]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched/cpufreq_schedutil.c
97d318b0cd0cb7d739af1ab099a1fb6104715a35
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / cpufreq_schedutil.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
4 *
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include "sched.h"
12
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15
16 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
17
18 struct sugov_tunables {
19 struct gov_attr_set attr_set;
20 unsigned int rate_limit_us;
21 };
22
23 struct sugov_policy {
24 struct cpufreq_policy *policy;
25
26 struct sugov_tunables *tunables;
27 struct list_head tunables_hook;
28
29 raw_spinlock_t update_lock; /* For shared policies */
30 u64 last_freq_update_time;
31 s64 freq_update_delay_ns;
32 unsigned int next_freq;
33 unsigned int cached_raw_freq;
34
35 /* The next fields are only needed if fast switch cannot be used: */
36 struct irq_work irq_work;
37 struct kthread_work work;
38 struct mutex work_lock;
39 struct kthread_worker worker;
40 struct task_struct *thread;
41 bool work_in_progress;
42
43 bool limits_changed;
44 bool need_freq_update;
45 };
46
47 struct sugov_cpu {
48 struct update_util_data update_util;
49 struct sugov_policy *sg_policy;
50 unsigned int cpu;
51
52 bool iowait_boost_pending;
53 unsigned int iowait_boost;
54 u64 last_update;
55
56 unsigned long bw_dl;
57 unsigned long max;
58
59 /* The field below is for single-CPU policies only: */
60 #ifdef CONFIG_NO_HZ_COMMON
61 unsigned long saved_idle_calls;
62 #endif
63 };
64
65 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
66
67 /************************ Governor internals ***********************/
68
69 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
70 {
71 s64 delta_ns;
72
73 /*
74 * Since cpufreq_update_util() is called with rq->lock held for
75 * the @target_cpu, our per-CPU data is fully serialized.
76 *
77 * However, drivers cannot in general deal with cross-CPU
78 * requests, so while get_next_freq() will work, our
79 * sugov_update_commit() call may not for the fast switching platforms.
80 *
81 * Hence stop here for remote requests if they aren't supported
82 * by the hardware, as calculating the frequency is pointless if
83 * we cannot in fact act on it.
84 *
85 * This is needed on the slow switching platforms too to prevent CPUs
86 * going offline from leaving stale IRQ work items behind.
87 */
88 if (!cpufreq_this_cpu_can_update(sg_policy->policy))
89 return false;
90
91 if (unlikely(sg_policy->limits_changed)) {
92 sg_policy->limits_changed = false;
93 sg_policy->need_freq_update = true;
94 return true;
95 }
96
97 delta_ns = time - sg_policy->last_freq_update_time;
98
99 return delta_ns >= sg_policy->freq_update_delay_ns;
100 }
101
102 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
103 unsigned int next_freq)
104 {
105 if (!sg_policy->need_freq_update) {
106 if (sg_policy->next_freq == next_freq)
107 return false;
108 } else {
109 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
110 }
111
112 sg_policy->next_freq = next_freq;
113 sg_policy->last_freq_update_time = time;
114
115 return true;
116 }
117
118 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
119 unsigned int next_freq)
120 {
121 if (sugov_update_next_freq(sg_policy, time, next_freq))
122 cpufreq_driver_fast_switch(sg_policy->policy, next_freq);
123 }
124
125 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
126 unsigned int next_freq)
127 {
128 if (!sugov_update_next_freq(sg_policy, time, next_freq))
129 return;
130
131 if (!sg_policy->work_in_progress) {
132 sg_policy->work_in_progress = true;
133 irq_work_queue(&sg_policy->irq_work);
134 }
135 }
136
137 /**
138 * get_next_freq - Compute a new frequency for a given cpufreq policy.
139 * @sg_policy: schedutil policy object to compute the new frequency for.
140 * @util: Current CPU utilization.
141 * @max: CPU capacity.
142 *
143 * If the utilization is frequency-invariant, choose the new frequency to be
144 * proportional to it, that is
145 *
146 * next_freq = C * max_freq * util / max
147 *
148 * Otherwise, approximate the would-be frequency-invariant utilization by
149 * util_raw * (curr_freq / max_freq) which leads to
150 *
151 * next_freq = C * curr_freq * util_raw / max
152 *
153 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
154 *
155 * The lowest driver-supported frequency which is equal or greater than the raw
156 * next_freq (as calculated above) is returned, subject to policy min/max and
157 * cpufreq driver limitations.
158 */
159 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
160 unsigned long util, unsigned long max)
161 {
162 struct cpufreq_policy *policy = sg_policy->policy;
163 unsigned int freq = arch_scale_freq_invariant() ?
164 policy->cpuinfo.max_freq : policy->cur;
165
166 freq = map_util_freq(util, freq, max);
167
168 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
169 return sg_policy->next_freq;
170
171 sg_policy->cached_raw_freq = freq;
172 return cpufreq_driver_resolve_freq(policy, freq);
173 }
174
175 /*
176 * This function computes an effective utilization for the given CPU, to be
177 * used for frequency selection given the linear relation: f = u * f_max.
178 *
179 * The scheduler tracks the following metrics:
180 *
181 * cpu_util_{cfs,rt,dl,irq}()
182 * cpu_bw_dl()
183 *
184 * Where the cfs,rt and dl util numbers are tracked with the same metric and
185 * synchronized windows and are thus directly comparable.
186 *
187 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
188 * which excludes things like IRQ and steal-time. These latter are then accrued
189 * in the irq utilization.
190 *
191 * The DL bandwidth number otoh is not a measured metric but a value computed
192 * based on the task model parameters and gives the minimal utilization
193 * required to meet deadlines.
194 */
195 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
196 unsigned long max, enum schedutil_type type,
197 struct task_struct *p)
198 {
199 unsigned long dl_util, util, irq;
200 struct rq *rq = cpu_rq(cpu);
201
202 if (!uclamp_is_used() &&
203 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
204 return max;
205 }
206
207 /*
208 * Early check to see if IRQ/steal time saturates the CPU, can be
209 * because of inaccuracies in how we track these -- see
210 * update_irq_load_avg().
211 */
212 irq = cpu_util_irq(rq);
213 if (unlikely(irq >= max))
214 return max;
215
216 /*
217 * Because the time spend on RT/DL tasks is visible as 'lost' time to
218 * CFS tasks and we use the same metric to track the effective
219 * utilization (PELT windows are synchronized) we can directly add them
220 * to obtain the CPU's actual utilization.
221 *
222 * CFS and RT utilization can be boosted or capped, depending on
223 * utilization clamp constraints requested by currently RUNNABLE
224 * tasks.
225 * When there are no CFS RUNNABLE tasks, clamps are released and
226 * frequency will be gracefully reduced with the utilization decay.
227 */
228 util = util_cfs + cpu_util_rt(rq);
229 if (type == FREQUENCY_UTIL)
230 util = uclamp_rq_util_with(rq, util, p);
231
232 dl_util = cpu_util_dl(rq);
233
234 /*
235 * For frequency selection we do not make cpu_util_dl() a permanent part
236 * of this sum because we want to use cpu_bw_dl() later on, but we need
237 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
238 * that we select f_max when there is no idle time.
239 *
240 * NOTE: numerical errors or stop class might cause us to not quite hit
241 * saturation when we should -- something for later.
242 */
243 if (util + dl_util >= max)
244 return max;
245
246 /*
247 * OTOH, for energy computation we need the estimated running time, so
248 * include util_dl and ignore dl_bw.
249 */
250 if (type == ENERGY_UTIL)
251 util += dl_util;
252
253 /*
254 * There is still idle time; further improve the number by using the
255 * irq metric. Because IRQ/steal time is hidden from the task clock we
256 * need to scale the task numbers:
257 *
258 * max - irq
259 * U' = irq + --------- * U
260 * max
261 */
262 util = scale_irq_capacity(util, irq, max);
263 util += irq;
264
265 /*
266 * Bandwidth required by DEADLINE must always be granted while, for
267 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
268 * to gracefully reduce the frequency when no tasks show up for longer
269 * periods of time.
270 *
271 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
272 * bw_dl as requested freq. However, cpufreq is not yet ready for such
273 * an interface. So, we only do the latter for now.
274 */
275 if (type == FREQUENCY_UTIL)
276 util += cpu_bw_dl(rq);
277
278 return min(max, util);
279 }
280
281 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
282 {
283 struct rq *rq = cpu_rq(sg_cpu->cpu);
284 unsigned long util = cpu_util_cfs(rq);
285 unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
286
287 sg_cpu->max = max;
288 sg_cpu->bw_dl = cpu_bw_dl(rq);
289
290 return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL);
291 }
292
293 /**
294 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
295 * @sg_cpu: the sugov data for the CPU to boost
296 * @time: the update time from the caller
297 * @set_iowait_boost: true if an IO boost has been requested
298 *
299 * The IO wait boost of a task is disabled after a tick since the last update
300 * of a CPU. If a new IO wait boost is requested after more then a tick, then
301 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
302 * efficiency by ignoring sporadic wakeups from IO.
303 */
304 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
305 bool set_iowait_boost)
306 {
307 s64 delta_ns = time - sg_cpu->last_update;
308
309 /* Reset boost only if a tick has elapsed since last request */
310 if (delta_ns <= TICK_NSEC)
311 return false;
312
313 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
314 sg_cpu->iowait_boost_pending = set_iowait_boost;
315
316 return true;
317 }
318
319 /**
320 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
321 * @sg_cpu: the sugov data for the CPU to boost
322 * @time: the update time from the caller
323 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
324 *
325 * Each time a task wakes up after an IO operation, the CPU utilization can be
326 * boosted to a certain utilization which doubles at each "frequent and
327 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
328 * of the maximum OPP.
329 *
330 * To keep doubling, an IO boost has to be requested at least once per tick,
331 * otherwise we restart from the utilization of the minimum OPP.
332 */
333 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
334 unsigned int flags)
335 {
336 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
337
338 /* Reset boost if the CPU appears to have been idle enough */
339 if (sg_cpu->iowait_boost &&
340 sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
341 return;
342
343 /* Boost only tasks waking up after IO */
344 if (!set_iowait_boost)
345 return;
346
347 /* Ensure boost doubles only one time at each request */
348 if (sg_cpu->iowait_boost_pending)
349 return;
350 sg_cpu->iowait_boost_pending = true;
351
352 /* Double the boost at each request */
353 if (sg_cpu->iowait_boost) {
354 sg_cpu->iowait_boost =
355 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
356 return;
357 }
358
359 /* First wakeup after IO: start with minimum boost */
360 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
361 }
362
363 /**
364 * sugov_iowait_apply() - Apply the IO boost to a CPU.
365 * @sg_cpu: the sugov data for the cpu to boost
366 * @time: the update time from the caller
367 * @util: the utilization to (eventually) boost
368 * @max: the maximum value the utilization can be boosted to
369 *
370 * A CPU running a task which woken up after an IO operation can have its
371 * utilization boosted to speed up the completion of those IO operations.
372 * The IO boost value is increased each time a task wakes up from IO, in
373 * sugov_iowait_apply(), and it's instead decreased by this function,
374 * each time an increase has not been requested (!iowait_boost_pending).
375 *
376 * A CPU which also appears to have been idle for at least one tick has also
377 * its IO boost utilization reset.
378 *
379 * This mechanism is designed to boost high frequently IO waiting tasks, while
380 * being more conservative on tasks which does sporadic IO operations.
381 */
382 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
383 unsigned long util, unsigned long max)
384 {
385 unsigned long boost;
386
387 /* No boost currently required */
388 if (!sg_cpu->iowait_boost)
389 return util;
390
391 /* Reset boost if the CPU appears to have been idle enough */
392 if (sugov_iowait_reset(sg_cpu, time, false))
393 return util;
394
395 if (!sg_cpu->iowait_boost_pending) {
396 /*
397 * No boost pending; reduce the boost value.
398 */
399 sg_cpu->iowait_boost >>= 1;
400 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
401 sg_cpu->iowait_boost = 0;
402 return util;
403 }
404 }
405
406 sg_cpu->iowait_boost_pending = false;
407
408 /*
409 * @util is already in capacity scale; convert iowait_boost
410 * into the same scale so we can compare.
411 */
412 boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
413 return max(boost, util);
414 }
415
416 #ifdef CONFIG_NO_HZ_COMMON
417 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
418 {
419 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
420 bool ret = idle_calls == sg_cpu->saved_idle_calls;
421
422 sg_cpu->saved_idle_calls = idle_calls;
423 return ret;
424 }
425 #else
426 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
427 #endif /* CONFIG_NO_HZ_COMMON */
428
429 /*
430 * Make sugov_should_update_freq() ignore the rate limit when DL
431 * has increased the utilization.
432 */
433 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
434 {
435 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
436 sg_policy->limits_changed = true;
437 }
438
439 static void sugov_update_single(struct update_util_data *hook, u64 time,
440 unsigned int flags)
441 {
442 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
443 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
444 unsigned long util, max;
445 unsigned int next_f;
446 unsigned int cached_freq = sg_policy->cached_raw_freq;
447
448 sugov_iowait_boost(sg_cpu, time, flags);
449 sg_cpu->last_update = time;
450
451 ignore_dl_rate_limit(sg_cpu, sg_policy);
452
453 if (!sugov_should_update_freq(sg_policy, time))
454 return;
455
456 util = sugov_get_util(sg_cpu);
457 max = sg_cpu->max;
458 util = sugov_iowait_apply(sg_cpu, time, util, max);
459 next_f = get_next_freq(sg_policy, util, max);
460 /*
461 * Do not reduce the frequency if the CPU has not been idle
462 * recently, as the reduction is likely to be premature then.
463 */
464 if (sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
465 next_f = sg_policy->next_freq;
466
467 /* Restore cached freq as next_freq has changed */
468 sg_policy->cached_raw_freq = cached_freq;
469 }
470
471 /*
472 * This code runs under rq->lock for the target CPU, so it won't run
473 * concurrently on two different CPUs for the same target and it is not
474 * necessary to acquire the lock in the fast switch case.
475 */
476 if (sg_policy->policy->fast_switch_enabled) {
477 sugov_fast_switch(sg_policy, time, next_f);
478 } else {
479 raw_spin_lock(&sg_policy->update_lock);
480 sugov_deferred_update(sg_policy, time, next_f);
481 raw_spin_unlock(&sg_policy->update_lock);
482 }
483 }
484
485 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
486 {
487 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
488 struct cpufreq_policy *policy = sg_policy->policy;
489 unsigned long util = 0, max = 1;
490 unsigned int j;
491
492 for_each_cpu(j, policy->cpus) {
493 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
494 unsigned long j_util, j_max;
495
496 j_util = sugov_get_util(j_sg_cpu);
497 j_max = j_sg_cpu->max;
498 j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
499
500 if (j_util * max > j_max * util) {
501 util = j_util;
502 max = j_max;
503 }
504 }
505
506 return get_next_freq(sg_policy, util, max);
507 }
508
509 static void
510 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
511 {
512 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
513 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
514 unsigned int next_f;
515
516 raw_spin_lock(&sg_policy->update_lock);
517
518 sugov_iowait_boost(sg_cpu, time, flags);
519 sg_cpu->last_update = time;
520
521 ignore_dl_rate_limit(sg_cpu, sg_policy);
522
523 if (sugov_should_update_freq(sg_policy, time)) {
524 next_f = sugov_next_freq_shared(sg_cpu, time);
525
526 if (sg_policy->policy->fast_switch_enabled)
527 sugov_fast_switch(sg_policy, time, next_f);
528 else
529 sugov_deferred_update(sg_policy, time, next_f);
530 }
531
532 raw_spin_unlock(&sg_policy->update_lock);
533 }
534
535 static void sugov_work(struct kthread_work *work)
536 {
537 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
538 unsigned int freq;
539 unsigned long flags;
540
541 /*
542 * Hold sg_policy->update_lock shortly to handle the case where:
543 * incase sg_policy->next_freq is read here, and then updated by
544 * sugov_deferred_update() just before work_in_progress is set to false
545 * here, we may miss queueing the new update.
546 *
547 * Note: If a work was queued after the update_lock is released,
548 * sugov_work() will just be called again by kthread_work code; and the
549 * request will be proceed before the sugov thread sleeps.
550 */
551 raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
552 freq = sg_policy->next_freq;
553 sg_policy->work_in_progress = false;
554 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
555
556 mutex_lock(&sg_policy->work_lock);
557 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
558 mutex_unlock(&sg_policy->work_lock);
559 }
560
561 static void sugov_irq_work(struct irq_work *irq_work)
562 {
563 struct sugov_policy *sg_policy;
564
565 sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
566
567 kthread_queue_work(&sg_policy->worker, &sg_policy->work);
568 }
569
570 /************************** sysfs interface ************************/
571
572 static struct sugov_tunables *global_tunables;
573 static DEFINE_MUTEX(global_tunables_lock);
574
575 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
576 {
577 return container_of(attr_set, struct sugov_tunables, attr_set);
578 }
579
580 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
581 {
582 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
583
584 return sprintf(buf, "%u\n", tunables->rate_limit_us);
585 }
586
587 static ssize_t
588 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
589 {
590 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
591 struct sugov_policy *sg_policy;
592 unsigned int rate_limit_us;
593
594 if (kstrtouint(buf, 10, &rate_limit_us))
595 return -EINVAL;
596
597 tunables->rate_limit_us = rate_limit_us;
598
599 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
600 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
601
602 return count;
603 }
604
605 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
606
607 static struct attribute *sugov_attrs[] = {
608 &rate_limit_us.attr,
609 NULL
610 };
611 ATTRIBUTE_GROUPS(sugov);
612
613 static struct kobj_type sugov_tunables_ktype = {
614 .default_groups = sugov_groups,
615 .sysfs_ops = &governor_sysfs_ops,
616 };
617
618 /********************** cpufreq governor interface *********************/
619
620 struct cpufreq_governor schedutil_gov;
621
622 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
623 {
624 struct sugov_policy *sg_policy;
625
626 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
627 if (!sg_policy)
628 return NULL;
629
630 sg_policy->policy = policy;
631 raw_spin_lock_init(&sg_policy->update_lock);
632 return sg_policy;
633 }
634
635 static void sugov_policy_free(struct sugov_policy *sg_policy)
636 {
637 kfree(sg_policy);
638 }
639
640 static int sugov_kthread_create(struct sugov_policy *sg_policy)
641 {
642 struct task_struct *thread;
643 struct sched_attr attr = {
644 .size = sizeof(struct sched_attr),
645 .sched_policy = SCHED_DEADLINE,
646 .sched_flags = SCHED_FLAG_SUGOV,
647 .sched_nice = 0,
648 .sched_priority = 0,
649 /*
650 * Fake (unused) bandwidth; workaround to "fix"
651 * priority inheritance.
652 */
653 .sched_runtime = 1000000,
654 .sched_deadline = 10000000,
655 .sched_period = 10000000,
656 };
657 struct cpufreq_policy *policy = sg_policy->policy;
658 int ret;
659
660 /* kthread only required for slow path */
661 if (policy->fast_switch_enabled)
662 return 0;
663
664 kthread_init_work(&sg_policy->work, sugov_work);
665 kthread_init_worker(&sg_policy->worker);
666 thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
667 "sugov:%d",
668 cpumask_first(policy->related_cpus));
669 if (IS_ERR(thread)) {
670 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
671 return PTR_ERR(thread);
672 }
673
674 ret = sched_setattr_nocheck(thread, &attr);
675 if (ret) {
676 kthread_stop(thread);
677 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
678 return ret;
679 }
680
681 sg_policy->thread = thread;
682 kthread_bind_mask(thread, policy->related_cpus);
683 init_irq_work(&sg_policy->irq_work, sugov_irq_work);
684 mutex_init(&sg_policy->work_lock);
685
686 wake_up_process(thread);
687
688 return 0;
689 }
690
691 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
692 {
693 /* kthread only required for slow path */
694 if (sg_policy->policy->fast_switch_enabled)
695 return;
696
697 kthread_flush_worker(&sg_policy->worker);
698 kthread_stop(sg_policy->thread);
699 mutex_destroy(&sg_policy->work_lock);
700 }
701
702 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
703 {
704 struct sugov_tunables *tunables;
705
706 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
707 if (tunables) {
708 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
709 if (!have_governor_per_policy())
710 global_tunables = tunables;
711 }
712 return tunables;
713 }
714
715 static void sugov_tunables_free(struct sugov_tunables *tunables)
716 {
717 if (!have_governor_per_policy())
718 global_tunables = NULL;
719
720 kfree(tunables);
721 }
722
723 static int sugov_init(struct cpufreq_policy *policy)
724 {
725 struct sugov_policy *sg_policy;
726 struct sugov_tunables *tunables;
727 int ret = 0;
728
729 /* State should be equivalent to EXIT */
730 if (policy->governor_data)
731 return -EBUSY;
732
733 cpufreq_enable_fast_switch(policy);
734
735 sg_policy = sugov_policy_alloc(policy);
736 if (!sg_policy) {
737 ret = -ENOMEM;
738 goto disable_fast_switch;
739 }
740
741 ret = sugov_kthread_create(sg_policy);
742 if (ret)
743 goto free_sg_policy;
744
745 mutex_lock(&global_tunables_lock);
746
747 if (global_tunables) {
748 if (WARN_ON(have_governor_per_policy())) {
749 ret = -EINVAL;
750 goto stop_kthread;
751 }
752 policy->governor_data = sg_policy;
753 sg_policy->tunables = global_tunables;
754
755 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
756 goto out;
757 }
758
759 tunables = sugov_tunables_alloc(sg_policy);
760 if (!tunables) {
761 ret = -ENOMEM;
762 goto stop_kthread;
763 }
764
765 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
766
767 policy->governor_data = sg_policy;
768 sg_policy->tunables = tunables;
769
770 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
771 get_governor_parent_kobj(policy), "%s",
772 schedutil_gov.name);
773 if (ret)
774 goto fail;
775
776 out:
777 mutex_unlock(&global_tunables_lock);
778 return 0;
779
780 fail:
781 kobject_put(&tunables->attr_set.kobj);
782 policy->governor_data = NULL;
783 sugov_tunables_free(tunables);
784
785 stop_kthread:
786 sugov_kthread_stop(sg_policy);
787 mutex_unlock(&global_tunables_lock);
788
789 free_sg_policy:
790 sugov_policy_free(sg_policy);
791
792 disable_fast_switch:
793 cpufreq_disable_fast_switch(policy);
794
795 pr_err("initialization failed (error %d)\n", ret);
796 return ret;
797 }
798
799 static void sugov_exit(struct cpufreq_policy *policy)
800 {
801 struct sugov_policy *sg_policy = policy->governor_data;
802 struct sugov_tunables *tunables = sg_policy->tunables;
803 unsigned int count;
804
805 mutex_lock(&global_tunables_lock);
806
807 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
808 policy->governor_data = NULL;
809 if (!count)
810 sugov_tunables_free(tunables);
811
812 mutex_unlock(&global_tunables_lock);
813
814 sugov_kthread_stop(sg_policy);
815 sugov_policy_free(sg_policy);
816 cpufreq_disable_fast_switch(policy);
817 }
818
819 static int sugov_start(struct cpufreq_policy *policy)
820 {
821 struct sugov_policy *sg_policy = policy->governor_data;
822 unsigned int cpu;
823
824 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
825 sg_policy->last_freq_update_time = 0;
826 sg_policy->next_freq = 0;
827 sg_policy->work_in_progress = false;
828 sg_policy->limits_changed = false;
829 sg_policy->cached_raw_freq = 0;
830
831 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
832
833 for_each_cpu(cpu, policy->cpus) {
834 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
835
836 memset(sg_cpu, 0, sizeof(*sg_cpu));
837 sg_cpu->cpu = cpu;
838 sg_cpu->sg_policy = sg_policy;
839 }
840
841 for_each_cpu(cpu, policy->cpus) {
842 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
843
844 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
845 policy_is_shared(policy) ?
846 sugov_update_shared :
847 sugov_update_single);
848 }
849 return 0;
850 }
851
852 static void sugov_stop(struct cpufreq_policy *policy)
853 {
854 struct sugov_policy *sg_policy = policy->governor_data;
855 unsigned int cpu;
856
857 for_each_cpu(cpu, policy->cpus)
858 cpufreq_remove_update_util_hook(cpu);
859
860 synchronize_rcu();
861
862 if (!policy->fast_switch_enabled) {
863 irq_work_sync(&sg_policy->irq_work);
864 kthread_cancel_work_sync(&sg_policy->work);
865 }
866 }
867
868 static void sugov_limits(struct cpufreq_policy *policy)
869 {
870 struct sugov_policy *sg_policy = policy->governor_data;
871
872 if (!policy->fast_switch_enabled) {
873 mutex_lock(&sg_policy->work_lock);
874 cpufreq_policy_apply_limits(policy);
875 mutex_unlock(&sg_policy->work_lock);
876 }
877
878 sg_policy->limits_changed = true;
879 }
880
881 struct cpufreq_governor schedutil_gov = {
882 .name = "schedutil",
883 .owner = THIS_MODULE,
884 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING,
885 .init = sugov_init,
886 .exit = sugov_exit,
887 .start = sugov_start,
888 .stop = sugov_stop,
889 .limits = sugov_limits,
890 };
891
892 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
893 struct cpufreq_governor *cpufreq_default_governor(void)
894 {
895 return &schedutil_gov;
896 }
897 #endif
898
899 cpufreq_governor_init(schedutil_gov);
900
901 #ifdef CONFIG_ENERGY_MODEL
902 extern bool sched_energy_update;
903 extern struct mutex sched_energy_mutex;
904
905 static void rebuild_sd_workfn(struct work_struct *work)
906 {
907 mutex_lock(&sched_energy_mutex);
908 sched_energy_update = true;
909 rebuild_sched_domains();
910 sched_energy_update = false;
911 mutex_unlock(&sched_energy_mutex);
912 }
913 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
914
915 /*
916 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
917 * on governor changes to make sure the scheduler knows about it.
918 */
919 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
920 struct cpufreq_governor *old_gov)
921 {
922 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
923 /*
924 * When called from the cpufreq_register_driver() path, the
925 * cpu_hotplug_lock is already held, so use a work item to
926 * avoid nested locking in rebuild_sched_domains().
927 */
928 schedule_work(&rebuild_sd_work);
929 }
930
931 }
932 #endif