]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/sched/deadline.c
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / deadline.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18 #include "sched.h"
19 #include "pelt.h"
20
21 struct dl_bandwidth def_dl_bandwidth;
22
23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 return container_of(dl_se, struct task_struct, dl);
26 }
27
28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 return container_of(dl_rq, struct rq, dl);
31 }
32
33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39 }
40
41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45
46 #ifdef CONFIG_RT_MUTEXES
47 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
48 {
49 return dl_se->pi_se;
50 }
51
52 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
53 {
54 return pi_of(dl_se) != dl_se;
55 }
56 #else
57 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
58 {
59 return dl_se;
60 }
61
62 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
63 {
64 return false;
65 }
66 #endif
67
68 #ifdef CONFIG_SMP
69 static inline struct dl_bw *dl_bw_of(int i)
70 {
71 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
72 "sched RCU must be held");
73 return &cpu_rq(i)->rd->dl_bw;
74 }
75
76 static inline int dl_bw_cpus(int i)
77 {
78 struct root_domain *rd = cpu_rq(i)->rd;
79 int cpus;
80
81 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
82 "sched RCU must be held");
83
84 if (cpumask_subset(rd->span, cpu_active_mask))
85 return cpumask_weight(rd->span);
86
87 cpus = 0;
88
89 for_each_cpu_and(i, rd->span, cpu_active_mask)
90 cpus++;
91
92 return cpus;
93 }
94
95 static inline unsigned long __dl_bw_capacity(int i)
96 {
97 struct root_domain *rd = cpu_rq(i)->rd;
98 unsigned long cap = 0;
99
100 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
101 "sched RCU must be held");
102
103 for_each_cpu_and(i, rd->span, cpu_active_mask)
104 cap += capacity_orig_of(i);
105
106 return cap;
107 }
108
109 /*
110 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
111 * of the CPU the task is running on rather rd's \Sum CPU capacity.
112 */
113 static inline unsigned long dl_bw_capacity(int i)
114 {
115 if (!static_branch_unlikely(&sched_asym_cpucapacity) &&
116 capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
117 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
118 } else {
119 return __dl_bw_capacity(i);
120 }
121 }
122
123 static inline bool dl_bw_visited(int cpu, u64 gen)
124 {
125 struct root_domain *rd = cpu_rq(cpu)->rd;
126
127 if (rd->visit_gen == gen)
128 return true;
129
130 rd->visit_gen = gen;
131 return false;
132 }
133 #else
134 static inline struct dl_bw *dl_bw_of(int i)
135 {
136 return &cpu_rq(i)->dl.dl_bw;
137 }
138
139 static inline int dl_bw_cpus(int i)
140 {
141 return 1;
142 }
143
144 static inline unsigned long dl_bw_capacity(int i)
145 {
146 return SCHED_CAPACITY_SCALE;
147 }
148
149 static inline bool dl_bw_visited(int cpu, u64 gen)
150 {
151 return false;
152 }
153 #endif
154
155 static inline
156 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
157 {
158 u64 old = dl_rq->running_bw;
159
160 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
161 dl_rq->running_bw += dl_bw;
162 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
163 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
164 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
165 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
166 }
167
168 static inline
169 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
170 {
171 u64 old = dl_rq->running_bw;
172
173 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
174 dl_rq->running_bw -= dl_bw;
175 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
176 if (dl_rq->running_bw > old)
177 dl_rq->running_bw = 0;
178 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
179 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
180 }
181
182 static inline
183 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
184 {
185 u64 old = dl_rq->this_bw;
186
187 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
188 dl_rq->this_bw += dl_bw;
189 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
190 }
191
192 static inline
193 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
194 {
195 u64 old = dl_rq->this_bw;
196
197 lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
198 dl_rq->this_bw -= dl_bw;
199 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
200 if (dl_rq->this_bw > old)
201 dl_rq->this_bw = 0;
202 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
203 }
204
205 static inline
206 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
207 {
208 if (!dl_entity_is_special(dl_se))
209 __add_rq_bw(dl_se->dl_bw, dl_rq);
210 }
211
212 static inline
213 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
214 {
215 if (!dl_entity_is_special(dl_se))
216 __sub_rq_bw(dl_se->dl_bw, dl_rq);
217 }
218
219 static inline
220 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
221 {
222 if (!dl_entity_is_special(dl_se))
223 __add_running_bw(dl_se->dl_bw, dl_rq);
224 }
225
226 static inline
227 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
228 {
229 if (!dl_entity_is_special(dl_se))
230 __sub_running_bw(dl_se->dl_bw, dl_rq);
231 }
232
233 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
234 {
235 struct rq *rq;
236
237 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
238
239 if (task_on_rq_queued(p))
240 return;
241
242 rq = task_rq(p);
243 if (p->dl.dl_non_contending) {
244 sub_running_bw(&p->dl, &rq->dl);
245 p->dl.dl_non_contending = 0;
246 /*
247 * If the timer handler is currently running and the
248 * timer cannot be cancelled, inactive_task_timer()
249 * will see that dl_not_contending is not set, and
250 * will not touch the rq's active utilization,
251 * so we are still safe.
252 */
253 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
254 put_task_struct(p);
255 }
256 __sub_rq_bw(p->dl.dl_bw, &rq->dl);
257 __add_rq_bw(new_bw, &rq->dl);
258 }
259
260 /*
261 * The utilization of a task cannot be immediately removed from
262 * the rq active utilization (running_bw) when the task blocks.
263 * Instead, we have to wait for the so called "0-lag time".
264 *
265 * If a task blocks before the "0-lag time", a timer (the inactive
266 * timer) is armed, and running_bw is decreased when the timer
267 * fires.
268 *
269 * If the task wakes up again before the inactive timer fires,
270 * the timer is cancelled, whereas if the task wakes up after the
271 * inactive timer fired (and running_bw has been decreased) the
272 * task's utilization has to be added to running_bw again.
273 * A flag in the deadline scheduling entity (dl_non_contending)
274 * is used to avoid race conditions between the inactive timer handler
275 * and task wakeups.
276 *
277 * The following diagram shows how running_bw is updated. A task is
278 * "ACTIVE" when its utilization contributes to running_bw; an
279 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
280 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
281 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
282 * time already passed, which does not contribute to running_bw anymore.
283 * +------------------+
284 * wakeup | ACTIVE |
285 * +------------------>+ contending |
286 * | add_running_bw | |
287 * | +----+------+------+
288 * | | ^
289 * | dequeue | |
290 * +--------+-------+ | |
291 * | | t >= 0-lag | | wakeup
292 * | INACTIVE |<---------------+ |
293 * | | sub_running_bw | |
294 * +--------+-------+ | |
295 * ^ | |
296 * | t < 0-lag | |
297 * | | |
298 * | V |
299 * | +----+------+------+
300 * | sub_running_bw | ACTIVE |
301 * +-------------------+ |
302 * inactive timer | non contending |
303 * fired +------------------+
304 *
305 * The task_non_contending() function is invoked when a task
306 * blocks, and checks if the 0-lag time already passed or
307 * not (in the first case, it directly updates running_bw;
308 * in the second case, it arms the inactive timer).
309 *
310 * The task_contending() function is invoked when a task wakes
311 * up, and checks if the task is still in the "ACTIVE non contending"
312 * state or not (in the second case, it updates running_bw).
313 */
314 static void task_non_contending(struct task_struct *p)
315 {
316 struct sched_dl_entity *dl_se = &p->dl;
317 struct hrtimer *timer = &dl_se->inactive_timer;
318 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
319 struct rq *rq = rq_of_dl_rq(dl_rq);
320 s64 zerolag_time;
321
322 /*
323 * If this is a non-deadline task that has been boosted,
324 * do nothing
325 */
326 if (dl_se->dl_runtime == 0)
327 return;
328
329 if (dl_entity_is_special(dl_se))
330 return;
331
332 WARN_ON(dl_se->dl_non_contending);
333
334 zerolag_time = dl_se->deadline -
335 div64_long((dl_se->runtime * dl_se->dl_period),
336 dl_se->dl_runtime);
337
338 /*
339 * Using relative times instead of the absolute "0-lag time"
340 * allows to simplify the code
341 */
342 zerolag_time -= rq_clock(rq);
343
344 /*
345 * If the "0-lag time" already passed, decrease the active
346 * utilization now, instead of starting a timer
347 */
348 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
349 if (dl_task(p))
350 sub_running_bw(dl_se, dl_rq);
351 if (!dl_task(p) || p->state == TASK_DEAD) {
352 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
353
354 if (p->state == TASK_DEAD)
355 sub_rq_bw(&p->dl, &rq->dl);
356 raw_spin_lock(&dl_b->lock);
357 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
358 __dl_clear_params(p);
359 raw_spin_unlock(&dl_b->lock);
360 }
361
362 return;
363 }
364
365 dl_se->dl_non_contending = 1;
366 get_task_struct(p);
367 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
368 }
369
370 static void task_contending(struct sched_dl_entity *dl_se, int flags)
371 {
372 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
373
374 /*
375 * If this is a non-deadline task that has been boosted,
376 * do nothing
377 */
378 if (dl_se->dl_runtime == 0)
379 return;
380
381 if (flags & ENQUEUE_MIGRATED)
382 add_rq_bw(dl_se, dl_rq);
383
384 if (dl_se->dl_non_contending) {
385 dl_se->dl_non_contending = 0;
386 /*
387 * If the timer handler is currently running and the
388 * timer cannot be cancelled, inactive_task_timer()
389 * will see that dl_not_contending is not set, and
390 * will not touch the rq's active utilization,
391 * so we are still safe.
392 */
393 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
394 put_task_struct(dl_task_of(dl_se));
395 } else {
396 /*
397 * Since "dl_non_contending" is not set, the
398 * task's utilization has already been removed from
399 * active utilization (either when the task blocked,
400 * when the "inactive timer" fired).
401 * So, add it back.
402 */
403 add_running_bw(dl_se, dl_rq);
404 }
405 }
406
407 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
408 {
409 struct sched_dl_entity *dl_se = &p->dl;
410
411 return dl_rq->root.rb_leftmost == &dl_se->rb_node;
412 }
413
414 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
415
416 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
417 {
418 raw_spin_lock_init(&dl_b->dl_runtime_lock);
419 dl_b->dl_period = period;
420 dl_b->dl_runtime = runtime;
421 }
422
423 void init_dl_bw(struct dl_bw *dl_b)
424 {
425 raw_spin_lock_init(&dl_b->lock);
426 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
427 if (global_rt_runtime() == RUNTIME_INF)
428 dl_b->bw = -1;
429 else
430 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
431 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
432 dl_b->total_bw = 0;
433 }
434
435 void init_dl_rq(struct dl_rq *dl_rq)
436 {
437 dl_rq->root = RB_ROOT_CACHED;
438
439 #ifdef CONFIG_SMP
440 /* zero means no -deadline tasks */
441 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
442
443 dl_rq->dl_nr_migratory = 0;
444 dl_rq->overloaded = 0;
445 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
446 #else
447 init_dl_bw(&dl_rq->dl_bw);
448 #endif
449
450 dl_rq->running_bw = 0;
451 dl_rq->this_bw = 0;
452 init_dl_rq_bw_ratio(dl_rq);
453 }
454
455 #ifdef CONFIG_SMP
456
457 static inline int dl_overloaded(struct rq *rq)
458 {
459 return atomic_read(&rq->rd->dlo_count);
460 }
461
462 static inline void dl_set_overload(struct rq *rq)
463 {
464 if (!rq->online)
465 return;
466
467 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
468 /*
469 * Must be visible before the overload count is
470 * set (as in sched_rt.c).
471 *
472 * Matched by the barrier in pull_dl_task().
473 */
474 smp_wmb();
475 atomic_inc(&rq->rd->dlo_count);
476 }
477
478 static inline void dl_clear_overload(struct rq *rq)
479 {
480 if (!rq->online)
481 return;
482
483 atomic_dec(&rq->rd->dlo_count);
484 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
485 }
486
487 static void update_dl_migration(struct dl_rq *dl_rq)
488 {
489 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
490 if (!dl_rq->overloaded) {
491 dl_set_overload(rq_of_dl_rq(dl_rq));
492 dl_rq->overloaded = 1;
493 }
494 } else if (dl_rq->overloaded) {
495 dl_clear_overload(rq_of_dl_rq(dl_rq));
496 dl_rq->overloaded = 0;
497 }
498 }
499
500 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
501 {
502 struct task_struct *p = dl_task_of(dl_se);
503
504 if (p->nr_cpus_allowed > 1)
505 dl_rq->dl_nr_migratory++;
506
507 update_dl_migration(dl_rq);
508 }
509
510 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
511 {
512 struct task_struct *p = dl_task_of(dl_se);
513
514 if (p->nr_cpus_allowed > 1)
515 dl_rq->dl_nr_migratory--;
516
517 update_dl_migration(dl_rq);
518 }
519
520 /*
521 * The list of pushable -deadline task is not a plist, like in
522 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
523 */
524 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
525 {
526 struct dl_rq *dl_rq = &rq->dl;
527 struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
528 struct rb_node *parent = NULL;
529 struct task_struct *entry;
530 bool leftmost = true;
531
532 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
533
534 while (*link) {
535 parent = *link;
536 entry = rb_entry(parent, struct task_struct,
537 pushable_dl_tasks);
538 if (dl_entity_preempt(&p->dl, &entry->dl))
539 link = &parent->rb_left;
540 else {
541 link = &parent->rb_right;
542 leftmost = false;
543 }
544 }
545
546 if (leftmost)
547 dl_rq->earliest_dl.next = p->dl.deadline;
548
549 rb_link_node(&p->pushable_dl_tasks, parent, link);
550 rb_insert_color_cached(&p->pushable_dl_tasks,
551 &dl_rq->pushable_dl_tasks_root, leftmost);
552 }
553
554 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
555 {
556 struct dl_rq *dl_rq = &rq->dl;
557
558 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
559 return;
560
561 if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
562 struct rb_node *next_node;
563
564 next_node = rb_next(&p->pushable_dl_tasks);
565 if (next_node) {
566 dl_rq->earliest_dl.next = rb_entry(next_node,
567 struct task_struct, pushable_dl_tasks)->dl.deadline;
568 }
569 }
570
571 rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
572 RB_CLEAR_NODE(&p->pushable_dl_tasks);
573 }
574
575 static inline int has_pushable_dl_tasks(struct rq *rq)
576 {
577 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
578 }
579
580 static int push_dl_task(struct rq *rq);
581
582 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
583 {
584 return rq->online && dl_task(prev);
585 }
586
587 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
588 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
589
590 static void push_dl_tasks(struct rq *);
591 static void pull_dl_task(struct rq *);
592
593 static inline void deadline_queue_push_tasks(struct rq *rq)
594 {
595 if (!has_pushable_dl_tasks(rq))
596 return;
597
598 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
599 }
600
601 static inline void deadline_queue_pull_task(struct rq *rq)
602 {
603 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
604 }
605
606 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
607
608 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
609 {
610 struct rq *later_rq = NULL;
611 struct dl_bw *dl_b;
612
613 later_rq = find_lock_later_rq(p, rq);
614 if (!later_rq) {
615 int cpu;
616
617 /*
618 * If we cannot preempt any rq, fall back to pick any
619 * online CPU:
620 */
621 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
622 if (cpu >= nr_cpu_ids) {
623 /*
624 * Failed to find any suitable CPU.
625 * The task will never come back!
626 */
627 BUG_ON(dl_bandwidth_enabled());
628
629 /*
630 * If admission control is disabled we
631 * try a little harder to let the task
632 * run.
633 */
634 cpu = cpumask_any(cpu_active_mask);
635 }
636 later_rq = cpu_rq(cpu);
637 double_lock_balance(rq, later_rq);
638 }
639
640 if (p->dl.dl_non_contending || p->dl.dl_throttled) {
641 /*
642 * Inactive timer is armed (or callback is running, but
643 * waiting for us to release rq locks). In any case, when it
644 * will fire (or continue), it will see running_bw of this
645 * task migrated to later_rq (and correctly handle it).
646 */
647 sub_running_bw(&p->dl, &rq->dl);
648 sub_rq_bw(&p->dl, &rq->dl);
649
650 add_rq_bw(&p->dl, &later_rq->dl);
651 add_running_bw(&p->dl, &later_rq->dl);
652 } else {
653 sub_rq_bw(&p->dl, &rq->dl);
654 add_rq_bw(&p->dl, &later_rq->dl);
655 }
656
657 /*
658 * And we finally need to fixup root_domain(s) bandwidth accounting,
659 * since p is still hanging out in the old (now moved to default) root
660 * domain.
661 */
662 dl_b = &rq->rd->dl_bw;
663 raw_spin_lock(&dl_b->lock);
664 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
665 raw_spin_unlock(&dl_b->lock);
666
667 dl_b = &later_rq->rd->dl_bw;
668 raw_spin_lock(&dl_b->lock);
669 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
670 raw_spin_unlock(&dl_b->lock);
671
672 set_task_cpu(p, later_rq->cpu);
673 double_unlock_balance(later_rq, rq);
674
675 return later_rq;
676 }
677
678 #else
679
680 static inline
681 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
682 {
683 }
684
685 static inline
686 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
687 {
688 }
689
690 static inline
691 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
692 {
693 }
694
695 static inline
696 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
697 {
698 }
699
700 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
701 {
702 return false;
703 }
704
705 static inline void pull_dl_task(struct rq *rq)
706 {
707 }
708
709 static inline void deadline_queue_push_tasks(struct rq *rq)
710 {
711 }
712
713 static inline void deadline_queue_pull_task(struct rq *rq)
714 {
715 }
716 #endif /* CONFIG_SMP */
717
718 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
719 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
720 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
721
722 /*
723 * We are being explicitly informed that a new instance is starting,
724 * and this means that:
725 * - the absolute deadline of the entity has to be placed at
726 * current time + relative deadline;
727 * - the runtime of the entity has to be set to the maximum value.
728 *
729 * The capability of specifying such event is useful whenever a -deadline
730 * entity wants to (try to!) synchronize its behaviour with the scheduler's
731 * one, and to (try to!) reconcile itself with its own scheduling
732 * parameters.
733 */
734 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
735 {
736 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
737 struct rq *rq = rq_of_dl_rq(dl_rq);
738
739 WARN_ON(is_dl_boosted(dl_se));
740 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
741
742 /*
743 * We are racing with the deadline timer. So, do nothing because
744 * the deadline timer handler will take care of properly recharging
745 * the runtime and postponing the deadline
746 */
747 if (dl_se->dl_throttled)
748 return;
749
750 /*
751 * We use the regular wall clock time to set deadlines in the
752 * future; in fact, we must consider execution overheads (time
753 * spent on hardirq context, etc.).
754 */
755 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
756 dl_se->runtime = dl_se->dl_runtime;
757 }
758
759 /*
760 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
761 * possibility of a entity lasting more than what it declared, and thus
762 * exhausting its runtime.
763 *
764 * Here we are interested in making runtime overrun possible, but we do
765 * not want a entity which is misbehaving to affect the scheduling of all
766 * other entities.
767 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
768 * is used, in order to confine each entity within its own bandwidth.
769 *
770 * This function deals exactly with that, and ensures that when the runtime
771 * of a entity is replenished, its deadline is also postponed. That ensures
772 * the overrunning entity can't interfere with other entity in the system and
773 * can't make them miss their deadlines. Reasons why this kind of overruns
774 * could happen are, typically, a entity voluntarily trying to overcome its
775 * runtime, or it just underestimated it during sched_setattr().
776 */
777 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
778 {
779 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
780 struct rq *rq = rq_of_dl_rq(dl_rq);
781
782 BUG_ON(pi_of(dl_se)->dl_runtime <= 0);
783
784 /*
785 * This could be the case for a !-dl task that is boosted.
786 * Just go with full inherited parameters.
787 */
788 if (dl_se->dl_deadline == 0) {
789 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
790 dl_se->runtime = pi_of(dl_se)->dl_runtime;
791 }
792
793 if (dl_se->dl_yielded && dl_se->runtime > 0)
794 dl_se->runtime = 0;
795
796 /*
797 * We keep moving the deadline away until we get some
798 * available runtime for the entity. This ensures correct
799 * handling of situations where the runtime overrun is
800 * arbitrary large.
801 */
802 while (dl_se->runtime <= 0) {
803 dl_se->deadline += pi_of(dl_se)->dl_period;
804 dl_se->runtime += pi_of(dl_se)->dl_runtime;
805 }
806
807 /*
808 * At this point, the deadline really should be "in
809 * the future" with respect to rq->clock. If it's
810 * not, we are, for some reason, lagging too much!
811 * Anyway, after having warn userspace abut that,
812 * we still try to keep the things running by
813 * resetting the deadline and the budget of the
814 * entity.
815 */
816 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
817 printk_deferred_once("sched: DL replenish lagged too much\n");
818 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
819 dl_se->runtime = pi_of(dl_se)->dl_runtime;
820 }
821
822 if (dl_se->dl_yielded)
823 dl_se->dl_yielded = 0;
824 if (dl_se->dl_throttled)
825 dl_se->dl_throttled = 0;
826 }
827
828 /*
829 * Here we check if --at time t-- an entity (which is probably being
830 * [re]activated or, in general, enqueued) can use its remaining runtime
831 * and its current deadline _without_ exceeding the bandwidth it is
832 * assigned (function returns true if it can't). We are in fact applying
833 * one of the CBS rules: when a task wakes up, if the residual runtime
834 * over residual deadline fits within the allocated bandwidth, then we
835 * can keep the current (absolute) deadline and residual budget without
836 * disrupting the schedulability of the system. Otherwise, we should
837 * refill the runtime and set the deadline a period in the future,
838 * because keeping the current (absolute) deadline of the task would
839 * result in breaking guarantees promised to other tasks (refer to
840 * Documentation/scheduler/sched-deadline.rst for more information).
841 *
842 * This function returns true if:
843 *
844 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
845 *
846 * IOW we can't recycle current parameters.
847 *
848 * Notice that the bandwidth check is done against the deadline. For
849 * task with deadline equal to period this is the same of using
850 * dl_period instead of dl_deadline in the equation above.
851 */
852 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
853 {
854 u64 left, right;
855
856 /*
857 * left and right are the two sides of the equation above,
858 * after a bit of shuffling to use multiplications instead
859 * of divisions.
860 *
861 * Note that none of the time values involved in the two
862 * multiplications are absolute: dl_deadline and dl_runtime
863 * are the relative deadline and the maximum runtime of each
864 * instance, runtime is the runtime left for the last instance
865 * and (deadline - t), since t is rq->clock, is the time left
866 * to the (absolute) deadline. Even if overflowing the u64 type
867 * is very unlikely to occur in both cases, here we scale down
868 * as we want to avoid that risk at all. Scaling down by 10
869 * means that we reduce granularity to 1us. We are fine with it,
870 * since this is only a true/false check and, anyway, thinking
871 * of anything below microseconds resolution is actually fiction
872 * (but still we want to give the user that illusion >;).
873 */
874 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
875 right = ((dl_se->deadline - t) >> DL_SCALE) *
876 (pi_of(dl_se)->dl_runtime >> DL_SCALE);
877
878 return dl_time_before(right, left);
879 }
880
881 /*
882 * Revised wakeup rule [1]: For self-suspending tasks, rather then
883 * re-initializing task's runtime and deadline, the revised wakeup
884 * rule adjusts the task's runtime to avoid the task to overrun its
885 * density.
886 *
887 * Reasoning: a task may overrun the density if:
888 * runtime / (deadline - t) > dl_runtime / dl_deadline
889 *
890 * Therefore, runtime can be adjusted to:
891 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
892 *
893 * In such way that runtime will be equal to the maximum density
894 * the task can use without breaking any rule.
895 *
896 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
897 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
898 */
899 static void
900 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
901 {
902 u64 laxity = dl_se->deadline - rq_clock(rq);
903
904 /*
905 * If the task has deadline < period, and the deadline is in the past,
906 * it should already be throttled before this check.
907 *
908 * See update_dl_entity() comments for further details.
909 */
910 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
911
912 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
913 }
914
915 /*
916 * Regarding the deadline, a task with implicit deadline has a relative
917 * deadline == relative period. A task with constrained deadline has a
918 * relative deadline <= relative period.
919 *
920 * We support constrained deadline tasks. However, there are some restrictions
921 * applied only for tasks which do not have an implicit deadline. See
922 * update_dl_entity() to know more about such restrictions.
923 *
924 * The dl_is_implicit() returns true if the task has an implicit deadline.
925 */
926 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
927 {
928 return dl_se->dl_deadline == dl_se->dl_period;
929 }
930
931 /*
932 * When a deadline entity is placed in the runqueue, its runtime and deadline
933 * might need to be updated. This is done by a CBS wake up rule. There are two
934 * different rules: 1) the original CBS; and 2) the Revisited CBS.
935 *
936 * When the task is starting a new period, the Original CBS is used. In this
937 * case, the runtime is replenished and a new absolute deadline is set.
938 *
939 * When a task is queued before the begin of the next period, using the
940 * remaining runtime and deadline could make the entity to overflow, see
941 * dl_entity_overflow() to find more about runtime overflow. When such case
942 * is detected, the runtime and deadline need to be updated.
943 *
944 * If the task has an implicit deadline, i.e., deadline == period, the Original
945 * CBS is applied. the runtime is replenished and a new absolute deadline is
946 * set, as in the previous cases.
947 *
948 * However, the Original CBS does not work properly for tasks with
949 * deadline < period, which are said to have a constrained deadline. By
950 * applying the Original CBS, a constrained deadline task would be able to run
951 * runtime/deadline in a period. With deadline < period, the task would
952 * overrun the runtime/period allowed bandwidth, breaking the admission test.
953 *
954 * In order to prevent this misbehave, the Revisited CBS is used for
955 * constrained deadline tasks when a runtime overflow is detected. In the
956 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
957 * the remaining runtime of the task is reduced to avoid runtime overflow.
958 * Please refer to the comments update_dl_revised_wakeup() function to find
959 * more about the Revised CBS rule.
960 */
961 static void update_dl_entity(struct sched_dl_entity *dl_se)
962 {
963 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
964 struct rq *rq = rq_of_dl_rq(dl_rq);
965
966 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
967 dl_entity_overflow(dl_se, rq_clock(rq))) {
968
969 if (unlikely(!dl_is_implicit(dl_se) &&
970 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
971 !is_dl_boosted(dl_se))) {
972 update_dl_revised_wakeup(dl_se, rq);
973 return;
974 }
975
976 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
977 dl_se->runtime = pi_of(dl_se)->dl_runtime;
978 }
979 }
980
981 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
982 {
983 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
984 }
985
986 /*
987 * If the entity depleted all its runtime, and if we want it to sleep
988 * while waiting for some new execution time to become available, we
989 * set the bandwidth replenishment timer to the replenishment instant
990 * and try to activate it.
991 *
992 * Notice that it is important for the caller to know if the timer
993 * actually started or not (i.e., the replenishment instant is in
994 * the future or in the past).
995 */
996 static int start_dl_timer(struct task_struct *p)
997 {
998 struct sched_dl_entity *dl_se = &p->dl;
999 struct hrtimer *timer = &dl_se->dl_timer;
1000 struct rq *rq = task_rq(p);
1001 ktime_t now, act;
1002 s64 delta;
1003
1004 lockdep_assert_held(&rq->lock);
1005
1006 /*
1007 * We want the timer to fire at the deadline, but considering
1008 * that it is actually coming from rq->clock and not from
1009 * hrtimer's time base reading.
1010 */
1011 act = ns_to_ktime(dl_next_period(dl_se));
1012 now = hrtimer_cb_get_time(timer);
1013 delta = ktime_to_ns(now) - rq_clock(rq);
1014 act = ktime_add_ns(act, delta);
1015
1016 /*
1017 * If the expiry time already passed, e.g., because the value
1018 * chosen as the deadline is too small, don't even try to
1019 * start the timer in the past!
1020 */
1021 if (ktime_us_delta(act, now) < 0)
1022 return 0;
1023
1024 /*
1025 * !enqueued will guarantee another callback; even if one is already in
1026 * progress. This ensures a balanced {get,put}_task_struct().
1027 *
1028 * The race against __run_timer() clearing the enqueued state is
1029 * harmless because we're holding task_rq()->lock, therefore the timer
1030 * expiring after we've done the check will wait on its task_rq_lock()
1031 * and observe our state.
1032 */
1033 if (!hrtimer_is_queued(timer)) {
1034 get_task_struct(p);
1035 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1036 }
1037
1038 return 1;
1039 }
1040
1041 /*
1042 * This is the bandwidth enforcement timer callback. If here, we know
1043 * a task is not on its dl_rq, since the fact that the timer was running
1044 * means the task is throttled and needs a runtime replenishment.
1045 *
1046 * However, what we actually do depends on the fact the task is active,
1047 * (it is on its rq) or has been removed from there by a call to
1048 * dequeue_task_dl(). In the former case we must issue the runtime
1049 * replenishment and add the task back to the dl_rq; in the latter, we just
1050 * do nothing but clearing dl_throttled, so that runtime and deadline
1051 * updating (and the queueing back to dl_rq) will be done by the
1052 * next call to enqueue_task_dl().
1053 */
1054 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1055 {
1056 struct sched_dl_entity *dl_se = container_of(timer,
1057 struct sched_dl_entity,
1058 dl_timer);
1059 struct task_struct *p = dl_task_of(dl_se);
1060 struct rq_flags rf;
1061 struct rq *rq;
1062
1063 rq = task_rq_lock(p, &rf);
1064
1065 /*
1066 * The task might have changed its scheduling policy to something
1067 * different than SCHED_DEADLINE (through switched_from_dl()).
1068 */
1069 if (!dl_task(p))
1070 goto unlock;
1071
1072 /*
1073 * The task might have been boosted by someone else and might be in the
1074 * boosting/deboosting path, its not throttled.
1075 */
1076 if (is_dl_boosted(dl_se))
1077 goto unlock;
1078
1079 /*
1080 * Spurious timer due to start_dl_timer() race; or we already received
1081 * a replenishment from rt_mutex_setprio().
1082 */
1083 if (!dl_se->dl_throttled)
1084 goto unlock;
1085
1086 sched_clock_tick();
1087 update_rq_clock(rq);
1088
1089 /*
1090 * If the throttle happened during sched-out; like:
1091 *
1092 * schedule()
1093 * deactivate_task()
1094 * dequeue_task_dl()
1095 * update_curr_dl()
1096 * start_dl_timer()
1097 * __dequeue_task_dl()
1098 * prev->on_rq = 0;
1099 *
1100 * We can be both throttled and !queued. Replenish the counter
1101 * but do not enqueue -- wait for our wakeup to do that.
1102 */
1103 if (!task_on_rq_queued(p)) {
1104 replenish_dl_entity(dl_se);
1105 goto unlock;
1106 }
1107
1108 #ifdef CONFIG_SMP
1109 if (unlikely(!rq->online)) {
1110 /*
1111 * If the runqueue is no longer available, migrate the
1112 * task elsewhere. This necessarily changes rq.
1113 */
1114 lockdep_unpin_lock(&rq->lock, rf.cookie);
1115 rq = dl_task_offline_migration(rq, p);
1116 rf.cookie = lockdep_pin_lock(&rq->lock);
1117 update_rq_clock(rq);
1118
1119 /*
1120 * Now that the task has been migrated to the new RQ and we
1121 * have that locked, proceed as normal and enqueue the task
1122 * there.
1123 */
1124 }
1125 #endif
1126
1127 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1128 if (dl_task(rq->curr))
1129 check_preempt_curr_dl(rq, p, 0);
1130 else
1131 resched_curr(rq);
1132
1133 #ifdef CONFIG_SMP
1134 /*
1135 * Queueing this task back might have overloaded rq, check if we need
1136 * to kick someone away.
1137 */
1138 if (has_pushable_dl_tasks(rq)) {
1139 /*
1140 * Nothing relies on rq->lock after this, so its safe to drop
1141 * rq->lock.
1142 */
1143 rq_unpin_lock(rq, &rf);
1144 push_dl_task(rq);
1145 rq_repin_lock(rq, &rf);
1146 }
1147 #endif
1148
1149 unlock:
1150 task_rq_unlock(rq, p, &rf);
1151
1152 /*
1153 * This can free the task_struct, including this hrtimer, do not touch
1154 * anything related to that after this.
1155 */
1156 put_task_struct(p);
1157
1158 return HRTIMER_NORESTART;
1159 }
1160
1161 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1162 {
1163 struct hrtimer *timer = &dl_se->dl_timer;
1164
1165 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1166 timer->function = dl_task_timer;
1167 }
1168
1169 /*
1170 * During the activation, CBS checks if it can reuse the current task's
1171 * runtime and period. If the deadline of the task is in the past, CBS
1172 * cannot use the runtime, and so it replenishes the task. This rule
1173 * works fine for implicit deadline tasks (deadline == period), and the
1174 * CBS was designed for implicit deadline tasks. However, a task with
1175 * constrained deadline (deadline < period) might be awakened after the
1176 * deadline, but before the next period. In this case, replenishing the
1177 * task would allow it to run for runtime / deadline. As in this case
1178 * deadline < period, CBS enables a task to run for more than the
1179 * runtime / period. In a very loaded system, this can cause a domino
1180 * effect, making other tasks miss their deadlines.
1181 *
1182 * To avoid this problem, in the activation of a constrained deadline
1183 * task after the deadline but before the next period, throttle the
1184 * task and set the replenishing timer to the begin of the next period,
1185 * unless it is boosted.
1186 */
1187 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1188 {
1189 struct task_struct *p = dl_task_of(dl_se);
1190 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1191
1192 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1193 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1194 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1195 return;
1196 dl_se->dl_throttled = 1;
1197 if (dl_se->runtime > 0)
1198 dl_se->runtime = 0;
1199 }
1200 }
1201
1202 static
1203 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1204 {
1205 return (dl_se->runtime <= 0);
1206 }
1207
1208 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1209
1210 /*
1211 * This function implements the GRUB accounting rule:
1212 * according to the GRUB reclaiming algorithm, the runtime is
1213 * not decreased as "dq = -dt", but as
1214 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1215 * where u is the utilization of the task, Umax is the maximum reclaimable
1216 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1217 * as the difference between the "total runqueue utilization" and the
1218 * runqueue active utilization, and Uextra is the (per runqueue) extra
1219 * reclaimable utilization.
1220 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1221 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1222 * BW_SHIFT.
1223 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1224 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1225 * Since delta is a 64 bit variable, to have an overflow its value
1226 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1227 * So, overflow is not an issue here.
1228 */
1229 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1230 {
1231 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1232 u64 u_act;
1233 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1234
1235 /*
1236 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1237 * we compare u_inact + rq->dl.extra_bw with
1238 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1239 * u_inact + rq->dl.extra_bw can be larger than
1240 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1241 * leading to wrong results)
1242 */
1243 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1244 u_act = u_act_min;
1245 else
1246 u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1247
1248 return (delta * u_act) >> BW_SHIFT;
1249 }
1250
1251 /*
1252 * Update the current task's runtime statistics (provided it is still
1253 * a -deadline task and has not been removed from the dl_rq).
1254 */
1255 static void update_curr_dl(struct rq *rq)
1256 {
1257 struct task_struct *curr = rq->curr;
1258 struct sched_dl_entity *dl_se = &curr->dl;
1259 u64 delta_exec, scaled_delta_exec;
1260 int cpu = cpu_of(rq);
1261 u64 now;
1262
1263 if (!dl_task(curr) || !on_dl_rq(dl_se))
1264 return;
1265
1266 /*
1267 * Consumed budget is computed considering the time as
1268 * observed by schedulable tasks (excluding time spent
1269 * in hardirq context, etc.). Deadlines are instead
1270 * computed using hard walltime. This seems to be the more
1271 * natural solution, but the full ramifications of this
1272 * approach need further study.
1273 */
1274 now = rq_clock_task(rq);
1275 delta_exec = now - curr->se.exec_start;
1276 if (unlikely((s64)delta_exec <= 0)) {
1277 if (unlikely(dl_se->dl_yielded))
1278 goto throttle;
1279 return;
1280 }
1281
1282 schedstat_set(curr->se.statistics.exec_max,
1283 max(curr->se.statistics.exec_max, delta_exec));
1284
1285 curr->se.sum_exec_runtime += delta_exec;
1286 account_group_exec_runtime(curr, delta_exec);
1287
1288 curr->se.exec_start = now;
1289 cgroup_account_cputime(curr, delta_exec);
1290
1291 if (dl_entity_is_special(dl_se))
1292 return;
1293
1294 /*
1295 * For tasks that participate in GRUB, we implement GRUB-PA: the
1296 * spare reclaimed bandwidth is used to clock down frequency.
1297 *
1298 * For the others, we still need to scale reservation parameters
1299 * according to current frequency and CPU maximum capacity.
1300 */
1301 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1302 scaled_delta_exec = grub_reclaim(delta_exec,
1303 rq,
1304 &curr->dl);
1305 } else {
1306 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1307 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1308
1309 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1310 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1311 }
1312
1313 dl_se->runtime -= scaled_delta_exec;
1314
1315 throttle:
1316 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1317 dl_se->dl_throttled = 1;
1318
1319 /* If requested, inform the user about runtime overruns. */
1320 if (dl_runtime_exceeded(dl_se) &&
1321 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1322 dl_se->dl_overrun = 1;
1323
1324 __dequeue_task_dl(rq, curr, 0);
1325 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1326 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1327
1328 if (!is_leftmost(curr, &rq->dl))
1329 resched_curr(rq);
1330 }
1331
1332 /*
1333 * Because -- for now -- we share the rt bandwidth, we need to
1334 * account our runtime there too, otherwise actual rt tasks
1335 * would be able to exceed the shared quota.
1336 *
1337 * Account to the root rt group for now.
1338 *
1339 * The solution we're working towards is having the RT groups scheduled
1340 * using deadline servers -- however there's a few nasties to figure
1341 * out before that can happen.
1342 */
1343 if (rt_bandwidth_enabled()) {
1344 struct rt_rq *rt_rq = &rq->rt;
1345
1346 raw_spin_lock(&rt_rq->rt_runtime_lock);
1347 /*
1348 * We'll let actual RT tasks worry about the overflow here, we
1349 * have our own CBS to keep us inline; only account when RT
1350 * bandwidth is relevant.
1351 */
1352 if (sched_rt_bandwidth_account(rt_rq))
1353 rt_rq->rt_time += delta_exec;
1354 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1355 }
1356 }
1357
1358 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1359 {
1360 struct sched_dl_entity *dl_se = container_of(timer,
1361 struct sched_dl_entity,
1362 inactive_timer);
1363 struct task_struct *p = dl_task_of(dl_se);
1364 struct rq_flags rf;
1365 struct rq *rq;
1366
1367 rq = task_rq_lock(p, &rf);
1368
1369 sched_clock_tick();
1370 update_rq_clock(rq);
1371
1372 if (!dl_task(p) || p->state == TASK_DEAD) {
1373 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1374
1375 if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1376 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1377 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1378 dl_se->dl_non_contending = 0;
1379 }
1380
1381 raw_spin_lock(&dl_b->lock);
1382 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1383 raw_spin_unlock(&dl_b->lock);
1384 __dl_clear_params(p);
1385
1386 goto unlock;
1387 }
1388 if (dl_se->dl_non_contending == 0)
1389 goto unlock;
1390
1391 sub_running_bw(dl_se, &rq->dl);
1392 dl_se->dl_non_contending = 0;
1393 unlock:
1394 task_rq_unlock(rq, p, &rf);
1395 put_task_struct(p);
1396
1397 return HRTIMER_NORESTART;
1398 }
1399
1400 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1401 {
1402 struct hrtimer *timer = &dl_se->inactive_timer;
1403
1404 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1405 timer->function = inactive_task_timer;
1406 }
1407
1408 #ifdef CONFIG_SMP
1409
1410 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1411 {
1412 struct rq *rq = rq_of_dl_rq(dl_rq);
1413
1414 if (dl_rq->earliest_dl.curr == 0 ||
1415 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1416 if (dl_rq->earliest_dl.curr == 0)
1417 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1418 dl_rq->earliest_dl.curr = deadline;
1419 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1420 }
1421 }
1422
1423 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1424 {
1425 struct rq *rq = rq_of_dl_rq(dl_rq);
1426
1427 /*
1428 * Since we may have removed our earliest (and/or next earliest)
1429 * task we must recompute them.
1430 */
1431 if (!dl_rq->dl_nr_running) {
1432 dl_rq->earliest_dl.curr = 0;
1433 dl_rq->earliest_dl.next = 0;
1434 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1435 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1436 } else {
1437 struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1438 struct sched_dl_entity *entry;
1439
1440 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1441 dl_rq->earliest_dl.curr = entry->deadline;
1442 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1443 }
1444 }
1445
1446 #else
1447
1448 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1449 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1450
1451 #endif /* CONFIG_SMP */
1452
1453 static inline
1454 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1455 {
1456 int prio = dl_task_of(dl_se)->prio;
1457 u64 deadline = dl_se->deadline;
1458
1459 WARN_ON(!dl_prio(prio));
1460 dl_rq->dl_nr_running++;
1461 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1462
1463 inc_dl_deadline(dl_rq, deadline);
1464 inc_dl_migration(dl_se, dl_rq);
1465 }
1466
1467 static inline
1468 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1469 {
1470 int prio = dl_task_of(dl_se)->prio;
1471
1472 WARN_ON(!dl_prio(prio));
1473 WARN_ON(!dl_rq->dl_nr_running);
1474 dl_rq->dl_nr_running--;
1475 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1476
1477 dec_dl_deadline(dl_rq, dl_se->deadline);
1478 dec_dl_migration(dl_se, dl_rq);
1479 }
1480
1481 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1482 {
1483 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1484 struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1485 struct rb_node *parent = NULL;
1486 struct sched_dl_entity *entry;
1487 int leftmost = 1;
1488
1489 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1490
1491 while (*link) {
1492 parent = *link;
1493 entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1494 if (dl_time_before(dl_se->deadline, entry->deadline))
1495 link = &parent->rb_left;
1496 else {
1497 link = &parent->rb_right;
1498 leftmost = 0;
1499 }
1500 }
1501
1502 rb_link_node(&dl_se->rb_node, parent, link);
1503 rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1504
1505 inc_dl_tasks(dl_se, dl_rq);
1506 }
1507
1508 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1509 {
1510 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1511
1512 if (RB_EMPTY_NODE(&dl_se->rb_node))
1513 return;
1514
1515 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1516 RB_CLEAR_NODE(&dl_se->rb_node);
1517
1518 dec_dl_tasks(dl_se, dl_rq);
1519 }
1520
1521 static void
1522 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1523 {
1524 BUG_ON(on_dl_rq(dl_se));
1525
1526 /*
1527 * If this is a wakeup or a new instance, the scheduling
1528 * parameters of the task might need updating. Otherwise,
1529 * we want a replenishment of its runtime.
1530 */
1531 if (flags & ENQUEUE_WAKEUP) {
1532 task_contending(dl_se, flags);
1533 update_dl_entity(dl_se);
1534 } else if (flags & ENQUEUE_REPLENISH) {
1535 replenish_dl_entity(dl_se);
1536 } else if ((flags & ENQUEUE_RESTORE) &&
1537 dl_time_before(dl_se->deadline,
1538 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1539 setup_new_dl_entity(dl_se);
1540 }
1541
1542 __enqueue_dl_entity(dl_se);
1543 }
1544
1545 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1546 {
1547 __dequeue_dl_entity(dl_se);
1548 }
1549
1550 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1551 {
1552 if (is_dl_boosted(&p->dl)) {
1553 /*
1554 * Because of delays in the detection of the overrun of a
1555 * thread's runtime, it might be the case that a thread
1556 * goes to sleep in a rt mutex with negative runtime. As
1557 * a consequence, the thread will be throttled.
1558 *
1559 * While waiting for the mutex, this thread can also be
1560 * boosted via PI, resulting in a thread that is throttled
1561 * and boosted at the same time.
1562 *
1563 * In this case, the boost overrides the throttle.
1564 */
1565 if (p->dl.dl_throttled) {
1566 /*
1567 * The replenish timer needs to be canceled. No
1568 * problem if it fires concurrently: boosted threads
1569 * are ignored in dl_task_timer().
1570 */
1571 hrtimer_try_to_cancel(&p->dl.dl_timer);
1572 p->dl.dl_throttled = 0;
1573 }
1574 } else if (!dl_prio(p->normal_prio)) {
1575 /*
1576 * Special case in which we have a !SCHED_DEADLINE task that is going
1577 * to be deboosted, but exceeds its runtime while doing so. No point in
1578 * replenishing it, as it's going to return back to its original
1579 * scheduling class after this. If it has been throttled, we need to
1580 * clear the flag, otherwise the task may wake up as throttled after
1581 * being boosted again with no means to replenish the runtime and clear
1582 * the throttle.
1583 */
1584 p->dl.dl_throttled = 0;
1585 BUG_ON(!is_dl_boosted(&p->dl) || flags != ENQUEUE_REPLENISH);
1586 return;
1587 }
1588
1589 /*
1590 * Check if a constrained deadline task was activated
1591 * after the deadline but before the next period.
1592 * If that is the case, the task will be throttled and
1593 * the replenishment timer will be set to the next period.
1594 */
1595 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1596 dl_check_constrained_dl(&p->dl);
1597
1598 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1599 add_rq_bw(&p->dl, &rq->dl);
1600 add_running_bw(&p->dl, &rq->dl);
1601 }
1602
1603 /*
1604 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1605 * its budget it needs a replenishment and, since it now is on
1606 * its rq, the bandwidth timer callback (which clearly has not
1607 * run yet) will take care of this.
1608 * However, the active utilization does not depend on the fact
1609 * that the task is on the runqueue or not (but depends on the
1610 * task's state - in GRUB parlance, "inactive" vs "active contending").
1611 * In other words, even if a task is throttled its utilization must
1612 * be counted in the active utilization; hence, we need to call
1613 * add_running_bw().
1614 */
1615 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1616 if (flags & ENQUEUE_WAKEUP)
1617 task_contending(&p->dl, flags);
1618
1619 return;
1620 }
1621
1622 enqueue_dl_entity(&p->dl, flags);
1623
1624 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1625 enqueue_pushable_dl_task(rq, p);
1626 }
1627
1628 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1629 {
1630 dequeue_dl_entity(&p->dl);
1631 dequeue_pushable_dl_task(rq, p);
1632 }
1633
1634 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1635 {
1636 update_curr_dl(rq);
1637 __dequeue_task_dl(rq, p, flags);
1638
1639 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1640 sub_running_bw(&p->dl, &rq->dl);
1641 sub_rq_bw(&p->dl, &rq->dl);
1642 }
1643
1644 /*
1645 * This check allows to start the inactive timer (or to immediately
1646 * decrease the active utilization, if needed) in two cases:
1647 * when the task blocks and when it is terminating
1648 * (p->state == TASK_DEAD). We can handle the two cases in the same
1649 * way, because from GRUB's point of view the same thing is happening
1650 * (the task moves from "active contending" to "active non contending"
1651 * or "inactive")
1652 */
1653 if (flags & DEQUEUE_SLEEP)
1654 task_non_contending(p);
1655 }
1656
1657 /*
1658 * Yield task semantic for -deadline tasks is:
1659 *
1660 * get off from the CPU until our next instance, with
1661 * a new runtime. This is of little use now, since we
1662 * don't have a bandwidth reclaiming mechanism. Anyway,
1663 * bandwidth reclaiming is planned for the future, and
1664 * yield_task_dl will indicate that some spare budget
1665 * is available for other task instances to use it.
1666 */
1667 static void yield_task_dl(struct rq *rq)
1668 {
1669 /*
1670 * We make the task go to sleep until its current deadline by
1671 * forcing its runtime to zero. This way, update_curr_dl() stops
1672 * it and the bandwidth timer will wake it up and will give it
1673 * new scheduling parameters (thanks to dl_yielded=1).
1674 */
1675 rq->curr->dl.dl_yielded = 1;
1676
1677 update_rq_clock(rq);
1678 update_curr_dl(rq);
1679 /*
1680 * Tell update_rq_clock() that we've just updated,
1681 * so we don't do microscopic update in schedule()
1682 * and double the fastpath cost.
1683 */
1684 rq_clock_skip_update(rq);
1685 }
1686
1687 #ifdef CONFIG_SMP
1688
1689 static int find_later_rq(struct task_struct *task);
1690
1691 static int
1692 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1693 {
1694 struct task_struct *curr;
1695 bool select_rq;
1696 struct rq *rq;
1697
1698 if (!(flags & WF_TTWU))
1699 goto out;
1700
1701 rq = cpu_rq(cpu);
1702
1703 rcu_read_lock();
1704 curr = READ_ONCE(rq->curr); /* unlocked access */
1705
1706 /*
1707 * If we are dealing with a -deadline task, we must
1708 * decide where to wake it up.
1709 * If it has a later deadline and the current task
1710 * on this rq can't move (provided the waking task
1711 * can!) we prefer to send it somewhere else. On the
1712 * other hand, if it has a shorter deadline, we
1713 * try to make it stay here, it might be important.
1714 */
1715 select_rq = unlikely(dl_task(curr)) &&
1716 (curr->nr_cpus_allowed < 2 ||
1717 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1718 p->nr_cpus_allowed > 1;
1719
1720 /*
1721 * Take the capacity of the CPU into account to
1722 * ensure it fits the requirement of the task.
1723 */
1724 if (static_branch_unlikely(&sched_asym_cpucapacity))
1725 select_rq |= !dl_task_fits_capacity(p, cpu);
1726
1727 if (select_rq) {
1728 int target = find_later_rq(p);
1729
1730 if (target != -1 &&
1731 (dl_time_before(p->dl.deadline,
1732 cpu_rq(target)->dl.earliest_dl.curr) ||
1733 (cpu_rq(target)->dl.dl_nr_running == 0)))
1734 cpu = target;
1735 }
1736 rcu_read_unlock();
1737
1738 out:
1739 return cpu;
1740 }
1741
1742 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1743 {
1744 struct rq *rq;
1745
1746 if (p->state != TASK_WAKING)
1747 return;
1748
1749 rq = task_rq(p);
1750 /*
1751 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1752 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1753 * rq->lock is not... So, lock it
1754 */
1755 raw_spin_lock(&rq->lock);
1756 if (p->dl.dl_non_contending) {
1757 sub_running_bw(&p->dl, &rq->dl);
1758 p->dl.dl_non_contending = 0;
1759 /*
1760 * If the timer handler is currently running and the
1761 * timer cannot be cancelled, inactive_task_timer()
1762 * will see that dl_not_contending is not set, and
1763 * will not touch the rq's active utilization,
1764 * so we are still safe.
1765 */
1766 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1767 put_task_struct(p);
1768 }
1769 sub_rq_bw(&p->dl, &rq->dl);
1770 raw_spin_unlock(&rq->lock);
1771 }
1772
1773 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1774 {
1775 /*
1776 * Current can't be migrated, useless to reschedule,
1777 * let's hope p can move out.
1778 */
1779 if (rq->curr->nr_cpus_allowed == 1 ||
1780 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1781 return;
1782
1783 /*
1784 * p is migratable, so let's not schedule it and
1785 * see if it is pushed or pulled somewhere else.
1786 */
1787 if (p->nr_cpus_allowed != 1 &&
1788 cpudl_find(&rq->rd->cpudl, p, NULL))
1789 return;
1790
1791 resched_curr(rq);
1792 }
1793
1794 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1795 {
1796 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1797 /*
1798 * This is OK, because current is on_cpu, which avoids it being
1799 * picked for load-balance and preemption/IRQs are still
1800 * disabled avoiding further scheduler activity on it and we've
1801 * not yet started the picking loop.
1802 */
1803 rq_unpin_lock(rq, rf);
1804 pull_dl_task(rq);
1805 rq_repin_lock(rq, rf);
1806 }
1807
1808 return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1809 }
1810 #endif /* CONFIG_SMP */
1811
1812 /*
1813 * Only called when both the current and waking task are -deadline
1814 * tasks.
1815 */
1816 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1817 int flags)
1818 {
1819 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1820 resched_curr(rq);
1821 return;
1822 }
1823
1824 #ifdef CONFIG_SMP
1825 /*
1826 * In the unlikely case current and p have the same deadline
1827 * let us try to decide what's the best thing to do...
1828 */
1829 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1830 !test_tsk_need_resched(rq->curr))
1831 check_preempt_equal_dl(rq, p);
1832 #endif /* CONFIG_SMP */
1833 }
1834
1835 #ifdef CONFIG_SCHED_HRTICK
1836 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1837 {
1838 hrtick_start(rq, p->dl.runtime);
1839 }
1840 #else /* !CONFIG_SCHED_HRTICK */
1841 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1842 {
1843 }
1844 #endif
1845
1846 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1847 {
1848 p->se.exec_start = rq_clock_task(rq);
1849
1850 /* You can't push away the running task */
1851 dequeue_pushable_dl_task(rq, p);
1852
1853 if (!first)
1854 return;
1855
1856 if (hrtick_enabled(rq))
1857 start_hrtick_dl(rq, p);
1858
1859 if (rq->curr->sched_class != &dl_sched_class)
1860 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1861
1862 deadline_queue_push_tasks(rq);
1863 }
1864
1865 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1866 struct dl_rq *dl_rq)
1867 {
1868 struct rb_node *left = rb_first_cached(&dl_rq->root);
1869
1870 if (!left)
1871 return NULL;
1872
1873 return rb_entry(left, struct sched_dl_entity, rb_node);
1874 }
1875
1876 static struct task_struct *pick_next_task_dl(struct rq *rq)
1877 {
1878 struct sched_dl_entity *dl_se;
1879 struct dl_rq *dl_rq = &rq->dl;
1880 struct task_struct *p;
1881
1882 if (!sched_dl_runnable(rq))
1883 return NULL;
1884
1885 dl_se = pick_next_dl_entity(rq, dl_rq);
1886 BUG_ON(!dl_se);
1887 p = dl_task_of(dl_se);
1888 set_next_task_dl(rq, p, true);
1889 return p;
1890 }
1891
1892 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1893 {
1894 update_curr_dl(rq);
1895
1896 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1897 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1898 enqueue_pushable_dl_task(rq, p);
1899 }
1900
1901 /*
1902 * scheduler tick hitting a task of our scheduling class.
1903 *
1904 * NOTE: This function can be called remotely by the tick offload that
1905 * goes along full dynticks. Therefore no local assumption can be made
1906 * and everything must be accessed through the @rq and @curr passed in
1907 * parameters.
1908 */
1909 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1910 {
1911 update_curr_dl(rq);
1912
1913 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1914 /*
1915 * Even when we have runtime, update_curr_dl() might have resulted in us
1916 * not being the leftmost task anymore. In that case NEED_RESCHED will
1917 * be set and schedule() will start a new hrtick for the next task.
1918 */
1919 if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1920 is_leftmost(p, &rq->dl))
1921 start_hrtick_dl(rq, p);
1922 }
1923
1924 static void task_fork_dl(struct task_struct *p)
1925 {
1926 /*
1927 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1928 * sched_fork()
1929 */
1930 }
1931
1932 #ifdef CONFIG_SMP
1933
1934 /* Only try algorithms three times */
1935 #define DL_MAX_TRIES 3
1936
1937 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1938 {
1939 if (!task_running(rq, p) &&
1940 cpumask_test_cpu(cpu, &p->cpus_mask))
1941 return 1;
1942 return 0;
1943 }
1944
1945 /*
1946 * Return the earliest pushable rq's task, which is suitable to be executed
1947 * on the CPU, NULL otherwise:
1948 */
1949 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1950 {
1951 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1952 struct task_struct *p = NULL;
1953
1954 if (!has_pushable_dl_tasks(rq))
1955 return NULL;
1956
1957 next_node:
1958 if (next_node) {
1959 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1960
1961 if (pick_dl_task(rq, p, cpu))
1962 return p;
1963
1964 next_node = rb_next(next_node);
1965 goto next_node;
1966 }
1967
1968 return NULL;
1969 }
1970
1971 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1972
1973 static int find_later_rq(struct task_struct *task)
1974 {
1975 struct sched_domain *sd;
1976 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1977 int this_cpu = smp_processor_id();
1978 int cpu = task_cpu(task);
1979
1980 /* Make sure the mask is initialized first */
1981 if (unlikely(!later_mask))
1982 return -1;
1983
1984 if (task->nr_cpus_allowed == 1)
1985 return -1;
1986
1987 /*
1988 * We have to consider system topology and task affinity
1989 * first, then we can look for a suitable CPU.
1990 */
1991 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1992 return -1;
1993
1994 /*
1995 * If we are here, some targets have been found, including
1996 * the most suitable which is, among the runqueues where the
1997 * current tasks have later deadlines than the task's one, the
1998 * rq with the latest possible one.
1999 *
2000 * Now we check how well this matches with task's
2001 * affinity and system topology.
2002 *
2003 * The last CPU where the task run is our first
2004 * guess, since it is most likely cache-hot there.
2005 */
2006 if (cpumask_test_cpu(cpu, later_mask))
2007 return cpu;
2008 /*
2009 * Check if this_cpu is to be skipped (i.e., it is
2010 * not in the mask) or not.
2011 */
2012 if (!cpumask_test_cpu(this_cpu, later_mask))
2013 this_cpu = -1;
2014
2015 rcu_read_lock();
2016 for_each_domain(cpu, sd) {
2017 if (sd->flags & SD_WAKE_AFFINE) {
2018 int best_cpu;
2019
2020 /*
2021 * If possible, preempting this_cpu is
2022 * cheaper than migrating.
2023 */
2024 if (this_cpu != -1 &&
2025 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2026 rcu_read_unlock();
2027 return this_cpu;
2028 }
2029
2030 best_cpu = cpumask_any_and_distribute(later_mask,
2031 sched_domain_span(sd));
2032 /*
2033 * Last chance: if a CPU being in both later_mask
2034 * and current sd span is valid, that becomes our
2035 * choice. Of course, the latest possible CPU is
2036 * already under consideration through later_mask.
2037 */
2038 if (best_cpu < nr_cpu_ids) {
2039 rcu_read_unlock();
2040 return best_cpu;
2041 }
2042 }
2043 }
2044 rcu_read_unlock();
2045
2046 /*
2047 * At this point, all our guesses failed, we just return
2048 * 'something', and let the caller sort the things out.
2049 */
2050 if (this_cpu != -1)
2051 return this_cpu;
2052
2053 cpu = cpumask_any_distribute(later_mask);
2054 if (cpu < nr_cpu_ids)
2055 return cpu;
2056
2057 return -1;
2058 }
2059
2060 /* Locks the rq it finds */
2061 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2062 {
2063 struct rq *later_rq = NULL;
2064 int tries;
2065 int cpu;
2066
2067 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2068 cpu = find_later_rq(task);
2069
2070 if ((cpu == -1) || (cpu == rq->cpu))
2071 break;
2072
2073 later_rq = cpu_rq(cpu);
2074
2075 if (later_rq->dl.dl_nr_running &&
2076 !dl_time_before(task->dl.deadline,
2077 later_rq->dl.earliest_dl.curr)) {
2078 /*
2079 * Target rq has tasks of equal or earlier deadline,
2080 * retrying does not release any lock and is unlikely
2081 * to yield a different result.
2082 */
2083 later_rq = NULL;
2084 break;
2085 }
2086
2087 /* Retry if something changed. */
2088 if (double_lock_balance(rq, later_rq)) {
2089 if (unlikely(task_rq(task) != rq ||
2090 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2091 task_running(rq, task) ||
2092 !dl_task(task) ||
2093 !task_on_rq_queued(task))) {
2094 double_unlock_balance(rq, later_rq);
2095 later_rq = NULL;
2096 break;
2097 }
2098 }
2099
2100 /*
2101 * If the rq we found has no -deadline task, or
2102 * its earliest one has a later deadline than our
2103 * task, the rq is a good one.
2104 */
2105 if (!later_rq->dl.dl_nr_running ||
2106 dl_time_before(task->dl.deadline,
2107 later_rq->dl.earliest_dl.curr))
2108 break;
2109
2110 /* Otherwise we try again. */
2111 double_unlock_balance(rq, later_rq);
2112 later_rq = NULL;
2113 }
2114
2115 return later_rq;
2116 }
2117
2118 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2119 {
2120 struct task_struct *p;
2121
2122 if (!has_pushable_dl_tasks(rq))
2123 return NULL;
2124
2125 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2126 struct task_struct, pushable_dl_tasks);
2127
2128 BUG_ON(rq->cpu != task_cpu(p));
2129 BUG_ON(task_current(rq, p));
2130 BUG_ON(p->nr_cpus_allowed <= 1);
2131
2132 BUG_ON(!task_on_rq_queued(p));
2133 BUG_ON(!dl_task(p));
2134
2135 return p;
2136 }
2137
2138 /*
2139 * See if the non running -deadline tasks on this rq
2140 * can be sent to some other CPU where they can preempt
2141 * and start executing.
2142 */
2143 static int push_dl_task(struct rq *rq)
2144 {
2145 struct task_struct *next_task;
2146 struct rq *later_rq;
2147 int ret = 0;
2148
2149 if (!rq->dl.overloaded)
2150 return 0;
2151
2152 next_task = pick_next_pushable_dl_task(rq);
2153 if (!next_task)
2154 return 0;
2155
2156 retry:
2157 if (is_migration_disabled(next_task))
2158 return 0;
2159
2160 if (WARN_ON(next_task == rq->curr))
2161 return 0;
2162
2163 /*
2164 * If next_task preempts rq->curr, and rq->curr
2165 * can move away, it makes sense to just reschedule
2166 * without going further in pushing next_task.
2167 */
2168 if (dl_task(rq->curr) &&
2169 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2170 rq->curr->nr_cpus_allowed > 1) {
2171 resched_curr(rq);
2172 return 0;
2173 }
2174
2175 /* We might release rq lock */
2176 get_task_struct(next_task);
2177
2178 /* Will lock the rq it'll find */
2179 later_rq = find_lock_later_rq(next_task, rq);
2180 if (!later_rq) {
2181 struct task_struct *task;
2182
2183 /*
2184 * We must check all this again, since
2185 * find_lock_later_rq releases rq->lock and it is
2186 * then possible that next_task has migrated.
2187 */
2188 task = pick_next_pushable_dl_task(rq);
2189 if (task == next_task) {
2190 /*
2191 * The task is still there. We don't try
2192 * again, some other CPU will pull it when ready.
2193 */
2194 goto out;
2195 }
2196
2197 if (!task)
2198 /* No more tasks */
2199 goto out;
2200
2201 put_task_struct(next_task);
2202 next_task = task;
2203 goto retry;
2204 }
2205
2206 deactivate_task(rq, next_task, 0);
2207 set_task_cpu(next_task, later_rq->cpu);
2208
2209 /*
2210 * Update the later_rq clock here, because the clock is used
2211 * by the cpufreq_update_util() inside __add_running_bw().
2212 */
2213 update_rq_clock(later_rq);
2214 activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2215 ret = 1;
2216
2217 resched_curr(later_rq);
2218
2219 double_unlock_balance(rq, later_rq);
2220
2221 out:
2222 put_task_struct(next_task);
2223
2224 return ret;
2225 }
2226
2227 static void push_dl_tasks(struct rq *rq)
2228 {
2229 /* push_dl_task() will return true if it moved a -deadline task */
2230 while (push_dl_task(rq))
2231 ;
2232 }
2233
2234 static void pull_dl_task(struct rq *this_rq)
2235 {
2236 int this_cpu = this_rq->cpu, cpu;
2237 struct task_struct *p, *push_task;
2238 bool resched = false;
2239 struct rq *src_rq;
2240 u64 dmin = LONG_MAX;
2241
2242 if (likely(!dl_overloaded(this_rq)))
2243 return;
2244
2245 /*
2246 * Match the barrier from dl_set_overloaded; this guarantees that if we
2247 * see overloaded we must also see the dlo_mask bit.
2248 */
2249 smp_rmb();
2250
2251 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2252 if (this_cpu == cpu)
2253 continue;
2254
2255 src_rq = cpu_rq(cpu);
2256
2257 /*
2258 * It looks racy, abd it is! However, as in sched_rt.c,
2259 * we are fine with this.
2260 */
2261 if (this_rq->dl.dl_nr_running &&
2262 dl_time_before(this_rq->dl.earliest_dl.curr,
2263 src_rq->dl.earliest_dl.next))
2264 continue;
2265
2266 /* Might drop this_rq->lock */
2267 push_task = NULL;
2268 double_lock_balance(this_rq, src_rq);
2269
2270 /*
2271 * If there are no more pullable tasks on the
2272 * rq, we're done with it.
2273 */
2274 if (src_rq->dl.dl_nr_running <= 1)
2275 goto skip;
2276
2277 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2278
2279 /*
2280 * We found a task to be pulled if:
2281 * - it preempts our current (if there's one),
2282 * - it will preempt the last one we pulled (if any).
2283 */
2284 if (p && dl_time_before(p->dl.deadline, dmin) &&
2285 (!this_rq->dl.dl_nr_running ||
2286 dl_time_before(p->dl.deadline,
2287 this_rq->dl.earliest_dl.curr))) {
2288 WARN_ON(p == src_rq->curr);
2289 WARN_ON(!task_on_rq_queued(p));
2290
2291 /*
2292 * Then we pull iff p has actually an earlier
2293 * deadline than the current task of its runqueue.
2294 */
2295 if (dl_time_before(p->dl.deadline,
2296 src_rq->curr->dl.deadline))
2297 goto skip;
2298
2299 if (is_migration_disabled(p)) {
2300 push_task = get_push_task(src_rq);
2301 } else {
2302 deactivate_task(src_rq, p, 0);
2303 set_task_cpu(p, this_cpu);
2304 activate_task(this_rq, p, 0);
2305 dmin = p->dl.deadline;
2306 resched = true;
2307 }
2308
2309 /* Is there any other task even earlier? */
2310 }
2311 skip:
2312 double_unlock_balance(this_rq, src_rq);
2313
2314 if (push_task) {
2315 raw_spin_unlock(&this_rq->lock);
2316 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2317 push_task, &src_rq->push_work);
2318 raw_spin_lock(&this_rq->lock);
2319 }
2320 }
2321
2322 if (resched)
2323 resched_curr(this_rq);
2324 }
2325
2326 /*
2327 * Since the task is not running and a reschedule is not going to happen
2328 * anytime soon on its runqueue, we try pushing it away now.
2329 */
2330 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2331 {
2332 if (!task_running(rq, p) &&
2333 !test_tsk_need_resched(rq->curr) &&
2334 p->nr_cpus_allowed > 1 &&
2335 dl_task(rq->curr) &&
2336 (rq->curr->nr_cpus_allowed < 2 ||
2337 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2338 push_dl_tasks(rq);
2339 }
2340 }
2341
2342 static void set_cpus_allowed_dl(struct task_struct *p,
2343 const struct cpumask *new_mask,
2344 u32 flags)
2345 {
2346 struct root_domain *src_rd;
2347 struct rq *rq;
2348
2349 BUG_ON(!dl_task(p));
2350
2351 rq = task_rq(p);
2352 src_rd = rq->rd;
2353 /*
2354 * Migrating a SCHED_DEADLINE task between exclusive
2355 * cpusets (different root_domains) entails a bandwidth
2356 * update. We already made space for us in the destination
2357 * domain (see cpuset_can_attach()).
2358 */
2359 if (!cpumask_intersects(src_rd->span, new_mask)) {
2360 struct dl_bw *src_dl_b;
2361
2362 src_dl_b = dl_bw_of(cpu_of(rq));
2363 /*
2364 * We now free resources of the root_domain we are migrating
2365 * off. In the worst case, sched_setattr() may temporary fail
2366 * until we complete the update.
2367 */
2368 raw_spin_lock(&src_dl_b->lock);
2369 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2370 raw_spin_unlock(&src_dl_b->lock);
2371 }
2372
2373 set_cpus_allowed_common(p, new_mask, flags);
2374 }
2375
2376 /* Assumes rq->lock is held */
2377 static void rq_online_dl(struct rq *rq)
2378 {
2379 if (rq->dl.overloaded)
2380 dl_set_overload(rq);
2381
2382 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2383 if (rq->dl.dl_nr_running > 0)
2384 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2385 }
2386
2387 /* Assumes rq->lock is held */
2388 static void rq_offline_dl(struct rq *rq)
2389 {
2390 if (rq->dl.overloaded)
2391 dl_clear_overload(rq);
2392
2393 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2394 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2395 }
2396
2397 void __init init_sched_dl_class(void)
2398 {
2399 unsigned int i;
2400
2401 for_each_possible_cpu(i)
2402 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2403 GFP_KERNEL, cpu_to_node(i));
2404 }
2405
2406 void dl_add_task_root_domain(struct task_struct *p)
2407 {
2408 struct rq_flags rf;
2409 struct rq *rq;
2410 struct dl_bw *dl_b;
2411
2412 rq = task_rq_lock(p, &rf);
2413 if (!dl_task(p))
2414 goto unlock;
2415
2416 dl_b = &rq->rd->dl_bw;
2417 raw_spin_lock(&dl_b->lock);
2418
2419 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2420
2421 raw_spin_unlock(&dl_b->lock);
2422
2423 unlock:
2424 task_rq_unlock(rq, p, &rf);
2425 }
2426
2427 void dl_clear_root_domain(struct root_domain *rd)
2428 {
2429 unsigned long flags;
2430
2431 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2432 rd->dl_bw.total_bw = 0;
2433 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2434 }
2435
2436 #endif /* CONFIG_SMP */
2437
2438 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2439 {
2440 /*
2441 * task_non_contending() can start the "inactive timer" (if the 0-lag
2442 * time is in the future). If the task switches back to dl before
2443 * the "inactive timer" fires, it can continue to consume its current
2444 * runtime using its current deadline. If it stays outside of
2445 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2446 * will reset the task parameters.
2447 */
2448 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2449 task_non_contending(p);
2450
2451 if (!task_on_rq_queued(p)) {
2452 /*
2453 * Inactive timer is armed. However, p is leaving DEADLINE and
2454 * might migrate away from this rq while continuing to run on
2455 * some other class. We need to remove its contribution from
2456 * this rq running_bw now, or sub_rq_bw (below) will complain.
2457 */
2458 if (p->dl.dl_non_contending)
2459 sub_running_bw(&p->dl, &rq->dl);
2460 sub_rq_bw(&p->dl, &rq->dl);
2461 }
2462
2463 /*
2464 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2465 * at the 0-lag time, because the task could have been migrated
2466 * while SCHED_OTHER in the meanwhile.
2467 */
2468 if (p->dl.dl_non_contending)
2469 p->dl.dl_non_contending = 0;
2470
2471 /*
2472 * Since this might be the only -deadline task on the rq,
2473 * this is the right place to try to pull some other one
2474 * from an overloaded CPU, if any.
2475 */
2476 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2477 return;
2478
2479 deadline_queue_pull_task(rq);
2480 }
2481
2482 /*
2483 * When switching to -deadline, we may overload the rq, then
2484 * we try to push someone off, if possible.
2485 */
2486 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2487 {
2488 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2489 put_task_struct(p);
2490
2491 /* If p is not queued we will update its parameters at next wakeup. */
2492 if (!task_on_rq_queued(p)) {
2493 add_rq_bw(&p->dl, &rq->dl);
2494
2495 return;
2496 }
2497
2498 if (rq->curr != p) {
2499 #ifdef CONFIG_SMP
2500 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2501 deadline_queue_push_tasks(rq);
2502 #endif
2503 if (dl_task(rq->curr))
2504 check_preempt_curr_dl(rq, p, 0);
2505 else
2506 resched_curr(rq);
2507 }
2508 }
2509
2510 /*
2511 * If the scheduling parameters of a -deadline task changed,
2512 * a push or pull operation might be needed.
2513 */
2514 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2515 int oldprio)
2516 {
2517 if (task_on_rq_queued(p) || rq->curr == p) {
2518 #ifdef CONFIG_SMP
2519 /*
2520 * This might be too much, but unfortunately
2521 * we don't have the old deadline value, and
2522 * we can't argue if the task is increasing
2523 * or lowering its prio, so...
2524 */
2525 if (!rq->dl.overloaded)
2526 deadline_queue_pull_task(rq);
2527
2528 /*
2529 * If we now have a earlier deadline task than p,
2530 * then reschedule, provided p is still on this
2531 * runqueue.
2532 */
2533 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2534 resched_curr(rq);
2535 #else
2536 /*
2537 * Again, we don't know if p has a earlier
2538 * or later deadline, so let's blindly set a
2539 * (maybe not needed) rescheduling point.
2540 */
2541 resched_curr(rq);
2542 #endif /* CONFIG_SMP */
2543 }
2544 }
2545
2546 DEFINE_SCHED_CLASS(dl) = {
2547
2548 .enqueue_task = enqueue_task_dl,
2549 .dequeue_task = dequeue_task_dl,
2550 .yield_task = yield_task_dl,
2551
2552 .check_preempt_curr = check_preempt_curr_dl,
2553
2554 .pick_next_task = pick_next_task_dl,
2555 .put_prev_task = put_prev_task_dl,
2556 .set_next_task = set_next_task_dl,
2557
2558 #ifdef CONFIG_SMP
2559 .balance = balance_dl,
2560 .select_task_rq = select_task_rq_dl,
2561 .migrate_task_rq = migrate_task_rq_dl,
2562 .set_cpus_allowed = set_cpus_allowed_dl,
2563 .rq_online = rq_online_dl,
2564 .rq_offline = rq_offline_dl,
2565 .task_woken = task_woken_dl,
2566 .find_lock_rq = find_lock_later_rq,
2567 #endif
2568
2569 .task_tick = task_tick_dl,
2570 .task_fork = task_fork_dl,
2571
2572 .prio_changed = prio_changed_dl,
2573 .switched_from = switched_from_dl,
2574 .switched_to = switched_to_dl,
2575
2576 .update_curr = update_curr_dl,
2577 };
2578
2579 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2580 static u64 dl_generation;
2581
2582 int sched_dl_global_validate(void)
2583 {
2584 u64 runtime = global_rt_runtime();
2585 u64 period = global_rt_period();
2586 u64 new_bw = to_ratio(period, runtime);
2587 u64 gen = ++dl_generation;
2588 struct dl_bw *dl_b;
2589 int cpu, cpus, ret = 0;
2590 unsigned long flags;
2591
2592 /*
2593 * Here we want to check the bandwidth not being set to some
2594 * value smaller than the currently allocated bandwidth in
2595 * any of the root_domains.
2596 */
2597 for_each_possible_cpu(cpu) {
2598 rcu_read_lock_sched();
2599
2600 if (dl_bw_visited(cpu, gen))
2601 goto next;
2602
2603 dl_b = dl_bw_of(cpu);
2604 cpus = dl_bw_cpus(cpu);
2605
2606 raw_spin_lock_irqsave(&dl_b->lock, flags);
2607 if (new_bw * cpus < dl_b->total_bw)
2608 ret = -EBUSY;
2609 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2610
2611 next:
2612 rcu_read_unlock_sched();
2613
2614 if (ret)
2615 break;
2616 }
2617
2618 return ret;
2619 }
2620
2621 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2622 {
2623 if (global_rt_runtime() == RUNTIME_INF) {
2624 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2625 dl_rq->extra_bw = 1 << BW_SHIFT;
2626 } else {
2627 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2628 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2629 dl_rq->extra_bw = to_ratio(global_rt_period(),
2630 global_rt_runtime());
2631 }
2632 }
2633
2634 void sched_dl_do_global(void)
2635 {
2636 u64 new_bw = -1;
2637 u64 gen = ++dl_generation;
2638 struct dl_bw *dl_b;
2639 int cpu;
2640 unsigned long flags;
2641
2642 def_dl_bandwidth.dl_period = global_rt_period();
2643 def_dl_bandwidth.dl_runtime = global_rt_runtime();
2644
2645 if (global_rt_runtime() != RUNTIME_INF)
2646 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2647
2648 for_each_possible_cpu(cpu) {
2649 rcu_read_lock_sched();
2650
2651 if (dl_bw_visited(cpu, gen)) {
2652 rcu_read_unlock_sched();
2653 continue;
2654 }
2655
2656 dl_b = dl_bw_of(cpu);
2657
2658 raw_spin_lock_irqsave(&dl_b->lock, flags);
2659 dl_b->bw = new_bw;
2660 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2661
2662 rcu_read_unlock_sched();
2663 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2664 }
2665 }
2666
2667 /*
2668 * We must be sure that accepting a new task (or allowing changing the
2669 * parameters of an existing one) is consistent with the bandwidth
2670 * constraints. If yes, this function also accordingly updates the currently
2671 * allocated bandwidth to reflect the new situation.
2672 *
2673 * This function is called while holding p's rq->lock.
2674 */
2675 int sched_dl_overflow(struct task_struct *p, int policy,
2676 const struct sched_attr *attr)
2677 {
2678 u64 period = attr->sched_period ?: attr->sched_deadline;
2679 u64 runtime = attr->sched_runtime;
2680 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2681 int cpus, err = -1, cpu = task_cpu(p);
2682 struct dl_bw *dl_b = dl_bw_of(cpu);
2683 unsigned long cap;
2684
2685 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2686 return 0;
2687
2688 /* !deadline task may carry old deadline bandwidth */
2689 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2690 return 0;
2691
2692 /*
2693 * Either if a task, enters, leave, or stays -deadline but changes
2694 * its parameters, we may need to update accordingly the total
2695 * allocated bandwidth of the container.
2696 */
2697 raw_spin_lock(&dl_b->lock);
2698 cpus = dl_bw_cpus(cpu);
2699 cap = dl_bw_capacity(cpu);
2700
2701 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2702 !__dl_overflow(dl_b, cap, 0, new_bw)) {
2703 if (hrtimer_active(&p->dl.inactive_timer))
2704 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2705 __dl_add(dl_b, new_bw, cpus);
2706 err = 0;
2707 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2708 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2709 /*
2710 * XXX this is slightly incorrect: when the task
2711 * utilization decreases, we should delay the total
2712 * utilization change until the task's 0-lag point.
2713 * But this would require to set the task's "inactive
2714 * timer" when the task is not inactive.
2715 */
2716 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2717 __dl_add(dl_b, new_bw, cpus);
2718 dl_change_utilization(p, new_bw);
2719 err = 0;
2720 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2721 /*
2722 * Do not decrease the total deadline utilization here,
2723 * switched_from_dl() will take care to do it at the correct
2724 * (0-lag) time.
2725 */
2726 err = 0;
2727 }
2728 raw_spin_unlock(&dl_b->lock);
2729
2730 return err;
2731 }
2732
2733 /*
2734 * This function initializes the sched_dl_entity of a newly becoming
2735 * SCHED_DEADLINE task.
2736 *
2737 * Only the static values are considered here, the actual runtime and the
2738 * absolute deadline will be properly calculated when the task is enqueued
2739 * for the first time with its new policy.
2740 */
2741 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2742 {
2743 struct sched_dl_entity *dl_se = &p->dl;
2744
2745 dl_se->dl_runtime = attr->sched_runtime;
2746 dl_se->dl_deadline = attr->sched_deadline;
2747 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2748 dl_se->flags = attr->sched_flags;
2749 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2750 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2751 }
2752
2753 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2754 {
2755 struct sched_dl_entity *dl_se = &p->dl;
2756
2757 attr->sched_priority = p->rt_priority;
2758 attr->sched_runtime = dl_se->dl_runtime;
2759 attr->sched_deadline = dl_se->dl_deadline;
2760 attr->sched_period = dl_se->dl_period;
2761 attr->sched_flags = dl_se->flags;
2762 }
2763
2764 /*
2765 * Default limits for DL period; on the top end we guard against small util
2766 * tasks still getting rediculous long effective runtimes, on the bottom end we
2767 * guard against timer DoS.
2768 */
2769 unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
2770 unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
2771
2772 /*
2773 * This function validates the new parameters of a -deadline task.
2774 * We ask for the deadline not being zero, and greater or equal
2775 * than the runtime, as well as the period of being zero or
2776 * greater than deadline. Furthermore, we have to be sure that
2777 * user parameters are above the internal resolution of 1us (we
2778 * check sched_runtime only since it is always the smaller one) and
2779 * below 2^63 ns (we have to check both sched_deadline and
2780 * sched_period, as the latter can be zero).
2781 */
2782 bool __checkparam_dl(const struct sched_attr *attr)
2783 {
2784 u64 period, max, min;
2785
2786 /* special dl tasks don't actually use any parameter */
2787 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2788 return true;
2789
2790 /* deadline != 0 */
2791 if (attr->sched_deadline == 0)
2792 return false;
2793
2794 /*
2795 * Since we truncate DL_SCALE bits, make sure we're at least
2796 * that big.
2797 */
2798 if (attr->sched_runtime < (1ULL << DL_SCALE))
2799 return false;
2800
2801 /*
2802 * Since we use the MSB for wrap-around and sign issues, make
2803 * sure it's not set (mind that period can be equal to zero).
2804 */
2805 if (attr->sched_deadline & (1ULL << 63) ||
2806 attr->sched_period & (1ULL << 63))
2807 return false;
2808
2809 period = attr->sched_period;
2810 if (!period)
2811 period = attr->sched_deadline;
2812
2813 /* runtime <= deadline <= period (if period != 0) */
2814 if (period < attr->sched_deadline ||
2815 attr->sched_deadline < attr->sched_runtime)
2816 return false;
2817
2818 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2819 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2820
2821 if (period < min || period > max)
2822 return false;
2823
2824 return true;
2825 }
2826
2827 /*
2828 * This function clears the sched_dl_entity static params.
2829 */
2830 void __dl_clear_params(struct task_struct *p)
2831 {
2832 struct sched_dl_entity *dl_se = &p->dl;
2833
2834 dl_se->dl_runtime = 0;
2835 dl_se->dl_deadline = 0;
2836 dl_se->dl_period = 0;
2837 dl_se->flags = 0;
2838 dl_se->dl_bw = 0;
2839 dl_se->dl_density = 0;
2840
2841 dl_se->dl_throttled = 0;
2842 dl_se->dl_yielded = 0;
2843 dl_se->dl_non_contending = 0;
2844 dl_se->dl_overrun = 0;
2845
2846 #ifdef CONFIG_RT_MUTEXES
2847 dl_se->pi_se = dl_se;
2848 #endif
2849 }
2850
2851 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2852 {
2853 struct sched_dl_entity *dl_se = &p->dl;
2854
2855 if (dl_se->dl_runtime != attr->sched_runtime ||
2856 dl_se->dl_deadline != attr->sched_deadline ||
2857 dl_se->dl_period != attr->sched_period ||
2858 dl_se->flags != attr->sched_flags)
2859 return true;
2860
2861 return false;
2862 }
2863
2864 #ifdef CONFIG_SMP
2865 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2866 {
2867 unsigned long flags, cap;
2868 unsigned int dest_cpu;
2869 struct dl_bw *dl_b;
2870 bool overflow;
2871 int ret;
2872
2873 dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2874
2875 rcu_read_lock_sched();
2876 dl_b = dl_bw_of(dest_cpu);
2877 raw_spin_lock_irqsave(&dl_b->lock, flags);
2878 cap = dl_bw_capacity(dest_cpu);
2879 overflow = __dl_overflow(dl_b, cap, 0, p->dl.dl_bw);
2880 if (overflow) {
2881 ret = -EBUSY;
2882 } else {
2883 /*
2884 * We reserve space for this task in the destination
2885 * root_domain, as we can't fail after this point.
2886 * We will free resources in the source root_domain
2887 * later on (see set_cpus_allowed_dl()).
2888 */
2889 int cpus = dl_bw_cpus(dest_cpu);
2890
2891 __dl_add(dl_b, p->dl.dl_bw, cpus);
2892 ret = 0;
2893 }
2894 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2895 rcu_read_unlock_sched();
2896
2897 return ret;
2898 }
2899
2900 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2901 const struct cpumask *trial)
2902 {
2903 int ret = 1, trial_cpus;
2904 struct dl_bw *cur_dl_b;
2905 unsigned long flags;
2906
2907 rcu_read_lock_sched();
2908 cur_dl_b = dl_bw_of(cpumask_any(cur));
2909 trial_cpus = cpumask_weight(trial);
2910
2911 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2912 if (cur_dl_b->bw != -1 &&
2913 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2914 ret = 0;
2915 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2916 rcu_read_unlock_sched();
2917
2918 return ret;
2919 }
2920
2921 bool dl_cpu_busy(unsigned int cpu)
2922 {
2923 unsigned long flags, cap;
2924 struct dl_bw *dl_b;
2925 bool overflow;
2926
2927 rcu_read_lock_sched();
2928 dl_b = dl_bw_of(cpu);
2929 raw_spin_lock_irqsave(&dl_b->lock, flags);
2930 cap = dl_bw_capacity(cpu);
2931 overflow = __dl_overflow(dl_b, cap, 0, 0);
2932 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2933 rcu_read_unlock_sched();
2934
2935 return overflow;
2936 }
2937 #endif
2938
2939 #ifdef CONFIG_SCHED_DEBUG
2940 void print_dl_stats(struct seq_file *m, int cpu)
2941 {
2942 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2943 }
2944 #endif /* CONFIG_SCHED_DEBUG */