]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched/debug.c
tracing: Dump stacktrace trigger to the corresponding instance
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / debug.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/debug.c
4 *
5 * Print the CFS rbtree and other debugging details
6 *
7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 */
9 #include "sched.h"
10
11 /*
12 * This allows printing both to /proc/sched_debug and
13 * to the console
14 */
15 #define SEQ_printf(m, x...) \
16 do { \
17 if (m) \
18 seq_printf(m, x); \
19 else \
20 pr_cont(x); \
21 } while (0)
22
23 /*
24 * Ease the printing of nsec fields:
25 */
26 static long long nsec_high(unsigned long long nsec)
27 {
28 if ((long long)nsec < 0) {
29 nsec = -nsec;
30 do_div(nsec, 1000000);
31 return -nsec;
32 }
33 do_div(nsec, 1000000);
34
35 return nsec;
36 }
37
38 static unsigned long nsec_low(unsigned long long nsec)
39 {
40 if ((long long)nsec < 0)
41 nsec = -nsec;
42
43 return do_div(nsec, 1000000);
44 }
45
46 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
47
48 #define SCHED_FEAT(name, enabled) \
49 #name ,
50
51 static const char * const sched_feat_names[] = {
52 #include "features.h"
53 };
54
55 #undef SCHED_FEAT
56
57 static int sched_feat_show(struct seq_file *m, void *v)
58 {
59 int i;
60
61 for (i = 0; i < __SCHED_FEAT_NR; i++) {
62 if (!(sysctl_sched_features & (1UL << i)))
63 seq_puts(m, "NO_");
64 seq_printf(m, "%s ", sched_feat_names[i]);
65 }
66 seq_puts(m, "\n");
67
68 return 0;
69 }
70
71 #ifdef CONFIG_JUMP_LABEL
72
73 #define jump_label_key__true STATIC_KEY_INIT_TRUE
74 #define jump_label_key__false STATIC_KEY_INIT_FALSE
75
76 #define SCHED_FEAT(name, enabled) \
77 jump_label_key__##enabled ,
78
79 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
80 #include "features.h"
81 };
82
83 #undef SCHED_FEAT
84
85 static void sched_feat_disable(int i)
86 {
87 static_key_disable_cpuslocked(&sched_feat_keys[i]);
88 }
89
90 static void sched_feat_enable(int i)
91 {
92 static_key_enable_cpuslocked(&sched_feat_keys[i]);
93 }
94 #else
95 static void sched_feat_disable(int i) { };
96 static void sched_feat_enable(int i) { };
97 #endif /* CONFIG_JUMP_LABEL */
98
99 static int sched_feat_set(char *cmp)
100 {
101 int i;
102 int neg = 0;
103
104 if (strncmp(cmp, "NO_", 3) == 0) {
105 neg = 1;
106 cmp += 3;
107 }
108
109 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
110 if (i < 0)
111 return i;
112
113 if (neg) {
114 sysctl_sched_features &= ~(1UL << i);
115 sched_feat_disable(i);
116 } else {
117 sysctl_sched_features |= (1UL << i);
118 sched_feat_enable(i);
119 }
120
121 return 0;
122 }
123
124 static ssize_t
125 sched_feat_write(struct file *filp, const char __user *ubuf,
126 size_t cnt, loff_t *ppos)
127 {
128 char buf[64];
129 char *cmp;
130 int ret;
131 struct inode *inode;
132
133 if (cnt > 63)
134 cnt = 63;
135
136 if (copy_from_user(&buf, ubuf, cnt))
137 return -EFAULT;
138
139 buf[cnt] = 0;
140 cmp = strstrip(buf);
141
142 /* Ensure the static_key remains in a consistent state */
143 inode = file_inode(filp);
144 cpus_read_lock();
145 inode_lock(inode);
146 ret = sched_feat_set(cmp);
147 inode_unlock(inode);
148 cpus_read_unlock();
149 if (ret < 0)
150 return ret;
151
152 *ppos += cnt;
153
154 return cnt;
155 }
156
157 static int sched_feat_open(struct inode *inode, struct file *filp)
158 {
159 return single_open(filp, sched_feat_show, NULL);
160 }
161
162 static const struct file_operations sched_feat_fops = {
163 .open = sched_feat_open,
164 .write = sched_feat_write,
165 .read = seq_read,
166 .llseek = seq_lseek,
167 .release = single_release,
168 };
169
170 #ifdef CONFIG_SMP
171
172 static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf,
173 size_t cnt, loff_t *ppos)
174 {
175 char buf[16];
176 unsigned int scaling;
177
178 if (cnt > 15)
179 cnt = 15;
180
181 if (copy_from_user(&buf, ubuf, cnt))
182 return -EFAULT;
183 buf[cnt] = '\0';
184
185 if (kstrtouint(buf, 10, &scaling))
186 return -EINVAL;
187
188 if (scaling >= SCHED_TUNABLESCALING_END)
189 return -EINVAL;
190
191 sysctl_sched_tunable_scaling = scaling;
192 if (sched_update_scaling())
193 return -EINVAL;
194
195 *ppos += cnt;
196 return cnt;
197 }
198
199 static int sched_scaling_show(struct seq_file *m, void *v)
200 {
201 seq_printf(m, "%d\n", sysctl_sched_tunable_scaling);
202 return 0;
203 }
204
205 static int sched_scaling_open(struct inode *inode, struct file *filp)
206 {
207 return single_open(filp, sched_scaling_show, NULL);
208 }
209
210 static const struct file_operations sched_scaling_fops = {
211 .open = sched_scaling_open,
212 .write = sched_scaling_write,
213 .read = seq_read,
214 .llseek = seq_lseek,
215 .release = single_release,
216 };
217
218 #endif /* SMP */
219
220 #ifdef CONFIG_PREEMPT_DYNAMIC
221
222 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
223 size_t cnt, loff_t *ppos)
224 {
225 char buf[16];
226 int mode;
227
228 if (cnt > 15)
229 cnt = 15;
230
231 if (copy_from_user(&buf, ubuf, cnt))
232 return -EFAULT;
233
234 buf[cnt] = 0;
235 mode = sched_dynamic_mode(strstrip(buf));
236 if (mode < 0)
237 return mode;
238
239 sched_dynamic_update(mode);
240
241 *ppos += cnt;
242
243 return cnt;
244 }
245
246 static int sched_dynamic_show(struct seq_file *m, void *v)
247 {
248 static const char * preempt_modes[] = {
249 "none", "voluntary", "full"
250 };
251 int i;
252
253 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
254 if (preempt_dynamic_mode == i)
255 seq_puts(m, "(");
256 seq_puts(m, preempt_modes[i]);
257 if (preempt_dynamic_mode == i)
258 seq_puts(m, ")");
259
260 seq_puts(m, " ");
261 }
262
263 seq_puts(m, "\n");
264 return 0;
265 }
266
267 static int sched_dynamic_open(struct inode *inode, struct file *filp)
268 {
269 return single_open(filp, sched_dynamic_show, NULL);
270 }
271
272 static const struct file_operations sched_dynamic_fops = {
273 .open = sched_dynamic_open,
274 .write = sched_dynamic_write,
275 .read = seq_read,
276 .llseek = seq_lseek,
277 .release = single_release,
278 };
279
280 #endif /* CONFIG_PREEMPT_DYNAMIC */
281
282 __read_mostly bool sched_debug_verbose;
283
284 static const struct seq_operations sched_debug_sops;
285
286 static int sched_debug_open(struct inode *inode, struct file *filp)
287 {
288 return seq_open(filp, &sched_debug_sops);
289 }
290
291 static const struct file_operations sched_debug_fops = {
292 .open = sched_debug_open,
293 .read = seq_read,
294 .llseek = seq_lseek,
295 .release = seq_release,
296 };
297
298 static struct dentry *debugfs_sched;
299
300 static __init int sched_init_debug(void)
301 {
302 struct dentry __maybe_unused *numa;
303
304 debugfs_sched = debugfs_create_dir("sched", NULL);
305
306 debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops);
307 debugfs_create_bool("verbose", 0644, debugfs_sched, &sched_debug_verbose);
308 #ifdef CONFIG_PREEMPT_DYNAMIC
309 debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
310 #endif
311
312 debugfs_create_u32("latency_ns", 0644, debugfs_sched, &sysctl_sched_latency);
313 debugfs_create_u32("min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_min_granularity);
314 debugfs_create_u32("wakeup_granularity_ns", 0644, debugfs_sched, &sysctl_sched_wakeup_granularity);
315
316 debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
317 debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
318
319 #ifdef CONFIG_SMP
320 debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops);
321 debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost);
322 debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate);
323
324 mutex_lock(&sched_domains_mutex);
325 update_sched_domain_debugfs();
326 mutex_unlock(&sched_domains_mutex);
327 #endif
328
329 #ifdef CONFIG_NUMA_BALANCING
330 numa = debugfs_create_dir("numa_balancing", debugfs_sched);
331
332 debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay);
333 debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min);
334 debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max);
335 debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size);
336 #endif
337
338 debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
339
340 return 0;
341 }
342 late_initcall(sched_init_debug);
343
344 #ifdef CONFIG_SMP
345
346 static cpumask_var_t sd_sysctl_cpus;
347 static struct dentry *sd_dentry;
348
349 static int sd_flags_show(struct seq_file *m, void *v)
350 {
351 unsigned long flags = *(unsigned int *)m->private;
352 int idx;
353
354 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
355 seq_puts(m, sd_flag_debug[idx].name);
356 seq_puts(m, " ");
357 }
358 seq_puts(m, "\n");
359
360 return 0;
361 }
362
363 static int sd_flags_open(struct inode *inode, struct file *file)
364 {
365 return single_open(file, sd_flags_show, inode->i_private);
366 }
367
368 static const struct file_operations sd_flags_fops = {
369 .open = sd_flags_open,
370 .read = seq_read,
371 .llseek = seq_lseek,
372 .release = single_release,
373 };
374
375 static void register_sd(struct sched_domain *sd, struct dentry *parent)
376 {
377 #define SDM(type, mode, member) \
378 debugfs_create_##type(#member, mode, parent, &sd->member)
379
380 SDM(ulong, 0644, min_interval);
381 SDM(ulong, 0644, max_interval);
382 SDM(u64, 0644, max_newidle_lb_cost);
383 SDM(u32, 0644, busy_factor);
384 SDM(u32, 0644, imbalance_pct);
385 SDM(u32, 0644, cache_nice_tries);
386 SDM(str, 0444, name);
387
388 #undef SDM
389
390 debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops);
391 }
392
393 void update_sched_domain_debugfs(void)
394 {
395 int cpu, i;
396
397 /*
398 * This can unfortunately be invoked before sched_debug_init() creates
399 * the debug directory. Don't touch sd_sysctl_cpus until then.
400 */
401 if (!debugfs_sched)
402 return;
403
404 if (!cpumask_available(sd_sysctl_cpus)) {
405 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
406 return;
407 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
408 }
409
410 if (!sd_dentry)
411 sd_dentry = debugfs_create_dir("domains", debugfs_sched);
412
413 for_each_cpu(cpu, sd_sysctl_cpus) {
414 struct sched_domain *sd;
415 struct dentry *d_cpu;
416 char buf[32];
417
418 snprintf(buf, sizeof(buf), "cpu%d", cpu);
419 debugfs_remove(debugfs_lookup(buf, sd_dentry));
420 d_cpu = debugfs_create_dir(buf, sd_dentry);
421
422 i = 0;
423 for_each_domain(cpu, sd) {
424 struct dentry *d_sd;
425
426 snprintf(buf, sizeof(buf), "domain%d", i);
427 d_sd = debugfs_create_dir(buf, d_cpu);
428
429 register_sd(sd, d_sd);
430 i++;
431 }
432
433 __cpumask_clear_cpu(cpu, sd_sysctl_cpus);
434 }
435 }
436
437 void dirty_sched_domain_sysctl(int cpu)
438 {
439 if (cpumask_available(sd_sysctl_cpus))
440 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
441 }
442
443 #endif /* CONFIG_SMP */
444
445 #ifdef CONFIG_FAIR_GROUP_SCHED
446 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
447 {
448 struct sched_entity *se = tg->se[cpu];
449
450 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
451 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F))
452 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
453 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
454
455 if (!se)
456 return;
457
458 PN(se->exec_start);
459 PN(se->vruntime);
460 PN(se->sum_exec_runtime);
461
462 if (schedstat_enabled()) {
463 PN_SCHEDSTAT(se->statistics.wait_start);
464 PN_SCHEDSTAT(se->statistics.sleep_start);
465 PN_SCHEDSTAT(se->statistics.block_start);
466 PN_SCHEDSTAT(se->statistics.sleep_max);
467 PN_SCHEDSTAT(se->statistics.block_max);
468 PN_SCHEDSTAT(se->statistics.exec_max);
469 PN_SCHEDSTAT(se->statistics.slice_max);
470 PN_SCHEDSTAT(se->statistics.wait_max);
471 PN_SCHEDSTAT(se->statistics.wait_sum);
472 P_SCHEDSTAT(se->statistics.wait_count);
473 }
474
475 P(se->load.weight);
476 #ifdef CONFIG_SMP
477 P(se->avg.load_avg);
478 P(se->avg.util_avg);
479 P(se->avg.runnable_avg);
480 #endif
481
482 #undef PN_SCHEDSTAT
483 #undef PN
484 #undef P_SCHEDSTAT
485 #undef P
486 }
487 #endif
488
489 #ifdef CONFIG_CGROUP_SCHED
490 static DEFINE_SPINLOCK(sched_debug_lock);
491 static char group_path[PATH_MAX];
492
493 static void task_group_path(struct task_group *tg, char *path, int plen)
494 {
495 if (autogroup_path(tg, path, plen))
496 return;
497
498 cgroup_path(tg->css.cgroup, path, plen);
499 }
500
501 /*
502 * Only 1 SEQ_printf_task_group_path() caller can use the full length
503 * group_path[] for cgroup path. Other simultaneous callers will have
504 * to use a shorter stack buffer. A "..." suffix is appended at the end
505 * of the stack buffer so that it will show up in case the output length
506 * matches the given buffer size to indicate possible path name truncation.
507 */
508 #define SEQ_printf_task_group_path(m, tg, fmt...) \
509 { \
510 if (spin_trylock(&sched_debug_lock)) { \
511 task_group_path(tg, group_path, sizeof(group_path)); \
512 SEQ_printf(m, fmt, group_path); \
513 spin_unlock(&sched_debug_lock); \
514 } else { \
515 char buf[128]; \
516 char *bufend = buf + sizeof(buf) - 3; \
517 task_group_path(tg, buf, bufend - buf); \
518 strcpy(bufend - 1, "..."); \
519 SEQ_printf(m, fmt, buf); \
520 } \
521 }
522 #endif
523
524 static void
525 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
526 {
527 if (task_current(rq, p))
528 SEQ_printf(m, ">R");
529 else
530 SEQ_printf(m, " %c", task_state_to_char(p));
531
532 SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ",
533 p->comm, task_pid_nr(p),
534 SPLIT_NS(p->se.vruntime),
535 (long long)(p->nvcsw + p->nivcsw),
536 p->prio);
537
538 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
539 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
540 SPLIT_NS(p->se.sum_exec_runtime),
541 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
542
543 #ifdef CONFIG_NUMA_BALANCING
544 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
545 #endif
546 #ifdef CONFIG_CGROUP_SCHED
547 SEQ_printf_task_group_path(m, task_group(p), " %s")
548 #endif
549
550 SEQ_printf(m, "\n");
551 }
552
553 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
554 {
555 struct task_struct *g, *p;
556
557 SEQ_printf(m, "\n");
558 SEQ_printf(m, "runnable tasks:\n");
559 SEQ_printf(m, " S task PID tree-key switches prio"
560 " wait-time sum-exec sum-sleep\n");
561 SEQ_printf(m, "-------------------------------------------------------"
562 "------------------------------------------------------\n");
563
564 rcu_read_lock();
565 for_each_process_thread(g, p) {
566 if (task_cpu(p) != rq_cpu)
567 continue;
568
569 print_task(m, rq, p);
570 }
571 rcu_read_unlock();
572 }
573
574 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
575 {
576 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
577 spread, rq0_min_vruntime, spread0;
578 struct rq *rq = cpu_rq(cpu);
579 struct sched_entity *last;
580 unsigned long flags;
581
582 #ifdef CONFIG_FAIR_GROUP_SCHED
583 SEQ_printf(m, "\n");
584 SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu);
585 #else
586 SEQ_printf(m, "\n");
587 SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
588 #endif
589 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
590 SPLIT_NS(cfs_rq->exec_clock));
591
592 raw_spin_rq_lock_irqsave(rq, flags);
593 if (rb_first_cached(&cfs_rq->tasks_timeline))
594 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
595 last = __pick_last_entity(cfs_rq);
596 if (last)
597 max_vruntime = last->vruntime;
598 min_vruntime = cfs_rq->min_vruntime;
599 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
600 raw_spin_rq_unlock_irqrestore(rq, flags);
601 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
602 SPLIT_NS(MIN_vruntime));
603 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
604 SPLIT_NS(min_vruntime));
605 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
606 SPLIT_NS(max_vruntime));
607 spread = max_vruntime - MIN_vruntime;
608 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
609 SPLIT_NS(spread));
610 spread0 = min_vruntime - rq0_min_vruntime;
611 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
612 SPLIT_NS(spread0));
613 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
614 cfs_rq->nr_spread_over);
615 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
616 SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running);
617 SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running",
618 cfs_rq->idle_h_nr_running);
619 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
620 #ifdef CONFIG_SMP
621 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
622 cfs_rq->avg.load_avg);
623 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg",
624 cfs_rq->avg.runnable_avg);
625 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
626 cfs_rq->avg.util_avg);
627 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued",
628 cfs_rq->avg.util_est.enqueued);
629 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
630 cfs_rq->removed.load_avg);
631 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
632 cfs_rq->removed.util_avg);
633 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg",
634 cfs_rq->removed.runnable_avg);
635 #ifdef CONFIG_FAIR_GROUP_SCHED
636 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
637 cfs_rq->tg_load_avg_contrib);
638 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
639 atomic_long_read(&cfs_rq->tg->load_avg));
640 #endif
641 #endif
642 #ifdef CONFIG_CFS_BANDWIDTH
643 SEQ_printf(m, " .%-30s: %d\n", "throttled",
644 cfs_rq->throttled);
645 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
646 cfs_rq->throttle_count);
647 #endif
648
649 #ifdef CONFIG_FAIR_GROUP_SCHED
650 print_cfs_group_stats(m, cpu, cfs_rq->tg);
651 #endif
652 }
653
654 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
655 {
656 #ifdef CONFIG_RT_GROUP_SCHED
657 SEQ_printf(m, "\n");
658 SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu);
659 #else
660 SEQ_printf(m, "\n");
661 SEQ_printf(m, "rt_rq[%d]:\n", cpu);
662 #endif
663
664 #define P(x) \
665 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
666 #define PU(x) \
667 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
668 #define PN(x) \
669 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
670
671 PU(rt_nr_running);
672 #ifdef CONFIG_SMP
673 PU(rt_nr_migratory);
674 #endif
675 P(rt_throttled);
676 PN(rt_time);
677 PN(rt_runtime);
678
679 #undef PN
680 #undef PU
681 #undef P
682 }
683
684 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
685 {
686 struct dl_bw *dl_bw;
687
688 SEQ_printf(m, "\n");
689 SEQ_printf(m, "dl_rq[%d]:\n", cpu);
690
691 #define PU(x) \
692 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
693
694 PU(dl_nr_running);
695 #ifdef CONFIG_SMP
696 PU(dl_nr_migratory);
697 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
698 #else
699 dl_bw = &dl_rq->dl_bw;
700 #endif
701 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
702 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
703
704 #undef PU
705 }
706
707 static void print_cpu(struct seq_file *m, int cpu)
708 {
709 struct rq *rq = cpu_rq(cpu);
710
711 #ifdef CONFIG_X86
712 {
713 unsigned int freq = cpu_khz ? : 1;
714
715 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
716 cpu, freq / 1000, (freq % 1000));
717 }
718 #else
719 SEQ_printf(m, "cpu#%d\n", cpu);
720 #endif
721
722 #define P(x) \
723 do { \
724 if (sizeof(rq->x) == 4) \
725 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
726 else \
727 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
728 } while (0)
729
730 #define PN(x) \
731 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
732
733 P(nr_running);
734 P(nr_switches);
735 P(nr_uninterruptible);
736 PN(next_balance);
737 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
738 PN(clock);
739 PN(clock_task);
740 #undef P
741 #undef PN
742
743 #ifdef CONFIG_SMP
744 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
745 P64(avg_idle);
746 P64(max_idle_balance_cost);
747 #undef P64
748 #endif
749
750 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
751 if (schedstat_enabled()) {
752 P(yld_count);
753 P(sched_count);
754 P(sched_goidle);
755 P(ttwu_count);
756 P(ttwu_local);
757 }
758 #undef P
759
760 print_cfs_stats(m, cpu);
761 print_rt_stats(m, cpu);
762 print_dl_stats(m, cpu);
763
764 print_rq(m, rq, cpu);
765 SEQ_printf(m, "\n");
766 }
767
768 static const char *sched_tunable_scaling_names[] = {
769 "none",
770 "logarithmic",
771 "linear"
772 };
773
774 static void sched_debug_header(struct seq_file *m)
775 {
776 u64 ktime, sched_clk, cpu_clk;
777 unsigned long flags;
778
779 local_irq_save(flags);
780 ktime = ktime_to_ns(ktime_get());
781 sched_clk = sched_clock();
782 cpu_clk = local_clock();
783 local_irq_restore(flags);
784
785 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
786 init_utsname()->release,
787 (int)strcspn(init_utsname()->version, " "),
788 init_utsname()->version);
789
790 #define P(x) \
791 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
792 #define PN(x) \
793 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
794 PN(ktime);
795 PN(sched_clk);
796 PN(cpu_clk);
797 P(jiffies);
798 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
799 P(sched_clock_stable());
800 #endif
801 #undef PN
802 #undef P
803
804 SEQ_printf(m, "\n");
805 SEQ_printf(m, "sysctl_sched\n");
806
807 #define P(x) \
808 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
809 #define PN(x) \
810 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
811 PN(sysctl_sched_latency);
812 PN(sysctl_sched_min_granularity);
813 PN(sysctl_sched_wakeup_granularity);
814 P(sysctl_sched_child_runs_first);
815 P(sysctl_sched_features);
816 #undef PN
817 #undef P
818
819 SEQ_printf(m, " .%-40s: %d (%s)\n",
820 "sysctl_sched_tunable_scaling",
821 sysctl_sched_tunable_scaling,
822 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
823 SEQ_printf(m, "\n");
824 }
825
826 static int sched_debug_show(struct seq_file *m, void *v)
827 {
828 int cpu = (unsigned long)(v - 2);
829
830 if (cpu != -1)
831 print_cpu(m, cpu);
832 else
833 sched_debug_header(m);
834
835 return 0;
836 }
837
838 void sysrq_sched_debug_show(void)
839 {
840 int cpu;
841
842 sched_debug_header(NULL);
843 for_each_online_cpu(cpu) {
844 /*
845 * Need to reset softlockup watchdogs on all CPUs, because
846 * another CPU might be blocked waiting for us to process
847 * an IPI or stop_machine.
848 */
849 touch_nmi_watchdog();
850 touch_all_softlockup_watchdogs();
851 print_cpu(NULL, cpu);
852 }
853 }
854
855 /*
856 * This iterator needs some explanation.
857 * It returns 1 for the header position.
858 * This means 2 is CPU 0.
859 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
860 * to use cpumask_* to iterate over the CPUs.
861 */
862 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
863 {
864 unsigned long n = *offset;
865
866 if (n == 0)
867 return (void *) 1;
868
869 n--;
870
871 if (n > 0)
872 n = cpumask_next(n - 1, cpu_online_mask);
873 else
874 n = cpumask_first(cpu_online_mask);
875
876 *offset = n + 1;
877
878 if (n < nr_cpu_ids)
879 return (void *)(unsigned long)(n + 2);
880
881 return NULL;
882 }
883
884 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
885 {
886 (*offset)++;
887 return sched_debug_start(file, offset);
888 }
889
890 static void sched_debug_stop(struct seq_file *file, void *data)
891 {
892 }
893
894 static const struct seq_operations sched_debug_sops = {
895 .start = sched_debug_start,
896 .next = sched_debug_next,
897 .stop = sched_debug_stop,
898 .show = sched_debug_show,
899 };
900
901 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
902 #define __P(F) __PS(#F, F)
903 #define P(F) __PS(#F, p->F)
904 #define PM(F, M) __PS(#F, p->F & (M))
905 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
906 #define __PN(F) __PSN(#F, F)
907 #define PN(F) __PSN(#F, p->F)
908
909
910 #ifdef CONFIG_NUMA_BALANCING
911 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
912 unsigned long tpf, unsigned long gsf, unsigned long gpf)
913 {
914 SEQ_printf(m, "numa_faults node=%d ", node);
915 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
916 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
917 }
918 #endif
919
920
921 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
922 {
923 #ifdef CONFIG_NUMA_BALANCING
924 struct mempolicy *pol;
925
926 if (p->mm)
927 P(mm->numa_scan_seq);
928
929 task_lock(p);
930 pol = p->mempolicy;
931 if (pol && !(pol->flags & MPOL_F_MORON))
932 pol = NULL;
933 mpol_get(pol);
934 task_unlock(p);
935
936 P(numa_pages_migrated);
937 P(numa_preferred_nid);
938 P(total_numa_faults);
939 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
940 task_node(p), task_numa_group_id(p));
941 show_numa_stats(p, m);
942 mpol_put(pol);
943 #endif
944 }
945
946 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
947 struct seq_file *m)
948 {
949 unsigned long nr_switches;
950
951 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
952 get_nr_threads(p));
953 SEQ_printf(m,
954 "---------------------------------------------------------"
955 "----------\n");
956
957 #define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->F))
958 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->F))
959
960 PN(se.exec_start);
961 PN(se.vruntime);
962 PN(se.sum_exec_runtime);
963
964 nr_switches = p->nvcsw + p->nivcsw;
965
966 P(se.nr_migrations);
967
968 if (schedstat_enabled()) {
969 u64 avg_atom, avg_per_cpu;
970
971 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
972 PN_SCHEDSTAT(se.statistics.wait_start);
973 PN_SCHEDSTAT(se.statistics.sleep_start);
974 PN_SCHEDSTAT(se.statistics.block_start);
975 PN_SCHEDSTAT(se.statistics.sleep_max);
976 PN_SCHEDSTAT(se.statistics.block_max);
977 PN_SCHEDSTAT(se.statistics.exec_max);
978 PN_SCHEDSTAT(se.statistics.slice_max);
979 PN_SCHEDSTAT(se.statistics.wait_max);
980 PN_SCHEDSTAT(se.statistics.wait_sum);
981 P_SCHEDSTAT(se.statistics.wait_count);
982 PN_SCHEDSTAT(se.statistics.iowait_sum);
983 P_SCHEDSTAT(se.statistics.iowait_count);
984 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
985 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
986 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
987 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
988 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
989 P_SCHEDSTAT(se.statistics.nr_wakeups);
990 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
991 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
992 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
993 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
994 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
995 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
996 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
997 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
998
999 avg_atom = p->se.sum_exec_runtime;
1000 if (nr_switches)
1001 avg_atom = div64_ul(avg_atom, nr_switches);
1002 else
1003 avg_atom = -1LL;
1004
1005 avg_per_cpu = p->se.sum_exec_runtime;
1006 if (p->se.nr_migrations) {
1007 avg_per_cpu = div64_u64(avg_per_cpu,
1008 p->se.nr_migrations);
1009 } else {
1010 avg_per_cpu = -1LL;
1011 }
1012
1013 __PN(avg_atom);
1014 __PN(avg_per_cpu);
1015 }
1016
1017 __P(nr_switches);
1018 __PS("nr_voluntary_switches", p->nvcsw);
1019 __PS("nr_involuntary_switches", p->nivcsw);
1020
1021 P(se.load.weight);
1022 #ifdef CONFIG_SMP
1023 P(se.avg.load_sum);
1024 P(se.avg.runnable_sum);
1025 P(se.avg.util_sum);
1026 P(se.avg.load_avg);
1027 P(se.avg.runnable_avg);
1028 P(se.avg.util_avg);
1029 P(se.avg.last_update_time);
1030 P(se.avg.util_est.ewma);
1031 PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED);
1032 #endif
1033 #ifdef CONFIG_UCLAMP_TASK
1034 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1035 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1036 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1037 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1038 #endif
1039 P(policy);
1040 P(prio);
1041 if (task_has_dl_policy(p)) {
1042 P(dl.runtime);
1043 P(dl.deadline);
1044 }
1045 #undef PN_SCHEDSTAT
1046 #undef P_SCHEDSTAT
1047
1048 {
1049 unsigned int this_cpu = raw_smp_processor_id();
1050 u64 t0, t1;
1051
1052 t0 = cpu_clock(this_cpu);
1053 t1 = cpu_clock(this_cpu);
1054 __PS("clock-delta", t1-t0);
1055 }
1056
1057 sched_show_numa(p, m);
1058 }
1059
1060 void proc_sched_set_task(struct task_struct *p)
1061 {
1062 #ifdef CONFIG_SCHEDSTATS
1063 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1064 #endif
1065 }
1066
1067 void resched_latency_warn(int cpu, u64 latency)
1068 {
1069 static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1);
1070
1071 WARN(__ratelimit(&latency_check_ratelimit),
1072 "sched: CPU %d need_resched set for > %llu ns (%d ticks) "
1073 "without schedule\n",
1074 cpu, latency, cpu_rq(cpu)->ticks_without_resched);
1075 }