]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/cputime.c
xen: add static initialization of steal_clock op to xen_time_ops
[mirror_ubuntu-artful-kernel.git] / kernel / sched / cputime.c
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8 #ifdef CONFIG_PARAVIRT
9 #include <asm/paravirt.h>
10 #endif
11
12
13 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
14
15 /*
16 * There are no locks covering percpu hardirq/softirq time.
17 * They are only modified in vtime_account, on corresponding CPU
18 * with interrupts disabled. So, writes are safe.
19 * They are read and saved off onto struct rq in update_rq_clock().
20 * This may result in other CPU reading this CPU's irq time and can
21 * race with irq/vtime_account on this CPU. We would either get old
22 * or new value with a side effect of accounting a slice of irq time to wrong
23 * task when irq is in progress while we read rq->clock. That is a worthy
24 * compromise in place of having locks on each irq in account_system_time.
25 */
26 DEFINE_PER_CPU(u64, cpu_hardirq_time);
27 DEFINE_PER_CPU(u64, cpu_softirq_time);
28
29 static DEFINE_PER_CPU(u64, irq_start_time);
30 static int sched_clock_irqtime;
31
32 void enable_sched_clock_irqtime(void)
33 {
34 sched_clock_irqtime = 1;
35 }
36
37 void disable_sched_clock_irqtime(void)
38 {
39 sched_clock_irqtime = 0;
40 }
41
42 #ifndef CONFIG_64BIT
43 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
44 #endif /* CONFIG_64BIT */
45
46 /*
47 * Called before incrementing preempt_count on {soft,}irq_enter
48 * and before decrementing preempt_count on {soft,}irq_exit.
49 */
50 void irqtime_account_irq(struct task_struct *curr)
51 {
52 unsigned long flags;
53 s64 delta;
54 int cpu;
55
56 if (!sched_clock_irqtime)
57 return;
58
59 local_irq_save(flags);
60
61 cpu = smp_processor_id();
62 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
63 __this_cpu_add(irq_start_time, delta);
64
65 irq_time_write_begin();
66 /*
67 * We do not account for softirq time from ksoftirqd here.
68 * We want to continue accounting softirq time to ksoftirqd thread
69 * in that case, so as not to confuse scheduler with a special task
70 * that do not consume any time, but still wants to run.
71 */
72 if (hardirq_count())
73 __this_cpu_add(cpu_hardirq_time, delta);
74 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
75 __this_cpu_add(cpu_softirq_time, delta);
76
77 irq_time_write_end();
78 local_irq_restore(flags);
79 }
80 EXPORT_SYMBOL_GPL(irqtime_account_irq);
81
82 static int irqtime_account_hi_update(void)
83 {
84 u64 *cpustat = kcpustat_this_cpu->cpustat;
85 unsigned long flags;
86 u64 latest_ns;
87 int ret = 0;
88
89 local_irq_save(flags);
90 latest_ns = this_cpu_read(cpu_hardirq_time);
91 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
92 ret = 1;
93 local_irq_restore(flags);
94 return ret;
95 }
96
97 static int irqtime_account_si_update(void)
98 {
99 u64 *cpustat = kcpustat_this_cpu->cpustat;
100 unsigned long flags;
101 u64 latest_ns;
102 int ret = 0;
103
104 local_irq_save(flags);
105 latest_ns = this_cpu_read(cpu_softirq_time);
106 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
107 ret = 1;
108 local_irq_restore(flags);
109 return ret;
110 }
111
112 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
113
114 #define sched_clock_irqtime (0)
115
116 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
117
118 static inline void task_group_account_field(struct task_struct *p, int index,
119 u64 tmp)
120 {
121 /*
122 * Since all updates are sure to touch the root cgroup, we
123 * get ourselves ahead and touch it first. If the root cgroup
124 * is the only cgroup, then nothing else should be necessary.
125 *
126 */
127 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
128
129 cpuacct_account_field(p, index, tmp);
130 }
131
132 /*
133 * Account user cpu time to a process.
134 * @p: the process that the cpu time gets accounted to
135 * @cputime: the cpu time spent in user space since the last update
136 * @cputime_scaled: cputime scaled by cpu frequency
137 */
138 void account_user_time(struct task_struct *p, cputime_t cputime,
139 cputime_t cputime_scaled)
140 {
141 int index;
142
143 /* Add user time to process. */
144 p->utime += cputime;
145 p->utimescaled += cputime_scaled;
146 account_group_user_time(p, cputime);
147
148 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
149
150 /* Add user time to cpustat. */
151 task_group_account_field(p, index, (__force u64) cputime);
152
153 /* Account for user time used */
154 acct_account_cputime(p);
155 }
156
157 /*
158 * Account guest cpu time to a process.
159 * @p: the process that the cpu time gets accounted to
160 * @cputime: the cpu time spent in virtual machine since the last update
161 * @cputime_scaled: cputime scaled by cpu frequency
162 */
163 static void account_guest_time(struct task_struct *p, cputime_t cputime,
164 cputime_t cputime_scaled)
165 {
166 u64 *cpustat = kcpustat_this_cpu->cpustat;
167
168 /* Add guest time to process. */
169 p->utime += cputime;
170 p->utimescaled += cputime_scaled;
171 account_group_user_time(p, cputime);
172 p->gtime += cputime;
173
174 /* Add guest time to cpustat. */
175 if (task_nice(p) > 0) {
176 cpustat[CPUTIME_NICE] += (__force u64) cputime;
177 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
178 } else {
179 cpustat[CPUTIME_USER] += (__force u64) cputime;
180 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
181 }
182 }
183
184 /*
185 * Account system cpu time to a process and desired cpustat field
186 * @p: the process that the cpu time gets accounted to
187 * @cputime: the cpu time spent in kernel space since the last update
188 * @cputime_scaled: cputime scaled by cpu frequency
189 * @target_cputime64: pointer to cpustat field that has to be updated
190 */
191 static inline
192 void __account_system_time(struct task_struct *p, cputime_t cputime,
193 cputime_t cputime_scaled, int index)
194 {
195 /* Add system time to process. */
196 p->stime += cputime;
197 p->stimescaled += cputime_scaled;
198 account_group_system_time(p, cputime);
199
200 /* Add system time to cpustat. */
201 task_group_account_field(p, index, (__force u64) cputime);
202
203 /* Account for system time used */
204 acct_account_cputime(p);
205 }
206
207 /*
208 * Account system cpu time to a process.
209 * @p: the process that the cpu time gets accounted to
210 * @hardirq_offset: the offset to subtract from hardirq_count()
211 * @cputime: the cpu time spent in kernel space since the last update
212 * @cputime_scaled: cputime scaled by cpu frequency
213 */
214 void account_system_time(struct task_struct *p, int hardirq_offset,
215 cputime_t cputime, cputime_t cputime_scaled)
216 {
217 int index;
218
219 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
220 account_guest_time(p, cputime, cputime_scaled);
221 return;
222 }
223
224 if (hardirq_count() - hardirq_offset)
225 index = CPUTIME_IRQ;
226 else if (in_serving_softirq())
227 index = CPUTIME_SOFTIRQ;
228 else
229 index = CPUTIME_SYSTEM;
230
231 __account_system_time(p, cputime, cputime_scaled, index);
232 }
233
234 /*
235 * Account for involuntary wait time.
236 * @cputime: the cpu time spent in involuntary wait
237 */
238 void account_steal_time(cputime_t cputime)
239 {
240 u64 *cpustat = kcpustat_this_cpu->cpustat;
241
242 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
243 }
244
245 /*
246 * Account for idle time.
247 * @cputime: the cpu time spent in idle wait
248 */
249 void account_idle_time(cputime_t cputime)
250 {
251 u64 *cpustat = kcpustat_this_cpu->cpustat;
252 struct rq *rq = this_rq();
253
254 if (atomic_read(&rq->nr_iowait) > 0)
255 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
256 else
257 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
258 }
259
260 static __always_inline bool steal_account_process_tick(void)
261 {
262 #ifdef CONFIG_PARAVIRT
263 if (static_key_false(&paravirt_steal_enabled)) {
264 u64 steal;
265 unsigned long steal_jiffies;
266
267 steal = paravirt_steal_clock(smp_processor_id());
268 steal -= this_rq()->prev_steal_time;
269
270 /*
271 * steal is in nsecs but our caller is expecting steal
272 * time in jiffies. Lets cast the result to jiffies
273 * granularity and account the rest on the next rounds.
274 */
275 steal_jiffies = nsecs_to_jiffies(steal);
276 this_rq()->prev_steal_time += jiffies_to_nsecs(steal_jiffies);
277
278 account_steal_time(jiffies_to_cputime(steal_jiffies));
279 return steal_jiffies;
280 }
281 #endif
282 return false;
283 }
284
285 /*
286 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
287 * tasks (sum on group iteration) belonging to @tsk's group.
288 */
289 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
290 {
291 struct signal_struct *sig = tsk->signal;
292 cputime_t utime, stime;
293 struct task_struct *t;
294 unsigned int seq, nextseq;
295 unsigned long flags;
296
297 rcu_read_lock();
298 /* Attempt a lockless read on the first round. */
299 nextseq = 0;
300 do {
301 seq = nextseq;
302 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
303 times->utime = sig->utime;
304 times->stime = sig->stime;
305 times->sum_exec_runtime = sig->sum_sched_runtime;
306
307 for_each_thread(tsk, t) {
308 task_cputime(t, &utime, &stime);
309 times->utime += utime;
310 times->stime += stime;
311 times->sum_exec_runtime += task_sched_runtime(t);
312 }
313 /* If lockless access failed, take the lock. */
314 nextseq = 1;
315 } while (need_seqretry(&sig->stats_lock, seq));
316 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
317 rcu_read_unlock();
318 }
319
320 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
321 /*
322 * Account a tick to a process and cpustat
323 * @p: the process that the cpu time gets accounted to
324 * @user_tick: is the tick from userspace
325 * @rq: the pointer to rq
326 *
327 * Tick demultiplexing follows the order
328 * - pending hardirq update
329 * - pending softirq update
330 * - user_time
331 * - idle_time
332 * - system time
333 * - check for guest_time
334 * - else account as system_time
335 *
336 * Check for hardirq is done both for system and user time as there is
337 * no timer going off while we are on hardirq and hence we may never get an
338 * opportunity to update it solely in system time.
339 * p->stime and friends are only updated on system time and not on irq
340 * softirq as those do not count in task exec_runtime any more.
341 */
342 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
343 struct rq *rq, int ticks)
344 {
345 cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
346 u64 cputime = (__force u64) cputime_one_jiffy;
347 u64 *cpustat = kcpustat_this_cpu->cpustat;
348
349 if (steal_account_process_tick())
350 return;
351
352 cputime *= ticks;
353 scaled *= ticks;
354
355 if (irqtime_account_hi_update()) {
356 cpustat[CPUTIME_IRQ] += cputime;
357 } else if (irqtime_account_si_update()) {
358 cpustat[CPUTIME_SOFTIRQ] += cputime;
359 } else if (this_cpu_ksoftirqd() == p) {
360 /*
361 * ksoftirqd time do not get accounted in cpu_softirq_time.
362 * So, we have to handle it separately here.
363 * Also, p->stime needs to be updated for ksoftirqd.
364 */
365 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
366 } else if (user_tick) {
367 account_user_time(p, cputime, scaled);
368 } else if (p == rq->idle) {
369 account_idle_time(cputime);
370 } else if (p->flags & PF_VCPU) { /* System time or guest time */
371 account_guest_time(p, cputime, scaled);
372 } else {
373 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
374 }
375 }
376
377 static void irqtime_account_idle_ticks(int ticks)
378 {
379 struct rq *rq = this_rq();
380
381 irqtime_account_process_tick(current, 0, rq, ticks);
382 }
383 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
384 static inline void irqtime_account_idle_ticks(int ticks) {}
385 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
386 struct rq *rq, int nr_ticks) {}
387 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
388
389 /*
390 * Use precise platform statistics if available:
391 */
392 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
393
394 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
395 void vtime_common_task_switch(struct task_struct *prev)
396 {
397 if (is_idle_task(prev))
398 vtime_account_idle(prev);
399 else
400 vtime_account_system(prev);
401
402 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
403 vtime_account_user(prev);
404 #endif
405 arch_vtime_task_switch(prev);
406 }
407 #endif
408
409 /*
410 * Archs that account the whole time spent in the idle task
411 * (outside irq) as idle time can rely on this and just implement
412 * vtime_account_system() and vtime_account_idle(). Archs that
413 * have other meaning of the idle time (s390 only includes the
414 * time spent by the CPU when it's in low power mode) must override
415 * vtime_account().
416 */
417 #ifndef __ARCH_HAS_VTIME_ACCOUNT
418 void vtime_common_account_irq_enter(struct task_struct *tsk)
419 {
420 if (!in_interrupt()) {
421 /*
422 * If we interrupted user, context_tracking_in_user()
423 * is 1 because the context tracking don't hook
424 * on irq entry/exit. This way we know if
425 * we need to flush user time on kernel entry.
426 */
427 if (context_tracking_in_user()) {
428 vtime_account_user(tsk);
429 return;
430 }
431
432 if (is_idle_task(tsk)) {
433 vtime_account_idle(tsk);
434 return;
435 }
436 }
437 vtime_account_system(tsk);
438 }
439 EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
440 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
441 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
442
443
444 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
445 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
446 {
447 *ut = p->utime;
448 *st = p->stime;
449 }
450 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
451
452 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
453 {
454 struct task_cputime cputime;
455
456 thread_group_cputime(p, &cputime);
457
458 *ut = cputime.utime;
459 *st = cputime.stime;
460 }
461 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
462 /*
463 * Account a single tick of cpu time.
464 * @p: the process that the cpu time gets accounted to
465 * @user_tick: indicates if the tick is a user or a system tick
466 */
467 void account_process_tick(struct task_struct *p, int user_tick)
468 {
469 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
470 struct rq *rq = this_rq();
471
472 if (vtime_accounting_cpu_enabled())
473 return;
474
475 if (sched_clock_irqtime) {
476 irqtime_account_process_tick(p, user_tick, rq, 1);
477 return;
478 }
479
480 if (steal_account_process_tick())
481 return;
482
483 if (user_tick)
484 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
485 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
486 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
487 one_jiffy_scaled);
488 else
489 account_idle_time(cputime_one_jiffy);
490 }
491
492 /*
493 * Account multiple ticks of idle time.
494 * @ticks: number of stolen ticks
495 */
496 void account_idle_ticks(unsigned long ticks)
497 {
498
499 if (sched_clock_irqtime) {
500 irqtime_account_idle_ticks(ticks);
501 return;
502 }
503
504 account_idle_time(jiffies_to_cputime(ticks));
505 }
506
507 /*
508 * Perform (stime * rtime) / total, but avoid multiplication overflow by
509 * loosing precision when the numbers are big.
510 */
511 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
512 {
513 u64 scaled;
514
515 for (;;) {
516 /* Make sure "rtime" is the bigger of stime/rtime */
517 if (stime > rtime)
518 swap(rtime, stime);
519
520 /* Make sure 'total' fits in 32 bits */
521 if (total >> 32)
522 goto drop_precision;
523
524 /* Does rtime (and thus stime) fit in 32 bits? */
525 if (!(rtime >> 32))
526 break;
527
528 /* Can we just balance rtime/stime rather than dropping bits? */
529 if (stime >> 31)
530 goto drop_precision;
531
532 /* We can grow stime and shrink rtime and try to make them both fit */
533 stime <<= 1;
534 rtime >>= 1;
535 continue;
536
537 drop_precision:
538 /* We drop from rtime, it has more bits than stime */
539 rtime >>= 1;
540 total >>= 1;
541 }
542
543 /*
544 * Make sure gcc understands that this is a 32x32->64 multiply,
545 * followed by a 64/32->64 divide.
546 */
547 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
548 return (__force cputime_t) scaled;
549 }
550
551 /*
552 * Adjust tick based cputime random precision against scheduler runtime
553 * accounting.
554 *
555 * Tick based cputime accounting depend on random scheduling timeslices of a
556 * task to be interrupted or not by the timer. Depending on these
557 * circumstances, the number of these interrupts may be over or
558 * under-optimistic, matching the real user and system cputime with a variable
559 * precision.
560 *
561 * Fix this by scaling these tick based values against the total runtime
562 * accounted by the CFS scheduler.
563 *
564 * This code provides the following guarantees:
565 *
566 * stime + utime == rtime
567 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
568 *
569 * Assuming that rtime_i+1 >= rtime_i.
570 */
571 static void cputime_adjust(struct task_cputime *curr,
572 struct prev_cputime *prev,
573 cputime_t *ut, cputime_t *st)
574 {
575 cputime_t rtime, stime, utime;
576 unsigned long flags;
577
578 /* Serialize concurrent callers such that we can honour our guarantees */
579 raw_spin_lock_irqsave(&prev->lock, flags);
580 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
581
582 /*
583 * This is possible under two circumstances:
584 * - rtime isn't monotonic after all (a bug);
585 * - we got reordered by the lock.
586 *
587 * In both cases this acts as a filter such that the rest of the code
588 * can assume it is monotonic regardless of anything else.
589 */
590 if (prev->stime + prev->utime >= rtime)
591 goto out;
592
593 stime = curr->stime;
594 utime = curr->utime;
595
596 if (utime == 0) {
597 stime = rtime;
598 goto update;
599 }
600
601 if (stime == 0) {
602 utime = rtime;
603 goto update;
604 }
605
606 stime = scale_stime((__force u64)stime, (__force u64)rtime,
607 (__force u64)(stime + utime));
608
609 /*
610 * Make sure stime doesn't go backwards; this preserves monotonicity
611 * for utime because rtime is monotonic.
612 *
613 * utime_i+1 = rtime_i+1 - stime_i
614 * = rtime_i+1 - (rtime_i - utime_i)
615 * = (rtime_i+1 - rtime_i) + utime_i
616 * >= utime_i
617 */
618 if (stime < prev->stime)
619 stime = prev->stime;
620 utime = rtime - stime;
621
622 /*
623 * Make sure utime doesn't go backwards; this still preserves
624 * monotonicity for stime, analogous argument to above.
625 */
626 if (utime < prev->utime) {
627 utime = prev->utime;
628 stime = rtime - utime;
629 }
630
631 update:
632 prev->stime = stime;
633 prev->utime = utime;
634 out:
635 *ut = prev->utime;
636 *st = prev->stime;
637 raw_spin_unlock_irqrestore(&prev->lock, flags);
638 }
639
640 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
641 {
642 struct task_cputime cputime = {
643 .sum_exec_runtime = p->se.sum_exec_runtime,
644 };
645
646 task_cputime(p, &cputime.utime, &cputime.stime);
647 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
648 }
649 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
650
651 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
652 {
653 struct task_cputime cputime;
654
655 thread_group_cputime(p, &cputime);
656 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
657 }
658 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
659
660 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
661 static cputime_t vtime_delta(struct task_struct *tsk)
662 {
663 unsigned long now = READ_ONCE(jiffies);
664
665 if (time_before(now, (unsigned long)tsk->vtime_snap))
666 return 0;
667
668 return jiffies_to_cputime(now - tsk->vtime_snap);
669 }
670
671 static cputime_t get_vtime_delta(struct task_struct *tsk)
672 {
673 unsigned long now = READ_ONCE(jiffies);
674 unsigned long delta = now - tsk->vtime_snap;
675
676 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
677 tsk->vtime_snap = now;
678
679 return jiffies_to_cputime(delta);
680 }
681
682 static void __vtime_account_system(struct task_struct *tsk)
683 {
684 cputime_t delta_cpu = get_vtime_delta(tsk);
685
686 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
687 }
688
689 void vtime_account_system(struct task_struct *tsk)
690 {
691 if (!vtime_delta(tsk))
692 return;
693
694 write_seqcount_begin(&tsk->vtime_seqcount);
695 __vtime_account_system(tsk);
696 write_seqcount_end(&tsk->vtime_seqcount);
697 }
698
699 void vtime_gen_account_irq_exit(struct task_struct *tsk)
700 {
701 write_seqcount_begin(&tsk->vtime_seqcount);
702 if (vtime_delta(tsk))
703 __vtime_account_system(tsk);
704 if (context_tracking_in_user())
705 tsk->vtime_snap_whence = VTIME_USER;
706 write_seqcount_end(&tsk->vtime_seqcount);
707 }
708
709 void vtime_account_user(struct task_struct *tsk)
710 {
711 cputime_t delta_cpu;
712
713 write_seqcount_begin(&tsk->vtime_seqcount);
714 tsk->vtime_snap_whence = VTIME_SYS;
715 if (vtime_delta(tsk)) {
716 delta_cpu = get_vtime_delta(tsk);
717 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
718 }
719 write_seqcount_end(&tsk->vtime_seqcount);
720 }
721
722 void vtime_user_enter(struct task_struct *tsk)
723 {
724 write_seqcount_begin(&tsk->vtime_seqcount);
725 if (vtime_delta(tsk))
726 __vtime_account_system(tsk);
727 tsk->vtime_snap_whence = VTIME_USER;
728 write_seqcount_end(&tsk->vtime_seqcount);
729 }
730
731 void vtime_guest_enter(struct task_struct *tsk)
732 {
733 /*
734 * The flags must be updated under the lock with
735 * the vtime_snap flush and update.
736 * That enforces a right ordering and update sequence
737 * synchronization against the reader (task_gtime())
738 * that can thus safely catch up with a tickless delta.
739 */
740 write_seqcount_begin(&tsk->vtime_seqcount);
741 if (vtime_delta(tsk))
742 __vtime_account_system(tsk);
743 current->flags |= PF_VCPU;
744 write_seqcount_end(&tsk->vtime_seqcount);
745 }
746 EXPORT_SYMBOL_GPL(vtime_guest_enter);
747
748 void vtime_guest_exit(struct task_struct *tsk)
749 {
750 write_seqcount_begin(&tsk->vtime_seqcount);
751 __vtime_account_system(tsk);
752 current->flags &= ~PF_VCPU;
753 write_seqcount_end(&tsk->vtime_seqcount);
754 }
755 EXPORT_SYMBOL_GPL(vtime_guest_exit);
756
757 void vtime_account_idle(struct task_struct *tsk)
758 {
759 cputime_t delta_cpu = get_vtime_delta(tsk);
760
761 account_idle_time(delta_cpu);
762 }
763
764 void arch_vtime_task_switch(struct task_struct *prev)
765 {
766 write_seqcount_begin(&prev->vtime_seqcount);
767 prev->vtime_snap_whence = VTIME_INACTIVE;
768 write_seqcount_end(&prev->vtime_seqcount);
769
770 write_seqcount_begin(&current->vtime_seqcount);
771 current->vtime_snap_whence = VTIME_SYS;
772 current->vtime_snap = jiffies;
773 write_seqcount_end(&current->vtime_seqcount);
774 }
775
776 void vtime_init_idle(struct task_struct *t, int cpu)
777 {
778 unsigned long flags;
779
780 local_irq_save(flags);
781 write_seqcount_begin(&t->vtime_seqcount);
782 t->vtime_snap_whence = VTIME_SYS;
783 t->vtime_snap = jiffies;
784 write_seqcount_end(&t->vtime_seqcount);
785 local_irq_restore(flags);
786 }
787
788 cputime_t task_gtime(struct task_struct *t)
789 {
790 unsigned int seq;
791 cputime_t gtime;
792
793 if (!vtime_accounting_enabled())
794 return t->gtime;
795
796 do {
797 seq = read_seqcount_begin(&t->vtime_seqcount);
798
799 gtime = t->gtime;
800 if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
801 gtime += vtime_delta(t);
802
803 } while (read_seqcount_retry(&t->vtime_seqcount, seq));
804
805 return gtime;
806 }
807
808 /*
809 * Fetch cputime raw values from fields of task_struct and
810 * add up the pending nohz execution time since the last
811 * cputime snapshot.
812 */
813 static void
814 fetch_task_cputime(struct task_struct *t,
815 cputime_t *u_dst, cputime_t *s_dst,
816 cputime_t *u_src, cputime_t *s_src,
817 cputime_t *udelta, cputime_t *sdelta)
818 {
819 unsigned int seq;
820 unsigned long long delta;
821
822 do {
823 *udelta = 0;
824 *sdelta = 0;
825
826 seq = read_seqcount_begin(&t->vtime_seqcount);
827
828 if (u_dst)
829 *u_dst = *u_src;
830 if (s_dst)
831 *s_dst = *s_src;
832
833 /* Task is sleeping, nothing to add */
834 if (t->vtime_snap_whence == VTIME_INACTIVE ||
835 is_idle_task(t))
836 continue;
837
838 delta = vtime_delta(t);
839
840 /*
841 * Task runs either in user or kernel space, add pending nohz time to
842 * the right place.
843 */
844 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
845 *udelta = delta;
846 } else {
847 if (t->vtime_snap_whence == VTIME_SYS)
848 *sdelta = delta;
849 }
850 } while (read_seqcount_retry(&t->vtime_seqcount, seq));
851 }
852
853
854 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
855 {
856 cputime_t udelta, sdelta;
857
858 if (!vtime_accounting_enabled()) {
859 if (utime)
860 *utime = t->utime;
861 if (stime)
862 *stime = t->stime;
863 return;
864 }
865
866 fetch_task_cputime(t, utime, stime, &t->utime,
867 &t->stime, &udelta, &sdelta);
868 if (utime)
869 *utime += udelta;
870 if (stime)
871 *stime += sdelta;
872 }
873
874 void task_cputime_scaled(struct task_struct *t,
875 cputime_t *utimescaled, cputime_t *stimescaled)
876 {
877 cputime_t udelta, sdelta;
878
879 if (!vtime_accounting_enabled()) {
880 if (utimescaled)
881 *utimescaled = t->utimescaled;
882 if (stimescaled)
883 *stimescaled = t->stimescaled;
884 return;
885 }
886
887 fetch_task_cputime(t, utimescaled, stimescaled,
888 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
889 if (utimescaled)
890 *utimescaled += cputime_to_scaled(udelta);
891 if (stimescaled)
892 *stimescaled += cputime_to_scaled(sdelta);
893 }
894 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */