]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched/cpufreq_schedutil.c
HID: logitech-dj: fix spelling in printk
[mirror_ubuntu-kernels.git] / kernel / sched / cpufreq_schedutil.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
4 *
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include "sched.h"
12
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15
16 struct sugov_tunables {
17 struct gov_attr_set attr_set;
18 unsigned int rate_limit_us;
19 };
20
21 struct sugov_policy {
22 struct cpufreq_policy *policy;
23
24 struct sugov_tunables *tunables;
25 struct list_head tunables_hook;
26
27 raw_spinlock_t update_lock; /* For shared policies */
28 u64 last_freq_update_time;
29 s64 freq_update_delay_ns;
30 unsigned int next_freq;
31 unsigned int cached_raw_freq;
32
33 /* The next fields are only needed if fast switch cannot be used: */
34 struct irq_work irq_work;
35 struct kthread_work work;
36 struct mutex work_lock;
37 struct kthread_worker worker;
38 struct task_struct *thread;
39 bool work_in_progress;
40
41 bool need_freq_update;
42 };
43
44 struct sugov_cpu {
45 struct update_util_data update_util;
46 struct sugov_policy *sg_policy;
47 unsigned int cpu;
48
49 bool iowait_boost_pending;
50 unsigned int iowait_boost;
51 unsigned int iowait_boost_max;
52 u64 last_update;
53
54 unsigned long bw_dl;
55 unsigned long max;
56
57 /* The field below is for single-CPU policies only: */
58 #ifdef CONFIG_NO_HZ_COMMON
59 unsigned long saved_idle_calls;
60 #endif
61 };
62
63 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
64
65 /************************ Governor internals ***********************/
66
67 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
68 {
69 s64 delta_ns;
70
71 /*
72 * Since cpufreq_update_util() is called with rq->lock held for
73 * the @target_cpu, our per-CPU data is fully serialized.
74 *
75 * However, drivers cannot in general deal with cross-CPU
76 * requests, so while get_next_freq() will work, our
77 * sugov_update_commit() call may not for the fast switching platforms.
78 *
79 * Hence stop here for remote requests if they aren't supported
80 * by the hardware, as calculating the frequency is pointless if
81 * we cannot in fact act on it.
82 *
83 * For the slow switching platforms, the kthread is always scheduled on
84 * the right set of CPUs and any CPU can find the next frequency and
85 * schedule the kthread.
86 */
87 if (sg_policy->policy->fast_switch_enabled &&
88 !cpufreq_this_cpu_can_update(sg_policy->policy))
89 return false;
90
91 if (unlikely(sg_policy->need_freq_update))
92 return true;
93
94 delta_ns = time - sg_policy->last_freq_update_time;
95
96 return delta_ns >= sg_policy->freq_update_delay_ns;
97 }
98
99 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
100 unsigned int next_freq)
101 {
102 if (sg_policy->next_freq == next_freq)
103 return false;
104
105 sg_policy->next_freq = next_freq;
106 sg_policy->last_freq_update_time = time;
107
108 return true;
109 }
110
111 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
112 unsigned int next_freq)
113 {
114 struct cpufreq_policy *policy = sg_policy->policy;
115
116 if (!sugov_update_next_freq(sg_policy, time, next_freq))
117 return;
118
119 next_freq = cpufreq_driver_fast_switch(policy, next_freq);
120 if (!next_freq)
121 return;
122
123 policy->cur = next_freq;
124 trace_cpu_frequency(next_freq, smp_processor_id());
125 }
126
127 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
128 unsigned int next_freq)
129 {
130 if (!sugov_update_next_freq(sg_policy, time, next_freq))
131 return;
132
133 if (!sg_policy->work_in_progress) {
134 sg_policy->work_in_progress = true;
135 irq_work_queue(&sg_policy->irq_work);
136 }
137 }
138
139 /**
140 * get_next_freq - Compute a new frequency for a given cpufreq policy.
141 * @sg_policy: schedutil policy object to compute the new frequency for.
142 * @util: Current CPU utilization.
143 * @max: CPU capacity.
144 *
145 * If the utilization is frequency-invariant, choose the new frequency to be
146 * proportional to it, that is
147 *
148 * next_freq = C * max_freq * util / max
149 *
150 * Otherwise, approximate the would-be frequency-invariant utilization by
151 * util_raw * (curr_freq / max_freq) which leads to
152 *
153 * next_freq = C * curr_freq * util_raw / max
154 *
155 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
156 *
157 * The lowest driver-supported frequency which is equal or greater than the raw
158 * next_freq (as calculated above) is returned, subject to policy min/max and
159 * cpufreq driver limitations.
160 */
161 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
162 unsigned long util, unsigned long max)
163 {
164 struct cpufreq_policy *policy = sg_policy->policy;
165 unsigned int freq = arch_scale_freq_invariant() ?
166 policy->cpuinfo.max_freq : policy->cur;
167
168 freq = map_util_freq(util, freq, max);
169
170 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
171 return sg_policy->next_freq;
172
173 sg_policy->need_freq_update = false;
174 sg_policy->cached_raw_freq = freq;
175 return cpufreq_driver_resolve_freq(policy, freq);
176 }
177
178 /*
179 * This function computes an effective utilization for the given CPU, to be
180 * used for frequency selection given the linear relation: f = u * f_max.
181 *
182 * The scheduler tracks the following metrics:
183 *
184 * cpu_util_{cfs,rt,dl,irq}()
185 * cpu_bw_dl()
186 *
187 * Where the cfs,rt and dl util numbers are tracked with the same metric and
188 * synchronized windows and are thus directly comparable.
189 *
190 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
191 * which excludes things like IRQ and steal-time. These latter are then accrued
192 * in the irq utilization.
193 *
194 * The DL bandwidth number otoh is not a measured metric but a value computed
195 * based on the task model parameters and gives the minimal utilization
196 * required to meet deadlines.
197 */
198 unsigned long schedutil_freq_util(int cpu, unsigned long util_cfs,
199 unsigned long max, enum schedutil_type type)
200 {
201 unsigned long dl_util, util, irq;
202 struct rq *rq = cpu_rq(cpu);
203
204 if (type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt))
205 return max;
206
207 /*
208 * Early check to see if IRQ/steal time saturates the CPU, can be
209 * because of inaccuracies in how we track these -- see
210 * update_irq_load_avg().
211 */
212 irq = cpu_util_irq(rq);
213 if (unlikely(irq >= max))
214 return max;
215
216 /*
217 * Because the time spend on RT/DL tasks is visible as 'lost' time to
218 * CFS tasks and we use the same metric to track the effective
219 * utilization (PELT windows are synchronized) we can directly add them
220 * to obtain the CPU's actual utilization.
221 */
222 util = util_cfs;
223 util += cpu_util_rt(rq);
224
225 dl_util = cpu_util_dl(rq);
226
227 /*
228 * For frequency selection we do not make cpu_util_dl() a permanent part
229 * of this sum because we want to use cpu_bw_dl() later on, but we need
230 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
231 * that we select f_max when there is no idle time.
232 *
233 * NOTE: numerical errors or stop class might cause us to not quite hit
234 * saturation when we should -- something for later.
235 */
236 if (util + dl_util >= max)
237 return max;
238
239 /*
240 * OTOH, for energy computation we need the estimated running time, so
241 * include util_dl and ignore dl_bw.
242 */
243 if (type == ENERGY_UTIL)
244 util += dl_util;
245
246 /*
247 * There is still idle time; further improve the number by using the
248 * irq metric. Because IRQ/steal time is hidden from the task clock we
249 * need to scale the task numbers:
250 *
251 * 1 - irq
252 * U' = irq + ------- * U
253 * max
254 */
255 util = scale_irq_capacity(util, irq, max);
256 util += irq;
257
258 /*
259 * Bandwidth required by DEADLINE must always be granted while, for
260 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
261 * to gracefully reduce the frequency when no tasks show up for longer
262 * periods of time.
263 *
264 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
265 * bw_dl as requested freq. However, cpufreq is not yet ready for such
266 * an interface. So, we only do the latter for now.
267 */
268 if (type == FREQUENCY_UTIL)
269 util += cpu_bw_dl(rq);
270
271 return min(max, util);
272 }
273
274 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
275 {
276 struct rq *rq = cpu_rq(sg_cpu->cpu);
277 unsigned long util = cpu_util_cfs(rq);
278 unsigned long max = arch_scale_cpu_capacity(NULL, sg_cpu->cpu);
279
280 sg_cpu->max = max;
281 sg_cpu->bw_dl = cpu_bw_dl(rq);
282
283 return schedutil_freq_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL);
284 }
285
286 /**
287 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
288 * @sg_cpu: the sugov data for the CPU to boost
289 * @time: the update time from the caller
290 * @set_iowait_boost: true if an IO boost has been requested
291 *
292 * The IO wait boost of a task is disabled after a tick since the last update
293 * of a CPU. If a new IO wait boost is requested after more then a tick, then
294 * we enable the boost starting from the minimum frequency, which improves
295 * energy efficiency by ignoring sporadic wakeups from IO.
296 */
297 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
298 bool set_iowait_boost)
299 {
300 s64 delta_ns = time - sg_cpu->last_update;
301
302 /* Reset boost only if a tick has elapsed since last request */
303 if (delta_ns <= TICK_NSEC)
304 return false;
305
306 sg_cpu->iowait_boost = set_iowait_boost
307 ? sg_cpu->sg_policy->policy->min : 0;
308 sg_cpu->iowait_boost_pending = set_iowait_boost;
309
310 return true;
311 }
312
313 /**
314 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
315 * @sg_cpu: the sugov data for the CPU to boost
316 * @time: the update time from the caller
317 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
318 *
319 * Each time a task wakes up after an IO operation, the CPU utilization can be
320 * boosted to a certain utilization which doubles at each "frequent and
321 * successive" wakeup from IO, ranging from the utilization of the minimum
322 * OPP to the utilization of the maximum OPP.
323 * To keep doubling, an IO boost has to be requested at least once per tick,
324 * otherwise we restart from the utilization of the minimum OPP.
325 */
326 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
327 unsigned int flags)
328 {
329 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
330
331 /* Reset boost if the CPU appears to have been idle enough */
332 if (sg_cpu->iowait_boost &&
333 sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
334 return;
335
336 /* Boost only tasks waking up after IO */
337 if (!set_iowait_boost)
338 return;
339
340 /* Ensure boost doubles only one time at each request */
341 if (sg_cpu->iowait_boost_pending)
342 return;
343 sg_cpu->iowait_boost_pending = true;
344
345 /* Double the boost at each request */
346 if (sg_cpu->iowait_boost) {
347 sg_cpu->iowait_boost <<= 1;
348 if (sg_cpu->iowait_boost > sg_cpu->iowait_boost_max)
349 sg_cpu->iowait_boost = sg_cpu->iowait_boost_max;
350 return;
351 }
352
353 /* First wakeup after IO: start with minimum boost */
354 sg_cpu->iowait_boost = sg_cpu->sg_policy->policy->min;
355 }
356
357 /**
358 * sugov_iowait_apply() - Apply the IO boost to a CPU.
359 * @sg_cpu: the sugov data for the cpu to boost
360 * @time: the update time from the caller
361 * @util: the utilization to (eventually) boost
362 * @max: the maximum value the utilization can be boosted to
363 *
364 * A CPU running a task which woken up after an IO operation can have its
365 * utilization boosted to speed up the completion of those IO operations.
366 * The IO boost value is increased each time a task wakes up from IO, in
367 * sugov_iowait_apply(), and it's instead decreased by this function,
368 * each time an increase has not been requested (!iowait_boost_pending).
369 *
370 * A CPU which also appears to have been idle for at least one tick has also
371 * its IO boost utilization reset.
372 *
373 * This mechanism is designed to boost high frequently IO waiting tasks, while
374 * being more conservative on tasks which does sporadic IO operations.
375 */
376 static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
377 unsigned long *util, unsigned long *max)
378 {
379 unsigned int boost_util, boost_max;
380
381 /* No boost currently required */
382 if (!sg_cpu->iowait_boost)
383 return;
384
385 /* Reset boost if the CPU appears to have been idle enough */
386 if (sugov_iowait_reset(sg_cpu, time, false))
387 return;
388
389 /*
390 * An IO waiting task has just woken up:
391 * allow to further double the boost value
392 */
393 if (sg_cpu->iowait_boost_pending) {
394 sg_cpu->iowait_boost_pending = false;
395 } else {
396 /*
397 * Otherwise: reduce the boost value and disable it when we
398 * reach the minimum.
399 */
400 sg_cpu->iowait_boost >>= 1;
401 if (sg_cpu->iowait_boost < sg_cpu->sg_policy->policy->min) {
402 sg_cpu->iowait_boost = 0;
403 return;
404 }
405 }
406
407 /*
408 * Apply the current boost value: a CPU is boosted only if its current
409 * utilization is smaller then the current IO boost level.
410 */
411 boost_util = sg_cpu->iowait_boost;
412 boost_max = sg_cpu->iowait_boost_max;
413 if (*util * boost_max < *max * boost_util) {
414 *util = boost_util;
415 *max = boost_max;
416 }
417 }
418
419 #ifdef CONFIG_NO_HZ_COMMON
420 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
421 {
422 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
423 bool ret = idle_calls == sg_cpu->saved_idle_calls;
424
425 sg_cpu->saved_idle_calls = idle_calls;
426 return ret;
427 }
428 #else
429 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
430 #endif /* CONFIG_NO_HZ_COMMON */
431
432 /*
433 * Make sugov_should_update_freq() ignore the rate limit when DL
434 * has increased the utilization.
435 */
436 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
437 {
438 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
439 sg_policy->need_freq_update = true;
440 }
441
442 static void sugov_update_single(struct update_util_data *hook, u64 time,
443 unsigned int flags)
444 {
445 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
446 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
447 unsigned long util, max;
448 unsigned int next_f;
449 bool busy;
450
451 sugov_iowait_boost(sg_cpu, time, flags);
452 sg_cpu->last_update = time;
453
454 ignore_dl_rate_limit(sg_cpu, sg_policy);
455
456 if (!sugov_should_update_freq(sg_policy, time))
457 return;
458
459 busy = sugov_cpu_is_busy(sg_cpu);
460
461 util = sugov_get_util(sg_cpu);
462 max = sg_cpu->max;
463 sugov_iowait_apply(sg_cpu, time, &util, &max);
464 next_f = get_next_freq(sg_policy, util, max);
465 /*
466 * Do not reduce the frequency if the CPU has not been idle
467 * recently, as the reduction is likely to be premature then.
468 */
469 if (busy && next_f < sg_policy->next_freq) {
470 next_f = sg_policy->next_freq;
471
472 /* Reset cached freq as next_freq has changed */
473 sg_policy->cached_raw_freq = 0;
474 }
475
476 /*
477 * This code runs under rq->lock for the target CPU, so it won't run
478 * concurrently on two different CPUs for the same target and it is not
479 * necessary to acquire the lock in the fast switch case.
480 */
481 if (sg_policy->policy->fast_switch_enabled) {
482 sugov_fast_switch(sg_policy, time, next_f);
483 } else {
484 raw_spin_lock(&sg_policy->update_lock);
485 sugov_deferred_update(sg_policy, time, next_f);
486 raw_spin_unlock(&sg_policy->update_lock);
487 }
488 }
489
490 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
491 {
492 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
493 struct cpufreq_policy *policy = sg_policy->policy;
494 unsigned long util = 0, max = 1;
495 unsigned int j;
496
497 for_each_cpu(j, policy->cpus) {
498 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
499 unsigned long j_util, j_max;
500
501 j_util = sugov_get_util(j_sg_cpu);
502 j_max = j_sg_cpu->max;
503 sugov_iowait_apply(j_sg_cpu, time, &j_util, &j_max);
504
505 if (j_util * max > j_max * util) {
506 util = j_util;
507 max = j_max;
508 }
509 }
510
511 return get_next_freq(sg_policy, util, max);
512 }
513
514 static void
515 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
516 {
517 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
518 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
519 unsigned int next_f;
520
521 raw_spin_lock(&sg_policy->update_lock);
522
523 sugov_iowait_boost(sg_cpu, time, flags);
524 sg_cpu->last_update = time;
525
526 ignore_dl_rate_limit(sg_cpu, sg_policy);
527
528 if (sugov_should_update_freq(sg_policy, time)) {
529 next_f = sugov_next_freq_shared(sg_cpu, time);
530
531 if (sg_policy->policy->fast_switch_enabled)
532 sugov_fast_switch(sg_policy, time, next_f);
533 else
534 sugov_deferred_update(sg_policy, time, next_f);
535 }
536
537 raw_spin_unlock(&sg_policy->update_lock);
538 }
539
540 static void sugov_work(struct kthread_work *work)
541 {
542 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
543 unsigned int freq;
544 unsigned long flags;
545
546 /*
547 * Hold sg_policy->update_lock shortly to handle the case where:
548 * incase sg_policy->next_freq is read here, and then updated by
549 * sugov_deferred_update() just before work_in_progress is set to false
550 * here, we may miss queueing the new update.
551 *
552 * Note: If a work was queued after the update_lock is released,
553 * sugov_work() will just be called again by kthread_work code; and the
554 * request will be proceed before the sugov thread sleeps.
555 */
556 raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
557 freq = sg_policy->next_freq;
558 sg_policy->work_in_progress = false;
559 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
560
561 mutex_lock(&sg_policy->work_lock);
562 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
563 mutex_unlock(&sg_policy->work_lock);
564 }
565
566 static void sugov_irq_work(struct irq_work *irq_work)
567 {
568 struct sugov_policy *sg_policy;
569
570 sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
571
572 kthread_queue_work(&sg_policy->worker, &sg_policy->work);
573 }
574
575 /************************** sysfs interface ************************/
576
577 static struct sugov_tunables *global_tunables;
578 static DEFINE_MUTEX(global_tunables_lock);
579
580 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
581 {
582 return container_of(attr_set, struct sugov_tunables, attr_set);
583 }
584
585 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
586 {
587 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
588
589 return sprintf(buf, "%u\n", tunables->rate_limit_us);
590 }
591
592 static ssize_t
593 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
594 {
595 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
596 struct sugov_policy *sg_policy;
597 unsigned int rate_limit_us;
598
599 if (kstrtouint(buf, 10, &rate_limit_us))
600 return -EINVAL;
601
602 tunables->rate_limit_us = rate_limit_us;
603
604 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
605 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
606
607 return count;
608 }
609
610 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
611
612 static struct attribute *sugov_attributes[] = {
613 &rate_limit_us.attr,
614 NULL
615 };
616
617 static struct kobj_type sugov_tunables_ktype = {
618 .default_attrs = sugov_attributes,
619 .sysfs_ops = &governor_sysfs_ops,
620 };
621
622 /********************** cpufreq governor interface *********************/
623
624 struct cpufreq_governor schedutil_gov;
625
626 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
627 {
628 struct sugov_policy *sg_policy;
629
630 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
631 if (!sg_policy)
632 return NULL;
633
634 sg_policy->policy = policy;
635 raw_spin_lock_init(&sg_policy->update_lock);
636 return sg_policy;
637 }
638
639 static void sugov_policy_free(struct sugov_policy *sg_policy)
640 {
641 kfree(sg_policy);
642 }
643
644 static int sugov_kthread_create(struct sugov_policy *sg_policy)
645 {
646 struct task_struct *thread;
647 struct sched_attr attr = {
648 .size = sizeof(struct sched_attr),
649 .sched_policy = SCHED_DEADLINE,
650 .sched_flags = SCHED_FLAG_SUGOV,
651 .sched_nice = 0,
652 .sched_priority = 0,
653 /*
654 * Fake (unused) bandwidth; workaround to "fix"
655 * priority inheritance.
656 */
657 .sched_runtime = 1000000,
658 .sched_deadline = 10000000,
659 .sched_period = 10000000,
660 };
661 struct cpufreq_policy *policy = sg_policy->policy;
662 int ret;
663
664 /* kthread only required for slow path */
665 if (policy->fast_switch_enabled)
666 return 0;
667
668 kthread_init_work(&sg_policy->work, sugov_work);
669 kthread_init_worker(&sg_policy->worker);
670 thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
671 "sugov:%d",
672 cpumask_first(policy->related_cpus));
673 if (IS_ERR(thread)) {
674 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
675 return PTR_ERR(thread);
676 }
677
678 ret = sched_setattr_nocheck(thread, &attr);
679 if (ret) {
680 kthread_stop(thread);
681 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
682 return ret;
683 }
684
685 sg_policy->thread = thread;
686 kthread_bind_mask(thread, policy->related_cpus);
687 init_irq_work(&sg_policy->irq_work, sugov_irq_work);
688 mutex_init(&sg_policy->work_lock);
689
690 wake_up_process(thread);
691
692 return 0;
693 }
694
695 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
696 {
697 /* kthread only required for slow path */
698 if (sg_policy->policy->fast_switch_enabled)
699 return;
700
701 kthread_flush_worker(&sg_policy->worker);
702 kthread_stop(sg_policy->thread);
703 mutex_destroy(&sg_policy->work_lock);
704 }
705
706 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
707 {
708 struct sugov_tunables *tunables;
709
710 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
711 if (tunables) {
712 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
713 if (!have_governor_per_policy())
714 global_tunables = tunables;
715 }
716 return tunables;
717 }
718
719 static void sugov_tunables_free(struct sugov_tunables *tunables)
720 {
721 if (!have_governor_per_policy())
722 global_tunables = NULL;
723
724 kfree(tunables);
725 }
726
727 static int sugov_init(struct cpufreq_policy *policy)
728 {
729 struct sugov_policy *sg_policy;
730 struct sugov_tunables *tunables;
731 int ret = 0;
732
733 /* State should be equivalent to EXIT */
734 if (policy->governor_data)
735 return -EBUSY;
736
737 cpufreq_enable_fast_switch(policy);
738
739 sg_policy = sugov_policy_alloc(policy);
740 if (!sg_policy) {
741 ret = -ENOMEM;
742 goto disable_fast_switch;
743 }
744
745 ret = sugov_kthread_create(sg_policy);
746 if (ret)
747 goto free_sg_policy;
748
749 mutex_lock(&global_tunables_lock);
750
751 if (global_tunables) {
752 if (WARN_ON(have_governor_per_policy())) {
753 ret = -EINVAL;
754 goto stop_kthread;
755 }
756 policy->governor_data = sg_policy;
757 sg_policy->tunables = global_tunables;
758
759 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
760 goto out;
761 }
762
763 tunables = sugov_tunables_alloc(sg_policy);
764 if (!tunables) {
765 ret = -ENOMEM;
766 goto stop_kthread;
767 }
768
769 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
770
771 policy->governor_data = sg_policy;
772 sg_policy->tunables = tunables;
773
774 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
775 get_governor_parent_kobj(policy), "%s",
776 schedutil_gov.name);
777 if (ret)
778 goto fail;
779
780 out:
781 mutex_unlock(&global_tunables_lock);
782 return 0;
783
784 fail:
785 policy->governor_data = NULL;
786 sugov_tunables_free(tunables);
787
788 stop_kthread:
789 sugov_kthread_stop(sg_policy);
790 mutex_unlock(&global_tunables_lock);
791
792 free_sg_policy:
793 sugov_policy_free(sg_policy);
794
795 disable_fast_switch:
796 cpufreq_disable_fast_switch(policy);
797
798 pr_err("initialization failed (error %d)\n", ret);
799 return ret;
800 }
801
802 static void sugov_exit(struct cpufreq_policy *policy)
803 {
804 struct sugov_policy *sg_policy = policy->governor_data;
805 struct sugov_tunables *tunables = sg_policy->tunables;
806 unsigned int count;
807
808 mutex_lock(&global_tunables_lock);
809
810 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
811 policy->governor_data = NULL;
812 if (!count)
813 sugov_tunables_free(tunables);
814
815 mutex_unlock(&global_tunables_lock);
816
817 sugov_kthread_stop(sg_policy);
818 sugov_policy_free(sg_policy);
819 cpufreq_disable_fast_switch(policy);
820 }
821
822 static int sugov_start(struct cpufreq_policy *policy)
823 {
824 struct sugov_policy *sg_policy = policy->governor_data;
825 unsigned int cpu;
826
827 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
828 sg_policy->last_freq_update_time = 0;
829 sg_policy->next_freq = 0;
830 sg_policy->work_in_progress = false;
831 sg_policy->need_freq_update = false;
832 sg_policy->cached_raw_freq = 0;
833
834 for_each_cpu(cpu, policy->cpus) {
835 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
836
837 memset(sg_cpu, 0, sizeof(*sg_cpu));
838 sg_cpu->cpu = cpu;
839 sg_cpu->sg_policy = sg_policy;
840 sg_cpu->iowait_boost_max = policy->cpuinfo.max_freq;
841 }
842
843 for_each_cpu(cpu, policy->cpus) {
844 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
845
846 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
847 policy_is_shared(policy) ?
848 sugov_update_shared :
849 sugov_update_single);
850 }
851 return 0;
852 }
853
854 static void sugov_stop(struct cpufreq_policy *policy)
855 {
856 struct sugov_policy *sg_policy = policy->governor_data;
857 unsigned int cpu;
858
859 for_each_cpu(cpu, policy->cpus)
860 cpufreq_remove_update_util_hook(cpu);
861
862 synchronize_rcu();
863
864 if (!policy->fast_switch_enabled) {
865 irq_work_sync(&sg_policy->irq_work);
866 kthread_cancel_work_sync(&sg_policy->work);
867 }
868 }
869
870 static void sugov_limits(struct cpufreq_policy *policy)
871 {
872 struct sugov_policy *sg_policy = policy->governor_data;
873
874 if (!policy->fast_switch_enabled) {
875 mutex_lock(&sg_policy->work_lock);
876 cpufreq_policy_apply_limits(policy);
877 mutex_unlock(&sg_policy->work_lock);
878 }
879
880 sg_policy->need_freq_update = true;
881 }
882
883 struct cpufreq_governor schedutil_gov = {
884 .name = "schedutil",
885 .owner = THIS_MODULE,
886 .dynamic_switching = true,
887 .init = sugov_init,
888 .exit = sugov_exit,
889 .start = sugov_start,
890 .stop = sugov_stop,
891 .limits = sugov_limits,
892 };
893
894 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
895 struct cpufreq_governor *cpufreq_default_governor(void)
896 {
897 return &schedutil_gov;
898 }
899 #endif
900
901 static int __init sugov_register(void)
902 {
903 return cpufreq_register_governor(&schedutil_gov);
904 }
905 fs_initcall(sugov_register);
906
907 #ifdef CONFIG_ENERGY_MODEL
908 extern bool sched_energy_update;
909 extern struct mutex sched_energy_mutex;
910
911 static void rebuild_sd_workfn(struct work_struct *work)
912 {
913 mutex_lock(&sched_energy_mutex);
914 sched_energy_update = true;
915 rebuild_sched_domains();
916 sched_energy_update = false;
917 mutex_unlock(&sched_energy_mutex);
918 }
919 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
920
921 /*
922 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
923 * on governor changes to make sure the scheduler knows about it.
924 */
925 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
926 struct cpufreq_governor *old_gov)
927 {
928 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
929 /*
930 * When called from the cpufreq_register_driver() path, the
931 * cpu_hotplug_lock is already held, so use a work item to
932 * avoid nested locking in rebuild_sched_domains().
933 */
934 schedule_work(&rebuild_sd_work);
935 }
936
937 }
938 #endif