]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched/deadline.c
Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / deadline.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18 #include "sched.h"
19 #include "pelt.h"
20
21 struct dl_bandwidth def_dl_bandwidth;
22
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 return container_of(dl_se, struct task_struct, dl);
26 }
27
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 return container_of(dl_rq, struct rq, dl);
31 }
32
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39 }
40
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45
46 #ifdef CONFIG_SMP
47 static inline struct dl_bw *dl_bw_of(int i)
48 {
49 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
50 "sched RCU must be held");
51 return &cpu_rq(i)->rd->dl_bw;
52 }
53
54 static inline int dl_bw_cpus(int i)
55 {
56 struct root_domain *rd = cpu_rq(i)->rd;
57 int cpus;
58
59 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
60 "sched RCU must be held");
61
62 if (cpumask_subset(rd->span, cpu_active_mask))
63 return cpumask_weight(rd->span);
64
65 cpus = 0;
66
67 for_each_cpu_and(i, rd->span, cpu_active_mask)
68 cpus++;
69
70 return cpus;
71 }
72
73 static inline unsigned long __dl_bw_capacity(int i)
74 {
75 struct root_domain *rd = cpu_rq(i)->rd;
76 unsigned long cap = 0;
77
78 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
79 "sched RCU must be held");
80
81 for_each_cpu_and(i, rd->span, cpu_active_mask)
82 cap += capacity_orig_of(i);
83
84 return cap;
85 }
86
87 /*
88 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
89 * of the CPU the task is running on rather rd's \Sum CPU capacity.
90 */
91 static inline unsigned long dl_bw_capacity(int i)
92 {
93 if (!static_branch_unlikely(&sched_asym_cpucapacity) &&
94 capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
95 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
96 } else {
97 return __dl_bw_capacity(i);
98 }
99 }
100 #else
101 static inline struct dl_bw *dl_bw_of(int i)
102 {
103 return &cpu_rq(i)->dl.dl_bw;
104 }
105
106 static inline int dl_bw_cpus(int i)
107 {
108 return 1;
109 }
110
111 static inline unsigned long dl_bw_capacity(int i)
112 {
113 return SCHED_CAPACITY_SCALE;
114 }
115 #endif
116
117 static inline
118 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
119 {
120 u64 old = dl_rq->running_bw;
121
122 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
123 dl_rq->running_bw += dl_bw;
124 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
125 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
126 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
127 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
128 }
129
130 static inline
131 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
132 {
133 u64 old = dl_rq->running_bw;
134
135 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
136 dl_rq->running_bw -= dl_bw;
137 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
138 if (dl_rq->running_bw > old)
139 dl_rq->running_bw = 0;
140 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
141 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
142 }
143
144 static inline
145 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
146 {
147 u64 old = dl_rq->this_bw;
148
149 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
150 dl_rq->this_bw += dl_bw;
151 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
152 }
153
154 static inline
155 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
156 {
157 u64 old = dl_rq->this_bw;
158
159 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
160 dl_rq->this_bw -= dl_bw;
161 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
162 if (dl_rq->this_bw > old)
163 dl_rq->this_bw = 0;
164 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
165 }
166
167 static inline
168 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
169 {
170 if (!dl_entity_is_special(dl_se))
171 __add_rq_bw(dl_se->dl_bw, dl_rq);
172 }
173
174 static inline
175 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
176 {
177 if (!dl_entity_is_special(dl_se))
178 __sub_rq_bw(dl_se->dl_bw, dl_rq);
179 }
180
181 static inline
182 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
183 {
184 if (!dl_entity_is_special(dl_se))
185 __add_running_bw(dl_se->dl_bw, dl_rq);
186 }
187
188 static inline
189 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
190 {
191 if (!dl_entity_is_special(dl_se))
192 __sub_running_bw(dl_se->dl_bw, dl_rq);
193 }
194
195 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
196 {
197 struct rq *rq;
198
199 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
200
201 if (task_on_rq_queued(p))
202 return;
203
204 rq = task_rq(p);
205 if (p->dl.dl_non_contending) {
206 sub_running_bw(&p->dl, &rq->dl);
207 p->dl.dl_non_contending = 0;
208 /*
209 * If the timer handler is currently running and the
210 * timer cannot be cancelled, inactive_task_timer()
211 * will see that dl_not_contending is not set, and
212 * will not touch the rq's active utilization,
213 * so we are still safe.
214 */
215 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
216 put_task_struct(p);
217 }
218 __sub_rq_bw(p->dl.dl_bw, &rq->dl);
219 __add_rq_bw(new_bw, &rq->dl);
220 }
221
222 /*
223 * The utilization of a task cannot be immediately removed from
224 * the rq active utilization (running_bw) when the task blocks.
225 * Instead, we have to wait for the so called "0-lag time".
226 *
227 * If a task blocks before the "0-lag time", a timer (the inactive
228 * timer) is armed, and running_bw is decreased when the timer
229 * fires.
230 *
231 * If the task wakes up again before the inactive timer fires,
232 * the timer is cancelled, whereas if the task wakes up after the
233 * inactive timer fired (and running_bw has been decreased) the
234 * task's utilization has to be added to running_bw again.
235 * A flag in the deadline scheduling entity (dl_non_contending)
236 * is used to avoid race conditions between the inactive timer handler
237 * and task wakeups.
238 *
239 * The following diagram shows how running_bw is updated. A task is
240 * "ACTIVE" when its utilization contributes to running_bw; an
241 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
242 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
243 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
244 * time already passed, which does not contribute to running_bw anymore.
245 * +------------------+
246 * wakeup | ACTIVE |
247 * +------------------>+ contending |
248 * | add_running_bw | |
249 * | +----+------+------+
250 * | | ^
251 * | dequeue | |
252 * +--------+-------+ | |
253 * | | t >= 0-lag | | wakeup
254 * | INACTIVE |<---------------+ |
255 * | | sub_running_bw | |
256 * +--------+-------+ | |
257 * ^ | |
258 * | t < 0-lag | |
259 * | | |
260 * | V |
261 * | +----+------+------+
262 * | sub_running_bw | ACTIVE |
263 * +-------------------+ |
264 * inactive timer | non contending |
265 * fired +------------------+
266 *
267 * The task_non_contending() function is invoked when a task
268 * blocks, and checks if the 0-lag time already passed or
269 * not (in the first case, it directly updates running_bw;
270 * in the second case, it arms the inactive timer).
271 *
272 * The task_contending() function is invoked when a task wakes
273 * up, and checks if the task is still in the "ACTIVE non contending"
274 * state or not (in the second case, it updates running_bw).
275 */
276 static void task_non_contending(struct task_struct *p)
277 {
278 struct sched_dl_entity *dl_se = &p->dl;
279 struct hrtimer *timer = &dl_se->inactive_timer;
280 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
281 struct rq *rq = rq_of_dl_rq(dl_rq);
282 s64 zerolag_time;
283
284 /*
285 * If this is a non-deadline task that has been boosted,
286 * do nothing
287 */
288 if (dl_se->dl_runtime == 0)
289 return;
290
291 if (dl_entity_is_special(dl_se))
292 return;
293
294 WARN_ON(dl_se->dl_non_contending);
295
296 zerolag_time = dl_se->deadline -
297 div64_long((dl_se->runtime * dl_se->dl_period),
298 dl_se->dl_runtime);
299
300 /*
301 * Using relative times instead of the absolute "0-lag time"
302 * allows to simplify the code
303 */
304 zerolag_time -= rq_clock(rq);
305
306 /*
307 * If the "0-lag time" already passed, decrease the active
308 * utilization now, instead of starting a timer
309 */
310 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
311 if (dl_task(p))
312 sub_running_bw(dl_se, dl_rq);
313 if (!dl_task(p) || p->state == TASK_DEAD) {
314 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
315
316 if (p->state == TASK_DEAD)
317 sub_rq_bw(&p->dl, &rq->dl);
318 raw_spin_lock(&dl_b->lock);
319 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
320 __dl_clear_params(p);
321 raw_spin_unlock(&dl_b->lock);
322 }
323
324 return;
325 }
326
327 dl_se->dl_non_contending = 1;
328 get_task_struct(p);
329 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
330 }
331
332 static void task_contending(struct sched_dl_entity *dl_se, int flags)
333 {
334 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
335
336 /*
337 * If this is a non-deadline task that has been boosted,
338 * do nothing
339 */
340 if (dl_se->dl_runtime == 0)
341 return;
342
343 if (flags & ENQUEUE_MIGRATED)
344 add_rq_bw(dl_se, dl_rq);
345
346 if (dl_se->dl_non_contending) {
347 dl_se->dl_non_contending = 0;
348 /*
349 * If the timer handler is currently running and the
350 * timer cannot be cancelled, inactive_task_timer()
351 * will see that dl_not_contending is not set, and
352 * will not touch the rq's active utilization,
353 * so we are still safe.
354 */
355 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
356 put_task_struct(dl_task_of(dl_se));
357 } else {
358 /*
359 * Since "dl_non_contending" is not set, the
360 * task's utilization has already been removed from
361 * active utilization (either when the task blocked,
362 * when the "inactive timer" fired).
363 * So, add it back.
364 */
365 add_running_bw(dl_se, dl_rq);
366 }
367 }
368
369 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
370 {
371 struct sched_dl_entity *dl_se = &p->dl;
372
373 return dl_rq->root.rb_leftmost == &dl_se->rb_node;
374 }
375
376 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
377
378 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
379 {
380 raw_spin_lock_init(&dl_b->dl_runtime_lock);
381 dl_b->dl_period = period;
382 dl_b->dl_runtime = runtime;
383 }
384
385 void init_dl_bw(struct dl_bw *dl_b)
386 {
387 raw_spin_lock_init(&dl_b->lock);
388 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
389 if (global_rt_runtime() == RUNTIME_INF)
390 dl_b->bw = -1;
391 else
392 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
393 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
394 dl_b->total_bw = 0;
395 }
396
397 void init_dl_rq(struct dl_rq *dl_rq)
398 {
399 dl_rq->root = RB_ROOT_CACHED;
400
401 #ifdef CONFIG_SMP
402 /* zero means no -deadline tasks */
403 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
404
405 dl_rq->dl_nr_migratory = 0;
406 dl_rq->overloaded = 0;
407 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
408 #else
409 init_dl_bw(&dl_rq->dl_bw);
410 #endif
411
412 dl_rq->running_bw = 0;
413 dl_rq->this_bw = 0;
414 init_dl_rq_bw_ratio(dl_rq);
415 }
416
417 #ifdef CONFIG_SMP
418
419 static inline int dl_overloaded(struct rq *rq)
420 {
421 return atomic_read(&rq->rd->dlo_count);
422 }
423
424 static inline void dl_set_overload(struct rq *rq)
425 {
426 if (!rq->online)
427 return;
428
429 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
430 /*
431 * Must be visible before the overload count is
432 * set (as in sched_rt.c).
433 *
434 * Matched by the barrier in pull_dl_task().
435 */
436 smp_wmb();
437 atomic_inc(&rq->rd->dlo_count);
438 }
439
440 static inline void dl_clear_overload(struct rq *rq)
441 {
442 if (!rq->online)
443 return;
444
445 atomic_dec(&rq->rd->dlo_count);
446 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
447 }
448
449 static void update_dl_migration(struct dl_rq *dl_rq)
450 {
451 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
452 if (!dl_rq->overloaded) {
453 dl_set_overload(rq_of_dl_rq(dl_rq));
454 dl_rq->overloaded = 1;
455 }
456 } else if (dl_rq->overloaded) {
457 dl_clear_overload(rq_of_dl_rq(dl_rq));
458 dl_rq->overloaded = 0;
459 }
460 }
461
462 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
463 {
464 struct task_struct *p = dl_task_of(dl_se);
465
466 if (p->nr_cpus_allowed > 1)
467 dl_rq->dl_nr_migratory++;
468
469 update_dl_migration(dl_rq);
470 }
471
472 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
473 {
474 struct task_struct *p = dl_task_of(dl_se);
475
476 if (p->nr_cpus_allowed > 1)
477 dl_rq->dl_nr_migratory--;
478
479 update_dl_migration(dl_rq);
480 }
481
482 /*
483 * The list of pushable -deadline task is not a plist, like in
484 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
485 */
486 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
487 {
488 struct dl_rq *dl_rq = &rq->dl;
489 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
490 struct rb_node *parent = NULL;
491 struct task_struct *entry;
492 bool leftmost = true;
493
494 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
495
496 while (*link) {
497 parent = *link;
498 entry = rb_entry(parent, struct task_struct,
499 pushable_dl_tasks);
500 if (dl_entity_preempt(&p->dl, &entry->dl))
501 link = &parent->rb_left;
502 else {
503 link = &parent->rb_right;
504 leftmost = false;
505 }
506 }
507
508 if (leftmost)
509 dl_rq->earliest_dl.next = p->dl.deadline;
510
511 rb_link_node(&p->pushable_dl_tasks, parent, link);
512 rb_insert_color_cached(&p->pushable_dl_tasks,
513 &dl_rq->pushable_dl_tasks_root, leftmost);
514 }
515
516 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
517 {
518 struct dl_rq *dl_rq = &rq->dl;
519
520 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
521 return;
522
523 if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
524 struct rb_node *next_node;
525
526 next_node = rb_next(&p->pushable_dl_tasks);
527 if (next_node) {
528 dl_rq->earliest_dl.next = rb_entry(next_node,
529 struct task_struct, pushable_dl_tasks)->dl.deadline;
530 }
531 }
532
533 rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
534 RB_CLEAR_NODE(&p->pushable_dl_tasks);
535 }
536
537 static inline int has_pushable_dl_tasks(struct rq *rq)
538 {
539 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
540 }
541
542 static int push_dl_task(struct rq *rq);
543
544 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
545 {
546 return dl_task(prev);
547 }
548
549 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
550 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
551
552 static void push_dl_tasks(struct rq *);
553 static void pull_dl_task(struct rq *);
554
555 static inline void deadline_queue_push_tasks(struct rq *rq)
556 {
557 if (!has_pushable_dl_tasks(rq))
558 return;
559
560 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
561 }
562
563 static inline void deadline_queue_pull_task(struct rq *rq)
564 {
565 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
566 }
567
568 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
569
570 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
571 {
572 struct rq *later_rq = NULL;
573 struct dl_bw *dl_b;
574
575 later_rq = find_lock_later_rq(p, rq);
576 if (!later_rq) {
577 int cpu;
578
579 /*
580 * If we cannot preempt any rq, fall back to pick any
581 * online CPU:
582 */
583 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
584 if (cpu >= nr_cpu_ids) {
585 /*
586 * Failed to find any suitable CPU.
587 * The task will never come back!
588 */
589 BUG_ON(dl_bandwidth_enabled());
590
591 /*
592 * If admission control is disabled we
593 * try a little harder to let the task
594 * run.
595 */
596 cpu = cpumask_any(cpu_active_mask);
597 }
598 later_rq = cpu_rq(cpu);
599 double_lock_balance(rq, later_rq);
600 }
601
602 if (p->dl.dl_non_contending || p->dl.dl_throttled) {
603 /*
604 * Inactive timer is armed (or callback is running, but
605 * waiting for us to release rq locks). In any case, when it
606 * will fire (or continue), it will see running_bw of this
607 * task migrated to later_rq (and correctly handle it).
608 */
609 sub_running_bw(&p->dl, &rq->dl);
610 sub_rq_bw(&p->dl, &rq->dl);
611
612 add_rq_bw(&p->dl, &later_rq->dl);
613 add_running_bw(&p->dl, &later_rq->dl);
614 } else {
615 sub_rq_bw(&p->dl, &rq->dl);
616 add_rq_bw(&p->dl, &later_rq->dl);
617 }
618
619 /*
620 * And we finally need to fixup root_domain(s) bandwidth accounting,
621 * since p is still hanging out in the old (now moved to default) root
622 * domain.
623 */
624 dl_b = &rq->rd->dl_bw;
625 raw_spin_lock(&dl_b->lock);
626 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
627 raw_spin_unlock(&dl_b->lock);
628
629 dl_b = &later_rq->rd->dl_bw;
630 raw_spin_lock(&dl_b->lock);
631 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
632 raw_spin_unlock(&dl_b->lock);
633
634 set_task_cpu(p, later_rq->cpu);
635 double_unlock_balance(later_rq, rq);
636
637 return later_rq;
638 }
639
640 #else
641
642 static inline
643 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
644 {
645 }
646
647 static inline
648 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
649 {
650 }
651
652 static inline
653 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
654 {
655 }
656
657 static inline
658 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
659 {
660 }
661
662 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
663 {
664 return false;
665 }
666
667 static inline void pull_dl_task(struct rq *rq)
668 {
669 }
670
671 static inline void deadline_queue_push_tasks(struct rq *rq)
672 {
673 }
674
675 static inline void deadline_queue_pull_task(struct rq *rq)
676 {
677 }
678 #endif /* CONFIG_SMP */
679
680 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
681 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
682 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
683
684 /*
685 * We are being explicitly informed that a new instance is starting,
686 * and this means that:
687 * - the absolute deadline of the entity has to be placed at
688 * current time + relative deadline;
689 * - the runtime of the entity has to be set to the maximum value.
690 *
691 * The capability of specifying such event is useful whenever a -deadline
692 * entity wants to (try to!) synchronize its behaviour with the scheduler's
693 * one, and to (try to!) reconcile itself with its own scheduling
694 * parameters.
695 */
696 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
697 {
698 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
699 struct rq *rq = rq_of_dl_rq(dl_rq);
700
701 WARN_ON(dl_se->dl_boosted);
702 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
703
704 /*
705 * We are racing with the deadline timer. So, do nothing because
706 * the deadline timer handler will take care of properly recharging
707 * the runtime and postponing the deadline
708 */
709 if (dl_se->dl_throttled)
710 return;
711
712 /*
713 * We use the regular wall clock time to set deadlines in the
714 * future; in fact, we must consider execution overheads (time
715 * spent on hardirq context, etc.).
716 */
717 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
718 dl_se->runtime = dl_se->dl_runtime;
719 }
720
721 /*
722 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
723 * possibility of a entity lasting more than what it declared, and thus
724 * exhausting its runtime.
725 *
726 * Here we are interested in making runtime overrun possible, but we do
727 * not want a entity which is misbehaving to affect the scheduling of all
728 * other entities.
729 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
730 * is used, in order to confine each entity within its own bandwidth.
731 *
732 * This function deals exactly with that, and ensures that when the runtime
733 * of a entity is replenished, its deadline is also postponed. That ensures
734 * the overrunning entity can't interfere with other entity in the system and
735 * can't make them miss their deadlines. Reasons why this kind of overruns
736 * could happen are, typically, a entity voluntarily trying to overcome its
737 * runtime, or it just underestimated it during sched_setattr().
738 */
739 static void replenish_dl_entity(struct sched_dl_entity *dl_se,
740 struct sched_dl_entity *pi_se)
741 {
742 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
743 struct rq *rq = rq_of_dl_rq(dl_rq);
744
745 BUG_ON(pi_se->dl_runtime <= 0);
746
747 /*
748 * This could be the case for a !-dl task that is boosted.
749 * Just go with full inherited parameters.
750 */
751 if (dl_se->dl_deadline == 0) {
752 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
753 dl_se->runtime = pi_se->dl_runtime;
754 }
755
756 if (dl_se->dl_yielded && dl_se->runtime > 0)
757 dl_se->runtime = 0;
758
759 /*
760 * We keep moving the deadline away until we get some
761 * available runtime for the entity. This ensures correct
762 * handling of situations where the runtime overrun is
763 * arbitrary large.
764 */
765 while (dl_se->runtime <= 0) {
766 dl_se->deadline += pi_se->dl_period;
767 dl_se->runtime += pi_se->dl_runtime;
768 }
769
770 /*
771 * At this point, the deadline really should be "in
772 * the future" with respect to rq->clock. If it's
773 * not, we are, for some reason, lagging too much!
774 * Anyway, after having warn userspace abut that,
775 * we still try to keep the things running by
776 * resetting the deadline and the budget of the
777 * entity.
778 */
779 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
780 printk_deferred_once("sched: DL replenish lagged too much\n");
781 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
782 dl_se->runtime = pi_se->dl_runtime;
783 }
784
785 if (dl_se->dl_yielded)
786 dl_se->dl_yielded = 0;
787 if (dl_se->dl_throttled)
788 dl_se->dl_throttled = 0;
789 }
790
791 /*
792 * Here we check if --at time t-- an entity (which is probably being
793 * [re]activated or, in general, enqueued) can use its remaining runtime
794 * and its current deadline _without_ exceeding the bandwidth it is
795 * assigned (function returns true if it can't). We are in fact applying
796 * one of the CBS rules: when a task wakes up, if the residual runtime
797 * over residual deadline fits within the allocated bandwidth, then we
798 * can keep the current (absolute) deadline and residual budget without
799 * disrupting the schedulability of the system. Otherwise, we should
800 * refill the runtime and set the deadline a period in the future,
801 * because keeping the current (absolute) deadline of the task would
802 * result in breaking guarantees promised to other tasks (refer to
803 * Documentation/scheduler/sched-deadline.rst for more information).
804 *
805 * This function returns true if:
806 *
807 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
808 *
809 * IOW we can't recycle current parameters.
810 *
811 * Notice that the bandwidth check is done against the deadline. For
812 * task with deadline equal to period this is the same of using
813 * dl_period instead of dl_deadline in the equation above.
814 */
815 static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
816 struct sched_dl_entity *pi_se, u64 t)
817 {
818 u64 left, right;
819
820 /*
821 * left and right are the two sides of the equation above,
822 * after a bit of shuffling to use multiplications instead
823 * of divisions.
824 *
825 * Note that none of the time values involved in the two
826 * multiplications are absolute: dl_deadline and dl_runtime
827 * are the relative deadline and the maximum runtime of each
828 * instance, runtime is the runtime left for the last instance
829 * and (deadline - t), since t is rq->clock, is the time left
830 * to the (absolute) deadline. Even if overflowing the u64 type
831 * is very unlikely to occur in both cases, here we scale down
832 * as we want to avoid that risk at all. Scaling down by 10
833 * means that we reduce granularity to 1us. We are fine with it,
834 * since this is only a true/false check and, anyway, thinking
835 * of anything below microseconds resolution is actually fiction
836 * (but still we want to give the user that illusion >;).
837 */
838 left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
839 right = ((dl_se->deadline - t) >> DL_SCALE) *
840 (pi_se->dl_runtime >> DL_SCALE);
841
842 return dl_time_before(right, left);
843 }
844
845 /*
846 * Revised wakeup rule [1]: For self-suspending tasks, rather then
847 * re-initializing task's runtime and deadline, the revised wakeup
848 * rule adjusts the task's runtime to avoid the task to overrun its
849 * density.
850 *
851 * Reasoning: a task may overrun the density if:
852 * runtime / (deadline - t) > dl_runtime / dl_deadline
853 *
854 * Therefore, runtime can be adjusted to:
855 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
856 *
857 * In such way that runtime will be equal to the maximum density
858 * the task can use without breaking any rule.
859 *
860 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
861 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
862 */
863 static void
864 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
865 {
866 u64 laxity = dl_se->deadline - rq_clock(rq);
867
868 /*
869 * If the task has deadline < period, and the deadline is in the past,
870 * it should already be throttled before this check.
871 *
872 * See update_dl_entity() comments for further details.
873 */
874 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
875
876 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
877 }
878
879 /*
880 * Regarding the deadline, a task with implicit deadline has a relative
881 * deadline == relative period. A task with constrained deadline has a
882 * relative deadline <= relative period.
883 *
884 * We support constrained deadline tasks. However, there are some restrictions
885 * applied only for tasks which do not have an implicit deadline. See
886 * update_dl_entity() to know more about such restrictions.
887 *
888 * The dl_is_implicit() returns true if the task has an implicit deadline.
889 */
890 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
891 {
892 return dl_se->dl_deadline == dl_se->dl_period;
893 }
894
895 /*
896 * When a deadline entity is placed in the runqueue, its runtime and deadline
897 * might need to be updated. This is done by a CBS wake up rule. There are two
898 * different rules: 1) the original CBS; and 2) the Revisited CBS.
899 *
900 * When the task is starting a new period, the Original CBS is used. In this
901 * case, the runtime is replenished and a new absolute deadline is set.
902 *
903 * When a task is queued before the begin of the next period, using the
904 * remaining runtime and deadline could make the entity to overflow, see
905 * dl_entity_overflow() to find more about runtime overflow. When such case
906 * is detected, the runtime and deadline need to be updated.
907 *
908 * If the task has an implicit deadline, i.e., deadline == period, the Original
909 * CBS is applied. the runtime is replenished and a new absolute deadline is
910 * set, as in the previous cases.
911 *
912 * However, the Original CBS does not work properly for tasks with
913 * deadline < period, which are said to have a constrained deadline. By
914 * applying the Original CBS, a constrained deadline task would be able to run
915 * runtime/deadline in a period. With deadline < period, the task would
916 * overrun the runtime/period allowed bandwidth, breaking the admission test.
917 *
918 * In order to prevent this misbehave, the Revisited CBS is used for
919 * constrained deadline tasks when a runtime overflow is detected. In the
920 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
921 * the remaining runtime of the task is reduced to avoid runtime overflow.
922 * Please refer to the comments update_dl_revised_wakeup() function to find
923 * more about the Revised CBS rule.
924 */
925 static void update_dl_entity(struct sched_dl_entity *dl_se,
926 struct sched_dl_entity *pi_se)
927 {
928 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
929 struct rq *rq = rq_of_dl_rq(dl_rq);
930
931 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
932 dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
933
934 if (unlikely(!dl_is_implicit(dl_se) &&
935 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
936 !dl_se->dl_boosted)){
937 update_dl_revised_wakeup(dl_se, rq);
938 return;
939 }
940
941 dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
942 dl_se->runtime = pi_se->dl_runtime;
943 }
944 }
945
946 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
947 {
948 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
949 }
950
951 /*
952 * If the entity depleted all its runtime, and if we want it to sleep
953 * while waiting for some new execution time to become available, we
954 * set the bandwidth replenishment timer to the replenishment instant
955 * and try to activate it.
956 *
957 * Notice that it is important for the caller to know if the timer
958 * actually started or not (i.e., the replenishment instant is in
959 * the future or in the past).
960 */
961 static int start_dl_timer(struct task_struct *p)
962 {
963 struct sched_dl_entity *dl_se = &p->dl;
964 struct hrtimer *timer = &dl_se->dl_timer;
965 struct rq *rq = task_rq(p);
966 ktime_t now, act;
967 s64 delta;
968
969 lockdep_assert_held(&rq->lock);
970
971 /*
972 * We want the timer to fire at the deadline, but considering
973 * that it is actually coming from rq->clock and not from
974 * hrtimer's time base reading.
975 */
976 act = ns_to_ktime(dl_next_period(dl_se));
977 now = hrtimer_cb_get_time(timer);
978 delta = ktime_to_ns(now) - rq_clock(rq);
979 act = ktime_add_ns(act, delta);
980
981 /*
982 * If the expiry time already passed, e.g., because the value
983 * chosen as the deadline is too small, don't even try to
984 * start the timer in the past!
985 */
986 if (ktime_us_delta(act, now) < 0)
987 return 0;
988
989 /*
990 * !enqueued will guarantee another callback; even if one is already in
991 * progress. This ensures a balanced {get,put}_task_struct().
992 *
993 * The race against __run_timer() clearing the enqueued state is
994 * harmless because we're holding task_rq()->lock, therefore the timer
995 * expiring after we've done the check will wait on its task_rq_lock()
996 * and observe our state.
997 */
998 if (!hrtimer_is_queued(timer)) {
999 get_task_struct(p);
1000 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1001 }
1002
1003 return 1;
1004 }
1005
1006 /*
1007 * This is the bandwidth enforcement timer callback. If here, we know
1008 * a task is not on its dl_rq, since the fact that the timer was running
1009 * means the task is throttled and needs a runtime replenishment.
1010 *
1011 * However, what we actually do depends on the fact the task is active,
1012 * (it is on its rq) or has been removed from there by a call to
1013 * dequeue_task_dl(). In the former case we must issue the runtime
1014 * replenishment and add the task back to the dl_rq; in the latter, we just
1015 * do nothing but clearing dl_throttled, so that runtime and deadline
1016 * updating (and the queueing back to dl_rq) will be done by the
1017 * next call to enqueue_task_dl().
1018 */
1019 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1020 {
1021 struct sched_dl_entity *dl_se = container_of(timer,
1022 struct sched_dl_entity,
1023 dl_timer);
1024 struct task_struct *p = dl_task_of(dl_se);
1025 struct rq_flags rf;
1026 struct rq *rq;
1027
1028 rq = task_rq_lock(p, &rf);
1029
1030 /*
1031 * The task might have changed its scheduling policy to something
1032 * different than SCHED_DEADLINE (through switched_from_dl()).
1033 */
1034 if (!dl_task(p))
1035 goto unlock;
1036
1037 /*
1038 * The task might have been boosted by someone else and might be in the
1039 * boosting/deboosting path, its not throttled.
1040 */
1041 if (dl_se->dl_boosted)
1042 goto unlock;
1043
1044 /*
1045 * Spurious timer due to start_dl_timer() race; or we already received
1046 * a replenishment from rt_mutex_setprio().
1047 */
1048 if (!dl_se->dl_throttled)
1049 goto unlock;
1050
1051 sched_clock_tick();
1052 update_rq_clock(rq);
1053
1054 /*
1055 * If the throttle happened during sched-out; like:
1056 *
1057 * schedule()
1058 * deactivate_task()
1059 * dequeue_task_dl()
1060 * update_curr_dl()
1061 * start_dl_timer()
1062 * __dequeue_task_dl()
1063 * prev->on_rq = 0;
1064 *
1065 * We can be both throttled and !queued. Replenish the counter
1066 * but do not enqueue -- wait for our wakeup to do that.
1067 */
1068 if (!task_on_rq_queued(p)) {
1069 replenish_dl_entity(dl_se, dl_se);
1070 goto unlock;
1071 }
1072
1073 #ifdef CONFIG_SMP
1074 if (unlikely(!rq->online)) {
1075 /*
1076 * If the runqueue is no longer available, migrate the
1077 * task elsewhere. This necessarily changes rq.
1078 */
1079 lockdep_unpin_lock(&rq->lock, rf.cookie);
1080 rq = dl_task_offline_migration(rq, p);
1081 rf.cookie = lockdep_pin_lock(&rq->lock);
1082 update_rq_clock(rq);
1083
1084 /*
1085 * Now that the task has been migrated to the new RQ and we
1086 * have that locked, proceed as normal and enqueue the task
1087 * there.
1088 */
1089 }
1090 #endif
1091
1092 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1093 if (dl_task(rq->curr))
1094 check_preempt_curr_dl(rq, p, 0);
1095 else
1096 resched_curr(rq);
1097
1098 #ifdef CONFIG_SMP
1099 /*
1100 * Queueing this task back might have overloaded rq, check if we need
1101 * to kick someone away.
1102 */
1103 if (has_pushable_dl_tasks(rq)) {
1104 /*
1105 * Nothing relies on rq->lock after this, so its safe to drop
1106 * rq->lock.
1107 */
1108 rq_unpin_lock(rq, &rf);
1109 push_dl_task(rq);
1110 rq_repin_lock(rq, &rf);
1111 }
1112 #endif
1113
1114 unlock:
1115 task_rq_unlock(rq, p, &rf);
1116
1117 /*
1118 * This can free the task_struct, including this hrtimer, do not touch
1119 * anything related to that after this.
1120 */
1121 put_task_struct(p);
1122
1123 return HRTIMER_NORESTART;
1124 }
1125
1126 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1127 {
1128 struct hrtimer *timer = &dl_se->dl_timer;
1129
1130 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1131 timer->function = dl_task_timer;
1132 }
1133
1134 /*
1135 * During the activation, CBS checks if it can reuse the current task's
1136 * runtime and period. If the deadline of the task is in the past, CBS
1137 * cannot use the runtime, and so it replenishes the task. This rule
1138 * works fine for implicit deadline tasks (deadline == period), and the
1139 * CBS was designed for implicit deadline tasks. However, a task with
1140 * constrained deadline (deadline < period) might be awakened after the
1141 * deadline, but before the next period. In this case, replenishing the
1142 * task would allow it to run for runtime / deadline. As in this case
1143 * deadline < period, CBS enables a task to run for more than the
1144 * runtime / period. In a very loaded system, this can cause a domino
1145 * effect, making other tasks miss their deadlines.
1146 *
1147 * To avoid this problem, in the activation of a constrained deadline
1148 * task after the deadline but before the next period, throttle the
1149 * task and set the replenishing timer to the begin of the next period,
1150 * unless it is boosted.
1151 */
1152 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1153 {
1154 struct task_struct *p = dl_task_of(dl_se);
1155 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1156
1157 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1158 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1159 if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1160 return;
1161 dl_se->dl_throttled = 1;
1162 if (dl_se->runtime > 0)
1163 dl_se->runtime = 0;
1164 }
1165 }
1166
1167 static
1168 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1169 {
1170 return (dl_se->runtime <= 0);
1171 }
1172
1173 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1174
1175 /*
1176 * This function implements the GRUB accounting rule:
1177 * according to the GRUB reclaiming algorithm, the runtime is
1178 * not decreased as "dq = -dt", but as
1179 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1180 * where u is the utilization of the task, Umax is the maximum reclaimable
1181 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1182 * as the difference between the "total runqueue utilization" and the
1183 * runqueue active utilization, and Uextra is the (per runqueue) extra
1184 * reclaimable utilization.
1185 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1186 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1187 * BW_SHIFT.
1188 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1189 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1190 * Since delta is a 64 bit variable, to have an overflow its value
1191 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1192 * So, overflow is not an issue here.
1193 */
1194 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1195 {
1196 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1197 u64 u_act;
1198 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1199
1200 /*
1201 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1202 * we compare u_inact + rq->dl.extra_bw with
1203 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1204 * u_inact + rq->dl.extra_bw can be larger than
1205 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1206 * leading to wrong results)
1207 */
1208 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1209 u_act = u_act_min;
1210 else
1211 u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1212
1213 return (delta * u_act) >> BW_SHIFT;
1214 }
1215
1216 /*
1217 * Update the current task's runtime statistics (provided it is still
1218 * a -deadline task and has not been removed from the dl_rq).
1219 */
1220 static void update_curr_dl(struct rq *rq)
1221 {
1222 struct task_struct *curr = rq->curr;
1223 struct sched_dl_entity *dl_se = &curr->dl;
1224 u64 delta_exec, scaled_delta_exec;
1225 int cpu = cpu_of(rq);
1226 u64 now;
1227
1228 if (!dl_task(curr) || !on_dl_rq(dl_se))
1229 return;
1230
1231 /*
1232 * Consumed budget is computed considering the time as
1233 * observed by schedulable tasks (excluding time spent
1234 * in hardirq context, etc.). Deadlines are instead
1235 * computed using hard walltime. This seems to be the more
1236 * natural solution, but the full ramifications of this
1237 * approach need further study.
1238 */
1239 now = rq_clock_task(rq);
1240 delta_exec = now - curr->se.exec_start;
1241 if (unlikely((s64)delta_exec <= 0)) {
1242 if (unlikely(dl_se->dl_yielded))
1243 goto throttle;
1244 return;
1245 }
1246
1247 schedstat_set(curr->se.statistics.exec_max,
1248 max(curr->se.statistics.exec_max, delta_exec));
1249
1250 curr->se.sum_exec_runtime += delta_exec;
1251 account_group_exec_runtime(curr, delta_exec);
1252
1253 curr->se.exec_start = now;
1254 cgroup_account_cputime(curr, delta_exec);
1255
1256 if (dl_entity_is_special(dl_se))
1257 return;
1258
1259 /*
1260 * For tasks that participate in GRUB, we implement GRUB-PA: the
1261 * spare reclaimed bandwidth is used to clock down frequency.
1262 *
1263 * For the others, we still need to scale reservation parameters
1264 * according to current frequency and CPU maximum capacity.
1265 */
1266 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1267 scaled_delta_exec = grub_reclaim(delta_exec,
1268 rq,
1269 &curr->dl);
1270 } else {
1271 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1272 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1273
1274 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1275 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1276 }
1277
1278 dl_se->runtime -= scaled_delta_exec;
1279
1280 throttle:
1281 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1282 dl_se->dl_throttled = 1;
1283
1284 /* If requested, inform the user about runtime overruns. */
1285 if (dl_runtime_exceeded(dl_se) &&
1286 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1287 dl_se->dl_overrun = 1;
1288
1289 __dequeue_task_dl(rq, curr, 0);
1290 if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1291 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1292
1293 if (!is_leftmost(curr, &rq->dl))
1294 resched_curr(rq);
1295 }
1296
1297 /*
1298 * Because -- for now -- we share the rt bandwidth, we need to
1299 * account our runtime there too, otherwise actual rt tasks
1300 * would be able to exceed the shared quota.
1301 *
1302 * Account to the root rt group for now.
1303 *
1304 * The solution we're working towards is having the RT groups scheduled
1305 * using deadline servers -- however there's a few nasties to figure
1306 * out before that can happen.
1307 */
1308 if (rt_bandwidth_enabled()) {
1309 struct rt_rq *rt_rq = &rq->rt;
1310
1311 raw_spin_lock(&rt_rq->rt_runtime_lock);
1312 /*
1313 * We'll let actual RT tasks worry about the overflow here, we
1314 * have our own CBS to keep us inline; only account when RT
1315 * bandwidth is relevant.
1316 */
1317 if (sched_rt_bandwidth_account(rt_rq))
1318 rt_rq->rt_time += delta_exec;
1319 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1320 }
1321 }
1322
1323 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1324 {
1325 struct sched_dl_entity *dl_se = container_of(timer,
1326 struct sched_dl_entity,
1327 inactive_timer);
1328 struct task_struct *p = dl_task_of(dl_se);
1329 struct rq_flags rf;
1330 struct rq *rq;
1331
1332 rq = task_rq_lock(p, &rf);
1333
1334 sched_clock_tick();
1335 update_rq_clock(rq);
1336
1337 if (!dl_task(p) || p->state == TASK_DEAD) {
1338 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1339
1340 if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1341 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1342 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1343 dl_se->dl_non_contending = 0;
1344 }
1345
1346 raw_spin_lock(&dl_b->lock);
1347 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1348 raw_spin_unlock(&dl_b->lock);
1349 __dl_clear_params(p);
1350
1351 goto unlock;
1352 }
1353 if (dl_se->dl_non_contending == 0)
1354 goto unlock;
1355
1356 sub_running_bw(dl_se, &rq->dl);
1357 dl_se->dl_non_contending = 0;
1358 unlock:
1359 task_rq_unlock(rq, p, &rf);
1360 put_task_struct(p);
1361
1362 return HRTIMER_NORESTART;
1363 }
1364
1365 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1366 {
1367 struct hrtimer *timer = &dl_se->inactive_timer;
1368
1369 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1370 timer->function = inactive_task_timer;
1371 }
1372
1373 #ifdef CONFIG_SMP
1374
1375 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1376 {
1377 struct rq *rq = rq_of_dl_rq(dl_rq);
1378
1379 if (dl_rq->earliest_dl.curr == 0 ||
1380 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1381 dl_rq->earliest_dl.curr = deadline;
1382 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1383 }
1384 }
1385
1386 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1387 {
1388 struct rq *rq = rq_of_dl_rq(dl_rq);
1389
1390 /*
1391 * Since we may have removed our earliest (and/or next earliest)
1392 * task we must recompute them.
1393 */
1394 if (!dl_rq->dl_nr_running) {
1395 dl_rq->earliest_dl.curr = 0;
1396 dl_rq->earliest_dl.next = 0;
1397 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1398 } else {
1399 struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1400 struct sched_dl_entity *entry;
1401
1402 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1403 dl_rq->earliest_dl.curr = entry->deadline;
1404 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1405 }
1406 }
1407
1408 #else
1409
1410 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1411 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1412
1413 #endif /* CONFIG_SMP */
1414
1415 static inline
1416 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1417 {
1418 int prio = dl_task_of(dl_se)->prio;
1419 u64 deadline = dl_se->deadline;
1420
1421 WARN_ON(!dl_prio(prio));
1422 dl_rq->dl_nr_running++;
1423 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1424
1425 inc_dl_deadline(dl_rq, deadline);
1426 inc_dl_migration(dl_se, dl_rq);
1427 }
1428
1429 static inline
1430 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1431 {
1432 int prio = dl_task_of(dl_se)->prio;
1433
1434 WARN_ON(!dl_prio(prio));
1435 WARN_ON(!dl_rq->dl_nr_running);
1436 dl_rq->dl_nr_running--;
1437 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1438
1439 dec_dl_deadline(dl_rq, dl_se->deadline);
1440 dec_dl_migration(dl_se, dl_rq);
1441 }
1442
1443 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1444 {
1445 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1446 struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1447 struct rb_node *parent = NULL;
1448 struct sched_dl_entity *entry;
1449 int leftmost = 1;
1450
1451 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1452
1453 while (*link) {
1454 parent = *link;
1455 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1456 if (dl_time_before(dl_se->deadline, entry->deadline))
1457 link = &parent->rb_left;
1458 else {
1459 link = &parent->rb_right;
1460 leftmost = 0;
1461 }
1462 }
1463
1464 rb_link_node(&dl_se->rb_node, parent, link);
1465 rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1466
1467 inc_dl_tasks(dl_se, dl_rq);
1468 }
1469
1470 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1471 {
1472 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1473
1474 if (RB_EMPTY_NODE(&dl_se->rb_node))
1475 return;
1476
1477 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1478 RB_CLEAR_NODE(&dl_se->rb_node);
1479
1480 dec_dl_tasks(dl_se, dl_rq);
1481 }
1482
1483 static void
1484 enqueue_dl_entity(struct sched_dl_entity *dl_se,
1485 struct sched_dl_entity *pi_se, int flags)
1486 {
1487 BUG_ON(on_dl_rq(dl_se));
1488
1489 /*
1490 * If this is a wakeup or a new instance, the scheduling
1491 * parameters of the task might need updating. Otherwise,
1492 * we want a replenishment of its runtime.
1493 */
1494 if (flags & ENQUEUE_WAKEUP) {
1495 task_contending(dl_se, flags);
1496 update_dl_entity(dl_se, pi_se);
1497 } else if (flags & ENQUEUE_REPLENISH) {
1498 replenish_dl_entity(dl_se, pi_se);
1499 } else if ((flags & ENQUEUE_RESTORE) &&
1500 dl_time_before(dl_se->deadline,
1501 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1502 setup_new_dl_entity(dl_se);
1503 }
1504
1505 __enqueue_dl_entity(dl_se);
1506 }
1507
1508 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1509 {
1510 __dequeue_dl_entity(dl_se);
1511 }
1512
1513 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1514 {
1515 struct task_struct *pi_task = rt_mutex_get_top_task(p);
1516 struct sched_dl_entity *pi_se = &p->dl;
1517
1518 /*
1519 * Use the scheduling parameters of the top pi-waiter task if:
1520 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1521 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1522 * smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1523 * boosted due to a SCHED_DEADLINE pi-waiter).
1524 * Otherwise we keep our runtime and deadline.
1525 */
1526 if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1527 pi_se = &pi_task->dl;
1528 /*
1529 * Because of delays in the detection of the overrun of a
1530 * thread's runtime, it might be the case that a thread
1531 * goes to sleep in a rt mutex with negative runtime. As
1532 * a consequence, the thread will be throttled.
1533 *
1534 * While waiting for the mutex, this thread can also be
1535 * boosted via PI, resulting in a thread that is throttled
1536 * and boosted at the same time.
1537 *
1538 * In this case, the boost overrides the throttle.
1539 */
1540 if (p->dl.dl_throttled) {
1541 /*
1542 * The replenish timer needs to be canceled. No
1543 * problem if it fires concurrently: boosted threads
1544 * are ignored in dl_task_timer().
1545 */
1546 hrtimer_try_to_cancel(&p->dl.dl_timer);
1547 p->dl.dl_throttled = 0;
1548 }
1549 } else if (!dl_prio(p->normal_prio)) {
1550 /*
1551 * Special case in which we have a !SCHED_DEADLINE task that is going
1552 * to be deboosted, but exceeds its runtime while doing so. No point in
1553 * replenishing it, as it's going to return back to its original
1554 * scheduling class after this. If it has been throttled, we need to
1555 * clear the flag, otherwise the task may wake up as throttled after
1556 * being boosted again with no means to replenish the runtime and clear
1557 * the throttle.
1558 */
1559 p->dl.dl_throttled = 0;
1560 BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1561 return;
1562 }
1563
1564 /*
1565 * Check if a constrained deadline task was activated
1566 * after the deadline but before the next period.
1567 * If that is the case, the task will be throttled and
1568 * the replenishment timer will be set to the next period.
1569 */
1570 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1571 dl_check_constrained_dl(&p->dl);
1572
1573 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1574 add_rq_bw(&p->dl, &rq->dl);
1575 add_running_bw(&p->dl, &rq->dl);
1576 }
1577
1578 /*
1579 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1580 * its budget it needs a replenishment and, since it now is on
1581 * its rq, the bandwidth timer callback (which clearly has not
1582 * run yet) will take care of this.
1583 * However, the active utilization does not depend on the fact
1584 * that the task is on the runqueue or not (but depends on the
1585 * task's state - in GRUB parlance, "inactive" vs "active contending").
1586 * In other words, even if a task is throttled its utilization must
1587 * be counted in the active utilization; hence, we need to call
1588 * add_running_bw().
1589 */
1590 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1591 if (flags & ENQUEUE_WAKEUP)
1592 task_contending(&p->dl, flags);
1593
1594 return;
1595 }
1596
1597 enqueue_dl_entity(&p->dl, pi_se, flags);
1598
1599 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1600 enqueue_pushable_dl_task(rq, p);
1601 }
1602
1603 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1604 {
1605 dequeue_dl_entity(&p->dl);
1606 dequeue_pushable_dl_task(rq, p);
1607 }
1608
1609 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1610 {
1611 update_curr_dl(rq);
1612 __dequeue_task_dl(rq, p, flags);
1613
1614 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1615 sub_running_bw(&p->dl, &rq->dl);
1616 sub_rq_bw(&p->dl, &rq->dl);
1617 }
1618
1619 /*
1620 * This check allows to start the inactive timer (or to immediately
1621 * decrease the active utilization, if needed) in two cases:
1622 * when the task blocks and when it is terminating
1623 * (p->state == TASK_DEAD). We can handle the two cases in the same
1624 * way, because from GRUB's point of view the same thing is happening
1625 * (the task moves from "active contending" to "active non contending"
1626 * or "inactive")
1627 */
1628 if (flags & DEQUEUE_SLEEP)
1629 task_non_contending(p);
1630 }
1631
1632 /*
1633 * Yield task semantic for -deadline tasks is:
1634 *
1635 * get off from the CPU until our next instance, with
1636 * a new runtime. This is of little use now, since we
1637 * don't have a bandwidth reclaiming mechanism. Anyway,
1638 * bandwidth reclaiming is planned for the future, and
1639 * yield_task_dl will indicate that some spare budget
1640 * is available for other task instances to use it.
1641 */
1642 static void yield_task_dl(struct rq *rq)
1643 {
1644 /*
1645 * We make the task go to sleep until its current deadline by
1646 * forcing its runtime to zero. This way, update_curr_dl() stops
1647 * it and the bandwidth timer will wake it up and will give it
1648 * new scheduling parameters (thanks to dl_yielded=1).
1649 */
1650 rq->curr->dl.dl_yielded = 1;
1651
1652 update_rq_clock(rq);
1653 update_curr_dl(rq);
1654 /*
1655 * Tell update_rq_clock() that we've just updated,
1656 * so we don't do microscopic update in schedule()
1657 * and double the fastpath cost.
1658 */
1659 rq_clock_skip_update(rq);
1660 }
1661
1662 #ifdef CONFIG_SMP
1663
1664 static int find_later_rq(struct task_struct *task);
1665
1666 static int
1667 select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1668 {
1669 struct task_struct *curr;
1670 bool select_rq;
1671 struct rq *rq;
1672
1673 if (sd_flag != SD_BALANCE_WAKE)
1674 goto out;
1675
1676 rq = cpu_rq(cpu);
1677
1678 rcu_read_lock();
1679 curr = READ_ONCE(rq->curr); /* unlocked access */
1680
1681 /*
1682 * If we are dealing with a -deadline task, we must
1683 * decide where to wake it up.
1684 * If it has a later deadline and the current task
1685 * on this rq can't move (provided the waking task
1686 * can!) we prefer to send it somewhere else. On the
1687 * other hand, if it has a shorter deadline, we
1688 * try to make it stay here, it might be important.
1689 */
1690 select_rq = unlikely(dl_task(curr)) &&
1691 (curr->nr_cpus_allowed < 2 ||
1692 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1693 p->nr_cpus_allowed > 1;
1694
1695 /*
1696 * Take the capacity of the CPU into account to
1697 * ensure it fits the requirement of the task.
1698 */
1699 if (static_branch_unlikely(&sched_asym_cpucapacity))
1700 select_rq |= !dl_task_fits_capacity(p, cpu);
1701
1702 if (select_rq) {
1703 int target = find_later_rq(p);
1704
1705 if (target != -1 &&
1706 (dl_time_before(p->dl.deadline,
1707 cpu_rq(target)->dl.earliest_dl.curr) ||
1708 (cpu_rq(target)->dl.dl_nr_running == 0)))
1709 cpu = target;
1710 }
1711 rcu_read_unlock();
1712
1713 out:
1714 return cpu;
1715 }
1716
1717 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1718 {
1719 struct rq *rq;
1720
1721 if (p->state != TASK_WAKING)
1722 return;
1723
1724 rq = task_rq(p);
1725 /*
1726 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1727 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1728 * rq->lock is not... So, lock it
1729 */
1730 raw_spin_lock(&rq->lock);
1731 if (p->dl.dl_non_contending) {
1732 sub_running_bw(&p->dl, &rq->dl);
1733 p->dl.dl_non_contending = 0;
1734 /*
1735 * If the timer handler is currently running and the
1736 * timer cannot be cancelled, inactive_task_timer()
1737 * will see that dl_not_contending is not set, and
1738 * will not touch the rq's active utilization,
1739 * so we are still safe.
1740 */
1741 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1742 put_task_struct(p);
1743 }
1744 sub_rq_bw(&p->dl, &rq->dl);
1745 raw_spin_unlock(&rq->lock);
1746 }
1747
1748 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1749 {
1750 /*
1751 * Current can't be migrated, useless to reschedule,
1752 * let's hope p can move out.
1753 */
1754 if (rq->curr->nr_cpus_allowed == 1 ||
1755 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1756 return;
1757
1758 /*
1759 * p is migratable, so let's not schedule it and
1760 * see if it is pushed or pulled somewhere else.
1761 */
1762 if (p->nr_cpus_allowed != 1 &&
1763 cpudl_find(&rq->rd->cpudl, p, NULL))
1764 return;
1765
1766 resched_curr(rq);
1767 }
1768
1769 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1770 {
1771 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1772 /*
1773 * This is OK, because current is on_cpu, which avoids it being
1774 * picked for load-balance and preemption/IRQs are still
1775 * disabled avoiding further scheduler activity on it and we've
1776 * not yet started the picking loop.
1777 */
1778 rq_unpin_lock(rq, rf);
1779 pull_dl_task(rq);
1780 rq_repin_lock(rq, rf);
1781 }
1782
1783 return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1784 }
1785 #endif /* CONFIG_SMP */
1786
1787 /*
1788 * Only called when both the current and waking task are -deadline
1789 * tasks.
1790 */
1791 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1792 int flags)
1793 {
1794 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1795 resched_curr(rq);
1796 return;
1797 }
1798
1799 #ifdef CONFIG_SMP
1800 /*
1801 * In the unlikely case current and p have the same deadline
1802 * let us try to decide what's the best thing to do...
1803 */
1804 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1805 !test_tsk_need_resched(rq->curr))
1806 check_preempt_equal_dl(rq, p);
1807 #endif /* CONFIG_SMP */
1808 }
1809
1810 #ifdef CONFIG_SCHED_HRTICK
1811 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1812 {
1813 hrtick_start(rq, p->dl.runtime);
1814 }
1815 #else /* !CONFIG_SCHED_HRTICK */
1816 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1817 {
1818 }
1819 #endif
1820
1821 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1822 {
1823 p->se.exec_start = rq_clock_task(rq);
1824
1825 /* You can't push away the running task */
1826 dequeue_pushable_dl_task(rq, p);
1827
1828 if (!first)
1829 return;
1830
1831 if (hrtick_enabled(rq))
1832 start_hrtick_dl(rq, p);
1833
1834 if (rq->curr->sched_class != &dl_sched_class)
1835 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1836
1837 deadline_queue_push_tasks(rq);
1838 }
1839
1840 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1841 struct dl_rq *dl_rq)
1842 {
1843 struct rb_node *left = rb_first_cached(&dl_rq->root);
1844
1845 if (!left)
1846 return NULL;
1847
1848 return rb_entry(left, struct sched_dl_entity, rb_node);
1849 }
1850
1851 static struct task_struct *pick_next_task_dl(struct rq *rq)
1852 {
1853 struct sched_dl_entity *dl_se;
1854 struct dl_rq *dl_rq = &rq->dl;
1855 struct task_struct *p;
1856
1857 if (!sched_dl_runnable(rq))
1858 return NULL;
1859
1860 dl_se = pick_next_dl_entity(rq, dl_rq);
1861 BUG_ON(!dl_se);
1862 p = dl_task_of(dl_se);
1863 set_next_task_dl(rq, p, true);
1864 return p;
1865 }
1866
1867 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1868 {
1869 update_curr_dl(rq);
1870
1871 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1872 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1873 enqueue_pushable_dl_task(rq, p);
1874 }
1875
1876 /*
1877 * scheduler tick hitting a task of our scheduling class.
1878 *
1879 * NOTE: This function can be called remotely by the tick offload that
1880 * goes along full dynticks. Therefore no local assumption can be made
1881 * and everything must be accessed through the @rq and @curr passed in
1882 * parameters.
1883 */
1884 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1885 {
1886 update_curr_dl(rq);
1887
1888 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1889 /*
1890 * Even when we have runtime, update_curr_dl() might have resulted in us
1891 * not being the leftmost task anymore. In that case NEED_RESCHED will
1892 * be set and schedule() will start a new hrtick for the next task.
1893 */
1894 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1895 is_leftmost(p, &rq->dl))
1896 start_hrtick_dl(rq, p);
1897 }
1898
1899 static void task_fork_dl(struct task_struct *p)
1900 {
1901 /*
1902 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1903 * sched_fork()
1904 */
1905 }
1906
1907 #ifdef CONFIG_SMP
1908
1909 /* Only try algorithms three times */
1910 #define DL_MAX_TRIES 3
1911
1912 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1913 {
1914 if (!task_running(rq, p) &&
1915 cpumask_test_cpu(cpu, p->cpus_ptr))
1916 return 1;
1917 return 0;
1918 }
1919
1920 /*
1921 * Return the earliest pushable rq's task, which is suitable to be executed
1922 * on the CPU, NULL otherwise:
1923 */
1924 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1925 {
1926 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1927 struct task_struct *p = NULL;
1928
1929 if (!has_pushable_dl_tasks(rq))
1930 return NULL;
1931
1932 next_node:
1933 if (next_node) {
1934 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1935
1936 if (pick_dl_task(rq, p, cpu))
1937 return p;
1938
1939 next_node = rb_next(next_node);
1940 goto next_node;
1941 }
1942
1943 return NULL;
1944 }
1945
1946 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1947
1948 static int find_later_rq(struct task_struct *task)
1949 {
1950 struct sched_domain *sd;
1951 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1952 int this_cpu = smp_processor_id();
1953 int cpu = task_cpu(task);
1954
1955 /* Make sure the mask is initialized first */
1956 if (unlikely(!later_mask))
1957 return -1;
1958
1959 if (task->nr_cpus_allowed == 1)
1960 return -1;
1961
1962 /*
1963 * We have to consider system topology and task affinity
1964 * first, then we can look for a suitable CPU.
1965 */
1966 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1967 return -1;
1968
1969 /*
1970 * If we are here, some targets have been found, including
1971 * the most suitable which is, among the runqueues where the
1972 * current tasks have later deadlines than the task's one, the
1973 * rq with the latest possible one.
1974 *
1975 * Now we check how well this matches with task's
1976 * affinity and system topology.
1977 *
1978 * The last CPU where the task run is our first
1979 * guess, since it is most likely cache-hot there.
1980 */
1981 if (cpumask_test_cpu(cpu, later_mask))
1982 return cpu;
1983 /*
1984 * Check if this_cpu is to be skipped (i.e., it is
1985 * not in the mask) or not.
1986 */
1987 if (!cpumask_test_cpu(this_cpu, later_mask))
1988 this_cpu = -1;
1989
1990 rcu_read_lock();
1991 for_each_domain(cpu, sd) {
1992 if (sd->flags & SD_WAKE_AFFINE) {
1993 int best_cpu;
1994
1995 /*
1996 * If possible, preempting this_cpu is
1997 * cheaper than migrating.
1998 */
1999 if (this_cpu != -1 &&
2000 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2001 rcu_read_unlock();
2002 return this_cpu;
2003 }
2004
2005 best_cpu = cpumask_first_and(later_mask,
2006 sched_domain_span(sd));
2007 /*
2008 * Last chance: if a CPU being in both later_mask
2009 * and current sd span is valid, that becomes our
2010 * choice. Of course, the latest possible CPU is
2011 * already under consideration through later_mask.
2012 */
2013 if (best_cpu < nr_cpu_ids) {
2014 rcu_read_unlock();
2015 return best_cpu;
2016 }
2017 }
2018 }
2019 rcu_read_unlock();
2020
2021 /*
2022 * At this point, all our guesses failed, we just return
2023 * 'something', and let the caller sort the things out.
2024 */
2025 if (this_cpu != -1)
2026 return this_cpu;
2027
2028 cpu = cpumask_any(later_mask);
2029 if (cpu < nr_cpu_ids)
2030 return cpu;
2031
2032 return -1;
2033 }
2034
2035 /* Locks the rq it finds */
2036 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2037 {
2038 struct rq *later_rq = NULL;
2039 int tries;
2040 int cpu;
2041
2042 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2043 cpu = find_later_rq(task);
2044
2045 if ((cpu == -1) || (cpu == rq->cpu))
2046 break;
2047
2048 later_rq = cpu_rq(cpu);
2049
2050 if (later_rq->dl.dl_nr_running &&
2051 !dl_time_before(task->dl.deadline,
2052 later_rq->dl.earliest_dl.curr)) {
2053 /*
2054 * Target rq has tasks of equal or earlier deadline,
2055 * retrying does not release any lock and is unlikely
2056 * to yield a different result.
2057 */
2058 later_rq = NULL;
2059 break;
2060 }
2061
2062 /* Retry if something changed. */
2063 if (double_lock_balance(rq, later_rq)) {
2064 if (unlikely(task_rq(task) != rq ||
2065 !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr) ||
2066 task_running(rq, task) ||
2067 !dl_task(task) ||
2068 !task_on_rq_queued(task))) {
2069 double_unlock_balance(rq, later_rq);
2070 later_rq = NULL;
2071 break;
2072 }
2073 }
2074
2075 /*
2076 * If the rq we found has no -deadline task, or
2077 * its earliest one has a later deadline than our
2078 * task, the rq is a good one.
2079 */
2080 if (!later_rq->dl.dl_nr_running ||
2081 dl_time_before(task->dl.deadline,
2082 later_rq->dl.earliest_dl.curr))
2083 break;
2084
2085 /* Otherwise we try again. */
2086 double_unlock_balance(rq, later_rq);
2087 later_rq = NULL;
2088 }
2089
2090 return later_rq;
2091 }
2092
2093 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2094 {
2095 struct task_struct *p;
2096
2097 if (!has_pushable_dl_tasks(rq))
2098 return NULL;
2099
2100 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2101 struct task_struct, pushable_dl_tasks);
2102
2103 BUG_ON(rq->cpu != task_cpu(p));
2104 BUG_ON(task_current(rq, p));
2105 BUG_ON(p->nr_cpus_allowed <= 1);
2106
2107 BUG_ON(!task_on_rq_queued(p));
2108 BUG_ON(!dl_task(p));
2109
2110 return p;
2111 }
2112
2113 /*
2114 * See if the non running -deadline tasks on this rq
2115 * can be sent to some other CPU where they can preempt
2116 * and start executing.
2117 */
2118 static int push_dl_task(struct rq *rq)
2119 {
2120 struct task_struct *next_task;
2121 struct rq *later_rq;
2122 int ret = 0;
2123
2124 if (!rq->dl.overloaded)
2125 return 0;
2126
2127 next_task = pick_next_pushable_dl_task(rq);
2128 if (!next_task)
2129 return 0;
2130
2131 retry:
2132 if (WARN_ON(next_task == rq->curr))
2133 return 0;
2134
2135 /*
2136 * If next_task preempts rq->curr, and rq->curr
2137 * can move away, it makes sense to just reschedule
2138 * without going further in pushing next_task.
2139 */
2140 if (dl_task(rq->curr) &&
2141 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2142 rq->curr->nr_cpus_allowed > 1) {
2143 resched_curr(rq);
2144 return 0;
2145 }
2146
2147 /* We might release rq lock */
2148 get_task_struct(next_task);
2149
2150 /* Will lock the rq it'll find */
2151 later_rq = find_lock_later_rq(next_task, rq);
2152 if (!later_rq) {
2153 struct task_struct *task;
2154
2155 /*
2156 * We must check all this again, since
2157 * find_lock_later_rq releases rq->lock and it is
2158 * then possible that next_task has migrated.
2159 */
2160 task = pick_next_pushable_dl_task(rq);
2161 if (task == next_task) {
2162 /*
2163 * The task is still there. We don't try
2164 * again, some other CPU will pull it when ready.
2165 */
2166 goto out;
2167 }
2168
2169 if (!task)
2170 /* No more tasks */
2171 goto out;
2172
2173 put_task_struct(next_task);
2174 next_task = task;
2175 goto retry;
2176 }
2177
2178 deactivate_task(rq, next_task, 0);
2179 set_task_cpu(next_task, later_rq->cpu);
2180
2181 /*
2182 * Update the later_rq clock here, because the clock is used
2183 * by the cpufreq_update_util() inside __add_running_bw().
2184 */
2185 update_rq_clock(later_rq);
2186 activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2187 ret = 1;
2188
2189 resched_curr(later_rq);
2190
2191 double_unlock_balance(rq, later_rq);
2192
2193 out:
2194 put_task_struct(next_task);
2195
2196 return ret;
2197 }
2198
2199 static void push_dl_tasks(struct rq *rq)
2200 {
2201 /* push_dl_task() will return true if it moved a -deadline task */
2202 while (push_dl_task(rq))
2203 ;
2204 }
2205
2206 static void pull_dl_task(struct rq *this_rq)
2207 {
2208 int this_cpu = this_rq->cpu, cpu;
2209 struct task_struct *p;
2210 bool resched = false;
2211 struct rq *src_rq;
2212 u64 dmin = LONG_MAX;
2213
2214 if (likely(!dl_overloaded(this_rq)))
2215 return;
2216
2217 /*
2218 * Match the barrier from dl_set_overloaded; this guarantees that if we
2219 * see overloaded we must also see the dlo_mask bit.
2220 */
2221 smp_rmb();
2222
2223 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2224 if (this_cpu == cpu)
2225 continue;
2226
2227 src_rq = cpu_rq(cpu);
2228
2229 /*
2230 * It looks racy, abd it is! However, as in sched_rt.c,
2231 * we are fine with this.
2232 */
2233 if (this_rq->dl.dl_nr_running &&
2234 dl_time_before(this_rq->dl.earliest_dl.curr,
2235 src_rq->dl.earliest_dl.next))
2236 continue;
2237
2238 /* Might drop this_rq->lock */
2239 double_lock_balance(this_rq, src_rq);
2240
2241 /*
2242 * If there are no more pullable tasks on the
2243 * rq, we're done with it.
2244 */
2245 if (src_rq->dl.dl_nr_running <= 1)
2246 goto skip;
2247
2248 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2249
2250 /*
2251 * We found a task to be pulled if:
2252 * - it preempts our current (if there's one),
2253 * - it will preempt the last one we pulled (if any).
2254 */
2255 if (p && dl_time_before(p->dl.deadline, dmin) &&
2256 (!this_rq->dl.dl_nr_running ||
2257 dl_time_before(p->dl.deadline,
2258 this_rq->dl.earliest_dl.curr))) {
2259 WARN_ON(p == src_rq->curr);
2260 WARN_ON(!task_on_rq_queued(p));
2261
2262 /*
2263 * Then we pull iff p has actually an earlier
2264 * deadline than the current task of its runqueue.
2265 */
2266 if (dl_time_before(p->dl.deadline,
2267 src_rq->curr->dl.deadline))
2268 goto skip;
2269
2270 resched = true;
2271
2272 deactivate_task(src_rq, p, 0);
2273 set_task_cpu(p, this_cpu);
2274 activate_task(this_rq, p, 0);
2275 dmin = p->dl.deadline;
2276
2277 /* Is there any other task even earlier? */
2278 }
2279 skip:
2280 double_unlock_balance(this_rq, src_rq);
2281 }
2282
2283 if (resched)
2284 resched_curr(this_rq);
2285 }
2286
2287 /*
2288 * Since the task is not running and a reschedule is not going to happen
2289 * anytime soon on its runqueue, we try pushing it away now.
2290 */
2291 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2292 {
2293 if (!task_running(rq, p) &&
2294 !test_tsk_need_resched(rq->curr) &&
2295 p->nr_cpus_allowed > 1 &&
2296 dl_task(rq->curr) &&
2297 (rq->curr->nr_cpus_allowed < 2 ||
2298 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2299 push_dl_tasks(rq);
2300 }
2301 }
2302
2303 static void set_cpus_allowed_dl(struct task_struct *p,
2304 const struct cpumask *new_mask)
2305 {
2306 struct root_domain *src_rd;
2307 struct rq *rq;
2308
2309 BUG_ON(!dl_task(p));
2310
2311 rq = task_rq(p);
2312 src_rd = rq->rd;
2313 /*
2314 * Migrating a SCHED_DEADLINE task between exclusive
2315 * cpusets (different root_domains) entails a bandwidth
2316 * update. We already made space for us in the destination
2317 * domain (see cpuset_can_attach()).
2318 */
2319 if (!cpumask_intersects(src_rd->span, new_mask)) {
2320 struct dl_bw *src_dl_b;
2321
2322 src_dl_b = dl_bw_of(cpu_of(rq));
2323 /*
2324 * We now free resources of the root_domain we are migrating
2325 * off. In the worst case, sched_setattr() may temporary fail
2326 * until we complete the update.
2327 */
2328 raw_spin_lock(&src_dl_b->lock);
2329 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2330 raw_spin_unlock(&src_dl_b->lock);
2331 }
2332
2333 set_cpus_allowed_common(p, new_mask);
2334 }
2335
2336 /* Assumes rq->lock is held */
2337 static void rq_online_dl(struct rq *rq)
2338 {
2339 if (rq->dl.overloaded)
2340 dl_set_overload(rq);
2341
2342 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2343 if (rq->dl.dl_nr_running > 0)
2344 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2345 }
2346
2347 /* Assumes rq->lock is held */
2348 static void rq_offline_dl(struct rq *rq)
2349 {
2350 if (rq->dl.overloaded)
2351 dl_clear_overload(rq);
2352
2353 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2354 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2355 }
2356
2357 void __init init_sched_dl_class(void)
2358 {
2359 unsigned int i;
2360
2361 for_each_possible_cpu(i)
2362 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2363 GFP_KERNEL, cpu_to_node(i));
2364 }
2365
2366 void dl_add_task_root_domain(struct task_struct *p)
2367 {
2368 struct rq_flags rf;
2369 struct rq *rq;
2370 struct dl_bw *dl_b;
2371
2372 rq = task_rq_lock(p, &rf);
2373 if (!dl_task(p))
2374 goto unlock;
2375
2376 dl_b = &rq->rd->dl_bw;
2377 raw_spin_lock(&dl_b->lock);
2378
2379 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2380
2381 raw_spin_unlock(&dl_b->lock);
2382
2383 unlock:
2384 task_rq_unlock(rq, p, &rf);
2385 }
2386
2387 void dl_clear_root_domain(struct root_domain *rd)
2388 {
2389 unsigned long flags;
2390
2391 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2392 rd->dl_bw.total_bw = 0;
2393 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2394 }
2395
2396 #endif /* CONFIG_SMP */
2397
2398 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2399 {
2400 /*
2401 * task_non_contending() can start the "inactive timer" (if the 0-lag
2402 * time is in the future). If the task switches back to dl before
2403 * the "inactive timer" fires, it can continue to consume its current
2404 * runtime using its current deadline. If it stays outside of
2405 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2406 * will reset the task parameters.
2407 */
2408 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2409 task_non_contending(p);
2410
2411 if (!task_on_rq_queued(p)) {
2412 /*
2413 * Inactive timer is armed. However, p is leaving DEADLINE and
2414 * might migrate away from this rq while continuing to run on
2415 * some other class. We need to remove its contribution from
2416 * this rq running_bw now, or sub_rq_bw (below) will complain.
2417 */
2418 if (p->dl.dl_non_contending)
2419 sub_running_bw(&p->dl, &rq->dl);
2420 sub_rq_bw(&p->dl, &rq->dl);
2421 }
2422
2423 /*
2424 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2425 * at the 0-lag time, because the task could have been migrated
2426 * while SCHED_OTHER in the meanwhile.
2427 */
2428 if (p->dl.dl_non_contending)
2429 p->dl.dl_non_contending = 0;
2430
2431 /*
2432 * Since this might be the only -deadline task on the rq,
2433 * this is the right place to try to pull some other one
2434 * from an overloaded CPU, if any.
2435 */
2436 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2437 return;
2438
2439 deadline_queue_pull_task(rq);
2440 }
2441
2442 /*
2443 * When switching to -deadline, we may overload the rq, then
2444 * we try to push someone off, if possible.
2445 */
2446 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2447 {
2448 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2449 put_task_struct(p);
2450
2451 /* If p is not queued we will update its parameters at next wakeup. */
2452 if (!task_on_rq_queued(p)) {
2453 add_rq_bw(&p->dl, &rq->dl);
2454
2455 return;
2456 }
2457
2458 if (rq->curr != p) {
2459 #ifdef CONFIG_SMP
2460 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2461 deadline_queue_push_tasks(rq);
2462 #endif
2463 if (dl_task(rq->curr))
2464 check_preempt_curr_dl(rq, p, 0);
2465 else
2466 resched_curr(rq);
2467 }
2468 }
2469
2470 /*
2471 * If the scheduling parameters of a -deadline task changed,
2472 * a push or pull operation might be needed.
2473 */
2474 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2475 int oldprio)
2476 {
2477 if (task_on_rq_queued(p) || rq->curr == p) {
2478 #ifdef CONFIG_SMP
2479 /*
2480 * This might be too much, but unfortunately
2481 * we don't have the old deadline value, and
2482 * we can't argue if the task is increasing
2483 * or lowering its prio, so...
2484 */
2485 if (!rq->dl.overloaded)
2486 deadline_queue_pull_task(rq);
2487
2488 /*
2489 * If we now have a earlier deadline task than p,
2490 * then reschedule, provided p is still on this
2491 * runqueue.
2492 */
2493 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2494 resched_curr(rq);
2495 #else
2496 /*
2497 * Again, we don't know if p has a earlier
2498 * or later deadline, so let's blindly set a
2499 * (maybe not needed) rescheduling point.
2500 */
2501 resched_curr(rq);
2502 #endif /* CONFIG_SMP */
2503 }
2504 }
2505
2506 const struct sched_class dl_sched_class
2507 __attribute__((section("__dl_sched_class"))) = {
2508 .enqueue_task = enqueue_task_dl,
2509 .dequeue_task = dequeue_task_dl,
2510 .yield_task = yield_task_dl,
2511
2512 .check_preempt_curr = check_preempt_curr_dl,
2513
2514 .pick_next_task = pick_next_task_dl,
2515 .put_prev_task = put_prev_task_dl,
2516 .set_next_task = set_next_task_dl,
2517
2518 #ifdef CONFIG_SMP
2519 .balance = balance_dl,
2520 .select_task_rq = select_task_rq_dl,
2521 .migrate_task_rq = migrate_task_rq_dl,
2522 .set_cpus_allowed = set_cpus_allowed_dl,
2523 .rq_online = rq_online_dl,
2524 .rq_offline = rq_offline_dl,
2525 .task_woken = task_woken_dl,
2526 #endif
2527
2528 .task_tick = task_tick_dl,
2529 .task_fork = task_fork_dl,
2530
2531 .prio_changed = prio_changed_dl,
2532 .switched_from = switched_from_dl,
2533 .switched_to = switched_to_dl,
2534
2535 .update_curr = update_curr_dl,
2536 };
2537
2538 int sched_dl_global_validate(void)
2539 {
2540 u64 runtime = global_rt_runtime();
2541 u64 period = global_rt_period();
2542 u64 new_bw = to_ratio(period, runtime);
2543 struct dl_bw *dl_b;
2544 int cpu, ret = 0;
2545 unsigned long flags;
2546
2547 /*
2548 * Here we want to check the bandwidth not being set to some
2549 * value smaller than the currently allocated bandwidth in
2550 * any of the root_domains.
2551 *
2552 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2553 * cycling on root_domains... Discussion on different/better
2554 * solutions is welcome!
2555 */
2556 for_each_possible_cpu(cpu) {
2557 rcu_read_lock_sched();
2558 dl_b = dl_bw_of(cpu);
2559
2560 raw_spin_lock_irqsave(&dl_b->lock, flags);
2561 if (new_bw < dl_b->total_bw)
2562 ret = -EBUSY;
2563 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2564
2565 rcu_read_unlock_sched();
2566
2567 if (ret)
2568 break;
2569 }
2570
2571 return ret;
2572 }
2573
2574 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2575 {
2576 if (global_rt_runtime() == RUNTIME_INF) {
2577 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2578 dl_rq->extra_bw = 1 << BW_SHIFT;
2579 } else {
2580 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2581 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2582 dl_rq->extra_bw = to_ratio(global_rt_period(),
2583 global_rt_runtime());
2584 }
2585 }
2586
2587 void sched_dl_do_global(void)
2588 {
2589 u64 new_bw = -1;
2590 struct dl_bw *dl_b;
2591 int cpu;
2592 unsigned long flags;
2593
2594 def_dl_bandwidth.dl_period = global_rt_period();
2595 def_dl_bandwidth.dl_runtime = global_rt_runtime();
2596
2597 if (global_rt_runtime() != RUNTIME_INF)
2598 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2599
2600 /*
2601 * FIXME: As above...
2602 */
2603 for_each_possible_cpu(cpu) {
2604 rcu_read_lock_sched();
2605 dl_b = dl_bw_of(cpu);
2606
2607 raw_spin_lock_irqsave(&dl_b->lock, flags);
2608 dl_b->bw = new_bw;
2609 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2610
2611 rcu_read_unlock_sched();
2612 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2613 }
2614 }
2615
2616 /*
2617 * We must be sure that accepting a new task (or allowing changing the
2618 * parameters of an existing one) is consistent with the bandwidth
2619 * constraints. If yes, this function also accordingly updates the currently
2620 * allocated bandwidth to reflect the new situation.
2621 *
2622 * This function is called while holding p's rq->lock.
2623 */
2624 int sched_dl_overflow(struct task_struct *p, int policy,
2625 const struct sched_attr *attr)
2626 {
2627 u64 period = attr->sched_period ?: attr->sched_deadline;
2628 u64 runtime = attr->sched_runtime;
2629 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2630 int cpus, err = -1, cpu = task_cpu(p);
2631 struct dl_bw *dl_b = dl_bw_of(cpu);
2632 unsigned long cap;
2633
2634 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2635 return 0;
2636
2637 /* !deadline task may carry old deadline bandwidth */
2638 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2639 return 0;
2640
2641 /*
2642 * Either if a task, enters, leave, or stays -deadline but changes
2643 * its parameters, we may need to update accordingly the total
2644 * allocated bandwidth of the container.
2645 */
2646 raw_spin_lock(&dl_b->lock);
2647 cpus = dl_bw_cpus(cpu);
2648 cap = dl_bw_capacity(cpu);
2649
2650 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2651 !__dl_overflow(dl_b, cap, 0, new_bw)) {
2652 if (hrtimer_active(&p->dl.inactive_timer))
2653 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2654 __dl_add(dl_b, new_bw, cpus);
2655 err = 0;
2656 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2657 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2658 /*
2659 * XXX this is slightly incorrect: when the task
2660 * utilization decreases, we should delay the total
2661 * utilization change until the task's 0-lag point.
2662 * But this would require to set the task's "inactive
2663 * timer" when the task is not inactive.
2664 */
2665 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2666 __dl_add(dl_b, new_bw, cpus);
2667 dl_change_utilization(p, new_bw);
2668 err = 0;
2669 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2670 /*
2671 * Do not decrease the total deadline utilization here,
2672 * switched_from_dl() will take care to do it at the correct
2673 * (0-lag) time.
2674 */
2675 err = 0;
2676 }
2677 raw_spin_unlock(&dl_b->lock);
2678
2679 return err;
2680 }
2681
2682 /*
2683 * This function initializes the sched_dl_entity of a newly becoming
2684 * SCHED_DEADLINE task.
2685 *
2686 * Only the static values are considered here, the actual runtime and the
2687 * absolute deadline will be properly calculated when the task is enqueued
2688 * for the first time with its new policy.
2689 */
2690 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2691 {
2692 struct sched_dl_entity *dl_se = &p->dl;
2693
2694 dl_se->dl_runtime = attr->sched_runtime;
2695 dl_se->dl_deadline = attr->sched_deadline;
2696 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2697 dl_se->flags = attr->sched_flags;
2698 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2699 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2700 }
2701
2702 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2703 {
2704 struct sched_dl_entity *dl_se = &p->dl;
2705
2706 attr->sched_priority = p->rt_priority;
2707 attr->sched_runtime = dl_se->dl_runtime;
2708 attr->sched_deadline = dl_se->dl_deadline;
2709 attr->sched_period = dl_se->dl_period;
2710 attr->sched_flags = dl_se->flags;
2711 }
2712
2713 /*
2714 * Default limits for DL period; on the top end we guard against small util
2715 * tasks still getting rediculous long effective runtimes, on the bottom end we
2716 * guard against timer DoS.
2717 */
2718 unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
2719 unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
2720
2721 /*
2722 * This function validates the new parameters of a -deadline task.
2723 * We ask for the deadline not being zero, and greater or equal
2724 * than the runtime, as well as the period of being zero or
2725 * greater than deadline. Furthermore, we have to be sure that
2726 * user parameters are above the internal resolution of 1us (we
2727 * check sched_runtime only since it is always the smaller one) and
2728 * below 2^63 ns (we have to check both sched_deadline and
2729 * sched_period, as the latter can be zero).
2730 */
2731 bool __checkparam_dl(const struct sched_attr *attr)
2732 {
2733 u64 period, max, min;
2734
2735 /* special dl tasks don't actually use any parameter */
2736 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2737 return true;
2738
2739 /* deadline != 0 */
2740 if (attr->sched_deadline == 0)
2741 return false;
2742
2743 /*
2744 * Since we truncate DL_SCALE bits, make sure we're at least
2745 * that big.
2746 */
2747 if (attr->sched_runtime < (1ULL << DL_SCALE))
2748 return false;
2749
2750 /*
2751 * Since we use the MSB for wrap-around and sign issues, make
2752 * sure it's not set (mind that period can be equal to zero).
2753 */
2754 if (attr->sched_deadline & (1ULL << 63) ||
2755 attr->sched_period & (1ULL << 63))
2756 return false;
2757
2758 period = attr->sched_period;
2759 if (!period)
2760 period = attr->sched_deadline;
2761
2762 /* runtime <= deadline <= period (if period != 0) */
2763 if (period < attr->sched_deadline ||
2764 attr->sched_deadline < attr->sched_runtime)
2765 return false;
2766
2767 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2768 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2769
2770 if (period < min || period > max)
2771 return false;
2772
2773 return true;
2774 }
2775
2776 /*
2777 * This function clears the sched_dl_entity static params.
2778 */
2779 void __dl_clear_params(struct task_struct *p)
2780 {
2781 struct sched_dl_entity *dl_se = &p->dl;
2782
2783 dl_se->dl_runtime = 0;
2784 dl_se->dl_deadline = 0;
2785 dl_se->dl_period = 0;
2786 dl_se->flags = 0;
2787 dl_se->dl_bw = 0;
2788 dl_se->dl_density = 0;
2789
2790 dl_se->dl_boosted = 0;
2791 dl_se->dl_throttled = 0;
2792 dl_se->dl_yielded = 0;
2793 dl_se->dl_non_contending = 0;
2794 dl_se->dl_overrun = 0;
2795 }
2796
2797 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2798 {
2799 struct sched_dl_entity *dl_se = &p->dl;
2800
2801 if (dl_se->dl_runtime != attr->sched_runtime ||
2802 dl_se->dl_deadline != attr->sched_deadline ||
2803 dl_se->dl_period != attr->sched_period ||
2804 dl_se->flags != attr->sched_flags)
2805 return true;
2806
2807 return false;
2808 }
2809
2810 #ifdef CONFIG_SMP
2811 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2812 {
2813 unsigned long flags, cap;
2814 unsigned int dest_cpu;
2815 struct dl_bw *dl_b;
2816 bool overflow;
2817 int ret;
2818
2819 dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2820
2821 rcu_read_lock_sched();
2822 dl_b = dl_bw_of(dest_cpu);
2823 raw_spin_lock_irqsave(&dl_b->lock, flags);
2824 cap = dl_bw_capacity(dest_cpu);
2825 overflow = __dl_overflow(dl_b, cap, 0, p->dl.dl_bw);
2826 if (overflow) {
2827 ret = -EBUSY;
2828 } else {
2829 /*
2830 * We reserve space for this task in the destination
2831 * root_domain, as we can't fail after this point.
2832 * We will free resources in the source root_domain
2833 * later on (see set_cpus_allowed_dl()).
2834 */
2835 int cpus = dl_bw_cpus(dest_cpu);
2836
2837 __dl_add(dl_b, p->dl.dl_bw, cpus);
2838 ret = 0;
2839 }
2840 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2841 rcu_read_unlock_sched();
2842
2843 return ret;
2844 }
2845
2846 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2847 const struct cpumask *trial)
2848 {
2849 int ret = 1, trial_cpus;
2850 struct dl_bw *cur_dl_b;
2851 unsigned long flags;
2852
2853 rcu_read_lock_sched();
2854 cur_dl_b = dl_bw_of(cpumask_any(cur));
2855 trial_cpus = cpumask_weight(trial);
2856
2857 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2858 if (cur_dl_b->bw != -1 &&
2859 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2860 ret = 0;
2861 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2862 rcu_read_unlock_sched();
2863
2864 return ret;
2865 }
2866
2867 bool dl_cpu_busy(unsigned int cpu)
2868 {
2869 unsigned long flags, cap;
2870 struct dl_bw *dl_b;
2871 bool overflow;
2872
2873 rcu_read_lock_sched();
2874 dl_b = dl_bw_of(cpu);
2875 raw_spin_lock_irqsave(&dl_b->lock, flags);
2876 cap = dl_bw_capacity(cpu);
2877 overflow = __dl_overflow(dl_b, cap, 0, 0);
2878 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2879 rcu_read_unlock_sched();
2880
2881 return overflow;
2882 }
2883 #endif
2884
2885 #ifdef CONFIG_SCHED_DEBUG
2886 void print_dl_stats(struct seq_file *m, int cpu)
2887 {
2888 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2889 }
2890 #endif /* CONFIG_SCHED_DEBUG */