]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/sched/fair.c
nvme: set the queue limits in nvme_update_ns_info
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / fair.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include "sched.h"
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 *
28 * NOTE: this latency value is not the same as the concept of
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
32 *
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
35 *
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37 */
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40
41 /*
42 * The initial- and re-scaling of tunables is configurable
43 *
44 * Options are:
45 *
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 *
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
51 */
52 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
53
54 /*
55 * Minimal preemption granularity for CPU-bound tasks:
56 *
57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58 */
59 unsigned int sysctl_sched_min_granularity = 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
61
62 /*
63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
64 */
65 static unsigned int sched_nr_latency = 8;
66
67 /*
68 * After fork, child runs first. If set to 0 (default) then
69 * parent will (try to) run first.
70 */
71 unsigned int sysctl_sched_child_runs_first __read_mostly;
72
73 /*
74 * SCHED_OTHER wake-up granularity.
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 *
80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
81 */
82 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
83 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
84
85 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
86
87 int sched_thermal_decay_shift;
88 static int __init setup_sched_thermal_decay_shift(char *str)
89 {
90 int _shift = 0;
91
92 if (kstrtoint(str, 0, &_shift))
93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94
95 sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 return 1;
97 }
98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99
100 #ifdef CONFIG_SMP
101 /*
102 * For asym packing, by default the lower numbered CPU has higher priority.
103 */
104 int __weak arch_asym_cpu_priority(int cpu)
105 {
106 return -cpu;
107 }
108
109 /*
110 * The margin used when comparing utilization with CPU capacity.
111 *
112 * (default: ~20%)
113 */
114 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
115
116 #endif
117
118 #ifdef CONFIG_CFS_BANDWIDTH
119 /*
120 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
121 * each time a cfs_rq requests quota.
122 *
123 * Note: in the case that the slice exceeds the runtime remaining (either due
124 * to consumption or the quota being specified to be smaller than the slice)
125 * we will always only issue the remaining available time.
126 *
127 * (default: 5 msec, units: microseconds)
128 */
129 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
130 #endif
131
132 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
133 {
134 lw->weight += inc;
135 lw->inv_weight = 0;
136 }
137
138 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
139 {
140 lw->weight -= dec;
141 lw->inv_weight = 0;
142 }
143
144 static inline void update_load_set(struct load_weight *lw, unsigned long w)
145 {
146 lw->weight = w;
147 lw->inv_weight = 0;
148 }
149
150 /*
151 * Increase the granularity value when there are more CPUs,
152 * because with more CPUs the 'effective latency' as visible
153 * to users decreases. But the relationship is not linear,
154 * so pick a second-best guess by going with the log2 of the
155 * number of CPUs.
156 *
157 * This idea comes from the SD scheduler of Con Kolivas:
158 */
159 static unsigned int get_update_sysctl_factor(void)
160 {
161 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
162 unsigned int factor;
163
164 switch (sysctl_sched_tunable_scaling) {
165 case SCHED_TUNABLESCALING_NONE:
166 factor = 1;
167 break;
168 case SCHED_TUNABLESCALING_LINEAR:
169 factor = cpus;
170 break;
171 case SCHED_TUNABLESCALING_LOG:
172 default:
173 factor = 1 + ilog2(cpus);
174 break;
175 }
176
177 return factor;
178 }
179
180 static void update_sysctl(void)
181 {
182 unsigned int factor = get_update_sysctl_factor();
183
184 #define SET_SYSCTL(name) \
185 (sysctl_##name = (factor) * normalized_sysctl_##name)
186 SET_SYSCTL(sched_min_granularity);
187 SET_SYSCTL(sched_latency);
188 SET_SYSCTL(sched_wakeup_granularity);
189 #undef SET_SYSCTL
190 }
191
192 void __init sched_init_granularity(void)
193 {
194 update_sysctl();
195 }
196
197 #define WMULT_CONST (~0U)
198 #define WMULT_SHIFT 32
199
200 static void __update_inv_weight(struct load_weight *lw)
201 {
202 unsigned long w;
203
204 if (likely(lw->inv_weight))
205 return;
206
207 w = scale_load_down(lw->weight);
208
209 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
210 lw->inv_weight = 1;
211 else if (unlikely(!w))
212 lw->inv_weight = WMULT_CONST;
213 else
214 lw->inv_weight = WMULT_CONST / w;
215 }
216
217 /*
218 * delta_exec * weight / lw.weight
219 * OR
220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
221 *
222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
223 * we're guaranteed shift stays positive because inv_weight is guaranteed to
224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
225 *
226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
227 * weight/lw.weight <= 1, and therefore our shift will also be positive.
228 */
229 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
230 {
231 u64 fact = scale_load_down(weight);
232 int shift = WMULT_SHIFT;
233
234 __update_inv_weight(lw);
235
236 if (unlikely(fact >> 32)) {
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
240 }
241 }
242
243 fact = mul_u32_u32(fact, lw->inv_weight);
244
245 while (fact >> 32) {
246 fact >>= 1;
247 shift--;
248 }
249
250 return mul_u64_u32_shr(delta_exec, fact, shift);
251 }
252
253
254 const struct sched_class fair_sched_class;
255
256 /**************************************************************
257 * CFS operations on generic schedulable entities:
258 */
259
260 #ifdef CONFIG_FAIR_GROUP_SCHED
261 static inline struct task_struct *task_of(struct sched_entity *se)
262 {
263 SCHED_WARN_ON(!entity_is_task(se));
264 return container_of(se, struct task_struct, se);
265 }
266
267 /* Walk up scheduling entities hierarchy */
268 #define for_each_sched_entity(se) \
269 for (; se; se = se->parent)
270
271 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
272 {
273 return p->se.cfs_rq;
274 }
275
276 /* runqueue on which this entity is (to be) queued */
277 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
278 {
279 return se->cfs_rq;
280 }
281
282 /* runqueue "owned" by this group */
283 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
284 {
285 return grp->my_q;
286 }
287
288 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
289 {
290 if (!path)
291 return;
292
293 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
294 autogroup_path(cfs_rq->tg, path, len);
295 else if (cfs_rq && cfs_rq->tg->css.cgroup)
296 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
297 else
298 strlcpy(path, "(null)", len);
299 }
300
301 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302 {
303 struct rq *rq = rq_of(cfs_rq);
304 int cpu = cpu_of(rq);
305
306 if (cfs_rq->on_list)
307 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
308
309 cfs_rq->on_list = 1;
310
311 /*
312 * Ensure we either appear before our parent (if already
313 * enqueued) or force our parent to appear after us when it is
314 * enqueued. The fact that we always enqueue bottom-up
315 * reduces this to two cases and a special case for the root
316 * cfs_rq. Furthermore, it also means that we will always reset
317 * tmp_alone_branch either when the branch is connected
318 * to a tree or when we reach the top of the tree
319 */
320 if (cfs_rq->tg->parent &&
321 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
322 /*
323 * If parent is already on the list, we add the child
324 * just before. Thanks to circular linked property of
325 * the list, this means to put the child at the tail
326 * of the list that starts by parent.
327 */
328 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
329 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
330 /*
331 * The branch is now connected to its tree so we can
332 * reset tmp_alone_branch to the beginning of the
333 * list.
334 */
335 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
336 return true;
337 }
338
339 if (!cfs_rq->tg->parent) {
340 /*
341 * cfs rq without parent should be put
342 * at the tail of the list.
343 */
344 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
345 &rq->leaf_cfs_rq_list);
346 /*
347 * We have reach the top of a tree so we can reset
348 * tmp_alone_branch to the beginning of the list.
349 */
350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
351 return true;
352 }
353
354 /*
355 * The parent has not already been added so we want to
356 * make sure that it will be put after us.
357 * tmp_alone_branch points to the begin of the branch
358 * where we will add parent.
359 */
360 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
361 /*
362 * update tmp_alone_branch to points to the new begin
363 * of the branch
364 */
365 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
366 return false;
367 }
368
369 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
370 {
371 if (cfs_rq->on_list) {
372 struct rq *rq = rq_of(cfs_rq);
373
374 /*
375 * With cfs_rq being unthrottled/throttled during an enqueue,
376 * it can happen the tmp_alone_branch points the a leaf that
377 * we finally want to del. In this case, tmp_alone_branch moves
378 * to the prev element but it will point to rq->leaf_cfs_rq_list
379 * at the end of the enqueue.
380 */
381 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
382 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
383
384 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
385 cfs_rq->on_list = 0;
386 }
387 }
388
389 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
390 {
391 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
392 }
393
394 /* Iterate thr' all leaf cfs_rq's on a runqueue */
395 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
396 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
397 leaf_cfs_rq_list)
398
399 /* Do the two (enqueued) entities belong to the same group ? */
400 static inline struct cfs_rq *
401 is_same_group(struct sched_entity *se, struct sched_entity *pse)
402 {
403 if (se->cfs_rq == pse->cfs_rq)
404 return se->cfs_rq;
405
406 return NULL;
407 }
408
409 static inline struct sched_entity *parent_entity(struct sched_entity *se)
410 {
411 return se->parent;
412 }
413
414 static void
415 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
416 {
417 int se_depth, pse_depth;
418
419 /*
420 * preemption test can be made between sibling entities who are in the
421 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
422 * both tasks until we find their ancestors who are siblings of common
423 * parent.
424 */
425
426 /* First walk up until both entities are at same depth */
427 se_depth = (*se)->depth;
428 pse_depth = (*pse)->depth;
429
430 while (se_depth > pse_depth) {
431 se_depth--;
432 *se = parent_entity(*se);
433 }
434
435 while (pse_depth > se_depth) {
436 pse_depth--;
437 *pse = parent_entity(*pse);
438 }
439
440 while (!is_same_group(*se, *pse)) {
441 *se = parent_entity(*se);
442 *pse = parent_entity(*pse);
443 }
444 }
445
446 #else /* !CONFIG_FAIR_GROUP_SCHED */
447
448 static inline struct task_struct *task_of(struct sched_entity *se)
449 {
450 return container_of(se, struct task_struct, se);
451 }
452
453 #define for_each_sched_entity(se) \
454 for (; se; se = NULL)
455
456 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
457 {
458 return &task_rq(p)->cfs;
459 }
460
461 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
462 {
463 struct task_struct *p = task_of(se);
464 struct rq *rq = task_rq(p);
465
466 return &rq->cfs;
467 }
468
469 /* runqueue "owned" by this group */
470 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
471 {
472 return NULL;
473 }
474
475 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
476 {
477 if (path)
478 strlcpy(path, "(null)", len);
479 }
480
481 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482 {
483 return true;
484 }
485
486 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
487 {
488 }
489
490 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
491 {
492 }
493
494 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
495 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
496
497 static inline struct sched_entity *parent_entity(struct sched_entity *se)
498 {
499 return NULL;
500 }
501
502 static inline void
503 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
504 {
505 }
506
507 #endif /* CONFIG_FAIR_GROUP_SCHED */
508
509 static __always_inline
510 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
511
512 /**************************************************************
513 * Scheduling class tree data structure manipulation methods:
514 */
515
516 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
517 {
518 s64 delta = (s64)(vruntime - max_vruntime);
519 if (delta > 0)
520 max_vruntime = vruntime;
521
522 return max_vruntime;
523 }
524
525 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
526 {
527 s64 delta = (s64)(vruntime - min_vruntime);
528 if (delta < 0)
529 min_vruntime = vruntime;
530
531 return min_vruntime;
532 }
533
534 static inline int entity_before(struct sched_entity *a,
535 struct sched_entity *b)
536 {
537 return (s64)(a->vruntime - b->vruntime) < 0;
538 }
539
540 static void update_min_vruntime(struct cfs_rq *cfs_rq)
541 {
542 struct sched_entity *curr = cfs_rq->curr;
543 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
544
545 u64 vruntime = cfs_rq->min_vruntime;
546
547 if (curr) {
548 if (curr->on_rq)
549 vruntime = curr->vruntime;
550 else
551 curr = NULL;
552 }
553
554 if (leftmost) { /* non-empty tree */
555 struct sched_entity *se;
556 se = rb_entry(leftmost, struct sched_entity, run_node);
557
558 if (!curr)
559 vruntime = se->vruntime;
560 else
561 vruntime = min_vruntime(vruntime, se->vruntime);
562 }
563
564 /* ensure we never gain time by being placed backwards. */
565 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
566 #ifndef CONFIG_64BIT
567 smp_wmb();
568 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
569 #endif
570 }
571
572 /*
573 * Enqueue an entity into the rb-tree:
574 */
575 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
576 {
577 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
578 struct rb_node *parent = NULL;
579 struct sched_entity *entry;
580 bool leftmost = true;
581
582 /*
583 * Find the right place in the rbtree:
584 */
585 while (*link) {
586 parent = *link;
587 entry = rb_entry(parent, struct sched_entity, run_node);
588 /*
589 * We dont care about collisions. Nodes with
590 * the same key stay together.
591 */
592 if (entity_before(se, entry)) {
593 link = &parent->rb_left;
594 } else {
595 link = &parent->rb_right;
596 leftmost = false;
597 }
598 }
599
600 rb_link_node(&se->run_node, parent, link);
601 rb_insert_color_cached(&se->run_node,
602 &cfs_rq->tasks_timeline, leftmost);
603 }
604
605 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
606 {
607 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
608 }
609
610 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
611 {
612 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
613
614 if (!left)
615 return NULL;
616
617 return rb_entry(left, struct sched_entity, run_node);
618 }
619
620 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
621 {
622 struct rb_node *next = rb_next(&se->run_node);
623
624 if (!next)
625 return NULL;
626
627 return rb_entry(next, struct sched_entity, run_node);
628 }
629
630 #ifdef CONFIG_SCHED_DEBUG
631 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
632 {
633 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
634
635 if (!last)
636 return NULL;
637
638 return rb_entry(last, struct sched_entity, run_node);
639 }
640
641 /**************************************************************
642 * Scheduling class statistics methods:
643 */
644
645 int sched_proc_update_handler(struct ctl_table *table, int write,
646 void *buffer, size_t *lenp, loff_t *ppos)
647 {
648 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
649 unsigned int factor = get_update_sysctl_factor();
650
651 if (ret || !write)
652 return ret;
653
654 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
655 sysctl_sched_min_granularity);
656
657 #define WRT_SYSCTL(name) \
658 (normalized_sysctl_##name = sysctl_##name / (factor))
659 WRT_SYSCTL(sched_min_granularity);
660 WRT_SYSCTL(sched_latency);
661 WRT_SYSCTL(sched_wakeup_granularity);
662 #undef WRT_SYSCTL
663
664 return 0;
665 }
666 #endif
667
668 /*
669 * delta /= w
670 */
671 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
672 {
673 if (unlikely(se->load.weight != NICE_0_LOAD))
674 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
675
676 return delta;
677 }
678
679 /*
680 * The idea is to set a period in which each task runs once.
681 *
682 * When there are too many tasks (sched_nr_latency) we have to stretch
683 * this period because otherwise the slices get too small.
684 *
685 * p = (nr <= nl) ? l : l*nr/nl
686 */
687 static u64 __sched_period(unsigned long nr_running)
688 {
689 if (unlikely(nr_running > sched_nr_latency))
690 return nr_running * sysctl_sched_min_granularity;
691 else
692 return sysctl_sched_latency;
693 }
694
695 /*
696 * We calculate the wall-time slice from the period by taking a part
697 * proportional to the weight.
698 *
699 * s = p*P[w/rw]
700 */
701 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
702 {
703 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
704
705 for_each_sched_entity(se) {
706 struct load_weight *load;
707 struct load_weight lw;
708
709 cfs_rq = cfs_rq_of(se);
710 load = &cfs_rq->load;
711
712 if (unlikely(!se->on_rq)) {
713 lw = cfs_rq->load;
714
715 update_load_add(&lw, se->load.weight);
716 load = &lw;
717 }
718 slice = __calc_delta(slice, se->load.weight, load);
719 }
720 return slice;
721 }
722
723 /*
724 * We calculate the vruntime slice of a to-be-inserted task.
725 *
726 * vs = s/w
727 */
728 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
729 {
730 return calc_delta_fair(sched_slice(cfs_rq, se), se);
731 }
732
733 #include "pelt.h"
734 #ifdef CONFIG_SMP
735
736 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
737 static unsigned long task_h_load(struct task_struct *p);
738 static unsigned long capacity_of(int cpu);
739
740 /* Give new sched_entity start runnable values to heavy its load in infant time */
741 void init_entity_runnable_average(struct sched_entity *se)
742 {
743 struct sched_avg *sa = &se->avg;
744
745 memset(sa, 0, sizeof(*sa));
746
747 /*
748 * Tasks are initialized with full load to be seen as heavy tasks until
749 * they get a chance to stabilize to their real load level.
750 * Group entities are initialized with zero load to reflect the fact that
751 * nothing has been attached to the task group yet.
752 */
753 if (entity_is_task(se))
754 sa->load_avg = scale_load_down(se->load.weight);
755
756 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
757 }
758
759 static void attach_entity_cfs_rq(struct sched_entity *se);
760
761 /*
762 * With new tasks being created, their initial util_avgs are extrapolated
763 * based on the cfs_rq's current util_avg:
764 *
765 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
766 *
767 * However, in many cases, the above util_avg does not give a desired
768 * value. Moreover, the sum of the util_avgs may be divergent, such
769 * as when the series is a harmonic series.
770 *
771 * To solve this problem, we also cap the util_avg of successive tasks to
772 * only 1/2 of the left utilization budget:
773 *
774 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
775 *
776 * where n denotes the nth task and cpu_scale the CPU capacity.
777 *
778 * For example, for a CPU with 1024 of capacity, a simplest series from
779 * the beginning would be like:
780 *
781 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
782 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
783 *
784 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
785 * if util_avg > util_avg_cap.
786 */
787 void post_init_entity_util_avg(struct task_struct *p)
788 {
789 struct sched_entity *se = &p->se;
790 struct cfs_rq *cfs_rq = cfs_rq_of(se);
791 struct sched_avg *sa = &se->avg;
792 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
793 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
794
795 if (cap > 0) {
796 if (cfs_rq->avg.util_avg != 0) {
797 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
798 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
799
800 if (sa->util_avg > cap)
801 sa->util_avg = cap;
802 } else {
803 sa->util_avg = cap;
804 }
805 }
806
807 sa->runnable_avg = sa->util_avg;
808
809 if (p->sched_class != &fair_sched_class) {
810 /*
811 * For !fair tasks do:
812 *
813 update_cfs_rq_load_avg(now, cfs_rq);
814 attach_entity_load_avg(cfs_rq, se);
815 switched_from_fair(rq, p);
816 *
817 * such that the next switched_to_fair() has the
818 * expected state.
819 */
820 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
821 return;
822 }
823
824 attach_entity_cfs_rq(se);
825 }
826
827 #else /* !CONFIG_SMP */
828 void init_entity_runnable_average(struct sched_entity *se)
829 {
830 }
831 void post_init_entity_util_avg(struct task_struct *p)
832 {
833 }
834 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
835 {
836 }
837 #endif /* CONFIG_SMP */
838
839 /*
840 * Update the current task's runtime statistics.
841 */
842 static void update_curr(struct cfs_rq *cfs_rq)
843 {
844 struct sched_entity *curr = cfs_rq->curr;
845 u64 now = rq_clock_task(rq_of(cfs_rq));
846 u64 delta_exec;
847
848 if (unlikely(!curr))
849 return;
850
851 delta_exec = now - curr->exec_start;
852 if (unlikely((s64)delta_exec <= 0))
853 return;
854
855 curr->exec_start = now;
856
857 schedstat_set(curr->statistics.exec_max,
858 max(delta_exec, curr->statistics.exec_max));
859
860 curr->sum_exec_runtime += delta_exec;
861 schedstat_add(cfs_rq->exec_clock, delta_exec);
862
863 curr->vruntime += calc_delta_fair(delta_exec, curr);
864 update_min_vruntime(cfs_rq);
865
866 if (entity_is_task(curr)) {
867 struct task_struct *curtask = task_of(curr);
868
869 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
870 cgroup_account_cputime(curtask, delta_exec);
871 account_group_exec_runtime(curtask, delta_exec);
872 }
873
874 account_cfs_rq_runtime(cfs_rq, delta_exec);
875 }
876
877 static void update_curr_fair(struct rq *rq)
878 {
879 update_curr(cfs_rq_of(&rq->curr->se));
880 }
881
882 static inline void
883 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
884 {
885 u64 wait_start, prev_wait_start;
886
887 if (!schedstat_enabled())
888 return;
889
890 wait_start = rq_clock(rq_of(cfs_rq));
891 prev_wait_start = schedstat_val(se->statistics.wait_start);
892
893 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
894 likely(wait_start > prev_wait_start))
895 wait_start -= prev_wait_start;
896
897 __schedstat_set(se->statistics.wait_start, wait_start);
898 }
899
900 static inline void
901 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
902 {
903 struct task_struct *p;
904 u64 delta;
905
906 if (!schedstat_enabled())
907 return;
908
909 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
910
911 if (entity_is_task(se)) {
912 p = task_of(se);
913 if (task_on_rq_migrating(p)) {
914 /*
915 * Preserve migrating task's wait time so wait_start
916 * time stamp can be adjusted to accumulate wait time
917 * prior to migration.
918 */
919 __schedstat_set(se->statistics.wait_start, delta);
920 return;
921 }
922 trace_sched_stat_wait(p, delta);
923 }
924
925 __schedstat_set(se->statistics.wait_max,
926 max(schedstat_val(se->statistics.wait_max), delta));
927 __schedstat_inc(se->statistics.wait_count);
928 __schedstat_add(se->statistics.wait_sum, delta);
929 __schedstat_set(se->statistics.wait_start, 0);
930 }
931
932 static inline void
933 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
934 {
935 struct task_struct *tsk = NULL;
936 u64 sleep_start, block_start;
937
938 if (!schedstat_enabled())
939 return;
940
941 sleep_start = schedstat_val(se->statistics.sleep_start);
942 block_start = schedstat_val(se->statistics.block_start);
943
944 if (entity_is_task(se))
945 tsk = task_of(se);
946
947 if (sleep_start) {
948 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
949
950 if ((s64)delta < 0)
951 delta = 0;
952
953 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
954 __schedstat_set(se->statistics.sleep_max, delta);
955
956 __schedstat_set(se->statistics.sleep_start, 0);
957 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
958
959 if (tsk) {
960 account_scheduler_latency(tsk, delta >> 10, 1);
961 trace_sched_stat_sleep(tsk, delta);
962 }
963 }
964 if (block_start) {
965 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
966
967 if ((s64)delta < 0)
968 delta = 0;
969
970 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
971 __schedstat_set(se->statistics.block_max, delta);
972
973 __schedstat_set(se->statistics.block_start, 0);
974 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
975
976 if (tsk) {
977 if (tsk->in_iowait) {
978 __schedstat_add(se->statistics.iowait_sum, delta);
979 __schedstat_inc(se->statistics.iowait_count);
980 trace_sched_stat_iowait(tsk, delta);
981 }
982
983 trace_sched_stat_blocked(tsk, delta);
984
985 /*
986 * Blocking time is in units of nanosecs, so shift by
987 * 20 to get a milliseconds-range estimation of the
988 * amount of time that the task spent sleeping:
989 */
990 if (unlikely(prof_on == SLEEP_PROFILING)) {
991 profile_hits(SLEEP_PROFILING,
992 (void *)get_wchan(tsk),
993 delta >> 20);
994 }
995 account_scheduler_latency(tsk, delta >> 10, 0);
996 }
997 }
998 }
999
1000 /*
1001 * Task is being enqueued - update stats:
1002 */
1003 static inline void
1004 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1005 {
1006 if (!schedstat_enabled())
1007 return;
1008
1009 /*
1010 * Are we enqueueing a waiting task? (for current tasks
1011 * a dequeue/enqueue event is a NOP)
1012 */
1013 if (se != cfs_rq->curr)
1014 update_stats_wait_start(cfs_rq, se);
1015
1016 if (flags & ENQUEUE_WAKEUP)
1017 update_stats_enqueue_sleeper(cfs_rq, se);
1018 }
1019
1020 static inline void
1021 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1022 {
1023
1024 if (!schedstat_enabled())
1025 return;
1026
1027 /*
1028 * Mark the end of the wait period if dequeueing a
1029 * waiting task:
1030 */
1031 if (se != cfs_rq->curr)
1032 update_stats_wait_end(cfs_rq, se);
1033
1034 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1035 struct task_struct *tsk = task_of(se);
1036
1037 if (tsk->state & TASK_INTERRUPTIBLE)
1038 __schedstat_set(se->statistics.sleep_start,
1039 rq_clock(rq_of(cfs_rq)));
1040 if (tsk->state & TASK_UNINTERRUPTIBLE)
1041 __schedstat_set(se->statistics.block_start,
1042 rq_clock(rq_of(cfs_rq)));
1043 }
1044 }
1045
1046 /*
1047 * We are picking a new current task - update its stats:
1048 */
1049 static inline void
1050 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1051 {
1052 /*
1053 * We are starting a new run period:
1054 */
1055 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1056 }
1057
1058 /**************************************************
1059 * Scheduling class queueing methods:
1060 */
1061
1062 #ifdef CONFIG_NUMA_BALANCING
1063 /*
1064 * Approximate time to scan a full NUMA task in ms. The task scan period is
1065 * calculated based on the tasks virtual memory size and
1066 * numa_balancing_scan_size.
1067 */
1068 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1069 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1070
1071 /* Portion of address space to scan in MB */
1072 unsigned int sysctl_numa_balancing_scan_size = 256;
1073
1074 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1075 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1076
1077 struct numa_group {
1078 refcount_t refcount;
1079
1080 spinlock_t lock; /* nr_tasks, tasks */
1081 int nr_tasks;
1082 pid_t gid;
1083 int active_nodes;
1084
1085 struct rcu_head rcu;
1086 unsigned long total_faults;
1087 unsigned long max_faults_cpu;
1088 /*
1089 * Faults_cpu is used to decide whether memory should move
1090 * towards the CPU. As a consequence, these stats are weighted
1091 * more by CPU use than by memory faults.
1092 */
1093 unsigned long *faults_cpu;
1094 unsigned long faults[];
1095 };
1096
1097 /*
1098 * For functions that can be called in multiple contexts that permit reading
1099 * ->numa_group (see struct task_struct for locking rules).
1100 */
1101 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1102 {
1103 return rcu_dereference_check(p->numa_group, p == current ||
1104 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1105 }
1106
1107 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1108 {
1109 return rcu_dereference_protected(p->numa_group, p == current);
1110 }
1111
1112 static inline unsigned long group_faults_priv(struct numa_group *ng);
1113 static inline unsigned long group_faults_shared(struct numa_group *ng);
1114
1115 static unsigned int task_nr_scan_windows(struct task_struct *p)
1116 {
1117 unsigned long rss = 0;
1118 unsigned long nr_scan_pages;
1119
1120 /*
1121 * Calculations based on RSS as non-present and empty pages are skipped
1122 * by the PTE scanner and NUMA hinting faults should be trapped based
1123 * on resident pages
1124 */
1125 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1126 rss = get_mm_rss(p->mm);
1127 if (!rss)
1128 rss = nr_scan_pages;
1129
1130 rss = round_up(rss, nr_scan_pages);
1131 return rss / nr_scan_pages;
1132 }
1133
1134 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1135 #define MAX_SCAN_WINDOW 2560
1136
1137 static unsigned int task_scan_min(struct task_struct *p)
1138 {
1139 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1140 unsigned int scan, floor;
1141 unsigned int windows = 1;
1142
1143 if (scan_size < MAX_SCAN_WINDOW)
1144 windows = MAX_SCAN_WINDOW / scan_size;
1145 floor = 1000 / windows;
1146
1147 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1148 return max_t(unsigned int, floor, scan);
1149 }
1150
1151 static unsigned int task_scan_start(struct task_struct *p)
1152 {
1153 unsigned long smin = task_scan_min(p);
1154 unsigned long period = smin;
1155 struct numa_group *ng;
1156
1157 /* Scale the maximum scan period with the amount of shared memory. */
1158 rcu_read_lock();
1159 ng = rcu_dereference(p->numa_group);
1160 if (ng) {
1161 unsigned long shared = group_faults_shared(ng);
1162 unsigned long private = group_faults_priv(ng);
1163
1164 period *= refcount_read(&ng->refcount);
1165 period *= shared + 1;
1166 period /= private + shared + 1;
1167 }
1168 rcu_read_unlock();
1169
1170 return max(smin, period);
1171 }
1172
1173 static unsigned int task_scan_max(struct task_struct *p)
1174 {
1175 unsigned long smin = task_scan_min(p);
1176 unsigned long smax;
1177 struct numa_group *ng;
1178
1179 /* Watch for min being lower than max due to floor calculations */
1180 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1181
1182 /* Scale the maximum scan period with the amount of shared memory. */
1183 ng = deref_curr_numa_group(p);
1184 if (ng) {
1185 unsigned long shared = group_faults_shared(ng);
1186 unsigned long private = group_faults_priv(ng);
1187 unsigned long period = smax;
1188
1189 period *= refcount_read(&ng->refcount);
1190 period *= shared + 1;
1191 period /= private + shared + 1;
1192
1193 smax = max(smax, period);
1194 }
1195
1196 return max(smin, smax);
1197 }
1198
1199 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1200 {
1201 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1202 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1203 }
1204
1205 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1206 {
1207 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1208 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1209 }
1210
1211 /* Shared or private faults. */
1212 #define NR_NUMA_HINT_FAULT_TYPES 2
1213
1214 /* Memory and CPU locality */
1215 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1216
1217 /* Averaged statistics, and temporary buffers. */
1218 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1219
1220 pid_t task_numa_group_id(struct task_struct *p)
1221 {
1222 struct numa_group *ng;
1223 pid_t gid = 0;
1224
1225 rcu_read_lock();
1226 ng = rcu_dereference(p->numa_group);
1227 if (ng)
1228 gid = ng->gid;
1229 rcu_read_unlock();
1230
1231 return gid;
1232 }
1233
1234 /*
1235 * The averaged statistics, shared & private, memory & CPU,
1236 * occupy the first half of the array. The second half of the
1237 * array is for current counters, which are averaged into the
1238 * first set by task_numa_placement.
1239 */
1240 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1241 {
1242 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1243 }
1244
1245 static inline unsigned long task_faults(struct task_struct *p, int nid)
1246 {
1247 if (!p->numa_faults)
1248 return 0;
1249
1250 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1251 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1252 }
1253
1254 static inline unsigned long group_faults(struct task_struct *p, int nid)
1255 {
1256 struct numa_group *ng = deref_task_numa_group(p);
1257
1258 if (!ng)
1259 return 0;
1260
1261 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1262 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1263 }
1264
1265 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1266 {
1267 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1268 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1269 }
1270
1271 static inline unsigned long group_faults_priv(struct numa_group *ng)
1272 {
1273 unsigned long faults = 0;
1274 int node;
1275
1276 for_each_online_node(node) {
1277 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1278 }
1279
1280 return faults;
1281 }
1282
1283 static inline unsigned long group_faults_shared(struct numa_group *ng)
1284 {
1285 unsigned long faults = 0;
1286 int node;
1287
1288 for_each_online_node(node) {
1289 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1290 }
1291
1292 return faults;
1293 }
1294
1295 /*
1296 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1297 * considered part of a numa group's pseudo-interleaving set. Migrations
1298 * between these nodes are slowed down, to allow things to settle down.
1299 */
1300 #define ACTIVE_NODE_FRACTION 3
1301
1302 static bool numa_is_active_node(int nid, struct numa_group *ng)
1303 {
1304 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1305 }
1306
1307 /* Handle placement on systems where not all nodes are directly connected. */
1308 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1309 int maxdist, bool task)
1310 {
1311 unsigned long score = 0;
1312 int node;
1313
1314 /*
1315 * All nodes are directly connected, and the same distance
1316 * from each other. No need for fancy placement algorithms.
1317 */
1318 if (sched_numa_topology_type == NUMA_DIRECT)
1319 return 0;
1320
1321 /*
1322 * This code is called for each node, introducing N^2 complexity,
1323 * which should be ok given the number of nodes rarely exceeds 8.
1324 */
1325 for_each_online_node(node) {
1326 unsigned long faults;
1327 int dist = node_distance(nid, node);
1328
1329 /*
1330 * The furthest away nodes in the system are not interesting
1331 * for placement; nid was already counted.
1332 */
1333 if (dist == sched_max_numa_distance || node == nid)
1334 continue;
1335
1336 /*
1337 * On systems with a backplane NUMA topology, compare groups
1338 * of nodes, and move tasks towards the group with the most
1339 * memory accesses. When comparing two nodes at distance
1340 * "hoplimit", only nodes closer by than "hoplimit" are part
1341 * of each group. Skip other nodes.
1342 */
1343 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1344 dist >= maxdist)
1345 continue;
1346
1347 /* Add up the faults from nearby nodes. */
1348 if (task)
1349 faults = task_faults(p, node);
1350 else
1351 faults = group_faults(p, node);
1352
1353 /*
1354 * On systems with a glueless mesh NUMA topology, there are
1355 * no fixed "groups of nodes". Instead, nodes that are not
1356 * directly connected bounce traffic through intermediate
1357 * nodes; a numa_group can occupy any set of nodes.
1358 * The further away a node is, the less the faults count.
1359 * This seems to result in good task placement.
1360 */
1361 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1362 faults *= (sched_max_numa_distance - dist);
1363 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1364 }
1365
1366 score += faults;
1367 }
1368
1369 return score;
1370 }
1371
1372 /*
1373 * These return the fraction of accesses done by a particular task, or
1374 * task group, on a particular numa node. The group weight is given a
1375 * larger multiplier, in order to group tasks together that are almost
1376 * evenly spread out between numa nodes.
1377 */
1378 static inline unsigned long task_weight(struct task_struct *p, int nid,
1379 int dist)
1380 {
1381 unsigned long faults, total_faults;
1382
1383 if (!p->numa_faults)
1384 return 0;
1385
1386 total_faults = p->total_numa_faults;
1387
1388 if (!total_faults)
1389 return 0;
1390
1391 faults = task_faults(p, nid);
1392 faults += score_nearby_nodes(p, nid, dist, true);
1393
1394 return 1000 * faults / total_faults;
1395 }
1396
1397 static inline unsigned long group_weight(struct task_struct *p, int nid,
1398 int dist)
1399 {
1400 struct numa_group *ng = deref_task_numa_group(p);
1401 unsigned long faults, total_faults;
1402
1403 if (!ng)
1404 return 0;
1405
1406 total_faults = ng->total_faults;
1407
1408 if (!total_faults)
1409 return 0;
1410
1411 faults = group_faults(p, nid);
1412 faults += score_nearby_nodes(p, nid, dist, false);
1413
1414 return 1000 * faults / total_faults;
1415 }
1416
1417 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1418 int src_nid, int dst_cpu)
1419 {
1420 struct numa_group *ng = deref_curr_numa_group(p);
1421 int dst_nid = cpu_to_node(dst_cpu);
1422 int last_cpupid, this_cpupid;
1423
1424 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1425 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1426
1427 /*
1428 * Allow first faults or private faults to migrate immediately early in
1429 * the lifetime of a task. The magic number 4 is based on waiting for
1430 * two full passes of the "multi-stage node selection" test that is
1431 * executed below.
1432 */
1433 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1434 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1435 return true;
1436
1437 /*
1438 * Multi-stage node selection is used in conjunction with a periodic
1439 * migration fault to build a temporal task<->page relation. By using
1440 * a two-stage filter we remove short/unlikely relations.
1441 *
1442 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1443 * a task's usage of a particular page (n_p) per total usage of this
1444 * page (n_t) (in a given time-span) to a probability.
1445 *
1446 * Our periodic faults will sample this probability and getting the
1447 * same result twice in a row, given these samples are fully
1448 * independent, is then given by P(n)^2, provided our sample period
1449 * is sufficiently short compared to the usage pattern.
1450 *
1451 * This quadric squishes small probabilities, making it less likely we
1452 * act on an unlikely task<->page relation.
1453 */
1454 if (!cpupid_pid_unset(last_cpupid) &&
1455 cpupid_to_nid(last_cpupid) != dst_nid)
1456 return false;
1457
1458 /* Always allow migrate on private faults */
1459 if (cpupid_match_pid(p, last_cpupid))
1460 return true;
1461
1462 /* A shared fault, but p->numa_group has not been set up yet. */
1463 if (!ng)
1464 return true;
1465
1466 /*
1467 * Destination node is much more heavily used than the source
1468 * node? Allow migration.
1469 */
1470 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1471 ACTIVE_NODE_FRACTION)
1472 return true;
1473
1474 /*
1475 * Distribute memory according to CPU & memory use on each node,
1476 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1477 *
1478 * faults_cpu(dst) 3 faults_cpu(src)
1479 * --------------- * - > ---------------
1480 * faults_mem(dst) 4 faults_mem(src)
1481 */
1482 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1483 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1484 }
1485
1486 /*
1487 * 'numa_type' describes the node at the moment of load balancing.
1488 */
1489 enum numa_type {
1490 /* The node has spare capacity that can be used to run more tasks. */
1491 node_has_spare = 0,
1492 /*
1493 * The node is fully used and the tasks don't compete for more CPU
1494 * cycles. Nevertheless, some tasks might wait before running.
1495 */
1496 node_fully_busy,
1497 /*
1498 * The node is overloaded and can't provide expected CPU cycles to all
1499 * tasks.
1500 */
1501 node_overloaded
1502 };
1503
1504 /* Cached statistics for all CPUs within a node */
1505 struct numa_stats {
1506 unsigned long load;
1507 unsigned long util;
1508 /* Total compute capacity of CPUs on a node */
1509 unsigned long compute_capacity;
1510 unsigned int nr_running;
1511 unsigned int weight;
1512 enum numa_type node_type;
1513 int idle_cpu;
1514 };
1515
1516 static inline bool is_core_idle(int cpu)
1517 {
1518 #ifdef CONFIG_SCHED_SMT
1519 int sibling;
1520
1521 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1522 if (cpu == sibling)
1523 continue;
1524
1525 if (!idle_cpu(cpu))
1526 return false;
1527 }
1528 #endif
1529
1530 return true;
1531 }
1532
1533 struct task_numa_env {
1534 struct task_struct *p;
1535
1536 int src_cpu, src_nid;
1537 int dst_cpu, dst_nid;
1538
1539 struct numa_stats src_stats, dst_stats;
1540
1541 int imbalance_pct;
1542 int dist;
1543
1544 struct task_struct *best_task;
1545 long best_imp;
1546 int best_cpu;
1547 };
1548
1549 static unsigned long cpu_load(struct rq *rq);
1550 static unsigned long cpu_util(int cpu);
1551 static inline long adjust_numa_imbalance(int imbalance, int src_nr_running);
1552
1553 static inline enum
1554 numa_type numa_classify(unsigned int imbalance_pct,
1555 struct numa_stats *ns)
1556 {
1557 if ((ns->nr_running > ns->weight) &&
1558 ((ns->compute_capacity * 100) < (ns->util * imbalance_pct)))
1559 return node_overloaded;
1560
1561 if ((ns->nr_running < ns->weight) ||
1562 ((ns->compute_capacity * 100) > (ns->util * imbalance_pct)))
1563 return node_has_spare;
1564
1565 return node_fully_busy;
1566 }
1567
1568 #ifdef CONFIG_SCHED_SMT
1569 /* Forward declarations of select_idle_sibling helpers */
1570 static inline bool test_idle_cores(int cpu, bool def);
1571 static inline int numa_idle_core(int idle_core, int cpu)
1572 {
1573 if (!static_branch_likely(&sched_smt_present) ||
1574 idle_core >= 0 || !test_idle_cores(cpu, false))
1575 return idle_core;
1576
1577 /*
1578 * Prefer cores instead of packing HT siblings
1579 * and triggering future load balancing.
1580 */
1581 if (is_core_idle(cpu))
1582 idle_core = cpu;
1583
1584 return idle_core;
1585 }
1586 #else
1587 static inline int numa_idle_core(int idle_core, int cpu)
1588 {
1589 return idle_core;
1590 }
1591 #endif
1592
1593 /*
1594 * Gather all necessary information to make NUMA balancing placement
1595 * decisions that are compatible with standard load balancer. This
1596 * borrows code and logic from update_sg_lb_stats but sharing a
1597 * common implementation is impractical.
1598 */
1599 static void update_numa_stats(struct task_numa_env *env,
1600 struct numa_stats *ns, int nid,
1601 bool find_idle)
1602 {
1603 int cpu, idle_core = -1;
1604
1605 memset(ns, 0, sizeof(*ns));
1606 ns->idle_cpu = -1;
1607
1608 rcu_read_lock();
1609 for_each_cpu(cpu, cpumask_of_node(nid)) {
1610 struct rq *rq = cpu_rq(cpu);
1611
1612 ns->load += cpu_load(rq);
1613 ns->util += cpu_util(cpu);
1614 ns->nr_running += rq->cfs.h_nr_running;
1615 ns->compute_capacity += capacity_of(cpu);
1616
1617 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1618 if (READ_ONCE(rq->numa_migrate_on) ||
1619 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1620 continue;
1621
1622 if (ns->idle_cpu == -1)
1623 ns->idle_cpu = cpu;
1624
1625 idle_core = numa_idle_core(idle_core, cpu);
1626 }
1627 }
1628 rcu_read_unlock();
1629
1630 ns->weight = cpumask_weight(cpumask_of_node(nid));
1631
1632 ns->node_type = numa_classify(env->imbalance_pct, ns);
1633
1634 if (idle_core >= 0)
1635 ns->idle_cpu = idle_core;
1636 }
1637
1638 static void task_numa_assign(struct task_numa_env *env,
1639 struct task_struct *p, long imp)
1640 {
1641 struct rq *rq = cpu_rq(env->dst_cpu);
1642
1643 /* Check if run-queue part of active NUMA balance. */
1644 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1645 int cpu;
1646 int start = env->dst_cpu;
1647
1648 /* Find alternative idle CPU. */
1649 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1650 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1651 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1652 continue;
1653 }
1654
1655 env->dst_cpu = cpu;
1656 rq = cpu_rq(env->dst_cpu);
1657 if (!xchg(&rq->numa_migrate_on, 1))
1658 goto assign;
1659 }
1660
1661 /* Failed to find an alternative idle CPU */
1662 return;
1663 }
1664
1665 assign:
1666 /*
1667 * Clear previous best_cpu/rq numa-migrate flag, since task now
1668 * found a better CPU to move/swap.
1669 */
1670 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1671 rq = cpu_rq(env->best_cpu);
1672 WRITE_ONCE(rq->numa_migrate_on, 0);
1673 }
1674
1675 if (env->best_task)
1676 put_task_struct(env->best_task);
1677 if (p)
1678 get_task_struct(p);
1679
1680 env->best_task = p;
1681 env->best_imp = imp;
1682 env->best_cpu = env->dst_cpu;
1683 }
1684
1685 static bool load_too_imbalanced(long src_load, long dst_load,
1686 struct task_numa_env *env)
1687 {
1688 long imb, old_imb;
1689 long orig_src_load, orig_dst_load;
1690 long src_capacity, dst_capacity;
1691
1692 /*
1693 * The load is corrected for the CPU capacity available on each node.
1694 *
1695 * src_load dst_load
1696 * ------------ vs ---------
1697 * src_capacity dst_capacity
1698 */
1699 src_capacity = env->src_stats.compute_capacity;
1700 dst_capacity = env->dst_stats.compute_capacity;
1701
1702 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1703
1704 orig_src_load = env->src_stats.load;
1705 orig_dst_load = env->dst_stats.load;
1706
1707 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1708
1709 /* Would this change make things worse? */
1710 return (imb > old_imb);
1711 }
1712
1713 /*
1714 * Maximum NUMA importance can be 1998 (2*999);
1715 * SMALLIMP @ 30 would be close to 1998/64.
1716 * Used to deter task migration.
1717 */
1718 #define SMALLIMP 30
1719
1720 /*
1721 * This checks if the overall compute and NUMA accesses of the system would
1722 * be improved if the source tasks was migrated to the target dst_cpu taking
1723 * into account that it might be best if task running on the dst_cpu should
1724 * be exchanged with the source task
1725 */
1726 static bool task_numa_compare(struct task_numa_env *env,
1727 long taskimp, long groupimp, bool maymove)
1728 {
1729 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1730 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1731 long imp = p_ng ? groupimp : taskimp;
1732 struct task_struct *cur;
1733 long src_load, dst_load;
1734 int dist = env->dist;
1735 long moveimp = imp;
1736 long load;
1737 bool stopsearch = false;
1738
1739 if (READ_ONCE(dst_rq->numa_migrate_on))
1740 return false;
1741
1742 rcu_read_lock();
1743 cur = rcu_dereference(dst_rq->curr);
1744 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1745 cur = NULL;
1746
1747 /*
1748 * Because we have preemption enabled we can get migrated around and
1749 * end try selecting ourselves (current == env->p) as a swap candidate.
1750 */
1751 if (cur == env->p) {
1752 stopsearch = true;
1753 goto unlock;
1754 }
1755
1756 if (!cur) {
1757 if (maymove && moveimp >= env->best_imp)
1758 goto assign;
1759 else
1760 goto unlock;
1761 }
1762
1763 /* Skip this swap candidate if cannot move to the source cpu. */
1764 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1765 goto unlock;
1766
1767 /*
1768 * Skip this swap candidate if it is not moving to its preferred
1769 * node and the best task is.
1770 */
1771 if (env->best_task &&
1772 env->best_task->numa_preferred_nid == env->src_nid &&
1773 cur->numa_preferred_nid != env->src_nid) {
1774 goto unlock;
1775 }
1776
1777 /*
1778 * "imp" is the fault differential for the source task between the
1779 * source and destination node. Calculate the total differential for
1780 * the source task and potential destination task. The more negative
1781 * the value is, the more remote accesses that would be expected to
1782 * be incurred if the tasks were swapped.
1783 *
1784 * If dst and source tasks are in the same NUMA group, or not
1785 * in any group then look only at task weights.
1786 */
1787 cur_ng = rcu_dereference(cur->numa_group);
1788 if (cur_ng == p_ng) {
1789 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1790 task_weight(cur, env->dst_nid, dist);
1791 /*
1792 * Add some hysteresis to prevent swapping the
1793 * tasks within a group over tiny differences.
1794 */
1795 if (cur_ng)
1796 imp -= imp / 16;
1797 } else {
1798 /*
1799 * Compare the group weights. If a task is all by itself
1800 * (not part of a group), use the task weight instead.
1801 */
1802 if (cur_ng && p_ng)
1803 imp += group_weight(cur, env->src_nid, dist) -
1804 group_weight(cur, env->dst_nid, dist);
1805 else
1806 imp += task_weight(cur, env->src_nid, dist) -
1807 task_weight(cur, env->dst_nid, dist);
1808 }
1809
1810 /* Discourage picking a task already on its preferred node */
1811 if (cur->numa_preferred_nid == env->dst_nid)
1812 imp -= imp / 16;
1813
1814 /*
1815 * Encourage picking a task that moves to its preferred node.
1816 * This potentially makes imp larger than it's maximum of
1817 * 1998 (see SMALLIMP and task_weight for why) but in this
1818 * case, it does not matter.
1819 */
1820 if (cur->numa_preferred_nid == env->src_nid)
1821 imp += imp / 8;
1822
1823 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1824 imp = moveimp;
1825 cur = NULL;
1826 goto assign;
1827 }
1828
1829 /*
1830 * Prefer swapping with a task moving to its preferred node over a
1831 * task that is not.
1832 */
1833 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1834 env->best_task->numa_preferred_nid != env->src_nid) {
1835 goto assign;
1836 }
1837
1838 /*
1839 * If the NUMA importance is less than SMALLIMP,
1840 * task migration might only result in ping pong
1841 * of tasks and also hurt performance due to cache
1842 * misses.
1843 */
1844 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1845 goto unlock;
1846
1847 /*
1848 * In the overloaded case, try and keep the load balanced.
1849 */
1850 load = task_h_load(env->p) - task_h_load(cur);
1851 if (!load)
1852 goto assign;
1853
1854 dst_load = env->dst_stats.load + load;
1855 src_load = env->src_stats.load - load;
1856
1857 if (load_too_imbalanced(src_load, dst_load, env))
1858 goto unlock;
1859
1860 assign:
1861 /* Evaluate an idle CPU for a task numa move. */
1862 if (!cur) {
1863 int cpu = env->dst_stats.idle_cpu;
1864
1865 /* Nothing cached so current CPU went idle since the search. */
1866 if (cpu < 0)
1867 cpu = env->dst_cpu;
1868
1869 /*
1870 * If the CPU is no longer truly idle and the previous best CPU
1871 * is, keep using it.
1872 */
1873 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1874 idle_cpu(env->best_cpu)) {
1875 cpu = env->best_cpu;
1876 }
1877
1878 env->dst_cpu = cpu;
1879 }
1880
1881 task_numa_assign(env, cur, imp);
1882
1883 /*
1884 * If a move to idle is allowed because there is capacity or load
1885 * balance improves then stop the search. While a better swap
1886 * candidate may exist, a search is not free.
1887 */
1888 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1889 stopsearch = true;
1890
1891 /*
1892 * If a swap candidate must be identified and the current best task
1893 * moves its preferred node then stop the search.
1894 */
1895 if (!maymove && env->best_task &&
1896 env->best_task->numa_preferred_nid == env->src_nid) {
1897 stopsearch = true;
1898 }
1899 unlock:
1900 rcu_read_unlock();
1901
1902 return stopsearch;
1903 }
1904
1905 static void task_numa_find_cpu(struct task_numa_env *env,
1906 long taskimp, long groupimp)
1907 {
1908 bool maymove = false;
1909 int cpu;
1910
1911 /*
1912 * If dst node has spare capacity, then check if there is an
1913 * imbalance that would be overruled by the load balancer.
1914 */
1915 if (env->dst_stats.node_type == node_has_spare) {
1916 unsigned int imbalance;
1917 int src_running, dst_running;
1918
1919 /*
1920 * Would movement cause an imbalance? Note that if src has
1921 * more running tasks that the imbalance is ignored as the
1922 * move improves the imbalance from the perspective of the
1923 * CPU load balancer.
1924 * */
1925 src_running = env->src_stats.nr_running - 1;
1926 dst_running = env->dst_stats.nr_running + 1;
1927 imbalance = max(0, dst_running - src_running);
1928 imbalance = adjust_numa_imbalance(imbalance, src_running);
1929
1930 /* Use idle CPU if there is no imbalance */
1931 if (!imbalance) {
1932 maymove = true;
1933 if (env->dst_stats.idle_cpu >= 0) {
1934 env->dst_cpu = env->dst_stats.idle_cpu;
1935 task_numa_assign(env, NULL, 0);
1936 return;
1937 }
1938 }
1939 } else {
1940 long src_load, dst_load, load;
1941 /*
1942 * If the improvement from just moving env->p direction is better
1943 * than swapping tasks around, check if a move is possible.
1944 */
1945 load = task_h_load(env->p);
1946 dst_load = env->dst_stats.load + load;
1947 src_load = env->src_stats.load - load;
1948 maymove = !load_too_imbalanced(src_load, dst_load, env);
1949 }
1950
1951 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1952 /* Skip this CPU if the source task cannot migrate */
1953 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1954 continue;
1955
1956 env->dst_cpu = cpu;
1957 if (task_numa_compare(env, taskimp, groupimp, maymove))
1958 break;
1959 }
1960 }
1961
1962 static int task_numa_migrate(struct task_struct *p)
1963 {
1964 struct task_numa_env env = {
1965 .p = p,
1966
1967 .src_cpu = task_cpu(p),
1968 .src_nid = task_node(p),
1969
1970 .imbalance_pct = 112,
1971
1972 .best_task = NULL,
1973 .best_imp = 0,
1974 .best_cpu = -1,
1975 };
1976 unsigned long taskweight, groupweight;
1977 struct sched_domain *sd;
1978 long taskimp, groupimp;
1979 struct numa_group *ng;
1980 struct rq *best_rq;
1981 int nid, ret, dist;
1982
1983 /*
1984 * Pick the lowest SD_NUMA domain, as that would have the smallest
1985 * imbalance and would be the first to start moving tasks about.
1986 *
1987 * And we want to avoid any moving of tasks about, as that would create
1988 * random movement of tasks -- counter the numa conditions we're trying
1989 * to satisfy here.
1990 */
1991 rcu_read_lock();
1992 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1993 if (sd)
1994 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1995 rcu_read_unlock();
1996
1997 /*
1998 * Cpusets can break the scheduler domain tree into smaller
1999 * balance domains, some of which do not cross NUMA boundaries.
2000 * Tasks that are "trapped" in such domains cannot be migrated
2001 * elsewhere, so there is no point in (re)trying.
2002 */
2003 if (unlikely(!sd)) {
2004 sched_setnuma(p, task_node(p));
2005 return -EINVAL;
2006 }
2007
2008 env.dst_nid = p->numa_preferred_nid;
2009 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2010 taskweight = task_weight(p, env.src_nid, dist);
2011 groupweight = group_weight(p, env.src_nid, dist);
2012 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2013 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2014 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2015 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2016
2017 /* Try to find a spot on the preferred nid. */
2018 task_numa_find_cpu(&env, taskimp, groupimp);
2019
2020 /*
2021 * Look at other nodes in these cases:
2022 * - there is no space available on the preferred_nid
2023 * - the task is part of a numa_group that is interleaved across
2024 * multiple NUMA nodes; in order to better consolidate the group,
2025 * we need to check other locations.
2026 */
2027 ng = deref_curr_numa_group(p);
2028 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2029 for_each_online_node(nid) {
2030 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2031 continue;
2032
2033 dist = node_distance(env.src_nid, env.dst_nid);
2034 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2035 dist != env.dist) {
2036 taskweight = task_weight(p, env.src_nid, dist);
2037 groupweight = group_weight(p, env.src_nid, dist);
2038 }
2039
2040 /* Only consider nodes where both task and groups benefit */
2041 taskimp = task_weight(p, nid, dist) - taskweight;
2042 groupimp = group_weight(p, nid, dist) - groupweight;
2043 if (taskimp < 0 && groupimp < 0)
2044 continue;
2045
2046 env.dist = dist;
2047 env.dst_nid = nid;
2048 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2049 task_numa_find_cpu(&env, taskimp, groupimp);
2050 }
2051 }
2052
2053 /*
2054 * If the task is part of a workload that spans multiple NUMA nodes,
2055 * and is migrating into one of the workload's active nodes, remember
2056 * this node as the task's preferred numa node, so the workload can
2057 * settle down.
2058 * A task that migrated to a second choice node will be better off
2059 * trying for a better one later. Do not set the preferred node here.
2060 */
2061 if (ng) {
2062 if (env.best_cpu == -1)
2063 nid = env.src_nid;
2064 else
2065 nid = cpu_to_node(env.best_cpu);
2066
2067 if (nid != p->numa_preferred_nid)
2068 sched_setnuma(p, nid);
2069 }
2070
2071 /* No better CPU than the current one was found. */
2072 if (env.best_cpu == -1) {
2073 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2074 return -EAGAIN;
2075 }
2076
2077 best_rq = cpu_rq(env.best_cpu);
2078 if (env.best_task == NULL) {
2079 ret = migrate_task_to(p, env.best_cpu);
2080 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2081 if (ret != 0)
2082 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2083 return ret;
2084 }
2085
2086 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2087 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2088
2089 if (ret != 0)
2090 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2091 put_task_struct(env.best_task);
2092 return ret;
2093 }
2094
2095 /* Attempt to migrate a task to a CPU on the preferred node. */
2096 static void numa_migrate_preferred(struct task_struct *p)
2097 {
2098 unsigned long interval = HZ;
2099
2100 /* This task has no NUMA fault statistics yet */
2101 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2102 return;
2103
2104 /* Periodically retry migrating the task to the preferred node */
2105 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2106 p->numa_migrate_retry = jiffies + interval;
2107
2108 /* Success if task is already running on preferred CPU */
2109 if (task_node(p) == p->numa_preferred_nid)
2110 return;
2111
2112 /* Otherwise, try migrate to a CPU on the preferred node */
2113 task_numa_migrate(p);
2114 }
2115
2116 /*
2117 * Find out how many nodes on the workload is actively running on. Do this by
2118 * tracking the nodes from which NUMA hinting faults are triggered. This can
2119 * be different from the set of nodes where the workload's memory is currently
2120 * located.
2121 */
2122 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2123 {
2124 unsigned long faults, max_faults = 0;
2125 int nid, active_nodes = 0;
2126
2127 for_each_online_node(nid) {
2128 faults = group_faults_cpu(numa_group, nid);
2129 if (faults > max_faults)
2130 max_faults = faults;
2131 }
2132
2133 for_each_online_node(nid) {
2134 faults = group_faults_cpu(numa_group, nid);
2135 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2136 active_nodes++;
2137 }
2138
2139 numa_group->max_faults_cpu = max_faults;
2140 numa_group->active_nodes = active_nodes;
2141 }
2142
2143 /*
2144 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2145 * increments. The more local the fault statistics are, the higher the scan
2146 * period will be for the next scan window. If local/(local+remote) ratio is
2147 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2148 * the scan period will decrease. Aim for 70% local accesses.
2149 */
2150 #define NUMA_PERIOD_SLOTS 10
2151 #define NUMA_PERIOD_THRESHOLD 7
2152
2153 /*
2154 * Increase the scan period (slow down scanning) if the majority of
2155 * our memory is already on our local node, or if the majority of
2156 * the page accesses are shared with other processes.
2157 * Otherwise, decrease the scan period.
2158 */
2159 static void update_task_scan_period(struct task_struct *p,
2160 unsigned long shared, unsigned long private)
2161 {
2162 unsigned int period_slot;
2163 int lr_ratio, ps_ratio;
2164 int diff;
2165
2166 unsigned long remote = p->numa_faults_locality[0];
2167 unsigned long local = p->numa_faults_locality[1];
2168
2169 /*
2170 * If there were no record hinting faults then either the task is
2171 * completely idle or all activity is areas that are not of interest
2172 * to automatic numa balancing. Related to that, if there were failed
2173 * migration then it implies we are migrating too quickly or the local
2174 * node is overloaded. In either case, scan slower
2175 */
2176 if (local + shared == 0 || p->numa_faults_locality[2]) {
2177 p->numa_scan_period = min(p->numa_scan_period_max,
2178 p->numa_scan_period << 1);
2179
2180 p->mm->numa_next_scan = jiffies +
2181 msecs_to_jiffies(p->numa_scan_period);
2182
2183 return;
2184 }
2185
2186 /*
2187 * Prepare to scale scan period relative to the current period.
2188 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2189 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2190 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2191 */
2192 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2193 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2194 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2195
2196 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2197 /*
2198 * Most memory accesses are local. There is no need to
2199 * do fast NUMA scanning, since memory is already local.
2200 */
2201 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2202 if (!slot)
2203 slot = 1;
2204 diff = slot * period_slot;
2205 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2206 /*
2207 * Most memory accesses are shared with other tasks.
2208 * There is no point in continuing fast NUMA scanning,
2209 * since other tasks may just move the memory elsewhere.
2210 */
2211 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2212 if (!slot)
2213 slot = 1;
2214 diff = slot * period_slot;
2215 } else {
2216 /*
2217 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2218 * yet they are not on the local NUMA node. Speed up
2219 * NUMA scanning to get the memory moved over.
2220 */
2221 int ratio = max(lr_ratio, ps_ratio);
2222 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2223 }
2224
2225 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2226 task_scan_min(p), task_scan_max(p));
2227 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2228 }
2229
2230 /*
2231 * Get the fraction of time the task has been running since the last
2232 * NUMA placement cycle. The scheduler keeps similar statistics, but
2233 * decays those on a 32ms period, which is orders of magnitude off
2234 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2235 * stats only if the task is so new there are no NUMA statistics yet.
2236 */
2237 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2238 {
2239 u64 runtime, delta, now;
2240 /* Use the start of this time slice to avoid calculations. */
2241 now = p->se.exec_start;
2242 runtime = p->se.sum_exec_runtime;
2243
2244 if (p->last_task_numa_placement) {
2245 delta = runtime - p->last_sum_exec_runtime;
2246 *period = now - p->last_task_numa_placement;
2247
2248 /* Avoid time going backwards, prevent potential divide error: */
2249 if (unlikely((s64)*period < 0))
2250 *period = 0;
2251 } else {
2252 delta = p->se.avg.load_sum;
2253 *period = LOAD_AVG_MAX;
2254 }
2255
2256 p->last_sum_exec_runtime = runtime;
2257 p->last_task_numa_placement = now;
2258
2259 return delta;
2260 }
2261
2262 /*
2263 * Determine the preferred nid for a task in a numa_group. This needs to
2264 * be done in a way that produces consistent results with group_weight,
2265 * otherwise workloads might not converge.
2266 */
2267 static int preferred_group_nid(struct task_struct *p, int nid)
2268 {
2269 nodemask_t nodes;
2270 int dist;
2271
2272 /* Direct connections between all NUMA nodes. */
2273 if (sched_numa_topology_type == NUMA_DIRECT)
2274 return nid;
2275
2276 /*
2277 * On a system with glueless mesh NUMA topology, group_weight
2278 * scores nodes according to the number of NUMA hinting faults on
2279 * both the node itself, and on nearby nodes.
2280 */
2281 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2282 unsigned long score, max_score = 0;
2283 int node, max_node = nid;
2284
2285 dist = sched_max_numa_distance;
2286
2287 for_each_online_node(node) {
2288 score = group_weight(p, node, dist);
2289 if (score > max_score) {
2290 max_score = score;
2291 max_node = node;
2292 }
2293 }
2294 return max_node;
2295 }
2296
2297 /*
2298 * Finding the preferred nid in a system with NUMA backplane
2299 * interconnect topology is more involved. The goal is to locate
2300 * tasks from numa_groups near each other in the system, and
2301 * untangle workloads from different sides of the system. This requires
2302 * searching down the hierarchy of node groups, recursively searching
2303 * inside the highest scoring group of nodes. The nodemask tricks
2304 * keep the complexity of the search down.
2305 */
2306 nodes = node_online_map;
2307 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2308 unsigned long max_faults = 0;
2309 nodemask_t max_group = NODE_MASK_NONE;
2310 int a, b;
2311
2312 /* Are there nodes at this distance from each other? */
2313 if (!find_numa_distance(dist))
2314 continue;
2315
2316 for_each_node_mask(a, nodes) {
2317 unsigned long faults = 0;
2318 nodemask_t this_group;
2319 nodes_clear(this_group);
2320
2321 /* Sum group's NUMA faults; includes a==b case. */
2322 for_each_node_mask(b, nodes) {
2323 if (node_distance(a, b) < dist) {
2324 faults += group_faults(p, b);
2325 node_set(b, this_group);
2326 node_clear(b, nodes);
2327 }
2328 }
2329
2330 /* Remember the top group. */
2331 if (faults > max_faults) {
2332 max_faults = faults;
2333 max_group = this_group;
2334 /*
2335 * subtle: at the smallest distance there is
2336 * just one node left in each "group", the
2337 * winner is the preferred nid.
2338 */
2339 nid = a;
2340 }
2341 }
2342 /* Next round, evaluate the nodes within max_group. */
2343 if (!max_faults)
2344 break;
2345 nodes = max_group;
2346 }
2347 return nid;
2348 }
2349
2350 static void task_numa_placement(struct task_struct *p)
2351 {
2352 int seq, nid, max_nid = NUMA_NO_NODE;
2353 unsigned long max_faults = 0;
2354 unsigned long fault_types[2] = { 0, 0 };
2355 unsigned long total_faults;
2356 u64 runtime, period;
2357 spinlock_t *group_lock = NULL;
2358 struct numa_group *ng;
2359
2360 /*
2361 * The p->mm->numa_scan_seq field gets updated without
2362 * exclusive access. Use READ_ONCE() here to ensure
2363 * that the field is read in a single access:
2364 */
2365 seq = READ_ONCE(p->mm->numa_scan_seq);
2366 if (p->numa_scan_seq == seq)
2367 return;
2368 p->numa_scan_seq = seq;
2369 p->numa_scan_period_max = task_scan_max(p);
2370
2371 total_faults = p->numa_faults_locality[0] +
2372 p->numa_faults_locality[1];
2373 runtime = numa_get_avg_runtime(p, &period);
2374
2375 /* If the task is part of a group prevent parallel updates to group stats */
2376 ng = deref_curr_numa_group(p);
2377 if (ng) {
2378 group_lock = &ng->lock;
2379 spin_lock_irq(group_lock);
2380 }
2381
2382 /* Find the node with the highest number of faults */
2383 for_each_online_node(nid) {
2384 /* Keep track of the offsets in numa_faults array */
2385 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2386 unsigned long faults = 0, group_faults = 0;
2387 int priv;
2388
2389 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2390 long diff, f_diff, f_weight;
2391
2392 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2393 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2394 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2395 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2396
2397 /* Decay existing window, copy faults since last scan */
2398 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2399 fault_types[priv] += p->numa_faults[membuf_idx];
2400 p->numa_faults[membuf_idx] = 0;
2401
2402 /*
2403 * Normalize the faults_from, so all tasks in a group
2404 * count according to CPU use, instead of by the raw
2405 * number of faults. Tasks with little runtime have
2406 * little over-all impact on throughput, and thus their
2407 * faults are less important.
2408 */
2409 f_weight = div64_u64(runtime << 16, period + 1);
2410 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2411 (total_faults + 1);
2412 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2413 p->numa_faults[cpubuf_idx] = 0;
2414
2415 p->numa_faults[mem_idx] += diff;
2416 p->numa_faults[cpu_idx] += f_diff;
2417 faults += p->numa_faults[mem_idx];
2418 p->total_numa_faults += diff;
2419 if (ng) {
2420 /*
2421 * safe because we can only change our own group
2422 *
2423 * mem_idx represents the offset for a given
2424 * nid and priv in a specific region because it
2425 * is at the beginning of the numa_faults array.
2426 */
2427 ng->faults[mem_idx] += diff;
2428 ng->faults_cpu[mem_idx] += f_diff;
2429 ng->total_faults += diff;
2430 group_faults += ng->faults[mem_idx];
2431 }
2432 }
2433
2434 if (!ng) {
2435 if (faults > max_faults) {
2436 max_faults = faults;
2437 max_nid = nid;
2438 }
2439 } else if (group_faults > max_faults) {
2440 max_faults = group_faults;
2441 max_nid = nid;
2442 }
2443 }
2444
2445 if (ng) {
2446 numa_group_count_active_nodes(ng);
2447 spin_unlock_irq(group_lock);
2448 max_nid = preferred_group_nid(p, max_nid);
2449 }
2450
2451 if (max_faults) {
2452 /* Set the new preferred node */
2453 if (max_nid != p->numa_preferred_nid)
2454 sched_setnuma(p, max_nid);
2455 }
2456
2457 update_task_scan_period(p, fault_types[0], fault_types[1]);
2458 }
2459
2460 static inline int get_numa_group(struct numa_group *grp)
2461 {
2462 return refcount_inc_not_zero(&grp->refcount);
2463 }
2464
2465 static inline void put_numa_group(struct numa_group *grp)
2466 {
2467 if (refcount_dec_and_test(&grp->refcount))
2468 kfree_rcu(grp, rcu);
2469 }
2470
2471 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2472 int *priv)
2473 {
2474 struct numa_group *grp, *my_grp;
2475 struct task_struct *tsk;
2476 bool join = false;
2477 int cpu = cpupid_to_cpu(cpupid);
2478 int i;
2479
2480 if (unlikely(!deref_curr_numa_group(p))) {
2481 unsigned int size = sizeof(struct numa_group) +
2482 4*nr_node_ids*sizeof(unsigned long);
2483
2484 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2485 if (!grp)
2486 return;
2487
2488 refcount_set(&grp->refcount, 1);
2489 grp->active_nodes = 1;
2490 grp->max_faults_cpu = 0;
2491 spin_lock_init(&grp->lock);
2492 grp->gid = p->pid;
2493 /* Second half of the array tracks nids where faults happen */
2494 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2495 nr_node_ids;
2496
2497 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2498 grp->faults[i] = p->numa_faults[i];
2499
2500 grp->total_faults = p->total_numa_faults;
2501
2502 grp->nr_tasks++;
2503 rcu_assign_pointer(p->numa_group, grp);
2504 }
2505
2506 rcu_read_lock();
2507 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2508
2509 if (!cpupid_match_pid(tsk, cpupid))
2510 goto no_join;
2511
2512 grp = rcu_dereference(tsk->numa_group);
2513 if (!grp)
2514 goto no_join;
2515
2516 my_grp = deref_curr_numa_group(p);
2517 if (grp == my_grp)
2518 goto no_join;
2519
2520 /*
2521 * Only join the other group if its bigger; if we're the bigger group,
2522 * the other task will join us.
2523 */
2524 if (my_grp->nr_tasks > grp->nr_tasks)
2525 goto no_join;
2526
2527 /*
2528 * Tie-break on the grp address.
2529 */
2530 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2531 goto no_join;
2532
2533 /* Always join threads in the same process. */
2534 if (tsk->mm == current->mm)
2535 join = true;
2536
2537 /* Simple filter to avoid false positives due to PID collisions */
2538 if (flags & TNF_SHARED)
2539 join = true;
2540
2541 /* Update priv based on whether false sharing was detected */
2542 *priv = !join;
2543
2544 if (join && !get_numa_group(grp))
2545 goto no_join;
2546
2547 rcu_read_unlock();
2548
2549 if (!join)
2550 return;
2551
2552 BUG_ON(irqs_disabled());
2553 double_lock_irq(&my_grp->lock, &grp->lock);
2554
2555 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2556 my_grp->faults[i] -= p->numa_faults[i];
2557 grp->faults[i] += p->numa_faults[i];
2558 }
2559 my_grp->total_faults -= p->total_numa_faults;
2560 grp->total_faults += p->total_numa_faults;
2561
2562 my_grp->nr_tasks--;
2563 grp->nr_tasks++;
2564
2565 spin_unlock(&my_grp->lock);
2566 spin_unlock_irq(&grp->lock);
2567
2568 rcu_assign_pointer(p->numa_group, grp);
2569
2570 put_numa_group(my_grp);
2571 return;
2572
2573 no_join:
2574 rcu_read_unlock();
2575 return;
2576 }
2577
2578 /*
2579 * Get rid of NUMA staticstics associated with a task (either current or dead).
2580 * If @final is set, the task is dead and has reached refcount zero, so we can
2581 * safely free all relevant data structures. Otherwise, there might be
2582 * concurrent reads from places like load balancing and procfs, and we should
2583 * reset the data back to default state without freeing ->numa_faults.
2584 */
2585 void task_numa_free(struct task_struct *p, bool final)
2586 {
2587 /* safe: p either is current or is being freed by current */
2588 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2589 unsigned long *numa_faults = p->numa_faults;
2590 unsigned long flags;
2591 int i;
2592
2593 if (!numa_faults)
2594 return;
2595
2596 if (grp) {
2597 spin_lock_irqsave(&grp->lock, flags);
2598 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2599 grp->faults[i] -= p->numa_faults[i];
2600 grp->total_faults -= p->total_numa_faults;
2601
2602 grp->nr_tasks--;
2603 spin_unlock_irqrestore(&grp->lock, flags);
2604 RCU_INIT_POINTER(p->numa_group, NULL);
2605 put_numa_group(grp);
2606 }
2607
2608 if (final) {
2609 p->numa_faults = NULL;
2610 kfree(numa_faults);
2611 } else {
2612 p->total_numa_faults = 0;
2613 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2614 numa_faults[i] = 0;
2615 }
2616 }
2617
2618 /*
2619 * Got a PROT_NONE fault for a page on @node.
2620 */
2621 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2622 {
2623 struct task_struct *p = current;
2624 bool migrated = flags & TNF_MIGRATED;
2625 int cpu_node = task_node(current);
2626 int local = !!(flags & TNF_FAULT_LOCAL);
2627 struct numa_group *ng;
2628 int priv;
2629
2630 if (!static_branch_likely(&sched_numa_balancing))
2631 return;
2632
2633 /* for example, ksmd faulting in a user's mm */
2634 if (!p->mm)
2635 return;
2636
2637 /* Allocate buffer to track faults on a per-node basis */
2638 if (unlikely(!p->numa_faults)) {
2639 int size = sizeof(*p->numa_faults) *
2640 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2641
2642 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2643 if (!p->numa_faults)
2644 return;
2645
2646 p->total_numa_faults = 0;
2647 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2648 }
2649
2650 /*
2651 * First accesses are treated as private, otherwise consider accesses
2652 * to be private if the accessing pid has not changed
2653 */
2654 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2655 priv = 1;
2656 } else {
2657 priv = cpupid_match_pid(p, last_cpupid);
2658 if (!priv && !(flags & TNF_NO_GROUP))
2659 task_numa_group(p, last_cpupid, flags, &priv);
2660 }
2661
2662 /*
2663 * If a workload spans multiple NUMA nodes, a shared fault that
2664 * occurs wholly within the set of nodes that the workload is
2665 * actively using should be counted as local. This allows the
2666 * scan rate to slow down when a workload has settled down.
2667 */
2668 ng = deref_curr_numa_group(p);
2669 if (!priv && !local && ng && ng->active_nodes > 1 &&
2670 numa_is_active_node(cpu_node, ng) &&
2671 numa_is_active_node(mem_node, ng))
2672 local = 1;
2673
2674 /*
2675 * Retry to migrate task to preferred node periodically, in case it
2676 * previously failed, or the scheduler moved us.
2677 */
2678 if (time_after(jiffies, p->numa_migrate_retry)) {
2679 task_numa_placement(p);
2680 numa_migrate_preferred(p);
2681 }
2682
2683 if (migrated)
2684 p->numa_pages_migrated += pages;
2685 if (flags & TNF_MIGRATE_FAIL)
2686 p->numa_faults_locality[2] += pages;
2687
2688 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2689 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2690 p->numa_faults_locality[local] += pages;
2691 }
2692
2693 static void reset_ptenuma_scan(struct task_struct *p)
2694 {
2695 /*
2696 * We only did a read acquisition of the mmap sem, so
2697 * p->mm->numa_scan_seq is written to without exclusive access
2698 * and the update is not guaranteed to be atomic. That's not
2699 * much of an issue though, since this is just used for
2700 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2701 * expensive, to avoid any form of compiler optimizations:
2702 */
2703 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2704 p->mm->numa_scan_offset = 0;
2705 }
2706
2707 /*
2708 * The expensive part of numa migration is done from task_work context.
2709 * Triggered from task_tick_numa().
2710 */
2711 static void task_numa_work(struct callback_head *work)
2712 {
2713 unsigned long migrate, next_scan, now = jiffies;
2714 struct task_struct *p = current;
2715 struct mm_struct *mm = p->mm;
2716 u64 runtime = p->se.sum_exec_runtime;
2717 struct vm_area_struct *vma;
2718 unsigned long start, end;
2719 unsigned long nr_pte_updates = 0;
2720 long pages, virtpages;
2721
2722 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2723
2724 work->next = work;
2725 /*
2726 * Who cares about NUMA placement when they're dying.
2727 *
2728 * NOTE: make sure not to dereference p->mm before this check,
2729 * exit_task_work() happens _after_ exit_mm() so we could be called
2730 * without p->mm even though we still had it when we enqueued this
2731 * work.
2732 */
2733 if (p->flags & PF_EXITING)
2734 return;
2735
2736 if (!mm->numa_next_scan) {
2737 mm->numa_next_scan = now +
2738 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2739 }
2740
2741 /*
2742 * Enforce maximal scan/migration frequency..
2743 */
2744 migrate = mm->numa_next_scan;
2745 if (time_before(now, migrate))
2746 return;
2747
2748 if (p->numa_scan_period == 0) {
2749 p->numa_scan_period_max = task_scan_max(p);
2750 p->numa_scan_period = task_scan_start(p);
2751 }
2752
2753 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2754 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2755 return;
2756
2757 /*
2758 * Delay this task enough that another task of this mm will likely win
2759 * the next time around.
2760 */
2761 p->node_stamp += 2 * TICK_NSEC;
2762
2763 start = mm->numa_scan_offset;
2764 pages = sysctl_numa_balancing_scan_size;
2765 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2766 virtpages = pages * 8; /* Scan up to this much virtual space */
2767 if (!pages)
2768 return;
2769
2770
2771 if (!mmap_read_trylock(mm))
2772 return;
2773 vma = find_vma(mm, start);
2774 if (!vma) {
2775 reset_ptenuma_scan(p);
2776 start = 0;
2777 vma = mm->mmap;
2778 }
2779 for (; vma; vma = vma->vm_next) {
2780 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2781 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2782 continue;
2783 }
2784
2785 /*
2786 * Shared library pages mapped by multiple processes are not
2787 * migrated as it is expected they are cache replicated. Avoid
2788 * hinting faults in read-only file-backed mappings or the vdso
2789 * as migrating the pages will be of marginal benefit.
2790 */
2791 if (!vma->vm_mm ||
2792 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2793 continue;
2794
2795 /*
2796 * Skip inaccessible VMAs to avoid any confusion between
2797 * PROT_NONE and NUMA hinting ptes
2798 */
2799 if (!vma_is_accessible(vma))
2800 continue;
2801
2802 do {
2803 start = max(start, vma->vm_start);
2804 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2805 end = min(end, vma->vm_end);
2806 nr_pte_updates = change_prot_numa(vma, start, end);
2807
2808 /*
2809 * Try to scan sysctl_numa_balancing_size worth of
2810 * hpages that have at least one present PTE that
2811 * is not already pte-numa. If the VMA contains
2812 * areas that are unused or already full of prot_numa
2813 * PTEs, scan up to virtpages, to skip through those
2814 * areas faster.
2815 */
2816 if (nr_pte_updates)
2817 pages -= (end - start) >> PAGE_SHIFT;
2818 virtpages -= (end - start) >> PAGE_SHIFT;
2819
2820 start = end;
2821 if (pages <= 0 || virtpages <= 0)
2822 goto out;
2823
2824 cond_resched();
2825 } while (end != vma->vm_end);
2826 }
2827
2828 out:
2829 /*
2830 * It is possible to reach the end of the VMA list but the last few
2831 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2832 * would find the !migratable VMA on the next scan but not reset the
2833 * scanner to the start so check it now.
2834 */
2835 if (vma)
2836 mm->numa_scan_offset = start;
2837 else
2838 reset_ptenuma_scan(p);
2839 mmap_read_unlock(mm);
2840
2841 /*
2842 * Make sure tasks use at least 32x as much time to run other code
2843 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2844 * Usually update_task_scan_period slows down scanning enough; on an
2845 * overloaded system we need to limit overhead on a per task basis.
2846 */
2847 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2848 u64 diff = p->se.sum_exec_runtime - runtime;
2849 p->node_stamp += 32 * diff;
2850 }
2851 }
2852
2853 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2854 {
2855 int mm_users = 0;
2856 struct mm_struct *mm = p->mm;
2857
2858 if (mm) {
2859 mm_users = atomic_read(&mm->mm_users);
2860 if (mm_users == 1) {
2861 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2862 mm->numa_scan_seq = 0;
2863 }
2864 }
2865 p->node_stamp = 0;
2866 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2867 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2868 /* Protect against double add, see task_tick_numa and task_numa_work */
2869 p->numa_work.next = &p->numa_work;
2870 p->numa_faults = NULL;
2871 RCU_INIT_POINTER(p->numa_group, NULL);
2872 p->last_task_numa_placement = 0;
2873 p->last_sum_exec_runtime = 0;
2874
2875 init_task_work(&p->numa_work, task_numa_work);
2876
2877 /* New address space, reset the preferred nid */
2878 if (!(clone_flags & CLONE_VM)) {
2879 p->numa_preferred_nid = NUMA_NO_NODE;
2880 return;
2881 }
2882
2883 /*
2884 * New thread, keep existing numa_preferred_nid which should be copied
2885 * already by arch_dup_task_struct but stagger when scans start.
2886 */
2887 if (mm) {
2888 unsigned int delay;
2889
2890 delay = min_t(unsigned int, task_scan_max(current),
2891 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2892 delay += 2 * TICK_NSEC;
2893 p->node_stamp = delay;
2894 }
2895 }
2896
2897 /*
2898 * Drive the periodic memory faults..
2899 */
2900 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2901 {
2902 struct callback_head *work = &curr->numa_work;
2903 u64 period, now;
2904
2905 /*
2906 * We don't care about NUMA placement if we don't have memory.
2907 */
2908 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2909 return;
2910
2911 /*
2912 * Using runtime rather than walltime has the dual advantage that
2913 * we (mostly) drive the selection from busy threads and that the
2914 * task needs to have done some actual work before we bother with
2915 * NUMA placement.
2916 */
2917 now = curr->se.sum_exec_runtime;
2918 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2919
2920 if (now > curr->node_stamp + period) {
2921 if (!curr->node_stamp)
2922 curr->numa_scan_period = task_scan_start(curr);
2923 curr->node_stamp += period;
2924
2925 if (!time_before(jiffies, curr->mm->numa_next_scan))
2926 task_work_add(curr, work, true);
2927 }
2928 }
2929
2930 static void update_scan_period(struct task_struct *p, int new_cpu)
2931 {
2932 int src_nid = cpu_to_node(task_cpu(p));
2933 int dst_nid = cpu_to_node(new_cpu);
2934
2935 if (!static_branch_likely(&sched_numa_balancing))
2936 return;
2937
2938 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2939 return;
2940
2941 if (src_nid == dst_nid)
2942 return;
2943
2944 /*
2945 * Allow resets if faults have been trapped before one scan
2946 * has completed. This is most likely due to a new task that
2947 * is pulled cross-node due to wakeups or load balancing.
2948 */
2949 if (p->numa_scan_seq) {
2950 /*
2951 * Avoid scan adjustments if moving to the preferred
2952 * node or if the task was not previously running on
2953 * the preferred node.
2954 */
2955 if (dst_nid == p->numa_preferred_nid ||
2956 (p->numa_preferred_nid != NUMA_NO_NODE &&
2957 src_nid != p->numa_preferred_nid))
2958 return;
2959 }
2960
2961 p->numa_scan_period = task_scan_start(p);
2962 }
2963
2964 #else
2965 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2966 {
2967 }
2968
2969 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2970 {
2971 }
2972
2973 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2974 {
2975 }
2976
2977 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2978 {
2979 }
2980
2981 #endif /* CONFIG_NUMA_BALANCING */
2982
2983 static void
2984 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2985 {
2986 update_load_add(&cfs_rq->load, se->load.weight);
2987 #ifdef CONFIG_SMP
2988 if (entity_is_task(se)) {
2989 struct rq *rq = rq_of(cfs_rq);
2990
2991 account_numa_enqueue(rq, task_of(se));
2992 list_add(&se->group_node, &rq->cfs_tasks);
2993 }
2994 #endif
2995 cfs_rq->nr_running++;
2996 }
2997
2998 static void
2999 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3000 {
3001 update_load_sub(&cfs_rq->load, se->load.weight);
3002 #ifdef CONFIG_SMP
3003 if (entity_is_task(se)) {
3004 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3005 list_del_init(&se->group_node);
3006 }
3007 #endif
3008 cfs_rq->nr_running--;
3009 }
3010
3011 /*
3012 * Signed add and clamp on underflow.
3013 *
3014 * Explicitly do a load-store to ensure the intermediate value never hits
3015 * memory. This allows lockless observations without ever seeing the negative
3016 * values.
3017 */
3018 #define add_positive(_ptr, _val) do { \
3019 typeof(_ptr) ptr = (_ptr); \
3020 typeof(_val) val = (_val); \
3021 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3022 \
3023 res = var + val; \
3024 \
3025 if (val < 0 && res > var) \
3026 res = 0; \
3027 \
3028 WRITE_ONCE(*ptr, res); \
3029 } while (0)
3030
3031 /*
3032 * Unsigned subtract and clamp on underflow.
3033 *
3034 * Explicitly do a load-store to ensure the intermediate value never hits
3035 * memory. This allows lockless observations without ever seeing the negative
3036 * values.
3037 */
3038 #define sub_positive(_ptr, _val) do { \
3039 typeof(_ptr) ptr = (_ptr); \
3040 typeof(*ptr) val = (_val); \
3041 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3042 res = var - val; \
3043 if (res > var) \
3044 res = 0; \
3045 WRITE_ONCE(*ptr, res); \
3046 } while (0)
3047
3048 /*
3049 * Remove and clamp on negative, from a local variable.
3050 *
3051 * A variant of sub_positive(), which does not use explicit load-store
3052 * and is thus optimized for local variable updates.
3053 */
3054 #define lsub_positive(_ptr, _val) do { \
3055 typeof(_ptr) ptr = (_ptr); \
3056 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3057 } while (0)
3058
3059 #ifdef CONFIG_SMP
3060 static inline void
3061 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3062 {
3063 cfs_rq->avg.load_avg += se->avg.load_avg;
3064 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3065 }
3066
3067 static inline void
3068 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3069 {
3070 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3071 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3072 }
3073 #else
3074 static inline void
3075 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3076 static inline void
3077 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3078 #endif
3079
3080 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3081 unsigned long weight)
3082 {
3083 if (se->on_rq) {
3084 /* commit outstanding execution time */
3085 if (cfs_rq->curr == se)
3086 update_curr(cfs_rq);
3087 account_entity_dequeue(cfs_rq, se);
3088 }
3089 dequeue_load_avg(cfs_rq, se);
3090
3091 update_load_set(&se->load, weight);
3092
3093 #ifdef CONFIG_SMP
3094 do {
3095 u32 divider = get_pelt_divider(&se->avg);
3096
3097 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3098 } while (0);
3099 #endif
3100
3101 enqueue_load_avg(cfs_rq, se);
3102 if (se->on_rq)
3103 account_entity_enqueue(cfs_rq, se);
3104
3105 }
3106
3107 void reweight_task(struct task_struct *p, int prio)
3108 {
3109 struct sched_entity *se = &p->se;
3110 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3111 struct load_weight *load = &se->load;
3112 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3113
3114 reweight_entity(cfs_rq, se, weight);
3115 load->inv_weight = sched_prio_to_wmult[prio];
3116 }
3117
3118 #ifdef CONFIG_FAIR_GROUP_SCHED
3119 #ifdef CONFIG_SMP
3120 /*
3121 * All this does is approximate the hierarchical proportion which includes that
3122 * global sum we all love to hate.
3123 *
3124 * That is, the weight of a group entity, is the proportional share of the
3125 * group weight based on the group runqueue weights. That is:
3126 *
3127 * tg->weight * grq->load.weight
3128 * ge->load.weight = ----------------------------- (1)
3129 * \Sum grq->load.weight
3130 *
3131 * Now, because computing that sum is prohibitively expensive to compute (been
3132 * there, done that) we approximate it with this average stuff. The average
3133 * moves slower and therefore the approximation is cheaper and more stable.
3134 *
3135 * So instead of the above, we substitute:
3136 *
3137 * grq->load.weight -> grq->avg.load_avg (2)
3138 *
3139 * which yields the following:
3140 *
3141 * tg->weight * grq->avg.load_avg
3142 * ge->load.weight = ------------------------------ (3)
3143 * tg->load_avg
3144 *
3145 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3146 *
3147 * That is shares_avg, and it is right (given the approximation (2)).
3148 *
3149 * The problem with it is that because the average is slow -- it was designed
3150 * to be exactly that of course -- this leads to transients in boundary
3151 * conditions. In specific, the case where the group was idle and we start the
3152 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3153 * yielding bad latency etc..
3154 *
3155 * Now, in that special case (1) reduces to:
3156 *
3157 * tg->weight * grq->load.weight
3158 * ge->load.weight = ----------------------------- = tg->weight (4)
3159 * grp->load.weight
3160 *
3161 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3162 *
3163 * So what we do is modify our approximation (3) to approach (4) in the (near)
3164 * UP case, like:
3165 *
3166 * ge->load.weight =
3167 *
3168 * tg->weight * grq->load.weight
3169 * --------------------------------------------------- (5)
3170 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3171 *
3172 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3173 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3174 *
3175 *
3176 * tg->weight * grq->load.weight
3177 * ge->load.weight = ----------------------------- (6)
3178 * tg_load_avg'
3179 *
3180 * Where:
3181 *
3182 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3183 * max(grq->load.weight, grq->avg.load_avg)
3184 *
3185 * And that is shares_weight and is icky. In the (near) UP case it approaches
3186 * (4) while in the normal case it approaches (3). It consistently
3187 * overestimates the ge->load.weight and therefore:
3188 *
3189 * \Sum ge->load.weight >= tg->weight
3190 *
3191 * hence icky!
3192 */
3193 static long calc_group_shares(struct cfs_rq *cfs_rq)
3194 {
3195 long tg_weight, tg_shares, load, shares;
3196 struct task_group *tg = cfs_rq->tg;
3197
3198 tg_shares = READ_ONCE(tg->shares);
3199
3200 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3201
3202 tg_weight = atomic_long_read(&tg->load_avg);
3203
3204 /* Ensure tg_weight >= load */
3205 tg_weight -= cfs_rq->tg_load_avg_contrib;
3206 tg_weight += load;
3207
3208 shares = (tg_shares * load);
3209 if (tg_weight)
3210 shares /= tg_weight;
3211
3212 /*
3213 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3214 * of a group with small tg->shares value. It is a floor value which is
3215 * assigned as a minimum load.weight to the sched_entity representing
3216 * the group on a CPU.
3217 *
3218 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3219 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3220 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3221 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3222 * instead of 0.
3223 */
3224 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3225 }
3226 #endif /* CONFIG_SMP */
3227
3228 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3229
3230 /*
3231 * Recomputes the group entity based on the current state of its group
3232 * runqueue.
3233 */
3234 static void update_cfs_group(struct sched_entity *se)
3235 {
3236 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3237 long shares;
3238
3239 if (!gcfs_rq)
3240 return;
3241
3242 if (throttled_hierarchy(gcfs_rq))
3243 return;
3244
3245 #ifndef CONFIG_SMP
3246 shares = READ_ONCE(gcfs_rq->tg->shares);
3247
3248 if (likely(se->load.weight == shares))
3249 return;
3250 #else
3251 shares = calc_group_shares(gcfs_rq);
3252 #endif
3253
3254 reweight_entity(cfs_rq_of(se), se, shares);
3255 }
3256
3257 #else /* CONFIG_FAIR_GROUP_SCHED */
3258 static inline void update_cfs_group(struct sched_entity *se)
3259 {
3260 }
3261 #endif /* CONFIG_FAIR_GROUP_SCHED */
3262
3263 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3264 {
3265 struct rq *rq = rq_of(cfs_rq);
3266
3267 if (&rq->cfs == cfs_rq) {
3268 /*
3269 * There are a few boundary cases this might miss but it should
3270 * get called often enough that that should (hopefully) not be
3271 * a real problem.
3272 *
3273 * It will not get called when we go idle, because the idle
3274 * thread is a different class (!fair), nor will the utilization
3275 * number include things like RT tasks.
3276 *
3277 * As is, the util number is not freq-invariant (we'd have to
3278 * implement arch_scale_freq_capacity() for that).
3279 *
3280 * See cpu_util().
3281 */
3282 cpufreq_update_util(rq, flags);
3283 }
3284 }
3285
3286 #ifdef CONFIG_SMP
3287 #ifdef CONFIG_FAIR_GROUP_SCHED
3288 /**
3289 * update_tg_load_avg - update the tg's load avg
3290 * @cfs_rq: the cfs_rq whose avg changed
3291 * @force: update regardless of how small the difference
3292 *
3293 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3294 * However, because tg->load_avg is a global value there are performance
3295 * considerations.
3296 *
3297 * In order to avoid having to look at the other cfs_rq's, we use a
3298 * differential update where we store the last value we propagated. This in
3299 * turn allows skipping updates if the differential is 'small'.
3300 *
3301 * Updating tg's load_avg is necessary before update_cfs_share().
3302 */
3303 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3304 {
3305 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3306
3307 /*
3308 * No need to update load_avg for root_task_group as it is not used.
3309 */
3310 if (cfs_rq->tg == &root_task_group)
3311 return;
3312
3313 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3314 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3315 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3316 }
3317 }
3318
3319 /*
3320 * Called within set_task_rq() right before setting a task's CPU. The
3321 * caller only guarantees p->pi_lock is held; no other assumptions,
3322 * including the state of rq->lock, should be made.
3323 */
3324 void set_task_rq_fair(struct sched_entity *se,
3325 struct cfs_rq *prev, struct cfs_rq *next)
3326 {
3327 u64 p_last_update_time;
3328 u64 n_last_update_time;
3329
3330 if (!sched_feat(ATTACH_AGE_LOAD))
3331 return;
3332
3333 /*
3334 * We are supposed to update the task to "current" time, then its up to
3335 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3336 * getting what current time is, so simply throw away the out-of-date
3337 * time. This will result in the wakee task is less decayed, but giving
3338 * the wakee more load sounds not bad.
3339 */
3340 if (!(se->avg.last_update_time && prev))
3341 return;
3342
3343 #ifndef CONFIG_64BIT
3344 {
3345 u64 p_last_update_time_copy;
3346 u64 n_last_update_time_copy;
3347
3348 do {
3349 p_last_update_time_copy = prev->load_last_update_time_copy;
3350 n_last_update_time_copy = next->load_last_update_time_copy;
3351
3352 smp_rmb();
3353
3354 p_last_update_time = prev->avg.last_update_time;
3355 n_last_update_time = next->avg.last_update_time;
3356
3357 } while (p_last_update_time != p_last_update_time_copy ||
3358 n_last_update_time != n_last_update_time_copy);
3359 }
3360 #else
3361 p_last_update_time = prev->avg.last_update_time;
3362 n_last_update_time = next->avg.last_update_time;
3363 #endif
3364 __update_load_avg_blocked_se(p_last_update_time, se);
3365 se->avg.last_update_time = n_last_update_time;
3366 }
3367
3368
3369 /*
3370 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3371 * propagate its contribution. The key to this propagation is the invariant
3372 * that for each group:
3373 *
3374 * ge->avg == grq->avg (1)
3375 *
3376 * _IFF_ we look at the pure running and runnable sums. Because they
3377 * represent the very same entity, just at different points in the hierarchy.
3378 *
3379 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3380 * and simply copies the running/runnable sum over (but still wrong, because
3381 * the group entity and group rq do not have their PELT windows aligned).
3382 *
3383 * However, update_tg_cfs_load() is more complex. So we have:
3384 *
3385 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3386 *
3387 * And since, like util, the runnable part should be directly transferable,
3388 * the following would _appear_ to be the straight forward approach:
3389 *
3390 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3391 *
3392 * And per (1) we have:
3393 *
3394 * ge->avg.runnable_avg == grq->avg.runnable_avg
3395 *
3396 * Which gives:
3397 *
3398 * ge->load.weight * grq->avg.load_avg
3399 * ge->avg.load_avg = ----------------------------------- (4)
3400 * grq->load.weight
3401 *
3402 * Except that is wrong!
3403 *
3404 * Because while for entities historical weight is not important and we
3405 * really only care about our future and therefore can consider a pure
3406 * runnable sum, runqueues can NOT do this.
3407 *
3408 * We specifically want runqueues to have a load_avg that includes
3409 * historical weights. Those represent the blocked load, the load we expect
3410 * to (shortly) return to us. This only works by keeping the weights as
3411 * integral part of the sum. We therefore cannot decompose as per (3).
3412 *
3413 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3414 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3415 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3416 * runnable section of these tasks overlap (or not). If they were to perfectly
3417 * align the rq as a whole would be runnable 2/3 of the time. If however we
3418 * always have at least 1 runnable task, the rq as a whole is always runnable.
3419 *
3420 * So we'll have to approximate.. :/
3421 *
3422 * Given the constraint:
3423 *
3424 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3425 *
3426 * We can construct a rule that adds runnable to a rq by assuming minimal
3427 * overlap.
3428 *
3429 * On removal, we'll assume each task is equally runnable; which yields:
3430 *
3431 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3432 *
3433 * XXX: only do this for the part of runnable > running ?
3434 *
3435 */
3436
3437 static inline void
3438 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3439 {
3440 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3441 u32 divider;
3442
3443 /* Nothing to update */
3444 if (!delta)
3445 return;
3446
3447 /*
3448 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3449 * See ___update_load_avg() for details.
3450 */
3451 divider = get_pelt_divider(&cfs_rq->avg);
3452
3453 /* Set new sched_entity's utilization */
3454 se->avg.util_avg = gcfs_rq->avg.util_avg;
3455 se->avg.util_sum = se->avg.util_avg * divider;
3456
3457 /* Update parent cfs_rq utilization */
3458 add_positive(&cfs_rq->avg.util_avg, delta);
3459 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3460 }
3461
3462 static inline void
3463 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3464 {
3465 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3466 u32 divider;
3467
3468 /* Nothing to update */
3469 if (!delta)
3470 return;
3471
3472 /*
3473 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3474 * See ___update_load_avg() for details.
3475 */
3476 divider = get_pelt_divider(&cfs_rq->avg);
3477
3478 /* Set new sched_entity's runnable */
3479 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3480 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3481
3482 /* Update parent cfs_rq runnable */
3483 add_positive(&cfs_rq->avg.runnable_avg, delta);
3484 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3485 }
3486
3487 static inline void
3488 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3489 {
3490 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3491 unsigned long load_avg;
3492 u64 load_sum = 0;
3493 s64 delta_sum;
3494 u32 divider;
3495
3496 if (!runnable_sum)
3497 return;
3498
3499 gcfs_rq->prop_runnable_sum = 0;
3500
3501 /*
3502 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3503 * See ___update_load_avg() for details.
3504 */
3505 divider = get_pelt_divider(&cfs_rq->avg);
3506
3507 if (runnable_sum >= 0) {
3508 /*
3509 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3510 * the CPU is saturated running == runnable.
3511 */
3512 runnable_sum += se->avg.load_sum;
3513 runnable_sum = min_t(long, runnable_sum, divider);
3514 } else {
3515 /*
3516 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3517 * assuming all tasks are equally runnable.
3518 */
3519 if (scale_load_down(gcfs_rq->load.weight)) {
3520 load_sum = div_s64(gcfs_rq->avg.load_sum,
3521 scale_load_down(gcfs_rq->load.weight));
3522 }
3523
3524 /* But make sure to not inflate se's runnable */
3525 runnable_sum = min(se->avg.load_sum, load_sum);
3526 }
3527
3528 /*
3529 * runnable_sum can't be lower than running_sum
3530 * Rescale running sum to be in the same range as runnable sum
3531 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3532 * runnable_sum is in [0 : LOAD_AVG_MAX]
3533 */
3534 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3535 runnable_sum = max(runnable_sum, running_sum);
3536
3537 load_sum = (s64)se_weight(se) * runnable_sum;
3538 load_avg = div_s64(load_sum, divider);
3539
3540 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3541 delta_avg = load_avg - se->avg.load_avg;
3542
3543 se->avg.load_sum = runnable_sum;
3544 se->avg.load_avg = load_avg;
3545 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3546 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3547 }
3548
3549 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3550 {
3551 cfs_rq->propagate = 1;
3552 cfs_rq->prop_runnable_sum += runnable_sum;
3553 }
3554
3555 /* Update task and its cfs_rq load average */
3556 static inline int propagate_entity_load_avg(struct sched_entity *se)
3557 {
3558 struct cfs_rq *cfs_rq, *gcfs_rq;
3559
3560 if (entity_is_task(se))
3561 return 0;
3562
3563 gcfs_rq = group_cfs_rq(se);
3564 if (!gcfs_rq->propagate)
3565 return 0;
3566
3567 gcfs_rq->propagate = 0;
3568
3569 cfs_rq = cfs_rq_of(se);
3570
3571 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3572
3573 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3574 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3575 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3576
3577 trace_pelt_cfs_tp(cfs_rq);
3578 trace_pelt_se_tp(se);
3579
3580 return 1;
3581 }
3582
3583 /*
3584 * Check if we need to update the load and the utilization of a blocked
3585 * group_entity:
3586 */
3587 static inline bool skip_blocked_update(struct sched_entity *se)
3588 {
3589 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3590
3591 /*
3592 * If sched_entity still have not zero load or utilization, we have to
3593 * decay it:
3594 */
3595 if (se->avg.load_avg || se->avg.util_avg)
3596 return false;
3597
3598 /*
3599 * If there is a pending propagation, we have to update the load and
3600 * the utilization of the sched_entity:
3601 */
3602 if (gcfs_rq->propagate)
3603 return false;
3604
3605 /*
3606 * Otherwise, the load and the utilization of the sched_entity is
3607 * already zero and there is no pending propagation, so it will be a
3608 * waste of time to try to decay it:
3609 */
3610 return true;
3611 }
3612
3613 #else /* CONFIG_FAIR_GROUP_SCHED */
3614
3615 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3616
3617 static inline int propagate_entity_load_avg(struct sched_entity *se)
3618 {
3619 return 0;
3620 }
3621
3622 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3623
3624 #endif /* CONFIG_FAIR_GROUP_SCHED */
3625
3626 /**
3627 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3628 * @now: current time, as per cfs_rq_clock_pelt()
3629 * @cfs_rq: cfs_rq to update
3630 *
3631 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3632 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3633 * post_init_entity_util_avg().
3634 *
3635 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3636 *
3637 * Returns true if the load decayed or we removed load.
3638 *
3639 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3640 * call update_tg_load_avg() when this function returns true.
3641 */
3642 static inline int
3643 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3644 {
3645 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3646 struct sched_avg *sa = &cfs_rq->avg;
3647 int decayed = 0;
3648
3649 if (cfs_rq->removed.nr) {
3650 unsigned long r;
3651 u32 divider = get_pelt_divider(&cfs_rq->avg);
3652
3653 raw_spin_lock(&cfs_rq->removed.lock);
3654 swap(cfs_rq->removed.util_avg, removed_util);
3655 swap(cfs_rq->removed.load_avg, removed_load);
3656 swap(cfs_rq->removed.runnable_avg, removed_runnable);
3657 cfs_rq->removed.nr = 0;
3658 raw_spin_unlock(&cfs_rq->removed.lock);
3659
3660 r = removed_load;
3661 sub_positive(&sa->load_avg, r);
3662 sub_positive(&sa->load_sum, r * divider);
3663
3664 r = removed_util;
3665 sub_positive(&sa->util_avg, r);
3666 sub_positive(&sa->util_sum, r * divider);
3667
3668 r = removed_runnable;
3669 sub_positive(&sa->runnable_avg, r);
3670 sub_positive(&sa->runnable_sum, r * divider);
3671
3672 /*
3673 * removed_runnable is the unweighted version of removed_load so we
3674 * can use it to estimate removed_load_sum.
3675 */
3676 add_tg_cfs_propagate(cfs_rq,
3677 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3678
3679 decayed = 1;
3680 }
3681
3682 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3683
3684 #ifndef CONFIG_64BIT
3685 smp_wmb();
3686 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3687 #endif
3688
3689 return decayed;
3690 }
3691
3692 /**
3693 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3694 * @cfs_rq: cfs_rq to attach to
3695 * @se: sched_entity to attach
3696 *
3697 * Must call update_cfs_rq_load_avg() before this, since we rely on
3698 * cfs_rq->avg.last_update_time being current.
3699 */
3700 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3701 {
3702 /*
3703 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3704 * See ___update_load_avg() for details.
3705 */
3706 u32 divider = get_pelt_divider(&cfs_rq->avg);
3707
3708 /*
3709 * When we attach the @se to the @cfs_rq, we must align the decay
3710 * window because without that, really weird and wonderful things can
3711 * happen.
3712 *
3713 * XXX illustrate
3714 */
3715 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3716 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3717
3718 /*
3719 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3720 * period_contrib. This isn't strictly correct, but since we're
3721 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3722 * _sum a little.
3723 */
3724 se->avg.util_sum = se->avg.util_avg * divider;
3725
3726 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3727
3728 se->avg.load_sum = divider;
3729 if (se_weight(se)) {
3730 se->avg.load_sum =
3731 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3732 }
3733
3734 enqueue_load_avg(cfs_rq, se);
3735 cfs_rq->avg.util_avg += se->avg.util_avg;
3736 cfs_rq->avg.util_sum += se->avg.util_sum;
3737 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3738 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3739
3740 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3741
3742 cfs_rq_util_change(cfs_rq, 0);
3743
3744 trace_pelt_cfs_tp(cfs_rq);
3745 }
3746
3747 /**
3748 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3749 * @cfs_rq: cfs_rq to detach from
3750 * @se: sched_entity to detach
3751 *
3752 * Must call update_cfs_rq_load_avg() before this, since we rely on
3753 * cfs_rq->avg.last_update_time being current.
3754 */
3755 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3756 {
3757 dequeue_load_avg(cfs_rq, se);
3758 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3759 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3760 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3761 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3762
3763 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3764
3765 cfs_rq_util_change(cfs_rq, 0);
3766
3767 trace_pelt_cfs_tp(cfs_rq);
3768 }
3769
3770 /*
3771 * Optional action to be done while updating the load average
3772 */
3773 #define UPDATE_TG 0x1
3774 #define SKIP_AGE_LOAD 0x2
3775 #define DO_ATTACH 0x4
3776
3777 /* Update task and its cfs_rq load average */
3778 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3779 {
3780 u64 now = cfs_rq_clock_pelt(cfs_rq);
3781 int decayed;
3782
3783 /*
3784 * Track task load average for carrying it to new CPU after migrated, and
3785 * track group sched_entity load average for task_h_load calc in migration
3786 */
3787 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3788 __update_load_avg_se(now, cfs_rq, se);
3789
3790 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3791 decayed |= propagate_entity_load_avg(se);
3792
3793 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3794
3795 /*
3796 * DO_ATTACH means we're here from enqueue_entity().
3797 * !last_update_time means we've passed through
3798 * migrate_task_rq_fair() indicating we migrated.
3799 *
3800 * IOW we're enqueueing a task on a new CPU.
3801 */
3802 attach_entity_load_avg(cfs_rq, se);
3803 update_tg_load_avg(cfs_rq, 0);
3804
3805 } else if (decayed) {
3806 cfs_rq_util_change(cfs_rq, 0);
3807
3808 if (flags & UPDATE_TG)
3809 update_tg_load_avg(cfs_rq, 0);
3810 }
3811 }
3812
3813 #ifndef CONFIG_64BIT
3814 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3815 {
3816 u64 last_update_time_copy;
3817 u64 last_update_time;
3818
3819 do {
3820 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3821 smp_rmb();
3822 last_update_time = cfs_rq->avg.last_update_time;
3823 } while (last_update_time != last_update_time_copy);
3824
3825 return last_update_time;
3826 }
3827 #else
3828 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3829 {
3830 return cfs_rq->avg.last_update_time;
3831 }
3832 #endif
3833
3834 /*
3835 * Synchronize entity load avg of dequeued entity without locking
3836 * the previous rq.
3837 */
3838 static void sync_entity_load_avg(struct sched_entity *se)
3839 {
3840 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3841 u64 last_update_time;
3842
3843 last_update_time = cfs_rq_last_update_time(cfs_rq);
3844 __update_load_avg_blocked_se(last_update_time, se);
3845 }
3846
3847 /*
3848 * Task first catches up with cfs_rq, and then subtract
3849 * itself from the cfs_rq (task must be off the queue now).
3850 */
3851 static void remove_entity_load_avg(struct sched_entity *se)
3852 {
3853 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3854 unsigned long flags;
3855
3856 /*
3857 * tasks cannot exit without having gone through wake_up_new_task() ->
3858 * post_init_entity_util_avg() which will have added things to the
3859 * cfs_rq, so we can remove unconditionally.
3860 */
3861
3862 sync_entity_load_avg(se);
3863
3864 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3865 ++cfs_rq->removed.nr;
3866 cfs_rq->removed.util_avg += se->avg.util_avg;
3867 cfs_rq->removed.load_avg += se->avg.load_avg;
3868 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
3869 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3870 }
3871
3872 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3873 {
3874 return cfs_rq->avg.runnable_avg;
3875 }
3876
3877 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3878 {
3879 return cfs_rq->avg.load_avg;
3880 }
3881
3882 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3883
3884 static inline unsigned long task_util(struct task_struct *p)
3885 {
3886 return READ_ONCE(p->se.avg.util_avg);
3887 }
3888
3889 static inline unsigned long _task_util_est(struct task_struct *p)
3890 {
3891 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3892
3893 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3894 }
3895
3896 static inline unsigned long task_util_est(struct task_struct *p)
3897 {
3898 return max(task_util(p), _task_util_est(p));
3899 }
3900
3901 #ifdef CONFIG_UCLAMP_TASK
3902 static inline unsigned long uclamp_task_util(struct task_struct *p)
3903 {
3904 return clamp(task_util_est(p),
3905 uclamp_eff_value(p, UCLAMP_MIN),
3906 uclamp_eff_value(p, UCLAMP_MAX));
3907 }
3908 #else
3909 static inline unsigned long uclamp_task_util(struct task_struct *p)
3910 {
3911 return task_util_est(p);
3912 }
3913 #endif
3914
3915 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3916 struct task_struct *p)
3917 {
3918 unsigned int enqueued;
3919
3920 if (!sched_feat(UTIL_EST))
3921 return;
3922
3923 /* Update root cfs_rq's estimated utilization */
3924 enqueued = cfs_rq->avg.util_est.enqueued;
3925 enqueued += _task_util_est(p);
3926 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3927
3928 trace_sched_util_est_cfs_tp(cfs_rq);
3929 }
3930
3931 /*
3932 * Check if a (signed) value is within a specified (unsigned) margin,
3933 * based on the observation that:
3934 *
3935 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3936 *
3937 * NOTE: this only works when value + maring < INT_MAX.
3938 */
3939 static inline bool within_margin(int value, int margin)
3940 {
3941 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3942 }
3943
3944 static void
3945 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3946 {
3947 long last_ewma_diff;
3948 struct util_est ue;
3949 int cpu;
3950
3951 if (!sched_feat(UTIL_EST))
3952 return;
3953
3954 /* Update root cfs_rq's estimated utilization */
3955 ue.enqueued = cfs_rq->avg.util_est.enqueued;
3956 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3957 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3958
3959 trace_sched_util_est_cfs_tp(cfs_rq);
3960
3961 /*
3962 * Skip update of task's estimated utilization when the task has not
3963 * yet completed an activation, e.g. being migrated.
3964 */
3965 if (!task_sleep)
3966 return;
3967
3968 /*
3969 * If the PELT values haven't changed since enqueue time,
3970 * skip the util_est update.
3971 */
3972 ue = p->se.avg.util_est;
3973 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3974 return;
3975
3976 /*
3977 * Reset EWMA on utilization increases, the moving average is used only
3978 * to smooth utilization decreases.
3979 */
3980 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3981 if (sched_feat(UTIL_EST_FASTUP)) {
3982 if (ue.ewma < ue.enqueued) {
3983 ue.ewma = ue.enqueued;
3984 goto done;
3985 }
3986 }
3987
3988 /*
3989 * Skip update of task's estimated utilization when its EWMA is
3990 * already ~1% close to its last activation value.
3991 */
3992 last_ewma_diff = ue.enqueued - ue.ewma;
3993 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3994 return;
3995
3996 /*
3997 * To avoid overestimation of actual task utilization, skip updates if
3998 * we cannot grant there is idle time in this CPU.
3999 */
4000 cpu = cpu_of(rq_of(cfs_rq));
4001 if (task_util(p) > capacity_orig_of(cpu))
4002 return;
4003
4004 /*
4005 * Update Task's estimated utilization
4006 *
4007 * When *p completes an activation we can consolidate another sample
4008 * of the task size. This is done by storing the current PELT value
4009 * as ue.enqueued and by using this value to update the Exponential
4010 * Weighted Moving Average (EWMA):
4011 *
4012 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4013 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4014 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4015 * = w * ( last_ewma_diff ) + ewma(t-1)
4016 * = w * (last_ewma_diff + ewma(t-1) / w)
4017 *
4018 * Where 'w' is the weight of new samples, which is configured to be
4019 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4020 */
4021 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4022 ue.ewma += last_ewma_diff;
4023 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4024 done:
4025 WRITE_ONCE(p->se.avg.util_est, ue);
4026
4027 trace_sched_util_est_se_tp(&p->se);
4028 }
4029
4030 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4031 {
4032 return fits_capacity(uclamp_task_util(p), capacity);
4033 }
4034
4035 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4036 {
4037 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4038 return;
4039
4040 if (!p) {
4041 rq->misfit_task_load = 0;
4042 return;
4043 }
4044
4045 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4046 rq->misfit_task_load = 0;
4047 return;
4048 }
4049
4050 /*
4051 * Make sure that misfit_task_load will not be null even if
4052 * task_h_load() returns 0.
4053 */
4054 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4055 }
4056
4057 #else /* CONFIG_SMP */
4058
4059 #define UPDATE_TG 0x0
4060 #define SKIP_AGE_LOAD 0x0
4061 #define DO_ATTACH 0x0
4062
4063 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4064 {
4065 cfs_rq_util_change(cfs_rq, 0);
4066 }
4067
4068 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4069
4070 static inline void
4071 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4072 static inline void
4073 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4074
4075 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4076 {
4077 return 0;
4078 }
4079
4080 static inline void
4081 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4082
4083 static inline void
4084 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4085 bool task_sleep) {}
4086 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4087
4088 #endif /* CONFIG_SMP */
4089
4090 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4091 {
4092 #ifdef CONFIG_SCHED_DEBUG
4093 s64 d = se->vruntime - cfs_rq->min_vruntime;
4094
4095 if (d < 0)
4096 d = -d;
4097
4098 if (d > 3*sysctl_sched_latency)
4099 schedstat_inc(cfs_rq->nr_spread_over);
4100 #endif
4101 }
4102
4103 static void
4104 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4105 {
4106 u64 vruntime = cfs_rq->min_vruntime;
4107
4108 /*
4109 * The 'current' period is already promised to the current tasks,
4110 * however the extra weight of the new task will slow them down a
4111 * little, place the new task so that it fits in the slot that
4112 * stays open at the end.
4113 */
4114 if (initial && sched_feat(START_DEBIT))
4115 vruntime += sched_vslice(cfs_rq, se);
4116
4117 /* sleeps up to a single latency don't count. */
4118 if (!initial) {
4119 unsigned long thresh = sysctl_sched_latency;
4120
4121 /*
4122 * Halve their sleep time's effect, to allow
4123 * for a gentler effect of sleepers:
4124 */
4125 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4126 thresh >>= 1;
4127
4128 vruntime -= thresh;
4129 }
4130
4131 /* ensure we never gain time by being placed backwards. */
4132 se->vruntime = max_vruntime(se->vruntime, vruntime);
4133 }
4134
4135 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4136
4137 static inline void check_schedstat_required(void)
4138 {
4139 #ifdef CONFIG_SCHEDSTATS
4140 if (schedstat_enabled())
4141 return;
4142
4143 /* Force schedstat enabled if a dependent tracepoint is active */
4144 if (trace_sched_stat_wait_enabled() ||
4145 trace_sched_stat_sleep_enabled() ||
4146 trace_sched_stat_iowait_enabled() ||
4147 trace_sched_stat_blocked_enabled() ||
4148 trace_sched_stat_runtime_enabled()) {
4149 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4150 "stat_blocked and stat_runtime require the "
4151 "kernel parameter schedstats=enable or "
4152 "kernel.sched_schedstats=1\n");
4153 }
4154 #endif
4155 }
4156
4157 static inline bool cfs_bandwidth_used(void);
4158
4159 /*
4160 * MIGRATION
4161 *
4162 * dequeue
4163 * update_curr()
4164 * update_min_vruntime()
4165 * vruntime -= min_vruntime
4166 *
4167 * enqueue
4168 * update_curr()
4169 * update_min_vruntime()
4170 * vruntime += min_vruntime
4171 *
4172 * this way the vruntime transition between RQs is done when both
4173 * min_vruntime are up-to-date.
4174 *
4175 * WAKEUP (remote)
4176 *
4177 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4178 * vruntime -= min_vruntime
4179 *
4180 * enqueue
4181 * update_curr()
4182 * update_min_vruntime()
4183 * vruntime += min_vruntime
4184 *
4185 * this way we don't have the most up-to-date min_vruntime on the originating
4186 * CPU and an up-to-date min_vruntime on the destination CPU.
4187 */
4188
4189 static void
4190 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4191 {
4192 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4193 bool curr = cfs_rq->curr == se;
4194
4195 /*
4196 * If we're the current task, we must renormalise before calling
4197 * update_curr().
4198 */
4199 if (renorm && curr)
4200 se->vruntime += cfs_rq->min_vruntime;
4201
4202 update_curr(cfs_rq);
4203
4204 /*
4205 * Otherwise, renormalise after, such that we're placed at the current
4206 * moment in time, instead of some random moment in the past. Being
4207 * placed in the past could significantly boost this task to the
4208 * fairness detriment of existing tasks.
4209 */
4210 if (renorm && !curr)
4211 se->vruntime += cfs_rq->min_vruntime;
4212
4213 /*
4214 * When enqueuing a sched_entity, we must:
4215 * - Update loads to have both entity and cfs_rq synced with now.
4216 * - Add its load to cfs_rq->runnable_avg
4217 * - For group_entity, update its weight to reflect the new share of
4218 * its group cfs_rq
4219 * - Add its new weight to cfs_rq->load.weight
4220 */
4221 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4222 se_update_runnable(se);
4223 update_cfs_group(se);
4224 account_entity_enqueue(cfs_rq, se);
4225
4226 if (flags & ENQUEUE_WAKEUP)
4227 place_entity(cfs_rq, se, 0);
4228
4229 check_schedstat_required();
4230 update_stats_enqueue(cfs_rq, se, flags);
4231 check_spread(cfs_rq, se);
4232 if (!curr)
4233 __enqueue_entity(cfs_rq, se);
4234 se->on_rq = 1;
4235
4236 /*
4237 * When bandwidth control is enabled, cfs might have been removed
4238 * because of a parent been throttled but cfs->nr_running > 1. Try to
4239 * add it unconditionnally.
4240 */
4241 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4242 list_add_leaf_cfs_rq(cfs_rq);
4243
4244 if (cfs_rq->nr_running == 1)
4245 check_enqueue_throttle(cfs_rq);
4246 }
4247
4248 static void __clear_buddies_last(struct sched_entity *se)
4249 {
4250 for_each_sched_entity(se) {
4251 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4252 if (cfs_rq->last != se)
4253 break;
4254
4255 cfs_rq->last = NULL;
4256 }
4257 }
4258
4259 static void __clear_buddies_next(struct sched_entity *se)
4260 {
4261 for_each_sched_entity(se) {
4262 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4263 if (cfs_rq->next != se)
4264 break;
4265
4266 cfs_rq->next = NULL;
4267 }
4268 }
4269
4270 static void __clear_buddies_skip(struct sched_entity *se)
4271 {
4272 for_each_sched_entity(se) {
4273 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4274 if (cfs_rq->skip != se)
4275 break;
4276
4277 cfs_rq->skip = NULL;
4278 }
4279 }
4280
4281 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4282 {
4283 if (cfs_rq->last == se)
4284 __clear_buddies_last(se);
4285
4286 if (cfs_rq->next == se)
4287 __clear_buddies_next(se);
4288
4289 if (cfs_rq->skip == se)
4290 __clear_buddies_skip(se);
4291 }
4292
4293 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4294
4295 static void
4296 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4297 {
4298 /*
4299 * Update run-time statistics of the 'current'.
4300 */
4301 update_curr(cfs_rq);
4302
4303 /*
4304 * When dequeuing a sched_entity, we must:
4305 * - Update loads to have both entity and cfs_rq synced with now.
4306 * - Subtract its load from the cfs_rq->runnable_avg.
4307 * - Subtract its previous weight from cfs_rq->load.weight.
4308 * - For group entity, update its weight to reflect the new share
4309 * of its group cfs_rq.
4310 */
4311 update_load_avg(cfs_rq, se, UPDATE_TG);
4312 se_update_runnable(se);
4313
4314 update_stats_dequeue(cfs_rq, se, flags);
4315
4316 clear_buddies(cfs_rq, se);
4317
4318 if (se != cfs_rq->curr)
4319 __dequeue_entity(cfs_rq, se);
4320 se->on_rq = 0;
4321 account_entity_dequeue(cfs_rq, se);
4322
4323 /*
4324 * Normalize after update_curr(); which will also have moved
4325 * min_vruntime if @se is the one holding it back. But before doing
4326 * update_min_vruntime() again, which will discount @se's position and
4327 * can move min_vruntime forward still more.
4328 */
4329 if (!(flags & DEQUEUE_SLEEP))
4330 se->vruntime -= cfs_rq->min_vruntime;
4331
4332 /* return excess runtime on last dequeue */
4333 return_cfs_rq_runtime(cfs_rq);
4334
4335 update_cfs_group(se);
4336
4337 /*
4338 * Now advance min_vruntime if @se was the entity holding it back,
4339 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4340 * put back on, and if we advance min_vruntime, we'll be placed back
4341 * further than we started -- ie. we'll be penalized.
4342 */
4343 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4344 update_min_vruntime(cfs_rq);
4345 }
4346
4347 /*
4348 * Preempt the current task with a newly woken task if needed:
4349 */
4350 static void
4351 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4352 {
4353 unsigned long ideal_runtime, delta_exec;
4354 struct sched_entity *se;
4355 s64 delta;
4356
4357 ideal_runtime = sched_slice(cfs_rq, curr);
4358 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4359 if (delta_exec > ideal_runtime) {
4360 resched_curr(rq_of(cfs_rq));
4361 /*
4362 * The current task ran long enough, ensure it doesn't get
4363 * re-elected due to buddy favours.
4364 */
4365 clear_buddies(cfs_rq, curr);
4366 return;
4367 }
4368
4369 /*
4370 * Ensure that a task that missed wakeup preemption by a
4371 * narrow margin doesn't have to wait for a full slice.
4372 * This also mitigates buddy induced latencies under load.
4373 */
4374 if (delta_exec < sysctl_sched_min_granularity)
4375 return;
4376
4377 se = __pick_first_entity(cfs_rq);
4378 delta = curr->vruntime - se->vruntime;
4379
4380 if (delta < 0)
4381 return;
4382
4383 if (delta > ideal_runtime)
4384 resched_curr(rq_of(cfs_rq));
4385 }
4386
4387 static void
4388 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4389 {
4390 /* 'current' is not kept within the tree. */
4391 if (se->on_rq) {
4392 /*
4393 * Any task has to be enqueued before it get to execute on
4394 * a CPU. So account for the time it spent waiting on the
4395 * runqueue.
4396 */
4397 update_stats_wait_end(cfs_rq, se);
4398 __dequeue_entity(cfs_rq, se);
4399 update_load_avg(cfs_rq, se, UPDATE_TG);
4400 }
4401
4402 update_stats_curr_start(cfs_rq, se);
4403 cfs_rq->curr = se;
4404
4405 /*
4406 * Track our maximum slice length, if the CPU's load is at
4407 * least twice that of our own weight (i.e. dont track it
4408 * when there are only lesser-weight tasks around):
4409 */
4410 if (schedstat_enabled() &&
4411 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4412 schedstat_set(se->statistics.slice_max,
4413 max((u64)schedstat_val(se->statistics.slice_max),
4414 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4415 }
4416
4417 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4418 }
4419
4420 static int
4421 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4422
4423 /*
4424 * Pick the next process, keeping these things in mind, in this order:
4425 * 1) keep things fair between processes/task groups
4426 * 2) pick the "next" process, since someone really wants that to run
4427 * 3) pick the "last" process, for cache locality
4428 * 4) do not run the "skip" process, if something else is available
4429 */
4430 static struct sched_entity *
4431 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4432 {
4433 struct sched_entity *left = __pick_first_entity(cfs_rq);
4434 struct sched_entity *se;
4435
4436 /*
4437 * If curr is set we have to see if its left of the leftmost entity
4438 * still in the tree, provided there was anything in the tree at all.
4439 */
4440 if (!left || (curr && entity_before(curr, left)))
4441 left = curr;
4442
4443 se = left; /* ideally we run the leftmost entity */
4444
4445 /*
4446 * Avoid running the skip buddy, if running something else can
4447 * be done without getting too unfair.
4448 */
4449 if (cfs_rq->skip == se) {
4450 struct sched_entity *second;
4451
4452 if (se == curr) {
4453 second = __pick_first_entity(cfs_rq);
4454 } else {
4455 second = __pick_next_entity(se);
4456 if (!second || (curr && entity_before(curr, second)))
4457 second = curr;
4458 }
4459
4460 if (second && wakeup_preempt_entity(second, left) < 1)
4461 se = second;
4462 }
4463
4464 /*
4465 * Prefer last buddy, try to return the CPU to a preempted task.
4466 */
4467 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4468 se = cfs_rq->last;
4469
4470 /*
4471 * Someone really wants this to run. If it's not unfair, run it.
4472 */
4473 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4474 se = cfs_rq->next;
4475
4476 clear_buddies(cfs_rq, se);
4477
4478 return se;
4479 }
4480
4481 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4482
4483 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4484 {
4485 /*
4486 * If still on the runqueue then deactivate_task()
4487 * was not called and update_curr() has to be done:
4488 */
4489 if (prev->on_rq)
4490 update_curr(cfs_rq);
4491
4492 /* throttle cfs_rqs exceeding runtime */
4493 check_cfs_rq_runtime(cfs_rq);
4494
4495 check_spread(cfs_rq, prev);
4496
4497 if (prev->on_rq) {
4498 update_stats_wait_start(cfs_rq, prev);
4499 /* Put 'current' back into the tree. */
4500 __enqueue_entity(cfs_rq, prev);
4501 /* in !on_rq case, update occurred at dequeue */
4502 update_load_avg(cfs_rq, prev, 0);
4503 }
4504 cfs_rq->curr = NULL;
4505 }
4506
4507 static void
4508 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4509 {
4510 /*
4511 * Update run-time statistics of the 'current'.
4512 */
4513 update_curr(cfs_rq);
4514
4515 /*
4516 * Ensure that runnable average is periodically updated.
4517 */
4518 update_load_avg(cfs_rq, curr, UPDATE_TG);
4519 update_cfs_group(curr);
4520
4521 #ifdef CONFIG_SCHED_HRTICK
4522 /*
4523 * queued ticks are scheduled to match the slice, so don't bother
4524 * validating it and just reschedule.
4525 */
4526 if (queued) {
4527 resched_curr(rq_of(cfs_rq));
4528 return;
4529 }
4530 /*
4531 * don't let the period tick interfere with the hrtick preemption
4532 */
4533 if (!sched_feat(DOUBLE_TICK) &&
4534 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4535 return;
4536 #endif
4537
4538 if (cfs_rq->nr_running > 1)
4539 check_preempt_tick(cfs_rq, curr);
4540 }
4541
4542
4543 /**************************************************
4544 * CFS bandwidth control machinery
4545 */
4546
4547 #ifdef CONFIG_CFS_BANDWIDTH
4548
4549 #ifdef CONFIG_JUMP_LABEL
4550 static struct static_key __cfs_bandwidth_used;
4551
4552 static inline bool cfs_bandwidth_used(void)
4553 {
4554 return static_key_false(&__cfs_bandwidth_used);
4555 }
4556
4557 void cfs_bandwidth_usage_inc(void)
4558 {
4559 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4560 }
4561
4562 void cfs_bandwidth_usage_dec(void)
4563 {
4564 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4565 }
4566 #else /* CONFIG_JUMP_LABEL */
4567 static bool cfs_bandwidth_used(void)
4568 {
4569 return true;
4570 }
4571
4572 void cfs_bandwidth_usage_inc(void) {}
4573 void cfs_bandwidth_usage_dec(void) {}
4574 #endif /* CONFIG_JUMP_LABEL */
4575
4576 /*
4577 * default period for cfs group bandwidth.
4578 * default: 0.1s, units: nanoseconds
4579 */
4580 static inline u64 default_cfs_period(void)
4581 {
4582 return 100000000ULL;
4583 }
4584
4585 static inline u64 sched_cfs_bandwidth_slice(void)
4586 {
4587 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4588 }
4589
4590 /*
4591 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4592 * directly instead of rq->clock to avoid adding additional synchronization
4593 * around rq->lock.
4594 *
4595 * requires cfs_b->lock
4596 */
4597 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4598 {
4599 if (cfs_b->quota != RUNTIME_INF)
4600 cfs_b->runtime = cfs_b->quota;
4601 }
4602
4603 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4604 {
4605 return &tg->cfs_bandwidth;
4606 }
4607
4608 /* returns 0 on failure to allocate runtime */
4609 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4610 struct cfs_rq *cfs_rq, u64 target_runtime)
4611 {
4612 u64 min_amount, amount = 0;
4613
4614 lockdep_assert_held(&cfs_b->lock);
4615
4616 /* note: this is a positive sum as runtime_remaining <= 0 */
4617 min_amount = target_runtime - cfs_rq->runtime_remaining;
4618
4619 if (cfs_b->quota == RUNTIME_INF)
4620 amount = min_amount;
4621 else {
4622 start_cfs_bandwidth(cfs_b);
4623
4624 if (cfs_b->runtime > 0) {
4625 amount = min(cfs_b->runtime, min_amount);
4626 cfs_b->runtime -= amount;
4627 cfs_b->idle = 0;
4628 }
4629 }
4630
4631 cfs_rq->runtime_remaining += amount;
4632
4633 return cfs_rq->runtime_remaining > 0;
4634 }
4635
4636 /* returns 0 on failure to allocate runtime */
4637 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4638 {
4639 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4640 int ret;
4641
4642 raw_spin_lock(&cfs_b->lock);
4643 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4644 raw_spin_unlock(&cfs_b->lock);
4645
4646 return ret;
4647 }
4648
4649 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4650 {
4651 /* dock delta_exec before expiring quota (as it could span periods) */
4652 cfs_rq->runtime_remaining -= delta_exec;
4653
4654 if (likely(cfs_rq->runtime_remaining > 0))
4655 return;
4656
4657 if (cfs_rq->throttled)
4658 return;
4659 /*
4660 * if we're unable to extend our runtime we resched so that the active
4661 * hierarchy can be throttled
4662 */
4663 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4664 resched_curr(rq_of(cfs_rq));
4665 }
4666
4667 static __always_inline
4668 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4669 {
4670 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4671 return;
4672
4673 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4674 }
4675
4676 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4677 {
4678 return cfs_bandwidth_used() && cfs_rq->throttled;
4679 }
4680
4681 /* check whether cfs_rq, or any parent, is throttled */
4682 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4683 {
4684 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4685 }
4686
4687 /*
4688 * Ensure that neither of the group entities corresponding to src_cpu or
4689 * dest_cpu are members of a throttled hierarchy when performing group
4690 * load-balance operations.
4691 */
4692 static inline int throttled_lb_pair(struct task_group *tg,
4693 int src_cpu, int dest_cpu)
4694 {
4695 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4696
4697 src_cfs_rq = tg->cfs_rq[src_cpu];
4698 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4699
4700 return throttled_hierarchy(src_cfs_rq) ||
4701 throttled_hierarchy(dest_cfs_rq);
4702 }
4703
4704 static int tg_unthrottle_up(struct task_group *tg, void *data)
4705 {
4706 struct rq *rq = data;
4707 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4708
4709 cfs_rq->throttle_count--;
4710 if (!cfs_rq->throttle_count) {
4711 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4712 cfs_rq->throttled_clock_task;
4713
4714 /* Add cfs_rq with already running entity in the list */
4715 if (cfs_rq->nr_running >= 1)
4716 list_add_leaf_cfs_rq(cfs_rq);
4717 }
4718
4719 return 0;
4720 }
4721
4722 static int tg_throttle_down(struct task_group *tg, void *data)
4723 {
4724 struct rq *rq = data;
4725 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4726
4727 /* group is entering throttled state, stop time */
4728 if (!cfs_rq->throttle_count) {
4729 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4730 list_del_leaf_cfs_rq(cfs_rq);
4731 }
4732 cfs_rq->throttle_count++;
4733
4734 return 0;
4735 }
4736
4737 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4738 {
4739 struct rq *rq = rq_of(cfs_rq);
4740 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4741 struct sched_entity *se;
4742 long task_delta, idle_task_delta, dequeue = 1;
4743
4744 raw_spin_lock(&cfs_b->lock);
4745 /* This will start the period timer if necessary */
4746 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4747 /*
4748 * We have raced with bandwidth becoming available, and if we
4749 * actually throttled the timer might not unthrottle us for an
4750 * entire period. We additionally needed to make sure that any
4751 * subsequent check_cfs_rq_runtime calls agree not to throttle
4752 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4753 * for 1ns of runtime rather than just check cfs_b.
4754 */
4755 dequeue = 0;
4756 } else {
4757 list_add_tail_rcu(&cfs_rq->throttled_list,
4758 &cfs_b->throttled_cfs_rq);
4759 }
4760 raw_spin_unlock(&cfs_b->lock);
4761
4762 if (!dequeue)
4763 return false; /* Throttle no longer required. */
4764
4765 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4766
4767 /* freeze hierarchy runnable averages while throttled */
4768 rcu_read_lock();
4769 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4770 rcu_read_unlock();
4771
4772 task_delta = cfs_rq->h_nr_running;
4773 idle_task_delta = cfs_rq->idle_h_nr_running;
4774 for_each_sched_entity(se) {
4775 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4776 /* throttled entity or throttle-on-deactivate */
4777 if (!se->on_rq)
4778 break;
4779
4780 if (dequeue) {
4781 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4782 } else {
4783 update_load_avg(qcfs_rq, se, 0);
4784 se_update_runnable(se);
4785 }
4786
4787 qcfs_rq->h_nr_running -= task_delta;
4788 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4789
4790 if (qcfs_rq->load.weight)
4791 dequeue = 0;
4792 }
4793
4794 if (!se)
4795 sub_nr_running(rq, task_delta);
4796
4797 /*
4798 * Note: distribution will already see us throttled via the
4799 * throttled-list. rq->lock protects completion.
4800 */
4801 cfs_rq->throttled = 1;
4802 cfs_rq->throttled_clock = rq_clock(rq);
4803 return true;
4804 }
4805
4806 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4807 {
4808 struct rq *rq = rq_of(cfs_rq);
4809 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4810 struct sched_entity *se;
4811 long task_delta, idle_task_delta;
4812
4813 se = cfs_rq->tg->se[cpu_of(rq)];
4814
4815 cfs_rq->throttled = 0;
4816
4817 update_rq_clock(rq);
4818
4819 raw_spin_lock(&cfs_b->lock);
4820 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4821 list_del_rcu(&cfs_rq->throttled_list);
4822 raw_spin_unlock(&cfs_b->lock);
4823
4824 /* update hierarchical throttle state */
4825 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4826
4827 if (!cfs_rq->load.weight)
4828 return;
4829
4830 task_delta = cfs_rq->h_nr_running;
4831 idle_task_delta = cfs_rq->idle_h_nr_running;
4832 for_each_sched_entity(se) {
4833 if (se->on_rq)
4834 break;
4835 cfs_rq = cfs_rq_of(se);
4836 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4837
4838 cfs_rq->h_nr_running += task_delta;
4839 cfs_rq->idle_h_nr_running += idle_task_delta;
4840
4841 /* end evaluation on encountering a throttled cfs_rq */
4842 if (cfs_rq_throttled(cfs_rq))
4843 goto unthrottle_throttle;
4844 }
4845
4846 for_each_sched_entity(se) {
4847 cfs_rq = cfs_rq_of(se);
4848
4849 update_load_avg(cfs_rq, se, UPDATE_TG);
4850 se_update_runnable(se);
4851
4852 cfs_rq->h_nr_running += task_delta;
4853 cfs_rq->idle_h_nr_running += idle_task_delta;
4854
4855
4856 /* end evaluation on encountering a throttled cfs_rq */
4857 if (cfs_rq_throttled(cfs_rq))
4858 goto unthrottle_throttle;
4859
4860 /*
4861 * One parent has been throttled and cfs_rq removed from the
4862 * list. Add it back to not break the leaf list.
4863 */
4864 if (throttled_hierarchy(cfs_rq))
4865 list_add_leaf_cfs_rq(cfs_rq);
4866 }
4867
4868 /* At this point se is NULL and we are at root level*/
4869 add_nr_running(rq, task_delta);
4870
4871 unthrottle_throttle:
4872 /*
4873 * The cfs_rq_throttled() breaks in the above iteration can result in
4874 * incomplete leaf list maintenance, resulting in triggering the
4875 * assertion below.
4876 */
4877 for_each_sched_entity(se) {
4878 cfs_rq = cfs_rq_of(se);
4879
4880 if (list_add_leaf_cfs_rq(cfs_rq))
4881 break;
4882 }
4883
4884 assert_list_leaf_cfs_rq(rq);
4885
4886 /* Determine whether we need to wake up potentially idle CPU: */
4887 if (rq->curr == rq->idle && rq->cfs.nr_running)
4888 resched_curr(rq);
4889 }
4890
4891 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4892 {
4893 struct cfs_rq *cfs_rq;
4894 u64 runtime, remaining = 1;
4895
4896 rcu_read_lock();
4897 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4898 throttled_list) {
4899 struct rq *rq = rq_of(cfs_rq);
4900 struct rq_flags rf;
4901
4902 rq_lock_irqsave(rq, &rf);
4903 if (!cfs_rq_throttled(cfs_rq))
4904 goto next;
4905
4906 /* By the above check, this should never be true */
4907 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4908
4909 raw_spin_lock(&cfs_b->lock);
4910 runtime = -cfs_rq->runtime_remaining + 1;
4911 if (runtime > cfs_b->runtime)
4912 runtime = cfs_b->runtime;
4913 cfs_b->runtime -= runtime;
4914 remaining = cfs_b->runtime;
4915 raw_spin_unlock(&cfs_b->lock);
4916
4917 cfs_rq->runtime_remaining += runtime;
4918
4919 /* we check whether we're throttled above */
4920 if (cfs_rq->runtime_remaining > 0)
4921 unthrottle_cfs_rq(cfs_rq);
4922
4923 next:
4924 rq_unlock_irqrestore(rq, &rf);
4925
4926 if (!remaining)
4927 break;
4928 }
4929 rcu_read_unlock();
4930 }
4931
4932 /*
4933 * Responsible for refilling a task_group's bandwidth and unthrottling its
4934 * cfs_rqs as appropriate. If there has been no activity within the last
4935 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4936 * used to track this state.
4937 */
4938 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4939 {
4940 int throttled;
4941
4942 /* no need to continue the timer with no bandwidth constraint */
4943 if (cfs_b->quota == RUNTIME_INF)
4944 goto out_deactivate;
4945
4946 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4947 cfs_b->nr_periods += overrun;
4948
4949 /*
4950 * idle depends on !throttled (for the case of a large deficit), and if
4951 * we're going inactive then everything else can be deferred
4952 */
4953 if (cfs_b->idle && !throttled)
4954 goto out_deactivate;
4955
4956 __refill_cfs_bandwidth_runtime(cfs_b);
4957
4958 if (!throttled) {
4959 /* mark as potentially idle for the upcoming period */
4960 cfs_b->idle = 1;
4961 return 0;
4962 }
4963
4964 /* account preceding periods in which throttling occurred */
4965 cfs_b->nr_throttled += overrun;
4966
4967 /*
4968 * This check is repeated as we release cfs_b->lock while we unthrottle.
4969 */
4970 while (throttled && cfs_b->runtime > 0) {
4971 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4972 /* we can't nest cfs_b->lock while distributing bandwidth */
4973 distribute_cfs_runtime(cfs_b);
4974 raw_spin_lock_irqsave(&cfs_b->lock, flags);
4975
4976 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4977 }
4978
4979 /*
4980 * While we are ensured activity in the period following an
4981 * unthrottle, this also covers the case in which the new bandwidth is
4982 * insufficient to cover the existing bandwidth deficit. (Forcing the
4983 * timer to remain active while there are any throttled entities.)
4984 */
4985 cfs_b->idle = 0;
4986
4987 return 0;
4988
4989 out_deactivate:
4990 return 1;
4991 }
4992
4993 /* a cfs_rq won't donate quota below this amount */
4994 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4995 /* minimum remaining period time to redistribute slack quota */
4996 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4997 /* how long we wait to gather additional slack before distributing */
4998 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4999
5000 /*
5001 * Are we near the end of the current quota period?
5002 *
5003 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5004 * hrtimer base being cleared by hrtimer_start. In the case of
5005 * migrate_hrtimers, base is never cleared, so we are fine.
5006 */
5007 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5008 {
5009 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5010 u64 remaining;
5011
5012 /* if the call-back is running a quota refresh is already occurring */
5013 if (hrtimer_callback_running(refresh_timer))
5014 return 1;
5015
5016 /* is a quota refresh about to occur? */
5017 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5018 if (remaining < min_expire)
5019 return 1;
5020
5021 return 0;
5022 }
5023
5024 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5025 {
5026 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5027
5028 /* if there's a quota refresh soon don't bother with slack */
5029 if (runtime_refresh_within(cfs_b, min_left))
5030 return;
5031
5032 /* don't push forwards an existing deferred unthrottle */
5033 if (cfs_b->slack_started)
5034 return;
5035 cfs_b->slack_started = true;
5036
5037 hrtimer_start(&cfs_b->slack_timer,
5038 ns_to_ktime(cfs_bandwidth_slack_period),
5039 HRTIMER_MODE_REL);
5040 }
5041
5042 /* we know any runtime found here is valid as update_curr() precedes return */
5043 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5044 {
5045 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5046 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5047
5048 if (slack_runtime <= 0)
5049 return;
5050
5051 raw_spin_lock(&cfs_b->lock);
5052 if (cfs_b->quota != RUNTIME_INF) {
5053 cfs_b->runtime += slack_runtime;
5054
5055 /* we are under rq->lock, defer unthrottling using a timer */
5056 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5057 !list_empty(&cfs_b->throttled_cfs_rq))
5058 start_cfs_slack_bandwidth(cfs_b);
5059 }
5060 raw_spin_unlock(&cfs_b->lock);
5061
5062 /* even if it's not valid for return we don't want to try again */
5063 cfs_rq->runtime_remaining -= slack_runtime;
5064 }
5065
5066 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5067 {
5068 if (!cfs_bandwidth_used())
5069 return;
5070
5071 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5072 return;
5073
5074 __return_cfs_rq_runtime(cfs_rq);
5075 }
5076
5077 /*
5078 * This is done with a timer (instead of inline with bandwidth return) since
5079 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5080 */
5081 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5082 {
5083 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5084 unsigned long flags;
5085
5086 /* confirm we're still not at a refresh boundary */
5087 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5088 cfs_b->slack_started = false;
5089
5090 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5091 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5092 return;
5093 }
5094
5095 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5096 runtime = cfs_b->runtime;
5097
5098 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5099
5100 if (!runtime)
5101 return;
5102
5103 distribute_cfs_runtime(cfs_b);
5104
5105 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5106 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5107 }
5108
5109 /*
5110 * When a group wakes up we want to make sure that its quota is not already
5111 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5112 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5113 */
5114 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5115 {
5116 if (!cfs_bandwidth_used())
5117 return;
5118
5119 /* an active group must be handled by the update_curr()->put() path */
5120 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5121 return;
5122
5123 /* ensure the group is not already throttled */
5124 if (cfs_rq_throttled(cfs_rq))
5125 return;
5126
5127 /* update runtime allocation */
5128 account_cfs_rq_runtime(cfs_rq, 0);
5129 if (cfs_rq->runtime_remaining <= 0)
5130 throttle_cfs_rq(cfs_rq);
5131 }
5132
5133 static void sync_throttle(struct task_group *tg, int cpu)
5134 {
5135 struct cfs_rq *pcfs_rq, *cfs_rq;
5136
5137 if (!cfs_bandwidth_used())
5138 return;
5139
5140 if (!tg->parent)
5141 return;
5142
5143 cfs_rq = tg->cfs_rq[cpu];
5144 pcfs_rq = tg->parent->cfs_rq[cpu];
5145
5146 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5147 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5148 }
5149
5150 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5151 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5152 {
5153 if (!cfs_bandwidth_used())
5154 return false;
5155
5156 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5157 return false;
5158
5159 /*
5160 * it's possible for a throttled entity to be forced into a running
5161 * state (e.g. set_curr_task), in this case we're finished.
5162 */
5163 if (cfs_rq_throttled(cfs_rq))
5164 return true;
5165
5166 return throttle_cfs_rq(cfs_rq);
5167 }
5168
5169 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5170 {
5171 struct cfs_bandwidth *cfs_b =
5172 container_of(timer, struct cfs_bandwidth, slack_timer);
5173
5174 do_sched_cfs_slack_timer(cfs_b);
5175
5176 return HRTIMER_NORESTART;
5177 }
5178
5179 extern const u64 max_cfs_quota_period;
5180
5181 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5182 {
5183 struct cfs_bandwidth *cfs_b =
5184 container_of(timer, struct cfs_bandwidth, period_timer);
5185 unsigned long flags;
5186 int overrun;
5187 int idle = 0;
5188 int count = 0;
5189
5190 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5191 for (;;) {
5192 overrun = hrtimer_forward_now(timer, cfs_b->period);
5193 if (!overrun)
5194 break;
5195
5196 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5197
5198 if (++count > 3) {
5199 u64 new, old = ktime_to_ns(cfs_b->period);
5200
5201 /*
5202 * Grow period by a factor of 2 to avoid losing precision.
5203 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5204 * to fail.
5205 */
5206 new = old * 2;
5207 if (new < max_cfs_quota_period) {
5208 cfs_b->period = ns_to_ktime(new);
5209 cfs_b->quota *= 2;
5210
5211 pr_warn_ratelimited(
5212 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5213 smp_processor_id(),
5214 div_u64(new, NSEC_PER_USEC),
5215 div_u64(cfs_b->quota, NSEC_PER_USEC));
5216 } else {
5217 pr_warn_ratelimited(
5218 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5219 smp_processor_id(),
5220 div_u64(old, NSEC_PER_USEC),
5221 div_u64(cfs_b->quota, NSEC_PER_USEC));
5222 }
5223
5224 /* reset count so we don't come right back in here */
5225 count = 0;
5226 }
5227 }
5228 if (idle)
5229 cfs_b->period_active = 0;
5230 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5231
5232 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5233 }
5234
5235 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5236 {
5237 raw_spin_lock_init(&cfs_b->lock);
5238 cfs_b->runtime = 0;
5239 cfs_b->quota = RUNTIME_INF;
5240 cfs_b->period = ns_to_ktime(default_cfs_period());
5241
5242 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5243 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5244 cfs_b->period_timer.function = sched_cfs_period_timer;
5245 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5246 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5247 cfs_b->slack_started = false;
5248 }
5249
5250 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5251 {
5252 cfs_rq->runtime_enabled = 0;
5253 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5254 }
5255
5256 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5257 {
5258 lockdep_assert_held(&cfs_b->lock);
5259
5260 if (cfs_b->period_active)
5261 return;
5262
5263 cfs_b->period_active = 1;
5264 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5265 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5266 }
5267
5268 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5269 {
5270 /* init_cfs_bandwidth() was not called */
5271 if (!cfs_b->throttled_cfs_rq.next)
5272 return;
5273
5274 hrtimer_cancel(&cfs_b->period_timer);
5275 hrtimer_cancel(&cfs_b->slack_timer);
5276 }
5277
5278 /*
5279 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5280 *
5281 * The race is harmless, since modifying bandwidth settings of unhooked group
5282 * bits doesn't do much.
5283 */
5284
5285 /* cpu online calback */
5286 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5287 {
5288 struct task_group *tg;
5289
5290 lockdep_assert_held(&rq->lock);
5291
5292 rcu_read_lock();
5293 list_for_each_entry_rcu(tg, &task_groups, list) {
5294 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5295 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5296
5297 raw_spin_lock(&cfs_b->lock);
5298 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5299 raw_spin_unlock(&cfs_b->lock);
5300 }
5301 rcu_read_unlock();
5302 }
5303
5304 /* cpu offline callback */
5305 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5306 {
5307 struct task_group *tg;
5308
5309 lockdep_assert_held(&rq->lock);
5310
5311 rcu_read_lock();
5312 list_for_each_entry_rcu(tg, &task_groups, list) {
5313 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5314
5315 if (!cfs_rq->runtime_enabled)
5316 continue;
5317
5318 /*
5319 * clock_task is not advancing so we just need to make sure
5320 * there's some valid quota amount
5321 */
5322 cfs_rq->runtime_remaining = 1;
5323 /*
5324 * Offline rq is schedulable till CPU is completely disabled
5325 * in take_cpu_down(), so we prevent new cfs throttling here.
5326 */
5327 cfs_rq->runtime_enabled = 0;
5328
5329 if (cfs_rq_throttled(cfs_rq))
5330 unthrottle_cfs_rq(cfs_rq);
5331 }
5332 rcu_read_unlock();
5333 }
5334
5335 #else /* CONFIG_CFS_BANDWIDTH */
5336
5337 static inline bool cfs_bandwidth_used(void)
5338 {
5339 return false;
5340 }
5341
5342 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5343 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5344 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5345 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5346 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5347
5348 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5349 {
5350 return 0;
5351 }
5352
5353 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5354 {
5355 return 0;
5356 }
5357
5358 static inline int throttled_lb_pair(struct task_group *tg,
5359 int src_cpu, int dest_cpu)
5360 {
5361 return 0;
5362 }
5363
5364 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5365
5366 #ifdef CONFIG_FAIR_GROUP_SCHED
5367 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5368 #endif
5369
5370 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5371 {
5372 return NULL;
5373 }
5374 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5375 static inline void update_runtime_enabled(struct rq *rq) {}
5376 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5377
5378 #endif /* CONFIG_CFS_BANDWIDTH */
5379
5380 /**************************************************
5381 * CFS operations on tasks:
5382 */
5383
5384 #ifdef CONFIG_SCHED_HRTICK
5385 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5386 {
5387 struct sched_entity *se = &p->se;
5388 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5389
5390 SCHED_WARN_ON(task_rq(p) != rq);
5391
5392 if (rq->cfs.h_nr_running > 1) {
5393 u64 slice = sched_slice(cfs_rq, se);
5394 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5395 s64 delta = slice - ran;
5396
5397 if (delta < 0) {
5398 if (rq->curr == p)
5399 resched_curr(rq);
5400 return;
5401 }
5402 hrtick_start(rq, delta);
5403 }
5404 }
5405
5406 /*
5407 * called from enqueue/dequeue and updates the hrtick when the
5408 * current task is from our class and nr_running is low enough
5409 * to matter.
5410 */
5411 static void hrtick_update(struct rq *rq)
5412 {
5413 struct task_struct *curr = rq->curr;
5414
5415 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5416 return;
5417
5418 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5419 hrtick_start_fair(rq, curr);
5420 }
5421 #else /* !CONFIG_SCHED_HRTICK */
5422 static inline void
5423 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5424 {
5425 }
5426
5427 static inline void hrtick_update(struct rq *rq)
5428 {
5429 }
5430 #endif
5431
5432 #ifdef CONFIG_SMP
5433 static inline unsigned long cpu_util(int cpu);
5434
5435 static inline bool cpu_overutilized(int cpu)
5436 {
5437 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5438 }
5439
5440 static inline void update_overutilized_status(struct rq *rq)
5441 {
5442 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5443 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5444 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5445 }
5446 }
5447 #else
5448 static inline void update_overutilized_status(struct rq *rq) { }
5449 #endif
5450
5451 /* Runqueue only has SCHED_IDLE tasks enqueued */
5452 static int sched_idle_rq(struct rq *rq)
5453 {
5454 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5455 rq->nr_running);
5456 }
5457
5458 #ifdef CONFIG_SMP
5459 static int sched_idle_cpu(int cpu)
5460 {
5461 return sched_idle_rq(cpu_rq(cpu));
5462 }
5463 #endif
5464
5465 /*
5466 * The enqueue_task method is called before nr_running is
5467 * increased. Here we update the fair scheduling stats and
5468 * then put the task into the rbtree:
5469 */
5470 static void
5471 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5472 {
5473 struct cfs_rq *cfs_rq;
5474 struct sched_entity *se = &p->se;
5475 int idle_h_nr_running = task_has_idle_policy(p);
5476
5477 /*
5478 * The code below (indirectly) updates schedutil which looks at
5479 * the cfs_rq utilization to select a frequency.
5480 * Let's add the task's estimated utilization to the cfs_rq's
5481 * estimated utilization, before we update schedutil.
5482 */
5483 util_est_enqueue(&rq->cfs, p);
5484
5485 /*
5486 * If in_iowait is set, the code below may not trigger any cpufreq
5487 * utilization updates, so do it here explicitly with the IOWAIT flag
5488 * passed.
5489 */
5490 if (p->in_iowait)
5491 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5492
5493 for_each_sched_entity(se) {
5494 if (se->on_rq)
5495 break;
5496 cfs_rq = cfs_rq_of(se);
5497 enqueue_entity(cfs_rq, se, flags);
5498
5499 cfs_rq->h_nr_running++;
5500 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5501
5502 /* end evaluation on encountering a throttled cfs_rq */
5503 if (cfs_rq_throttled(cfs_rq))
5504 goto enqueue_throttle;
5505
5506 flags = ENQUEUE_WAKEUP;
5507 }
5508
5509 for_each_sched_entity(se) {
5510 cfs_rq = cfs_rq_of(se);
5511
5512 update_load_avg(cfs_rq, se, UPDATE_TG);
5513 se_update_runnable(se);
5514 update_cfs_group(se);
5515
5516 cfs_rq->h_nr_running++;
5517 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5518
5519 /* end evaluation on encountering a throttled cfs_rq */
5520 if (cfs_rq_throttled(cfs_rq))
5521 goto enqueue_throttle;
5522
5523 /*
5524 * One parent has been throttled and cfs_rq removed from the
5525 * list. Add it back to not break the leaf list.
5526 */
5527 if (throttled_hierarchy(cfs_rq))
5528 list_add_leaf_cfs_rq(cfs_rq);
5529 }
5530
5531 /* At this point se is NULL and we are at root level*/
5532 add_nr_running(rq, 1);
5533
5534 /*
5535 * Since new tasks are assigned an initial util_avg equal to
5536 * half of the spare capacity of their CPU, tiny tasks have the
5537 * ability to cross the overutilized threshold, which will
5538 * result in the load balancer ruining all the task placement
5539 * done by EAS. As a way to mitigate that effect, do not account
5540 * for the first enqueue operation of new tasks during the
5541 * overutilized flag detection.
5542 *
5543 * A better way of solving this problem would be to wait for
5544 * the PELT signals of tasks to converge before taking them
5545 * into account, but that is not straightforward to implement,
5546 * and the following generally works well enough in practice.
5547 */
5548 if (flags & ENQUEUE_WAKEUP)
5549 update_overutilized_status(rq);
5550
5551 enqueue_throttle:
5552 if (cfs_bandwidth_used()) {
5553 /*
5554 * When bandwidth control is enabled; the cfs_rq_throttled()
5555 * breaks in the above iteration can result in incomplete
5556 * leaf list maintenance, resulting in triggering the assertion
5557 * below.
5558 */
5559 for_each_sched_entity(se) {
5560 cfs_rq = cfs_rq_of(se);
5561
5562 if (list_add_leaf_cfs_rq(cfs_rq))
5563 break;
5564 }
5565 }
5566
5567 assert_list_leaf_cfs_rq(rq);
5568
5569 hrtick_update(rq);
5570 }
5571
5572 static void set_next_buddy(struct sched_entity *se);
5573
5574 /*
5575 * The dequeue_task method is called before nr_running is
5576 * decreased. We remove the task from the rbtree and
5577 * update the fair scheduling stats:
5578 */
5579 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5580 {
5581 struct cfs_rq *cfs_rq;
5582 struct sched_entity *se = &p->se;
5583 int task_sleep = flags & DEQUEUE_SLEEP;
5584 int idle_h_nr_running = task_has_idle_policy(p);
5585 bool was_sched_idle = sched_idle_rq(rq);
5586
5587 for_each_sched_entity(se) {
5588 cfs_rq = cfs_rq_of(se);
5589 dequeue_entity(cfs_rq, se, flags);
5590
5591 cfs_rq->h_nr_running--;
5592 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5593
5594 /* end evaluation on encountering a throttled cfs_rq */
5595 if (cfs_rq_throttled(cfs_rq))
5596 goto dequeue_throttle;
5597
5598 /* Don't dequeue parent if it has other entities besides us */
5599 if (cfs_rq->load.weight) {
5600 /* Avoid re-evaluating load for this entity: */
5601 se = parent_entity(se);
5602 /*
5603 * Bias pick_next to pick a task from this cfs_rq, as
5604 * p is sleeping when it is within its sched_slice.
5605 */
5606 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5607 set_next_buddy(se);
5608 break;
5609 }
5610 flags |= DEQUEUE_SLEEP;
5611 }
5612
5613 for_each_sched_entity(se) {
5614 cfs_rq = cfs_rq_of(se);
5615
5616 update_load_avg(cfs_rq, se, UPDATE_TG);
5617 se_update_runnable(se);
5618 update_cfs_group(se);
5619
5620 cfs_rq->h_nr_running--;
5621 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5622
5623 /* end evaluation on encountering a throttled cfs_rq */
5624 if (cfs_rq_throttled(cfs_rq))
5625 goto dequeue_throttle;
5626
5627 }
5628
5629 /* At this point se is NULL and we are at root level*/
5630 sub_nr_running(rq, 1);
5631
5632 /* balance early to pull high priority tasks */
5633 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5634 rq->next_balance = jiffies;
5635
5636 dequeue_throttle:
5637 util_est_dequeue(&rq->cfs, p, task_sleep);
5638 hrtick_update(rq);
5639 }
5640
5641 #ifdef CONFIG_SMP
5642
5643 /* Working cpumask for: load_balance, load_balance_newidle. */
5644 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5645 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5646
5647 #ifdef CONFIG_NO_HZ_COMMON
5648
5649 static struct {
5650 cpumask_var_t idle_cpus_mask;
5651 atomic_t nr_cpus;
5652 int has_blocked; /* Idle CPUS has blocked load */
5653 unsigned long next_balance; /* in jiffy units */
5654 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5655 } nohz ____cacheline_aligned;
5656
5657 #endif /* CONFIG_NO_HZ_COMMON */
5658
5659 static unsigned long cpu_load(struct rq *rq)
5660 {
5661 return cfs_rq_load_avg(&rq->cfs);
5662 }
5663
5664 /*
5665 * cpu_load_without - compute CPU load without any contributions from *p
5666 * @cpu: the CPU which load is requested
5667 * @p: the task which load should be discounted
5668 *
5669 * The load of a CPU is defined by the load of tasks currently enqueued on that
5670 * CPU as well as tasks which are currently sleeping after an execution on that
5671 * CPU.
5672 *
5673 * This method returns the load of the specified CPU by discounting the load of
5674 * the specified task, whenever the task is currently contributing to the CPU
5675 * load.
5676 */
5677 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5678 {
5679 struct cfs_rq *cfs_rq;
5680 unsigned int load;
5681
5682 /* Task has no contribution or is new */
5683 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5684 return cpu_load(rq);
5685
5686 cfs_rq = &rq->cfs;
5687 load = READ_ONCE(cfs_rq->avg.load_avg);
5688
5689 /* Discount task's util from CPU's util */
5690 lsub_positive(&load, task_h_load(p));
5691
5692 return load;
5693 }
5694
5695 static unsigned long cpu_runnable(struct rq *rq)
5696 {
5697 return cfs_rq_runnable_avg(&rq->cfs);
5698 }
5699
5700 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5701 {
5702 struct cfs_rq *cfs_rq;
5703 unsigned int runnable;
5704
5705 /* Task has no contribution or is new */
5706 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5707 return cpu_runnable(rq);
5708
5709 cfs_rq = &rq->cfs;
5710 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5711
5712 /* Discount task's runnable from CPU's runnable */
5713 lsub_positive(&runnable, p->se.avg.runnable_avg);
5714
5715 return runnable;
5716 }
5717
5718 static unsigned long capacity_of(int cpu)
5719 {
5720 return cpu_rq(cpu)->cpu_capacity;
5721 }
5722
5723 static void record_wakee(struct task_struct *p)
5724 {
5725 /*
5726 * Only decay a single time; tasks that have less then 1 wakeup per
5727 * jiffy will not have built up many flips.
5728 */
5729 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5730 current->wakee_flips >>= 1;
5731 current->wakee_flip_decay_ts = jiffies;
5732 }
5733
5734 if (current->last_wakee != p) {
5735 current->last_wakee = p;
5736 current->wakee_flips++;
5737 }
5738 }
5739
5740 /*
5741 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5742 *
5743 * A waker of many should wake a different task than the one last awakened
5744 * at a frequency roughly N times higher than one of its wakees.
5745 *
5746 * In order to determine whether we should let the load spread vs consolidating
5747 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5748 * partner, and a factor of lls_size higher frequency in the other.
5749 *
5750 * With both conditions met, we can be relatively sure that the relationship is
5751 * non-monogamous, with partner count exceeding socket size.
5752 *
5753 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5754 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5755 * socket size.
5756 */
5757 static int wake_wide(struct task_struct *p)
5758 {
5759 unsigned int master = current->wakee_flips;
5760 unsigned int slave = p->wakee_flips;
5761 int factor = __this_cpu_read(sd_llc_size);
5762
5763 if (master < slave)
5764 swap(master, slave);
5765 if (slave < factor || master < slave * factor)
5766 return 0;
5767 return 1;
5768 }
5769
5770 /*
5771 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5772 * soonest. For the purpose of speed we only consider the waking and previous
5773 * CPU.
5774 *
5775 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5776 * cache-affine and is (or will be) idle.
5777 *
5778 * wake_affine_weight() - considers the weight to reflect the average
5779 * scheduling latency of the CPUs. This seems to work
5780 * for the overloaded case.
5781 */
5782 static int
5783 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5784 {
5785 /*
5786 * If this_cpu is idle, it implies the wakeup is from interrupt
5787 * context. Only allow the move if cache is shared. Otherwise an
5788 * interrupt intensive workload could force all tasks onto one
5789 * node depending on the IO topology or IRQ affinity settings.
5790 *
5791 * If the prev_cpu is idle and cache affine then avoid a migration.
5792 * There is no guarantee that the cache hot data from an interrupt
5793 * is more important than cache hot data on the prev_cpu and from
5794 * a cpufreq perspective, it's better to have higher utilisation
5795 * on one CPU.
5796 */
5797 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5798 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5799
5800 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5801 return this_cpu;
5802
5803 return nr_cpumask_bits;
5804 }
5805
5806 static int
5807 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5808 int this_cpu, int prev_cpu, int sync)
5809 {
5810 s64 this_eff_load, prev_eff_load;
5811 unsigned long task_load;
5812
5813 this_eff_load = cpu_load(cpu_rq(this_cpu));
5814
5815 if (sync) {
5816 unsigned long current_load = task_h_load(current);
5817
5818 if (current_load > this_eff_load)
5819 return this_cpu;
5820
5821 this_eff_load -= current_load;
5822 }
5823
5824 task_load = task_h_load(p);
5825
5826 this_eff_load += task_load;
5827 if (sched_feat(WA_BIAS))
5828 this_eff_load *= 100;
5829 this_eff_load *= capacity_of(prev_cpu);
5830
5831 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5832 prev_eff_load -= task_load;
5833 if (sched_feat(WA_BIAS))
5834 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5835 prev_eff_load *= capacity_of(this_cpu);
5836
5837 /*
5838 * If sync, adjust the weight of prev_eff_load such that if
5839 * prev_eff == this_eff that select_idle_sibling() will consider
5840 * stacking the wakee on top of the waker if no other CPU is
5841 * idle.
5842 */
5843 if (sync)
5844 prev_eff_load += 1;
5845
5846 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5847 }
5848
5849 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5850 int this_cpu, int prev_cpu, int sync)
5851 {
5852 int target = nr_cpumask_bits;
5853
5854 if (sched_feat(WA_IDLE))
5855 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5856
5857 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5858 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5859
5860 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5861 if (target == nr_cpumask_bits)
5862 return prev_cpu;
5863
5864 schedstat_inc(sd->ttwu_move_affine);
5865 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5866 return target;
5867 }
5868
5869 static struct sched_group *
5870 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5871
5872 /*
5873 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5874 */
5875 static int
5876 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5877 {
5878 unsigned long load, min_load = ULONG_MAX;
5879 unsigned int min_exit_latency = UINT_MAX;
5880 u64 latest_idle_timestamp = 0;
5881 int least_loaded_cpu = this_cpu;
5882 int shallowest_idle_cpu = -1;
5883 int i;
5884
5885 /* Check if we have any choice: */
5886 if (group->group_weight == 1)
5887 return cpumask_first(sched_group_span(group));
5888
5889 /* Traverse only the allowed CPUs */
5890 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5891 if (sched_idle_cpu(i))
5892 return i;
5893
5894 if (available_idle_cpu(i)) {
5895 struct rq *rq = cpu_rq(i);
5896 struct cpuidle_state *idle = idle_get_state(rq);
5897 if (idle && idle->exit_latency < min_exit_latency) {
5898 /*
5899 * We give priority to a CPU whose idle state
5900 * has the smallest exit latency irrespective
5901 * of any idle timestamp.
5902 */
5903 min_exit_latency = idle->exit_latency;
5904 latest_idle_timestamp = rq->idle_stamp;
5905 shallowest_idle_cpu = i;
5906 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5907 rq->idle_stamp > latest_idle_timestamp) {
5908 /*
5909 * If equal or no active idle state, then
5910 * the most recently idled CPU might have
5911 * a warmer cache.
5912 */
5913 latest_idle_timestamp = rq->idle_stamp;
5914 shallowest_idle_cpu = i;
5915 }
5916 } else if (shallowest_idle_cpu == -1) {
5917 load = cpu_load(cpu_rq(i));
5918 if (load < min_load) {
5919 min_load = load;
5920 least_loaded_cpu = i;
5921 }
5922 }
5923 }
5924
5925 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5926 }
5927
5928 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5929 int cpu, int prev_cpu, int sd_flag)
5930 {
5931 int new_cpu = cpu;
5932
5933 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5934 return prev_cpu;
5935
5936 /*
5937 * We need task's util for cpu_util_without, sync it up to
5938 * prev_cpu's last_update_time.
5939 */
5940 if (!(sd_flag & SD_BALANCE_FORK))
5941 sync_entity_load_avg(&p->se);
5942
5943 while (sd) {
5944 struct sched_group *group;
5945 struct sched_domain *tmp;
5946 int weight;
5947
5948 if (!(sd->flags & sd_flag)) {
5949 sd = sd->child;
5950 continue;
5951 }
5952
5953 group = find_idlest_group(sd, p, cpu);
5954 if (!group) {
5955 sd = sd->child;
5956 continue;
5957 }
5958
5959 new_cpu = find_idlest_group_cpu(group, p, cpu);
5960 if (new_cpu == cpu) {
5961 /* Now try balancing at a lower domain level of 'cpu': */
5962 sd = sd->child;
5963 continue;
5964 }
5965
5966 /* Now try balancing at a lower domain level of 'new_cpu': */
5967 cpu = new_cpu;
5968 weight = sd->span_weight;
5969 sd = NULL;
5970 for_each_domain(cpu, tmp) {
5971 if (weight <= tmp->span_weight)
5972 break;
5973 if (tmp->flags & sd_flag)
5974 sd = tmp;
5975 }
5976 }
5977
5978 return new_cpu;
5979 }
5980
5981 #ifdef CONFIG_SCHED_SMT
5982 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5983 EXPORT_SYMBOL_GPL(sched_smt_present);
5984
5985 static inline void set_idle_cores(int cpu, int val)
5986 {
5987 struct sched_domain_shared *sds;
5988
5989 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5990 if (sds)
5991 WRITE_ONCE(sds->has_idle_cores, val);
5992 }
5993
5994 static inline bool test_idle_cores(int cpu, bool def)
5995 {
5996 struct sched_domain_shared *sds;
5997
5998 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5999 if (sds)
6000 return READ_ONCE(sds->has_idle_cores);
6001
6002 return def;
6003 }
6004
6005 /*
6006 * Scans the local SMT mask to see if the entire core is idle, and records this
6007 * information in sd_llc_shared->has_idle_cores.
6008 *
6009 * Since SMT siblings share all cache levels, inspecting this limited remote
6010 * state should be fairly cheap.
6011 */
6012 void __update_idle_core(struct rq *rq)
6013 {
6014 int core = cpu_of(rq);
6015 int cpu;
6016
6017 rcu_read_lock();
6018 if (test_idle_cores(core, true))
6019 goto unlock;
6020
6021 for_each_cpu(cpu, cpu_smt_mask(core)) {
6022 if (cpu == core)
6023 continue;
6024
6025 if (!available_idle_cpu(cpu))
6026 goto unlock;
6027 }
6028
6029 set_idle_cores(core, 1);
6030 unlock:
6031 rcu_read_unlock();
6032 }
6033
6034 /*
6035 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6036 * there are no idle cores left in the system; tracked through
6037 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6038 */
6039 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6040 {
6041 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6042 int core, cpu;
6043
6044 if (!static_branch_likely(&sched_smt_present))
6045 return -1;
6046
6047 if (!test_idle_cores(target, false))
6048 return -1;
6049
6050 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6051
6052 for_each_cpu_wrap(core, cpus, target) {
6053 bool idle = true;
6054
6055 for_each_cpu(cpu, cpu_smt_mask(core)) {
6056 if (!available_idle_cpu(cpu)) {
6057 idle = false;
6058 break;
6059 }
6060 }
6061 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6062
6063 if (idle)
6064 return core;
6065 }
6066
6067 /*
6068 * Failed to find an idle core; stop looking for one.
6069 */
6070 set_idle_cores(target, 0);
6071
6072 return -1;
6073 }
6074
6075 /*
6076 * Scan the local SMT mask for idle CPUs.
6077 */
6078 static int select_idle_smt(struct task_struct *p, int target)
6079 {
6080 int cpu;
6081
6082 if (!static_branch_likely(&sched_smt_present))
6083 return -1;
6084
6085 for_each_cpu(cpu, cpu_smt_mask(target)) {
6086 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6087 continue;
6088 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6089 return cpu;
6090 }
6091
6092 return -1;
6093 }
6094
6095 #else /* CONFIG_SCHED_SMT */
6096
6097 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6098 {
6099 return -1;
6100 }
6101
6102 static inline int select_idle_smt(struct task_struct *p, int target)
6103 {
6104 return -1;
6105 }
6106
6107 #endif /* CONFIG_SCHED_SMT */
6108
6109 /*
6110 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6111 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6112 * average idle time for this rq (as found in rq->avg_idle).
6113 */
6114 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6115 {
6116 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6117 struct sched_domain *this_sd;
6118 u64 avg_cost, avg_idle;
6119 u64 time;
6120 int this = smp_processor_id();
6121 int cpu, nr = INT_MAX;
6122
6123 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6124 if (!this_sd)
6125 return -1;
6126
6127 /*
6128 * Due to large variance we need a large fuzz factor; hackbench in
6129 * particularly is sensitive here.
6130 */
6131 avg_idle = this_rq()->avg_idle / 512;
6132 avg_cost = this_sd->avg_scan_cost + 1;
6133
6134 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6135 return -1;
6136
6137 if (sched_feat(SIS_PROP)) {
6138 u64 span_avg = sd->span_weight * avg_idle;
6139 if (span_avg > 4*avg_cost)
6140 nr = div_u64(span_avg, avg_cost);
6141 else
6142 nr = 4;
6143 }
6144
6145 time = cpu_clock(this);
6146
6147 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6148
6149 for_each_cpu_wrap(cpu, cpus, target) {
6150 if (!--nr)
6151 return -1;
6152 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6153 break;
6154 }
6155
6156 time = cpu_clock(this) - time;
6157 update_avg(&this_sd->avg_scan_cost, time);
6158
6159 return cpu;
6160 }
6161
6162 /*
6163 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6164 * the task fits. If no CPU is big enough, but there are idle ones, try to
6165 * maximize capacity.
6166 */
6167 static int
6168 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6169 {
6170 unsigned long best_cap = 0;
6171 int cpu, best_cpu = -1;
6172 struct cpumask *cpus;
6173
6174 sync_entity_load_avg(&p->se);
6175
6176 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6177 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6178
6179 for_each_cpu_wrap(cpu, cpus, target) {
6180 unsigned long cpu_cap = capacity_of(cpu);
6181
6182 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6183 continue;
6184 if (task_fits_capacity(p, cpu_cap))
6185 return cpu;
6186
6187 if (cpu_cap > best_cap) {
6188 best_cap = cpu_cap;
6189 best_cpu = cpu;
6190 }
6191 }
6192
6193 return best_cpu;
6194 }
6195
6196 /*
6197 * Try and locate an idle core/thread in the LLC cache domain.
6198 */
6199 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6200 {
6201 struct sched_domain *sd;
6202 int i, recent_used_cpu;
6203
6204 /*
6205 * For asymmetric CPU capacity systems, our domain of interest is
6206 * sd_asym_cpucapacity rather than sd_llc.
6207 */
6208 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6209 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6210 /*
6211 * On an asymmetric CPU capacity system where an exclusive
6212 * cpuset defines a symmetric island (i.e. one unique
6213 * capacity_orig value through the cpuset), the key will be set
6214 * but the CPUs within that cpuset will not have a domain with
6215 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6216 * capacity path.
6217 */
6218 if (!sd)
6219 goto symmetric;
6220
6221 i = select_idle_capacity(p, sd, target);
6222 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6223 }
6224
6225 symmetric:
6226 if (available_idle_cpu(target) || sched_idle_cpu(target))
6227 return target;
6228
6229 /*
6230 * If the previous CPU is cache affine and idle, don't be stupid:
6231 */
6232 if (prev != target && cpus_share_cache(prev, target) &&
6233 (available_idle_cpu(prev) || sched_idle_cpu(prev)))
6234 return prev;
6235
6236 /*
6237 * Allow a per-cpu kthread to stack with the wakee if the
6238 * kworker thread and the tasks previous CPUs are the same.
6239 * The assumption is that the wakee queued work for the
6240 * per-cpu kthread that is now complete and the wakeup is
6241 * essentially a sync wakeup. An obvious example of this
6242 * pattern is IO completions.
6243 */
6244 if (is_per_cpu_kthread(current) &&
6245 prev == smp_processor_id() &&
6246 this_rq()->nr_running <= 1) {
6247 return prev;
6248 }
6249
6250 /* Check a recently used CPU as a potential idle candidate: */
6251 recent_used_cpu = p->recent_used_cpu;
6252 if (recent_used_cpu != prev &&
6253 recent_used_cpu != target &&
6254 cpus_share_cache(recent_used_cpu, target) &&
6255 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6256 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
6257 /*
6258 * Replace recent_used_cpu with prev as it is a potential
6259 * candidate for the next wake:
6260 */
6261 p->recent_used_cpu = prev;
6262 return recent_used_cpu;
6263 }
6264
6265 sd = rcu_dereference(per_cpu(sd_llc, target));
6266 if (!sd)
6267 return target;
6268
6269 i = select_idle_core(p, sd, target);
6270 if ((unsigned)i < nr_cpumask_bits)
6271 return i;
6272
6273 i = select_idle_cpu(p, sd, target);
6274 if ((unsigned)i < nr_cpumask_bits)
6275 return i;
6276
6277 i = select_idle_smt(p, target);
6278 if ((unsigned)i < nr_cpumask_bits)
6279 return i;
6280
6281 return target;
6282 }
6283
6284 /**
6285 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6286 * @cpu: the CPU to get the utilization of
6287 *
6288 * The unit of the return value must be the one of capacity so we can compare
6289 * the utilization with the capacity of the CPU that is available for CFS task
6290 * (ie cpu_capacity).
6291 *
6292 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6293 * recent utilization of currently non-runnable tasks on a CPU. It represents
6294 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6295 * capacity_orig is the cpu_capacity available at the highest frequency
6296 * (arch_scale_freq_capacity()).
6297 * The utilization of a CPU converges towards a sum equal to or less than the
6298 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6299 * the running time on this CPU scaled by capacity_curr.
6300 *
6301 * The estimated utilization of a CPU is defined to be the maximum between its
6302 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6303 * currently RUNNABLE on that CPU.
6304 * This allows to properly represent the expected utilization of a CPU which
6305 * has just got a big task running since a long sleep period. At the same time
6306 * however it preserves the benefits of the "blocked utilization" in
6307 * describing the potential for other tasks waking up on the same CPU.
6308 *
6309 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6310 * higher than capacity_orig because of unfortunate rounding in
6311 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6312 * the average stabilizes with the new running time. We need to check that the
6313 * utilization stays within the range of [0..capacity_orig] and cap it if
6314 * necessary. Without utilization capping, a group could be seen as overloaded
6315 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6316 * available capacity. We allow utilization to overshoot capacity_curr (but not
6317 * capacity_orig) as it useful for predicting the capacity required after task
6318 * migrations (scheduler-driven DVFS).
6319 *
6320 * Return: the (estimated) utilization for the specified CPU
6321 */
6322 static inline unsigned long cpu_util(int cpu)
6323 {
6324 struct cfs_rq *cfs_rq;
6325 unsigned int util;
6326
6327 cfs_rq = &cpu_rq(cpu)->cfs;
6328 util = READ_ONCE(cfs_rq->avg.util_avg);
6329
6330 if (sched_feat(UTIL_EST))
6331 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6332
6333 return min_t(unsigned long, util, capacity_orig_of(cpu));
6334 }
6335
6336 /*
6337 * cpu_util_without: compute cpu utilization without any contributions from *p
6338 * @cpu: the CPU which utilization is requested
6339 * @p: the task which utilization should be discounted
6340 *
6341 * The utilization of a CPU is defined by the utilization of tasks currently
6342 * enqueued on that CPU as well as tasks which are currently sleeping after an
6343 * execution on that CPU.
6344 *
6345 * This method returns the utilization of the specified CPU by discounting the
6346 * utilization of the specified task, whenever the task is currently
6347 * contributing to the CPU utilization.
6348 */
6349 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6350 {
6351 struct cfs_rq *cfs_rq;
6352 unsigned int util;
6353
6354 /* Task has no contribution or is new */
6355 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6356 return cpu_util(cpu);
6357
6358 cfs_rq = &cpu_rq(cpu)->cfs;
6359 util = READ_ONCE(cfs_rq->avg.util_avg);
6360
6361 /* Discount task's util from CPU's util */
6362 lsub_positive(&util, task_util(p));
6363
6364 /*
6365 * Covered cases:
6366 *
6367 * a) if *p is the only task sleeping on this CPU, then:
6368 * cpu_util (== task_util) > util_est (== 0)
6369 * and thus we return:
6370 * cpu_util_without = (cpu_util - task_util) = 0
6371 *
6372 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6373 * IDLE, then:
6374 * cpu_util >= task_util
6375 * cpu_util > util_est (== 0)
6376 * and thus we discount *p's blocked utilization to return:
6377 * cpu_util_without = (cpu_util - task_util) >= 0
6378 *
6379 * c) if other tasks are RUNNABLE on that CPU and
6380 * util_est > cpu_util
6381 * then we use util_est since it returns a more restrictive
6382 * estimation of the spare capacity on that CPU, by just
6383 * considering the expected utilization of tasks already
6384 * runnable on that CPU.
6385 *
6386 * Cases a) and b) are covered by the above code, while case c) is
6387 * covered by the following code when estimated utilization is
6388 * enabled.
6389 */
6390 if (sched_feat(UTIL_EST)) {
6391 unsigned int estimated =
6392 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6393
6394 /*
6395 * Despite the following checks we still have a small window
6396 * for a possible race, when an execl's select_task_rq_fair()
6397 * races with LB's detach_task():
6398 *
6399 * detach_task()
6400 * p->on_rq = TASK_ON_RQ_MIGRATING;
6401 * ---------------------------------- A
6402 * deactivate_task() \
6403 * dequeue_task() + RaceTime
6404 * util_est_dequeue() /
6405 * ---------------------------------- B
6406 *
6407 * The additional check on "current == p" it's required to
6408 * properly fix the execl regression and it helps in further
6409 * reducing the chances for the above race.
6410 */
6411 if (unlikely(task_on_rq_queued(p) || current == p))
6412 lsub_positive(&estimated, _task_util_est(p));
6413
6414 util = max(util, estimated);
6415 }
6416
6417 /*
6418 * Utilization (estimated) can exceed the CPU capacity, thus let's
6419 * clamp to the maximum CPU capacity to ensure consistency with
6420 * the cpu_util call.
6421 */
6422 return min_t(unsigned long, util, capacity_orig_of(cpu));
6423 }
6424
6425 /*
6426 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6427 * to @dst_cpu.
6428 */
6429 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6430 {
6431 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6432 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6433
6434 /*
6435 * If @p migrates from @cpu to another, remove its contribution. Or,
6436 * if @p migrates from another CPU to @cpu, add its contribution. In
6437 * the other cases, @cpu is not impacted by the migration, so the
6438 * util_avg should already be correct.
6439 */
6440 if (task_cpu(p) == cpu && dst_cpu != cpu)
6441 sub_positive(&util, task_util(p));
6442 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6443 util += task_util(p);
6444
6445 if (sched_feat(UTIL_EST)) {
6446 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6447
6448 /*
6449 * During wake-up, the task isn't enqueued yet and doesn't
6450 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6451 * so just add it (if needed) to "simulate" what will be
6452 * cpu_util() after the task has been enqueued.
6453 */
6454 if (dst_cpu == cpu)
6455 util_est += _task_util_est(p);
6456
6457 util = max(util, util_est);
6458 }
6459
6460 return min(util, capacity_orig_of(cpu));
6461 }
6462
6463 /*
6464 * compute_energy(): Estimates the energy that @pd would consume if @p was
6465 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6466 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6467 * to compute what would be the energy if we decided to actually migrate that
6468 * task.
6469 */
6470 static long
6471 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6472 {
6473 struct cpumask *pd_mask = perf_domain_span(pd);
6474 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6475 unsigned long max_util = 0, sum_util = 0;
6476 int cpu;
6477
6478 /*
6479 * The capacity state of CPUs of the current rd can be driven by CPUs
6480 * of another rd if they belong to the same pd. So, account for the
6481 * utilization of these CPUs too by masking pd with cpu_online_mask
6482 * instead of the rd span.
6483 *
6484 * If an entire pd is outside of the current rd, it will not appear in
6485 * its pd list and will not be accounted by compute_energy().
6486 */
6487 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6488 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6489 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6490
6491 /*
6492 * Busy time computation: utilization clamping is not
6493 * required since the ratio (sum_util / cpu_capacity)
6494 * is already enough to scale the EM reported power
6495 * consumption at the (eventually clamped) cpu_capacity.
6496 */
6497 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6498 ENERGY_UTIL, NULL);
6499
6500 /*
6501 * Performance domain frequency: utilization clamping
6502 * must be considered since it affects the selection
6503 * of the performance domain frequency.
6504 * NOTE: in case RT tasks are running, by default the
6505 * FREQUENCY_UTIL's utilization can be max OPP.
6506 */
6507 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6508 FREQUENCY_UTIL, tsk);
6509 max_util = max(max_util, cpu_util);
6510 }
6511
6512 return em_cpu_energy(pd->em_pd, max_util, sum_util);
6513 }
6514
6515 /*
6516 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6517 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6518 * spare capacity in each performance domain and uses it as a potential
6519 * candidate to execute the task. Then, it uses the Energy Model to figure
6520 * out which of the CPU candidates is the most energy-efficient.
6521 *
6522 * The rationale for this heuristic is as follows. In a performance domain,
6523 * all the most energy efficient CPU candidates (according to the Energy
6524 * Model) are those for which we'll request a low frequency. When there are
6525 * several CPUs for which the frequency request will be the same, we don't
6526 * have enough data to break the tie between them, because the Energy Model
6527 * only includes active power costs. With this model, if we assume that
6528 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6529 * the maximum spare capacity in a performance domain is guaranteed to be among
6530 * the best candidates of the performance domain.
6531 *
6532 * In practice, it could be preferable from an energy standpoint to pack
6533 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6534 * but that could also hurt our chances to go cluster idle, and we have no
6535 * ways to tell with the current Energy Model if this is actually a good
6536 * idea or not. So, find_energy_efficient_cpu() basically favors
6537 * cluster-packing, and spreading inside a cluster. That should at least be
6538 * a good thing for latency, and this is consistent with the idea that most
6539 * of the energy savings of EAS come from the asymmetry of the system, and
6540 * not so much from breaking the tie between identical CPUs. That's also the
6541 * reason why EAS is enabled in the topology code only for systems where
6542 * SD_ASYM_CPUCAPACITY is set.
6543 *
6544 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6545 * they don't have any useful utilization data yet and it's not possible to
6546 * forecast their impact on energy consumption. Consequently, they will be
6547 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6548 * to be energy-inefficient in some use-cases. The alternative would be to
6549 * bias new tasks towards specific types of CPUs first, or to try to infer
6550 * their util_avg from the parent task, but those heuristics could hurt
6551 * other use-cases too. So, until someone finds a better way to solve this,
6552 * let's keep things simple by re-using the existing slow path.
6553 */
6554 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6555 {
6556 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6557 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6558 unsigned long cpu_cap, util, base_energy = 0;
6559 int cpu, best_energy_cpu = prev_cpu;
6560 struct sched_domain *sd;
6561 struct perf_domain *pd;
6562
6563 rcu_read_lock();
6564 pd = rcu_dereference(rd->pd);
6565 if (!pd || READ_ONCE(rd->overutilized))
6566 goto fail;
6567
6568 /*
6569 * Energy-aware wake-up happens on the lowest sched_domain starting
6570 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6571 */
6572 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6573 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6574 sd = sd->parent;
6575 if (!sd)
6576 goto fail;
6577
6578 sync_entity_load_avg(&p->se);
6579 if (!task_util_est(p))
6580 goto unlock;
6581
6582 for (; pd; pd = pd->next) {
6583 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6584 unsigned long base_energy_pd;
6585 int max_spare_cap_cpu = -1;
6586
6587 /* Compute the 'base' energy of the pd, without @p */
6588 base_energy_pd = compute_energy(p, -1, pd);
6589 base_energy += base_energy_pd;
6590
6591 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6592 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6593 continue;
6594
6595 util = cpu_util_next(cpu, p, cpu);
6596 cpu_cap = capacity_of(cpu);
6597 spare_cap = cpu_cap - util;
6598
6599 /*
6600 * Skip CPUs that cannot satisfy the capacity request.
6601 * IOW, placing the task there would make the CPU
6602 * overutilized. Take uclamp into account to see how
6603 * much capacity we can get out of the CPU; this is
6604 * aligned with schedutil_cpu_util().
6605 */
6606 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6607 if (!fits_capacity(util, cpu_cap))
6608 continue;
6609
6610 /* Always use prev_cpu as a candidate. */
6611 if (cpu == prev_cpu) {
6612 prev_delta = compute_energy(p, prev_cpu, pd);
6613 prev_delta -= base_energy_pd;
6614 best_delta = min(best_delta, prev_delta);
6615 }
6616
6617 /*
6618 * Find the CPU with the maximum spare capacity in
6619 * the performance domain
6620 */
6621 if (spare_cap > max_spare_cap) {
6622 max_spare_cap = spare_cap;
6623 max_spare_cap_cpu = cpu;
6624 }
6625 }
6626
6627 /* Evaluate the energy impact of using this CPU. */
6628 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6629 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6630 cur_delta -= base_energy_pd;
6631 if (cur_delta < best_delta) {
6632 best_delta = cur_delta;
6633 best_energy_cpu = max_spare_cap_cpu;
6634 }
6635 }
6636 }
6637 unlock:
6638 rcu_read_unlock();
6639
6640 /*
6641 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6642 * least 6% of the energy used by prev_cpu.
6643 */
6644 if (prev_delta == ULONG_MAX)
6645 return best_energy_cpu;
6646
6647 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6648 return best_energy_cpu;
6649
6650 return prev_cpu;
6651
6652 fail:
6653 rcu_read_unlock();
6654
6655 return -1;
6656 }
6657
6658 /*
6659 * select_task_rq_fair: Select target runqueue for the waking task in domains
6660 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6661 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6662 *
6663 * Balances load by selecting the idlest CPU in the idlest group, or under
6664 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6665 *
6666 * Returns the target CPU number.
6667 *
6668 * preempt must be disabled.
6669 */
6670 static int
6671 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6672 {
6673 struct sched_domain *tmp, *sd = NULL;
6674 int cpu = smp_processor_id();
6675 int new_cpu = prev_cpu;
6676 int want_affine = 0;
6677 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6678
6679 if (sd_flag & SD_BALANCE_WAKE) {
6680 record_wakee(p);
6681
6682 if (sched_energy_enabled()) {
6683 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6684 if (new_cpu >= 0)
6685 return new_cpu;
6686 new_cpu = prev_cpu;
6687 }
6688
6689 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6690 }
6691
6692 rcu_read_lock();
6693 for_each_domain(cpu, tmp) {
6694 /*
6695 * If both 'cpu' and 'prev_cpu' are part of this domain,
6696 * cpu is a valid SD_WAKE_AFFINE target.
6697 */
6698 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6699 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6700 if (cpu != prev_cpu)
6701 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6702
6703 sd = NULL; /* Prefer wake_affine over balance flags */
6704 break;
6705 }
6706
6707 if (tmp->flags & sd_flag)
6708 sd = tmp;
6709 else if (!want_affine)
6710 break;
6711 }
6712
6713 if (unlikely(sd)) {
6714 /* Slow path */
6715 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6716 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6717 /* Fast path */
6718
6719 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6720
6721 if (want_affine)
6722 current->recent_used_cpu = cpu;
6723 }
6724 rcu_read_unlock();
6725
6726 return new_cpu;
6727 }
6728
6729 static void detach_entity_cfs_rq(struct sched_entity *se);
6730
6731 /*
6732 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6733 * cfs_rq_of(p) references at time of call are still valid and identify the
6734 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6735 */
6736 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6737 {
6738 /*
6739 * As blocked tasks retain absolute vruntime the migration needs to
6740 * deal with this by subtracting the old and adding the new
6741 * min_vruntime -- the latter is done by enqueue_entity() when placing
6742 * the task on the new runqueue.
6743 */
6744 if (p->state == TASK_WAKING) {
6745 struct sched_entity *se = &p->se;
6746 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6747 u64 min_vruntime;
6748
6749 #ifndef CONFIG_64BIT
6750 u64 min_vruntime_copy;
6751
6752 do {
6753 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6754 smp_rmb();
6755 min_vruntime = cfs_rq->min_vruntime;
6756 } while (min_vruntime != min_vruntime_copy);
6757 #else
6758 min_vruntime = cfs_rq->min_vruntime;
6759 #endif
6760
6761 se->vruntime -= min_vruntime;
6762 }
6763
6764 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6765 /*
6766 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6767 * rq->lock and can modify state directly.
6768 */
6769 lockdep_assert_held(&task_rq(p)->lock);
6770 detach_entity_cfs_rq(&p->se);
6771
6772 } else {
6773 /*
6774 * We are supposed to update the task to "current" time, then
6775 * its up to date and ready to go to new CPU/cfs_rq. But we
6776 * have difficulty in getting what current time is, so simply
6777 * throw away the out-of-date time. This will result in the
6778 * wakee task is less decayed, but giving the wakee more load
6779 * sounds not bad.
6780 */
6781 remove_entity_load_avg(&p->se);
6782 }
6783
6784 /* Tell new CPU we are migrated */
6785 p->se.avg.last_update_time = 0;
6786
6787 /* We have migrated, no longer consider this task hot */
6788 p->se.exec_start = 0;
6789
6790 update_scan_period(p, new_cpu);
6791 }
6792
6793 static void task_dead_fair(struct task_struct *p)
6794 {
6795 remove_entity_load_avg(&p->se);
6796 }
6797
6798 static int
6799 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6800 {
6801 if (rq->nr_running)
6802 return 1;
6803
6804 return newidle_balance(rq, rf) != 0;
6805 }
6806 #endif /* CONFIG_SMP */
6807
6808 static unsigned long wakeup_gran(struct sched_entity *se)
6809 {
6810 unsigned long gran = sysctl_sched_wakeup_granularity;
6811
6812 /*
6813 * Since its curr running now, convert the gran from real-time
6814 * to virtual-time in his units.
6815 *
6816 * By using 'se' instead of 'curr' we penalize light tasks, so
6817 * they get preempted easier. That is, if 'se' < 'curr' then
6818 * the resulting gran will be larger, therefore penalizing the
6819 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6820 * be smaller, again penalizing the lighter task.
6821 *
6822 * This is especially important for buddies when the leftmost
6823 * task is higher priority than the buddy.
6824 */
6825 return calc_delta_fair(gran, se);
6826 }
6827
6828 /*
6829 * Should 'se' preempt 'curr'.
6830 *
6831 * |s1
6832 * |s2
6833 * |s3
6834 * g
6835 * |<--->|c
6836 *
6837 * w(c, s1) = -1
6838 * w(c, s2) = 0
6839 * w(c, s3) = 1
6840 *
6841 */
6842 static int
6843 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6844 {
6845 s64 gran, vdiff = curr->vruntime - se->vruntime;
6846
6847 if (vdiff <= 0)
6848 return -1;
6849
6850 gran = wakeup_gran(se);
6851 if (vdiff > gran)
6852 return 1;
6853
6854 return 0;
6855 }
6856
6857 static void set_last_buddy(struct sched_entity *se)
6858 {
6859 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6860 return;
6861
6862 for_each_sched_entity(se) {
6863 if (SCHED_WARN_ON(!se->on_rq))
6864 return;
6865 cfs_rq_of(se)->last = se;
6866 }
6867 }
6868
6869 static void set_next_buddy(struct sched_entity *se)
6870 {
6871 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6872 return;
6873
6874 for_each_sched_entity(se) {
6875 if (SCHED_WARN_ON(!se->on_rq))
6876 return;
6877 cfs_rq_of(se)->next = se;
6878 }
6879 }
6880
6881 static void set_skip_buddy(struct sched_entity *se)
6882 {
6883 for_each_sched_entity(se)
6884 cfs_rq_of(se)->skip = se;
6885 }
6886
6887 /*
6888 * Preempt the current task with a newly woken task if needed:
6889 */
6890 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6891 {
6892 struct task_struct *curr = rq->curr;
6893 struct sched_entity *se = &curr->se, *pse = &p->se;
6894 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6895 int scale = cfs_rq->nr_running >= sched_nr_latency;
6896 int next_buddy_marked = 0;
6897
6898 if (unlikely(se == pse))
6899 return;
6900
6901 /*
6902 * This is possible from callers such as attach_tasks(), in which we
6903 * unconditionally check_prempt_curr() after an enqueue (which may have
6904 * lead to a throttle). This both saves work and prevents false
6905 * next-buddy nomination below.
6906 */
6907 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6908 return;
6909
6910 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6911 set_next_buddy(pse);
6912 next_buddy_marked = 1;
6913 }
6914
6915 /*
6916 * We can come here with TIF_NEED_RESCHED already set from new task
6917 * wake up path.
6918 *
6919 * Note: this also catches the edge-case of curr being in a throttled
6920 * group (e.g. via set_curr_task), since update_curr() (in the
6921 * enqueue of curr) will have resulted in resched being set. This
6922 * prevents us from potentially nominating it as a false LAST_BUDDY
6923 * below.
6924 */
6925 if (test_tsk_need_resched(curr))
6926 return;
6927
6928 /* Idle tasks are by definition preempted by non-idle tasks. */
6929 if (unlikely(task_has_idle_policy(curr)) &&
6930 likely(!task_has_idle_policy(p)))
6931 goto preempt;
6932
6933 /*
6934 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6935 * is driven by the tick):
6936 */
6937 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6938 return;
6939
6940 find_matching_se(&se, &pse);
6941 update_curr(cfs_rq_of(se));
6942 BUG_ON(!pse);
6943 if (wakeup_preempt_entity(se, pse) == 1) {
6944 /*
6945 * Bias pick_next to pick the sched entity that is
6946 * triggering this preemption.
6947 */
6948 if (!next_buddy_marked)
6949 set_next_buddy(pse);
6950 goto preempt;
6951 }
6952
6953 return;
6954
6955 preempt:
6956 resched_curr(rq);
6957 /*
6958 * Only set the backward buddy when the current task is still
6959 * on the rq. This can happen when a wakeup gets interleaved
6960 * with schedule on the ->pre_schedule() or idle_balance()
6961 * point, either of which can * drop the rq lock.
6962 *
6963 * Also, during early boot the idle thread is in the fair class,
6964 * for obvious reasons its a bad idea to schedule back to it.
6965 */
6966 if (unlikely(!se->on_rq || curr == rq->idle))
6967 return;
6968
6969 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6970 set_last_buddy(se);
6971 }
6972
6973 struct task_struct *
6974 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6975 {
6976 struct cfs_rq *cfs_rq = &rq->cfs;
6977 struct sched_entity *se;
6978 struct task_struct *p;
6979 int new_tasks;
6980
6981 again:
6982 if (!sched_fair_runnable(rq))
6983 goto idle;
6984
6985 #ifdef CONFIG_FAIR_GROUP_SCHED
6986 if (!prev || prev->sched_class != &fair_sched_class)
6987 goto simple;
6988
6989 /*
6990 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6991 * likely that a next task is from the same cgroup as the current.
6992 *
6993 * Therefore attempt to avoid putting and setting the entire cgroup
6994 * hierarchy, only change the part that actually changes.
6995 */
6996
6997 do {
6998 struct sched_entity *curr = cfs_rq->curr;
6999
7000 /*
7001 * Since we got here without doing put_prev_entity() we also
7002 * have to consider cfs_rq->curr. If it is still a runnable
7003 * entity, update_curr() will update its vruntime, otherwise
7004 * forget we've ever seen it.
7005 */
7006 if (curr) {
7007 if (curr->on_rq)
7008 update_curr(cfs_rq);
7009 else
7010 curr = NULL;
7011
7012 /*
7013 * This call to check_cfs_rq_runtime() will do the
7014 * throttle and dequeue its entity in the parent(s).
7015 * Therefore the nr_running test will indeed
7016 * be correct.
7017 */
7018 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7019 cfs_rq = &rq->cfs;
7020
7021 if (!cfs_rq->nr_running)
7022 goto idle;
7023
7024 goto simple;
7025 }
7026 }
7027
7028 se = pick_next_entity(cfs_rq, curr);
7029 cfs_rq = group_cfs_rq(se);
7030 } while (cfs_rq);
7031
7032 p = task_of(se);
7033
7034 /*
7035 * Since we haven't yet done put_prev_entity and if the selected task
7036 * is a different task than we started out with, try and touch the
7037 * least amount of cfs_rqs.
7038 */
7039 if (prev != p) {
7040 struct sched_entity *pse = &prev->se;
7041
7042 while (!(cfs_rq = is_same_group(se, pse))) {
7043 int se_depth = se->depth;
7044 int pse_depth = pse->depth;
7045
7046 if (se_depth <= pse_depth) {
7047 put_prev_entity(cfs_rq_of(pse), pse);
7048 pse = parent_entity(pse);
7049 }
7050 if (se_depth >= pse_depth) {
7051 set_next_entity(cfs_rq_of(se), se);
7052 se = parent_entity(se);
7053 }
7054 }
7055
7056 put_prev_entity(cfs_rq, pse);
7057 set_next_entity(cfs_rq, se);
7058 }
7059
7060 goto done;
7061 simple:
7062 #endif
7063 if (prev)
7064 put_prev_task(rq, prev);
7065
7066 do {
7067 se = pick_next_entity(cfs_rq, NULL);
7068 set_next_entity(cfs_rq, se);
7069 cfs_rq = group_cfs_rq(se);
7070 } while (cfs_rq);
7071
7072 p = task_of(se);
7073
7074 done: __maybe_unused;
7075 #ifdef CONFIG_SMP
7076 /*
7077 * Move the next running task to the front of
7078 * the list, so our cfs_tasks list becomes MRU
7079 * one.
7080 */
7081 list_move(&p->se.group_node, &rq->cfs_tasks);
7082 #endif
7083
7084 if (hrtick_enabled(rq))
7085 hrtick_start_fair(rq, p);
7086
7087 update_misfit_status(p, rq);
7088
7089 return p;
7090
7091 idle:
7092 if (!rf)
7093 return NULL;
7094
7095 new_tasks = newidle_balance(rq, rf);
7096
7097 /*
7098 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7099 * possible for any higher priority task to appear. In that case we
7100 * must re-start the pick_next_entity() loop.
7101 */
7102 if (new_tasks < 0)
7103 return RETRY_TASK;
7104
7105 if (new_tasks > 0)
7106 goto again;
7107
7108 /*
7109 * rq is about to be idle, check if we need to update the
7110 * lost_idle_time of clock_pelt
7111 */
7112 update_idle_rq_clock_pelt(rq);
7113
7114 return NULL;
7115 }
7116
7117 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7118 {
7119 return pick_next_task_fair(rq, NULL, NULL);
7120 }
7121
7122 /*
7123 * Account for a descheduled task:
7124 */
7125 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7126 {
7127 struct sched_entity *se = &prev->se;
7128 struct cfs_rq *cfs_rq;
7129
7130 for_each_sched_entity(se) {
7131 cfs_rq = cfs_rq_of(se);
7132 put_prev_entity(cfs_rq, se);
7133 }
7134 }
7135
7136 /*
7137 * sched_yield() is very simple
7138 *
7139 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7140 */
7141 static void yield_task_fair(struct rq *rq)
7142 {
7143 struct task_struct *curr = rq->curr;
7144 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7145 struct sched_entity *se = &curr->se;
7146
7147 /*
7148 * Are we the only task in the tree?
7149 */
7150 if (unlikely(rq->nr_running == 1))
7151 return;
7152
7153 clear_buddies(cfs_rq, se);
7154
7155 if (curr->policy != SCHED_BATCH) {
7156 update_rq_clock(rq);
7157 /*
7158 * Update run-time statistics of the 'current'.
7159 */
7160 update_curr(cfs_rq);
7161 /*
7162 * Tell update_rq_clock() that we've just updated,
7163 * so we don't do microscopic update in schedule()
7164 * and double the fastpath cost.
7165 */
7166 rq_clock_skip_update(rq);
7167 }
7168
7169 set_skip_buddy(se);
7170 }
7171
7172 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7173 {
7174 struct sched_entity *se = &p->se;
7175
7176 /* throttled hierarchies are not runnable */
7177 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7178 return false;
7179
7180 /* Tell the scheduler that we'd really like pse to run next. */
7181 set_next_buddy(se);
7182
7183 yield_task_fair(rq);
7184
7185 return true;
7186 }
7187
7188 #ifdef CONFIG_SMP
7189 /**************************************************
7190 * Fair scheduling class load-balancing methods.
7191 *
7192 * BASICS
7193 *
7194 * The purpose of load-balancing is to achieve the same basic fairness the
7195 * per-CPU scheduler provides, namely provide a proportional amount of compute
7196 * time to each task. This is expressed in the following equation:
7197 *
7198 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7199 *
7200 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7201 * W_i,0 is defined as:
7202 *
7203 * W_i,0 = \Sum_j w_i,j (2)
7204 *
7205 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7206 * is derived from the nice value as per sched_prio_to_weight[].
7207 *
7208 * The weight average is an exponential decay average of the instantaneous
7209 * weight:
7210 *
7211 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7212 *
7213 * C_i is the compute capacity of CPU i, typically it is the
7214 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7215 * can also include other factors [XXX].
7216 *
7217 * To achieve this balance we define a measure of imbalance which follows
7218 * directly from (1):
7219 *
7220 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7221 *
7222 * We them move tasks around to minimize the imbalance. In the continuous
7223 * function space it is obvious this converges, in the discrete case we get
7224 * a few fun cases generally called infeasible weight scenarios.
7225 *
7226 * [XXX expand on:
7227 * - infeasible weights;
7228 * - local vs global optima in the discrete case. ]
7229 *
7230 *
7231 * SCHED DOMAINS
7232 *
7233 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7234 * for all i,j solution, we create a tree of CPUs that follows the hardware
7235 * topology where each level pairs two lower groups (or better). This results
7236 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7237 * tree to only the first of the previous level and we decrease the frequency
7238 * of load-balance at each level inv. proportional to the number of CPUs in
7239 * the groups.
7240 *
7241 * This yields:
7242 *
7243 * log_2 n 1 n
7244 * \Sum { --- * --- * 2^i } = O(n) (5)
7245 * i = 0 2^i 2^i
7246 * `- size of each group
7247 * | | `- number of CPUs doing load-balance
7248 * | `- freq
7249 * `- sum over all levels
7250 *
7251 * Coupled with a limit on how many tasks we can migrate every balance pass,
7252 * this makes (5) the runtime complexity of the balancer.
7253 *
7254 * An important property here is that each CPU is still (indirectly) connected
7255 * to every other CPU in at most O(log n) steps:
7256 *
7257 * The adjacency matrix of the resulting graph is given by:
7258 *
7259 * log_2 n
7260 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7261 * k = 0
7262 *
7263 * And you'll find that:
7264 *
7265 * A^(log_2 n)_i,j != 0 for all i,j (7)
7266 *
7267 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7268 * The task movement gives a factor of O(m), giving a convergence complexity
7269 * of:
7270 *
7271 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7272 *
7273 *
7274 * WORK CONSERVING
7275 *
7276 * In order to avoid CPUs going idle while there's still work to do, new idle
7277 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7278 * tree itself instead of relying on other CPUs to bring it work.
7279 *
7280 * This adds some complexity to both (5) and (8) but it reduces the total idle
7281 * time.
7282 *
7283 * [XXX more?]
7284 *
7285 *
7286 * CGROUPS
7287 *
7288 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7289 *
7290 * s_k,i
7291 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7292 * S_k
7293 *
7294 * Where
7295 *
7296 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7297 *
7298 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7299 *
7300 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7301 * property.
7302 *
7303 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7304 * rewrite all of this once again.]
7305 */
7306
7307 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7308
7309 enum fbq_type { regular, remote, all };
7310
7311 /*
7312 * 'group_type' describes the group of CPUs at the moment of load balancing.
7313 *
7314 * The enum is ordered by pulling priority, with the group with lowest priority
7315 * first so the group_type can simply be compared when selecting the busiest
7316 * group. See update_sd_pick_busiest().
7317 */
7318 enum group_type {
7319 /* The group has spare capacity that can be used to run more tasks. */
7320 group_has_spare = 0,
7321 /*
7322 * The group is fully used and the tasks don't compete for more CPU
7323 * cycles. Nevertheless, some tasks might wait before running.
7324 */
7325 group_fully_busy,
7326 /*
7327 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7328 * and must be migrated to a more powerful CPU.
7329 */
7330 group_misfit_task,
7331 /*
7332 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7333 * and the task should be migrated to it instead of running on the
7334 * current CPU.
7335 */
7336 group_asym_packing,
7337 /*
7338 * The tasks' affinity constraints previously prevented the scheduler
7339 * from balancing the load across the system.
7340 */
7341 group_imbalanced,
7342 /*
7343 * The CPU is overloaded and can't provide expected CPU cycles to all
7344 * tasks.
7345 */
7346 group_overloaded
7347 };
7348
7349 enum migration_type {
7350 migrate_load = 0,
7351 migrate_util,
7352 migrate_task,
7353 migrate_misfit
7354 };
7355
7356 #define LBF_ALL_PINNED 0x01
7357 #define LBF_NEED_BREAK 0x02
7358 #define LBF_DST_PINNED 0x04
7359 #define LBF_SOME_PINNED 0x08
7360 #define LBF_NOHZ_STATS 0x10
7361 #define LBF_NOHZ_AGAIN 0x20
7362
7363 struct lb_env {
7364 struct sched_domain *sd;
7365
7366 struct rq *src_rq;
7367 int src_cpu;
7368
7369 int dst_cpu;
7370 struct rq *dst_rq;
7371
7372 struct cpumask *dst_grpmask;
7373 int new_dst_cpu;
7374 enum cpu_idle_type idle;
7375 long imbalance;
7376 /* The set of CPUs under consideration for load-balancing */
7377 struct cpumask *cpus;
7378
7379 unsigned int flags;
7380
7381 unsigned int loop;
7382 unsigned int loop_break;
7383 unsigned int loop_max;
7384
7385 enum fbq_type fbq_type;
7386 enum migration_type migration_type;
7387 struct list_head tasks;
7388 };
7389
7390 /*
7391 * Is this task likely cache-hot:
7392 */
7393 static int task_hot(struct task_struct *p, struct lb_env *env)
7394 {
7395 s64 delta;
7396
7397 lockdep_assert_held(&env->src_rq->lock);
7398
7399 if (p->sched_class != &fair_sched_class)
7400 return 0;
7401
7402 if (unlikely(task_has_idle_policy(p)))
7403 return 0;
7404
7405 /*
7406 * Buddy candidates are cache hot:
7407 */
7408 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7409 (&p->se == cfs_rq_of(&p->se)->next ||
7410 &p->se == cfs_rq_of(&p->se)->last))
7411 return 1;
7412
7413 if (sysctl_sched_migration_cost == -1)
7414 return 1;
7415 if (sysctl_sched_migration_cost == 0)
7416 return 0;
7417
7418 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7419
7420 return delta < (s64)sysctl_sched_migration_cost;
7421 }
7422
7423 #ifdef CONFIG_NUMA_BALANCING
7424 /*
7425 * Returns 1, if task migration degrades locality
7426 * Returns 0, if task migration improves locality i.e migration preferred.
7427 * Returns -1, if task migration is not affected by locality.
7428 */
7429 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7430 {
7431 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7432 unsigned long src_weight, dst_weight;
7433 int src_nid, dst_nid, dist;
7434
7435 if (!static_branch_likely(&sched_numa_balancing))
7436 return -1;
7437
7438 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7439 return -1;
7440
7441 src_nid = cpu_to_node(env->src_cpu);
7442 dst_nid = cpu_to_node(env->dst_cpu);
7443
7444 if (src_nid == dst_nid)
7445 return -1;
7446
7447 /* Migrating away from the preferred node is always bad. */
7448 if (src_nid == p->numa_preferred_nid) {
7449 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7450 return 1;
7451 else
7452 return -1;
7453 }
7454
7455 /* Encourage migration to the preferred node. */
7456 if (dst_nid == p->numa_preferred_nid)
7457 return 0;
7458
7459 /* Leaving a core idle is often worse than degrading locality. */
7460 if (env->idle == CPU_IDLE)
7461 return -1;
7462
7463 dist = node_distance(src_nid, dst_nid);
7464 if (numa_group) {
7465 src_weight = group_weight(p, src_nid, dist);
7466 dst_weight = group_weight(p, dst_nid, dist);
7467 } else {
7468 src_weight = task_weight(p, src_nid, dist);
7469 dst_weight = task_weight(p, dst_nid, dist);
7470 }
7471
7472 return dst_weight < src_weight;
7473 }
7474
7475 #else
7476 static inline int migrate_degrades_locality(struct task_struct *p,
7477 struct lb_env *env)
7478 {
7479 return -1;
7480 }
7481 #endif
7482
7483 /*
7484 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7485 */
7486 static
7487 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7488 {
7489 int tsk_cache_hot;
7490
7491 lockdep_assert_held(&env->src_rq->lock);
7492
7493 /*
7494 * We do not migrate tasks that are:
7495 * 1) throttled_lb_pair, or
7496 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7497 * 3) running (obviously), or
7498 * 4) are cache-hot on their current CPU.
7499 */
7500 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7501 return 0;
7502
7503 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7504 int cpu;
7505
7506 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7507
7508 env->flags |= LBF_SOME_PINNED;
7509
7510 /*
7511 * Remember if this task can be migrated to any other CPU in
7512 * our sched_group. We may want to revisit it if we couldn't
7513 * meet load balance goals by pulling other tasks on src_cpu.
7514 *
7515 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7516 * already computed one in current iteration.
7517 */
7518 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7519 return 0;
7520
7521 /* Prevent to re-select dst_cpu via env's CPUs: */
7522 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7523 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7524 env->flags |= LBF_DST_PINNED;
7525 env->new_dst_cpu = cpu;
7526 break;
7527 }
7528 }
7529
7530 return 0;
7531 }
7532
7533 /* Record that we found atleast one task that could run on dst_cpu */
7534 env->flags &= ~LBF_ALL_PINNED;
7535
7536 if (task_running(env->src_rq, p)) {
7537 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7538 return 0;
7539 }
7540
7541 /*
7542 * Aggressive migration if:
7543 * 1) destination numa is preferred
7544 * 2) task is cache cold, or
7545 * 3) too many balance attempts have failed.
7546 */
7547 tsk_cache_hot = migrate_degrades_locality(p, env);
7548 if (tsk_cache_hot == -1)
7549 tsk_cache_hot = task_hot(p, env);
7550
7551 if (tsk_cache_hot <= 0 ||
7552 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7553 if (tsk_cache_hot == 1) {
7554 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7555 schedstat_inc(p->se.statistics.nr_forced_migrations);
7556 }
7557 return 1;
7558 }
7559
7560 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7561 return 0;
7562 }
7563
7564 /*
7565 * detach_task() -- detach the task for the migration specified in env
7566 */
7567 static void detach_task(struct task_struct *p, struct lb_env *env)
7568 {
7569 lockdep_assert_held(&env->src_rq->lock);
7570
7571 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7572 set_task_cpu(p, env->dst_cpu);
7573 }
7574
7575 /*
7576 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7577 * part of active balancing operations within "domain".
7578 *
7579 * Returns a task if successful and NULL otherwise.
7580 */
7581 static struct task_struct *detach_one_task(struct lb_env *env)
7582 {
7583 struct task_struct *p;
7584
7585 lockdep_assert_held(&env->src_rq->lock);
7586
7587 list_for_each_entry_reverse(p,
7588 &env->src_rq->cfs_tasks, se.group_node) {
7589 if (!can_migrate_task(p, env))
7590 continue;
7591
7592 detach_task(p, env);
7593
7594 /*
7595 * Right now, this is only the second place where
7596 * lb_gained[env->idle] is updated (other is detach_tasks)
7597 * so we can safely collect stats here rather than
7598 * inside detach_tasks().
7599 */
7600 schedstat_inc(env->sd->lb_gained[env->idle]);
7601 return p;
7602 }
7603 return NULL;
7604 }
7605
7606 static const unsigned int sched_nr_migrate_break = 32;
7607
7608 /*
7609 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7610 * busiest_rq, as part of a balancing operation within domain "sd".
7611 *
7612 * Returns number of detached tasks if successful and 0 otherwise.
7613 */
7614 static int detach_tasks(struct lb_env *env)
7615 {
7616 struct list_head *tasks = &env->src_rq->cfs_tasks;
7617 unsigned long util, load;
7618 struct task_struct *p;
7619 int detached = 0;
7620
7621 lockdep_assert_held(&env->src_rq->lock);
7622
7623 if (env->imbalance <= 0)
7624 return 0;
7625
7626 while (!list_empty(tasks)) {
7627 /*
7628 * We don't want to steal all, otherwise we may be treated likewise,
7629 * which could at worst lead to a livelock crash.
7630 */
7631 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7632 break;
7633
7634 p = list_last_entry(tasks, struct task_struct, se.group_node);
7635
7636 env->loop++;
7637 /* We've more or less seen every task there is, call it quits */
7638 if (env->loop > env->loop_max)
7639 break;
7640
7641 /* take a breather every nr_migrate tasks */
7642 if (env->loop > env->loop_break) {
7643 env->loop_break += sched_nr_migrate_break;
7644 env->flags |= LBF_NEED_BREAK;
7645 break;
7646 }
7647
7648 if (!can_migrate_task(p, env))
7649 goto next;
7650
7651 switch (env->migration_type) {
7652 case migrate_load:
7653 /*
7654 * Depending of the number of CPUs and tasks and the
7655 * cgroup hierarchy, task_h_load() can return a null
7656 * value. Make sure that env->imbalance decreases
7657 * otherwise detach_tasks() will stop only after
7658 * detaching up to loop_max tasks.
7659 */
7660 load = max_t(unsigned long, task_h_load(p), 1);
7661
7662 if (sched_feat(LB_MIN) &&
7663 load < 16 && !env->sd->nr_balance_failed)
7664 goto next;
7665
7666 /*
7667 * Make sure that we don't migrate too much load.
7668 * Nevertheless, let relax the constraint if
7669 * scheduler fails to find a good waiting task to
7670 * migrate.
7671 */
7672 if (load/2 > env->imbalance &&
7673 env->sd->nr_balance_failed <= env->sd->cache_nice_tries)
7674 goto next;
7675
7676 env->imbalance -= load;
7677 break;
7678
7679 case migrate_util:
7680 util = task_util_est(p);
7681
7682 if (util > env->imbalance)
7683 goto next;
7684
7685 env->imbalance -= util;
7686 break;
7687
7688 case migrate_task:
7689 env->imbalance--;
7690 break;
7691
7692 case migrate_misfit:
7693 /* This is not a misfit task */
7694 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7695 goto next;
7696
7697 env->imbalance = 0;
7698 break;
7699 }
7700
7701 detach_task(p, env);
7702 list_add(&p->se.group_node, &env->tasks);
7703
7704 detached++;
7705
7706 #ifdef CONFIG_PREEMPTION
7707 /*
7708 * NEWIDLE balancing is a source of latency, so preemptible
7709 * kernels will stop after the first task is detached to minimize
7710 * the critical section.
7711 */
7712 if (env->idle == CPU_NEWLY_IDLE)
7713 break;
7714 #endif
7715
7716 /*
7717 * We only want to steal up to the prescribed amount of
7718 * load/util/tasks.
7719 */
7720 if (env->imbalance <= 0)
7721 break;
7722
7723 continue;
7724 next:
7725 list_move(&p->se.group_node, tasks);
7726 }
7727
7728 /*
7729 * Right now, this is one of only two places we collect this stat
7730 * so we can safely collect detach_one_task() stats here rather
7731 * than inside detach_one_task().
7732 */
7733 schedstat_add(env->sd->lb_gained[env->idle], detached);
7734
7735 return detached;
7736 }
7737
7738 /*
7739 * attach_task() -- attach the task detached by detach_task() to its new rq.
7740 */
7741 static void attach_task(struct rq *rq, struct task_struct *p)
7742 {
7743 lockdep_assert_held(&rq->lock);
7744
7745 BUG_ON(task_rq(p) != rq);
7746 activate_task(rq, p, ENQUEUE_NOCLOCK);
7747 check_preempt_curr(rq, p, 0);
7748 }
7749
7750 /*
7751 * attach_one_task() -- attaches the task returned from detach_one_task() to
7752 * its new rq.
7753 */
7754 static void attach_one_task(struct rq *rq, struct task_struct *p)
7755 {
7756 struct rq_flags rf;
7757
7758 rq_lock(rq, &rf);
7759 update_rq_clock(rq);
7760 attach_task(rq, p);
7761 rq_unlock(rq, &rf);
7762 }
7763
7764 /*
7765 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7766 * new rq.
7767 */
7768 static void attach_tasks(struct lb_env *env)
7769 {
7770 struct list_head *tasks = &env->tasks;
7771 struct task_struct *p;
7772 struct rq_flags rf;
7773
7774 rq_lock(env->dst_rq, &rf);
7775 update_rq_clock(env->dst_rq);
7776
7777 while (!list_empty(tasks)) {
7778 p = list_first_entry(tasks, struct task_struct, se.group_node);
7779 list_del_init(&p->se.group_node);
7780
7781 attach_task(env->dst_rq, p);
7782 }
7783
7784 rq_unlock(env->dst_rq, &rf);
7785 }
7786
7787 #ifdef CONFIG_NO_HZ_COMMON
7788 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7789 {
7790 if (cfs_rq->avg.load_avg)
7791 return true;
7792
7793 if (cfs_rq->avg.util_avg)
7794 return true;
7795
7796 return false;
7797 }
7798
7799 static inline bool others_have_blocked(struct rq *rq)
7800 {
7801 if (READ_ONCE(rq->avg_rt.util_avg))
7802 return true;
7803
7804 if (READ_ONCE(rq->avg_dl.util_avg))
7805 return true;
7806
7807 if (thermal_load_avg(rq))
7808 return true;
7809
7810 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7811 if (READ_ONCE(rq->avg_irq.util_avg))
7812 return true;
7813 #endif
7814
7815 return false;
7816 }
7817
7818 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7819 {
7820 rq->last_blocked_load_update_tick = jiffies;
7821
7822 if (!has_blocked)
7823 rq->has_blocked_load = 0;
7824 }
7825 #else
7826 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7827 static inline bool others_have_blocked(struct rq *rq) { return false; }
7828 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7829 #endif
7830
7831 static bool __update_blocked_others(struct rq *rq, bool *done)
7832 {
7833 const struct sched_class *curr_class;
7834 u64 now = rq_clock_pelt(rq);
7835 unsigned long thermal_pressure;
7836 bool decayed;
7837
7838 /*
7839 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7840 * DL and IRQ signals have been updated before updating CFS.
7841 */
7842 curr_class = rq->curr->sched_class;
7843
7844 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7845
7846 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7847 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7848 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
7849 update_irq_load_avg(rq, 0);
7850
7851 if (others_have_blocked(rq))
7852 *done = false;
7853
7854 return decayed;
7855 }
7856
7857 #ifdef CONFIG_FAIR_GROUP_SCHED
7858
7859 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7860 {
7861 if (cfs_rq->load.weight)
7862 return false;
7863
7864 if (cfs_rq->avg.load_sum)
7865 return false;
7866
7867 if (cfs_rq->avg.util_sum)
7868 return false;
7869
7870 if (cfs_rq->avg.runnable_sum)
7871 return false;
7872
7873 return true;
7874 }
7875
7876 static bool __update_blocked_fair(struct rq *rq, bool *done)
7877 {
7878 struct cfs_rq *cfs_rq, *pos;
7879 bool decayed = false;
7880 int cpu = cpu_of(rq);
7881
7882 /*
7883 * Iterates the task_group tree in a bottom up fashion, see
7884 * list_add_leaf_cfs_rq() for details.
7885 */
7886 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7887 struct sched_entity *se;
7888
7889 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
7890 update_tg_load_avg(cfs_rq, 0);
7891
7892 if (cfs_rq == &rq->cfs)
7893 decayed = true;
7894 }
7895
7896 /* Propagate pending load changes to the parent, if any: */
7897 se = cfs_rq->tg->se[cpu];
7898 if (se && !skip_blocked_update(se))
7899 update_load_avg(cfs_rq_of(se), se, 0);
7900
7901 /*
7902 * There can be a lot of idle CPU cgroups. Don't let fully
7903 * decayed cfs_rqs linger on the list.
7904 */
7905 if (cfs_rq_is_decayed(cfs_rq))
7906 list_del_leaf_cfs_rq(cfs_rq);
7907
7908 /* Don't need periodic decay once load/util_avg are null */
7909 if (cfs_rq_has_blocked(cfs_rq))
7910 *done = false;
7911 }
7912
7913 return decayed;
7914 }
7915
7916 /*
7917 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7918 * This needs to be done in a top-down fashion because the load of a child
7919 * group is a fraction of its parents load.
7920 */
7921 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7922 {
7923 struct rq *rq = rq_of(cfs_rq);
7924 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7925 unsigned long now = jiffies;
7926 unsigned long load;
7927
7928 if (cfs_rq->last_h_load_update == now)
7929 return;
7930
7931 WRITE_ONCE(cfs_rq->h_load_next, NULL);
7932 for_each_sched_entity(se) {
7933 cfs_rq = cfs_rq_of(se);
7934 WRITE_ONCE(cfs_rq->h_load_next, se);
7935 if (cfs_rq->last_h_load_update == now)
7936 break;
7937 }
7938
7939 if (!se) {
7940 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7941 cfs_rq->last_h_load_update = now;
7942 }
7943
7944 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7945 load = cfs_rq->h_load;
7946 load = div64_ul(load * se->avg.load_avg,
7947 cfs_rq_load_avg(cfs_rq) + 1);
7948 cfs_rq = group_cfs_rq(se);
7949 cfs_rq->h_load = load;
7950 cfs_rq->last_h_load_update = now;
7951 }
7952 }
7953
7954 static unsigned long task_h_load(struct task_struct *p)
7955 {
7956 struct cfs_rq *cfs_rq = task_cfs_rq(p);
7957
7958 update_cfs_rq_h_load(cfs_rq);
7959 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7960 cfs_rq_load_avg(cfs_rq) + 1);
7961 }
7962 #else
7963 static bool __update_blocked_fair(struct rq *rq, bool *done)
7964 {
7965 struct cfs_rq *cfs_rq = &rq->cfs;
7966 bool decayed;
7967
7968 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7969 if (cfs_rq_has_blocked(cfs_rq))
7970 *done = false;
7971
7972 return decayed;
7973 }
7974
7975 static unsigned long task_h_load(struct task_struct *p)
7976 {
7977 return p->se.avg.load_avg;
7978 }
7979 #endif
7980
7981 static void update_blocked_averages(int cpu)
7982 {
7983 bool decayed = false, done = true;
7984 struct rq *rq = cpu_rq(cpu);
7985 struct rq_flags rf;
7986
7987 rq_lock_irqsave(rq, &rf);
7988 update_rq_clock(rq);
7989
7990 decayed |= __update_blocked_others(rq, &done);
7991 decayed |= __update_blocked_fair(rq, &done);
7992
7993 update_blocked_load_status(rq, !done);
7994 if (decayed)
7995 cpufreq_update_util(rq, 0);
7996 rq_unlock_irqrestore(rq, &rf);
7997 }
7998
7999 /********** Helpers for find_busiest_group ************************/
8000
8001 /*
8002 * sg_lb_stats - stats of a sched_group required for load_balancing
8003 */
8004 struct sg_lb_stats {
8005 unsigned long avg_load; /*Avg load across the CPUs of the group */
8006 unsigned long group_load; /* Total load over the CPUs of the group */
8007 unsigned long group_capacity;
8008 unsigned long group_util; /* Total utilization over the CPUs of the group */
8009 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8010 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8011 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8012 unsigned int idle_cpus;
8013 unsigned int group_weight;
8014 enum group_type group_type;
8015 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8016 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8017 #ifdef CONFIG_NUMA_BALANCING
8018 unsigned int nr_numa_running;
8019 unsigned int nr_preferred_running;
8020 #endif
8021 };
8022
8023 /*
8024 * sd_lb_stats - Structure to store the statistics of a sched_domain
8025 * during load balancing.
8026 */
8027 struct sd_lb_stats {
8028 struct sched_group *busiest; /* Busiest group in this sd */
8029 struct sched_group *local; /* Local group in this sd */
8030 unsigned long total_load; /* Total load of all groups in sd */
8031 unsigned long total_capacity; /* Total capacity of all groups in sd */
8032 unsigned long avg_load; /* Average load across all groups in sd */
8033 unsigned int prefer_sibling; /* tasks should go to sibling first */
8034
8035 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8036 struct sg_lb_stats local_stat; /* Statistics of the local group */
8037 };
8038
8039 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8040 {
8041 /*
8042 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8043 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8044 * We must however set busiest_stat::group_type and
8045 * busiest_stat::idle_cpus to the worst busiest group because
8046 * update_sd_pick_busiest() reads these before assignment.
8047 */
8048 *sds = (struct sd_lb_stats){
8049 .busiest = NULL,
8050 .local = NULL,
8051 .total_load = 0UL,
8052 .total_capacity = 0UL,
8053 .busiest_stat = {
8054 .idle_cpus = UINT_MAX,
8055 .group_type = group_has_spare,
8056 },
8057 };
8058 }
8059
8060 static unsigned long scale_rt_capacity(int cpu)
8061 {
8062 struct rq *rq = cpu_rq(cpu);
8063 unsigned long max = arch_scale_cpu_capacity(cpu);
8064 unsigned long used, free;
8065 unsigned long irq;
8066
8067 irq = cpu_util_irq(rq);
8068
8069 if (unlikely(irq >= max))
8070 return 1;
8071
8072 /*
8073 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8074 * (running and not running) with weights 0 and 1024 respectively.
8075 * avg_thermal.load_avg tracks thermal pressure and the weighted
8076 * average uses the actual delta max capacity(load).
8077 */
8078 used = READ_ONCE(rq->avg_rt.util_avg);
8079 used += READ_ONCE(rq->avg_dl.util_avg);
8080 used += thermal_load_avg(rq);
8081
8082 if (unlikely(used >= max))
8083 return 1;
8084
8085 free = max - used;
8086
8087 return scale_irq_capacity(free, irq, max);
8088 }
8089
8090 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8091 {
8092 unsigned long capacity = scale_rt_capacity(cpu);
8093 struct sched_group *sdg = sd->groups;
8094
8095 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8096
8097 if (!capacity)
8098 capacity = 1;
8099
8100 cpu_rq(cpu)->cpu_capacity = capacity;
8101 sdg->sgc->capacity = capacity;
8102 sdg->sgc->min_capacity = capacity;
8103 sdg->sgc->max_capacity = capacity;
8104 }
8105
8106 void update_group_capacity(struct sched_domain *sd, int cpu)
8107 {
8108 struct sched_domain *child = sd->child;
8109 struct sched_group *group, *sdg = sd->groups;
8110 unsigned long capacity, min_capacity, max_capacity;
8111 unsigned long interval;
8112
8113 interval = msecs_to_jiffies(sd->balance_interval);
8114 interval = clamp(interval, 1UL, max_load_balance_interval);
8115 sdg->sgc->next_update = jiffies + interval;
8116
8117 if (!child) {
8118 update_cpu_capacity(sd, cpu);
8119 return;
8120 }
8121
8122 capacity = 0;
8123 min_capacity = ULONG_MAX;
8124 max_capacity = 0;
8125
8126 if (child->flags & SD_OVERLAP) {
8127 /*
8128 * SD_OVERLAP domains cannot assume that child groups
8129 * span the current group.
8130 */
8131
8132 for_each_cpu(cpu, sched_group_span(sdg)) {
8133 unsigned long cpu_cap = capacity_of(cpu);
8134
8135 capacity += cpu_cap;
8136 min_capacity = min(cpu_cap, min_capacity);
8137 max_capacity = max(cpu_cap, max_capacity);
8138 }
8139 } else {
8140 /*
8141 * !SD_OVERLAP domains can assume that child groups
8142 * span the current group.
8143 */
8144
8145 group = child->groups;
8146 do {
8147 struct sched_group_capacity *sgc = group->sgc;
8148
8149 capacity += sgc->capacity;
8150 min_capacity = min(sgc->min_capacity, min_capacity);
8151 max_capacity = max(sgc->max_capacity, max_capacity);
8152 group = group->next;
8153 } while (group != child->groups);
8154 }
8155
8156 sdg->sgc->capacity = capacity;
8157 sdg->sgc->min_capacity = min_capacity;
8158 sdg->sgc->max_capacity = max_capacity;
8159 }
8160
8161 /*
8162 * Check whether the capacity of the rq has been noticeably reduced by side
8163 * activity. The imbalance_pct is used for the threshold.
8164 * Return true is the capacity is reduced
8165 */
8166 static inline int
8167 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8168 {
8169 return ((rq->cpu_capacity * sd->imbalance_pct) <
8170 (rq->cpu_capacity_orig * 100));
8171 }
8172
8173 /*
8174 * Check whether a rq has a misfit task and if it looks like we can actually
8175 * help that task: we can migrate the task to a CPU of higher capacity, or
8176 * the task's current CPU is heavily pressured.
8177 */
8178 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8179 {
8180 return rq->misfit_task_load &&
8181 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8182 check_cpu_capacity(rq, sd));
8183 }
8184
8185 /*
8186 * Group imbalance indicates (and tries to solve) the problem where balancing
8187 * groups is inadequate due to ->cpus_ptr constraints.
8188 *
8189 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8190 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8191 * Something like:
8192 *
8193 * { 0 1 2 3 } { 4 5 6 7 }
8194 * * * * *
8195 *
8196 * If we were to balance group-wise we'd place two tasks in the first group and
8197 * two tasks in the second group. Clearly this is undesired as it will overload
8198 * cpu 3 and leave one of the CPUs in the second group unused.
8199 *
8200 * The current solution to this issue is detecting the skew in the first group
8201 * by noticing the lower domain failed to reach balance and had difficulty
8202 * moving tasks due to affinity constraints.
8203 *
8204 * When this is so detected; this group becomes a candidate for busiest; see
8205 * update_sd_pick_busiest(). And calculate_imbalance() and
8206 * find_busiest_group() avoid some of the usual balance conditions to allow it
8207 * to create an effective group imbalance.
8208 *
8209 * This is a somewhat tricky proposition since the next run might not find the
8210 * group imbalance and decide the groups need to be balanced again. A most
8211 * subtle and fragile situation.
8212 */
8213
8214 static inline int sg_imbalanced(struct sched_group *group)
8215 {
8216 return group->sgc->imbalance;
8217 }
8218
8219 /*
8220 * group_has_capacity returns true if the group has spare capacity that could
8221 * be used by some tasks.
8222 * We consider that a group has spare capacity if the * number of task is
8223 * smaller than the number of CPUs or if the utilization is lower than the
8224 * available capacity for CFS tasks.
8225 * For the latter, we use a threshold to stabilize the state, to take into
8226 * account the variance of the tasks' load and to return true if the available
8227 * capacity in meaningful for the load balancer.
8228 * As an example, an available capacity of 1% can appear but it doesn't make
8229 * any benefit for the load balance.
8230 */
8231 static inline bool
8232 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8233 {
8234 if (sgs->sum_nr_running < sgs->group_weight)
8235 return true;
8236
8237 if ((sgs->group_capacity * imbalance_pct) <
8238 (sgs->group_runnable * 100))
8239 return false;
8240
8241 if ((sgs->group_capacity * 100) >
8242 (sgs->group_util * imbalance_pct))
8243 return true;
8244
8245 return false;
8246 }
8247
8248 /*
8249 * group_is_overloaded returns true if the group has more tasks than it can
8250 * handle.
8251 * group_is_overloaded is not equals to !group_has_capacity because a group
8252 * with the exact right number of tasks, has no more spare capacity but is not
8253 * overloaded so both group_has_capacity and group_is_overloaded return
8254 * false.
8255 */
8256 static inline bool
8257 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8258 {
8259 if (sgs->sum_nr_running <= sgs->group_weight)
8260 return false;
8261
8262 if ((sgs->group_capacity * 100) <
8263 (sgs->group_util * imbalance_pct))
8264 return true;
8265
8266 if ((sgs->group_capacity * imbalance_pct) <
8267 (sgs->group_runnable * 100))
8268 return true;
8269
8270 return false;
8271 }
8272
8273 /*
8274 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8275 * per-CPU capacity than sched_group ref.
8276 */
8277 static inline bool
8278 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8279 {
8280 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8281 }
8282
8283 /*
8284 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8285 * per-CPU capacity_orig than sched_group ref.
8286 */
8287 static inline bool
8288 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8289 {
8290 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
8291 }
8292
8293 static inline enum
8294 group_type group_classify(unsigned int imbalance_pct,
8295 struct sched_group *group,
8296 struct sg_lb_stats *sgs)
8297 {
8298 if (group_is_overloaded(imbalance_pct, sgs))
8299 return group_overloaded;
8300
8301 if (sg_imbalanced(group))
8302 return group_imbalanced;
8303
8304 if (sgs->group_asym_packing)
8305 return group_asym_packing;
8306
8307 if (sgs->group_misfit_task_load)
8308 return group_misfit_task;
8309
8310 if (!group_has_capacity(imbalance_pct, sgs))
8311 return group_fully_busy;
8312
8313 return group_has_spare;
8314 }
8315
8316 static bool update_nohz_stats(struct rq *rq, bool force)
8317 {
8318 #ifdef CONFIG_NO_HZ_COMMON
8319 unsigned int cpu = rq->cpu;
8320
8321 if (!rq->has_blocked_load)
8322 return false;
8323
8324 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8325 return false;
8326
8327 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8328 return true;
8329
8330 update_blocked_averages(cpu);
8331
8332 return rq->has_blocked_load;
8333 #else
8334 return false;
8335 #endif
8336 }
8337
8338 /**
8339 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8340 * @env: The load balancing environment.
8341 * @group: sched_group whose statistics are to be updated.
8342 * @sgs: variable to hold the statistics for this group.
8343 * @sg_status: Holds flag indicating the status of the sched_group
8344 */
8345 static inline void update_sg_lb_stats(struct lb_env *env,
8346 struct sched_group *group,
8347 struct sg_lb_stats *sgs,
8348 int *sg_status)
8349 {
8350 int i, nr_running, local_group;
8351
8352 memset(sgs, 0, sizeof(*sgs));
8353
8354 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8355
8356 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8357 struct rq *rq = cpu_rq(i);
8358
8359 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8360 env->flags |= LBF_NOHZ_AGAIN;
8361
8362 sgs->group_load += cpu_load(rq);
8363 sgs->group_util += cpu_util(i);
8364 sgs->group_runnable += cpu_runnable(rq);
8365 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8366
8367 nr_running = rq->nr_running;
8368 sgs->sum_nr_running += nr_running;
8369
8370 if (nr_running > 1)
8371 *sg_status |= SG_OVERLOAD;
8372
8373 if (cpu_overutilized(i))
8374 *sg_status |= SG_OVERUTILIZED;
8375
8376 #ifdef CONFIG_NUMA_BALANCING
8377 sgs->nr_numa_running += rq->nr_numa_running;
8378 sgs->nr_preferred_running += rq->nr_preferred_running;
8379 #endif
8380 /*
8381 * No need to call idle_cpu() if nr_running is not 0
8382 */
8383 if (!nr_running && idle_cpu(i)) {
8384 sgs->idle_cpus++;
8385 /* Idle cpu can't have misfit task */
8386 continue;
8387 }
8388
8389 if (local_group)
8390 continue;
8391
8392 /* Check for a misfit task on the cpu */
8393 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8394 sgs->group_misfit_task_load < rq->misfit_task_load) {
8395 sgs->group_misfit_task_load = rq->misfit_task_load;
8396 *sg_status |= SG_OVERLOAD;
8397 }
8398 }
8399
8400 /* Check if dst CPU is idle and preferred to this group */
8401 if (env->sd->flags & SD_ASYM_PACKING &&
8402 env->idle != CPU_NOT_IDLE &&
8403 sgs->sum_h_nr_running &&
8404 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8405 sgs->group_asym_packing = 1;
8406 }
8407
8408 sgs->group_capacity = group->sgc->capacity;
8409
8410 sgs->group_weight = group->group_weight;
8411
8412 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8413
8414 /* Computing avg_load makes sense only when group is overloaded */
8415 if (sgs->group_type == group_overloaded)
8416 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8417 sgs->group_capacity;
8418 }
8419
8420 /**
8421 * update_sd_pick_busiest - return 1 on busiest group
8422 * @env: The load balancing environment.
8423 * @sds: sched_domain statistics
8424 * @sg: sched_group candidate to be checked for being the busiest
8425 * @sgs: sched_group statistics
8426 *
8427 * Determine if @sg is a busier group than the previously selected
8428 * busiest group.
8429 *
8430 * Return: %true if @sg is a busier group than the previously selected
8431 * busiest group. %false otherwise.
8432 */
8433 static bool update_sd_pick_busiest(struct lb_env *env,
8434 struct sd_lb_stats *sds,
8435 struct sched_group *sg,
8436 struct sg_lb_stats *sgs)
8437 {
8438 struct sg_lb_stats *busiest = &sds->busiest_stat;
8439
8440 /* Make sure that there is at least one task to pull */
8441 if (!sgs->sum_h_nr_running)
8442 return false;
8443
8444 /*
8445 * Don't try to pull misfit tasks we can't help.
8446 * We can use max_capacity here as reduction in capacity on some
8447 * CPUs in the group should either be possible to resolve
8448 * internally or be covered by avg_load imbalance (eventually).
8449 */
8450 if (sgs->group_type == group_misfit_task &&
8451 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8452 sds->local_stat.group_type != group_has_spare))
8453 return false;
8454
8455 if (sgs->group_type > busiest->group_type)
8456 return true;
8457
8458 if (sgs->group_type < busiest->group_type)
8459 return false;
8460
8461 /*
8462 * The candidate and the current busiest group are the same type of
8463 * group. Let check which one is the busiest according to the type.
8464 */
8465
8466 switch (sgs->group_type) {
8467 case group_overloaded:
8468 /* Select the overloaded group with highest avg_load. */
8469 if (sgs->avg_load <= busiest->avg_load)
8470 return false;
8471 break;
8472
8473 case group_imbalanced:
8474 /*
8475 * Select the 1st imbalanced group as we don't have any way to
8476 * choose one more than another.
8477 */
8478 return false;
8479
8480 case group_asym_packing:
8481 /* Prefer to move from lowest priority CPU's work */
8482 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8483 return false;
8484 break;
8485
8486 case group_misfit_task:
8487 /*
8488 * If we have more than one misfit sg go with the biggest
8489 * misfit.
8490 */
8491 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8492 return false;
8493 break;
8494
8495 case group_fully_busy:
8496 /*
8497 * Select the fully busy group with highest avg_load. In
8498 * theory, there is no need to pull task from such kind of
8499 * group because tasks have all compute capacity that they need
8500 * but we can still improve the overall throughput by reducing
8501 * contention when accessing shared HW resources.
8502 *
8503 * XXX for now avg_load is not computed and always 0 so we
8504 * select the 1st one.
8505 */
8506 if (sgs->avg_load <= busiest->avg_load)
8507 return false;
8508 break;
8509
8510 case group_has_spare:
8511 /*
8512 * Select not overloaded group with lowest number of idle cpus
8513 * and highest number of running tasks. We could also compare
8514 * the spare capacity which is more stable but it can end up
8515 * that the group has less spare capacity but finally more idle
8516 * CPUs which means less opportunity to pull tasks.
8517 */
8518 if (sgs->idle_cpus > busiest->idle_cpus)
8519 return false;
8520 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8521 (sgs->sum_nr_running <= busiest->sum_nr_running))
8522 return false;
8523
8524 break;
8525 }
8526
8527 /*
8528 * Candidate sg has no more than one task per CPU and has higher
8529 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8530 * throughput. Maximize throughput, power/energy consequences are not
8531 * considered.
8532 */
8533 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8534 (sgs->group_type <= group_fully_busy) &&
8535 (group_smaller_min_cpu_capacity(sds->local, sg)))
8536 return false;
8537
8538 return true;
8539 }
8540
8541 #ifdef CONFIG_NUMA_BALANCING
8542 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8543 {
8544 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8545 return regular;
8546 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8547 return remote;
8548 return all;
8549 }
8550
8551 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8552 {
8553 if (rq->nr_running > rq->nr_numa_running)
8554 return regular;
8555 if (rq->nr_running > rq->nr_preferred_running)
8556 return remote;
8557 return all;
8558 }
8559 #else
8560 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8561 {
8562 return all;
8563 }
8564
8565 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8566 {
8567 return regular;
8568 }
8569 #endif /* CONFIG_NUMA_BALANCING */
8570
8571
8572 struct sg_lb_stats;
8573
8574 /*
8575 * task_running_on_cpu - return 1 if @p is running on @cpu.
8576 */
8577
8578 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8579 {
8580 /* Task has no contribution or is new */
8581 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8582 return 0;
8583
8584 if (task_on_rq_queued(p))
8585 return 1;
8586
8587 return 0;
8588 }
8589
8590 /**
8591 * idle_cpu_without - would a given CPU be idle without p ?
8592 * @cpu: the processor on which idleness is tested.
8593 * @p: task which should be ignored.
8594 *
8595 * Return: 1 if the CPU would be idle. 0 otherwise.
8596 */
8597 static int idle_cpu_without(int cpu, struct task_struct *p)
8598 {
8599 struct rq *rq = cpu_rq(cpu);
8600
8601 if (rq->curr != rq->idle && rq->curr != p)
8602 return 0;
8603
8604 /*
8605 * rq->nr_running can't be used but an updated version without the
8606 * impact of p on cpu must be used instead. The updated nr_running
8607 * be computed and tested before calling idle_cpu_without().
8608 */
8609
8610 #ifdef CONFIG_SMP
8611 if (rq->ttwu_pending)
8612 return 0;
8613 #endif
8614
8615 return 1;
8616 }
8617
8618 /*
8619 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8620 * @sd: The sched_domain level to look for idlest group.
8621 * @group: sched_group whose statistics are to be updated.
8622 * @sgs: variable to hold the statistics for this group.
8623 * @p: The task for which we look for the idlest group/CPU.
8624 */
8625 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8626 struct sched_group *group,
8627 struct sg_lb_stats *sgs,
8628 struct task_struct *p)
8629 {
8630 int i, nr_running;
8631
8632 memset(sgs, 0, sizeof(*sgs));
8633
8634 for_each_cpu(i, sched_group_span(group)) {
8635 struct rq *rq = cpu_rq(i);
8636 unsigned int local;
8637
8638 sgs->group_load += cpu_load_without(rq, p);
8639 sgs->group_util += cpu_util_without(i, p);
8640 sgs->group_runnable += cpu_runnable_without(rq, p);
8641 local = task_running_on_cpu(i, p);
8642 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8643
8644 nr_running = rq->nr_running - local;
8645 sgs->sum_nr_running += nr_running;
8646
8647 /*
8648 * No need to call idle_cpu_without() if nr_running is not 0
8649 */
8650 if (!nr_running && idle_cpu_without(i, p))
8651 sgs->idle_cpus++;
8652
8653 }
8654
8655 /* Check if task fits in the group */
8656 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8657 !task_fits_capacity(p, group->sgc->max_capacity)) {
8658 sgs->group_misfit_task_load = 1;
8659 }
8660
8661 sgs->group_capacity = group->sgc->capacity;
8662
8663 sgs->group_weight = group->group_weight;
8664
8665 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8666
8667 /*
8668 * Computing avg_load makes sense only when group is fully busy or
8669 * overloaded
8670 */
8671 if (sgs->group_type == group_fully_busy ||
8672 sgs->group_type == group_overloaded)
8673 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8674 sgs->group_capacity;
8675 }
8676
8677 static bool update_pick_idlest(struct sched_group *idlest,
8678 struct sg_lb_stats *idlest_sgs,
8679 struct sched_group *group,
8680 struct sg_lb_stats *sgs)
8681 {
8682 if (sgs->group_type < idlest_sgs->group_type)
8683 return true;
8684
8685 if (sgs->group_type > idlest_sgs->group_type)
8686 return false;
8687
8688 /*
8689 * The candidate and the current idlest group are the same type of
8690 * group. Let check which one is the idlest according to the type.
8691 */
8692
8693 switch (sgs->group_type) {
8694 case group_overloaded:
8695 case group_fully_busy:
8696 /* Select the group with lowest avg_load. */
8697 if (idlest_sgs->avg_load <= sgs->avg_load)
8698 return false;
8699 break;
8700
8701 case group_imbalanced:
8702 case group_asym_packing:
8703 /* Those types are not used in the slow wakeup path */
8704 return false;
8705
8706 case group_misfit_task:
8707 /* Select group with the highest max capacity */
8708 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8709 return false;
8710 break;
8711
8712 case group_has_spare:
8713 /* Select group with most idle CPUs */
8714 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8715 return false;
8716
8717 /* Select group with lowest group_util */
8718 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8719 idlest_sgs->group_util <= sgs->group_util)
8720 return false;
8721
8722 break;
8723 }
8724
8725 return true;
8726 }
8727
8728 /*
8729 * find_idlest_group() finds and returns the least busy CPU group within the
8730 * domain.
8731 *
8732 * Assumes p is allowed on at least one CPU in sd.
8733 */
8734 static struct sched_group *
8735 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8736 {
8737 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8738 struct sg_lb_stats local_sgs, tmp_sgs;
8739 struct sg_lb_stats *sgs;
8740 unsigned long imbalance;
8741 struct sg_lb_stats idlest_sgs = {
8742 .avg_load = UINT_MAX,
8743 .group_type = group_overloaded,
8744 };
8745
8746 imbalance = scale_load_down(NICE_0_LOAD) *
8747 (sd->imbalance_pct-100) / 100;
8748
8749 do {
8750 int local_group;
8751
8752 /* Skip over this group if it has no CPUs allowed */
8753 if (!cpumask_intersects(sched_group_span(group),
8754 p->cpus_ptr))
8755 continue;
8756
8757 local_group = cpumask_test_cpu(this_cpu,
8758 sched_group_span(group));
8759
8760 if (local_group) {
8761 sgs = &local_sgs;
8762 local = group;
8763 } else {
8764 sgs = &tmp_sgs;
8765 }
8766
8767 update_sg_wakeup_stats(sd, group, sgs, p);
8768
8769 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8770 idlest = group;
8771 idlest_sgs = *sgs;
8772 }
8773
8774 } while (group = group->next, group != sd->groups);
8775
8776
8777 /* There is no idlest group to push tasks to */
8778 if (!idlest)
8779 return NULL;
8780
8781 /* The local group has been skipped because of CPU affinity */
8782 if (!local)
8783 return idlest;
8784
8785 /*
8786 * If the local group is idler than the selected idlest group
8787 * don't try and push the task.
8788 */
8789 if (local_sgs.group_type < idlest_sgs.group_type)
8790 return NULL;
8791
8792 /*
8793 * If the local group is busier than the selected idlest group
8794 * try and push the task.
8795 */
8796 if (local_sgs.group_type > idlest_sgs.group_type)
8797 return idlest;
8798
8799 switch (local_sgs.group_type) {
8800 case group_overloaded:
8801 case group_fully_busy:
8802 /*
8803 * When comparing groups across NUMA domains, it's possible for
8804 * the local domain to be very lightly loaded relative to the
8805 * remote domains but "imbalance" skews the comparison making
8806 * remote CPUs look much more favourable. When considering
8807 * cross-domain, add imbalance to the load on the remote node
8808 * and consider staying local.
8809 */
8810
8811 if ((sd->flags & SD_NUMA) &&
8812 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8813 return NULL;
8814
8815 /*
8816 * If the local group is less loaded than the selected
8817 * idlest group don't try and push any tasks.
8818 */
8819 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8820 return NULL;
8821
8822 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8823 return NULL;
8824 break;
8825
8826 case group_imbalanced:
8827 case group_asym_packing:
8828 /* Those type are not used in the slow wakeup path */
8829 return NULL;
8830
8831 case group_misfit_task:
8832 /* Select group with the highest max capacity */
8833 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8834 return NULL;
8835 break;
8836
8837 case group_has_spare:
8838 if (sd->flags & SD_NUMA) {
8839 #ifdef CONFIG_NUMA_BALANCING
8840 int idlest_cpu;
8841 /*
8842 * If there is spare capacity at NUMA, try to select
8843 * the preferred node
8844 */
8845 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8846 return NULL;
8847
8848 idlest_cpu = cpumask_first(sched_group_span(idlest));
8849 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8850 return idlest;
8851 #endif
8852 /*
8853 * Otherwise, keep the task on this node to stay close
8854 * its wakeup source and improve locality. If there is
8855 * a real need of migration, periodic load balance will
8856 * take care of it.
8857 */
8858 if (local_sgs.idle_cpus)
8859 return NULL;
8860 }
8861
8862 /*
8863 * Select group with highest number of idle CPUs. We could also
8864 * compare the utilization which is more stable but it can end
8865 * up that the group has less spare capacity but finally more
8866 * idle CPUs which means more opportunity to run task.
8867 */
8868 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8869 return NULL;
8870 break;
8871 }
8872
8873 return idlest;
8874 }
8875
8876 /**
8877 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8878 * @env: The load balancing environment.
8879 * @sds: variable to hold the statistics for this sched_domain.
8880 */
8881
8882 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8883 {
8884 struct sched_domain *child = env->sd->child;
8885 struct sched_group *sg = env->sd->groups;
8886 struct sg_lb_stats *local = &sds->local_stat;
8887 struct sg_lb_stats tmp_sgs;
8888 int sg_status = 0;
8889
8890 #ifdef CONFIG_NO_HZ_COMMON
8891 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8892 env->flags |= LBF_NOHZ_STATS;
8893 #endif
8894
8895 do {
8896 struct sg_lb_stats *sgs = &tmp_sgs;
8897 int local_group;
8898
8899 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8900 if (local_group) {
8901 sds->local = sg;
8902 sgs = local;
8903
8904 if (env->idle != CPU_NEWLY_IDLE ||
8905 time_after_eq(jiffies, sg->sgc->next_update))
8906 update_group_capacity(env->sd, env->dst_cpu);
8907 }
8908
8909 update_sg_lb_stats(env, sg, sgs, &sg_status);
8910
8911 if (local_group)
8912 goto next_group;
8913
8914
8915 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8916 sds->busiest = sg;
8917 sds->busiest_stat = *sgs;
8918 }
8919
8920 next_group:
8921 /* Now, start updating sd_lb_stats */
8922 sds->total_load += sgs->group_load;
8923 sds->total_capacity += sgs->group_capacity;
8924
8925 sg = sg->next;
8926 } while (sg != env->sd->groups);
8927
8928 /* Tag domain that child domain prefers tasks go to siblings first */
8929 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8930
8931 #ifdef CONFIG_NO_HZ_COMMON
8932 if ((env->flags & LBF_NOHZ_AGAIN) &&
8933 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8934
8935 WRITE_ONCE(nohz.next_blocked,
8936 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8937 }
8938 #endif
8939
8940 if (env->sd->flags & SD_NUMA)
8941 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8942
8943 if (!env->sd->parent) {
8944 struct root_domain *rd = env->dst_rq->rd;
8945
8946 /* update overload indicator if we are at root domain */
8947 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8948
8949 /* Update over-utilization (tipping point, U >= 0) indicator */
8950 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8951 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
8952 } else if (sg_status & SG_OVERUTILIZED) {
8953 struct root_domain *rd = env->dst_rq->rd;
8954
8955 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8956 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
8957 }
8958 }
8959
8960 static inline long adjust_numa_imbalance(int imbalance, int src_nr_running)
8961 {
8962 unsigned int imbalance_min;
8963
8964 /*
8965 * Allow a small imbalance based on a simple pair of communicating
8966 * tasks that remain local when the source domain is almost idle.
8967 */
8968 imbalance_min = 2;
8969 if (src_nr_running <= imbalance_min)
8970 return 0;
8971
8972 return imbalance;
8973 }
8974
8975 /**
8976 * calculate_imbalance - Calculate the amount of imbalance present within the
8977 * groups of a given sched_domain during load balance.
8978 * @env: load balance environment
8979 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8980 */
8981 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8982 {
8983 struct sg_lb_stats *local, *busiest;
8984
8985 local = &sds->local_stat;
8986 busiest = &sds->busiest_stat;
8987
8988 if (busiest->group_type == group_misfit_task) {
8989 /* Set imbalance to allow misfit tasks to be balanced. */
8990 env->migration_type = migrate_misfit;
8991 env->imbalance = 1;
8992 return;
8993 }
8994
8995 if (busiest->group_type == group_asym_packing) {
8996 /*
8997 * In case of asym capacity, we will try to migrate all load to
8998 * the preferred CPU.
8999 */
9000 env->migration_type = migrate_task;
9001 env->imbalance = busiest->sum_h_nr_running;
9002 return;
9003 }
9004
9005 if (busiest->group_type == group_imbalanced) {
9006 /*
9007 * In the group_imb case we cannot rely on group-wide averages
9008 * to ensure CPU-load equilibrium, try to move any task to fix
9009 * the imbalance. The next load balance will take care of
9010 * balancing back the system.
9011 */
9012 env->migration_type = migrate_task;
9013 env->imbalance = 1;
9014 return;
9015 }
9016
9017 /*
9018 * Try to use spare capacity of local group without overloading it or
9019 * emptying busiest.
9020 */
9021 if (local->group_type == group_has_spare) {
9022 if (busiest->group_type > group_fully_busy) {
9023 /*
9024 * If busiest is overloaded, try to fill spare
9025 * capacity. This might end up creating spare capacity
9026 * in busiest or busiest still being overloaded but
9027 * there is no simple way to directly compute the
9028 * amount of load to migrate in order to balance the
9029 * system.
9030 */
9031 env->migration_type = migrate_util;
9032 env->imbalance = max(local->group_capacity, local->group_util) -
9033 local->group_util;
9034
9035 /*
9036 * In some cases, the group's utilization is max or even
9037 * higher than capacity because of migrations but the
9038 * local CPU is (newly) idle. There is at least one
9039 * waiting task in this overloaded busiest group. Let's
9040 * try to pull it.
9041 */
9042 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9043 env->migration_type = migrate_task;
9044 env->imbalance = 1;
9045 }
9046
9047 return;
9048 }
9049
9050 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9051 unsigned int nr_diff = busiest->sum_nr_running;
9052 /*
9053 * When prefer sibling, evenly spread running tasks on
9054 * groups.
9055 */
9056 env->migration_type = migrate_task;
9057 lsub_positive(&nr_diff, local->sum_nr_running);
9058 env->imbalance = nr_diff >> 1;
9059 } else {
9060
9061 /*
9062 * If there is no overload, we just want to even the number of
9063 * idle cpus.
9064 */
9065 env->migration_type = migrate_task;
9066 env->imbalance = max_t(long, 0, (local->idle_cpus -
9067 busiest->idle_cpus) >> 1);
9068 }
9069
9070 /* Consider allowing a small imbalance between NUMA groups */
9071 if (env->sd->flags & SD_NUMA)
9072 env->imbalance = adjust_numa_imbalance(env->imbalance,
9073 busiest->sum_nr_running);
9074
9075 return;
9076 }
9077
9078 /*
9079 * Local is fully busy but has to take more load to relieve the
9080 * busiest group
9081 */
9082 if (local->group_type < group_overloaded) {
9083 /*
9084 * Local will become overloaded so the avg_load metrics are
9085 * finally needed.
9086 */
9087
9088 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9089 local->group_capacity;
9090
9091 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9092 sds->total_capacity;
9093 /*
9094 * If the local group is more loaded than the selected
9095 * busiest group don't try to pull any tasks.
9096 */
9097 if (local->avg_load >= busiest->avg_load) {
9098 env->imbalance = 0;
9099 return;
9100 }
9101 }
9102
9103 /*
9104 * Both group are or will become overloaded and we're trying to get all
9105 * the CPUs to the average_load, so we don't want to push ourselves
9106 * above the average load, nor do we wish to reduce the max loaded CPU
9107 * below the average load. At the same time, we also don't want to
9108 * reduce the group load below the group capacity. Thus we look for
9109 * the minimum possible imbalance.
9110 */
9111 env->migration_type = migrate_load;
9112 env->imbalance = min(
9113 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9114 (sds->avg_load - local->avg_load) * local->group_capacity
9115 ) / SCHED_CAPACITY_SCALE;
9116 }
9117
9118 /******* find_busiest_group() helpers end here *********************/
9119
9120 /*
9121 * Decision matrix according to the local and busiest group type:
9122 *
9123 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9124 * has_spare nr_idle balanced N/A N/A balanced balanced
9125 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9126 * misfit_task force N/A N/A N/A force force
9127 * asym_packing force force N/A N/A force force
9128 * imbalanced force force N/A N/A force force
9129 * overloaded force force N/A N/A force avg_load
9130 *
9131 * N/A : Not Applicable because already filtered while updating
9132 * statistics.
9133 * balanced : The system is balanced for these 2 groups.
9134 * force : Calculate the imbalance as load migration is probably needed.
9135 * avg_load : Only if imbalance is significant enough.
9136 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9137 * different in groups.
9138 */
9139
9140 /**
9141 * find_busiest_group - Returns the busiest group within the sched_domain
9142 * if there is an imbalance.
9143 *
9144 * Also calculates the amount of runnable load which should be moved
9145 * to restore balance.
9146 *
9147 * @env: The load balancing environment.
9148 *
9149 * Return: - The busiest group if imbalance exists.
9150 */
9151 static struct sched_group *find_busiest_group(struct lb_env *env)
9152 {
9153 struct sg_lb_stats *local, *busiest;
9154 struct sd_lb_stats sds;
9155
9156 init_sd_lb_stats(&sds);
9157
9158 /*
9159 * Compute the various statistics relevant for load balancing at
9160 * this level.
9161 */
9162 update_sd_lb_stats(env, &sds);
9163
9164 if (sched_energy_enabled()) {
9165 struct root_domain *rd = env->dst_rq->rd;
9166
9167 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9168 goto out_balanced;
9169 }
9170
9171 local = &sds.local_stat;
9172 busiest = &sds.busiest_stat;
9173
9174 /* There is no busy sibling group to pull tasks from */
9175 if (!sds.busiest)
9176 goto out_balanced;
9177
9178 /* Misfit tasks should be dealt with regardless of the avg load */
9179 if (busiest->group_type == group_misfit_task)
9180 goto force_balance;
9181
9182 /* ASYM feature bypasses nice load balance check */
9183 if (busiest->group_type == group_asym_packing)
9184 goto force_balance;
9185
9186 /*
9187 * If the busiest group is imbalanced the below checks don't
9188 * work because they assume all things are equal, which typically
9189 * isn't true due to cpus_ptr constraints and the like.
9190 */
9191 if (busiest->group_type == group_imbalanced)
9192 goto force_balance;
9193
9194 /*
9195 * If the local group is busier than the selected busiest group
9196 * don't try and pull any tasks.
9197 */
9198 if (local->group_type > busiest->group_type)
9199 goto out_balanced;
9200
9201 /*
9202 * When groups are overloaded, use the avg_load to ensure fairness
9203 * between tasks.
9204 */
9205 if (local->group_type == group_overloaded) {
9206 /*
9207 * If the local group is more loaded than the selected
9208 * busiest group don't try to pull any tasks.
9209 */
9210 if (local->avg_load >= busiest->avg_load)
9211 goto out_balanced;
9212
9213 /* XXX broken for overlapping NUMA groups */
9214 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9215 sds.total_capacity;
9216
9217 /*
9218 * Don't pull any tasks if this group is already above the
9219 * domain average load.
9220 */
9221 if (local->avg_load >= sds.avg_load)
9222 goto out_balanced;
9223
9224 /*
9225 * If the busiest group is more loaded, use imbalance_pct to be
9226 * conservative.
9227 */
9228 if (100 * busiest->avg_load <=
9229 env->sd->imbalance_pct * local->avg_load)
9230 goto out_balanced;
9231 }
9232
9233 /* Try to move all excess tasks to child's sibling domain */
9234 if (sds.prefer_sibling && local->group_type == group_has_spare &&
9235 busiest->sum_nr_running > local->sum_nr_running + 1)
9236 goto force_balance;
9237
9238 if (busiest->group_type != group_overloaded) {
9239 if (env->idle == CPU_NOT_IDLE)
9240 /*
9241 * If the busiest group is not overloaded (and as a
9242 * result the local one too) but this CPU is already
9243 * busy, let another idle CPU try to pull task.
9244 */
9245 goto out_balanced;
9246
9247 if (busiest->group_weight > 1 &&
9248 local->idle_cpus <= (busiest->idle_cpus + 1))
9249 /*
9250 * If the busiest group is not overloaded
9251 * and there is no imbalance between this and busiest
9252 * group wrt idle CPUs, it is balanced. The imbalance
9253 * becomes significant if the diff is greater than 1
9254 * otherwise we might end up to just move the imbalance
9255 * on another group. Of course this applies only if
9256 * there is more than 1 CPU per group.
9257 */
9258 goto out_balanced;
9259
9260 if (busiest->sum_h_nr_running == 1)
9261 /*
9262 * busiest doesn't have any tasks waiting to run
9263 */
9264 goto out_balanced;
9265 }
9266
9267 force_balance:
9268 /* Looks like there is an imbalance. Compute it */
9269 calculate_imbalance(env, &sds);
9270 return env->imbalance ? sds.busiest : NULL;
9271
9272 out_balanced:
9273 env->imbalance = 0;
9274 return NULL;
9275 }
9276
9277 /*
9278 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9279 */
9280 static struct rq *find_busiest_queue(struct lb_env *env,
9281 struct sched_group *group)
9282 {
9283 struct rq *busiest = NULL, *rq;
9284 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9285 unsigned int busiest_nr = 0;
9286 int i;
9287
9288 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9289 unsigned long capacity, load, util;
9290 unsigned int nr_running;
9291 enum fbq_type rt;
9292
9293 rq = cpu_rq(i);
9294 rt = fbq_classify_rq(rq);
9295
9296 /*
9297 * We classify groups/runqueues into three groups:
9298 * - regular: there are !numa tasks
9299 * - remote: there are numa tasks that run on the 'wrong' node
9300 * - all: there is no distinction
9301 *
9302 * In order to avoid migrating ideally placed numa tasks,
9303 * ignore those when there's better options.
9304 *
9305 * If we ignore the actual busiest queue to migrate another
9306 * task, the next balance pass can still reduce the busiest
9307 * queue by moving tasks around inside the node.
9308 *
9309 * If we cannot move enough load due to this classification
9310 * the next pass will adjust the group classification and
9311 * allow migration of more tasks.
9312 *
9313 * Both cases only affect the total convergence complexity.
9314 */
9315 if (rt > env->fbq_type)
9316 continue;
9317
9318 capacity = capacity_of(i);
9319 nr_running = rq->cfs.h_nr_running;
9320
9321 /*
9322 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9323 * eventually lead to active_balancing high->low capacity.
9324 * Higher per-CPU capacity is considered better than balancing
9325 * average load.
9326 */
9327 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9328 capacity_of(env->dst_cpu) < capacity &&
9329 nr_running == 1)
9330 continue;
9331
9332 switch (env->migration_type) {
9333 case migrate_load:
9334 /*
9335 * When comparing with load imbalance, use cpu_load()
9336 * which is not scaled with the CPU capacity.
9337 */
9338 load = cpu_load(rq);
9339
9340 if (nr_running == 1 && load > env->imbalance &&
9341 !check_cpu_capacity(rq, env->sd))
9342 break;
9343
9344 /*
9345 * For the load comparisons with the other CPUs,
9346 * consider the cpu_load() scaled with the CPU
9347 * capacity, so that the load can be moved away
9348 * from the CPU that is potentially running at a
9349 * lower capacity.
9350 *
9351 * Thus we're looking for max(load_i / capacity_i),
9352 * crosswise multiplication to rid ourselves of the
9353 * division works out to:
9354 * load_i * capacity_j > load_j * capacity_i;
9355 * where j is our previous maximum.
9356 */
9357 if (load * busiest_capacity > busiest_load * capacity) {
9358 busiest_load = load;
9359 busiest_capacity = capacity;
9360 busiest = rq;
9361 }
9362 break;
9363
9364 case migrate_util:
9365 util = cpu_util(cpu_of(rq));
9366
9367 /*
9368 * Don't try to pull utilization from a CPU with one
9369 * running task. Whatever its utilization, we will fail
9370 * detach the task.
9371 */
9372 if (nr_running <= 1)
9373 continue;
9374
9375 if (busiest_util < util) {
9376 busiest_util = util;
9377 busiest = rq;
9378 }
9379 break;
9380
9381 case migrate_task:
9382 if (busiest_nr < nr_running) {
9383 busiest_nr = nr_running;
9384 busiest = rq;
9385 }
9386 break;
9387
9388 case migrate_misfit:
9389 /*
9390 * For ASYM_CPUCAPACITY domains with misfit tasks we
9391 * simply seek the "biggest" misfit task.
9392 */
9393 if (rq->misfit_task_load > busiest_load) {
9394 busiest_load = rq->misfit_task_load;
9395 busiest = rq;
9396 }
9397
9398 break;
9399
9400 }
9401 }
9402
9403 return busiest;
9404 }
9405
9406 /*
9407 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9408 * so long as it is large enough.
9409 */
9410 #define MAX_PINNED_INTERVAL 512
9411
9412 static inline bool
9413 asym_active_balance(struct lb_env *env)
9414 {
9415 /*
9416 * ASYM_PACKING needs to force migrate tasks from busy but
9417 * lower priority CPUs in order to pack all tasks in the
9418 * highest priority CPUs.
9419 */
9420 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9421 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9422 }
9423
9424 static inline bool
9425 voluntary_active_balance(struct lb_env *env)
9426 {
9427 struct sched_domain *sd = env->sd;
9428
9429 if (asym_active_balance(env))
9430 return 1;
9431
9432 /*
9433 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9434 * It's worth migrating the task if the src_cpu's capacity is reduced
9435 * because of other sched_class or IRQs if more capacity stays
9436 * available on dst_cpu.
9437 */
9438 if ((env->idle != CPU_NOT_IDLE) &&
9439 (env->src_rq->cfs.h_nr_running == 1)) {
9440 if ((check_cpu_capacity(env->src_rq, sd)) &&
9441 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9442 return 1;
9443 }
9444
9445 if (env->migration_type == migrate_misfit)
9446 return 1;
9447
9448 return 0;
9449 }
9450
9451 static int need_active_balance(struct lb_env *env)
9452 {
9453 struct sched_domain *sd = env->sd;
9454
9455 if (voluntary_active_balance(env))
9456 return 1;
9457
9458 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9459 }
9460
9461 static int active_load_balance_cpu_stop(void *data);
9462
9463 static int should_we_balance(struct lb_env *env)
9464 {
9465 struct sched_group *sg = env->sd->groups;
9466 int cpu;
9467
9468 /*
9469 * Ensure the balancing environment is consistent; can happen
9470 * when the softirq triggers 'during' hotplug.
9471 */
9472 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9473 return 0;
9474
9475 /*
9476 * In the newly idle case, we will allow all the CPUs
9477 * to do the newly idle load balance.
9478 */
9479 if (env->idle == CPU_NEWLY_IDLE)
9480 return 1;
9481
9482 /* Try to find first idle CPU */
9483 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9484 if (!idle_cpu(cpu))
9485 continue;
9486
9487 /* Are we the first idle CPU? */
9488 return cpu == env->dst_cpu;
9489 }
9490
9491 /* Are we the first CPU of this group ? */
9492 return group_balance_cpu(sg) == env->dst_cpu;
9493 }
9494
9495 /*
9496 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9497 * tasks if there is an imbalance.
9498 */
9499 static int load_balance(int this_cpu, struct rq *this_rq,
9500 struct sched_domain *sd, enum cpu_idle_type idle,
9501 int *continue_balancing)
9502 {
9503 int ld_moved, cur_ld_moved, active_balance = 0;
9504 struct sched_domain *sd_parent = sd->parent;
9505 struct sched_group *group;
9506 struct rq *busiest;
9507 struct rq_flags rf;
9508 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9509
9510 struct lb_env env = {
9511 .sd = sd,
9512 .dst_cpu = this_cpu,
9513 .dst_rq = this_rq,
9514 .dst_grpmask = sched_group_span(sd->groups),
9515 .idle = idle,
9516 .loop_break = sched_nr_migrate_break,
9517 .cpus = cpus,
9518 .fbq_type = all,
9519 .tasks = LIST_HEAD_INIT(env.tasks),
9520 };
9521
9522 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9523
9524 schedstat_inc(sd->lb_count[idle]);
9525
9526 redo:
9527 if (!should_we_balance(&env)) {
9528 *continue_balancing = 0;
9529 goto out_balanced;
9530 }
9531
9532 group = find_busiest_group(&env);
9533 if (!group) {
9534 schedstat_inc(sd->lb_nobusyg[idle]);
9535 goto out_balanced;
9536 }
9537
9538 busiest = find_busiest_queue(&env, group);
9539 if (!busiest) {
9540 schedstat_inc(sd->lb_nobusyq[idle]);
9541 goto out_balanced;
9542 }
9543
9544 BUG_ON(busiest == env.dst_rq);
9545
9546 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9547
9548 env.src_cpu = busiest->cpu;
9549 env.src_rq = busiest;
9550
9551 ld_moved = 0;
9552 if (busiest->nr_running > 1) {
9553 /*
9554 * Attempt to move tasks. If find_busiest_group has found
9555 * an imbalance but busiest->nr_running <= 1, the group is
9556 * still unbalanced. ld_moved simply stays zero, so it is
9557 * correctly treated as an imbalance.
9558 */
9559 env.flags |= LBF_ALL_PINNED;
9560 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
9561
9562 more_balance:
9563 rq_lock_irqsave(busiest, &rf);
9564 update_rq_clock(busiest);
9565
9566 /*
9567 * cur_ld_moved - load moved in current iteration
9568 * ld_moved - cumulative load moved across iterations
9569 */
9570 cur_ld_moved = detach_tasks(&env);
9571
9572 /*
9573 * We've detached some tasks from busiest_rq. Every
9574 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9575 * unlock busiest->lock, and we are able to be sure
9576 * that nobody can manipulate the tasks in parallel.
9577 * See task_rq_lock() family for the details.
9578 */
9579
9580 rq_unlock(busiest, &rf);
9581
9582 if (cur_ld_moved) {
9583 attach_tasks(&env);
9584 ld_moved += cur_ld_moved;
9585 }
9586
9587 local_irq_restore(rf.flags);
9588
9589 if (env.flags & LBF_NEED_BREAK) {
9590 env.flags &= ~LBF_NEED_BREAK;
9591 goto more_balance;
9592 }
9593
9594 /*
9595 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9596 * us and move them to an alternate dst_cpu in our sched_group
9597 * where they can run. The upper limit on how many times we
9598 * iterate on same src_cpu is dependent on number of CPUs in our
9599 * sched_group.
9600 *
9601 * This changes load balance semantics a bit on who can move
9602 * load to a given_cpu. In addition to the given_cpu itself
9603 * (or a ilb_cpu acting on its behalf where given_cpu is
9604 * nohz-idle), we now have balance_cpu in a position to move
9605 * load to given_cpu. In rare situations, this may cause
9606 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9607 * _independently_ and at _same_ time to move some load to
9608 * given_cpu) causing exceess load to be moved to given_cpu.
9609 * This however should not happen so much in practice and
9610 * moreover subsequent load balance cycles should correct the
9611 * excess load moved.
9612 */
9613 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9614
9615 /* Prevent to re-select dst_cpu via env's CPUs */
9616 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9617
9618 env.dst_rq = cpu_rq(env.new_dst_cpu);
9619 env.dst_cpu = env.new_dst_cpu;
9620 env.flags &= ~LBF_DST_PINNED;
9621 env.loop = 0;
9622 env.loop_break = sched_nr_migrate_break;
9623
9624 /*
9625 * Go back to "more_balance" rather than "redo" since we
9626 * need to continue with same src_cpu.
9627 */
9628 goto more_balance;
9629 }
9630
9631 /*
9632 * We failed to reach balance because of affinity.
9633 */
9634 if (sd_parent) {
9635 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9636
9637 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9638 *group_imbalance = 1;
9639 }
9640
9641 /* All tasks on this runqueue were pinned by CPU affinity */
9642 if (unlikely(env.flags & LBF_ALL_PINNED)) {
9643 __cpumask_clear_cpu(cpu_of(busiest), cpus);
9644 /*
9645 * Attempting to continue load balancing at the current
9646 * sched_domain level only makes sense if there are
9647 * active CPUs remaining as possible busiest CPUs to
9648 * pull load from which are not contained within the
9649 * destination group that is receiving any migrated
9650 * load.
9651 */
9652 if (!cpumask_subset(cpus, env.dst_grpmask)) {
9653 env.loop = 0;
9654 env.loop_break = sched_nr_migrate_break;
9655 goto redo;
9656 }
9657 goto out_all_pinned;
9658 }
9659 }
9660
9661 if (!ld_moved) {
9662 schedstat_inc(sd->lb_failed[idle]);
9663 /*
9664 * Increment the failure counter only on periodic balance.
9665 * We do not want newidle balance, which can be very
9666 * frequent, pollute the failure counter causing
9667 * excessive cache_hot migrations and active balances.
9668 */
9669 if (idle != CPU_NEWLY_IDLE)
9670 sd->nr_balance_failed++;
9671
9672 if (need_active_balance(&env)) {
9673 unsigned long flags;
9674
9675 raw_spin_lock_irqsave(&busiest->lock, flags);
9676
9677 /*
9678 * Don't kick the active_load_balance_cpu_stop,
9679 * if the curr task on busiest CPU can't be
9680 * moved to this_cpu:
9681 */
9682 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9683 raw_spin_unlock_irqrestore(&busiest->lock,
9684 flags);
9685 env.flags |= LBF_ALL_PINNED;
9686 goto out_one_pinned;
9687 }
9688
9689 /*
9690 * ->active_balance synchronizes accesses to
9691 * ->active_balance_work. Once set, it's cleared
9692 * only after active load balance is finished.
9693 */
9694 if (!busiest->active_balance) {
9695 busiest->active_balance = 1;
9696 busiest->push_cpu = this_cpu;
9697 active_balance = 1;
9698 }
9699 raw_spin_unlock_irqrestore(&busiest->lock, flags);
9700
9701 if (active_balance) {
9702 stop_one_cpu_nowait(cpu_of(busiest),
9703 active_load_balance_cpu_stop, busiest,
9704 &busiest->active_balance_work);
9705 }
9706
9707 /* We've kicked active balancing, force task migration. */
9708 sd->nr_balance_failed = sd->cache_nice_tries+1;
9709 }
9710 } else
9711 sd->nr_balance_failed = 0;
9712
9713 if (likely(!active_balance) || voluntary_active_balance(&env)) {
9714 /* We were unbalanced, so reset the balancing interval */
9715 sd->balance_interval = sd->min_interval;
9716 } else {
9717 /*
9718 * If we've begun active balancing, start to back off. This
9719 * case may not be covered by the all_pinned logic if there
9720 * is only 1 task on the busy runqueue (because we don't call
9721 * detach_tasks).
9722 */
9723 if (sd->balance_interval < sd->max_interval)
9724 sd->balance_interval *= 2;
9725 }
9726
9727 goto out;
9728
9729 out_balanced:
9730 /*
9731 * We reach balance although we may have faced some affinity
9732 * constraints. Clear the imbalance flag only if other tasks got
9733 * a chance to move and fix the imbalance.
9734 */
9735 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9736 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9737
9738 if (*group_imbalance)
9739 *group_imbalance = 0;
9740 }
9741
9742 out_all_pinned:
9743 /*
9744 * We reach balance because all tasks are pinned at this level so
9745 * we can't migrate them. Let the imbalance flag set so parent level
9746 * can try to migrate them.
9747 */
9748 schedstat_inc(sd->lb_balanced[idle]);
9749
9750 sd->nr_balance_failed = 0;
9751
9752 out_one_pinned:
9753 ld_moved = 0;
9754
9755 /*
9756 * newidle_balance() disregards balance intervals, so we could
9757 * repeatedly reach this code, which would lead to balance_interval
9758 * skyrocketting in a short amount of time. Skip the balance_interval
9759 * increase logic to avoid that.
9760 */
9761 if (env.idle == CPU_NEWLY_IDLE)
9762 goto out;
9763
9764 /* tune up the balancing interval */
9765 if ((env.flags & LBF_ALL_PINNED &&
9766 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9767 sd->balance_interval < sd->max_interval)
9768 sd->balance_interval *= 2;
9769 out:
9770 return ld_moved;
9771 }
9772
9773 static inline unsigned long
9774 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9775 {
9776 unsigned long interval = sd->balance_interval;
9777
9778 if (cpu_busy)
9779 interval *= sd->busy_factor;
9780
9781 /* scale ms to jiffies */
9782 interval = msecs_to_jiffies(interval);
9783 interval = clamp(interval, 1UL, max_load_balance_interval);
9784
9785 return interval;
9786 }
9787
9788 static inline void
9789 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9790 {
9791 unsigned long interval, next;
9792
9793 /* used by idle balance, so cpu_busy = 0 */
9794 interval = get_sd_balance_interval(sd, 0);
9795 next = sd->last_balance + interval;
9796
9797 if (time_after(*next_balance, next))
9798 *next_balance = next;
9799 }
9800
9801 /*
9802 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9803 * running tasks off the busiest CPU onto idle CPUs. It requires at
9804 * least 1 task to be running on each physical CPU where possible, and
9805 * avoids physical / logical imbalances.
9806 */
9807 static int active_load_balance_cpu_stop(void *data)
9808 {
9809 struct rq *busiest_rq = data;
9810 int busiest_cpu = cpu_of(busiest_rq);
9811 int target_cpu = busiest_rq->push_cpu;
9812 struct rq *target_rq = cpu_rq(target_cpu);
9813 struct sched_domain *sd;
9814 struct task_struct *p = NULL;
9815 struct rq_flags rf;
9816
9817 rq_lock_irq(busiest_rq, &rf);
9818 /*
9819 * Between queueing the stop-work and running it is a hole in which
9820 * CPUs can become inactive. We should not move tasks from or to
9821 * inactive CPUs.
9822 */
9823 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9824 goto out_unlock;
9825
9826 /* Make sure the requested CPU hasn't gone down in the meantime: */
9827 if (unlikely(busiest_cpu != smp_processor_id() ||
9828 !busiest_rq->active_balance))
9829 goto out_unlock;
9830
9831 /* Is there any task to move? */
9832 if (busiest_rq->nr_running <= 1)
9833 goto out_unlock;
9834
9835 /*
9836 * This condition is "impossible", if it occurs
9837 * we need to fix it. Originally reported by
9838 * Bjorn Helgaas on a 128-CPU setup.
9839 */
9840 BUG_ON(busiest_rq == target_rq);
9841
9842 /* Search for an sd spanning us and the target CPU. */
9843 rcu_read_lock();
9844 for_each_domain(target_cpu, sd) {
9845 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9846 break;
9847 }
9848
9849 if (likely(sd)) {
9850 struct lb_env env = {
9851 .sd = sd,
9852 .dst_cpu = target_cpu,
9853 .dst_rq = target_rq,
9854 .src_cpu = busiest_rq->cpu,
9855 .src_rq = busiest_rq,
9856 .idle = CPU_IDLE,
9857 /*
9858 * can_migrate_task() doesn't need to compute new_dst_cpu
9859 * for active balancing. Since we have CPU_IDLE, but no
9860 * @dst_grpmask we need to make that test go away with lying
9861 * about DST_PINNED.
9862 */
9863 .flags = LBF_DST_PINNED,
9864 };
9865
9866 schedstat_inc(sd->alb_count);
9867 update_rq_clock(busiest_rq);
9868
9869 p = detach_one_task(&env);
9870 if (p) {
9871 schedstat_inc(sd->alb_pushed);
9872 /* Active balancing done, reset the failure counter. */
9873 sd->nr_balance_failed = 0;
9874 } else {
9875 schedstat_inc(sd->alb_failed);
9876 }
9877 }
9878 rcu_read_unlock();
9879 out_unlock:
9880 busiest_rq->active_balance = 0;
9881 rq_unlock(busiest_rq, &rf);
9882
9883 if (p)
9884 attach_one_task(target_rq, p);
9885
9886 local_irq_enable();
9887
9888 return 0;
9889 }
9890
9891 static DEFINE_SPINLOCK(balancing);
9892
9893 /*
9894 * Scale the max load_balance interval with the number of CPUs in the system.
9895 * This trades load-balance latency on larger machines for less cross talk.
9896 */
9897 void update_max_interval(void)
9898 {
9899 max_load_balance_interval = HZ*num_online_cpus()/10;
9900 }
9901
9902 /*
9903 * It checks each scheduling domain to see if it is due to be balanced,
9904 * and initiates a balancing operation if so.
9905 *
9906 * Balancing parameters are set up in init_sched_domains.
9907 */
9908 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9909 {
9910 int continue_balancing = 1;
9911 int cpu = rq->cpu;
9912 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9913 unsigned long interval;
9914 struct sched_domain *sd;
9915 /* Earliest time when we have to do rebalance again */
9916 unsigned long next_balance = jiffies + 60*HZ;
9917 int update_next_balance = 0;
9918 int need_serialize, need_decay = 0;
9919 u64 max_cost = 0;
9920
9921 rcu_read_lock();
9922 for_each_domain(cpu, sd) {
9923 /*
9924 * Decay the newidle max times here because this is a regular
9925 * visit to all the domains. Decay ~1% per second.
9926 */
9927 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9928 sd->max_newidle_lb_cost =
9929 (sd->max_newidle_lb_cost * 253) / 256;
9930 sd->next_decay_max_lb_cost = jiffies + HZ;
9931 need_decay = 1;
9932 }
9933 max_cost += sd->max_newidle_lb_cost;
9934
9935 /*
9936 * Stop the load balance at this level. There is another
9937 * CPU in our sched group which is doing load balancing more
9938 * actively.
9939 */
9940 if (!continue_balancing) {
9941 if (need_decay)
9942 continue;
9943 break;
9944 }
9945
9946 interval = get_sd_balance_interval(sd, busy);
9947
9948 need_serialize = sd->flags & SD_SERIALIZE;
9949 if (need_serialize) {
9950 if (!spin_trylock(&balancing))
9951 goto out;
9952 }
9953
9954 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9955 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9956 /*
9957 * The LBF_DST_PINNED logic could have changed
9958 * env->dst_cpu, so we can't know our idle
9959 * state even if we migrated tasks. Update it.
9960 */
9961 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9962 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9963 }
9964 sd->last_balance = jiffies;
9965 interval = get_sd_balance_interval(sd, busy);
9966 }
9967 if (need_serialize)
9968 spin_unlock(&balancing);
9969 out:
9970 if (time_after(next_balance, sd->last_balance + interval)) {
9971 next_balance = sd->last_balance + interval;
9972 update_next_balance = 1;
9973 }
9974 }
9975 if (need_decay) {
9976 /*
9977 * Ensure the rq-wide value also decays but keep it at a
9978 * reasonable floor to avoid funnies with rq->avg_idle.
9979 */
9980 rq->max_idle_balance_cost =
9981 max((u64)sysctl_sched_migration_cost, max_cost);
9982 }
9983 rcu_read_unlock();
9984
9985 /*
9986 * next_balance will be updated only when there is a need.
9987 * When the cpu is attached to null domain for ex, it will not be
9988 * updated.
9989 */
9990 if (likely(update_next_balance)) {
9991 rq->next_balance = next_balance;
9992
9993 #ifdef CONFIG_NO_HZ_COMMON
9994 /*
9995 * If this CPU has been elected to perform the nohz idle
9996 * balance. Other idle CPUs have already rebalanced with
9997 * nohz_idle_balance() and nohz.next_balance has been
9998 * updated accordingly. This CPU is now running the idle load
9999 * balance for itself and we need to update the
10000 * nohz.next_balance accordingly.
10001 */
10002 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
10003 nohz.next_balance = rq->next_balance;
10004 #endif
10005 }
10006 }
10007
10008 static inline int on_null_domain(struct rq *rq)
10009 {
10010 return unlikely(!rcu_dereference_sched(rq->sd));
10011 }
10012
10013 #ifdef CONFIG_NO_HZ_COMMON
10014 /*
10015 * idle load balancing details
10016 * - When one of the busy CPUs notice that there may be an idle rebalancing
10017 * needed, they will kick the idle load balancer, which then does idle
10018 * load balancing for all the idle CPUs.
10019 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10020 * anywhere yet.
10021 */
10022
10023 static inline int find_new_ilb(void)
10024 {
10025 int ilb;
10026
10027 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10028 housekeeping_cpumask(HK_FLAG_MISC)) {
10029 if (idle_cpu(ilb))
10030 return ilb;
10031 }
10032
10033 return nr_cpu_ids;
10034 }
10035
10036 /*
10037 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10038 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10039 */
10040 static void kick_ilb(unsigned int flags)
10041 {
10042 int ilb_cpu;
10043
10044 /*
10045 * Increase nohz.next_balance only when if full ilb is triggered but
10046 * not if we only update stats.
10047 */
10048 if (flags & NOHZ_BALANCE_KICK)
10049 nohz.next_balance = jiffies+1;
10050
10051 ilb_cpu = find_new_ilb();
10052
10053 if (ilb_cpu >= nr_cpu_ids)
10054 return;
10055
10056 /*
10057 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10058 * the first flag owns it; cleared by nohz_csd_func().
10059 */
10060 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10061 if (flags & NOHZ_KICK_MASK)
10062 return;
10063
10064 /*
10065 * This way we generate an IPI on the target CPU which
10066 * is idle. And the softirq performing nohz idle load balance
10067 * will be run before returning from the IPI.
10068 */
10069 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10070 }
10071
10072 /*
10073 * Current decision point for kicking the idle load balancer in the presence
10074 * of idle CPUs in the system.
10075 */
10076 static void nohz_balancer_kick(struct rq *rq)
10077 {
10078 unsigned long now = jiffies;
10079 struct sched_domain_shared *sds;
10080 struct sched_domain *sd;
10081 int nr_busy, i, cpu = rq->cpu;
10082 unsigned int flags = 0;
10083
10084 if (unlikely(rq->idle_balance))
10085 return;
10086
10087 /*
10088 * We may be recently in ticked or tickless idle mode. At the first
10089 * busy tick after returning from idle, we will update the busy stats.
10090 */
10091 nohz_balance_exit_idle(rq);
10092
10093 /*
10094 * None are in tickless mode and hence no need for NOHZ idle load
10095 * balancing.
10096 */
10097 if (likely(!atomic_read(&nohz.nr_cpus)))
10098 return;
10099
10100 if (READ_ONCE(nohz.has_blocked) &&
10101 time_after(now, READ_ONCE(nohz.next_blocked)))
10102 flags = NOHZ_STATS_KICK;
10103
10104 if (time_before(now, nohz.next_balance))
10105 goto out;
10106
10107 if (rq->nr_running >= 2) {
10108 flags = NOHZ_KICK_MASK;
10109 goto out;
10110 }
10111
10112 rcu_read_lock();
10113
10114 sd = rcu_dereference(rq->sd);
10115 if (sd) {
10116 /*
10117 * If there's a CFS task and the current CPU has reduced
10118 * capacity; kick the ILB to see if there's a better CPU to run
10119 * on.
10120 */
10121 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10122 flags = NOHZ_KICK_MASK;
10123 goto unlock;
10124 }
10125 }
10126
10127 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10128 if (sd) {
10129 /*
10130 * When ASYM_PACKING; see if there's a more preferred CPU
10131 * currently idle; in which case, kick the ILB to move tasks
10132 * around.
10133 */
10134 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10135 if (sched_asym_prefer(i, cpu)) {
10136 flags = NOHZ_KICK_MASK;
10137 goto unlock;
10138 }
10139 }
10140 }
10141
10142 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10143 if (sd) {
10144 /*
10145 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10146 * to run the misfit task on.
10147 */
10148 if (check_misfit_status(rq, sd)) {
10149 flags = NOHZ_KICK_MASK;
10150 goto unlock;
10151 }
10152
10153 /*
10154 * For asymmetric systems, we do not want to nicely balance
10155 * cache use, instead we want to embrace asymmetry and only
10156 * ensure tasks have enough CPU capacity.
10157 *
10158 * Skip the LLC logic because it's not relevant in that case.
10159 */
10160 goto unlock;
10161 }
10162
10163 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10164 if (sds) {
10165 /*
10166 * If there is an imbalance between LLC domains (IOW we could
10167 * increase the overall cache use), we need some less-loaded LLC
10168 * domain to pull some load. Likewise, we may need to spread
10169 * load within the current LLC domain (e.g. packed SMT cores but
10170 * other CPUs are idle). We can't really know from here how busy
10171 * the others are - so just get a nohz balance going if it looks
10172 * like this LLC domain has tasks we could move.
10173 */
10174 nr_busy = atomic_read(&sds->nr_busy_cpus);
10175 if (nr_busy > 1) {
10176 flags = NOHZ_KICK_MASK;
10177 goto unlock;
10178 }
10179 }
10180 unlock:
10181 rcu_read_unlock();
10182 out:
10183 if (flags)
10184 kick_ilb(flags);
10185 }
10186
10187 static void set_cpu_sd_state_busy(int cpu)
10188 {
10189 struct sched_domain *sd;
10190
10191 rcu_read_lock();
10192 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10193
10194 if (!sd || !sd->nohz_idle)
10195 goto unlock;
10196 sd->nohz_idle = 0;
10197
10198 atomic_inc(&sd->shared->nr_busy_cpus);
10199 unlock:
10200 rcu_read_unlock();
10201 }
10202
10203 void nohz_balance_exit_idle(struct rq *rq)
10204 {
10205 SCHED_WARN_ON(rq != this_rq());
10206
10207 if (likely(!rq->nohz_tick_stopped))
10208 return;
10209
10210 rq->nohz_tick_stopped = 0;
10211 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10212 atomic_dec(&nohz.nr_cpus);
10213
10214 set_cpu_sd_state_busy(rq->cpu);
10215 }
10216
10217 static void set_cpu_sd_state_idle(int cpu)
10218 {
10219 struct sched_domain *sd;
10220
10221 rcu_read_lock();
10222 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10223
10224 if (!sd || sd->nohz_idle)
10225 goto unlock;
10226 sd->nohz_idle = 1;
10227
10228 atomic_dec(&sd->shared->nr_busy_cpus);
10229 unlock:
10230 rcu_read_unlock();
10231 }
10232
10233 /*
10234 * This routine will record that the CPU is going idle with tick stopped.
10235 * This info will be used in performing idle load balancing in the future.
10236 */
10237 void nohz_balance_enter_idle(int cpu)
10238 {
10239 struct rq *rq = cpu_rq(cpu);
10240
10241 SCHED_WARN_ON(cpu != smp_processor_id());
10242
10243 /* If this CPU is going down, then nothing needs to be done: */
10244 if (!cpu_active(cpu))
10245 return;
10246
10247 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10248 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10249 return;
10250
10251 /*
10252 * Can be set safely without rq->lock held
10253 * If a clear happens, it will have evaluated last additions because
10254 * rq->lock is held during the check and the clear
10255 */
10256 rq->has_blocked_load = 1;
10257
10258 /*
10259 * The tick is still stopped but load could have been added in the
10260 * meantime. We set the nohz.has_blocked flag to trig a check of the
10261 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10262 * of nohz.has_blocked can only happen after checking the new load
10263 */
10264 if (rq->nohz_tick_stopped)
10265 goto out;
10266
10267 /* If we're a completely isolated CPU, we don't play: */
10268 if (on_null_domain(rq))
10269 return;
10270
10271 rq->nohz_tick_stopped = 1;
10272
10273 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10274 atomic_inc(&nohz.nr_cpus);
10275
10276 /*
10277 * Ensures that if nohz_idle_balance() fails to observe our
10278 * @idle_cpus_mask store, it must observe the @has_blocked
10279 * store.
10280 */
10281 smp_mb__after_atomic();
10282
10283 set_cpu_sd_state_idle(cpu);
10284
10285 out:
10286 /*
10287 * Each time a cpu enter idle, we assume that it has blocked load and
10288 * enable the periodic update of the load of idle cpus
10289 */
10290 WRITE_ONCE(nohz.has_blocked, 1);
10291 }
10292
10293 /*
10294 * Internal function that runs load balance for all idle cpus. The load balance
10295 * can be a simple update of blocked load or a complete load balance with
10296 * tasks movement depending of flags.
10297 * The function returns false if the loop has stopped before running
10298 * through all idle CPUs.
10299 */
10300 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10301 enum cpu_idle_type idle)
10302 {
10303 /* Earliest time when we have to do rebalance again */
10304 unsigned long now = jiffies;
10305 unsigned long next_balance = now + 60*HZ;
10306 bool has_blocked_load = false;
10307 int update_next_balance = 0;
10308 int this_cpu = this_rq->cpu;
10309 int balance_cpu;
10310 int ret = false;
10311 struct rq *rq;
10312
10313 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10314
10315 /*
10316 * We assume there will be no idle load after this update and clear
10317 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10318 * set the has_blocked flag and trig another update of idle load.
10319 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10320 * setting the flag, we are sure to not clear the state and not
10321 * check the load of an idle cpu.
10322 */
10323 WRITE_ONCE(nohz.has_blocked, 0);
10324
10325 /*
10326 * Ensures that if we miss the CPU, we must see the has_blocked
10327 * store from nohz_balance_enter_idle().
10328 */
10329 smp_mb();
10330
10331 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
10332 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
10333 continue;
10334
10335 /*
10336 * If this CPU gets work to do, stop the load balancing
10337 * work being done for other CPUs. Next load
10338 * balancing owner will pick it up.
10339 */
10340 if (need_resched()) {
10341 has_blocked_load = true;
10342 goto abort;
10343 }
10344
10345 rq = cpu_rq(balance_cpu);
10346
10347 has_blocked_load |= update_nohz_stats(rq, true);
10348
10349 /*
10350 * If time for next balance is due,
10351 * do the balance.
10352 */
10353 if (time_after_eq(jiffies, rq->next_balance)) {
10354 struct rq_flags rf;
10355
10356 rq_lock_irqsave(rq, &rf);
10357 update_rq_clock(rq);
10358 rq_unlock_irqrestore(rq, &rf);
10359
10360 if (flags & NOHZ_BALANCE_KICK)
10361 rebalance_domains(rq, CPU_IDLE);
10362 }
10363
10364 if (time_after(next_balance, rq->next_balance)) {
10365 next_balance = rq->next_balance;
10366 update_next_balance = 1;
10367 }
10368 }
10369
10370 /*
10371 * next_balance will be updated only when there is a need.
10372 * When the CPU is attached to null domain for ex, it will not be
10373 * updated.
10374 */
10375 if (likely(update_next_balance))
10376 nohz.next_balance = next_balance;
10377
10378 /* Newly idle CPU doesn't need an update */
10379 if (idle != CPU_NEWLY_IDLE) {
10380 update_blocked_averages(this_cpu);
10381 has_blocked_load |= this_rq->has_blocked_load;
10382 }
10383
10384 if (flags & NOHZ_BALANCE_KICK)
10385 rebalance_domains(this_rq, CPU_IDLE);
10386
10387 WRITE_ONCE(nohz.next_blocked,
10388 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10389
10390 /* The full idle balance loop has been done */
10391 ret = true;
10392
10393 abort:
10394 /* There is still blocked load, enable periodic update */
10395 if (has_blocked_load)
10396 WRITE_ONCE(nohz.has_blocked, 1);
10397
10398 return ret;
10399 }
10400
10401 /*
10402 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10403 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10404 */
10405 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10406 {
10407 unsigned int flags = this_rq->nohz_idle_balance;
10408
10409 if (!flags)
10410 return false;
10411
10412 this_rq->nohz_idle_balance = 0;
10413
10414 if (idle != CPU_IDLE)
10415 return false;
10416
10417 _nohz_idle_balance(this_rq, flags, idle);
10418
10419 return true;
10420 }
10421
10422 static void nohz_newidle_balance(struct rq *this_rq)
10423 {
10424 int this_cpu = this_rq->cpu;
10425
10426 /*
10427 * This CPU doesn't want to be disturbed by scheduler
10428 * housekeeping
10429 */
10430 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10431 return;
10432
10433 /* Will wake up very soon. No time for doing anything else*/
10434 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10435 return;
10436
10437 /* Don't need to update blocked load of idle CPUs*/
10438 if (!READ_ONCE(nohz.has_blocked) ||
10439 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10440 return;
10441
10442 raw_spin_unlock(&this_rq->lock);
10443 /*
10444 * This CPU is going to be idle and blocked load of idle CPUs
10445 * need to be updated. Run the ilb locally as it is a good
10446 * candidate for ilb instead of waking up another idle CPU.
10447 * Kick an normal ilb if we failed to do the update.
10448 */
10449 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10450 kick_ilb(NOHZ_STATS_KICK);
10451 raw_spin_lock(&this_rq->lock);
10452 }
10453
10454 #else /* !CONFIG_NO_HZ_COMMON */
10455 static inline void nohz_balancer_kick(struct rq *rq) { }
10456
10457 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10458 {
10459 return false;
10460 }
10461
10462 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10463 #endif /* CONFIG_NO_HZ_COMMON */
10464
10465 /*
10466 * idle_balance is called by schedule() if this_cpu is about to become
10467 * idle. Attempts to pull tasks from other CPUs.
10468 *
10469 * Returns:
10470 * < 0 - we released the lock and there are !fair tasks present
10471 * 0 - failed, no new tasks
10472 * > 0 - success, new (fair) tasks present
10473 */
10474 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10475 {
10476 unsigned long next_balance = jiffies + HZ;
10477 int this_cpu = this_rq->cpu;
10478 struct sched_domain *sd;
10479 int pulled_task = 0;
10480 u64 curr_cost = 0;
10481
10482 update_misfit_status(NULL, this_rq);
10483 /*
10484 * We must set idle_stamp _before_ calling idle_balance(), such that we
10485 * measure the duration of idle_balance() as idle time.
10486 */
10487 this_rq->idle_stamp = rq_clock(this_rq);
10488
10489 /*
10490 * Do not pull tasks towards !active CPUs...
10491 */
10492 if (!cpu_active(this_cpu))
10493 return 0;
10494
10495 /*
10496 * This is OK, because current is on_cpu, which avoids it being picked
10497 * for load-balance and preemption/IRQs are still disabled avoiding
10498 * further scheduler activity on it and we're being very careful to
10499 * re-start the picking loop.
10500 */
10501 rq_unpin_lock(this_rq, rf);
10502
10503 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10504 !READ_ONCE(this_rq->rd->overload)) {
10505
10506 rcu_read_lock();
10507 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10508 if (sd)
10509 update_next_balance(sd, &next_balance);
10510 rcu_read_unlock();
10511
10512 nohz_newidle_balance(this_rq);
10513
10514 goto out;
10515 }
10516
10517 raw_spin_unlock(&this_rq->lock);
10518
10519 update_blocked_averages(this_cpu);
10520 rcu_read_lock();
10521 for_each_domain(this_cpu, sd) {
10522 int continue_balancing = 1;
10523 u64 t0, domain_cost;
10524
10525 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10526 update_next_balance(sd, &next_balance);
10527 break;
10528 }
10529
10530 if (sd->flags & SD_BALANCE_NEWIDLE) {
10531 t0 = sched_clock_cpu(this_cpu);
10532
10533 pulled_task = load_balance(this_cpu, this_rq,
10534 sd, CPU_NEWLY_IDLE,
10535 &continue_balancing);
10536
10537 domain_cost = sched_clock_cpu(this_cpu) - t0;
10538 if (domain_cost > sd->max_newidle_lb_cost)
10539 sd->max_newidle_lb_cost = domain_cost;
10540
10541 curr_cost += domain_cost;
10542 }
10543
10544 update_next_balance(sd, &next_balance);
10545
10546 /*
10547 * Stop searching for tasks to pull if there are
10548 * now runnable tasks on this rq.
10549 */
10550 if (pulled_task || this_rq->nr_running > 0)
10551 break;
10552 }
10553 rcu_read_unlock();
10554
10555 raw_spin_lock(&this_rq->lock);
10556
10557 if (curr_cost > this_rq->max_idle_balance_cost)
10558 this_rq->max_idle_balance_cost = curr_cost;
10559
10560 out:
10561 /*
10562 * While browsing the domains, we released the rq lock, a task could
10563 * have been enqueued in the meantime. Since we're not going idle,
10564 * pretend we pulled a task.
10565 */
10566 if (this_rq->cfs.h_nr_running && !pulled_task)
10567 pulled_task = 1;
10568
10569 /* Move the next balance forward */
10570 if (time_after(this_rq->next_balance, next_balance))
10571 this_rq->next_balance = next_balance;
10572
10573 /* Is there a task of a high priority class? */
10574 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10575 pulled_task = -1;
10576
10577 if (pulled_task)
10578 this_rq->idle_stamp = 0;
10579
10580 rq_repin_lock(this_rq, rf);
10581
10582 return pulled_task;
10583 }
10584
10585 /*
10586 * run_rebalance_domains is triggered when needed from the scheduler tick.
10587 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10588 */
10589 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10590 {
10591 struct rq *this_rq = this_rq();
10592 enum cpu_idle_type idle = this_rq->idle_balance ?
10593 CPU_IDLE : CPU_NOT_IDLE;
10594
10595 /*
10596 * If this CPU has a pending nohz_balance_kick, then do the
10597 * balancing on behalf of the other idle CPUs whose ticks are
10598 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10599 * give the idle CPUs a chance to load balance. Else we may
10600 * load balance only within the local sched_domain hierarchy
10601 * and abort nohz_idle_balance altogether if we pull some load.
10602 */
10603 if (nohz_idle_balance(this_rq, idle))
10604 return;
10605
10606 /* normal load balance */
10607 update_blocked_averages(this_rq->cpu);
10608 rebalance_domains(this_rq, idle);
10609 }
10610
10611 /*
10612 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10613 */
10614 void trigger_load_balance(struct rq *rq)
10615 {
10616 /* Don't need to rebalance while attached to NULL domain */
10617 if (unlikely(on_null_domain(rq)))
10618 return;
10619
10620 if (time_after_eq(jiffies, rq->next_balance))
10621 raise_softirq(SCHED_SOFTIRQ);
10622
10623 nohz_balancer_kick(rq);
10624 }
10625
10626 static void rq_online_fair(struct rq *rq)
10627 {
10628 update_sysctl();
10629
10630 update_runtime_enabled(rq);
10631 }
10632
10633 static void rq_offline_fair(struct rq *rq)
10634 {
10635 update_sysctl();
10636
10637 /* Ensure any throttled groups are reachable by pick_next_task */
10638 unthrottle_offline_cfs_rqs(rq);
10639 }
10640
10641 #endif /* CONFIG_SMP */
10642
10643 /*
10644 * scheduler tick hitting a task of our scheduling class.
10645 *
10646 * NOTE: This function can be called remotely by the tick offload that
10647 * goes along full dynticks. Therefore no local assumption can be made
10648 * and everything must be accessed through the @rq and @curr passed in
10649 * parameters.
10650 */
10651 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10652 {
10653 struct cfs_rq *cfs_rq;
10654 struct sched_entity *se = &curr->se;
10655
10656 for_each_sched_entity(se) {
10657 cfs_rq = cfs_rq_of(se);
10658 entity_tick(cfs_rq, se, queued);
10659 }
10660
10661 if (static_branch_unlikely(&sched_numa_balancing))
10662 task_tick_numa(rq, curr);
10663
10664 update_misfit_status(curr, rq);
10665 update_overutilized_status(task_rq(curr));
10666 }
10667
10668 /*
10669 * called on fork with the child task as argument from the parent's context
10670 * - child not yet on the tasklist
10671 * - preemption disabled
10672 */
10673 static void task_fork_fair(struct task_struct *p)
10674 {
10675 struct cfs_rq *cfs_rq;
10676 struct sched_entity *se = &p->se, *curr;
10677 struct rq *rq = this_rq();
10678 struct rq_flags rf;
10679
10680 rq_lock(rq, &rf);
10681 update_rq_clock(rq);
10682
10683 cfs_rq = task_cfs_rq(current);
10684 curr = cfs_rq->curr;
10685 if (curr) {
10686 update_curr(cfs_rq);
10687 se->vruntime = curr->vruntime;
10688 }
10689 place_entity(cfs_rq, se, 1);
10690
10691 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10692 /*
10693 * Upon rescheduling, sched_class::put_prev_task() will place
10694 * 'current' within the tree based on its new key value.
10695 */
10696 swap(curr->vruntime, se->vruntime);
10697 resched_curr(rq);
10698 }
10699
10700 se->vruntime -= cfs_rq->min_vruntime;
10701 rq_unlock(rq, &rf);
10702 }
10703
10704 /*
10705 * Priority of the task has changed. Check to see if we preempt
10706 * the current task.
10707 */
10708 static void
10709 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10710 {
10711 if (!task_on_rq_queued(p))
10712 return;
10713
10714 if (rq->cfs.nr_running == 1)
10715 return;
10716
10717 /*
10718 * Reschedule if we are currently running on this runqueue and
10719 * our priority decreased, or if we are not currently running on
10720 * this runqueue and our priority is higher than the current's
10721 */
10722 if (rq->curr == p) {
10723 if (p->prio > oldprio)
10724 resched_curr(rq);
10725 } else
10726 check_preempt_curr(rq, p, 0);
10727 }
10728
10729 static inline bool vruntime_normalized(struct task_struct *p)
10730 {
10731 struct sched_entity *se = &p->se;
10732
10733 /*
10734 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10735 * the dequeue_entity(.flags=0) will already have normalized the
10736 * vruntime.
10737 */
10738 if (p->on_rq)
10739 return true;
10740
10741 /*
10742 * When !on_rq, vruntime of the task has usually NOT been normalized.
10743 * But there are some cases where it has already been normalized:
10744 *
10745 * - A forked child which is waiting for being woken up by
10746 * wake_up_new_task().
10747 * - A task which has been woken up by try_to_wake_up() and
10748 * waiting for actually being woken up by sched_ttwu_pending().
10749 */
10750 if (!se->sum_exec_runtime ||
10751 (p->state == TASK_WAKING && p->sched_remote_wakeup))
10752 return true;
10753
10754 return false;
10755 }
10756
10757 #ifdef CONFIG_FAIR_GROUP_SCHED
10758 /*
10759 * Propagate the changes of the sched_entity across the tg tree to make it
10760 * visible to the root
10761 */
10762 static void propagate_entity_cfs_rq(struct sched_entity *se)
10763 {
10764 struct cfs_rq *cfs_rq;
10765
10766 /* Start to propagate at parent */
10767 se = se->parent;
10768
10769 for_each_sched_entity(se) {
10770 cfs_rq = cfs_rq_of(se);
10771
10772 if (cfs_rq_throttled(cfs_rq))
10773 break;
10774
10775 update_load_avg(cfs_rq, se, UPDATE_TG);
10776 }
10777 }
10778 #else
10779 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10780 #endif
10781
10782 static void detach_entity_cfs_rq(struct sched_entity *se)
10783 {
10784 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10785
10786 /* Catch up with the cfs_rq and remove our load when we leave */
10787 update_load_avg(cfs_rq, se, 0);
10788 detach_entity_load_avg(cfs_rq, se);
10789 update_tg_load_avg(cfs_rq, false);
10790 propagate_entity_cfs_rq(se);
10791 }
10792
10793 static void attach_entity_cfs_rq(struct sched_entity *se)
10794 {
10795 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10796
10797 #ifdef CONFIG_FAIR_GROUP_SCHED
10798 /*
10799 * Since the real-depth could have been changed (only FAIR
10800 * class maintain depth value), reset depth properly.
10801 */
10802 se->depth = se->parent ? se->parent->depth + 1 : 0;
10803 #endif
10804
10805 /* Synchronize entity with its cfs_rq */
10806 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10807 attach_entity_load_avg(cfs_rq, se);
10808 update_tg_load_avg(cfs_rq, false);
10809 propagate_entity_cfs_rq(se);
10810 }
10811
10812 static void detach_task_cfs_rq(struct task_struct *p)
10813 {
10814 struct sched_entity *se = &p->se;
10815 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10816
10817 if (!vruntime_normalized(p)) {
10818 /*
10819 * Fix up our vruntime so that the current sleep doesn't
10820 * cause 'unlimited' sleep bonus.
10821 */
10822 place_entity(cfs_rq, se, 0);
10823 se->vruntime -= cfs_rq->min_vruntime;
10824 }
10825
10826 detach_entity_cfs_rq(se);
10827 }
10828
10829 static void attach_task_cfs_rq(struct task_struct *p)
10830 {
10831 struct sched_entity *se = &p->se;
10832 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10833
10834 attach_entity_cfs_rq(se);
10835
10836 if (!vruntime_normalized(p))
10837 se->vruntime += cfs_rq->min_vruntime;
10838 }
10839
10840 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10841 {
10842 detach_task_cfs_rq(p);
10843 }
10844
10845 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10846 {
10847 attach_task_cfs_rq(p);
10848
10849 if (task_on_rq_queued(p)) {
10850 /*
10851 * We were most likely switched from sched_rt, so
10852 * kick off the schedule if running, otherwise just see
10853 * if we can still preempt the current task.
10854 */
10855 if (rq->curr == p)
10856 resched_curr(rq);
10857 else
10858 check_preempt_curr(rq, p, 0);
10859 }
10860 }
10861
10862 /* Account for a task changing its policy or group.
10863 *
10864 * This routine is mostly called to set cfs_rq->curr field when a task
10865 * migrates between groups/classes.
10866 */
10867 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10868 {
10869 struct sched_entity *se = &p->se;
10870
10871 #ifdef CONFIG_SMP
10872 if (task_on_rq_queued(p)) {
10873 /*
10874 * Move the next running task to the front of the list, so our
10875 * cfs_tasks list becomes MRU one.
10876 */
10877 list_move(&se->group_node, &rq->cfs_tasks);
10878 }
10879 #endif
10880
10881 for_each_sched_entity(se) {
10882 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10883
10884 set_next_entity(cfs_rq, se);
10885 /* ensure bandwidth has been allocated on our new cfs_rq */
10886 account_cfs_rq_runtime(cfs_rq, 0);
10887 }
10888 }
10889
10890 void init_cfs_rq(struct cfs_rq *cfs_rq)
10891 {
10892 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10893 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10894 #ifndef CONFIG_64BIT
10895 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10896 #endif
10897 #ifdef CONFIG_SMP
10898 raw_spin_lock_init(&cfs_rq->removed.lock);
10899 #endif
10900 }
10901
10902 #ifdef CONFIG_FAIR_GROUP_SCHED
10903 static void task_set_group_fair(struct task_struct *p)
10904 {
10905 struct sched_entity *se = &p->se;
10906
10907 set_task_rq(p, task_cpu(p));
10908 se->depth = se->parent ? se->parent->depth + 1 : 0;
10909 }
10910
10911 static void task_move_group_fair(struct task_struct *p)
10912 {
10913 detach_task_cfs_rq(p);
10914 set_task_rq(p, task_cpu(p));
10915
10916 #ifdef CONFIG_SMP
10917 /* Tell se's cfs_rq has been changed -- migrated */
10918 p->se.avg.last_update_time = 0;
10919 #endif
10920 attach_task_cfs_rq(p);
10921 }
10922
10923 static void task_change_group_fair(struct task_struct *p, int type)
10924 {
10925 switch (type) {
10926 case TASK_SET_GROUP:
10927 task_set_group_fair(p);
10928 break;
10929
10930 case TASK_MOVE_GROUP:
10931 task_move_group_fair(p);
10932 break;
10933 }
10934 }
10935
10936 void free_fair_sched_group(struct task_group *tg)
10937 {
10938 int i;
10939
10940 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10941
10942 for_each_possible_cpu(i) {
10943 if (tg->cfs_rq)
10944 kfree(tg->cfs_rq[i]);
10945 if (tg->se)
10946 kfree(tg->se[i]);
10947 }
10948
10949 kfree(tg->cfs_rq);
10950 kfree(tg->se);
10951 }
10952
10953 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10954 {
10955 struct sched_entity *se;
10956 struct cfs_rq *cfs_rq;
10957 int i;
10958
10959 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10960 if (!tg->cfs_rq)
10961 goto err;
10962 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10963 if (!tg->se)
10964 goto err;
10965
10966 tg->shares = NICE_0_LOAD;
10967
10968 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10969
10970 for_each_possible_cpu(i) {
10971 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10972 GFP_KERNEL, cpu_to_node(i));
10973 if (!cfs_rq)
10974 goto err;
10975
10976 se = kzalloc_node(sizeof(struct sched_entity),
10977 GFP_KERNEL, cpu_to_node(i));
10978 if (!se)
10979 goto err_free_rq;
10980
10981 init_cfs_rq(cfs_rq);
10982 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10983 init_entity_runnable_average(se);
10984 }
10985
10986 return 1;
10987
10988 err_free_rq:
10989 kfree(cfs_rq);
10990 err:
10991 return 0;
10992 }
10993
10994 void online_fair_sched_group(struct task_group *tg)
10995 {
10996 struct sched_entity *se;
10997 struct rq_flags rf;
10998 struct rq *rq;
10999 int i;
11000
11001 for_each_possible_cpu(i) {
11002 rq = cpu_rq(i);
11003 se = tg->se[i];
11004 rq_lock_irq(rq, &rf);
11005 update_rq_clock(rq);
11006 attach_entity_cfs_rq(se);
11007 sync_throttle(tg, i);
11008 rq_unlock_irq(rq, &rf);
11009 }
11010 }
11011
11012 void unregister_fair_sched_group(struct task_group *tg)
11013 {
11014 unsigned long flags;
11015 struct rq *rq;
11016 int cpu;
11017
11018 for_each_possible_cpu(cpu) {
11019 if (tg->se[cpu])
11020 remove_entity_load_avg(tg->se[cpu]);
11021
11022 /*
11023 * Only empty task groups can be destroyed; so we can speculatively
11024 * check on_list without danger of it being re-added.
11025 */
11026 if (!tg->cfs_rq[cpu]->on_list)
11027 continue;
11028
11029 rq = cpu_rq(cpu);
11030
11031 raw_spin_lock_irqsave(&rq->lock, flags);
11032 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11033 raw_spin_unlock_irqrestore(&rq->lock, flags);
11034 }
11035 }
11036
11037 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11038 struct sched_entity *se, int cpu,
11039 struct sched_entity *parent)
11040 {
11041 struct rq *rq = cpu_rq(cpu);
11042
11043 cfs_rq->tg = tg;
11044 cfs_rq->rq = rq;
11045 init_cfs_rq_runtime(cfs_rq);
11046
11047 tg->cfs_rq[cpu] = cfs_rq;
11048 tg->se[cpu] = se;
11049
11050 /* se could be NULL for root_task_group */
11051 if (!se)
11052 return;
11053
11054 if (!parent) {
11055 se->cfs_rq = &rq->cfs;
11056 se->depth = 0;
11057 } else {
11058 se->cfs_rq = parent->my_q;
11059 se->depth = parent->depth + 1;
11060 }
11061
11062 se->my_q = cfs_rq;
11063 /* guarantee group entities always have weight */
11064 update_load_set(&se->load, NICE_0_LOAD);
11065 se->parent = parent;
11066 }
11067
11068 static DEFINE_MUTEX(shares_mutex);
11069
11070 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11071 {
11072 int i;
11073
11074 /*
11075 * We can't change the weight of the root cgroup.
11076 */
11077 if (!tg->se[0])
11078 return -EINVAL;
11079
11080 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11081
11082 mutex_lock(&shares_mutex);
11083 if (tg->shares == shares)
11084 goto done;
11085
11086 tg->shares = shares;
11087 for_each_possible_cpu(i) {
11088 struct rq *rq = cpu_rq(i);
11089 struct sched_entity *se = tg->se[i];
11090 struct rq_flags rf;
11091
11092 /* Propagate contribution to hierarchy */
11093 rq_lock_irqsave(rq, &rf);
11094 update_rq_clock(rq);
11095 for_each_sched_entity(se) {
11096 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11097 update_cfs_group(se);
11098 }
11099 rq_unlock_irqrestore(rq, &rf);
11100 }
11101
11102 done:
11103 mutex_unlock(&shares_mutex);
11104 return 0;
11105 }
11106 #else /* CONFIG_FAIR_GROUP_SCHED */
11107
11108 void free_fair_sched_group(struct task_group *tg) { }
11109
11110 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11111 {
11112 return 1;
11113 }
11114
11115 void online_fair_sched_group(struct task_group *tg) { }
11116
11117 void unregister_fair_sched_group(struct task_group *tg) { }
11118
11119 #endif /* CONFIG_FAIR_GROUP_SCHED */
11120
11121
11122 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11123 {
11124 struct sched_entity *se = &task->se;
11125 unsigned int rr_interval = 0;
11126
11127 /*
11128 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11129 * idle runqueue:
11130 */
11131 if (rq->cfs.load.weight)
11132 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11133
11134 return rr_interval;
11135 }
11136
11137 /*
11138 * All the scheduling class methods:
11139 */
11140 const struct sched_class fair_sched_class
11141 __attribute__((section("__fair_sched_class"))) = {
11142 .enqueue_task = enqueue_task_fair,
11143 .dequeue_task = dequeue_task_fair,
11144 .yield_task = yield_task_fair,
11145 .yield_to_task = yield_to_task_fair,
11146
11147 .check_preempt_curr = check_preempt_wakeup,
11148
11149 .pick_next_task = __pick_next_task_fair,
11150 .put_prev_task = put_prev_task_fair,
11151 .set_next_task = set_next_task_fair,
11152
11153 #ifdef CONFIG_SMP
11154 .balance = balance_fair,
11155 .select_task_rq = select_task_rq_fair,
11156 .migrate_task_rq = migrate_task_rq_fair,
11157
11158 .rq_online = rq_online_fair,
11159 .rq_offline = rq_offline_fair,
11160
11161 .task_dead = task_dead_fair,
11162 .set_cpus_allowed = set_cpus_allowed_common,
11163 #endif
11164
11165 .task_tick = task_tick_fair,
11166 .task_fork = task_fork_fair,
11167
11168 .prio_changed = prio_changed_fair,
11169 .switched_from = switched_from_fair,
11170 .switched_to = switched_to_fair,
11171
11172 .get_rr_interval = get_rr_interval_fair,
11173
11174 .update_curr = update_curr_fair,
11175
11176 #ifdef CONFIG_FAIR_GROUP_SCHED
11177 .task_change_group = task_change_group_fair,
11178 #endif
11179
11180 #ifdef CONFIG_UCLAMP_TASK
11181 .uclamp_enabled = 1,
11182 #endif
11183 };
11184
11185 #ifdef CONFIG_SCHED_DEBUG
11186 void print_cfs_stats(struct seq_file *m, int cpu)
11187 {
11188 struct cfs_rq *cfs_rq, *pos;
11189
11190 rcu_read_lock();
11191 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11192 print_cfs_rq(m, cpu, cfs_rq);
11193 rcu_read_unlock();
11194 }
11195
11196 #ifdef CONFIG_NUMA_BALANCING
11197 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11198 {
11199 int node;
11200 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11201 struct numa_group *ng;
11202
11203 rcu_read_lock();
11204 ng = rcu_dereference(p->numa_group);
11205 for_each_online_node(node) {
11206 if (p->numa_faults) {
11207 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11208 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11209 }
11210 if (ng) {
11211 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11212 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11213 }
11214 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11215 }
11216 rcu_read_unlock();
11217 }
11218 #endif /* CONFIG_NUMA_BALANCING */
11219 #endif /* CONFIG_SCHED_DEBUG */
11220
11221 __init void init_sched_fair_class(void)
11222 {
11223 #ifdef CONFIG_SMP
11224 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11225
11226 #ifdef CONFIG_NO_HZ_COMMON
11227 nohz.next_balance = jiffies;
11228 nohz.next_blocked = jiffies;
11229 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11230 #endif
11231 #endif /* SMP */
11232
11233 }
11234
11235 /*
11236 * Helper functions to facilitate extracting info from tracepoints.
11237 */
11238
11239 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11240 {
11241 #ifdef CONFIG_SMP
11242 return cfs_rq ? &cfs_rq->avg : NULL;
11243 #else
11244 return NULL;
11245 #endif
11246 }
11247 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11248
11249 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11250 {
11251 if (!cfs_rq) {
11252 if (str)
11253 strlcpy(str, "(null)", len);
11254 else
11255 return NULL;
11256 }
11257
11258 cfs_rq_tg_path(cfs_rq, str, len);
11259 return str;
11260 }
11261 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11262
11263 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11264 {
11265 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11266 }
11267 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11268
11269 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11270 {
11271 #ifdef CONFIG_SMP
11272 return rq ? &rq->avg_rt : NULL;
11273 #else
11274 return NULL;
11275 #endif
11276 }
11277 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11278
11279 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11280 {
11281 #ifdef CONFIG_SMP
11282 return rq ? &rq->avg_dl : NULL;
11283 #else
11284 return NULL;
11285 #endif
11286 }
11287 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11288
11289 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11290 {
11291 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11292 return rq ? &rq->avg_irq : NULL;
11293 #else
11294 return NULL;
11295 #endif
11296 }
11297 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11298
11299 int sched_trace_rq_cpu(struct rq *rq)
11300 {
11301 return rq ? cpu_of(rq) : -1;
11302 }
11303 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11304
11305 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11306 {
11307 #ifdef CONFIG_SMP
11308 return rd ? rd->span : NULL;
11309 #else
11310 return NULL;
11311 #endif
11312 }
11313 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11314
11315 int sched_trace_rq_nr_running(struct rq *rq)
11316 {
11317 return rq ? rq->nr_running : -1;
11318 }
11319 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);