]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/sched/debug.c
Merge tag 'trace-v5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / debug.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/debug.c
4 *
5 * Print the CFS rbtree and other debugging details
6 *
7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 */
9 #include "sched.h"
10
11 static DEFINE_SPINLOCK(sched_debug_lock);
12
13 /*
14 * This allows printing both to /proc/sched_debug and
15 * to the console
16 */
17 #define SEQ_printf(m, x...) \
18 do { \
19 if (m) \
20 seq_printf(m, x); \
21 else \
22 pr_cont(x); \
23 } while (0)
24
25 /*
26 * Ease the printing of nsec fields:
27 */
28 static long long nsec_high(unsigned long long nsec)
29 {
30 if ((long long)nsec < 0) {
31 nsec = -nsec;
32 do_div(nsec, 1000000);
33 return -nsec;
34 }
35 do_div(nsec, 1000000);
36
37 return nsec;
38 }
39
40 static unsigned long nsec_low(unsigned long long nsec)
41 {
42 if ((long long)nsec < 0)
43 nsec = -nsec;
44
45 return do_div(nsec, 1000000);
46 }
47
48 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
49
50 #define SCHED_FEAT(name, enabled) \
51 #name ,
52
53 static const char * const sched_feat_names[] = {
54 #include "features.h"
55 };
56
57 #undef SCHED_FEAT
58
59 static int sched_feat_show(struct seq_file *m, void *v)
60 {
61 int i;
62
63 for (i = 0; i < __SCHED_FEAT_NR; i++) {
64 if (!(sysctl_sched_features & (1UL << i)))
65 seq_puts(m, "NO_");
66 seq_printf(m, "%s ", sched_feat_names[i]);
67 }
68 seq_puts(m, "\n");
69
70 return 0;
71 }
72
73 #ifdef CONFIG_JUMP_LABEL
74
75 #define jump_label_key__true STATIC_KEY_INIT_TRUE
76 #define jump_label_key__false STATIC_KEY_INIT_FALSE
77
78 #define SCHED_FEAT(name, enabled) \
79 jump_label_key__##enabled ,
80
81 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
82 #include "features.h"
83 };
84
85 #undef SCHED_FEAT
86
87 static void sched_feat_disable(int i)
88 {
89 static_key_disable_cpuslocked(&sched_feat_keys[i]);
90 }
91
92 static void sched_feat_enable(int i)
93 {
94 static_key_enable_cpuslocked(&sched_feat_keys[i]);
95 }
96 #else
97 static void sched_feat_disable(int i) { };
98 static void sched_feat_enable(int i) { };
99 #endif /* CONFIG_JUMP_LABEL */
100
101 static int sched_feat_set(char *cmp)
102 {
103 int i;
104 int neg = 0;
105
106 if (strncmp(cmp, "NO_", 3) == 0) {
107 neg = 1;
108 cmp += 3;
109 }
110
111 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
112 if (i < 0)
113 return i;
114
115 if (neg) {
116 sysctl_sched_features &= ~(1UL << i);
117 sched_feat_disable(i);
118 } else {
119 sysctl_sched_features |= (1UL << i);
120 sched_feat_enable(i);
121 }
122
123 return 0;
124 }
125
126 static ssize_t
127 sched_feat_write(struct file *filp, const char __user *ubuf,
128 size_t cnt, loff_t *ppos)
129 {
130 char buf[64];
131 char *cmp;
132 int ret;
133 struct inode *inode;
134
135 if (cnt > 63)
136 cnt = 63;
137
138 if (copy_from_user(&buf, ubuf, cnt))
139 return -EFAULT;
140
141 buf[cnt] = 0;
142 cmp = strstrip(buf);
143
144 /* Ensure the static_key remains in a consistent state */
145 inode = file_inode(filp);
146 cpus_read_lock();
147 inode_lock(inode);
148 ret = sched_feat_set(cmp);
149 inode_unlock(inode);
150 cpus_read_unlock();
151 if (ret < 0)
152 return ret;
153
154 *ppos += cnt;
155
156 return cnt;
157 }
158
159 static int sched_feat_open(struct inode *inode, struct file *filp)
160 {
161 return single_open(filp, sched_feat_show, NULL);
162 }
163
164 static const struct file_operations sched_feat_fops = {
165 .open = sched_feat_open,
166 .write = sched_feat_write,
167 .read = seq_read,
168 .llseek = seq_lseek,
169 .release = single_release,
170 };
171
172 __read_mostly bool sched_debug_enabled;
173
174 static __init int sched_init_debug(void)
175 {
176 debugfs_create_file("sched_features", 0644, NULL, NULL,
177 &sched_feat_fops);
178
179 debugfs_create_bool("sched_debug", 0644, NULL,
180 &sched_debug_enabled);
181
182 return 0;
183 }
184 late_initcall(sched_init_debug);
185
186 #ifdef CONFIG_SMP
187
188 #ifdef CONFIG_SYSCTL
189
190 static struct ctl_table sd_ctl_dir[] = {
191 {
192 .procname = "sched_domain",
193 .mode = 0555,
194 },
195 {}
196 };
197
198 static struct ctl_table sd_ctl_root[] = {
199 {
200 .procname = "kernel",
201 .mode = 0555,
202 .child = sd_ctl_dir,
203 },
204 {}
205 };
206
207 static struct ctl_table *sd_alloc_ctl_entry(int n)
208 {
209 struct ctl_table *entry =
210 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
211
212 return entry;
213 }
214
215 static void sd_free_ctl_entry(struct ctl_table **tablep)
216 {
217 struct ctl_table *entry;
218
219 /*
220 * In the intermediate directories, both the child directory and
221 * procname are dynamically allocated and could fail but the mode
222 * will always be set. In the lowest directory the names are
223 * static strings and all have proc handlers.
224 */
225 for (entry = *tablep; entry->mode; entry++) {
226 if (entry->child)
227 sd_free_ctl_entry(&entry->child);
228 if (entry->proc_handler == NULL)
229 kfree(entry->procname);
230 }
231
232 kfree(*tablep);
233 *tablep = NULL;
234 }
235
236 static void
237 set_table_entry(struct ctl_table *entry,
238 const char *procname, void *data, int maxlen,
239 umode_t mode, proc_handler *proc_handler)
240 {
241 entry->procname = procname;
242 entry->data = data;
243 entry->maxlen = maxlen;
244 entry->mode = mode;
245 entry->proc_handler = proc_handler;
246 }
247
248 static int sd_ctl_doflags(struct ctl_table *table, int write,
249 void *buffer, size_t *lenp, loff_t *ppos)
250 {
251 unsigned long flags = *(unsigned long *)table->data;
252 size_t data_size = 0;
253 size_t len = 0;
254 char *tmp;
255 int idx;
256
257 if (write)
258 return 0;
259
260 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
261 char *name = sd_flag_debug[idx].name;
262
263 /* Name plus whitespace */
264 data_size += strlen(name) + 1;
265 }
266
267 if (*ppos > data_size) {
268 *lenp = 0;
269 return 0;
270 }
271
272 tmp = kcalloc(data_size + 1, sizeof(*tmp), GFP_KERNEL);
273 if (!tmp)
274 return -ENOMEM;
275
276 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
277 char *name = sd_flag_debug[idx].name;
278
279 len += snprintf(tmp + len, strlen(name) + 2, "%s ", name);
280 }
281
282 tmp += *ppos;
283 len -= *ppos;
284
285 if (len > *lenp)
286 len = *lenp;
287 if (len)
288 memcpy(buffer, tmp, len);
289 if (len < *lenp) {
290 ((char *)buffer)[len] = '\n';
291 len++;
292 }
293
294 *lenp = len;
295 *ppos += len;
296
297 kfree(tmp);
298
299 return 0;
300 }
301
302 static struct ctl_table *
303 sd_alloc_ctl_domain_table(struct sched_domain *sd)
304 {
305 struct ctl_table *table = sd_alloc_ctl_entry(9);
306
307 if (table == NULL)
308 return NULL;
309
310 set_table_entry(&table[0], "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax);
311 set_table_entry(&table[1], "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax);
312 set_table_entry(&table[2], "busy_factor", &sd->busy_factor, sizeof(int), 0644, proc_dointvec_minmax);
313 set_table_entry(&table[3], "imbalance_pct", &sd->imbalance_pct, sizeof(int), 0644, proc_dointvec_minmax);
314 set_table_entry(&table[4], "cache_nice_tries", &sd->cache_nice_tries, sizeof(int), 0644, proc_dointvec_minmax);
315 set_table_entry(&table[5], "flags", &sd->flags, sizeof(int), 0444, sd_ctl_doflags);
316 set_table_entry(&table[6], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax);
317 set_table_entry(&table[7], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring);
318 /* &table[8] is terminator */
319
320 return table;
321 }
322
323 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
324 {
325 struct ctl_table *entry, *table;
326 struct sched_domain *sd;
327 int domain_num = 0, i;
328 char buf[32];
329
330 for_each_domain(cpu, sd)
331 domain_num++;
332 entry = table = sd_alloc_ctl_entry(domain_num + 1);
333 if (table == NULL)
334 return NULL;
335
336 i = 0;
337 for_each_domain(cpu, sd) {
338 snprintf(buf, 32, "domain%d", i);
339 entry->procname = kstrdup(buf, GFP_KERNEL);
340 entry->mode = 0555;
341 entry->child = sd_alloc_ctl_domain_table(sd);
342 entry++;
343 i++;
344 }
345 return table;
346 }
347
348 static cpumask_var_t sd_sysctl_cpus;
349 static struct ctl_table_header *sd_sysctl_header;
350
351 void register_sched_domain_sysctl(void)
352 {
353 static struct ctl_table *cpu_entries;
354 static struct ctl_table **cpu_idx;
355 static bool init_done = false;
356 char buf[32];
357 int i;
358
359 if (!cpu_entries) {
360 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
361 if (!cpu_entries)
362 return;
363
364 WARN_ON(sd_ctl_dir[0].child);
365 sd_ctl_dir[0].child = cpu_entries;
366 }
367
368 if (!cpu_idx) {
369 struct ctl_table *e = cpu_entries;
370
371 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
372 if (!cpu_idx)
373 return;
374
375 /* deal with sparse possible map */
376 for_each_possible_cpu(i) {
377 cpu_idx[i] = e;
378 e++;
379 }
380 }
381
382 if (!cpumask_available(sd_sysctl_cpus)) {
383 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
384 return;
385 }
386
387 if (!init_done) {
388 init_done = true;
389 /* init to possible to not have holes in @cpu_entries */
390 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
391 }
392
393 for_each_cpu(i, sd_sysctl_cpus) {
394 struct ctl_table *e = cpu_idx[i];
395
396 if (e->child)
397 sd_free_ctl_entry(&e->child);
398
399 if (!e->procname) {
400 snprintf(buf, 32, "cpu%d", i);
401 e->procname = kstrdup(buf, GFP_KERNEL);
402 }
403 e->mode = 0555;
404 e->child = sd_alloc_ctl_cpu_table(i);
405
406 __cpumask_clear_cpu(i, sd_sysctl_cpus);
407 }
408
409 WARN_ON(sd_sysctl_header);
410 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
411 }
412
413 void dirty_sched_domain_sysctl(int cpu)
414 {
415 if (cpumask_available(sd_sysctl_cpus))
416 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
417 }
418
419 /* may be called multiple times per register */
420 void unregister_sched_domain_sysctl(void)
421 {
422 unregister_sysctl_table(sd_sysctl_header);
423 sd_sysctl_header = NULL;
424 }
425 #endif /* CONFIG_SYSCTL */
426 #endif /* CONFIG_SMP */
427
428 #ifdef CONFIG_FAIR_GROUP_SCHED
429 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
430 {
431 struct sched_entity *se = tg->se[cpu];
432
433 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
434 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F))
435 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
436 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
437
438 if (!se)
439 return;
440
441 PN(se->exec_start);
442 PN(se->vruntime);
443 PN(se->sum_exec_runtime);
444
445 if (schedstat_enabled()) {
446 PN_SCHEDSTAT(se->statistics.wait_start);
447 PN_SCHEDSTAT(se->statistics.sleep_start);
448 PN_SCHEDSTAT(se->statistics.block_start);
449 PN_SCHEDSTAT(se->statistics.sleep_max);
450 PN_SCHEDSTAT(se->statistics.block_max);
451 PN_SCHEDSTAT(se->statistics.exec_max);
452 PN_SCHEDSTAT(se->statistics.slice_max);
453 PN_SCHEDSTAT(se->statistics.wait_max);
454 PN_SCHEDSTAT(se->statistics.wait_sum);
455 P_SCHEDSTAT(se->statistics.wait_count);
456 }
457
458 P(se->load.weight);
459 #ifdef CONFIG_SMP
460 P(se->avg.load_avg);
461 P(se->avg.util_avg);
462 P(se->avg.runnable_avg);
463 #endif
464
465 #undef PN_SCHEDSTAT
466 #undef PN
467 #undef P_SCHEDSTAT
468 #undef P
469 }
470 #endif
471
472 #ifdef CONFIG_CGROUP_SCHED
473 static char group_path[PATH_MAX];
474
475 static char *task_group_path(struct task_group *tg)
476 {
477 if (autogroup_path(tg, group_path, PATH_MAX))
478 return group_path;
479
480 cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
481
482 return group_path;
483 }
484 #endif
485
486 static void
487 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
488 {
489 if (rq->curr == p)
490 SEQ_printf(m, ">R");
491 else
492 SEQ_printf(m, " %c", task_state_to_char(p));
493
494 SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ",
495 p->comm, task_pid_nr(p),
496 SPLIT_NS(p->se.vruntime),
497 (long long)(p->nvcsw + p->nivcsw),
498 p->prio);
499
500 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
501 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
502 SPLIT_NS(p->se.sum_exec_runtime),
503 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
504
505 #ifdef CONFIG_NUMA_BALANCING
506 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
507 #endif
508 #ifdef CONFIG_CGROUP_SCHED
509 SEQ_printf(m, " %s", task_group_path(task_group(p)));
510 #endif
511
512 SEQ_printf(m, "\n");
513 }
514
515 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
516 {
517 struct task_struct *g, *p;
518
519 SEQ_printf(m, "\n");
520 SEQ_printf(m, "runnable tasks:\n");
521 SEQ_printf(m, " S task PID tree-key switches prio"
522 " wait-time sum-exec sum-sleep\n");
523 SEQ_printf(m, "-------------------------------------------------------"
524 "------------------------------------------------------\n");
525
526 rcu_read_lock();
527 for_each_process_thread(g, p) {
528 if (task_cpu(p) != rq_cpu)
529 continue;
530
531 print_task(m, rq, p);
532 }
533 rcu_read_unlock();
534 }
535
536 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
537 {
538 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
539 spread, rq0_min_vruntime, spread0;
540 struct rq *rq = cpu_rq(cpu);
541 struct sched_entity *last;
542 unsigned long flags;
543
544 #ifdef CONFIG_FAIR_GROUP_SCHED
545 SEQ_printf(m, "\n");
546 SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
547 #else
548 SEQ_printf(m, "\n");
549 SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
550 #endif
551 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
552 SPLIT_NS(cfs_rq->exec_clock));
553
554 raw_spin_lock_irqsave(&rq->lock, flags);
555 if (rb_first_cached(&cfs_rq->tasks_timeline))
556 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
557 last = __pick_last_entity(cfs_rq);
558 if (last)
559 max_vruntime = last->vruntime;
560 min_vruntime = cfs_rq->min_vruntime;
561 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
562 raw_spin_unlock_irqrestore(&rq->lock, flags);
563 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
564 SPLIT_NS(MIN_vruntime));
565 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
566 SPLIT_NS(min_vruntime));
567 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
568 SPLIT_NS(max_vruntime));
569 spread = max_vruntime - MIN_vruntime;
570 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
571 SPLIT_NS(spread));
572 spread0 = min_vruntime - rq0_min_vruntime;
573 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
574 SPLIT_NS(spread0));
575 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
576 cfs_rq->nr_spread_over);
577 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
578 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
579 #ifdef CONFIG_SMP
580 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
581 cfs_rq->avg.load_avg);
582 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg",
583 cfs_rq->avg.runnable_avg);
584 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
585 cfs_rq->avg.util_avg);
586 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued",
587 cfs_rq->avg.util_est.enqueued);
588 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
589 cfs_rq->removed.load_avg);
590 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
591 cfs_rq->removed.util_avg);
592 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg",
593 cfs_rq->removed.runnable_avg);
594 #ifdef CONFIG_FAIR_GROUP_SCHED
595 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
596 cfs_rq->tg_load_avg_contrib);
597 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
598 atomic_long_read(&cfs_rq->tg->load_avg));
599 #endif
600 #endif
601 #ifdef CONFIG_CFS_BANDWIDTH
602 SEQ_printf(m, " .%-30s: %d\n", "throttled",
603 cfs_rq->throttled);
604 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
605 cfs_rq->throttle_count);
606 #endif
607
608 #ifdef CONFIG_FAIR_GROUP_SCHED
609 print_cfs_group_stats(m, cpu, cfs_rq->tg);
610 #endif
611 }
612
613 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
614 {
615 #ifdef CONFIG_RT_GROUP_SCHED
616 SEQ_printf(m, "\n");
617 SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
618 #else
619 SEQ_printf(m, "\n");
620 SEQ_printf(m, "rt_rq[%d]:\n", cpu);
621 #endif
622
623 #define P(x) \
624 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
625 #define PU(x) \
626 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
627 #define PN(x) \
628 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
629
630 PU(rt_nr_running);
631 #ifdef CONFIG_SMP
632 PU(rt_nr_migratory);
633 #endif
634 P(rt_throttled);
635 PN(rt_time);
636 PN(rt_runtime);
637
638 #undef PN
639 #undef PU
640 #undef P
641 }
642
643 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
644 {
645 struct dl_bw *dl_bw;
646
647 SEQ_printf(m, "\n");
648 SEQ_printf(m, "dl_rq[%d]:\n", cpu);
649
650 #define PU(x) \
651 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
652
653 PU(dl_nr_running);
654 #ifdef CONFIG_SMP
655 PU(dl_nr_migratory);
656 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
657 #else
658 dl_bw = &dl_rq->dl_bw;
659 #endif
660 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
661 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
662
663 #undef PU
664 }
665
666 static void print_cpu(struct seq_file *m, int cpu)
667 {
668 struct rq *rq = cpu_rq(cpu);
669 unsigned long flags;
670
671 #ifdef CONFIG_X86
672 {
673 unsigned int freq = cpu_khz ? : 1;
674
675 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
676 cpu, freq / 1000, (freq % 1000));
677 }
678 #else
679 SEQ_printf(m, "cpu#%d\n", cpu);
680 #endif
681
682 #define P(x) \
683 do { \
684 if (sizeof(rq->x) == 4) \
685 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
686 else \
687 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
688 } while (0)
689
690 #define PN(x) \
691 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
692
693 P(nr_running);
694 P(nr_switches);
695 P(nr_uninterruptible);
696 PN(next_balance);
697 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
698 PN(clock);
699 PN(clock_task);
700 #undef P
701 #undef PN
702
703 #ifdef CONFIG_SMP
704 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
705 P64(avg_idle);
706 P64(max_idle_balance_cost);
707 #undef P64
708 #endif
709
710 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
711 if (schedstat_enabled()) {
712 P(yld_count);
713 P(sched_count);
714 P(sched_goidle);
715 P(ttwu_count);
716 P(ttwu_local);
717 }
718 #undef P
719
720 spin_lock_irqsave(&sched_debug_lock, flags);
721 print_cfs_stats(m, cpu);
722 print_rt_stats(m, cpu);
723 print_dl_stats(m, cpu);
724
725 print_rq(m, rq, cpu);
726 spin_unlock_irqrestore(&sched_debug_lock, flags);
727 SEQ_printf(m, "\n");
728 }
729
730 static const char *sched_tunable_scaling_names[] = {
731 "none",
732 "logarithmic",
733 "linear"
734 };
735
736 static void sched_debug_header(struct seq_file *m)
737 {
738 u64 ktime, sched_clk, cpu_clk;
739 unsigned long flags;
740
741 local_irq_save(flags);
742 ktime = ktime_to_ns(ktime_get());
743 sched_clk = sched_clock();
744 cpu_clk = local_clock();
745 local_irq_restore(flags);
746
747 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
748 init_utsname()->release,
749 (int)strcspn(init_utsname()->version, " "),
750 init_utsname()->version);
751
752 #define P(x) \
753 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
754 #define PN(x) \
755 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
756 PN(ktime);
757 PN(sched_clk);
758 PN(cpu_clk);
759 P(jiffies);
760 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
761 P(sched_clock_stable());
762 #endif
763 #undef PN
764 #undef P
765
766 SEQ_printf(m, "\n");
767 SEQ_printf(m, "sysctl_sched\n");
768
769 #define P(x) \
770 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
771 #define PN(x) \
772 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
773 PN(sysctl_sched_latency);
774 PN(sysctl_sched_min_granularity);
775 PN(sysctl_sched_wakeup_granularity);
776 P(sysctl_sched_child_runs_first);
777 P(sysctl_sched_features);
778 #undef PN
779 #undef P
780
781 SEQ_printf(m, " .%-40s: %d (%s)\n",
782 "sysctl_sched_tunable_scaling",
783 sysctl_sched_tunable_scaling,
784 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
785 SEQ_printf(m, "\n");
786 }
787
788 static int sched_debug_show(struct seq_file *m, void *v)
789 {
790 int cpu = (unsigned long)(v - 2);
791
792 if (cpu != -1)
793 print_cpu(m, cpu);
794 else
795 sched_debug_header(m);
796
797 return 0;
798 }
799
800 void sysrq_sched_debug_show(void)
801 {
802 int cpu;
803
804 sched_debug_header(NULL);
805 for_each_online_cpu(cpu) {
806 /*
807 * Need to reset softlockup watchdogs on all CPUs, because
808 * another CPU might be blocked waiting for us to process
809 * an IPI or stop_machine.
810 */
811 touch_nmi_watchdog();
812 touch_all_softlockup_watchdogs();
813 print_cpu(NULL, cpu);
814 }
815 }
816
817 /*
818 * This itererator needs some explanation.
819 * It returns 1 for the header position.
820 * This means 2 is CPU 0.
821 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
822 * to use cpumask_* to iterate over the CPUs.
823 */
824 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
825 {
826 unsigned long n = *offset;
827
828 if (n == 0)
829 return (void *) 1;
830
831 n--;
832
833 if (n > 0)
834 n = cpumask_next(n - 1, cpu_online_mask);
835 else
836 n = cpumask_first(cpu_online_mask);
837
838 *offset = n + 1;
839
840 if (n < nr_cpu_ids)
841 return (void *)(unsigned long)(n + 2);
842
843 return NULL;
844 }
845
846 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
847 {
848 (*offset)++;
849 return sched_debug_start(file, offset);
850 }
851
852 static void sched_debug_stop(struct seq_file *file, void *data)
853 {
854 }
855
856 static const struct seq_operations sched_debug_sops = {
857 .start = sched_debug_start,
858 .next = sched_debug_next,
859 .stop = sched_debug_stop,
860 .show = sched_debug_show,
861 };
862
863 static int __init init_sched_debug_procfs(void)
864 {
865 if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
866 return -ENOMEM;
867 return 0;
868 }
869
870 __initcall(init_sched_debug_procfs);
871
872 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
873 #define __P(F) __PS(#F, F)
874 #define P(F) __PS(#F, p->F)
875 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
876 #define __PN(F) __PSN(#F, F)
877 #define PN(F) __PSN(#F, p->F)
878
879
880 #ifdef CONFIG_NUMA_BALANCING
881 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
882 unsigned long tpf, unsigned long gsf, unsigned long gpf)
883 {
884 SEQ_printf(m, "numa_faults node=%d ", node);
885 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
886 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
887 }
888 #endif
889
890
891 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
892 {
893 #ifdef CONFIG_NUMA_BALANCING
894 struct mempolicy *pol;
895
896 if (p->mm)
897 P(mm->numa_scan_seq);
898
899 task_lock(p);
900 pol = p->mempolicy;
901 if (pol && !(pol->flags & MPOL_F_MORON))
902 pol = NULL;
903 mpol_get(pol);
904 task_unlock(p);
905
906 P(numa_pages_migrated);
907 P(numa_preferred_nid);
908 P(total_numa_faults);
909 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
910 task_node(p), task_numa_group_id(p));
911 show_numa_stats(p, m);
912 mpol_put(pol);
913 #endif
914 }
915
916 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
917 struct seq_file *m)
918 {
919 unsigned long nr_switches;
920
921 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
922 get_nr_threads(p));
923 SEQ_printf(m,
924 "---------------------------------------------------------"
925 "----------\n");
926
927 #define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->F))
928 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->F))
929
930 PN(se.exec_start);
931 PN(se.vruntime);
932 PN(se.sum_exec_runtime);
933
934 nr_switches = p->nvcsw + p->nivcsw;
935
936 P(se.nr_migrations);
937
938 if (schedstat_enabled()) {
939 u64 avg_atom, avg_per_cpu;
940
941 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
942 PN_SCHEDSTAT(se.statistics.wait_start);
943 PN_SCHEDSTAT(se.statistics.sleep_start);
944 PN_SCHEDSTAT(se.statistics.block_start);
945 PN_SCHEDSTAT(se.statistics.sleep_max);
946 PN_SCHEDSTAT(se.statistics.block_max);
947 PN_SCHEDSTAT(se.statistics.exec_max);
948 PN_SCHEDSTAT(se.statistics.slice_max);
949 PN_SCHEDSTAT(se.statistics.wait_max);
950 PN_SCHEDSTAT(se.statistics.wait_sum);
951 P_SCHEDSTAT(se.statistics.wait_count);
952 PN_SCHEDSTAT(se.statistics.iowait_sum);
953 P_SCHEDSTAT(se.statistics.iowait_count);
954 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
955 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
956 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
957 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
958 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
959 P_SCHEDSTAT(se.statistics.nr_wakeups);
960 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
961 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
962 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
963 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
964 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
965 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
966 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
967 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
968
969 avg_atom = p->se.sum_exec_runtime;
970 if (nr_switches)
971 avg_atom = div64_ul(avg_atom, nr_switches);
972 else
973 avg_atom = -1LL;
974
975 avg_per_cpu = p->se.sum_exec_runtime;
976 if (p->se.nr_migrations) {
977 avg_per_cpu = div64_u64(avg_per_cpu,
978 p->se.nr_migrations);
979 } else {
980 avg_per_cpu = -1LL;
981 }
982
983 __PN(avg_atom);
984 __PN(avg_per_cpu);
985 }
986
987 __P(nr_switches);
988 __PS("nr_voluntary_switches", p->nvcsw);
989 __PS("nr_involuntary_switches", p->nivcsw);
990
991 P(se.load.weight);
992 #ifdef CONFIG_SMP
993 P(se.avg.load_sum);
994 P(se.avg.runnable_sum);
995 P(se.avg.util_sum);
996 P(se.avg.load_avg);
997 P(se.avg.runnable_avg);
998 P(se.avg.util_avg);
999 P(se.avg.last_update_time);
1000 P(se.avg.util_est.ewma);
1001 P(se.avg.util_est.enqueued);
1002 #endif
1003 #ifdef CONFIG_UCLAMP_TASK
1004 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1005 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1006 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1007 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1008 #endif
1009 P(policy);
1010 P(prio);
1011 if (task_has_dl_policy(p)) {
1012 P(dl.runtime);
1013 P(dl.deadline);
1014 }
1015 #undef PN_SCHEDSTAT
1016 #undef P_SCHEDSTAT
1017
1018 {
1019 unsigned int this_cpu = raw_smp_processor_id();
1020 u64 t0, t1;
1021
1022 t0 = cpu_clock(this_cpu);
1023 t1 = cpu_clock(this_cpu);
1024 __PS("clock-delta", t1-t0);
1025 }
1026
1027 sched_show_numa(p, m);
1028 }
1029
1030 void proc_sched_set_task(struct task_struct *p)
1031 {
1032 #ifdef CONFIG_SCHEDSTATS
1033 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1034 #endif
1035 }