]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched/debug.c
Merge tag 'iwlwifi-next-for-kalle-2017-11-29' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / debug.c
1 /*
2 * kernel/sched/debug.c
3 *
4 * Print the CFS rbtree
5 *
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/proc_fs.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/seq_file.h>
17 #include <linux/kallsyms.h>
18 #include <linux/utsname.h>
19 #include <linux/mempolicy.h>
20 #include <linux/debugfs.h>
21
22 #include "sched.h"
23
24 static DEFINE_SPINLOCK(sched_debug_lock);
25
26 /*
27 * This allows printing both to /proc/sched_debug and
28 * to the console
29 */
30 #define SEQ_printf(m, x...) \
31 do { \
32 if (m) \
33 seq_printf(m, x); \
34 else \
35 printk(x); \
36 } while (0)
37
38 /*
39 * Ease the printing of nsec fields:
40 */
41 static long long nsec_high(unsigned long long nsec)
42 {
43 if ((long long)nsec < 0) {
44 nsec = -nsec;
45 do_div(nsec, 1000000);
46 return -nsec;
47 }
48 do_div(nsec, 1000000);
49
50 return nsec;
51 }
52
53 static unsigned long nsec_low(unsigned long long nsec)
54 {
55 if ((long long)nsec < 0)
56 nsec = -nsec;
57
58 return do_div(nsec, 1000000);
59 }
60
61 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
62
63 #define SCHED_FEAT(name, enabled) \
64 #name ,
65
66 static const char * const sched_feat_names[] = {
67 #include "features.h"
68 };
69
70 #undef SCHED_FEAT
71
72 static int sched_feat_show(struct seq_file *m, void *v)
73 {
74 int i;
75
76 for (i = 0; i < __SCHED_FEAT_NR; i++) {
77 if (!(sysctl_sched_features & (1UL << i)))
78 seq_puts(m, "NO_");
79 seq_printf(m, "%s ", sched_feat_names[i]);
80 }
81 seq_puts(m, "\n");
82
83 return 0;
84 }
85
86 #ifdef HAVE_JUMP_LABEL
87
88 #define jump_label_key__true STATIC_KEY_INIT_TRUE
89 #define jump_label_key__false STATIC_KEY_INIT_FALSE
90
91 #define SCHED_FEAT(name, enabled) \
92 jump_label_key__##enabled ,
93
94 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
95 #include "features.h"
96 };
97
98 #undef SCHED_FEAT
99
100 static void sched_feat_disable(int i)
101 {
102 static_key_disable(&sched_feat_keys[i]);
103 }
104
105 static void sched_feat_enable(int i)
106 {
107 static_key_enable(&sched_feat_keys[i]);
108 }
109 #else
110 static void sched_feat_disable(int i) { };
111 static void sched_feat_enable(int i) { };
112 #endif /* HAVE_JUMP_LABEL */
113
114 static int sched_feat_set(char *cmp)
115 {
116 int i;
117 int neg = 0;
118
119 if (strncmp(cmp, "NO_", 3) == 0) {
120 neg = 1;
121 cmp += 3;
122 }
123
124 for (i = 0; i < __SCHED_FEAT_NR; i++) {
125 if (strcmp(cmp, sched_feat_names[i]) == 0) {
126 if (neg) {
127 sysctl_sched_features &= ~(1UL << i);
128 sched_feat_disable(i);
129 } else {
130 sysctl_sched_features |= (1UL << i);
131 sched_feat_enable(i);
132 }
133 break;
134 }
135 }
136
137 return i;
138 }
139
140 static ssize_t
141 sched_feat_write(struct file *filp, const char __user *ubuf,
142 size_t cnt, loff_t *ppos)
143 {
144 char buf[64];
145 char *cmp;
146 int i;
147 struct inode *inode;
148
149 if (cnt > 63)
150 cnt = 63;
151
152 if (copy_from_user(&buf, ubuf, cnt))
153 return -EFAULT;
154
155 buf[cnt] = 0;
156 cmp = strstrip(buf);
157
158 /* Ensure the static_key remains in a consistent state */
159 inode = file_inode(filp);
160 inode_lock(inode);
161 i = sched_feat_set(cmp);
162 inode_unlock(inode);
163 if (i == __SCHED_FEAT_NR)
164 return -EINVAL;
165
166 *ppos += cnt;
167
168 return cnt;
169 }
170
171 static int sched_feat_open(struct inode *inode, struct file *filp)
172 {
173 return single_open(filp, sched_feat_show, NULL);
174 }
175
176 static const struct file_operations sched_feat_fops = {
177 .open = sched_feat_open,
178 .write = sched_feat_write,
179 .read = seq_read,
180 .llseek = seq_lseek,
181 .release = single_release,
182 };
183
184 __read_mostly bool sched_debug_enabled;
185
186 static __init int sched_init_debug(void)
187 {
188 debugfs_create_file("sched_features", 0644, NULL, NULL,
189 &sched_feat_fops);
190
191 debugfs_create_bool("sched_debug", 0644, NULL,
192 &sched_debug_enabled);
193
194 return 0;
195 }
196 late_initcall(sched_init_debug);
197
198 #ifdef CONFIG_SMP
199
200 #ifdef CONFIG_SYSCTL
201
202 static struct ctl_table sd_ctl_dir[] = {
203 {
204 .procname = "sched_domain",
205 .mode = 0555,
206 },
207 {}
208 };
209
210 static struct ctl_table sd_ctl_root[] = {
211 {
212 .procname = "kernel",
213 .mode = 0555,
214 .child = sd_ctl_dir,
215 },
216 {}
217 };
218
219 static struct ctl_table *sd_alloc_ctl_entry(int n)
220 {
221 struct ctl_table *entry =
222 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
223
224 return entry;
225 }
226
227 static void sd_free_ctl_entry(struct ctl_table **tablep)
228 {
229 struct ctl_table *entry;
230
231 /*
232 * In the intermediate directories, both the child directory and
233 * procname are dynamically allocated and could fail but the mode
234 * will always be set. In the lowest directory the names are
235 * static strings and all have proc handlers.
236 */
237 for (entry = *tablep; entry->mode; entry++) {
238 if (entry->child)
239 sd_free_ctl_entry(&entry->child);
240 if (entry->proc_handler == NULL)
241 kfree(entry->procname);
242 }
243
244 kfree(*tablep);
245 *tablep = NULL;
246 }
247
248 static int min_load_idx = 0;
249 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
250
251 static void
252 set_table_entry(struct ctl_table *entry,
253 const char *procname, void *data, int maxlen,
254 umode_t mode, proc_handler *proc_handler,
255 bool load_idx)
256 {
257 entry->procname = procname;
258 entry->data = data;
259 entry->maxlen = maxlen;
260 entry->mode = mode;
261 entry->proc_handler = proc_handler;
262
263 if (load_idx) {
264 entry->extra1 = &min_load_idx;
265 entry->extra2 = &max_load_idx;
266 }
267 }
268
269 static struct ctl_table *
270 sd_alloc_ctl_domain_table(struct sched_domain *sd)
271 {
272 struct ctl_table *table = sd_alloc_ctl_entry(14);
273
274 if (table == NULL)
275 return NULL;
276
277 set_table_entry(&table[0], "min_interval", &sd->min_interval,
278 sizeof(long), 0644, proc_doulongvec_minmax, false);
279 set_table_entry(&table[1], "max_interval", &sd->max_interval,
280 sizeof(long), 0644, proc_doulongvec_minmax, false);
281 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
282 sizeof(int), 0644, proc_dointvec_minmax, true);
283 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
284 sizeof(int), 0644, proc_dointvec_minmax, true);
285 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
286 sizeof(int), 0644, proc_dointvec_minmax, true);
287 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
288 sizeof(int), 0644, proc_dointvec_minmax, true);
289 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
290 sizeof(int), 0644, proc_dointvec_minmax, true);
291 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
292 sizeof(int), 0644, proc_dointvec_minmax, false);
293 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
294 sizeof(int), 0644, proc_dointvec_minmax, false);
295 set_table_entry(&table[9], "cache_nice_tries",
296 &sd->cache_nice_tries,
297 sizeof(int), 0644, proc_dointvec_minmax, false);
298 set_table_entry(&table[10], "flags", &sd->flags,
299 sizeof(int), 0644, proc_dointvec_minmax, false);
300 set_table_entry(&table[11], "max_newidle_lb_cost",
301 &sd->max_newidle_lb_cost,
302 sizeof(long), 0644, proc_doulongvec_minmax, false);
303 set_table_entry(&table[12], "name", sd->name,
304 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
305 /* &table[13] is terminator */
306
307 return table;
308 }
309
310 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
311 {
312 struct ctl_table *entry, *table;
313 struct sched_domain *sd;
314 int domain_num = 0, i;
315 char buf[32];
316
317 for_each_domain(cpu, sd)
318 domain_num++;
319 entry = table = sd_alloc_ctl_entry(domain_num + 1);
320 if (table == NULL)
321 return NULL;
322
323 i = 0;
324 for_each_domain(cpu, sd) {
325 snprintf(buf, 32, "domain%d", i);
326 entry->procname = kstrdup(buf, GFP_KERNEL);
327 entry->mode = 0555;
328 entry->child = sd_alloc_ctl_domain_table(sd);
329 entry++;
330 i++;
331 }
332 return table;
333 }
334
335 static cpumask_var_t sd_sysctl_cpus;
336 static struct ctl_table_header *sd_sysctl_header;
337
338 void register_sched_domain_sysctl(void)
339 {
340 static struct ctl_table *cpu_entries;
341 static struct ctl_table **cpu_idx;
342 char buf[32];
343 int i;
344
345 if (!cpu_entries) {
346 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
347 if (!cpu_entries)
348 return;
349
350 WARN_ON(sd_ctl_dir[0].child);
351 sd_ctl_dir[0].child = cpu_entries;
352 }
353
354 if (!cpu_idx) {
355 struct ctl_table *e = cpu_entries;
356
357 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
358 if (!cpu_idx)
359 return;
360
361 /* deal with sparse possible map */
362 for_each_possible_cpu(i) {
363 cpu_idx[i] = e;
364 e++;
365 }
366 }
367
368 if (!cpumask_available(sd_sysctl_cpus)) {
369 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
370 return;
371
372 /* init to possible to not have holes in @cpu_entries */
373 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
374 }
375
376 for_each_cpu(i, sd_sysctl_cpus) {
377 struct ctl_table *e = cpu_idx[i];
378
379 if (e->child)
380 sd_free_ctl_entry(&e->child);
381
382 if (!e->procname) {
383 snprintf(buf, 32, "cpu%d", i);
384 e->procname = kstrdup(buf, GFP_KERNEL);
385 }
386 e->mode = 0555;
387 e->child = sd_alloc_ctl_cpu_table(i);
388
389 __cpumask_clear_cpu(i, sd_sysctl_cpus);
390 }
391
392 WARN_ON(sd_sysctl_header);
393 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
394 }
395
396 void dirty_sched_domain_sysctl(int cpu)
397 {
398 if (cpumask_available(sd_sysctl_cpus))
399 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
400 }
401
402 /* may be called multiple times per register */
403 void unregister_sched_domain_sysctl(void)
404 {
405 unregister_sysctl_table(sd_sysctl_header);
406 sd_sysctl_header = NULL;
407 }
408 #endif /* CONFIG_SYSCTL */
409 #endif /* CONFIG_SMP */
410
411 #ifdef CONFIG_FAIR_GROUP_SCHED
412 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
413 {
414 struct sched_entity *se = tg->se[cpu];
415
416 #define P(F) \
417 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
418 #define P_SCHEDSTAT(F) \
419 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F))
420 #define PN(F) \
421 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
422 #define PN_SCHEDSTAT(F) \
423 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
424
425 if (!se)
426 return;
427
428 PN(se->exec_start);
429 PN(se->vruntime);
430 PN(se->sum_exec_runtime);
431 if (schedstat_enabled()) {
432 PN_SCHEDSTAT(se->statistics.wait_start);
433 PN_SCHEDSTAT(se->statistics.sleep_start);
434 PN_SCHEDSTAT(se->statistics.block_start);
435 PN_SCHEDSTAT(se->statistics.sleep_max);
436 PN_SCHEDSTAT(se->statistics.block_max);
437 PN_SCHEDSTAT(se->statistics.exec_max);
438 PN_SCHEDSTAT(se->statistics.slice_max);
439 PN_SCHEDSTAT(se->statistics.wait_max);
440 PN_SCHEDSTAT(se->statistics.wait_sum);
441 P_SCHEDSTAT(se->statistics.wait_count);
442 }
443 P(se->load.weight);
444 P(se->runnable_weight);
445 #ifdef CONFIG_SMP
446 P(se->avg.load_avg);
447 P(se->avg.util_avg);
448 P(se->avg.runnable_load_avg);
449 #endif
450
451 #undef PN_SCHEDSTAT
452 #undef PN
453 #undef P_SCHEDSTAT
454 #undef P
455 }
456 #endif
457
458 #ifdef CONFIG_CGROUP_SCHED
459 static char group_path[PATH_MAX];
460
461 static char *task_group_path(struct task_group *tg)
462 {
463 if (autogroup_path(tg, group_path, PATH_MAX))
464 return group_path;
465
466 cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
467 return group_path;
468 }
469 #endif
470
471 static void
472 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
473 {
474 if (rq->curr == p)
475 SEQ_printf(m, ">R");
476 else
477 SEQ_printf(m, " %c", task_state_to_char(p));
478
479 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
480 p->comm, task_pid_nr(p),
481 SPLIT_NS(p->se.vruntime),
482 (long long)(p->nvcsw + p->nivcsw),
483 p->prio);
484
485 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
486 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
487 SPLIT_NS(p->se.sum_exec_runtime),
488 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
489
490 #ifdef CONFIG_NUMA_BALANCING
491 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
492 #endif
493 #ifdef CONFIG_CGROUP_SCHED
494 SEQ_printf(m, " %s", task_group_path(task_group(p)));
495 #endif
496
497 SEQ_printf(m, "\n");
498 }
499
500 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
501 {
502 struct task_struct *g, *p;
503
504 SEQ_printf(m,
505 "\nrunnable tasks:\n"
506 " S task PID tree-key switches prio"
507 " wait-time sum-exec sum-sleep\n"
508 "-------------------------------------------------------"
509 "----------------------------------------------------\n");
510
511 rcu_read_lock();
512 for_each_process_thread(g, p) {
513 if (task_cpu(p) != rq_cpu)
514 continue;
515
516 print_task(m, rq, p);
517 }
518 rcu_read_unlock();
519 }
520
521 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
522 {
523 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
524 spread, rq0_min_vruntime, spread0;
525 struct rq *rq = cpu_rq(cpu);
526 struct sched_entity *last;
527 unsigned long flags;
528
529 #ifdef CONFIG_FAIR_GROUP_SCHED
530 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
531 #else
532 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
533 #endif
534 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
535 SPLIT_NS(cfs_rq->exec_clock));
536
537 raw_spin_lock_irqsave(&rq->lock, flags);
538 if (rb_first_cached(&cfs_rq->tasks_timeline))
539 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
540 last = __pick_last_entity(cfs_rq);
541 if (last)
542 max_vruntime = last->vruntime;
543 min_vruntime = cfs_rq->min_vruntime;
544 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
545 raw_spin_unlock_irqrestore(&rq->lock, flags);
546 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
547 SPLIT_NS(MIN_vruntime));
548 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
549 SPLIT_NS(min_vruntime));
550 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
551 SPLIT_NS(max_vruntime));
552 spread = max_vruntime - MIN_vruntime;
553 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
554 SPLIT_NS(spread));
555 spread0 = min_vruntime - rq0_min_vruntime;
556 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
557 SPLIT_NS(spread0));
558 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
559 cfs_rq->nr_spread_over);
560 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
561 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
562 #ifdef CONFIG_SMP
563 SEQ_printf(m, " .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
564 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
565 cfs_rq->avg.load_avg);
566 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg",
567 cfs_rq->avg.runnable_load_avg);
568 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
569 cfs_rq->avg.util_avg);
570 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
571 cfs_rq->removed.load_avg);
572 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
573 cfs_rq->removed.util_avg);
574 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_sum",
575 cfs_rq->removed.runnable_sum);
576 #ifdef CONFIG_FAIR_GROUP_SCHED
577 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
578 cfs_rq->tg_load_avg_contrib);
579 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
580 atomic_long_read(&cfs_rq->tg->load_avg));
581 #endif
582 #endif
583 #ifdef CONFIG_CFS_BANDWIDTH
584 SEQ_printf(m, " .%-30s: %d\n", "throttled",
585 cfs_rq->throttled);
586 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
587 cfs_rq->throttle_count);
588 #endif
589
590 #ifdef CONFIG_FAIR_GROUP_SCHED
591 print_cfs_group_stats(m, cpu, cfs_rq->tg);
592 #endif
593 }
594
595 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
596 {
597 #ifdef CONFIG_RT_GROUP_SCHED
598 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
599 #else
600 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
601 #endif
602
603 #define P(x) \
604 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
605 #define PU(x) \
606 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
607 #define PN(x) \
608 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
609
610 PU(rt_nr_running);
611 #ifdef CONFIG_SMP
612 PU(rt_nr_migratory);
613 #endif
614 P(rt_throttled);
615 PN(rt_time);
616 PN(rt_runtime);
617
618 #undef PN
619 #undef PU
620 #undef P
621 }
622
623 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
624 {
625 struct dl_bw *dl_bw;
626
627 SEQ_printf(m, "\ndl_rq[%d]:\n", cpu);
628
629 #define PU(x) \
630 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
631
632 PU(dl_nr_running);
633 #ifdef CONFIG_SMP
634 PU(dl_nr_migratory);
635 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
636 #else
637 dl_bw = &dl_rq->dl_bw;
638 #endif
639 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
640 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
641
642 #undef PU
643 }
644
645 extern __read_mostly int sched_clock_running;
646
647 static void print_cpu(struct seq_file *m, int cpu)
648 {
649 struct rq *rq = cpu_rq(cpu);
650 unsigned long flags;
651
652 #ifdef CONFIG_X86
653 {
654 unsigned int freq = cpu_khz ? : 1;
655
656 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
657 cpu, freq / 1000, (freq % 1000));
658 }
659 #else
660 SEQ_printf(m, "cpu#%d\n", cpu);
661 #endif
662
663 #define P(x) \
664 do { \
665 if (sizeof(rq->x) == 4) \
666 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
667 else \
668 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
669 } while (0)
670
671 #define PN(x) \
672 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
673
674 P(nr_running);
675 SEQ_printf(m, " .%-30s: %lu\n", "load",
676 rq->load.weight);
677 P(nr_switches);
678 P(nr_load_updates);
679 P(nr_uninterruptible);
680 PN(next_balance);
681 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
682 PN(clock);
683 PN(clock_task);
684 P(cpu_load[0]);
685 P(cpu_load[1]);
686 P(cpu_load[2]);
687 P(cpu_load[3]);
688 P(cpu_load[4]);
689 #undef P
690 #undef PN
691
692 #ifdef CONFIG_SMP
693 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
694 P64(avg_idle);
695 P64(max_idle_balance_cost);
696 #undef P64
697 #endif
698
699 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
700 if (schedstat_enabled()) {
701 P(yld_count);
702 P(sched_count);
703 P(sched_goidle);
704 P(ttwu_count);
705 P(ttwu_local);
706 }
707 #undef P
708
709 spin_lock_irqsave(&sched_debug_lock, flags);
710 print_cfs_stats(m, cpu);
711 print_rt_stats(m, cpu);
712 print_dl_stats(m, cpu);
713
714 print_rq(m, rq, cpu);
715 spin_unlock_irqrestore(&sched_debug_lock, flags);
716 SEQ_printf(m, "\n");
717 }
718
719 static const char *sched_tunable_scaling_names[] = {
720 "none",
721 "logaritmic",
722 "linear"
723 };
724
725 static void sched_debug_header(struct seq_file *m)
726 {
727 u64 ktime, sched_clk, cpu_clk;
728 unsigned long flags;
729
730 local_irq_save(flags);
731 ktime = ktime_to_ns(ktime_get());
732 sched_clk = sched_clock();
733 cpu_clk = local_clock();
734 local_irq_restore(flags);
735
736 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
737 init_utsname()->release,
738 (int)strcspn(init_utsname()->version, " "),
739 init_utsname()->version);
740
741 #define P(x) \
742 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
743 #define PN(x) \
744 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
745 PN(ktime);
746 PN(sched_clk);
747 PN(cpu_clk);
748 P(jiffies);
749 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
750 P(sched_clock_stable());
751 #endif
752 #undef PN
753 #undef P
754
755 SEQ_printf(m, "\n");
756 SEQ_printf(m, "sysctl_sched\n");
757
758 #define P(x) \
759 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
760 #define PN(x) \
761 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
762 PN(sysctl_sched_latency);
763 PN(sysctl_sched_min_granularity);
764 PN(sysctl_sched_wakeup_granularity);
765 P(sysctl_sched_child_runs_first);
766 P(sysctl_sched_features);
767 #undef PN
768 #undef P
769
770 SEQ_printf(m, " .%-40s: %d (%s)\n",
771 "sysctl_sched_tunable_scaling",
772 sysctl_sched_tunable_scaling,
773 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
774 SEQ_printf(m, "\n");
775 }
776
777 static int sched_debug_show(struct seq_file *m, void *v)
778 {
779 int cpu = (unsigned long)(v - 2);
780
781 if (cpu != -1)
782 print_cpu(m, cpu);
783 else
784 sched_debug_header(m);
785
786 return 0;
787 }
788
789 void sysrq_sched_debug_show(void)
790 {
791 int cpu;
792
793 sched_debug_header(NULL);
794 for_each_online_cpu(cpu)
795 print_cpu(NULL, cpu);
796
797 }
798
799 /*
800 * This itererator needs some explanation.
801 * It returns 1 for the header position.
802 * This means 2 is cpu 0.
803 * In a hotplugged system some cpus, including cpu 0, may be missing so we have
804 * to use cpumask_* to iterate over the cpus.
805 */
806 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
807 {
808 unsigned long n = *offset;
809
810 if (n == 0)
811 return (void *) 1;
812
813 n--;
814
815 if (n > 0)
816 n = cpumask_next(n - 1, cpu_online_mask);
817 else
818 n = cpumask_first(cpu_online_mask);
819
820 *offset = n + 1;
821
822 if (n < nr_cpu_ids)
823 return (void *)(unsigned long)(n + 2);
824 return NULL;
825 }
826
827 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
828 {
829 (*offset)++;
830 return sched_debug_start(file, offset);
831 }
832
833 static void sched_debug_stop(struct seq_file *file, void *data)
834 {
835 }
836
837 static const struct seq_operations sched_debug_sops = {
838 .start = sched_debug_start,
839 .next = sched_debug_next,
840 .stop = sched_debug_stop,
841 .show = sched_debug_show,
842 };
843
844 static int sched_debug_release(struct inode *inode, struct file *file)
845 {
846 seq_release(inode, file);
847
848 return 0;
849 }
850
851 static int sched_debug_open(struct inode *inode, struct file *filp)
852 {
853 int ret = 0;
854
855 ret = seq_open(filp, &sched_debug_sops);
856
857 return ret;
858 }
859
860 static const struct file_operations sched_debug_fops = {
861 .open = sched_debug_open,
862 .read = seq_read,
863 .llseek = seq_lseek,
864 .release = sched_debug_release,
865 };
866
867 static int __init init_sched_debug_procfs(void)
868 {
869 struct proc_dir_entry *pe;
870
871 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
872 if (!pe)
873 return -ENOMEM;
874 return 0;
875 }
876
877 __initcall(init_sched_debug_procfs);
878
879 #define __P(F) \
880 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
881 #define P(F) \
882 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
883 #define __PN(F) \
884 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
885 #define PN(F) \
886 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
887
888
889 #ifdef CONFIG_NUMA_BALANCING
890 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
891 unsigned long tpf, unsigned long gsf, unsigned long gpf)
892 {
893 SEQ_printf(m, "numa_faults node=%d ", node);
894 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf);
895 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf);
896 }
897 #endif
898
899
900 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
901 {
902 #ifdef CONFIG_NUMA_BALANCING
903 struct mempolicy *pol;
904
905 if (p->mm)
906 P(mm->numa_scan_seq);
907
908 task_lock(p);
909 pol = p->mempolicy;
910 if (pol && !(pol->flags & MPOL_F_MORON))
911 pol = NULL;
912 mpol_get(pol);
913 task_unlock(p);
914
915 P(numa_pages_migrated);
916 P(numa_preferred_nid);
917 P(total_numa_faults);
918 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
919 task_node(p), task_numa_group_id(p));
920 show_numa_stats(p, m);
921 mpol_put(pol);
922 #endif
923 }
924
925 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
926 struct seq_file *m)
927 {
928 unsigned long nr_switches;
929
930 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
931 get_nr_threads(p));
932 SEQ_printf(m,
933 "---------------------------------------------------------"
934 "----------\n");
935 #define __P(F) \
936 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
937 #define P(F) \
938 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
939 #define P_SCHEDSTAT(F) \
940 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
941 #define __PN(F) \
942 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
943 #define PN(F) \
944 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
945 #define PN_SCHEDSTAT(F) \
946 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
947
948 PN(se.exec_start);
949 PN(se.vruntime);
950 PN(se.sum_exec_runtime);
951
952 nr_switches = p->nvcsw + p->nivcsw;
953
954 P(se.nr_migrations);
955
956 if (schedstat_enabled()) {
957 u64 avg_atom, avg_per_cpu;
958
959 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
960 PN_SCHEDSTAT(se.statistics.wait_start);
961 PN_SCHEDSTAT(se.statistics.sleep_start);
962 PN_SCHEDSTAT(se.statistics.block_start);
963 PN_SCHEDSTAT(se.statistics.sleep_max);
964 PN_SCHEDSTAT(se.statistics.block_max);
965 PN_SCHEDSTAT(se.statistics.exec_max);
966 PN_SCHEDSTAT(se.statistics.slice_max);
967 PN_SCHEDSTAT(se.statistics.wait_max);
968 PN_SCHEDSTAT(se.statistics.wait_sum);
969 P_SCHEDSTAT(se.statistics.wait_count);
970 PN_SCHEDSTAT(se.statistics.iowait_sum);
971 P_SCHEDSTAT(se.statistics.iowait_count);
972 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
973 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
974 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
975 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
976 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
977 P_SCHEDSTAT(se.statistics.nr_wakeups);
978 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
979 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
980 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
981 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
982 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
983 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
984 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
985 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
986
987 avg_atom = p->se.sum_exec_runtime;
988 if (nr_switches)
989 avg_atom = div64_ul(avg_atom, nr_switches);
990 else
991 avg_atom = -1LL;
992
993 avg_per_cpu = p->se.sum_exec_runtime;
994 if (p->se.nr_migrations) {
995 avg_per_cpu = div64_u64(avg_per_cpu,
996 p->se.nr_migrations);
997 } else {
998 avg_per_cpu = -1LL;
999 }
1000
1001 __PN(avg_atom);
1002 __PN(avg_per_cpu);
1003 }
1004
1005 __P(nr_switches);
1006 SEQ_printf(m, "%-45s:%21Ld\n",
1007 "nr_voluntary_switches", (long long)p->nvcsw);
1008 SEQ_printf(m, "%-45s:%21Ld\n",
1009 "nr_involuntary_switches", (long long)p->nivcsw);
1010
1011 P(se.load.weight);
1012 P(se.runnable_weight);
1013 #ifdef CONFIG_SMP
1014 P(se.avg.load_sum);
1015 P(se.avg.runnable_load_sum);
1016 P(se.avg.util_sum);
1017 P(se.avg.load_avg);
1018 P(se.avg.runnable_load_avg);
1019 P(se.avg.util_avg);
1020 P(se.avg.last_update_time);
1021 #endif
1022 P(policy);
1023 P(prio);
1024 if (p->policy == SCHED_DEADLINE) {
1025 P(dl.runtime);
1026 P(dl.deadline);
1027 }
1028 #undef PN_SCHEDSTAT
1029 #undef PN
1030 #undef __PN
1031 #undef P_SCHEDSTAT
1032 #undef P
1033 #undef __P
1034
1035 {
1036 unsigned int this_cpu = raw_smp_processor_id();
1037 u64 t0, t1;
1038
1039 t0 = cpu_clock(this_cpu);
1040 t1 = cpu_clock(this_cpu);
1041 SEQ_printf(m, "%-45s:%21Ld\n",
1042 "clock-delta", (long long)(t1-t0));
1043 }
1044
1045 sched_show_numa(p, m);
1046 }
1047
1048 void proc_sched_set_task(struct task_struct *p)
1049 {
1050 #ifdef CONFIG_SCHEDSTATS
1051 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1052 #endif
1053 }