]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/cputime.c
Merge git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / cputime.c
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8
9
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12 /*
13 * There are no locks covering percpu hardirq/softirq time.
14 * They are only modified in vtime_account, on corresponding CPU
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
18 * race with irq/vtime_account on this CPU. We would either get old
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
22 */
23 DEFINE_PER_CPU(u64, cpu_hardirq_time);
24 DEFINE_PER_CPU(u64, cpu_softirq_time);
25
26 static DEFINE_PER_CPU(u64, irq_start_time);
27 static int sched_clock_irqtime;
28
29 void enable_sched_clock_irqtime(void)
30 {
31 sched_clock_irqtime = 1;
32 }
33
34 void disable_sched_clock_irqtime(void)
35 {
36 sched_clock_irqtime = 0;
37 }
38
39 #ifndef CONFIG_64BIT
40 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41 #endif /* CONFIG_64BIT */
42
43 /*
44 * Called before incrementing preempt_count on {soft,}irq_enter
45 * and before decrementing preempt_count on {soft,}irq_exit.
46 */
47 void irqtime_account_irq(struct task_struct *curr)
48 {
49 unsigned long flags;
50 s64 delta;
51 int cpu;
52
53 if (!sched_clock_irqtime)
54 return;
55
56 local_irq_save(flags);
57
58 cpu = smp_processor_id();
59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 __this_cpu_add(irq_start_time, delta);
61
62 irq_time_write_begin();
63 /*
64 * We do not account for softirq time from ksoftirqd here.
65 * We want to continue accounting softirq time to ksoftirqd thread
66 * in that case, so as not to confuse scheduler with a special task
67 * that do not consume any time, but still wants to run.
68 */
69 if (hardirq_count())
70 __this_cpu_add(cpu_hardirq_time, delta);
71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 __this_cpu_add(cpu_softirq_time, delta);
73
74 irq_time_write_end();
75 local_irq_restore(flags);
76 }
77 EXPORT_SYMBOL_GPL(irqtime_account_irq);
78
79 static int irqtime_account_hi_update(void)
80 {
81 u64 *cpustat = kcpustat_this_cpu->cpustat;
82 unsigned long flags;
83 u64 latest_ns;
84 int ret = 0;
85
86 local_irq_save(flags);
87 latest_ns = this_cpu_read(cpu_hardirq_time);
88 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89 ret = 1;
90 local_irq_restore(flags);
91 return ret;
92 }
93
94 static int irqtime_account_si_update(void)
95 {
96 u64 *cpustat = kcpustat_this_cpu->cpustat;
97 unsigned long flags;
98 u64 latest_ns;
99 int ret = 0;
100
101 local_irq_save(flags);
102 latest_ns = this_cpu_read(cpu_softirq_time);
103 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104 ret = 1;
105 local_irq_restore(flags);
106 return ret;
107 }
108
109 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
110
111 #define sched_clock_irqtime (0)
112
113 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114
115 static inline void task_group_account_field(struct task_struct *p, int index,
116 u64 tmp)
117 {
118 /*
119 * Since all updates are sure to touch the root cgroup, we
120 * get ourselves ahead and touch it first. If the root cgroup
121 * is the only cgroup, then nothing else should be necessary.
122 *
123 */
124 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
125
126 cpuacct_account_field(p, index, tmp);
127 }
128
129 /*
130 * Account user cpu time to a process.
131 * @p: the process that the cpu time gets accounted to
132 * @cputime: the cpu time spent in user space since the last update
133 * @cputime_scaled: cputime scaled by cpu frequency
134 */
135 void account_user_time(struct task_struct *p, cputime_t cputime,
136 cputime_t cputime_scaled)
137 {
138 int index;
139
140 /* Add user time to process. */
141 p->utime += cputime;
142 p->utimescaled += cputime_scaled;
143 account_group_user_time(p, cputime);
144
145 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
146
147 /* Add user time to cpustat. */
148 task_group_account_field(p, index, (__force u64) cputime);
149
150 /* Account for user time used */
151 acct_account_cputime(p);
152 }
153
154 /*
155 * Account guest cpu time to a process.
156 * @p: the process that the cpu time gets accounted to
157 * @cputime: the cpu time spent in virtual machine since the last update
158 * @cputime_scaled: cputime scaled by cpu frequency
159 */
160 static void account_guest_time(struct task_struct *p, cputime_t cputime,
161 cputime_t cputime_scaled)
162 {
163 u64 *cpustat = kcpustat_this_cpu->cpustat;
164
165 /* Add guest time to process. */
166 p->utime += cputime;
167 p->utimescaled += cputime_scaled;
168 account_group_user_time(p, cputime);
169 p->gtime += cputime;
170
171 /* Add guest time to cpustat. */
172 if (TASK_NICE(p) > 0) {
173 cpustat[CPUTIME_NICE] += (__force u64) cputime;
174 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175 } else {
176 cpustat[CPUTIME_USER] += (__force u64) cputime;
177 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178 }
179 }
180
181 /*
182 * Account system cpu time to a process and desired cpustat field
183 * @p: the process that the cpu time gets accounted to
184 * @cputime: the cpu time spent in kernel space since the last update
185 * @cputime_scaled: cputime scaled by cpu frequency
186 * @target_cputime64: pointer to cpustat field that has to be updated
187 */
188 static inline
189 void __account_system_time(struct task_struct *p, cputime_t cputime,
190 cputime_t cputime_scaled, int index)
191 {
192 /* Add system time to process. */
193 p->stime += cputime;
194 p->stimescaled += cputime_scaled;
195 account_group_system_time(p, cputime);
196
197 /* Add system time to cpustat. */
198 task_group_account_field(p, index, (__force u64) cputime);
199
200 /* Account for system time used */
201 acct_account_cputime(p);
202 }
203
204 /*
205 * Account system cpu time to a process.
206 * @p: the process that the cpu time gets accounted to
207 * @hardirq_offset: the offset to subtract from hardirq_count()
208 * @cputime: the cpu time spent in kernel space since the last update
209 * @cputime_scaled: cputime scaled by cpu frequency
210 */
211 void account_system_time(struct task_struct *p, int hardirq_offset,
212 cputime_t cputime, cputime_t cputime_scaled)
213 {
214 int index;
215
216 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217 account_guest_time(p, cputime, cputime_scaled);
218 return;
219 }
220
221 if (hardirq_count() - hardirq_offset)
222 index = CPUTIME_IRQ;
223 else if (in_serving_softirq())
224 index = CPUTIME_SOFTIRQ;
225 else
226 index = CPUTIME_SYSTEM;
227
228 __account_system_time(p, cputime, cputime_scaled, index);
229 }
230
231 /*
232 * Account for involuntary wait time.
233 * @cputime: the cpu time spent in involuntary wait
234 */
235 void account_steal_time(cputime_t cputime)
236 {
237 u64 *cpustat = kcpustat_this_cpu->cpustat;
238
239 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240 }
241
242 /*
243 * Account for idle time.
244 * @cputime: the cpu time spent in idle wait
245 */
246 void account_idle_time(cputime_t cputime)
247 {
248 u64 *cpustat = kcpustat_this_cpu->cpustat;
249 struct rq *rq = this_rq();
250
251 if (atomic_read(&rq->nr_iowait) > 0)
252 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253 else
254 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255 }
256
257 static __always_inline bool steal_account_process_tick(void)
258 {
259 #ifdef CONFIG_PARAVIRT
260 if (static_key_false(&paravirt_steal_enabled)) {
261 u64 steal, st = 0;
262
263 steal = paravirt_steal_clock(smp_processor_id());
264 steal -= this_rq()->prev_steal_time;
265
266 st = steal_ticks(steal);
267 this_rq()->prev_steal_time += st * TICK_NSEC;
268
269 account_steal_time(st);
270 return st;
271 }
272 #endif
273 return false;
274 }
275
276 /*
277 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
278 * tasks (sum on group iteration) belonging to @tsk's group.
279 */
280 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
281 {
282 struct signal_struct *sig = tsk->signal;
283 cputime_t utime, stime;
284 struct task_struct *t;
285
286 times->utime = sig->utime;
287 times->stime = sig->stime;
288 times->sum_exec_runtime = sig->sum_sched_runtime;
289
290 rcu_read_lock();
291 /* make sure we can trust tsk->thread_group list */
292 if (!likely(pid_alive(tsk)))
293 goto out;
294
295 t = tsk;
296 do {
297 task_cputime(t, &utime, &stime);
298 times->utime += utime;
299 times->stime += stime;
300 times->sum_exec_runtime += task_sched_runtime(t);
301 } while_each_thread(tsk, t);
302 out:
303 rcu_read_unlock();
304 }
305
306 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
307 /*
308 * Account a tick to a process and cpustat
309 * @p: the process that the cpu time gets accounted to
310 * @user_tick: is the tick from userspace
311 * @rq: the pointer to rq
312 *
313 * Tick demultiplexing follows the order
314 * - pending hardirq update
315 * - pending softirq update
316 * - user_time
317 * - idle_time
318 * - system time
319 * - check for guest_time
320 * - else account as system_time
321 *
322 * Check for hardirq is done both for system and user time as there is
323 * no timer going off while we are on hardirq and hence we may never get an
324 * opportunity to update it solely in system time.
325 * p->stime and friends are only updated on system time and not on irq
326 * softirq as those do not count in task exec_runtime any more.
327 */
328 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
329 struct rq *rq)
330 {
331 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
332 u64 *cpustat = kcpustat_this_cpu->cpustat;
333
334 if (steal_account_process_tick())
335 return;
336
337 if (irqtime_account_hi_update()) {
338 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
339 } else if (irqtime_account_si_update()) {
340 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
341 } else if (this_cpu_ksoftirqd() == p) {
342 /*
343 * ksoftirqd time do not get accounted in cpu_softirq_time.
344 * So, we have to handle it separately here.
345 * Also, p->stime needs to be updated for ksoftirqd.
346 */
347 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
348 CPUTIME_SOFTIRQ);
349 } else if (user_tick) {
350 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
351 } else if (p == rq->idle) {
352 account_idle_time(cputime_one_jiffy);
353 } else if (p->flags & PF_VCPU) { /* System time or guest time */
354 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
355 } else {
356 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
357 CPUTIME_SYSTEM);
358 }
359 }
360
361 static void irqtime_account_idle_ticks(int ticks)
362 {
363 int i;
364 struct rq *rq = this_rq();
365
366 for (i = 0; i < ticks; i++)
367 irqtime_account_process_tick(current, 0, rq);
368 }
369 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
370 static inline void irqtime_account_idle_ticks(int ticks) {}
371 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
372 struct rq *rq) {}
373 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
374
375 /*
376 * Use precise platform statistics if available:
377 */
378 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
379
380 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
381 void vtime_common_task_switch(struct task_struct *prev)
382 {
383 if (is_idle_task(prev))
384 vtime_account_idle(prev);
385 else
386 vtime_account_system(prev);
387
388 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
389 vtime_account_user(prev);
390 #endif
391 arch_vtime_task_switch(prev);
392 }
393 #endif
394
395 /*
396 * Archs that account the whole time spent in the idle task
397 * (outside irq) as idle time can rely on this and just implement
398 * vtime_account_system() and vtime_account_idle(). Archs that
399 * have other meaning of the idle time (s390 only includes the
400 * time spent by the CPU when it's in low power mode) must override
401 * vtime_account().
402 */
403 #ifndef __ARCH_HAS_VTIME_ACCOUNT
404 void vtime_common_account_irq_enter(struct task_struct *tsk)
405 {
406 if (!in_interrupt()) {
407 /*
408 * If we interrupted user, context_tracking_in_user()
409 * is 1 because the context tracking don't hook
410 * on irq entry/exit. This way we know if
411 * we need to flush user time on kernel entry.
412 */
413 if (context_tracking_in_user()) {
414 vtime_account_user(tsk);
415 return;
416 }
417
418 if (is_idle_task(tsk)) {
419 vtime_account_idle(tsk);
420 return;
421 }
422 }
423 vtime_account_system(tsk);
424 }
425 EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
426 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
427 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
428
429
430 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
431 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
432 {
433 *ut = p->utime;
434 *st = p->stime;
435 }
436
437 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
438 {
439 struct task_cputime cputime;
440
441 thread_group_cputime(p, &cputime);
442
443 *ut = cputime.utime;
444 *st = cputime.stime;
445 }
446 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
447 /*
448 * Account a single tick of cpu time.
449 * @p: the process that the cpu time gets accounted to
450 * @user_tick: indicates if the tick is a user or a system tick
451 */
452 void account_process_tick(struct task_struct *p, int user_tick)
453 {
454 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
455 struct rq *rq = this_rq();
456
457 if (vtime_accounting_enabled())
458 return;
459
460 if (sched_clock_irqtime) {
461 irqtime_account_process_tick(p, user_tick, rq);
462 return;
463 }
464
465 if (steal_account_process_tick())
466 return;
467
468 if (user_tick)
469 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
470 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
471 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
472 one_jiffy_scaled);
473 else
474 account_idle_time(cputime_one_jiffy);
475 }
476
477 /*
478 * Account multiple ticks of steal time.
479 * @p: the process from which the cpu time has been stolen
480 * @ticks: number of stolen ticks
481 */
482 void account_steal_ticks(unsigned long ticks)
483 {
484 account_steal_time(jiffies_to_cputime(ticks));
485 }
486
487 /*
488 * Account multiple ticks of idle time.
489 * @ticks: number of stolen ticks
490 */
491 void account_idle_ticks(unsigned long ticks)
492 {
493
494 if (sched_clock_irqtime) {
495 irqtime_account_idle_ticks(ticks);
496 return;
497 }
498
499 account_idle_time(jiffies_to_cputime(ticks));
500 }
501
502 /*
503 * Perform (stime * rtime) / total, but avoid multiplication overflow by
504 * loosing precision when the numbers are big.
505 */
506 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
507 {
508 u64 scaled;
509
510 for (;;) {
511 /* Make sure "rtime" is the bigger of stime/rtime */
512 if (stime > rtime)
513 swap(rtime, stime);
514
515 /* Make sure 'total' fits in 32 bits */
516 if (total >> 32)
517 goto drop_precision;
518
519 /* Does rtime (and thus stime) fit in 32 bits? */
520 if (!(rtime >> 32))
521 break;
522
523 /* Can we just balance rtime/stime rather than dropping bits? */
524 if (stime >> 31)
525 goto drop_precision;
526
527 /* We can grow stime and shrink rtime and try to make them both fit */
528 stime <<= 1;
529 rtime >>= 1;
530 continue;
531
532 drop_precision:
533 /* We drop from rtime, it has more bits than stime */
534 rtime >>= 1;
535 total >>= 1;
536 }
537
538 /*
539 * Make sure gcc understands that this is a 32x32->64 multiply,
540 * followed by a 64/32->64 divide.
541 */
542 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
543 return (__force cputime_t) scaled;
544 }
545
546 /*
547 * Adjust tick based cputime random precision against scheduler
548 * runtime accounting.
549 */
550 static void cputime_adjust(struct task_cputime *curr,
551 struct cputime *prev,
552 cputime_t *ut, cputime_t *st)
553 {
554 cputime_t rtime, stime, utime;
555
556 /*
557 * Tick based cputime accounting depend on random scheduling
558 * timeslices of a task to be interrupted or not by the timer.
559 * Depending on these circumstances, the number of these interrupts
560 * may be over or under-optimistic, matching the real user and system
561 * cputime with a variable precision.
562 *
563 * Fix this by scaling these tick based values against the total
564 * runtime accounted by the CFS scheduler.
565 */
566 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
567
568 /*
569 * Update userspace visible utime/stime values only if actual execution
570 * time is bigger than already exported. Note that can happen, that we
571 * provided bigger values due to scaling inaccuracy on big numbers.
572 */
573 if (prev->stime + prev->utime >= rtime)
574 goto out;
575
576 stime = curr->stime;
577 utime = curr->utime;
578
579 if (utime == 0) {
580 stime = rtime;
581 } else if (stime == 0) {
582 utime = rtime;
583 } else {
584 cputime_t total = stime + utime;
585
586 stime = scale_stime((__force u64)stime,
587 (__force u64)rtime, (__force u64)total);
588 utime = rtime - stime;
589 }
590
591 /*
592 * If the tick based count grows faster than the scheduler one,
593 * the result of the scaling may go backward.
594 * Let's enforce monotonicity.
595 */
596 prev->stime = max(prev->stime, stime);
597 prev->utime = max(prev->utime, utime);
598
599 out:
600 *ut = prev->utime;
601 *st = prev->stime;
602 }
603
604 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
605 {
606 struct task_cputime cputime = {
607 .sum_exec_runtime = p->se.sum_exec_runtime,
608 };
609
610 task_cputime(p, &cputime.utime, &cputime.stime);
611 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
612 }
613
614 /*
615 * Must be called with siglock held.
616 */
617 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
618 {
619 struct task_cputime cputime;
620
621 thread_group_cputime(p, &cputime);
622 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
623 }
624 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
625
626 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
627 static unsigned long long vtime_delta(struct task_struct *tsk)
628 {
629 unsigned long long clock;
630
631 clock = local_clock();
632 if (clock < tsk->vtime_snap)
633 return 0;
634
635 return clock - tsk->vtime_snap;
636 }
637
638 static cputime_t get_vtime_delta(struct task_struct *tsk)
639 {
640 unsigned long long delta = vtime_delta(tsk);
641
642 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
643 tsk->vtime_snap += delta;
644
645 /* CHECKME: always safe to convert nsecs to cputime? */
646 return nsecs_to_cputime(delta);
647 }
648
649 static void __vtime_account_system(struct task_struct *tsk)
650 {
651 cputime_t delta_cpu = get_vtime_delta(tsk);
652
653 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
654 }
655
656 void vtime_account_system(struct task_struct *tsk)
657 {
658 write_seqlock(&tsk->vtime_seqlock);
659 __vtime_account_system(tsk);
660 write_sequnlock(&tsk->vtime_seqlock);
661 }
662
663 void vtime_gen_account_irq_exit(struct task_struct *tsk)
664 {
665 write_seqlock(&tsk->vtime_seqlock);
666 __vtime_account_system(tsk);
667 if (context_tracking_in_user())
668 tsk->vtime_snap_whence = VTIME_USER;
669 write_sequnlock(&tsk->vtime_seqlock);
670 }
671
672 void vtime_account_user(struct task_struct *tsk)
673 {
674 cputime_t delta_cpu;
675
676 write_seqlock(&tsk->vtime_seqlock);
677 delta_cpu = get_vtime_delta(tsk);
678 tsk->vtime_snap_whence = VTIME_SYS;
679 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
680 write_sequnlock(&tsk->vtime_seqlock);
681 }
682
683 void vtime_user_enter(struct task_struct *tsk)
684 {
685 write_seqlock(&tsk->vtime_seqlock);
686 __vtime_account_system(tsk);
687 tsk->vtime_snap_whence = VTIME_USER;
688 write_sequnlock(&tsk->vtime_seqlock);
689 }
690
691 void vtime_guest_enter(struct task_struct *tsk)
692 {
693 /*
694 * The flags must be updated under the lock with
695 * the vtime_snap flush and update.
696 * That enforces a right ordering and update sequence
697 * synchronization against the reader (task_gtime())
698 * that can thus safely catch up with a tickless delta.
699 */
700 write_seqlock(&tsk->vtime_seqlock);
701 __vtime_account_system(tsk);
702 current->flags |= PF_VCPU;
703 write_sequnlock(&tsk->vtime_seqlock);
704 }
705 EXPORT_SYMBOL_GPL(vtime_guest_enter);
706
707 void vtime_guest_exit(struct task_struct *tsk)
708 {
709 write_seqlock(&tsk->vtime_seqlock);
710 __vtime_account_system(tsk);
711 current->flags &= ~PF_VCPU;
712 write_sequnlock(&tsk->vtime_seqlock);
713 }
714 EXPORT_SYMBOL_GPL(vtime_guest_exit);
715
716 void vtime_account_idle(struct task_struct *tsk)
717 {
718 cputime_t delta_cpu = get_vtime_delta(tsk);
719
720 account_idle_time(delta_cpu);
721 }
722
723 void arch_vtime_task_switch(struct task_struct *prev)
724 {
725 write_seqlock(&prev->vtime_seqlock);
726 prev->vtime_snap_whence = VTIME_SLEEPING;
727 write_sequnlock(&prev->vtime_seqlock);
728
729 write_seqlock(&current->vtime_seqlock);
730 current->vtime_snap_whence = VTIME_SYS;
731 current->vtime_snap = sched_clock_cpu(smp_processor_id());
732 write_sequnlock(&current->vtime_seqlock);
733 }
734
735 void vtime_init_idle(struct task_struct *t, int cpu)
736 {
737 unsigned long flags;
738
739 write_seqlock_irqsave(&t->vtime_seqlock, flags);
740 t->vtime_snap_whence = VTIME_SYS;
741 t->vtime_snap = sched_clock_cpu(cpu);
742 write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
743 }
744
745 cputime_t task_gtime(struct task_struct *t)
746 {
747 unsigned int seq;
748 cputime_t gtime;
749
750 do {
751 seq = read_seqbegin(&t->vtime_seqlock);
752
753 gtime = t->gtime;
754 if (t->flags & PF_VCPU)
755 gtime += vtime_delta(t);
756
757 } while (read_seqretry(&t->vtime_seqlock, seq));
758
759 return gtime;
760 }
761
762 /*
763 * Fetch cputime raw values from fields of task_struct and
764 * add up the pending nohz execution time since the last
765 * cputime snapshot.
766 */
767 static void
768 fetch_task_cputime(struct task_struct *t,
769 cputime_t *u_dst, cputime_t *s_dst,
770 cputime_t *u_src, cputime_t *s_src,
771 cputime_t *udelta, cputime_t *sdelta)
772 {
773 unsigned int seq;
774 unsigned long long delta;
775
776 do {
777 *udelta = 0;
778 *sdelta = 0;
779
780 seq = read_seqbegin(&t->vtime_seqlock);
781
782 if (u_dst)
783 *u_dst = *u_src;
784 if (s_dst)
785 *s_dst = *s_src;
786
787 /* Task is sleeping, nothing to add */
788 if (t->vtime_snap_whence == VTIME_SLEEPING ||
789 is_idle_task(t))
790 continue;
791
792 delta = vtime_delta(t);
793
794 /*
795 * Task runs either in user or kernel space, add pending nohz time to
796 * the right place.
797 */
798 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
799 *udelta = delta;
800 } else {
801 if (t->vtime_snap_whence == VTIME_SYS)
802 *sdelta = delta;
803 }
804 } while (read_seqretry(&t->vtime_seqlock, seq));
805 }
806
807
808 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
809 {
810 cputime_t udelta, sdelta;
811
812 fetch_task_cputime(t, utime, stime, &t->utime,
813 &t->stime, &udelta, &sdelta);
814 if (utime)
815 *utime += udelta;
816 if (stime)
817 *stime += sdelta;
818 }
819
820 void task_cputime_scaled(struct task_struct *t,
821 cputime_t *utimescaled, cputime_t *stimescaled)
822 {
823 cputime_t udelta, sdelta;
824
825 fetch_task_cputime(t, utimescaled, stimescaled,
826 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
827 if (utimescaled)
828 *utimescaled += cputime_to_scaled(udelta);
829 if (stimescaled)
830 *stimescaled += cputime_to_scaled(sdelta);
831 }
832 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */