]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/sched/debug.c
nvme: set the queue limits in nvme_update_ns_info
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / debug.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/debug.c
4 *
5 * Print the CFS rbtree and other debugging details
6 *
7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 */
9 #include "sched.h"
10
11 static DEFINE_SPINLOCK(sched_debug_lock);
12
13 /*
14 * This allows printing both to /proc/sched_debug and
15 * to the console
16 */
17 #define SEQ_printf(m, x...) \
18 do { \
19 if (m) \
20 seq_printf(m, x); \
21 else \
22 pr_cont(x); \
23 } while (0)
24
25 /*
26 * Ease the printing of nsec fields:
27 */
28 static long long nsec_high(unsigned long long nsec)
29 {
30 if ((long long)nsec < 0) {
31 nsec = -nsec;
32 do_div(nsec, 1000000);
33 return -nsec;
34 }
35 do_div(nsec, 1000000);
36
37 return nsec;
38 }
39
40 static unsigned long nsec_low(unsigned long long nsec)
41 {
42 if ((long long)nsec < 0)
43 nsec = -nsec;
44
45 return do_div(nsec, 1000000);
46 }
47
48 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
49
50 #define SCHED_FEAT(name, enabled) \
51 #name ,
52
53 static const char * const sched_feat_names[] = {
54 #include "features.h"
55 };
56
57 #undef SCHED_FEAT
58
59 static int sched_feat_show(struct seq_file *m, void *v)
60 {
61 int i;
62
63 for (i = 0; i < __SCHED_FEAT_NR; i++) {
64 if (!(sysctl_sched_features & (1UL << i)))
65 seq_puts(m, "NO_");
66 seq_printf(m, "%s ", sched_feat_names[i]);
67 }
68 seq_puts(m, "\n");
69
70 return 0;
71 }
72
73 #ifdef CONFIG_JUMP_LABEL
74
75 #define jump_label_key__true STATIC_KEY_INIT_TRUE
76 #define jump_label_key__false STATIC_KEY_INIT_FALSE
77
78 #define SCHED_FEAT(name, enabled) \
79 jump_label_key__##enabled ,
80
81 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
82 #include "features.h"
83 };
84
85 #undef SCHED_FEAT
86
87 static void sched_feat_disable(int i)
88 {
89 static_key_disable_cpuslocked(&sched_feat_keys[i]);
90 }
91
92 static void sched_feat_enable(int i)
93 {
94 static_key_enable_cpuslocked(&sched_feat_keys[i]);
95 }
96 #else
97 static void sched_feat_disable(int i) { };
98 static void sched_feat_enable(int i) { };
99 #endif /* CONFIG_JUMP_LABEL */
100
101 static int sched_feat_set(char *cmp)
102 {
103 int i;
104 int neg = 0;
105
106 if (strncmp(cmp, "NO_", 3) == 0) {
107 neg = 1;
108 cmp += 3;
109 }
110
111 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
112 if (i < 0)
113 return i;
114
115 if (neg) {
116 sysctl_sched_features &= ~(1UL << i);
117 sched_feat_disable(i);
118 } else {
119 sysctl_sched_features |= (1UL << i);
120 sched_feat_enable(i);
121 }
122
123 return 0;
124 }
125
126 static ssize_t
127 sched_feat_write(struct file *filp, const char __user *ubuf,
128 size_t cnt, loff_t *ppos)
129 {
130 char buf[64];
131 char *cmp;
132 int ret;
133 struct inode *inode;
134
135 if (cnt > 63)
136 cnt = 63;
137
138 if (copy_from_user(&buf, ubuf, cnt))
139 return -EFAULT;
140
141 buf[cnt] = 0;
142 cmp = strstrip(buf);
143
144 /* Ensure the static_key remains in a consistent state */
145 inode = file_inode(filp);
146 cpus_read_lock();
147 inode_lock(inode);
148 ret = sched_feat_set(cmp);
149 inode_unlock(inode);
150 cpus_read_unlock();
151 if (ret < 0)
152 return ret;
153
154 *ppos += cnt;
155
156 return cnt;
157 }
158
159 static int sched_feat_open(struct inode *inode, struct file *filp)
160 {
161 return single_open(filp, sched_feat_show, NULL);
162 }
163
164 static const struct file_operations sched_feat_fops = {
165 .open = sched_feat_open,
166 .write = sched_feat_write,
167 .read = seq_read,
168 .llseek = seq_lseek,
169 .release = single_release,
170 };
171
172 __read_mostly bool sched_debug_enabled;
173
174 static __init int sched_init_debug(void)
175 {
176 debugfs_create_file("sched_features", 0644, NULL, NULL,
177 &sched_feat_fops);
178
179 debugfs_create_bool("sched_debug", 0644, NULL,
180 &sched_debug_enabled);
181
182 return 0;
183 }
184 late_initcall(sched_init_debug);
185
186 #ifdef CONFIG_SMP
187
188 #ifdef CONFIG_SYSCTL
189
190 static struct ctl_table sd_ctl_dir[] = {
191 {
192 .procname = "sched_domain",
193 .mode = 0555,
194 },
195 {}
196 };
197
198 static struct ctl_table sd_ctl_root[] = {
199 {
200 .procname = "kernel",
201 .mode = 0555,
202 .child = sd_ctl_dir,
203 },
204 {}
205 };
206
207 static struct ctl_table *sd_alloc_ctl_entry(int n)
208 {
209 struct ctl_table *entry =
210 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
211
212 return entry;
213 }
214
215 static void sd_free_ctl_entry(struct ctl_table **tablep)
216 {
217 struct ctl_table *entry;
218
219 /*
220 * In the intermediate directories, both the child directory and
221 * procname are dynamically allocated and could fail but the mode
222 * will always be set. In the lowest directory the names are
223 * static strings and all have proc handlers.
224 */
225 for (entry = *tablep; entry->mode; entry++) {
226 if (entry->child)
227 sd_free_ctl_entry(&entry->child);
228 if (entry->proc_handler == NULL)
229 kfree(entry->procname);
230 }
231
232 kfree(*tablep);
233 *tablep = NULL;
234 }
235
236 static void
237 set_table_entry(struct ctl_table *entry,
238 const char *procname, void *data, int maxlen,
239 umode_t mode, proc_handler *proc_handler)
240 {
241 entry->procname = procname;
242 entry->data = data;
243 entry->maxlen = maxlen;
244 entry->mode = mode;
245 entry->proc_handler = proc_handler;
246 }
247
248 static struct ctl_table *
249 sd_alloc_ctl_domain_table(struct sched_domain *sd)
250 {
251 struct ctl_table *table = sd_alloc_ctl_entry(9);
252
253 if (table == NULL)
254 return NULL;
255
256 set_table_entry(&table[0], "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax);
257 set_table_entry(&table[1], "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax);
258 set_table_entry(&table[2], "busy_factor", &sd->busy_factor, sizeof(int), 0644, proc_dointvec_minmax);
259 set_table_entry(&table[3], "imbalance_pct", &sd->imbalance_pct, sizeof(int), 0644, proc_dointvec_minmax);
260 set_table_entry(&table[4], "cache_nice_tries", &sd->cache_nice_tries, sizeof(int), 0644, proc_dointvec_minmax);
261 set_table_entry(&table[5], "flags", &sd->flags, sizeof(int), 0444, proc_dointvec_minmax);
262 set_table_entry(&table[6], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax);
263 set_table_entry(&table[7], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring);
264 /* &table[8] is terminator */
265
266 return table;
267 }
268
269 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
270 {
271 struct ctl_table *entry, *table;
272 struct sched_domain *sd;
273 int domain_num = 0, i;
274 char buf[32];
275
276 for_each_domain(cpu, sd)
277 domain_num++;
278 entry = table = sd_alloc_ctl_entry(domain_num + 1);
279 if (table == NULL)
280 return NULL;
281
282 i = 0;
283 for_each_domain(cpu, sd) {
284 snprintf(buf, 32, "domain%d", i);
285 entry->procname = kstrdup(buf, GFP_KERNEL);
286 entry->mode = 0555;
287 entry->child = sd_alloc_ctl_domain_table(sd);
288 entry++;
289 i++;
290 }
291 return table;
292 }
293
294 static cpumask_var_t sd_sysctl_cpus;
295 static struct ctl_table_header *sd_sysctl_header;
296
297 void register_sched_domain_sysctl(void)
298 {
299 static struct ctl_table *cpu_entries;
300 static struct ctl_table **cpu_idx;
301 static bool init_done = false;
302 char buf[32];
303 int i;
304
305 if (!cpu_entries) {
306 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
307 if (!cpu_entries)
308 return;
309
310 WARN_ON(sd_ctl_dir[0].child);
311 sd_ctl_dir[0].child = cpu_entries;
312 }
313
314 if (!cpu_idx) {
315 struct ctl_table *e = cpu_entries;
316
317 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
318 if (!cpu_idx)
319 return;
320
321 /* deal with sparse possible map */
322 for_each_possible_cpu(i) {
323 cpu_idx[i] = e;
324 e++;
325 }
326 }
327
328 if (!cpumask_available(sd_sysctl_cpus)) {
329 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
330 return;
331 }
332
333 if (!init_done) {
334 init_done = true;
335 /* init to possible to not have holes in @cpu_entries */
336 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
337 }
338
339 for_each_cpu(i, sd_sysctl_cpus) {
340 struct ctl_table *e = cpu_idx[i];
341
342 if (e->child)
343 sd_free_ctl_entry(&e->child);
344
345 if (!e->procname) {
346 snprintf(buf, 32, "cpu%d", i);
347 e->procname = kstrdup(buf, GFP_KERNEL);
348 }
349 e->mode = 0555;
350 e->child = sd_alloc_ctl_cpu_table(i);
351
352 __cpumask_clear_cpu(i, sd_sysctl_cpus);
353 }
354
355 WARN_ON(sd_sysctl_header);
356 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
357 }
358
359 void dirty_sched_domain_sysctl(int cpu)
360 {
361 if (cpumask_available(sd_sysctl_cpus))
362 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
363 }
364
365 /* may be called multiple times per register */
366 void unregister_sched_domain_sysctl(void)
367 {
368 unregister_sysctl_table(sd_sysctl_header);
369 sd_sysctl_header = NULL;
370 }
371 #endif /* CONFIG_SYSCTL */
372 #endif /* CONFIG_SMP */
373
374 #ifdef CONFIG_FAIR_GROUP_SCHED
375 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
376 {
377 struct sched_entity *se = tg->se[cpu];
378
379 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
380 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F))
381 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
382 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
383
384 if (!se)
385 return;
386
387 PN(se->exec_start);
388 PN(se->vruntime);
389 PN(se->sum_exec_runtime);
390
391 if (schedstat_enabled()) {
392 PN_SCHEDSTAT(se->statistics.wait_start);
393 PN_SCHEDSTAT(se->statistics.sleep_start);
394 PN_SCHEDSTAT(se->statistics.block_start);
395 PN_SCHEDSTAT(se->statistics.sleep_max);
396 PN_SCHEDSTAT(se->statistics.block_max);
397 PN_SCHEDSTAT(se->statistics.exec_max);
398 PN_SCHEDSTAT(se->statistics.slice_max);
399 PN_SCHEDSTAT(se->statistics.wait_max);
400 PN_SCHEDSTAT(se->statistics.wait_sum);
401 P_SCHEDSTAT(se->statistics.wait_count);
402 }
403
404 P(se->load.weight);
405 #ifdef CONFIG_SMP
406 P(se->avg.load_avg);
407 P(se->avg.util_avg);
408 P(se->avg.runnable_avg);
409 #endif
410
411 #undef PN_SCHEDSTAT
412 #undef PN
413 #undef P_SCHEDSTAT
414 #undef P
415 }
416 #endif
417
418 #ifdef CONFIG_CGROUP_SCHED
419 static char group_path[PATH_MAX];
420
421 static char *task_group_path(struct task_group *tg)
422 {
423 if (autogroup_path(tg, group_path, PATH_MAX))
424 return group_path;
425
426 cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
427
428 return group_path;
429 }
430 #endif
431
432 static void
433 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
434 {
435 if (rq->curr == p)
436 SEQ_printf(m, ">R");
437 else
438 SEQ_printf(m, " %c", task_state_to_char(p));
439
440 SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ",
441 p->comm, task_pid_nr(p),
442 SPLIT_NS(p->se.vruntime),
443 (long long)(p->nvcsw + p->nivcsw),
444 p->prio);
445
446 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
447 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
448 SPLIT_NS(p->se.sum_exec_runtime),
449 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
450
451 #ifdef CONFIG_NUMA_BALANCING
452 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
453 #endif
454 #ifdef CONFIG_CGROUP_SCHED
455 SEQ_printf(m, " %s", task_group_path(task_group(p)));
456 #endif
457
458 SEQ_printf(m, "\n");
459 }
460
461 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
462 {
463 struct task_struct *g, *p;
464
465 SEQ_printf(m, "\n");
466 SEQ_printf(m, "runnable tasks:\n");
467 SEQ_printf(m, " S task PID tree-key switches prio"
468 " wait-time sum-exec sum-sleep\n");
469 SEQ_printf(m, "-------------------------------------------------------"
470 "------------------------------------------------------\n");
471
472 rcu_read_lock();
473 for_each_process_thread(g, p) {
474 if (task_cpu(p) != rq_cpu)
475 continue;
476
477 print_task(m, rq, p);
478 }
479 rcu_read_unlock();
480 }
481
482 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
483 {
484 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
485 spread, rq0_min_vruntime, spread0;
486 struct rq *rq = cpu_rq(cpu);
487 struct sched_entity *last;
488 unsigned long flags;
489
490 #ifdef CONFIG_FAIR_GROUP_SCHED
491 SEQ_printf(m, "\n");
492 SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
493 #else
494 SEQ_printf(m, "\n");
495 SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
496 #endif
497 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
498 SPLIT_NS(cfs_rq->exec_clock));
499
500 raw_spin_lock_irqsave(&rq->lock, flags);
501 if (rb_first_cached(&cfs_rq->tasks_timeline))
502 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
503 last = __pick_last_entity(cfs_rq);
504 if (last)
505 max_vruntime = last->vruntime;
506 min_vruntime = cfs_rq->min_vruntime;
507 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
508 raw_spin_unlock_irqrestore(&rq->lock, flags);
509 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
510 SPLIT_NS(MIN_vruntime));
511 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
512 SPLIT_NS(min_vruntime));
513 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
514 SPLIT_NS(max_vruntime));
515 spread = max_vruntime - MIN_vruntime;
516 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
517 SPLIT_NS(spread));
518 spread0 = min_vruntime - rq0_min_vruntime;
519 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
520 SPLIT_NS(spread0));
521 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
522 cfs_rq->nr_spread_over);
523 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
524 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
525 #ifdef CONFIG_SMP
526 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
527 cfs_rq->avg.load_avg);
528 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg",
529 cfs_rq->avg.runnable_avg);
530 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
531 cfs_rq->avg.util_avg);
532 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued",
533 cfs_rq->avg.util_est.enqueued);
534 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
535 cfs_rq->removed.load_avg);
536 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
537 cfs_rq->removed.util_avg);
538 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg",
539 cfs_rq->removed.runnable_avg);
540 #ifdef CONFIG_FAIR_GROUP_SCHED
541 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
542 cfs_rq->tg_load_avg_contrib);
543 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
544 atomic_long_read(&cfs_rq->tg->load_avg));
545 #endif
546 #endif
547 #ifdef CONFIG_CFS_BANDWIDTH
548 SEQ_printf(m, " .%-30s: %d\n", "throttled",
549 cfs_rq->throttled);
550 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
551 cfs_rq->throttle_count);
552 #endif
553
554 #ifdef CONFIG_FAIR_GROUP_SCHED
555 print_cfs_group_stats(m, cpu, cfs_rq->tg);
556 #endif
557 }
558
559 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
560 {
561 #ifdef CONFIG_RT_GROUP_SCHED
562 SEQ_printf(m, "\n");
563 SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
564 #else
565 SEQ_printf(m, "\n");
566 SEQ_printf(m, "rt_rq[%d]:\n", cpu);
567 #endif
568
569 #define P(x) \
570 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
571 #define PU(x) \
572 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
573 #define PN(x) \
574 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
575
576 PU(rt_nr_running);
577 #ifdef CONFIG_SMP
578 PU(rt_nr_migratory);
579 #endif
580 P(rt_throttled);
581 PN(rt_time);
582 PN(rt_runtime);
583
584 #undef PN
585 #undef PU
586 #undef P
587 }
588
589 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
590 {
591 struct dl_bw *dl_bw;
592
593 SEQ_printf(m, "\n");
594 SEQ_printf(m, "dl_rq[%d]:\n", cpu);
595
596 #define PU(x) \
597 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
598
599 PU(dl_nr_running);
600 #ifdef CONFIG_SMP
601 PU(dl_nr_migratory);
602 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
603 #else
604 dl_bw = &dl_rq->dl_bw;
605 #endif
606 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
607 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
608
609 #undef PU
610 }
611
612 static void print_cpu(struct seq_file *m, int cpu)
613 {
614 struct rq *rq = cpu_rq(cpu);
615 unsigned long flags;
616
617 #ifdef CONFIG_X86
618 {
619 unsigned int freq = cpu_khz ? : 1;
620
621 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
622 cpu, freq / 1000, (freq % 1000));
623 }
624 #else
625 SEQ_printf(m, "cpu#%d\n", cpu);
626 #endif
627
628 #define P(x) \
629 do { \
630 if (sizeof(rq->x) == 4) \
631 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
632 else \
633 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
634 } while (0)
635
636 #define PN(x) \
637 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
638
639 P(nr_running);
640 P(nr_switches);
641 P(nr_uninterruptible);
642 PN(next_balance);
643 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
644 PN(clock);
645 PN(clock_task);
646 #undef P
647 #undef PN
648
649 #ifdef CONFIG_SMP
650 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
651 P64(avg_idle);
652 P64(max_idle_balance_cost);
653 #undef P64
654 #endif
655
656 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
657 if (schedstat_enabled()) {
658 P(yld_count);
659 P(sched_count);
660 P(sched_goidle);
661 P(ttwu_count);
662 P(ttwu_local);
663 }
664 #undef P
665
666 spin_lock_irqsave(&sched_debug_lock, flags);
667 print_cfs_stats(m, cpu);
668 print_rt_stats(m, cpu);
669 print_dl_stats(m, cpu);
670
671 print_rq(m, rq, cpu);
672 spin_unlock_irqrestore(&sched_debug_lock, flags);
673 SEQ_printf(m, "\n");
674 }
675
676 static const char *sched_tunable_scaling_names[] = {
677 "none",
678 "logarithmic",
679 "linear"
680 };
681
682 static void sched_debug_header(struct seq_file *m)
683 {
684 u64 ktime, sched_clk, cpu_clk;
685 unsigned long flags;
686
687 local_irq_save(flags);
688 ktime = ktime_to_ns(ktime_get());
689 sched_clk = sched_clock();
690 cpu_clk = local_clock();
691 local_irq_restore(flags);
692
693 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
694 init_utsname()->release,
695 (int)strcspn(init_utsname()->version, " "),
696 init_utsname()->version);
697
698 #define P(x) \
699 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
700 #define PN(x) \
701 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
702 PN(ktime);
703 PN(sched_clk);
704 PN(cpu_clk);
705 P(jiffies);
706 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
707 P(sched_clock_stable());
708 #endif
709 #undef PN
710 #undef P
711
712 SEQ_printf(m, "\n");
713 SEQ_printf(m, "sysctl_sched\n");
714
715 #define P(x) \
716 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
717 #define PN(x) \
718 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
719 PN(sysctl_sched_latency);
720 PN(sysctl_sched_min_granularity);
721 PN(sysctl_sched_wakeup_granularity);
722 P(sysctl_sched_child_runs_first);
723 P(sysctl_sched_features);
724 #undef PN
725 #undef P
726
727 SEQ_printf(m, " .%-40s: %d (%s)\n",
728 "sysctl_sched_tunable_scaling",
729 sysctl_sched_tunable_scaling,
730 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
731 SEQ_printf(m, "\n");
732 }
733
734 static int sched_debug_show(struct seq_file *m, void *v)
735 {
736 int cpu = (unsigned long)(v - 2);
737
738 if (cpu != -1)
739 print_cpu(m, cpu);
740 else
741 sched_debug_header(m);
742
743 return 0;
744 }
745
746 void sysrq_sched_debug_show(void)
747 {
748 int cpu;
749
750 sched_debug_header(NULL);
751 for_each_online_cpu(cpu) {
752 /*
753 * Need to reset softlockup watchdogs on all CPUs, because
754 * another CPU might be blocked waiting for us to process
755 * an IPI or stop_machine.
756 */
757 touch_nmi_watchdog();
758 touch_all_softlockup_watchdogs();
759 print_cpu(NULL, cpu);
760 }
761 }
762
763 /*
764 * This itererator needs some explanation.
765 * It returns 1 for the header position.
766 * This means 2 is CPU 0.
767 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
768 * to use cpumask_* to iterate over the CPUs.
769 */
770 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
771 {
772 unsigned long n = *offset;
773
774 if (n == 0)
775 return (void *) 1;
776
777 n--;
778
779 if (n > 0)
780 n = cpumask_next(n - 1, cpu_online_mask);
781 else
782 n = cpumask_first(cpu_online_mask);
783
784 *offset = n + 1;
785
786 if (n < nr_cpu_ids)
787 return (void *)(unsigned long)(n + 2);
788
789 return NULL;
790 }
791
792 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
793 {
794 (*offset)++;
795 return sched_debug_start(file, offset);
796 }
797
798 static void sched_debug_stop(struct seq_file *file, void *data)
799 {
800 }
801
802 static const struct seq_operations sched_debug_sops = {
803 .start = sched_debug_start,
804 .next = sched_debug_next,
805 .stop = sched_debug_stop,
806 .show = sched_debug_show,
807 };
808
809 static int __init init_sched_debug_procfs(void)
810 {
811 if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
812 return -ENOMEM;
813 return 0;
814 }
815
816 __initcall(init_sched_debug_procfs);
817
818 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
819 #define __P(F) __PS(#F, F)
820 #define P(F) __PS(#F, p->F)
821 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
822 #define __PN(F) __PSN(#F, F)
823 #define PN(F) __PSN(#F, p->F)
824
825
826 #ifdef CONFIG_NUMA_BALANCING
827 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
828 unsigned long tpf, unsigned long gsf, unsigned long gpf)
829 {
830 SEQ_printf(m, "numa_faults node=%d ", node);
831 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
832 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
833 }
834 #endif
835
836
837 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
838 {
839 #ifdef CONFIG_NUMA_BALANCING
840 struct mempolicy *pol;
841
842 if (p->mm)
843 P(mm->numa_scan_seq);
844
845 task_lock(p);
846 pol = p->mempolicy;
847 if (pol && !(pol->flags & MPOL_F_MORON))
848 pol = NULL;
849 mpol_get(pol);
850 task_unlock(p);
851
852 P(numa_pages_migrated);
853 P(numa_preferred_nid);
854 P(total_numa_faults);
855 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
856 task_node(p), task_numa_group_id(p));
857 show_numa_stats(p, m);
858 mpol_put(pol);
859 #endif
860 }
861
862 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
863 struct seq_file *m)
864 {
865 unsigned long nr_switches;
866
867 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
868 get_nr_threads(p));
869 SEQ_printf(m,
870 "---------------------------------------------------------"
871 "----------\n");
872
873 #define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->F))
874 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->F))
875
876 PN(se.exec_start);
877 PN(se.vruntime);
878 PN(se.sum_exec_runtime);
879
880 nr_switches = p->nvcsw + p->nivcsw;
881
882 P(se.nr_migrations);
883
884 if (schedstat_enabled()) {
885 u64 avg_atom, avg_per_cpu;
886
887 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
888 PN_SCHEDSTAT(se.statistics.wait_start);
889 PN_SCHEDSTAT(se.statistics.sleep_start);
890 PN_SCHEDSTAT(se.statistics.block_start);
891 PN_SCHEDSTAT(se.statistics.sleep_max);
892 PN_SCHEDSTAT(se.statistics.block_max);
893 PN_SCHEDSTAT(se.statistics.exec_max);
894 PN_SCHEDSTAT(se.statistics.slice_max);
895 PN_SCHEDSTAT(se.statistics.wait_max);
896 PN_SCHEDSTAT(se.statistics.wait_sum);
897 P_SCHEDSTAT(se.statistics.wait_count);
898 PN_SCHEDSTAT(se.statistics.iowait_sum);
899 P_SCHEDSTAT(se.statistics.iowait_count);
900 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
901 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
902 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
903 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
904 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
905 P_SCHEDSTAT(se.statistics.nr_wakeups);
906 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
907 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
908 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
909 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
910 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
911 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
912 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
913 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
914
915 avg_atom = p->se.sum_exec_runtime;
916 if (nr_switches)
917 avg_atom = div64_ul(avg_atom, nr_switches);
918 else
919 avg_atom = -1LL;
920
921 avg_per_cpu = p->se.sum_exec_runtime;
922 if (p->se.nr_migrations) {
923 avg_per_cpu = div64_u64(avg_per_cpu,
924 p->se.nr_migrations);
925 } else {
926 avg_per_cpu = -1LL;
927 }
928
929 __PN(avg_atom);
930 __PN(avg_per_cpu);
931 }
932
933 __P(nr_switches);
934 __PS("nr_voluntary_switches", p->nvcsw);
935 __PS("nr_involuntary_switches", p->nivcsw);
936
937 P(se.load.weight);
938 #ifdef CONFIG_SMP
939 P(se.avg.load_sum);
940 P(se.avg.runnable_sum);
941 P(se.avg.util_sum);
942 P(se.avg.load_avg);
943 P(se.avg.runnable_avg);
944 P(se.avg.util_avg);
945 P(se.avg.last_update_time);
946 P(se.avg.util_est.ewma);
947 P(se.avg.util_est.enqueued);
948 #endif
949 #ifdef CONFIG_UCLAMP_TASK
950 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
951 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
952 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
953 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
954 #endif
955 P(policy);
956 P(prio);
957 if (task_has_dl_policy(p)) {
958 P(dl.runtime);
959 P(dl.deadline);
960 }
961 #undef PN_SCHEDSTAT
962 #undef P_SCHEDSTAT
963
964 {
965 unsigned int this_cpu = raw_smp_processor_id();
966 u64 t0, t1;
967
968 t0 = cpu_clock(this_cpu);
969 t1 = cpu_clock(this_cpu);
970 __PS("clock-delta", t1-t0);
971 }
972
973 sched_show_numa(p, m);
974 }
975
976 void proc_sched_set_task(struct task_struct *p)
977 {
978 #ifdef CONFIG_SCHEDSTATS
979 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
980 #endif
981 }