]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/cputime.c
Merge branch 'pm-sleep'
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / cputime.c
1 #include <linux/export.h>
2 #include <linux/sched.h>
3 #include <linux/tsacct_kern.h>
4 #include <linux/kernel_stat.h>
5 #include <linux/static_key.h>
6 #include <linux/context_tracking.h>
7 #include "sched.h"
8 #ifdef CONFIG_PARAVIRT
9 #include <asm/paravirt.h>
10 #endif
11
12
13 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
14
15 /*
16 * There are no locks covering percpu hardirq/softirq time.
17 * They are only modified in vtime_account, on corresponding CPU
18 * with interrupts disabled. So, writes are safe.
19 * They are read and saved off onto struct rq in update_rq_clock().
20 * This may result in other CPU reading this CPU's irq time and can
21 * race with irq/vtime_account on this CPU. We would either get old
22 * or new value with a side effect of accounting a slice of irq time to wrong
23 * task when irq is in progress while we read rq->clock. That is a worthy
24 * compromise in place of having locks on each irq in account_system_time.
25 */
26 DEFINE_PER_CPU(u64, cpu_hardirq_time);
27 DEFINE_PER_CPU(u64, cpu_softirq_time);
28
29 static DEFINE_PER_CPU(u64, irq_start_time);
30 static int sched_clock_irqtime;
31
32 void enable_sched_clock_irqtime(void)
33 {
34 sched_clock_irqtime = 1;
35 }
36
37 void disable_sched_clock_irqtime(void)
38 {
39 sched_clock_irqtime = 0;
40 }
41
42 #ifndef CONFIG_64BIT
43 DEFINE_PER_CPU(seqcount_t, irq_time_seq);
44 #endif /* CONFIG_64BIT */
45
46 /*
47 * Called before incrementing preempt_count on {soft,}irq_enter
48 * and before decrementing preempt_count on {soft,}irq_exit.
49 */
50 void irqtime_account_irq(struct task_struct *curr)
51 {
52 s64 delta;
53 int cpu;
54
55 if (!sched_clock_irqtime)
56 return;
57
58 cpu = smp_processor_id();
59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 __this_cpu_add(irq_start_time, delta);
61
62 irq_time_write_begin();
63 /*
64 * We do not account for softirq time from ksoftirqd here.
65 * We want to continue accounting softirq time to ksoftirqd thread
66 * in that case, so as not to confuse scheduler with a special task
67 * that do not consume any time, but still wants to run.
68 */
69 if (hardirq_count())
70 __this_cpu_add(cpu_hardirq_time, delta);
71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 __this_cpu_add(cpu_softirq_time, delta);
73
74 irq_time_write_end();
75 }
76 EXPORT_SYMBOL_GPL(irqtime_account_irq);
77
78 static cputime_t irqtime_account_hi_update(cputime_t maxtime)
79 {
80 u64 *cpustat = kcpustat_this_cpu->cpustat;
81 unsigned long flags;
82 cputime_t irq_cputime;
83
84 local_irq_save(flags);
85 irq_cputime = nsecs_to_cputime64(this_cpu_read(cpu_hardirq_time)) -
86 cpustat[CPUTIME_IRQ];
87 irq_cputime = min(irq_cputime, maxtime);
88 cpustat[CPUTIME_IRQ] += irq_cputime;
89 local_irq_restore(flags);
90 return irq_cputime;
91 }
92
93 static cputime_t irqtime_account_si_update(cputime_t maxtime)
94 {
95 u64 *cpustat = kcpustat_this_cpu->cpustat;
96 unsigned long flags;
97 cputime_t softirq_cputime;
98
99 local_irq_save(flags);
100 softirq_cputime = nsecs_to_cputime64(this_cpu_read(cpu_softirq_time)) -
101 cpustat[CPUTIME_SOFTIRQ];
102 softirq_cputime = min(softirq_cputime, maxtime);
103 cpustat[CPUTIME_SOFTIRQ] += softirq_cputime;
104 local_irq_restore(flags);
105 return softirq_cputime;
106 }
107
108 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
109
110 #define sched_clock_irqtime (0)
111
112 static cputime_t irqtime_account_hi_update(cputime_t dummy)
113 {
114 return 0;
115 }
116
117 static cputime_t irqtime_account_si_update(cputime_t dummy)
118 {
119 return 0;
120 }
121
122 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
123
124 static inline void task_group_account_field(struct task_struct *p, int index,
125 u64 tmp)
126 {
127 /*
128 * Since all updates are sure to touch the root cgroup, we
129 * get ourselves ahead and touch it first. If the root cgroup
130 * is the only cgroup, then nothing else should be necessary.
131 *
132 */
133 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
134
135 cpuacct_account_field(p, index, tmp);
136 }
137
138 /*
139 * Account user cpu time to a process.
140 * @p: the process that the cpu time gets accounted to
141 * @cputime: the cpu time spent in user space since the last update
142 * @cputime_scaled: cputime scaled by cpu frequency
143 */
144 void account_user_time(struct task_struct *p, cputime_t cputime,
145 cputime_t cputime_scaled)
146 {
147 int index;
148
149 /* Add user time to process. */
150 p->utime += cputime;
151 p->utimescaled += cputime_scaled;
152 account_group_user_time(p, cputime);
153
154 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
155
156 /* Add user time to cpustat. */
157 task_group_account_field(p, index, (__force u64) cputime);
158
159 /* Account for user time used */
160 acct_account_cputime(p);
161 }
162
163 /*
164 * Account guest cpu time to a process.
165 * @p: the process that the cpu time gets accounted to
166 * @cputime: the cpu time spent in virtual machine since the last update
167 * @cputime_scaled: cputime scaled by cpu frequency
168 */
169 static void account_guest_time(struct task_struct *p, cputime_t cputime,
170 cputime_t cputime_scaled)
171 {
172 u64 *cpustat = kcpustat_this_cpu->cpustat;
173
174 /* Add guest time to process. */
175 p->utime += cputime;
176 p->utimescaled += cputime_scaled;
177 account_group_user_time(p, cputime);
178 p->gtime += cputime;
179
180 /* Add guest time to cpustat. */
181 if (task_nice(p) > 0) {
182 cpustat[CPUTIME_NICE] += (__force u64) cputime;
183 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
184 } else {
185 cpustat[CPUTIME_USER] += (__force u64) cputime;
186 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
187 }
188 }
189
190 /*
191 * Account system cpu time to a process and desired cpustat field
192 * @p: the process that the cpu time gets accounted to
193 * @cputime: the cpu time spent in kernel space since the last update
194 * @cputime_scaled: cputime scaled by cpu frequency
195 * @target_cputime64: pointer to cpustat field that has to be updated
196 */
197 static inline
198 void __account_system_time(struct task_struct *p, cputime_t cputime,
199 cputime_t cputime_scaled, int index)
200 {
201 /* Add system time to process. */
202 p->stime += cputime;
203 p->stimescaled += cputime_scaled;
204 account_group_system_time(p, cputime);
205
206 /* Add system time to cpustat. */
207 task_group_account_field(p, index, (__force u64) cputime);
208
209 /* Account for system time used */
210 acct_account_cputime(p);
211 }
212
213 /*
214 * Account system cpu time to a process.
215 * @p: the process that the cpu time gets accounted to
216 * @hardirq_offset: the offset to subtract from hardirq_count()
217 * @cputime: the cpu time spent in kernel space since the last update
218 * @cputime_scaled: cputime scaled by cpu frequency
219 */
220 void account_system_time(struct task_struct *p, int hardirq_offset,
221 cputime_t cputime, cputime_t cputime_scaled)
222 {
223 int index;
224
225 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
226 account_guest_time(p, cputime, cputime_scaled);
227 return;
228 }
229
230 if (hardirq_count() - hardirq_offset)
231 index = CPUTIME_IRQ;
232 else if (in_serving_softirq())
233 index = CPUTIME_SOFTIRQ;
234 else
235 index = CPUTIME_SYSTEM;
236
237 __account_system_time(p, cputime, cputime_scaled, index);
238 }
239
240 /*
241 * Account for involuntary wait time.
242 * @cputime: the cpu time spent in involuntary wait
243 */
244 void account_steal_time(cputime_t cputime)
245 {
246 u64 *cpustat = kcpustat_this_cpu->cpustat;
247
248 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
249 }
250
251 /*
252 * Account for idle time.
253 * @cputime: the cpu time spent in idle wait
254 */
255 void account_idle_time(cputime_t cputime)
256 {
257 u64 *cpustat = kcpustat_this_cpu->cpustat;
258 struct rq *rq = this_rq();
259
260 if (atomic_read(&rq->nr_iowait) > 0)
261 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
262 else
263 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
264 }
265
266 static __always_inline cputime_t steal_account_process_time(cputime_t maxtime)
267 {
268 #ifdef CONFIG_PARAVIRT
269 if (static_key_false(&paravirt_steal_enabled)) {
270 cputime_t steal_cputime;
271 u64 steal;
272
273 steal = paravirt_steal_clock(smp_processor_id());
274 steal -= this_rq()->prev_steal_time;
275
276 steal_cputime = min(nsecs_to_cputime(steal), maxtime);
277 account_steal_time(steal_cputime);
278 this_rq()->prev_steal_time += cputime_to_nsecs(steal_cputime);
279
280 return steal_cputime;
281 }
282 #endif
283 return 0;
284 }
285
286 /*
287 * Account how much elapsed time was spent in steal, irq, or softirq time.
288 */
289 static inline cputime_t account_other_time(cputime_t max)
290 {
291 cputime_t accounted;
292
293 accounted = steal_account_process_time(max);
294
295 if (accounted < max)
296 accounted += irqtime_account_hi_update(max - accounted);
297
298 if (accounted < max)
299 accounted += irqtime_account_si_update(max - accounted);
300
301 return accounted;
302 }
303
304 /*
305 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
306 * tasks (sum on group iteration) belonging to @tsk's group.
307 */
308 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
309 {
310 struct signal_struct *sig = tsk->signal;
311 cputime_t utime, stime;
312 struct task_struct *t;
313 unsigned int seq, nextseq;
314 unsigned long flags;
315
316 rcu_read_lock();
317 /* Attempt a lockless read on the first round. */
318 nextseq = 0;
319 do {
320 seq = nextseq;
321 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
322 times->utime = sig->utime;
323 times->stime = sig->stime;
324 times->sum_exec_runtime = sig->sum_sched_runtime;
325
326 for_each_thread(tsk, t) {
327 task_cputime(t, &utime, &stime);
328 times->utime += utime;
329 times->stime += stime;
330 times->sum_exec_runtime += task_sched_runtime(t);
331 }
332 /* If lockless access failed, take the lock. */
333 nextseq = 1;
334 } while (need_seqretry(&sig->stats_lock, seq));
335 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
336 rcu_read_unlock();
337 }
338
339 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
340 /*
341 * Account a tick to a process and cpustat
342 * @p: the process that the cpu time gets accounted to
343 * @user_tick: is the tick from userspace
344 * @rq: the pointer to rq
345 *
346 * Tick demultiplexing follows the order
347 * - pending hardirq update
348 * - pending softirq update
349 * - user_time
350 * - idle_time
351 * - system time
352 * - check for guest_time
353 * - else account as system_time
354 *
355 * Check for hardirq is done both for system and user time as there is
356 * no timer going off while we are on hardirq and hence we may never get an
357 * opportunity to update it solely in system time.
358 * p->stime and friends are only updated on system time and not on irq
359 * softirq as those do not count in task exec_runtime any more.
360 */
361 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
362 struct rq *rq, int ticks)
363 {
364 u64 cputime = (__force u64) cputime_one_jiffy * ticks;
365 cputime_t scaled, other;
366
367 /*
368 * When returning from idle, many ticks can get accounted at
369 * once, including some ticks of steal, irq, and softirq time.
370 * Subtract those ticks from the amount of time accounted to
371 * idle, or potentially user or system time. Due to rounding,
372 * other time can exceed ticks occasionally.
373 */
374 other = account_other_time(cputime);
375 if (other >= cputime)
376 return;
377 cputime -= other;
378 scaled = cputime_to_scaled(cputime);
379
380 if (this_cpu_ksoftirqd() == p) {
381 /*
382 * ksoftirqd time do not get accounted in cpu_softirq_time.
383 * So, we have to handle it separately here.
384 * Also, p->stime needs to be updated for ksoftirqd.
385 */
386 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
387 } else if (user_tick) {
388 account_user_time(p, cputime, scaled);
389 } else if (p == rq->idle) {
390 account_idle_time(cputime);
391 } else if (p->flags & PF_VCPU) { /* System time or guest time */
392 account_guest_time(p, cputime, scaled);
393 } else {
394 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
395 }
396 }
397
398 static void irqtime_account_idle_ticks(int ticks)
399 {
400 struct rq *rq = this_rq();
401
402 irqtime_account_process_tick(current, 0, rq, ticks);
403 }
404 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
405 static inline void irqtime_account_idle_ticks(int ticks) {}
406 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
407 struct rq *rq, int nr_ticks) {}
408 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
409
410 /*
411 * Use precise platform statistics if available:
412 */
413 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
414
415 #ifndef __ARCH_HAS_VTIME_TASK_SWITCH
416 void vtime_common_task_switch(struct task_struct *prev)
417 {
418 if (is_idle_task(prev))
419 vtime_account_idle(prev);
420 else
421 vtime_account_system(prev);
422
423 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
424 vtime_account_user(prev);
425 #endif
426 arch_vtime_task_switch(prev);
427 }
428 #endif
429
430 #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
431
432
433 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
434 /*
435 * Archs that account the whole time spent in the idle task
436 * (outside irq) as idle time can rely on this and just implement
437 * vtime_account_system() and vtime_account_idle(). Archs that
438 * have other meaning of the idle time (s390 only includes the
439 * time spent by the CPU when it's in low power mode) must override
440 * vtime_account().
441 */
442 #ifndef __ARCH_HAS_VTIME_ACCOUNT
443 void vtime_account_irq_enter(struct task_struct *tsk)
444 {
445 if (!in_interrupt() && is_idle_task(tsk))
446 vtime_account_idle(tsk);
447 else
448 vtime_account_system(tsk);
449 }
450 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
451 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
452
453 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
454 {
455 *ut = p->utime;
456 *st = p->stime;
457 }
458 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
459
460 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
461 {
462 struct task_cputime cputime;
463
464 thread_group_cputime(p, &cputime);
465
466 *ut = cputime.utime;
467 *st = cputime.stime;
468 }
469 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
470 /*
471 * Account a single tick of cpu time.
472 * @p: the process that the cpu time gets accounted to
473 * @user_tick: indicates if the tick is a user or a system tick
474 */
475 void account_process_tick(struct task_struct *p, int user_tick)
476 {
477 cputime_t cputime, scaled, steal;
478 struct rq *rq = this_rq();
479
480 if (vtime_accounting_cpu_enabled())
481 return;
482
483 if (sched_clock_irqtime) {
484 irqtime_account_process_tick(p, user_tick, rq, 1);
485 return;
486 }
487
488 cputime = cputime_one_jiffy;
489 steal = steal_account_process_time(cputime);
490
491 if (steal >= cputime)
492 return;
493
494 cputime -= steal;
495 scaled = cputime_to_scaled(cputime);
496
497 if (user_tick)
498 account_user_time(p, cputime, scaled);
499 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
500 account_system_time(p, HARDIRQ_OFFSET, cputime, scaled);
501 else
502 account_idle_time(cputime);
503 }
504
505 /*
506 * Account multiple ticks of steal time.
507 * @p: the process from which the cpu time has been stolen
508 * @ticks: number of stolen ticks
509 */
510 void account_steal_ticks(unsigned long ticks)
511 {
512 account_steal_time(jiffies_to_cputime(ticks));
513 }
514
515 /*
516 * Account multiple ticks of idle time.
517 * @ticks: number of stolen ticks
518 */
519 void account_idle_ticks(unsigned long ticks)
520 {
521
522 if (sched_clock_irqtime) {
523 irqtime_account_idle_ticks(ticks);
524 return;
525 }
526
527 account_idle_time(jiffies_to_cputime(ticks));
528 }
529
530 /*
531 * Perform (stime * rtime) / total, but avoid multiplication overflow by
532 * loosing precision when the numbers are big.
533 */
534 static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
535 {
536 u64 scaled;
537
538 for (;;) {
539 /* Make sure "rtime" is the bigger of stime/rtime */
540 if (stime > rtime)
541 swap(rtime, stime);
542
543 /* Make sure 'total' fits in 32 bits */
544 if (total >> 32)
545 goto drop_precision;
546
547 /* Does rtime (and thus stime) fit in 32 bits? */
548 if (!(rtime >> 32))
549 break;
550
551 /* Can we just balance rtime/stime rather than dropping bits? */
552 if (stime >> 31)
553 goto drop_precision;
554
555 /* We can grow stime and shrink rtime and try to make them both fit */
556 stime <<= 1;
557 rtime >>= 1;
558 continue;
559
560 drop_precision:
561 /* We drop from rtime, it has more bits than stime */
562 rtime >>= 1;
563 total >>= 1;
564 }
565
566 /*
567 * Make sure gcc understands that this is a 32x32->64 multiply,
568 * followed by a 64/32->64 divide.
569 */
570 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
571 return (__force cputime_t) scaled;
572 }
573
574 /*
575 * Adjust tick based cputime random precision against scheduler runtime
576 * accounting.
577 *
578 * Tick based cputime accounting depend on random scheduling timeslices of a
579 * task to be interrupted or not by the timer. Depending on these
580 * circumstances, the number of these interrupts may be over or
581 * under-optimistic, matching the real user and system cputime with a variable
582 * precision.
583 *
584 * Fix this by scaling these tick based values against the total runtime
585 * accounted by the CFS scheduler.
586 *
587 * This code provides the following guarantees:
588 *
589 * stime + utime == rtime
590 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
591 *
592 * Assuming that rtime_i+1 >= rtime_i.
593 */
594 static void cputime_adjust(struct task_cputime *curr,
595 struct prev_cputime *prev,
596 cputime_t *ut, cputime_t *st)
597 {
598 cputime_t rtime, stime, utime;
599 unsigned long flags;
600
601 /* Serialize concurrent callers such that we can honour our guarantees */
602 raw_spin_lock_irqsave(&prev->lock, flags);
603 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
604
605 /*
606 * This is possible under two circumstances:
607 * - rtime isn't monotonic after all (a bug);
608 * - we got reordered by the lock.
609 *
610 * In both cases this acts as a filter such that the rest of the code
611 * can assume it is monotonic regardless of anything else.
612 */
613 if (prev->stime + prev->utime >= rtime)
614 goto out;
615
616 stime = curr->stime;
617 utime = curr->utime;
618
619 if (utime == 0) {
620 stime = rtime;
621 goto update;
622 }
623
624 if (stime == 0) {
625 utime = rtime;
626 goto update;
627 }
628
629 stime = scale_stime((__force u64)stime, (__force u64)rtime,
630 (__force u64)(stime + utime));
631
632 /*
633 * Make sure stime doesn't go backwards; this preserves monotonicity
634 * for utime because rtime is monotonic.
635 *
636 * utime_i+1 = rtime_i+1 - stime_i
637 * = rtime_i+1 - (rtime_i - utime_i)
638 * = (rtime_i+1 - rtime_i) + utime_i
639 * >= utime_i
640 */
641 if (stime < prev->stime)
642 stime = prev->stime;
643 utime = rtime - stime;
644
645 /*
646 * Make sure utime doesn't go backwards; this still preserves
647 * monotonicity for stime, analogous argument to above.
648 */
649 if (utime < prev->utime) {
650 utime = prev->utime;
651 stime = rtime - utime;
652 }
653
654 update:
655 prev->stime = stime;
656 prev->utime = utime;
657 out:
658 *ut = prev->utime;
659 *st = prev->stime;
660 raw_spin_unlock_irqrestore(&prev->lock, flags);
661 }
662
663 void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
664 {
665 struct task_cputime cputime = {
666 .sum_exec_runtime = p->se.sum_exec_runtime,
667 };
668
669 task_cputime(p, &cputime.utime, &cputime.stime);
670 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
671 }
672 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
673
674 void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
675 {
676 struct task_cputime cputime;
677
678 thread_group_cputime(p, &cputime);
679 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
680 }
681 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
682
683 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
684 static cputime_t vtime_delta(struct task_struct *tsk)
685 {
686 unsigned long now = READ_ONCE(jiffies);
687
688 if (time_before(now, (unsigned long)tsk->vtime_snap))
689 return 0;
690
691 return jiffies_to_cputime(now - tsk->vtime_snap);
692 }
693
694 static cputime_t get_vtime_delta(struct task_struct *tsk)
695 {
696 unsigned long now = READ_ONCE(jiffies);
697 cputime_t delta, other;
698
699 delta = jiffies_to_cputime(now - tsk->vtime_snap);
700 other = account_other_time(delta);
701 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
702 tsk->vtime_snap = now;
703
704 return delta - other;
705 }
706
707 static void __vtime_account_system(struct task_struct *tsk)
708 {
709 cputime_t delta_cpu = get_vtime_delta(tsk);
710
711 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
712 }
713
714 void vtime_account_system(struct task_struct *tsk)
715 {
716 if (!vtime_delta(tsk))
717 return;
718
719 write_seqcount_begin(&tsk->vtime_seqcount);
720 __vtime_account_system(tsk);
721 write_seqcount_end(&tsk->vtime_seqcount);
722 }
723
724 void vtime_account_user(struct task_struct *tsk)
725 {
726 cputime_t delta_cpu;
727
728 write_seqcount_begin(&tsk->vtime_seqcount);
729 tsk->vtime_snap_whence = VTIME_SYS;
730 if (vtime_delta(tsk)) {
731 delta_cpu = get_vtime_delta(tsk);
732 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
733 }
734 write_seqcount_end(&tsk->vtime_seqcount);
735 }
736
737 void vtime_user_enter(struct task_struct *tsk)
738 {
739 write_seqcount_begin(&tsk->vtime_seqcount);
740 if (vtime_delta(tsk))
741 __vtime_account_system(tsk);
742 tsk->vtime_snap_whence = VTIME_USER;
743 write_seqcount_end(&tsk->vtime_seqcount);
744 }
745
746 void vtime_guest_enter(struct task_struct *tsk)
747 {
748 /*
749 * The flags must be updated under the lock with
750 * the vtime_snap flush and update.
751 * That enforces a right ordering and update sequence
752 * synchronization against the reader (task_gtime())
753 * that can thus safely catch up with a tickless delta.
754 */
755 write_seqcount_begin(&tsk->vtime_seqcount);
756 if (vtime_delta(tsk))
757 __vtime_account_system(tsk);
758 current->flags |= PF_VCPU;
759 write_seqcount_end(&tsk->vtime_seqcount);
760 }
761 EXPORT_SYMBOL_GPL(vtime_guest_enter);
762
763 void vtime_guest_exit(struct task_struct *tsk)
764 {
765 write_seqcount_begin(&tsk->vtime_seqcount);
766 __vtime_account_system(tsk);
767 current->flags &= ~PF_VCPU;
768 write_seqcount_end(&tsk->vtime_seqcount);
769 }
770 EXPORT_SYMBOL_GPL(vtime_guest_exit);
771
772 void vtime_account_idle(struct task_struct *tsk)
773 {
774 cputime_t delta_cpu = get_vtime_delta(tsk);
775
776 account_idle_time(delta_cpu);
777 }
778
779 void arch_vtime_task_switch(struct task_struct *prev)
780 {
781 write_seqcount_begin(&prev->vtime_seqcount);
782 prev->vtime_snap_whence = VTIME_INACTIVE;
783 write_seqcount_end(&prev->vtime_seqcount);
784
785 write_seqcount_begin(&current->vtime_seqcount);
786 current->vtime_snap_whence = VTIME_SYS;
787 current->vtime_snap = jiffies;
788 write_seqcount_end(&current->vtime_seqcount);
789 }
790
791 void vtime_init_idle(struct task_struct *t, int cpu)
792 {
793 unsigned long flags;
794
795 local_irq_save(flags);
796 write_seqcount_begin(&t->vtime_seqcount);
797 t->vtime_snap_whence = VTIME_SYS;
798 t->vtime_snap = jiffies;
799 write_seqcount_end(&t->vtime_seqcount);
800 local_irq_restore(flags);
801 }
802
803 cputime_t task_gtime(struct task_struct *t)
804 {
805 unsigned int seq;
806 cputime_t gtime;
807
808 if (!vtime_accounting_enabled())
809 return t->gtime;
810
811 do {
812 seq = read_seqcount_begin(&t->vtime_seqcount);
813
814 gtime = t->gtime;
815 if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
816 gtime += vtime_delta(t);
817
818 } while (read_seqcount_retry(&t->vtime_seqcount, seq));
819
820 return gtime;
821 }
822
823 /*
824 * Fetch cputime raw values from fields of task_struct and
825 * add up the pending nohz execution time since the last
826 * cputime snapshot.
827 */
828 static void
829 fetch_task_cputime(struct task_struct *t,
830 cputime_t *u_dst, cputime_t *s_dst,
831 cputime_t *u_src, cputime_t *s_src,
832 cputime_t *udelta, cputime_t *sdelta)
833 {
834 unsigned int seq;
835 unsigned long long delta;
836
837 do {
838 *udelta = 0;
839 *sdelta = 0;
840
841 seq = read_seqcount_begin(&t->vtime_seqcount);
842
843 if (u_dst)
844 *u_dst = *u_src;
845 if (s_dst)
846 *s_dst = *s_src;
847
848 /* Task is sleeping, nothing to add */
849 if (t->vtime_snap_whence == VTIME_INACTIVE ||
850 is_idle_task(t))
851 continue;
852
853 delta = vtime_delta(t);
854
855 /*
856 * Task runs either in user or kernel space, add pending nohz time to
857 * the right place.
858 */
859 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
860 *udelta = delta;
861 } else {
862 if (t->vtime_snap_whence == VTIME_SYS)
863 *sdelta = delta;
864 }
865 } while (read_seqcount_retry(&t->vtime_seqcount, seq));
866 }
867
868
869 void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
870 {
871 cputime_t udelta, sdelta;
872
873 if (!vtime_accounting_enabled()) {
874 if (utime)
875 *utime = t->utime;
876 if (stime)
877 *stime = t->stime;
878 return;
879 }
880
881 fetch_task_cputime(t, utime, stime, &t->utime,
882 &t->stime, &udelta, &sdelta);
883 if (utime)
884 *utime += udelta;
885 if (stime)
886 *stime += sdelta;
887 }
888
889 void task_cputime_scaled(struct task_struct *t,
890 cputime_t *utimescaled, cputime_t *stimescaled)
891 {
892 cputime_t udelta, sdelta;
893
894 if (!vtime_accounting_enabled()) {
895 if (utimescaled)
896 *utimescaled = t->utimescaled;
897 if (stimescaled)
898 *stimescaled = t->stimescaled;
899 return;
900 }
901
902 fetch_task_cputime(t, utimescaled, stimescaled,
903 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
904 if (utimescaled)
905 *utimescaled += cputime_to_scaled(udelta);
906 if (stimescaled)
907 *stimescaled += cputime_to_scaled(sdelta);
908 }
909 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */