]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched/cputime.c
Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-kernels.git] / kernel / sched / cputime.c
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include <linux/sched/cputime.h>
8 #include "sched.h"
9
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12 /*
13 * There are no locks covering percpu hardirq/softirq time.
14 * They are only modified in vtime_account, on corresponding CPU
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
18 * race with irq/vtime_account on this CPU. We would either get old
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
22 */
23 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
24
25 static int sched_clock_irqtime;
26
27 void enable_sched_clock_irqtime(void)
28 {
29 sched_clock_irqtime = 1;
30 }
31
32 void disable_sched_clock_irqtime(void)
33 {
34 sched_clock_irqtime = 0;
35 }
36
37 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
38 enum cpu_usage_stat idx)
39 {
40 u64 *cpustat = kcpustat_this_cpu->cpustat;
41
42 u64_stats_update_begin(&irqtime->sync);
43 cpustat[idx] += delta;
44 irqtime->total += delta;
45 irqtime->tick_delta += delta;
46 u64_stats_update_end(&irqtime->sync);
47 }
48
49 /*
50 * Called before incrementing preempt_count on {soft,}irq_enter
51 * and before decrementing preempt_count on {soft,}irq_exit.
52 */
53 void irqtime_account_irq(struct task_struct *curr)
54 {
55 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
56 s64 delta;
57 int cpu;
58
59 if (!sched_clock_irqtime)
60 return;
61
62 cpu = smp_processor_id();
63 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
64 irqtime->irq_start_time += delta;
65
66 /*
67 * We do not account for softirq time from ksoftirqd here.
68 * We want to continue accounting softirq time to ksoftirqd thread
69 * in that case, so as not to confuse scheduler with a special task
70 * that do not consume any time, but still wants to run.
71 */
72 if (hardirq_count())
73 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
74 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
75 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
76 }
77 EXPORT_SYMBOL_GPL(irqtime_account_irq);
78
79 static u64 irqtime_tick_accounted(u64 maxtime)
80 {
81 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
82 u64 delta;
83
84 delta = min(irqtime->tick_delta, maxtime);
85 irqtime->tick_delta -= delta;
86
87 return delta;
88 }
89
90 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
91
92 #define sched_clock_irqtime (0)
93
94 static u64 irqtime_tick_accounted(u64 dummy)
95 {
96 return 0;
97 }
98
99 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
100
101 static inline void task_group_account_field(struct task_struct *p, int index,
102 u64 tmp)
103 {
104 /*
105 * Since all updates are sure to touch the root cgroup, we
106 * get ourselves ahead and touch it first. If the root cgroup
107 * is the only cgroup, then nothing else should be necessary.
108 *
109 */
110 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
111
112 cgroup_account_cputime_field(p, index, tmp);
113 }
114
115 /*
116 * Account user cpu time to a process.
117 * @p: the process that the cpu time gets accounted to
118 * @cputime: the cpu time spent in user space since the last update
119 */
120 void account_user_time(struct task_struct *p, u64 cputime)
121 {
122 int index;
123
124 /* Add user time to process. */
125 p->utime += cputime;
126 account_group_user_time(p, cputime);
127
128 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
129
130 /* Add user time to cpustat. */
131 task_group_account_field(p, index, cputime);
132
133 /* Account for user time used */
134 acct_account_cputime(p);
135 }
136
137 /*
138 * Account guest cpu time to a process.
139 * @p: the process that the cpu time gets accounted to
140 * @cputime: the cpu time spent in virtual machine since the last update
141 */
142 void account_guest_time(struct task_struct *p, u64 cputime)
143 {
144 u64 *cpustat = kcpustat_this_cpu->cpustat;
145
146 /* Add guest time to process. */
147 p->utime += cputime;
148 account_group_user_time(p, cputime);
149 p->gtime += cputime;
150
151 /* Add guest time to cpustat. */
152 if (task_nice(p) > 0) {
153 cpustat[CPUTIME_NICE] += cputime;
154 cpustat[CPUTIME_GUEST_NICE] += cputime;
155 } else {
156 cpustat[CPUTIME_USER] += cputime;
157 cpustat[CPUTIME_GUEST] += cputime;
158 }
159 }
160
161 /*
162 * Account system cpu time to a process and desired cpustat field
163 * @p: the process that the cpu time gets accounted to
164 * @cputime: the cpu time spent in kernel space since the last update
165 * @index: pointer to cpustat field that has to be updated
166 */
167 void account_system_index_time(struct task_struct *p,
168 u64 cputime, enum cpu_usage_stat index)
169 {
170 /* Add system time to process. */
171 p->stime += cputime;
172 account_group_system_time(p, cputime);
173
174 /* Add system time to cpustat. */
175 task_group_account_field(p, index, cputime);
176
177 /* Account for system time used */
178 acct_account_cputime(p);
179 }
180
181 /*
182 * Account system cpu time to a process.
183 * @p: the process that the cpu time gets accounted to
184 * @hardirq_offset: the offset to subtract from hardirq_count()
185 * @cputime: the cpu time spent in kernel space since the last update
186 */
187 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
188 {
189 int index;
190
191 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
192 account_guest_time(p, cputime);
193 return;
194 }
195
196 if (hardirq_count() - hardirq_offset)
197 index = CPUTIME_IRQ;
198 else if (in_serving_softirq())
199 index = CPUTIME_SOFTIRQ;
200 else
201 index = CPUTIME_SYSTEM;
202
203 account_system_index_time(p, cputime, index);
204 }
205
206 /*
207 * Account for involuntary wait time.
208 * @cputime: the cpu time spent in involuntary wait
209 */
210 void account_steal_time(u64 cputime)
211 {
212 u64 *cpustat = kcpustat_this_cpu->cpustat;
213
214 cpustat[CPUTIME_STEAL] += cputime;
215 }
216
217 /*
218 * Account for idle time.
219 * @cputime: the cpu time spent in idle wait
220 */
221 void account_idle_time(u64 cputime)
222 {
223 u64 *cpustat = kcpustat_this_cpu->cpustat;
224 struct rq *rq = this_rq();
225
226 if (atomic_read(&rq->nr_iowait) > 0)
227 cpustat[CPUTIME_IOWAIT] += cputime;
228 else
229 cpustat[CPUTIME_IDLE] += cputime;
230 }
231
232 /*
233 * When a guest is interrupted for a longer amount of time, missed clock
234 * ticks are not redelivered later. Due to that, this function may on
235 * occasion account more time than the calling functions think elapsed.
236 */
237 static __always_inline u64 steal_account_process_time(u64 maxtime)
238 {
239 #ifdef CONFIG_PARAVIRT
240 if (static_key_false(&paravirt_steal_enabled)) {
241 u64 steal;
242
243 steal = paravirt_steal_clock(smp_processor_id());
244 steal -= this_rq()->prev_steal_time;
245 steal = min(steal, maxtime);
246 account_steal_time(steal);
247 this_rq()->prev_steal_time += steal;
248
249 return steal;
250 }
251 #endif
252 return 0;
253 }
254
255 /*
256 * Account how much elapsed time was spent in steal, irq, or softirq time.
257 */
258 static inline u64 account_other_time(u64 max)
259 {
260 u64 accounted;
261
262 lockdep_assert_irqs_disabled();
263
264 accounted = steal_account_process_time(max);
265
266 if (accounted < max)
267 accounted += irqtime_tick_accounted(max - accounted);
268
269 return accounted;
270 }
271
272 #ifdef CONFIG_64BIT
273 static inline u64 read_sum_exec_runtime(struct task_struct *t)
274 {
275 return t->se.sum_exec_runtime;
276 }
277 #else
278 static u64 read_sum_exec_runtime(struct task_struct *t)
279 {
280 u64 ns;
281 struct rq_flags rf;
282 struct rq *rq;
283
284 rq = task_rq_lock(t, &rf);
285 ns = t->se.sum_exec_runtime;
286 task_rq_unlock(rq, t, &rf);
287
288 return ns;
289 }
290 #endif
291
292 /*
293 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
294 * tasks (sum on group iteration) belonging to @tsk's group.
295 */
296 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
297 {
298 struct signal_struct *sig = tsk->signal;
299 u64 utime, stime;
300 struct task_struct *t;
301 unsigned int seq, nextseq;
302 unsigned long flags;
303
304 /*
305 * Update current task runtime to account pending time since last
306 * scheduler action or thread_group_cputime() call. This thread group
307 * might have other running tasks on different CPUs, but updating
308 * their runtime can affect syscall performance, so we skip account
309 * those pending times and rely only on values updated on tick or
310 * other scheduler action.
311 */
312 if (same_thread_group(current, tsk))
313 (void) task_sched_runtime(current);
314
315 rcu_read_lock();
316 /* Attempt a lockless read on the first round. */
317 nextseq = 0;
318 do {
319 seq = nextseq;
320 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
321 times->utime = sig->utime;
322 times->stime = sig->stime;
323 times->sum_exec_runtime = sig->sum_sched_runtime;
324
325 for_each_thread(tsk, t) {
326 task_cputime(t, &utime, &stime);
327 times->utime += utime;
328 times->stime += stime;
329 times->sum_exec_runtime += read_sum_exec_runtime(t);
330 }
331 /* If lockless access failed, take the lock. */
332 nextseq = 1;
333 } while (need_seqretry(&sig->stats_lock, seq));
334 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
335 rcu_read_unlock();
336 }
337
338 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
339 /*
340 * Account a tick to a process and cpustat
341 * @p: the process that the cpu time gets accounted to
342 * @user_tick: is the tick from userspace
343 * @rq: the pointer to rq
344 *
345 * Tick demultiplexing follows the order
346 * - pending hardirq update
347 * - pending softirq update
348 * - user_time
349 * - idle_time
350 * - system time
351 * - check for guest_time
352 * - else account as system_time
353 *
354 * Check for hardirq is done both for system and user time as there is
355 * no timer going off while we are on hardirq and hence we may never get an
356 * opportunity to update it solely in system time.
357 * p->stime and friends are only updated on system time and not on irq
358 * softirq as those do not count in task exec_runtime any more.
359 */
360 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
361 struct rq *rq, int ticks)
362 {
363 u64 other, cputime = TICK_NSEC * ticks;
364
365 /*
366 * When returning from idle, many ticks can get accounted at
367 * once, including some ticks of steal, irq, and softirq time.
368 * Subtract those ticks from the amount of time accounted to
369 * idle, or potentially user or system time. Due to rounding,
370 * other time can exceed ticks occasionally.
371 */
372 other = account_other_time(ULONG_MAX);
373 if (other >= cputime)
374 return;
375
376 cputime -= other;
377
378 if (this_cpu_ksoftirqd() == p) {
379 /*
380 * ksoftirqd time do not get accounted in cpu_softirq_time.
381 * So, we have to handle it separately here.
382 * Also, p->stime needs to be updated for ksoftirqd.
383 */
384 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
385 } else if (user_tick) {
386 account_user_time(p, cputime);
387 } else if (p == rq->idle) {
388 account_idle_time(cputime);
389 } else if (p->flags & PF_VCPU) { /* System time or guest time */
390 account_guest_time(p, cputime);
391 } else {
392 account_system_index_time(p, cputime, CPUTIME_SYSTEM);
393 }
394 }
395
396 static void irqtime_account_idle_ticks(int ticks)
397 {
398 struct rq *rq = this_rq();
399
400 irqtime_account_process_tick(current, 0, rq, ticks);
401 }
402 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
403 static inline void irqtime_account_idle_ticks(int ticks) {}
404 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
405 struct rq *rq, int nr_ticks) {}
406 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
407
408 /*
409 * Use precise platform statistics if available:
410 */
411 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
412
413 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
414 void vtime_common_task_switch(struct task_struct *prev)
415 {
416 if (is_idle_task(prev))
417 vtime_account_idle(prev);
418 else
419 vtime_account_system(prev);
420
421 vtime_flush(prev);
422 arch_vtime_task_switch(prev);
423 }
424 #endif
425
426 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
427
428
429 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
430 /*
431 * Archs that account the whole time spent in the idle task
432 * (outside irq) as idle time can rely on this and just implement
433 * vtime_account_system() and vtime_account_idle(). Archs that
434 * have other meaning of the idle time (s390 only includes the
435 * time spent by the CPU when it's in low power mode) must override
436 * vtime_account().
437 */
438 #ifndef __ARCH_HAS_VTIME_ACCOUNT
439 void vtime_account_irq_enter(struct task_struct *tsk)
440 {
441 if (!in_interrupt() && is_idle_task(tsk))
442 vtime_account_idle(tsk);
443 else
444 vtime_account_system(tsk);
445 }
446 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
447 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
448
449 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
450 u64 *ut, u64 *st)
451 {
452 *ut = curr->utime;
453 *st = curr->stime;
454 }
455
456 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
457 {
458 *ut = p->utime;
459 *st = p->stime;
460 }
461 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
462
463 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
464 {
465 struct task_cputime cputime;
466
467 thread_group_cputime(p, &cputime);
468
469 *ut = cputime.utime;
470 *st = cputime.stime;
471 }
472 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
473 /*
474 * Account a single tick of cpu time.
475 * @p: the process that the cpu time gets accounted to
476 * @user_tick: indicates if the tick is a user or a system tick
477 */
478 void account_process_tick(struct task_struct *p, int user_tick)
479 {
480 u64 cputime, steal;
481 struct rq *rq = this_rq();
482
483 if (vtime_accounting_cpu_enabled())
484 return;
485
486 if (sched_clock_irqtime) {
487 irqtime_account_process_tick(p, user_tick, rq, 1);
488 return;
489 }
490
491 cputime = TICK_NSEC;
492 steal = steal_account_process_time(ULONG_MAX);
493
494 if (steal >= cputime)
495 return;
496
497 cputime -= steal;
498
499 if (user_tick)
500 account_user_time(p, cputime);
501 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
502 account_system_time(p, HARDIRQ_OFFSET, cputime);
503 else
504 account_idle_time(cputime);
505 }
506
507 /*
508 * Account multiple ticks of idle time.
509 * @ticks: number of stolen ticks
510 */
511 void account_idle_ticks(unsigned long ticks)
512 {
513 u64 cputime, steal;
514
515 if (sched_clock_irqtime) {
516 irqtime_account_idle_ticks(ticks);
517 return;
518 }
519
520 cputime = ticks * TICK_NSEC;
521 steal = steal_account_process_time(ULONG_MAX);
522
523 if (steal >= cputime)
524 return;
525
526 cputime -= steal;
527 account_idle_time(cputime);
528 }
529
530 /*
531 * Perform (stime * rtime) / total, but avoid multiplication overflow by
532 * loosing precision when the numbers are big.
533 */
534 static u64 scale_stime(u64 stime, u64 rtime, u64 total)
535 {
536 u64 scaled;
537
538 for (;;) {
539 /* Make sure "rtime" is the bigger of stime/rtime */
540 if (stime > rtime)
541 swap(rtime, stime);
542
543 /* Make sure 'total' fits in 32 bits */
544 if (total >> 32)
545 goto drop_precision;
546
547 /* Does rtime (and thus stime) fit in 32 bits? */
548 if (!(rtime >> 32))
549 break;
550
551 /* Can we just balance rtime/stime rather than dropping bits? */
552 if (stime >> 31)
553 goto drop_precision;
554
555 /* We can grow stime and shrink rtime and try to make them both fit */
556 stime <<= 1;
557 rtime >>= 1;
558 continue;
559
560 drop_precision:
561 /* We drop from rtime, it has more bits than stime */
562 rtime >>= 1;
563 total >>= 1;
564 }
565
566 /*
567 * Make sure gcc understands that this is a 32x32->64 multiply,
568 * followed by a 64/32->64 divide.
569 */
570 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
571 return scaled;
572 }
573
574 /*
575 * Adjust tick based cputime random precision against scheduler runtime
576 * accounting.
577 *
578 * Tick based cputime accounting depend on random scheduling timeslices of a
579 * task to be interrupted or not by the timer. Depending on these
580 * circumstances, the number of these interrupts may be over or
581 * under-optimistic, matching the real user and system cputime with a variable
582 * precision.
583 *
584 * Fix this by scaling these tick based values against the total runtime
585 * accounted by the CFS scheduler.
586 *
587 * This code provides the following guarantees:
588 *
589 * stime + utime == rtime
590 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
591 *
592 * Assuming that rtime_i+1 >= rtime_i.
593 */
594 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
595 u64 *ut, u64 *st)
596 {
597 u64 rtime, stime, utime;
598 unsigned long flags;
599
600 /* Serialize concurrent callers such that we can honour our guarantees */
601 raw_spin_lock_irqsave(&prev->lock, flags);
602 rtime = curr->sum_exec_runtime;
603
604 /*
605 * This is possible under two circumstances:
606 * - rtime isn't monotonic after all (a bug);
607 * - we got reordered by the lock.
608 *
609 * In both cases this acts as a filter such that the rest of the code
610 * can assume it is monotonic regardless of anything else.
611 */
612 if (prev->stime + prev->utime >= rtime)
613 goto out;
614
615 stime = curr->stime;
616 utime = curr->utime;
617
618 /*
619 * If either stime or utime are 0, assume all runtime is userspace.
620 * Once a task gets some ticks, the monotonicy code at 'update:'
621 * will ensure things converge to the observed ratio.
622 */
623 if (stime == 0) {
624 utime = rtime;
625 goto update;
626 }
627
628 if (utime == 0) {
629 stime = rtime;
630 goto update;
631 }
632
633 stime = scale_stime(stime, rtime, stime + utime);
634
635 update:
636 /*
637 * Make sure stime doesn't go backwards; this preserves monotonicity
638 * for utime because rtime is monotonic.
639 *
640 * utime_i+1 = rtime_i+1 - stime_i
641 * = rtime_i+1 - (rtime_i - utime_i)
642 * = (rtime_i+1 - rtime_i) + utime_i
643 * >= utime_i
644 */
645 if (stime < prev->stime)
646 stime = prev->stime;
647 utime = rtime - stime;
648
649 /*
650 * Make sure utime doesn't go backwards; this still preserves
651 * monotonicity for stime, analogous argument to above.
652 */
653 if (utime < prev->utime) {
654 utime = prev->utime;
655 stime = rtime - utime;
656 }
657
658 prev->stime = stime;
659 prev->utime = utime;
660 out:
661 *ut = prev->utime;
662 *st = prev->stime;
663 raw_spin_unlock_irqrestore(&prev->lock, flags);
664 }
665
666 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
667 {
668 struct task_cputime cputime = {
669 .sum_exec_runtime = p->se.sum_exec_runtime,
670 };
671
672 task_cputime(p, &cputime.utime, &cputime.stime);
673 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
674 }
675 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
676
677 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
678 {
679 struct task_cputime cputime;
680
681 thread_group_cputime(p, &cputime);
682 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
683 }
684 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
685
686 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
687 static u64 vtime_delta(struct vtime *vtime)
688 {
689 unsigned long long clock;
690
691 clock = sched_clock();
692 if (clock < vtime->starttime)
693 return 0;
694
695 return clock - vtime->starttime;
696 }
697
698 static u64 get_vtime_delta(struct vtime *vtime)
699 {
700 u64 delta = vtime_delta(vtime);
701 u64 other;
702
703 /*
704 * Unlike tick based timing, vtime based timing never has lost
705 * ticks, and no need for steal time accounting to make up for
706 * lost ticks. Vtime accounts a rounded version of actual
707 * elapsed time. Limit account_other_time to prevent rounding
708 * errors from causing elapsed vtime to go negative.
709 */
710 other = account_other_time(delta);
711 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
712 vtime->starttime += delta;
713
714 return delta - other;
715 }
716
717 static void __vtime_account_system(struct task_struct *tsk,
718 struct vtime *vtime)
719 {
720 vtime->stime += get_vtime_delta(vtime);
721 if (vtime->stime >= TICK_NSEC) {
722 account_system_time(tsk, irq_count(), vtime->stime);
723 vtime->stime = 0;
724 }
725 }
726
727 static void vtime_account_guest(struct task_struct *tsk,
728 struct vtime *vtime)
729 {
730 vtime->gtime += get_vtime_delta(vtime);
731 if (vtime->gtime >= TICK_NSEC) {
732 account_guest_time(tsk, vtime->gtime);
733 vtime->gtime = 0;
734 }
735 }
736
737 void vtime_account_system(struct task_struct *tsk)
738 {
739 struct vtime *vtime = &tsk->vtime;
740
741 if (!vtime_delta(vtime))
742 return;
743
744 write_seqcount_begin(&vtime->seqcount);
745 /* We might have scheduled out from guest path */
746 if (current->flags & PF_VCPU)
747 vtime_account_guest(tsk, vtime);
748 else
749 __vtime_account_system(tsk, vtime);
750 write_seqcount_end(&vtime->seqcount);
751 }
752
753 void vtime_user_enter(struct task_struct *tsk)
754 {
755 struct vtime *vtime = &tsk->vtime;
756
757 write_seqcount_begin(&vtime->seqcount);
758 __vtime_account_system(tsk, vtime);
759 vtime->state = VTIME_USER;
760 write_seqcount_end(&vtime->seqcount);
761 }
762
763 void vtime_user_exit(struct task_struct *tsk)
764 {
765 struct vtime *vtime = &tsk->vtime;
766
767 write_seqcount_begin(&vtime->seqcount);
768 vtime->utime += get_vtime_delta(vtime);
769 if (vtime->utime >= TICK_NSEC) {
770 account_user_time(tsk, vtime->utime);
771 vtime->utime = 0;
772 }
773 vtime->state = VTIME_SYS;
774 write_seqcount_end(&vtime->seqcount);
775 }
776
777 void vtime_guest_enter(struct task_struct *tsk)
778 {
779 struct vtime *vtime = &tsk->vtime;
780 /*
781 * The flags must be updated under the lock with
782 * the vtime_starttime flush and update.
783 * That enforces a right ordering and update sequence
784 * synchronization against the reader (task_gtime())
785 * that can thus safely catch up with a tickless delta.
786 */
787 write_seqcount_begin(&vtime->seqcount);
788 __vtime_account_system(tsk, vtime);
789 current->flags |= PF_VCPU;
790 write_seqcount_end(&vtime->seqcount);
791 }
792 EXPORT_SYMBOL_GPL(vtime_guest_enter);
793
794 void vtime_guest_exit(struct task_struct *tsk)
795 {
796 struct vtime *vtime = &tsk->vtime;
797
798 write_seqcount_begin(&vtime->seqcount);
799 vtime_account_guest(tsk, vtime);
800 current->flags &= ~PF_VCPU;
801 write_seqcount_end(&vtime->seqcount);
802 }
803 EXPORT_SYMBOL_GPL(vtime_guest_exit);
804
805 void vtime_account_idle(struct task_struct *tsk)
806 {
807 account_idle_time(get_vtime_delta(&tsk->vtime));
808 }
809
810 void arch_vtime_task_switch(struct task_struct *prev)
811 {
812 struct vtime *vtime = &prev->vtime;
813
814 write_seqcount_begin(&vtime->seqcount);
815 vtime->state = VTIME_INACTIVE;
816 write_seqcount_end(&vtime->seqcount);
817
818 vtime = &current->vtime;
819
820 write_seqcount_begin(&vtime->seqcount);
821 vtime->state = VTIME_SYS;
822 vtime->starttime = sched_clock();
823 write_seqcount_end(&vtime->seqcount);
824 }
825
826 void vtime_init_idle(struct task_struct *t, int cpu)
827 {
828 struct vtime *vtime = &t->vtime;
829 unsigned long flags;
830
831 local_irq_save(flags);
832 write_seqcount_begin(&vtime->seqcount);
833 vtime->state = VTIME_SYS;
834 vtime->starttime = sched_clock();
835 write_seqcount_end(&vtime->seqcount);
836 local_irq_restore(flags);
837 }
838
839 u64 task_gtime(struct task_struct *t)
840 {
841 struct vtime *vtime = &t->vtime;
842 unsigned int seq;
843 u64 gtime;
844
845 if (!vtime_accounting_enabled())
846 return t->gtime;
847
848 do {
849 seq = read_seqcount_begin(&vtime->seqcount);
850
851 gtime = t->gtime;
852 if (vtime->state == VTIME_SYS && t->flags & PF_VCPU)
853 gtime += vtime->gtime + vtime_delta(vtime);
854
855 } while (read_seqcount_retry(&vtime->seqcount, seq));
856
857 return gtime;
858 }
859
860 /*
861 * Fetch cputime raw values from fields of task_struct and
862 * add up the pending nohz execution time since the last
863 * cputime snapshot.
864 */
865 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
866 {
867 struct vtime *vtime = &t->vtime;
868 unsigned int seq;
869 u64 delta;
870
871 if (!vtime_accounting_enabled()) {
872 *utime = t->utime;
873 *stime = t->stime;
874 return;
875 }
876
877 do {
878 seq = read_seqcount_begin(&vtime->seqcount);
879
880 *utime = t->utime;
881 *stime = t->stime;
882
883 /* Task is sleeping, nothing to add */
884 if (vtime->state == VTIME_INACTIVE || is_idle_task(t))
885 continue;
886
887 delta = vtime_delta(vtime);
888
889 /*
890 * Task runs either in user or kernel space, add pending nohz time to
891 * the right place.
892 */
893 if (vtime->state == VTIME_USER || t->flags & PF_VCPU)
894 *utime += vtime->utime + delta;
895 else if (vtime->state == VTIME_SYS)
896 *stime += vtime->stime + delta;
897 } while (read_seqcount_retry(&vtime->seqcount, seq));
898 }
899 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */