]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/cputime.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[mirror_ubuntu-artful-kernel.git] / kernel / sched / cputime.c
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8
9
10 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12 /*
13 * There are no locks covering percpu hardirq/softirq time.
14 * They are only modified in vtime_account, on corresponding CPU
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
18 * race with irq/vtime_account on this CPU. We would either get old
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
22 */
23 DEFINE_PER_CPU(u64, cpu_hardirq_time);
24 DEFINE_PER_CPU(u64, cpu_softirq_time);
25
26 static DEFINE_PER_CPU(u64, irq_start_time);
27 static int sched_clock_irqtime;
28
29 void enable_sched_clock_irqtime(void)
30 {
31 sched_clock_irqtime = 1;
32 }
33
34 void disable_sched_clock_irqtime(void)
35 {
36 sched_clock_irqtime = 0;
37 }
38
39 #ifndef CONFIG_64BIT
40 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41 #endif /* CONFIG_64BIT */
42
43 /*
44 * Called before incrementing preempt_count on {soft,}irq_enter
45 * and before decrementing preempt_count on {soft,}irq_exit.
46 */
47 void irqtime_account_irq(struct task_struct *curr)
48 {
49 unsigned long flags;
50 s64 delta;
51 int cpu;
52
53 if (!sched_clock_irqtime)
54 return;
55
56 local_irq_save(flags);
57
58 cpu = smp_processor_id();
59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 __this_cpu_add(irq_start_time, delta);
61
62 irq_time_write_begin();
63 /*
64 * We do not account for softirq time from ksoftirqd here.
65 * We want to continue accounting softirq time to ksoftirqd thread
66 * in that case, so as not to confuse scheduler with a special task
67 * that do not consume any time, but still wants to run.
68 */
69 if (hardirq_count())
70 __this_cpu_add(cpu_hardirq_time, delta);
71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 __this_cpu_add(cpu_softirq_time, delta);
73
74 irq_time_write_end();
75 local_irq_restore(flags);
76 }
77 EXPORT_SYMBOL_GPL(irqtime_account_irq);
78
79 static int irqtime_account_hi_update(void)
80 {
81 u64 *cpustat = kcpustat_this_cpu->cpustat;
82 unsigned long flags;
83 u64 latest_ns;
84 int ret = 0;
85
86 local_irq_save(flags);
87 latest_ns = this_cpu_read(cpu_hardirq_time);
88 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89 ret = 1;
90 local_irq_restore(flags);
91 return ret;
92 }
93
94 static int irqtime_account_si_update(void)
95 {
96 u64 *cpustat = kcpustat_this_cpu->cpustat;
97 unsigned long flags;
98 u64 latest_ns;
99 int ret = 0;
100
101 local_irq_save(flags);
102 latest_ns = this_cpu_read(cpu_softirq_time);
103 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104 ret = 1;
105 local_irq_restore(flags);
106 return ret;
107 }
108
109 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
110
111 #define sched_clock_irqtime (0)
112
113 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114
115 static inline void task_group_account_field(struct task_struct *p, int index,
116 u64 tmp)
117 {
118 /*
119 * Since all updates are sure to touch the root cgroup, we
120 * get ourselves ahead and touch it first. If the root cgroup
121 * is the only cgroup, then nothing else should be necessary.
122 *
123 */
124 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
125
126 cpuacct_account_field(p, index, tmp);
127 }
128
129 /*
130 * Account user cpu time to a process.
131 * @p: the process that the cpu time gets accounted to
132 * @cputime: the cpu time spent in user space since the last update
133 * @cputime_scaled: cputime scaled by cpu frequency
134 */
135 void account_user_time(struct task_struct *p, cputime_t cputime,
136 cputime_t cputime_scaled)
137 {
138 int index;
139
140 /* Add user time to process. */
141 p->utime += cputime;
142 p->utimescaled += cputime_scaled;
143 account_group_user_time(p, cputime);
144
145 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
146
147 /* Add user time to cpustat. */
148 task_group_account_field(p, index, (__force u64) cputime);
149
150 /* Account for user time used */
151 acct_account_cputime(p);
152 }
153
154 /*
155 * Account guest cpu time to a process.
156 * @p: the process that the cpu time gets accounted to
157 * @cputime: the cpu time spent in virtual machine since the last update
158 * @cputime_scaled: cputime scaled by cpu frequency
159 */
160 static void account_guest_time(struct task_struct *p, cputime_t cputime,
161 cputime_t cputime_scaled)
162 {
163 u64 *cpustat = kcpustat_this_cpu->cpustat;
164
165 /* Add guest time to process. */
166 p->utime += cputime;
167 p->utimescaled += cputime_scaled;
168 account_group_user_time(p, cputime);
169 p->gtime += cputime;
170
171 /* Add guest time to cpustat. */
172 if (task_nice(p) > 0) {
173 cpustat[CPUTIME_NICE] += (__force u64) cputime;
174 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175 } else {
176 cpustat[CPUTIME_USER] += (__force u64) cputime;
177 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178 }
179 }
180
181 /*
182 * Account system cpu time to a process and desired cpustat field
183 * @p: the process that the cpu time gets accounted to
184 * @cputime: the cpu time spent in kernel space since the last update
185 * @cputime_scaled: cputime scaled by cpu frequency
186 * @target_cputime64: pointer to cpustat field that has to be updated
187 */
188 static inline
189 void __account_system_time(struct task_struct *p, cputime_t cputime,
190 cputime_t cputime_scaled, int index)
191 {
192 /* Add system time to process. */
193 p->stime += cputime;
194 p->stimescaled += cputime_scaled;
195 account_group_system_time(p, cputime);
196
197 /* Add system time to cpustat. */
198 task_group_account_field(p, index, (__force u64) cputime);
199
200 /* Account for system time used */
201 acct_account_cputime(p);
202 }
203
204 /*
205 * Account system cpu time to a process.
206 * @p: the process that the cpu time gets accounted to
207 * @hardirq_offset: the offset to subtract from hardirq_count()
208 * @cputime: the cpu time spent in kernel space since the last update
209 * @cputime_scaled: cputime scaled by cpu frequency
210 */
211 void account_system_time(struct task_struct *p, int hardirq_offset,
212 cputime_t cputime, cputime_t cputime_scaled)
213 {
214 int index;
215
216 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217 account_guest_time(p, cputime, cputime_scaled);
218 return;
219 }
220
221 if (hardirq_count() - hardirq_offset)
222 index = CPUTIME_IRQ;
223 else if (in_serving_softirq())
224 index = CPUTIME_SOFTIRQ;
225 else
226 index = CPUTIME_SYSTEM;
227
228 __account_system_time(p, cputime, cputime_scaled, index);
229 }
230
231 /*
232 * Account for involuntary wait time.
233 * @cputime: the cpu time spent in involuntary wait
234 */
235 void account_steal_time(cputime_t cputime)
236 {
237 u64 *cpustat = kcpustat_this_cpu->cpustat;
238
239 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240 }
241
242 /*
243 * Account for idle time.
244 * @cputime: the cpu time spent in idle wait
245 */
246 void account_idle_time(cputime_t cputime)
247 {
248 u64 *cpustat = kcpustat_this_cpu->cpustat;
249 struct rq *rq = this_rq();
250
251 if (atomic_read(&rq->nr_iowait) > 0)
252 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253 else
254 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255 }
256
257 static __always_inline bool steal_account_process_tick(void)
258 {
259 #ifdef CONFIG_PARAVIRT
260 if (static_key_false(&paravirt_steal_enabled)) {
261 u64 steal;
262 cputime_t steal_ct;
263
264 steal = paravirt_steal_clock(smp_processor_id());
265 steal -= this_rq()->prev_steal_time;
266
267 /*
268 * cputime_t may be less precise than nsecs (eg: if it's
269 * based on jiffies). Lets cast the result to cputime
270 * granularity and account the rest on the next rounds.
271 */
272 steal_ct = nsecs_to_cputime(steal);
273 this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
274
275 account_steal_time(steal_ct);
276 return steal_ct;
277 }
278 #endif
279 return false;
280 }
281
282 /*
283 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
284 * tasks (sum on group iteration) belonging to @tsk's group.
285 */
286 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
287 {
288 struct signal_struct *sig = tsk->signal;
289 cputime_t utime, stime;
290 struct task_struct *t;
291 unsigned int seq, nextseq;
292 unsigned long flags;
293
294 rcu_read_lock();
295 /* Attempt a lockless read on the first round. */
296 nextseq = 0;
297 do {
298 seq = nextseq;
299 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
300 times->utime = sig->utime;
301 times->stime = sig->stime;
302 times->sum_exec_runtime = sig->sum_sched_runtime;
303
304 for_each_thread(tsk, t) {
305 task_cputime(t, &utime, &stime);
306 times->utime += utime;
307 times->stime += stime;
308 times->sum_exec_runtime += task_sched_runtime(t);
309 }
310 /* If lockless access failed, take the lock. */
311 nextseq = 1;
312 } while (need_seqretry(&sig->stats_lock, seq));
313 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
314 rcu_read_unlock();
315 }
316
317 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
318 /*
319 * Account a tick to a process and cpustat
320 * @p: the process that the cpu time gets accounted to
321 * @user_tick: is the tick from userspace
322 * @rq: the pointer to rq
323 *
324 * Tick demultiplexing follows the order
325 * - pending hardirq update
326 * - pending softirq update
327 * - user_time
328 * - idle_time
329 * - system time
330 * - check for guest_time
331 * - else account as system_time
332 *
333 * Check for hardirq is done both for system and user time as there is
334 * no timer going off while we are on hardirq and hence we may never get an
335 * opportunity to update it solely in system time.
336 * p->stime and friends are only updated on system time and not on irq
337 * softirq as those do not count in task exec_runtime any more.
338 */
339 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
340 struct rq *rq, int ticks)
341 {
342 cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
343 u64 cputime = (__force u64) cputime_one_jiffy;
344 u64 *cpustat = kcpustat_this_cpu->cpustat;
345
346 if (steal_account_process_tick())
347 return;
348
349 cputime *= ticks;
350 scaled *= ticks;
351
352 if (irqtime_account_hi_update()) {
353 cpustat[CPUTIME_IRQ] += cputime;
354 } else if (irqtime_account_si_update()) {
355 cpustat[CPUTIME_SOFTIRQ] += cputime;
356 } else if (this_cpu_ksoftirqd() == p) {
357 /*
358 * ksoftirqd time do not get accounted in cpu_softirq_time.
359 * So, we have to handle it separately here.
360 * Also, p->stime needs to be updated for ksoftirqd.
361 */
362 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
363 } else if (user_tick) {
364 account_user_time(p, cputime, scaled);
365 } else if (p == rq->idle) {
366 account_idle_time(cputime);
367 } else if (p->flags & PF_VCPU) { /* System time or guest time */
368 account_guest_time(p, cputime, scaled);
369 } else {
370 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
371 }
372 }
373
374 static void irqtime_account_idle_ticks(int ticks)
375 {
376 struct rq *rq = this_rq();
377
378 irqtime_account_process_tick(current, 0, rq, ticks);
379 }
380 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
381 static inline void irqtime_account_idle_ticks(int ticks) {}
382 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
383 struct rq *rq, int nr_ticks) {}
384 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
385
386 /*
387 * Use precise platform statistics if available:
388 */
389 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
390
391 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
392 void vtime_common_task_switch(struct task_struct *prev)
393 {
394 if (is_idle_task(prev))
395 vtime_account_idle(prev);
396 else
397 vtime_account_system(prev);
398
399 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
400 vtime_account_user(prev);
401 #endif
402 arch_vtime_task_switch(prev);
403 }
404 #endif
405
406 /*
407 * Archs that account the whole time spent in the idle task
408 * (outside irq) as idle time can rely on this and just implement
409 * vtime_account_system() and vtime_account_idle(). Archs that
410 * have other meaning of the idle time (s390 only includes the
411 * time spent by the CPU when it's in low power mode) must override
412 * vtime_account().
413 */
414 #ifndef __ARCH_HAS_VTIME_ACCOUNT
415 void vtime_common_account_irq_enter(struct task_struct *tsk)
416 {
417 if (!in_interrupt()) {
418 /*
419 * If we interrupted user, context_tracking_in_user()
420 * is 1 because the context tracking don't hook
421 * on irq entry/exit. This way we know if
422 * we need to flush user time on kernel entry.
423 */
424 if (context_tracking_in_user()) {
425 vtime_account_user(tsk);
426 return;
427 }
428
429 if (is_idle_task(tsk)) {
430 vtime_account_idle(tsk);
431 return;
432 }
433 }
434 vtime_account_system(tsk);
435 }
436 EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
437 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
438 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
439
440
441 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
442 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
443 {
444 *ut = p->utime;
445 *st = p->stime;
446 }
447
448 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
449 {
450 struct task_cputime cputime;
451
452 thread_group_cputime(p, &cputime);
453
454 *ut = cputime.utime;
455 *st = cputime.stime;
456 }
457 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
458 /*
459 * Account a single tick of cpu time.
460 * @p: the process that the cpu time gets accounted to
461 * @user_tick: indicates if the tick is a user or a system tick
462 */
463 void account_process_tick(struct task_struct *p, int user_tick)
464 {
465 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
466 struct rq *rq = this_rq();
467
468 if (vtime_accounting_enabled())
469 return;
470
471 if (sched_clock_irqtime) {
472 irqtime_account_process_tick(p, user_tick, rq, 1);
473 return;
474 }
475
476 if (steal_account_process_tick())
477 return;
478
479 if (user_tick)
480 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
481 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
482 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
483 one_jiffy_scaled);
484 else
485 account_idle_time(cputime_one_jiffy);
486 }
487
488 /*
489 * Account multiple ticks of steal time.
490 * @p: the process from which the cpu time has been stolen
491 * @ticks: number of stolen ticks
492 */
493 void account_steal_ticks(unsigned long ticks)
494 {
495 account_steal_time(jiffies_to_cputime(ticks));
496 }
497
498 /*
499 * Account multiple ticks of idle time.
500 * @ticks: number of stolen ticks
501 */
502 void account_idle_ticks(unsigned long ticks)
503 {
504
505 if (sched_clock_irqtime) {
506 irqtime_account_idle_ticks(ticks);
507 return;
508 }
509
510 account_idle_time(jiffies_to_cputime(ticks));
511 }
512
513 /*
514 * Perform (stime * rtime) / total, but avoid multiplication overflow by
515 * loosing precision when the numbers are big.
516 */
517 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
518 {
519 u64 scaled;
520
521 for (;;) {
522 /* Make sure "rtime" is the bigger of stime/rtime */
523 if (stime > rtime)
524 swap(rtime, stime);
525
526 /* Make sure 'total' fits in 32 bits */
527 if (total >> 32)
528 goto drop_precision;
529
530 /* Does rtime (and thus stime) fit in 32 bits? */
531 if (!(rtime >> 32))
532 break;
533
534 /* Can we just balance rtime/stime rather than dropping bits? */
535 if (stime >> 31)
536 goto drop_precision;
537
538 /* We can grow stime and shrink rtime and try to make them both fit */
539 stime <<= 1;
540 rtime >>= 1;
541 continue;
542
543 drop_precision:
544 /* We drop from rtime, it has more bits than stime */
545 rtime >>= 1;
546 total >>= 1;
547 }
548
549 /*
550 * Make sure gcc understands that this is a 32x32->64 multiply,
551 * followed by a 64/32->64 divide.
552 */
553 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
554 return (__force cputime_t) scaled;
555 }
556
557 /*
558 * Atomically advance counter to the new value. Interrupts, vcpu
559 * scheduling, and scaling inaccuracies can cause cputime_advance
560 * to be occasionally called with a new value smaller than counter.
561 * Let's enforce atomicity.
562 *
563 * Normally a caller will only go through this loop once, or not
564 * at all in case a previous caller updated counter the same jiffy.
565 */
566 static void cputime_advance(cputime_t *counter, cputime_t new)
567 {
568 cputime_t old;
569
570 while (new > (old = ACCESS_ONCE(*counter)))
571 cmpxchg_cputime(counter, old, new);
572 }
573
574 /*
575 * Adjust tick based cputime random precision against scheduler
576 * runtime accounting.
577 */
578 static void cputime_adjust(struct task_cputime *curr,
579 struct cputime *prev,
580 cputime_t *ut, cputime_t *st)
581 {
582 cputime_t rtime, stime, utime;
583
584 /*
585 * Tick based cputime accounting depend on random scheduling
586 * timeslices of a task to be interrupted or not by the timer.
587 * Depending on these circumstances, the number of these interrupts
588 * may be over or under-optimistic, matching the real user and system
589 * cputime with a variable precision.
590 *
591 * Fix this by scaling these tick based values against the total
592 * runtime accounted by the CFS scheduler.
593 */
594 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
595
596 /*
597 * Update userspace visible utime/stime values only if actual execution
598 * time is bigger than already exported. Note that can happen, that we
599 * provided bigger values due to scaling inaccuracy on big numbers.
600 */
601 if (prev->stime + prev->utime >= rtime)
602 goto out;
603
604 stime = curr->stime;
605 utime = curr->utime;
606
607 if (utime == 0) {
608 stime = rtime;
609 } else if (stime == 0) {
610 utime = rtime;
611 } else {
612 cputime_t total = stime + utime;
613
614 stime = scale_stime((__force u64)stime,
615 (__force u64)rtime, (__force u64)total);
616 utime = rtime - stime;
617 }
618
619 cputime_advance(&prev->stime, stime);
620 cputime_advance(&prev->utime, utime);
621
622 out:
623 *ut = prev->utime;
624 *st = prev->stime;
625 }
626
627 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
628 {
629 struct task_cputime cputime = {
630 .sum_exec_runtime = p->se.sum_exec_runtime,
631 };
632
633 task_cputime(p, &cputime.utime, &cputime.stime);
634 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
635 }
636
637 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
638 {
639 struct task_cputime cputime;
640
641 thread_group_cputime(p, &cputime);
642 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
643 }
644 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
645
646 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
647 static unsigned long long vtime_delta(struct task_struct *tsk)
648 {
649 unsigned long long clock;
650
651 clock = local_clock();
652 if (clock < tsk->vtime_snap)
653 return 0;
654
655 return clock - tsk->vtime_snap;
656 }
657
658 static cputime_t get_vtime_delta(struct task_struct *tsk)
659 {
660 unsigned long long delta = vtime_delta(tsk);
661
662 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
663 tsk->vtime_snap += delta;
664
665 /* CHECKME: always safe to convert nsecs to cputime? */
666 return nsecs_to_cputime(delta);
667 }
668
669 static void __vtime_account_system(struct task_struct *tsk)
670 {
671 cputime_t delta_cpu = get_vtime_delta(tsk);
672
673 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
674 }
675
676 void vtime_account_system(struct task_struct *tsk)
677 {
678 write_seqlock(&tsk->vtime_seqlock);
679 __vtime_account_system(tsk);
680 write_sequnlock(&tsk->vtime_seqlock);
681 }
682
683 void vtime_gen_account_irq_exit(struct task_struct *tsk)
684 {
685 write_seqlock(&tsk->vtime_seqlock);
686 __vtime_account_system(tsk);
687 if (context_tracking_in_user())
688 tsk->vtime_snap_whence = VTIME_USER;
689 write_sequnlock(&tsk->vtime_seqlock);
690 }
691
692 void vtime_account_user(struct task_struct *tsk)
693 {
694 cputime_t delta_cpu;
695
696 write_seqlock(&tsk->vtime_seqlock);
697 delta_cpu = get_vtime_delta(tsk);
698 tsk->vtime_snap_whence = VTIME_SYS;
699 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
700 write_sequnlock(&tsk->vtime_seqlock);
701 }
702
703 void vtime_user_enter(struct task_struct *tsk)
704 {
705 write_seqlock(&tsk->vtime_seqlock);
706 __vtime_account_system(tsk);
707 tsk->vtime_snap_whence = VTIME_USER;
708 write_sequnlock(&tsk->vtime_seqlock);
709 }
710
711 void vtime_guest_enter(struct task_struct *tsk)
712 {
713 /*
714 * The flags must be updated under the lock with
715 * the vtime_snap flush and update.
716 * That enforces a right ordering and update sequence
717 * synchronization against the reader (task_gtime())
718 * that can thus safely catch up with a tickless delta.
719 */
720 write_seqlock(&tsk->vtime_seqlock);
721 __vtime_account_system(tsk);
722 current->flags |= PF_VCPU;
723 write_sequnlock(&tsk->vtime_seqlock);
724 }
725 EXPORT_SYMBOL_GPL(vtime_guest_enter);
726
727 void vtime_guest_exit(struct task_struct *tsk)
728 {
729 write_seqlock(&tsk->vtime_seqlock);
730 __vtime_account_system(tsk);
731 current->flags &= ~PF_VCPU;
732 write_sequnlock(&tsk->vtime_seqlock);
733 }
734 EXPORT_SYMBOL_GPL(vtime_guest_exit);
735
736 void vtime_account_idle(struct task_struct *tsk)
737 {
738 cputime_t delta_cpu = get_vtime_delta(tsk);
739
740 account_idle_time(delta_cpu);
741 }
742
743 void arch_vtime_task_switch(struct task_struct *prev)
744 {
745 write_seqlock(&prev->vtime_seqlock);
746 prev->vtime_snap_whence = VTIME_SLEEPING;
747 write_sequnlock(&prev->vtime_seqlock);
748
749 write_seqlock(&current->vtime_seqlock);
750 current->vtime_snap_whence = VTIME_SYS;
751 current->vtime_snap = sched_clock_cpu(smp_processor_id());
752 write_sequnlock(&current->vtime_seqlock);
753 }
754
755 void vtime_init_idle(struct task_struct *t, int cpu)
756 {
757 unsigned long flags;
758
759 write_seqlock_irqsave(&t->vtime_seqlock, flags);
760 t->vtime_snap_whence = VTIME_SYS;
761 t->vtime_snap = sched_clock_cpu(cpu);
762 write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
763 }
764
765 cputime_t task_gtime(struct task_struct *t)
766 {
767 unsigned int seq;
768 cputime_t gtime;
769
770 do {
771 seq = read_seqbegin(&t->vtime_seqlock);
772
773 gtime = t->gtime;
774 if (t->flags & PF_VCPU)
775 gtime += vtime_delta(t);
776
777 } while (read_seqretry(&t->vtime_seqlock, seq));
778
779 return gtime;
780 }
781
782 /*
783 * Fetch cputime raw values from fields of task_struct and
784 * add up the pending nohz execution time since the last
785 * cputime snapshot.
786 */
787 static void
788 fetch_task_cputime(struct task_struct *t,
789 cputime_t *u_dst, cputime_t *s_dst,
790 cputime_t *u_src, cputime_t *s_src,
791 cputime_t *udelta, cputime_t *sdelta)
792 {
793 unsigned int seq;
794 unsigned long long delta;
795
796 do {
797 *udelta = 0;
798 *sdelta = 0;
799
800 seq = read_seqbegin(&t->vtime_seqlock);
801
802 if (u_dst)
803 *u_dst = *u_src;
804 if (s_dst)
805 *s_dst = *s_src;
806
807 /* Task is sleeping, nothing to add */
808 if (t->vtime_snap_whence == VTIME_SLEEPING ||
809 is_idle_task(t))
810 continue;
811
812 delta = vtime_delta(t);
813
814 /*
815 * Task runs either in user or kernel space, add pending nohz time to
816 * the right place.
817 */
818 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
819 *udelta = delta;
820 } else {
821 if (t->vtime_snap_whence == VTIME_SYS)
822 *sdelta = delta;
823 }
824 } while (read_seqretry(&t->vtime_seqlock, seq));
825 }
826
827
828 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
829 {
830 cputime_t udelta, sdelta;
831
832 fetch_task_cputime(t, utime, stime, &t->utime,
833 &t->stime, &udelta, &sdelta);
834 if (utime)
835 *utime += udelta;
836 if (stime)
837 *stime += sdelta;
838 }
839
840 void task_cputime_scaled(struct task_struct *t,
841 cputime_t *utimescaled, cputime_t *stimescaled)
842 {
843 cputime_t udelta, sdelta;
844
845 fetch_task_cputime(t, utimescaled, stimescaled,
846 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
847 if (utimescaled)
848 *utimescaled += cputime_to_scaled(udelta);
849 if (stimescaled)
850 *stimescaled += cputime_to_scaled(sdelta);
851 }
852 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */