]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/cputime.c
Merge tag 'powerpc-4.13-8' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-artful-kernel.git] / kernel / sched / cputime.c
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include <linux/sched/cputime.h>
8 #include "sched.h"
9
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12 /*
13 * There are no locks covering percpu hardirq/softirq time.
14 * They are only modified in vtime_account, on corresponding CPU
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
18 * race with irq/vtime_account on this CPU. We would either get old
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
22 */
23 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
24
25 static int sched_clock_irqtime;
26
27 void enable_sched_clock_irqtime(void)
28 {
29 sched_clock_irqtime = 1;
30 }
31
32 void disable_sched_clock_irqtime(void)
33 {
34 sched_clock_irqtime = 0;
35 }
36
37 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
38 enum cpu_usage_stat idx)
39 {
40 u64 *cpustat = kcpustat_this_cpu->cpustat;
41
42 u64_stats_update_begin(&irqtime->sync);
43 cpustat[idx] += delta;
44 irqtime->total += delta;
45 irqtime->tick_delta += delta;
46 u64_stats_update_end(&irqtime->sync);
47 }
48
49 /*
50 * Called before incrementing preempt_count on {soft,}irq_enter
51 * and before decrementing preempt_count on {soft,}irq_exit.
52 */
53 void irqtime_account_irq(struct task_struct *curr)
54 {
55 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
56 s64 delta;
57 int cpu;
58
59 if (!sched_clock_irqtime)
60 return;
61
62 cpu = smp_processor_id();
63 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
64 irqtime->irq_start_time += delta;
65
66 /*
67 * We do not account for softirq time from ksoftirqd here.
68 * We want to continue accounting softirq time to ksoftirqd thread
69 * in that case, so as not to confuse scheduler with a special task
70 * that do not consume any time, but still wants to run.
71 */
72 if (hardirq_count())
73 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
74 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
75 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
76 }
77 EXPORT_SYMBOL_GPL(irqtime_account_irq);
78
79 static u64 irqtime_tick_accounted(u64 maxtime)
80 {
81 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
82 u64 delta;
83
84 delta = min(irqtime->tick_delta, maxtime);
85 irqtime->tick_delta -= delta;
86
87 return delta;
88 }
89
90 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
91
92 #define sched_clock_irqtime (0)
93
94 static u64 irqtime_tick_accounted(u64 dummy)
95 {
96 return 0;
97 }
98
99 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
100
101 static inline void task_group_account_field(struct task_struct *p, int index,
102 u64 tmp)
103 {
104 /*
105 * Since all updates are sure to touch the root cgroup, we
106 * get ourselves ahead and touch it first. If the root cgroup
107 * is the only cgroup, then nothing else should be necessary.
108 *
109 */
110 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
111
112 cpuacct_account_field(p, index, tmp);
113 }
114
115 /*
116 * Account user cpu time to a process.
117 * @p: the process that the cpu time gets accounted to
118 * @cputime: the cpu time spent in user space since the last update
119 */
120 void account_user_time(struct task_struct *p, u64 cputime)
121 {
122 int index;
123
124 /* Add user time to process. */
125 p->utime += cputime;
126 account_group_user_time(p, cputime);
127
128 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
129
130 /* Add user time to cpustat. */
131 task_group_account_field(p, index, cputime);
132
133 /* Account for user time used */
134 acct_account_cputime(p);
135 }
136
137 /*
138 * Account guest cpu time to a process.
139 * @p: the process that the cpu time gets accounted to
140 * @cputime: the cpu time spent in virtual machine since the last update
141 */
142 void account_guest_time(struct task_struct *p, u64 cputime)
143 {
144 u64 *cpustat = kcpustat_this_cpu->cpustat;
145
146 /* Add guest time to process. */
147 p->utime += cputime;
148 account_group_user_time(p, cputime);
149 p->gtime += cputime;
150
151 /* Add guest time to cpustat. */
152 if (task_nice(p) > 0) {
153 cpustat[CPUTIME_NICE] += cputime;
154 cpustat[CPUTIME_GUEST_NICE] += cputime;
155 } else {
156 cpustat[CPUTIME_USER] += cputime;
157 cpustat[CPUTIME_GUEST] += cputime;
158 }
159 }
160
161 /*
162 * Account system cpu time to a process and desired cpustat field
163 * @p: the process that the cpu time gets accounted to
164 * @cputime: the cpu time spent in kernel space since the last update
165 * @index: pointer to cpustat field that has to be updated
166 */
167 void account_system_index_time(struct task_struct *p,
168 u64 cputime, enum cpu_usage_stat index)
169 {
170 /* Add system time to process. */
171 p->stime += cputime;
172 account_group_system_time(p, cputime);
173
174 /* Add system time to cpustat. */
175 task_group_account_field(p, index, cputime);
176
177 /* Account for system time used */
178 acct_account_cputime(p);
179 }
180
181 /*
182 * Account system cpu time to a process.
183 * @p: the process that the cpu time gets accounted to
184 * @hardirq_offset: the offset to subtract from hardirq_count()
185 * @cputime: the cpu time spent in kernel space since the last update
186 */
187 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
188 {
189 int index;
190
191 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
192 account_guest_time(p, cputime);
193 return;
194 }
195
196 if (hardirq_count() - hardirq_offset)
197 index = CPUTIME_IRQ;
198 else if (in_serving_softirq())
199 index = CPUTIME_SOFTIRQ;
200 else
201 index = CPUTIME_SYSTEM;
202
203 account_system_index_time(p, cputime, index);
204 }
205
206 /*
207 * Account for involuntary wait time.
208 * @cputime: the cpu time spent in involuntary wait
209 */
210 void account_steal_time(u64 cputime)
211 {
212 u64 *cpustat = kcpustat_this_cpu->cpustat;
213
214 cpustat[CPUTIME_STEAL] += cputime;
215 }
216
217 /*
218 * Account for idle time.
219 * @cputime: the cpu time spent in idle wait
220 */
221 void account_idle_time(u64 cputime)
222 {
223 u64 *cpustat = kcpustat_this_cpu->cpustat;
224 struct rq *rq = this_rq();
225
226 if (atomic_read(&rq->nr_iowait) > 0)
227 cpustat[CPUTIME_IOWAIT] += cputime;
228 else
229 cpustat[CPUTIME_IDLE] += cputime;
230 }
231
232 /*
233 * When a guest is interrupted for a longer amount of time, missed clock
234 * ticks are not redelivered later. Due to that, this function may on
235 * occasion account more time than the calling functions think elapsed.
236 */
237 static __always_inline u64 steal_account_process_time(u64 maxtime)
238 {
239 #ifdef CONFIG_PARAVIRT
240 if (static_key_false(&paravirt_steal_enabled)) {
241 u64 steal;
242
243 steal = paravirt_steal_clock(smp_processor_id());
244 steal -= this_rq()->prev_steal_time;
245 steal = min(steal, maxtime);
246 account_steal_time(steal);
247 this_rq()->prev_steal_time += steal;
248
249 return steal;
250 }
251 #endif
252 return 0;
253 }
254
255 /*
256 * Account how much elapsed time was spent in steal, irq, or softirq time.
257 */
258 static inline u64 account_other_time(u64 max)
259 {
260 u64 accounted;
261
262 /* Shall be converted to a lockdep-enabled lightweight check */
263 WARN_ON_ONCE(!irqs_disabled());
264
265 accounted = steal_account_process_time(max);
266
267 if (accounted < max)
268 accounted += irqtime_tick_accounted(max - accounted);
269
270 return accounted;
271 }
272
273 #ifdef CONFIG_64BIT
274 static inline u64 read_sum_exec_runtime(struct task_struct *t)
275 {
276 return t->se.sum_exec_runtime;
277 }
278 #else
279 static u64 read_sum_exec_runtime(struct task_struct *t)
280 {
281 u64 ns;
282 struct rq_flags rf;
283 struct rq *rq;
284
285 rq = task_rq_lock(t, &rf);
286 ns = t->se.sum_exec_runtime;
287 task_rq_unlock(rq, t, &rf);
288
289 return ns;
290 }
291 #endif
292
293 /*
294 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
295 * tasks (sum on group iteration) belonging to @tsk's group.
296 */
297 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
298 {
299 struct signal_struct *sig = tsk->signal;
300 u64 utime, stime;
301 struct task_struct *t;
302 unsigned int seq, nextseq;
303 unsigned long flags;
304
305 /*
306 * Update current task runtime to account pending time since last
307 * scheduler action or thread_group_cputime() call. This thread group
308 * might have other running tasks on different CPUs, but updating
309 * their runtime can affect syscall performance, so we skip account
310 * those pending times and rely only on values updated on tick or
311 * other scheduler action.
312 */
313 if (same_thread_group(current, tsk))
314 (void) task_sched_runtime(current);
315
316 rcu_read_lock();
317 /* Attempt a lockless read on the first round. */
318 nextseq = 0;
319 do {
320 seq = nextseq;
321 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
322 times->utime = sig->utime;
323 times->stime = sig->stime;
324 times->sum_exec_runtime = sig->sum_sched_runtime;
325
326 for_each_thread(tsk, t) {
327 task_cputime(t, &utime, &stime);
328 times->utime += utime;
329 times->stime += stime;
330 times->sum_exec_runtime += read_sum_exec_runtime(t);
331 }
332 /* If lockless access failed, take the lock. */
333 nextseq = 1;
334 } while (need_seqretry(&sig->stats_lock, seq));
335 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
336 rcu_read_unlock();
337 }
338
339 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
340 /*
341 * Account a tick to a process and cpustat
342 * @p: the process that the cpu time gets accounted to
343 * @user_tick: is the tick from userspace
344 * @rq: the pointer to rq
345 *
346 * Tick demultiplexing follows the order
347 * - pending hardirq update
348 * - pending softirq update
349 * - user_time
350 * - idle_time
351 * - system time
352 * - check for guest_time
353 * - else account as system_time
354 *
355 * Check for hardirq is done both for system and user time as there is
356 * no timer going off while we are on hardirq and hence we may never get an
357 * opportunity to update it solely in system time.
358 * p->stime and friends are only updated on system time and not on irq
359 * softirq as those do not count in task exec_runtime any more.
360 */
361 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
362 struct rq *rq, int ticks)
363 {
364 u64 other, cputime = TICK_NSEC * ticks;
365
366 /*
367 * When returning from idle, many ticks can get accounted at
368 * once, including some ticks of steal, irq, and softirq time.
369 * Subtract those ticks from the amount of time accounted to
370 * idle, or potentially user or system time. Due to rounding,
371 * other time can exceed ticks occasionally.
372 */
373 other = account_other_time(ULONG_MAX);
374 if (other >= cputime)
375 return;
376
377 cputime -= other;
378
379 if (this_cpu_ksoftirqd() == p) {
380 /*
381 * ksoftirqd time do not get accounted in cpu_softirq_time.
382 * So, we have to handle it separately here.
383 * Also, p->stime needs to be updated for ksoftirqd.
384 */
385 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
386 } else if (user_tick) {
387 account_user_time(p, cputime);
388 } else if (p == rq->idle) {
389 account_idle_time(cputime);
390 } else if (p->flags & PF_VCPU) { /* System time or guest time */
391 account_guest_time(p, cputime);
392 } else {
393 account_system_index_time(p, cputime, CPUTIME_SYSTEM);
394 }
395 }
396
397 static void irqtime_account_idle_ticks(int ticks)
398 {
399 struct rq *rq = this_rq();
400
401 irqtime_account_process_tick(current, 0, rq, ticks);
402 }
403 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
404 static inline void irqtime_account_idle_ticks(int ticks) {}
405 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
406 struct rq *rq, int nr_ticks) {}
407 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
408
409 /*
410 * Use precise platform statistics if available:
411 */
412 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
413
414 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
415 void vtime_common_task_switch(struct task_struct *prev)
416 {
417 if (is_idle_task(prev))
418 vtime_account_idle(prev);
419 else
420 vtime_account_system(prev);
421
422 vtime_flush(prev);
423 arch_vtime_task_switch(prev);
424 }
425 #endif
426
427 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
428
429
430 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
431 /*
432 * Archs that account the whole time spent in the idle task
433 * (outside irq) as idle time can rely on this and just implement
434 * vtime_account_system() and vtime_account_idle(). Archs that
435 * have other meaning of the idle time (s390 only includes the
436 * time spent by the CPU when it's in low power mode) must override
437 * vtime_account().
438 */
439 #ifndef __ARCH_HAS_VTIME_ACCOUNT
440 void vtime_account_irq_enter(struct task_struct *tsk)
441 {
442 if (!in_interrupt() && is_idle_task(tsk))
443 vtime_account_idle(tsk);
444 else
445 vtime_account_system(tsk);
446 }
447 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
448 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
449
450 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
451 {
452 *ut = p->utime;
453 *st = p->stime;
454 }
455 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
456
457 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
458 {
459 struct task_cputime cputime;
460
461 thread_group_cputime(p, &cputime);
462
463 *ut = cputime.utime;
464 *st = cputime.stime;
465 }
466 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
467 /*
468 * Account a single tick of cpu time.
469 * @p: the process that the cpu time gets accounted to
470 * @user_tick: indicates if the tick is a user or a system tick
471 */
472 void account_process_tick(struct task_struct *p, int user_tick)
473 {
474 u64 cputime, steal;
475 struct rq *rq = this_rq();
476
477 if (vtime_accounting_cpu_enabled())
478 return;
479
480 if (sched_clock_irqtime) {
481 irqtime_account_process_tick(p, user_tick, rq, 1);
482 return;
483 }
484
485 cputime = TICK_NSEC;
486 steal = steal_account_process_time(ULONG_MAX);
487
488 if (steal >= cputime)
489 return;
490
491 cputime -= steal;
492
493 if (user_tick)
494 account_user_time(p, cputime);
495 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
496 account_system_time(p, HARDIRQ_OFFSET, cputime);
497 else
498 account_idle_time(cputime);
499 }
500
501 /*
502 * Account multiple ticks of idle time.
503 * @ticks: number of stolen ticks
504 */
505 void account_idle_ticks(unsigned long ticks)
506 {
507 u64 cputime, steal;
508
509 if (sched_clock_irqtime) {
510 irqtime_account_idle_ticks(ticks);
511 return;
512 }
513
514 cputime = ticks * TICK_NSEC;
515 steal = steal_account_process_time(ULONG_MAX);
516
517 if (steal >= cputime)
518 return;
519
520 cputime -= steal;
521 account_idle_time(cputime);
522 }
523
524 /*
525 * Perform (stime * rtime) / total, but avoid multiplication overflow by
526 * loosing precision when the numbers are big.
527 */
528 static u64 scale_stime(u64 stime, u64 rtime, u64 total)
529 {
530 u64 scaled;
531
532 for (;;) {
533 /* Make sure "rtime" is the bigger of stime/rtime */
534 if (stime > rtime)
535 swap(rtime, stime);
536
537 /* Make sure 'total' fits in 32 bits */
538 if (total >> 32)
539 goto drop_precision;
540
541 /* Does rtime (and thus stime) fit in 32 bits? */
542 if (!(rtime >> 32))
543 break;
544
545 /* Can we just balance rtime/stime rather than dropping bits? */
546 if (stime >> 31)
547 goto drop_precision;
548
549 /* We can grow stime and shrink rtime and try to make them both fit */
550 stime <<= 1;
551 rtime >>= 1;
552 continue;
553
554 drop_precision:
555 /* We drop from rtime, it has more bits than stime */
556 rtime >>= 1;
557 total >>= 1;
558 }
559
560 /*
561 * Make sure gcc understands that this is a 32x32->64 multiply,
562 * followed by a 64/32->64 divide.
563 */
564 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
565 return scaled;
566 }
567
568 /*
569 * Adjust tick based cputime random precision against scheduler runtime
570 * accounting.
571 *
572 * Tick based cputime accounting depend on random scheduling timeslices of a
573 * task to be interrupted or not by the timer. Depending on these
574 * circumstances, the number of these interrupts may be over or
575 * under-optimistic, matching the real user and system cputime with a variable
576 * precision.
577 *
578 * Fix this by scaling these tick based values against the total runtime
579 * accounted by the CFS scheduler.
580 *
581 * This code provides the following guarantees:
582 *
583 * stime + utime == rtime
584 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
585 *
586 * Assuming that rtime_i+1 >= rtime_i.
587 */
588 static void cputime_adjust(struct task_cputime *curr,
589 struct prev_cputime *prev,
590 u64 *ut, u64 *st)
591 {
592 u64 rtime, stime, utime;
593 unsigned long flags;
594
595 /* Serialize concurrent callers such that we can honour our guarantees */
596 raw_spin_lock_irqsave(&prev->lock, flags);
597 rtime = curr->sum_exec_runtime;
598
599 /*
600 * This is possible under two circumstances:
601 * - rtime isn't monotonic after all (a bug);
602 * - we got reordered by the lock.
603 *
604 * In both cases this acts as a filter such that the rest of the code
605 * can assume it is monotonic regardless of anything else.
606 */
607 if (prev->stime + prev->utime >= rtime)
608 goto out;
609
610 stime = curr->stime;
611 utime = curr->utime;
612
613 /*
614 * If either stime or utime are 0, assume all runtime is userspace.
615 * Once a task gets some ticks, the monotonicy code at 'update:'
616 * will ensure things converge to the observed ratio.
617 */
618 if (stime == 0) {
619 utime = rtime;
620 goto update;
621 }
622
623 if (utime == 0) {
624 stime = rtime;
625 goto update;
626 }
627
628 stime = scale_stime(stime, rtime, stime + utime);
629
630 update:
631 /*
632 * Make sure stime doesn't go backwards; this preserves monotonicity
633 * for utime because rtime is monotonic.
634 *
635 * utime_i+1 = rtime_i+1 - stime_i
636 * = rtime_i+1 - (rtime_i - utime_i)
637 * = (rtime_i+1 - rtime_i) + utime_i
638 * >= utime_i
639 */
640 if (stime < prev->stime)
641 stime = prev->stime;
642 utime = rtime - stime;
643
644 /*
645 * Make sure utime doesn't go backwards; this still preserves
646 * monotonicity for stime, analogous argument to above.
647 */
648 if (utime < prev->utime) {
649 utime = prev->utime;
650 stime = rtime - utime;
651 }
652
653 prev->stime = stime;
654 prev->utime = utime;
655 out:
656 *ut = prev->utime;
657 *st = prev->stime;
658 raw_spin_unlock_irqrestore(&prev->lock, flags);
659 }
660
661 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
662 {
663 struct task_cputime cputime = {
664 .sum_exec_runtime = p->se.sum_exec_runtime,
665 };
666
667 task_cputime(p, &cputime.utime, &cputime.stime);
668 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
669 }
670 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
671
672 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
673 {
674 struct task_cputime cputime;
675
676 thread_group_cputime(p, &cputime);
677 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
678 }
679 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
680
681 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
682 static u64 vtime_delta(struct vtime *vtime)
683 {
684 unsigned long long clock;
685
686 clock = sched_clock();
687 if (clock < vtime->starttime)
688 return 0;
689
690 return clock - vtime->starttime;
691 }
692
693 static u64 get_vtime_delta(struct vtime *vtime)
694 {
695 u64 delta = vtime_delta(vtime);
696 u64 other;
697
698 /*
699 * Unlike tick based timing, vtime based timing never has lost
700 * ticks, and no need for steal time accounting to make up for
701 * lost ticks. Vtime accounts a rounded version of actual
702 * elapsed time. Limit account_other_time to prevent rounding
703 * errors from causing elapsed vtime to go negative.
704 */
705 other = account_other_time(delta);
706 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
707 vtime->starttime += delta;
708
709 return delta - other;
710 }
711
712 static void __vtime_account_system(struct task_struct *tsk,
713 struct vtime *vtime)
714 {
715 vtime->stime += get_vtime_delta(vtime);
716 if (vtime->stime >= TICK_NSEC) {
717 account_system_time(tsk, irq_count(), vtime->stime);
718 vtime->stime = 0;
719 }
720 }
721
722 static void vtime_account_guest(struct task_struct *tsk,
723 struct vtime *vtime)
724 {
725 vtime->gtime += get_vtime_delta(vtime);
726 if (vtime->gtime >= TICK_NSEC) {
727 account_guest_time(tsk, vtime->gtime);
728 vtime->gtime = 0;
729 }
730 }
731
732 void vtime_account_system(struct task_struct *tsk)
733 {
734 struct vtime *vtime = &tsk->vtime;
735
736 if (!vtime_delta(vtime))
737 return;
738
739 write_seqcount_begin(&vtime->seqcount);
740 /* We might have scheduled out from guest path */
741 if (current->flags & PF_VCPU)
742 vtime_account_guest(tsk, vtime);
743 else
744 __vtime_account_system(tsk, vtime);
745 write_seqcount_end(&vtime->seqcount);
746 }
747
748 void vtime_user_enter(struct task_struct *tsk)
749 {
750 struct vtime *vtime = &tsk->vtime;
751
752 write_seqcount_begin(&vtime->seqcount);
753 __vtime_account_system(tsk, vtime);
754 vtime->state = VTIME_USER;
755 write_seqcount_end(&vtime->seqcount);
756 }
757
758 void vtime_user_exit(struct task_struct *tsk)
759 {
760 struct vtime *vtime = &tsk->vtime;
761
762 write_seqcount_begin(&vtime->seqcount);
763 vtime->utime += get_vtime_delta(vtime);
764 if (vtime->utime >= TICK_NSEC) {
765 account_user_time(tsk, vtime->utime);
766 vtime->utime = 0;
767 }
768 vtime->state = VTIME_SYS;
769 write_seqcount_end(&vtime->seqcount);
770 }
771
772 void vtime_guest_enter(struct task_struct *tsk)
773 {
774 struct vtime *vtime = &tsk->vtime;
775 /*
776 * The flags must be updated under the lock with
777 * the vtime_starttime flush and update.
778 * That enforces a right ordering and update sequence
779 * synchronization against the reader (task_gtime())
780 * that can thus safely catch up with a tickless delta.
781 */
782 write_seqcount_begin(&vtime->seqcount);
783 __vtime_account_system(tsk, vtime);
784 current->flags |= PF_VCPU;
785 write_seqcount_end(&vtime->seqcount);
786 }
787 EXPORT_SYMBOL_GPL(vtime_guest_enter);
788
789 void vtime_guest_exit(struct task_struct *tsk)
790 {
791 struct vtime *vtime = &tsk->vtime;
792
793 write_seqcount_begin(&vtime->seqcount);
794 vtime_account_guest(tsk, vtime);
795 current->flags &= ~PF_VCPU;
796 write_seqcount_end(&vtime->seqcount);
797 }
798 EXPORT_SYMBOL_GPL(vtime_guest_exit);
799
800 void vtime_account_idle(struct task_struct *tsk)
801 {
802 account_idle_time(get_vtime_delta(&tsk->vtime));
803 }
804
805 void arch_vtime_task_switch(struct task_struct *prev)
806 {
807 struct vtime *vtime = &prev->vtime;
808
809 write_seqcount_begin(&vtime->seqcount);
810 vtime->state = VTIME_INACTIVE;
811 write_seqcount_end(&vtime->seqcount);
812
813 vtime = &current->vtime;
814
815 write_seqcount_begin(&vtime->seqcount);
816 vtime->state = VTIME_SYS;
817 vtime->starttime = sched_clock();
818 write_seqcount_end(&vtime->seqcount);
819 }
820
821 void vtime_init_idle(struct task_struct *t, int cpu)
822 {
823 struct vtime *vtime = &t->vtime;
824 unsigned long flags;
825
826 local_irq_save(flags);
827 write_seqcount_begin(&vtime->seqcount);
828 vtime->state = VTIME_SYS;
829 vtime->starttime = sched_clock();
830 write_seqcount_end(&vtime->seqcount);
831 local_irq_restore(flags);
832 }
833
834 u64 task_gtime(struct task_struct *t)
835 {
836 struct vtime *vtime = &t->vtime;
837 unsigned int seq;
838 u64 gtime;
839
840 if (!vtime_accounting_enabled())
841 return t->gtime;
842
843 do {
844 seq = read_seqcount_begin(&vtime->seqcount);
845
846 gtime = t->gtime;
847 if (vtime->state == VTIME_SYS && t->flags & PF_VCPU)
848 gtime += vtime->gtime + vtime_delta(vtime);
849
850 } while (read_seqcount_retry(&vtime->seqcount, seq));
851
852 return gtime;
853 }
854
855 /*
856 * Fetch cputime raw values from fields of task_struct and
857 * add up the pending nohz execution time since the last
858 * cputime snapshot.
859 */
860 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
861 {
862 struct vtime *vtime = &t->vtime;
863 unsigned int seq;
864 u64 delta;
865
866 if (!vtime_accounting_enabled()) {
867 *utime = t->utime;
868 *stime = t->stime;
869 return;
870 }
871
872 do {
873 seq = read_seqcount_begin(&vtime->seqcount);
874
875 *utime = t->utime;
876 *stime = t->stime;
877
878 /* Task is sleeping, nothing to add */
879 if (vtime->state == VTIME_INACTIVE || is_idle_task(t))
880 continue;
881
882 delta = vtime_delta(vtime);
883
884 /*
885 * Task runs either in user or kernel space, add pending nohz time to
886 * the right place.
887 */
888 if (vtime->state == VTIME_USER || t->flags & PF_VCPU)
889 *utime += vtime->utime + delta;
890 else if (vtime->state == VTIME_SYS)
891 *stime += vtime->stime + delta;
892 } while (read_seqcount_retry(&vtime->seqcount, seq));
893 }
894 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */