]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/deadline.c
sched, nohz: Change rq->nr_running to always use wrappers
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / deadline.c
1 /*
2 * Deadline Scheduling Class (SCHED_DEADLINE)
3 *
4 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
5 *
6 * Tasks that periodically executes their instances for less than their
7 * runtime won't miss any of their deadlines.
8 * Tasks that are not periodic or sporadic or that tries to execute more
9 * than their reserved bandwidth will be slowed down (and may potentially
10 * miss some of their deadlines), and won't affect any other task.
11 *
12 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
13 * Juri Lelli <juri.lelli@gmail.com>,
14 * Michael Trimarchi <michael@amarulasolutions.com>,
15 * Fabio Checconi <fchecconi@gmail.com>
16 */
17 #include "sched.h"
18
19 #include <linux/slab.h>
20
21 struct dl_bandwidth def_dl_bandwidth;
22
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 return container_of(dl_se, struct task_struct, dl);
26 }
27
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 return container_of(dl_rq, struct rq, dl);
31 }
32
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39 }
40
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45
46 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
47 {
48 struct sched_dl_entity *dl_se = &p->dl;
49
50 return dl_rq->rb_leftmost == &dl_se->rb_node;
51 }
52
53 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
54 {
55 raw_spin_lock_init(&dl_b->dl_runtime_lock);
56 dl_b->dl_period = period;
57 dl_b->dl_runtime = runtime;
58 }
59
60 extern unsigned long to_ratio(u64 period, u64 runtime);
61
62 void init_dl_bw(struct dl_bw *dl_b)
63 {
64 raw_spin_lock_init(&dl_b->lock);
65 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
66 if (global_rt_runtime() == RUNTIME_INF)
67 dl_b->bw = -1;
68 else
69 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
70 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
71 dl_b->total_bw = 0;
72 }
73
74 void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq)
75 {
76 dl_rq->rb_root = RB_ROOT;
77
78 #ifdef CONFIG_SMP
79 /* zero means no -deadline tasks */
80 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
81
82 dl_rq->dl_nr_migratory = 0;
83 dl_rq->overloaded = 0;
84 dl_rq->pushable_dl_tasks_root = RB_ROOT;
85 #else
86 init_dl_bw(&dl_rq->dl_bw);
87 #endif
88 }
89
90 #ifdef CONFIG_SMP
91
92 static inline int dl_overloaded(struct rq *rq)
93 {
94 return atomic_read(&rq->rd->dlo_count);
95 }
96
97 static inline void dl_set_overload(struct rq *rq)
98 {
99 if (!rq->online)
100 return;
101
102 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
103 /*
104 * Must be visible before the overload count is
105 * set (as in sched_rt.c).
106 *
107 * Matched by the barrier in pull_dl_task().
108 */
109 smp_wmb();
110 atomic_inc(&rq->rd->dlo_count);
111 }
112
113 static inline void dl_clear_overload(struct rq *rq)
114 {
115 if (!rq->online)
116 return;
117
118 atomic_dec(&rq->rd->dlo_count);
119 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
120 }
121
122 static void update_dl_migration(struct dl_rq *dl_rq)
123 {
124 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
125 if (!dl_rq->overloaded) {
126 dl_set_overload(rq_of_dl_rq(dl_rq));
127 dl_rq->overloaded = 1;
128 }
129 } else if (dl_rq->overloaded) {
130 dl_clear_overload(rq_of_dl_rq(dl_rq));
131 dl_rq->overloaded = 0;
132 }
133 }
134
135 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
136 {
137 struct task_struct *p = dl_task_of(dl_se);
138
139 if (p->nr_cpus_allowed > 1)
140 dl_rq->dl_nr_migratory++;
141
142 update_dl_migration(dl_rq);
143 }
144
145 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
146 {
147 struct task_struct *p = dl_task_of(dl_se);
148
149 if (p->nr_cpus_allowed > 1)
150 dl_rq->dl_nr_migratory--;
151
152 update_dl_migration(dl_rq);
153 }
154
155 /*
156 * The list of pushable -deadline task is not a plist, like in
157 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
158 */
159 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
160 {
161 struct dl_rq *dl_rq = &rq->dl;
162 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node;
163 struct rb_node *parent = NULL;
164 struct task_struct *entry;
165 int leftmost = 1;
166
167 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
168
169 while (*link) {
170 parent = *link;
171 entry = rb_entry(parent, struct task_struct,
172 pushable_dl_tasks);
173 if (dl_entity_preempt(&p->dl, &entry->dl))
174 link = &parent->rb_left;
175 else {
176 link = &parent->rb_right;
177 leftmost = 0;
178 }
179 }
180
181 if (leftmost)
182 dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks;
183
184 rb_link_node(&p->pushable_dl_tasks, parent, link);
185 rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
186 }
187
188 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
189 {
190 struct dl_rq *dl_rq = &rq->dl;
191
192 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
193 return;
194
195 if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) {
196 struct rb_node *next_node;
197
198 next_node = rb_next(&p->pushable_dl_tasks);
199 dl_rq->pushable_dl_tasks_leftmost = next_node;
200 }
201
202 rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
203 RB_CLEAR_NODE(&p->pushable_dl_tasks);
204 }
205
206 static inline int has_pushable_dl_tasks(struct rq *rq)
207 {
208 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root);
209 }
210
211 static int push_dl_task(struct rq *rq);
212
213 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
214 {
215 return dl_task(prev);
216 }
217
218 static inline void set_post_schedule(struct rq *rq)
219 {
220 rq->post_schedule = has_pushable_dl_tasks(rq);
221 }
222
223 #else
224
225 static inline
226 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
227 {
228 }
229
230 static inline
231 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
232 {
233 }
234
235 static inline
236 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
237 {
238 }
239
240 static inline
241 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
242 {
243 }
244
245 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
246 {
247 return false;
248 }
249
250 static inline int pull_dl_task(struct rq *rq)
251 {
252 return 0;
253 }
254
255 static inline void set_post_schedule(struct rq *rq)
256 {
257 }
258 #endif /* CONFIG_SMP */
259
260 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
261 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
262 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
263 int flags);
264
265 /*
266 * We are being explicitly informed that a new instance is starting,
267 * and this means that:
268 * - the absolute deadline of the entity has to be placed at
269 * current time + relative deadline;
270 * - the runtime of the entity has to be set to the maximum value.
271 *
272 * The capability of specifying such event is useful whenever a -deadline
273 * entity wants to (try to!) synchronize its behaviour with the scheduler's
274 * one, and to (try to!) reconcile itself with its own scheduling
275 * parameters.
276 */
277 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se,
278 struct sched_dl_entity *pi_se)
279 {
280 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
281 struct rq *rq = rq_of_dl_rq(dl_rq);
282
283 WARN_ON(!dl_se->dl_new || dl_se->dl_throttled);
284
285 /*
286 * We use the regular wall clock time to set deadlines in the
287 * future; in fact, we must consider execution overheads (time
288 * spent on hardirq context, etc.).
289 */
290 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
291 dl_se->runtime = pi_se->dl_runtime;
292 dl_se->dl_new = 0;
293 }
294
295 /*
296 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
297 * possibility of a entity lasting more than what it declared, and thus
298 * exhausting its runtime.
299 *
300 * Here we are interested in making runtime overrun possible, but we do
301 * not want a entity which is misbehaving to affect the scheduling of all
302 * other entities.
303 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
304 * is used, in order to confine each entity within its own bandwidth.
305 *
306 * This function deals exactly with that, and ensures that when the runtime
307 * of a entity is replenished, its deadline is also postponed. That ensures
308 * the overrunning entity can't interfere with other entity in the system and
309 * can't make them miss their deadlines. Reasons why this kind of overruns
310 * could happen are, typically, a entity voluntarily trying to overcome its
311 * runtime, or it just underestimated it during sched_setscheduler_ex().
312 */
313 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
314 struct sched_dl_entity *pi_se)
315 {
316 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
317 struct rq *rq = rq_of_dl_rq(dl_rq);
318
319 BUG_ON(pi_se->dl_runtime <= 0);
320
321 /*
322 * This could be the case for a !-dl task that is boosted.
323 * Just go with full inherited parameters.
324 */
325 if (dl_se->dl_deadline == 0) {
326 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
327 dl_se->runtime = pi_se->dl_runtime;
328 }
329
330 /*
331 * We keep moving the deadline away until we get some
332 * available runtime for the entity. This ensures correct
333 * handling of situations where the runtime overrun is
334 * arbitrary large.
335 */
336 while (dl_se->runtime <= 0) {
337 dl_se->deadline += pi_se->dl_period;
338 dl_se->runtime += pi_se->dl_runtime;
339 }
340
341 /*
342 * At this point, the deadline really should be "in
343 * the future" with respect to rq->clock. If it's
344 * not, we are, for some reason, lagging too much!
345 * Anyway, after having warn userspace abut that,
346 * we still try to keep the things running by
347 * resetting the deadline and the budget of the
348 * entity.
349 */
350 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
351 static bool lag_once = false;
352
353 if (!lag_once) {
354 lag_once = true;
355 printk_sched("sched: DL replenish lagged to much\n");
356 }
357 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
358 dl_se->runtime = pi_se->dl_runtime;
359 }
360 }
361
362 /*
363 * Here we check if --at time t-- an entity (which is probably being
364 * [re]activated or, in general, enqueued) can use its remaining runtime
365 * and its current deadline _without_ exceeding the bandwidth it is
366 * assigned (function returns true if it can't). We are in fact applying
367 * one of the CBS rules: when a task wakes up, if the residual runtime
368 * over residual deadline fits within the allocated bandwidth, then we
369 * can keep the current (absolute) deadline and residual budget without
370 * disrupting the schedulability of the system. Otherwise, we should
371 * refill the runtime and set the deadline a period in the future,
372 * because keeping the current (absolute) deadline of the task would
373 * result in breaking guarantees promised to other tasks (refer to
374 * Documentation/scheduler/sched-deadline.txt for more informations).
375 *
376 * This function returns true if:
377 *
378 * runtime / (deadline - t) > dl_runtime / dl_period ,
379 *
380 * IOW we can't recycle current parameters.
381 *
382 * Notice that the bandwidth check is done against the period. For
383 * task with deadline equal to period this is the same of using
384 * dl_deadline instead of dl_period in the equation above.
385 */
386 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
387 struct sched_dl_entity *pi_se, u64 t)
388 {
389 u64 left, right;
390
391 /*
392 * left and right are the two sides of the equation above,
393 * after a bit of shuffling to use multiplications instead
394 * of divisions.
395 *
396 * Note that none of the time values involved in the two
397 * multiplications are absolute: dl_deadline and dl_runtime
398 * are the relative deadline and the maximum runtime of each
399 * instance, runtime is the runtime left for the last instance
400 * and (deadline - t), since t is rq->clock, is the time left
401 * to the (absolute) deadline. Even if overflowing the u64 type
402 * is very unlikely to occur in both cases, here we scale down
403 * as we want to avoid that risk at all. Scaling down by 10
404 * means that we reduce granularity to 1us. We are fine with it,
405 * since this is only a true/false check and, anyway, thinking
406 * of anything below microseconds resolution is actually fiction
407 * (but still we want to give the user that illusion >;).
408 */
409 left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
410 right = ((dl_se->deadline - t) >> DL_SCALE) *
411 (pi_se->dl_runtime >> DL_SCALE);
412
413 return dl_time_before(right, left);
414 }
415
416 /*
417 * When a -deadline entity is queued back on the runqueue, its runtime and
418 * deadline might need updating.
419 *
420 * The policy here is that we update the deadline of the entity only if:
421 * - the current deadline is in the past,
422 * - using the remaining runtime with the current deadline would make
423 * the entity exceed its bandwidth.
424 */
425 static void update_dl_entity(struct sched_dl_entity *dl_se,
426 struct sched_dl_entity *pi_se)
427 {
428 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
429 struct rq *rq = rq_of_dl_rq(dl_rq);
430
431 /*
432 * The arrival of a new instance needs special treatment, i.e.,
433 * the actual scheduling parameters have to be "renewed".
434 */
435 if (dl_se->dl_new) {
436 setup_new_dl_entity(dl_se, pi_se);
437 return;
438 }
439
440 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
441 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
442 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
443 dl_se->runtime = pi_se->dl_runtime;
444 }
445 }
446
447 /*
448 * If the entity depleted all its runtime, and if we want it to sleep
449 * while waiting for some new execution time to become available, we
450 * set the bandwidth enforcement timer to the replenishment instant
451 * and try to activate it.
452 *
453 * Notice that it is important for the caller to know if the timer
454 * actually started or not (i.e., the replenishment instant is in
455 * the future or in the past).
456 */
457 static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted)
458 {
459 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
460 struct rq *rq = rq_of_dl_rq(dl_rq);
461 ktime_t now, act;
462 ktime_t soft, hard;
463 unsigned long range;
464 s64 delta;
465
466 if (boosted)
467 return 0;
468 /*
469 * We want the timer to fire at the deadline, but considering
470 * that it is actually coming from rq->clock and not from
471 * hrtimer's time base reading.
472 */
473 act = ns_to_ktime(dl_se->deadline);
474 now = hrtimer_cb_get_time(&dl_se->dl_timer);
475 delta = ktime_to_ns(now) - rq_clock(rq);
476 act = ktime_add_ns(act, delta);
477
478 /*
479 * If the expiry time already passed, e.g., because the value
480 * chosen as the deadline is too small, don't even try to
481 * start the timer in the past!
482 */
483 if (ktime_us_delta(act, now) < 0)
484 return 0;
485
486 hrtimer_set_expires(&dl_se->dl_timer, act);
487
488 soft = hrtimer_get_softexpires(&dl_se->dl_timer);
489 hard = hrtimer_get_expires(&dl_se->dl_timer);
490 range = ktime_to_ns(ktime_sub(hard, soft));
491 __hrtimer_start_range_ns(&dl_se->dl_timer, soft,
492 range, HRTIMER_MODE_ABS, 0);
493
494 return hrtimer_active(&dl_se->dl_timer);
495 }
496
497 /*
498 * This is the bandwidth enforcement timer callback. If here, we know
499 * a task is not on its dl_rq, since the fact that the timer was running
500 * means the task is throttled and needs a runtime replenishment.
501 *
502 * However, what we actually do depends on the fact the task is active,
503 * (it is on its rq) or has been removed from there by a call to
504 * dequeue_task_dl(). In the former case we must issue the runtime
505 * replenishment and add the task back to the dl_rq; in the latter, we just
506 * do nothing but clearing dl_throttled, so that runtime and deadline
507 * updating (and the queueing back to dl_rq) will be done by the
508 * next call to enqueue_task_dl().
509 */
510 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
511 {
512 struct sched_dl_entity *dl_se = container_of(timer,
513 struct sched_dl_entity,
514 dl_timer);
515 struct task_struct *p = dl_task_of(dl_se);
516 struct rq *rq = task_rq(p);
517 raw_spin_lock(&rq->lock);
518
519 /*
520 * We need to take care of a possible races here. In fact, the
521 * task might have changed its scheduling policy to something
522 * different from SCHED_DEADLINE or changed its reservation
523 * parameters (through sched_setscheduler()).
524 */
525 if (!dl_task(p) || dl_se->dl_new)
526 goto unlock;
527
528 sched_clock_tick();
529 update_rq_clock(rq);
530 dl_se->dl_throttled = 0;
531 dl_se->dl_yielded = 0;
532 if (p->on_rq) {
533 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
534 if (task_has_dl_policy(rq->curr))
535 check_preempt_curr_dl(rq, p, 0);
536 else
537 resched_task(rq->curr);
538 #ifdef CONFIG_SMP
539 /*
540 * Queueing this task back might have overloaded rq,
541 * check if we need to kick someone away.
542 */
543 if (has_pushable_dl_tasks(rq))
544 push_dl_task(rq);
545 #endif
546 }
547 unlock:
548 raw_spin_unlock(&rq->lock);
549
550 return HRTIMER_NORESTART;
551 }
552
553 void init_dl_task_timer(struct sched_dl_entity *dl_se)
554 {
555 struct hrtimer *timer = &dl_se->dl_timer;
556
557 if (hrtimer_active(timer)) {
558 hrtimer_try_to_cancel(timer);
559 return;
560 }
561
562 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
563 timer->function = dl_task_timer;
564 }
565
566 static
567 int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se)
568 {
569 int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq));
570 int rorun = dl_se->runtime <= 0;
571
572 if (!rorun && !dmiss)
573 return 0;
574
575 /*
576 * If we are beyond our current deadline and we are still
577 * executing, then we have already used some of the runtime of
578 * the next instance. Thus, if we do not account that, we are
579 * stealing bandwidth from the system at each deadline miss!
580 */
581 if (dmiss) {
582 dl_se->runtime = rorun ? dl_se->runtime : 0;
583 dl_se->runtime -= rq_clock(rq) - dl_se->deadline;
584 }
585
586 return 1;
587 }
588
589 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
590
591 /*
592 * Update the current task's runtime statistics (provided it is still
593 * a -deadline task and has not been removed from the dl_rq).
594 */
595 static void update_curr_dl(struct rq *rq)
596 {
597 struct task_struct *curr = rq->curr;
598 struct sched_dl_entity *dl_se = &curr->dl;
599 u64 delta_exec;
600
601 if (!dl_task(curr) || !on_dl_rq(dl_se))
602 return;
603
604 /*
605 * Consumed budget is computed considering the time as
606 * observed by schedulable tasks (excluding time spent
607 * in hardirq context, etc.). Deadlines are instead
608 * computed using hard walltime. This seems to be the more
609 * natural solution, but the full ramifications of this
610 * approach need further study.
611 */
612 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
613 if (unlikely((s64)delta_exec <= 0))
614 return;
615
616 schedstat_set(curr->se.statistics.exec_max,
617 max(curr->se.statistics.exec_max, delta_exec));
618
619 curr->se.sum_exec_runtime += delta_exec;
620 account_group_exec_runtime(curr, delta_exec);
621
622 curr->se.exec_start = rq_clock_task(rq);
623 cpuacct_charge(curr, delta_exec);
624
625 sched_rt_avg_update(rq, delta_exec);
626
627 dl_se->runtime -= delta_exec;
628 if (dl_runtime_exceeded(rq, dl_se)) {
629 __dequeue_task_dl(rq, curr, 0);
630 if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted)))
631 dl_se->dl_throttled = 1;
632 else
633 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
634
635 if (!is_leftmost(curr, &rq->dl))
636 resched_task(curr);
637 }
638
639 /*
640 * Because -- for now -- we share the rt bandwidth, we need to
641 * account our runtime there too, otherwise actual rt tasks
642 * would be able to exceed the shared quota.
643 *
644 * Account to the root rt group for now.
645 *
646 * The solution we're working towards is having the RT groups scheduled
647 * using deadline servers -- however there's a few nasties to figure
648 * out before that can happen.
649 */
650 if (rt_bandwidth_enabled()) {
651 struct rt_rq *rt_rq = &rq->rt;
652
653 raw_spin_lock(&rt_rq->rt_runtime_lock);
654 /*
655 * We'll let actual RT tasks worry about the overflow here, we
656 * have our own CBS to keep us inline; only account when RT
657 * bandwidth is relevant.
658 */
659 if (sched_rt_bandwidth_account(rt_rq))
660 rt_rq->rt_time += delta_exec;
661 raw_spin_unlock(&rt_rq->rt_runtime_lock);
662 }
663 }
664
665 #ifdef CONFIG_SMP
666
667 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu);
668
669 static inline u64 next_deadline(struct rq *rq)
670 {
671 struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu);
672
673 if (next && dl_prio(next->prio))
674 return next->dl.deadline;
675 else
676 return 0;
677 }
678
679 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
680 {
681 struct rq *rq = rq_of_dl_rq(dl_rq);
682
683 if (dl_rq->earliest_dl.curr == 0 ||
684 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
685 /*
686 * If the dl_rq had no -deadline tasks, or if the new task
687 * has shorter deadline than the current one on dl_rq, we
688 * know that the previous earliest becomes our next earliest,
689 * as the new task becomes the earliest itself.
690 */
691 dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr;
692 dl_rq->earliest_dl.curr = deadline;
693 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1);
694 } else if (dl_rq->earliest_dl.next == 0 ||
695 dl_time_before(deadline, dl_rq->earliest_dl.next)) {
696 /*
697 * On the other hand, if the new -deadline task has a
698 * a later deadline than the earliest one on dl_rq, but
699 * it is earlier than the next (if any), we must
700 * recompute the next-earliest.
701 */
702 dl_rq->earliest_dl.next = next_deadline(rq);
703 }
704 }
705
706 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
707 {
708 struct rq *rq = rq_of_dl_rq(dl_rq);
709
710 /*
711 * Since we may have removed our earliest (and/or next earliest)
712 * task we must recompute them.
713 */
714 if (!dl_rq->dl_nr_running) {
715 dl_rq->earliest_dl.curr = 0;
716 dl_rq->earliest_dl.next = 0;
717 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
718 } else {
719 struct rb_node *leftmost = dl_rq->rb_leftmost;
720 struct sched_dl_entity *entry;
721
722 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
723 dl_rq->earliest_dl.curr = entry->deadline;
724 dl_rq->earliest_dl.next = next_deadline(rq);
725 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1);
726 }
727 }
728
729 #else
730
731 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
732 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
733
734 #endif /* CONFIG_SMP */
735
736 static inline
737 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
738 {
739 int prio = dl_task_of(dl_se)->prio;
740 u64 deadline = dl_se->deadline;
741
742 WARN_ON(!dl_prio(prio));
743 dl_rq->dl_nr_running++;
744 add_nr_running(rq_of_dl_rq(dl_rq), 1);
745
746 inc_dl_deadline(dl_rq, deadline);
747 inc_dl_migration(dl_se, dl_rq);
748 }
749
750 static inline
751 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
752 {
753 int prio = dl_task_of(dl_se)->prio;
754
755 WARN_ON(!dl_prio(prio));
756 WARN_ON(!dl_rq->dl_nr_running);
757 dl_rq->dl_nr_running--;
758 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
759
760 dec_dl_deadline(dl_rq, dl_se->deadline);
761 dec_dl_migration(dl_se, dl_rq);
762 }
763
764 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
765 {
766 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
767 struct rb_node **link = &dl_rq->rb_root.rb_node;
768 struct rb_node *parent = NULL;
769 struct sched_dl_entity *entry;
770 int leftmost = 1;
771
772 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
773
774 while (*link) {
775 parent = *link;
776 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
777 if (dl_time_before(dl_se->deadline, entry->deadline))
778 link = &parent->rb_left;
779 else {
780 link = &parent->rb_right;
781 leftmost = 0;
782 }
783 }
784
785 if (leftmost)
786 dl_rq->rb_leftmost = &dl_se->rb_node;
787
788 rb_link_node(&dl_se->rb_node, parent, link);
789 rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root);
790
791 inc_dl_tasks(dl_se, dl_rq);
792 }
793
794 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
795 {
796 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
797
798 if (RB_EMPTY_NODE(&dl_se->rb_node))
799 return;
800
801 if (dl_rq->rb_leftmost == &dl_se->rb_node) {
802 struct rb_node *next_node;
803
804 next_node = rb_next(&dl_se->rb_node);
805 dl_rq->rb_leftmost = next_node;
806 }
807
808 rb_erase(&dl_se->rb_node, &dl_rq->rb_root);
809 RB_CLEAR_NODE(&dl_se->rb_node);
810
811 dec_dl_tasks(dl_se, dl_rq);
812 }
813
814 static void
815 enqueue_dl_entity(struct sched_dl_entity *dl_se,
816 struct sched_dl_entity *pi_se, int flags)
817 {
818 BUG_ON(on_dl_rq(dl_se));
819
820 /*
821 * If this is a wakeup or a new instance, the scheduling
822 * parameters of the task might need updating. Otherwise,
823 * we want a replenishment of its runtime.
824 */
825 if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH)
826 replenish_dl_entity(dl_se, pi_se);
827 else
828 update_dl_entity(dl_se, pi_se);
829
830 __enqueue_dl_entity(dl_se);
831 }
832
833 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
834 {
835 __dequeue_dl_entity(dl_se);
836 }
837
838 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
839 {
840 struct task_struct *pi_task = rt_mutex_get_top_task(p);
841 struct sched_dl_entity *pi_se = &p->dl;
842
843 /*
844 * Use the scheduling parameters of the top pi-waiter
845 * task if we have one and its (relative) deadline is
846 * smaller than our one... OTW we keep our runtime and
847 * deadline.
848 */
849 if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio))
850 pi_se = &pi_task->dl;
851
852 /*
853 * If p is throttled, we do nothing. In fact, if it exhausted
854 * its budget it needs a replenishment and, since it now is on
855 * its rq, the bandwidth timer callback (which clearly has not
856 * run yet) will take care of this.
857 */
858 if (p->dl.dl_throttled)
859 return;
860
861 enqueue_dl_entity(&p->dl, pi_se, flags);
862
863 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
864 enqueue_pushable_dl_task(rq, p);
865 }
866
867 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
868 {
869 dequeue_dl_entity(&p->dl);
870 dequeue_pushable_dl_task(rq, p);
871 }
872
873 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
874 {
875 update_curr_dl(rq);
876 __dequeue_task_dl(rq, p, flags);
877 }
878
879 /*
880 * Yield task semantic for -deadline tasks is:
881 *
882 * get off from the CPU until our next instance, with
883 * a new runtime. This is of little use now, since we
884 * don't have a bandwidth reclaiming mechanism. Anyway,
885 * bandwidth reclaiming is planned for the future, and
886 * yield_task_dl will indicate that some spare budget
887 * is available for other task instances to use it.
888 */
889 static void yield_task_dl(struct rq *rq)
890 {
891 struct task_struct *p = rq->curr;
892
893 /*
894 * We make the task go to sleep until its current deadline by
895 * forcing its runtime to zero. This way, update_curr_dl() stops
896 * it and the bandwidth timer will wake it up and will give it
897 * new scheduling parameters (thanks to dl_yielded=1).
898 */
899 if (p->dl.runtime > 0) {
900 rq->curr->dl.dl_yielded = 1;
901 p->dl.runtime = 0;
902 }
903 update_curr_dl(rq);
904 }
905
906 #ifdef CONFIG_SMP
907
908 static int find_later_rq(struct task_struct *task);
909
910 static int
911 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
912 {
913 struct task_struct *curr;
914 struct rq *rq;
915
916 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
917 goto out;
918
919 rq = cpu_rq(cpu);
920
921 rcu_read_lock();
922 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
923
924 /*
925 * If we are dealing with a -deadline task, we must
926 * decide where to wake it up.
927 * If it has a later deadline and the current task
928 * on this rq can't move (provided the waking task
929 * can!) we prefer to send it somewhere else. On the
930 * other hand, if it has a shorter deadline, we
931 * try to make it stay here, it might be important.
932 */
933 if (unlikely(dl_task(curr)) &&
934 (curr->nr_cpus_allowed < 2 ||
935 !dl_entity_preempt(&p->dl, &curr->dl)) &&
936 (p->nr_cpus_allowed > 1)) {
937 int target = find_later_rq(p);
938
939 if (target != -1)
940 cpu = target;
941 }
942 rcu_read_unlock();
943
944 out:
945 return cpu;
946 }
947
948 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
949 {
950 /*
951 * Current can't be migrated, useless to reschedule,
952 * let's hope p can move out.
953 */
954 if (rq->curr->nr_cpus_allowed == 1 ||
955 cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1)
956 return;
957
958 /*
959 * p is migratable, so let's not schedule it and
960 * see if it is pushed or pulled somewhere else.
961 */
962 if (p->nr_cpus_allowed != 1 &&
963 cpudl_find(&rq->rd->cpudl, p, NULL) != -1)
964 return;
965
966 resched_task(rq->curr);
967 }
968
969 static int pull_dl_task(struct rq *this_rq);
970
971 #endif /* CONFIG_SMP */
972
973 /*
974 * Only called when both the current and waking task are -deadline
975 * tasks.
976 */
977 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
978 int flags)
979 {
980 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
981 resched_task(rq->curr);
982 return;
983 }
984
985 #ifdef CONFIG_SMP
986 /*
987 * In the unlikely case current and p have the same deadline
988 * let us try to decide what's the best thing to do...
989 */
990 if ((p->dl.deadline == rq->curr->dl.deadline) &&
991 !test_tsk_need_resched(rq->curr))
992 check_preempt_equal_dl(rq, p);
993 #endif /* CONFIG_SMP */
994 }
995
996 #ifdef CONFIG_SCHED_HRTICK
997 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
998 {
999 s64 delta = p->dl.dl_runtime - p->dl.runtime;
1000
1001 if (delta > 10000)
1002 hrtick_start(rq, p->dl.runtime);
1003 }
1004 #endif
1005
1006 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1007 struct dl_rq *dl_rq)
1008 {
1009 struct rb_node *left = dl_rq->rb_leftmost;
1010
1011 if (!left)
1012 return NULL;
1013
1014 return rb_entry(left, struct sched_dl_entity, rb_node);
1015 }
1016
1017 struct task_struct *pick_next_task_dl(struct rq *rq, struct task_struct *prev)
1018 {
1019 struct sched_dl_entity *dl_se;
1020 struct task_struct *p;
1021 struct dl_rq *dl_rq;
1022
1023 dl_rq = &rq->dl;
1024
1025 if (need_pull_dl_task(rq, prev)) {
1026 pull_dl_task(rq);
1027 /*
1028 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1029 * means a stop task can slip in, in which case we need to
1030 * re-start task selection.
1031 */
1032 if (rq->stop && rq->stop->on_rq)
1033 return RETRY_TASK;
1034 }
1035
1036 /*
1037 * When prev is DL, we may throttle it in put_prev_task().
1038 * So, we update time before we check for dl_nr_running.
1039 */
1040 if (prev->sched_class == &dl_sched_class)
1041 update_curr_dl(rq);
1042
1043 if (unlikely(!dl_rq->dl_nr_running))
1044 return NULL;
1045
1046 put_prev_task(rq, prev);
1047
1048 dl_se = pick_next_dl_entity(rq, dl_rq);
1049 BUG_ON(!dl_se);
1050
1051 p = dl_task_of(dl_se);
1052 p->se.exec_start = rq_clock_task(rq);
1053
1054 /* Running task will never be pushed. */
1055 dequeue_pushable_dl_task(rq, p);
1056
1057 #ifdef CONFIG_SCHED_HRTICK
1058 if (hrtick_enabled(rq))
1059 start_hrtick_dl(rq, p);
1060 #endif
1061
1062 set_post_schedule(rq);
1063
1064 return p;
1065 }
1066
1067 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1068 {
1069 update_curr_dl(rq);
1070
1071 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1072 enqueue_pushable_dl_task(rq, p);
1073 }
1074
1075 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1076 {
1077 update_curr_dl(rq);
1078
1079 #ifdef CONFIG_SCHED_HRTICK
1080 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0)
1081 start_hrtick_dl(rq, p);
1082 #endif
1083 }
1084
1085 static void task_fork_dl(struct task_struct *p)
1086 {
1087 /*
1088 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1089 * sched_fork()
1090 */
1091 }
1092
1093 static void task_dead_dl(struct task_struct *p)
1094 {
1095 struct hrtimer *timer = &p->dl.dl_timer;
1096 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1097
1098 /*
1099 * Since we are TASK_DEAD we won't slip out of the domain!
1100 */
1101 raw_spin_lock_irq(&dl_b->lock);
1102 dl_b->total_bw -= p->dl.dl_bw;
1103 raw_spin_unlock_irq(&dl_b->lock);
1104
1105 hrtimer_cancel(timer);
1106 }
1107
1108 static void set_curr_task_dl(struct rq *rq)
1109 {
1110 struct task_struct *p = rq->curr;
1111
1112 p->se.exec_start = rq_clock_task(rq);
1113
1114 /* You can't push away the running task */
1115 dequeue_pushable_dl_task(rq, p);
1116 }
1117
1118 #ifdef CONFIG_SMP
1119
1120 /* Only try algorithms three times */
1121 #define DL_MAX_TRIES 3
1122
1123 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1124 {
1125 if (!task_running(rq, p) &&
1126 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1127 (p->nr_cpus_allowed > 1))
1128 return 1;
1129
1130 return 0;
1131 }
1132
1133 /* Returns the second earliest -deadline task, NULL otherwise */
1134 static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu)
1135 {
1136 struct rb_node *next_node = rq->dl.rb_leftmost;
1137 struct sched_dl_entity *dl_se;
1138 struct task_struct *p = NULL;
1139
1140 next_node:
1141 next_node = rb_next(next_node);
1142 if (next_node) {
1143 dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node);
1144 p = dl_task_of(dl_se);
1145
1146 if (pick_dl_task(rq, p, cpu))
1147 return p;
1148
1149 goto next_node;
1150 }
1151
1152 return NULL;
1153 }
1154
1155 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1156
1157 static int find_later_rq(struct task_struct *task)
1158 {
1159 struct sched_domain *sd;
1160 struct cpumask *later_mask = __get_cpu_var(local_cpu_mask_dl);
1161 int this_cpu = smp_processor_id();
1162 int best_cpu, cpu = task_cpu(task);
1163
1164 /* Make sure the mask is initialized first */
1165 if (unlikely(!later_mask))
1166 return -1;
1167
1168 if (task->nr_cpus_allowed == 1)
1169 return -1;
1170
1171 best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
1172 task, later_mask);
1173 if (best_cpu == -1)
1174 return -1;
1175
1176 /*
1177 * If we are here, some target has been found,
1178 * the most suitable of which is cached in best_cpu.
1179 * This is, among the runqueues where the current tasks
1180 * have later deadlines than the task's one, the rq
1181 * with the latest possible one.
1182 *
1183 * Now we check how well this matches with task's
1184 * affinity and system topology.
1185 *
1186 * The last cpu where the task run is our first
1187 * guess, since it is most likely cache-hot there.
1188 */
1189 if (cpumask_test_cpu(cpu, later_mask))
1190 return cpu;
1191 /*
1192 * Check if this_cpu is to be skipped (i.e., it is
1193 * not in the mask) or not.
1194 */
1195 if (!cpumask_test_cpu(this_cpu, later_mask))
1196 this_cpu = -1;
1197
1198 rcu_read_lock();
1199 for_each_domain(cpu, sd) {
1200 if (sd->flags & SD_WAKE_AFFINE) {
1201
1202 /*
1203 * If possible, preempting this_cpu is
1204 * cheaper than migrating.
1205 */
1206 if (this_cpu != -1 &&
1207 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1208 rcu_read_unlock();
1209 return this_cpu;
1210 }
1211
1212 /*
1213 * Last chance: if best_cpu is valid and is
1214 * in the mask, that becomes our choice.
1215 */
1216 if (best_cpu < nr_cpu_ids &&
1217 cpumask_test_cpu(best_cpu, sched_domain_span(sd))) {
1218 rcu_read_unlock();
1219 return best_cpu;
1220 }
1221 }
1222 }
1223 rcu_read_unlock();
1224
1225 /*
1226 * At this point, all our guesses failed, we just return
1227 * 'something', and let the caller sort the things out.
1228 */
1229 if (this_cpu != -1)
1230 return this_cpu;
1231
1232 cpu = cpumask_any(later_mask);
1233 if (cpu < nr_cpu_ids)
1234 return cpu;
1235
1236 return -1;
1237 }
1238
1239 /* Locks the rq it finds */
1240 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1241 {
1242 struct rq *later_rq = NULL;
1243 int tries;
1244 int cpu;
1245
1246 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1247 cpu = find_later_rq(task);
1248
1249 if ((cpu == -1) || (cpu == rq->cpu))
1250 break;
1251
1252 later_rq = cpu_rq(cpu);
1253
1254 /* Retry if something changed. */
1255 if (double_lock_balance(rq, later_rq)) {
1256 if (unlikely(task_rq(task) != rq ||
1257 !cpumask_test_cpu(later_rq->cpu,
1258 &task->cpus_allowed) ||
1259 task_running(rq, task) || !task->on_rq)) {
1260 double_unlock_balance(rq, later_rq);
1261 later_rq = NULL;
1262 break;
1263 }
1264 }
1265
1266 /*
1267 * If the rq we found has no -deadline task, or
1268 * its earliest one has a later deadline than our
1269 * task, the rq is a good one.
1270 */
1271 if (!later_rq->dl.dl_nr_running ||
1272 dl_time_before(task->dl.deadline,
1273 later_rq->dl.earliest_dl.curr))
1274 break;
1275
1276 /* Otherwise we try again. */
1277 double_unlock_balance(rq, later_rq);
1278 later_rq = NULL;
1279 }
1280
1281 return later_rq;
1282 }
1283
1284 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
1285 {
1286 struct task_struct *p;
1287
1288 if (!has_pushable_dl_tasks(rq))
1289 return NULL;
1290
1291 p = rb_entry(rq->dl.pushable_dl_tasks_leftmost,
1292 struct task_struct, pushable_dl_tasks);
1293
1294 BUG_ON(rq->cpu != task_cpu(p));
1295 BUG_ON(task_current(rq, p));
1296 BUG_ON(p->nr_cpus_allowed <= 1);
1297
1298 BUG_ON(!p->on_rq);
1299 BUG_ON(!dl_task(p));
1300
1301 return p;
1302 }
1303
1304 /*
1305 * See if the non running -deadline tasks on this rq
1306 * can be sent to some other CPU where they can preempt
1307 * and start executing.
1308 */
1309 static int push_dl_task(struct rq *rq)
1310 {
1311 struct task_struct *next_task;
1312 struct rq *later_rq;
1313
1314 if (!rq->dl.overloaded)
1315 return 0;
1316
1317 next_task = pick_next_pushable_dl_task(rq);
1318 if (!next_task)
1319 return 0;
1320
1321 retry:
1322 if (unlikely(next_task == rq->curr)) {
1323 WARN_ON(1);
1324 return 0;
1325 }
1326
1327 /*
1328 * If next_task preempts rq->curr, and rq->curr
1329 * can move away, it makes sense to just reschedule
1330 * without going further in pushing next_task.
1331 */
1332 if (dl_task(rq->curr) &&
1333 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
1334 rq->curr->nr_cpus_allowed > 1) {
1335 resched_task(rq->curr);
1336 return 0;
1337 }
1338
1339 /* We might release rq lock */
1340 get_task_struct(next_task);
1341
1342 /* Will lock the rq it'll find */
1343 later_rq = find_lock_later_rq(next_task, rq);
1344 if (!later_rq) {
1345 struct task_struct *task;
1346
1347 /*
1348 * We must check all this again, since
1349 * find_lock_later_rq releases rq->lock and it is
1350 * then possible that next_task has migrated.
1351 */
1352 task = pick_next_pushable_dl_task(rq);
1353 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1354 /*
1355 * The task is still there. We don't try
1356 * again, some other cpu will pull it when ready.
1357 */
1358 dequeue_pushable_dl_task(rq, next_task);
1359 goto out;
1360 }
1361
1362 if (!task)
1363 /* No more tasks */
1364 goto out;
1365
1366 put_task_struct(next_task);
1367 next_task = task;
1368 goto retry;
1369 }
1370
1371 deactivate_task(rq, next_task, 0);
1372 set_task_cpu(next_task, later_rq->cpu);
1373 activate_task(later_rq, next_task, 0);
1374
1375 resched_task(later_rq->curr);
1376
1377 double_unlock_balance(rq, later_rq);
1378
1379 out:
1380 put_task_struct(next_task);
1381
1382 return 1;
1383 }
1384
1385 static void push_dl_tasks(struct rq *rq)
1386 {
1387 /* Terminates as it moves a -deadline task */
1388 while (push_dl_task(rq))
1389 ;
1390 }
1391
1392 static int pull_dl_task(struct rq *this_rq)
1393 {
1394 int this_cpu = this_rq->cpu, ret = 0, cpu;
1395 struct task_struct *p;
1396 struct rq *src_rq;
1397 u64 dmin = LONG_MAX;
1398
1399 if (likely(!dl_overloaded(this_rq)))
1400 return 0;
1401
1402 /*
1403 * Match the barrier from dl_set_overloaded; this guarantees that if we
1404 * see overloaded we must also see the dlo_mask bit.
1405 */
1406 smp_rmb();
1407
1408 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
1409 if (this_cpu == cpu)
1410 continue;
1411
1412 src_rq = cpu_rq(cpu);
1413
1414 /*
1415 * It looks racy, abd it is! However, as in sched_rt.c,
1416 * we are fine with this.
1417 */
1418 if (this_rq->dl.dl_nr_running &&
1419 dl_time_before(this_rq->dl.earliest_dl.curr,
1420 src_rq->dl.earliest_dl.next))
1421 continue;
1422
1423 /* Might drop this_rq->lock */
1424 double_lock_balance(this_rq, src_rq);
1425
1426 /*
1427 * If there are no more pullable tasks on the
1428 * rq, we're done with it.
1429 */
1430 if (src_rq->dl.dl_nr_running <= 1)
1431 goto skip;
1432
1433 p = pick_next_earliest_dl_task(src_rq, this_cpu);
1434
1435 /*
1436 * We found a task to be pulled if:
1437 * - it preempts our current (if there's one),
1438 * - it will preempt the last one we pulled (if any).
1439 */
1440 if (p && dl_time_before(p->dl.deadline, dmin) &&
1441 (!this_rq->dl.dl_nr_running ||
1442 dl_time_before(p->dl.deadline,
1443 this_rq->dl.earliest_dl.curr))) {
1444 WARN_ON(p == src_rq->curr);
1445 WARN_ON(!p->on_rq);
1446
1447 /*
1448 * Then we pull iff p has actually an earlier
1449 * deadline than the current task of its runqueue.
1450 */
1451 if (dl_time_before(p->dl.deadline,
1452 src_rq->curr->dl.deadline))
1453 goto skip;
1454
1455 ret = 1;
1456
1457 deactivate_task(src_rq, p, 0);
1458 set_task_cpu(p, this_cpu);
1459 activate_task(this_rq, p, 0);
1460 dmin = p->dl.deadline;
1461
1462 /* Is there any other task even earlier? */
1463 }
1464 skip:
1465 double_unlock_balance(this_rq, src_rq);
1466 }
1467
1468 return ret;
1469 }
1470
1471 static void post_schedule_dl(struct rq *rq)
1472 {
1473 push_dl_tasks(rq);
1474 }
1475
1476 /*
1477 * Since the task is not running and a reschedule is not going to happen
1478 * anytime soon on its runqueue, we try pushing it away now.
1479 */
1480 static void task_woken_dl(struct rq *rq, struct task_struct *p)
1481 {
1482 if (!task_running(rq, p) &&
1483 !test_tsk_need_resched(rq->curr) &&
1484 has_pushable_dl_tasks(rq) &&
1485 p->nr_cpus_allowed > 1 &&
1486 dl_task(rq->curr) &&
1487 (rq->curr->nr_cpus_allowed < 2 ||
1488 dl_entity_preempt(&rq->curr->dl, &p->dl))) {
1489 push_dl_tasks(rq);
1490 }
1491 }
1492
1493 static void set_cpus_allowed_dl(struct task_struct *p,
1494 const struct cpumask *new_mask)
1495 {
1496 struct rq *rq;
1497 int weight;
1498
1499 BUG_ON(!dl_task(p));
1500
1501 /*
1502 * Update only if the task is actually running (i.e.,
1503 * it is on the rq AND it is not throttled).
1504 */
1505 if (!on_dl_rq(&p->dl))
1506 return;
1507
1508 weight = cpumask_weight(new_mask);
1509
1510 /*
1511 * Only update if the process changes its state from whether it
1512 * can migrate or not.
1513 */
1514 if ((p->nr_cpus_allowed > 1) == (weight > 1))
1515 return;
1516
1517 rq = task_rq(p);
1518
1519 /*
1520 * The process used to be able to migrate OR it can now migrate
1521 */
1522 if (weight <= 1) {
1523 if (!task_current(rq, p))
1524 dequeue_pushable_dl_task(rq, p);
1525 BUG_ON(!rq->dl.dl_nr_migratory);
1526 rq->dl.dl_nr_migratory--;
1527 } else {
1528 if (!task_current(rq, p))
1529 enqueue_pushable_dl_task(rq, p);
1530 rq->dl.dl_nr_migratory++;
1531 }
1532
1533 update_dl_migration(&rq->dl);
1534 }
1535
1536 /* Assumes rq->lock is held */
1537 static void rq_online_dl(struct rq *rq)
1538 {
1539 if (rq->dl.overloaded)
1540 dl_set_overload(rq);
1541
1542 if (rq->dl.dl_nr_running > 0)
1543 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
1544 }
1545
1546 /* Assumes rq->lock is held */
1547 static void rq_offline_dl(struct rq *rq)
1548 {
1549 if (rq->dl.overloaded)
1550 dl_clear_overload(rq);
1551
1552 cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
1553 }
1554
1555 void init_sched_dl_class(void)
1556 {
1557 unsigned int i;
1558
1559 for_each_possible_cpu(i)
1560 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
1561 GFP_KERNEL, cpu_to_node(i));
1562 }
1563
1564 #endif /* CONFIG_SMP */
1565
1566 static void switched_from_dl(struct rq *rq, struct task_struct *p)
1567 {
1568 if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy))
1569 hrtimer_try_to_cancel(&p->dl.dl_timer);
1570
1571 #ifdef CONFIG_SMP
1572 /*
1573 * Since this might be the only -deadline task on the rq,
1574 * this is the right place to try to pull some other one
1575 * from an overloaded cpu, if any.
1576 */
1577 if (!rq->dl.dl_nr_running)
1578 pull_dl_task(rq);
1579 #endif
1580 }
1581
1582 /*
1583 * When switching to -deadline, we may overload the rq, then
1584 * we try to push someone off, if possible.
1585 */
1586 static void switched_to_dl(struct rq *rq, struct task_struct *p)
1587 {
1588 int check_resched = 1;
1589
1590 /*
1591 * If p is throttled, don't consider the possibility
1592 * of preempting rq->curr, the check will be done right
1593 * after its runtime will get replenished.
1594 */
1595 if (unlikely(p->dl.dl_throttled))
1596 return;
1597
1598 if (p->on_rq && rq->curr != p) {
1599 #ifdef CONFIG_SMP
1600 if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p))
1601 /* Only reschedule if pushing failed */
1602 check_resched = 0;
1603 #endif /* CONFIG_SMP */
1604 if (check_resched && task_has_dl_policy(rq->curr))
1605 check_preempt_curr_dl(rq, p, 0);
1606 }
1607 }
1608
1609 /*
1610 * If the scheduling parameters of a -deadline task changed,
1611 * a push or pull operation might be needed.
1612 */
1613 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
1614 int oldprio)
1615 {
1616 if (p->on_rq || rq->curr == p) {
1617 #ifdef CONFIG_SMP
1618 /*
1619 * This might be too much, but unfortunately
1620 * we don't have the old deadline value, and
1621 * we can't argue if the task is increasing
1622 * or lowering its prio, so...
1623 */
1624 if (!rq->dl.overloaded)
1625 pull_dl_task(rq);
1626
1627 /*
1628 * If we now have a earlier deadline task than p,
1629 * then reschedule, provided p is still on this
1630 * runqueue.
1631 */
1632 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) &&
1633 rq->curr == p)
1634 resched_task(p);
1635 #else
1636 /*
1637 * Again, we don't know if p has a earlier
1638 * or later deadline, so let's blindly set a
1639 * (maybe not needed) rescheduling point.
1640 */
1641 resched_task(p);
1642 #endif /* CONFIG_SMP */
1643 } else
1644 switched_to_dl(rq, p);
1645 }
1646
1647 const struct sched_class dl_sched_class = {
1648 .next = &rt_sched_class,
1649 .enqueue_task = enqueue_task_dl,
1650 .dequeue_task = dequeue_task_dl,
1651 .yield_task = yield_task_dl,
1652
1653 .check_preempt_curr = check_preempt_curr_dl,
1654
1655 .pick_next_task = pick_next_task_dl,
1656 .put_prev_task = put_prev_task_dl,
1657
1658 #ifdef CONFIG_SMP
1659 .select_task_rq = select_task_rq_dl,
1660 .set_cpus_allowed = set_cpus_allowed_dl,
1661 .rq_online = rq_online_dl,
1662 .rq_offline = rq_offline_dl,
1663 .post_schedule = post_schedule_dl,
1664 .task_woken = task_woken_dl,
1665 #endif
1666
1667 .set_curr_task = set_curr_task_dl,
1668 .task_tick = task_tick_dl,
1669 .task_fork = task_fork_dl,
1670 .task_dead = task_dead_dl,
1671
1672 .prio_changed = prio_changed_dl,
1673 .switched_from = switched_from_dl,
1674 .switched_to = switched_to_dl,
1675 };