]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched/deadline.c
sched/deadline: Update rq_clock of later_rq when pushing a task
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / deadline.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18 #include "sched.h"
19
20 struct dl_bandwidth def_dl_bandwidth;
21
22 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
23 {
24 return container_of(dl_se, struct task_struct, dl);
25 }
26
27 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
28 {
29 return container_of(dl_rq, struct rq, dl);
30 }
31
32 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
33 {
34 struct task_struct *p = dl_task_of(dl_se);
35 struct rq *rq = task_rq(p);
36
37 return &rq->dl;
38 }
39
40 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
41 {
42 return !RB_EMPTY_NODE(&dl_se->rb_node);
43 }
44
45 #ifdef CONFIG_SMP
46 static inline struct dl_bw *dl_bw_of(int i)
47 {
48 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
49 "sched RCU must be held");
50 return &cpu_rq(i)->rd->dl_bw;
51 }
52
53 static inline int dl_bw_cpus(int i)
54 {
55 struct root_domain *rd = cpu_rq(i)->rd;
56 int cpus = 0;
57
58 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
59 "sched RCU must be held");
60 for_each_cpu_and(i, rd->span, cpu_active_mask)
61 cpus++;
62
63 return cpus;
64 }
65 #else
66 static inline struct dl_bw *dl_bw_of(int i)
67 {
68 return &cpu_rq(i)->dl.dl_bw;
69 }
70
71 static inline int dl_bw_cpus(int i)
72 {
73 return 1;
74 }
75 #endif
76
77 static inline
78 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
79 {
80 u64 old = dl_rq->running_bw;
81
82 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
83 dl_rq->running_bw += dl_bw;
84 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
85 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
86 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
87 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
88 }
89
90 static inline
91 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
92 {
93 u64 old = dl_rq->running_bw;
94
95 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
96 dl_rq->running_bw -= dl_bw;
97 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
98 if (dl_rq->running_bw > old)
99 dl_rq->running_bw = 0;
100 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
101 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
102 }
103
104 static inline
105 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
106 {
107 u64 old = dl_rq->this_bw;
108
109 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
110 dl_rq->this_bw += dl_bw;
111 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
112 }
113
114 static inline
115 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
116 {
117 u64 old = dl_rq->this_bw;
118
119 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
120 dl_rq->this_bw -= dl_bw;
121 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
122 if (dl_rq->this_bw > old)
123 dl_rq->this_bw = 0;
124 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
125 }
126
127 static inline
128 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
129 {
130 if (!dl_entity_is_special(dl_se))
131 __add_rq_bw(dl_se->dl_bw, dl_rq);
132 }
133
134 static inline
135 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
136 {
137 if (!dl_entity_is_special(dl_se))
138 __sub_rq_bw(dl_se->dl_bw, dl_rq);
139 }
140
141 static inline
142 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
143 {
144 if (!dl_entity_is_special(dl_se))
145 __add_running_bw(dl_se->dl_bw, dl_rq);
146 }
147
148 static inline
149 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
150 {
151 if (!dl_entity_is_special(dl_se))
152 __sub_running_bw(dl_se->dl_bw, dl_rq);
153 }
154
155 void dl_change_utilization(struct task_struct *p, u64 new_bw)
156 {
157 struct rq *rq;
158
159 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
160
161 if (task_on_rq_queued(p))
162 return;
163
164 rq = task_rq(p);
165 if (p->dl.dl_non_contending) {
166 sub_running_bw(&p->dl, &rq->dl);
167 p->dl.dl_non_contending = 0;
168 /*
169 * If the timer handler is currently running and the
170 * timer cannot be cancelled, inactive_task_timer()
171 * will see that dl_not_contending is not set, and
172 * will not touch the rq's active utilization,
173 * so we are still safe.
174 */
175 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
176 put_task_struct(p);
177 }
178 __sub_rq_bw(p->dl.dl_bw, &rq->dl);
179 __add_rq_bw(new_bw, &rq->dl);
180 }
181
182 /*
183 * The utilization of a task cannot be immediately removed from
184 * the rq active utilization (running_bw) when the task blocks.
185 * Instead, we have to wait for the so called "0-lag time".
186 *
187 * If a task blocks before the "0-lag time", a timer (the inactive
188 * timer) is armed, and running_bw is decreased when the timer
189 * fires.
190 *
191 * If the task wakes up again before the inactive timer fires,
192 * the timer is cancelled, whereas if the task wakes up after the
193 * inactive timer fired (and running_bw has been decreased) the
194 * task's utilization has to be added to running_bw again.
195 * A flag in the deadline scheduling entity (dl_non_contending)
196 * is used to avoid race conditions between the inactive timer handler
197 * and task wakeups.
198 *
199 * The following diagram shows how running_bw is updated. A task is
200 * "ACTIVE" when its utilization contributes to running_bw; an
201 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
202 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
203 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
204 * time already passed, which does not contribute to running_bw anymore.
205 * +------------------+
206 * wakeup | ACTIVE |
207 * +------------------>+ contending |
208 * | add_running_bw | |
209 * | +----+------+------+
210 * | | ^
211 * | dequeue | |
212 * +--------+-------+ | |
213 * | | t >= 0-lag | | wakeup
214 * | INACTIVE |<---------------+ |
215 * | | sub_running_bw | |
216 * +--------+-------+ | |
217 * ^ | |
218 * | t < 0-lag | |
219 * | | |
220 * | V |
221 * | +----+------+------+
222 * | sub_running_bw | ACTIVE |
223 * +-------------------+ |
224 * inactive timer | non contending |
225 * fired +------------------+
226 *
227 * The task_non_contending() function is invoked when a task
228 * blocks, and checks if the 0-lag time already passed or
229 * not (in the first case, it directly updates running_bw;
230 * in the second case, it arms the inactive timer).
231 *
232 * The task_contending() function is invoked when a task wakes
233 * up, and checks if the task is still in the "ACTIVE non contending"
234 * state or not (in the second case, it updates running_bw).
235 */
236 static void task_non_contending(struct task_struct *p)
237 {
238 struct sched_dl_entity *dl_se = &p->dl;
239 struct hrtimer *timer = &dl_se->inactive_timer;
240 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
241 struct rq *rq = rq_of_dl_rq(dl_rq);
242 s64 zerolag_time;
243
244 /*
245 * If this is a non-deadline task that has been boosted,
246 * do nothing
247 */
248 if (dl_se->dl_runtime == 0)
249 return;
250
251 if (dl_entity_is_special(dl_se))
252 return;
253
254 WARN_ON(hrtimer_active(&dl_se->inactive_timer));
255 WARN_ON(dl_se->dl_non_contending);
256
257 zerolag_time = dl_se->deadline -
258 div64_long((dl_se->runtime * dl_se->dl_period),
259 dl_se->dl_runtime);
260
261 /*
262 * Using relative times instead of the absolute "0-lag time"
263 * allows to simplify the code
264 */
265 zerolag_time -= rq_clock(rq);
266
267 /*
268 * If the "0-lag time" already passed, decrease the active
269 * utilization now, instead of starting a timer
270 */
271 if (zerolag_time < 0) {
272 if (dl_task(p))
273 sub_running_bw(dl_se, dl_rq);
274 if (!dl_task(p) || p->state == TASK_DEAD) {
275 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
276
277 if (p->state == TASK_DEAD)
278 sub_rq_bw(&p->dl, &rq->dl);
279 raw_spin_lock(&dl_b->lock);
280 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
281 __dl_clear_params(p);
282 raw_spin_unlock(&dl_b->lock);
283 }
284
285 return;
286 }
287
288 dl_se->dl_non_contending = 1;
289 get_task_struct(p);
290 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
291 }
292
293 static void task_contending(struct sched_dl_entity *dl_se, int flags)
294 {
295 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
296
297 /*
298 * If this is a non-deadline task that has been boosted,
299 * do nothing
300 */
301 if (dl_se->dl_runtime == 0)
302 return;
303
304 if (flags & ENQUEUE_MIGRATED)
305 add_rq_bw(dl_se, dl_rq);
306
307 if (dl_se->dl_non_contending) {
308 dl_se->dl_non_contending = 0;
309 /*
310 * If the timer handler is currently running and the
311 * timer cannot be cancelled, inactive_task_timer()
312 * will see that dl_not_contending is not set, and
313 * will not touch the rq's active utilization,
314 * so we are still safe.
315 */
316 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
317 put_task_struct(dl_task_of(dl_se));
318 } else {
319 /*
320 * Since "dl_non_contending" is not set, the
321 * task's utilization has already been removed from
322 * active utilization (either when the task blocked,
323 * when the "inactive timer" fired).
324 * So, add it back.
325 */
326 add_running_bw(dl_se, dl_rq);
327 }
328 }
329
330 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
331 {
332 struct sched_dl_entity *dl_se = &p->dl;
333
334 return dl_rq->root.rb_leftmost == &dl_se->rb_node;
335 }
336
337 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
338 {
339 raw_spin_lock_init(&dl_b->dl_runtime_lock);
340 dl_b->dl_period = period;
341 dl_b->dl_runtime = runtime;
342 }
343
344 void init_dl_bw(struct dl_bw *dl_b)
345 {
346 raw_spin_lock_init(&dl_b->lock);
347 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
348 if (global_rt_runtime() == RUNTIME_INF)
349 dl_b->bw = -1;
350 else
351 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
352 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
353 dl_b->total_bw = 0;
354 }
355
356 void init_dl_rq(struct dl_rq *dl_rq)
357 {
358 dl_rq->root = RB_ROOT_CACHED;
359
360 #ifdef CONFIG_SMP
361 /* zero means no -deadline tasks */
362 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
363
364 dl_rq->dl_nr_migratory = 0;
365 dl_rq->overloaded = 0;
366 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
367 #else
368 init_dl_bw(&dl_rq->dl_bw);
369 #endif
370
371 dl_rq->running_bw = 0;
372 dl_rq->this_bw = 0;
373 init_dl_rq_bw_ratio(dl_rq);
374 }
375
376 #ifdef CONFIG_SMP
377
378 static inline int dl_overloaded(struct rq *rq)
379 {
380 return atomic_read(&rq->rd->dlo_count);
381 }
382
383 static inline void dl_set_overload(struct rq *rq)
384 {
385 if (!rq->online)
386 return;
387
388 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
389 /*
390 * Must be visible before the overload count is
391 * set (as in sched_rt.c).
392 *
393 * Matched by the barrier in pull_dl_task().
394 */
395 smp_wmb();
396 atomic_inc(&rq->rd->dlo_count);
397 }
398
399 static inline void dl_clear_overload(struct rq *rq)
400 {
401 if (!rq->online)
402 return;
403
404 atomic_dec(&rq->rd->dlo_count);
405 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
406 }
407
408 static void update_dl_migration(struct dl_rq *dl_rq)
409 {
410 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
411 if (!dl_rq->overloaded) {
412 dl_set_overload(rq_of_dl_rq(dl_rq));
413 dl_rq->overloaded = 1;
414 }
415 } else if (dl_rq->overloaded) {
416 dl_clear_overload(rq_of_dl_rq(dl_rq));
417 dl_rq->overloaded = 0;
418 }
419 }
420
421 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
422 {
423 struct task_struct *p = dl_task_of(dl_se);
424
425 if (p->nr_cpus_allowed > 1)
426 dl_rq->dl_nr_migratory++;
427
428 update_dl_migration(dl_rq);
429 }
430
431 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
432 {
433 struct task_struct *p = dl_task_of(dl_se);
434
435 if (p->nr_cpus_allowed > 1)
436 dl_rq->dl_nr_migratory--;
437
438 update_dl_migration(dl_rq);
439 }
440
441 /*
442 * The list of pushable -deadline task is not a plist, like in
443 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
444 */
445 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
446 {
447 struct dl_rq *dl_rq = &rq->dl;
448 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
449 struct rb_node *parent = NULL;
450 struct task_struct *entry;
451 bool leftmost = true;
452
453 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
454
455 while (*link) {
456 parent = *link;
457 entry = rb_entry(parent, struct task_struct,
458 pushable_dl_tasks);
459 if (dl_entity_preempt(&p->dl, &entry->dl))
460 link = &parent->rb_left;
461 else {
462 link = &parent->rb_right;
463 leftmost = false;
464 }
465 }
466
467 if (leftmost)
468 dl_rq->earliest_dl.next = p->dl.deadline;
469
470 rb_link_node(&p->pushable_dl_tasks, parent, link);
471 rb_insert_color_cached(&p->pushable_dl_tasks,
472 &dl_rq->pushable_dl_tasks_root, leftmost);
473 }
474
475 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
476 {
477 struct dl_rq *dl_rq = &rq->dl;
478
479 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
480 return;
481
482 if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
483 struct rb_node *next_node;
484
485 next_node = rb_next(&p->pushable_dl_tasks);
486 if (next_node) {
487 dl_rq->earliest_dl.next = rb_entry(next_node,
488 struct task_struct, pushable_dl_tasks)->dl.deadline;
489 }
490 }
491
492 rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
493 RB_CLEAR_NODE(&p->pushable_dl_tasks);
494 }
495
496 static inline int has_pushable_dl_tasks(struct rq *rq)
497 {
498 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
499 }
500
501 static int push_dl_task(struct rq *rq);
502
503 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
504 {
505 return dl_task(prev);
506 }
507
508 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
509 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
510
511 static void push_dl_tasks(struct rq *);
512 static void pull_dl_task(struct rq *);
513
514 static inline void deadline_queue_push_tasks(struct rq *rq)
515 {
516 if (!has_pushable_dl_tasks(rq))
517 return;
518
519 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
520 }
521
522 static inline void deadline_queue_pull_task(struct rq *rq)
523 {
524 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
525 }
526
527 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
528
529 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
530 {
531 struct rq *later_rq = NULL;
532
533 later_rq = find_lock_later_rq(p, rq);
534 if (!later_rq) {
535 int cpu;
536
537 /*
538 * If we cannot preempt any rq, fall back to pick any
539 * online CPU:
540 */
541 cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
542 if (cpu >= nr_cpu_ids) {
543 /*
544 * Failed to find any suitable CPU.
545 * The task will never come back!
546 */
547 BUG_ON(dl_bandwidth_enabled());
548
549 /*
550 * If admission control is disabled we
551 * try a little harder to let the task
552 * run.
553 */
554 cpu = cpumask_any(cpu_active_mask);
555 }
556 later_rq = cpu_rq(cpu);
557 double_lock_balance(rq, later_rq);
558 }
559
560 set_task_cpu(p, later_rq->cpu);
561 double_unlock_balance(later_rq, rq);
562
563 return later_rq;
564 }
565
566 #else
567
568 static inline
569 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
570 {
571 }
572
573 static inline
574 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
575 {
576 }
577
578 static inline
579 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
580 {
581 }
582
583 static inline
584 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
585 {
586 }
587
588 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
589 {
590 return false;
591 }
592
593 static inline void pull_dl_task(struct rq *rq)
594 {
595 }
596
597 static inline void deadline_queue_push_tasks(struct rq *rq)
598 {
599 }
600
601 static inline void deadline_queue_pull_task(struct rq *rq)
602 {
603 }
604 #endif /* CONFIG_SMP */
605
606 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
607 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
608 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
609
610 /*
611 * We are being explicitly informed that a new instance is starting,
612 * and this means that:
613 * - the absolute deadline of the entity has to be placed at
614 * current time + relative deadline;
615 * - the runtime of the entity has to be set to the maximum value.
616 *
617 * The capability of specifying such event is useful whenever a -deadline
618 * entity wants to (try to!) synchronize its behaviour with the scheduler's
619 * one, and to (try to!) reconcile itself with its own scheduling
620 * parameters.
621 */
622 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
623 {
624 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
625 struct rq *rq = rq_of_dl_rq(dl_rq);
626
627 WARN_ON(dl_se->dl_boosted);
628 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
629
630 /*
631 * We are racing with the deadline timer. So, do nothing because
632 * the deadline timer handler will take care of properly recharging
633 * the runtime and postponing the deadline
634 */
635 if (dl_se->dl_throttled)
636 return;
637
638 /*
639 * We use the regular wall clock time to set deadlines in the
640 * future; in fact, we must consider execution overheads (time
641 * spent on hardirq context, etc.).
642 */
643 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
644 dl_se->runtime = dl_se->dl_runtime;
645 }
646
647 /*
648 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
649 * possibility of a entity lasting more than what it declared, and thus
650 * exhausting its runtime.
651 *
652 * Here we are interested in making runtime overrun possible, but we do
653 * not want a entity which is misbehaving to affect the scheduling of all
654 * other entities.
655 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
656 * is used, in order to confine each entity within its own bandwidth.
657 *
658 * This function deals exactly with that, and ensures that when the runtime
659 * of a entity is replenished, its deadline is also postponed. That ensures
660 * the overrunning entity can't interfere with other entity in the system and
661 * can't make them miss their deadlines. Reasons why this kind of overruns
662 * could happen are, typically, a entity voluntarily trying to overcome its
663 * runtime, or it just underestimated it during sched_setattr().
664 */
665 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
666 struct sched_dl_entity *pi_se)
667 {
668 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
669 struct rq *rq = rq_of_dl_rq(dl_rq);
670
671 BUG_ON(pi_se->dl_runtime <= 0);
672
673 /*
674 * This could be the case for a !-dl task that is boosted.
675 * Just go with full inherited parameters.
676 */
677 if (dl_se->dl_deadline == 0) {
678 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
679 dl_se->runtime = pi_se->dl_runtime;
680 }
681
682 if (dl_se->dl_yielded && dl_se->runtime > 0)
683 dl_se->runtime = 0;
684
685 /*
686 * We keep moving the deadline away until we get some
687 * available runtime for the entity. This ensures correct
688 * handling of situations where the runtime overrun is
689 * arbitrary large.
690 */
691 while (dl_se->runtime <= 0) {
692 dl_se->deadline += pi_se->dl_period;
693 dl_se->runtime += pi_se->dl_runtime;
694 }
695
696 /*
697 * At this point, the deadline really should be "in
698 * the future" with respect to rq->clock. If it's
699 * not, we are, for some reason, lagging too much!
700 * Anyway, after having warn userspace abut that,
701 * we still try to keep the things running by
702 * resetting the deadline and the budget of the
703 * entity.
704 */
705 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
706 printk_deferred_once("sched: DL replenish lagged too much\n");
707 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
708 dl_se->runtime = pi_se->dl_runtime;
709 }
710
711 if (dl_se->dl_yielded)
712 dl_se->dl_yielded = 0;
713 if (dl_se->dl_throttled)
714 dl_se->dl_throttled = 0;
715 }
716
717 /*
718 * Here we check if --at time t-- an entity (which is probably being
719 * [re]activated or, in general, enqueued) can use its remaining runtime
720 * and its current deadline _without_ exceeding the bandwidth it is
721 * assigned (function returns true if it can't). We are in fact applying
722 * one of the CBS rules: when a task wakes up, if the residual runtime
723 * over residual deadline fits within the allocated bandwidth, then we
724 * can keep the current (absolute) deadline and residual budget without
725 * disrupting the schedulability of the system. Otherwise, we should
726 * refill the runtime and set the deadline a period in the future,
727 * because keeping the current (absolute) deadline of the task would
728 * result in breaking guarantees promised to other tasks (refer to
729 * Documentation/scheduler/sched-deadline.txt for more informations).
730 *
731 * This function returns true if:
732 *
733 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
734 *
735 * IOW we can't recycle current parameters.
736 *
737 * Notice that the bandwidth check is done against the deadline. For
738 * task with deadline equal to period this is the same of using
739 * dl_period instead of dl_deadline in the equation above.
740 */
741 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
742 struct sched_dl_entity *pi_se, u64 t)
743 {
744 u64 left, right;
745
746 /*
747 * left and right are the two sides of the equation above,
748 * after a bit of shuffling to use multiplications instead
749 * of divisions.
750 *
751 * Note that none of the time values involved in the two
752 * multiplications are absolute: dl_deadline and dl_runtime
753 * are the relative deadline and the maximum runtime of each
754 * instance, runtime is the runtime left for the last instance
755 * and (deadline - t), since t is rq->clock, is the time left
756 * to the (absolute) deadline. Even if overflowing the u64 type
757 * is very unlikely to occur in both cases, here we scale down
758 * as we want to avoid that risk at all. Scaling down by 10
759 * means that we reduce granularity to 1us. We are fine with it,
760 * since this is only a true/false check and, anyway, thinking
761 * of anything below microseconds resolution is actually fiction
762 * (but still we want to give the user that illusion >;).
763 */
764 left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
765 right = ((dl_se->deadline - t) >> DL_SCALE) *
766 (pi_se->dl_runtime >> DL_SCALE);
767
768 return dl_time_before(right, left);
769 }
770
771 /*
772 * Revised wakeup rule [1]: For self-suspending tasks, rather then
773 * re-initializing task's runtime and deadline, the revised wakeup
774 * rule adjusts the task's runtime to avoid the task to overrun its
775 * density.
776 *
777 * Reasoning: a task may overrun the density if:
778 * runtime / (deadline - t) > dl_runtime / dl_deadline
779 *
780 * Therefore, runtime can be adjusted to:
781 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
782 *
783 * In such way that runtime will be equal to the maximum density
784 * the task can use without breaking any rule.
785 *
786 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
787 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
788 */
789 static void
790 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
791 {
792 u64 laxity = dl_se->deadline - rq_clock(rq);
793
794 /*
795 * If the task has deadline < period, and the deadline is in the past,
796 * it should already be throttled before this check.
797 *
798 * See update_dl_entity() comments for further details.
799 */
800 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
801
802 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
803 }
804
805 /*
806 * Regarding the deadline, a task with implicit deadline has a relative
807 * deadline == relative period. A task with constrained deadline has a
808 * relative deadline <= relative period.
809 *
810 * We support constrained deadline tasks. However, there are some restrictions
811 * applied only for tasks which do not have an implicit deadline. See
812 * update_dl_entity() to know more about such restrictions.
813 *
814 * The dl_is_implicit() returns true if the task has an implicit deadline.
815 */
816 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
817 {
818 return dl_se->dl_deadline == dl_se->dl_period;
819 }
820
821 /*
822 * When a deadline entity is placed in the runqueue, its runtime and deadline
823 * might need to be updated. This is done by a CBS wake up rule. There are two
824 * different rules: 1) the original CBS; and 2) the Revisited CBS.
825 *
826 * When the task is starting a new period, the Original CBS is used. In this
827 * case, the runtime is replenished and a new absolute deadline is set.
828 *
829 * When a task is queued before the begin of the next period, using the
830 * remaining runtime and deadline could make the entity to overflow, see
831 * dl_entity_overflow() to find more about runtime overflow. When such case
832 * is detected, the runtime and deadline need to be updated.
833 *
834 * If the task has an implicit deadline, i.e., deadline == period, the Original
835 * CBS is applied. the runtime is replenished and a new absolute deadline is
836 * set, as in the previous cases.
837 *
838 * However, the Original CBS does not work properly for tasks with
839 * deadline < period, which are said to have a constrained deadline. By
840 * applying the Original CBS, a constrained deadline task would be able to run
841 * runtime/deadline in a period. With deadline < period, the task would
842 * overrun the runtime/period allowed bandwidth, breaking the admission test.
843 *
844 * In order to prevent this misbehave, the Revisited CBS is used for
845 * constrained deadline tasks when a runtime overflow is detected. In the
846 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
847 * the remaining runtime of the task is reduced to avoid runtime overflow.
848 * Please refer to the comments update_dl_revised_wakeup() function to find
849 * more about the Revised CBS rule.
850 */
851 static void update_dl_entity(struct sched_dl_entity *dl_se,
852 struct sched_dl_entity *pi_se)
853 {
854 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
855 struct rq *rq = rq_of_dl_rq(dl_rq);
856
857 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
858 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
859
860 if (unlikely(!dl_is_implicit(dl_se) &&
861 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
862 !dl_se->dl_boosted)){
863 update_dl_revised_wakeup(dl_se, rq);
864 return;
865 }
866
867 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
868 dl_se->runtime = pi_se->dl_runtime;
869 }
870 }
871
872 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
873 {
874 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
875 }
876
877 /*
878 * If the entity depleted all its runtime, and if we want it to sleep
879 * while waiting for some new execution time to become available, we
880 * set the bandwidth replenishment timer to the replenishment instant
881 * and try to activate it.
882 *
883 * Notice that it is important for the caller to know if the timer
884 * actually started or not (i.e., the replenishment instant is in
885 * the future or in the past).
886 */
887 static int start_dl_timer(struct task_struct *p)
888 {
889 struct sched_dl_entity *dl_se = &p->dl;
890 struct hrtimer *timer = &dl_se->dl_timer;
891 struct rq *rq = task_rq(p);
892 ktime_t now, act;
893 s64 delta;
894
895 lockdep_assert_held(&rq->lock);
896
897 /*
898 * We want the timer to fire at the deadline, but considering
899 * that it is actually coming from rq->clock and not from
900 * hrtimer's time base reading.
901 */
902 act = ns_to_ktime(dl_next_period(dl_se));
903 now = hrtimer_cb_get_time(timer);
904 delta = ktime_to_ns(now) - rq_clock(rq);
905 act = ktime_add_ns(act, delta);
906
907 /*
908 * If the expiry time already passed, e.g., because the value
909 * chosen as the deadline is too small, don't even try to
910 * start the timer in the past!
911 */
912 if (ktime_us_delta(act, now) < 0)
913 return 0;
914
915 /*
916 * !enqueued will guarantee another callback; even if one is already in
917 * progress. This ensures a balanced {get,put}_task_struct().
918 *
919 * The race against __run_timer() clearing the enqueued state is
920 * harmless because we're holding task_rq()->lock, therefore the timer
921 * expiring after we've done the check will wait on its task_rq_lock()
922 * and observe our state.
923 */
924 if (!hrtimer_is_queued(timer)) {
925 get_task_struct(p);
926 hrtimer_start(timer, act, HRTIMER_MODE_ABS);
927 }
928
929 return 1;
930 }
931
932 /*
933 * This is the bandwidth enforcement timer callback. If here, we know
934 * a task is not on its dl_rq, since the fact that the timer was running
935 * means the task is throttled and needs a runtime replenishment.
936 *
937 * However, what we actually do depends on the fact the task is active,
938 * (it is on its rq) or has been removed from there by a call to
939 * dequeue_task_dl(). In the former case we must issue the runtime
940 * replenishment and add the task back to the dl_rq; in the latter, we just
941 * do nothing but clearing dl_throttled, so that runtime and deadline
942 * updating (and the queueing back to dl_rq) will be done by the
943 * next call to enqueue_task_dl().
944 */
945 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
946 {
947 struct sched_dl_entity *dl_se = container_of(timer,
948 struct sched_dl_entity,
949 dl_timer);
950 struct task_struct *p = dl_task_of(dl_se);
951 struct rq_flags rf;
952 struct rq *rq;
953
954 rq = task_rq_lock(p, &rf);
955
956 /*
957 * The task might have changed its scheduling policy to something
958 * different than SCHED_DEADLINE (through switched_from_dl()).
959 */
960 if (!dl_task(p))
961 goto unlock;
962
963 /*
964 * The task might have been boosted by someone else and might be in the
965 * boosting/deboosting path, its not throttled.
966 */
967 if (dl_se->dl_boosted)
968 goto unlock;
969
970 /*
971 * Spurious timer due to start_dl_timer() race; or we already received
972 * a replenishment from rt_mutex_setprio().
973 */
974 if (!dl_se->dl_throttled)
975 goto unlock;
976
977 sched_clock_tick();
978 update_rq_clock(rq);
979
980 /*
981 * If the throttle happened during sched-out; like:
982 *
983 * schedule()
984 * deactivate_task()
985 * dequeue_task_dl()
986 * update_curr_dl()
987 * start_dl_timer()
988 * __dequeue_task_dl()
989 * prev->on_rq = 0;
990 *
991 * We can be both throttled and !queued. Replenish the counter
992 * but do not enqueue -- wait for our wakeup to do that.
993 */
994 if (!task_on_rq_queued(p)) {
995 replenish_dl_entity(dl_se, dl_se);
996 goto unlock;
997 }
998
999 #ifdef CONFIG_SMP
1000 if (unlikely(!rq->online)) {
1001 /*
1002 * If the runqueue is no longer available, migrate the
1003 * task elsewhere. This necessarily changes rq.
1004 */
1005 lockdep_unpin_lock(&rq->lock, rf.cookie);
1006 rq = dl_task_offline_migration(rq, p);
1007 rf.cookie = lockdep_pin_lock(&rq->lock);
1008 update_rq_clock(rq);
1009
1010 /*
1011 * Now that the task has been migrated to the new RQ and we
1012 * have that locked, proceed as normal and enqueue the task
1013 * there.
1014 */
1015 }
1016 #endif
1017
1018 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1019 if (dl_task(rq->curr))
1020 check_preempt_curr_dl(rq, p, 0);
1021 else
1022 resched_curr(rq);
1023
1024 #ifdef CONFIG_SMP
1025 /*
1026 * Queueing this task back might have overloaded rq, check if we need
1027 * to kick someone away.
1028 */
1029 if (has_pushable_dl_tasks(rq)) {
1030 /*
1031 * Nothing relies on rq->lock after this, so its safe to drop
1032 * rq->lock.
1033 */
1034 rq_unpin_lock(rq, &rf);
1035 push_dl_task(rq);
1036 rq_repin_lock(rq, &rf);
1037 }
1038 #endif
1039
1040 unlock:
1041 task_rq_unlock(rq, p, &rf);
1042
1043 /*
1044 * This can free the task_struct, including this hrtimer, do not touch
1045 * anything related to that after this.
1046 */
1047 put_task_struct(p);
1048
1049 return HRTIMER_NORESTART;
1050 }
1051
1052 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1053 {
1054 struct hrtimer *timer = &dl_se->dl_timer;
1055
1056 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1057 timer->function = dl_task_timer;
1058 }
1059
1060 /*
1061 * During the activation, CBS checks if it can reuse the current task's
1062 * runtime and period. If the deadline of the task is in the past, CBS
1063 * cannot use the runtime, and so it replenishes the task. This rule
1064 * works fine for implicit deadline tasks (deadline == period), and the
1065 * CBS was designed for implicit deadline tasks. However, a task with
1066 * constrained deadline (deadine < period) might be awakened after the
1067 * deadline, but before the next period. In this case, replenishing the
1068 * task would allow it to run for runtime / deadline. As in this case
1069 * deadline < period, CBS enables a task to run for more than the
1070 * runtime / period. In a very loaded system, this can cause a domino
1071 * effect, making other tasks miss their deadlines.
1072 *
1073 * To avoid this problem, in the activation of a constrained deadline
1074 * task after the deadline but before the next period, throttle the
1075 * task and set the replenishing timer to the begin of the next period,
1076 * unless it is boosted.
1077 */
1078 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1079 {
1080 struct task_struct *p = dl_task_of(dl_se);
1081 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1082
1083 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1084 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1085 if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1086 return;
1087 dl_se->dl_throttled = 1;
1088 if (dl_se->runtime > 0)
1089 dl_se->runtime = 0;
1090 }
1091 }
1092
1093 static
1094 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1095 {
1096 return (dl_se->runtime <= 0);
1097 }
1098
1099 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1100
1101 /*
1102 * This function implements the GRUB accounting rule:
1103 * according to the GRUB reclaiming algorithm, the runtime is
1104 * not decreased as "dq = -dt", but as
1105 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1106 * where u is the utilization of the task, Umax is the maximum reclaimable
1107 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1108 * as the difference between the "total runqueue utilization" and the
1109 * runqueue active utilization, and Uextra is the (per runqueue) extra
1110 * reclaimable utilization.
1111 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1112 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1113 * BW_SHIFT.
1114 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1115 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1116 * Since delta is a 64 bit variable, to have an overflow its value
1117 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1118 * So, overflow is not an issue here.
1119 */
1120 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1121 {
1122 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1123 u64 u_act;
1124 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1125
1126 /*
1127 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1128 * we compare u_inact + rq->dl.extra_bw with
1129 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1130 * u_inact + rq->dl.extra_bw can be larger than
1131 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1132 * leading to wrong results)
1133 */
1134 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1135 u_act = u_act_min;
1136 else
1137 u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1138
1139 return (delta * u_act) >> BW_SHIFT;
1140 }
1141
1142 /*
1143 * Update the current task's runtime statistics (provided it is still
1144 * a -deadline task and has not been removed from the dl_rq).
1145 */
1146 static void update_curr_dl(struct rq *rq)
1147 {
1148 struct task_struct *curr = rq->curr;
1149 struct sched_dl_entity *dl_se = &curr->dl;
1150 u64 delta_exec, scaled_delta_exec;
1151 int cpu = cpu_of(rq);
1152 u64 now;
1153
1154 if (!dl_task(curr) || !on_dl_rq(dl_se))
1155 return;
1156
1157 /*
1158 * Consumed budget is computed considering the time as
1159 * observed by schedulable tasks (excluding time spent
1160 * in hardirq context, etc.). Deadlines are instead
1161 * computed using hard walltime. This seems to be the more
1162 * natural solution, but the full ramifications of this
1163 * approach need further study.
1164 */
1165 now = rq_clock_task(rq);
1166 delta_exec = now - curr->se.exec_start;
1167 if (unlikely((s64)delta_exec <= 0)) {
1168 if (unlikely(dl_se->dl_yielded))
1169 goto throttle;
1170 return;
1171 }
1172
1173 schedstat_set(curr->se.statistics.exec_max,
1174 max(curr->se.statistics.exec_max, delta_exec));
1175
1176 curr->se.sum_exec_runtime += delta_exec;
1177 account_group_exec_runtime(curr, delta_exec);
1178
1179 curr->se.exec_start = now;
1180 cgroup_account_cputime(curr, delta_exec);
1181
1182 sched_rt_avg_update(rq, delta_exec);
1183
1184 if (dl_entity_is_special(dl_se))
1185 return;
1186
1187 /*
1188 * For tasks that participate in GRUB, we implement GRUB-PA: the
1189 * spare reclaimed bandwidth is used to clock down frequency.
1190 *
1191 * For the others, we still need to scale reservation parameters
1192 * according to current frequency and CPU maximum capacity.
1193 */
1194 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1195 scaled_delta_exec = grub_reclaim(delta_exec,
1196 rq,
1197 &curr->dl);
1198 } else {
1199 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1200 unsigned long scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
1201
1202 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1203 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1204 }
1205
1206 dl_se->runtime -= scaled_delta_exec;
1207
1208 throttle:
1209 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1210 dl_se->dl_throttled = 1;
1211
1212 /* If requested, inform the user about runtime overruns. */
1213 if (dl_runtime_exceeded(dl_se) &&
1214 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1215 dl_se->dl_overrun = 1;
1216
1217 __dequeue_task_dl(rq, curr, 0);
1218 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1219 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1220
1221 if (!is_leftmost(curr, &rq->dl))
1222 resched_curr(rq);
1223 }
1224
1225 /*
1226 * Because -- for now -- we share the rt bandwidth, we need to
1227 * account our runtime there too, otherwise actual rt tasks
1228 * would be able to exceed the shared quota.
1229 *
1230 * Account to the root rt group for now.
1231 *
1232 * The solution we're working towards is having the RT groups scheduled
1233 * using deadline servers -- however there's a few nasties to figure
1234 * out before that can happen.
1235 */
1236 if (rt_bandwidth_enabled()) {
1237 struct rt_rq *rt_rq = &rq->rt;
1238
1239 raw_spin_lock(&rt_rq->rt_runtime_lock);
1240 /*
1241 * We'll let actual RT tasks worry about the overflow here, we
1242 * have our own CBS to keep us inline; only account when RT
1243 * bandwidth is relevant.
1244 */
1245 if (sched_rt_bandwidth_account(rt_rq))
1246 rt_rq->rt_time += delta_exec;
1247 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1248 }
1249 }
1250
1251 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1252 {
1253 struct sched_dl_entity *dl_se = container_of(timer,
1254 struct sched_dl_entity,
1255 inactive_timer);
1256 struct task_struct *p = dl_task_of(dl_se);
1257 struct rq_flags rf;
1258 struct rq *rq;
1259
1260 rq = task_rq_lock(p, &rf);
1261
1262 sched_clock_tick();
1263 update_rq_clock(rq);
1264
1265 if (!dl_task(p) || p->state == TASK_DEAD) {
1266 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1267
1268 if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1269 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1270 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1271 dl_se->dl_non_contending = 0;
1272 }
1273
1274 raw_spin_lock(&dl_b->lock);
1275 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1276 raw_spin_unlock(&dl_b->lock);
1277 __dl_clear_params(p);
1278
1279 goto unlock;
1280 }
1281 if (dl_se->dl_non_contending == 0)
1282 goto unlock;
1283
1284 sub_running_bw(dl_se, &rq->dl);
1285 dl_se->dl_non_contending = 0;
1286 unlock:
1287 task_rq_unlock(rq, p, &rf);
1288 put_task_struct(p);
1289
1290 return HRTIMER_NORESTART;
1291 }
1292
1293 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1294 {
1295 struct hrtimer *timer = &dl_se->inactive_timer;
1296
1297 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1298 timer->function = inactive_task_timer;
1299 }
1300
1301 #ifdef CONFIG_SMP
1302
1303 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1304 {
1305 struct rq *rq = rq_of_dl_rq(dl_rq);
1306
1307 if (dl_rq->earliest_dl.curr == 0 ||
1308 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1309 dl_rq->earliest_dl.curr = deadline;
1310 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1311 }
1312 }
1313
1314 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1315 {
1316 struct rq *rq = rq_of_dl_rq(dl_rq);
1317
1318 /*
1319 * Since we may have removed our earliest (and/or next earliest)
1320 * task we must recompute them.
1321 */
1322 if (!dl_rq->dl_nr_running) {
1323 dl_rq->earliest_dl.curr = 0;
1324 dl_rq->earliest_dl.next = 0;
1325 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1326 } else {
1327 struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1328 struct sched_dl_entity *entry;
1329
1330 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1331 dl_rq->earliest_dl.curr = entry->deadline;
1332 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1333 }
1334 }
1335
1336 #else
1337
1338 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1339 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1340
1341 #endif /* CONFIG_SMP */
1342
1343 static inline
1344 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1345 {
1346 int prio = dl_task_of(dl_se)->prio;
1347 u64 deadline = dl_se->deadline;
1348
1349 WARN_ON(!dl_prio(prio));
1350 dl_rq->dl_nr_running++;
1351 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1352
1353 inc_dl_deadline(dl_rq, deadline);
1354 inc_dl_migration(dl_se, dl_rq);
1355 }
1356
1357 static inline
1358 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1359 {
1360 int prio = dl_task_of(dl_se)->prio;
1361
1362 WARN_ON(!dl_prio(prio));
1363 WARN_ON(!dl_rq->dl_nr_running);
1364 dl_rq->dl_nr_running--;
1365 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1366
1367 dec_dl_deadline(dl_rq, dl_se->deadline);
1368 dec_dl_migration(dl_se, dl_rq);
1369 }
1370
1371 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1372 {
1373 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1374 struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1375 struct rb_node *parent = NULL;
1376 struct sched_dl_entity *entry;
1377 int leftmost = 1;
1378
1379 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1380
1381 while (*link) {
1382 parent = *link;
1383 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1384 if (dl_time_before(dl_se->deadline, entry->deadline))
1385 link = &parent->rb_left;
1386 else {
1387 link = &parent->rb_right;
1388 leftmost = 0;
1389 }
1390 }
1391
1392 rb_link_node(&dl_se->rb_node, parent, link);
1393 rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1394
1395 inc_dl_tasks(dl_se, dl_rq);
1396 }
1397
1398 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1399 {
1400 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1401
1402 if (RB_EMPTY_NODE(&dl_se->rb_node))
1403 return;
1404
1405 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1406 RB_CLEAR_NODE(&dl_se->rb_node);
1407
1408 dec_dl_tasks(dl_se, dl_rq);
1409 }
1410
1411 static void
1412 enqueue_dl_entity(struct sched_dl_entity *dl_se,
1413 struct sched_dl_entity *pi_se, int flags)
1414 {
1415 BUG_ON(on_dl_rq(dl_se));
1416
1417 /*
1418 * If this is a wakeup or a new instance, the scheduling
1419 * parameters of the task might need updating. Otherwise,
1420 * we want a replenishment of its runtime.
1421 */
1422 if (flags & ENQUEUE_WAKEUP) {
1423 task_contending(dl_se, flags);
1424 update_dl_entity(dl_se, pi_se);
1425 } else if (flags & ENQUEUE_REPLENISH) {
1426 replenish_dl_entity(dl_se, pi_se);
1427 } else if ((flags & ENQUEUE_RESTORE) &&
1428 dl_time_before(dl_se->deadline,
1429 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1430 setup_new_dl_entity(dl_se);
1431 }
1432
1433 __enqueue_dl_entity(dl_se);
1434 }
1435
1436 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1437 {
1438 __dequeue_dl_entity(dl_se);
1439 }
1440
1441 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1442 {
1443 struct task_struct *pi_task = rt_mutex_get_top_task(p);
1444 struct sched_dl_entity *pi_se = &p->dl;
1445
1446 /*
1447 * Use the scheduling parameters of the top pi-waiter task if:
1448 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1449 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1450 * smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1451 * boosted due to a SCHED_DEADLINE pi-waiter).
1452 * Otherwise we keep our runtime and deadline.
1453 */
1454 if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1455 pi_se = &pi_task->dl;
1456 } else if (!dl_prio(p->normal_prio)) {
1457 /*
1458 * Special case in which we have a !SCHED_DEADLINE task
1459 * that is going to be deboosted, but exceeds its
1460 * runtime while doing so. No point in replenishing
1461 * it, as it's going to return back to its original
1462 * scheduling class after this.
1463 */
1464 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1465 return;
1466 }
1467
1468 /*
1469 * Check if a constrained deadline task was activated
1470 * after the deadline but before the next period.
1471 * If that is the case, the task will be throttled and
1472 * the replenishment timer will be set to the next period.
1473 */
1474 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1475 dl_check_constrained_dl(&p->dl);
1476
1477 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1478 add_rq_bw(&p->dl, &rq->dl);
1479 add_running_bw(&p->dl, &rq->dl);
1480 }
1481
1482 /*
1483 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1484 * its budget it needs a replenishment and, since it now is on
1485 * its rq, the bandwidth timer callback (which clearly has not
1486 * run yet) will take care of this.
1487 * However, the active utilization does not depend on the fact
1488 * that the task is on the runqueue or not (but depends on the
1489 * task's state - in GRUB parlance, "inactive" vs "active contending").
1490 * In other words, even if a task is throttled its utilization must
1491 * be counted in the active utilization; hence, we need to call
1492 * add_running_bw().
1493 */
1494 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1495 if (flags & ENQUEUE_WAKEUP)
1496 task_contending(&p->dl, flags);
1497
1498 return;
1499 }
1500
1501 enqueue_dl_entity(&p->dl, pi_se, flags);
1502
1503 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1504 enqueue_pushable_dl_task(rq, p);
1505 }
1506
1507 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1508 {
1509 dequeue_dl_entity(&p->dl);
1510 dequeue_pushable_dl_task(rq, p);
1511 }
1512
1513 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1514 {
1515 update_curr_dl(rq);
1516 __dequeue_task_dl(rq, p, flags);
1517
1518 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1519 sub_running_bw(&p->dl, &rq->dl);
1520 sub_rq_bw(&p->dl, &rq->dl);
1521 }
1522
1523 /*
1524 * This check allows to start the inactive timer (or to immediately
1525 * decrease the active utilization, if needed) in two cases:
1526 * when the task blocks and when it is terminating
1527 * (p->state == TASK_DEAD). We can handle the two cases in the same
1528 * way, because from GRUB's point of view the same thing is happening
1529 * (the task moves from "active contending" to "active non contending"
1530 * or "inactive")
1531 */
1532 if (flags & DEQUEUE_SLEEP)
1533 task_non_contending(p);
1534 }
1535
1536 /*
1537 * Yield task semantic for -deadline tasks is:
1538 *
1539 * get off from the CPU until our next instance, with
1540 * a new runtime. This is of little use now, since we
1541 * don't have a bandwidth reclaiming mechanism. Anyway,
1542 * bandwidth reclaiming is planned for the future, and
1543 * yield_task_dl will indicate that some spare budget
1544 * is available for other task instances to use it.
1545 */
1546 static void yield_task_dl(struct rq *rq)
1547 {
1548 /*
1549 * We make the task go to sleep until its current deadline by
1550 * forcing its runtime to zero. This way, update_curr_dl() stops
1551 * it and the bandwidth timer will wake it up and will give it
1552 * new scheduling parameters (thanks to dl_yielded=1).
1553 */
1554 rq->curr->dl.dl_yielded = 1;
1555
1556 update_rq_clock(rq);
1557 update_curr_dl(rq);
1558 /*
1559 * Tell update_rq_clock() that we've just updated,
1560 * so we don't do microscopic update in schedule()
1561 * and double the fastpath cost.
1562 */
1563 rq_clock_skip_update(rq);
1564 }
1565
1566 #ifdef CONFIG_SMP
1567
1568 static int find_later_rq(struct task_struct *task);
1569
1570 static int
1571 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1572 {
1573 struct task_struct *curr;
1574 struct rq *rq;
1575
1576 if (sd_flag != SD_BALANCE_WAKE)
1577 goto out;
1578
1579 rq = cpu_rq(cpu);
1580
1581 rcu_read_lock();
1582 curr = READ_ONCE(rq->curr); /* unlocked access */
1583
1584 /*
1585 * If we are dealing with a -deadline task, we must
1586 * decide where to wake it up.
1587 * If it has a later deadline and the current task
1588 * on this rq can't move (provided the waking task
1589 * can!) we prefer to send it somewhere else. On the
1590 * other hand, if it has a shorter deadline, we
1591 * try to make it stay here, it might be important.
1592 */
1593 if (unlikely(dl_task(curr)) &&
1594 (curr->nr_cpus_allowed < 2 ||
1595 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1596 (p->nr_cpus_allowed > 1)) {
1597 int target = find_later_rq(p);
1598
1599 if (target != -1 &&
1600 (dl_time_before(p->dl.deadline,
1601 cpu_rq(target)->dl.earliest_dl.curr) ||
1602 (cpu_rq(target)->dl.dl_nr_running == 0)))
1603 cpu = target;
1604 }
1605 rcu_read_unlock();
1606
1607 out:
1608 return cpu;
1609 }
1610
1611 static void migrate_task_rq_dl(struct task_struct *p)
1612 {
1613 struct rq *rq;
1614
1615 if (p->state != TASK_WAKING)
1616 return;
1617
1618 rq = task_rq(p);
1619 /*
1620 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1621 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1622 * rq->lock is not... So, lock it
1623 */
1624 raw_spin_lock(&rq->lock);
1625 if (p->dl.dl_non_contending) {
1626 sub_running_bw(&p->dl, &rq->dl);
1627 p->dl.dl_non_contending = 0;
1628 /*
1629 * If the timer handler is currently running and the
1630 * timer cannot be cancelled, inactive_task_timer()
1631 * will see that dl_not_contending is not set, and
1632 * will not touch the rq's active utilization,
1633 * so we are still safe.
1634 */
1635 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1636 put_task_struct(p);
1637 }
1638 sub_rq_bw(&p->dl, &rq->dl);
1639 raw_spin_unlock(&rq->lock);
1640 }
1641
1642 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1643 {
1644 /*
1645 * Current can't be migrated, useless to reschedule,
1646 * let's hope p can move out.
1647 */
1648 if (rq->curr->nr_cpus_allowed == 1 ||
1649 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1650 return;
1651
1652 /*
1653 * p is migratable, so let's not schedule it and
1654 * see if it is pushed or pulled somewhere else.
1655 */
1656 if (p->nr_cpus_allowed != 1 &&
1657 cpudl_find(&rq->rd->cpudl, p, NULL))
1658 return;
1659
1660 resched_curr(rq);
1661 }
1662
1663 #endif /* CONFIG_SMP */
1664
1665 /*
1666 * Only called when both the current and waking task are -deadline
1667 * tasks.
1668 */
1669 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1670 int flags)
1671 {
1672 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1673 resched_curr(rq);
1674 return;
1675 }
1676
1677 #ifdef CONFIG_SMP
1678 /*
1679 * In the unlikely case current and p have the same deadline
1680 * let us try to decide what's the best thing to do...
1681 */
1682 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1683 !test_tsk_need_resched(rq->curr))
1684 check_preempt_equal_dl(rq, p);
1685 #endif /* CONFIG_SMP */
1686 }
1687
1688 #ifdef CONFIG_SCHED_HRTICK
1689 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1690 {
1691 hrtick_start(rq, p->dl.runtime);
1692 }
1693 #else /* !CONFIG_SCHED_HRTICK */
1694 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1695 {
1696 }
1697 #endif
1698
1699 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1700 struct dl_rq *dl_rq)
1701 {
1702 struct rb_node *left = rb_first_cached(&dl_rq->root);
1703
1704 if (!left)
1705 return NULL;
1706
1707 return rb_entry(left, struct sched_dl_entity, rb_node);
1708 }
1709
1710 static struct task_struct *
1711 pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1712 {
1713 struct sched_dl_entity *dl_se;
1714 struct task_struct *p;
1715 struct dl_rq *dl_rq;
1716
1717 dl_rq = &rq->dl;
1718
1719 if (need_pull_dl_task(rq, prev)) {
1720 /*
1721 * This is OK, because current is on_cpu, which avoids it being
1722 * picked for load-balance and preemption/IRQs are still
1723 * disabled avoiding further scheduler activity on it and we're
1724 * being very careful to re-start the picking loop.
1725 */
1726 rq_unpin_lock(rq, rf);
1727 pull_dl_task(rq);
1728 rq_repin_lock(rq, rf);
1729 /*
1730 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1731 * means a stop task can slip in, in which case we need to
1732 * re-start task selection.
1733 */
1734 if (rq->stop && task_on_rq_queued(rq->stop))
1735 return RETRY_TASK;
1736 }
1737
1738 /*
1739 * When prev is DL, we may throttle it in put_prev_task().
1740 * So, we update time before we check for dl_nr_running.
1741 */
1742 if (prev->sched_class == &dl_sched_class)
1743 update_curr_dl(rq);
1744
1745 if (unlikely(!dl_rq->dl_nr_running))
1746 return NULL;
1747
1748 put_prev_task(rq, prev);
1749
1750 dl_se = pick_next_dl_entity(rq, dl_rq);
1751 BUG_ON(!dl_se);
1752
1753 p = dl_task_of(dl_se);
1754 p->se.exec_start = rq_clock_task(rq);
1755
1756 /* Running task will never be pushed. */
1757 dequeue_pushable_dl_task(rq, p);
1758
1759 if (hrtick_enabled(rq))
1760 start_hrtick_dl(rq, p);
1761
1762 deadline_queue_push_tasks(rq);
1763
1764 return p;
1765 }
1766
1767 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1768 {
1769 update_curr_dl(rq);
1770
1771 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1772 enqueue_pushable_dl_task(rq, p);
1773 }
1774
1775 /*
1776 * scheduler tick hitting a task of our scheduling class.
1777 *
1778 * NOTE: This function can be called remotely by the tick offload that
1779 * goes along full dynticks. Therefore no local assumption can be made
1780 * and everything must be accessed through the @rq and @curr passed in
1781 * parameters.
1782 */
1783 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1784 {
1785 update_curr_dl(rq);
1786
1787 /*
1788 * Even when we have runtime, update_curr_dl() might have resulted in us
1789 * not being the leftmost task anymore. In that case NEED_RESCHED will
1790 * be set and schedule() will start a new hrtick for the next task.
1791 */
1792 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1793 is_leftmost(p, &rq->dl))
1794 start_hrtick_dl(rq, p);
1795 }
1796
1797 static void task_fork_dl(struct task_struct *p)
1798 {
1799 /*
1800 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1801 * sched_fork()
1802 */
1803 }
1804
1805 static void set_curr_task_dl(struct rq *rq)
1806 {
1807 struct task_struct *p = rq->curr;
1808
1809 p->se.exec_start = rq_clock_task(rq);
1810
1811 /* You can't push away the running task */
1812 dequeue_pushable_dl_task(rq, p);
1813 }
1814
1815 #ifdef CONFIG_SMP
1816
1817 /* Only try algorithms three times */
1818 #define DL_MAX_TRIES 3
1819
1820 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1821 {
1822 if (!task_running(rq, p) &&
1823 cpumask_test_cpu(cpu, &p->cpus_allowed))
1824 return 1;
1825 return 0;
1826 }
1827
1828 /*
1829 * Return the earliest pushable rq's task, which is suitable to be executed
1830 * on the CPU, NULL otherwise:
1831 */
1832 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1833 {
1834 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1835 struct task_struct *p = NULL;
1836
1837 if (!has_pushable_dl_tasks(rq))
1838 return NULL;
1839
1840 next_node:
1841 if (next_node) {
1842 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1843
1844 if (pick_dl_task(rq, p, cpu))
1845 return p;
1846
1847 next_node = rb_next(next_node);
1848 goto next_node;
1849 }
1850
1851 return NULL;
1852 }
1853
1854 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1855
1856 static int find_later_rq(struct task_struct *task)
1857 {
1858 struct sched_domain *sd;
1859 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1860 int this_cpu = smp_processor_id();
1861 int cpu = task_cpu(task);
1862
1863 /* Make sure the mask is initialized first */
1864 if (unlikely(!later_mask))
1865 return -1;
1866
1867 if (task->nr_cpus_allowed == 1)
1868 return -1;
1869
1870 /*
1871 * We have to consider system topology and task affinity
1872 * first, then we can look for a suitable CPU.
1873 */
1874 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1875 return -1;
1876
1877 /*
1878 * If we are here, some targets have been found, including
1879 * the most suitable which is, among the runqueues where the
1880 * current tasks have later deadlines than the task's one, the
1881 * rq with the latest possible one.
1882 *
1883 * Now we check how well this matches with task's
1884 * affinity and system topology.
1885 *
1886 * The last CPU where the task run is our first
1887 * guess, since it is most likely cache-hot there.
1888 */
1889 if (cpumask_test_cpu(cpu, later_mask))
1890 return cpu;
1891 /*
1892 * Check if this_cpu is to be skipped (i.e., it is
1893 * not in the mask) or not.
1894 */
1895 if (!cpumask_test_cpu(this_cpu, later_mask))
1896 this_cpu = -1;
1897
1898 rcu_read_lock();
1899 for_each_domain(cpu, sd) {
1900 if (sd->flags & SD_WAKE_AFFINE) {
1901 int best_cpu;
1902
1903 /*
1904 * If possible, preempting this_cpu is
1905 * cheaper than migrating.
1906 */
1907 if (this_cpu != -1 &&
1908 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1909 rcu_read_unlock();
1910 return this_cpu;
1911 }
1912
1913 best_cpu = cpumask_first_and(later_mask,
1914 sched_domain_span(sd));
1915 /*
1916 * Last chance: if a CPU being in both later_mask
1917 * and current sd span is valid, that becomes our
1918 * choice. Of course, the latest possible CPU is
1919 * already under consideration through later_mask.
1920 */
1921 if (best_cpu < nr_cpu_ids) {
1922 rcu_read_unlock();
1923 return best_cpu;
1924 }
1925 }
1926 }
1927 rcu_read_unlock();
1928
1929 /*
1930 * At this point, all our guesses failed, we just return
1931 * 'something', and let the caller sort the things out.
1932 */
1933 if (this_cpu != -1)
1934 return this_cpu;
1935
1936 cpu = cpumask_any(later_mask);
1937 if (cpu < nr_cpu_ids)
1938 return cpu;
1939
1940 return -1;
1941 }
1942
1943 /* Locks the rq it finds */
1944 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1945 {
1946 struct rq *later_rq = NULL;
1947 int tries;
1948 int cpu;
1949
1950 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1951 cpu = find_later_rq(task);
1952
1953 if ((cpu == -1) || (cpu == rq->cpu))
1954 break;
1955
1956 later_rq = cpu_rq(cpu);
1957
1958 if (later_rq->dl.dl_nr_running &&
1959 !dl_time_before(task->dl.deadline,
1960 later_rq->dl.earliest_dl.curr)) {
1961 /*
1962 * Target rq has tasks of equal or earlier deadline,
1963 * retrying does not release any lock and is unlikely
1964 * to yield a different result.
1965 */
1966 later_rq = NULL;
1967 break;
1968 }
1969
1970 /* Retry if something changed. */
1971 if (double_lock_balance(rq, later_rq)) {
1972 if (unlikely(task_rq(task) != rq ||
1973 !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) ||
1974 task_running(rq, task) ||
1975 !dl_task(task) ||
1976 !task_on_rq_queued(task))) {
1977 double_unlock_balance(rq, later_rq);
1978 later_rq = NULL;
1979 break;
1980 }
1981 }
1982
1983 /*
1984 * If the rq we found has no -deadline task, or
1985 * its earliest one has a later deadline than our
1986 * task, the rq is a good one.
1987 */
1988 if (!later_rq->dl.dl_nr_running ||
1989 dl_time_before(task->dl.deadline,
1990 later_rq->dl.earliest_dl.curr))
1991 break;
1992
1993 /* Otherwise we try again. */
1994 double_unlock_balance(rq, later_rq);
1995 later_rq = NULL;
1996 }
1997
1998 return later_rq;
1999 }
2000
2001 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2002 {
2003 struct task_struct *p;
2004
2005 if (!has_pushable_dl_tasks(rq))
2006 return NULL;
2007
2008 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2009 struct task_struct, pushable_dl_tasks);
2010
2011 BUG_ON(rq->cpu != task_cpu(p));
2012 BUG_ON(task_current(rq, p));
2013 BUG_ON(p->nr_cpus_allowed <= 1);
2014
2015 BUG_ON(!task_on_rq_queued(p));
2016 BUG_ON(!dl_task(p));
2017
2018 return p;
2019 }
2020
2021 /*
2022 * See if the non running -deadline tasks on this rq
2023 * can be sent to some other CPU where they can preempt
2024 * and start executing.
2025 */
2026 static int push_dl_task(struct rq *rq)
2027 {
2028 struct task_struct *next_task;
2029 struct rq *later_rq;
2030 int ret = 0;
2031
2032 if (!rq->dl.overloaded)
2033 return 0;
2034
2035 next_task = pick_next_pushable_dl_task(rq);
2036 if (!next_task)
2037 return 0;
2038
2039 retry:
2040 if (unlikely(next_task == rq->curr)) {
2041 WARN_ON(1);
2042 return 0;
2043 }
2044
2045 /*
2046 * If next_task preempts rq->curr, and rq->curr
2047 * can move away, it makes sense to just reschedule
2048 * without going further in pushing next_task.
2049 */
2050 if (dl_task(rq->curr) &&
2051 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2052 rq->curr->nr_cpus_allowed > 1) {
2053 resched_curr(rq);
2054 return 0;
2055 }
2056
2057 /* We might release rq lock */
2058 get_task_struct(next_task);
2059
2060 /* Will lock the rq it'll find */
2061 later_rq = find_lock_later_rq(next_task, rq);
2062 if (!later_rq) {
2063 struct task_struct *task;
2064
2065 /*
2066 * We must check all this again, since
2067 * find_lock_later_rq releases rq->lock and it is
2068 * then possible that next_task has migrated.
2069 */
2070 task = pick_next_pushable_dl_task(rq);
2071 if (task == next_task) {
2072 /*
2073 * The task is still there. We don't try
2074 * again, some other CPU will pull it when ready.
2075 */
2076 goto out;
2077 }
2078
2079 if (!task)
2080 /* No more tasks */
2081 goto out;
2082
2083 put_task_struct(next_task);
2084 next_task = task;
2085 goto retry;
2086 }
2087
2088 deactivate_task(rq, next_task, 0);
2089 sub_running_bw(&next_task->dl, &rq->dl);
2090 sub_rq_bw(&next_task->dl, &rq->dl);
2091 set_task_cpu(next_task, later_rq->cpu);
2092 add_rq_bw(&next_task->dl, &later_rq->dl);
2093
2094 /*
2095 * Update the later_rq clock here, because the clock is used
2096 * by the cpufreq_update_util() inside __add_running_bw().
2097 */
2098 update_rq_clock(later_rq);
2099 add_running_bw(&next_task->dl, &later_rq->dl);
2100 activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2101 ret = 1;
2102
2103 resched_curr(later_rq);
2104
2105 double_unlock_balance(rq, later_rq);
2106
2107 out:
2108 put_task_struct(next_task);
2109
2110 return ret;
2111 }
2112
2113 static void push_dl_tasks(struct rq *rq)
2114 {
2115 /* push_dl_task() will return true if it moved a -deadline task */
2116 while (push_dl_task(rq))
2117 ;
2118 }
2119
2120 static void pull_dl_task(struct rq *this_rq)
2121 {
2122 int this_cpu = this_rq->cpu, cpu;
2123 struct task_struct *p;
2124 bool resched = false;
2125 struct rq *src_rq;
2126 u64 dmin = LONG_MAX;
2127
2128 if (likely(!dl_overloaded(this_rq)))
2129 return;
2130
2131 /*
2132 * Match the barrier from dl_set_overloaded; this guarantees that if we
2133 * see overloaded we must also see the dlo_mask bit.
2134 */
2135 smp_rmb();
2136
2137 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2138 if (this_cpu == cpu)
2139 continue;
2140
2141 src_rq = cpu_rq(cpu);
2142
2143 /*
2144 * It looks racy, abd it is! However, as in sched_rt.c,
2145 * we are fine with this.
2146 */
2147 if (this_rq->dl.dl_nr_running &&
2148 dl_time_before(this_rq->dl.earliest_dl.curr,
2149 src_rq->dl.earliest_dl.next))
2150 continue;
2151
2152 /* Might drop this_rq->lock */
2153 double_lock_balance(this_rq, src_rq);
2154
2155 /*
2156 * If there are no more pullable tasks on the
2157 * rq, we're done with it.
2158 */
2159 if (src_rq->dl.dl_nr_running <= 1)
2160 goto skip;
2161
2162 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2163
2164 /*
2165 * We found a task to be pulled if:
2166 * - it preempts our current (if there's one),
2167 * - it will preempt the last one we pulled (if any).
2168 */
2169 if (p && dl_time_before(p->dl.deadline, dmin) &&
2170 (!this_rq->dl.dl_nr_running ||
2171 dl_time_before(p->dl.deadline,
2172 this_rq->dl.earliest_dl.curr))) {
2173 WARN_ON(p == src_rq->curr);
2174 WARN_ON(!task_on_rq_queued(p));
2175
2176 /*
2177 * Then we pull iff p has actually an earlier
2178 * deadline than the current task of its runqueue.
2179 */
2180 if (dl_time_before(p->dl.deadline,
2181 src_rq->curr->dl.deadline))
2182 goto skip;
2183
2184 resched = true;
2185
2186 deactivate_task(src_rq, p, 0);
2187 sub_running_bw(&p->dl, &src_rq->dl);
2188 sub_rq_bw(&p->dl, &src_rq->dl);
2189 set_task_cpu(p, this_cpu);
2190 add_rq_bw(&p->dl, &this_rq->dl);
2191 add_running_bw(&p->dl, &this_rq->dl);
2192 activate_task(this_rq, p, 0);
2193 dmin = p->dl.deadline;
2194
2195 /* Is there any other task even earlier? */
2196 }
2197 skip:
2198 double_unlock_balance(this_rq, src_rq);
2199 }
2200
2201 if (resched)
2202 resched_curr(this_rq);
2203 }
2204
2205 /*
2206 * Since the task is not running and a reschedule is not going to happen
2207 * anytime soon on its runqueue, we try pushing it away now.
2208 */
2209 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2210 {
2211 if (!task_running(rq, p) &&
2212 !test_tsk_need_resched(rq->curr) &&
2213 p->nr_cpus_allowed > 1 &&
2214 dl_task(rq->curr) &&
2215 (rq->curr->nr_cpus_allowed < 2 ||
2216 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2217 push_dl_tasks(rq);
2218 }
2219 }
2220
2221 static void set_cpus_allowed_dl(struct task_struct *p,
2222 const struct cpumask *new_mask)
2223 {
2224 struct root_domain *src_rd;
2225 struct rq *rq;
2226
2227 BUG_ON(!dl_task(p));
2228
2229 rq = task_rq(p);
2230 src_rd = rq->rd;
2231 /*
2232 * Migrating a SCHED_DEADLINE task between exclusive
2233 * cpusets (different root_domains) entails a bandwidth
2234 * update. We already made space for us in the destination
2235 * domain (see cpuset_can_attach()).
2236 */
2237 if (!cpumask_intersects(src_rd->span, new_mask)) {
2238 struct dl_bw *src_dl_b;
2239
2240 src_dl_b = dl_bw_of(cpu_of(rq));
2241 /*
2242 * We now free resources of the root_domain we are migrating
2243 * off. In the worst case, sched_setattr() may temporary fail
2244 * until we complete the update.
2245 */
2246 raw_spin_lock(&src_dl_b->lock);
2247 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2248 raw_spin_unlock(&src_dl_b->lock);
2249 }
2250
2251 set_cpus_allowed_common(p, new_mask);
2252 }
2253
2254 /* Assumes rq->lock is held */
2255 static void rq_online_dl(struct rq *rq)
2256 {
2257 if (rq->dl.overloaded)
2258 dl_set_overload(rq);
2259
2260 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2261 if (rq->dl.dl_nr_running > 0)
2262 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2263 }
2264
2265 /* Assumes rq->lock is held */
2266 static void rq_offline_dl(struct rq *rq)
2267 {
2268 if (rq->dl.overloaded)
2269 dl_clear_overload(rq);
2270
2271 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2272 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2273 }
2274
2275 void __init init_sched_dl_class(void)
2276 {
2277 unsigned int i;
2278
2279 for_each_possible_cpu(i)
2280 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2281 GFP_KERNEL, cpu_to_node(i));
2282 }
2283
2284 #endif /* CONFIG_SMP */
2285
2286 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2287 {
2288 /*
2289 * task_non_contending() can start the "inactive timer" (if the 0-lag
2290 * time is in the future). If the task switches back to dl before
2291 * the "inactive timer" fires, it can continue to consume its current
2292 * runtime using its current deadline. If it stays outside of
2293 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2294 * will reset the task parameters.
2295 */
2296 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2297 task_non_contending(p);
2298
2299 if (!task_on_rq_queued(p)) {
2300 /*
2301 * Inactive timer is armed. However, p is leaving DEADLINE and
2302 * might migrate away from this rq while continuing to run on
2303 * some other class. We need to remove its contribution from
2304 * this rq running_bw now, or sub_rq_bw (below) will complain.
2305 */
2306 if (p->dl.dl_non_contending)
2307 sub_running_bw(&p->dl, &rq->dl);
2308 sub_rq_bw(&p->dl, &rq->dl);
2309 }
2310
2311 /*
2312 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2313 * at the 0-lag time, because the task could have been migrated
2314 * while SCHED_OTHER in the meanwhile.
2315 */
2316 if (p->dl.dl_non_contending)
2317 p->dl.dl_non_contending = 0;
2318
2319 /*
2320 * Since this might be the only -deadline task on the rq,
2321 * this is the right place to try to pull some other one
2322 * from an overloaded CPU, if any.
2323 */
2324 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2325 return;
2326
2327 deadline_queue_pull_task(rq);
2328 }
2329
2330 /*
2331 * When switching to -deadline, we may overload the rq, then
2332 * we try to push someone off, if possible.
2333 */
2334 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2335 {
2336 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2337 put_task_struct(p);
2338
2339 /* If p is not queued we will update its parameters at next wakeup. */
2340 if (!task_on_rq_queued(p)) {
2341 add_rq_bw(&p->dl, &rq->dl);
2342
2343 return;
2344 }
2345
2346 if (rq->curr != p) {
2347 #ifdef CONFIG_SMP
2348 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2349 deadline_queue_push_tasks(rq);
2350 #endif
2351 if (dl_task(rq->curr))
2352 check_preempt_curr_dl(rq, p, 0);
2353 else
2354 resched_curr(rq);
2355 }
2356 }
2357
2358 /*
2359 * If the scheduling parameters of a -deadline task changed,
2360 * a push or pull operation might be needed.
2361 */
2362 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2363 int oldprio)
2364 {
2365 if (task_on_rq_queued(p) || rq->curr == p) {
2366 #ifdef CONFIG_SMP
2367 /*
2368 * This might be too much, but unfortunately
2369 * we don't have the old deadline value, and
2370 * we can't argue if the task is increasing
2371 * or lowering its prio, so...
2372 */
2373 if (!rq->dl.overloaded)
2374 deadline_queue_pull_task(rq);
2375
2376 /*
2377 * If we now have a earlier deadline task than p,
2378 * then reschedule, provided p is still on this
2379 * runqueue.
2380 */
2381 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2382 resched_curr(rq);
2383 #else
2384 /*
2385 * Again, we don't know if p has a earlier
2386 * or later deadline, so let's blindly set a
2387 * (maybe not needed) rescheduling point.
2388 */
2389 resched_curr(rq);
2390 #endif /* CONFIG_SMP */
2391 }
2392 }
2393
2394 const struct sched_class dl_sched_class = {
2395 .next = &rt_sched_class,
2396 .enqueue_task = enqueue_task_dl,
2397 .dequeue_task = dequeue_task_dl,
2398 .yield_task = yield_task_dl,
2399
2400 .check_preempt_curr = check_preempt_curr_dl,
2401
2402 .pick_next_task = pick_next_task_dl,
2403 .put_prev_task = put_prev_task_dl,
2404
2405 #ifdef CONFIG_SMP
2406 .select_task_rq = select_task_rq_dl,
2407 .migrate_task_rq = migrate_task_rq_dl,
2408 .set_cpus_allowed = set_cpus_allowed_dl,
2409 .rq_online = rq_online_dl,
2410 .rq_offline = rq_offline_dl,
2411 .task_woken = task_woken_dl,
2412 #endif
2413
2414 .set_curr_task = set_curr_task_dl,
2415 .task_tick = task_tick_dl,
2416 .task_fork = task_fork_dl,
2417
2418 .prio_changed = prio_changed_dl,
2419 .switched_from = switched_from_dl,
2420 .switched_to = switched_to_dl,
2421
2422 .update_curr = update_curr_dl,
2423 };
2424
2425 int sched_dl_global_validate(void)
2426 {
2427 u64 runtime = global_rt_runtime();
2428 u64 period = global_rt_period();
2429 u64 new_bw = to_ratio(period, runtime);
2430 struct dl_bw *dl_b;
2431 int cpu, ret = 0;
2432 unsigned long flags;
2433
2434 /*
2435 * Here we want to check the bandwidth not being set to some
2436 * value smaller than the currently allocated bandwidth in
2437 * any of the root_domains.
2438 *
2439 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2440 * cycling on root_domains... Discussion on different/better
2441 * solutions is welcome!
2442 */
2443 for_each_possible_cpu(cpu) {
2444 rcu_read_lock_sched();
2445 dl_b = dl_bw_of(cpu);
2446
2447 raw_spin_lock_irqsave(&dl_b->lock, flags);
2448 if (new_bw < dl_b->total_bw)
2449 ret = -EBUSY;
2450 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2451
2452 rcu_read_unlock_sched();
2453
2454 if (ret)
2455 break;
2456 }
2457
2458 return ret;
2459 }
2460
2461 void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2462 {
2463 if (global_rt_runtime() == RUNTIME_INF) {
2464 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2465 dl_rq->extra_bw = 1 << BW_SHIFT;
2466 } else {
2467 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2468 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2469 dl_rq->extra_bw = to_ratio(global_rt_period(),
2470 global_rt_runtime());
2471 }
2472 }
2473
2474 void sched_dl_do_global(void)
2475 {
2476 u64 new_bw = -1;
2477 struct dl_bw *dl_b;
2478 int cpu;
2479 unsigned long flags;
2480
2481 def_dl_bandwidth.dl_period = global_rt_period();
2482 def_dl_bandwidth.dl_runtime = global_rt_runtime();
2483
2484 if (global_rt_runtime() != RUNTIME_INF)
2485 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2486
2487 /*
2488 * FIXME: As above...
2489 */
2490 for_each_possible_cpu(cpu) {
2491 rcu_read_lock_sched();
2492 dl_b = dl_bw_of(cpu);
2493
2494 raw_spin_lock_irqsave(&dl_b->lock, flags);
2495 dl_b->bw = new_bw;
2496 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2497
2498 rcu_read_unlock_sched();
2499 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2500 }
2501 }
2502
2503 /*
2504 * We must be sure that accepting a new task (or allowing changing the
2505 * parameters of an existing one) is consistent with the bandwidth
2506 * constraints. If yes, this function also accordingly updates the currently
2507 * allocated bandwidth to reflect the new situation.
2508 *
2509 * This function is called while holding p's rq->lock.
2510 */
2511 int sched_dl_overflow(struct task_struct *p, int policy,
2512 const struct sched_attr *attr)
2513 {
2514 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2515 u64 period = attr->sched_period ?: attr->sched_deadline;
2516 u64 runtime = attr->sched_runtime;
2517 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2518 int cpus, err = -1;
2519
2520 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2521 return 0;
2522
2523 /* !deadline task may carry old deadline bandwidth */
2524 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2525 return 0;
2526
2527 /*
2528 * Either if a task, enters, leave, or stays -deadline but changes
2529 * its parameters, we may need to update accordingly the total
2530 * allocated bandwidth of the container.
2531 */
2532 raw_spin_lock(&dl_b->lock);
2533 cpus = dl_bw_cpus(task_cpu(p));
2534 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2535 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2536 if (hrtimer_active(&p->dl.inactive_timer))
2537 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2538 __dl_add(dl_b, new_bw, cpus);
2539 err = 0;
2540 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2541 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2542 /*
2543 * XXX this is slightly incorrect: when the task
2544 * utilization decreases, we should delay the total
2545 * utilization change until the task's 0-lag point.
2546 * But this would require to set the task's "inactive
2547 * timer" when the task is not inactive.
2548 */
2549 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2550 __dl_add(dl_b, new_bw, cpus);
2551 dl_change_utilization(p, new_bw);
2552 err = 0;
2553 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2554 /*
2555 * Do not decrease the total deadline utilization here,
2556 * switched_from_dl() will take care to do it at the correct
2557 * (0-lag) time.
2558 */
2559 err = 0;
2560 }
2561 raw_spin_unlock(&dl_b->lock);
2562
2563 return err;
2564 }
2565
2566 /*
2567 * This function initializes the sched_dl_entity of a newly becoming
2568 * SCHED_DEADLINE task.
2569 *
2570 * Only the static values are considered here, the actual runtime and the
2571 * absolute deadline will be properly calculated when the task is enqueued
2572 * for the first time with its new policy.
2573 */
2574 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2575 {
2576 struct sched_dl_entity *dl_se = &p->dl;
2577
2578 dl_se->dl_runtime = attr->sched_runtime;
2579 dl_se->dl_deadline = attr->sched_deadline;
2580 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2581 dl_se->flags = attr->sched_flags;
2582 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2583 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2584 }
2585
2586 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2587 {
2588 struct sched_dl_entity *dl_se = &p->dl;
2589
2590 attr->sched_priority = p->rt_priority;
2591 attr->sched_runtime = dl_se->dl_runtime;
2592 attr->sched_deadline = dl_se->dl_deadline;
2593 attr->sched_period = dl_se->dl_period;
2594 attr->sched_flags = dl_se->flags;
2595 }
2596
2597 /*
2598 * This function validates the new parameters of a -deadline task.
2599 * We ask for the deadline not being zero, and greater or equal
2600 * than the runtime, as well as the period of being zero or
2601 * greater than deadline. Furthermore, we have to be sure that
2602 * user parameters are above the internal resolution of 1us (we
2603 * check sched_runtime only since it is always the smaller one) and
2604 * below 2^63 ns (we have to check both sched_deadline and
2605 * sched_period, as the latter can be zero).
2606 */
2607 bool __checkparam_dl(const struct sched_attr *attr)
2608 {
2609 /* special dl tasks don't actually use any parameter */
2610 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2611 return true;
2612
2613 /* deadline != 0 */
2614 if (attr->sched_deadline == 0)
2615 return false;
2616
2617 /*
2618 * Since we truncate DL_SCALE bits, make sure we're at least
2619 * that big.
2620 */
2621 if (attr->sched_runtime < (1ULL << DL_SCALE))
2622 return false;
2623
2624 /*
2625 * Since we use the MSB for wrap-around and sign issues, make
2626 * sure it's not set (mind that period can be equal to zero).
2627 */
2628 if (attr->sched_deadline & (1ULL << 63) ||
2629 attr->sched_period & (1ULL << 63))
2630 return false;
2631
2632 /* runtime <= deadline <= period (if period != 0) */
2633 if ((attr->sched_period != 0 &&
2634 attr->sched_period < attr->sched_deadline) ||
2635 attr->sched_deadline < attr->sched_runtime)
2636 return false;
2637
2638 return true;
2639 }
2640
2641 /*
2642 * This function clears the sched_dl_entity static params.
2643 */
2644 void __dl_clear_params(struct task_struct *p)
2645 {
2646 struct sched_dl_entity *dl_se = &p->dl;
2647
2648 dl_se->dl_runtime = 0;
2649 dl_se->dl_deadline = 0;
2650 dl_se->dl_period = 0;
2651 dl_se->flags = 0;
2652 dl_se->dl_bw = 0;
2653 dl_se->dl_density = 0;
2654
2655 dl_se->dl_throttled = 0;
2656 dl_se->dl_yielded = 0;
2657 dl_se->dl_non_contending = 0;
2658 dl_se->dl_overrun = 0;
2659 }
2660
2661 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2662 {
2663 struct sched_dl_entity *dl_se = &p->dl;
2664
2665 if (dl_se->dl_runtime != attr->sched_runtime ||
2666 dl_se->dl_deadline != attr->sched_deadline ||
2667 dl_se->dl_period != attr->sched_period ||
2668 dl_se->flags != attr->sched_flags)
2669 return true;
2670
2671 return false;
2672 }
2673
2674 #ifdef CONFIG_SMP
2675 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2676 {
2677 unsigned int dest_cpu;
2678 struct dl_bw *dl_b;
2679 bool overflow;
2680 int cpus, ret;
2681 unsigned long flags;
2682
2683 dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2684
2685 rcu_read_lock_sched();
2686 dl_b = dl_bw_of(dest_cpu);
2687 raw_spin_lock_irqsave(&dl_b->lock, flags);
2688 cpus = dl_bw_cpus(dest_cpu);
2689 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
2690 if (overflow) {
2691 ret = -EBUSY;
2692 } else {
2693 /*
2694 * We reserve space for this task in the destination
2695 * root_domain, as we can't fail after this point.
2696 * We will free resources in the source root_domain
2697 * later on (see set_cpus_allowed_dl()).
2698 */
2699 __dl_add(dl_b, p->dl.dl_bw, cpus);
2700 ret = 0;
2701 }
2702 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2703 rcu_read_unlock_sched();
2704
2705 return ret;
2706 }
2707
2708 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2709 const struct cpumask *trial)
2710 {
2711 int ret = 1, trial_cpus;
2712 struct dl_bw *cur_dl_b;
2713 unsigned long flags;
2714
2715 rcu_read_lock_sched();
2716 cur_dl_b = dl_bw_of(cpumask_any(cur));
2717 trial_cpus = cpumask_weight(trial);
2718
2719 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2720 if (cur_dl_b->bw != -1 &&
2721 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2722 ret = 0;
2723 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2724 rcu_read_unlock_sched();
2725
2726 return ret;
2727 }
2728
2729 bool dl_cpu_busy(unsigned int cpu)
2730 {
2731 unsigned long flags;
2732 struct dl_bw *dl_b;
2733 bool overflow;
2734 int cpus;
2735
2736 rcu_read_lock_sched();
2737 dl_b = dl_bw_of(cpu);
2738 raw_spin_lock_irqsave(&dl_b->lock, flags);
2739 cpus = dl_bw_cpus(cpu);
2740 overflow = __dl_overflow(dl_b, cpus, 0, 0);
2741 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2742 rcu_read_unlock_sched();
2743
2744 return overflow;
2745 }
2746 #endif
2747
2748 #ifdef CONFIG_SCHED_DEBUG
2749 void print_dl_stats(struct seq_file *m, int cpu)
2750 {
2751 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2752 }
2753 #endif /* CONFIG_SCHED_DEBUG */