]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched/fair.c
sched: Optimize rq_lockp() usage
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include "sched.h"
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 *
28 * NOTE: this latency value is not the same as the concept of
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
32 *
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
35 *
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37 */
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40
41 /*
42 * The initial- and re-scaling of tunables is configurable
43 *
44 * Options are:
45 *
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 *
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
51 */
52 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
53
54 /*
55 * Minimal preemption granularity for CPU-bound tasks:
56 *
57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58 */
59 unsigned int sysctl_sched_min_granularity = 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
61
62 /*
63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
64 */
65 static unsigned int sched_nr_latency = 8;
66
67 /*
68 * After fork, child runs first. If set to 0 (default) then
69 * parent will (try to) run first.
70 */
71 unsigned int sysctl_sched_child_runs_first __read_mostly;
72
73 /*
74 * SCHED_OTHER wake-up granularity.
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 *
80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
81 */
82 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
83 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
84
85 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
86
87 int sched_thermal_decay_shift;
88 static int __init setup_sched_thermal_decay_shift(char *str)
89 {
90 int _shift = 0;
91
92 if (kstrtoint(str, 0, &_shift))
93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94
95 sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 return 1;
97 }
98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99
100 #ifdef CONFIG_SMP
101 /*
102 * For asym packing, by default the lower numbered CPU has higher priority.
103 */
104 int __weak arch_asym_cpu_priority(int cpu)
105 {
106 return -cpu;
107 }
108
109 /*
110 * The margin used when comparing utilization with CPU capacity.
111 *
112 * (default: ~20%)
113 */
114 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
115
116 /*
117 * The margin used when comparing CPU capacities.
118 * is 'cap1' noticeably greater than 'cap2'
119 *
120 * (default: ~5%)
121 */
122 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
123 #endif
124
125 #ifdef CONFIG_CFS_BANDWIDTH
126 /*
127 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
128 * each time a cfs_rq requests quota.
129 *
130 * Note: in the case that the slice exceeds the runtime remaining (either due
131 * to consumption or the quota being specified to be smaller than the slice)
132 * we will always only issue the remaining available time.
133 *
134 * (default: 5 msec, units: microseconds)
135 */
136 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
137 #endif
138
139 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
140 {
141 lw->weight += inc;
142 lw->inv_weight = 0;
143 }
144
145 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
146 {
147 lw->weight -= dec;
148 lw->inv_weight = 0;
149 }
150
151 static inline void update_load_set(struct load_weight *lw, unsigned long w)
152 {
153 lw->weight = w;
154 lw->inv_weight = 0;
155 }
156
157 /*
158 * Increase the granularity value when there are more CPUs,
159 * because with more CPUs the 'effective latency' as visible
160 * to users decreases. But the relationship is not linear,
161 * so pick a second-best guess by going with the log2 of the
162 * number of CPUs.
163 *
164 * This idea comes from the SD scheduler of Con Kolivas:
165 */
166 static unsigned int get_update_sysctl_factor(void)
167 {
168 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
169 unsigned int factor;
170
171 switch (sysctl_sched_tunable_scaling) {
172 case SCHED_TUNABLESCALING_NONE:
173 factor = 1;
174 break;
175 case SCHED_TUNABLESCALING_LINEAR:
176 factor = cpus;
177 break;
178 case SCHED_TUNABLESCALING_LOG:
179 default:
180 factor = 1 + ilog2(cpus);
181 break;
182 }
183
184 return factor;
185 }
186
187 static void update_sysctl(void)
188 {
189 unsigned int factor = get_update_sysctl_factor();
190
191 #define SET_SYSCTL(name) \
192 (sysctl_##name = (factor) * normalized_sysctl_##name)
193 SET_SYSCTL(sched_min_granularity);
194 SET_SYSCTL(sched_latency);
195 SET_SYSCTL(sched_wakeup_granularity);
196 #undef SET_SYSCTL
197 }
198
199 void __init sched_init_granularity(void)
200 {
201 update_sysctl();
202 }
203
204 #define WMULT_CONST (~0U)
205 #define WMULT_SHIFT 32
206
207 static void __update_inv_weight(struct load_weight *lw)
208 {
209 unsigned long w;
210
211 if (likely(lw->inv_weight))
212 return;
213
214 w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * delta_exec * weight / lw.weight
226 * OR
227 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
228 *
229 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
230 * we're guaranteed shift stays positive because inv_weight is guaranteed to
231 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
232 *
233 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
234 * weight/lw.weight <= 1, and therefore our shift will also be positive.
235 */
236 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
237 {
238 u64 fact = scale_load_down(weight);
239 u32 fact_hi = (u32)(fact >> 32);
240 int shift = WMULT_SHIFT;
241 int fs;
242
243 __update_inv_weight(lw);
244
245 if (unlikely(fact_hi)) {
246 fs = fls(fact_hi);
247 shift -= fs;
248 fact >>= fs;
249 }
250
251 fact = mul_u32_u32(fact, lw->inv_weight);
252
253 fact_hi = (u32)(fact >> 32);
254 if (fact_hi) {
255 fs = fls(fact_hi);
256 shift -= fs;
257 fact >>= fs;
258 }
259
260 return mul_u64_u32_shr(delta_exec, fact, shift);
261 }
262
263
264 const struct sched_class fair_sched_class;
265
266 /**************************************************************
267 * CFS operations on generic schedulable entities:
268 */
269
270 #ifdef CONFIG_FAIR_GROUP_SCHED
271 static inline struct task_struct *task_of(struct sched_entity *se)
272 {
273 SCHED_WARN_ON(!entity_is_task(se));
274 return container_of(se, struct task_struct, se);
275 }
276
277 /* Walk up scheduling entities hierarchy */
278 #define for_each_sched_entity(se) \
279 for (; se; se = se->parent)
280
281 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
282 {
283 return p->se.cfs_rq;
284 }
285
286 /* runqueue on which this entity is (to be) queued */
287 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
288 {
289 return se->cfs_rq;
290 }
291
292 /* runqueue "owned" by this group */
293 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
294 {
295 return grp->my_q;
296 }
297
298 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
299 {
300 if (!path)
301 return;
302
303 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
304 autogroup_path(cfs_rq->tg, path, len);
305 else if (cfs_rq && cfs_rq->tg->css.cgroup)
306 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
307 else
308 strlcpy(path, "(null)", len);
309 }
310
311 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
312 {
313 struct rq *rq = rq_of(cfs_rq);
314 int cpu = cpu_of(rq);
315
316 if (cfs_rq->on_list)
317 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
318
319 cfs_rq->on_list = 1;
320
321 /*
322 * Ensure we either appear before our parent (if already
323 * enqueued) or force our parent to appear after us when it is
324 * enqueued. The fact that we always enqueue bottom-up
325 * reduces this to two cases and a special case for the root
326 * cfs_rq. Furthermore, it also means that we will always reset
327 * tmp_alone_branch either when the branch is connected
328 * to a tree or when we reach the top of the tree
329 */
330 if (cfs_rq->tg->parent &&
331 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
332 /*
333 * If parent is already on the list, we add the child
334 * just before. Thanks to circular linked property of
335 * the list, this means to put the child at the tail
336 * of the list that starts by parent.
337 */
338 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
339 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
340 /*
341 * The branch is now connected to its tree so we can
342 * reset tmp_alone_branch to the beginning of the
343 * list.
344 */
345 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
346 return true;
347 }
348
349 if (!cfs_rq->tg->parent) {
350 /*
351 * cfs rq without parent should be put
352 * at the tail of the list.
353 */
354 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
355 &rq->leaf_cfs_rq_list);
356 /*
357 * We have reach the top of a tree so we can reset
358 * tmp_alone_branch to the beginning of the list.
359 */
360 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
361 return true;
362 }
363
364 /*
365 * The parent has not already been added so we want to
366 * make sure that it will be put after us.
367 * tmp_alone_branch points to the begin of the branch
368 * where we will add parent.
369 */
370 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
371 /*
372 * update tmp_alone_branch to points to the new begin
373 * of the branch
374 */
375 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
376 return false;
377 }
378
379 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
380 {
381 if (cfs_rq->on_list) {
382 struct rq *rq = rq_of(cfs_rq);
383
384 /*
385 * With cfs_rq being unthrottled/throttled during an enqueue,
386 * it can happen the tmp_alone_branch points the a leaf that
387 * we finally want to del. In this case, tmp_alone_branch moves
388 * to the prev element but it will point to rq->leaf_cfs_rq_list
389 * at the end of the enqueue.
390 */
391 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
392 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
393
394 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
395 cfs_rq->on_list = 0;
396 }
397 }
398
399 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
400 {
401 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
402 }
403
404 /* Iterate thr' all leaf cfs_rq's on a runqueue */
405 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
406 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
407 leaf_cfs_rq_list)
408
409 /* Do the two (enqueued) entities belong to the same group ? */
410 static inline struct cfs_rq *
411 is_same_group(struct sched_entity *se, struct sched_entity *pse)
412 {
413 if (se->cfs_rq == pse->cfs_rq)
414 return se->cfs_rq;
415
416 return NULL;
417 }
418
419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
420 {
421 return se->parent;
422 }
423
424 static void
425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426 {
427 int se_depth, pse_depth;
428
429 /*
430 * preemption test can be made between sibling entities who are in the
431 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
432 * both tasks until we find their ancestors who are siblings of common
433 * parent.
434 */
435
436 /* First walk up until both entities are at same depth */
437 se_depth = (*se)->depth;
438 pse_depth = (*pse)->depth;
439
440 while (se_depth > pse_depth) {
441 se_depth--;
442 *se = parent_entity(*se);
443 }
444
445 while (pse_depth > se_depth) {
446 pse_depth--;
447 *pse = parent_entity(*pse);
448 }
449
450 while (!is_same_group(*se, *pse)) {
451 *se = parent_entity(*se);
452 *pse = parent_entity(*pse);
453 }
454 }
455
456 #else /* !CONFIG_FAIR_GROUP_SCHED */
457
458 static inline struct task_struct *task_of(struct sched_entity *se)
459 {
460 return container_of(se, struct task_struct, se);
461 }
462
463 #define for_each_sched_entity(se) \
464 for (; se; se = NULL)
465
466 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
467 {
468 return &task_rq(p)->cfs;
469 }
470
471 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
472 {
473 struct task_struct *p = task_of(se);
474 struct rq *rq = task_rq(p);
475
476 return &rq->cfs;
477 }
478
479 /* runqueue "owned" by this group */
480 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
481 {
482 return NULL;
483 }
484
485 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
486 {
487 if (path)
488 strlcpy(path, "(null)", len);
489 }
490
491 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
492 {
493 return true;
494 }
495
496 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
497 {
498 }
499
500 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
501 {
502 }
503
504 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
505 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
506
507 static inline struct sched_entity *parent_entity(struct sched_entity *se)
508 {
509 return NULL;
510 }
511
512 static inline void
513 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
514 {
515 }
516
517 #endif /* CONFIG_FAIR_GROUP_SCHED */
518
519 static __always_inline
520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
521
522 /**************************************************************
523 * Scheduling class tree data structure manipulation methods:
524 */
525
526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
527 {
528 s64 delta = (s64)(vruntime - max_vruntime);
529 if (delta > 0)
530 max_vruntime = vruntime;
531
532 return max_vruntime;
533 }
534
535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
536 {
537 s64 delta = (s64)(vruntime - min_vruntime);
538 if (delta < 0)
539 min_vruntime = vruntime;
540
541 return min_vruntime;
542 }
543
544 static inline bool entity_before(struct sched_entity *a,
545 struct sched_entity *b)
546 {
547 return (s64)(a->vruntime - b->vruntime) < 0;
548 }
549
550 #define __node_2_se(node) \
551 rb_entry((node), struct sched_entity, run_node)
552
553 static void update_min_vruntime(struct cfs_rq *cfs_rq)
554 {
555 struct sched_entity *curr = cfs_rq->curr;
556 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
557
558 u64 vruntime = cfs_rq->min_vruntime;
559
560 if (curr) {
561 if (curr->on_rq)
562 vruntime = curr->vruntime;
563 else
564 curr = NULL;
565 }
566
567 if (leftmost) { /* non-empty tree */
568 struct sched_entity *se = __node_2_se(leftmost);
569
570 if (!curr)
571 vruntime = se->vruntime;
572 else
573 vruntime = min_vruntime(vruntime, se->vruntime);
574 }
575
576 /* ensure we never gain time by being placed backwards. */
577 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
578 #ifndef CONFIG_64BIT
579 smp_wmb();
580 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
581 #endif
582 }
583
584 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
585 {
586 return entity_before(__node_2_se(a), __node_2_se(b));
587 }
588
589 /*
590 * Enqueue an entity into the rb-tree:
591 */
592 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
593 {
594 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
595 }
596
597 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
598 {
599 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
600 }
601
602 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
603 {
604 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
605
606 if (!left)
607 return NULL;
608
609 return __node_2_se(left);
610 }
611
612 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
613 {
614 struct rb_node *next = rb_next(&se->run_node);
615
616 if (!next)
617 return NULL;
618
619 return __node_2_se(next);
620 }
621
622 #ifdef CONFIG_SCHED_DEBUG
623 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
624 {
625 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
626
627 if (!last)
628 return NULL;
629
630 return __node_2_se(last);
631 }
632
633 /**************************************************************
634 * Scheduling class statistics methods:
635 */
636
637 int sched_update_scaling(void)
638 {
639 unsigned int factor = get_update_sysctl_factor();
640
641 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
642 sysctl_sched_min_granularity);
643
644 #define WRT_SYSCTL(name) \
645 (normalized_sysctl_##name = sysctl_##name / (factor))
646 WRT_SYSCTL(sched_min_granularity);
647 WRT_SYSCTL(sched_latency);
648 WRT_SYSCTL(sched_wakeup_granularity);
649 #undef WRT_SYSCTL
650
651 return 0;
652 }
653 #endif
654
655 /*
656 * delta /= w
657 */
658 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
659 {
660 if (unlikely(se->load.weight != NICE_0_LOAD))
661 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
662
663 return delta;
664 }
665
666 /*
667 * The idea is to set a period in which each task runs once.
668 *
669 * When there are too many tasks (sched_nr_latency) we have to stretch
670 * this period because otherwise the slices get too small.
671 *
672 * p = (nr <= nl) ? l : l*nr/nl
673 */
674 static u64 __sched_period(unsigned long nr_running)
675 {
676 if (unlikely(nr_running > sched_nr_latency))
677 return nr_running * sysctl_sched_min_granularity;
678 else
679 return sysctl_sched_latency;
680 }
681
682 /*
683 * We calculate the wall-time slice from the period by taking a part
684 * proportional to the weight.
685 *
686 * s = p*P[w/rw]
687 */
688 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
689 {
690 unsigned int nr_running = cfs_rq->nr_running;
691 u64 slice;
692
693 if (sched_feat(ALT_PERIOD))
694 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
695
696 slice = __sched_period(nr_running + !se->on_rq);
697
698 for_each_sched_entity(se) {
699 struct load_weight *load;
700 struct load_weight lw;
701
702 cfs_rq = cfs_rq_of(se);
703 load = &cfs_rq->load;
704
705 if (unlikely(!se->on_rq)) {
706 lw = cfs_rq->load;
707
708 update_load_add(&lw, se->load.weight);
709 load = &lw;
710 }
711 slice = __calc_delta(slice, se->load.weight, load);
712 }
713
714 if (sched_feat(BASE_SLICE))
715 slice = max(slice, (u64)sysctl_sched_min_granularity);
716
717 return slice;
718 }
719
720 /*
721 * We calculate the vruntime slice of a to-be-inserted task.
722 *
723 * vs = s/w
724 */
725 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
726 {
727 return calc_delta_fair(sched_slice(cfs_rq, se), se);
728 }
729
730 #include "pelt.h"
731 #ifdef CONFIG_SMP
732
733 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
734 static unsigned long task_h_load(struct task_struct *p);
735 static unsigned long capacity_of(int cpu);
736
737 /* Give new sched_entity start runnable values to heavy its load in infant time */
738 void init_entity_runnable_average(struct sched_entity *se)
739 {
740 struct sched_avg *sa = &se->avg;
741
742 memset(sa, 0, sizeof(*sa));
743
744 /*
745 * Tasks are initialized with full load to be seen as heavy tasks until
746 * they get a chance to stabilize to their real load level.
747 * Group entities are initialized with zero load to reflect the fact that
748 * nothing has been attached to the task group yet.
749 */
750 if (entity_is_task(se))
751 sa->load_avg = scale_load_down(se->load.weight);
752
753 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
754 }
755
756 static void attach_entity_cfs_rq(struct sched_entity *se);
757
758 /*
759 * With new tasks being created, their initial util_avgs are extrapolated
760 * based on the cfs_rq's current util_avg:
761 *
762 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
763 *
764 * However, in many cases, the above util_avg does not give a desired
765 * value. Moreover, the sum of the util_avgs may be divergent, such
766 * as when the series is a harmonic series.
767 *
768 * To solve this problem, we also cap the util_avg of successive tasks to
769 * only 1/2 of the left utilization budget:
770 *
771 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
772 *
773 * where n denotes the nth task and cpu_scale the CPU capacity.
774 *
775 * For example, for a CPU with 1024 of capacity, a simplest series from
776 * the beginning would be like:
777 *
778 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
779 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
780 *
781 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
782 * if util_avg > util_avg_cap.
783 */
784 void post_init_entity_util_avg(struct task_struct *p)
785 {
786 struct sched_entity *se = &p->se;
787 struct cfs_rq *cfs_rq = cfs_rq_of(se);
788 struct sched_avg *sa = &se->avg;
789 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
790 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
791
792 if (cap > 0) {
793 if (cfs_rq->avg.util_avg != 0) {
794 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
795 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
796
797 if (sa->util_avg > cap)
798 sa->util_avg = cap;
799 } else {
800 sa->util_avg = cap;
801 }
802 }
803
804 sa->runnable_avg = sa->util_avg;
805
806 if (p->sched_class != &fair_sched_class) {
807 /*
808 * For !fair tasks do:
809 *
810 update_cfs_rq_load_avg(now, cfs_rq);
811 attach_entity_load_avg(cfs_rq, se);
812 switched_from_fair(rq, p);
813 *
814 * such that the next switched_to_fair() has the
815 * expected state.
816 */
817 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
818 return;
819 }
820
821 attach_entity_cfs_rq(se);
822 }
823
824 #else /* !CONFIG_SMP */
825 void init_entity_runnable_average(struct sched_entity *se)
826 {
827 }
828 void post_init_entity_util_avg(struct task_struct *p)
829 {
830 }
831 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
832 {
833 }
834 #endif /* CONFIG_SMP */
835
836 /*
837 * Update the current task's runtime statistics.
838 */
839 static void update_curr(struct cfs_rq *cfs_rq)
840 {
841 struct sched_entity *curr = cfs_rq->curr;
842 u64 now = rq_clock_task(rq_of(cfs_rq));
843 u64 delta_exec;
844
845 if (unlikely(!curr))
846 return;
847
848 delta_exec = now - curr->exec_start;
849 if (unlikely((s64)delta_exec <= 0))
850 return;
851
852 curr->exec_start = now;
853
854 schedstat_set(curr->statistics.exec_max,
855 max(delta_exec, curr->statistics.exec_max));
856
857 curr->sum_exec_runtime += delta_exec;
858 schedstat_add(cfs_rq->exec_clock, delta_exec);
859
860 curr->vruntime += calc_delta_fair(delta_exec, curr);
861 update_min_vruntime(cfs_rq);
862
863 if (entity_is_task(curr)) {
864 struct task_struct *curtask = task_of(curr);
865
866 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
867 cgroup_account_cputime(curtask, delta_exec);
868 account_group_exec_runtime(curtask, delta_exec);
869 }
870
871 account_cfs_rq_runtime(cfs_rq, delta_exec);
872 }
873
874 static void update_curr_fair(struct rq *rq)
875 {
876 update_curr(cfs_rq_of(&rq->curr->se));
877 }
878
879 static inline void
880 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
881 {
882 u64 wait_start, prev_wait_start;
883
884 if (!schedstat_enabled())
885 return;
886
887 wait_start = rq_clock(rq_of(cfs_rq));
888 prev_wait_start = schedstat_val(se->statistics.wait_start);
889
890 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
891 likely(wait_start > prev_wait_start))
892 wait_start -= prev_wait_start;
893
894 __schedstat_set(se->statistics.wait_start, wait_start);
895 }
896
897 static inline void
898 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
899 {
900 struct task_struct *p;
901 u64 delta;
902
903 if (!schedstat_enabled())
904 return;
905
906 /*
907 * When the sched_schedstat changes from 0 to 1, some sched se
908 * maybe already in the runqueue, the se->statistics.wait_start
909 * will be 0.So it will let the delta wrong. We need to avoid this
910 * scenario.
911 */
912 if (unlikely(!schedstat_val(se->statistics.wait_start)))
913 return;
914
915 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
916
917 if (entity_is_task(se)) {
918 p = task_of(se);
919 if (task_on_rq_migrating(p)) {
920 /*
921 * Preserve migrating task's wait time so wait_start
922 * time stamp can be adjusted to accumulate wait time
923 * prior to migration.
924 */
925 __schedstat_set(se->statistics.wait_start, delta);
926 return;
927 }
928 trace_sched_stat_wait(p, delta);
929 }
930
931 __schedstat_set(se->statistics.wait_max,
932 max(schedstat_val(se->statistics.wait_max), delta));
933 __schedstat_inc(se->statistics.wait_count);
934 __schedstat_add(se->statistics.wait_sum, delta);
935 __schedstat_set(se->statistics.wait_start, 0);
936 }
937
938 static inline void
939 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
940 {
941 struct task_struct *tsk = NULL;
942 u64 sleep_start, block_start;
943
944 if (!schedstat_enabled())
945 return;
946
947 sleep_start = schedstat_val(se->statistics.sleep_start);
948 block_start = schedstat_val(se->statistics.block_start);
949
950 if (entity_is_task(se))
951 tsk = task_of(se);
952
953 if (sleep_start) {
954 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
955
956 if ((s64)delta < 0)
957 delta = 0;
958
959 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
960 __schedstat_set(se->statistics.sleep_max, delta);
961
962 __schedstat_set(se->statistics.sleep_start, 0);
963 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
964
965 if (tsk) {
966 account_scheduler_latency(tsk, delta >> 10, 1);
967 trace_sched_stat_sleep(tsk, delta);
968 }
969 }
970 if (block_start) {
971 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
972
973 if ((s64)delta < 0)
974 delta = 0;
975
976 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
977 __schedstat_set(se->statistics.block_max, delta);
978
979 __schedstat_set(se->statistics.block_start, 0);
980 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
981
982 if (tsk) {
983 if (tsk->in_iowait) {
984 __schedstat_add(se->statistics.iowait_sum, delta);
985 __schedstat_inc(se->statistics.iowait_count);
986 trace_sched_stat_iowait(tsk, delta);
987 }
988
989 trace_sched_stat_blocked(tsk, delta);
990
991 /*
992 * Blocking time is in units of nanosecs, so shift by
993 * 20 to get a milliseconds-range estimation of the
994 * amount of time that the task spent sleeping:
995 */
996 if (unlikely(prof_on == SLEEP_PROFILING)) {
997 profile_hits(SLEEP_PROFILING,
998 (void *)get_wchan(tsk),
999 delta >> 20);
1000 }
1001 account_scheduler_latency(tsk, delta >> 10, 0);
1002 }
1003 }
1004 }
1005
1006 /*
1007 * Task is being enqueued - update stats:
1008 */
1009 static inline void
1010 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1011 {
1012 if (!schedstat_enabled())
1013 return;
1014
1015 /*
1016 * Are we enqueueing a waiting task? (for current tasks
1017 * a dequeue/enqueue event is a NOP)
1018 */
1019 if (se != cfs_rq->curr)
1020 update_stats_wait_start(cfs_rq, se);
1021
1022 if (flags & ENQUEUE_WAKEUP)
1023 update_stats_enqueue_sleeper(cfs_rq, se);
1024 }
1025
1026 static inline void
1027 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1028 {
1029
1030 if (!schedstat_enabled())
1031 return;
1032
1033 /*
1034 * Mark the end of the wait period if dequeueing a
1035 * waiting task:
1036 */
1037 if (se != cfs_rq->curr)
1038 update_stats_wait_end(cfs_rq, se);
1039
1040 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1041 struct task_struct *tsk = task_of(se);
1042
1043 if (tsk->state & TASK_INTERRUPTIBLE)
1044 __schedstat_set(se->statistics.sleep_start,
1045 rq_clock(rq_of(cfs_rq)));
1046 if (tsk->state & TASK_UNINTERRUPTIBLE)
1047 __schedstat_set(se->statistics.block_start,
1048 rq_clock(rq_of(cfs_rq)));
1049 }
1050 }
1051
1052 /*
1053 * We are picking a new current task - update its stats:
1054 */
1055 static inline void
1056 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1057 {
1058 /*
1059 * We are starting a new run period:
1060 */
1061 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1062 }
1063
1064 /**************************************************
1065 * Scheduling class queueing methods:
1066 */
1067
1068 #ifdef CONFIG_NUMA_BALANCING
1069 /*
1070 * Approximate time to scan a full NUMA task in ms. The task scan period is
1071 * calculated based on the tasks virtual memory size and
1072 * numa_balancing_scan_size.
1073 */
1074 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1075 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1076
1077 /* Portion of address space to scan in MB */
1078 unsigned int sysctl_numa_balancing_scan_size = 256;
1079
1080 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1081 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1082
1083 struct numa_group {
1084 refcount_t refcount;
1085
1086 spinlock_t lock; /* nr_tasks, tasks */
1087 int nr_tasks;
1088 pid_t gid;
1089 int active_nodes;
1090
1091 struct rcu_head rcu;
1092 unsigned long total_faults;
1093 unsigned long max_faults_cpu;
1094 /*
1095 * Faults_cpu is used to decide whether memory should move
1096 * towards the CPU. As a consequence, these stats are weighted
1097 * more by CPU use than by memory faults.
1098 */
1099 unsigned long *faults_cpu;
1100 unsigned long faults[];
1101 };
1102
1103 /*
1104 * For functions that can be called in multiple contexts that permit reading
1105 * ->numa_group (see struct task_struct for locking rules).
1106 */
1107 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1108 {
1109 return rcu_dereference_check(p->numa_group, p == current ||
1110 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1111 }
1112
1113 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1114 {
1115 return rcu_dereference_protected(p->numa_group, p == current);
1116 }
1117
1118 static inline unsigned long group_faults_priv(struct numa_group *ng);
1119 static inline unsigned long group_faults_shared(struct numa_group *ng);
1120
1121 static unsigned int task_nr_scan_windows(struct task_struct *p)
1122 {
1123 unsigned long rss = 0;
1124 unsigned long nr_scan_pages;
1125
1126 /*
1127 * Calculations based on RSS as non-present and empty pages are skipped
1128 * by the PTE scanner and NUMA hinting faults should be trapped based
1129 * on resident pages
1130 */
1131 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1132 rss = get_mm_rss(p->mm);
1133 if (!rss)
1134 rss = nr_scan_pages;
1135
1136 rss = round_up(rss, nr_scan_pages);
1137 return rss / nr_scan_pages;
1138 }
1139
1140 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1141 #define MAX_SCAN_WINDOW 2560
1142
1143 static unsigned int task_scan_min(struct task_struct *p)
1144 {
1145 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1146 unsigned int scan, floor;
1147 unsigned int windows = 1;
1148
1149 if (scan_size < MAX_SCAN_WINDOW)
1150 windows = MAX_SCAN_WINDOW / scan_size;
1151 floor = 1000 / windows;
1152
1153 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1154 return max_t(unsigned int, floor, scan);
1155 }
1156
1157 static unsigned int task_scan_start(struct task_struct *p)
1158 {
1159 unsigned long smin = task_scan_min(p);
1160 unsigned long period = smin;
1161 struct numa_group *ng;
1162
1163 /* Scale the maximum scan period with the amount of shared memory. */
1164 rcu_read_lock();
1165 ng = rcu_dereference(p->numa_group);
1166 if (ng) {
1167 unsigned long shared = group_faults_shared(ng);
1168 unsigned long private = group_faults_priv(ng);
1169
1170 period *= refcount_read(&ng->refcount);
1171 period *= shared + 1;
1172 period /= private + shared + 1;
1173 }
1174 rcu_read_unlock();
1175
1176 return max(smin, period);
1177 }
1178
1179 static unsigned int task_scan_max(struct task_struct *p)
1180 {
1181 unsigned long smin = task_scan_min(p);
1182 unsigned long smax;
1183 struct numa_group *ng;
1184
1185 /* Watch for min being lower than max due to floor calculations */
1186 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1187
1188 /* Scale the maximum scan period with the amount of shared memory. */
1189 ng = deref_curr_numa_group(p);
1190 if (ng) {
1191 unsigned long shared = group_faults_shared(ng);
1192 unsigned long private = group_faults_priv(ng);
1193 unsigned long period = smax;
1194
1195 period *= refcount_read(&ng->refcount);
1196 period *= shared + 1;
1197 period /= private + shared + 1;
1198
1199 smax = max(smax, period);
1200 }
1201
1202 return max(smin, smax);
1203 }
1204
1205 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1206 {
1207 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1208 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1209 }
1210
1211 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1212 {
1213 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1214 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1215 }
1216
1217 /* Shared or private faults. */
1218 #define NR_NUMA_HINT_FAULT_TYPES 2
1219
1220 /* Memory and CPU locality */
1221 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1222
1223 /* Averaged statistics, and temporary buffers. */
1224 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1225
1226 pid_t task_numa_group_id(struct task_struct *p)
1227 {
1228 struct numa_group *ng;
1229 pid_t gid = 0;
1230
1231 rcu_read_lock();
1232 ng = rcu_dereference(p->numa_group);
1233 if (ng)
1234 gid = ng->gid;
1235 rcu_read_unlock();
1236
1237 return gid;
1238 }
1239
1240 /*
1241 * The averaged statistics, shared & private, memory & CPU,
1242 * occupy the first half of the array. The second half of the
1243 * array is for current counters, which are averaged into the
1244 * first set by task_numa_placement.
1245 */
1246 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1247 {
1248 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1249 }
1250
1251 static inline unsigned long task_faults(struct task_struct *p, int nid)
1252 {
1253 if (!p->numa_faults)
1254 return 0;
1255
1256 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1257 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1258 }
1259
1260 static inline unsigned long group_faults(struct task_struct *p, int nid)
1261 {
1262 struct numa_group *ng = deref_task_numa_group(p);
1263
1264 if (!ng)
1265 return 0;
1266
1267 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1268 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1269 }
1270
1271 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1272 {
1273 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1274 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1275 }
1276
1277 static inline unsigned long group_faults_priv(struct numa_group *ng)
1278 {
1279 unsigned long faults = 0;
1280 int node;
1281
1282 for_each_online_node(node) {
1283 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1284 }
1285
1286 return faults;
1287 }
1288
1289 static inline unsigned long group_faults_shared(struct numa_group *ng)
1290 {
1291 unsigned long faults = 0;
1292 int node;
1293
1294 for_each_online_node(node) {
1295 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1296 }
1297
1298 return faults;
1299 }
1300
1301 /*
1302 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1303 * considered part of a numa group's pseudo-interleaving set. Migrations
1304 * between these nodes are slowed down, to allow things to settle down.
1305 */
1306 #define ACTIVE_NODE_FRACTION 3
1307
1308 static bool numa_is_active_node(int nid, struct numa_group *ng)
1309 {
1310 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1311 }
1312
1313 /* Handle placement on systems where not all nodes are directly connected. */
1314 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1315 int maxdist, bool task)
1316 {
1317 unsigned long score = 0;
1318 int node;
1319
1320 /*
1321 * All nodes are directly connected, and the same distance
1322 * from each other. No need for fancy placement algorithms.
1323 */
1324 if (sched_numa_topology_type == NUMA_DIRECT)
1325 return 0;
1326
1327 /*
1328 * This code is called for each node, introducing N^2 complexity,
1329 * which should be ok given the number of nodes rarely exceeds 8.
1330 */
1331 for_each_online_node(node) {
1332 unsigned long faults;
1333 int dist = node_distance(nid, node);
1334
1335 /*
1336 * The furthest away nodes in the system are not interesting
1337 * for placement; nid was already counted.
1338 */
1339 if (dist == sched_max_numa_distance || node == nid)
1340 continue;
1341
1342 /*
1343 * On systems with a backplane NUMA topology, compare groups
1344 * of nodes, and move tasks towards the group with the most
1345 * memory accesses. When comparing two nodes at distance
1346 * "hoplimit", only nodes closer by than "hoplimit" are part
1347 * of each group. Skip other nodes.
1348 */
1349 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1350 dist >= maxdist)
1351 continue;
1352
1353 /* Add up the faults from nearby nodes. */
1354 if (task)
1355 faults = task_faults(p, node);
1356 else
1357 faults = group_faults(p, node);
1358
1359 /*
1360 * On systems with a glueless mesh NUMA topology, there are
1361 * no fixed "groups of nodes". Instead, nodes that are not
1362 * directly connected bounce traffic through intermediate
1363 * nodes; a numa_group can occupy any set of nodes.
1364 * The further away a node is, the less the faults count.
1365 * This seems to result in good task placement.
1366 */
1367 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1368 faults *= (sched_max_numa_distance - dist);
1369 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1370 }
1371
1372 score += faults;
1373 }
1374
1375 return score;
1376 }
1377
1378 /*
1379 * These return the fraction of accesses done by a particular task, or
1380 * task group, on a particular numa node. The group weight is given a
1381 * larger multiplier, in order to group tasks together that are almost
1382 * evenly spread out between numa nodes.
1383 */
1384 static inline unsigned long task_weight(struct task_struct *p, int nid,
1385 int dist)
1386 {
1387 unsigned long faults, total_faults;
1388
1389 if (!p->numa_faults)
1390 return 0;
1391
1392 total_faults = p->total_numa_faults;
1393
1394 if (!total_faults)
1395 return 0;
1396
1397 faults = task_faults(p, nid);
1398 faults += score_nearby_nodes(p, nid, dist, true);
1399
1400 return 1000 * faults / total_faults;
1401 }
1402
1403 static inline unsigned long group_weight(struct task_struct *p, int nid,
1404 int dist)
1405 {
1406 struct numa_group *ng = deref_task_numa_group(p);
1407 unsigned long faults, total_faults;
1408
1409 if (!ng)
1410 return 0;
1411
1412 total_faults = ng->total_faults;
1413
1414 if (!total_faults)
1415 return 0;
1416
1417 faults = group_faults(p, nid);
1418 faults += score_nearby_nodes(p, nid, dist, false);
1419
1420 return 1000 * faults / total_faults;
1421 }
1422
1423 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1424 int src_nid, int dst_cpu)
1425 {
1426 struct numa_group *ng = deref_curr_numa_group(p);
1427 int dst_nid = cpu_to_node(dst_cpu);
1428 int last_cpupid, this_cpupid;
1429
1430 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1431 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1432
1433 /*
1434 * Allow first faults or private faults to migrate immediately early in
1435 * the lifetime of a task. The magic number 4 is based on waiting for
1436 * two full passes of the "multi-stage node selection" test that is
1437 * executed below.
1438 */
1439 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1440 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1441 return true;
1442
1443 /*
1444 * Multi-stage node selection is used in conjunction with a periodic
1445 * migration fault to build a temporal task<->page relation. By using
1446 * a two-stage filter we remove short/unlikely relations.
1447 *
1448 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1449 * a task's usage of a particular page (n_p) per total usage of this
1450 * page (n_t) (in a given time-span) to a probability.
1451 *
1452 * Our periodic faults will sample this probability and getting the
1453 * same result twice in a row, given these samples are fully
1454 * independent, is then given by P(n)^2, provided our sample period
1455 * is sufficiently short compared to the usage pattern.
1456 *
1457 * This quadric squishes small probabilities, making it less likely we
1458 * act on an unlikely task<->page relation.
1459 */
1460 if (!cpupid_pid_unset(last_cpupid) &&
1461 cpupid_to_nid(last_cpupid) != dst_nid)
1462 return false;
1463
1464 /* Always allow migrate on private faults */
1465 if (cpupid_match_pid(p, last_cpupid))
1466 return true;
1467
1468 /* A shared fault, but p->numa_group has not been set up yet. */
1469 if (!ng)
1470 return true;
1471
1472 /*
1473 * Destination node is much more heavily used than the source
1474 * node? Allow migration.
1475 */
1476 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1477 ACTIVE_NODE_FRACTION)
1478 return true;
1479
1480 /*
1481 * Distribute memory according to CPU & memory use on each node,
1482 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1483 *
1484 * faults_cpu(dst) 3 faults_cpu(src)
1485 * --------------- * - > ---------------
1486 * faults_mem(dst) 4 faults_mem(src)
1487 */
1488 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1489 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1490 }
1491
1492 /*
1493 * 'numa_type' describes the node at the moment of load balancing.
1494 */
1495 enum numa_type {
1496 /* The node has spare capacity that can be used to run more tasks. */
1497 node_has_spare = 0,
1498 /*
1499 * The node is fully used and the tasks don't compete for more CPU
1500 * cycles. Nevertheless, some tasks might wait before running.
1501 */
1502 node_fully_busy,
1503 /*
1504 * The node is overloaded and can't provide expected CPU cycles to all
1505 * tasks.
1506 */
1507 node_overloaded
1508 };
1509
1510 /* Cached statistics for all CPUs within a node */
1511 struct numa_stats {
1512 unsigned long load;
1513 unsigned long runnable;
1514 unsigned long util;
1515 /* Total compute capacity of CPUs on a node */
1516 unsigned long compute_capacity;
1517 unsigned int nr_running;
1518 unsigned int weight;
1519 enum numa_type node_type;
1520 int idle_cpu;
1521 };
1522
1523 static inline bool is_core_idle(int cpu)
1524 {
1525 #ifdef CONFIG_SCHED_SMT
1526 int sibling;
1527
1528 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1529 if (cpu == sibling)
1530 continue;
1531
1532 if (!idle_cpu(cpu))
1533 return false;
1534 }
1535 #endif
1536
1537 return true;
1538 }
1539
1540 struct task_numa_env {
1541 struct task_struct *p;
1542
1543 int src_cpu, src_nid;
1544 int dst_cpu, dst_nid;
1545
1546 struct numa_stats src_stats, dst_stats;
1547
1548 int imbalance_pct;
1549 int dist;
1550
1551 struct task_struct *best_task;
1552 long best_imp;
1553 int best_cpu;
1554 };
1555
1556 static unsigned long cpu_load(struct rq *rq);
1557 static unsigned long cpu_runnable(struct rq *rq);
1558 static unsigned long cpu_util(int cpu);
1559 static inline long adjust_numa_imbalance(int imbalance,
1560 int dst_running, int dst_weight);
1561
1562 static inline enum
1563 numa_type numa_classify(unsigned int imbalance_pct,
1564 struct numa_stats *ns)
1565 {
1566 if ((ns->nr_running > ns->weight) &&
1567 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1568 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1569 return node_overloaded;
1570
1571 if ((ns->nr_running < ns->weight) ||
1572 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1573 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1574 return node_has_spare;
1575
1576 return node_fully_busy;
1577 }
1578
1579 #ifdef CONFIG_SCHED_SMT
1580 /* Forward declarations of select_idle_sibling helpers */
1581 static inline bool test_idle_cores(int cpu, bool def);
1582 static inline int numa_idle_core(int idle_core, int cpu)
1583 {
1584 if (!static_branch_likely(&sched_smt_present) ||
1585 idle_core >= 0 || !test_idle_cores(cpu, false))
1586 return idle_core;
1587
1588 /*
1589 * Prefer cores instead of packing HT siblings
1590 * and triggering future load balancing.
1591 */
1592 if (is_core_idle(cpu))
1593 idle_core = cpu;
1594
1595 return idle_core;
1596 }
1597 #else
1598 static inline int numa_idle_core(int idle_core, int cpu)
1599 {
1600 return idle_core;
1601 }
1602 #endif
1603
1604 /*
1605 * Gather all necessary information to make NUMA balancing placement
1606 * decisions that are compatible with standard load balancer. This
1607 * borrows code and logic from update_sg_lb_stats but sharing a
1608 * common implementation is impractical.
1609 */
1610 static void update_numa_stats(struct task_numa_env *env,
1611 struct numa_stats *ns, int nid,
1612 bool find_idle)
1613 {
1614 int cpu, idle_core = -1;
1615
1616 memset(ns, 0, sizeof(*ns));
1617 ns->idle_cpu = -1;
1618
1619 rcu_read_lock();
1620 for_each_cpu(cpu, cpumask_of_node(nid)) {
1621 struct rq *rq = cpu_rq(cpu);
1622
1623 ns->load += cpu_load(rq);
1624 ns->runnable += cpu_runnable(rq);
1625 ns->util += cpu_util(cpu);
1626 ns->nr_running += rq->cfs.h_nr_running;
1627 ns->compute_capacity += capacity_of(cpu);
1628
1629 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1630 if (READ_ONCE(rq->numa_migrate_on) ||
1631 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1632 continue;
1633
1634 if (ns->idle_cpu == -1)
1635 ns->idle_cpu = cpu;
1636
1637 idle_core = numa_idle_core(idle_core, cpu);
1638 }
1639 }
1640 rcu_read_unlock();
1641
1642 ns->weight = cpumask_weight(cpumask_of_node(nid));
1643
1644 ns->node_type = numa_classify(env->imbalance_pct, ns);
1645
1646 if (idle_core >= 0)
1647 ns->idle_cpu = idle_core;
1648 }
1649
1650 static void task_numa_assign(struct task_numa_env *env,
1651 struct task_struct *p, long imp)
1652 {
1653 struct rq *rq = cpu_rq(env->dst_cpu);
1654
1655 /* Check if run-queue part of active NUMA balance. */
1656 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1657 int cpu;
1658 int start = env->dst_cpu;
1659
1660 /* Find alternative idle CPU. */
1661 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1662 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1663 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1664 continue;
1665 }
1666
1667 env->dst_cpu = cpu;
1668 rq = cpu_rq(env->dst_cpu);
1669 if (!xchg(&rq->numa_migrate_on, 1))
1670 goto assign;
1671 }
1672
1673 /* Failed to find an alternative idle CPU */
1674 return;
1675 }
1676
1677 assign:
1678 /*
1679 * Clear previous best_cpu/rq numa-migrate flag, since task now
1680 * found a better CPU to move/swap.
1681 */
1682 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1683 rq = cpu_rq(env->best_cpu);
1684 WRITE_ONCE(rq->numa_migrate_on, 0);
1685 }
1686
1687 if (env->best_task)
1688 put_task_struct(env->best_task);
1689 if (p)
1690 get_task_struct(p);
1691
1692 env->best_task = p;
1693 env->best_imp = imp;
1694 env->best_cpu = env->dst_cpu;
1695 }
1696
1697 static bool load_too_imbalanced(long src_load, long dst_load,
1698 struct task_numa_env *env)
1699 {
1700 long imb, old_imb;
1701 long orig_src_load, orig_dst_load;
1702 long src_capacity, dst_capacity;
1703
1704 /*
1705 * The load is corrected for the CPU capacity available on each node.
1706 *
1707 * src_load dst_load
1708 * ------------ vs ---------
1709 * src_capacity dst_capacity
1710 */
1711 src_capacity = env->src_stats.compute_capacity;
1712 dst_capacity = env->dst_stats.compute_capacity;
1713
1714 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1715
1716 orig_src_load = env->src_stats.load;
1717 orig_dst_load = env->dst_stats.load;
1718
1719 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1720
1721 /* Would this change make things worse? */
1722 return (imb > old_imb);
1723 }
1724
1725 /*
1726 * Maximum NUMA importance can be 1998 (2*999);
1727 * SMALLIMP @ 30 would be close to 1998/64.
1728 * Used to deter task migration.
1729 */
1730 #define SMALLIMP 30
1731
1732 /*
1733 * This checks if the overall compute and NUMA accesses of the system would
1734 * be improved if the source tasks was migrated to the target dst_cpu taking
1735 * into account that it might be best if task running on the dst_cpu should
1736 * be exchanged with the source task
1737 */
1738 static bool task_numa_compare(struct task_numa_env *env,
1739 long taskimp, long groupimp, bool maymove)
1740 {
1741 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1742 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1743 long imp = p_ng ? groupimp : taskimp;
1744 struct task_struct *cur;
1745 long src_load, dst_load;
1746 int dist = env->dist;
1747 long moveimp = imp;
1748 long load;
1749 bool stopsearch = false;
1750
1751 if (READ_ONCE(dst_rq->numa_migrate_on))
1752 return false;
1753
1754 rcu_read_lock();
1755 cur = rcu_dereference(dst_rq->curr);
1756 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1757 cur = NULL;
1758
1759 /*
1760 * Because we have preemption enabled we can get migrated around and
1761 * end try selecting ourselves (current == env->p) as a swap candidate.
1762 */
1763 if (cur == env->p) {
1764 stopsearch = true;
1765 goto unlock;
1766 }
1767
1768 if (!cur) {
1769 if (maymove && moveimp >= env->best_imp)
1770 goto assign;
1771 else
1772 goto unlock;
1773 }
1774
1775 /* Skip this swap candidate if cannot move to the source cpu. */
1776 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1777 goto unlock;
1778
1779 /*
1780 * Skip this swap candidate if it is not moving to its preferred
1781 * node and the best task is.
1782 */
1783 if (env->best_task &&
1784 env->best_task->numa_preferred_nid == env->src_nid &&
1785 cur->numa_preferred_nid != env->src_nid) {
1786 goto unlock;
1787 }
1788
1789 /*
1790 * "imp" is the fault differential for the source task between the
1791 * source and destination node. Calculate the total differential for
1792 * the source task and potential destination task. The more negative
1793 * the value is, the more remote accesses that would be expected to
1794 * be incurred if the tasks were swapped.
1795 *
1796 * If dst and source tasks are in the same NUMA group, or not
1797 * in any group then look only at task weights.
1798 */
1799 cur_ng = rcu_dereference(cur->numa_group);
1800 if (cur_ng == p_ng) {
1801 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1802 task_weight(cur, env->dst_nid, dist);
1803 /*
1804 * Add some hysteresis to prevent swapping the
1805 * tasks within a group over tiny differences.
1806 */
1807 if (cur_ng)
1808 imp -= imp / 16;
1809 } else {
1810 /*
1811 * Compare the group weights. If a task is all by itself
1812 * (not part of a group), use the task weight instead.
1813 */
1814 if (cur_ng && p_ng)
1815 imp += group_weight(cur, env->src_nid, dist) -
1816 group_weight(cur, env->dst_nid, dist);
1817 else
1818 imp += task_weight(cur, env->src_nid, dist) -
1819 task_weight(cur, env->dst_nid, dist);
1820 }
1821
1822 /* Discourage picking a task already on its preferred node */
1823 if (cur->numa_preferred_nid == env->dst_nid)
1824 imp -= imp / 16;
1825
1826 /*
1827 * Encourage picking a task that moves to its preferred node.
1828 * This potentially makes imp larger than it's maximum of
1829 * 1998 (see SMALLIMP and task_weight for why) but in this
1830 * case, it does not matter.
1831 */
1832 if (cur->numa_preferred_nid == env->src_nid)
1833 imp += imp / 8;
1834
1835 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1836 imp = moveimp;
1837 cur = NULL;
1838 goto assign;
1839 }
1840
1841 /*
1842 * Prefer swapping with a task moving to its preferred node over a
1843 * task that is not.
1844 */
1845 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1846 env->best_task->numa_preferred_nid != env->src_nid) {
1847 goto assign;
1848 }
1849
1850 /*
1851 * If the NUMA importance is less than SMALLIMP,
1852 * task migration might only result in ping pong
1853 * of tasks and also hurt performance due to cache
1854 * misses.
1855 */
1856 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1857 goto unlock;
1858
1859 /*
1860 * In the overloaded case, try and keep the load balanced.
1861 */
1862 load = task_h_load(env->p) - task_h_load(cur);
1863 if (!load)
1864 goto assign;
1865
1866 dst_load = env->dst_stats.load + load;
1867 src_load = env->src_stats.load - load;
1868
1869 if (load_too_imbalanced(src_load, dst_load, env))
1870 goto unlock;
1871
1872 assign:
1873 /* Evaluate an idle CPU for a task numa move. */
1874 if (!cur) {
1875 int cpu = env->dst_stats.idle_cpu;
1876
1877 /* Nothing cached so current CPU went idle since the search. */
1878 if (cpu < 0)
1879 cpu = env->dst_cpu;
1880
1881 /*
1882 * If the CPU is no longer truly idle and the previous best CPU
1883 * is, keep using it.
1884 */
1885 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1886 idle_cpu(env->best_cpu)) {
1887 cpu = env->best_cpu;
1888 }
1889
1890 env->dst_cpu = cpu;
1891 }
1892
1893 task_numa_assign(env, cur, imp);
1894
1895 /*
1896 * If a move to idle is allowed because there is capacity or load
1897 * balance improves then stop the search. While a better swap
1898 * candidate may exist, a search is not free.
1899 */
1900 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1901 stopsearch = true;
1902
1903 /*
1904 * If a swap candidate must be identified and the current best task
1905 * moves its preferred node then stop the search.
1906 */
1907 if (!maymove && env->best_task &&
1908 env->best_task->numa_preferred_nid == env->src_nid) {
1909 stopsearch = true;
1910 }
1911 unlock:
1912 rcu_read_unlock();
1913
1914 return stopsearch;
1915 }
1916
1917 static void task_numa_find_cpu(struct task_numa_env *env,
1918 long taskimp, long groupimp)
1919 {
1920 bool maymove = false;
1921 int cpu;
1922
1923 /*
1924 * If dst node has spare capacity, then check if there is an
1925 * imbalance that would be overruled by the load balancer.
1926 */
1927 if (env->dst_stats.node_type == node_has_spare) {
1928 unsigned int imbalance;
1929 int src_running, dst_running;
1930
1931 /*
1932 * Would movement cause an imbalance? Note that if src has
1933 * more running tasks that the imbalance is ignored as the
1934 * move improves the imbalance from the perspective of the
1935 * CPU load balancer.
1936 * */
1937 src_running = env->src_stats.nr_running - 1;
1938 dst_running = env->dst_stats.nr_running + 1;
1939 imbalance = max(0, dst_running - src_running);
1940 imbalance = adjust_numa_imbalance(imbalance, dst_running,
1941 env->dst_stats.weight);
1942
1943 /* Use idle CPU if there is no imbalance */
1944 if (!imbalance) {
1945 maymove = true;
1946 if (env->dst_stats.idle_cpu >= 0) {
1947 env->dst_cpu = env->dst_stats.idle_cpu;
1948 task_numa_assign(env, NULL, 0);
1949 return;
1950 }
1951 }
1952 } else {
1953 long src_load, dst_load, load;
1954 /*
1955 * If the improvement from just moving env->p direction is better
1956 * than swapping tasks around, check if a move is possible.
1957 */
1958 load = task_h_load(env->p);
1959 dst_load = env->dst_stats.load + load;
1960 src_load = env->src_stats.load - load;
1961 maymove = !load_too_imbalanced(src_load, dst_load, env);
1962 }
1963
1964 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1965 /* Skip this CPU if the source task cannot migrate */
1966 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1967 continue;
1968
1969 env->dst_cpu = cpu;
1970 if (task_numa_compare(env, taskimp, groupimp, maymove))
1971 break;
1972 }
1973 }
1974
1975 static int task_numa_migrate(struct task_struct *p)
1976 {
1977 struct task_numa_env env = {
1978 .p = p,
1979
1980 .src_cpu = task_cpu(p),
1981 .src_nid = task_node(p),
1982
1983 .imbalance_pct = 112,
1984
1985 .best_task = NULL,
1986 .best_imp = 0,
1987 .best_cpu = -1,
1988 };
1989 unsigned long taskweight, groupweight;
1990 struct sched_domain *sd;
1991 long taskimp, groupimp;
1992 struct numa_group *ng;
1993 struct rq *best_rq;
1994 int nid, ret, dist;
1995
1996 /*
1997 * Pick the lowest SD_NUMA domain, as that would have the smallest
1998 * imbalance and would be the first to start moving tasks about.
1999 *
2000 * And we want to avoid any moving of tasks about, as that would create
2001 * random movement of tasks -- counter the numa conditions we're trying
2002 * to satisfy here.
2003 */
2004 rcu_read_lock();
2005 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2006 if (sd)
2007 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2008 rcu_read_unlock();
2009
2010 /*
2011 * Cpusets can break the scheduler domain tree into smaller
2012 * balance domains, some of which do not cross NUMA boundaries.
2013 * Tasks that are "trapped" in such domains cannot be migrated
2014 * elsewhere, so there is no point in (re)trying.
2015 */
2016 if (unlikely(!sd)) {
2017 sched_setnuma(p, task_node(p));
2018 return -EINVAL;
2019 }
2020
2021 env.dst_nid = p->numa_preferred_nid;
2022 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2023 taskweight = task_weight(p, env.src_nid, dist);
2024 groupweight = group_weight(p, env.src_nid, dist);
2025 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2026 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2027 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2028 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2029
2030 /* Try to find a spot on the preferred nid. */
2031 task_numa_find_cpu(&env, taskimp, groupimp);
2032
2033 /*
2034 * Look at other nodes in these cases:
2035 * - there is no space available on the preferred_nid
2036 * - the task is part of a numa_group that is interleaved across
2037 * multiple NUMA nodes; in order to better consolidate the group,
2038 * we need to check other locations.
2039 */
2040 ng = deref_curr_numa_group(p);
2041 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2042 for_each_online_node(nid) {
2043 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2044 continue;
2045
2046 dist = node_distance(env.src_nid, env.dst_nid);
2047 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2048 dist != env.dist) {
2049 taskweight = task_weight(p, env.src_nid, dist);
2050 groupweight = group_weight(p, env.src_nid, dist);
2051 }
2052
2053 /* Only consider nodes where both task and groups benefit */
2054 taskimp = task_weight(p, nid, dist) - taskweight;
2055 groupimp = group_weight(p, nid, dist) - groupweight;
2056 if (taskimp < 0 && groupimp < 0)
2057 continue;
2058
2059 env.dist = dist;
2060 env.dst_nid = nid;
2061 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2062 task_numa_find_cpu(&env, taskimp, groupimp);
2063 }
2064 }
2065
2066 /*
2067 * If the task is part of a workload that spans multiple NUMA nodes,
2068 * and is migrating into one of the workload's active nodes, remember
2069 * this node as the task's preferred numa node, so the workload can
2070 * settle down.
2071 * A task that migrated to a second choice node will be better off
2072 * trying for a better one later. Do not set the preferred node here.
2073 */
2074 if (ng) {
2075 if (env.best_cpu == -1)
2076 nid = env.src_nid;
2077 else
2078 nid = cpu_to_node(env.best_cpu);
2079
2080 if (nid != p->numa_preferred_nid)
2081 sched_setnuma(p, nid);
2082 }
2083
2084 /* No better CPU than the current one was found. */
2085 if (env.best_cpu == -1) {
2086 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2087 return -EAGAIN;
2088 }
2089
2090 best_rq = cpu_rq(env.best_cpu);
2091 if (env.best_task == NULL) {
2092 ret = migrate_task_to(p, env.best_cpu);
2093 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2094 if (ret != 0)
2095 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2096 return ret;
2097 }
2098
2099 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2100 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2101
2102 if (ret != 0)
2103 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2104 put_task_struct(env.best_task);
2105 return ret;
2106 }
2107
2108 /* Attempt to migrate a task to a CPU on the preferred node. */
2109 static void numa_migrate_preferred(struct task_struct *p)
2110 {
2111 unsigned long interval = HZ;
2112
2113 /* This task has no NUMA fault statistics yet */
2114 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2115 return;
2116
2117 /* Periodically retry migrating the task to the preferred node */
2118 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2119 p->numa_migrate_retry = jiffies + interval;
2120
2121 /* Success if task is already running on preferred CPU */
2122 if (task_node(p) == p->numa_preferred_nid)
2123 return;
2124
2125 /* Otherwise, try migrate to a CPU on the preferred node */
2126 task_numa_migrate(p);
2127 }
2128
2129 /*
2130 * Find out how many nodes on the workload is actively running on. Do this by
2131 * tracking the nodes from which NUMA hinting faults are triggered. This can
2132 * be different from the set of nodes where the workload's memory is currently
2133 * located.
2134 */
2135 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2136 {
2137 unsigned long faults, max_faults = 0;
2138 int nid, active_nodes = 0;
2139
2140 for_each_online_node(nid) {
2141 faults = group_faults_cpu(numa_group, nid);
2142 if (faults > max_faults)
2143 max_faults = faults;
2144 }
2145
2146 for_each_online_node(nid) {
2147 faults = group_faults_cpu(numa_group, nid);
2148 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2149 active_nodes++;
2150 }
2151
2152 numa_group->max_faults_cpu = max_faults;
2153 numa_group->active_nodes = active_nodes;
2154 }
2155
2156 /*
2157 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2158 * increments. The more local the fault statistics are, the higher the scan
2159 * period will be for the next scan window. If local/(local+remote) ratio is
2160 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2161 * the scan period will decrease. Aim for 70% local accesses.
2162 */
2163 #define NUMA_PERIOD_SLOTS 10
2164 #define NUMA_PERIOD_THRESHOLD 7
2165
2166 /*
2167 * Increase the scan period (slow down scanning) if the majority of
2168 * our memory is already on our local node, or if the majority of
2169 * the page accesses are shared with other processes.
2170 * Otherwise, decrease the scan period.
2171 */
2172 static void update_task_scan_period(struct task_struct *p,
2173 unsigned long shared, unsigned long private)
2174 {
2175 unsigned int period_slot;
2176 int lr_ratio, ps_ratio;
2177 int diff;
2178
2179 unsigned long remote = p->numa_faults_locality[0];
2180 unsigned long local = p->numa_faults_locality[1];
2181
2182 /*
2183 * If there were no record hinting faults then either the task is
2184 * completely idle or all activity is areas that are not of interest
2185 * to automatic numa balancing. Related to that, if there were failed
2186 * migration then it implies we are migrating too quickly or the local
2187 * node is overloaded. In either case, scan slower
2188 */
2189 if (local + shared == 0 || p->numa_faults_locality[2]) {
2190 p->numa_scan_period = min(p->numa_scan_period_max,
2191 p->numa_scan_period << 1);
2192
2193 p->mm->numa_next_scan = jiffies +
2194 msecs_to_jiffies(p->numa_scan_period);
2195
2196 return;
2197 }
2198
2199 /*
2200 * Prepare to scale scan period relative to the current period.
2201 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2202 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2203 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2204 */
2205 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2206 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2207 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2208
2209 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2210 /*
2211 * Most memory accesses are local. There is no need to
2212 * do fast NUMA scanning, since memory is already local.
2213 */
2214 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2215 if (!slot)
2216 slot = 1;
2217 diff = slot * period_slot;
2218 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2219 /*
2220 * Most memory accesses are shared with other tasks.
2221 * There is no point in continuing fast NUMA scanning,
2222 * since other tasks may just move the memory elsewhere.
2223 */
2224 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2225 if (!slot)
2226 slot = 1;
2227 diff = slot * period_slot;
2228 } else {
2229 /*
2230 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2231 * yet they are not on the local NUMA node. Speed up
2232 * NUMA scanning to get the memory moved over.
2233 */
2234 int ratio = max(lr_ratio, ps_ratio);
2235 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2236 }
2237
2238 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2239 task_scan_min(p), task_scan_max(p));
2240 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2241 }
2242
2243 /*
2244 * Get the fraction of time the task has been running since the last
2245 * NUMA placement cycle. The scheduler keeps similar statistics, but
2246 * decays those on a 32ms period, which is orders of magnitude off
2247 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2248 * stats only if the task is so new there are no NUMA statistics yet.
2249 */
2250 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2251 {
2252 u64 runtime, delta, now;
2253 /* Use the start of this time slice to avoid calculations. */
2254 now = p->se.exec_start;
2255 runtime = p->se.sum_exec_runtime;
2256
2257 if (p->last_task_numa_placement) {
2258 delta = runtime - p->last_sum_exec_runtime;
2259 *period = now - p->last_task_numa_placement;
2260
2261 /* Avoid time going backwards, prevent potential divide error: */
2262 if (unlikely((s64)*period < 0))
2263 *period = 0;
2264 } else {
2265 delta = p->se.avg.load_sum;
2266 *period = LOAD_AVG_MAX;
2267 }
2268
2269 p->last_sum_exec_runtime = runtime;
2270 p->last_task_numa_placement = now;
2271
2272 return delta;
2273 }
2274
2275 /*
2276 * Determine the preferred nid for a task in a numa_group. This needs to
2277 * be done in a way that produces consistent results with group_weight,
2278 * otherwise workloads might not converge.
2279 */
2280 static int preferred_group_nid(struct task_struct *p, int nid)
2281 {
2282 nodemask_t nodes;
2283 int dist;
2284
2285 /* Direct connections between all NUMA nodes. */
2286 if (sched_numa_topology_type == NUMA_DIRECT)
2287 return nid;
2288
2289 /*
2290 * On a system with glueless mesh NUMA topology, group_weight
2291 * scores nodes according to the number of NUMA hinting faults on
2292 * both the node itself, and on nearby nodes.
2293 */
2294 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2295 unsigned long score, max_score = 0;
2296 int node, max_node = nid;
2297
2298 dist = sched_max_numa_distance;
2299
2300 for_each_online_node(node) {
2301 score = group_weight(p, node, dist);
2302 if (score > max_score) {
2303 max_score = score;
2304 max_node = node;
2305 }
2306 }
2307 return max_node;
2308 }
2309
2310 /*
2311 * Finding the preferred nid in a system with NUMA backplane
2312 * interconnect topology is more involved. The goal is to locate
2313 * tasks from numa_groups near each other in the system, and
2314 * untangle workloads from different sides of the system. This requires
2315 * searching down the hierarchy of node groups, recursively searching
2316 * inside the highest scoring group of nodes. The nodemask tricks
2317 * keep the complexity of the search down.
2318 */
2319 nodes = node_online_map;
2320 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2321 unsigned long max_faults = 0;
2322 nodemask_t max_group = NODE_MASK_NONE;
2323 int a, b;
2324
2325 /* Are there nodes at this distance from each other? */
2326 if (!find_numa_distance(dist))
2327 continue;
2328
2329 for_each_node_mask(a, nodes) {
2330 unsigned long faults = 0;
2331 nodemask_t this_group;
2332 nodes_clear(this_group);
2333
2334 /* Sum group's NUMA faults; includes a==b case. */
2335 for_each_node_mask(b, nodes) {
2336 if (node_distance(a, b) < dist) {
2337 faults += group_faults(p, b);
2338 node_set(b, this_group);
2339 node_clear(b, nodes);
2340 }
2341 }
2342
2343 /* Remember the top group. */
2344 if (faults > max_faults) {
2345 max_faults = faults;
2346 max_group = this_group;
2347 /*
2348 * subtle: at the smallest distance there is
2349 * just one node left in each "group", the
2350 * winner is the preferred nid.
2351 */
2352 nid = a;
2353 }
2354 }
2355 /* Next round, evaluate the nodes within max_group. */
2356 if (!max_faults)
2357 break;
2358 nodes = max_group;
2359 }
2360 return nid;
2361 }
2362
2363 static void task_numa_placement(struct task_struct *p)
2364 {
2365 int seq, nid, max_nid = NUMA_NO_NODE;
2366 unsigned long max_faults = 0;
2367 unsigned long fault_types[2] = { 0, 0 };
2368 unsigned long total_faults;
2369 u64 runtime, period;
2370 spinlock_t *group_lock = NULL;
2371 struct numa_group *ng;
2372
2373 /*
2374 * The p->mm->numa_scan_seq field gets updated without
2375 * exclusive access. Use READ_ONCE() here to ensure
2376 * that the field is read in a single access:
2377 */
2378 seq = READ_ONCE(p->mm->numa_scan_seq);
2379 if (p->numa_scan_seq == seq)
2380 return;
2381 p->numa_scan_seq = seq;
2382 p->numa_scan_period_max = task_scan_max(p);
2383
2384 total_faults = p->numa_faults_locality[0] +
2385 p->numa_faults_locality[1];
2386 runtime = numa_get_avg_runtime(p, &period);
2387
2388 /* If the task is part of a group prevent parallel updates to group stats */
2389 ng = deref_curr_numa_group(p);
2390 if (ng) {
2391 group_lock = &ng->lock;
2392 spin_lock_irq(group_lock);
2393 }
2394
2395 /* Find the node with the highest number of faults */
2396 for_each_online_node(nid) {
2397 /* Keep track of the offsets in numa_faults array */
2398 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2399 unsigned long faults = 0, group_faults = 0;
2400 int priv;
2401
2402 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2403 long diff, f_diff, f_weight;
2404
2405 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2406 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2407 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2408 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2409
2410 /* Decay existing window, copy faults since last scan */
2411 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2412 fault_types[priv] += p->numa_faults[membuf_idx];
2413 p->numa_faults[membuf_idx] = 0;
2414
2415 /*
2416 * Normalize the faults_from, so all tasks in a group
2417 * count according to CPU use, instead of by the raw
2418 * number of faults. Tasks with little runtime have
2419 * little over-all impact on throughput, and thus their
2420 * faults are less important.
2421 */
2422 f_weight = div64_u64(runtime << 16, period + 1);
2423 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2424 (total_faults + 1);
2425 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2426 p->numa_faults[cpubuf_idx] = 0;
2427
2428 p->numa_faults[mem_idx] += diff;
2429 p->numa_faults[cpu_idx] += f_diff;
2430 faults += p->numa_faults[mem_idx];
2431 p->total_numa_faults += diff;
2432 if (ng) {
2433 /*
2434 * safe because we can only change our own group
2435 *
2436 * mem_idx represents the offset for a given
2437 * nid and priv in a specific region because it
2438 * is at the beginning of the numa_faults array.
2439 */
2440 ng->faults[mem_idx] += diff;
2441 ng->faults_cpu[mem_idx] += f_diff;
2442 ng->total_faults += diff;
2443 group_faults += ng->faults[mem_idx];
2444 }
2445 }
2446
2447 if (!ng) {
2448 if (faults > max_faults) {
2449 max_faults = faults;
2450 max_nid = nid;
2451 }
2452 } else if (group_faults > max_faults) {
2453 max_faults = group_faults;
2454 max_nid = nid;
2455 }
2456 }
2457
2458 if (ng) {
2459 numa_group_count_active_nodes(ng);
2460 spin_unlock_irq(group_lock);
2461 max_nid = preferred_group_nid(p, max_nid);
2462 }
2463
2464 if (max_faults) {
2465 /* Set the new preferred node */
2466 if (max_nid != p->numa_preferred_nid)
2467 sched_setnuma(p, max_nid);
2468 }
2469
2470 update_task_scan_period(p, fault_types[0], fault_types[1]);
2471 }
2472
2473 static inline int get_numa_group(struct numa_group *grp)
2474 {
2475 return refcount_inc_not_zero(&grp->refcount);
2476 }
2477
2478 static inline void put_numa_group(struct numa_group *grp)
2479 {
2480 if (refcount_dec_and_test(&grp->refcount))
2481 kfree_rcu(grp, rcu);
2482 }
2483
2484 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2485 int *priv)
2486 {
2487 struct numa_group *grp, *my_grp;
2488 struct task_struct *tsk;
2489 bool join = false;
2490 int cpu = cpupid_to_cpu(cpupid);
2491 int i;
2492
2493 if (unlikely(!deref_curr_numa_group(p))) {
2494 unsigned int size = sizeof(struct numa_group) +
2495 4*nr_node_ids*sizeof(unsigned long);
2496
2497 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2498 if (!grp)
2499 return;
2500
2501 refcount_set(&grp->refcount, 1);
2502 grp->active_nodes = 1;
2503 grp->max_faults_cpu = 0;
2504 spin_lock_init(&grp->lock);
2505 grp->gid = p->pid;
2506 /* Second half of the array tracks nids where faults happen */
2507 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2508 nr_node_ids;
2509
2510 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2511 grp->faults[i] = p->numa_faults[i];
2512
2513 grp->total_faults = p->total_numa_faults;
2514
2515 grp->nr_tasks++;
2516 rcu_assign_pointer(p->numa_group, grp);
2517 }
2518
2519 rcu_read_lock();
2520 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2521
2522 if (!cpupid_match_pid(tsk, cpupid))
2523 goto no_join;
2524
2525 grp = rcu_dereference(tsk->numa_group);
2526 if (!grp)
2527 goto no_join;
2528
2529 my_grp = deref_curr_numa_group(p);
2530 if (grp == my_grp)
2531 goto no_join;
2532
2533 /*
2534 * Only join the other group if its bigger; if we're the bigger group,
2535 * the other task will join us.
2536 */
2537 if (my_grp->nr_tasks > grp->nr_tasks)
2538 goto no_join;
2539
2540 /*
2541 * Tie-break on the grp address.
2542 */
2543 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2544 goto no_join;
2545
2546 /* Always join threads in the same process. */
2547 if (tsk->mm == current->mm)
2548 join = true;
2549
2550 /* Simple filter to avoid false positives due to PID collisions */
2551 if (flags & TNF_SHARED)
2552 join = true;
2553
2554 /* Update priv based on whether false sharing was detected */
2555 *priv = !join;
2556
2557 if (join && !get_numa_group(grp))
2558 goto no_join;
2559
2560 rcu_read_unlock();
2561
2562 if (!join)
2563 return;
2564
2565 BUG_ON(irqs_disabled());
2566 double_lock_irq(&my_grp->lock, &grp->lock);
2567
2568 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2569 my_grp->faults[i] -= p->numa_faults[i];
2570 grp->faults[i] += p->numa_faults[i];
2571 }
2572 my_grp->total_faults -= p->total_numa_faults;
2573 grp->total_faults += p->total_numa_faults;
2574
2575 my_grp->nr_tasks--;
2576 grp->nr_tasks++;
2577
2578 spin_unlock(&my_grp->lock);
2579 spin_unlock_irq(&grp->lock);
2580
2581 rcu_assign_pointer(p->numa_group, grp);
2582
2583 put_numa_group(my_grp);
2584 return;
2585
2586 no_join:
2587 rcu_read_unlock();
2588 return;
2589 }
2590
2591 /*
2592 * Get rid of NUMA statistics associated with a task (either current or dead).
2593 * If @final is set, the task is dead and has reached refcount zero, so we can
2594 * safely free all relevant data structures. Otherwise, there might be
2595 * concurrent reads from places like load balancing and procfs, and we should
2596 * reset the data back to default state without freeing ->numa_faults.
2597 */
2598 void task_numa_free(struct task_struct *p, bool final)
2599 {
2600 /* safe: p either is current or is being freed by current */
2601 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2602 unsigned long *numa_faults = p->numa_faults;
2603 unsigned long flags;
2604 int i;
2605
2606 if (!numa_faults)
2607 return;
2608
2609 if (grp) {
2610 spin_lock_irqsave(&grp->lock, flags);
2611 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2612 grp->faults[i] -= p->numa_faults[i];
2613 grp->total_faults -= p->total_numa_faults;
2614
2615 grp->nr_tasks--;
2616 spin_unlock_irqrestore(&grp->lock, flags);
2617 RCU_INIT_POINTER(p->numa_group, NULL);
2618 put_numa_group(grp);
2619 }
2620
2621 if (final) {
2622 p->numa_faults = NULL;
2623 kfree(numa_faults);
2624 } else {
2625 p->total_numa_faults = 0;
2626 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2627 numa_faults[i] = 0;
2628 }
2629 }
2630
2631 /*
2632 * Got a PROT_NONE fault for a page on @node.
2633 */
2634 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2635 {
2636 struct task_struct *p = current;
2637 bool migrated = flags & TNF_MIGRATED;
2638 int cpu_node = task_node(current);
2639 int local = !!(flags & TNF_FAULT_LOCAL);
2640 struct numa_group *ng;
2641 int priv;
2642
2643 if (!static_branch_likely(&sched_numa_balancing))
2644 return;
2645
2646 /* for example, ksmd faulting in a user's mm */
2647 if (!p->mm)
2648 return;
2649
2650 /* Allocate buffer to track faults on a per-node basis */
2651 if (unlikely(!p->numa_faults)) {
2652 int size = sizeof(*p->numa_faults) *
2653 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2654
2655 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2656 if (!p->numa_faults)
2657 return;
2658
2659 p->total_numa_faults = 0;
2660 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2661 }
2662
2663 /*
2664 * First accesses are treated as private, otherwise consider accesses
2665 * to be private if the accessing pid has not changed
2666 */
2667 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2668 priv = 1;
2669 } else {
2670 priv = cpupid_match_pid(p, last_cpupid);
2671 if (!priv && !(flags & TNF_NO_GROUP))
2672 task_numa_group(p, last_cpupid, flags, &priv);
2673 }
2674
2675 /*
2676 * If a workload spans multiple NUMA nodes, a shared fault that
2677 * occurs wholly within the set of nodes that the workload is
2678 * actively using should be counted as local. This allows the
2679 * scan rate to slow down when a workload has settled down.
2680 */
2681 ng = deref_curr_numa_group(p);
2682 if (!priv && !local && ng && ng->active_nodes > 1 &&
2683 numa_is_active_node(cpu_node, ng) &&
2684 numa_is_active_node(mem_node, ng))
2685 local = 1;
2686
2687 /*
2688 * Retry to migrate task to preferred node periodically, in case it
2689 * previously failed, or the scheduler moved us.
2690 */
2691 if (time_after(jiffies, p->numa_migrate_retry)) {
2692 task_numa_placement(p);
2693 numa_migrate_preferred(p);
2694 }
2695
2696 if (migrated)
2697 p->numa_pages_migrated += pages;
2698 if (flags & TNF_MIGRATE_FAIL)
2699 p->numa_faults_locality[2] += pages;
2700
2701 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2702 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2703 p->numa_faults_locality[local] += pages;
2704 }
2705
2706 static void reset_ptenuma_scan(struct task_struct *p)
2707 {
2708 /*
2709 * We only did a read acquisition of the mmap sem, so
2710 * p->mm->numa_scan_seq is written to without exclusive access
2711 * and the update is not guaranteed to be atomic. That's not
2712 * much of an issue though, since this is just used for
2713 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2714 * expensive, to avoid any form of compiler optimizations:
2715 */
2716 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2717 p->mm->numa_scan_offset = 0;
2718 }
2719
2720 /*
2721 * The expensive part of numa migration is done from task_work context.
2722 * Triggered from task_tick_numa().
2723 */
2724 static void task_numa_work(struct callback_head *work)
2725 {
2726 unsigned long migrate, next_scan, now = jiffies;
2727 struct task_struct *p = current;
2728 struct mm_struct *mm = p->mm;
2729 u64 runtime = p->se.sum_exec_runtime;
2730 struct vm_area_struct *vma;
2731 unsigned long start, end;
2732 unsigned long nr_pte_updates = 0;
2733 long pages, virtpages;
2734
2735 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2736
2737 work->next = work;
2738 /*
2739 * Who cares about NUMA placement when they're dying.
2740 *
2741 * NOTE: make sure not to dereference p->mm before this check,
2742 * exit_task_work() happens _after_ exit_mm() so we could be called
2743 * without p->mm even though we still had it when we enqueued this
2744 * work.
2745 */
2746 if (p->flags & PF_EXITING)
2747 return;
2748
2749 if (!mm->numa_next_scan) {
2750 mm->numa_next_scan = now +
2751 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2752 }
2753
2754 /*
2755 * Enforce maximal scan/migration frequency..
2756 */
2757 migrate = mm->numa_next_scan;
2758 if (time_before(now, migrate))
2759 return;
2760
2761 if (p->numa_scan_period == 0) {
2762 p->numa_scan_period_max = task_scan_max(p);
2763 p->numa_scan_period = task_scan_start(p);
2764 }
2765
2766 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2767 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2768 return;
2769
2770 /*
2771 * Delay this task enough that another task of this mm will likely win
2772 * the next time around.
2773 */
2774 p->node_stamp += 2 * TICK_NSEC;
2775
2776 start = mm->numa_scan_offset;
2777 pages = sysctl_numa_balancing_scan_size;
2778 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2779 virtpages = pages * 8; /* Scan up to this much virtual space */
2780 if (!pages)
2781 return;
2782
2783
2784 if (!mmap_read_trylock(mm))
2785 return;
2786 vma = find_vma(mm, start);
2787 if (!vma) {
2788 reset_ptenuma_scan(p);
2789 start = 0;
2790 vma = mm->mmap;
2791 }
2792 for (; vma; vma = vma->vm_next) {
2793 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2794 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2795 continue;
2796 }
2797
2798 /*
2799 * Shared library pages mapped by multiple processes are not
2800 * migrated as it is expected they are cache replicated. Avoid
2801 * hinting faults in read-only file-backed mappings or the vdso
2802 * as migrating the pages will be of marginal benefit.
2803 */
2804 if (!vma->vm_mm ||
2805 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2806 continue;
2807
2808 /*
2809 * Skip inaccessible VMAs to avoid any confusion between
2810 * PROT_NONE and NUMA hinting ptes
2811 */
2812 if (!vma_is_accessible(vma))
2813 continue;
2814
2815 do {
2816 start = max(start, vma->vm_start);
2817 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2818 end = min(end, vma->vm_end);
2819 nr_pte_updates = change_prot_numa(vma, start, end);
2820
2821 /*
2822 * Try to scan sysctl_numa_balancing_size worth of
2823 * hpages that have at least one present PTE that
2824 * is not already pte-numa. If the VMA contains
2825 * areas that are unused or already full of prot_numa
2826 * PTEs, scan up to virtpages, to skip through those
2827 * areas faster.
2828 */
2829 if (nr_pte_updates)
2830 pages -= (end - start) >> PAGE_SHIFT;
2831 virtpages -= (end - start) >> PAGE_SHIFT;
2832
2833 start = end;
2834 if (pages <= 0 || virtpages <= 0)
2835 goto out;
2836
2837 cond_resched();
2838 } while (end != vma->vm_end);
2839 }
2840
2841 out:
2842 /*
2843 * It is possible to reach the end of the VMA list but the last few
2844 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2845 * would find the !migratable VMA on the next scan but not reset the
2846 * scanner to the start so check it now.
2847 */
2848 if (vma)
2849 mm->numa_scan_offset = start;
2850 else
2851 reset_ptenuma_scan(p);
2852 mmap_read_unlock(mm);
2853
2854 /*
2855 * Make sure tasks use at least 32x as much time to run other code
2856 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2857 * Usually update_task_scan_period slows down scanning enough; on an
2858 * overloaded system we need to limit overhead on a per task basis.
2859 */
2860 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2861 u64 diff = p->se.sum_exec_runtime - runtime;
2862 p->node_stamp += 32 * diff;
2863 }
2864 }
2865
2866 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2867 {
2868 int mm_users = 0;
2869 struct mm_struct *mm = p->mm;
2870
2871 if (mm) {
2872 mm_users = atomic_read(&mm->mm_users);
2873 if (mm_users == 1) {
2874 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2875 mm->numa_scan_seq = 0;
2876 }
2877 }
2878 p->node_stamp = 0;
2879 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2880 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2881 /* Protect against double add, see task_tick_numa and task_numa_work */
2882 p->numa_work.next = &p->numa_work;
2883 p->numa_faults = NULL;
2884 RCU_INIT_POINTER(p->numa_group, NULL);
2885 p->last_task_numa_placement = 0;
2886 p->last_sum_exec_runtime = 0;
2887
2888 init_task_work(&p->numa_work, task_numa_work);
2889
2890 /* New address space, reset the preferred nid */
2891 if (!(clone_flags & CLONE_VM)) {
2892 p->numa_preferred_nid = NUMA_NO_NODE;
2893 return;
2894 }
2895
2896 /*
2897 * New thread, keep existing numa_preferred_nid which should be copied
2898 * already by arch_dup_task_struct but stagger when scans start.
2899 */
2900 if (mm) {
2901 unsigned int delay;
2902
2903 delay = min_t(unsigned int, task_scan_max(current),
2904 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2905 delay += 2 * TICK_NSEC;
2906 p->node_stamp = delay;
2907 }
2908 }
2909
2910 /*
2911 * Drive the periodic memory faults..
2912 */
2913 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2914 {
2915 struct callback_head *work = &curr->numa_work;
2916 u64 period, now;
2917
2918 /*
2919 * We don't care about NUMA placement if we don't have memory.
2920 */
2921 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2922 return;
2923
2924 /*
2925 * Using runtime rather than walltime has the dual advantage that
2926 * we (mostly) drive the selection from busy threads and that the
2927 * task needs to have done some actual work before we bother with
2928 * NUMA placement.
2929 */
2930 now = curr->se.sum_exec_runtime;
2931 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2932
2933 if (now > curr->node_stamp + period) {
2934 if (!curr->node_stamp)
2935 curr->numa_scan_period = task_scan_start(curr);
2936 curr->node_stamp += period;
2937
2938 if (!time_before(jiffies, curr->mm->numa_next_scan))
2939 task_work_add(curr, work, TWA_RESUME);
2940 }
2941 }
2942
2943 static void update_scan_period(struct task_struct *p, int new_cpu)
2944 {
2945 int src_nid = cpu_to_node(task_cpu(p));
2946 int dst_nid = cpu_to_node(new_cpu);
2947
2948 if (!static_branch_likely(&sched_numa_balancing))
2949 return;
2950
2951 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2952 return;
2953
2954 if (src_nid == dst_nid)
2955 return;
2956
2957 /*
2958 * Allow resets if faults have been trapped before one scan
2959 * has completed. This is most likely due to a new task that
2960 * is pulled cross-node due to wakeups or load balancing.
2961 */
2962 if (p->numa_scan_seq) {
2963 /*
2964 * Avoid scan adjustments if moving to the preferred
2965 * node or if the task was not previously running on
2966 * the preferred node.
2967 */
2968 if (dst_nid == p->numa_preferred_nid ||
2969 (p->numa_preferred_nid != NUMA_NO_NODE &&
2970 src_nid != p->numa_preferred_nid))
2971 return;
2972 }
2973
2974 p->numa_scan_period = task_scan_start(p);
2975 }
2976
2977 #else
2978 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2979 {
2980 }
2981
2982 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2983 {
2984 }
2985
2986 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2987 {
2988 }
2989
2990 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2991 {
2992 }
2993
2994 #endif /* CONFIG_NUMA_BALANCING */
2995
2996 static void
2997 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2998 {
2999 update_load_add(&cfs_rq->load, se->load.weight);
3000 #ifdef CONFIG_SMP
3001 if (entity_is_task(se)) {
3002 struct rq *rq = rq_of(cfs_rq);
3003
3004 account_numa_enqueue(rq, task_of(se));
3005 list_add(&se->group_node, &rq->cfs_tasks);
3006 }
3007 #endif
3008 cfs_rq->nr_running++;
3009 }
3010
3011 static void
3012 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3013 {
3014 update_load_sub(&cfs_rq->load, se->load.weight);
3015 #ifdef CONFIG_SMP
3016 if (entity_is_task(se)) {
3017 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3018 list_del_init(&se->group_node);
3019 }
3020 #endif
3021 cfs_rq->nr_running--;
3022 }
3023
3024 /*
3025 * Signed add and clamp on underflow.
3026 *
3027 * Explicitly do a load-store to ensure the intermediate value never hits
3028 * memory. This allows lockless observations without ever seeing the negative
3029 * values.
3030 */
3031 #define add_positive(_ptr, _val) do { \
3032 typeof(_ptr) ptr = (_ptr); \
3033 typeof(_val) val = (_val); \
3034 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3035 \
3036 res = var + val; \
3037 \
3038 if (val < 0 && res > var) \
3039 res = 0; \
3040 \
3041 WRITE_ONCE(*ptr, res); \
3042 } while (0)
3043
3044 /*
3045 * Unsigned subtract and clamp on underflow.
3046 *
3047 * Explicitly do a load-store to ensure the intermediate value never hits
3048 * memory. This allows lockless observations without ever seeing the negative
3049 * values.
3050 */
3051 #define sub_positive(_ptr, _val) do { \
3052 typeof(_ptr) ptr = (_ptr); \
3053 typeof(*ptr) val = (_val); \
3054 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3055 res = var - val; \
3056 if (res > var) \
3057 res = 0; \
3058 WRITE_ONCE(*ptr, res); \
3059 } while (0)
3060
3061 /*
3062 * Remove and clamp on negative, from a local variable.
3063 *
3064 * A variant of sub_positive(), which does not use explicit load-store
3065 * and is thus optimized for local variable updates.
3066 */
3067 #define lsub_positive(_ptr, _val) do { \
3068 typeof(_ptr) ptr = (_ptr); \
3069 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3070 } while (0)
3071
3072 #ifdef CONFIG_SMP
3073 static inline void
3074 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3075 {
3076 cfs_rq->avg.load_avg += se->avg.load_avg;
3077 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3078 }
3079
3080 static inline void
3081 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3082 {
3083 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3084 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3085 }
3086 #else
3087 static inline void
3088 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3089 static inline void
3090 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3091 #endif
3092
3093 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3094 unsigned long weight)
3095 {
3096 if (se->on_rq) {
3097 /* commit outstanding execution time */
3098 if (cfs_rq->curr == se)
3099 update_curr(cfs_rq);
3100 update_load_sub(&cfs_rq->load, se->load.weight);
3101 }
3102 dequeue_load_avg(cfs_rq, se);
3103
3104 update_load_set(&se->load, weight);
3105
3106 #ifdef CONFIG_SMP
3107 do {
3108 u32 divider = get_pelt_divider(&se->avg);
3109
3110 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3111 } while (0);
3112 #endif
3113
3114 enqueue_load_avg(cfs_rq, se);
3115 if (se->on_rq)
3116 update_load_add(&cfs_rq->load, se->load.weight);
3117
3118 }
3119
3120 void reweight_task(struct task_struct *p, int prio)
3121 {
3122 struct sched_entity *se = &p->se;
3123 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3124 struct load_weight *load = &se->load;
3125 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3126
3127 reweight_entity(cfs_rq, se, weight);
3128 load->inv_weight = sched_prio_to_wmult[prio];
3129 }
3130
3131 #ifdef CONFIG_FAIR_GROUP_SCHED
3132 #ifdef CONFIG_SMP
3133 /*
3134 * All this does is approximate the hierarchical proportion which includes that
3135 * global sum we all love to hate.
3136 *
3137 * That is, the weight of a group entity, is the proportional share of the
3138 * group weight based on the group runqueue weights. That is:
3139 *
3140 * tg->weight * grq->load.weight
3141 * ge->load.weight = ----------------------------- (1)
3142 * \Sum grq->load.weight
3143 *
3144 * Now, because computing that sum is prohibitively expensive to compute (been
3145 * there, done that) we approximate it with this average stuff. The average
3146 * moves slower and therefore the approximation is cheaper and more stable.
3147 *
3148 * So instead of the above, we substitute:
3149 *
3150 * grq->load.weight -> grq->avg.load_avg (2)
3151 *
3152 * which yields the following:
3153 *
3154 * tg->weight * grq->avg.load_avg
3155 * ge->load.weight = ------------------------------ (3)
3156 * tg->load_avg
3157 *
3158 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3159 *
3160 * That is shares_avg, and it is right (given the approximation (2)).
3161 *
3162 * The problem with it is that because the average is slow -- it was designed
3163 * to be exactly that of course -- this leads to transients in boundary
3164 * conditions. In specific, the case where the group was idle and we start the
3165 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3166 * yielding bad latency etc..
3167 *
3168 * Now, in that special case (1) reduces to:
3169 *
3170 * tg->weight * grq->load.weight
3171 * ge->load.weight = ----------------------------- = tg->weight (4)
3172 * grp->load.weight
3173 *
3174 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3175 *
3176 * So what we do is modify our approximation (3) to approach (4) in the (near)
3177 * UP case, like:
3178 *
3179 * ge->load.weight =
3180 *
3181 * tg->weight * grq->load.weight
3182 * --------------------------------------------------- (5)
3183 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3184 *
3185 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3186 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3187 *
3188 *
3189 * tg->weight * grq->load.weight
3190 * ge->load.weight = ----------------------------- (6)
3191 * tg_load_avg'
3192 *
3193 * Where:
3194 *
3195 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3196 * max(grq->load.weight, grq->avg.load_avg)
3197 *
3198 * And that is shares_weight and is icky. In the (near) UP case it approaches
3199 * (4) while in the normal case it approaches (3). It consistently
3200 * overestimates the ge->load.weight and therefore:
3201 *
3202 * \Sum ge->load.weight >= tg->weight
3203 *
3204 * hence icky!
3205 */
3206 static long calc_group_shares(struct cfs_rq *cfs_rq)
3207 {
3208 long tg_weight, tg_shares, load, shares;
3209 struct task_group *tg = cfs_rq->tg;
3210
3211 tg_shares = READ_ONCE(tg->shares);
3212
3213 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3214
3215 tg_weight = atomic_long_read(&tg->load_avg);
3216
3217 /* Ensure tg_weight >= load */
3218 tg_weight -= cfs_rq->tg_load_avg_contrib;
3219 tg_weight += load;
3220
3221 shares = (tg_shares * load);
3222 if (tg_weight)
3223 shares /= tg_weight;
3224
3225 /*
3226 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3227 * of a group with small tg->shares value. It is a floor value which is
3228 * assigned as a minimum load.weight to the sched_entity representing
3229 * the group on a CPU.
3230 *
3231 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3232 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3233 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3234 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3235 * instead of 0.
3236 */
3237 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3238 }
3239 #endif /* CONFIG_SMP */
3240
3241 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3242
3243 /*
3244 * Recomputes the group entity based on the current state of its group
3245 * runqueue.
3246 */
3247 static void update_cfs_group(struct sched_entity *se)
3248 {
3249 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3250 long shares;
3251
3252 if (!gcfs_rq)
3253 return;
3254
3255 if (throttled_hierarchy(gcfs_rq))
3256 return;
3257
3258 #ifndef CONFIG_SMP
3259 shares = READ_ONCE(gcfs_rq->tg->shares);
3260
3261 if (likely(se->load.weight == shares))
3262 return;
3263 #else
3264 shares = calc_group_shares(gcfs_rq);
3265 #endif
3266
3267 reweight_entity(cfs_rq_of(se), se, shares);
3268 }
3269
3270 #else /* CONFIG_FAIR_GROUP_SCHED */
3271 static inline void update_cfs_group(struct sched_entity *se)
3272 {
3273 }
3274 #endif /* CONFIG_FAIR_GROUP_SCHED */
3275
3276 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3277 {
3278 struct rq *rq = rq_of(cfs_rq);
3279
3280 if (&rq->cfs == cfs_rq) {
3281 /*
3282 * There are a few boundary cases this might miss but it should
3283 * get called often enough that that should (hopefully) not be
3284 * a real problem.
3285 *
3286 * It will not get called when we go idle, because the idle
3287 * thread is a different class (!fair), nor will the utilization
3288 * number include things like RT tasks.
3289 *
3290 * As is, the util number is not freq-invariant (we'd have to
3291 * implement arch_scale_freq_capacity() for that).
3292 *
3293 * See cpu_util().
3294 */
3295 cpufreq_update_util(rq, flags);
3296 }
3297 }
3298
3299 #ifdef CONFIG_SMP
3300 #ifdef CONFIG_FAIR_GROUP_SCHED
3301 /**
3302 * update_tg_load_avg - update the tg's load avg
3303 * @cfs_rq: the cfs_rq whose avg changed
3304 *
3305 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3306 * However, because tg->load_avg is a global value there are performance
3307 * considerations.
3308 *
3309 * In order to avoid having to look at the other cfs_rq's, we use a
3310 * differential update where we store the last value we propagated. This in
3311 * turn allows skipping updates if the differential is 'small'.
3312 *
3313 * Updating tg's load_avg is necessary before update_cfs_share().
3314 */
3315 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3316 {
3317 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3318
3319 /*
3320 * No need to update load_avg for root_task_group as it is not used.
3321 */
3322 if (cfs_rq->tg == &root_task_group)
3323 return;
3324
3325 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3326 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3327 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3328 }
3329 }
3330
3331 /*
3332 * Called within set_task_rq() right before setting a task's CPU. The
3333 * caller only guarantees p->pi_lock is held; no other assumptions,
3334 * including the state of rq->lock, should be made.
3335 */
3336 void set_task_rq_fair(struct sched_entity *se,
3337 struct cfs_rq *prev, struct cfs_rq *next)
3338 {
3339 u64 p_last_update_time;
3340 u64 n_last_update_time;
3341
3342 if (!sched_feat(ATTACH_AGE_LOAD))
3343 return;
3344
3345 /*
3346 * We are supposed to update the task to "current" time, then its up to
3347 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3348 * getting what current time is, so simply throw away the out-of-date
3349 * time. This will result in the wakee task is less decayed, but giving
3350 * the wakee more load sounds not bad.
3351 */
3352 if (!(se->avg.last_update_time && prev))
3353 return;
3354
3355 #ifndef CONFIG_64BIT
3356 {
3357 u64 p_last_update_time_copy;
3358 u64 n_last_update_time_copy;
3359
3360 do {
3361 p_last_update_time_copy = prev->load_last_update_time_copy;
3362 n_last_update_time_copy = next->load_last_update_time_copy;
3363
3364 smp_rmb();
3365
3366 p_last_update_time = prev->avg.last_update_time;
3367 n_last_update_time = next->avg.last_update_time;
3368
3369 } while (p_last_update_time != p_last_update_time_copy ||
3370 n_last_update_time != n_last_update_time_copy);
3371 }
3372 #else
3373 p_last_update_time = prev->avg.last_update_time;
3374 n_last_update_time = next->avg.last_update_time;
3375 #endif
3376 __update_load_avg_blocked_se(p_last_update_time, se);
3377 se->avg.last_update_time = n_last_update_time;
3378 }
3379
3380
3381 /*
3382 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3383 * propagate its contribution. The key to this propagation is the invariant
3384 * that for each group:
3385 *
3386 * ge->avg == grq->avg (1)
3387 *
3388 * _IFF_ we look at the pure running and runnable sums. Because they
3389 * represent the very same entity, just at different points in the hierarchy.
3390 *
3391 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3392 * and simply copies the running/runnable sum over (but still wrong, because
3393 * the group entity and group rq do not have their PELT windows aligned).
3394 *
3395 * However, update_tg_cfs_load() is more complex. So we have:
3396 *
3397 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3398 *
3399 * And since, like util, the runnable part should be directly transferable,
3400 * the following would _appear_ to be the straight forward approach:
3401 *
3402 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3403 *
3404 * And per (1) we have:
3405 *
3406 * ge->avg.runnable_avg == grq->avg.runnable_avg
3407 *
3408 * Which gives:
3409 *
3410 * ge->load.weight * grq->avg.load_avg
3411 * ge->avg.load_avg = ----------------------------------- (4)
3412 * grq->load.weight
3413 *
3414 * Except that is wrong!
3415 *
3416 * Because while for entities historical weight is not important and we
3417 * really only care about our future and therefore can consider a pure
3418 * runnable sum, runqueues can NOT do this.
3419 *
3420 * We specifically want runqueues to have a load_avg that includes
3421 * historical weights. Those represent the blocked load, the load we expect
3422 * to (shortly) return to us. This only works by keeping the weights as
3423 * integral part of the sum. We therefore cannot decompose as per (3).
3424 *
3425 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3426 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3427 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3428 * runnable section of these tasks overlap (or not). If they were to perfectly
3429 * align the rq as a whole would be runnable 2/3 of the time. If however we
3430 * always have at least 1 runnable task, the rq as a whole is always runnable.
3431 *
3432 * So we'll have to approximate.. :/
3433 *
3434 * Given the constraint:
3435 *
3436 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3437 *
3438 * We can construct a rule that adds runnable to a rq by assuming minimal
3439 * overlap.
3440 *
3441 * On removal, we'll assume each task is equally runnable; which yields:
3442 *
3443 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3444 *
3445 * XXX: only do this for the part of runnable > running ?
3446 *
3447 */
3448
3449 static inline void
3450 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3451 {
3452 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3453 u32 divider;
3454
3455 /* Nothing to update */
3456 if (!delta)
3457 return;
3458
3459 /*
3460 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3461 * See ___update_load_avg() for details.
3462 */
3463 divider = get_pelt_divider(&cfs_rq->avg);
3464
3465 /* Set new sched_entity's utilization */
3466 se->avg.util_avg = gcfs_rq->avg.util_avg;
3467 se->avg.util_sum = se->avg.util_avg * divider;
3468
3469 /* Update parent cfs_rq utilization */
3470 add_positive(&cfs_rq->avg.util_avg, delta);
3471 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3472 }
3473
3474 static inline void
3475 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3476 {
3477 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3478 u32 divider;
3479
3480 /* Nothing to update */
3481 if (!delta)
3482 return;
3483
3484 /*
3485 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3486 * See ___update_load_avg() for details.
3487 */
3488 divider = get_pelt_divider(&cfs_rq->avg);
3489
3490 /* Set new sched_entity's runnable */
3491 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3492 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3493
3494 /* Update parent cfs_rq runnable */
3495 add_positive(&cfs_rq->avg.runnable_avg, delta);
3496 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3497 }
3498
3499 static inline void
3500 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3501 {
3502 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3503 unsigned long load_avg;
3504 u64 load_sum = 0;
3505 s64 delta_sum;
3506 u32 divider;
3507
3508 if (!runnable_sum)
3509 return;
3510
3511 gcfs_rq->prop_runnable_sum = 0;
3512
3513 /*
3514 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3515 * See ___update_load_avg() for details.
3516 */
3517 divider = get_pelt_divider(&cfs_rq->avg);
3518
3519 if (runnable_sum >= 0) {
3520 /*
3521 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3522 * the CPU is saturated running == runnable.
3523 */
3524 runnable_sum += se->avg.load_sum;
3525 runnable_sum = min_t(long, runnable_sum, divider);
3526 } else {
3527 /*
3528 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3529 * assuming all tasks are equally runnable.
3530 */
3531 if (scale_load_down(gcfs_rq->load.weight)) {
3532 load_sum = div_s64(gcfs_rq->avg.load_sum,
3533 scale_load_down(gcfs_rq->load.weight));
3534 }
3535
3536 /* But make sure to not inflate se's runnable */
3537 runnable_sum = min(se->avg.load_sum, load_sum);
3538 }
3539
3540 /*
3541 * runnable_sum can't be lower than running_sum
3542 * Rescale running sum to be in the same range as runnable sum
3543 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3544 * runnable_sum is in [0 : LOAD_AVG_MAX]
3545 */
3546 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3547 runnable_sum = max(runnable_sum, running_sum);
3548
3549 load_sum = (s64)se_weight(se) * runnable_sum;
3550 load_avg = div_s64(load_sum, divider);
3551
3552 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3553 delta_avg = load_avg - se->avg.load_avg;
3554
3555 se->avg.load_sum = runnable_sum;
3556 se->avg.load_avg = load_avg;
3557 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3558 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3559 }
3560
3561 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3562 {
3563 cfs_rq->propagate = 1;
3564 cfs_rq->prop_runnable_sum += runnable_sum;
3565 }
3566
3567 /* Update task and its cfs_rq load average */
3568 static inline int propagate_entity_load_avg(struct sched_entity *se)
3569 {
3570 struct cfs_rq *cfs_rq, *gcfs_rq;
3571
3572 if (entity_is_task(se))
3573 return 0;
3574
3575 gcfs_rq = group_cfs_rq(se);
3576 if (!gcfs_rq->propagate)
3577 return 0;
3578
3579 gcfs_rq->propagate = 0;
3580
3581 cfs_rq = cfs_rq_of(se);
3582
3583 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3584
3585 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3586 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3587 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3588
3589 trace_pelt_cfs_tp(cfs_rq);
3590 trace_pelt_se_tp(se);
3591
3592 return 1;
3593 }
3594
3595 /*
3596 * Check if we need to update the load and the utilization of a blocked
3597 * group_entity:
3598 */
3599 static inline bool skip_blocked_update(struct sched_entity *se)
3600 {
3601 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3602
3603 /*
3604 * If sched_entity still have not zero load or utilization, we have to
3605 * decay it:
3606 */
3607 if (se->avg.load_avg || se->avg.util_avg)
3608 return false;
3609
3610 /*
3611 * If there is a pending propagation, we have to update the load and
3612 * the utilization of the sched_entity:
3613 */
3614 if (gcfs_rq->propagate)
3615 return false;
3616
3617 /*
3618 * Otherwise, the load and the utilization of the sched_entity is
3619 * already zero and there is no pending propagation, so it will be a
3620 * waste of time to try to decay it:
3621 */
3622 return true;
3623 }
3624
3625 #else /* CONFIG_FAIR_GROUP_SCHED */
3626
3627 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3628
3629 static inline int propagate_entity_load_avg(struct sched_entity *se)
3630 {
3631 return 0;
3632 }
3633
3634 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3635
3636 #endif /* CONFIG_FAIR_GROUP_SCHED */
3637
3638 /**
3639 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3640 * @now: current time, as per cfs_rq_clock_pelt()
3641 * @cfs_rq: cfs_rq to update
3642 *
3643 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3644 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3645 * post_init_entity_util_avg().
3646 *
3647 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3648 *
3649 * Returns true if the load decayed or we removed load.
3650 *
3651 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3652 * call update_tg_load_avg() when this function returns true.
3653 */
3654 static inline int
3655 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3656 {
3657 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3658 struct sched_avg *sa = &cfs_rq->avg;
3659 int decayed = 0;
3660
3661 if (cfs_rq->removed.nr) {
3662 unsigned long r;
3663 u32 divider = get_pelt_divider(&cfs_rq->avg);
3664
3665 raw_spin_lock(&cfs_rq->removed.lock);
3666 swap(cfs_rq->removed.util_avg, removed_util);
3667 swap(cfs_rq->removed.load_avg, removed_load);
3668 swap(cfs_rq->removed.runnable_avg, removed_runnable);
3669 cfs_rq->removed.nr = 0;
3670 raw_spin_unlock(&cfs_rq->removed.lock);
3671
3672 r = removed_load;
3673 sub_positive(&sa->load_avg, r);
3674 sub_positive(&sa->load_sum, r * divider);
3675
3676 r = removed_util;
3677 sub_positive(&sa->util_avg, r);
3678 sub_positive(&sa->util_sum, r * divider);
3679
3680 r = removed_runnable;
3681 sub_positive(&sa->runnable_avg, r);
3682 sub_positive(&sa->runnable_sum, r * divider);
3683
3684 /*
3685 * removed_runnable is the unweighted version of removed_load so we
3686 * can use it to estimate removed_load_sum.
3687 */
3688 add_tg_cfs_propagate(cfs_rq,
3689 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3690
3691 decayed = 1;
3692 }
3693
3694 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3695
3696 #ifndef CONFIG_64BIT
3697 smp_wmb();
3698 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3699 #endif
3700
3701 return decayed;
3702 }
3703
3704 /**
3705 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3706 * @cfs_rq: cfs_rq to attach to
3707 * @se: sched_entity to attach
3708 *
3709 * Must call update_cfs_rq_load_avg() before this, since we rely on
3710 * cfs_rq->avg.last_update_time being current.
3711 */
3712 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3713 {
3714 /*
3715 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3716 * See ___update_load_avg() for details.
3717 */
3718 u32 divider = get_pelt_divider(&cfs_rq->avg);
3719
3720 /*
3721 * When we attach the @se to the @cfs_rq, we must align the decay
3722 * window because without that, really weird and wonderful things can
3723 * happen.
3724 *
3725 * XXX illustrate
3726 */
3727 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3728 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3729
3730 /*
3731 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3732 * period_contrib. This isn't strictly correct, but since we're
3733 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3734 * _sum a little.
3735 */
3736 se->avg.util_sum = se->avg.util_avg * divider;
3737
3738 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3739
3740 se->avg.load_sum = divider;
3741 if (se_weight(se)) {
3742 se->avg.load_sum =
3743 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3744 }
3745
3746 enqueue_load_avg(cfs_rq, se);
3747 cfs_rq->avg.util_avg += se->avg.util_avg;
3748 cfs_rq->avg.util_sum += se->avg.util_sum;
3749 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3750 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3751
3752 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3753
3754 cfs_rq_util_change(cfs_rq, 0);
3755
3756 trace_pelt_cfs_tp(cfs_rq);
3757 }
3758
3759 /**
3760 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3761 * @cfs_rq: cfs_rq to detach from
3762 * @se: sched_entity to detach
3763 *
3764 * Must call update_cfs_rq_load_avg() before this, since we rely on
3765 * cfs_rq->avg.last_update_time being current.
3766 */
3767 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3768 {
3769 dequeue_load_avg(cfs_rq, se);
3770 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3771 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3772 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3773 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3774
3775 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3776
3777 cfs_rq_util_change(cfs_rq, 0);
3778
3779 trace_pelt_cfs_tp(cfs_rq);
3780 }
3781
3782 /*
3783 * Optional action to be done while updating the load average
3784 */
3785 #define UPDATE_TG 0x1
3786 #define SKIP_AGE_LOAD 0x2
3787 #define DO_ATTACH 0x4
3788
3789 /* Update task and its cfs_rq load average */
3790 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3791 {
3792 u64 now = cfs_rq_clock_pelt(cfs_rq);
3793 int decayed;
3794
3795 /*
3796 * Track task load average for carrying it to new CPU after migrated, and
3797 * track group sched_entity load average for task_h_load calc in migration
3798 */
3799 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3800 __update_load_avg_se(now, cfs_rq, se);
3801
3802 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3803 decayed |= propagate_entity_load_avg(se);
3804
3805 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3806
3807 /*
3808 * DO_ATTACH means we're here from enqueue_entity().
3809 * !last_update_time means we've passed through
3810 * migrate_task_rq_fair() indicating we migrated.
3811 *
3812 * IOW we're enqueueing a task on a new CPU.
3813 */
3814 attach_entity_load_avg(cfs_rq, se);
3815 update_tg_load_avg(cfs_rq);
3816
3817 } else if (decayed) {
3818 cfs_rq_util_change(cfs_rq, 0);
3819
3820 if (flags & UPDATE_TG)
3821 update_tg_load_avg(cfs_rq);
3822 }
3823 }
3824
3825 #ifndef CONFIG_64BIT
3826 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3827 {
3828 u64 last_update_time_copy;
3829 u64 last_update_time;
3830
3831 do {
3832 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3833 smp_rmb();
3834 last_update_time = cfs_rq->avg.last_update_time;
3835 } while (last_update_time != last_update_time_copy);
3836
3837 return last_update_time;
3838 }
3839 #else
3840 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3841 {
3842 return cfs_rq->avg.last_update_time;
3843 }
3844 #endif
3845
3846 /*
3847 * Synchronize entity load avg of dequeued entity without locking
3848 * the previous rq.
3849 */
3850 static void sync_entity_load_avg(struct sched_entity *se)
3851 {
3852 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3853 u64 last_update_time;
3854
3855 last_update_time = cfs_rq_last_update_time(cfs_rq);
3856 __update_load_avg_blocked_se(last_update_time, se);
3857 }
3858
3859 /*
3860 * Task first catches up with cfs_rq, and then subtract
3861 * itself from the cfs_rq (task must be off the queue now).
3862 */
3863 static void remove_entity_load_avg(struct sched_entity *se)
3864 {
3865 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3866 unsigned long flags;
3867
3868 /*
3869 * tasks cannot exit without having gone through wake_up_new_task() ->
3870 * post_init_entity_util_avg() which will have added things to the
3871 * cfs_rq, so we can remove unconditionally.
3872 */
3873
3874 sync_entity_load_avg(se);
3875
3876 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3877 ++cfs_rq->removed.nr;
3878 cfs_rq->removed.util_avg += se->avg.util_avg;
3879 cfs_rq->removed.load_avg += se->avg.load_avg;
3880 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
3881 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3882 }
3883
3884 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3885 {
3886 return cfs_rq->avg.runnable_avg;
3887 }
3888
3889 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3890 {
3891 return cfs_rq->avg.load_avg;
3892 }
3893
3894 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3895
3896 static inline unsigned long task_util(struct task_struct *p)
3897 {
3898 return READ_ONCE(p->se.avg.util_avg);
3899 }
3900
3901 static inline unsigned long _task_util_est(struct task_struct *p)
3902 {
3903 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3904
3905 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3906 }
3907
3908 static inline unsigned long task_util_est(struct task_struct *p)
3909 {
3910 return max(task_util(p), _task_util_est(p));
3911 }
3912
3913 #ifdef CONFIG_UCLAMP_TASK
3914 static inline unsigned long uclamp_task_util(struct task_struct *p)
3915 {
3916 return clamp(task_util_est(p),
3917 uclamp_eff_value(p, UCLAMP_MIN),
3918 uclamp_eff_value(p, UCLAMP_MAX));
3919 }
3920 #else
3921 static inline unsigned long uclamp_task_util(struct task_struct *p)
3922 {
3923 return task_util_est(p);
3924 }
3925 #endif
3926
3927 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3928 struct task_struct *p)
3929 {
3930 unsigned int enqueued;
3931
3932 if (!sched_feat(UTIL_EST))
3933 return;
3934
3935 /* Update root cfs_rq's estimated utilization */
3936 enqueued = cfs_rq->avg.util_est.enqueued;
3937 enqueued += _task_util_est(p);
3938 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3939
3940 trace_sched_util_est_cfs_tp(cfs_rq);
3941 }
3942
3943 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3944 struct task_struct *p)
3945 {
3946 unsigned int enqueued;
3947
3948 if (!sched_feat(UTIL_EST))
3949 return;
3950
3951 /* Update root cfs_rq's estimated utilization */
3952 enqueued = cfs_rq->avg.util_est.enqueued;
3953 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
3954 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3955
3956 trace_sched_util_est_cfs_tp(cfs_rq);
3957 }
3958
3959 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
3960
3961 /*
3962 * Check if a (signed) value is within a specified (unsigned) margin,
3963 * based on the observation that:
3964 *
3965 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3966 *
3967 * NOTE: this only works when value + margin < INT_MAX.
3968 */
3969 static inline bool within_margin(int value, int margin)
3970 {
3971 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3972 }
3973
3974 static inline void util_est_update(struct cfs_rq *cfs_rq,
3975 struct task_struct *p,
3976 bool task_sleep)
3977 {
3978 long last_ewma_diff, last_enqueued_diff;
3979 struct util_est ue;
3980
3981 if (!sched_feat(UTIL_EST))
3982 return;
3983
3984 /*
3985 * Skip update of task's estimated utilization when the task has not
3986 * yet completed an activation, e.g. being migrated.
3987 */
3988 if (!task_sleep)
3989 return;
3990
3991 /*
3992 * If the PELT values haven't changed since enqueue time,
3993 * skip the util_est update.
3994 */
3995 ue = p->se.avg.util_est;
3996 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3997 return;
3998
3999 last_enqueued_diff = ue.enqueued;
4000
4001 /*
4002 * Reset EWMA on utilization increases, the moving average is used only
4003 * to smooth utilization decreases.
4004 */
4005 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
4006 if (sched_feat(UTIL_EST_FASTUP)) {
4007 if (ue.ewma < ue.enqueued) {
4008 ue.ewma = ue.enqueued;
4009 goto done;
4010 }
4011 }
4012
4013 /*
4014 * Skip update of task's estimated utilization when its members are
4015 * already ~1% close to its last activation value.
4016 */
4017 last_ewma_diff = ue.enqueued - ue.ewma;
4018 last_enqueued_diff -= ue.enqueued;
4019 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4020 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4021 goto done;
4022
4023 return;
4024 }
4025
4026 /*
4027 * To avoid overestimation of actual task utilization, skip updates if
4028 * we cannot grant there is idle time in this CPU.
4029 */
4030 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4031 return;
4032
4033 /*
4034 * Update Task's estimated utilization
4035 *
4036 * When *p completes an activation we can consolidate another sample
4037 * of the task size. This is done by storing the current PELT value
4038 * as ue.enqueued and by using this value to update the Exponential
4039 * Weighted Moving Average (EWMA):
4040 *
4041 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4042 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4043 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4044 * = w * ( last_ewma_diff ) + ewma(t-1)
4045 * = w * (last_ewma_diff + ewma(t-1) / w)
4046 *
4047 * Where 'w' is the weight of new samples, which is configured to be
4048 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4049 */
4050 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4051 ue.ewma += last_ewma_diff;
4052 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4053 done:
4054 WRITE_ONCE(p->se.avg.util_est, ue);
4055
4056 trace_sched_util_est_se_tp(&p->se);
4057 }
4058
4059 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4060 {
4061 return fits_capacity(uclamp_task_util(p), capacity);
4062 }
4063
4064 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4065 {
4066 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4067 return;
4068
4069 if (!p || p->nr_cpus_allowed == 1) {
4070 rq->misfit_task_load = 0;
4071 return;
4072 }
4073
4074 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4075 rq->misfit_task_load = 0;
4076 return;
4077 }
4078
4079 /*
4080 * Make sure that misfit_task_load will not be null even if
4081 * task_h_load() returns 0.
4082 */
4083 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4084 }
4085
4086 #else /* CONFIG_SMP */
4087
4088 #define UPDATE_TG 0x0
4089 #define SKIP_AGE_LOAD 0x0
4090 #define DO_ATTACH 0x0
4091
4092 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4093 {
4094 cfs_rq_util_change(cfs_rq, 0);
4095 }
4096
4097 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4098
4099 static inline void
4100 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4101 static inline void
4102 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4103
4104 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4105 {
4106 return 0;
4107 }
4108
4109 static inline void
4110 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4111
4112 static inline void
4113 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4114
4115 static inline void
4116 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4117 bool task_sleep) {}
4118 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4119
4120 #endif /* CONFIG_SMP */
4121
4122 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4123 {
4124 #ifdef CONFIG_SCHED_DEBUG
4125 s64 d = se->vruntime - cfs_rq->min_vruntime;
4126
4127 if (d < 0)
4128 d = -d;
4129
4130 if (d > 3*sysctl_sched_latency)
4131 schedstat_inc(cfs_rq->nr_spread_over);
4132 #endif
4133 }
4134
4135 static void
4136 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4137 {
4138 u64 vruntime = cfs_rq->min_vruntime;
4139
4140 /*
4141 * The 'current' period is already promised to the current tasks,
4142 * however the extra weight of the new task will slow them down a
4143 * little, place the new task so that it fits in the slot that
4144 * stays open at the end.
4145 */
4146 if (initial && sched_feat(START_DEBIT))
4147 vruntime += sched_vslice(cfs_rq, se);
4148
4149 /* sleeps up to a single latency don't count. */
4150 if (!initial) {
4151 unsigned long thresh = sysctl_sched_latency;
4152
4153 /*
4154 * Halve their sleep time's effect, to allow
4155 * for a gentler effect of sleepers:
4156 */
4157 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4158 thresh >>= 1;
4159
4160 vruntime -= thresh;
4161 }
4162
4163 /* ensure we never gain time by being placed backwards. */
4164 se->vruntime = max_vruntime(se->vruntime, vruntime);
4165 }
4166
4167 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4168
4169 static inline void check_schedstat_required(void)
4170 {
4171 #ifdef CONFIG_SCHEDSTATS
4172 if (schedstat_enabled())
4173 return;
4174
4175 /* Force schedstat enabled if a dependent tracepoint is active */
4176 if (trace_sched_stat_wait_enabled() ||
4177 trace_sched_stat_sleep_enabled() ||
4178 trace_sched_stat_iowait_enabled() ||
4179 trace_sched_stat_blocked_enabled() ||
4180 trace_sched_stat_runtime_enabled()) {
4181 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4182 "stat_blocked and stat_runtime require the "
4183 "kernel parameter schedstats=enable or "
4184 "kernel.sched_schedstats=1\n");
4185 }
4186 #endif
4187 }
4188
4189 static inline bool cfs_bandwidth_used(void);
4190
4191 /*
4192 * MIGRATION
4193 *
4194 * dequeue
4195 * update_curr()
4196 * update_min_vruntime()
4197 * vruntime -= min_vruntime
4198 *
4199 * enqueue
4200 * update_curr()
4201 * update_min_vruntime()
4202 * vruntime += min_vruntime
4203 *
4204 * this way the vruntime transition between RQs is done when both
4205 * min_vruntime are up-to-date.
4206 *
4207 * WAKEUP (remote)
4208 *
4209 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4210 * vruntime -= min_vruntime
4211 *
4212 * enqueue
4213 * update_curr()
4214 * update_min_vruntime()
4215 * vruntime += min_vruntime
4216 *
4217 * this way we don't have the most up-to-date min_vruntime on the originating
4218 * CPU and an up-to-date min_vruntime on the destination CPU.
4219 */
4220
4221 static void
4222 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4223 {
4224 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4225 bool curr = cfs_rq->curr == se;
4226
4227 /*
4228 * If we're the current task, we must renormalise before calling
4229 * update_curr().
4230 */
4231 if (renorm && curr)
4232 se->vruntime += cfs_rq->min_vruntime;
4233
4234 update_curr(cfs_rq);
4235
4236 /*
4237 * Otherwise, renormalise after, such that we're placed at the current
4238 * moment in time, instead of some random moment in the past. Being
4239 * placed in the past could significantly boost this task to the
4240 * fairness detriment of existing tasks.
4241 */
4242 if (renorm && !curr)
4243 se->vruntime += cfs_rq->min_vruntime;
4244
4245 /*
4246 * When enqueuing a sched_entity, we must:
4247 * - Update loads to have both entity and cfs_rq synced with now.
4248 * - Add its load to cfs_rq->runnable_avg
4249 * - For group_entity, update its weight to reflect the new share of
4250 * its group cfs_rq
4251 * - Add its new weight to cfs_rq->load.weight
4252 */
4253 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4254 se_update_runnable(se);
4255 update_cfs_group(se);
4256 account_entity_enqueue(cfs_rq, se);
4257
4258 if (flags & ENQUEUE_WAKEUP)
4259 place_entity(cfs_rq, se, 0);
4260
4261 check_schedstat_required();
4262 update_stats_enqueue(cfs_rq, se, flags);
4263 check_spread(cfs_rq, se);
4264 if (!curr)
4265 __enqueue_entity(cfs_rq, se);
4266 se->on_rq = 1;
4267
4268 /*
4269 * When bandwidth control is enabled, cfs might have been removed
4270 * because of a parent been throttled but cfs->nr_running > 1. Try to
4271 * add it unconditionally.
4272 */
4273 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4274 list_add_leaf_cfs_rq(cfs_rq);
4275
4276 if (cfs_rq->nr_running == 1)
4277 check_enqueue_throttle(cfs_rq);
4278 }
4279
4280 static void __clear_buddies_last(struct sched_entity *se)
4281 {
4282 for_each_sched_entity(se) {
4283 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4284 if (cfs_rq->last != se)
4285 break;
4286
4287 cfs_rq->last = NULL;
4288 }
4289 }
4290
4291 static void __clear_buddies_next(struct sched_entity *se)
4292 {
4293 for_each_sched_entity(se) {
4294 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4295 if (cfs_rq->next != se)
4296 break;
4297
4298 cfs_rq->next = NULL;
4299 }
4300 }
4301
4302 static void __clear_buddies_skip(struct sched_entity *se)
4303 {
4304 for_each_sched_entity(se) {
4305 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4306 if (cfs_rq->skip != se)
4307 break;
4308
4309 cfs_rq->skip = NULL;
4310 }
4311 }
4312
4313 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4314 {
4315 if (cfs_rq->last == se)
4316 __clear_buddies_last(se);
4317
4318 if (cfs_rq->next == se)
4319 __clear_buddies_next(se);
4320
4321 if (cfs_rq->skip == se)
4322 __clear_buddies_skip(se);
4323 }
4324
4325 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4326
4327 static void
4328 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4329 {
4330 /*
4331 * Update run-time statistics of the 'current'.
4332 */
4333 update_curr(cfs_rq);
4334
4335 /*
4336 * When dequeuing a sched_entity, we must:
4337 * - Update loads to have both entity and cfs_rq synced with now.
4338 * - Subtract its load from the cfs_rq->runnable_avg.
4339 * - Subtract its previous weight from cfs_rq->load.weight.
4340 * - For group entity, update its weight to reflect the new share
4341 * of its group cfs_rq.
4342 */
4343 update_load_avg(cfs_rq, se, UPDATE_TG);
4344 se_update_runnable(se);
4345
4346 update_stats_dequeue(cfs_rq, se, flags);
4347
4348 clear_buddies(cfs_rq, se);
4349
4350 if (se != cfs_rq->curr)
4351 __dequeue_entity(cfs_rq, se);
4352 se->on_rq = 0;
4353 account_entity_dequeue(cfs_rq, se);
4354
4355 /*
4356 * Normalize after update_curr(); which will also have moved
4357 * min_vruntime if @se is the one holding it back. But before doing
4358 * update_min_vruntime() again, which will discount @se's position and
4359 * can move min_vruntime forward still more.
4360 */
4361 if (!(flags & DEQUEUE_SLEEP))
4362 se->vruntime -= cfs_rq->min_vruntime;
4363
4364 /* return excess runtime on last dequeue */
4365 return_cfs_rq_runtime(cfs_rq);
4366
4367 update_cfs_group(se);
4368
4369 /*
4370 * Now advance min_vruntime if @se was the entity holding it back,
4371 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4372 * put back on, and if we advance min_vruntime, we'll be placed back
4373 * further than we started -- ie. we'll be penalized.
4374 */
4375 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4376 update_min_vruntime(cfs_rq);
4377 }
4378
4379 /*
4380 * Preempt the current task with a newly woken task if needed:
4381 */
4382 static void
4383 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4384 {
4385 unsigned long ideal_runtime, delta_exec;
4386 struct sched_entity *se;
4387 s64 delta;
4388
4389 ideal_runtime = sched_slice(cfs_rq, curr);
4390 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4391 if (delta_exec > ideal_runtime) {
4392 resched_curr(rq_of(cfs_rq));
4393 /*
4394 * The current task ran long enough, ensure it doesn't get
4395 * re-elected due to buddy favours.
4396 */
4397 clear_buddies(cfs_rq, curr);
4398 return;
4399 }
4400
4401 /*
4402 * Ensure that a task that missed wakeup preemption by a
4403 * narrow margin doesn't have to wait for a full slice.
4404 * This also mitigates buddy induced latencies under load.
4405 */
4406 if (delta_exec < sysctl_sched_min_granularity)
4407 return;
4408
4409 se = __pick_first_entity(cfs_rq);
4410 delta = curr->vruntime - se->vruntime;
4411
4412 if (delta < 0)
4413 return;
4414
4415 if (delta > ideal_runtime)
4416 resched_curr(rq_of(cfs_rq));
4417 }
4418
4419 static void
4420 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4421 {
4422 /* 'current' is not kept within the tree. */
4423 if (se->on_rq) {
4424 /*
4425 * Any task has to be enqueued before it get to execute on
4426 * a CPU. So account for the time it spent waiting on the
4427 * runqueue.
4428 */
4429 update_stats_wait_end(cfs_rq, se);
4430 __dequeue_entity(cfs_rq, se);
4431 update_load_avg(cfs_rq, se, UPDATE_TG);
4432 }
4433
4434 update_stats_curr_start(cfs_rq, se);
4435 cfs_rq->curr = se;
4436
4437 /*
4438 * Track our maximum slice length, if the CPU's load is at
4439 * least twice that of our own weight (i.e. dont track it
4440 * when there are only lesser-weight tasks around):
4441 */
4442 if (schedstat_enabled() &&
4443 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4444 schedstat_set(se->statistics.slice_max,
4445 max((u64)schedstat_val(se->statistics.slice_max),
4446 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4447 }
4448
4449 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4450 }
4451
4452 static int
4453 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4454
4455 /*
4456 * Pick the next process, keeping these things in mind, in this order:
4457 * 1) keep things fair between processes/task groups
4458 * 2) pick the "next" process, since someone really wants that to run
4459 * 3) pick the "last" process, for cache locality
4460 * 4) do not run the "skip" process, if something else is available
4461 */
4462 static struct sched_entity *
4463 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4464 {
4465 struct sched_entity *left = __pick_first_entity(cfs_rq);
4466 struct sched_entity *se;
4467
4468 /*
4469 * If curr is set we have to see if its left of the leftmost entity
4470 * still in the tree, provided there was anything in the tree at all.
4471 */
4472 if (!left || (curr && entity_before(curr, left)))
4473 left = curr;
4474
4475 se = left; /* ideally we run the leftmost entity */
4476
4477 /*
4478 * Avoid running the skip buddy, if running something else can
4479 * be done without getting too unfair.
4480 */
4481 if (cfs_rq->skip == se) {
4482 struct sched_entity *second;
4483
4484 if (se == curr) {
4485 second = __pick_first_entity(cfs_rq);
4486 } else {
4487 second = __pick_next_entity(se);
4488 if (!second || (curr && entity_before(curr, second)))
4489 second = curr;
4490 }
4491
4492 if (second && wakeup_preempt_entity(second, left) < 1)
4493 se = second;
4494 }
4495
4496 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4497 /*
4498 * Someone really wants this to run. If it's not unfair, run it.
4499 */
4500 se = cfs_rq->next;
4501 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4502 /*
4503 * Prefer last buddy, try to return the CPU to a preempted task.
4504 */
4505 se = cfs_rq->last;
4506 }
4507
4508 clear_buddies(cfs_rq, se);
4509
4510 return se;
4511 }
4512
4513 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4514
4515 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4516 {
4517 /*
4518 * If still on the runqueue then deactivate_task()
4519 * was not called and update_curr() has to be done:
4520 */
4521 if (prev->on_rq)
4522 update_curr(cfs_rq);
4523
4524 /* throttle cfs_rqs exceeding runtime */
4525 check_cfs_rq_runtime(cfs_rq);
4526
4527 check_spread(cfs_rq, prev);
4528
4529 if (prev->on_rq) {
4530 update_stats_wait_start(cfs_rq, prev);
4531 /* Put 'current' back into the tree. */
4532 __enqueue_entity(cfs_rq, prev);
4533 /* in !on_rq case, update occurred at dequeue */
4534 update_load_avg(cfs_rq, prev, 0);
4535 }
4536 cfs_rq->curr = NULL;
4537 }
4538
4539 static void
4540 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4541 {
4542 /*
4543 * Update run-time statistics of the 'current'.
4544 */
4545 update_curr(cfs_rq);
4546
4547 /*
4548 * Ensure that runnable average is periodically updated.
4549 */
4550 update_load_avg(cfs_rq, curr, UPDATE_TG);
4551 update_cfs_group(curr);
4552
4553 #ifdef CONFIG_SCHED_HRTICK
4554 /*
4555 * queued ticks are scheduled to match the slice, so don't bother
4556 * validating it and just reschedule.
4557 */
4558 if (queued) {
4559 resched_curr(rq_of(cfs_rq));
4560 return;
4561 }
4562 /*
4563 * don't let the period tick interfere with the hrtick preemption
4564 */
4565 if (!sched_feat(DOUBLE_TICK) &&
4566 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4567 return;
4568 #endif
4569
4570 if (cfs_rq->nr_running > 1)
4571 check_preempt_tick(cfs_rq, curr);
4572 }
4573
4574
4575 /**************************************************
4576 * CFS bandwidth control machinery
4577 */
4578
4579 #ifdef CONFIG_CFS_BANDWIDTH
4580
4581 #ifdef CONFIG_JUMP_LABEL
4582 static struct static_key __cfs_bandwidth_used;
4583
4584 static inline bool cfs_bandwidth_used(void)
4585 {
4586 return static_key_false(&__cfs_bandwidth_used);
4587 }
4588
4589 void cfs_bandwidth_usage_inc(void)
4590 {
4591 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4592 }
4593
4594 void cfs_bandwidth_usage_dec(void)
4595 {
4596 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4597 }
4598 #else /* CONFIG_JUMP_LABEL */
4599 static bool cfs_bandwidth_used(void)
4600 {
4601 return true;
4602 }
4603
4604 void cfs_bandwidth_usage_inc(void) {}
4605 void cfs_bandwidth_usage_dec(void) {}
4606 #endif /* CONFIG_JUMP_LABEL */
4607
4608 /*
4609 * default period for cfs group bandwidth.
4610 * default: 0.1s, units: nanoseconds
4611 */
4612 static inline u64 default_cfs_period(void)
4613 {
4614 return 100000000ULL;
4615 }
4616
4617 static inline u64 sched_cfs_bandwidth_slice(void)
4618 {
4619 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4620 }
4621
4622 /*
4623 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4624 * directly instead of rq->clock to avoid adding additional synchronization
4625 * around rq->lock.
4626 *
4627 * requires cfs_b->lock
4628 */
4629 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4630 {
4631 if (cfs_b->quota != RUNTIME_INF)
4632 cfs_b->runtime = cfs_b->quota;
4633 }
4634
4635 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4636 {
4637 return &tg->cfs_bandwidth;
4638 }
4639
4640 /* returns 0 on failure to allocate runtime */
4641 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4642 struct cfs_rq *cfs_rq, u64 target_runtime)
4643 {
4644 u64 min_amount, amount = 0;
4645
4646 lockdep_assert_held(&cfs_b->lock);
4647
4648 /* note: this is a positive sum as runtime_remaining <= 0 */
4649 min_amount = target_runtime - cfs_rq->runtime_remaining;
4650
4651 if (cfs_b->quota == RUNTIME_INF)
4652 amount = min_amount;
4653 else {
4654 start_cfs_bandwidth(cfs_b);
4655
4656 if (cfs_b->runtime > 0) {
4657 amount = min(cfs_b->runtime, min_amount);
4658 cfs_b->runtime -= amount;
4659 cfs_b->idle = 0;
4660 }
4661 }
4662
4663 cfs_rq->runtime_remaining += amount;
4664
4665 return cfs_rq->runtime_remaining > 0;
4666 }
4667
4668 /* returns 0 on failure to allocate runtime */
4669 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4670 {
4671 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4672 int ret;
4673
4674 raw_spin_lock(&cfs_b->lock);
4675 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4676 raw_spin_unlock(&cfs_b->lock);
4677
4678 return ret;
4679 }
4680
4681 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4682 {
4683 /* dock delta_exec before expiring quota (as it could span periods) */
4684 cfs_rq->runtime_remaining -= delta_exec;
4685
4686 if (likely(cfs_rq->runtime_remaining > 0))
4687 return;
4688
4689 if (cfs_rq->throttled)
4690 return;
4691 /*
4692 * if we're unable to extend our runtime we resched so that the active
4693 * hierarchy can be throttled
4694 */
4695 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4696 resched_curr(rq_of(cfs_rq));
4697 }
4698
4699 static __always_inline
4700 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4701 {
4702 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4703 return;
4704
4705 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4706 }
4707
4708 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4709 {
4710 return cfs_bandwidth_used() && cfs_rq->throttled;
4711 }
4712
4713 /* check whether cfs_rq, or any parent, is throttled */
4714 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4715 {
4716 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4717 }
4718
4719 /*
4720 * Ensure that neither of the group entities corresponding to src_cpu or
4721 * dest_cpu are members of a throttled hierarchy when performing group
4722 * load-balance operations.
4723 */
4724 static inline int throttled_lb_pair(struct task_group *tg,
4725 int src_cpu, int dest_cpu)
4726 {
4727 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4728
4729 src_cfs_rq = tg->cfs_rq[src_cpu];
4730 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4731
4732 return throttled_hierarchy(src_cfs_rq) ||
4733 throttled_hierarchy(dest_cfs_rq);
4734 }
4735
4736 static int tg_unthrottle_up(struct task_group *tg, void *data)
4737 {
4738 struct rq *rq = data;
4739 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4740
4741 cfs_rq->throttle_count--;
4742 if (!cfs_rq->throttle_count) {
4743 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4744 cfs_rq->throttled_clock_task;
4745
4746 /* Add cfs_rq with already running entity in the list */
4747 if (cfs_rq->nr_running >= 1)
4748 list_add_leaf_cfs_rq(cfs_rq);
4749 }
4750
4751 return 0;
4752 }
4753
4754 static int tg_throttle_down(struct task_group *tg, void *data)
4755 {
4756 struct rq *rq = data;
4757 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4758
4759 /* group is entering throttled state, stop time */
4760 if (!cfs_rq->throttle_count) {
4761 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4762 list_del_leaf_cfs_rq(cfs_rq);
4763 }
4764 cfs_rq->throttle_count++;
4765
4766 return 0;
4767 }
4768
4769 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4770 {
4771 struct rq *rq = rq_of(cfs_rq);
4772 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4773 struct sched_entity *se;
4774 long task_delta, idle_task_delta, dequeue = 1;
4775
4776 raw_spin_lock(&cfs_b->lock);
4777 /* This will start the period timer if necessary */
4778 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4779 /*
4780 * We have raced with bandwidth becoming available, and if we
4781 * actually throttled the timer might not unthrottle us for an
4782 * entire period. We additionally needed to make sure that any
4783 * subsequent check_cfs_rq_runtime calls agree not to throttle
4784 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4785 * for 1ns of runtime rather than just check cfs_b.
4786 */
4787 dequeue = 0;
4788 } else {
4789 list_add_tail_rcu(&cfs_rq->throttled_list,
4790 &cfs_b->throttled_cfs_rq);
4791 }
4792 raw_spin_unlock(&cfs_b->lock);
4793
4794 if (!dequeue)
4795 return false; /* Throttle no longer required. */
4796
4797 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4798
4799 /* freeze hierarchy runnable averages while throttled */
4800 rcu_read_lock();
4801 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4802 rcu_read_unlock();
4803
4804 task_delta = cfs_rq->h_nr_running;
4805 idle_task_delta = cfs_rq->idle_h_nr_running;
4806 for_each_sched_entity(se) {
4807 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4808 /* throttled entity or throttle-on-deactivate */
4809 if (!se->on_rq)
4810 goto done;
4811
4812 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4813
4814 qcfs_rq->h_nr_running -= task_delta;
4815 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4816
4817 if (qcfs_rq->load.weight) {
4818 /* Avoid re-evaluating load for this entity: */
4819 se = parent_entity(se);
4820 break;
4821 }
4822 }
4823
4824 for_each_sched_entity(se) {
4825 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4826 /* throttled entity or throttle-on-deactivate */
4827 if (!se->on_rq)
4828 goto done;
4829
4830 update_load_avg(qcfs_rq, se, 0);
4831 se_update_runnable(se);
4832
4833 qcfs_rq->h_nr_running -= task_delta;
4834 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4835 }
4836
4837 /* At this point se is NULL and we are at root level*/
4838 sub_nr_running(rq, task_delta);
4839
4840 done:
4841 /*
4842 * Note: distribution will already see us throttled via the
4843 * throttled-list. rq->lock protects completion.
4844 */
4845 cfs_rq->throttled = 1;
4846 cfs_rq->throttled_clock = rq_clock(rq);
4847 return true;
4848 }
4849
4850 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4851 {
4852 struct rq *rq = rq_of(cfs_rq);
4853 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4854 struct sched_entity *se;
4855 long task_delta, idle_task_delta;
4856
4857 se = cfs_rq->tg->se[cpu_of(rq)];
4858
4859 cfs_rq->throttled = 0;
4860
4861 update_rq_clock(rq);
4862
4863 raw_spin_lock(&cfs_b->lock);
4864 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4865 list_del_rcu(&cfs_rq->throttled_list);
4866 raw_spin_unlock(&cfs_b->lock);
4867
4868 /* update hierarchical throttle state */
4869 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4870
4871 if (!cfs_rq->load.weight)
4872 return;
4873
4874 task_delta = cfs_rq->h_nr_running;
4875 idle_task_delta = cfs_rq->idle_h_nr_running;
4876 for_each_sched_entity(se) {
4877 if (se->on_rq)
4878 break;
4879 cfs_rq = cfs_rq_of(se);
4880 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4881
4882 cfs_rq->h_nr_running += task_delta;
4883 cfs_rq->idle_h_nr_running += idle_task_delta;
4884
4885 /* end evaluation on encountering a throttled cfs_rq */
4886 if (cfs_rq_throttled(cfs_rq))
4887 goto unthrottle_throttle;
4888 }
4889
4890 for_each_sched_entity(se) {
4891 cfs_rq = cfs_rq_of(se);
4892
4893 update_load_avg(cfs_rq, se, UPDATE_TG);
4894 se_update_runnable(se);
4895
4896 cfs_rq->h_nr_running += task_delta;
4897 cfs_rq->idle_h_nr_running += idle_task_delta;
4898
4899
4900 /* end evaluation on encountering a throttled cfs_rq */
4901 if (cfs_rq_throttled(cfs_rq))
4902 goto unthrottle_throttle;
4903
4904 /*
4905 * One parent has been throttled and cfs_rq removed from the
4906 * list. Add it back to not break the leaf list.
4907 */
4908 if (throttled_hierarchy(cfs_rq))
4909 list_add_leaf_cfs_rq(cfs_rq);
4910 }
4911
4912 /* At this point se is NULL and we are at root level*/
4913 add_nr_running(rq, task_delta);
4914
4915 unthrottle_throttle:
4916 /*
4917 * The cfs_rq_throttled() breaks in the above iteration can result in
4918 * incomplete leaf list maintenance, resulting in triggering the
4919 * assertion below.
4920 */
4921 for_each_sched_entity(se) {
4922 cfs_rq = cfs_rq_of(se);
4923
4924 if (list_add_leaf_cfs_rq(cfs_rq))
4925 break;
4926 }
4927
4928 assert_list_leaf_cfs_rq(rq);
4929
4930 /* Determine whether we need to wake up potentially idle CPU: */
4931 if (rq->curr == rq->idle && rq->cfs.nr_running)
4932 resched_curr(rq);
4933 }
4934
4935 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4936 {
4937 struct cfs_rq *cfs_rq;
4938 u64 runtime, remaining = 1;
4939
4940 rcu_read_lock();
4941 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4942 throttled_list) {
4943 struct rq *rq = rq_of(cfs_rq);
4944 struct rq_flags rf;
4945
4946 rq_lock_irqsave(rq, &rf);
4947 if (!cfs_rq_throttled(cfs_rq))
4948 goto next;
4949
4950 /* By the above check, this should never be true */
4951 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4952
4953 raw_spin_lock(&cfs_b->lock);
4954 runtime = -cfs_rq->runtime_remaining + 1;
4955 if (runtime > cfs_b->runtime)
4956 runtime = cfs_b->runtime;
4957 cfs_b->runtime -= runtime;
4958 remaining = cfs_b->runtime;
4959 raw_spin_unlock(&cfs_b->lock);
4960
4961 cfs_rq->runtime_remaining += runtime;
4962
4963 /* we check whether we're throttled above */
4964 if (cfs_rq->runtime_remaining > 0)
4965 unthrottle_cfs_rq(cfs_rq);
4966
4967 next:
4968 rq_unlock_irqrestore(rq, &rf);
4969
4970 if (!remaining)
4971 break;
4972 }
4973 rcu_read_unlock();
4974 }
4975
4976 /*
4977 * Responsible for refilling a task_group's bandwidth and unthrottling its
4978 * cfs_rqs as appropriate. If there has been no activity within the last
4979 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4980 * used to track this state.
4981 */
4982 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4983 {
4984 int throttled;
4985
4986 /* no need to continue the timer with no bandwidth constraint */
4987 if (cfs_b->quota == RUNTIME_INF)
4988 goto out_deactivate;
4989
4990 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4991 cfs_b->nr_periods += overrun;
4992
4993 /*
4994 * idle depends on !throttled (for the case of a large deficit), and if
4995 * we're going inactive then everything else can be deferred
4996 */
4997 if (cfs_b->idle && !throttled)
4998 goto out_deactivate;
4999
5000 __refill_cfs_bandwidth_runtime(cfs_b);
5001
5002 if (!throttled) {
5003 /* mark as potentially idle for the upcoming period */
5004 cfs_b->idle = 1;
5005 return 0;
5006 }
5007
5008 /* account preceding periods in which throttling occurred */
5009 cfs_b->nr_throttled += overrun;
5010
5011 /*
5012 * This check is repeated as we release cfs_b->lock while we unthrottle.
5013 */
5014 while (throttled && cfs_b->runtime > 0) {
5015 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5016 /* we can't nest cfs_b->lock while distributing bandwidth */
5017 distribute_cfs_runtime(cfs_b);
5018 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5019
5020 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5021 }
5022
5023 /*
5024 * While we are ensured activity in the period following an
5025 * unthrottle, this also covers the case in which the new bandwidth is
5026 * insufficient to cover the existing bandwidth deficit. (Forcing the
5027 * timer to remain active while there are any throttled entities.)
5028 */
5029 cfs_b->idle = 0;
5030
5031 return 0;
5032
5033 out_deactivate:
5034 return 1;
5035 }
5036
5037 /* a cfs_rq won't donate quota below this amount */
5038 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5039 /* minimum remaining period time to redistribute slack quota */
5040 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5041 /* how long we wait to gather additional slack before distributing */
5042 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5043
5044 /*
5045 * Are we near the end of the current quota period?
5046 *
5047 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5048 * hrtimer base being cleared by hrtimer_start. In the case of
5049 * migrate_hrtimers, base is never cleared, so we are fine.
5050 */
5051 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5052 {
5053 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5054 u64 remaining;
5055
5056 /* if the call-back is running a quota refresh is already occurring */
5057 if (hrtimer_callback_running(refresh_timer))
5058 return 1;
5059
5060 /* is a quota refresh about to occur? */
5061 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5062 if (remaining < min_expire)
5063 return 1;
5064
5065 return 0;
5066 }
5067
5068 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5069 {
5070 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5071
5072 /* if there's a quota refresh soon don't bother with slack */
5073 if (runtime_refresh_within(cfs_b, min_left))
5074 return;
5075
5076 /* don't push forwards an existing deferred unthrottle */
5077 if (cfs_b->slack_started)
5078 return;
5079 cfs_b->slack_started = true;
5080
5081 hrtimer_start(&cfs_b->slack_timer,
5082 ns_to_ktime(cfs_bandwidth_slack_period),
5083 HRTIMER_MODE_REL);
5084 }
5085
5086 /* we know any runtime found here is valid as update_curr() precedes return */
5087 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5088 {
5089 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5090 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5091
5092 if (slack_runtime <= 0)
5093 return;
5094
5095 raw_spin_lock(&cfs_b->lock);
5096 if (cfs_b->quota != RUNTIME_INF) {
5097 cfs_b->runtime += slack_runtime;
5098
5099 /* we are under rq->lock, defer unthrottling using a timer */
5100 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5101 !list_empty(&cfs_b->throttled_cfs_rq))
5102 start_cfs_slack_bandwidth(cfs_b);
5103 }
5104 raw_spin_unlock(&cfs_b->lock);
5105
5106 /* even if it's not valid for return we don't want to try again */
5107 cfs_rq->runtime_remaining -= slack_runtime;
5108 }
5109
5110 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5111 {
5112 if (!cfs_bandwidth_used())
5113 return;
5114
5115 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5116 return;
5117
5118 __return_cfs_rq_runtime(cfs_rq);
5119 }
5120
5121 /*
5122 * This is done with a timer (instead of inline with bandwidth return) since
5123 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5124 */
5125 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5126 {
5127 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5128 unsigned long flags;
5129
5130 /* confirm we're still not at a refresh boundary */
5131 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5132 cfs_b->slack_started = false;
5133
5134 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5135 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5136 return;
5137 }
5138
5139 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5140 runtime = cfs_b->runtime;
5141
5142 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5143
5144 if (!runtime)
5145 return;
5146
5147 distribute_cfs_runtime(cfs_b);
5148 }
5149
5150 /*
5151 * When a group wakes up we want to make sure that its quota is not already
5152 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5153 * runtime as update_curr() throttling can not trigger until it's on-rq.
5154 */
5155 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5156 {
5157 if (!cfs_bandwidth_used())
5158 return;
5159
5160 /* an active group must be handled by the update_curr()->put() path */
5161 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5162 return;
5163
5164 /* ensure the group is not already throttled */
5165 if (cfs_rq_throttled(cfs_rq))
5166 return;
5167
5168 /* update runtime allocation */
5169 account_cfs_rq_runtime(cfs_rq, 0);
5170 if (cfs_rq->runtime_remaining <= 0)
5171 throttle_cfs_rq(cfs_rq);
5172 }
5173
5174 static void sync_throttle(struct task_group *tg, int cpu)
5175 {
5176 struct cfs_rq *pcfs_rq, *cfs_rq;
5177
5178 if (!cfs_bandwidth_used())
5179 return;
5180
5181 if (!tg->parent)
5182 return;
5183
5184 cfs_rq = tg->cfs_rq[cpu];
5185 pcfs_rq = tg->parent->cfs_rq[cpu];
5186
5187 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5188 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5189 }
5190
5191 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5192 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5193 {
5194 if (!cfs_bandwidth_used())
5195 return false;
5196
5197 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5198 return false;
5199
5200 /*
5201 * it's possible for a throttled entity to be forced into a running
5202 * state (e.g. set_curr_task), in this case we're finished.
5203 */
5204 if (cfs_rq_throttled(cfs_rq))
5205 return true;
5206
5207 return throttle_cfs_rq(cfs_rq);
5208 }
5209
5210 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5211 {
5212 struct cfs_bandwidth *cfs_b =
5213 container_of(timer, struct cfs_bandwidth, slack_timer);
5214
5215 do_sched_cfs_slack_timer(cfs_b);
5216
5217 return HRTIMER_NORESTART;
5218 }
5219
5220 extern const u64 max_cfs_quota_period;
5221
5222 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5223 {
5224 struct cfs_bandwidth *cfs_b =
5225 container_of(timer, struct cfs_bandwidth, period_timer);
5226 unsigned long flags;
5227 int overrun;
5228 int idle = 0;
5229 int count = 0;
5230
5231 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5232 for (;;) {
5233 overrun = hrtimer_forward_now(timer, cfs_b->period);
5234 if (!overrun)
5235 break;
5236
5237 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5238
5239 if (++count > 3) {
5240 u64 new, old = ktime_to_ns(cfs_b->period);
5241
5242 /*
5243 * Grow period by a factor of 2 to avoid losing precision.
5244 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5245 * to fail.
5246 */
5247 new = old * 2;
5248 if (new < max_cfs_quota_period) {
5249 cfs_b->period = ns_to_ktime(new);
5250 cfs_b->quota *= 2;
5251
5252 pr_warn_ratelimited(
5253 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5254 smp_processor_id(),
5255 div_u64(new, NSEC_PER_USEC),
5256 div_u64(cfs_b->quota, NSEC_PER_USEC));
5257 } else {
5258 pr_warn_ratelimited(
5259 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5260 smp_processor_id(),
5261 div_u64(old, NSEC_PER_USEC),
5262 div_u64(cfs_b->quota, NSEC_PER_USEC));
5263 }
5264
5265 /* reset count so we don't come right back in here */
5266 count = 0;
5267 }
5268 }
5269 if (idle)
5270 cfs_b->period_active = 0;
5271 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5272
5273 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5274 }
5275
5276 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5277 {
5278 raw_spin_lock_init(&cfs_b->lock);
5279 cfs_b->runtime = 0;
5280 cfs_b->quota = RUNTIME_INF;
5281 cfs_b->period = ns_to_ktime(default_cfs_period());
5282
5283 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5284 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5285 cfs_b->period_timer.function = sched_cfs_period_timer;
5286 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5287 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5288 cfs_b->slack_started = false;
5289 }
5290
5291 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5292 {
5293 cfs_rq->runtime_enabled = 0;
5294 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5295 }
5296
5297 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5298 {
5299 lockdep_assert_held(&cfs_b->lock);
5300
5301 if (cfs_b->period_active)
5302 return;
5303
5304 cfs_b->period_active = 1;
5305 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5306 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5307 }
5308
5309 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5310 {
5311 /* init_cfs_bandwidth() was not called */
5312 if (!cfs_b->throttled_cfs_rq.next)
5313 return;
5314
5315 hrtimer_cancel(&cfs_b->period_timer);
5316 hrtimer_cancel(&cfs_b->slack_timer);
5317 }
5318
5319 /*
5320 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5321 *
5322 * The race is harmless, since modifying bandwidth settings of unhooked group
5323 * bits doesn't do much.
5324 */
5325
5326 /* cpu online callback */
5327 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5328 {
5329 struct task_group *tg;
5330
5331 lockdep_assert_rq_held(rq);
5332
5333 rcu_read_lock();
5334 list_for_each_entry_rcu(tg, &task_groups, list) {
5335 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5336 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5337
5338 raw_spin_lock(&cfs_b->lock);
5339 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5340 raw_spin_unlock(&cfs_b->lock);
5341 }
5342 rcu_read_unlock();
5343 }
5344
5345 /* cpu offline callback */
5346 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5347 {
5348 struct task_group *tg;
5349
5350 lockdep_assert_rq_held(rq);
5351
5352 rcu_read_lock();
5353 list_for_each_entry_rcu(tg, &task_groups, list) {
5354 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5355
5356 if (!cfs_rq->runtime_enabled)
5357 continue;
5358
5359 /*
5360 * clock_task is not advancing so we just need to make sure
5361 * there's some valid quota amount
5362 */
5363 cfs_rq->runtime_remaining = 1;
5364 /*
5365 * Offline rq is schedulable till CPU is completely disabled
5366 * in take_cpu_down(), so we prevent new cfs throttling here.
5367 */
5368 cfs_rq->runtime_enabled = 0;
5369
5370 if (cfs_rq_throttled(cfs_rq))
5371 unthrottle_cfs_rq(cfs_rq);
5372 }
5373 rcu_read_unlock();
5374 }
5375
5376 #else /* CONFIG_CFS_BANDWIDTH */
5377
5378 static inline bool cfs_bandwidth_used(void)
5379 {
5380 return false;
5381 }
5382
5383 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5384 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5385 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5386 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5387 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5388
5389 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5390 {
5391 return 0;
5392 }
5393
5394 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5395 {
5396 return 0;
5397 }
5398
5399 static inline int throttled_lb_pair(struct task_group *tg,
5400 int src_cpu, int dest_cpu)
5401 {
5402 return 0;
5403 }
5404
5405 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5406
5407 #ifdef CONFIG_FAIR_GROUP_SCHED
5408 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5409 #endif
5410
5411 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5412 {
5413 return NULL;
5414 }
5415 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5416 static inline void update_runtime_enabled(struct rq *rq) {}
5417 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5418
5419 #endif /* CONFIG_CFS_BANDWIDTH */
5420
5421 /**************************************************
5422 * CFS operations on tasks:
5423 */
5424
5425 #ifdef CONFIG_SCHED_HRTICK
5426 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5427 {
5428 struct sched_entity *se = &p->se;
5429 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5430
5431 SCHED_WARN_ON(task_rq(p) != rq);
5432
5433 if (rq->cfs.h_nr_running > 1) {
5434 u64 slice = sched_slice(cfs_rq, se);
5435 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5436 s64 delta = slice - ran;
5437
5438 if (delta < 0) {
5439 if (task_current(rq, p))
5440 resched_curr(rq);
5441 return;
5442 }
5443 hrtick_start(rq, delta);
5444 }
5445 }
5446
5447 /*
5448 * called from enqueue/dequeue and updates the hrtick when the
5449 * current task is from our class and nr_running is low enough
5450 * to matter.
5451 */
5452 static void hrtick_update(struct rq *rq)
5453 {
5454 struct task_struct *curr = rq->curr;
5455
5456 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5457 return;
5458
5459 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5460 hrtick_start_fair(rq, curr);
5461 }
5462 #else /* !CONFIG_SCHED_HRTICK */
5463 static inline void
5464 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5465 {
5466 }
5467
5468 static inline void hrtick_update(struct rq *rq)
5469 {
5470 }
5471 #endif
5472
5473 #ifdef CONFIG_SMP
5474 static inline unsigned long cpu_util(int cpu);
5475
5476 static inline bool cpu_overutilized(int cpu)
5477 {
5478 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5479 }
5480
5481 static inline void update_overutilized_status(struct rq *rq)
5482 {
5483 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5484 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5485 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5486 }
5487 }
5488 #else
5489 static inline void update_overutilized_status(struct rq *rq) { }
5490 #endif
5491
5492 /* Runqueue only has SCHED_IDLE tasks enqueued */
5493 static int sched_idle_rq(struct rq *rq)
5494 {
5495 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5496 rq->nr_running);
5497 }
5498
5499 #ifdef CONFIG_SMP
5500 static int sched_idle_cpu(int cpu)
5501 {
5502 return sched_idle_rq(cpu_rq(cpu));
5503 }
5504 #endif
5505
5506 /*
5507 * The enqueue_task method is called before nr_running is
5508 * increased. Here we update the fair scheduling stats and
5509 * then put the task into the rbtree:
5510 */
5511 static void
5512 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5513 {
5514 struct cfs_rq *cfs_rq;
5515 struct sched_entity *se = &p->se;
5516 int idle_h_nr_running = task_has_idle_policy(p);
5517 int task_new = !(flags & ENQUEUE_WAKEUP);
5518
5519 /*
5520 * The code below (indirectly) updates schedutil which looks at
5521 * the cfs_rq utilization to select a frequency.
5522 * Let's add the task's estimated utilization to the cfs_rq's
5523 * estimated utilization, before we update schedutil.
5524 */
5525 util_est_enqueue(&rq->cfs, p);
5526
5527 /*
5528 * If in_iowait is set, the code below may not trigger any cpufreq
5529 * utilization updates, so do it here explicitly with the IOWAIT flag
5530 * passed.
5531 */
5532 if (p->in_iowait)
5533 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5534
5535 for_each_sched_entity(se) {
5536 if (se->on_rq)
5537 break;
5538 cfs_rq = cfs_rq_of(se);
5539 enqueue_entity(cfs_rq, se, flags);
5540
5541 cfs_rq->h_nr_running++;
5542 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5543
5544 /* end evaluation on encountering a throttled cfs_rq */
5545 if (cfs_rq_throttled(cfs_rq))
5546 goto enqueue_throttle;
5547
5548 flags = ENQUEUE_WAKEUP;
5549 }
5550
5551 for_each_sched_entity(se) {
5552 cfs_rq = cfs_rq_of(se);
5553
5554 update_load_avg(cfs_rq, se, UPDATE_TG);
5555 se_update_runnable(se);
5556 update_cfs_group(se);
5557
5558 cfs_rq->h_nr_running++;
5559 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5560
5561 /* end evaluation on encountering a throttled cfs_rq */
5562 if (cfs_rq_throttled(cfs_rq))
5563 goto enqueue_throttle;
5564
5565 /*
5566 * One parent has been throttled and cfs_rq removed from the
5567 * list. Add it back to not break the leaf list.
5568 */
5569 if (throttled_hierarchy(cfs_rq))
5570 list_add_leaf_cfs_rq(cfs_rq);
5571 }
5572
5573 /* At this point se is NULL and we are at root level*/
5574 add_nr_running(rq, 1);
5575
5576 /*
5577 * Since new tasks are assigned an initial util_avg equal to
5578 * half of the spare capacity of their CPU, tiny tasks have the
5579 * ability to cross the overutilized threshold, which will
5580 * result in the load balancer ruining all the task placement
5581 * done by EAS. As a way to mitigate that effect, do not account
5582 * for the first enqueue operation of new tasks during the
5583 * overutilized flag detection.
5584 *
5585 * A better way of solving this problem would be to wait for
5586 * the PELT signals of tasks to converge before taking them
5587 * into account, but that is not straightforward to implement,
5588 * and the following generally works well enough in practice.
5589 */
5590 if (!task_new)
5591 update_overutilized_status(rq);
5592
5593 enqueue_throttle:
5594 if (cfs_bandwidth_used()) {
5595 /*
5596 * When bandwidth control is enabled; the cfs_rq_throttled()
5597 * breaks in the above iteration can result in incomplete
5598 * leaf list maintenance, resulting in triggering the assertion
5599 * below.
5600 */
5601 for_each_sched_entity(se) {
5602 cfs_rq = cfs_rq_of(se);
5603
5604 if (list_add_leaf_cfs_rq(cfs_rq))
5605 break;
5606 }
5607 }
5608
5609 assert_list_leaf_cfs_rq(rq);
5610
5611 hrtick_update(rq);
5612 }
5613
5614 static void set_next_buddy(struct sched_entity *se);
5615
5616 /*
5617 * The dequeue_task method is called before nr_running is
5618 * decreased. We remove the task from the rbtree and
5619 * update the fair scheduling stats:
5620 */
5621 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5622 {
5623 struct cfs_rq *cfs_rq;
5624 struct sched_entity *se = &p->se;
5625 int task_sleep = flags & DEQUEUE_SLEEP;
5626 int idle_h_nr_running = task_has_idle_policy(p);
5627 bool was_sched_idle = sched_idle_rq(rq);
5628
5629 util_est_dequeue(&rq->cfs, p);
5630
5631 for_each_sched_entity(se) {
5632 cfs_rq = cfs_rq_of(se);
5633 dequeue_entity(cfs_rq, se, flags);
5634
5635 cfs_rq->h_nr_running--;
5636 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5637
5638 /* end evaluation on encountering a throttled cfs_rq */
5639 if (cfs_rq_throttled(cfs_rq))
5640 goto dequeue_throttle;
5641
5642 /* Don't dequeue parent if it has other entities besides us */
5643 if (cfs_rq->load.weight) {
5644 /* Avoid re-evaluating load for this entity: */
5645 se = parent_entity(se);
5646 /*
5647 * Bias pick_next to pick a task from this cfs_rq, as
5648 * p is sleeping when it is within its sched_slice.
5649 */
5650 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5651 set_next_buddy(se);
5652 break;
5653 }
5654 flags |= DEQUEUE_SLEEP;
5655 }
5656
5657 for_each_sched_entity(se) {
5658 cfs_rq = cfs_rq_of(se);
5659
5660 update_load_avg(cfs_rq, se, UPDATE_TG);
5661 se_update_runnable(se);
5662 update_cfs_group(se);
5663
5664 cfs_rq->h_nr_running--;
5665 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5666
5667 /* end evaluation on encountering a throttled cfs_rq */
5668 if (cfs_rq_throttled(cfs_rq))
5669 goto dequeue_throttle;
5670
5671 }
5672
5673 /* At this point se is NULL and we are at root level*/
5674 sub_nr_running(rq, 1);
5675
5676 /* balance early to pull high priority tasks */
5677 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5678 rq->next_balance = jiffies;
5679
5680 dequeue_throttle:
5681 util_est_update(&rq->cfs, p, task_sleep);
5682 hrtick_update(rq);
5683 }
5684
5685 #ifdef CONFIG_SMP
5686
5687 /* Working cpumask for: load_balance, load_balance_newidle. */
5688 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5689 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5690
5691 #ifdef CONFIG_NO_HZ_COMMON
5692
5693 static struct {
5694 cpumask_var_t idle_cpus_mask;
5695 atomic_t nr_cpus;
5696 int has_blocked; /* Idle CPUS has blocked load */
5697 unsigned long next_balance; /* in jiffy units */
5698 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5699 } nohz ____cacheline_aligned;
5700
5701 #endif /* CONFIG_NO_HZ_COMMON */
5702
5703 static unsigned long cpu_load(struct rq *rq)
5704 {
5705 return cfs_rq_load_avg(&rq->cfs);
5706 }
5707
5708 /*
5709 * cpu_load_without - compute CPU load without any contributions from *p
5710 * @cpu: the CPU which load is requested
5711 * @p: the task which load should be discounted
5712 *
5713 * The load of a CPU is defined by the load of tasks currently enqueued on that
5714 * CPU as well as tasks which are currently sleeping after an execution on that
5715 * CPU.
5716 *
5717 * This method returns the load of the specified CPU by discounting the load of
5718 * the specified task, whenever the task is currently contributing to the CPU
5719 * load.
5720 */
5721 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5722 {
5723 struct cfs_rq *cfs_rq;
5724 unsigned int load;
5725
5726 /* Task has no contribution or is new */
5727 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5728 return cpu_load(rq);
5729
5730 cfs_rq = &rq->cfs;
5731 load = READ_ONCE(cfs_rq->avg.load_avg);
5732
5733 /* Discount task's util from CPU's util */
5734 lsub_positive(&load, task_h_load(p));
5735
5736 return load;
5737 }
5738
5739 static unsigned long cpu_runnable(struct rq *rq)
5740 {
5741 return cfs_rq_runnable_avg(&rq->cfs);
5742 }
5743
5744 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5745 {
5746 struct cfs_rq *cfs_rq;
5747 unsigned int runnable;
5748
5749 /* Task has no contribution or is new */
5750 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5751 return cpu_runnable(rq);
5752
5753 cfs_rq = &rq->cfs;
5754 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5755
5756 /* Discount task's runnable from CPU's runnable */
5757 lsub_positive(&runnable, p->se.avg.runnable_avg);
5758
5759 return runnable;
5760 }
5761
5762 static unsigned long capacity_of(int cpu)
5763 {
5764 return cpu_rq(cpu)->cpu_capacity;
5765 }
5766
5767 static void record_wakee(struct task_struct *p)
5768 {
5769 /*
5770 * Only decay a single time; tasks that have less then 1 wakeup per
5771 * jiffy will not have built up many flips.
5772 */
5773 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5774 current->wakee_flips >>= 1;
5775 current->wakee_flip_decay_ts = jiffies;
5776 }
5777
5778 if (current->last_wakee != p) {
5779 current->last_wakee = p;
5780 current->wakee_flips++;
5781 }
5782 }
5783
5784 /*
5785 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5786 *
5787 * A waker of many should wake a different task than the one last awakened
5788 * at a frequency roughly N times higher than one of its wakees.
5789 *
5790 * In order to determine whether we should let the load spread vs consolidating
5791 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5792 * partner, and a factor of lls_size higher frequency in the other.
5793 *
5794 * With both conditions met, we can be relatively sure that the relationship is
5795 * non-monogamous, with partner count exceeding socket size.
5796 *
5797 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5798 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5799 * socket size.
5800 */
5801 static int wake_wide(struct task_struct *p)
5802 {
5803 unsigned int master = current->wakee_flips;
5804 unsigned int slave = p->wakee_flips;
5805 int factor = __this_cpu_read(sd_llc_size);
5806
5807 if (master < slave)
5808 swap(master, slave);
5809 if (slave < factor || master < slave * factor)
5810 return 0;
5811 return 1;
5812 }
5813
5814 /*
5815 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5816 * soonest. For the purpose of speed we only consider the waking and previous
5817 * CPU.
5818 *
5819 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5820 * cache-affine and is (or will be) idle.
5821 *
5822 * wake_affine_weight() - considers the weight to reflect the average
5823 * scheduling latency of the CPUs. This seems to work
5824 * for the overloaded case.
5825 */
5826 static int
5827 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5828 {
5829 /*
5830 * If this_cpu is idle, it implies the wakeup is from interrupt
5831 * context. Only allow the move if cache is shared. Otherwise an
5832 * interrupt intensive workload could force all tasks onto one
5833 * node depending on the IO topology or IRQ affinity settings.
5834 *
5835 * If the prev_cpu is idle and cache affine then avoid a migration.
5836 * There is no guarantee that the cache hot data from an interrupt
5837 * is more important than cache hot data on the prev_cpu and from
5838 * a cpufreq perspective, it's better to have higher utilisation
5839 * on one CPU.
5840 */
5841 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5842 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5843
5844 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5845 return this_cpu;
5846
5847 if (available_idle_cpu(prev_cpu))
5848 return prev_cpu;
5849
5850 return nr_cpumask_bits;
5851 }
5852
5853 static int
5854 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5855 int this_cpu, int prev_cpu, int sync)
5856 {
5857 s64 this_eff_load, prev_eff_load;
5858 unsigned long task_load;
5859
5860 this_eff_load = cpu_load(cpu_rq(this_cpu));
5861
5862 if (sync) {
5863 unsigned long current_load = task_h_load(current);
5864
5865 if (current_load > this_eff_load)
5866 return this_cpu;
5867
5868 this_eff_load -= current_load;
5869 }
5870
5871 task_load = task_h_load(p);
5872
5873 this_eff_load += task_load;
5874 if (sched_feat(WA_BIAS))
5875 this_eff_load *= 100;
5876 this_eff_load *= capacity_of(prev_cpu);
5877
5878 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5879 prev_eff_load -= task_load;
5880 if (sched_feat(WA_BIAS))
5881 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5882 prev_eff_load *= capacity_of(this_cpu);
5883
5884 /*
5885 * If sync, adjust the weight of prev_eff_load such that if
5886 * prev_eff == this_eff that select_idle_sibling() will consider
5887 * stacking the wakee on top of the waker if no other CPU is
5888 * idle.
5889 */
5890 if (sync)
5891 prev_eff_load += 1;
5892
5893 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5894 }
5895
5896 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5897 int this_cpu, int prev_cpu, int sync)
5898 {
5899 int target = nr_cpumask_bits;
5900
5901 if (sched_feat(WA_IDLE))
5902 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5903
5904 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5905 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5906
5907 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5908 if (target == nr_cpumask_bits)
5909 return prev_cpu;
5910
5911 schedstat_inc(sd->ttwu_move_affine);
5912 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5913 return target;
5914 }
5915
5916 static struct sched_group *
5917 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5918
5919 /*
5920 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5921 */
5922 static int
5923 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5924 {
5925 unsigned long load, min_load = ULONG_MAX;
5926 unsigned int min_exit_latency = UINT_MAX;
5927 u64 latest_idle_timestamp = 0;
5928 int least_loaded_cpu = this_cpu;
5929 int shallowest_idle_cpu = -1;
5930 int i;
5931
5932 /* Check if we have any choice: */
5933 if (group->group_weight == 1)
5934 return cpumask_first(sched_group_span(group));
5935
5936 /* Traverse only the allowed CPUs */
5937 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5938 if (sched_idle_cpu(i))
5939 return i;
5940
5941 if (available_idle_cpu(i)) {
5942 struct rq *rq = cpu_rq(i);
5943 struct cpuidle_state *idle = idle_get_state(rq);
5944 if (idle && idle->exit_latency < min_exit_latency) {
5945 /*
5946 * We give priority to a CPU whose idle state
5947 * has the smallest exit latency irrespective
5948 * of any idle timestamp.
5949 */
5950 min_exit_latency = idle->exit_latency;
5951 latest_idle_timestamp = rq->idle_stamp;
5952 shallowest_idle_cpu = i;
5953 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5954 rq->idle_stamp > latest_idle_timestamp) {
5955 /*
5956 * If equal or no active idle state, then
5957 * the most recently idled CPU might have
5958 * a warmer cache.
5959 */
5960 latest_idle_timestamp = rq->idle_stamp;
5961 shallowest_idle_cpu = i;
5962 }
5963 } else if (shallowest_idle_cpu == -1) {
5964 load = cpu_load(cpu_rq(i));
5965 if (load < min_load) {
5966 min_load = load;
5967 least_loaded_cpu = i;
5968 }
5969 }
5970 }
5971
5972 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5973 }
5974
5975 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5976 int cpu, int prev_cpu, int sd_flag)
5977 {
5978 int new_cpu = cpu;
5979
5980 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5981 return prev_cpu;
5982
5983 /*
5984 * We need task's util for cpu_util_without, sync it up to
5985 * prev_cpu's last_update_time.
5986 */
5987 if (!(sd_flag & SD_BALANCE_FORK))
5988 sync_entity_load_avg(&p->se);
5989
5990 while (sd) {
5991 struct sched_group *group;
5992 struct sched_domain *tmp;
5993 int weight;
5994
5995 if (!(sd->flags & sd_flag)) {
5996 sd = sd->child;
5997 continue;
5998 }
5999
6000 group = find_idlest_group(sd, p, cpu);
6001 if (!group) {
6002 sd = sd->child;
6003 continue;
6004 }
6005
6006 new_cpu = find_idlest_group_cpu(group, p, cpu);
6007 if (new_cpu == cpu) {
6008 /* Now try balancing at a lower domain level of 'cpu': */
6009 sd = sd->child;
6010 continue;
6011 }
6012
6013 /* Now try balancing at a lower domain level of 'new_cpu': */
6014 cpu = new_cpu;
6015 weight = sd->span_weight;
6016 sd = NULL;
6017 for_each_domain(cpu, tmp) {
6018 if (weight <= tmp->span_weight)
6019 break;
6020 if (tmp->flags & sd_flag)
6021 sd = tmp;
6022 }
6023 }
6024
6025 return new_cpu;
6026 }
6027
6028 static inline int __select_idle_cpu(int cpu)
6029 {
6030 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6031 return cpu;
6032
6033 return -1;
6034 }
6035
6036 #ifdef CONFIG_SCHED_SMT
6037 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6038 EXPORT_SYMBOL_GPL(sched_smt_present);
6039
6040 static inline void set_idle_cores(int cpu, int val)
6041 {
6042 struct sched_domain_shared *sds;
6043
6044 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6045 if (sds)
6046 WRITE_ONCE(sds->has_idle_cores, val);
6047 }
6048
6049 static inline bool test_idle_cores(int cpu, bool def)
6050 {
6051 struct sched_domain_shared *sds;
6052
6053 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6054 if (sds)
6055 return READ_ONCE(sds->has_idle_cores);
6056
6057 return def;
6058 }
6059
6060 /*
6061 * Scans the local SMT mask to see if the entire core is idle, and records this
6062 * information in sd_llc_shared->has_idle_cores.
6063 *
6064 * Since SMT siblings share all cache levels, inspecting this limited remote
6065 * state should be fairly cheap.
6066 */
6067 void __update_idle_core(struct rq *rq)
6068 {
6069 int core = cpu_of(rq);
6070 int cpu;
6071
6072 rcu_read_lock();
6073 if (test_idle_cores(core, true))
6074 goto unlock;
6075
6076 for_each_cpu(cpu, cpu_smt_mask(core)) {
6077 if (cpu == core)
6078 continue;
6079
6080 if (!available_idle_cpu(cpu))
6081 goto unlock;
6082 }
6083
6084 set_idle_cores(core, 1);
6085 unlock:
6086 rcu_read_unlock();
6087 }
6088
6089 /*
6090 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6091 * there are no idle cores left in the system; tracked through
6092 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6093 */
6094 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6095 {
6096 bool idle = true;
6097 int cpu;
6098
6099 if (!static_branch_likely(&sched_smt_present))
6100 return __select_idle_cpu(core);
6101
6102 for_each_cpu(cpu, cpu_smt_mask(core)) {
6103 if (!available_idle_cpu(cpu)) {
6104 idle = false;
6105 if (*idle_cpu == -1) {
6106 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6107 *idle_cpu = cpu;
6108 break;
6109 }
6110 continue;
6111 }
6112 break;
6113 }
6114 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6115 *idle_cpu = cpu;
6116 }
6117
6118 if (idle)
6119 return core;
6120
6121 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6122 return -1;
6123 }
6124
6125 /*
6126 * Scan the local SMT mask for idle CPUs.
6127 */
6128 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6129 {
6130 int cpu;
6131
6132 for_each_cpu(cpu, cpu_smt_mask(target)) {
6133 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6134 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6135 continue;
6136 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6137 return cpu;
6138 }
6139
6140 return -1;
6141 }
6142
6143 #else /* CONFIG_SCHED_SMT */
6144
6145 static inline void set_idle_cores(int cpu, int val)
6146 {
6147 }
6148
6149 static inline bool test_idle_cores(int cpu, bool def)
6150 {
6151 return def;
6152 }
6153
6154 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6155 {
6156 return __select_idle_cpu(core);
6157 }
6158
6159 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6160 {
6161 return -1;
6162 }
6163
6164 #endif /* CONFIG_SCHED_SMT */
6165
6166 /*
6167 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6168 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6169 * average idle time for this rq (as found in rq->avg_idle).
6170 */
6171 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6172 {
6173 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6174 int i, cpu, idle_cpu = -1, nr = INT_MAX;
6175 int this = smp_processor_id();
6176 struct sched_domain *this_sd;
6177 u64 time;
6178
6179 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6180 if (!this_sd)
6181 return -1;
6182
6183 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6184
6185 if (sched_feat(SIS_PROP) && !has_idle_core) {
6186 u64 avg_cost, avg_idle, span_avg;
6187
6188 /*
6189 * Due to large variance we need a large fuzz factor;
6190 * hackbench in particularly is sensitive here.
6191 */
6192 avg_idle = this_rq()->avg_idle / 512;
6193 avg_cost = this_sd->avg_scan_cost + 1;
6194
6195 span_avg = sd->span_weight * avg_idle;
6196 if (span_avg > 4*avg_cost)
6197 nr = div_u64(span_avg, avg_cost);
6198 else
6199 nr = 4;
6200
6201 time = cpu_clock(this);
6202 }
6203
6204 for_each_cpu_wrap(cpu, cpus, target) {
6205 if (has_idle_core) {
6206 i = select_idle_core(p, cpu, cpus, &idle_cpu);
6207 if ((unsigned int)i < nr_cpumask_bits)
6208 return i;
6209
6210 } else {
6211 if (!--nr)
6212 return -1;
6213 idle_cpu = __select_idle_cpu(cpu);
6214 if ((unsigned int)idle_cpu < nr_cpumask_bits)
6215 break;
6216 }
6217 }
6218
6219 if (has_idle_core)
6220 set_idle_cores(target, false);
6221
6222 if (sched_feat(SIS_PROP) && !has_idle_core) {
6223 time = cpu_clock(this) - time;
6224 update_avg(&this_sd->avg_scan_cost, time);
6225 }
6226
6227 return idle_cpu;
6228 }
6229
6230 /*
6231 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6232 * the task fits. If no CPU is big enough, but there are idle ones, try to
6233 * maximize capacity.
6234 */
6235 static int
6236 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6237 {
6238 unsigned long task_util, best_cap = 0;
6239 int cpu, best_cpu = -1;
6240 struct cpumask *cpus;
6241
6242 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6243 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6244
6245 task_util = uclamp_task_util(p);
6246
6247 for_each_cpu_wrap(cpu, cpus, target) {
6248 unsigned long cpu_cap = capacity_of(cpu);
6249
6250 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6251 continue;
6252 if (fits_capacity(task_util, cpu_cap))
6253 return cpu;
6254
6255 if (cpu_cap > best_cap) {
6256 best_cap = cpu_cap;
6257 best_cpu = cpu;
6258 }
6259 }
6260
6261 return best_cpu;
6262 }
6263
6264 static inline bool asym_fits_capacity(int task_util, int cpu)
6265 {
6266 if (static_branch_unlikely(&sched_asym_cpucapacity))
6267 return fits_capacity(task_util, capacity_of(cpu));
6268
6269 return true;
6270 }
6271
6272 /*
6273 * Try and locate an idle core/thread in the LLC cache domain.
6274 */
6275 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6276 {
6277 bool has_idle_core = false;
6278 struct sched_domain *sd;
6279 unsigned long task_util;
6280 int i, recent_used_cpu;
6281
6282 /*
6283 * On asymmetric system, update task utilization because we will check
6284 * that the task fits with cpu's capacity.
6285 */
6286 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6287 sync_entity_load_avg(&p->se);
6288 task_util = uclamp_task_util(p);
6289 }
6290
6291 /*
6292 * per-cpu select_idle_mask usage
6293 */
6294 lockdep_assert_irqs_disabled();
6295
6296 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6297 asym_fits_capacity(task_util, target))
6298 return target;
6299
6300 /*
6301 * If the previous CPU is cache affine and idle, don't be stupid:
6302 */
6303 if (prev != target && cpus_share_cache(prev, target) &&
6304 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6305 asym_fits_capacity(task_util, prev))
6306 return prev;
6307
6308 /*
6309 * Allow a per-cpu kthread to stack with the wakee if the
6310 * kworker thread and the tasks previous CPUs are the same.
6311 * The assumption is that the wakee queued work for the
6312 * per-cpu kthread that is now complete and the wakeup is
6313 * essentially a sync wakeup. An obvious example of this
6314 * pattern is IO completions.
6315 */
6316 if (is_per_cpu_kthread(current) &&
6317 prev == smp_processor_id() &&
6318 this_rq()->nr_running <= 1) {
6319 return prev;
6320 }
6321
6322 /* Check a recently used CPU as a potential idle candidate: */
6323 recent_used_cpu = p->recent_used_cpu;
6324 if (recent_used_cpu != prev &&
6325 recent_used_cpu != target &&
6326 cpus_share_cache(recent_used_cpu, target) &&
6327 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6328 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6329 asym_fits_capacity(task_util, recent_used_cpu)) {
6330 /*
6331 * Replace recent_used_cpu with prev as it is a potential
6332 * candidate for the next wake:
6333 */
6334 p->recent_used_cpu = prev;
6335 return recent_used_cpu;
6336 }
6337
6338 /*
6339 * For asymmetric CPU capacity systems, our domain of interest is
6340 * sd_asym_cpucapacity rather than sd_llc.
6341 */
6342 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6343 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6344 /*
6345 * On an asymmetric CPU capacity system where an exclusive
6346 * cpuset defines a symmetric island (i.e. one unique
6347 * capacity_orig value through the cpuset), the key will be set
6348 * but the CPUs within that cpuset will not have a domain with
6349 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6350 * capacity path.
6351 */
6352 if (sd) {
6353 i = select_idle_capacity(p, sd, target);
6354 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6355 }
6356 }
6357
6358 sd = rcu_dereference(per_cpu(sd_llc, target));
6359 if (!sd)
6360 return target;
6361
6362 if (sched_smt_active()) {
6363 has_idle_core = test_idle_cores(target, false);
6364
6365 if (!has_idle_core && cpus_share_cache(prev, target)) {
6366 i = select_idle_smt(p, sd, prev);
6367 if ((unsigned int)i < nr_cpumask_bits)
6368 return i;
6369 }
6370 }
6371
6372 i = select_idle_cpu(p, sd, has_idle_core, target);
6373 if ((unsigned)i < nr_cpumask_bits)
6374 return i;
6375
6376 return target;
6377 }
6378
6379 /**
6380 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
6381 * @cpu: the CPU to get the utilization of
6382 *
6383 * The unit of the return value must be the one of capacity so we can compare
6384 * the utilization with the capacity of the CPU that is available for CFS task
6385 * (ie cpu_capacity).
6386 *
6387 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6388 * recent utilization of currently non-runnable tasks on a CPU. It represents
6389 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6390 * capacity_orig is the cpu_capacity available at the highest frequency
6391 * (arch_scale_freq_capacity()).
6392 * The utilization of a CPU converges towards a sum equal to or less than the
6393 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6394 * the running time on this CPU scaled by capacity_curr.
6395 *
6396 * The estimated utilization of a CPU is defined to be the maximum between its
6397 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6398 * currently RUNNABLE on that CPU.
6399 * This allows to properly represent the expected utilization of a CPU which
6400 * has just got a big task running since a long sleep period. At the same time
6401 * however it preserves the benefits of the "blocked utilization" in
6402 * describing the potential for other tasks waking up on the same CPU.
6403 *
6404 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6405 * higher than capacity_orig because of unfortunate rounding in
6406 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6407 * the average stabilizes with the new running time. We need to check that the
6408 * utilization stays within the range of [0..capacity_orig] and cap it if
6409 * necessary. Without utilization capping, a group could be seen as overloaded
6410 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6411 * available capacity. We allow utilization to overshoot capacity_curr (but not
6412 * capacity_orig) as it useful for predicting the capacity required after task
6413 * migrations (scheduler-driven DVFS).
6414 *
6415 * Return: the (estimated) utilization for the specified CPU
6416 */
6417 static inline unsigned long cpu_util(int cpu)
6418 {
6419 struct cfs_rq *cfs_rq;
6420 unsigned int util;
6421
6422 cfs_rq = &cpu_rq(cpu)->cfs;
6423 util = READ_ONCE(cfs_rq->avg.util_avg);
6424
6425 if (sched_feat(UTIL_EST))
6426 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6427
6428 return min_t(unsigned long, util, capacity_orig_of(cpu));
6429 }
6430
6431 /*
6432 * cpu_util_without: compute cpu utilization without any contributions from *p
6433 * @cpu: the CPU which utilization is requested
6434 * @p: the task which utilization should be discounted
6435 *
6436 * The utilization of a CPU is defined by the utilization of tasks currently
6437 * enqueued on that CPU as well as tasks which are currently sleeping after an
6438 * execution on that CPU.
6439 *
6440 * This method returns the utilization of the specified CPU by discounting the
6441 * utilization of the specified task, whenever the task is currently
6442 * contributing to the CPU utilization.
6443 */
6444 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6445 {
6446 struct cfs_rq *cfs_rq;
6447 unsigned int util;
6448
6449 /* Task has no contribution or is new */
6450 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6451 return cpu_util(cpu);
6452
6453 cfs_rq = &cpu_rq(cpu)->cfs;
6454 util = READ_ONCE(cfs_rq->avg.util_avg);
6455
6456 /* Discount task's util from CPU's util */
6457 lsub_positive(&util, task_util(p));
6458
6459 /*
6460 * Covered cases:
6461 *
6462 * a) if *p is the only task sleeping on this CPU, then:
6463 * cpu_util (== task_util) > util_est (== 0)
6464 * and thus we return:
6465 * cpu_util_without = (cpu_util - task_util) = 0
6466 *
6467 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6468 * IDLE, then:
6469 * cpu_util >= task_util
6470 * cpu_util > util_est (== 0)
6471 * and thus we discount *p's blocked utilization to return:
6472 * cpu_util_without = (cpu_util - task_util) >= 0
6473 *
6474 * c) if other tasks are RUNNABLE on that CPU and
6475 * util_est > cpu_util
6476 * then we use util_est since it returns a more restrictive
6477 * estimation of the spare capacity on that CPU, by just
6478 * considering the expected utilization of tasks already
6479 * runnable on that CPU.
6480 *
6481 * Cases a) and b) are covered by the above code, while case c) is
6482 * covered by the following code when estimated utilization is
6483 * enabled.
6484 */
6485 if (sched_feat(UTIL_EST)) {
6486 unsigned int estimated =
6487 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6488
6489 /*
6490 * Despite the following checks we still have a small window
6491 * for a possible race, when an execl's select_task_rq_fair()
6492 * races with LB's detach_task():
6493 *
6494 * detach_task()
6495 * p->on_rq = TASK_ON_RQ_MIGRATING;
6496 * ---------------------------------- A
6497 * deactivate_task() \
6498 * dequeue_task() + RaceTime
6499 * util_est_dequeue() /
6500 * ---------------------------------- B
6501 *
6502 * The additional check on "current == p" it's required to
6503 * properly fix the execl regression and it helps in further
6504 * reducing the chances for the above race.
6505 */
6506 if (unlikely(task_on_rq_queued(p) || current == p))
6507 lsub_positive(&estimated, _task_util_est(p));
6508
6509 util = max(util, estimated);
6510 }
6511
6512 /*
6513 * Utilization (estimated) can exceed the CPU capacity, thus let's
6514 * clamp to the maximum CPU capacity to ensure consistency with
6515 * the cpu_util call.
6516 */
6517 return min_t(unsigned long, util, capacity_orig_of(cpu));
6518 }
6519
6520 /*
6521 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6522 * to @dst_cpu.
6523 */
6524 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6525 {
6526 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6527 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6528
6529 /*
6530 * If @p migrates from @cpu to another, remove its contribution. Or,
6531 * if @p migrates from another CPU to @cpu, add its contribution. In
6532 * the other cases, @cpu is not impacted by the migration, so the
6533 * util_avg should already be correct.
6534 */
6535 if (task_cpu(p) == cpu && dst_cpu != cpu)
6536 lsub_positive(&util, task_util(p));
6537 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6538 util += task_util(p);
6539
6540 if (sched_feat(UTIL_EST)) {
6541 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6542
6543 /*
6544 * During wake-up, the task isn't enqueued yet and doesn't
6545 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6546 * so just add it (if needed) to "simulate" what will be
6547 * cpu_util() after the task has been enqueued.
6548 */
6549 if (dst_cpu == cpu)
6550 util_est += _task_util_est(p);
6551
6552 util = max(util, util_est);
6553 }
6554
6555 return min(util, capacity_orig_of(cpu));
6556 }
6557
6558 /*
6559 * compute_energy(): Estimates the energy that @pd would consume if @p was
6560 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6561 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6562 * to compute what would be the energy if we decided to actually migrate that
6563 * task.
6564 */
6565 static long
6566 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6567 {
6568 struct cpumask *pd_mask = perf_domain_span(pd);
6569 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6570 unsigned long max_util = 0, sum_util = 0;
6571 int cpu;
6572
6573 /*
6574 * The capacity state of CPUs of the current rd can be driven by CPUs
6575 * of another rd if they belong to the same pd. So, account for the
6576 * utilization of these CPUs too by masking pd with cpu_online_mask
6577 * instead of the rd span.
6578 *
6579 * If an entire pd is outside of the current rd, it will not appear in
6580 * its pd list and will not be accounted by compute_energy().
6581 */
6582 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6583 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6584 unsigned long cpu_util, util_running = util_freq;
6585 struct task_struct *tsk = NULL;
6586
6587 /*
6588 * When @p is placed on @cpu:
6589 *
6590 * util_running = max(cpu_util, cpu_util_est) +
6591 * max(task_util, _task_util_est)
6592 *
6593 * while cpu_util_next is: max(cpu_util + task_util,
6594 * cpu_util_est + _task_util_est)
6595 */
6596 if (cpu == dst_cpu) {
6597 tsk = p;
6598 util_running =
6599 cpu_util_next(cpu, p, -1) + task_util_est(p);
6600 }
6601
6602 /*
6603 * Busy time computation: utilization clamping is not
6604 * required since the ratio (sum_util / cpu_capacity)
6605 * is already enough to scale the EM reported power
6606 * consumption at the (eventually clamped) cpu_capacity.
6607 */
6608 sum_util += effective_cpu_util(cpu, util_running, cpu_cap,
6609 ENERGY_UTIL, NULL);
6610
6611 /*
6612 * Performance domain frequency: utilization clamping
6613 * must be considered since it affects the selection
6614 * of the performance domain frequency.
6615 * NOTE: in case RT tasks are running, by default the
6616 * FREQUENCY_UTIL's utilization can be max OPP.
6617 */
6618 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6619 FREQUENCY_UTIL, tsk);
6620 max_util = max(max_util, cpu_util);
6621 }
6622
6623 return em_cpu_energy(pd->em_pd, max_util, sum_util);
6624 }
6625
6626 /*
6627 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6628 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6629 * spare capacity in each performance domain and uses it as a potential
6630 * candidate to execute the task. Then, it uses the Energy Model to figure
6631 * out which of the CPU candidates is the most energy-efficient.
6632 *
6633 * The rationale for this heuristic is as follows. In a performance domain,
6634 * all the most energy efficient CPU candidates (according to the Energy
6635 * Model) are those for which we'll request a low frequency. When there are
6636 * several CPUs for which the frequency request will be the same, we don't
6637 * have enough data to break the tie between them, because the Energy Model
6638 * only includes active power costs. With this model, if we assume that
6639 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6640 * the maximum spare capacity in a performance domain is guaranteed to be among
6641 * the best candidates of the performance domain.
6642 *
6643 * In practice, it could be preferable from an energy standpoint to pack
6644 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6645 * but that could also hurt our chances to go cluster idle, and we have no
6646 * ways to tell with the current Energy Model if this is actually a good
6647 * idea or not. So, find_energy_efficient_cpu() basically favors
6648 * cluster-packing, and spreading inside a cluster. That should at least be
6649 * a good thing for latency, and this is consistent with the idea that most
6650 * of the energy savings of EAS come from the asymmetry of the system, and
6651 * not so much from breaking the tie between identical CPUs. That's also the
6652 * reason why EAS is enabled in the topology code only for systems where
6653 * SD_ASYM_CPUCAPACITY is set.
6654 *
6655 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6656 * they don't have any useful utilization data yet and it's not possible to
6657 * forecast their impact on energy consumption. Consequently, they will be
6658 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6659 * to be energy-inefficient in some use-cases. The alternative would be to
6660 * bias new tasks towards specific types of CPUs first, or to try to infer
6661 * their util_avg from the parent task, but those heuristics could hurt
6662 * other use-cases too. So, until someone finds a better way to solve this,
6663 * let's keep things simple by re-using the existing slow path.
6664 */
6665 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6666 {
6667 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6668 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6669 int cpu, best_energy_cpu = prev_cpu, target = -1;
6670 unsigned long cpu_cap, util, base_energy = 0;
6671 struct sched_domain *sd;
6672 struct perf_domain *pd;
6673
6674 rcu_read_lock();
6675 pd = rcu_dereference(rd->pd);
6676 if (!pd || READ_ONCE(rd->overutilized))
6677 goto unlock;
6678
6679 /*
6680 * Energy-aware wake-up happens on the lowest sched_domain starting
6681 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6682 */
6683 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6684 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6685 sd = sd->parent;
6686 if (!sd)
6687 goto unlock;
6688
6689 target = prev_cpu;
6690
6691 sync_entity_load_avg(&p->se);
6692 if (!task_util_est(p))
6693 goto unlock;
6694
6695 for (; pd; pd = pd->next) {
6696 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6697 bool compute_prev_delta = false;
6698 unsigned long base_energy_pd;
6699 int max_spare_cap_cpu = -1;
6700
6701 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6702 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6703 continue;
6704
6705 util = cpu_util_next(cpu, p, cpu);
6706 cpu_cap = capacity_of(cpu);
6707 spare_cap = cpu_cap;
6708 lsub_positive(&spare_cap, util);
6709
6710 /*
6711 * Skip CPUs that cannot satisfy the capacity request.
6712 * IOW, placing the task there would make the CPU
6713 * overutilized. Take uclamp into account to see how
6714 * much capacity we can get out of the CPU; this is
6715 * aligned with sched_cpu_util().
6716 */
6717 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6718 if (!fits_capacity(util, cpu_cap))
6719 continue;
6720
6721 if (cpu == prev_cpu) {
6722 /* Always use prev_cpu as a candidate. */
6723 compute_prev_delta = true;
6724 } else if (spare_cap > max_spare_cap) {
6725 /*
6726 * Find the CPU with the maximum spare capacity
6727 * in the performance domain.
6728 */
6729 max_spare_cap = spare_cap;
6730 max_spare_cap_cpu = cpu;
6731 }
6732 }
6733
6734 if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6735 continue;
6736
6737 /* Compute the 'base' energy of the pd, without @p */
6738 base_energy_pd = compute_energy(p, -1, pd);
6739 base_energy += base_energy_pd;
6740
6741 /* Evaluate the energy impact of using prev_cpu. */
6742 if (compute_prev_delta) {
6743 prev_delta = compute_energy(p, prev_cpu, pd);
6744 if (prev_delta < base_energy_pd)
6745 goto unlock;
6746 prev_delta -= base_energy_pd;
6747 best_delta = min(best_delta, prev_delta);
6748 }
6749
6750 /* Evaluate the energy impact of using max_spare_cap_cpu. */
6751 if (max_spare_cap_cpu >= 0) {
6752 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6753 if (cur_delta < base_energy_pd)
6754 goto unlock;
6755 cur_delta -= base_energy_pd;
6756 if (cur_delta < best_delta) {
6757 best_delta = cur_delta;
6758 best_energy_cpu = max_spare_cap_cpu;
6759 }
6760 }
6761 }
6762 rcu_read_unlock();
6763
6764 /*
6765 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6766 * least 6% of the energy used by prev_cpu.
6767 */
6768 if ((prev_delta == ULONG_MAX) ||
6769 (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6770 target = best_energy_cpu;
6771
6772 return target;
6773
6774 unlock:
6775 rcu_read_unlock();
6776
6777 return target;
6778 }
6779
6780 /*
6781 * select_task_rq_fair: Select target runqueue for the waking task in domains
6782 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6783 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6784 *
6785 * Balances load by selecting the idlest CPU in the idlest group, or under
6786 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6787 *
6788 * Returns the target CPU number.
6789 */
6790 static int
6791 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6792 {
6793 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6794 struct sched_domain *tmp, *sd = NULL;
6795 int cpu = smp_processor_id();
6796 int new_cpu = prev_cpu;
6797 int want_affine = 0;
6798 /* SD_flags and WF_flags share the first nibble */
6799 int sd_flag = wake_flags & 0xF;
6800
6801 /*
6802 * required for stable ->cpus_allowed
6803 */
6804 lockdep_assert_held(&p->pi_lock);
6805 if (wake_flags & WF_TTWU) {
6806 record_wakee(p);
6807
6808 if (sched_energy_enabled()) {
6809 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6810 if (new_cpu >= 0)
6811 return new_cpu;
6812 new_cpu = prev_cpu;
6813 }
6814
6815 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6816 }
6817
6818 rcu_read_lock();
6819 for_each_domain(cpu, tmp) {
6820 /*
6821 * If both 'cpu' and 'prev_cpu' are part of this domain,
6822 * cpu is a valid SD_WAKE_AFFINE target.
6823 */
6824 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6825 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6826 if (cpu != prev_cpu)
6827 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6828
6829 sd = NULL; /* Prefer wake_affine over balance flags */
6830 break;
6831 }
6832
6833 if (tmp->flags & sd_flag)
6834 sd = tmp;
6835 else if (!want_affine)
6836 break;
6837 }
6838
6839 if (unlikely(sd)) {
6840 /* Slow path */
6841 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6842 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
6843 /* Fast path */
6844 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6845
6846 if (want_affine)
6847 current->recent_used_cpu = cpu;
6848 }
6849 rcu_read_unlock();
6850
6851 return new_cpu;
6852 }
6853
6854 static void detach_entity_cfs_rq(struct sched_entity *se);
6855
6856 /*
6857 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6858 * cfs_rq_of(p) references at time of call are still valid and identify the
6859 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6860 */
6861 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6862 {
6863 /*
6864 * As blocked tasks retain absolute vruntime the migration needs to
6865 * deal with this by subtracting the old and adding the new
6866 * min_vruntime -- the latter is done by enqueue_entity() when placing
6867 * the task on the new runqueue.
6868 */
6869 if (p->state == TASK_WAKING) {
6870 struct sched_entity *se = &p->se;
6871 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6872 u64 min_vruntime;
6873
6874 #ifndef CONFIG_64BIT
6875 u64 min_vruntime_copy;
6876
6877 do {
6878 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6879 smp_rmb();
6880 min_vruntime = cfs_rq->min_vruntime;
6881 } while (min_vruntime != min_vruntime_copy);
6882 #else
6883 min_vruntime = cfs_rq->min_vruntime;
6884 #endif
6885
6886 se->vruntime -= min_vruntime;
6887 }
6888
6889 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6890 /*
6891 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6892 * rq->lock and can modify state directly.
6893 */
6894 lockdep_assert_rq_held(task_rq(p));
6895 detach_entity_cfs_rq(&p->se);
6896
6897 } else {
6898 /*
6899 * We are supposed to update the task to "current" time, then
6900 * its up to date and ready to go to new CPU/cfs_rq. But we
6901 * have difficulty in getting what current time is, so simply
6902 * throw away the out-of-date time. This will result in the
6903 * wakee task is less decayed, but giving the wakee more load
6904 * sounds not bad.
6905 */
6906 remove_entity_load_avg(&p->se);
6907 }
6908
6909 /* Tell new CPU we are migrated */
6910 p->se.avg.last_update_time = 0;
6911
6912 /* We have migrated, no longer consider this task hot */
6913 p->se.exec_start = 0;
6914
6915 update_scan_period(p, new_cpu);
6916 }
6917
6918 static void task_dead_fair(struct task_struct *p)
6919 {
6920 remove_entity_load_avg(&p->se);
6921 }
6922
6923 static int
6924 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6925 {
6926 if (rq->nr_running)
6927 return 1;
6928
6929 return newidle_balance(rq, rf) != 0;
6930 }
6931 #endif /* CONFIG_SMP */
6932
6933 static unsigned long wakeup_gran(struct sched_entity *se)
6934 {
6935 unsigned long gran = sysctl_sched_wakeup_granularity;
6936
6937 /*
6938 * Since its curr running now, convert the gran from real-time
6939 * to virtual-time in his units.
6940 *
6941 * By using 'se' instead of 'curr' we penalize light tasks, so
6942 * they get preempted easier. That is, if 'se' < 'curr' then
6943 * the resulting gran will be larger, therefore penalizing the
6944 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6945 * be smaller, again penalizing the lighter task.
6946 *
6947 * This is especially important for buddies when the leftmost
6948 * task is higher priority than the buddy.
6949 */
6950 return calc_delta_fair(gran, se);
6951 }
6952
6953 /*
6954 * Should 'se' preempt 'curr'.
6955 *
6956 * |s1
6957 * |s2
6958 * |s3
6959 * g
6960 * |<--->|c
6961 *
6962 * w(c, s1) = -1
6963 * w(c, s2) = 0
6964 * w(c, s3) = 1
6965 *
6966 */
6967 static int
6968 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6969 {
6970 s64 gran, vdiff = curr->vruntime - se->vruntime;
6971
6972 if (vdiff <= 0)
6973 return -1;
6974
6975 gran = wakeup_gran(se);
6976 if (vdiff > gran)
6977 return 1;
6978
6979 return 0;
6980 }
6981
6982 static void set_last_buddy(struct sched_entity *se)
6983 {
6984 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6985 return;
6986
6987 for_each_sched_entity(se) {
6988 if (SCHED_WARN_ON(!se->on_rq))
6989 return;
6990 cfs_rq_of(se)->last = se;
6991 }
6992 }
6993
6994 static void set_next_buddy(struct sched_entity *se)
6995 {
6996 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6997 return;
6998
6999 for_each_sched_entity(se) {
7000 if (SCHED_WARN_ON(!se->on_rq))
7001 return;
7002 cfs_rq_of(se)->next = se;
7003 }
7004 }
7005
7006 static void set_skip_buddy(struct sched_entity *se)
7007 {
7008 for_each_sched_entity(se)
7009 cfs_rq_of(se)->skip = se;
7010 }
7011
7012 /*
7013 * Preempt the current task with a newly woken task if needed:
7014 */
7015 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7016 {
7017 struct task_struct *curr = rq->curr;
7018 struct sched_entity *se = &curr->se, *pse = &p->se;
7019 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7020 int scale = cfs_rq->nr_running >= sched_nr_latency;
7021 int next_buddy_marked = 0;
7022
7023 if (unlikely(se == pse))
7024 return;
7025
7026 /*
7027 * This is possible from callers such as attach_tasks(), in which we
7028 * unconditionally check_preempt_curr() after an enqueue (which may have
7029 * lead to a throttle). This both saves work and prevents false
7030 * next-buddy nomination below.
7031 */
7032 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7033 return;
7034
7035 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7036 set_next_buddy(pse);
7037 next_buddy_marked = 1;
7038 }
7039
7040 /*
7041 * We can come here with TIF_NEED_RESCHED already set from new task
7042 * wake up path.
7043 *
7044 * Note: this also catches the edge-case of curr being in a throttled
7045 * group (e.g. via set_curr_task), since update_curr() (in the
7046 * enqueue of curr) will have resulted in resched being set. This
7047 * prevents us from potentially nominating it as a false LAST_BUDDY
7048 * below.
7049 */
7050 if (test_tsk_need_resched(curr))
7051 return;
7052
7053 /* Idle tasks are by definition preempted by non-idle tasks. */
7054 if (unlikely(task_has_idle_policy(curr)) &&
7055 likely(!task_has_idle_policy(p)))
7056 goto preempt;
7057
7058 /*
7059 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7060 * is driven by the tick):
7061 */
7062 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7063 return;
7064
7065 find_matching_se(&se, &pse);
7066 update_curr(cfs_rq_of(se));
7067 BUG_ON(!pse);
7068 if (wakeup_preempt_entity(se, pse) == 1) {
7069 /*
7070 * Bias pick_next to pick the sched entity that is
7071 * triggering this preemption.
7072 */
7073 if (!next_buddy_marked)
7074 set_next_buddy(pse);
7075 goto preempt;
7076 }
7077
7078 return;
7079
7080 preempt:
7081 resched_curr(rq);
7082 /*
7083 * Only set the backward buddy when the current task is still
7084 * on the rq. This can happen when a wakeup gets interleaved
7085 * with schedule on the ->pre_schedule() or idle_balance()
7086 * point, either of which can * drop the rq lock.
7087 *
7088 * Also, during early boot the idle thread is in the fair class,
7089 * for obvious reasons its a bad idea to schedule back to it.
7090 */
7091 if (unlikely(!se->on_rq || curr == rq->idle))
7092 return;
7093
7094 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7095 set_last_buddy(se);
7096 }
7097
7098 struct task_struct *
7099 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7100 {
7101 struct cfs_rq *cfs_rq = &rq->cfs;
7102 struct sched_entity *se;
7103 struct task_struct *p;
7104 int new_tasks;
7105
7106 again:
7107 if (!sched_fair_runnable(rq))
7108 goto idle;
7109
7110 #ifdef CONFIG_FAIR_GROUP_SCHED
7111 if (!prev || prev->sched_class != &fair_sched_class)
7112 goto simple;
7113
7114 /*
7115 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7116 * likely that a next task is from the same cgroup as the current.
7117 *
7118 * Therefore attempt to avoid putting and setting the entire cgroup
7119 * hierarchy, only change the part that actually changes.
7120 */
7121
7122 do {
7123 struct sched_entity *curr = cfs_rq->curr;
7124
7125 /*
7126 * Since we got here without doing put_prev_entity() we also
7127 * have to consider cfs_rq->curr. If it is still a runnable
7128 * entity, update_curr() will update its vruntime, otherwise
7129 * forget we've ever seen it.
7130 */
7131 if (curr) {
7132 if (curr->on_rq)
7133 update_curr(cfs_rq);
7134 else
7135 curr = NULL;
7136
7137 /*
7138 * This call to check_cfs_rq_runtime() will do the
7139 * throttle and dequeue its entity in the parent(s).
7140 * Therefore the nr_running test will indeed
7141 * be correct.
7142 */
7143 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7144 cfs_rq = &rq->cfs;
7145
7146 if (!cfs_rq->nr_running)
7147 goto idle;
7148
7149 goto simple;
7150 }
7151 }
7152
7153 se = pick_next_entity(cfs_rq, curr);
7154 cfs_rq = group_cfs_rq(se);
7155 } while (cfs_rq);
7156
7157 p = task_of(se);
7158
7159 /*
7160 * Since we haven't yet done put_prev_entity and if the selected task
7161 * is a different task than we started out with, try and touch the
7162 * least amount of cfs_rqs.
7163 */
7164 if (prev != p) {
7165 struct sched_entity *pse = &prev->se;
7166
7167 while (!(cfs_rq = is_same_group(se, pse))) {
7168 int se_depth = se->depth;
7169 int pse_depth = pse->depth;
7170
7171 if (se_depth <= pse_depth) {
7172 put_prev_entity(cfs_rq_of(pse), pse);
7173 pse = parent_entity(pse);
7174 }
7175 if (se_depth >= pse_depth) {
7176 set_next_entity(cfs_rq_of(se), se);
7177 se = parent_entity(se);
7178 }
7179 }
7180
7181 put_prev_entity(cfs_rq, pse);
7182 set_next_entity(cfs_rq, se);
7183 }
7184
7185 goto done;
7186 simple:
7187 #endif
7188 if (prev)
7189 put_prev_task(rq, prev);
7190
7191 do {
7192 se = pick_next_entity(cfs_rq, NULL);
7193 set_next_entity(cfs_rq, se);
7194 cfs_rq = group_cfs_rq(se);
7195 } while (cfs_rq);
7196
7197 p = task_of(se);
7198
7199 done: __maybe_unused;
7200 #ifdef CONFIG_SMP
7201 /*
7202 * Move the next running task to the front of
7203 * the list, so our cfs_tasks list becomes MRU
7204 * one.
7205 */
7206 list_move(&p->se.group_node, &rq->cfs_tasks);
7207 #endif
7208
7209 if (hrtick_enabled_fair(rq))
7210 hrtick_start_fair(rq, p);
7211
7212 update_misfit_status(p, rq);
7213
7214 return p;
7215
7216 idle:
7217 if (!rf)
7218 return NULL;
7219
7220 new_tasks = newidle_balance(rq, rf);
7221
7222 /*
7223 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7224 * possible for any higher priority task to appear. In that case we
7225 * must re-start the pick_next_entity() loop.
7226 */
7227 if (new_tasks < 0)
7228 return RETRY_TASK;
7229
7230 if (new_tasks > 0)
7231 goto again;
7232
7233 /*
7234 * rq is about to be idle, check if we need to update the
7235 * lost_idle_time of clock_pelt
7236 */
7237 update_idle_rq_clock_pelt(rq);
7238
7239 return NULL;
7240 }
7241
7242 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7243 {
7244 return pick_next_task_fair(rq, NULL, NULL);
7245 }
7246
7247 /*
7248 * Account for a descheduled task:
7249 */
7250 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7251 {
7252 struct sched_entity *se = &prev->se;
7253 struct cfs_rq *cfs_rq;
7254
7255 for_each_sched_entity(se) {
7256 cfs_rq = cfs_rq_of(se);
7257 put_prev_entity(cfs_rq, se);
7258 }
7259 }
7260
7261 /*
7262 * sched_yield() is very simple
7263 *
7264 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7265 */
7266 static void yield_task_fair(struct rq *rq)
7267 {
7268 struct task_struct *curr = rq->curr;
7269 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7270 struct sched_entity *se = &curr->se;
7271
7272 /*
7273 * Are we the only task in the tree?
7274 */
7275 if (unlikely(rq->nr_running == 1))
7276 return;
7277
7278 clear_buddies(cfs_rq, se);
7279
7280 if (curr->policy != SCHED_BATCH) {
7281 update_rq_clock(rq);
7282 /*
7283 * Update run-time statistics of the 'current'.
7284 */
7285 update_curr(cfs_rq);
7286 /*
7287 * Tell update_rq_clock() that we've just updated,
7288 * so we don't do microscopic update in schedule()
7289 * and double the fastpath cost.
7290 */
7291 rq_clock_skip_update(rq);
7292 }
7293
7294 set_skip_buddy(se);
7295 }
7296
7297 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7298 {
7299 struct sched_entity *se = &p->se;
7300
7301 /* throttled hierarchies are not runnable */
7302 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7303 return false;
7304
7305 /* Tell the scheduler that we'd really like pse to run next. */
7306 set_next_buddy(se);
7307
7308 yield_task_fair(rq);
7309
7310 return true;
7311 }
7312
7313 #ifdef CONFIG_SMP
7314 /**************************************************
7315 * Fair scheduling class load-balancing methods.
7316 *
7317 * BASICS
7318 *
7319 * The purpose of load-balancing is to achieve the same basic fairness the
7320 * per-CPU scheduler provides, namely provide a proportional amount of compute
7321 * time to each task. This is expressed in the following equation:
7322 *
7323 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7324 *
7325 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7326 * W_i,0 is defined as:
7327 *
7328 * W_i,0 = \Sum_j w_i,j (2)
7329 *
7330 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7331 * is derived from the nice value as per sched_prio_to_weight[].
7332 *
7333 * The weight average is an exponential decay average of the instantaneous
7334 * weight:
7335 *
7336 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7337 *
7338 * C_i is the compute capacity of CPU i, typically it is the
7339 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7340 * can also include other factors [XXX].
7341 *
7342 * To achieve this balance we define a measure of imbalance which follows
7343 * directly from (1):
7344 *
7345 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7346 *
7347 * We them move tasks around to minimize the imbalance. In the continuous
7348 * function space it is obvious this converges, in the discrete case we get
7349 * a few fun cases generally called infeasible weight scenarios.
7350 *
7351 * [XXX expand on:
7352 * - infeasible weights;
7353 * - local vs global optima in the discrete case. ]
7354 *
7355 *
7356 * SCHED DOMAINS
7357 *
7358 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7359 * for all i,j solution, we create a tree of CPUs that follows the hardware
7360 * topology where each level pairs two lower groups (or better). This results
7361 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7362 * tree to only the first of the previous level and we decrease the frequency
7363 * of load-balance at each level inv. proportional to the number of CPUs in
7364 * the groups.
7365 *
7366 * This yields:
7367 *
7368 * log_2 n 1 n
7369 * \Sum { --- * --- * 2^i } = O(n) (5)
7370 * i = 0 2^i 2^i
7371 * `- size of each group
7372 * | | `- number of CPUs doing load-balance
7373 * | `- freq
7374 * `- sum over all levels
7375 *
7376 * Coupled with a limit on how many tasks we can migrate every balance pass,
7377 * this makes (5) the runtime complexity of the balancer.
7378 *
7379 * An important property here is that each CPU is still (indirectly) connected
7380 * to every other CPU in at most O(log n) steps:
7381 *
7382 * The adjacency matrix of the resulting graph is given by:
7383 *
7384 * log_2 n
7385 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7386 * k = 0
7387 *
7388 * And you'll find that:
7389 *
7390 * A^(log_2 n)_i,j != 0 for all i,j (7)
7391 *
7392 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7393 * The task movement gives a factor of O(m), giving a convergence complexity
7394 * of:
7395 *
7396 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7397 *
7398 *
7399 * WORK CONSERVING
7400 *
7401 * In order to avoid CPUs going idle while there's still work to do, new idle
7402 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7403 * tree itself instead of relying on other CPUs to bring it work.
7404 *
7405 * This adds some complexity to both (5) and (8) but it reduces the total idle
7406 * time.
7407 *
7408 * [XXX more?]
7409 *
7410 *
7411 * CGROUPS
7412 *
7413 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7414 *
7415 * s_k,i
7416 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7417 * S_k
7418 *
7419 * Where
7420 *
7421 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7422 *
7423 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7424 *
7425 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7426 * property.
7427 *
7428 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7429 * rewrite all of this once again.]
7430 */
7431
7432 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7433
7434 enum fbq_type { regular, remote, all };
7435
7436 /*
7437 * 'group_type' describes the group of CPUs at the moment of load balancing.
7438 *
7439 * The enum is ordered by pulling priority, with the group with lowest priority
7440 * first so the group_type can simply be compared when selecting the busiest
7441 * group. See update_sd_pick_busiest().
7442 */
7443 enum group_type {
7444 /* The group has spare capacity that can be used to run more tasks. */
7445 group_has_spare = 0,
7446 /*
7447 * The group is fully used and the tasks don't compete for more CPU
7448 * cycles. Nevertheless, some tasks might wait before running.
7449 */
7450 group_fully_busy,
7451 /*
7452 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7453 * and must be migrated to a more powerful CPU.
7454 */
7455 group_misfit_task,
7456 /*
7457 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7458 * and the task should be migrated to it instead of running on the
7459 * current CPU.
7460 */
7461 group_asym_packing,
7462 /*
7463 * The tasks' affinity constraints previously prevented the scheduler
7464 * from balancing the load across the system.
7465 */
7466 group_imbalanced,
7467 /*
7468 * The CPU is overloaded and can't provide expected CPU cycles to all
7469 * tasks.
7470 */
7471 group_overloaded
7472 };
7473
7474 enum migration_type {
7475 migrate_load = 0,
7476 migrate_util,
7477 migrate_task,
7478 migrate_misfit
7479 };
7480
7481 #define LBF_ALL_PINNED 0x01
7482 #define LBF_NEED_BREAK 0x02
7483 #define LBF_DST_PINNED 0x04
7484 #define LBF_SOME_PINNED 0x08
7485 #define LBF_ACTIVE_LB 0x10
7486
7487 struct lb_env {
7488 struct sched_domain *sd;
7489
7490 struct rq *src_rq;
7491 int src_cpu;
7492
7493 int dst_cpu;
7494 struct rq *dst_rq;
7495
7496 struct cpumask *dst_grpmask;
7497 int new_dst_cpu;
7498 enum cpu_idle_type idle;
7499 long imbalance;
7500 /* The set of CPUs under consideration for load-balancing */
7501 struct cpumask *cpus;
7502
7503 unsigned int flags;
7504
7505 unsigned int loop;
7506 unsigned int loop_break;
7507 unsigned int loop_max;
7508
7509 enum fbq_type fbq_type;
7510 enum migration_type migration_type;
7511 struct list_head tasks;
7512 };
7513
7514 /*
7515 * Is this task likely cache-hot:
7516 */
7517 static int task_hot(struct task_struct *p, struct lb_env *env)
7518 {
7519 s64 delta;
7520
7521 lockdep_assert_rq_held(env->src_rq);
7522
7523 if (p->sched_class != &fair_sched_class)
7524 return 0;
7525
7526 if (unlikely(task_has_idle_policy(p)))
7527 return 0;
7528
7529 /* SMT siblings share cache */
7530 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7531 return 0;
7532
7533 /*
7534 * Buddy candidates are cache hot:
7535 */
7536 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7537 (&p->se == cfs_rq_of(&p->se)->next ||
7538 &p->se == cfs_rq_of(&p->se)->last))
7539 return 1;
7540
7541 if (sysctl_sched_migration_cost == -1)
7542 return 1;
7543 if (sysctl_sched_migration_cost == 0)
7544 return 0;
7545
7546 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7547
7548 return delta < (s64)sysctl_sched_migration_cost;
7549 }
7550
7551 #ifdef CONFIG_NUMA_BALANCING
7552 /*
7553 * Returns 1, if task migration degrades locality
7554 * Returns 0, if task migration improves locality i.e migration preferred.
7555 * Returns -1, if task migration is not affected by locality.
7556 */
7557 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7558 {
7559 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7560 unsigned long src_weight, dst_weight;
7561 int src_nid, dst_nid, dist;
7562
7563 if (!static_branch_likely(&sched_numa_balancing))
7564 return -1;
7565
7566 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7567 return -1;
7568
7569 src_nid = cpu_to_node(env->src_cpu);
7570 dst_nid = cpu_to_node(env->dst_cpu);
7571
7572 if (src_nid == dst_nid)
7573 return -1;
7574
7575 /* Migrating away from the preferred node is always bad. */
7576 if (src_nid == p->numa_preferred_nid) {
7577 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7578 return 1;
7579 else
7580 return -1;
7581 }
7582
7583 /* Encourage migration to the preferred node. */
7584 if (dst_nid == p->numa_preferred_nid)
7585 return 0;
7586
7587 /* Leaving a core idle is often worse than degrading locality. */
7588 if (env->idle == CPU_IDLE)
7589 return -1;
7590
7591 dist = node_distance(src_nid, dst_nid);
7592 if (numa_group) {
7593 src_weight = group_weight(p, src_nid, dist);
7594 dst_weight = group_weight(p, dst_nid, dist);
7595 } else {
7596 src_weight = task_weight(p, src_nid, dist);
7597 dst_weight = task_weight(p, dst_nid, dist);
7598 }
7599
7600 return dst_weight < src_weight;
7601 }
7602
7603 #else
7604 static inline int migrate_degrades_locality(struct task_struct *p,
7605 struct lb_env *env)
7606 {
7607 return -1;
7608 }
7609 #endif
7610
7611 /*
7612 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7613 */
7614 static
7615 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7616 {
7617 int tsk_cache_hot;
7618
7619 lockdep_assert_rq_held(env->src_rq);
7620
7621 /*
7622 * We do not migrate tasks that are:
7623 * 1) throttled_lb_pair, or
7624 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7625 * 3) running (obviously), or
7626 * 4) are cache-hot on their current CPU.
7627 */
7628 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7629 return 0;
7630
7631 /* Disregard pcpu kthreads; they are where they need to be. */
7632 if (kthread_is_per_cpu(p))
7633 return 0;
7634
7635 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7636 int cpu;
7637
7638 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7639
7640 env->flags |= LBF_SOME_PINNED;
7641
7642 /*
7643 * Remember if this task can be migrated to any other CPU in
7644 * our sched_group. We may want to revisit it if we couldn't
7645 * meet load balance goals by pulling other tasks on src_cpu.
7646 *
7647 * Avoid computing new_dst_cpu
7648 * - for NEWLY_IDLE
7649 * - if we have already computed one in current iteration
7650 * - if it's an active balance
7651 */
7652 if (env->idle == CPU_NEWLY_IDLE ||
7653 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7654 return 0;
7655
7656 /* Prevent to re-select dst_cpu via env's CPUs: */
7657 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7658 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7659 env->flags |= LBF_DST_PINNED;
7660 env->new_dst_cpu = cpu;
7661 break;
7662 }
7663 }
7664
7665 return 0;
7666 }
7667
7668 /* Record that we found at least one task that could run on dst_cpu */
7669 env->flags &= ~LBF_ALL_PINNED;
7670
7671 if (task_running(env->src_rq, p)) {
7672 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7673 return 0;
7674 }
7675
7676 /*
7677 * Aggressive migration if:
7678 * 1) active balance
7679 * 2) destination numa is preferred
7680 * 3) task is cache cold, or
7681 * 4) too many balance attempts have failed.
7682 */
7683 if (env->flags & LBF_ACTIVE_LB)
7684 return 1;
7685
7686 tsk_cache_hot = migrate_degrades_locality(p, env);
7687 if (tsk_cache_hot == -1)
7688 tsk_cache_hot = task_hot(p, env);
7689
7690 if (tsk_cache_hot <= 0 ||
7691 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7692 if (tsk_cache_hot == 1) {
7693 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7694 schedstat_inc(p->se.statistics.nr_forced_migrations);
7695 }
7696 return 1;
7697 }
7698
7699 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7700 return 0;
7701 }
7702
7703 /*
7704 * detach_task() -- detach the task for the migration specified in env
7705 */
7706 static void detach_task(struct task_struct *p, struct lb_env *env)
7707 {
7708 lockdep_assert_rq_held(env->src_rq);
7709
7710 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7711 set_task_cpu(p, env->dst_cpu);
7712 }
7713
7714 /*
7715 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7716 * part of active balancing operations within "domain".
7717 *
7718 * Returns a task if successful and NULL otherwise.
7719 */
7720 static struct task_struct *detach_one_task(struct lb_env *env)
7721 {
7722 struct task_struct *p;
7723
7724 lockdep_assert_rq_held(env->src_rq);
7725
7726 list_for_each_entry_reverse(p,
7727 &env->src_rq->cfs_tasks, se.group_node) {
7728 if (!can_migrate_task(p, env))
7729 continue;
7730
7731 detach_task(p, env);
7732
7733 /*
7734 * Right now, this is only the second place where
7735 * lb_gained[env->idle] is updated (other is detach_tasks)
7736 * so we can safely collect stats here rather than
7737 * inside detach_tasks().
7738 */
7739 schedstat_inc(env->sd->lb_gained[env->idle]);
7740 return p;
7741 }
7742 return NULL;
7743 }
7744
7745 static const unsigned int sched_nr_migrate_break = 32;
7746
7747 /*
7748 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7749 * busiest_rq, as part of a balancing operation within domain "sd".
7750 *
7751 * Returns number of detached tasks if successful and 0 otherwise.
7752 */
7753 static int detach_tasks(struct lb_env *env)
7754 {
7755 struct list_head *tasks = &env->src_rq->cfs_tasks;
7756 unsigned long util, load;
7757 struct task_struct *p;
7758 int detached = 0;
7759
7760 lockdep_assert_rq_held(env->src_rq);
7761
7762 /*
7763 * Source run queue has been emptied by another CPU, clear
7764 * LBF_ALL_PINNED flag as we will not test any task.
7765 */
7766 if (env->src_rq->nr_running <= 1) {
7767 env->flags &= ~LBF_ALL_PINNED;
7768 return 0;
7769 }
7770
7771 if (env->imbalance <= 0)
7772 return 0;
7773
7774 while (!list_empty(tasks)) {
7775 /*
7776 * We don't want to steal all, otherwise we may be treated likewise,
7777 * which could at worst lead to a livelock crash.
7778 */
7779 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7780 break;
7781
7782 p = list_last_entry(tasks, struct task_struct, se.group_node);
7783
7784 env->loop++;
7785 /* We've more or less seen every task there is, call it quits */
7786 if (env->loop > env->loop_max)
7787 break;
7788
7789 /* take a breather every nr_migrate tasks */
7790 if (env->loop > env->loop_break) {
7791 env->loop_break += sched_nr_migrate_break;
7792 env->flags |= LBF_NEED_BREAK;
7793 break;
7794 }
7795
7796 if (!can_migrate_task(p, env))
7797 goto next;
7798
7799 switch (env->migration_type) {
7800 case migrate_load:
7801 /*
7802 * Depending of the number of CPUs and tasks and the
7803 * cgroup hierarchy, task_h_load() can return a null
7804 * value. Make sure that env->imbalance decreases
7805 * otherwise detach_tasks() will stop only after
7806 * detaching up to loop_max tasks.
7807 */
7808 load = max_t(unsigned long, task_h_load(p), 1);
7809
7810 if (sched_feat(LB_MIN) &&
7811 load < 16 && !env->sd->nr_balance_failed)
7812 goto next;
7813
7814 /*
7815 * Make sure that we don't migrate too much load.
7816 * Nevertheless, let relax the constraint if
7817 * scheduler fails to find a good waiting task to
7818 * migrate.
7819 */
7820 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7821 goto next;
7822
7823 env->imbalance -= load;
7824 break;
7825
7826 case migrate_util:
7827 util = task_util_est(p);
7828
7829 if (util > env->imbalance)
7830 goto next;
7831
7832 env->imbalance -= util;
7833 break;
7834
7835 case migrate_task:
7836 env->imbalance--;
7837 break;
7838
7839 case migrate_misfit:
7840 /* This is not a misfit task */
7841 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7842 goto next;
7843
7844 env->imbalance = 0;
7845 break;
7846 }
7847
7848 detach_task(p, env);
7849 list_add(&p->se.group_node, &env->tasks);
7850
7851 detached++;
7852
7853 #ifdef CONFIG_PREEMPTION
7854 /*
7855 * NEWIDLE balancing is a source of latency, so preemptible
7856 * kernels will stop after the first task is detached to minimize
7857 * the critical section.
7858 */
7859 if (env->idle == CPU_NEWLY_IDLE)
7860 break;
7861 #endif
7862
7863 /*
7864 * We only want to steal up to the prescribed amount of
7865 * load/util/tasks.
7866 */
7867 if (env->imbalance <= 0)
7868 break;
7869
7870 continue;
7871 next:
7872 list_move(&p->se.group_node, tasks);
7873 }
7874
7875 /*
7876 * Right now, this is one of only two places we collect this stat
7877 * so we can safely collect detach_one_task() stats here rather
7878 * than inside detach_one_task().
7879 */
7880 schedstat_add(env->sd->lb_gained[env->idle], detached);
7881
7882 return detached;
7883 }
7884
7885 /*
7886 * attach_task() -- attach the task detached by detach_task() to its new rq.
7887 */
7888 static void attach_task(struct rq *rq, struct task_struct *p)
7889 {
7890 lockdep_assert_rq_held(rq);
7891
7892 BUG_ON(task_rq(p) != rq);
7893 activate_task(rq, p, ENQUEUE_NOCLOCK);
7894 check_preempt_curr(rq, p, 0);
7895 }
7896
7897 /*
7898 * attach_one_task() -- attaches the task returned from detach_one_task() to
7899 * its new rq.
7900 */
7901 static void attach_one_task(struct rq *rq, struct task_struct *p)
7902 {
7903 struct rq_flags rf;
7904
7905 rq_lock(rq, &rf);
7906 update_rq_clock(rq);
7907 attach_task(rq, p);
7908 rq_unlock(rq, &rf);
7909 }
7910
7911 /*
7912 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7913 * new rq.
7914 */
7915 static void attach_tasks(struct lb_env *env)
7916 {
7917 struct list_head *tasks = &env->tasks;
7918 struct task_struct *p;
7919 struct rq_flags rf;
7920
7921 rq_lock(env->dst_rq, &rf);
7922 update_rq_clock(env->dst_rq);
7923
7924 while (!list_empty(tasks)) {
7925 p = list_first_entry(tasks, struct task_struct, se.group_node);
7926 list_del_init(&p->se.group_node);
7927
7928 attach_task(env->dst_rq, p);
7929 }
7930
7931 rq_unlock(env->dst_rq, &rf);
7932 }
7933
7934 #ifdef CONFIG_NO_HZ_COMMON
7935 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7936 {
7937 if (cfs_rq->avg.load_avg)
7938 return true;
7939
7940 if (cfs_rq->avg.util_avg)
7941 return true;
7942
7943 return false;
7944 }
7945
7946 static inline bool others_have_blocked(struct rq *rq)
7947 {
7948 if (READ_ONCE(rq->avg_rt.util_avg))
7949 return true;
7950
7951 if (READ_ONCE(rq->avg_dl.util_avg))
7952 return true;
7953
7954 if (thermal_load_avg(rq))
7955 return true;
7956
7957 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7958 if (READ_ONCE(rq->avg_irq.util_avg))
7959 return true;
7960 #endif
7961
7962 return false;
7963 }
7964
7965 static inline void update_blocked_load_tick(struct rq *rq)
7966 {
7967 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
7968 }
7969
7970 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7971 {
7972 if (!has_blocked)
7973 rq->has_blocked_load = 0;
7974 }
7975 #else
7976 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7977 static inline bool others_have_blocked(struct rq *rq) { return false; }
7978 static inline void update_blocked_load_tick(struct rq *rq) {}
7979 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7980 #endif
7981
7982 static bool __update_blocked_others(struct rq *rq, bool *done)
7983 {
7984 const struct sched_class *curr_class;
7985 u64 now = rq_clock_pelt(rq);
7986 unsigned long thermal_pressure;
7987 bool decayed;
7988
7989 /*
7990 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7991 * DL and IRQ signals have been updated before updating CFS.
7992 */
7993 curr_class = rq->curr->sched_class;
7994
7995 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7996
7997 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7998 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7999 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8000 update_irq_load_avg(rq, 0);
8001
8002 if (others_have_blocked(rq))
8003 *done = false;
8004
8005 return decayed;
8006 }
8007
8008 #ifdef CONFIG_FAIR_GROUP_SCHED
8009
8010 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
8011 {
8012 if (cfs_rq->load.weight)
8013 return false;
8014
8015 if (cfs_rq->avg.load_sum)
8016 return false;
8017
8018 if (cfs_rq->avg.util_sum)
8019 return false;
8020
8021 if (cfs_rq->avg.runnable_sum)
8022 return false;
8023
8024 return true;
8025 }
8026
8027 static bool __update_blocked_fair(struct rq *rq, bool *done)
8028 {
8029 struct cfs_rq *cfs_rq, *pos;
8030 bool decayed = false;
8031 int cpu = cpu_of(rq);
8032
8033 /*
8034 * Iterates the task_group tree in a bottom up fashion, see
8035 * list_add_leaf_cfs_rq() for details.
8036 */
8037 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8038 struct sched_entity *se;
8039
8040 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8041 update_tg_load_avg(cfs_rq);
8042
8043 if (cfs_rq == &rq->cfs)
8044 decayed = true;
8045 }
8046
8047 /* Propagate pending load changes to the parent, if any: */
8048 se = cfs_rq->tg->se[cpu];
8049 if (se && !skip_blocked_update(se))
8050 update_load_avg(cfs_rq_of(se), se, 0);
8051
8052 /*
8053 * There can be a lot of idle CPU cgroups. Don't let fully
8054 * decayed cfs_rqs linger on the list.
8055 */
8056 if (cfs_rq_is_decayed(cfs_rq))
8057 list_del_leaf_cfs_rq(cfs_rq);
8058
8059 /* Don't need periodic decay once load/util_avg are null */
8060 if (cfs_rq_has_blocked(cfs_rq))
8061 *done = false;
8062 }
8063
8064 return decayed;
8065 }
8066
8067 /*
8068 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8069 * This needs to be done in a top-down fashion because the load of a child
8070 * group is a fraction of its parents load.
8071 */
8072 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8073 {
8074 struct rq *rq = rq_of(cfs_rq);
8075 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8076 unsigned long now = jiffies;
8077 unsigned long load;
8078
8079 if (cfs_rq->last_h_load_update == now)
8080 return;
8081
8082 WRITE_ONCE(cfs_rq->h_load_next, NULL);
8083 for_each_sched_entity(se) {
8084 cfs_rq = cfs_rq_of(se);
8085 WRITE_ONCE(cfs_rq->h_load_next, se);
8086 if (cfs_rq->last_h_load_update == now)
8087 break;
8088 }
8089
8090 if (!se) {
8091 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8092 cfs_rq->last_h_load_update = now;
8093 }
8094
8095 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8096 load = cfs_rq->h_load;
8097 load = div64_ul(load * se->avg.load_avg,
8098 cfs_rq_load_avg(cfs_rq) + 1);
8099 cfs_rq = group_cfs_rq(se);
8100 cfs_rq->h_load = load;
8101 cfs_rq->last_h_load_update = now;
8102 }
8103 }
8104
8105 static unsigned long task_h_load(struct task_struct *p)
8106 {
8107 struct cfs_rq *cfs_rq = task_cfs_rq(p);
8108
8109 update_cfs_rq_h_load(cfs_rq);
8110 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8111 cfs_rq_load_avg(cfs_rq) + 1);
8112 }
8113 #else
8114 static bool __update_blocked_fair(struct rq *rq, bool *done)
8115 {
8116 struct cfs_rq *cfs_rq = &rq->cfs;
8117 bool decayed;
8118
8119 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8120 if (cfs_rq_has_blocked(cfs_rq))
8121 *done = false;
8122
8123 return decayed;
8124 }
8125
8126 static unsigned long task_h_load(struct task_struct *p)
8127 {
8128 return p->se.avg.load_avg;
8129 }
8130 #endif
8131
8132 static void update_blocked_averages(int cpu)
8133 {
8134 bool decayed = false, done = true;
8135 struct rq *rq = cpu_rq(cpu);
8136 struct rq_flags rf;
8137
8138 rq_lock_irqsave(rq, &rf);
8139 update_blocked_load_tick(rq);
8140 update_rq_clock(rq);
8141
8142 decayed |= __update_blocked_others(rq, &done);
8143 decayed |= __update_blocked_fair(rq, &done);
8144
8145 update_blocked_load_status(rq, !done);
8146 if (decayed)
8147 cpufreq_update_util(rq, 0);
8148 rq_unlock_irqrestore(rq, &rf);
8149 }
8150
8151 /********** Helpers for find_busiest_group ************************/
8152
8153 /*
8154 * sg_lb_stats - stats of a sched_group required for load_balancing
8155 */
8156 struct sg_lb_stats {
8157 unsigned long avg_load; /*Avg load across the CPUs of the group */
8158 unsigned long group_load; /* Total load over the CPUs of the group */
8159 unsigned long group_capacity;
8160 unsigned long group_util; /* Total utilization over the CPUs of the group */
8161 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8162 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8163 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8164 unsigned int idle_cpus;
8165 unsigned int group_weight;
8166 enum group_type group_type;
8167 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8168 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8169 #ifdef CONFIG_NUMA_BALANCING
8170 unsigned int nr_numa_running;
8171 unsigned int nr_preferred_running;
8172 #endif
8173 };
8174
8175 /*
8176 * sd_lb_stats - Structure to store the statistics of a sched_domain
8177 * during load balancing.
8178 */
8179 struct sd_lb_stats {
8180 struct sched_group *busiest; /* Busiest group in this sd */
8181 struct sched_group *local; /* Local group in this sd */
8182 unsigned long total_load; /* Total load of all groups in sd */
8183 unsigned long total_capacity; /* Total capacity of all groups in sd */
8184 unsigned long avg_load; /* Average load across all groups in sd */
8185 unsigned int prefer_sibling; /* tasks should go to sibling first */
8186
8187 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8188 struct sg_lb_stats local_stat; /* Statistics of the local group */
8189 };
8190
8191 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8192 {
8193 /*
8194 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8195 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8196 * We must however set busiest_stat::group_type and
8197 * busiest_stat::idle_cpus to the worst busiest group because
8198 * update_sd_pick_busiest() reads these before assignment.
8199 */
8200 *sds = (struct sd_lb_stats){
8201 .busiest = NULL,
8202 .local = NULL,
8203 .total_load = 0UL,
8204 .total_capacity = 0UL,
8205 .busiest_stat = {
8206 .idle_cpus = UINT_MAX,
8207 .group_type = group_has_spare,
8208 },
8209 };
8210 }
8211
8212 static unsigned long scale_rt_capacity(int cpu)
8213 {
8214 struct rq *rq = cpu_rq(cpu);
8215 unsigned long max = arch_scale_cpu_capacity(cpu);
8216 unsigned long used, free;
8217 unsigned long irq;
8218
8219 irq = cpu_util_irq(rq);
8220
8221 if (unlikely(irq >= max))
8222 return 1;
8223
8224 /*
8225 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8226 * (running and not running) with weights 0 and 1024 respectively.
8227 * avg_thermal.load_avg tracks thermal pressure and the weighted
8228 * average uses the actual delta max capacity(load).
8229 */
8230 used = READ_ONCE(rq->avg_rt.util_avg);
8231 used += READ_ONCE(rq->avg_dl.util_avg);
8232 used += thermal_load_avg(rq);
8233
8234 if (unlikely(used >= max))
8235 return 1;
8236
8237 free = max - used;
8238
8239 return scale_irq_capacity(free, irq, max);
8240 }
8241
8242 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8243 {
8244 unsigned long capacity = scale_rt_capacity(cpu);
8245 struct sched_group *sdg = sd->groups;
8246
8247 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8248
8249 if (!capacity)
8250 capacity = 1;
8251
8252 cpu_rq(cpu)->cpu_capacity = capacity;
8253 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8254
8255 sdg->sgc->capacity = capacity;
8256 sdg->sgc->min_capacity = capacity;
8257 sdg->sgc->max_capacity = capacity;
8258 }
8259
8260 void update_group_capacity(struct sched_domain *sd, int cpu)
8261 {
8262 struct sched_domain *child = sd->child;
8263 struct sched_group *group, *sdg = sd->groups;
8264 unsigned long capacity, min_capacity, max_capacity;
8265 unsigned long interval;
8266
8267 interval = msecs_to_jiffies(sd->balance_interval);
8268 interval = clamp(interval, 1UL, max_load_balance_interval);
8269 sdg->sgc->next_update = jiffies + interval;
8270
8271 if (!child) {
8272 update_cpu_capacity(sd, cpu);
8273 return;
8274 }
8275
8276 capacity = 0;
8277 min_capacity = ULONG_MAX;
8278 max_capacity = 0;
8279
8280 if (child->flags & SD_OVERLAP) {
8281 /*
8282 * SD_OVERLAP domains cannot assume that child groups
8283 * span the current group.
8284 */
8285
8286 for_each_cpu(cpu, sched_group_span(sdg)) {
8287 unsigned long cpu_cap = capacity_of(cpu);
8288
8289 capacity += cpu_cap;
8290 min_capacity = min(cpu_cap, min_capacity);
8291 max_capacity = max(cpu_cap, max_capacity);
8292 }
8293 } else {
8294 /*
8295 * !SD_OVERLAP domains can assume that child groups
8296 * span the current group.
8297 */
8298
8299 group = child->groups;
8300 do {
8301 struct sched_group_capacity *sgc = group->sgc;
8302
8303 capacity += sgc->capacity;
8304 min_capacity = min(sgc->min_capacity, min_capacity);
8305 max_capacity = max(sgc->max_capacity, max_capacity);
8306 group = group->next;
8307 } while (group != child->groups);
8308 }
8309
8310 sdg->sgc->capacity = capacity;
8311 sdg->sgc->min_capacity = min_capacity;
8312 sdg->sgc->max_capacity = max_capacity;
8313 }
8314
8315 /*
8316 * Check whether the capacity of the rq has been noticeably reduced by side
8317 * activity. The imbalance_pct is used for the threshold.
8318 * Return true is the capacity is reduced
8319 */
8320 static inline int
8321 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8322 {
8323 return ((rq->cpu_capacity * sd->imbalance_pct) <
8324 (rq->cpu_capacity_orig * 100));
8325 }
8326
8327 /*
8328 * Check whether a rq has a misfit task and if it looks like we can actually
8329 * help that task: we can migrate the task to a CPU of higher capacity, or
8330 * the task's current CPU is heavily pressured.
8331 */
8332 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8333 {
8334 return rq->misfit_task_load &&
8335 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8336 check_cpu_capacity(rq, sd));
8337 }
8338
8339 /*
8340 * Group imbalance indicates (and tries to solve) the problem where balancing
8341 * groups is inadequate due to ->cpus_ptr constraints.
8342 *
8343 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8344 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8345 * Something like:
8346 *
8347 * { 0 1 2 3 } { 4 5 6 7 }
8348 * * * * *
8349 *
8350 * If we were to balance group-wise we'd place two tasks in the first group and
8351 * two tasks in the second group. Clearly this is undesired as it will overload
8352 * cpu 3 and leave one of the CPUs in the second group unused.
8353 *
8354 * The current solution to this issue is detecting the skew in the first group
8355 * by noticing the lower domain failed to reach balance and had difficulty
8356 * moving tasks due to affinity constraints.
8357 *
8358 * When this is so detected; this group becomes a candidate for busiest; see
8359 * update_sd_pick_busiest(). And calculate_imbalance() and
8360 * find_busiest_group() avoid some of the usual balance conditions to allow it
8361 * to create an effective group imbalance.
8362 *
8363 * This is a somewhat tricky proposition since the next run might not find the
8364 * group imbalance and decide the groups need to be balanced again. A most
8365 * subtle and fragile situation.
8366 */
8367
8368 static inline int sg_imbalanced(struct sched_group *group)
8369 {
8370 return group->sgc->imbalance;
8371 }
8372
8373 /*
8374 * group_has_capacity returns true if the group has spare capacity that could
8375 * be used by some tasks.
8376 * We consider that a group has spare capacity if the * number of task is
8377 * smaller than the number of CPUs or if the utilization is lower than the
8378 * available capacity for CFS tasks.
8379 * For the latter, we use a threshold to stabilize the state, to take into
8380 * account the variance of the tasks' load and to return true if the available
8381 * capacity in meaningful for the load balancer.
8382 * As an example, an available capacity of 1% can appear but it doesn't make
8383 * any benefit for the load balance.
8384 */
8385 static inline bool
8386 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8387 {
8388 if (sgs->sum_nr_running < sgs->group_weight)
8389 return true;
8390
8391 if ((sgs->group_capacity * imbalance_pct) <
8392 (sgs->group_runnable * 100))
8393 return false;
8394
8395 if ((sgs->group_capacity * 100) >
8396 (sgs->group_util * imbalance_pct))
8397 return true;
8398
8399 return false;
8400 }
8401
8402 /*
8403 * group_is_overloaded returns true if the group has more tasks than it can
8404 * handle.
8405 * group_is_overloaded is not equals to !group_has_capacity because a group
8406 * with the exact right number of tasks, has no more spare capacity but is not
8407 * overloaded so both group_has_capacity and group_is_overloaded return
8408 * false.
8409 */
8410 static inline bool
8411 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8412 {
8413 if (sgs->sum_nr_running <= sgs->group_weight)
8414 return false;
8415
8416 if ((sgs->group_capacity * 100) <
8417 (sgs->group_util * imbalance_pct))
8418 return true;
8419
8420 if ((sgs->group_capacity * imbalance_pct) <
8421 (sgs->group_runnable * 100))
8422 return true;
8423
8424 return false;
8425 }
8426
8427 static inline enum
8428 group_type group_classify(unsigned int imbalance_pct,
8429 struct sched_group *group,
8430 struct sg_lb_stats *sgs)
8431 {
8432 if (group_is_overloaded(imbalance_pct, sgs))
8433 return group_overloaded;
8434
8435 if (sg_imbalanced(group))
8436 return group_imbalanced;
8437
8438 if (sgs->group_asym_packing)
8439 return group_asym_packing;
8440
8441 if (sgs->group_misfit_task_load)
8442 return group_misfit_task;
8443
8444 if (!group_has_capacity(imbalance_pct, sgs))
8445 return group_fully_busy;
8446
8447 return group_has_spare;
8448 }
8449
8450 /**
8451 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8452 * @env: The load balancing environment.
8453 * @group: sched_group whose statistics are to be updated.
8454 * @sgs: variable to hold the statistics for this group.
8455 * @sg_status: Holds flag indicating the status of the sched_group
8456 */
8457 static inline void update_sg_lb_stats(struct lb_env *env,
8458 struct sched_group *group,
8459 struct sg_lb_stats *sgs,
8460 int *sg_status)
8461 {
8462 int i, nr_running, local_group;
8463
8464 memset(sgs, 0, sizeof(*sgs));
8465
8466 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8467
8468 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8469 struct rq *rq = cpu_rq(i);
8470
8471 sgs->group_load += cpu_load(rq);
8472 sgs->group_util += cpu_util(i);
8473 sgs->group_runnable += cpu_runnable(rq);
8474 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8475
8476 nr_running = rq->nr_running;
8477 sgs->sum_nr_running += nr_running;
8478
8479 if (nr_running > 1)
8480 *sg_status |= SG_OVERLOAD;
8481
8482 if (cpu_overutilized(i))
8483 *sg_status |= SG_OVERUTILIZED;
8484
8485 #ifdef CONFIG_NUMA_BALANCING
8486 sgs->nr_numa_running += rq->nr_numa_running;
8487 sgs->nr_preferred_running += rq->nr_preferred_running;
8488 #endif
8489 /*
8490 * No need to call idle_cpu() if nr_running is not 0
8491 */
8492 if (!nr_running && idle_cpu(i)) {
8493 sgs->idle_cpus++;
8494 /* Idle cpu can't have misfit task */
8495 continue;
8496 }
8497
8498 if (local_group)
8499 continue;
8500
8501 /* Check for a misfit task on the cpu */
8502 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8503 sgs->group_misfit_task_load < rq->misfit_task_load) {
8504 sgs->group_misfit_task_load = rq->misfit_task_load;
8505 *sg_status |= SG_OVERLOAD;
8506 }
8507 }
8508
8509 /* Check if dst CPU is idle and preferred to this group */
8510 if (env->sd->flags & SD_ASYM_PACKING &&
8511 env->idle != CPU_NOT_IDLE &&
8512 sgs->sum_h_nr_running &&
8513 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8514 sgs->group_asym_packing = 1;
8515 }
8516
8517 sgs->group_capacity = group->sgc->capacity;
8518
8519 sgs->group_weight = group->group_weight;
8520
8521 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8522
8523 /* Computing avg_load makes sense only when group is overloaded */
8524 if (sgs->group_type == group_overloaded)
8525 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8526 sgs->group_capacity;
8527 }
8528
8529 /**
8530 * update_sd_pick_busiest - return 1 on busiest group
8531 * @env: The load balancing environment.
8532 * @sds: sched_domain statistics
8533 * @sg: sched_group candidate to be checked for being the busiest
8534 * @sgs: sched_group statistics
8535 *
8536 * Determine if @sg is a busier group than the previously selected
8537 * busiest group.
8538 *
8539 * Return: %true if @sg is a busier group than the previously selected
8540 * busiest group. %false otherwise.
8541 */
8542 static bool update_sd_pick_busiest(struct lb_env *env,
8543 struct sd_lb_stats *sds,
8544 struct sched_group *sg,
8545 struct sg_lb_stats *sgs)
8546 {
8547 struct sg_lb_stats *busiest = &sds->busiest_stat;
8548
8549 /* Make sure that there is at least one task to pull */
8550 if (!sgs->sum_h_nr_running)
8551 return false;
8552
8553 /*
8554 * Don't try to pull misfit tasks we can't help.
8555 * We can use max_capacity here as reduction in capacity on some
8556 * CPUs in the group should either be possible to resolve
8557 * internally or be covered by avg_load imbalance (eventually).
8558 */
8559 if (sgs->group_type == group_misfit_task &&
8560 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8561 sds->local_stat.group_type != group_has_spare))
8562 return false;
8563
8564 if (sgs->group_type > busiest->group_type)
8565 return true;
8566
8567 if (sgs->group_type < busiest->group_type)
8568 return false;
8569
8570 /*
8571 * The candidate and the current busiest group are the same type of
8572 * group. Let check which one is the busiest according to the type.
8573 */
8574
8575 switch (sgs->group_type) {
8576 case group_overloaded:
8577 /* Select the overloaded group with highest avg_load. */
8578 if (sgs->avg_load <= busiest->avg_load)
8579 return false;
8580 break;
8581
8582 case group_imbalanced:
8583 /*
8584 * Select the 1st imbalanced group as we don't have any way to
8585 * choose one more than another.
8586 */
8587 return false;
8588
8589 case group_asym_packing:
8590 /* Prefer to move from lowest priority CPU's work */
8591 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8592 return false;
8593 break;
8594
8595 case group_misfit_task:
8596 /*
8597 * If we have more than one misfit sg go with the biggest
8598 * misfit.
8599 */
8600 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8601 return false;
8602 break;
8603
8604 case group_fully_busy:
8605 /*
8606 * Select the fully busy group with highest avg_load. In
8607 * theory, there is no need to pull task from such kind of
8608 * group because tasks have all compute capacity that they need
8609 * but we can still improve the overall throughput by reducing
8610 * contention when accessing shared HW resources.
8611 *
8612 * XXX for now avg_load is not computed and always 0 so we
8613 * select the 1st one.
8614 */
8615 if (sgs->avg_load <= busiest->avg_load)
8616 return false;
8617 break;
8618
8619 case group_has_spare:
8620 /*
8621 * Select not overloaded group with lowest number of idle cpus
8622 * and highest number of running tasks. We could also compare
8623 * the spare capacity which is more stable but it can end up
8624 * that the group has less spare capacity but finally more idle
8625 * CPUs which means less opportunity to pull tasks.
8626 */
8627 if (sgs->idle_cpus > busiest->idle_cpus)
8628 return false;
8629 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8630 (sgs->sum_nr_running <= busiest->sum_nr_running))
8631 return false;
8632
8633 break;
8634 }
8635
8636 /*
8637 * Candidate sg has no more than one task per CPU and has higher
8638 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8639 * throughput. Maximize throughput, power/energy consequences are not
8640 * considered.
8641 */
8642 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8643 (sgs->group_type <= group_fully_busy) &&
8644 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
8645 return false;
8646
8647 return true;
8648 }
8649
8650 #ifdef CONFIG_NUMA_BALANCING
8651 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8652 {
8653 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8654 return regular;
8655 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8656 return remote;
8657 return all;
8658 }
8659
8660 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8661 {
8662 if (rq->nr_running > rq->nr_numa_running)
8663 return regular;
8664 if (rq->nr_running > rq->nr_preferred_running)
8665 return remote;
8666 return all;
8667 }
8668 #else
8669 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8670 {
8671 return all;
8672 }
8673
8674 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8675 {
8676 return regular;
8677 }
8678 #endif /* CONFIG_NUMA_BALANCING */
8679
8680
8681 struct sg_lb_stats;
8682
8683 /*
8684 * task_running_on_cpu - return 1 if @p is running on @cpu.
8685 */
8686
8687 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8688 {
8689 /* Task has no contribution or is new */
8690 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8691 return 0;
8692
8693 if (task_on_rq_queued(p))
8694 return 1;
8695
8696 return 0;
8697 }
8698
8699 /**
8700 * idle_cpu_without - would a given CPU be idle without p ?
8701 * @cpu: the processor on which idleness is tested.
8702 * @p: task which should be ignored.
8703 *
8704 * Return: 1 if the CPU would be idle. 0 otherwise.
8705 */
8706 static int idle_cpu_without(int cpu, struct task_struct *p)
8707 {
8708 struct rq *rq = cpu_rq(cpu);
8709
8710 if (rq->curr != rq->idle && rq->curr != p)
8711 return 0;
8712
8713 /*
8714 * rq->nr_running can't be used but an updated version without the
8715 * impact of p on cpu must be used instead. The updated nr_running
8716 * be computed and tested before calling idle_cpu_without().
8717 */
8718
8719 #ifdef CONFIG_SMP
8720 if (rq->ttwu_pending)
8721 return 0;
8722 #endif
8723
8724 return 1;
8725 }
8726
8727 /*
8728 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8729 * @sd: The sched_domain level to look for idlest group.
8730 * @group: sched_group whose statistics are to be updated.
8731 * @sgs: variable to hold the statistics for this group.
8732 * @p: The task for which we look for the idlest group/CPU.
8733 */
8734 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8735 struct sched_group *group,
8736 struct sg_lb_stats *sgs,
8737 struct task_struct *p)
8738 {
8739 int i, nr_running;
8740
8741 memset(sgs, 0, sizeof(*sgs));
8742
8743 for_each_cpu(i, sched_group_span(group)) {
8744 struct rq *rq = cpu_rq(i);
8745 unsigned int local;
8746
8747 sgs->group_load += cpu_load_without(rq, p);
8748 sgs->group_util += cpu_util_without(i, p);
8749 sgs->group_runnable += cpu_runnable_without(rq, p);
8750 local = task_running_on_cpu(i, p);
8751 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8752
8753 nr_running = rq->nr_running - local;
8754 sgs->sum_nr_running += nr_running;
8755
8756 /*
8757 * No need to call idle_cpu_without() if nr_running is not 0
8758 */
8759 if (!nr_running && idle_cpu_without(i, p))
8760 sgs->idle_cpus++;
8761
8762 }
8763
8764 /* Check if task fits in the group */
8765 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8766 !task_fits_capacity(p, group->sgc->max_capacity)) {
8767 sgs->group_misfit_task_load = 1;
8768 }
8769
8770 sgs->group_capacity = group->sgc->capacity;
8771
8772 sgs->group_weight = group->group_weight;
8773
8774 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8775
8776 /*
8777 * Computing avg_load makes sense only when group is fully busy or
8778 * overloaded
8779 */
8780 if (sgs->group_type == group_fully_busy ||
8781 sgs->group_type == group_overloaded)
8782 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8783 sgs->group_capacity;
8784 }
8785
8786 static bool update_pick_idlest(struct sched_group *idlest,
8787 struct sg_lb_stats *idlest_sgs,
8788 struct sched_group *group,
8789 struct sg_lb_stats *sgs)
8790 {
8791 if (sgs->group_type < idlest_sgs->group_type)
8792 return true;
8793
8794 if (sgs->group_type > idlest_sgs->group_type)
8795 return false;
8796
8797 /*
8798 * The candidate and the current idlest group are the same type of
8799 * group. Let check which one is the idlest according to the type.
8800 */
8801
8802 switch (sgs->group_type) {
8803 case group_overloaded:
8804 case group_fully_busy:
8805 /* Select the group with lowest avg_load. */
8806 if (idlest_sgs->avg_load <= sgs->avg_load)
8807 return false;
8808 break;
8809
8810 case group_imbalanced:
8811 case group_asym_packing:
8812 /* Those types are not used in the slow wakeup path */
8813 return false;
8814
8815 case group_misfit_task:
8816 /* Select group with the highest max capacity */
8817 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8818 return false;
8819 break;
8820
8821 case group_has_spare:
8822 /* Select group with most idle CPUs */
8823 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8824 return false;
8825
8826 /* Select group with lowest group_util */
8827 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8828 idlest_sgs->group_util <= sgs->group_util)
8829 return false;
8830
8831 break;
8832 }
8833
8834 return true;
8835 }
8836
8837 /*
8838 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8839 * This is an approximation as the number of running tasks may not be
8840 * related to the number of busy CPUs due to sched_setaffinity.
8841 */
8842 static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
8843 {
8844 return (dst_running < (dst_weight >> 2));
8845 }
8846
8847 /*
8848 * find_idlest_group() finds and returns the least busy CPU group within the
8849 * domain.
8850 *
8851 * Assumes p is allowed on at least one CPU in sd.
8852 */
8853 static struct sched_group *
8854 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8855 {
8856 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8857 struct sg_lb_stats local_sgs, tmp_sgs;
8858 struct sg_lb_stats *sgs;
8859 unsigned long imbalance;
8860 struct sg_lb_stats idlest_sgs = {
8861 .avg_load = UINT_MAX,
8862 .group_type = group_overloaded,
8863 };
8864
8865 do {
8866 int local_group;
8867
8868 /* Skip over this group if it has no CPUs allowed */
8869 if (!cpumask_intersects(sched_group_span(group),
8870 p->cpus_ptr))
8871 continue;
8872
8873 local_group = cpumask_test_cpu(this_cpu,
8874 sched_group_span(group));
8875
8876 if (local_group) {
8877 sgs = &local_sgs;
8878 local = group;
8879 } else {
8880 sgs = &tmp_sgs;
8881 }
8882
8883 update_sg_wakeup_stats(sd, group, sgs, p);
8884
8885 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8886 idlest = group;
8887 idlest_sgs = *sgs;
8888 }
8889
8890 } while (group = group->next, group != sd->groups);
8891
8892
8893 /* There is no idlest group to push tasks to */
8894 if (!idlest)
8895 return NULL;
8896
8897 /* The local group has been skipped because of CPU affinity */
8898 if (!local)
8899 return idlest;
8900
8901 /*
8902 * If the local group is idler than the selected idlest group
8903 * don't try and push the task.
8904 */
8905 if (local_sgs.group_type < idlest_sgs.group_type)
8906 return NULL;
8907
8908 /*
8909 * If the local group is busier than the selected idlest group
8910 * try and push the task.
8911 */
8912 if (local_sgs.group_type > idlest_sgs.group_type)
8913 return idlest;
8914
8915 switch (local_sgs.group_type) {
8916 case group_overloaded:
8917 case group_fully_busy:
8918
8919 /* Calculate allowed imbalance based on load */
8920 imbalance = scale_load_down(NICE_0_LOAD) *
8921 (sd->imbalance_pct-100) / 100;
8922
8923 /*
8924 * When comparing groups across NUMA domains, it's possible for
8925 * the local domain to be very lightly loaded relative to the
8926 * remote domains but "imbalance" skews the comparison making
8927 * remote CPUs look much more favourable. When considering
8928 * cross-domain, add imbalance to the load on the remote node
8929 * and consider staying local.
8930 */
8931
8932 if ((sd->flags & SD_NUMA) &&
8933 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8934 return NULL;
8935
8936 /*
8937 * If the local group is less loaded than the selected
8938 * idlest group don't try and push any tasks.
8939 */
8940 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8941 return NULL;
8942
8943 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8944 return NULL;
8945 break;
8946
8947 case group_imbalanced:
8948 case group_asym_packing:
8949 /* Those type are not used in the slow wakeup path */
8950 return NULL;
8951
8952 case group_misfit_task:
8953 /* Select group with the highest max capacity */
8954 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8955 return NULL;
8956 break;
8957
8958 case group_has_spare:
8959 if (sd->flags & SD_NUMA) {
8960 #ifdef CONFIG_NUMA_BALANCING
8961 int idlest_cpu;
8962 /*
8963 * If there is spare capacity at NUMA, try to select
8964 * the preferred node
8965 */
8966 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8967 return NULL;
8968
8969 idlest_cpu = cpumask_first(sched_group_span(idlest));
8970 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8971 return idlest;
8972 #endif
8973 /*
8974 * Otherwise, keep the task on this node to stay close
8975 * its wakeup source and improve locality. If there is
8976 * a real need of migration, periodic load balance will
8977 * take care of it.
8978 */
8979 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
8980 return NULL;
8981 }
8982
8983 /*
8984 * Select group with highest number of idle CPUs. We could also
8985 * compare the utilization which is more stable but it can end
8986 * up that the group has less spare capacity but finally more
8987 * idle CPUs which means more opportunity to run task.
8988 */
8989 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8990 return NULL;
8991 break;
8992 }
8993
8994 return idlest;
8995 }
8996
8997 /**
8998 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8999 * @env: The load balancing environment.
9000 * @sds: variable to hold the statistics for this sched_domain.
9001 */
9002
9003 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9004 {
9005 struct sched_domain *child = env->sd->child;
9006 struct sched_group *sg = env->sd->groups;
9007 struct sg_lb_stats *local = &sds->local_stat;
9008 struct sg_lb_stats tmp_sgs;
9009 int sg_status = 0;
9010
9011 do {
9012 struct sg_lb_stats *sgs = &tmp_sgs;
9013 int local_group;
9014
9015 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9016 if (local_group) {
9017 sds->local = sg;
9018 sgs = local;
9019
9020 if (env->idle != CPU_NEWLY_IDLE ||
9021 time_after_eq(jiffies, sg->sgc->next_update))
9022 update_group_capacity(env->sd, env->dst_cpu);
9023 }
9024
9025 update_sg_lb_stats(env, sg, sgs, &sg_status);
9026
9027 if (local_group)
9028 goto next_group;
9029
9030
9031 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9032 sds->busiest = sg;
9033 sds->busiest_stat = *sgs;
9034 }
9035
9036 next_group:
9037 /* Now, start updating sd_lb_stats */
9038 sds->total_load += sgs->group_load;
9039 sds->total_capacity += sgs->group_capacity;
9040
9041 sg = sg->next;
9042 } while (sg != env->sd->groups);
9043
9044 /* Tag domain that child domain prefers tasks go to siblings first */
9045 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9046
9047
9048 if (env->sd->flags & SD_NUMA)
9049 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9050
9051 if (!env->sd->parent) {
9052 struct root_domain *rd = env->dst_rq->rd;
9053
9054 /* update overload indicator if we are at root domain */
9055 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9056
9057 /* Update over-utilization (tipping point, U >= 0) indicator */
9058 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9059 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9060 } else if (sg_status & SG_OVERUTILIZED) {
9061 struct root_domain *rd = env->dst_rq->rd;
9062
9063 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9064 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9065 }
9066 }
9067
9068 #define NUMA_IMBALANCE_MIN 2
9069
9070 static inline long adjust_numa_imbalance(int imbalance,
9071 int dst_running, int dst_weight)
9072 {
9073 if (!allow_numa_imbalance(dst_running, dst_weight))
9074 return imbalance;
9075
9076 /*
9077 * Allow a small imbalance based on a simple pair of communicating
9078 * tasks that remain local when the destination is lightly loaded.
9079 */
9080 if (imbalance <= NUMA_IMBALANCE_MIN)
9081 return 0;
9082
9083 return imbalance;
9084 }
9085
9086 /**
9087 * calculate_imbalance - Calculate the amount of imbalance present within the
9088 * groups of a given sched_domain during load balance.
9089 * @env: load balance environment
9090 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9091 */
9092 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9093 {
9094 struct sg_lb_stats *local, *busiest;
9095
9096 local = &sds->local_stat;
9097 busiest = &sds->busiest_stat;
9098
9099 if (busiest->group_type == group_misfit_task) {
9100 /* Set imbalance to allow misfit tasks to be balanced. */
9101 env->migration_type = migrate_misfit;
9102 env->imbalance = 1;
9103 return;
9104 }
9105
9106 if (busiest->group_type == group_asym_packing) {
9107 /*
9108 * In case of asym capacity, we will try to migrate all load to
9109 * the preferred CPU.
9110 */
9111 env->migration_type = migrate_task;
9112 env->imbalance = busiest->sum_h_nr_running;
9113 return;
9114 }
9115
9116 if (busiest->group_type == group_imbalanced) {
9117 /*
9118 * In the group_imb case we cannot rely on group-wide averages
9119 * to ensure CPU-load equilibrium, try to move any task to fix
9120 * the imbalance. The next load balance will take care of
9121 * balancing back the system.
9122 */
9123 env->migration_type = migrate_task;
9124 env->imbalance = 1;
9125 return;
9126 }
9127
9128 /*
9129 * Try to use spare capacity of local group without overloading it or
9130 * emptying busiest.
9131 */
9132 if (local->group_type == group_has_spare) {
9133 if ((busiest->group_type > group_fully_busy) &&
9134 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9135 /*
9136 * If busiest is overloaded, try to fill spare
9137 * capacity. This might end up creating spare capacity
9138 * in busiest or busiest still being overloaded but
9139 * there is no simple way to directly compute the
9140 * amount of load to migrate in order to balance the
9141 * system.
9142 */
9143 env->migration_type = migrate_util;
9144 env->imbalance = max(local->group_capacity, local->group_util) -
9145 local->group_util;
9146
9147 /*
9148 * In some cases, the group's utilization is max or even
9149 * higher than capacity because of migrations but the
9150 * local CPU is (newly) idle. There is at least one
9151 * waiting task in this overloaded busiest group. Let's
9152 * try to pull it.
9153 */
9154 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9155 env->migration_type = migrate_task;
9156 env->imbalance = 1;
9157 }
9158
9159 return;
9160 }
9161
9162 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9163 unsigned int nr_diff = busiest->sum_nr_running;
9164 /*
9165 * When prefer sibling, evenly spread running tasks on
9166 * groups.
9167 */
9168 env->migration_type = migrate_task;
9169 lsub_positive(&nr_diff, local->sum_nr_running);
9170 env->imbalance = nr_diff >> 1;
9171 } else {
9172
9173 /*
9174 * If there is no overload, we just want to even the number of
9175 * idle cpus.
9176 */
9177 env->migration_type = migrate_task;
9178 env->imbalance = max_t(long, 0, (local->idle_cpus -
9179 busiest->idle_cpus) >> 1);
9180 }
9181
9182 /* Consider allowing a small imbalance between NUMA groups */
9183 if (env->sd->flags & SD_NUMA) {
9184 env->imbalance = adjust_numa_imbalance(env->imbalance,
9185 busiest->sum_nr_running, busiest->group_weight);
9186 }
9187
9188 return;
9189 }
9190
9191 /*
9192 * Local is fully busy but has to take more load to relieve the
9193 * busiest group
9194 */
9195 if (local->group_type < group_overloaded) {
9196 /*
9197 * Local will become overloaded so the avg_load metrics are
9198 * finally needed.
9199 */
9200
9201 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9202 local->group_capacity;
9203
9204 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9205 sds->total_capacity;
9206 /*
9207 * If the local group is more loaded than the selected
9208 * busiest group don't try to pull any tasks.
9209 */
9210 if (local->avg_load >= busiest->avg_load) {
9211 env->imbalance = 0;
9212 return;
9213 }
9214 }
9215
9216 /*
9217 * Both group are or will become overloaded and we're trying to get all
9218 * the CPUs to the average_load, so we don't want to push ourselves
9219 * above the average load, nor do we wish to reduce the max loaded CPU
9220 * below the average load. At the same time, we also don't want to
9221 * reduce the group load below the group capacity. Thus we look for
9222 * the minimum possible imbalance.
9223 */
9224 env->migration_type = migrate_load;
9225 env->imbalance = min(
9226 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9227 (sds->avg_load - local->avg_load) * local->group_capacity
9228 ) / SCHED_CAPACITY_SCALE;
9229 }
9230
9231 /******* find_busiest_group() helpers end here *********************/
9232
9233 /*
9234 * Decision matrix according to the local and busiest group type:
9235 *
9236 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9237 * has_spare nr_idle balanced N/A N/A balanced balanced
9238 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9239 * misfit_task force N/A N/A N/A force force
9240 * asym_packing force force N/A N/A force force
9241 * imbalanced force force N/A N/A force force
9242 * overloaded force force N/A N/A force avg_load
9243 *
9244 * N/A : Not Applicable because already filtered while updating
9245 * statistics.
9246 * balanced : The system is balanced for these 2 groups.
9247 * force : Calculate the imbalance as load migration is probably needed.
9248 * avg_load : Only if imbalance is significant enough.
9249 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9250 * different in groups.
9251 */
9252
9253 /**
9254 * find_busiest_group - Returns the busiest group within the sched_domain
9255 * if there is an imbalance.
9256 *
9257 * Also calculates the amount of runnable load which should be moved
9258 * to restore balance.
9259 *
9260 * @env: The load balancing environment.
9261 *
9262 * Return: - The busiest group if imbalance exists.
9263 */
9264 static struct sched_group *find_busiest_group(struct lb_env *env)
9265 {
9266 struct sg_lb_stats *local, *busiest;
9267 struct sd_lb_stats sds;
9268
9269 init_sd_lb_stats(&sds);
9270
9271 /*
9272 * Compute the various statistics relevant for load balancing at
9273 * this level.
9274 */
9275 update_sd_lb_stats(env, &sds);
9276
9277 if (sched_energy_enabled()) {
9278 struct root_domain *rd = env->dst_rq->rd;
9279
9280 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9281 goto out_balanced;
9282 }
9283
9284 local = &sds.local_stat;
9285 busiest = &sds.busiest_stat;
9286
9287 /* There is no busy sibling group to pull tasks from */
9288 if (!sds.busiest)
9289 goto out_balanced;
9290
9291 /* Misfit tasks should be dealt with regardless of the avg load */
9292 if (busiest->group_type == group_misfit_task)
9293 goto force_balance;
9294
9295 /* ASYM feature bypasses nice load balance check */
9296 if (busiest->group_type == group_asym_packing)
9297 goto force_balance;
9298
9299 /*
9300 * If the busiest group is imbalanced the below checks don't
9301 * work because they assume all things are equal, which typically
9302 * isn't true due to cpus_ptr constraints and the like.
9303 */
9304 if (busiest->group_type == group_imbalanced)
9305 goto force_balance;
9306
9307 /*
9308 * If the local group is busier than the selected busiest group
9309 * don't try and pull any tasks.
9310 */
9311 if (local->group_type > busiest->group_type)
9312 goto out_balanced;
9313
9314 /*
9315 * When groups are overloaded, use the avg_load to ensure fairness
9316 * between tasks.
9317 */
9318 if (local->group_type == group_overloaded) {
9319 /*
9320 * If the local group is more loaded than the selected
9321 * busiest group don't try to pull any tasks.
9322 */
9323 if (local->avg_load >= busiest->avg_load)
9324 goto out_balanced;
9325
9326 /* XXX broken for overlapping NUMA groups */
9327 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9328 sds.total_capacity;
9329
9330 /*
9331 * Don't pull any tasks if this group is already above the
9332 * domain average load.
9333 */
9334 if (local->avg_load >= sds.avg_load)
9335 goto out_balanced;
9336
9337 /*
9338 * If the busiest group is more loaded, use imbalance_pct to be
9339 * conservative.
9340 */
9341 if (100 * busiest->avg_load <=
9342 env->sd->imbalance_pct * local->avg_load)
9343 goto out_balanced;
9344 }
9345
9346 /* Try to move all excess tasks to child's sibling domain */
9347 if (sds.prefer_sibling && local->group_type == group_has_spare &&
9348 busiest->sum_nr_running > local->sum_nr_running + 1)
9349 goto force_balance;
9350
9351 if (busiest->group_type != group_overloaded) {
9352 if (env->idle == CPU_NOT_IDLE)
9353 /*
9354 * If the busiest group is not overloaded (and as a
9355 * result the local one too) but this CPU is already
9356 * busy, let another idle CPU try to pull task.
9357 */
9358 goto out_balanced;
9359
9360 if (busiest->group_weight > 1 &&
9361 local->idle_cpus <= (busiest->idle_cpus + 1))
9362 /*
9363 * If the busiest group is not overloaded
9364 * and there is no imbalance between this and busiest
9365 * group wrt idle CPUs, it is balanced. The imbalance
9366 * becomes significant if the diff is greater than 1
9367 * otherwise we might end up to just move the imbalance
9368 * on another group. Of course this applies only if
9369 * there is more than 1 CPU per group.
9370 */
9371 goto out_balanced;
9372
9373 if (busiest->sum_h_nr_running == 1)
9374 /*
9375 * busiest doesn't have any tasks waiting to run
9376 */
9377 goto out_balanced;
9378 }
9379
9380 force_balance:
9381 /* Looks like there is an imbalance. Compute it */
9382 calculate_imbalance(env, &sds);
9383 return env->imbalance ? sds.busiest : NULL;
9384
9385 out_balanced:
9386 env->imbalance = 0;
9387 return NULL;
9388 }
9389
9390 /*
9391 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9392 */
9393 static struct rq *find_busiest_queue(struct lb_env *env,
9394 struct sched_group *group)
9395 {
9396 struct rq *busiest = NULL, *rq;
9397 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9398 unsigned int busiest_nr = 0;
9399 int i;
9400
9401 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9402 unsigned long capacity, load, util;
9403 unsigned int nr_running;
9404 enum fbq_type rt;
9405
9406 rq = cpu_rq(i);
9407 rt = fbq_classify_rq(rq);
9408
9409 /*
9410 * We classify groups/runqueues into three groups:
9411 * - regular: there are !numa tasks
9412 * - remote: there are numa tasks that run on the 'wrong' node
9413 * - all: there is no distinction
9414 *
9415 * In order to avoid migrating ideally placed numa tasks,
9416 * ignore those when there's better options.
9417 *
9418 * If we ignore the actual busiest queue to migrate another
9419 * task, the next balance pass can still reduce the busiest
9420 * queue by moving tasks around inside the node.
9421 *
9422 * If we cannot move enough load due to this classification
9423 * the next pass will adjust the group classification and
9424 * allow migration of more tasks.
9425 *
9426 * Both cases only affect the total convergence complexity.
9427 */
9428 if (rt > env->fbq_type)
9429 continue;
9430
9431 nr_running = rq->cfs.h_nr_running;
9432 if (!nr_running)
9433 continue;
9434
9435 capacity = capacity_of(i);
9436
9437 /*
9438 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9439 * eventually lead to active_balancing high->low capacity.
9440 * Higher per-CPU capacity is considered better than balancing
9441 * average load.
9442 */
9443 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9444 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9445 nr_running == 1)
9446 continue;
9447
9448 switch (env->migration_type) {
9449 case migrate_load:
9450 /*
9451 * When comparing with load imbalance, use cpu_load()
9452 * which is not scaled with the CPU capacity.
9453 */
9454 load = cpu_load(rq);
9455
9456 if (nr_running == 1 && load > env->imbalance &&
9457 !check_cpu_capacity(rq, env->sd))
9458 break;
9459
9460 /*
9461 * For the load comparisons with the other CPUs,
9462 * consider the cpu_load() scaled with the CPU
9463 * capacity, so that the load can be moved away
9464 * from the CPU that is potentially running at a
9465 * lower capacity.
9466 *
9467 * Thus we're looking for max(load_i / capacity_i),
9468 * crosswise multiplication to rid ourselves of the
9469 * division works out to:
9470 * load_i * capacity_j > load_j * capacity_i;
9471 * where j is our previous maximum.
9472 */
9473 if (load * busiest_capacity > busiest_load * capacity) {
9474 busiest_load = load;
9475 busiest_capacity = capacity;
9476 busiest = rq;
9477 }
9478 break;
9479
9480 case migrate_util:
9481 util = cpu_util(cpu_of(rq));
9482
9483 /*
9484 * Don't try to pull utilization from a CPU with one
9485 * running task. Whatever its utilization, we will fail
9486 * detach the task.
9487 */
9488 if (nr_running <= 1)
9489 continue;
9490
9491 if (busiest_util < util) {
9492 busiest_util = util;
9493 busiest = rq;
9494 }
9495 break;
9496
9497 case migrate_task:
9498 if (busiest_nr < nr_running) {
9499 busiest_nr = nr_running;
9500 busiest = rq;
9501 }
9502 break;
9503
9504 case migrate_misfit:
9505 /*
9506 * For ASYM_CPUCAPACITY domains with misfit tasks we
9507 * simply seek the "biggest" misfit task.
9508 */
9509 if (rq->misfit_task_load > busiest_load) {
9510 busiest_load = rq->misfit_task_load;
9511 busiest = rq;
9512 }
9513
9514 break;
9515
9516 }
9517 }
9518
9519 return busiest;
9520 }
9521
9522 /*
9523 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9524 * so long as it is large enough.
9525 */
9526 #define MAX_PINNED_INTERVAL 512
9527
9528 static inline bool
9529 asym_active_balance(struct lb_env *env)
9530 {
9531 /*
9532 * ASYM_PACKING needs to force migrate tasks from busy but
9533 * lower priority CPUs in order to pack all tasks in the
9534 * highest priority CPUs.
9535 */
9536 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9537 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9538 }
9539
9540 static inline bool
9541 imbalanced_active_balance(struct lb_env *env)
9542 {
9543 struct sched_domain *sd = env->sd;
9544
9545 /*
9546 * The imbalanced case includes the case of pinned tasks preventing a fair
9547 * distribution of the load on the system but also the even distribution of the
9548 * threads on a system with spare capacity
9549 */
9550 if ((env->migration_type == migrate_task) &&
9551 (sd->nr_balance_failed > sd->cache_nice_tries+2))
9552 return 1;
9553
9554 return 0;
9555 }
9556
9557 static int need_active_balance(struct lb_env *env)
9558 {
9559 struct sched_domain *sd = env->sd;
9560
9561 if (asym_active_balance(env))
9562 return 1;
9563
9564 if (imbalanced_active_balance(env))
9565 return 1;
9566
9567 /*
9568 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9569 * It's worth migrating the task if the src_cpu's capacity is reduced
9570 * because of other sched_class or IRQs if more capacity stays
9571 * available on dst_cpu.
9572 */
9573 if ((env->idle != CPU_NOT_IDLE) &&
9574 (env->src_rq->cfs.h_nr_running == 1)) {
9575 if ((check_cpu_capacity(env->src_rq, sd)) &&
9576 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9577 return 1;
9578 }
9579
9580 if (env->migration_type == migrate_misfit)
9581 return 1;
9582
9583 return 0;
9584 }
9585
9586 static int active_load_balance_cpu_stop(void *data);
9587
9588 static int should_we_balance(struct lb_env *env)
9589 {
9590 struct sched_group *sg = env->sd->groups;
9591 int cpu;
9592
9593 /*
9594 * Ensure the balancing environment is consistent; can happen
9595 * when the softirq triggers 'during' hotplug.
9596 */
9597 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9598 return 0;
9599
9600 /*
9601 * In the newly idle case, we will allow all the CPUs
9602 * to do the newly idle load balance.
9603 */
9604 if (env->idle == CPU_NEWLY_IDLE)
9605 return 1;
9606
9607 /* Try to find first idle CPU */
9608 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9609 if (!idle_cpu(cpu))
9610 continue;
9611
9612 /* Are we the first idle CPU? */
9613 return cpu == env->dst_cpu;
9614 }
9615
9616 /* Are we the first CPU of this group ? */
9617 return group_balance_cpu(sg) == env->dst_cpu;
9618 }
9619
9620 /*
9621 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9622 * tasks if there is an imbalance.
9623 */
9624 static int load_balance(int this_cpu, struct rq *this_rq,
9625 struct sched_domain *sd, enum cpu_idle_type idle,
9626 int *continue_balancing)
9627 {
9628 int ld_moved, cur_ld_moved, active_balance = 0;
9629 struct sched_domain *sd_parent = sd->parent;
9630 struct sched_group *group;
9631 struct rq *busiest;
9632 struct rq_flags rf;
9633 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9634
9635 struct lb_env env = {
9636 .sd = sd,
9637 .dst_cpu = this_cpu,
9638 .dst_rq = this_rq,
9639 .dst_grpmask = sched_group_span(sd->groups),
9640 .idle = idle,
9641 .loop_break = sched_nr_migrate_break,
9642 .cpus = cpus,
9643 .fbq_type = all,
9644 .tasks = LIST_HEAD_INIT(env.tasks),
9645 };
9646
9647 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9648
9649 schedstat_inc(sd->lb_count[idle]);
9650
9651 redo:
9652 if (!should_we_balance(&env)) {
9653 *continue_balancing = 0;
9654 goto out_balanced;
9655 }
9656
9657 group = find_busiest_group(&env);
9658 if (!group) {
9659 schedstat_inc(sd->lb_nobusyg[idle]);
9660 goto out_balanced;
9661 }
9662
9663 busiest = find_busiest_queue(&env, group);
9664 if (!busiest) {
9665 schedstat_inc(sd->lb_nobusyq[idle]);
9666 goto out_balanced;
9667 }
9668
9669 BUG_ON(busiest == env.dst_rq);
9670
9671 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9672
9673 env.src_cpu = busiest->cpu;
9674 env.src_rq = busiest;
9675
9676 ld_moved = 0;
9677 /* Clear this flag as soon as we find a pullable task */
9678 env.flags |= LBF_ALL_PINNED;
9679 if (busiest->nr_running > 1) {
9680 /*
9681 * Attempt to move tasks. If find_busiest_group has found
9682 * an imbalance but busiest->nr_running <= 1, the group is
9683 * still unbalanced. ld_moved simply stays zero, so it is
9684 * correctly treated as an imbalance.
9685 */
9686 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
9687
9688 more_balance:
9689 rq_lock_irqsave(busiest, &rf);
9690 update_rq_clock(busiest);
9691
9692 /*
9693 * cur_ld_moved - load moved in current iteration
9694 * ld_moved - cumulative load moved across iterations
9695 */
9696 cur_ld_moved = detach_tasks(&env);
9697
9698 /*
9699 * We've detached some tasks from busiest_rq. Every
9700 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9701 * unlock busiest->lock, and we are able to be sure
9702 * that nobody can manipulate the tasks in parallel.
9703 * See task_rq_lock() family for the details.
9704 */
9705
9706 rq_unlock(busiest, &rf);
9707
9708 if (cur_ld_moved) {
9709 attach_tasks(&env);
9710 ld_moved += cur_ld_moved;
9711 }
9712
9713 local_irq_restore(rf.flags);
9714
9715 if (env.flags & LBF_NEED_BREAK) {
9716 env.flags &= ~LBF_NEED_BREAK;
9717 goto more_balance;
9718 }
9719
9720 /*
9721 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9722 * us and move them to an alternate dst_cpu in our sched_group
9723 * where they can run. The upper limit on how many times we
9724 * iterate on same src_cpu is dependent on number of CPUs in our
9725 * sched_group.
9726 *
9727 * This changes load balance semantics a bit on who can move
9728 * load to a given_cpu. In addition to the given_cpu itself
9729 * (or a ilb_cpu acting on its behalf where given_cpu is
9730 * nohz-idle), we now have balance_cpu in a position to move
9731 * load to given_cpu. In rare situations, this may cause
9732 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9733 * _independently_ and at _same_ time to move some load to
9734 * given_cpu) causing excess load to be moved to given_cpu.
9735 * This however should not happen so much in practice and
9736 * moreover subsequent load balance cycles should correct the
9737 * excess load moved.
9738 */
9739 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9740
9741 /* Prevent to re-select dst_cpu via env's CPUs */
9742 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9743
9744 env.dst_rq = cpu_rq(env.new_dst_cpu);
9745 env.dst_cpu = env.new_dst_cpu;
9746 env.flags &= ~LBF_DST_PINNED;
9747 env.loop = 0;
9748 env.loop_break = sched_nr_migrate_break;
9749
9750 /*
9751 * Go back to "more_balance" rather than "redo" since we
9752 * need to continue with same src_cpu.
9753 */
9754 goto more_balance;
9755 }
9756
9757 /*
9758 * We failed to reach balance because of affinity.
9759 */
9760 if (sd_parent) {
9761 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9762
9763 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9764 *group_imbalance = 1;
9765 }
9766
9767 /* All tasks on this runqueue were pinned by CPU affinity */
9768 if (unlikely(env.flags & LBF_ALL_PINNED)) {
9769 __cpumask_clear_cpu(cpu_of(busiest), cpus);
9770 /*
9771 * Attempting to continue load balancing at the current
9772 * sched_domain level only makes sense if there are
9773 * active CPUs remaining as possible busiest CPUs to
9774 * pull load from which are not contained within the
9775 * destination group that is receiving any migrated
9776 * load.
9777 */
9778 if (!cpumask_subset(cpus, env.dst_grpmask)) {
9779 env.loop = 0;
9780 env.loop_break = sched_nr_migrate_break;
9781 goto redo;
9782 }
9783 goto out_all_pinned;
9784 }
9785 }
9786
9787 if (!ld_moved) {
9788 schedstat_inc(sd->lb_failed[idle]);
9789 /*
9790 * Increment the failure counter only on periodic balance.
9791 * We do not want newidle balance, which can be very
9792 * frequent, pollute the failure counter causing
9793 * excessive cache_hot migrations and active balances.
9794 */
9795 if (idle != CPU_NEWLY_IDLE)
9796 sd->nr_balance_failed++;
9797
9798 if (need_active_balance(&env)) {
9799 unsigned long flags;
9800
9801 raw_spin_rq_lock_irqsave(busiest, flags);
9802
9803 /*
9804 * Don't kick the active_load_balance_cpu_stop,
9805 * if the curr task on busiest CPU can't be
9806 * moved to this_cpu:
9807 */
9808 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9809 raw_spin_rq_unlock_irqrestore(busiest, flags);
9810 goto out_one_pinned;
9811 }
9812
9813 /* Record that we found at least one task that could run on this_cpu */
9814 env.flags &= ~LBF_ALL_PINNED;
9815
9816 /*
9817 * ->active_balance synchronizes accesses to
9818 * ->active_balance_work. Once set, it's cleared
9819 * only after active load balance is finished.
9820 */
9821 if (!busiest->active_balance) {
9822 busiest->active_balance = 1;
9823 busiest->push_cpu = this_cpu;
9824 active_balance = 1;
9825 }
9826 raw_spin_rq_unlock_irqrestore(busiest, flags);
9827
9828 if (active_balance) {
9829 stop_one_cpu_nowait(cpu_of(busiest),
9830 active_load_balance_cpu_stop, busiest,
9831 &busiest->active_balance_work);
9832 }
9833 }
9834 } else {
9835 sd->nr_balance_failed = 0;
9836 }
9837
9838 if (likely(!active_balance) || need_active_balance(&env)) {
9839 /* We were unbalanced, so reset the balancing interval */
9840 sd->balance_interval = sd->min_interval;
9841 }
9842
9843 goto out;
9844
9845 out_balanced:
9846 /*
9847 * We reach balance although we may have faced some affinity
9848 * constraints. Clear the imbalance flag only if other tasks got
9849 * a chance to move and fix the imbalance.
9850 */
9851 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9852 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9853
9854 if (*group_imbalance)
9855 *group_imbalance = 0;
9856 }
9857
9858 out_all_pinned:
9859 /*
9860 * We reach balance because all tasks are pinned at this level so
9861 * we can't migrate them. Let the imbalance flag set so parent level
9862 * can try to migrate them.
9863 */
9864 schedstat_inc(sd->lb_balanced[idle]);
9865
9866 sd->nr_balance_failed = 0;
9867
9868 out_one_pinned:
9869 ld_moved = 0;
9870
9871 /*
9872 * newidle_balance() disregards balance intervals, so we could
9873 * repeatedly reach this code, which would lead to balance_interval
9874 * skyrocketing in a short amount of time. Skip the balance_interval
9875 * increase logic to avoid that.
9876 */
9877 if (env.idle == CPU_NEWLY_IDLE)
9878 goto out;
9879
9880 /* tune up the balancing interval */
9881 if ((env.flags & LBF_ALL_PINNED &&
9882 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9883 sd->balance_interval < sd->max_interval)
9884 sd->balance_interval *= 2;
9885 out:
9886 return ld_moved;
9887 }
9888
9889 static inline unsigned long
9890 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9891 {
9892 unsigned long interval = sd->balance_interval;
9893
9894 if (cpu_busy)
9895 interval *= sd->busy_factor;
9896
9897 /* scale ms to jiffies */
9898 interval = msecs_to_jiffies(interval);
9899
9900 /*
9901 * Reduce likelihood of busy balancing at higher domains racing with
9902 * balancing at lower domains by preventing their balancing periods
9903 * from being multiples of each other.
9904 */
9905 if (cpu_busy)
9906 interval -= 1;
9907
9908 interval = clamp(interval, 1UL, max_load_balance_interval);
9909
9910 return interval;
9911 }
9912
9913 static inline void
9914 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9915 {
9916 unsigned long interval, next;
9917
9918 /* used by idle balance, so cpu_busy = 0 */
9919 interval = get_sd_balance_interval(sd, 0);
9920 next = sd->last_balance + interval;
9921
9922 if (time_after(*next_balance, next))
9923 *next_balance = next;
9924 }
9925
9926 /*
9927 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9928 * running tasks off the busiest CPU onto idle CPUs. It requires at
9929 * least 1 task to be running on each physical CPU where possible, and
9930 * avoids physical / logical imbalances.
9931 */
9932 static int active_load_balance_cpu_stop(void *data)
9933 {
9934 struct rq *busiest_rq = data;
9935 int busiest_cpu = cpu_of(busiest_rq);
9936 int target_cpu = busiest_rq->push_cpu;
9937 struct rq *target_rq = cpu_rq(target_cpu);
9938 struct sched_domain *sd;
9939 struct task_struct *p = NULL;
9940 struct rq_flags rf;
9941
9942 rq_lock_irq(busiest_rq, &rf);
9943 /*
9944 * Between queueing the stop-work and running it is a hole in which
9945 * CPUs can become inactive. We should not move tasks from or to
9946 * inactive CPUs.
9947 */
9948 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9949 goto out_unlock;
9950
9951 /* Make sure the requested CPU hasn't gone down in the meantime: */
9952 if (unlikely(busiest_cpu != smp_processor_id() ||
9953 !busiest_rq->active_balance))
9954 goto out_unlock;
9955
9956 /* Is there any task to move? */
9957 if (busiest_rq->nr_running <= 1)
9958 goto out_unlock;
9959
9960 /*
9961 * This condition is "impossible", if it occurs
9962 * we need to fix it. Originally reported by
9963 * Bjorn Helgaas on a 128-CPU setup.
9964 */
9965 BUG_ON(busiest_rq == target_rq);
9966
9967 /* Search for an sd spanning us and the target CPU. */
9968 rcu_read_lock();
9969 for_each_domain(target_cpu, sd) {
9970 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9971 break;
9972 }
9973
9974 if (likely(sd)) {
9975 struct lb_env env = {
9976 .sd = sd,
9977 .dst_cpu = target_cpu,
9978 .dst_rq = target_rq,
9979 .src_cpu = busiest_rq->cpu,
9980 .src_rq = busiest_rq,
9981 .idle = CPU_IDLE,
9982 .flags = LBF_ACTIVE_LB,
9983 };
9984
9985 schedstat_inc(sd->alb_count);
9986 update_rq_clock(busiest_rq);
9987
9988 p = detach_one_task(&env);
9989 if (p) {
9990 schedstat_inc(sd->alb_pushed);
9991 /* Active balancing done, reset the failure counter. */
9992 sd->nr_balance_failed = 0;
9993 } else {
9994 schedstat_inc(sd->alb_failed);
9995 }
9996 }
9997 rcu_read_unlock();
9998 out_unlock:
9999 busiest_rq->active_balance = 0;
10000 rq_unlock(busiest_rq, &rf);
10001
10002 if (p)
10003 attach_one_task(target_rq, p);
10004
10005 local_irq_enable();
10006
10007 return 0;
10008 }
10009
10010 static DEFINE_SPINLOCK(balancing);
10011
10012 /*
10013 * Scale the max load_balance interval with the number of CPUs in the system.
10014 * This trades load-balance latency on larger machines for less cross talk.
10015 */
10016 void update_max_interval(void)
10017 {
10018 max_load_balance_interval = HZ*num_online_cpus()/10;
10019 }
10020
10021 /*
10022 * It checks each scheduling domain to see if it is due to be balanced,
10023 * and initiates a balancing operation if so.
10024 *
10025 * Balancing parameters are set up in init_sched_domains.
10026 */
10027 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10028 {
10029 int continue_balancing = 1;
10030 int cpu = rq->cpu;
10031 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10032 unsigned long interval;
10033 struct sched_domain *sd;
10034 /* Earliest time when we have to do rebalance again */
10035 unsigned long next_balance = jiffies + 60*HZ;
10036 int update_next_balance = 0;
10037 int need_serialize, need_decay = 0;
10038 u64 max_cost = 0;
10039
10040 rcu_read_lock();
10041 for_each_domain(cpu, sd) {
10042 /*
10043 * Decay the newidle max times here because this is a regular
10044 * visit to all the domains. Decay ~1% per second.
10045 */
10046 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10047 sd->max_newidle_lb_cost =
10048 (sd->max_newidle_lb_cost * 253) / 256;
10049 sd->next_decay_max_lb_cost = jiffies + HZ;
10050 need_decay = 1;
10051 }
10052 max_cost += sd->max_newidle_lb_cost;
10053
10054 /*
10055 * Stop the load balance at this level. There is another
10056 * CPU in our sched group which is doing load balancing more
10057 * actively.
10058 */
10059 if (!continue_balancing) {
10060 if (need_decay)
10061 continue;
10062 break;
10063 }
10064
10065 interval = get_sd_balance_interval(sd, busy);
10066
10067 need_serialize = sd->flags & SD_SERIALIZE;
10068 if (need_serialize) {
10069 if (!spin_trylock(&balancing))
10070 goto out;
10071 }
10072
10073 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10074 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10075 /*
10076 * The LBF_DST_PINNED logic could have changed
10077 * env->dst_cpu, so we can't know our idle
10078 * state even if we migrated tasks. Update it.
10079 */
10080 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10081 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10082 }
10083 sd->last_balance = jiffies;
10084 interval = get_sd_balance_interval(sd, busy);
10085 }
10086 if (need_serialize)
10087 spin_unlock(&balancing);
10088 out:
10089 if (time_after(next_balance, sd->last_balance + interval)) {
10090 next_balance = sd->last_balance + interval;
10091 update_next_balance = 1;
10092 }
10093 }
10094 if (need_decay) {
10095 /*
10096 * Ensure the rq-wide value also decays but keep it at a
10097 * reasonable floor to avoid funnies with rq->avg_idle.
10098 */
10099 rq->max_idle_balance_cost =
10100 max((u64)sysctl_sched_migration_cost, max_cost);
10101 }
10102 rcu_read_unlock();
10103
10104 /*
10105 * next_balance will be updated only when there is a need.
10106 * When the cpu is attached to null domain for ex, it will not be
10107 * updated.
10108 */
10109 if (likely(update_next_balance))
10110 rq->next_balance = next_balance;
10111
10112 }
10113
10114 static inline int on_null_domain(struct rq *rq)
10115 {
10116 return unlikely(!rcu_dereference_sched(rq->sd));
10117 }
10118
10119 #ifdef CONFIG_NO_HZ_COMMON
10120 /*
10121 * idle load balancing details
10122 * - When one of the busy CPUs notice that there may be an idle rebalancing
10123 * needed, they will kick the idle load balancer, which then does idle
10124 * load balancing for all the idle CPUs.
10125 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10126 * anywhere yet.
10127 */
10128
10129 static inline int find_new_ilb(void)
10130 {
10131 int ilb;
10132
10133 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10134 housekeeping_cpumask(HK_FLAG_MISC)) {
10135
10136 if (ilb == smp_processor_id())
10137 continue;
10138
10139 if (idle_cpu(ilb))
10140 return ilb;
10141 }
10142
10143 return nr_cpu_ids;
10144 }
10145
10146 /*
10147 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10148 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10149 */
10150 static void kick_ilb(unsigned int flags)
10151 {
10152 int ilb_cpu;
10153
10154 /*
10155 * Increase nohz.next_balance only when if full ilb is triggered but
10156 * not if we only update stats.
10157 */
10158 if (flags & NOHZ_BALANCE_KICK)
10159 nohz.next_balance = jiffies+1;
10160
10161 ilb_cpu = find_new_ilb();
10162
10163 if (ilb_cpu >= nr_cpu_ids)
10164 return;
10165
10166 /*
10167 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10168 * the first flag owns it; cleared by nohz_csd_func().
10169 */
10170 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10171 if (flags & NOHZ_KICK_MASK)
10172 return;
10173
10174 /*
10175 * This way we generate an IPI on the target CPU which
10176 * is idle. And the softirq performing nohz idle load balance
10177 * will be run before returning from the IPI.
10178 */
10179 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10180 }
10181
10182 /*
10183 * Current decision point for kicking the idle load balancer in the presence
10184 * of idle CPUs in the system.
10185 */
10186 static void nohz_balancer_kick(struct rq *rq)
10187 {
10188 unsigned long now = jiffies;
10189 struct sched_domain_shared *sds;
10190 struct sched_domain *sd;
10191 int nr_busy, i, cpu = rq->cpu;
10192 unsigned int flags = 0;
10193
10194 if (unlikely(rq->idle_balance))
10195 return;
10196
10197 /*
10198 * We may be recently in ticked or tickless idle mode. At the first
10199 * busy tick after returning from idle, we will update the busy stats.
10200 */
10201 nohz_balance_exit_idle(rq);
10202
10203 /*
10204 * None are in tickless mode and hence no need for NOHZ idle load
10205 * balancing.
10206 */
10207 if (likely(!atomic_read(&nohz.nr_cpus)))
10208 return;
10209
10210 if (READ_ONCE(nohz.has_blocked) &&
10211 time_after(now, READ_ONCE(nohz.next_blocked)))
10212 flags = NOHZ_STATS_KICK;
10213
10214 if (time_before(now, nohz.next_balance))
10215 goto out;
10216
10217 if (rq->nr_running >= 2) {
10218 flags = NOHZ_KICK_MASK;
10219 goto out;
10220 }
10221
10222 rcu_read_lock();
10223
10224 sd = rcu_dereference(rq->sd);
10225 if (sd) {
10226 /*
10227 * If there's a CFS task and the current CPU has reduced
10228 * capacity; kick the ILB to see if there's a better CPU to run
10229 * on.
10230 */
10231 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10232 flags = NOHZ_KICK_MASK;
10233 goto unlock;
10234 }
10235 }
10236
10237 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10238 if (sd) {
10239 /*
10240 * When ASYM_PACKING; see if there's a more preferred CPU
10241 * currently idle; in which case, kick the ILB to move tasks
10242 * around.
10243 */
10244 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10245 if (sched_asym_prefer(i, cpu)) {
10246 flags = NOHZ_KICK_MASK;
10247 goto unlock;
10248 }
10249 }
10250 }
10251
10252 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10253 if (sd) {
10254 /*
10255 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10256 * to run the misfit task on.
10257 */
10258 if (check_misfit_status(rq, sd)) {
10259 flags = NOHZ_KICK_MASK;
10260 goto unlock;
10261 }
10262
10263 /*
10264 * For asymmetric systems, we do not want to nicely balance
10265 * cache use, instead we want to embrace asymmetry and only
10266 * ensure tasks have enough CPU capacity.
10267 *
10268 * Skip the LLC logic because it's not relevant in that case.
10269 */
10270 goto unlock;
10271 }
10272
10273 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10274 if (sds) {
10275 /*
10276 * If there is an imbalance between LLC domains (IOW we could
10277 * increase the overall cache use), we need some less-loaded LLC
10278 * domain to pull some load. Likewise, we may need to spread
10279 * load within the current LLC domain (e.g. packed SMT cores but
10280 * other CPUs are idle). We can't really know from here how busy
10281 * the others are - so just get a nohz balance going if it looks
10282 * like this LLC domain has tasks we could move.
10283 */
10284 nr_busy = atomic_read(&sds->nr_busy_cpus);
10285 if (nr_busy > 1) {
10286 flags = NOHZ_KICK_MASK;
10287 goto unlock;
10288 }
10289 }
10290 unlock:
10291 rcu_read_unlock();
10292 out:
10293 if (flags)
10294 kick_ilb(flags);
10295 }
10296
10297 static void set_cpu_sd_state_busy(int cpu)
10298 {
10299 struct sched_domain *sd;
10300
10301 rcu_read_lock();
10302 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10303
10304 if (!sd || !sd->nohz_idle)
10305 goto unlock;
10306 sd->nohz_idle = 0;
10307
10308 atomic_inc(&sd->shared->nr_busy_cpus);
10309 unlock:
10310 rcu_read_unlock();
10311 }
10312
10313 void nohz_balance_exit_idle(struct rq *rq)
10314 {
10315 SCHED_WARN_ON(rq != this_rq());
10316
10317 if (likely(!rq->nohz_tick_stopped))
10318 return;
10319
10320 rq->nohz_tick_stopped = 0;
10321 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10322 atomic_dec(&nohz.nr_cpus);
10323
10324 set_cpu_sd_state_busy(rq->cpu);
10325 }
10326
10327 static void set_cpu_sd_state_idle(int cpu)
10328 {
10329 struct sched_domain *sd;
10330
10331 rcu_read_lock();
10332 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10333
10334 if (!sd || sd->nohz_idle)
10335 goto unlock;
10336 sd->nohz_idle = 1;
10337
10338 atomic_dec(&sd->shared->nr_busy_cpus);
10339 unlock:
10340 rcu_read_unlock();
10341 }
10342
10343 /*
10344 * This routine will record that the CPU is going idle with tick stopped.
10345 * This info will be used in performing idle load balancing in the future.
10346 */
10347 void nohz_balance_enter_idle(int cpu)
10348 {
10349 struct rq *rq = cpu_rq(cpu);
10350
10351 SCHED_WARN_ON(cpu != smp_processor_id());
10352
10353 /* If this CPU is going down, then nothing needs to be done: */
10354 if (!cpu_active(cpu))
10355 return;
10356
10357 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10358 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10359 return;
10360
10361 /*
10362 * Can be set safely without rq->lock held
10363 * If a clear happens, it will have evaluated last additions because
10364 * rq->lock is held during the check and the clear
10365 */
10366 rq->has_blocked_load = 1;
10367
10368 /*
10369 * The tick is still stopped but load could have been added in the
10370 * meantime. We set the nohz.has_blocked flag to trig a check of the
10371 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10372 * of nohz.has_blocked can only happen after checking the new load
10373 */
10374 if (rq->nohz_tick_stopped)
10375 goto out;
10376
10377 /* If we're a completely isolated CPU, we don't play: */
10378 if (on_null_domain(rq))
10379 return;
10380
10381 rq->nohz_tick_stopped = 1;
10382
10383 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10384 atomic_inc(&nohz.nr_cpus);
10385
10386 /*
10387 * Ensures that if nohz_idle_balance() fails to observe our
10388 * @idle_cpus_mask store, it must observe the @has_blocked
10389 * store.
10390 */
10391 smp_mb__after_atomic();
10392
10393 set_cpu_sd_state_idle(cpu);
10394
10395 out:
10396 /*
10397 * Each time a cpu enter idle, we assume that it has blocked load and
10398 * enable the periodic update of the load of idle cpus
10399 */
10400 WRITE_ONCE(nohz.has_blocked, 1);
10401 }
10402
10403 static bool update_nohz_stats(struct rq *rq)
10404 {
10405 unsigned int cpu = rq->cpu;
10406
10407 if (!rq->has_blocked_load)
10408 return false;
10409
10410 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10411 return false;
10412
10413 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10414 return true;
10415
10416 update_blocked_averages(cpu);
10417
10418 return rq->has_blocked_load;
10419 }
10420
10421 /*
10422 * Internal function that runs load balance for all idle cpus. The load balance
10423 * can be a simple update of blocked load or a complete load balance with
10424 * tasks movement depending of flags.
10425 */
10426 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10427 enum cpu_idle_type idle)
10428 {
10429 /* Earliest time when we have to do rebalance again */
10430 unsigned long now = jiffies;
10431 unsigned long next_balance = now + 60*HZ;
10432 bool has_blocked_load = false;
10433 int update_next_balance = 0;
10434 int this_cpu = this_rq->cpu;
10435 int balance_cpu;
10436 struct rq *rq;
10437
10438 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10439
10440 /*
10441 * We assume there will be no idle load after this update and clear
10442 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10443 * set the has_blocked flag and trig another update of idle load.
10444 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10445 * setting the flag, we are sure to not clear the state and not
10446 * check the load of an idle cpu.
10447 */
10448 WRITE_ONCE(nohz.has_blocked, 0);
10449
10450 /*
10451 * Ensures that if we miss the CPU, we must see the has_blocked
10452 * store from nohz_balance_enter_idle().
10453 */
10454 smp_mb();
10455
10456 /*
10457 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10458 * chance for other idle cpu to pull load.
10459 */
10460 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
10461 if (!idle_cpu(balance_cpu))
10462 continue;
10463
10464 /*
10465 * If this CPU gets work to do, stop the load balancing
10466 * work being done for other CPUs. Next load
10467 * balancing owner will pick it up.
10468 */
10469 if (need_resched()) {
10470 has_blocked_load = true;
10471 goto abort;
10472 }
10473
10474 rq = cpu_rq(balance_cpu);
10475
10476 has_blocked_load |= update_nohz_stats(rq);
10477
10478 /*
10479 * If time for next balance is due,
10480 * do the balance.
10481 */
10482 if (time_after_eq(jiffies, rq->next_balance)) {
10483 struct rq_flags rf;
10484
10485 rq_lock_irqsave(rq, &rf);
10486 update_rq_clock(rq);
10487 rq_unlock_irqrestore(rq, &rf);
10488
10489 if (flags & NOHZ_BALANCE_KICK)
10490 rebalance_domains(rq, CPU_IDLE);
10491 }
10492
10493 if (time_after(next_balance, rq->next_balance)) {
10494 next_balance = rq->next_balance;
10495 update_next_balance = 1;
10496 }
10497 }
10498
10499 /*
10500 * next_balance will be updated only when there is a need.
10501 * When the CPU is attached to null domain for ex, it will not be
10502 * updated.
10503 */
10504 if (likely(update_next_balance))
10505 nohz.next_balance = next_balance;
10506
10507 WRITE_ONCE(nohz.next_blocked,
10508 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10509
10510 abort:
10511 /* There is still blocked load, enable periodic update */
10512 if (has_blocked_load)
10513 WRITE_ONCE(nohz.has_blocked, 1);
10514 }
10515
10516 /*
10517 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10518 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10519 */
10520 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10521 {
10522 unsigned int flags = this_rq->nohz_idle_balance;
10523
10524 if (!flags)
10525 return false;
10526
10527 this_rq->nohz_idle_balance = 0;
10528
10529 if (idle != CPU_IDLE)
10530 return false;
10531
10532 _nohz_idle_balance(this_rq, flags, idle);
10533
10534 return true;
10535 }
10536
10537 /*
10538 * Check if we need to run the ILB for updating blocked load before entering
10539 * idle state.
10540 */
10541 void nohz_run_idle_balance(int cpu)
10542 {
10543 unsigned int flags;
10544
10545 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10546
10547 /*
10548 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10549 * (ie NOHZ_STATS_KICK set) and will do the same.
10550 */
10551 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10552 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10553 }
10554
10555 static void nohz_newidle_balance(struct rq *this_rq)
10556 {
10557 int this_cpu = this_rq->cpu;
10558
10559 /*
10560 * This CPU doesn't want to be disturbed by scheduler
10561 * housekeeping
10562 */
10563 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10564 return;
10565
10566 /* Will wake up very soon. No time for doing anything else*/
10567 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10568 return;
10569
10570 /* Don't need to update blocked load of idle CPUs*/
10571 if (!READ_ONCE(nohz.has_blocked) ||
10572 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10573 return;
10574
10575 /*
10576 * Set the need to trigger ILB in order to update blocked load
10577 * before entering idle state.
10578 */
10579 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10580 }
10581
10582 #else /* !CONFIG_NO_HZ_COMMON */
10583 static inline void nohz_balancer_kick(struct rq *rq) { }
10584
10585 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10586 {
10587 return false;
10588 }
10589
10590 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10591 #endif /* CONFIG_NO_HZ_COMMON */
10592
10593 /*
10594 * newidle_balance is called by schedule() if this_cpu is about to become
10595 * idle. Attempts to pull tasks from other CPUs.
10596 *
10597 * Returns:
10598 * < 0 - we released the lock and there are !fair tasks present
10599 * 0 - failed, no new tasks
10600 * > 0 - success, new (fair) tasks present
10601 */
10602 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10603 {
10604 unsigned long next_balance = jiffies + HZ;
10605 int this_cpu = this_rq->cpu;
10606 struct sched_domain *sd;
10607 int pulled_task = 0;
10608 u64 curr_cost = 0;
10609
10610 update_misfit_status(NULL, this_rq);
10611
10612 /*
10613 * There is a task waiting to run. No need to search for one.
10614 * Return 0; the task will be enqueued when switching to idle.
10615 */
10616 if (this_rq->ttwu_pending)
10617 return 0;
10618
10619 /*
10620 * We must set idle_stamp _before_ calling idle_balance(), such that we
10621 * measure the duration of idle_balance() as idle time.
10622 */
10623 this_rq->idle_stamp = rq_clock(this_rq);
10624
10625 /*
10626 * Do not pull tasks towards !active CPUs...
10627 */
10628 if (!cpu_active(this_cpu))
10629 return 0;
10630
10631 /*
10632 * This is OK, because current is on_cpu, which avoids it being picked
10633 * for load-balance and preemption/IRQs are still disabled avoiding
10634 * further scheduler activity on it and we're being very careful to
10635 * re-start the picking loop.
10636 */
10637 rq_unpin_lock(this_rq, rf);
10638
10639 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10640 !READ_ONCE(this_rq->rd->overload)) {
10641
10642 rcu_read_lock();
10643 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10644 if (sd)
10645 update_next_balance(sd, &next_balance);
10646 rcu_read_unlock();
10647
10648 goto out;
10649 }
10650
10651 raw_spin_rq_unlock(this_rq);
10652
10653 update_blocked_averages(this_cpu);
10654 rcu_read_lock();
10655 for_each_domain(this_cpu, sd) {
10656 int continue_balancing = 1;
10657 u64 t0, domain_cost;
10658
10659 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10660 update_next_balance(sd, &next_balance);
10661 break;
10662 }
10663
10664 if (sd->flags & SD_BALANCE_NEWIDLE) {
10665 t0 = sched_clock_cpu(this_cpu);
10666
10667 pulled_task = load_balance(this_cpu, this_rq,
10668 sd, CPU_NEWLY_IDLE,
10669 &continue_balancing);
10670
10671 domain_cost = sched_clock_cpu(this_cpu) - t0;
10672 if (domain_cost > sd->max_newidle_lb_cost)
10673 sd->max_newidle_lb_cost = domain_cost;
10674
10675 curr_cost += domain_cost;
10676 }
10677
10678 update_next_balance(sd, &next_balance);
10679
10680 /*
10681 * Stop searching for tasks to pull if there are
10682 * now runnable tasks on this rq.
10683 */
10684 if (pulled_task || this_rq->nr_running > 0 ||
10685 this_rq->ttwu_pending)
10686 break;
10687 }
10688 rcu_read_unlock();
10689
10690 raw_spin_rq_lock(this_rq);
10691
10692 if (curr_cost > this_rq->max_idle_balance_cost)
10693 this_rq->max_idle_balance_cost = curr_cost;
10694
10695 /*
10696 * While browsing the domains, we released the rq lock, a task could
10697 * have been enqueued in the meantime. Since we're not going idle,
10698 * pretend we pulled a task.
10699 */
10700 if (this_rq->cfs.h_nr_running && !pulled_task)
10701 pulled_task = 1;
10702
10703 /* Is there a task of a high priority class? */
10704 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10705 pulled_task = -1;
10706
10707 out:
10708 /* Move the next balance forward */
10709 if (time_after(this_rq->next_balance, next_balance))
10710 this_rq->next_balance = next_balance;
10711
10712 if (pulled_task)
10713 this_rq->idle_stamp = 0;
10714 else
10715 nohz_newidle_balance(this_rq);
10716
10717 rq_repin_lock(this_rq, rf);
10718
10719 return pulled_task;
10720 }
10721
10722 /*
10723 * run_rebalance_domains is triggered when needed from the scheduler tick.
10724 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10725 */
10726 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10727 {
10728 struct rq *this_rq = this_rq();
10729 enum cpu_idle_type idle = this_rq->idle_balance ?
10730 CPU_IDLE : CPU_NOT_IDLE;
10731
10732 /*
10733 * If this CPU has a pending nohz_balance_kick, then do the
10734 * balancing on behalf of the other idle CPUs whose ticks are
10735 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10736 * give the idle CPUs a chance to load balance. Else we may
10737 * load balance only within the local sched_domain hierarchy
10738 * and abort nohz_idle_balance altogether if we pull some load.
10739 */
10740 if (nohz_idle_balance(this_rq, idle))
10741 return;
10742
10743 /* normal load balance */
10744 update_blocked_averages(this_rq->cpu);
10745 rebalance_domains(this_rq, idle);
10746 }
10747
10748 /*
10749 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10750 */
10751 void trigger_load_balance(struct rq *rq)
10752 {
10753 /*
10754 * Don't need to rebalance while attached to NULL domain or
10755 * runqueue CPU is not active
10756 */
10757 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
10758 return;
10759
10760 if (time_after_eq(jiffies, rq->next_balance))
10761 raise_softirq(SCHED_SOFTIRQ);
10762
10763 nohz_balancer_kick(rq);
10764 }
10765
10766 static void rq_online_fair(struct rq *rq)
10767 {
10768 update_sysctl();
10769
10770 update_runtime_enabled(rq);
10771 }
10772
10773 static void rq_offline_fair(struct rq *rq)
10774 {
10775 update_sysctl();
10776
10777 /* Ensure any throttled groups are reachable by pick_next_task */
10778 unthrottle_offline_cfs_rqs(rq);
10779 }
10780
10781 #endif /* CONFIG_SMP */
10782
10783 /*
10784 * scheduler tick hitting a task of our scheduling class.
10785 *
10786 * NOTE: This function can be called remotely by the tick offload that
10787 * goes along full dynticks. Therefore no local assumption can be made
10788 * and everything must be accessed through the @rq and @curr passed in
10789 * parameters.
10790 */
10791 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10792 {
10793 struct cfs_rq *cfs_rq;
10794 struct sched_entity *se = &curr->se;
10795
10796 for_each_sched_entity(se) {
10797 cfs_rq = cfs_rq_of(se);
10798 entity_tick(cfs_rq, se, queued);
10799 }
10800
10801 if (static_branch_unlikely(&sched_numa_balancing))
10802 task_tick_numa(rq, curr);
10803
10804 update_misfit_status(curr, rq);
10805 update_overutilized_status(task_rq(curr));
10806 }
10807
10808 /*
10809 * called on fork with the child task as argument from the parent's context
10810 * - child not yet on the tasklist
10811 * - preemption disabled
10812 */
10813 static void task_fork_fair(struct task_struct *p)
10814 {
10815 struct cfs_rq *cfs_rq;
10816 struct sched_entity *se = &p->se, *curr;
10817 struct rq *rq = this_rq();
10818 struct rq_flags rf;
10819
10820 rq_lock(rq, &rf);
10821 update_rq_clock(rq);
10822
10823 cfs_rq = task_cfs_rq(current);
10824 curr = cfs_rq->curr;
10825 if (curr) {
10826 update_curr(cfs_rq);
10827 se->vruntime = curr->vruntime;
10828 }
10829 place_entity(cfs_rq, se, 1);
10830
10831 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10832 /*
10833 * Upon rescheduling, sched_class::put_prev_task() will place
10834 * 'current' within the tree based on its new key value.
10835 */
10836 swap(curr->vruntime, se->vruntime);
10837 resched_curr(rq);
10838 }
10839
10840 se->vruntime -= cfs_rq->min_vruntime;
10841 rq_unlock(rq, &rf);
10842 }
10843
10844 /*
10845 * Priority of the task has changed. Check to see if we preempt
10846 * the current task.
10847 */
10848 static void
10849 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10850 {
10851 if (!task_on_rq_queued(p))
10852 return;
10853
10854 if (rq->cfs.nr_running == 1)
10855 return;
10856
10857 /*
10858 * Reschedule if we are currently running on this runqueue and
10859 * our priority decreased, or if we are not currently running on
10860 * this runqueue and our priority is higher than the current's
10861 */
10862 if (task_current(rq, p)) {
10863 if (p->prio > oldprio)
10864 resched_curr(rq);
10865 } else
10866 check_preempt_curr(rq, p, 0);
10867 }
10868
10869 static inline bool vruntime_normalized(struct task_struct *p)
10870 {
10871 struct sched_entity *se = &p->se;
10872
10873 /*
10874 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10875 * the dequeue_entity(.flags=0) will already have normalized the
10876 * vruntime.
10877 */
10878 if (p->on_rq)
10879 return true;
10880
10881 /*
10882 * When !on_rq, vruntime of the task has usually NOT been normalized.
10883 * But there are some cases where it has already been normalized:
10884 *
10885 * - A forked child which is waiting for being woken up by
10886 * wake_up_new_task().
10887 * - A task which has been woken up by try_to_wake_up() and
10888 * waiting for actually being woken up by sched_ttwu_pending().
10889 */
10890 if (!se->sum_exec_runtime ||
10891 (p->state == TASK_WAKING && p->sched_remote_wakeup))
10892 return true;
10893
10894 return false;
10895 }
10896
10897 #ifdef CONFIG_FAIR_GROUP_SCHED
10898 /*
10899 * Propagate the changes of the sched_entity across the tg tree to make it
10900 * visible to the root
10901 */
10902 static void propagate_entity_cfs_rq(struct sched_entity *se)
10903 {
10904 struct cfs_rq *cfs_rq;
10905
10906 list_add_leaf_cfs_rq(cfs_rq_of(se));
10907
10908 /* Start to propagate at parent */
10909 se = se->parent;
10910
10911 for_each_sched_entity(se) {
10912 cfs_rq = cfs_rq_of(se);
10913
10914 if (!cfs_rq_throttled(cfs_rq)){
10915 update_load_avg(cfs_rq, se, UPDATE_TG);
10916 list_add_leaf_cfs_rq(cfs_rq);
10917 continue;
10918 }
10919
10920 if (list_add_leaf_cfs_rq(cfs_rq))
10921 break;
10922 }
10923 }
10924 #else
10925 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10926 #endif
10927
10928 static void detach_entity_cfs_rq(struct sched_entity *se)
10929 {
10930 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10931
10932 /* Catch up with the cfs_rq and remove our load when we leave */
10933 update_load_avg(cfs_rq, se, 0);
10934 detach_entity_load_avg(cfs_rq, se);
10935 update_tg_load_avg(cfs_rq);
10936 propagate_entity_cfs_rq(se);
10937 }
10938
10939 static void attach_entity_cfs_rq(struct sched_entity *se)
10940 {
10941 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10942
10943 #ifdef CONFIG_FAIR_GROUP_SCHED
10944 /*
10945 * Since the real-depth could have been changed (only FAIR
10946 * class maintain depth value), reset depth properly.
10947 */
10948 se->depth = se->parent ? se->parent->depth + 1 : 0;
10949 #endif
10950
10951 /* Synchronize entity with its cfs_rq */
10952 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10953 attach_entity_load_avg(cfs_rq, se);
10954 update_tg_load_avg(cfs_rq);
10955 propagate_entity_cfs_rq(se);
10956 }
10957
10958 static void detach_task_cfs_rq(struct task_struct *p)
10959 {
10960 struct sched_entity *se = &p->se;
10961 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10962
10963 if (!vruntime_normalized(p)) {
10964 /*
10965 * Fix up our vruntime so that the current sleep doesn't
10966 * cause 'unlimited' sleep bonus.
10967 */
10968 place_entity(cfs_rq, se, 0);
10969 se->vruntime -= cfs_rq->min_vruntime;
10970 }
10971
10972 detach_entity_cfs_rq(se);
10973 }
10974
10975 static void attach_task_cfs_rq(struct task_struct *p)
10976 {
10977 struct sched_entity *se = &p->se;
10978 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10979
10980 attach_entity_cfs_rq(se);
10981
10982 if (!vruntime_normalized(p))
10983 se->vruntime += cfs_rq->min_vruntime;
10984 }
10985
10986 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10987 {
10988 detach_task_cfs_rq(p);
10989 }
10990
10991 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10992 {
10993 attach_task_cfs_rq(p);
10994
10995 if (task_on_rq_queued(p)) {
10996 /*
10997 * We were most likely switched from sched_rt, so
10998 * kick off the schedule if running, otherwise just see
10999 * if we can still preempt the current task.
11000 */
11001 if (task_current(rq, p))
11002 resched_curr(rq);
11003 else
11004 check_preempt_curr(rq, p, 0);
11005 }
11006 }
11007
11008 /* Account for a task changing its policy or group.
11009 *
11010 * This routine is mostly called to set cfs_rq->curr field when a task
11011 * migrates between groups/classes.
11012 */
11013 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11014 {
11015 struct sched_entity *se = &p->se;
11016
11017 #ifdef CONFIG_SMP
11018 if (task_on_rq_queued(p)) {
11019 /*
11020 * Move the next running task to the front of the list, so our
11021 * cfs_tasks list becomes MRU one.
11022 */
11023 list_move(&se->group_node, &rq->cfs_tasks);
11024 }
11025 #endif
11026
11027 for_each_sched_entity(se) {
11028 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11029
11030 set_next_entity(cfs_rq, se);
11031 /* ensure bandwidth has been allocated on our new cfs_rq */
11032 account_cfs_rq_runtime(cfs_rq, 0);
11033 }
11034 }
11035
11036 void init_cfs_rq(struct cfs_rq *cfs_rq)
11037 {
11038 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11039 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11040 #ifndef CONFIG_64BIT
11041 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11042 #endif
11043 #ifdef CONFIG_SMP
11044 raw_spin_lock_init(&cfs_rq->removed.lock);
11045 #endif
11046 }
11047
11048 #ifdef CONFIG_FAIR_GROUP_SCHED
11049 static void task_set_group_fair(struct task_struct *p)
11050 {
11051 struct sched_entity *se = &p->se;
11052
11053 set_task_rq(p, task_cpu(p));
11054 se->depth = se->parent ? se->parent->depth + 1 : 0;
11055 }
11056
11057 static void task_move_group_fair(struct task_struct *p)
11058 {
11059 detach_task_cfs_rq(p);
11060 set_task_rq(p, task_cpu(p));
11061
11062 #ifdef CONFIG_SMP
11063 /* Tell se's cfs_rq has been changed -- migrated */
11064 p->se.avg.last_update_time = 0;
11065 #endif
11066 attach_task_cfs_rq(p);
11067 }
11068
11069 static void task_change_group_fair(struct task_struct *p, int type)
11070 {
11071 switch (type) {
11072 case TASK_SET_GROUP:
11073 task_set_group_fair(p);
11074 break;
11075
11076 case TASK_MOVE_GROUP:
11077 task_move_group_fair(p);
11078 break;
11079 }
11080 }
11081
11082 void free_fair_sched_group(struct task_group *tg)
11083 {
11084 int i;
11085
11086 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11087
11088 for_each_possible_cpu(i) {
11089 if (tg->cfs_rq)
11090 kfree(tg->cfs_rq[i]);
11091 if (tg->se)
11092 kfree(tg->se[i]);
11093 }
11094
11095 kfree(tg->cfs_rq);
11096 kfree(tg->se);
11097 }
11098
11099 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11100 {
11101 struct sched_entity *se;
11102 struct cfs_rq *cfs_rq;
11103 int i;
11104
11105 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11106 if (!tg->cfs_rq)
11107 goto err;
11108 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11109 if (!tg->se)
11110 goto err;
11111
11112 tg->shares = NICE_0_LOAD;
11113
11114 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11115
11116 for_each_possible_cpu(i) {
11117 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11118 GFP_KERNEL, cpu_to_node(i));
11119 if (!cfs_rq)
11120 goto err;
11121
11122 se = kzalloc_node(sizeof(struct sched_entity),
11123 GFP_KERNEL, cpu_to_node(i));
11124 if (!se)
11125 goto err_free_rq;
11126
11127 init_cfs_rq(cfs_rq);
11128 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11129 init_entity_runnable_average(se);
11130 }
11131
11132 return 1;
11133
11134 err_free_rq:
11135 kfree(cfs_rq);
11136 err:
11137 return 0;
11138 }
11139
11140 void online_fair_sched_group(struct task_group *tg)
11141 {
11142 struct sched_entity *se;
11143 struct rq_flags rf;
11144 struct rq *rq;
11145 int i;
11146
11147 for_each_possible_cpu(i) {
11148 rq = cpu_rq(i);
11149 se = tg->se[i];
11150 rq_lock_irq(rq, &rf);
11151 update_rq_clock(rq);
11152 attach_entity_cfs_rq(se);
11153 sync_throttle(tg, i);
11154 rq_unlock_irq(rq, &rf);
11155 }
11156 }
11157
11158 void unregister_fair_sched_group(struct task_group *tg)
11159 {
11160 unsigned long flags;
11161 struct rq *rq;
11162 int cpu;
11163
11164 for_each_possible_cpu(cpu) {
11165 if (tg->se[cpu])
11166 remove_entity_load_avg(tg->se[cpu]);
11167
11168 /*
11169 * Only empty task groups can be destroyed; so we can speculatively
11170 * check on_list without danger of it being re-added.
11171 */
11172 if (!tg->cfs_rq[cpu]->on_list)
11173 continue;
11174
11175 rq = cpu_rq(cpu);
11176
11177 raw_spin_rq_lock_irqsave(rq, flags);
11178 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11179 raw_spin_rq_unlock_irqrestore(rq, flags);
11180 }
11181 }
11182
11183 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11184 struct sched_entity *se, int cpu,
11185 struct sched_entity *parent)
11186 {
11187 struct rq *rq = cpu_rq(cpu);
11188
11189 cfs_rq->tg = tg;
11190 cfs_rq->rq = rq;
11191 init_cfs_rq_runtime(cfs_rq);
11192
11193 tg->cfs_rq[cpu] = cfs_rq;
11194 tg->se[cpu] = se;
11195
11196 /* se could be NULL for root_task_group */
11197 if (!se)
11198 return;
11199
11200 if (!parent) {
11201 se->cfs_rq = &rq->cfs;
11202 se->depth = 0;
11203 } else {
11204 se->cfs_rq = parent->my_q;
11205 se->depth = parent->depth + 1;
11206 }
11207
11208 se->my_q = cfs_rq;
11209 /* guarantee group entities always have weight */
11210 update_load_set(&se->load, NICE_0_LOAD);
11211 se->parent = parent;
11212 }
11213
11214 static DEFINE_MUTEX(shares_mutex);
11215
11216 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11217 {
11218 int i;
11219
11220 /*
11221 * We can't change the weight of the root cgroup.
11222 */
11223 if (!tg->se[0])
11224 return -EINVAL;
11225
11226 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11227
11228 mutex_lock(&shares_mutex);
11229 if (tg->shares == shares)
11230 goto done;
11231
11232 tg->shares = shares;
11233 for_each_possible_cpu(i) {
11234 struct rq *rq = cpu_rq(i);
11235 struct sched_entity *se = tg->se[i];
11236 struct rq_flags rf;
11237
11238 /* Propagate contribution to hierarchy */
11239 rq_lock_irqsave(rq, &rf);
11240 update_rq_clock(rq);
11241 for_each_sched_entity(se) {
11242 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11243 update_cfs_group(se);
11244 }
11245 rq_unlock_irqrestore(rq, &rf);
11246 }
11247
11248 done:
11249 mutex_unlock(&shares_mutex);
11250 return 0;
11251 }
11252 #else /* CONFIG_FAIR_GROUP_SCHED */
11253
11254 void free_fair_sched_group(struct task_group *tg) { }
11255
11256 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11257 {
11258 return 1;
11259 }
11260
11261 void online_fair_sched_group(struct task_group *tg) { }
11262
11263 void unregister_fair_sched_group(struct task_group *tg) { }
11264
11265 #endif /* CONFIG_FAIR_GROUP_SCHED */
11266
11267
11268 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11269 {
11270 struct sched_entity *se = &task->se;
11271 unsigned int rr_interval = 0;
11272
11273 /*
11274 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11275 * idle runqueue:
11276 */
11277 if (rq->cfs.load.weight)
11278 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11279
11280 return rr_interval;
11281 }
11282
11283 /*
11284 * All the scheduling class methods:
11285 */
11286 DEFINE_SCHED_CLASS(fair) = {
11287
11288 .enqueue_task = enqueue_task_fair,
11289 .dequeue_task = dequeue_task_fair,
11290 .yield_task = yield_task_fair,
11291 .yield_to_task = yield_to_task_fair,
11292
11293 .check_preempt_curr = check_preempt_wakeup,
11294
11295 .pick_next_task = __pick_next_task_fair,
11296 .put_prev_task = put_prev_task_fair,
11297 .set_next_task = set_next_task_fair,
11298
11299 #ifdef CONFIG_SMP
11300 .balance = balance_fair,
11301 .select_task_rq = select_task_rq_fair,
11302 .migrate_task_rq = migrate_task_rq_fair,
11303
11304 .rq_online = rq_online_fair,
11305 .rq_offline = rq_offline_fair,
11306
11307 .task_dead = task_dead_fair,
11308 .set_cpus_allowed = set_cpus_allowed_common,
11309 #endif
11310
11311 .task_tick = task_tick_fair,
11312 .task_fork = task_fork_fair,
11313
11314 .prio_changed = prio_changed_fair,
11315 .switched_from = switched_from_fair,
11316 .switched_to = switched_to_fair,
11317
11318 .get_rr_interval = get_rr_interval_fair,
11319
11320 .update_curr = update_curr_fair,
11321
11322 #ifdef CONFIG_FAIR_GROUP_SCHED
11323 .task_change_group = task_change_group_fair,
11324 #endif
11325
11326 #ifdef CONFIG_UCLAMP_TASK
11327 .uclamp_enabled = 1,
11328 #endif
11329 };
11330
11331 #ifdef CONFIG_SCHED_DEBUG
11332 void print_cfs_stats(struct seq_file *m, int cpu)
11333 {
11334 struct cfs_rq *cfs_rq, *pos;
11335
11336 rcu_read_lock();
11337 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11338 print_cfs_rq(m, cpu, cfs_rq);
11339 rcu_read_unlock();
11340 }
11341
11342 #ifdef CONFIG_NUMA_BALANCING
11343 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11344 {
11345 int node;
11346 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11347 struct numa_group *ng;
11348
11349 rcu_read_lock();
11350 ng = rcu_dereference(p->numa_group);
11351 for_each_online_node(node) {
11352 if (p->numa_faults) {
11353 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11354 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11355 }
11356 if (ng) {
11357 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11358 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11359 }
11360 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11361 }
11362 rcu_read_unlock();
11363 }
11364 #endif /* CONFIG_NUMA_BALANCING */
11365 #endif /* CONFIG_SCHED_DEBUG */
11366
11367 __init void init_sched_fair_class(void)
11368 {
11369 #ifdef CONFIG_SMP
11370 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11371
11372 #ifdef CONFIG_NO_HZ_COMMON
11373 nohz.next_balance = jiffies;
11374 nohz.next_blocked = jiffies;
11375 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11376 #endif
11377 #endif /* SMP */
11378
11379 }
11380
11381 /*
11382 * Helper functions to facilitate extracting info from tracepoints.
11383 */
11384
11385 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11386 {
11387 #ifdef CONFIG_SMP
11388 return cfs_rq ? &cfs_rq->avg : NULL;
11389 #else
11390 return NULL;
11391 #endif
11392 }
11393 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11394
11395 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11396 {
11397 if (!cfs_rq) {
11398 if (str)
11399 strlcpy(str, "(null)", len);
11400 else
11401 return NULL;
11402 }
11403
11404 cfs_rq_tg_path(cfs_rq, str, len);
11405 return str;
11406 }
11407 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11408
11409 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11410 {
11411 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11412 }
11413 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11414
11415 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11416 {
11417 #ifdef CONFIG_SMP
11418 return rq ? &rq->avg_rt : NULL;
11419 #else
11420 return NULL;
11421 #endif
11422 }
11423 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11424
11425 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11426 {
11427 #ifdef CONFIG_SMP
11428 return rq ? &rq->avg_dl : NULL;
11429 #else
11430 return NULL;
11431 #endif
11432 }
11433 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11434
11435 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11436 {
11437 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11438 return rq ? &rq->avg_irq : NULL;
11439 #else
11440 return NULL;
11441 #endif
11442 }
11443 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11444
11445 int sched_trace_rq_cpu(struct rq *rq)
11446 {
11447 return rq ? cpu_of(rq) : -1;
11448 }
11449 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11450
11451 int sched_trace_rq_cpu_capacity(struct rq *rq)
11452 {
11453 return rq ?
11454 #ifdef CONFIG_SMP
11455 rq->cpu_capacity
11456 #else
11457 SCHED_CAPACITY_SCALE
11458 #endif
11459 : -1;
11460 }
11461 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11462
11463 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11464 {
11465 #ifdef CONFIG_SMP
11466 return rd ? rd->span : NULL;
11467 #else
11468 return NULL;
11469 #endif
11470 }
11471 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11472
11473 int sched_trace_rq_nr_running(struct rq *rq)
11474 {
11475 return rq ? rq->nr_running : -1;
11476 }
11477 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);