]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/cputime.c
Merge branch 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-artful-kernel.git] / kernel / sched / cputime.c
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8 #ifdef CONFIG_PARAVIRT
9 #include <asm/paravirt.h>
10 #endif
11
12
13 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
14
15 /*
16 * There are no locks covering percpu hardirq/softirq time.
17 * They are only modified in vtime_account, on corresponding CPU
18 * with interrupts disabled. So, writes are safe.
19 * They are read and saved off onto struct rq in update_rq_clock().
20 * This may result in other CPU reading this CPU's irq time and can
21 * race with irq/vtime_account on this CPU. We would either get old
22 * or new value with a side effect of accounting a slice of irq time to wrong
23 * task when irq is in progress while we read rq->clock. That is a worthy
24 * compromise in place of having locks on each irq in account_system_time.
25 */
26 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
27
28 static int sched_clock_irqtime;
29
30 void enable_sched_clock_irqtime(void)
31 {
32 sched_clock_irqtime = 1;
33 }
34
35 void disable_sched_clock_irqtime(void)
36 {
37 sched_clock_irqtime = 0;
38 }
39
40 /*
41 * Called before incrementing preempt_count on {soft,}irq_enter
42 * and before decrementing preempt_count on {soft,}irq_exit.
43 */
44 void irqtime_account_irq(struct task_struct *curr)
45 {
46 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
47 s64 delta;
48 int cpu;
49
50 if (!sched_clock_irqtime)
51 return;
52
53 cpu = smp_processor_id();
54 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
55 irqtime->irq_start_time += delta;
56
57 u64_stats_update_begin(&irqtime->sync);
58 /*
59 * We do not account for softirq time from ksoftirqd here.
60 * We want to continue accounting softirq time to ksoftirqd thread
61 * in that case, so as not to confuse scheduler with a special task
62 * that do not consume any time, but still wants to run.
63 */
64 if (hardirq_count())
65 irqtime->hardirq_time += delta;
66 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
67 irqtime->softirq_time += delta;
68
69 u64_stats_update_end(&irqtime->sync);
70 }
71 EXPORT_SYMBOL_GPL(irqtime_account_irq);
72
73 static cputime_t irqtime_account_update(u64 irqtime, int idx, cputime_t maxtime)
74 {
75 u64 *cpustat = kcpustat_this_cpu->cpustat;
76 cputime_t irq_cputime;
77
78 irq_cputime = nsecs_to_cputime64(irqtime) - cpustat[idx];
79 irq_cputime = min(irq_cputime, maxtime);
80 cpustat[idx] += irq_cputime;
81
82 return irq_cputime;
83 }
84
85 static cputime_t irqtime_account_hi_update(cputime_t maxtime)
86 {
87 return irqtime_account_update(__this_cpu_read(cpu_irqtime.hardirq_time),
88 CPUTIME_IRQ, maxtime);
89 }
90
91 static cputime_t irqtime_account_si_update(cputime_t maxtime)
92 {
93 return irqtime_account_update(__this_cpu_read(cpu_irqtime.softirq_time),
94 CPUTIME_SOFTIRQ, maxtime);
95 }
96
97 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
98
99 #define sched_clock_irqtime (0)
100
101 static cputime_t irqtime_account_hi_update(cputime_t dummy)
102 {
103 return 0;
104 }
105
106 static cputime_t irqtime_account_si_update(cputime_t dummy)
107 {
108 return 0;
109 }
110
111 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
112
113 static inline void task_group_account_field(struct task_struct *p, int index,
114 u64 tmp)
115 {
116 /*
117 * Since all updates are sure to touch the root cgroup, we
118 * get ourselves ahead and touch it first. If the root cgroup
119 * is the only cgroup, then nothing else should be necessary.
120 *
121 */
122 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
123
124 cpuacct_account_field(p, index, tmp);
125 }
126
127 /*
128 * Account user cpu time to a process.
129 * @p: the process that the cpu time gets accounted to
130 * @cputime: the cpu time spent in user space since the last update
131 * @cputime_scaled: cputime scaled by cpu frequency
132 */
133 void account_user_time(struct task_struct *p, cputime_t cputime,
134 cputime_t cputime_scaled)
135 {
136 int index;
137
138 /* Add user time to process. */
139 p->utime += cputime;
140 p->utimescaled += cputime_scaled;
141 account_group_user_time(p, cputime);
142
143 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
144
145 /* Add user time to cpustat. */
146 task_group_account_field(p, index, (__force u64) cputime);
147
148 /* Account for user time used */
149 acct_account_cputime(p);
150 }
151
152 /*
153 * Account guest cpu time to a process.
154 * @p: the process that the cpu time gets accounted to
155 * @cputime: the cpu time spent in virtual machine since the last update
156 * @cputime_scaled: cputime scaled by cpu frequency
157 */
158 static void account_guest_time(struct task_struct *p, cputime_t cputime,
159 cputime_t cputime_scaled)
160 {
161 u64 *cpustat = kcpustat_this_cpu->cpustat;
162
163 /* Add guest time to process. */
164 p->utime += cputime;
165 p->utimescaled += cputime_scaled;
166 account_group_user_time(p, cputime);
167 p->gtime += cputime;
168
169 /* Add guest time to cpustat. */
170 if (task_nice(p) > 0) {
171 cpustat[CPUTIME_NICE] += (__force u64) cputime;
172 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
173 } else {
174 cpustat[CPUTIME_USER] += (__force u64) cputime;
175 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
176 }
177 }
178
179 /*
180 * Account system cpu time to a process and desired cpustat field
181 * @p: the process that the cpu time gets accounted to
182 * @cputime: the cpu time spent in kernel space since the last update
183 * @cputime_scaled: cputime scaled by cpu frequency
184 * @target_cputime64: pointer to cpustat field that has to be updated
185 */
186 static inline
187 void __account_system_time(struct task_struct *p, cputime_t cputime,
188 cputime_t cputime_scaled, int index)
189 {
190 /* Add system time to process. */
191 p->stime += cputime;
192 p->stimescaled += cputime_scaled;
193 account_group_system_time(p, cputime);
194
195 /* Add system time to cpustat. */
196 task_group_account_field(p, index, (__force u64) cputime);
197
198 /* Account for system time used */
199 acct_account_cputime(p);
200 }
201
202 /*
203 * Account system cpu time to a process.
204 * @p: the process that the cpu time gets accounted to
205 * @hardirq_offset: the offset to subtract from hardirq_count()
206 * @cputime: the cpu time spent in kernel space since the last update
207 * @cputime_scaled: cputime scaled by cpu frequency
208 */
209 void account_system_time(struct task_struct *p, int hardirq_offset,
210 cputime_t cputime, cputime_t cputime_scaled)
211 {
212 int index;
213
214 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
215 account_guest_time(p, cputime, cputime_scaled);
216 return;
217 }
218
219 if (hardirq_count() - hardirq_offset)
220 index = CPUTIME_IRQ;
221 else if (in_serving_softirq())
222 index = CPUTIME_SOFTIRQ;
223 else
224 index = CPUTIME_SYSTEM;
225
226 __account_system_time(p, cputime, cputime_scaled, index);
227 }
228
229 /*
230 * Account for involuntary wait time.
231 * @cputime: the cpu time spent in involuntary wait
232 */
233 void account_steal_time(cputime_t cputime)
234 {
235 u64 *cpustat = kcpustat_this_cpu->cpustat;
236
237 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
238 }
239
240 /*
241 * Account for idle time.
242 * @cputime: the cpu time spent in idle wait
243 */
244 void account_idle_time(cputime_t cputime)
245 {
246 u64 *cpustat = kcpustat_this_cpu->cpustat;
247 struct rq *rq = this_rq();
248
249 if (atomic_read(&rq->nr_iowait) > 0)
250 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
251 else
252 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
253 }
254
255 /*
256 * When a guest is interrupted for a longer amount of time, missed clock
257 * ticks are not redelivered later. Due to that, this function may on
258 * occasion account more time than the calling functions think elapsed.
259 */
260 static __always_inline cputime_t steal_account_process_time(cputime_t maxtime)
261 {
262 #ifdef CONFIG_PARAVIRT
263 if (static_key_false(&paravirt_steal_enabled)) {
264 cputime_t steal_cputime;
265 u64 steal;
266
267 steal = paravirt_steal_clock(smp_processor_id());
268 steal -= this_rq()->prev_steal_time;
269
270 steal_cputime = min(nsecs_to_cputime(steal), maxtime);
271 account_steal_time(steal_cputime);
272 this_rq()->prev_steal_time += cputime_to_nsecs(steal_cputime);
273
274 return steal_cputime;
275 }
276 #endif
277 return 0;
278 }
279
280 /*
281 * Account how much elapsed time was spent in steal, irq, or softirq time.
282 */
283 static inline cputime_t account_other_time(cputime_t max)
284 {
285 cputime_t accounted;
286
287 /* Shall be converted to a lockdep-enabled lightweight check */
288 WARN_ON_ONCE(!irqs_disabled());
289
290 accounted = steal_account_process_time(max);
291
292 if (accounted < max)
293 accounted += irqtime_account_hi_update(max - accounted);
294
295 if (accounted < max)
296 accounted += irqtime_account_si_update(max - accounted);
297
298 return accounted;
299 }
300
301 #ifdef CONFIG_64BIT
302 static inline u64 read_sum_exec_runtime(struct task_struct *t)
303 {
304 return t->se.sum_exec_runtime;
305 }
306 #else
307 static u64 read_sum_exec_runtime(struct task_struct *t)
308 {
309 u64 ns;
310 struct rq_flags rf;
311 struct rq *rq;
312
313 rq = task_rq_lock(t, &rf);
314 ns = t->se.sum_exec_runtime;
315 task_rq_unlock(rq, t, &rf);
316
317 return ns;
318 }
319 #endif
320
321 /*
322 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
323 * tasks (sum on group iteration) belonging to @tsk's group.
324 */
325 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
326 {
327 struct signal_struct *sig = tsk->signal;
328 cputime_t utime, stime;
329 struct task_struct *t;
330 unsigned int seq, nextseq;
331 unsigned long flags;
332
333 /*
334 * Update current task runtime to account pending time since last
335 * scheduler action or thread_group_cputime() call. This thread group
336 * might have other running tasks on different CPUs, but updating
337 * their runtime can affect syscall performance, so we skip account
338 * those pending times and rely only on values updated on tick or
339 * other scheduler action.
340 */
341 if (same_thread_group(current, tsk))
342 (void) task_sched_runtime(current);
343
344 rcu_read_lock();
345 /* Attempt a lockless read on the first round. */
346 nextseq = 0;
347 do {
348 seq = nextseq;
349 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
350 times->utime = sig->utime;
351 times->stime = sig->stime;
352 times->sum_exec_runtime = sig->sum_sched_runtime;
353
354 for_each_thread(tsk, t) {
355 task_cputime(t, &utime, &stime);
356 times->utime += utime;
357 times->stime += stime;
358 times->sum_exec_runtime += read_sum_exec_runtime(t);
359 }
360 /* If lockless access failed, take the lock. */
361 nextseq = 1;
362 } while (need_seqretry(&sig->stats_lock, seq));
363 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
364 rcu_read_unlock();
365 }
366
367 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
368 /*
369 * Account a tick to a process and cpustat
370 * @p: the process that the cpu time gets accounted to
371 * @user_tick: is the tick from userspace
372 * @rq: the pointer to rq
373 *
374 * Tick demultiplexing follows the order
375 * - pending hardirq update
376 * - pending softirq update
377 * - user_time
378 * - idle_time
379 * - system time
380 * - check for guest_time
381 * - else account as system_time
382 *
383 * Check for hardirq is done both for system and user time as there is
384 * no timer going off while we are on hardirq and hence we may never get an
385 * opportunity to update it solely in system time.
386 * p->stime and friends are only updated on system time and not on irq
387 * softirq as those do not count in task exec_runtime any more.
388 */
389 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
390 struct rq *rq, int ticks)
391 {
392 u64 cputime = (__force u64) cputime_one_jiffy * ticks;
393 cputime_t scaled, other;
394
395 /*
396 * When returning from idle, many ticks can get accounted at
397 * once, including some ticks of steal, irq, and softirq time.
398 * Subtract those ticks from the amount of time accounted to
399 * idle, or potentially user or system time. Due to rounding,
400 * other time can exceed ticks occasionally.
401 */
402 other = account_other_time(ULONG_MAX);
403 if (other >= cputime)
404 return;
405 cputime -= other;
406 scaled = cputime_to_scaled(cputime);
407
408 if (this_cpu_ksoftirqd() == p) {
409 /*
410 * ksoftirqd time do not get accounted in cpu_softirq_time.
411 * So, we have to handle it separately here.
412 * Also, p->stime needs to be updated for ksoftirqd.
413 */
414 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
415 } else if (user_tick) {
416 account_user_time(p, cputime, scaled);
417 } else if (p == rq->idle) {
418 account_idle_time(cputime);
419 } else if (p->flags & PF_VCPU) { /* System time or guest time */
420 account_guest_time(p, cputime, scaled);
421 } else {
422 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
423 }
424 }
425
426 static void irqtime_account_idle_ticks(int ticks)
427 {
428 struct rq *rq = this_rq();
429
430 irqtime_account_process_tick(current, 0, rq, ticks);
431 }
432 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
433 static inline void irqtime_account_idle_ticks(int ticks) {}
434 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
435 struct rq *rq, int nr_ticks) {}
436 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
437
438 /*
439 * Use precise platform statistics if available:
440 */
441 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
442
443 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
444 void vtime_common_task_switch(struct task_struct *prev)
445 {
446 if (is_idle_task(prev))
447 vtime_account_idle(prev);
448 else
449 vtime_account_system(prev);
450
451 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
452 vtime_account_user(prev);
453 #endif
454 arch_vtime_task_switch(prev);
455 }
456 #endif
457
458 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
459
460
461 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
462 /*
463 * Archs that account the whole time spent in the idle task
464 * (outside irq) as idle time can rely on this and just implement
465 * vtime_account_system() and vtime_account_idle(). Archs that
466 * have other meaning of the idle time (s390 only includes the
467 * time spent by the CPU when it's in low power mode) must override
468 * vtime_account().
469 */
470 #ifndef __ARCH_HAS_VTIME_ACCOUNT
471 void vtime_account_irq_enter(struct task_struct *tsk)
472 {
473 if (!in_interrupt() && is_idle_task(tsk))
474 vtime_account_idle(tsk);
475 else
476 vtime_account_system(tsk);
477 }
478 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
479 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
480
481 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
482 {
483 *ut = p->utime;
484 *st = p->stime;
485 }
486 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
487
488 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
489 {
490 struct task_cputime cputime;
491
492 thread_group_cputime(p, &cputime);
493
494 *ut = cputime.utime;
495 *st = cputime.stime;
496 }
497 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
498 /*
499 * Account a single tick of cpu time.
500 * @p: the process that the cpu time gets accounted to
501 * @user_tick: indicates if the tick is a user or a system tick
502 */
503 void account_process_tick(struct task_struct *p, int user_tick)
504 {
505 cputime_t cputime, scaled, steal;
506 struct rq *rq = this_rq();
507
508 if (vtime_accounting_cpu_enabled())
509 return;
510
511 if (sched_clock_irqtime) {
512 irqtime_account_process_tick(p, user_tick, rq, 1);
513 return;
514 }
515
516 cputime = cputime_one_jiffy;
517 steal = steal_account_process_time(ULONG_MAX);
518
519 if (steal >= cputime)
520 return;
521
522 cputime -= steal;
523 scaled = cputime_to_scaled(cputime);
524
525 if (user_tick)
526 account_user_time(p, cputime, scaled);
527 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
528 account_system_time(p, HARDIRQ_OFFSET, cputime, scaled);
529 else
530 account_idle_time(cputime);
531 }
532
533 /*
534 * Account multiple ticks of idle time.
535 * @ticks: number of stolen ticks
536 */
537 void account_idle_ticks(unsigned long ticks)
538 {
539 cputime_t cputime, steal;
540
541 if (sched_clock_irqtime) {
542 irqtime_account_idle_ticks(ticks);
543 return;
544 }
545
546 cputime = jiffies_to_cputime(ticks);
547 steal = steal_account_process_time(ULONG_MAX);
548
549 if (steal >= cputime)
550 return;
551
552 cputime -= steal;
553 account_idle_time(cputime);
554 }
555
556 /*
557 * Perform (stime * rtime) / total, but avoid multiplication overflow by
558 * loosing precision when the numbers are big.
559 */
560 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
561 {
562 u64 scaled;
563
564 for (;;) {
565 /* Make sure "rtime" is the bigger of stime/rtime */
566 if (stime > rtime)
567 swap(rtime, stime);
568
569 /* Make sure 'total' fits in 32 bits */
570 if (total >> 32)
571 goto drop_precision;
572
573 /* Does rtime (and thus stime) fit in 32 bits? */
574 if (!(rtime >> 32))
575 break;
576
577 /* Can we just balance rtime/stime rather than dropping bits? */
578 if (stime >> 31)
579 goto drop_precision;
580
581 /* We can grow stime and shrink rtime and try to make them both fit */
582 stime <<= 1;
583 rtime >>= 1;
584 continue;
585
586 drop_precision:
587 /* We drop from rtime, it has more bits than stime */
588 rtime >>= 1;
589 total >>= 1;
590 }
591
592 /*
593 * Make sure gcc understands that this is a 32x32->64 multiply,
594 * followed by a 64/32->64 divide.
595 */
596 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
597 return (__force cputime_t) scaled;
598 }
599
600 /*
601 * Adjust tick based cputime random precision against scheduler runtime
602 * accounting.
603 *
604 * Tick based cputime accounting depend on random scheduling timeslices of a
605 * task to be interrupted or not by the timer. Depending on these
606 * circumstances, the number of these interrupts may be over or
607 * under-optimistic, matching the real user and system cputime with a variable
608 * precision.
609 *
610 * Fix this by scaling these tick based values against the total runtime
611 * accounted by the CFS scheduler.
612 *
613 * This code provides the following guarantees:
614 *
615 * stime + utime == rtime
616 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
617 *
618 * Assuming that rtime_i+1 >= rtime_i.
619 */
620 static void cputime_adjust(struct task_cputime *curr,
621 struct prev_cputime *prev,
622 cputime_t *ut, cputime_t *st)
623 {
624 cputime_t rtime, stime, utime;
625 unsigned long flags;
626
627 /* Serialize concurrent callers such that we can honour our guarantees */
628 raw_spin_lock_irqsave(&prev->lock, flags);
629 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
630
631 /*
632 * This is possible under two circumstances:
633 * - rtime isn't monotonic after all (a bug);
634 * - we got reordered by the lock.
635 *
636 * In both cases this acts as a filter such that the rest of the code
637 * can assume it is monotonic regardless of anything else.
638 */
639 if (prev->stime + prev->utime >= rtime)
640 goto out;
641
642 stime = curr->stime;
643 utime = curr->utime;
644
645 /*
646 * If either stime or both stime and utime are 0, assume all runtime is
647 * userspace. Once a task gets some ticks, the monotonicy code at
648 * 'update' will ensure things converge to the observed ratio.
649 */
650 if (stime == 0) {
651 utime = rtime;
652 goto update;
653 }
654
655 if (utime == 0) {
656 stime = rtime;
657 goto update;
658 }
659
660 stime = scale_stime((__force u64)stime, (__force u64)rtime,
661 (__force u64)(stime + utime));
662
663 update:
664 /*
665 * Make sure stime doesn't go backwards; this preserves monotonicity
666 * for utime because rtime is monotonic.
667 *
668 * utime_i+1 = rtime_i+1 - stime_i
669 * = rtime_i+1 - (rtime_i - utime_i)
670 * = (rtime_i+1 - rtime_i) + utime_i
671 * >= utime_i
672 */
673 if (stime < prev->stime)
674 stime = prev->stime;
675 utime = rtime - stime;
676
677 /*
678 * Make sure utime doesn't go backwards; this still preserves
679 * monotonicity for stime, analogous argument to above.
680 */
681 if (utime < prev->utime) {
682 utime = prev->utime;
683 stime = rtime - utime;
684 }
685
686 prev->stime = stime;
687 prev->utime = utime;
688 out:
689 *ut = prev->utime;
690 *st = prev->stime;
691 raw_spin_unlock_irqrestore(&prev->lock, flags);
692 }
693
694 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
695 {
696 struct task_cputime cputime = {
697 .sum_exec_runtime = p->se.sum_exec_runtime,
698 };
699
700 task_cputime(p, &cputime.utime, &cputime.stime);
701 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
702 }
703 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
704
705 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
706 {
707 struct task_cputime cputime;
708
709 thread_group_cputime(p, &cputime);
710 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
711 }
712 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
713
714 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
715 static cputime_t vtime_delta(struct task_struct *tsk)
716 {
717 unsigned long now = READ_ONCE(jiffies);
718
719 if (time_before(now, (unsigned long)tsk->vtime_snap))
720 return 0;
721
722 return jiffies_to_cputime(now - tsk->vtime_snap);
723 }
724
725 static cputime_t get_vtime_delta(struct task_struct *tsk)
726 {
727 unsigned long now = READ_ONCE(jiffies);
728 cputime_t delta, other;
729
730 /*
731 * Unlike tick based timing, vtime based timing never has lost
732 * ticks, and no need for steal time accounting to make up for
733 * lost ticks. Vtime accounts a rounded version of actual
734 * elapsed time. Limit account_other_time to prevent rounding
735 * errors from causing elapsed vtime to go negative.
736 */
737 delta = jiffies_to_cputime(now - tsk->vtime_snap);
738 other = account_other_time(delta);
739 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
740 tsk->vtime_snap = now;
741
742 return delta - other;
743 }
744
745 static void __vtime_account_system(struct task_struct *tsk)
746 {
747 cputime_t delta_cpu = get_vtime_delta(tsk);
748
749 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
750 }
751
752 void vtime_account_system(struct task_struct *tsk)
753 {
754 if (!vtime_delta(tsk))
755 return;
756
757 write_seqcount_begin(&tsk->vtime_seqcount);
758 __vtime_account_system(tsk);
759 write_seqcount_end(&tsk->vtime_seqcount);
760 }
761
762 void vtime_account_user(struct task_struct *tsk)
763 {
764 cputime_t delta_cpu;
765
766 write_seqcount_begin(&tsk->vtime_seqcount);
767 tsk->vtime_snap_whence = VTIME_SYS;
768 if (vtime_delta(tsk)) {
769 delta_cpu = get_vtime_delta(tsk);
770 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
771 }
772 write_seqcount_end(&tsk->vtime_seqcount);
773 }
774
775 void vtime_user_enter(struct task_struct *tsk)
776 {
777 write_seqcount_begin(&tsk->vtime_seqcount);
778 if (vtime_delta(tsk))
779 __vtime_account_system(tsk);
780 tsk->vtime_snap_whence = VTIME_USER;
781 write_seqcount_end(&tsk->vtime_seqcount);
782 }
783
784 void vtime_guest_enter(struct task_struct *tsk)
785 {
786 /*
787 * The flags must be updated under the lock with
788 * the vtime_snap flush and update.
789 * That enforces a right ordering and update sequence
790 * synchronization against the reader (task_gtime())
791 * that can thus safely catch up with a tickless delta.
792 */
793 write_seqcount_begin(&tsk->vtime_seqcount);
794 if (vtime_delta(tsk))
795 __vtime_account_system(tsk);
796 current->flags |= PF_VCPU;
797 write_seqcount_end(&tsk->vtime_seqcount);
798 }
799 EXPORT_SYMBOL_GPL(vtime_guest_enter);
800
801 void vtime_guest_exit(struct task_struct *tsk)
802 {
803 write_seqcount_begin(&tsk->vtime_seqcount);
804 __vtime_account_system(tsk);
805 current->flags &= ~PF_VCPU;
806 write_seqcount_end(&tsk->vtime_seqcount);
807 }
808 EXPORT_SYMBOL_GPL(vtime_guest_exit);
809
810 void vtime_account_idle(struct task_struct *tsk)
811 {
812 cputime_t delta_cpu = get_vtime_delta(tsk);
813
814 account_idle_time(delta_cpu);
815 }
816
817 void arch_vtime_task_switch(struct task_struct *prev)
818 {
819 write_seqcount_begin(&prev->vtime_seqcount);
820 prev->vtime_snap_whence = VTIME_INACTIVE;
821 write_seqcount_end(&prev->vtime_seqcount);
822
823 write_seqcount_begin(&current->vtime_seqcount);
824 current->vtime_snap_whence = VTIME_SYS;
825 current->vtime_snap = jiffies;
826 write_seqcount_end(&current->vtime_seqcount);
827 }
828
829 void vtime_init_idle(struct task_struct *t, int cpu)
830 {
831 unsigned long flags;
832
833 local_irq_save(flags);
834 write_seqcount_begin(&t->vtime_seqcount);
835 t->vtime_snap_whence = VTIME_SYS;
836 t->vtime_snap = jiffies;
837 write_seqcount_end(&t->vtime_seqcount);
838 local_irq_restore(flags);
839 }
840
841 cputime_t task_gtime(struct task_struct *t)
842 {
843 unsigned int seq;
844 cputime_t gtime;
845
846 if (!vtime_accounting_enabled())
847 return t->gtime;
848
849 do {
850 seq = read_seqcount_begin(&t->vtime_seqcount);
851
852 gtime = t->gtime;
853 if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
854 gtime += vtime_delta(t);
855
856 } while (read_seqcount_retry(&t->vtime_seqcount, seq));
857
858 return gtime;
859 }
860
861 /*
862 * Fetch cputime raw values from fields of task_struct and
863 * add up the pending nohz execution time since the last
864 * cputime snapshot.
865 */
866 static void
867 fetch_task_cputime(struct task_struct *t,
868 cputime_t *u_dst, cputime_t *s_dst,
869 cputime_t *u_src, cputime_t *s_src,
870 cputime_t *udelta, cputime_t *sdelta)
871 {
872 unsigned int seq;
873 unsigned long long delta;
874
875 do {
876 *udelta = 0;
877 *sdelta = 0;
878
879 seq = read_seqcount_begin(&t->vtime_seqcount);
880
881 if (u_dst)
882 *u_dst = *u_src;
883 if (s_dst)
884 *s_dst = *s_src;
885
886 /* Task is sleeping, nothing to add */
887 if (t->vtime_snap_whence == VTIME_INACTIVE ||
888 is_idle_task(t))
889 continue;
890
891 delta = vtime_delta(t);
892
893 /*
894 * Task runs either in user or kernel space, add pending nohz time to
895 * the right place.
896 */
897 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
898 *udelta = delta;
899 } else {
900 if (t->vtime_snap_whence == VTIME_SYS)
901 *sdelta = delta;
902 }
903 } while (read_seqcount_retry(&t->vtime_seqcount, seq));
904 }
905
906
907 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
908 {
909 cputime_t udelta, sdelta;
910
911 if (!vtime_accounting_enabled()) {
912 if (utime)
913 *utime = t->utime;
914 if (stime)
915 *stime = t->stime;
916 return;
917 }
918
919 fetch_task_cputime(t, utime, stime, &t->utime,
920 &t->stime, &udelta, &sdelta);
921 if (utime)
922 *utime += udelta;
923 if (stime)
924 *stime += sdelta;
925 }
926
927 void task_cputime_scaled(struct task_struct *t,
928 cputime_t *utimescaled, cputime_t *stimescaled)
929 {
930 cputime_t udelta, sdelta;
931
932 if (!vtime_accounting_enabled()) {
933 if (utimescaled)
934 *utimescaled = t->utimescaled;
935 if (stimescaled)
936 *stimescaled = t->stimescaled;
937 return;
938 }
939
940 fetch_task_cputime(t, utimescaled, stimescaled,
941 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
942 if (utimescaled)
943 *utimescaled += cputime_to_scaled(udelta);
944 if (stimescaled)
945 *stimescaled += cputime_to_scaled(sdelta);
946 }
947 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */