~DEQUEUE_MOVE;
4452
4453 prev_class = p->sched_class;
4454 queued = task_on_rq_queued(p);
4455 running = task_current(rq, p);
4456 if (queued)
4457 dequeue_task(rq, p, queue_flag);
4458 if (running)
4459 put_prev_task(rq, p);
4460
4461 /*
4462 * Boosting condition are:
4463 * 1. -rt task is running and holds mutex A
4464 * --> -dl task blocks on mutex A
4465 *
4466 * 2. -dl task is running and holds mutex A
4467 * --> -dl task blocks on mutex A and could preempt the
4468 * running task
4469 */
4470 if (dl_prio(prio)) {
4471 if (!dl_prio(p->normal_prio) ||
4472 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4473 p->dl.dl_boosted = 1;
4474 queue_flag |= ENQUEUE_REPLENISH;
4475 } else
4476 p->dl.dl_boosted = 0;
4477 p->sched_class = &dl_sched_class;
4478 } else if (rt_prio(prio)) {
4479 if (dl_prio(oldprio))
4480 p->dl.dl_boosted = 0;
4481 if (oldprio < prio)
4482 queue_flag |= ENQUEUE_HEAD;
4483 p->sched_class = &rt_sched_class;
4484 } else {
4485 if (dl_prio(oldprio))
4486 p->dl.dl_boosted = 0;
4487 if (rt_prio(oldprio))
4488 p->rt.timeout = 0;
4489 p->sched_class = &fair_sched_class;
4490 }
4491
4492 p->prio = prio;
4493
4494 if (queued)
4495 enqueue_task(rq, p, queue_flag);
4496 if (running)
4497 set_next_task(rq, p);
4498
4499 check_class_changed(rq, p, prev_class, oldprio);
4500 out_unlock:
4501 /* Avoid rq from going away on us: */
4502 preempt_disable();
4503 __task_rq_unlock(rq, &rf);
4504
4505 balance_callback(rq);
4506 preempt_enable();
4507 }
4508 #else
4509 static inline int rt_effective_prio(struct task_struct *p, int prio)
4510 {
4511 return prio;
4512 }
4513 #endif
4514
4515 void set_user_nice(struct task_struct *p, long nice)
4516 {
4517 bool queued, running;
4518 int old_prio;
4519 struct rq_flags rf;
4520 struct rq *rq;
4521
4522 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4523 return;
4524 /*
4525 * We have to be careful, if called from sys_setpriority(),
4526 * the task might be in the middle of scheduling on another CPU.
4527 */
4528 rq = task_rq_lock(p, &rf);
4529 update_rq_clock(rq);
4530
4531 /*
4532 * The RT priorities are set via sched_setscheduler(), but we still
4533 * allow the 'normal' nice value to be set - but as expected
4534 * it wont have any effect on scheduling until the task is
4535 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4536 */
4537 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4538 p->static_prio = NICE_TO_PRIO(nice);
4539 goto out_unlock;
4540 }
4541 queued = task_on_rq_queued(p);
4542 running = task_current(rq, p);
4543 if (queued)
4544 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4545 if (running)
4546 put_prev_task(rq, p);
4547
4548 p->static_prio = NICE_TO_PRIO(nice);
4549 set_load_weight(p, true);
4550 old_prio = p->prio;
4551 p->prio = effective_prio(p);
4552
4553 if (queued)
4554 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4555 if (running)
4556 set_next_task(rq, p);
4557
4558 /*
4559 * If the task increased its priority or is running and
4560 * lowered its priority, then reschedule its CPU:
4561 */
4562 p->sched_class->prio_changed(rq, p, old_prio);
4563
4564 out_unlock:
4565 task_rq_unlock(rq, p, &rf);
4566 }
4567 EXPORT_SYMBOL(set_user_nice);
4568
4569 /*
4570 * can_nice - check if a task can reduce its nice value
4571 * @p: task
4572 * @nice: nice value
4573 */
4574 int can_nice(const struct task_struct *p, const int nice)
4575 {
4576 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
4577 int nice_rlim = nice_to_rlimit(nice);
4578
4579 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4580 capable(CAP_SYS_NICE));
4581 }
4582
4583 #ifdef __ARCH_WANT_SYS_NICE
4584
4585 /*
4586 * sys_nice - change the priority of the current process.
4587 * @increment: priority increment
4588 *
4589 * sys_setpriority is a more generic, but much slower function that
4590 * does similar things.
4591 */
4592 SYSCALL_DEFINE1(nice, int, increment)
4593 {
4594 long nice, retval;
4595
4596 /*
4597 * Setpriority might change our priority at the same moment.
4598 * We don't have to worry. Conceptually one call occurs first
4599 * and we have a single winner.
4600 */
4601 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4602 nice = task_nice(current) + increment;
4603
4604 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4605 if (increment < 0 && !can_nice(current, nice))
4606 return -EPERM;
4607
4608 retval = security_task_setnice(current, nice);
4609 if (retval)
4610 return retval;
4611
4612 set_user_nice(current, nice);
4613 return 0;
4614 }
4615
4616 #endif
4617
4618 /**
4619 * task_prio - return the priority value of a given task.
4620 * @p: the task in question.
4621 *
4622 * Return: The priority value as seen by users in /proc.
4623 * RT tasks are offset by -200. Normal tasks are centered
4624 * around 0, value goes from -16 to +15.
4625 */
4626 int task_prio(const struct task_struct *p)
4627 {
4628 return p->prio - MAX_RT_PRIO;
4629 }
4630
4631 /**
4632 * idle_cpu - is a given CPU idle currently?
4633 * @cpu: the processor in question.
4634 *
4635 * Return: 1 if the CPU is currently idle. 0 otherwise.
4636 */
4637 int idle_cpu(int cpu)
4638 {
4639 struct rq *rq = cpu_rq(cpu);
4640
4641 if (rq->curr != rq->idle)
4642 return 0;
4643
4644 if (rq->nr_running)
4645 return 0;
4646
4647 #ifdef CONFIG_SMP
4648 if (!llist_empty(&rq->wake_list))
4649 return 0;
4650 #endif
4651
4652 return 1;
4653 }
4654
4655 /**
4656 * available_idle_cpu - is a given CPU idle for enqueuing work.
4657 * @cpu: the CPU in question.
4658 *
4659 * Return: 1 if the CPU is currently idle. 0 otherwise.
4660 */
4661 int available_idle_cpu(int cpu)
4662 {
4663 if (!idle_cpu(cpu))
4664 return 0;
4665
4666 if (vcpu_is_preempted(cpu))
4667 return 0;
4668
4669 return 1;
4670 }
4671
4672 /**
4673 * idle_task - return the idle task for a given CPU.
4674 * @cpu: the processor in question.
4675 *
4676 * Return: The idle task for the CPU @cpu.
4677 */
4678 struct task_struct *idle_task(int cpu)
4679 {
4680 return cpu_rq(cpu)->idle;
4681 }
4682
4683 /**
4684 * find_process_by_pid - find a process with a matching PID value.
4685 * @pid: the pid in question.
4686 *
4687 * The task of @pid, if found. %NULL otherwise.
4688 */
4689 static struct task_struct *find_process_by_pid(pid_t pid)
4690 {
4691 return pid ? find_task_by_vpid(pid) : current;
4692 }
4693
4694 /*
4695 * sched_setparam() passes in -1 for its policy, to let the functions
4696 * it calls know not to change it.
4697 */
4698 #define SETPARAM_POLICY -1
4699
4700 static void __setscheduler_params(struct task_struct *p,
4701 const struct sched_attr *attr)
4702 {
4703 int policy = attr->sched_policy;
4704
4705 if (policy == SETPARAM_POLICY)
4706 policy = p->policy;
4707
4708 p->policy = policy;
4709
4710 if (dl_policy(policy))
4711 __setparam_dl(p, attr);
4712 else if (fair_policy(policy))
4713 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4714
4715 /*
4716 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4717 * !rt_policy. Always setting this ensures that things like
4718 * getparam()/getattr() don't report silly values for !rt tasks.
4719 */
4720 p->rt_priority = attr->sched_priority;
4721 p->normal_prio = normal_prio(p);
4722 set_load_weight(p, true);
4723 }
4724
4725 /* Actually do priority change: must hold pi & rq lock. */
4726 static void __setscheduler(struct rq *rq, struct task_struct *p,
4727 const struct sched_attr *attr, bool keep_boost)
4728 {
4729 /*
4730 * If params can't change scheduling class changes aren't allowed
4731 * either.
4732 */
4733 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4734 return;
4735
4736 __setscheduler_params(p, attr);
4737
4738 /*
4739 * Keep a potential priority boosting if called from
4740 * sched_setscheduler().
4741 */
4742 p->prio = normal_prio(p);
4743 if (keep_boost)
4744 p->prio = rt_effective_prio(p, p->prio);
4745
4746 if (dl_prio(p->prio))
4747 p->sched_class = &dl_sched_class;
4748 else if (rt_prio(p->prio))
4749 p->sched_class = &rt_sched_class;
4750 else
4751 p->sched_class = &fair_sched_class;
4752 }
4753
4754 /*
4755 * Check the target process has a UID that matches the current process's:
4756 */
4757 static bool check_same_owner(struct task_struct *p)
4758 {
4759 const struct cred *cred = current_cred(), *pcred;
4760 bool match;
4761
4762 rcu_read_lock();
4763 pcred = __task_cred(p);
4764 match = (uid_eq(cred->euid, pcred->euid) ||
4765 uid_eq(cred->euid, pcred->uid));
4766 rcu_read_unlock();
4767 return match;
4768 }
4769
4770 static int __sched_setscheduler(struct task_struct *p,
4771 const struct sched_attr *attr,
4772 bool user, bool pi)
4773 {
4774 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4775 MAX_RT_PRIO - 1 - attr->sched_priority;
4776 int retval, oldprio, oldpolicy = -1, queued, running;
4777 int new_effective_prio, policy = attr->sched_policy;
4778 const struct sched_class *prev_class;
4779 struct rq_flags rf;
4780 int reset_on_fork;
4781 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4782 struct rq *rq;
4783
4784 /* The pi code expects interrupts enabled */
4785 BUG_ON(pi && in_interrupt());
4786 recheck:
4787 /* Double check policy once rq lock held: */
4788 if (policy < 0) {
4789 reset_on_fork = p->sched_reset_on_fork;
4790 policy = oldpolicy = p->policy;
4791 } else {
4792 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4793
4794 if (!valid_policy(policy))
4795 return -EINVAL;
4796 }
4797
4798 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4799 return -EINVAL;
4800
4801 /*
4802 * Valid priorities for SCHED_FIFO and SCHED_RR are
4803 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4804 * SCHED_BATCH and SCHED_IDLE is 0.
4805 */
4806 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4807 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4808 return -EINVAL;
4809 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4810 (rt_policy(policy) != (attr->sched_priority != 0)))
4811 return -EINVAL;
4812
4813 /*
4814 * Allow unprivileged RT tasks to decrease priority:
4815 */
4816 if (user && !capable(CAP_SYS_NICE)) {
4817 if (fair_policy(policy)) {
4818 if (attr->sched_nice < task_nice(p) &&
4819 !can_nice(p, attr->sched_nice))
4820 return -EPERM;
4821 }
4822
4823 if (rt_policy(policy)) {
4824 unsigned long rlim_rtprio =
4825 task_rlimit(p, RLIMIT_RTPRIO);
4826
4827 /* Can't set/change the rt policy: */
4828 if (policy != p->policy && !rlim_rtprio)
4829 return -EPERM;
4830
4831 /* Can't increase priority: */
4832 if (attr->sched_priority > p->rt_priority &&
4833 attr->sched_priority > rlim_rtprio)
4834 return -EPERM;
4835 }
4836
4837 /*
4838 * Can't set/change SCHED_DEADLINE policy at all for now
4839 * (safest behavior); in the future we would like to allow
4840 * unprivileged DL tasks to increase their relative deadline
4841 * or reduce their runtime (both ways reducing utilization)
4842 */
4843 if (dl_policy(policy))
4844 return -EPERM;
4845
4846 /*
4847 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4848 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4849 */
4850 if (task_has_idle_policy(p) && !idle_policy(policy)) {
4851 if (!can_nice(p, task_nice(p)))
4852 return -EPERM;
4853 }
4854
4855 /* Can't change other user's priorities: */
4856 if (!check_same_owner(p))
4857 return -EPERM;
4858
4859 /* Normal users shall not reset the sched_reset_on_fork flag: */
4860 if (p->sched_reset_on_fork && !reset_on_fork)
4861 return -EPERM;
4862 }
4863
4864 if (user) {
4865 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4866 return -EINVAL;
4867
4868 retval = security_task_setscheduler(p);
4869 if (retval)
4870 return retval;
4871 }
4872
4873 /* Update task specific "requested" clamps */
4874 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4875 retval = uclamp_validate(p, attr);
4876 if (retval)
4877 return retval;
4878 }
4879
4880 if (pi)
4881 cpuset_read_lock();
4882
4883 /*
4884 * Make sure no PI-waiters arrive (or leave) while we are
4885 * changing the priority of the task:
4886 *
4887 * To be able to change p->policy safely, the appropriate
4888 * runqueue lock must be held.
4889 */
4890 rq = task_rq_lock(p, &rf);
4891 update_rq_clock(rq);
4892
4893 /*
4894 * Changing the policy of the stop threads its a very bad idea:
4895 */
4896 if (p == rq->stop) {
4897 retval = -EINVAL;
4898 goto unlock;
4899 }
4900
4901 /*
4902 * If not changing anything there's no need to proceed further,
4903 * but store a possible modification of reset_on_fork.
4904 */
4905 if (unlikely(policy == p->policy)) {
4906 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4907 goto change;
4908 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4909 goto change;
4910 if (dl_policy(policy) && dl_param_changed(p, attr))
4911 goto change;
4912 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4913 goto change;
4914
4915 p->sched_reset_on_fork = reset_on_fork;
4916 retval = 0;
4917 goto unlock;
4918 }
4919 change:
4920
4921 if (user) {
4922 #ifdef CONFIG_RT_GROUP_SCHED
4923 /*
4924 * Do not allow realtime tasks into groups that have no runtime
4925 * assigned.
4926 */
4927 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4928 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4929 !task_group_is_autogroup(task_group(p))) {
4930 retval = -EPERM;
4931 goto unlock;
4932 }
4933 #endif
4934 #ifdef CONFIG_SMP
4935 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4936 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4937 cpumask_t *span = rq->rd->span;
4938
4939 /*
4940 * Don't allow tasks with an affinity mask smaller than
4941 * the entire root_domain to become SCHED_DEADLINE. We
4942 * will also fail if there's no bandwidth available.
4943 */
4944 if (!cpumask_subset(span, p->cpus_ptr) ||
4945 rq->rd->dl_bw.bw == 0) {
4946 retval = -EPERM;
4947 goto unlock;
4948 }
4949 }
4950 #endif
4951 }
4952
4953 /* Re-check policy now with rq lock held: */
4954 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4955 policy = oldpolicy = -1;
4956 task_rq_unlock(rq, p, &rf);
4957 if (pi)
4958 cpuset_read_unlock();
4959 goto recheck;
4960 }
4961
4962 /*
4963 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4964 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4965 * is available.
4966 */
4967 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4968 retval = -EBUSY;
4969 goto unlock;
4970 }
4971
4972 p->sched_reset_on_fork = reset_on_fork;
4973 oldprio = p->prio;
4974
4975 if (pi) {
4976 /*
4977 * Take priority boosted tasks into account. If the new
4978 * effective priority is unchanged, we just store the new
4979 * normal parameters and do not touch the scheduler class and
4980 * the runqueue. This will be done when the task deboost
4981 * itself.
4982 */
4983 new_effective_prio = rt_effective_prio(p, newprio);
4984 if (new_effective_prio == oldprio)
4985 queue_flags &= ~DEQUEUE_MOVE;
4986 }
4987
4988 queued = task_on_rq_queued(p);
4989 running = task_current(rq, p);
4990 if (queued)
4991 dequeue_task(rq, p, queue_flags);
4992 if (running)
4993 put_prev_task(rq, p);
4994
4995 prev_class = p->sched_class;
4996
4997 __setscheduler(rq, p, attr, pi);
4998 __setscheduler_uclamp(p, attr);
4999
5000 if (queued) {
5001 /*
5002 * We enqueue to tail when the priority of a task is
5003 * increased (user space view).
5004 */
5005 if (oldprio < p->prio)
5006 queue_flags |= ENQUEUE_HEAD;
5007
5008 enqueue_task(rq, p, queue_flags);
5009 }
5010 if (running)
5011 set_next_task(rq, p);
5012
5013 check_class_changed(rq, p, prev_class, oldprio);
5014
5015 /* Avoid rq from going away on us: */
5016 preempt_disable();
5017 task_rq_unlock(rq, p, &rf);
5018
5019 if (pi) {
5020 cpuset_read_unlock();
5021 rt_mutex_adjust_pi(p);
5022 }
5023
5024 /* Run balance callbacks after we've adjusted the PI chain: */
5025 balance_callback(rq);
5026 preempt_enable();
5027
5028 return 0;
5029
5030 unlock:
5031 task_rq_unlock(rq, p, &rf);
5032 if (pi)
5033 cpuset_read_unlock();
5034 return retval;
5035 }
5036
5037 static int _sched_setscheduler(struct task_struct *p, int policy,
5038 const struct sched_param *param, bool check)
5039 {
5040 struct sched_attr attr = {
5041 .sched_policy = policy,
5042 .sched_priority = param->sched_priority,
5043 .sched_nice = PRIO_TO_NICE(p->static_prio),
5044 };
5045
5046 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5047 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5048 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5049 policy &= ~SCHED_RESET_ON_FORK;
5050 attr.sched_policy = policy;
5051 }
5052
5053 return __sched_setscheduler(p, &attr, check, true);
5054 }
5055 /**
5056 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5057 * @p: the task in question.
5058 * @policy: new policy.
5059 * @param: structure containing the new RT priority.
5060 *
5061 * Return: 0 on success. An error code otherwise.
5062 *
5063 * NOTE that the task may be already dead.
5064 */
5065 int sched_setscheduler(struct task_struct *p, int policy,
5066 const struct sched_param *param)
5067 {
5068 return _sched_setscheduler(p, policy, param, true);
5069 }
5070 EXPORT_SYMBOL_GPL(sched_setscheduler);
5071
5072 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5073 {
5074 return __sched_setscheduler(p, attr, true, true);
5075 }
5076 EXPORT_SYMBOL_GPL(sched_setattr);
5077
5078 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5079 {
5080 return __sched_setscheduler(p, attr, false, true);
5081 }
5082
5083 /**
5084 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5085 * @p: the task in question.
5086 * @policy: new policy.
5087 * @param: structure containing the new RT priority.
5088 *
5089 * Just like sched_setscheduler, only don't bother checking if the
5090 * current context has permission. For example, this is needed in
5091 * stop_machine(): we create temporary high priority worker threads,
5092 * but our caller might not have that capability.
5093 *
5094 * Return: 0 on success. An error code otherwise.
5095 */
5096 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5097 const struct sched_param *param)
5098 {
5099 return _sched_setscheduler(p, policy, param, false);
5100 }
5101 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5102
5103 static int
5104 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5105 {
5106 struct sched_param lparam;
5107 struct task_struct *p;
5108 int retval;
5109
5110 if (!param || pid < 0)
5111 return -EINVAL;
5112 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5113 return -EFAULT;
5114
5115 rcu_read_lock();
5116 retval = -ESRCH;
5117 p = find_process_by_pid(pid);
5118 if (likely(p))
5119 get_task_struct(p);
5120 rcu_read_unlock();
5121
5122 if (likely(p)) {
5123 retval = sched_setscheduler(p, policy, &lparam);
5124 put_task_struct(p);
5125 }
5126
5127 return retval;
5128 }
5129
5130 /*
5131 * Mimics kernel/events/core.c perf_copy_attr().
5132 */
5133 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5134 {
5135 u32 size;
5136 int ret;
5137
5138 /* Zero the full structure, so that a short copy will be nice: */
5139 memset(attr, 0, sizeof(*attr));
5140
5141 ret = get_user(size, &uattr->size);
5142 if (ret)
5143 return ret;
5144
5145 /* ABI compatibility quirk: */
5146 if (!size)
5147 size = SCHED_ATTR_SIZE_VER0;
5148 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5149 goto err_size;
5150
5151 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5152 if (ret) {
5153 if (ret == -E2BIG)
5154 goto err_size;
5155 return ret;
5156 }
5157
5158 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5159 size < SCHED_ATTR_SIZE_VER1)
5160 return -EINVAL;
5161
5162 /*
5163 * XXX: Do we want to be lenient like existing syscalls; or do we want
5164 * to be strict and return an error on out-of-bounds values?
5165 */
5166 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5167
5168 return 0;
5169
5170 err_size:
5171 put_user(sizeof(*attr), &uattr->size);
5172 return -E2BIG;
5173 }
5174
5175 /**
5176 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5177 * @pid: the pid in question.
5178 * @policy: new policy.
5179 * @param: structure containing the new RT priority.
5180 *
5181 * Return: 0 on success. An error code otherwise.
5182 */
5183 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5184 {
5185 if (policy < 0)
5186 return -EINVAL;
5187
5188 return do_sched_setscheduler(pid, policy, param);
5189 }
5190
5191 /**
5192 * sys_sched_setparam - set/change the RT priority of a thread
5193 * @pid: the pid in question.
5194 * @param: structure containing the new RT priority.
5195 *
5196 * Return: 0 on success. An error code otherwise.
5197 */
5198 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5199 {
5200 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5201 }
5202
5203 /**
5204 * sys_sched_setattr - same as above, but with extended sched_attr
5205 * @pid: the pid in question.
5206 * @uattr: structure containing the extended parameters.
5207 * @flags: for future extension.
5208 */
5209 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5210 unsigned int, flags)
5211 {
5212 struct sched_attr attr;
5213 struct task_struct *p;
5214 int retval;
5215
5216 if (!uattr || pid < 0 || flags)
5217 return -EINVAL;
5218
5219 retval = sched_copy_attr(uattr, &attr);
5220 if (retval)
5221 return retval;
5222
5223 if ((int)attr.sched_policy < 0)
5224 return -EINVAL;
5225 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5226 attr.sched_policy = SETPARAM_POLICY;
5227
5228 rcu_read_lock();
5229 retval = -ESRCH;
5230 p = find_process_by_pid(pid);
5231 if (likely(p))
5232 get_task_struct(p);
5233 rcu_read_unlock();
5234
5235 if (likely(p)) {
5236 retval = sched_setattr(p, &attr);
5237 put_task_struct(p);
5238 }
5239
5240 return retval;
5241 }
5242
5243 /**
5244 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5245 * @pid: the pid in question.
5246 *
5247 * Return: On success, the policy of the thread. Otherwise, a negative error
5248 * code.
5249 */
5250 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5251 {
5252 struct task_struct *p;
5253 int retval;
5254
5255 if (pid < 0)
5256 return -EINVAL;
5257
5258 retval = -ESRCH;
5259 rcu_read_lock();
5260 p = find_process_by_pid(pid);
5261 if (p) {
5262 retval = security_task_getscheduler(p);
5263 if (!retval)
5264 retval = p->policy
5265 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5266 }
5267 rcu_read_unlock();
5268 return retval;
5269 }
5270
5271 /**
5272 * sys_sched_getparam - get the RT priority of a thread
5273 * @pid: the pid in question.
5274 * @param: structure containing the RT priority.
5275 *
5276 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5277 * code.
5278 */
5279 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5280 {
5281 struct sched_param lp = { .sched_priority = 0 };
5282 struct task_struct *p;
5283 int retval;
5284
5285 if (!param || pid < 0)
5286 return -EINVAL;
5287
5288 rcu_read_lock();
5289 p = find_process_by_pid(pid);
5290 retval = -ESRCH;
5291 if (!p)
5292 goto out_unlock;
5293
5294 retval = security_task_getscheduler(p);
5295 if (retval)
5296 goto out_unlock;
5297
5298 if (task_has_rt_policy(p))
5299 lp.sched_priority = p->rt_priority;
5300 rcu_read_unlock();
5301
5302 /*
5303 * This one might sleep, we cannot do it with a spinlock held ...
5304 */
5305 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5306
5307 return retval;
5308
5309 out_unlock:
5310 rcu_read_unlock();
5311 return retval;
5312 }
5313
5314 /*
5315 * Copy the kernel size attribute structure (which might be larger
5316 * than what user-space knows about) to user-space.
5317 *
5318 * Note that all cases are valid: user-space buffer can be larger or
5319 * smaller than the kernel-space buffer. The usual case is that both
5320 * have the same size.
5321 */
5322 static int
5323 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5324 struct sched_attr *kattr,
5325 unsigned int usize)
5326 {
5327 unsigned int ksize = sizeof(*kattr);
5328
5329 if (!access_ok(uattr, usize))
5330 return -EFAULT;
5331
5332 /*
5333 * sched_getattr() ABI forwards and backwards compatibility:
5334 *
5335 * If usize == ksize then we just copy everything to user-space and all is good.
5336 *
5337 * If usize < ksize then we only copy as much as user-space has space for,
5338 * this keeps ABI compatibility as well. We skip the rest.
5339 *
5340 * If usize > ksize then user-space is using a newer version of the ABI,
5341 * which part the kernel doesn't know about. Just ignore it - tooling can
5342 * detect the kernel's knowledge of attributes from the attr->size value
5343 * which is set to ksize in this case.
5344 */
5345 kattr->size = min(usize, ksize);
5346
5347 if (copy_to_user(uattr, kattr, kattr->size))
5348 return -EFAULT;
5349
5350 return 0;
5351 }
5352
5353 /**
5354 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5355 * @pid: the pid in question.
5356 * @uattr: structure containing the extended parameters.
5357 * @usize: sizeof(attr) for fwd/bwd comp.
5358 * @flags: for future extension.
5359 */
5360 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5361 unsigned int, usize, unsigned int, flags)
5362 {
5363 struct sched_attr kattr = { };
5364 struct task_struct *p;
5365 int retval;
5366
5367 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5368 usize < SCHED_ATTR_SIZE_VER0 || flags)
5369 return -EINVAL;
5370
5371 rcu_read_lock();
5372 p = find_process_by_pid(pid);
5373 retval = -ESRCH;
5374 if (!p)
5375 goto out_unlock;
5376
5377 retval = security_task_getscheduler(p);
5378 if (retval)
5379 goto out_unlock;
5380
5381 kattr.sched_policy = p->policy;
5382 if (p->sched_reset_on_fork)
5383 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5384 if (task_has_dl_policy(p))
5385 __getparam_dl(p, &kattr);
5386 else if (task_has_rt_policy(p))
5387 kattr.sched_priority = p->rt_priority;
5388 else
5389 kattr.sched_nice = task_nice(p);
5390
5391 #ifdef CONFIG_UCLAMP_TASK
5392 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5393 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5394 #endif
5395
5396 rcu_read_unlock();
5397
5398 return sched_attr_copy_to_user(uattr, &kattr, usize);
5399
5400 out_unlock:
5401 rcu_read_unlock();
5402 return retval;
5403 }
5404
5405 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5406 {
5407 cpumask_var_t cpus_allowed, new_mask;
5408 struct task_struct *p;
5409 int retval;
5410
5411 rcu_read_lock();
5412
5413 p = find_process_by_pid(pid);
5414 if (!p) {
5415 rcu_read_unlock();
5416 return -ESRCH;
5417 }
5418
5419 /* Prevent p going away */
5420 get_task_struct(p);
5421 rcu_read_unlock();
5422
5423 if (p->flags & PF_NO_SETAFFINITY) {
5424 retval = -EINVAL;
5425 goto out_put_task;
5426 }
5427 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5428 retval = -ENOMEM;
5429 goto out_put_task;
5430 }
5431 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5432 retval = -ENOMEM;
5433 goto out_free_cpus_allowed;
5434 }
5435 retval = -EPERM;
5436 if (!check_same_owner(p)) {
5437 rcu_read_lock();
5438 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5439 rcu_read_unlock();
5440 goto out_free_new_mask;
5441 }
5442 rcu_read_unlock();
5443 }
5444
5445 retval = security_task_setscheduler(p);
5446 if (retval)
5447 goto out_free_new_mask;
5448
5449
5450 cpuset_cpus_allowed(p, cpus_allowed);
5451 cpumask_and(new_mask, in_mask, cpus_allowed);
5452
5453 /*
5454 * Since bandwidth control happens on root_domain basis,
5455 * if admission test is enabled, we only admit -deadline
5456 * tasks allowed to run on all the CPUs in the task's
5457 * root_domain.
5458 */
5459 #ifdef CONFIG_SMP
5460 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5461 rcu_read_lock();
5462 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5463 retval = -EBUSY;
5464 rcu_read_unlock();
5465 goto out_free_new_mask;
5466 }
5467 rcu_read_unlock();
5468 }
5469 #endif
5470 again:
5471 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5472
5473 if (!retval) {
5474 cpuset_cpus_allowed(p, cpus_allowed);
5475 if (!cpumask_subset(new_mask, cpus_allowed)) {
5476 /*
5477 * We must have raced with a concurrent cpuset
5478 * update. Just reset the cpus_allowed to the
5479 * cpuset's cpus_allowed
5480 */
5481 cpumask_copy(new_mask, cpus_allowed);
5482 goto again;
5483 }
5484 }
5485 out_free_new_mask:
5486 free_cpumask_var(new_mask);
5487 out_free_cpus_allowed:
5488 free_cpumask_var(cpus_allowed);
5489 out_put_task:
5490 put_task_struct(p);
5491 return retval;
5492 }
5493
5494 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5495 struct cpumask *new_mask)
5496 {
5497 if (len < cpumask_size())
5498 cpumask_clear(new_mask);
5499 else if (len > cpumask_size())
5500 len = cpumask_size();
5501
5502 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5503 }
5504
5505 /**
5506 * sys_sched_setaffinity - set the CPU affinity of a process
5507 * @pid: pid of the process
5508 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5509 * @user_mask_ptr: user-space pointer to the new CPU mask
5510 *
5511 * Return: 0 on success. An error code otherwise.
5512 */
5513 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5514 unsigned long __user *, user_mask_ptr)
5515 {
5516 cpumask_var_t new_mask;
5517 int retval;
5518
5519 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5520 return -ENOMEM;
5521
5522 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5523 if (retval == 0)
5524 retval = sched_setaffinity(pid, new_mask);
5525 free_cpumask_var(new_mask);
5526 return retval;
5527 }
5528
5529 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5530 {
5531 struct task_struct *p;
5532 unsigned long flags;
5533 int retval;
5534
5535 rcu_read_lock();
5536
5537 retval = -ESRCH;
5538 p = find_process_by_pid(pid);
5539 if (!p)
5540 goto out_unlock;
5541
5542 retval = security_task_getscheduler(p);
5543 if (retval)
5544 goto out_unlock;
5545
5546 raw_spin_lock_irqsave(&p->pi_lock, flags);
5547 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5548 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5549
5550 out_unlock:
5551 rcu_read_unlock();
5552
5553 return retval;
5554 }
5555
5556 /**
5557 * sys_sched_getaffinity - get the CPU affinity of a process
5558 * @pid: pid of the process
5559 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5560 * @user_mask_ptr: user-space pointer to hold the current CPU mask
5561 *
5562 * Return: size of CPU mask copied to user_mask_ptr on success. An
5563 * error code otherwise.
5564 */
5565 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5566 unsigned long __user *, user_mask_ptr)
5567 {
5568 int ret;
5569 cpumask_var_t mask;
5570
5571 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5572 return -EINVAL;
5573 if (len & (sizeof(unsigned long)-1))
5574 return -EINVAL;
5575
5576 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5577 return -ENOMEM;
5578
5579 ret = sched_getaffinity(pid, mask);
5580 if (ret == 0) {
5581 unsigned int retlen = min(len, cpumask_size());
5582
5583 if (copy_to_user(user_mask_ptr, mask, retlen))
5584 ret = -EFAULT;
5585 else
5586 ret = retlen;
5587 }
5588 free_cpumask_var(mask);
5589
5590 return ret;
5591 }
5592
5593 /**
5594 * sys_sched_yield - yield the current processor to other threads.
5595 *
5596 * This function yields the current CPU to other tasks. If there are no
5597 * other threads running on this CPU then this function will return.
5598 *
5599 * Return: 0.
5600 */
5601 static void do_sched_yield(void)
5602 {
5603 struct rq_flags rf;
5604 struct rq *rq;
5605
5606 rq = this_rq_lock_irq(&rf);
5607
5608 schedstat_inc(rq->yld_count);
5609 current->sched_class->yield_task(rq);
5610
5611 /*
5612 * Since we are going to call schedule() anyway, there's
5613 * no need to preempt or enable interrupts:
5614 */
5615 preempt_disable();
5616 rq_unlock(rq, &rf);
5617 sched_preempt_enable_no_resched();
5618
5619 schedule();
5620 }
5621
5622 SYSCALL_DEFINE0(sched_yield)
5623 {
5624 do_sched_yield();
5625 return 0;
5626 }
5627
5628 #ifndef CONFIG_PREEMPTION
5629 int __sched _cond_resched(void)
5630 {
5631 if (should_resched(0)) {
5632 preempt_schedule_common();
5633 return 1;
5634 }
5635 rcu_all_qs();
5636 return 0;
5637 }
5638 EXPORT_SYMBOL(_cond_resched);
5639 #endif
5640
5641 /*
5642 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5643 * call schedule, and on return reacquire the lock.
5644 *
5645 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5646 * operations here to prevent schedule() from being called twice (once via
5647 * spin_unlock(), once by hand).
5648 */
5649 int __cond_resched_lock(spinlock_t *lock)
5650 {
5651 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5652 int ret = 0;
5653
5654 lockdep_assert_held(lock);
5655
5656 if (spin_needbreak(lock) || resched) {
5657 spin_unlock(lock);
5658 if (resched)
5659 preempt_schedule_common();
5660 else
5661 cpu_relax();
5662 ret = 1;
5663 spin_lock(lock);
5664 }
5665 return ret;
5666 }
5667 EXPORT_SYMBOL(__cond_resched_lock);
5668
5669 /**
5670 * yield - yield the current processor to other threads.
5671 *
5672 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5673 *
5674 * The scheduler is at all times free to pick the calling task as the most
5675 * eligible task to run, if removing the yield() call from your code breaks
5676 * it, its already broken.
5677 *
5678 * Typical broken usage is:
5679 *
5680 * while (!event)
5681 * yield();
5682 *
5683 * where one assumes that yield() will let 'the other' process run that will
5684 * make event true. If the current task is a SCHED_FIFO task that will never
5685 * happen. Never use yield() as a progress guarantee!!
5686 *
5687 * If you want to use yield() to wait for something, use wait_event().
5688 * If you want to use yield() to be 'nice' for others, use cond_resched().
5689 * If you still want to use yield(), do not!
5690 */
5691 void __sched yield(void)
5692 {
5693 set_current_state(TASK_RUNNING);
5694 do_sched_yield();
5695 }
5696 EXPORT_SYMBOL(yield);
5697
5698 /**
5699 * yield_to - yield the current processor to another thread in
5700 * your thread group, or accelerate that thread toward the
5701 * processor it's on.
5702 * @p: target task
5703 * @preempt: whether task preemption is allowed or not
5704 *
5705 * It's the caller's job to ensure that the target task struct
5706 * can't go away on us before we can do any checks.
5707 *
5708 * Return:
5709 * true (>0) if we indeed boosted the target task.
5710 * false (0) if we failed to boost the target.
5711 * -ESRCH if there's no task to yield to.
5712 */
5713 int __sched yield_to(struct task_struct *p, bool preempt)
5714 {
5715 struct task_struct *curr = current;
5716 struct rq *rq, *p_rq;
5717 unsigned long flags;
5718 int yielded = 0;
5719
5720 local_irq_save(flags);
5721 rq = this_rq();
5722
5723 again:
5724 p_rq = task_rq(p);
5725 /*
5726 * If we're the only runnable task on the rq and target rq also
5727 * has only one task, there's absolutely no point in yielding.
5728 */
5729 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5730 yielded = -ESRCH;
5731 goto out_irq;
5732 }
5733
5734 double_rq_lock(rq, p_rq);
5735 if (task_rq(p) != p_rq) {
5736 double_rq_unlock(rq, p_rq);
5737 goto again;
5738 }
5739
5740 if (!curr->sched_class->yield_to_task)
5741 goto out_unlock;
5742
5743 if (curr->sched_class != p->sched_class)
5744 goto out_unlock;
5745
5746 if (task_running(p_rq, p) || p->state)
5747 goto out_unlock;
5748
5749 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5750 if (yielded) {
5751 schedstat_inc(rq->yld_count);
5752 /*
5753 * Make p's CPU reschedule; pick_next_entity takes care of
5754 * fairness.
5755 */
5756 if (preempt && rq != p_rq)
5757 resched_curr(p_rq);
5758 }
5759
5760 out_unlock:
5761 double_rq_unlock(rq, p_rq);
5762 out_irq:
5763 local_irq_restore(flags);
5764
5765 if (yielded > 0)
5766 schedule();
5767
5768 return yielded;
5769 }
5770 EXPORT_SYMBOL_GPL(yield_to);
5771
5772 int io_schedule_prepare(void)
5773 {
5774 int old_iowait = current->in_iowait;
5775
5776 current->in_iowait = 1;
5777 blk_schedule_flush_plug(current);
5778
5779 return old_iowait;
5780 }
5781
5782 void io_schedule_finish(int token)
5783 {
5784 current->in_iowait = token;
5785 }
5786
5787 /*
5788 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5789 * that process accounting knows that this is a task in IO wait state.
5790 */
5791 long __sched io_schedule_timeout(long timeout)
5792 {
5793 int token;
5794 long ret;
5795
5796 token = io_schedule_prepare();
5797 ret = schedule_timeout(timeout);
5798 io_schedule_finish(token);
5799
5800 return ret;
5801 }
5802 EXPORT_SYMBOL(io_schedule_timeout);
5803
5804 void __sched io_schedule(void)
5805 {
5806 int token;
5807
5808 token = io_schedule_prepare();
5809 schedule();
5810 io_schedule_finish(token);
5811 }
5812 EXPORT_SYMBOL(io_schedule);
5813
5814 /**
5815 * sys_sched_get_priority_max - return maximum RT priority.
5816 * @policy: scheduling class.
5817 *
5818 * Return: On success, this syscall returns the maximum
5819 * rt_priority that can be used by a given scheduling class.
5820 * On failure, a negative error code is returned.
5821 */
5822 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5823 {
5824 int ret = -EINVAL;
5825
5826 switch (policy) {
5827 case SCHED_FIFO:
5828 case SCHED_RR:
5829 ret = MAX_USER_RT_PRIO-1;
5830 break;
5831 case SCHED_DEADLINE:
5832 case SCHED_NORMAL:
5833 case SCHED_BATCH:
5834 case SCHED_IDLE:
5835 ret = 0;
5836 break;
5837 }
5838 return ret;
5839 }
5840
5841 /**
5842 * sys_sched_get_priority_min - return minimum RT priority.
5843 * @policy: scheduling class.
5844 *
5845 * Return: On success, this syscall returns the minimum
5846 * rt_priority that can be used by a given scheduling class.
5847 * On failure, a negative error code is returned.
5848 */
5849 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5850 {
5851 int ret = -EINVAL;
5852
5853 switch (policy) {
5854 case SCHED_FIFO:
5855 case SCHED_RR:
5856 ret = 1;
5857 break;
5858 case SCHED_DEADLINE:
5859 case SCHED_NORMAL:
5860 case SCHED_BATCH:
5861 case SCHED_IDLE:
5862 ret = 0;
5863 }
5864 return ret;
5865 }
5866
5867 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5868 {
5869 struct task_struct *p;
5870 unsigned int time_slice;
5871 struct rq_flags rf;
5872 struct rq *rq;
5873 int retval;
5874
5875 if (pid < 0)
5876 return -EINVAL;
5877
5878 retval = -ESRCH;
5879 rcu_read_lock();
5880 p = find_process_by_pid(pid);
5881 if (!p)
5882 goto out_unlock;
5883
5884 retval = security_task_getscheduler(p);
5885 if (retval)
5886 goto out_unlock;
5887
5888 rq = task_rq_lock(p, &rf);
5889 time_slice = 0;
5890 if (p->sched_class->get_rr_interval)
5891 time_slice = p->sched_class->get_rr_interval(rq, p);
5892 task_rq_unlock(rq, p, &rf);
5893
5894 rcu_read_unlock();
5895 jiffies_to_timespec64(time_slice, t);
5896 return 0;
5897
5898 out_unlock:
5899 rcu_read_unlock();
5900 return retval;
5901 }
5902
5903 /**
5904 * sys_sched_rr_get_interval - return the default timeslice of a process.
5905 * @pid: pid of the process.
5906 * @interval: userspace pointer to the timeslice value.
5907 *
5908 * this syscall writes the default timeslice value of a given process
5909 * into the user-space timespec buffer. A value of '0' means infinity.
5910 *
5911 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5912 * an error code.
5913 */
5914 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5915 struct __kernel_timespec __user *, interval)
5916 {
5917 struct timespec64 t;
5918 int retval = sched_rr_get_interval(pid, &t);
5919
5920 if (retval == 0)
5921 retval = put_timespec64(&t, interval);
5922
5923 return retval;
5924 }
5925
5926 #ifdef CONFIG_COMPAT_32BIT_TIME
5927 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5928 struct old_timespec32 __user *, interval)
5929 {
5930 struct timespec64 t;
5931 int retval = sched_rr_get_interval(pid, &t);
5932
5933 if (retval == 0)
5934 retval = put_old_timespec32(&t, interval);
5935 return retval;
5936 }
5937 #endif
5938
5939 void sched_show_task(struct task_struct *p)
5940 {
5941 unsigned long free = 0;
5942 int ppid;
5943
5944 if (!try_get_task_stack(p))
5945 return;
5946
5947 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5948
5949 if (p->state == TASK_RUNNING)
5950 printk(KERN_CONT " running task ");
5951 #ifdef CONFIG_DEBUG_STACK_USAGE
5952 free = stack_not_used(p);
5953 #endif
5954 ppid = 0;
5955 rcu_read_lock();
5956 if (pid_alive(p))
5957 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5958 rcu_read_unlock();
5959 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5960 task_pid_nr(p), ppid,
5961 (unsigned long)task_thread_info(p)->flags);
5962
5963 print_worker_info(KERN_INFO, p);
5964 show_stack(p, NULL);
5965 put_task_stack(p);
5966 }
5967 EXPORT_SYMBOL_GPL(sched_show_task);
5968
5969 static inline bool
5970 state_filter_match(unsigned long state_filter, struct task_struct *p)
5971 {
5972 /* no filter, everything matches */
5973 if (!state_filter)
5974 return true;
5975
5976 /* filter, but doesn't match */
5977 if (!(p->state & state_filter))
5978 return false;
5979
5980 /*
5981 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5982 * TASK_KILLABLE).
5983 */
5984 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5985 return false;
5986
5987 return true;
5988 }
5989
5990
5991 void show_state_filter(unsigned long state_filter)
5992 {
5993 struct task_struct *g, *p;
5994
5995 #if BITS_PER_LONG == 32
5996 printk(KERN_INFO
5997 " task PC stack pid father\n");
5998 #else
5999 printk(KERN_INFO
6000 " task PC stack pid father\n");
6001 #endif
6002 rcu_read_lock();
6003 for_each_process_thread(g, p) {
6004 /*
6005 * reset the NMI-timeout, listing all files on a slow
6006 * console might take a lot of time:
6007 * Also, reset softlockup watchdogs on all CPUs, because
6008 * another CPU might be blocked waiting for us to process
6009 * an IPI.
6010 */
6011 touch_nmi_watchdog();
6012 touch_all_softlockup_watchdogs();
6013 if (state_filter_match(state_filter, p))
6014 sched_show_task(p);
6015 }
6016
6017 #ifdef CONFIG_SCHED_DEBUG
6018 if (!state_filter)
6019 sysrq_sched_debug_show();
6020 #endif
6021 rcu_read_unlock();
6022 /*
6023 * Only show locks if all tasks are dumped:
6024 */
6025 if (!state_filter)
6026 debug_show_all_locks();
6027 }
6028
6029 /**
6030 * init_idle - set up an idle thread for a given CPU
6031 * @idle: task in question
6032 * @cpu: CPU the idle task belongs to
6033 *
6034 * NOTE: this function does not set the idle thread's NEED_RESCHED
6035 * flag, to make booting more robust.
6036 */
6037 void init_idle(struct task_struct *idle, int cpu)
6038 {
6039 struct rq *rq = cpu_rq(cpu);
6040 unsigned long flags;
6041
6042 __sched_fork(0, idle);
6043
6044 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6045 raw_spin_lock(&rq->lock);
6046
6047 idle->state = TASK_RUNNING;
6048 idle->se.exec_start = sched_clock();
6049 idle->flags |= PF_IDLE;
6050
6051 kasan_unpoison_task_stack(idle);
6052
6053 #ifdef CONFIG_SMP
6054 /*
6055 * Its possible that init_idle() gets called multiple times on a task,
6056 * in that case do_set_cpus_allowed() will not do the right thing.
6057 *
6058 * And since this is boot we can forgo the serialization.
6059 */
6060 set_cpus_allowed_common(idle, cpumask_of(cpu));
6061 #endif
6062 /*
6063 * We're having a chicken and egg problem, even though we are
6064 * holding rq->lock, the CPU isn't yet set to this CPU so the
6065 * lockdep check in task_group() will fail.
6066 *
6067 * Similar case to sched_fork(). / Alternatively we could
6068 * use task_rq_lock() here and obtain the other rq->lock.
6069 *
6070 * Silence PROVE_RCU
6071 */
6072 rcu_read_lock();
6073 __set_task_cpu(idle, cpu);
6074 rcu_read_unlock();
6075
6076 rq->idle = idle;
6077 rcu_assign_pointer(rq->curr, idle);
6078 idle->on_rq = TASK_ON_RQ_QUEUED;
6079 #ifdef CONFIG_SMP
6080 idle->on_cpu = 1;
6081 #endif
6082 raw_spin_unlock(&rq->lock);
6083 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6084
6085 /* Set the preempt count _outside_ the spinlocks! */
6086 init_idle_preempt_count(idle, cpu);
6087
6088 /*
6089 * The idle tasks have their own, simple scheduling class:
6090 */
6091 idle->sched_class = &idle_sched_class;
6092 ftrace_graph_init_idle_task(idle, cpu);
6093 vtime_init_idle(idle, cpu);
6094 #ifdef CONFIG_SMP
6095 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6096 #endif
6097 }
6098
6099 #ifdef CONFIG_SMP
6100
6101 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6102 const struct cpumask *trial)
6103 {
6104 int ret = 1;
6105
6106 if (!cpumask_weight(cur))
6107 return ret;
6108
6109 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6110
6111 return ret;
6112 }
6113
6114 int task_can_attach(struct task_struct *p,
6115 const struct cpumask *cs_cpus_allowed)
6116 {
6117 int ret = 0;
6118
6119 /*
6120 * Kthreads which disallow setaffinity shouldn't be moved
6121 * to a new cpuset; we don't want to change their CPU
6122 * affinity and isolating such threads by their set of
6123 * allowed nodes is unnecessary. Thus, cpusets are not
6124 * applicable for such threads. This prevents checking for
6125 * success of set_cpus_allowed_ptr() on all attached tasks
6126 * before cpus_mask may be changed.
6127 */
6128 if (p->flags & PF_NO_SETAFFINITY) {
6129 ret = -EINVAL;
6130 goto out;
6131 }
6132
6133 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6134 cs_cpus_allowed))
6135 ret = dl_task_can_attach(p, cs_cpus_allowed);
6136
6137 out:
6138 return ret;
6139 }
6140
6141 bool sched_smp_initialized __read_mostly;
6142
6143 #ifdef CONFIG_NUMA_BALANCING
6144 /* Migrate current task p to target_cpu */
6145 int migrate_task_to(struct task_struct *p, int target_cpu)
6146 {
6147 struct migration_arg arg = { p, target_cpu };
6148 int curr_cpu = task_cpu(p);
6149
6150 if (curr_cpu == target_cpu)
6151 return 0;
6152
6153 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6154 return -EINVAL;
6155
6156 /* TODO: This is not properly updating schedstats */
6157
6158 trace_sched_move_numa(p, curr_cpu, target_cpu);
6159 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6160 }
6161
6162 /*
6163 * Requeue a task on a given node and accurately track the number of NUMA
6164 * tasks on the runqueues
6165 */
6166 void sched_setnuma(struct task_struct *p, int nid)
6167 {
6168 bool queued, running;
6169 struct rq_flags rf;
6170 struct rq *rq;
6171
6172 rq = task_rq_lock(p, &rf);
6173 queued = task_on_rq_queued(p);
6174 running = task_current(rq, p);
6175
6176 if (queued)
6177 dequeue_task(rq, p, DEQUEUE_SAVE);
6178 if (running)
6179 put_prev_task(rq, p);
6180
6181 p->numa_preferred_nid = nid;
6182
6183 if (queued)
6184 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6185 if (running)
6186 set_next_task(rq, p);
6187 task_rq_unlock(rq, p, &rf);
6188 }
6189 #endif /* CONFIG_NUMA_BALANCING */
6190
6191 #ifdef CONFIG_HOTPLUG_CPU
6192 /*
6193 * Ensure that the idle task is using init_mm right before its CPU goes
6194 * offline.
6195 */
6196 void idle_task_exit(void)
6197 {
6198 struct mm_struct *mm = current->active_mm;
6199
6200 BUG_ON(cpu_online(smp_processor_id()));
6201
6202 if (mm != &init_mm) {
6203 switch_mm(mm, &init_mm, current);
6204 current->active_mm = &init_mm;
6205 finish_arch_post_lock_switch();
6206 }
6207 mmdrop(mm);
6208 }
6209
6210 /*
6211 * Since this CPU is going 'away' for a while, fold any nr_active delta
6212 * we might have. Assumes we're called after migrate_tasks() so that the
6213 * nr_active count is stable. We need to take the teardown thread which
6214 * is calling this into account, so we hand in adjust = 1 to the load
6215 * calculation.
6216 *
6217 * Also see the comment "Global load-average calculations".
6218 */
6219 static void calc_load_migrate(struct rq *rq)
6220 {
6221 long delta = calc_load_fold_active(rq, 1);
6222 if (delta)
6223 atomic_long_add(delta, &calc_load_tasks);
6224 }
6225
6226 static struct task_struct *__pick_migrate_task(struct rq *rq)
6227 {
6228 const struct sched_class *class;
6229 struct task_struct *next;
6230
6231 for_each_class(class) {
6232 next = class->pick_next_task(rq);
6233 if (next) {
6234 next->sched_class->put_prev_task(rq, next);
6235 return next;
6236 }
6237 }
6238
6239 /* The idle class should always have a runnable task */
6240 BUG();
6241 }
6242
6243 /*
6244 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6245 * try_to_wake_up()->select_task_rq().
6246 *
6247 * Called with rq->lock held even though we'er in stop_machine() and
6248 * there's no concurrency possible, we hold the required locks anyway
6249 * because of lock validation efforts.
6250 */
6251 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6252 {
6253 struct rq *rq = dead_rq;
6254 struct task_struct *next, *stop = rq->stop;
6255 struct rq_flags orf = *rf;
6256 int dest_cpu;
6257
6258 /*
6259 * Fudge the rq selection such that the below task selection loop
6260 * doesn't get stuck on the currently eligible stop task.
6261 *
6262 * We're currently inside stop_machine() and the rq is either stuck
6263 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6264 * either way we should never end up calling schedule() until we're
6265 * done here.
6266 */
6267 rq->stop = NULL;
6268
6269 /*
6270 * put_prev_task() and pick_next_task() sched
6271 * class method both need to have an up-to-date
6272 * value of rq->clock[_task]
6273 */
6274 update_rq_clock(rq);
6275
6276 for (;;) {
6277 /*
6278 * There's this thread running, bail when that's the only
6279 * remaining thread:
6280 */
6281 if (rq->nr_running == 1)
6282 break;
6283
6284 next = __pick_migrate_task(rq);
6285
6286 /*
6287 * Rules for changing task_struct::cpus_mask are holding
6288 * both pi_lock and rq->lock, such that holding either
6289 * stabilizes the mask.
6290 *
6291 * Drop rq->lock is not quite as disastrous as it usually is
6292 * because !cpu_active at this point, which means load-balance
6293 * will not interfere. Also, stop-machine.
6294 */
6295 rq_unlock(rq, rf);
6296 raw_spin_lock(&next->pi_lock);
6297 rq_relock(rq, rf);
6298
6299 /*
6300 * Since we're inside stop-machine, _nothing_ should have
6301 * changed the task, WARN if weird stuff happened, because in
6302 * that case the above rq->lock drop is a fail too.
6303 */
6304 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6305 raw_spin_unlock(&next->pi_lock);
6306 continue;
6307 }
6308
6309 /* Find suitable destination for @next, with force if needed. */
6310 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6311 rq = __migrate_task(rq, rf, next, dest_cpu);
6312 if (rq != dead_rq) {
6313 rq_unlock(rq, rf);
6314 rq = dead_rq;
6315 *rf = orf;
6316 rq_relock(rq, rf);
6317 }
6318 raw_spin_unlock(&next->pi_lock);
6319 }
6320
6321 rq->stop = stop;
6322 }
6323 #endif /* CONFIG_HOTPLUG_CPU */
6324
6325 void set_rq_online(struct rq *rq)
6326 {
6327 if (!rq->online) {
6328 const struct sched_class *class;
6329
6330 cpumask_set_cpu(rq->cpu, rq->rd->online);
6331 rq->online = 1;
6332
6333 for_each_class(class) {
6334 if (class->rq_online)
6335 class->rq_online(rq);
6336 }
6337 }
6338 }
6339
6340 void set_rq_offline(struct rq *rq)
6341 {
6342 if (rq->online) {
6343 const struct sched_class *class;
6344
6345 for_each_class(class) {
6346 if (class->rq_offline)
6347 class->rq_offline(rq);
6348 }
6349
6350 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6351 rq->online = 0;
6352 }
6353 }
6354
6355 /*
6356 * used to mark begin/end of suspend/resume:
6357 */
6358 static int num_cpus_frozen;
6359
6360 /*
6361 * Update cpusets according to cpu_active mask. If cpusets are
6362 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6363 * around partition_sched_domains().
6364 *
6365 * If we come here as part of a suspend/resume, don't touch cpusets because we
6366 * want to restore it back to its original state upon resume anyway.
6367 */
6368 static void cpuset_cpu_active(void)
6369 {
6370 if (cpuhp_tasks_frozen) {
6371 /*
6372 * num_cpus_frozen tracks how many CPUs are involved in suspend
6373 * resume sequence. As long as this is not the last online
6374 * operation in the resume sequence, just build a single sched
6375 * domain, ignoring cpusets.
6376 */
6377 partition_sched_domains(1, NULL, NULL);
6378 if (--num_cpus_frozen)
6379 return;
6380 /*
6381 * This is the last CPU online operation. So fall through and
6382 * restore the original sched domains by considering the
6383 * cpuset configurations.
6384 */
6385 cpuset_force_rebuild();
6386 }
6387 cpuset_update_active_cpus();
6388 }
6389
6390 static int cpuset_cpu_inactive(unsigned int cpu)
6391 {
6392 if (!cpuhp_tasks_frozen) {
6393 if (dl_cpu_busy(cpu))
6394 return -EBUSY;
6395 cpuset_update_active_cpus();
6396 } else {
6397 num_cpus_frozen++;
6398 partition_sched_domains(1, NULL, NULL);
6399 }
6400 return 0;
6401 }
6402
6403 int sched_cpu_activate(unsigned int cpu)
6404 {
6405 struct rq *rq = cpu_rq(cpu);
6406 struct rq_flags rf;
6407
6408 #ifdef CONFIG_SCHED_SMT
6409 /*
6410 * When going up, increment the number of cores with SMT present.
6411 */
6412 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6413 static_branch_inc_cpuslocked(&sched_smt_present);
6414 #endif
6415 set_cpu_active(cpu, true);
6416
6417 if (sched_smp_initialized) {
6418 sched_domains_numa_masks_set(cpu);
6419 cpuset_cpu_active();
6420 }
6421
6422 /*
6423 * Put the rq online, if not already. This happens:
6424 *
6425 * 1) In the early boot process, because we build the real domains
6426 * after all CPUs have been brought up.
6427 *
6428 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6429 * domains.
6430 */
6431 rq_lock_irqsave(rq, &rf);
6432 if (rq->rd) {
6433 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6434 set_rq_online(rq);
6435 }
6436 rq_unlock_irqrestore(rq, &rf);
6437
6438 return 0;
6439 }
6440
6441 int sched_cpu_deactivate(unsigned int cpu)
6442 {
6443 int ret;
6444
6445 set_cpu_active(cpu, false);
6446 /*
6447 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6448 * users of this state to go away such that all new such users will
6449 * observe it.
6450 *
6451 * Do sync before park smpboot threads to take care the rcu boost case.
6452 */
6453 synchronize_rcu();
6454
6455 #ifdef CONFIG_SCHED_SMT
6456 /*
6457 * When going down, decrement the number of cores with SMT present.
6458 */
6459 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6460 static_branch_dec_cpuslocked(&sched_smt_present);
6461 #endif
6462
6463 if (!sched_smp_initialized)
6464 return 0;
6465
6466 ret = cpuset_cpu_inactive(cpu);
6467 if (ret) {
6468 set_cpu_active(cpu, true);
6469 return ret;
6470 }
6471 sched_domains_numa_masks_clear(cpu);
6472 return 0;
6473 }
6474
6475 static void sched_rq_cpu_starting(unsigned int cpu)
6476 {
6477 struct rq *rq = cpu_rq(cpu);
6478
6479 rq->calc_load_update = calc_load_update;
6480 update_max_interval();
6481 }
6482
6483 int sched_cpu_starting(unsigned int cpu)
6484 {
6485 sched_rq_cpu_starting(cpu);
6486 sched_tick_start(cpu);
6487 return 0;
6488 }
6489
6490 #ifdef CONFIG_HOTPLUG_CPU
6491 int sched_cpu_dying(unsigned int cpu)
6492 {
6493 struct rq *rq = cpu_rq(cpu);
6494 struct rq_flags rf;
6495
6496 /* Handle pending wakeups and then migrate everything off */
6497 sched_ttwu_pending();
6498 sched_tick_stop(cpu);
6499
6500 rq_lock_irqsave(rq, &rf);
6501 if (rq->rd) {
6502 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6503 set_rq_offline(rq);
6504 }
6505 migrate_tasks(rq, &rf);
6506 BUG_ON(rq->nr_running != 1);
6507 rq_unlock_irqrestore(rq, &rf);
6508
6509 calc_load_migrate(rq);
6510 update_max_interval();
6511 nohz_balance_exit_idle(rq);
6512 hrtick_clear(rq);
6513 return 0;
6514 }
6515 #endif
6516
6517 void __init sched_init_smp(void)
6518 {
6519 sched_init_numa();
6520
6521 /*
6522 * There's no userspace yet to cause hotplug operations; hence all the
6523 * CPU masks are stable and all blatant races in the below code cannot
6524 * happen.
6525 */
6526 mutex_lock(&sched_domains_mutex);
6527 sched_init_domains(cpu_active_mask);
6528 mutex_unlock(&sched_domains_mutex);
6529
6530 /* Move init over to a non-isolated CPU */
6531 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6532 BUG();
6533 sched_init_granularity();
6534
6535 init_sched_rt_class();
6536 init_sched_dl_class();
6537
6538 sched_smp_initialized = true;
6539 }
6540
6541 static int __init migration_init(void)
6542 {
6543 sched_cpu_starting(smp_processor_id());
6544 return 0;
6545 }
6546 early_initcall(migration_init);
6547
6548 #else
6549 void __init sched_init_smp(void)
6550 {
6551 sched_init_granularity();
6552 }
6553 #endif /* CONFIG_SMP */
6554
6555 int in_sched_functions(unsigned long addr)
6556 {
6557 return in_lock_functions(addr) ||
6558 (addr >= (unsigned long)__sched_text_start
6559 && addr < (unsigned long)__sched_text_end);
6560 }
6561
6562 #ifdef CONFIG_CGROUP_SCHED
6563 /*
6564 * Default task group.
6565 * Every task in system belongs to this group at bootup.
6566 */
6567 struct task_group root_task_group;
6568 LIST_HEAD(task_groups);
6569
6570 /* Cacheline aligned slab cache for task_group */
6571 static struct kmem_cache *task_group_cache __read_mostly;
6572 #endif
6573
6574 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6575 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6576
6577 void __init sched_init(void)
6578 {
6579 unsigned long ptr = 0;
6580 int i;
6581
6582 wait_bit_init();
6583
6584 #ifdef CONFIG_FAIR_GROUP_SCHED
6585 ptr += 2 * nr_cpu_ids * sizeof(void **);
6586 #endif
6587 #ifdef CONFIG_RT_GROUP_SCHED
6588 ptr += 2 * nr_cpu_ids * sizeof(void **);
6589 #endif
6590 if (ptr) {
6591 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6592
6593 #ifdef CONFIG_FAIR_GROUP_SCHED
6594 root_task_group.se = (struct sched_entity **)ptr;
6595 ptr += nr_cpu_ids * sizeof(void **);
6596
6597 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6598 ptr += nr_cpu_ids * sizeof(void **);
6599
6600 #endif /* CONFIG_FAIR_GROUP_SCHED */
6601 #ifdef CONFIG_RT_GROUP_SCHED
6602 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6603 ptr += nr_cpu_ids * sizeof(void **);
6604
6605 root_task_group.rt_rq = (struct rt_rq **)ptr;
6606 ptr += nr_cpu_ids * sizeof(void **);
6607
6608 #endif /* CONFIG_RT_GROUP_SCHED */
6609 }
6610 #ifdef CONFIG_CPUMASK_OFFSTACK
6611 for_each_possible_cpu(i) {
6612 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6613 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6614 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6615 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6616 }
6617 #endif /* CONFIG_CPUMASK_OFFSTACK */
6618
6619 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6620 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6621
6622 #ifdef CONFIG_SMP
6623 init_defrootdomain();
6624 #endif
6625
6626 #ifdef CONFIG_RT_GROUP_SCHED
6627 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6628 global_rt_period(), global_rt_runtime());
6629 #endif /* CONFIG_RT_GROUP_SCHED */
6630
6631 #ifdef CONFIG_CGROUP_SCHED
6632 task_group_cache = KMEM_CACHE(task_group, 0);
6633
6634 list_add(&root_task_group.list, &task_groups);
6635 INIT_LIST_HEAD(&root_task_group.children);
6636 INIT_LIST_HEAD(&root_task_group.siblings);
6637 autogroup_init(&init_task);
6638 #endif /* CONFIG_CGROUP_SCHED */
6639
6640 for_each_possible_cpu(i) {
6641 struct rq *rq;
6642
6643 rq = cpu_rq(i);
6644 raw_spin_lock_init(&rq->lock);
6645 rq->nr_running = 0;
6646 rq->calc_load_active = 0;
6647 rq->calc_load_update = jiffies + LOAD_FREQ;
6648 init_cfs_rq(&rq->cfs);
6649 init_rt_rq(&rq->rt);
6650 init_dl_rq(&rq->dl);
6651 #ifdef CONFIG_FAIR_GROUP_SCHED
6652 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6653 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6654 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6655 /*
6656 * How much CPU bandwidth does root_task_group get?
6657 *
6658 * In case of task-groups formed thr' the cgroup filesystem, it
6659 * gets 100% of the CPU resources in the system. This overall
6660 * system CPU resource is divided among the tasks of
6661 * root_task_group and its child task-groups in a fair manner,
6662 * based on each entity's (task or task-group's) weight
6663 * (se->load.weight).
6664 *
6665 * In other words, if root_task_group has 10 tasks of weight
6666 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6667 * then A0's share of the CPU resource is:
6668 *
6669 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6670 *
6671 * We achieve this by letting root_task_group's tasks sit
6672 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6673 */
6674 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6675 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6676 #endif /* CONFIG_FAIR_GROUP_SCHED */
6677
6678 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6679 #ifdef CONFIG_RT_GROUP_SCHED
6680 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6681 #endif
6682 #ifdef CONFIG_SMP
6683 rq->sd = NULL;
6684 rq->rd = NULL;
6685 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6686 rq->balance_callback = NULL;
6687 rq->active_balance = 0;
6688 rq->next_balance = jiffies;
6689 rq->push_cpu = 0;
6690 rq->cpu = i;
6691 rq->online = 0;
6692 rq->idle_stamp = 0;
6693 rq->avg_idle = 2*sysctl_sched_migration_cost;
6694 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6695
6696 INIT_LIST_HEAD(&rq->cfs_tasks);
6697
6698 rq_attach_root(rq, &def_root_domain);
6699 #ifdef CONFIG_NO_HZ_COMMON
6700 rq->last_load_update_tick = jiffies;
6701 rq->last_blocked_load_update_tick = jiffies;
6702 atomic_set(&rq->nohz_flags, 0);
6703 #endif
6704 #endif /* CONFIG_SMP */
6705 hrtick_rq_init(rq);
6706 atomic_set(&rq->nr_iowait, 0);
6707 }
6708
6709 set_load_weight(&init_task, false);
6710
6711 /*
6712 * The boot idle thread does lazy MMU switching as well:
6713 */
6714 mmgrab(&init_mm);
6715 enter_lazy_tlb(&init_mm, current);
6716
6717 /*
6718 * Make us the idle thread. Technically, schedule() should not be
6719 * called from this thread, however somewhere below it might be,
6720 * but because we are the idle thread, we just pick up running again
6721 * when this runqueue becomes "idle".
6722 */
6723 init_idle(current, smp_processor_id());
6724
6725 calc_load_update = jiffies + LOAD_FREQ;
6726
6727 #ifdef CONFIG_SMP
6728 idle_thread_set_boot_cpu();
6729 #endif
6730 init_sched_fair_class();
6731
6732 init_schedstats();
6733
6734 psi_init();
6735
6736 init_uclamp();
6737
6738 scheduler_running = 1;
6739 }
6740
6741 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6742 static inline int preempt_count_equals(int preempt_offset)
6743 {
6744 int nested = preempt_count() + rcu_preempt_depth();
6745
6746 return (nested == preempt_offset);
6747 }
6748
6749 void __might_sleep(const char *file, int line, int preempt_offset)
6750 {
6751 /*
6752 * Blocking primitives will set (and therefore destroy) current->state,
6753 * since we will exit with TASK_RUNNING make sure we enter with it,
6754 * otherwise we will destroy state.
6755 */
6756 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6757 "do not call blocking ops when !TASK_RUNNING; "
6758 "state=%lx set at [<%p>] %pS\n",
6759 current->state,
6760 (void *)current->task_state_change,
6761 (void *)current->task_state_change);
6762
6763 ___might_sleep(file, line, preempt_offset);
6764 }
6765 EXPORT_SYMBOL(__might_sleep);
6766
6767 void ___might_sleep(const char *file, int line, int preempt_offset)
6768 {
6769 /* Ratelimiting timestamp: */
6770 static unsigned long prev_jiffy;
6771
6772 unsigned long preempt_disable_ip;
6773
6774 /* WARN_ON_ONCE() by default, no rate limit required: */
6775 rcu_sleep_check();
6776
6777 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6778 !is_idle_task(current) && !current->non_block_count) ||
6779 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6780 oops_in_progress)
6781 return;
6782
6783 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6784 return;
6785 prev_jiffy = jiffies;
6786
6787 /* Save this before calling printk(), since that will clobber it: */
6788 preempt_disable_ip = get_preempt_disable_ip(current);
6789
6790 printk(KERN_ERR
6791 "BUG: sleeping function called from invalid context at %s:%d\n",
6792 file, line);
6793 printk(KERN_ERR
6794 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6795 in_atomic(), irqs_disabled(), current->non_block_count,
6796 current->pid, current->comm);
6797
6798 if (task_stack_end_corrupted(current))
6799 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6800
6801 debug_show_held_locks(current);
6802 if (irqs_disabled())
6803 print_irqtrace_events(current);
6804 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6805 && !preempt_count_equals(preempt_offset)) {
6806 pr_err("Preemption disabled at:");
6807 print_ip_sym(preempt_disable_ip);
6808 pr_cont("\n");
6809 }
6810 dump_stack();
6811 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6812 }
6813 EXPORT_SYMBOL(___might_sleep);
6814
6815 void __cant_sleep(const char *file, int line, int preempt_offset)
6816 {
6817 static unsigned long prev_jiffy;
6818
6819 if (irqs_disabled())
6820 return;
6821
6822 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6823 return;
6824
6825 if (preempt_count() > preempt_offset)
6826 return;
6827
6828 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6829 return;
6830 prev_jiffy = jiffies;
6831
6832 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6833 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6834 in_atomic(), irqs_disabled(),
6835 current->pid, current->comm);
6836
6837 debug_show_held_locks(current);
6838 dump_stack();
6839 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6840 }
6841 EXPORT_SYMBOL_GPL(__cant_sleep);
6842 #endif
6843
6844 #ifdef CONFIG_MAGIC_SYSRQ
6845 void normalize_rt_tasks(void)
6846 {
6847 struct task_struct *g, *p;
6848 struct sched_attr attr = {
6849 .sched_policy = SCHED_NORMAL,
6850 };
6851
6852 read_lock(&tasklist_lock);
6853 for_each_process_thread(g, p) {
6854 /*
6855 * Only normalize user tasks:
6856 */
6857 if (p->flags & PF_KTHREAD)
6858 continue;
6859
6860 p->se.exec_start = 0;
6861 schedstat_set(p->se.statistics.wait_start, 0);
6862 schedstat_set(p->se.statistics.sleep_start, 0);
6863 schedstat_set(p->se.statistics.block_start, 0);
6864
6865 if (!dl_task(p) && !rt_task(p)) {
6866 /*
6867 * Renice negative nice level userspace
6868 * tasks back to 0:
6869 */
6870 if (task_nice(p) < 0)
6871 set_user_nice(p, 0);
6872 continue;
6873 }
6874
6875 __sched_setscheduler(p, &attr, false, false);
6876 }
6877 read_unlock(&tasklist_lock);
6878 }
6879
6880 #endif /* CONFIG_MAGIC_SYSRQ */
6881
6882 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6883 /*
6884 * These functions are only useful for the IA64 MCA handling, or kdb.
6885 *
6886 * They can only be called when the whole system has been
6887 * stopped - every CPU needs to be quiescent, and no scheduling
6888 * activity can take place. Using them for anything else would
6889 * be a serious bug, and as a result, they aren't even visible
6890 * under any other configuration.
6891 */
6892
6893 /**
6894 * curr_task - return the current task for a given CPU.
6895 * @cpu: the processor in question.
6896 *
6897 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6898 *
6899 * Return: The current task for @cpu.
6900 */
6901 struct task_struct *curr_task(int cpu)
6902 {
6903 return cpu_curr(cpu);
6904 }
6905
6906 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6907
6908 #ifdef CONFIG_IA64
6909 /**
6910 * ia64_set_curr_task - set the current task for a given CPU.
6911 * @cpu: the processor in question.
6912 * @p: the task pointer to set.
6913 *
6914 * Description: This function must only be used when non-maskable interrupts
6915 * are serviced on a separate stack. It allows the architecture to switch the
6916 * notion of the current task on a CPU in a non-blocking manner. This function
6917 * must be called with all CPU's synchronized, and interrupts disabled, the
6918 * and caller must save the original value of the current task (see
6919 * curr_task() above) and restore that value before reenabling interrupts and
6920 * re-starting the system.
6921 *
6922 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6923 */
6924 void ia64_set_curr_task(int cpu, struct task_struct *p)
6925 {
6926 cpu_curr(cpu) = p;
6927 }
6928
6929 #endif
6930
6931 #ifdef CONFIG_CGROUP_SCHED
6932 /* task_group_lock serializes the addition/removal of task groups */
6933 static DEFINE_SPINLOCK(task_group_lock);
6934
6935 static inline void alloc_uclamp_sched_group(struct task_group *tg,
6936 struct task_group *parent)
6937 {
6938 #ifdef CONFIG_UCLAMP_TASK_GROUP
6939 enum uclamp_id clamp_id;
6940
6941 for_each_clamp_id(clamp_id) {
6942 uclamp_se_set(&tg->uclamp_req[clamp_id],
6943 uclamp_none(clamp_id), false);
6944 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6945 }
6946 #endif
6947 }
6948
6949 static void sched_free_group(struct task_group *tg)
6950 {
6951 free_fair_sched_group(tg);
6952 free_rt_sched_group(tg);
6953 autogroup_free(tg);
6954 kmem_cache_free(task_group_cache, tg);
6955 }
6956
6957 /* allocate runqueue etc for a new task group */
6958 struct task_group *sched_create_group(struct task_group *parent)
6959 {
6960 struct task_group *tg;
6961
6962 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6963 if (!tg)
6964 return ERR_PTR(-ENOMEM);
6965
6966 if (!alloc_fair_sched_group(tg, parent))
6967 goto err;
6968
6969 if (!alloc_rt_sched_group(tg, parent))
6970 goto err;
6971
6972 alloc_uclamp_sched_group(tg, parent);
6973
6974 return tg;
6975
6976 err:
6977 sched_free_group(tg);
6978 return ERR_PTR(-ENOMEM);
6979 }
6980
6981 void sched_online_group(struct task_group *tg, struct task_group *parent)
6982 {
6983 unsigned long flags;
6984
6985 spin_lock_irqsave(&task_group_lock, flags);
6986 list_add_rcu(&tg->list, &task_groups);
6987
6988 /* Root should already exist: */
6989 WARN_ON(!parent);
6990
6991 tg->parent = parent;
6992 INIT_LIST_HEAD(&tg->children);
6993 list_add_rcu(&tg->siblings, &parent->children);
6994 spin_unlock_irqrestore(&task_group_lock, flags);
6995
6996 online_fair_sched_group(tg);
6997 }
6998
6999 /* rcu callback to free various structures associated with a task group */
7000 static void sched_free_group_rcu(struct rcu_head *rhp)
7001 {
7002 /* Now it should be safe to free those cfs_rqs: */
7003 sched_free_group(container_of(rhp, struct task_group, rcu));
7004 }
7005
7006 void sched_destroy_group(struct task_group *tg)
7007 {
7008 /* Wait for possible concurrent references to cfs_rqs complete: */
7009 call_rcu(&tg->rcu, sched_free_group_rcu);
7010 }
7011
7012 void sched_offline_group(struct task_group *tg)
7013 {
7014 unsigned long flags;
7015
7016 /* End participation in shares distribution: */
7017 unregister_fair_sched_group(tg);
7018
7019 spin_lock_irqsave(&task_group_lock, flags);
7020 list_del_rcu(&tg->list);
7021 list_del_rcu(&tg->siblings);
7022 spin_unlock_irqrestore(&task_group_lock, flags);
7023 }
7024
7025 static void sched_change_group(struct task_struct *tsk, int type)
7026 {
7027 struct task_group *tg;
7028
7029 /*
7030 * All callers are synchronized by task_rq_lock(); we do not use RCU
7031 * which is pointless here. Thus, we pass "true" to task_css_check()
7032 * to prevent lockdep warnings.
7033 */
7034 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7035 struct task_group, css);
7036 tg = autogroup_task_group(tsk, tg);
7037 tsk->sched_task_group = tg;
7038
7039 #ifdef CONFIG_FAIR_GROUP_SCHED
7040 if (tsk->sched_class->task_change_group)
7041 tsk->sched_class->task_change_group(tsk, type);
7042 else
7043 #endif
7044 set_task_rq(tsk, task_cpu(tsk));
7045 }
7046
7047 /*
7048 * Change task's runqueue when it moves between groups.
7049 *
7050 * The caller of this function should have put the task in its new group by
7051 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7052 * its new group.
7053 */
7054 void sched_move_task(struct task_struct *tsk)
7055 {
7056 int queued, running, queue_flags =
7057 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7058 struct rq_flags rf;
7059 struct rq *rq;
7060
7061 rq = task_rq_lock(tsk, &rf);
7062 update_rq_clock(rq);
7063
7064 running = task_current(rq, tsk);
7065 queued = task_on_rq_queued(tsk);
7066
7067 if (queued)
7068 dequeue_task(rq, tsk, queue_flags);
7069 if (running)
7070 put_prev_task(rq, tsk);
7071
7072 sched_change_group(tsk, TASK_MOVE_GROUP);
7073
7074 if (queued)
7075 enqueue_task(rq, tsk, queue_flags);
7076 if (running) {
7077 set_next_task(rq, tsk);
7078 /*
7079 * After changing group, the running task may have joined a
7080 * throttled one but it's still the running task. Trigger a
7081 * resched to make sure that task can still run.
7082 */
7083 resched_curr(rq);
7084 }
7085
7086 task_rq_unlock(rq, tsk, &rf);
7087 }
7088
7089 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7090 {
7091 return css ? container_of(css, struct task_group, css) : NULL;
7092 }
7093
7094 static struct cgroup_subsys_state *
7095 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7096 {
7097 struct task_group *parent = css_tg(parent_css);
7098 struct task_group *tg;
7099
7100 if (!parent) {
7101 /* This is early initialization for the top cgroup */
7102 return &root_task_group.css;
7103 }
7104
7105 tg = sched_create_group(parent);
7106 if (IS_ERR(tg))
7107 return ERR_PTR(-ENOMEM);
7108
7109 return &tg->css;
7110 }
7111
7112 /* Expose task group only after completing cgroup initialization */
7113 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7114 {
7115 struct task_group *tg = css_tg(css);
7116 struct task_group *parent = css_tg(css->parent);
7117
7118 if (parent)
7119 sched_online_group(tg, parent);
7120
7121 #ifdef CONFIG_UCLAMP_TASK_GROUP
7122 /* Propagate the effective uclamp value for the new group */
7123 cpu_util_update_eff(css);
7124 #endif
7125
7126 return 0;
7127 }
7128
7129 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7130 {
7131 struct task_group *tg = css_tg(css);
7132
7133 sched_offline_group(tg);
7134 }
7135
7136 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7137 {
7138 struct task_group *tg = css_tg(css);
7139
7140 /*
7141 * Relies on the RCU grace period between css_released() and this.
7142 */
7143 sched_free_group(tg);
7144 }
7145
7146 /*
7147 * This is called before wake_up_new_task(), therefore we really only
7148 * have to set its group bits, all the other stuff does not apply.
7149 */
7150 static void cpu_cgroup_fork(struct task_struct *task)
7151 {
7152 struct rq_flags rf;
7153 struct rq *rq;
7154
7155 rq = task_rq_lock(task, &rf);
7156
7157 update_rq_clock(rq);
7158 sched_change_group(task, TASK_SET_GROUP);
7159
7160 task_rq_unlock(rq, task, &rf);
7161 }
7162
7163 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7164 {
7165 struct task_struct *task;
7166 struct cgroup_subsys_state *css;
7167 int ret = 0;
7168
7169 cgroup_taskset_for_each(task, css, tset) {
7170 #ifdef CONFIG_RT_GROUP_SCHED
7171 if (!sched_rt_can_attach(css_tg(css), task))
7172 return -EINVAL;
7173 #endif
7174 /*
7175 * Serialize against wake_up_new_task() such that if its
7176 * running, we're sure to observe its full state.
7177 */
7178 raw_spin_lock_irq(&task->pi_lock);
7179 /*
7180 * Avoid calling sched_move_task() before wake_up_new_task()
7181 * has happened. This would lead to problems with PELT, due to
7182 * move wanting to detach+attach while we're not attached yet.
7183 */
7184 if (task->state == TASK_NEW)
7185 ret = -EINVAL;
7186 raw_spin_unlock_irq(&task->pi_lock);
7187
7188 if (ret)
7189 break;
7190 }
7191 return ret;
7192 }
7193
7194 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7195 {
7196 struct task_struct *task;
7197 struct cgroup_subsys_state *css;
7198
7199 cgroup_taskset_for_each(task, css, tset)
7200 sched_move_task(task);
7201 }
7202
7203 #ifdef CONFIG_UCLAMP_TASK_GROUP
7204 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7205 {
7206 struct cgroup_subsys_state *top_css = css;
7207 struct uclamp_se *uc_parent = NULL;
7208 struct uclamp_se *uc_se = NULL;
7209 unsigned int eff[UCLAMP_CNT];
7210 enum uclamp_id clamp_id;
7211 unsigned int clamps;
7212
7213 css_for_each_descendant_pre(css, top_css) {
7214 uc_parent = css_tg(css)->parent
7215 ? css_tg(css)->parent->uclamp : NULL;
7216
7217 for_each_clamp_id(clamp_id) {
7218 /* Assume effective clamps matches requested clamps */
7219 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7220 /* Cap effective clamps with parent's effective clamps */
7221 if (uc_parent &&
7222 eff[clamp_id] > uc_parent[clamp_id].value) {
7223 eff[clamp_id] = uc_parent[clamp_id].value;
7224 }
7225 }
7226 /* Ensure protection is always capped by limit */
7227 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7228
7229 /* Propagate most restrictive effective clamps */
7230 clamps = 0x0;
7231 uc_se = css_tg(css)->uclamp;
7232 for_each_clamp_id(clamp_id) {
7233 if (eff[clamp_id] == uc_se[clamp_id].value)
7234 continue;
7235 uc_se[clamp_id].value = eff[clamp_id];
7236 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7237 clamps |= (0x1 << clamp_id);
7238 }
7239 if (!clamps) {
7240 css = css_rightmost_descendant(css);
7241 continue;
7242 }
7243
7244 /* Immediately update descendants RUNNABLE tasks */
7245 uclamp_update_active_tasks(css, clamps);
7246 }
7247 }
7248
7249 /*
7250 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7251 * C expression. Since there is no way to convert a macro argument (N) into a
7252 * character constant, use two levels of macros.
7253 */
7254 #define _POW10(exp) ((unsigned int)1e##exp)
7255 #define POW10(exp) _POW10(exp)
7256
7257 struct uclamp_request {
7258 #define UCLAMP_PERCENT_SHIFT 2
7259 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7260 s64 percent;
7261 u64 util;
7262 int ret;
7263 };
7264
7265 static inline struct uclamp_request
7266 capacity_from_percent(char *buf)
7267 {
7268 struct uclamp_request req = {
7269 .percent = UCLAMP_PERCENT_SCALE,
7270 .util = SCHED_CAPACITY_SCALE,
7271 .ret = 0,
7272 };
7273
7274 buf = strim(buf);
7275 if (strcmp(buf, "max")) {
7276 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7277 &req.percent);
7278 if (req.ret)
7279 return req;
7280 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7281 req.ret = -ERANGE;
7282 return req;
7283 }
7284
7285 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7286 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7287 }
7288
7289 return req;
7290 }
7291
7292 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7293 size_t nbytes, loff_t off,
7294 enum uclamp_id clamp_id)
7295 {
7296 struct uclamp_request req;
7297 struct task_group *tg;
7298
7299 req = capacity_from_percent(buf);
7300 if (req.ret)
7301 return req.ret;
7302
7303 mutex_lock(&uclamp_mutex);
7304 rcu_read_lock();
7305
7306 tg = css_tg(of_css(of));
7307 if (tg->uclamp_req[clamp_id].value != req.util)
7308 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7309
7310 /*
7311 * Because of not recoverable conversion rounding we keep track of the
7312 * exact requested value
7313 */
7314 tg->uclamp_pct[clamp_id] = req.percent;
7315
7316 /* Update effective clamps to track the most restrictive value */
7317 cpu_util_update_eff(of_css(of));
7318
7319 rcu_read_unlock();
7320 mutex_unlock(&uclamp_mutex);
7321
7322 return nbytes;
7323 }
7324
7325 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7326 char *buf, size_t nbytes,
7327 loff_t off)
7328 {
7329 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7330 }
7331
7332 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7333 char *buf, size_t nbytes,
7334 loff_t off)
7335 {
7336 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7337 }
7338
7339 static inline void cpu_uclamp_print(struct seq_file *sf,
7340 enum uclamp_id clamp_id)
7341 {
7342 struct task_group *tg;
7343 u64 util_clamp;
7344 u64 percent;
7345 u32 rem;
7346
7347 rcu_read_lock();
7348 tg = css_tg(seq_css(sf));
7349 util_clamp = tg->uclamp_req[clamp_id].value;
7350 rcu_read_unlock();
7351
7352 if (util_clamp == SCHED_CAPACITY_SCALE) {
7353 seq_puts(sf, "max\n");
7354 return;
7355 }
7356
7357 percent = tg->uclamp_pct[clamp_id];
7358 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7359 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7360 }
7361
7362 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7363 {
7364 cpu_uclamp_print(sf, UCLAMP_MIN);
7365 return 0;
7366 }
7367
7368 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7369 {
7370 cpu_uclamp_print(sf, UCLAMP_MAX);
7371 return 0;
7372 }
7373 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7374
7375 #ifdef CONFIG_FAIR_GROUP_SCHED
7376 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7377 struct cftype *cftype, u64 shareval)
7378 {
7379 if (shareval > scale_load_down(ULONG_MAX))
7380 shareval = MAX_SHARES;
7381 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7382 }
7383
7384 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7385 struct cftype *cft)
7386 {
7387 struct task_group *tg = css_tg(css);
7388
7389 return (u64) scale_load_down(tg->shares);
7390 }
7391
7392 #ifdef CONFIG_CFS_BANDWIDTH
7393 static DEFINE_MUTEX(cfs_constraints_mutex);
7394
7395 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7396 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7397
7398 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7399
7400 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7401 {
7402 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7403 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7404
7405 if (tg == &root_task_group)
7406 return -EINVAL;
7407
7408 /*
7409 * Ensure we have at some amount of bandwidth every period. This is
7410 * to prevent reaching a state of large arrears when throttled via
7411 * entity_tick() resulting in prolonged exit starvation.
7412 */
7413 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7414 return -EINVAL;
7415
7416 /*
7417 * Likewise, bound things on the otherside by preventing insane quota
7418 * periods. This also allows us to normalize in computing quota
7419 * feasibility.
7420 */
7421 if (period > max_cfs_quota_period)
7422 return -EINVAL;
7423
7424 /*
7425 * Prevent race between setting of cfs_rq->runtime_enabled and
7426 * unthrottle_offline_cfs_rqs().
7427 */
7428 get_online_cpus();
7429 mutex_lock(&cfs_constraints_mutex);
7430 ret = __cfs_schedulable(tg, period, quota);
7431 if (ret)
7432 goto out_unlock;
7433
7434 runtime_enabled = quota != RUNTIME_INF;
7435 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7436 /*
7437 * If we need to toggle cfs_bandwidth_used, off->on must occur
7438 * before making related changes, and on->off must occur afterwards
7439 */
7440 if (runtime_enabled && !runtime_was_enabled)
7441 cfs_bandwidth_usage_inc();
7442 raw_spin_lock_irq(&cfs_b->lock);
7443 cfs_b->period = ns_to_ktime(period);
7444 cfs_b->quota = quota;
7445
7446 __refill_cfs_bandwidth_runtime(cfs_b);
7447
7448 /* Restart the period timer (if active) to handle new period expiry: */
7449 if (runtime_enabled)
7450 start_cfs_bandwidth(cfs_b);
7451
7452 raw_spin_unlock_irq(&cfs_b->lock);
7453
7454 for_each_online_cpu(i) {
7455 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7456 struct rq *rq = cfs_rq->rq;
7457 struct rq_flags rf;
7458
7459 rq_lock_irq(rq, &rf);
7460 cfs_rq->runtime_enabled = runtime_enabled;
7461 cfs_rq->runtime_remaining = 0;
7462
7463 if (cfs_rq->throttled)
7464 unthrottle_cfs_rq(cfs_rq);
7465 rq_unlock_irq(rq, &rf);
7466 }
7467 if (runtime_was_enabled && !runtime_enabled)
7468 cfs_bandwidth_usage_dec();
7469 out_unlock:
7470 mutex_unlock(&cfs_constraints_mutex);
7471 put_online_cpus();
7472
7473 return ret;
7474 }
7475
7476 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7477 {
7478 u64 quota, period;
7479
7480 period = ktime_to_ns(tg->cfs_bandwidth.period);
7481 if (cfs_quota_us < 0)
7482 quota = RUNTIME_INF;
7483 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7484 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7485 else
7486 return -EINVAL;
7487
7488 return tg_set_cfs_bandwidth(tg, period, quota);
7489 }
7490
7491 static long tg_get_cfs_quota(struct task_group *tg)
7492 {
7493 u64 quota_us;
7494
7495 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7496 return -1;
7497
7498 quota_us = tg->cfs_bandwidth.quota;
7499 do_div(quota_us, NSEC_PER_USEC);
7500
7501 return quota_us;
7502 }
7503
7504 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7505 {
7506 u64 quota, period;
7507
7508 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7509 return -EINVAL;
7510
7511 period = (u64)cfs_period_us * NSEC_PER_USEC;
7512 quota = tg->cfs_bandwidth.quota;
7513
7514 return tg_set_cfs_bandwidth(tg, period, quota);
7515 }
7516
7517 static long tg_get_cfs_period(struct task_group *tg)
7518 {
7519 u64 cfs_period_us;
7520
7521 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7522 do_div(cfs_period_us, NSEC_PER_USEC);
7523
7524 return cfs_period_us;
7525 }
7526
7527 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7528 struct cftype *cft)
7529 {
7530 return tg_get_cfs_quota(css_tg(css));
7531 }
7532
7533 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7534 struct cftype *cftype, s64 cfs_quota_us)
7535 {
7536 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7537 }
7538
7539 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7540 struct cftype *cft)
7541 {
7542 return tg_get_cfs_period(css_tg(css));
7543 }
7544
7545 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7546 struct cftype *cftype, u64 cfs_period_us)
7547 {
7548 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7549 }
7550
7551 struct cfs_schedulable_data {
7552 struct task_group *tg;
7553 u64 period, quota;
7554 };
7555
7556 /*
7557 * normalize group quota/period to be quota/max_period
7558 * note: units are usecs
7559 */
7560 static u64 normalize_cfs_quota(struct task_group *tg,
7561 struct cfs_schedulable_data *d)
7562 {
7563 u64 quota, period;
7564
7565 if (tg == d->tg) {
7566 period = d->period;
7567 quota = d->quota;
7568 } else {
7569 period = tg_get_cfs_period(tg);
7570 quota = tg_get_cfs_quota(tg);
7571 }
7572
7573 /* note: these should typically be equivalent */
7574 if (quota == RUNTIME_INF || quota == -1)
7575 return RUNTIME_INF;
7576
7577 return to_ratio(period, quota);
7578 }
7579
7580 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7581 {
7582 struct cfs_schedulable_data *d = data;
7583 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7584 s64 quota = 0, parent_quota = -1;
7585
7586 if (!tg->parent) {
7587 quota = RUNTIME_INF;
7588 } else {
7589 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7590
7591 quota = normalize_cfs_quota(tg, d);
7592 parent_quota = parent_b->hierarchical_quota;
7593
7594 /*
7595 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7596 * always take the min. On cgroup1, only inherit when no
7597 * limit is set:
7598 */
7599 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7600 quota = min(quota, parent_quota);
7601 } else {
7602 if (quota == RUNTIME_INF)
7603 quota = parent_quota;
7604 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7605 return -EINVAL;
7606 }
7607 }
7608 cfs_b->hierarchical_quota = quota;
7609
7610 return 0;
7611 }
7612
7613 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7614 {
7615 int ret;
7616 struct cfs_schedulable_data data = {
7617 .tg = tg,
7618 .period = period,
7619 .quota = quota,
7620 };
7621
7622 if (quota != RUNTIME_INF) {
7623 do_div(data.period, NSEC_PER_USEC);
7624 do_div(data.quota, NSEC_PER_USEC);
7625 }
7626
7627 rcu_read_lock();
7628 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7629 rcu_read_unlock();
7630
7631 return ret;
7632 }
7633
7634 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7635 {
7636 struct task_group *tg = css_tg(seq_css(sf));
7637 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7638
7639 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7640 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7641 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7642
7643 if (schedstat_enabled() && tg != &root_task_group) {
7644 u64 ws = 0;
7645 int i;
7646
7647 for_each_possible_cpu(i)
7648 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7649
7650 seq_printf(sf, "wait_sum %llu\n", ws);
7651 }
7652
7653 return 0;
7654 }
7655 #endif /* CONFIG_CFS_BANDWIDTH */
7656 #endif /* CONFIG_FAIR_GROUP_SCHED */
7657
7658 #ifdef CONFIG_RT_GROUP_SCHED
7659 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7660 struct cftype *cft, s64 val)
7661 {
7662 return sched_group_set_rt_runtime(css_tg(css), val);
7663 }
7664
7665 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7666 struct cftype *cft)
7667 {
7668 return sched_group_rt_runtime(css_tg(css));
7669 }
7670
7671 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7672 struct cftype *cftype, u64 rt_period_us)
7673 {
7674 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7675 }
7676
7677 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7678 struct cftype *cft)
7679 {
7680 return sched_group_rt_period(css_tg(css));
7681 }
7682 #endif /* CONFIG_RT_GROUP_SCHED */
7683
7684 static struct cftype cpu_legacy_files[] = {
7685 #ifdef CONFIG_FAIR_GROUP_SCHED
7686 {
7687 .name = "shares",
7688 .read_u64 = cpu_shares_read_u64,
7689 .write_u64 = cpu_shares_write_u64,
7690 },
7691 #endif
7692 #ifdef CONFIG_CFS_BANDWIDTH
7693 {
7694 .name = "cfs_quota_us",
7695 .read_s64 = cpu_cfs_quota_read_s64,
7696 .write_s64 = cpu_cfs_quota_write_s64,
7697 },
7698 {
7699 .name = "cfs_period_us",
7700 .read_u64 = cpu_cfs_period_read_u64,
7701 .write_u64 = cpu_cfs_period_write_u64,
7702 },
7703 {
7704 .name = "stat",
7705 .seq_show = cpu_cfs_stat_show,
7706 },
7707 #endif
7708 #ifdef CONFIG_RT_GROUP_SCHED
7709 {
7710 .name = "rt_runtime_us",
7711 .read_s64 = cpu_rt_runtime_read,
7712 .write_s64 = cpu_rt_runtime_write,
7713 },
7714 {
7715 .name = "rt_period_us",
7716 .read_u64 = cpu_rt_period_read_uint,
7717 .write_u64 = cpu_rt_period_write_uint,
7718 },
7719 #endif
7720 #ifdef CONFIG_UCLAMP_TASK_GROUP
7721 {
7722 .name = "uclamp.min",
7723 .flags = CFTYPE_NOT_ON_ROOT,
7724 .seq_show = cpu_uclamp_min_show,
7725 .write = cpu_uclamp_min_write,
7726 },
7727 {
7728 .name = "uclamp.max",
7729 .flags = CFTYPE_NOT_ON_ROOT,
7730 .seq_show = cpu_uclamp_max_show,
7731 .write = cpu_uclamp_max_write,
7732 },
7733 #endif
7734 { } /* Terminate */
7735 };
7736
7737 static int cpu_extra_stat_show(struct seq_file *sf,
7738 struct cgroup_subsys_state *css)
7739 {
7740 #ifdef CONFIG_CFS_BANDWIDTH
7741 {
7742 struct task_group *tg = css_tg(css);
7743 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7744 u64 throttled_usec;
7745
7746 throttled_usec = cfs_b->throttled_time;
7747 do_div(throttled_usec, NSEC_PER_USEC);
7748
7749 seq_printf(sf, "nr_periods %d\n"
7750 "nr_throttled %d\n"
7751 "throttled_usec %llu\n",
7752 cfs_b->nr_periods, cfs_b->nr_throttled,
7753 throttled_usec);
7754 }
7755 #endif
7756 return 0;
7757 }
7758
7759 #ifdef CONFIG_FAIR_GROUP_SCHED
7760 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7761 struct cftype *cft)
7762 {
7763 struct task_group *tg = css_tg(css);
7764 u64 weight = scale_load_down(tg->shares);
7765
7766 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7767 }
7768
7769 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7770 struct cftype *cft, u64 weight)
7771 {
7772 /*
7773 * cgroup weight knobs should use the common MIN, DFL and MAX
7774 * values which are 1, 100 and 10000 respectively. While it loses
7775 * a bit of range on both ends, it maps pretty well onto the shares
7776 * value used by scheduler and the round-trip conversions preserve
7777 * the original value over the entire range.
7778 */
7779 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7780 return -ERANGE;
7781
7782 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7783
7784 return sched_group_set_shares(css_tg(css), scale_load(weight));
7785 }
7786
7787 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7788 struct cftype *cft)
7789 {
7790 unsigned long weight = scale_load_down(css_tg(css)->shares);
7791 int last_delta = INT_MAX;
7792 int prio, delta;
7793
7794 /* find the closest nice value to the current weight */
7795 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7796 delta = abs(sched_prio_to_weight[prio] - weight);
7797 if (delta >= last_delta)
7798 break;
7799 last_delta = delta;
7800 }
7801
7802 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7803 }
7804
7805 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7806 struct cftype *cft, s64 nice)
7807 {
7808 unsigned long weight;
7809 int idx;
7810
7811 if (nice < MIN_NICE || nice > MAX_NICE)
7812 return -ERANGE;
7813
7814 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7815 idx = array_index_nospec(idx, 40);
7816 weight = sched_prio_to_weight[idx];
7817
7818 return sched_group_set_shares(css_tg(css), scale_load(weight));
7819 }
7820 #endif
7821
7822 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7823 long period, long quota)
7824 {
7825 if (quota < 0)
7826 seq_puts(sf, "max");
7827 else
7828 seq_printf(sf, "%ld", quota);
7829
7830 seq_printf(sf, " %ld\n", period);
7831 }
7832
7833 /* caller should put the current value in *@periodp before calling */
7834 static int __maybe_unused cpu_period_quota_parse(char *buf,
7835 u64 *periodp, u64 *quotap)
7836 {
7837 char tok[21]; /* U64_MAX */
7838
7839 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7840 return -EINVAL;
7841
7842 *periodp *= NSEC_PER_USEC;
7843
7844 if (sscanf(tok, "%llu", quotap))
7845 *quotap *= NSEC_PER_USEC;
7846 else if (!strcmp(tok, "max"))
7847 *quotap = RUNTIME_INF;
7848 else
7849 return -EINVAL;
7850
7851 return 0;
7852 }
7853
7854 #ifdef CONFIG_CFS_BANDWIDTH
7855 static int cpu_max_show(struct seq_file *sf, void *v)
7856 {
7857 struct task_group *tg = css_tg(seq_css(sf));
7858
7859 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7860 return 0;
7861 }
7862
7863 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7864 char *buf, size_t nbytes, loff_t off)
7865 {
7866 struct task_group *tg = css_tg(of_css(of));
7867 u64 period = tg_get_cfs_period(tg);
7868 u64 quota;
7869 int ret;
7870
7871 ret = cpu_period_quota_parse(buf, &period, &quota);
7872 if (!ret)
7873 ret = tg_set_cfs_bandwidth(tg, period, quota);
7874 return ret ?: nbytes;
7875 }
7876 #endif
7877
7878 static struct cftype cpu_files[] = {
7879 #ifdef CONFIG_FAIR_GROUP_SCHED
7880 {
7881 .name = "weight",
7882 .flags = CFTYPE_NOT_ON_ROOT,
7883 .read_u64 = cpu_weight_read_u64,
7884 .write_u64 = cpu_weight_write_u64,
7885 },
7886 {
7887 .name = "weight.nice",
7888 .flags = CFTYPE_NOT_ON_ROOT,
7889 .read_s64 = cpu_weight_nice_read_s64,
7890 .write_s64 = cpu_weight_nice_write_s64,
7891 },
7892 #endif
7893 #ifdef CONFIG_CFS_BANDWIDTH
7894 {
7895 .name = "max",
7896 .flags = CFTYPE_NOT_ON_ROOT,
7897 .seq_show = cpu_max_show,
7898 .write = cpu_max_write,
7899 },
7900 #endif
7901 #ifdef CONFIG_UCLAMP_TASK_GROUP
7902 {
7903 .name = "uclamp.min",
7904 .flags = CFTYPE_NOT_ON_ROOT,
7905 .seq_show = cpu_uclamp_min_show,
7906 .write = cpu_uclamp_min_write,
7907 },
7908 {
7909 .name = "uclamp.max",
7910 .flags = CFTYPE_NOT_ON_ROOT,
7911 .seq_show = cpu_uclamp_max_show,
7912 .write = cpu_uclamp_max_write,
7913 },
7914 #endif
7915 { } /* terminate */
7916 };
7917
7918 struct cgroup_subsys cpu_cgrp_subsys = {
7919 .css_alloc = cpu_cgroup_css_alloc,
7920 .css_online = cpu_cgroup_css_online,
7921 .css_released = cpu_cgroup_css_released,
7922 .css_free = cpu_cgroup_css_free,
7923 .css_extra_stat_show = cpu_extra_stat_show,
7924 .fork = cpu_cgroup_fork,
7925 .can_attach = cpu_cgroup_can_attach,
7926 .attach = cpu_cgroup_attach,
7927 .legacy_cftypes = cpu_legacy_files,
7928 .dfl_cftypes = cpu_files,
7929 .early_init = true,
7930 .threaded = true,
7931 };
7932
7933 #endif /* CONFIG_CGROUP_SCHED */
7934
7935 void dump_cpu_task(int cpu)
7936 {
7937 pr_info("Task dump for CPU %d:\n", cpu);
7938 sched_show_task(cpu_curr(cpu));
7939 }
7940
7941 /*
7942 * Nice levels are multiplicative, with a gentle 10% change for every
7943 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7944 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7945 * that remained on nice 0.
7946 *
7947 * The "10% effect" is relative and cumulative: from _any_ nice level,
7948 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7949 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7950 * If a task goes up by ~10% and another task goes down by ~10% then
7951 * the relative distance between them is ~25%.)
7952 */
7953 const int sched_prio_to_weight[40] = {
7954 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7955 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7956 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7957 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7958 /* 0 */ 1024, 820, 655, 526, 423,
7959 /* 5 */ 335, 272, 215, 172, 137,
7960 /* 10 */ 110, 87, 70, 56, 45,
7961 /* 15 */ 36, 29, 23, 18, 15,
7962 };
7963
7964 /*
7965 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7966 *
7967 * In cases where the weight does not change often, we can use the
7968 * precalculated inverse to speed up arithmetics by turning divisions
7969 * into multiplications:
7970 */
7971 const u32 sched_prio_to_wmult[40] = {
7972 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7973 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7974 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7975 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7976 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7977 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7978 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7979 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7980 };
7981
7982 #undef CREATE_TRACE_POINTS