]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/sched/fair.c
1f0a167c3276aec5f2ed2e55526f37c132cdfa22
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / fair.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include "sched.h"
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 *
28 * NOTE: this latency value is not the same as the concept of
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
32 *
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
35 *
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37 */
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40
41 /*
42 * The initial- and re-scaling of tunables is configurable
43 *
44 * Options are:
45 *
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 *
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
51 */
52 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
53
54 /*
55 * Minimal preemption granularity for CPU-bound tasks:
56 *
57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58 */
59 unsigned int sysctl_sched_min_granularity = 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
61
62 /*
63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
64 */
65 static unsigned int sched_nr_latency = 8;
66
67 /*
68 * After fork, child runs first. If set to 0 (default) then
69 * parent will (try to) run first.
70 */
71 unsigned int sysctl_sched_child_runs_first __read_mostly;
72
73 /*
74 * SCHED_OTHER wake-up granularity.
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 *
80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
81 */
82 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
83 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
84
85 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
86
87 int sched_thermal_decay_shift;
88 static int __init setup_sched_thermal_decay_shift(char *str)
89 {
90 int _shift = 0;
91
92 if (kstrtoint(str, 0, &_shift))
93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94
95 sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 return 1;
97 }
98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99
100 #ifdef CONFIG_SMP
101 /*
102 * For asym packing, by default the lower numbered CPU has higher priority.
103 */
104 int __weak arch_asym_cpu_priority(int cpu)
105 {
106 return -cpu;
107 }
108
109 /*
110 * The margin used when comparing utilization with CPU capacity.
111 *
112 * (default: ~20%)
113 */
114 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
115
116 #endif
117
118 #ifdef CONFIG_CFS_BANDWIDTH
119 /*
120 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
121 * each time a cfs_rq requests quota.
122 *
123 * Note: in the case that the slice exceeds the runtime remaining (either due
124 * to consumption or the quota being specified to be smaller than the slice)
125 * we will always only issue the remaining available time.
126 *
127 * (default: 5 msec, units: microseconds)
128 */
129 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
130 #endif
131
132 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
133 {
134 lw->weight += inc;
135 lw->inv_weight = 0;
136 }
137
138 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
139 {
140 lw->weight -= dec;
141 lw->inv_weight = 0;
142 }
143
144 static inline void update_load_set(struct load_weight *lw, unsigned long w)
145 {
146 lw->weight = w;
147 lw->inv_weight = 0;
148 }
149
150 /*
151 * Increase the granularity value when there are more CPUs,
152 * because with more CPUs the 'effective latency' as visible
153 * to users decreases. But the relationship is not linear,
154 * so pick a second-best guess by going with the log2 of the
155 * number of CPUs.
156 *
157 * This idea comes from the SD scheduler of Con Kolivas:
158 */
159 static unsigned int get_update_sysctl_factor(void)
160 {
161 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
162 unsigned int factor;
163
164 switch (sysctl_sched_tunable_scaling) {
165 case SCHED_TUNABLESCALING_NONE:
166 factor = 1;
167 break;
168 case SCHED_TUNABLESCALING_LINEAR:
169 factor = cpus;
170 break;
171 case SCHED_TUNABLESCALING_LOG:
172 default:
173 factor = 1 + ilog2(cpus);
174 break;
175 }
176
177 return factor;
178 }
179
180 static void update_sysctl(void)
181 {
182 unsigned int factor = get_update_sysctl_factor();
183
184 #define SET_SYSCTL(name) \
185 (sysctl_##name = (factor) * normalized_sysctl_##name)
186 SET_SYSCTL(sched_min_granularity);
187 SET_SYSCTL(sched_latency);
188 SET_SYSCTL(sched_wakeup_granularity);
189 #undef SET_SYSCTL
190 }
191
192 void __init sched_init_granularity(void)
193 {
194 update_sysctl();
195 }
196
197 #define WMULT_CONST (~0U)
198 #define WMULT_SHIFT 32
199
200 static void __update_inv_weight(struct load_weight *lw)
201 {
202 unsigned long w;
203
204 if (likely(lw->inv_weight))
205 return;
206
207 w = scale_load_down(lw->weight);
208
209 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
210 lw->inv_weight = 1;
211 else if (unlikely(!w))
212 lw->inv_weight = WMULT_CONST;
213 else
214 lw->inv_weight = WMULT_CONST / w;
215 }
216
217 /*
218 * delta_exec * weight / lw.weight
219 * OR
220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
221 *
222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
223 * we're guaranteed shift stays positive because inv_weight is guaranteed to
224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
225 *
226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
227 * weight/lw.weight <= 1, and therefore our shift will also be positive.
228 */
229 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
230 {
231 u64 fact = scale_load_down(weight);
232 int shift = WMULT_SHIFT;
233
234 __update_inv_weight(lw);
235
236 if (unlikely(fact >> 32)) {
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
240 }
241 }
242
243 fact = mul_u32_u32(fact, lw->inv_weight);
244
245 while (fact >> 32) {
246 fact >>= 1;
247 shift--;
248 }
249
250 return mul_u64_u32_shr(delta_exec, fact, shift);
251 }
252
253
254 const struct sched_class fair_sched_class;
255
256 /**************************************************************
257 * CFS operations on generic schedulable entities:
258 */
259
260 #ifdef CONFIG_FAIR_GROUP_SCHED
261 static inline struct task_struct *task_of(struct sched_entity *se)
262 {
263 SCHED_WARN_ON(!entity_is_task(se));
264 return container_of(se, struct task_struct, se);
265 }
266
267 /* Walk up scheduling entities hierarchy */
268 #define for_each_sched_entity(se) \
269 for (; se; se = se->parent)
270
271 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
272 {
273 return p->se.cfs_rq;
274 }
275
276 /* runqueue on which this entity is (to be) queued */
277 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
278 {
279 return se->cfs_rq;
280 }
281
282 /* runqueue "owned" by this group */
283 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
284 {
285 return grp->my_q;
286 }
287
288 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
289 {
290 if (!path)
291 return;
292
293 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
294 autogroup_path(cfs_rq->tg, path, len);
295 else if (cfs_rq && cfs_rq->tg->css.cgroup)
296 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
297 else
298 strlcpy(path, "(null)", len);
299 }
300
301 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302 {
303 struct rq *rq = rq_of(cfs_rq);
304 int cpu = cpu_of(rq);
305
306 if (cfs_rq->on_list)
307 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
308
309 cfs_rq->on_list = 1;
310
311 /*
312 * Ensure we either appear before our parent (if already
313 * enqueued) or force our parent to appear after us when it is
314 * enqueued. The fact that we always enqueue bottom-up
315 * reduces this to two cases and a special case for the root
316 * cfs_rq. Furthermore, it also means that we will always reset
317 * tmp_alone_branch either when the branch is connected
318 * to a tree or when we reach the top of the tree
319 */
320 if (cfs_rq->tg->parent &&
321 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
322 /*
323 * If parent is already on the list, we add the child
324 * just before. Thanks to circular linked property of
325 * the list, this means to put the child at the tail
326 * of the list that starts by parent.
327 */
328 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
329 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
330 /*
331 * The branch is now connected to its tree so we can
332 * reset tmp_alone_branch to the beginning of the
333 * list.
334 */
335 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
336 return true;
337 }
338
339 if (!cfs_rq->tg->parent) {
340 /*
341 * cfs rq without parent should be put
342 * at the tail of the list.
343 */
344 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
345 &rq->leaf_cfs_rq_list);
346 /*
347 * We have reach the top of a tree so we can reset
348 * tmp_alone_branch to the beginning of the list.
349 */
350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
351 return true;
352 }
353
354 /*
355 * The parent has not already been added so we want to
356 * make sure that it will be put after us.
357 * tmp_alone_branch points to the begin of the branch
358 * where we will add parent.
359 */
360 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
361 /*
362 * update tmp_alone_branch to points to the new begin
363 * of the branch
364 */
365 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
366 return false;
367 }
368
369 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
370 {
371 if (cfs_rq->on_list) {
372 struct rq *rq = rq_of(cfs_rq);
373
374 /*
375 * With cfs_rq being unthrottled/throttled during an enqueue,
376 * it can happen the tmp_alone_branch points the a leaf that
377 * we finally want to del. In this case, tmp_alone_branch moves
378 * to the prev element but it will point to rq->leaf_cfs_rq_list
379 * at the end of the enqueue.
380 */
381 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
382 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
383
384 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
385 cfs_rq->on_list = 0;
386 }
387 }
388
389 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
390 {
391 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
392 }
393
394 /* Iterate thr' all leaf cfs_rq's on a runqueue */
395 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
396 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
397 leaf_cfs_rq_list)
398
399 /* Do the two (enqueued) entities belong to the same group ? */
400 static inline struct cfs_rq *
401 is_same_group(struct sched_entity *se, struct sched_entity *pse)
402 {
403 if (se->cfs_rq == pse->cfs_rq)
404 return se->cfs_rq;
405
406 return NULL;
407 }
408
409 static inline struct sched_entity *parent_entity(struct sched_entity *se)
410 {
411 return se->parent;
412 }
413
414 static void
415 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
416 {
417 int se_depth, pse_depth;
418
419 /*
420 * preemption test can be made between sibling entities who are in the
421 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
422 * both tasks until we find their ancestors who are siblings of common
423 * parent.
424 */
425
426 /* First walk up until both entities are at same depth */
427 se_depth = (*se)->depth;
428 pse_depth = (*pse)->depth;
429
430 while (se_depth > pse_depth) {
431 se_depth--;
432 *se = parent_entity(*se);
433 }
434
435 while (pse_depth > se_depth) {
436 pse_depth--;
437 *pse = parent_entity(*pse);
438 }
439
440 while (!is_same_group(*se, *pse)) {
441 *se = parent_entity(*se);
442 *pse = parent_entity(*pse);
443 }
444 }
445
446 #else /* !CONFIG_FAIR_GROUP_SCHED */
447
448 static inline struct task_struct *task_of(struct sched_entity *se)
449 {
450 return container_of(se, struct task_struct, se);
451 }
452
453 #define for_each_sched_entity(se) \
454 for (; se; se = NULL)
455
456 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
457 {
458 return &task_rq(p)->cfs;
459 }
460
461 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
462 {
463 struct task_struct *p = task_of(se);
464 struct rq *rq = task_rq(p);
465
466 return &rq->cfs;
467 }
468
469 /* runqueue "owned" by this group */
470 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
471 {
472 return NULL;
473 }
474
475 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
476 {
477 if (path)
478 strlcpy(path, "(null)", len);
479 }
480
481 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482 {
483 return true;
484 }
485
486 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
487 {
488 }
489
490 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
491 {
492 }
493
494 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
495 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
496
497 static inline struct sched_entity *parent_entity(struct sched_entity *se)
498 {
499 return NULL;
500 }
501
502 static inline void
503 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
504 {
505 }
506
507 #endif /* CONFIG_FAIR_GROUP_SCHED */
508
509 static __always_inline
510 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
511
512 /**************************************************************
513 * Scheduling class tree data structure manipulation methods:
514 */
515
516 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
517 {
518 s64 delta = (s64)(vruntime - max_vruntime);
519 if (delta > 0)
520 max_vruntime = vruntime;
521
522 return max_vruntime;
523 }
524
525 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
526 {
527 s64 delta = (s64)(vruntime - min_vruntime);
528 if (delta < 0)
529 min_vruntime = vruntime;
530
531 return min_vruntime;
532 }
533
534 static inline int entity_before(struct sched_entity *a,
535 struct sched_entity *b)
536 {
537 return (s64)(a->vruntime - b->vruntime) < 0;
538 }
539
540 static void update_min_vruntime(struct cfs_rq *cfs_rq)
541 {
542 struct sched_entity *curr = cfs_rq->curr;
543 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
544
545 u64 vruntime = cfs_rq->min_vruntime;
546
547 if (curr) {
548 if (curr->on_rq)
549 vruntime = curr->vruntime;
550 else
551 curr = NULL;
552 }
553
554 if (leftmost) { /* non-empty tree */
555 struct sched_entity *se;
556 se = rb_entry(leftmost, struct sched_entity, run_node);
557
558 if (!curr)
559 vruntime = se->vruntime;
560 else
561 vruntime = min_vruntime(vruntime, se->vruntime);
562 }
563
564 /* ensure we never gain time by being placed backwards. */
565 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
566 #ifndef CONFIG_64BIT
567 smp_wmb();
568 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
569 #endif
570 }
571
572 /*
573 * Enqueue an entity into the rb-tree:
574 */
575 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
576 {
577 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
578 struct rb_node *parent = NULL;
579 struct sched_entity *entry;
580 bool leftmost = true;
581
582 /*
583 * Find the right place in the rbtree:
584 */
585 while (*link) {
586 parent = *link;
587 entry = rb_entry(parent, struct sched_entity, run_node);
588 /*
589 * We dont care about collisions. Nodes with
590 * the same key stay together.
591 */
592 if (entity_before(se, entry)) {
593 link = &parent->rb_left;
594 } else {
595 link = &parent->rb_right;
596 leftmost = false;
597 }
598 }
599
600 rb_link_node(&se->run_node, parent, link);
601 rb_insert_color_cached(&se->run_node,
602 &cfs_rq->tasks_timeline, leftmost);
603 }
604
605 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
606 {
607 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
608 }
609
610 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
611 {
612 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
613
614 if (!left)
615 return NULL;
616
617 return rb_entry(left, struct sched_entity, run_node);
618 }
619
620 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
621 {
622 struct rb_node *next = rb_next(&se->run_node);
623
624 if (!next)
625 return NULL;
626
627 return rb_entry(next, struct sched_entity, run_node);
628 }
629
630 #ifdef CONFIG_SCHED_DEBUG
631 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
632 {
633 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
634
635 if (!last)
636 return NULL;
637
638 return rb_entry(last, struct sched_entity, run_node);
639 }
640
641 /**************************************************************
642 * Scheduling class statistics methods:
643 */
644
645 int sched_proc_update_handler(struct ctl_table *table, int write,
646 void *buffer, size_t *lenp, loff_t *ppos)
647 {
648 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
649 unsigned int factor = get_update_sysctl_factor();
650
651 if (ret || !write)
652 return ret;
653
654 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
655 sysctl_sched_min_granularity);
656
657 #define WRT_SYSCTL(name) \
658 (normalized_sysctl_##name = sysctl_##name / (factor))
659 WRT_SYSCTL(sched_min_granularity);
660 WRT_SYSCTL(sched_latency);
661 WRT_SYSCTL(sched_wakeup_granularity);
662 #undef WRT_SYSCTL
663
664 return 0;
665 }
666 #endif
667
668 /*
669 * delta /= w
670 */
671 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
672 {
673 if (unlikely(se->load.weight != NICE_0_LOAD))
674 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
675
676 return delta;
677 }
678
679 /*
680 * The idea is to set a period in which each task runs once.
681 *
682 * When there are too many tasks (sched_nr_latency) we have to stretch
683 * this period because otherwise the slices get too small.
684 *
685 * p = (nr <= nl) ? l : l*nr/nl
686 */
687 static u64 __sched_period(unsigned long nr_running)
688 {
689 if (unlikely(nr_running > sched_nr_latency))
690 return nr_running * sysctl_sched_min_granularity;
691 else
692 return sysctl_sched_latency;
693 }
694
695 /*
696 * We calculate the wall-time slice from the period by taking a part
697 * proportional to the weight.
698 *
699 * s = p*P[w/rw]
700 */
701 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
702 {
703 unsigned int nr_running = cfs_rq->nr_running;
704 u64 slice;
705
706 if (sched_feat(ALT_PERIOD))
707 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
708
709 slice = __sched_period(nr_running + !se->on_rq);
710
711 for_each_sched_entity(se) {
712 struct load_weight *load;
713 struct load_weight lw;
714
715 cfs_rq = cfs_rq_of(se);
716 load = &cfs_rq->load;
717
718 if (unlikely(!se->on_rq)) {
719 lw = cfs_rq->load;
720
721 update_load_add(&lw, se->load.weight);
722 load = &lw;
723 }
724 slice = __calc_delta(slice, se->load.weight, load);
725 }
726
727 if (sched_feat(BASE_SLICE))
728 slice = max(slice, (u64)sysctl_sched_min_granularity);
729
730 return slice;
731 }
732
733 /*
734 * We calculate the vruntime slice of a to-be-inserted task.
735 *
736 * vs = s/w
737 */
738 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 {
740 return calc_delta_fair(sched_slice(cfs_rq, se), se);
741 }
742
743 #include "pelt.h"
744 #ifdef CONFIG_SMP
745
746 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
747 static unsigned long task_h_load(struct task_struct *p);
748 static unsigned long capacity_of(int cpu);
749
750 /* Give new sched_entity start runnable values to heavy its load in infant time */
751 void init_entity_runnable_average(struct sched_entity *se)
752 {
753 struct sched_avg *sa = &se->avg;
754
755 memset(sa, 0, sizeof(*sa));
756
757 /*
758 * Tasks are initialized with full load to be seen as heavy tasks until
759 * they get a chance to stabilize to their real load level.
760 * Group entities are initialized with zero load to reflect the fact that
761 * nothing has been attached to the task group yet.
762 */
763 if (entity_is_task(se))
764 sa->load_avg = scale_load_down(se->load.weight);
765
766 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
767 }
768
769 static void attach_entity_cfs_rq(struct sched_entity *se);
770
771 /*
772 * With new tasks being created, their initial util_avgs are extrapolated
773 * based on the cfs_rq's current util_avg:
774 *
775 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
776 *
777 * However, in many cases, the above util_avg does not give a desired
778 * value. Moreover, the sum of the util_avgs may be divergent, such
779 * as when the series is a harmonic series.
780 *
781 * To solve this problem, we also cap the util_avg of successive tasks to
782 * only 1/2 of the left utilization budget:
783 *
784 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
785 *
786 * where n denotes the nth task and cpu_scale the CPU capacity.
787 *
788 * For example, for a CPU with 1024 of capacity, a simplest series from
789 * the beginning would be like:
790 *
791 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
792 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
793 *
794 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
795 * if util_avg > util_avg_cap.
796 */
797 void post_init_entity_util_avg(struct task_struct *p)
798 {
799 struct sched_entity *se = &p->se;
800 struct cfs_rq *cfs_rq = cfs_rq_of(se);
801 struct sched_avg *sa = &se->avg;
802 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
803 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
804
805 if (cap > 0) {
806 if (cfs_rq->avg.util_avg != 0) {
807 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
808 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
809
810 if (sa->util_avg > cap)
811 sa->util_avg = cap;
812 } else {
813 sa->util_avg = cap;
814 }
815 }
816
817 sa->runnable_avg = sa->util_avg;
818
819 if (p->sched_class != &fair_sched_class) {
820 /*
821 * For !fair tasks do:
822 *
823 update_cfs_rq_load_avg(now, cfs_rq);
824 attach_entity_load_avg(cfs_rq, se);
825 switched_from_fair(rq, p);
826 *
827 * such that the next switched_to_fair() has the
828 * expected state.
829 */
830 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
831 return;
832 }
833
834 attach_entity_cfs_rq(se);
835 }
836
837 #else /* !CONFIG_SMP */
838 void init_entity_runnable_average(struct sched_entity *se)
839 {
840 }
841 void post_init_entity_util_avg(struct task_struct *p)
842 {
843 }
844 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
845 {
846 }
847 #endif /* CONFIG_SMP */
848
849 /*
850 * Update the current task's runtime statistics.
851 */
852 static void update_curr(struct cfs_rq *cfs_rq)
853 {
854 struct sched_entity *curr = cfs_rq->curr;
855 u64 now = rq_clock_task(rq_of(cfs_rq));
856 u64 delta_exec;
857
858 if (unlikely(!curr))
859 return;
860
861 delta_exec = now - curr->exec_start;
862 if (unlikely((s64)delta_exec <= 0))
863 return;
864
865 curr->exec_start = now;
866
867 schedstat_set(curr->statistics.exec_max,
868 max(delta_exec, curr->statistics.exec_max));
869
870 curr->sum_exec_runtime += delta_exec;
871 schedstat_add(cfs_rq->exec_clock, delta_exec);
872
873 curr->vruntime += calc_delta_fair(delta_exec, curr);
874 update_min_vruntime(cfs_rq);
875
876 if (entity_is_task(curr)) {
877 struct task_struct *curtask = task_of(curr);
878
879 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
880 cgroup_account_cputime(curtask, delta_exec);
881 account_group_exec_runtime(curtask, delta_exec);
882 }
883
884 account_cfs_rq_runtime(cfs_rq, delta_exec);
885 }
886
887 static void update_curr_fair(struct rq *rq)
888 {
889 update_curr(cfs_rq_of(&rq->curr->se));
890 }
891
892 static inline void
893 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
894 {
895 u64 wait_start, prev_wait_start;
896
897 if (!schedstat_enabled())
898 return;
899
900 wait_start = rq_clock(rq_of(cfs_rq));
901 prev_wait_start = schedstat_val(se->statistics.wait_start);
902
903 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
904 likely(wait_start > prev_wait_start))
905 wait_start -= prev_wait_start;
906
907 __schedstat_set(se->statistics.wait_start, wait_start);
908 }
909
910 static inline void
911 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
912 {
913 struct task_struct *p;
914 u64 delta;
915
916 if (!schedstat_enabled())
917 return;
918
919 /*
920 * When the sched_schedstat changes from 0 to 1, some sched se
921 * maybe already in the runqueue, the se->statistics.wait_start
922 * will be 0.So it will let the delta wrong. We need to avoid this
923 * scenario.
924 */
925 if (unlikely(!schedstat_val(se->statistics.wait_start)))
926 return;
927
928 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
929
930 if (entity_is_task(se)) {
931 p = task_of(se);
932 if (task_on_rq_migrating(p)) {
933 /*
934 * Preserve migrating task's wait time so wait_start
935 * time stamp can be adjusted to accumulate wait time
936 * prior to migration.
937 */
938 __schedstat_set(se->statistics.wait_start, delta);
939 return;
940 }
941 trace_sched_stat_wait(p, delta);
942 }
943
944 __schedstat_set(se->statistics.wait_max,
945 max(schedstat_val(se->statistics.wait_max), delta));
946 __schedstat_inc(se->statistics.wait_count);
947 __schedstat_add(se->statistics.wait_sum, delta);
948 __schedstat_set(se->statistics.wait_start, 0);
949 }
950
951 static inline void
952 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
953 {
954 struct task_struct *tsk = NULL;
955 u64 sleep_start, block_start;
956
957 if (!schedstat_enabled())
958 return;
959
960 sleep_start = schedstat_val(se->statistics.sleep_start);
961 block_start = schedstat_val(se->statistics.block_start);
962
963 if (entity_is_task(se))
964 tsk = task_of(se);
965
966 if (sleep_start) {
967 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
968
969 if ((s64)delta < 0)
970 delta = 0;
971
972 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
973 __schedstat_set(se->statistics.sleep_max, delta);
974
975 __schedstat_set(se->statistics.sleep_start, 0);
976 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
977
978 if (tsk) {
979 account_scheduler_latency(tsk, delta >> 10, 1);
980 trace_sched_stat_sleep(tsk, delta);
981 }
982 }
983 if (block_start) {
984 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
985
986 if ((s64)delta < 0)
987 delta = 0;
988
989 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
990 __schedstat_set(se->statistics.block_max, delta);
991
992 __schedstat_set(se->statistics.block_start, 0);
993 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
994
995 if (tsk) {
996 if (tsk->in_iowait) {
997 __schedstat_add(se->statistics.iowait_sum, delta);
998 __schedstat_inc(se->statistics.iowait_count);
999 trace_sched_stat_iowait(tsk, delta);
1000 }
1001
1002 trace_sched_stat_blocked(tsk, delta);
1003
1004 /*
1005 * Blocking time is in units of nanosecs, so shift by
1006 * 20 to get a milliseconds-range estimation of the
1007 * amount of time that the task spent sleeping:
1008 */
1009 if (unlikely(prof_on == SLEEP_PROFILING)) {
1010 profile_hits(SLEEP_PROFILING,
1011 (void *)get_wchan(tsk),
1012 delta >> 20);
1013 }
1014 account_scheduler_latency(tsk, delta >> 10, 0);
1015 }
1016 }
1017 }
1018
1019 /*
1020 * Task is being enqueued - update stats:
1021 */
1022 static inline void
1023 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1024 {
1025 if (!schedstat_enabled())
1026 return;
1027
1028 /*
1029 * Are we enqueueing a waiting task? (for current tasks
1030 * a dequeue/enqueue event is a NOP)
1031 */
1032 if (se != cfs_rq->curr)
1033 update_stats_wait_start(cfs_rq, se);
1034
1035 if (flags & ENQUEUE_WAKEUP)
1036 update_stats_enqueue_sleeper(cfs_rq, se);
1037 }
1038
1039 static inline void
1040 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1041 {
1042
1043 if (!schedstat_enabled())
1044 return;
1045
1046 /*
1047 * Mark the end of the wait period if dequeueing a
1048 * waiting task:
1049 */
1050 if (se != cfs_rq->curr)
1051 update_stats_wait_end(cfs_rq, se);
1052
1053 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1054 struct task_struct *tsk = task_of(se);
1055
1056 if (tsk->state & TASK_INTERRUPTIBLE)
1057 __schedstat_set(se->statistics.sleep_start,
1058 rq_clock(rq_of(cfs_rq)));
1059 if (tsk->state & TASK_UNINTERRUPTIBLE)
1060 __schedstat_set(se->statistics.block_start,
1061 rq_clock(rq_of(cfs_rq)));
1062 }
1063 }
1064
1065 /*
1066 * We are picking a new current task - update its stats:
1067 */
1068 static inline void
1069 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1070 {
1071 /*
1072 * We are starting a new run period:
1073 */
1074 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1075 }
1076
1077 /**************************************************
1078 * Scheduling class queueing methods:
1079 */
1080
1081 #ifdef CONFIG_NUMA_BALANCING
1082 /*
1083 * Approximate time to scan a full NUMA task in ms. The task scan period is
1084 * calculated based on the tasks virtual memory size and
1085 * numa_balancing_scan_size.
1086 */
1087 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1088 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1089
1090 /* Portion of address space to scan in MB */
1091 unsigned int sysctl_numa_balancing_scan_size = 256;
1092
1093 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1094 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1095
1096 struct numa_group {
1097 refcount_t refcount;
1098
1099 spinlock_t lock; /* nr_tasks, tasks */
1100 int nr_tasks;
1101 pid_t gid;
1102 int active_nodes;
1103
1104 struct rcu_head rcu;
1105 unsigned long total_faults;
1106 unsigned long max_faults_cpu;
1107 /*
1108 * Faults_cpu is used to decide whether memory should move
1109 * towards the CPU. As a consequence, these stats are weighted
1110 * more by CPU use than by memory faults.
1111 */
1112 unsigned long *faults_cpu;
1113 unsigned long faults[];
1114 };
1115
1116 /*
1117 * For functions that can be called in multiple contexts that permit reading
1118 * ->numa_group (see struct task_struct for locking rules).
1119 */
1120 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1121 {
1122 return rcu_dereference_check(p->numa_group, p == current ||
1123 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1124 }
1125
1126 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1127 {
1128 return rcu_dereference_protected(p->numa_group, p == current);
1129 }
1130
1131 static inline unsigned long group_faults_priv(struct numa_group *ng);
1132 static inline unsigned long group_faults_shared(struct numa_group *ng);
1133
1134 static unsigned int task_nr_scan_windows(struct task_struct *p)
1135 {
1136 unsigned long rss = 0;
1137 unsigned long nr_scan_pages;
1138
1139 /*
1140 * Calculations based on RSS as non-present and empty pages are skipped
1141 * by the PTE scanner and NUMA hinting faults should be trapped based
1142 * on resident pages
1143 */
1144 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1145 rss = get_mm_rss(p->mm);
1146 if (!rss)
1147 rss = nr_scan_pages;
1148
1149 rss = round_up(rss, nr_scan_pages);
1150 return rss / nr_scan_pages;
1151 }
1152
1153 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1154 #define MAX_SCAN_WINDOW 2560
1155
1156 static unsigned int task_scan_min(struct task_struct *p)
1157 {
1158 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1159 unsigned int scan, floor;
1160 unsigned int windows = 1;
1161
1162 if (scan_size < MAX_SCAN_WINDOW)
1163 windows = MAX_SCAN_WINDOW / scan_size;
1164 floor = 1000 / windows;
1165
1166 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1167 return max_t(unsigned int, floor, scan);
1168 }
1169
1170 static unsigned int task_scan_start(struct task_struct *p)
1171 {
1172 unsigned long smin = task_scan_min(p);
1173 unsigned long period = smin;
1174 struct numa_group *ng;
1175
1176 /* Scale the maximum scan period with the amount of shared memory. */
1177 rcu_read_lock();
1178 ng = rcu_dereference(p->numa_group);
1179 if (ng) {
1180 unsigned long shared = group_faults_shared(ng);
1181 unsigned long private = group_faults_priv(ng);
1182
1183 period *= refcount_read(&ng->refcount);
1184 period *= shared + 1;
1185 period /= private + shared + 1;
1186 }
1187 rcu_read_unlock();
1188
1189 return max(smin, period);
1190 }
1191
1192 static unsigned int task_scan_max(struct task_struct *p)
1193 {
1194 unsigned long smin = task_scan_min(p);
1195 unsigned long smax;
1196 struct numa_group *ng;
1197
1198 /* Watch for min being lower than max due to floor calculations */
1199 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1200
1201 /* Scale the maximum scan period with the amount of shared memory. */
1202 ng = deref_curr_numa_group(p);
1203 if (ng) {
1204 unsigned long shared = group_faults_shared(ng);
1205 unsigned long private = group_faults_priv(ng);
1206 unsigned long period = smax;
1207
1208 period *= refcount_read(&ng->refcount);
1209 period *= shared + 1;
1210 period /= private + shared + 1;
1211
1212 smax = max(smax, period);
1213 }
1214
1215 return max(smin, smax);
1216 }
1217
1218 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1219 {
1220 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1221 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1222 }
1223
1224 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1225 {
1226 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1227 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1228 }
1229
1230 /* Shared or private faults. */
1231 #define NR_NUMA_HINT_FAULT_TYPES 2
1232
1233 /* Memory and CPU locality */
1234 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1235
1236 /* Averaged statistics, and temporary buffers. */
1237 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1238
1239 pid_t task_numa_group_id(struct task_struct *p)
1240 {
1241 struct numa_group *ng;
1242 pid_t gid = 0;
1243
1244 rcu_read_lock();
1245 ng = rcu_dereference(p->numa_group);
1246 if (ng)
1247 gid = ng->gid;
1248 rcu_read_unlock();
1249
1250 return gid;
1251 }
1252
1253 /*
1254 * The averaged statistics, shared & private, memory & CPU,
1255 * occupy the first half of the array. The second half of the
1256 * array is for current counters, which are averaged into the
1257 * first set by task_numa_placement.
1258 */
1259 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1260 {
1261 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1262 }
1263
1264 static inline unsigned long task_faults(struct task_struct *p, int nid)
1265 {
1266 if (!p->numa_faults)
1267 return 0;
1268
1269 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1270 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1271 }
1272
1273 static inline unsigned long group_faults(struct task_struct *p, int nid)
1274 {
1275 struct numa_group *ng = deref_task_numa_group(p);
1276
1277 if (!ng)
1278 return 0;
1279
1280 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1281 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1282 }
1283
1284 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1285 {
1286 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1287 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1288 }
1289
1290 static inline unsigned long group_faults_priv(struct numa_group *ng)
1291 {
1292 unsigned long faults = 0;
1293 int node;
1294
1295 for_each_online_node(node) {
1296 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1297 }
1298
1299 return faults;
1300 }
1301
1302 static inline unsigned long group_faults_shared(struct numa_group *ng)
1303 {
1304 unsigned long faults = 0;
1305 int node;
1306
1307 for_each_online_node(node) {
1308 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1309 }
1310
1311 return faults;
1312 }
1313
1314 /*
1315 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1316 * considered part of a numa group's pseudo-interleaving set. Migrations
1317 * between these nodes are slowed down, to allow things to settle down.
1318 */
1319 #define ACTIVE_NODE_FRACTION 3
1320
1321 static bool numa_is_active_node(int nid, struct numa_group *ng)
1322 {
1323 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1324 }
1325
1326 /* Handle placement on systems where not all nodes are directly connected. */
1327 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1328 int maxdist, bool task)
1329 {
1330 unsigned long score = 0;
1331 int node;
1332
1333 /*
1334 * All nodes are directly connected, and the same distance
1335 * from each other. No need for fancy placement algorithms.
1336 */
1337 if (sched_numa_topology_type == NUMA_DIRECT)
1338 return 0;
1339
1340 /*
1341 * This code is called for each node, introducing N^2 complexity,
1342 * which should be ok given the number of nodes rarely exceeds 8.
1343 */
1344 for_each_online_node(node) {
1345 unsigned long faults;
1346 int dist = node_distance(nid, node);
1347
1348 /*
1349 * The furthest away nodes in the system are not interesting
1350 * for placement; nid was already counted.
1351 */
1352 if (dist == sched_max_numa_distance || node == nid)
1353 continue;
1354
1355 /*
1356 * On systems with a backplane NUMA topology, compare groups
1357 * of nodes, and move tasks towards the group with the most
1358 * memory accesses. When comparing two nodes at distance
1359 * "hoplimit", only nodes closer by than "hoplimit" are part
1360 * of each group. Skip other nodes.
1361 */
1362 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1363 dist >= maxdist)
1364 continue;
1365
1366 /* Add up the faults from nearby nodes. */
1367 if (task)
1368 faults = task_faults(p, node);
1369 else
1370 faults = group_faults(p, node);
1371
1372 /*
1373 * On systems with a glueless mesh NUMA topology, there are
1374 * no fixed "groups of nodes". Instead, nodes that are not
1375 * directly connected bounce traffic through intermediate
1376 * nodes; a numa_group can occupy any set of nodes.
1377 * The further away a node is, the less the faults count.
1378 * This seems to result in good task placement.
1379 */
1380 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1381 faults *= (sched_max_numa_distance - dist);
1382 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1383 }
1384
1385 score += faults;
1386 }
1387
1388 return score;
1389 }
1390
1391 /*
1392 * These return the fraction of accesses done by a particular task, or
1393 * task group, on a particular numa node. The group weight is given a
1394 * larger multiplier, in order to group tasks together that are almost
1395 * evenly spread out between numa nodes.
1396 */
1397 static inline unsigned long task_weight(struct task_struct *p, int nid,
1398 int dist)
1399 {
1400 unsigned long faults, total_faults;
1401
1402 if (!p->numa_faults)
1403 return 0;
1404
1405 total_faults = p->total_numa_faults;
1406
1407 if (!total_faults)
1408 return 0;
1409
1410 faults = task_faults(p, nid);
1411 faults += score_nearby_nodes(p, nid, dist, true);
1412
1413 return 1000 * faults / total_faults;
1414 }
1415
1416 static inline unsigned long group_weight(struct task_struct *p, int nid,
1417 int dist)
1418 {
1419 struct numa_group *ng = deref_task_numa_group(p);
1420 unsigned long faults, total_faults;
1421
1422 if (!ng)
1423 return 0;
1424
1425 total_faults = ng->total_faults;
1426
1427 if (!total_faults)
1428 return 0;
1429
1430 faults = group_faults(p, nid);
1431 faults += score_nearby_nodes(p, nid, dist, false);
1432
1433 return 1000 * faults / total_faults;
1434 }
1435
1436 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1437 int src_nid, int dst_cpu)
1438 {
1439 struct numa_group *ng = deref_curr_numa_group(p);
1440 int dst_nid = cpu_to_node(dst_cpu);
1441 int last_cpupid, this_cpupid;
1442
1443 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1444 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1445
1446 /*
1447 * Allow first faults or private faults to migrate immediately early in
1448 * the lifetime of a task. The magic number 4 is based on waiting for
1449 * two full passes of the "multi-stage node selection" test that is
1450 * executed below.
1451 */
1452 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1453 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1454 return true;
1455
1456 /*
1457 * Multi-stage node selection is used in conjunction with a periodic
1458 * migration fault to build a temporal task<->page relation. By using
1459 * a two-stage filter we remove short/unlikely relations.
1460 *
1461 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1462 * a task's usage of a particular page (n_p) per total usage of this
1463 * page (n_t) (in a given time-span) to a probability.
1464 *
1465 * Our periodic faults will sample this probability and getting the
1466 * same result twice in a row, given these samples are fully
1467 * independent, is then given by P(n)^2, provided our sample period
1468 * is sufficiently short compared to the usage pattern.
1469 *
1470 * This quadric squishes small probabilities, making it less likely we
1471 * act on an unlikely task<->page relation.
1472 */
1473 if (!cpupid_pid_unset(last_cpupid) &&
1474 cpupid_to_nid(last_cpupid) != dst_nid)
1475 return false;
1476
1477 /* Always allow migrate on private faults */
1478 if (cpupid_match_pid(p, last_cpupid))
1479 return true;
1480
1481 /* A shared fault, but p->numa_group has not been set up yet. */
1482 if (!ng)
1483 return true;
1484
1485 /*
1486 * Destination node is much more heavily used than the source
1487 * node? Allow migration.
1488 */
1489 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1490 ACTIVE_NODE_FRACTION)
1491 return true;
1492
1493 /*
1494 * Distribute memory according to CPU & memory use on each node,
1495 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1496 *
1497 * faults_cpu(dst) 3 faults_cpu(src)
1498 * --------------- * - > ---------------
1499 * faults_mem(dst) 4 faults_mem(src)
1500 */
1501 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1502 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1503 }
1504
1505 /*
1506 * 'numa_type' describes the node at the moment of load balancing.
1507 */
1508 enum numa_type {
1509 /* The node has spare capacity that can be used to run more tasks. */
1510 node_has_spare = 0,
1511 /*
1512 * The node is fully used and the tasks don't compete for more CPU
1513 * cycles. Nevertheless, some tasks might wait before running.
1514 */
1515 node_fully_busy,
1516 /*
1517 * The node is overloaded and can't provide expected CPU cycles to all
1518 * tasks.
1519 */
1520 node_overloaded
1521 };
1522
1523 /* Cached statistics for all CPUs within a node */
1524 struct numa_stats {
1525 unsigned long load;
1526 unsigned long runnable;
1527 unsigned long util;
1528 /* Total compute capacity of CPUs on a node */
1529 unsigned long compute_capacity;
1530 unsigned int nr_running;
1531 unsigned int weight;
1532 enum numa_type node_type;
1533 int idle_cpu;
1534 };
1535
1536 static inline bool is_core_idle(int cpu)
1537 {
1538 #ifdef CONFIG_SCHED_SMT
1539 int sibling;
1540
1541 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1542 if (cpu == sibling)
1543 continue;
1544
1545 if (!idle_cpu(cpu))
1546 return false;
1547 }
1548 #endif
1549
1550 return true;
1551 }
1552
1553 struct task_numa_env {
1554 struct task_struct *p;
1555
1556 int src_cpu, src_nid;
1557 int dst_cpu, dst_nid;
1558
1559 struct numa_stats src_stats, dst_stats;
1560
1561 int imbalance_pct;
1562 int dist;
1563
1564 struct task_struct *best_task;
1565 long best_imp;
1566 int best_cpu;
1567 };
1568
1569 static unsigned long cpu_load(struct rq *rq);
1570 static unsigned long cpu_runnable(struct rq *rq);
1571 static unsigned long cpu_util(int cpu);
1572 static inline long adjust_numa_imbalance(int imbalance,
1573 int dst_running, int dst_weight);
1574
1575 static inline enum
1576 numa_type numa_classify(unsigned int imbalance_pct,
1577 struct numa_stats *ns)
1578 {
1579 if ((ns->nr_running > ns->weight) &&
1580 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1581 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1582 return node_overloaded;
1583
1584 if ((ns->nr_running < ns->weight) ||
1585 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1586 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1587 return node_has_spare;
1588
1589 return node_fully_busy;
1590 }
1591
1592 #ifdef CONFIG_SCHED_SMT
1593 /* Forward declarations of select_idle_sibling helpers */
1594 static inline bool test_idle_cores(int cpu, bool def);
1595 static inline int numa_idle_core(int idle_core, int cpu)
1596 {
1597 if (!static_branch_likely(&sched_smt_present) ||
1598 idle_core >= 0 || !test_idle_cores(cpu, false))
1599 return idle_core;
1600
1601 /*
1602 * Prefer cores instead of packing HT siblings
1603 * and triggering future load balancing.
1604 */
1605 if (is_core_idle(cpu))
1606 idle_core = cpu;
1607
1608 return idle_core;
1609 }
1610 #else
1611 static inline int numa_idle_core(int idle_core, int cpu)
1612 {
1613 return idle_core;
1614 }
1615 #endif
1616
1617 /*
1618 * Gather all necessary information to make NUMA balancing placement
1619 * decisions that are compatible with standard load balancer. This
1620 * borrows code and logic from update_sg_lb_stats but sharing a
1621 * common implementation is impractical.
1622 */
1623 static void update_numa_stats(struct task_numa_env *env,
1624 struct numa_stats *ns, int nid,
1625 bool find_idle)
1626 {
1627 int cpu, idle_core = -1;
1628
1629 memset(ns, 0, sizeof(*ns));
1630 ns->idle_cpu = -1;
1631
1632 rcu_read_lock();
1633 for_each_cpu(cpu, cpumask_of_node(nid)) {
1634 struct rq *rq = cpu_rq(cpu);
1635
1636 ns->load += cpu_load(rq);
1637 ns->runnable += cpu_runnable(rq);
1638 ns->util += cpu_util(cpu);
1639 ns->nr_running += rq->cfs.h_nr_running;
1640 ns->compute_capacity += capacity_of(cpu);
1641
1642 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1643 if (READ_ONCE(rq->numa_migrate_on) ||
1644 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1645 continue;
1646
1647 if (ns->idle_cpu == -1)
1648 ns->idle_cpu = cpu;
1649
1650 idle_core = numa_idle_core(idle_core, cpu);
1651 }
1652 }
1653 rcu_read_unlock();
1654
1655 ns->weight = cpumask_weight(cpumask_of_node(nid));
1656
1657 ns->node_type = numa_classify(env->imbalance_pct, ns);
1658
1659 if (idle_core >= 0)
1660 ns->idle_cpu = idle_core;
1661 }
1662
1663 static void task_numa_assign(struct task_numa_env *env,
1664 struct task_struct *p, long imp)
1665 {
1666 struct rq *rq = cpu_rq(env->dst_cpu);
1667
1668 /* Check if run-queue part of active NUMA balance. */
1669 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1670 int cpu;
1671 int start = env->dst_cpu;
1672
1673 /* Find alternative idle CPU. */
1674 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1675 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1676 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1677 continue;
1678 }
1679
1680 env->dst_cpu = cpu;
1681 rq = cpu_rq(env->dst_cpu);
1682 if (!xchg(&rq->numa_migrate_on, 1))
1683 goto assign;
1684 }
1685
1686 /* Failed to find an alternative idle CPU */
1687 return;
1688 }
1689
1690 assign:
1691 /*
1692 * Clear previous best_cpu/rq numa-migrate flag, since task now
1693 * found a better CPU to move/swap.
1694 */
1695 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1696 rq = cpu_rq(env->best_cpu);
1697 WRITE_ONCE(rq->numa_migrate_on, 0);
1698 }
1699
1700 if (env->best_task)
1701 put_task_struct(env->best_task);
1702 if (p)
1703 get_task_struct(p);
1704
1705 env->best_task = p;
1706 env->best_imp = imp;
1707 env->best_cpu = env->dst_cpu;
1708 }
1709
1710 static bool load_too_imbalanced(long src_load, long dst_load,
1711 struct task_numa_env *env)
1712 {
1713 long imb, old_imb;
1714 long orig_src_load, orig_dst_load;
1715 long src_capacity, dst_capacity;
1716
1717 /*
1718 * The load is corrected for the CPU capacity available on each node.
1719 *
1720 * src_load dst_load
1721 * ------------ vs ---------
1722 * src_capacity dst_capacity
1723 */
1724 src_capacity = env->src_stats.compute_capacity;
1725 dst_capacity = env->dst_stats.compute_capacity;
1726
1727 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1728
1729 orig_src_load = env->src_stats.load;
1730 orig_dst_load = env->dst_stats.load;
1731
1732 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1733
1734 /* Would this change make things worse? */
1735 return (imb > old_imb);
1736 }
1737
1738 /*
1739 * Maximum NUMA importance can be 1998 (2*999);
1740 * SMALLIMP @ 30 would be close to 1998/64.
1741 * Used to deter task migration.
1742 */
1743 #define SMALLIMP 30
1744
1745 /*
1746 * This checks if the overall compute and NUMA accesses of the system would
1747 * be improved if the source tasks was migrated to the target dst_cpu taking
1748 * into account that it might be best if task running on the dst_cpu should
1749 * be exchanged with the source task
1750 */
1751 static bool task_numa_compare(struct task_numa_env *env,
1752 long taskimp, long groupimp, bool maymove)
1753 {
1754 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1755 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1756 long imp = p_ng ? groupimp : taskimp;
1757 struct task_struct *cur;
1758 long src_load, dst_load;
1759 int dist = env->dist;
1760 long moveimp = imp;
1761 long load;
1762 bool stopsearch = false;
1763
1764 if (READ_ONCE(dst_rq->numa_migrate_on))
1765 return false;
1766
1767 rcu_read_lock();
1768 cur = rcu_dereference(dst_rq->curr);
1769 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1770 cur = NULL;
1771
1772 /*
1773 * Because we have preemption enabled we can get migrated around and
1774 * end try selecting ourselves (current == env->p) as a swap candidate.
1775 */
1776 if (cur == env->p) {
1777 stopsearch = true;
1778 goto unlock;
1779 }
1780
1781 if (!cur) {
1782 if (maymove && moveimp >= env->best_imp)
1783 goto assign;
1784 else
1785 goto unlock;
1786 }
1787
1788 /* Skip this swap candidate if cannot move to the source cpu. */
1789 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1790 goto unlock;
1791
1792 /*
1793 * Skip this swap candidate if it is not moving to its preferred
1794 * node and the best task is.
1795 */
1796 if (env->best_task &&
1797 env->best_task->numa_preferred_nid == env->src_nid &&
1798 cur->numa_preferred_nid != env->src_nid) {
1799 goto unlock;
1800 }
1801
1802 /*
1803 * "imp" is the fault differential for the source task between the
1804 * source and destination node. Calculate the total differential for
1805 * the source task and potential destination task. The more negative
1806 * the value is, the more remote accesses that would be expected to
1807 * be incurred if the tasks were swapped.
1808 *
1809 * If dst and source tasks are in the same NUMA group, or not
1810 * in any group then look only at task weights.
1811 */
1812 cur_ng = rcu_dereference(cur->numa_group);
1813 if (cur_ng == p_ng) {
1814 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1815 task_weight(cur, env->dst_nid, dist);
1816 /*
1817 * Add some hysteresis to prevent swapping the
1818 * tasks within a group over tiny differences.
1819 */
1820 if (cur_ng)
1821 imp -= imp / 16;
1822 } else {
1823 /*
1824 * Compare the group weights. If a task is all by itself
1825 * (not part of a group), use the task weight instead.
1826 */
1827 if (cur_ng && p_ng)
1828 imp += group_weight(cur, env->src_nid, dist) -
1829 group_weight(cur, env->dst_nid, dist);
1830 else
1831 imp += task_weight(cur, env->src_nid, dist) -
1832 task_weight(cur, env->dst_nid, dist);
1833 }
1834
1835 /* Discourage picking a task already on its preferred node */
1836 if (cur->numa_preferred_nid == env->dst_nid)
1837 imp -= imp / 16;
1838
1839 /*
1840 * Encourage picking a task that moves to its preferred node.
1841 * This potentially makes imp larger than it's maximum of
1842 * 1998 (see SMALLIMP and task_weight for why) but in this
1843 * case, it does not matter.
1844 */
1845 if (cur->numa_preferred_nid == env->src_nid)
1846 imp += imp / 8;
1847
1848 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1849 imp = moveimp;
1850 cur = NULL;
1851 goto assign;
1852 }
1853
1854 /*
1855 * Prefer swapping with a task moving to its preferred node over a
1856 * task that is not.
1857 */
1858 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1859 env->best_task->numa_preferred_nid != env->src_nid) {
1860 goto assign;
1861 }
1862
1863 /*
1864 * If the NUMA importance is less than SMALLIMP,
1865 * task migration might only result in ping pong
1866 * of tasks and also hurt performance due to cache
1867 * misses.
1868 */
1869 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1870 goto unlock;
1871
1872 /*
1873 * In the overloaded case, try and keep the load balanced.
1874 */
1875 load = task_h_load(env->p) - task_h_load(cur);
1876 if (!load)
1877 goto assign;
1878
1879 dst_load = env->dst_stats.load + load;
1880 src_load = env->src_stats.load - load;
1881
1882 if (load_too_imbalanced(src_load, dst_load, env))
1883 goto unlock;
1884
1885 assign:
1886 /* Evaluate an idle CPU for a task numa move. */
1887 if (!cur) {
1888 int cpu = env->dst_stats.idle_cpu;
1889
1890 /* Nothing cached so current CPU went idle since the search. */
1891 if (cpu < 0)
1892 cpu = env->dst_cpu;
1893
1894 /*
1895 * If the CPU is no longer truly idle and the previous best CPU
1896 * is, keep using it.
1897 */
1898 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1899 idle_cpu(env->best_cpu)) {
1900 cpu = env->best_cpu;
1901 }
1902
1903 env->dst_cpu = cpu;
1904 }
1905
1906 task_numa_assign(env, cur, imp);
1907
1908 /*
1909 * If a move to idle is allowed because there is capacity or load
1910 * balance improves then stop the search. While a better swap
1911 * candidate may exist, a search is not free.
1912 */
1913 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1914 stopsearch = true;
1915
1916 /*
1917 * If a swap candidate must be identified and the current best task
1918 * moves its preferred node then stop the search.
1919 */
1920 if (!maymove && env->best_task &&
1921 env->best_task->numa_preferred_nid == env->src_nid) {
1922 stopsearch = true;
1923 }
1924 unlock:
1925 rcu_read_unlock();
1926
1927 return stopsearch;
1928 }
1929
1930 static void task_numa_find_cpu(struct task_numa_env *env,
1931 long taskimp, long groupimp)
1932 {
1933 bool maymove = false;
1934 int cpu;
1935
1936 /*
1937 * If dst node has spare capacity, then check if there is an
1938 * imbalance that would be overruled by the load balancer.
1939 */
1940 if (env->dst_stats.node_type == node_has_spare) {
1941 unsigned int imbalance;
1942 int src_running, dst_running;
1943
1944 /*
1945 * Would movement cause an imbalance? Note that if src has
1946 * more running tasks that the imbalance is ignored as the
1947 * move improves the imbalance from the perspective of the
1948 * CPU load balancer.
1949 * */
1950 src_running = env->src_stats.nr_running - 1;
1951 dst_running = env->dst_stats.nr_running + 1;
1952 imbalance = max(0, dst_running - src_running);
1953 imbalance = adjust_numa_imbalance(imbalance, dst_running,
1954 env->dst_stats.weight);
1955
1956 /* Use idle CPU if there is no imbalance */
1957 if (!imbalance) {
1958 maymove = true;
1959 if (env->dst_stats.idle_cpu >= 0) {
1960 env->dst_cpu = env->dst_stats.idle_cpu;
1961 task_numa_assign(env, NULL, 0);
1962 return;
1963 }
1964 }
1965 } else {
1966 long src_load, dst_load, load;
1967 /*
1968 * If the improvement from just moving env->p direction is better
1969 * than swapping tasks around, check if a move is possible.
1970 */
1971 load = task_h_load(env->p);
1972 dst_load = env->dst_stats.load + load;
1973 src_load = env->src_stats.load - load;
1974 maymove = !load_too_imbalanced(src_load, dst_load, env);
1975 }
1976
1977 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1978 /* Skip this CPU if the source task cannot migrate */
1979 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1980 continue;
1981
1982 env->dst_cpu = cpu;
1983 if (task_numa_compare(env, taskimp, groupimp, maymove))
1984 break;
1985 }
1986 }
1987
1988 static int task_numa_migrate(struct task_struct *p)
1989 {
1990 struct task_numa_env env = {
1991 .p = p,
1992
1993 .src_cpu = task_cpu(p),
1994 .src_nid = task_node(p),
1995
1996 .imbalance_pct = 112,
1997
1998 .best_task = NULL,
1999 .best_imp = 0,
2000 .best_cpu = -1,
2001 };
2002 unsigned long taskweight, groupweight;
2003 struct sched_domain *sd;
2004 long taskimp, groupimp;
2005 struct numa_group *ng;
2006 struct rq *best_rq;
2007 int nid, ret, dist;
2008
2009 /*
2010 * Pick the lowest SD_NUMA domain, as that would have the smallest
2011 * imbalance and would be the first to start moving tasks about.
2012 *
2013 * And we want to avoid any moving of tasks about, as that would create
2014 * random movement of tasks -- counter the numa conditions we're trying
2015 * to satisfy here.
2016 */
2017 rcu_read_lock();
2018 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2019 if (sd)
2020 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2021 rcu_read_unlock();
2022
2023 /*
2024 * Cpusets can break the scheduler domain tree into smaller
2025 * balance domains, some of which do not cross NUMA boundaries.
2026 * Tasks that are "trapped" in such domains cannot be migrated
2027 * elsewhere, so there is no point in (re)trying.
2028 */
2029 if (unlikely(!sd)) {
2030 sched_setnuma(p, task_node(p));
2031 return -EINVAL;
2032 }
2033
2034 env.dst_nid = p->numa_preferred_nid;
2035 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2036 taskweight = task_weight(p, env.src_nid, dist);
2037 groupweight = group_weight(p, env.src_nid, dist);
2038 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2039 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2040 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2041 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2042
2043 /* Try to find a spot on the preferred nid. */
2044 task_numa_find_cpu(&env, taskimp, groupimp);
2045
2046 /*
2047 * Look at other nodes in these cases:
2048 * - there is no space available on the preferred_nid
2049 * - the task is part of a numa_group that is interleaved across
2050 * multiple NUMA nodes; in order to better consolidate the group,
2051 * we need to check other locations.
2052 */
2053 ng = deref_curr_numa_group(p);
2054 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2055 for_each_online_node(nid) {
2056 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2057 continue;
2058
2059 dist = node_distance(env.src_nid, env.dst_nid);
2060 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2061 dist != env.dist) {
2062 taskweight = task_weight(p, env.src_nid, dist);
2063 groupweight = group_weight(p, env.src_nid, dist);
2064 }
2065
2066 /* Only consider nodes where both task and groups benefit */
2067 taskimp = task_weight(p, nid, dist) - taskweight;
2068 groupimp = group_weight(p, nid, dist) - groupweight;
2069 if (taskimp < 0 && groupimp < 0)
2070 continue;
2071
2072 env.dist = dist;
2073 env.dst_nid = nid;
2074 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2075 task_numa_find_cpu(&env, taskimp, groupimp);
2076 }
2077 }
2078
2079 /*
2080 * If the task is part of a workload that spans multiple NUMA nodes,
2081 * and is migrating into one of the workload's active nodes, remember
2082 * this node as the task's preferred numa node, so the workload can
2083 * settle down.
2084 * A task that migrated to a second choice node will be better off
2085 * trying for a better one later. Do not set the preferred node here.
2086 */
2087 if (ng) {
2088 if (env.best_cpu == -1)
2089 nid = env.src_nid;
2090 else
2091 nid = cpu_to_node(env.best_cpu);
2092
2093 if (nid != p->numa_preferred_nid)
2094 sched_setnuma(p, nid);
2095 }
2096
2097 /* No better CPU than the current one was found. */
2098 if (env.best_cpu == -1) {
2099 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2100 return -EAGAIN;
2101 }
2102
2103 best_rq = cpu_rq(env.best_cpu);
2104 if (env.best_task == NULL) {
2105 ret = migrate_task_to(p, env.best_cpu);
2106 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2107 if (ret != 0)
2108 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2109 return ret;
2110 }
2111
2112 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2113 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2114
2115 if (ret != 0)
2116 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2117 put_task_struct(env.best_task);
2118 return ret;
2119 }
2120
2121 /* Attempt to migrate a task to a CPU on the preferred node. */
2122 static void numa_migrate_preferred(struct task_struct *p)
2123 {
2124 unsigned long interval = HZ;
2125
2126 /* This task has no NUMA fault statistics yet */
2127 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2128 return;
2129
2130 /* Periodically retry migrating the task to the preferred node */
2131 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2132 p->numa_migrate_retry = jiffies + interval;
2133
2134 /* Success if task is already running on preferred CPU */
2135 if (task_node(p) == p->numa_preferred_nid)
2136 return;
2137
2138 /* Otherwise, try migrate to a CPU on the preferred node */
2139 task_numa_migrate(p);
2140 }
2141
2142 /*
2143 * Find out how many nodes on the workload is actively running on. Do this by
2144 * tracking the nodes from which NUMA hinting faults are triggered. This can
2145 * be different from the set of nodes where the workload's memory is currently
2146 * located.
2147 */
2148 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2149 {
2150 unsigned long faults, max_faults = 0;
2151 int nid, active_nodes = 0;
2152
2153 for_each_online_node(nid) {
2154 faults = group_faults_cpu(numa_group, nid);
2155 if (faults > max_faults)
2156 max_faults = faults;
2157 }
2158
2159 for_each_online_node(nid) {
2160 faults = group_faults_cpu(numa_group, nid);
2161 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2162 active_nodes++;
2163 }
2164
2165 numa_group->max_faults_cpu = max_faults;
2166 numa_group->active_nodes = active_nodes;
2167 }
2168
2169 /*
2170 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2171 * increments. The more local the fault statistics are, the higher the scan
2172 * period will be for the next scan window. If local/(local+remote) ratio is
2173 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2174 * the scan period will decrease. Aim for 70% local accesses.
2175 */
2176 #define NUMA_PERIOD_SLOTS 10
2177 #define NUMA_PERIOD_THRESHOLD 7
2178
2179 /*
2180 * Increase the scan period (slow down scanning) if the majority of
2181 * our memory is already on our local node, or if the majority of
2182 * the page accesses are shared with other processes.
2183 * Otherwise, decrease the scan period.
2184 */
2185 static void update_task_scan_period(struct task_struct *p,
2186 unsigned long shared, unsigned long private)
2187 {
2188 unsigned int period_slot;
2189 int lr_ratio, ps_ratio;
2190 int diff;
2191
2192 unsigned long remote = p->numa_faults_locality[0];
2193 unsigned long local = p->numa_faults_locality[1];
2194
2195 /*
2196 * If there were no record hinting faults then either the task is
2197 * completely idle or all activity is areas that are not of interest
2198 * to automatic numa balancing. Related to that, if there were failed
2199 * migration then it implies we are migrating too quickly or the local
2200 * node is overloaded. In either case, scan slower
2201 */
2202 if (local + shared == 0 || p->numa_faults_locality[2]) {
2203 p->numa_scan_period = min(p->numa_scan_period_max,
2204 p->numa_scan_period << 1);
2205
2206 p->mm->numa_next_scan = jiffies +
2207 msecs_to_jiffies(p->numa_scan_period);
2208
2209 return;
2210 }
2211
2212 /*
2213 * Prepare to scale scan period relative to the current period.
2214 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2215 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2216 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2217 */
2218 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2219 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2220 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2221
2222 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2223 /*
2224 * Most memory accesses are local. There is no need to
2225 * do fast NUMA scanning, since memory is already local.
2226 */
2227 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2228 if (!slot)
2229 slot = 1;
2230 diff = slot * period_slot;
2231 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2232 /*
2233 * Most memory accesses are shared with other tasks.
2234 * There is no point in continuing fast NUMA scanning,
2235 * since other tasks may just move the memory elsewhere.
2236 */
2237 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2238 if (!slot)
2239 slot = 1;
2240 diff = slot * period_slot;
2241 } else {
2242 /*
2243 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2244 * yet they are not on the local NUMA node. Speed up
2245 * NUMA scanning to get the memory moved over.
2246 */
2247 int ratio = max(lr_ratio, ps_ratio);
2248 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2249 }
2250
2251 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2252 task_scan_min(p), task_scan_max(p));
2253 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2254 }
2255
2256 /*
2257 * Get the fraction of time the task has been running since the last
2258 * NUMA placement cycle. The scheduler keeps similar statistics, but
2259 * decays those on a 32ms period, which is orders of magnitude off
2260 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2261 * stats only if the task is so new there are no NUMA statistics yet.
2262 */
2263 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2264 {
2265 u64 runtime, delta, now;
2266 /* Use the start of this time slice to avoid calculations. */
2267 now = p->se.exec_start;
2268 runtime = p->se.sum_exec_runtime;
2269
2270 if (p->last_task_numa_placement) {
2271 delta = runtime - p->last_sum_exec_runtime;
2272 *period = now - p->last_task_numa_placement;
2273
2274 /* Avoid time going backwards, prevent potential divide error: */
2275 if (unlikely((s64)*period < 0))
2276 *period = 0;
2277 } else {
2278 delta = p->se.avg.load_sum;
2279 *period = LOAD_AVG_MAX;
2280 }
2281
2282 p->last_sum_exec_runtime = runtime;
2283 p->last_task_numa_placement = now;
2284
2285 return delta;
2286 }
2287
2288 /*
2289 * Determine the preferred nid for a task in a numa_group. This needs to
2290 * be done in a way that produces consistent results with group_weight,
2291 * otherwise workloads might not converge.
2292 */
2293 static int preferred_group_nid(struct task_struct *p, int nid)
2294 {
2295 nodemask_t nodes;
2296 int dist;
2297
2298 /* Direct connections between all NUMA nodes. */
2299 if (sched_numa_topology_type == NUMA_DIRECT)
2300 return nid;
2301
2302 /*
2303 * On a system with glueless mesh NUMA topology, group_weight
2304 * scores nodes according to the number of NUMA hinting faults on
2305 * both the node itself, and on nearby nodes.
2306 */
2307 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2308 unsigned long score, max_score = 0;
2309 int node, max_node = nid;
2310
2311 dist = sched_max_numa_distance;
2312
2313 for_each_online_node(node) {
2314 score = group_weight(p, node, dist);
2315 if (score > max_score) {
2316 max_score = score;
2317 max_node = node;
2318 }
2319 }
2320 return max_node;
2321 }
2322
2323 /*
2324 * Finding the preferred nid in a system with NUMA backplane
2325 * interconnect topology is more involved. The goal is to locate
2326 * tasks from numa_groups near each other in the system, and
2327 * untangle workloads from different sides of the system. This requires
2328 * searching down the hierarchy of node groups, recursively searching
2329 * inside the highest scoring group of nodes. The nodemask tricks
2330 * keep the complexity of the search down.
2331 */
2332 nodes = node_online_map;
2333 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2334 unsigned long max_faults = 0;
2335 nodemask_t max_group = NODE_MASK_NONE;
2336 int a, b;
2337
2338 /* Are there nodes at this distance from each other? */
2339 if (!find_numa_distance(dist))
2340 continue;
2341
2342 for_each_node_mask(a, nodes) {
2343 unsigned long faults = 0;
2344 nodemask_t this_group;
2345 nodes_clear(this_group);
2346
2347 /* Sum group's NUMA faults; includes a==b case. */
2348 for_each_node_mask(b, nodes) {
2349 if (node_distance(a, b) < dist) {
2350 faults += group_faults(p, b);
2351 node_set(b, this_group);
2352 node_clear(b, nodes);
2353 }
2354 }
2355
2356 /* Remember the top group. */
2357 if (faults > max_faults) {
2358 max_faults = faults;
2359 max_group = this_group;
2360 /*
2361 * subtle: at the smallest distance there is
2362 * just one node left in each "group", the
2363 * winner is the preferred nid.
2364 */
2365 nid = a;
2366 }
2367 }
2368 /* Next round, evaluate the nodes within max_group. */
2369 if (!max_faults)
2370 break;
2371 nodes = max_group;
2372 }
2373 return nid;
2374 }
2375
2376 static void task_numa_placement(struct task_struct *p)
2377 {
2378 int seq, nid, max_nid = NUMA_NO_NODE;
2379 unsigned long max_faults = 0;
2380 unsigned long fault_types[2] = { 0, 0 };
2381 unsigned long total_faults;
2382 u64 runtime, period;
2383 spinlock_t *group_lock = NULL;
2384 struct numa_group *ng;
2385
2386 /*
2387 * The p->mm->numa_scan_seq field gets updated without
2388 * exclusive access. Use READ_ONCE() here to ensure
2389 * that the field is read in a single access:
2390 */
2391 seq = READ_ONCE(p->mm->numa_scan_seq);
2392 if (p->numa_scan_seq == seq)
2393 return;
2394 p->numa_scan_seq = seq;
2395 p->numa_scan_period_max = task_scan_max(p);
2396
2397 total_faults = p->numa_faults_locality[0] +
2398 p->numa_faults_locality[1];
2399 runtime = numa_get_avg_runtime(p, &period);
2400
2401 /* If the task is part of a group prevent parallel updates to group stats */
2402 ng = deref_curr_numa_group(p);
2403 if (ng) {
2404 group_lock = &ng->lock;
2405 spin_lock_irq(group_lock);
2406 }
2407
2408 /* Find the node with the highest number of faults */
2409 for_each_online_node(nid) {
2410 /* Keep track of the offsets in numa_faults array */
2411 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2412 unsigned long faults = 0, group_faults = 0;
2413 int priv;
2414
2415 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2416 long diff, f_diff, f_weight;
2417
2418 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2419 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2420 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2421 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2422
2423 /* Decay existing window, copy faults since last scan */
2424 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2425 fault_types[priv] += p->numa_faults[membuf_idx];
2426 p->numa_faults[membuf_idx] = 0;
2427
2428 /*
2429 * Normalize the faults_from, so all tasks in a group
2430 * count according to CPU use, instead of by the raw
2431 * number of faults. Tasks with little runtime have
2432 * little over-all impact on throughput, and thus their
2433 * faults are less important.
2434 */
2435 f_weight = div64_u64(runtime << 16, period + 1);
2436 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2437 (total_faults + 1);
2438 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2439 p->numa_faults[cpubuf_idx] = 0;
2440
2441 p->numa_faults[mem_idx] += diff;
2442 p->numa_faults[cpu_idx] += f_diff;
2443 faults += p->numa_faults[mem_idx];
2444 p->total_numa_faults += diff;
2445 if (ng) {
2446 /*
2447 * safe because we can only change our own group
2448 *
2449 * mem_idx represents the offset for a given
2450 * nid and priv in a specific region because it
2451 * is at the beginning of the numa_faults array.
2452 */
2453 ng->faults[mem_idx] += diff;
2454 ng->faults_cpu[mem_idx] += f_diff;
2455 ng->total_faults += diff;
2456 group_faults += ng->faults[mem_idx];
2457 }
2458 }
2459
2460 if (!ng) {
2461 if (faults > max_faults) {
2462 max_faults = faults;
2463 max_nid = nid;
2464 }
2465 } else if (group_faults > max_faults) {
2466 max_faults = group_faults;
2467 max_nid = nid;
2468 }
2469 }
2470
2471 if (ng) {
2472 numa_group_count_active_nodes(ng);
2473 spin_unlock_irq(group_lock);
2474 max_nid = preferred_group_nid(p, max_nid);
2475 }
2476
2477 if (max_faults) {
2478 /* Set the new preferred node */
2479 if (max_nid != p->numa_preferred_nid)
2480 sched_setnuma(p, max_nid);
2481 }
2482
2483 update_task_scan_period(p, fault_types[0], fault_types[1]);
2484 }
2485
2486 static inline int get_numa_group(struct numa_group *grp)
2487 {
2488 return refcount_inc_not_zero(&grp->refcount);
2489 }
2490
2491 static inline void put_numa_group(struct numa_group *grp)
2492 {
2493 if (refcount_dec_and_test(&grp->refcount))
2494 kfree_rcu(grp, rcu);
2495 }
2496
2497 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2498 int *priv)
2499 {
2500 struct numa_group *grp, *my_grp;
2501 struct task_struct *tsk;
2502 bool join = false;
2503 int cpu = cpupid_to_cpu(cpupid);
2504 int i;
2505
2506 if (unlikely(!deref_curr_numa_group(p))) {
2507 unsigned int size = sizeof(struct numa_group) +
2508 4*nr_node_ids*sizeof(unsigned long);
2509
2510 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2511 if (!grp)
2512 return;
2513
2514 refcount_set(&grp->refcount, 1);
2515 grp->active_nodes = 1;
2516 grp->max_faults_cpu = 0;
2517 spin_lock_init(&grp->lock);
2518 grp->gid = p->pid;
2519 /* Second half of the array tracks nids where faults happen */
2520 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2521 nr_node_ids;
2522
2523 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2524 grp->faults[i] = p->numa_faults[i];
2525
2526 grp->total_faults = p->total_numa_faults;
2527
2528 grp->nr_tasks++;
2529 rcu_assign_pointer(p->numa_group, grp);
2530 }
2531
2532 rcu_read_lock();
2533 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2534
2535 if (!cpupid_match_pid(tsk, cpupid))
2536 goto no_join;
2537
2538 grp = rcu_dereference(tsk->numa_group);
2539 if (!grp)
2540 goto no_join;
2541
2542 my_grp = deref_curr_numa_group(p);
2543 if (grp == my_grp)
2544 goto no_join;
2545
2546 /*
2547 * Only join the other group if its bigger; if we're the bigger group,
2548 * the other task will join us.
2549 */
2550 if (my_grp->nr_tasks > grp->nr_tasks)
2551 goto no_join;
2552
2553 /*
2554 * Tie-break on the grp address.
2555 */
2556 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2557 goto no_join;
2558
2559 /* Always join threads in the same process. */
2560 if (tsk->mm == current->mm)
2561 join = true;
2562
2563 /* Simple filter to avoid false positives due to PID collisions */
2564 if (flags & TNF_SHARED)
2565 join = true;
2566
2567 /* Update priv based on whether false sharing was detected */
2568 *priv = !join;
2569
2570 if (join && !get_numa_group(grp))
2571 goto no_join;
2572
2573 rcu_read_unlock();
2574
2575 if (!join)
2576 return;
2577
2578 BUG_ON(irqs_disabled());
2579 double_lock_irq(&my_grp->lock, &grp->lock);
2580
2581 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2582 my_grp->faults[i] -= p->numa_faults[i];
2583 grp->faults[i] += p->numa_faults[i];
2584 }
2585 my_grp->total_faults -= p->total_numa_faults;
2586 grp->total_faults += p->total_numa_faults;
2587
2588 my_grp->nr_tasks--;
2589 grp->nr_tasks++;
2590
2591 spin_unlock(&my_grp->lock);
2592 spin_unlock_irq(&grp->lock);
2593
2594 rcu_assign_pointer(p->numa_group, grp);
2595
2596 put_numa_group(my_grp);
2597 return;
2598
2599 no_join:
2600 rcu_read_unlock();
2601 return;
2602 }
2603
2604 /*
2605 * Get rid of NUMA staticstics associated with a task (either current or dead).
2606 * If @final is set, the task is dead and has reached refcount zero, so we can
2607 * safely free all relevant data structures. Otherwise, there might be
2608 * concurrent reads from places like load balancing and procfs, and we should
2609 * reset the data back to default state without freeing ->numa_faults.
2610 */
2611 void task_numa_free(struct task_struct *p, bool final)
2612 {
2613 /* safe: p either is current or is being freed by current */
2614 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2615 unsigned long *numa_faults = p->numa_faults;
2616 unsigned long flags;
2617 int i;
2618
2619 if (!numa_faults)
2620 return;
2621
2622 if (grp) {
2623 spin_lock_irqsave(&grp->lock, flags);
2624 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2625 grp->faults[i] -= p->numa_faults[i];
2626 grp->total_faults -= p->total_numa_faults;
2627
2628 grp->nr_tasks--;
2629 spin_unlock_irqrestore(&grp->lock, flags);
2630 RCU_INIT_POINTER(p->numa_group, NULL);
2631 put_numa_group(grp);
2632 }
2633
2634 if (final) {
2635 p->numa_faults = NULL;
2636 kfree(numa_faults);
2637 } else {
2638 p->total_numa_faults = 0;
2639 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2640 numa_faults[i] = 0;
2641 }
2642 }
2643
2644 /*
2645 * Got a PROT_NONE fault for a page on @node.
2646 */
2647 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2648 {
2649 struct task_struct *p = current;
2650 bool migrated = flags & TNF_MIGRATED;
2651 int cpu_node = task_node(current);
2652 int local = !!(flags & TNF_FAULT_LOCAL);
2653 struct numa_group *ng;
2654 int priv;
2655
2656 if (!static_branch_likely(&sched_numa_balancing))
2657 return;
2658
2659 /* for example, ksmd faulting in a user's mm */
2660 if (!p->mm)
2661 return;
2662
2663 /* Allocate buffer to track faults on a per-node basis */
2664 if (unlikely(!p->numa_faults)) {
2665 int size = sizeof(*p->numa_faults) *
2666 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2667
2668 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2669 if (!p->numa_faults)
2670 return;
2671
2672 p->total_numa_faults = 0;
2673 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2674 }
2675
2676 /*
2677 * First accesses are treated as private, otherwise consider accesses
2678 * to be private if the accessing pid has not changed
2679 */
2680 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2681 priv = 1;
2682 } else {
2683 priv = cpupid_match_pid(p, last_cpupid);
2684 if (!priv && !(flags & TNF_NO_GROUP))
2685 task_numa_group(p, last_cpupid, flags, &priv);
2686 }
2687
2688 /*
2689 * If a workload spans multiple NUMA nodes, a shared fault that
2690 * occurs wholly within the set of nodes that the workload is
2691 * actively using should be counted as local. This allows the
2692 * scan rate to slow down when a workload has settled down.
2693 */
2694 ng = deref_curr_numa_group(p);
2695 if (!priv && !local && ng && ng->active_nodes > 1 &&
2696 numa_is_active_node(cpu_node, ng) &&
2697 numa_is_active_node(mem_node, ng))
2698 local = 1;
2699
2700 /*
2701 * Retry to migrate task to preferred node periodically, in case it
2702 * previously failed, or the scheduler moved us.
2703 */
2704 if (time_after(jiffies, p->numa_migrate_retry)) {
2705 task_numa_placement(p);
2706 numa_migrate_preferred(p);
2707 }
2708
2709 if (migrated)
2710 p->numa_pages_migrated += pages;
2711 if (flags & TNF_MIGRATE_FAIL)
2712 p->numa_faults_locality[2] += pages;
2713
2714 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2715 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2716 p->numa_faults_locality[local] += pages;
2717 }
2718
2719 static void reset_ptenuma_scan(struct task_struct *p)
2720 {
2721 /*
2722 * We only did a read acquisition of the mmap sem, so
2723 * p->mm->numa_scan_seq is written to without exclusive access
2724 * and the update is not guaranteed to be atomic. That's not
2725 * much of an issue though, since this is just used for
2726 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2727 * expensive, to avoid any form of compiler optimizations:
2728 */
2729 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2730 p->mm->numa_scan_offset = 0;
2731 }
2732
2733 /*
2734 * The expensive part of numa migration is done from task_work context.
2735 * Triggered from task_tick_numa().
2736 */
2737 static void task_numa_work(struct callback_head *work)
2738 {
2739 unsigned long migrate, next_scan, now = jiffies;
2740 struct task_struct *p = current;
2741 struct mm_struct *mm = p->mm;
2742 u64 runtime = p->se.sum_exec_runtime;
2743 struct vm_area_struct *vma;
2744 unsigned long start, end;
2745 unsigned long nr_pte_updates = 0;
2746 long pages, virtpages;
2747
2748 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2749
2750 work->next = work;
2751 /*
2752 * Who cares about NUMA placement when they're dying.
2753 *
2754 * NOTE: make sure not to dereference p->mm before this check,
2755 * exit_task_work() happens _after_ exit_mm() so we could be called
2756 * without p->mm even though we still had it when we enqueued this
2757 * work.
2758 */
2759 if (p->flags & PF_EXITING)
2760 return;
2761
2762 if (!mm->numa_next_scan) {
2763 mm->numa_next_scan = now +
2764 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2765 }
2766
2767 /*
2768 * Enforce maximal scan/migration frequency..
2769 */
2770 migrate = mm->numa_next_scan;
2771 if (time_before(now, migrate))
2772 return;
2773
2774 if (p->numa_scan_period == 0) {
2775 p->numa_scan_period_max = task_scan_max(p);
2776 p->numa_scan_period = task_scan_start(p);
2777 }
2778
2779 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2780 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2781 return;
2782
2783 /*
2784 * Delay this task enough that another task of this mm will likely win
2785 * the next time around.
2786 */
2787 p->node_stamp += 2 * TICK_NSEC;
2788
2789 start = mm->numa_scan_offset;
2790 pages = sysctl_numa_balancing_scan_size;
2791 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2792 virtpages = pages * 8; /* Scan up to this much virtual space */
2793 if (!pages)
2794 return;
2795
2796
2797 if (!mmap_read_trylock(mm))
2798 return;
2799 vma = find_vma(mm, start);
2800 if (!vma) {
2801 reset_ptenuma_scan(p);
2802 start = 0;
2803 vma = mm->mmap;
2804 }
2805 for (; vma; vma = vma->vm_next) {
2806 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2807 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2808 continue;
2809 }
2810
2811 /*
2812 * Shared library pages mapped by multiple processes are not
2813 * migrated as it is expected they are cache replicated. Avoid
2814 * hinting faults in read-only file-backed mappings or the vdso
2815 * as migrating the pages will be of marginal benefit.
2816 */
2817 if (!vma->vm_mm ||
2818 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2819 continue;
2820
2821 /*
2822 * Skip inaccessible VMAs to avoid any confusion between
2823 * PROT_NONE and NUMA hinting ptes
2824 */
2825 if (!vma_is_accessible(vma))
2826 continue;
2827
2828 do {
2829 start = max(start, vma->vm_start);
2830 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2831 end = min(end, vma->vm_end);
2832 nr_pte_updates = change_prot_numa(vma, start, end);
2833
2834 /*
2835 * Try to scan sysctl_numa_balancing_size worth of
2836 * hpages that have at least one present PTE that
2837 * is not already pte-numa. If the VMA contains
2838 * areas that are unused or already full of prot_numa
2839 * PTEs, scan up to virtpages, to skip through those
2840 * areas faster.
2841 */
2842 if (nr_pte_updates)
2843 pages -= (end - start) >> PAGE_SHIFT;
2844 virtpages -= (end - start) >> PAGE_SHIFT;
2845
2846 start = end;
2847 if (pages <= 0 || virtpages <= 0)
2848 goto out;
2849
2850 cond_resched();
2851 } while (end != vma->vm_end);
2852 }
2853
2854 out:
2855 /*
2856 * It is possible to reach the end of the VMA list but the last few
2857 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2858 * would find the !migratable VMA on the next scan but not reset the
2859 * scanner to the start so check it now.
2860 */
2861 if (vma)
2862 mm->numa_scan_offset = start;
2863 else
2864 reset_ptenuma_scan(p);
2865 mmap_read_unlock(mm);
2866
2867 /*
2868 * Make sure tasks use at least 32x as much time to run other code
2869 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2870 * Usually update_task_scan_period slows down scanning enough; on an
2871 * overloaded system we need to limit overhead on a per task basis.
2872 */
2873 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2874 u64 diff = p->se.sum_exec_runtime - runtime;
2875 p->node_stamp += 32 * diff;
2876 }
2877 }
2878
2879 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2880 {
2881 int mm_users = 0;
2882 struct mm_struct *mm = p->mm;
2883
2884 if (mm) {
2885 mm_users = atomic_read(&mm->mm_users);
2886 if (mm_users == 1) {
2887 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2888 mm->numa_scan_seq = 0;
2889 }
2890 }
2891 p->node_stamp = 0;
2892 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2893 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2894 /* Protect against double add, see task_tick_numa and task_numa_work */
2895 p->numa_work.next = &p->numa_work;
2896 p->numa_faults = NULL;
2897 RCU_INIT_POINTER(p->numa_group, NULL);
2898 p->last_task_numa_placement = 0;
2899 p->last_sum_exec_runtime = 0;
2900
2901 init_task_work(&p->numa_work, task_numa_work);
2902
2903 /* New address space, reset the preferred nid */
2904 if (!(clone_flags & CLONE_VM)) {
2905 p->numa_preferred_nid = NUMA_NO_NODE;
2906 return;
2907 }
2908
2909 /*
2910 * New thread, keep existing numa_preferred_nid which should be copied
2911 * already by arch_dup_task_struct but stagger when scans start.
2912 */
2913 if (mm) {
2914 unsigned int delay;
2915
2916 delay = min_t(unsigned int, task_scan_max(current),
2917 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2918 delay += 2 * TICK_NSEC;
2919 p->node_stamp = delay;
2920 }
2921 }
2922
2923 /*
2924 * Drive the periodic memory faults..
2925 */
2926 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2927 {
2928 struct callback_head *work = &curr->numa_work;
2929 u64 period, now;
2930
2931 /*
2932 * We don't care about NUMA placement if we don't have memory.
2933 */
2934 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2935 return;
2936
2937 /*
2938 * Using runtime rather than walltime has the dual advantage that
2939 * we (mostly) drive the selection from busy threads and that the
2940 * task needs to have done some actual work before we bother with
2941 * NUMA placement.
2942 */
2943 now = curr->se.sum_exec_runtime;
2944 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2945
2946 if (now > curr->node_stamp + period) {
2947 if (!curr->node_stamp)
2948 curr->numa_scan_period = task_scan_start(curr);
2949 curr->node_stamp += period;
2950
2951 if (!time_before(jiffies, curr->mm->numa_next_scan))
2952 task_work_add(curr, work, TWA_RESUME);
2953 }
2954 }
2955
2956 static void update_scan_period(struct task_struct *p, int new_cpu)
2957 {
2958 int src_nid = cpu_to_node(task_cpu(p));
2959 int dst_nid = cpu_to_node(new_cpu);
2960
2961 if (!static_branch_likely(&sched_numa_balancing))
2962 return;
2963
2964 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2965 return;
2966
2967 if (src_nid == dst_nid)
2968 return;
2969
2970 /*
2971 * Allow resets if faults have been trapped before one scan
2972 * has completed. This is most likely due to a new task that
2973 * is pulled cross-node due to wakeups or load balancing.
2974 */
2975 if (p->numa_scan_seq) {
2976 /*
2977 * Avoid scan adjustments if moving to the preferred
2978 * node or if the task was not previously running on
2979 * the preferred node.
2980 */
2981 if (dst_nid == p->numa_preferred_nid ||
2982 (p->numa_preferred_nid != NUMA_NO_NODE &&
2983 src_nid != p->numa_preferred_nid))
2984 return;
2985 }
2986
2987 p->numa_scan_period = task_scan_start(p);
2988 }
2989
2990 #else
2991 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2992 {
2993 }
2994
2995 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2996 {
2997 }
2998
2999 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3000 {
3001 }
3002
3003 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3004 {
3005 }
3006
3007 #endif /* CONFIG_NUMA_BALANCING */
3008
3009 static void
3010 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3011 {
3012 update_load_add(&cfs_rq->load, se->load.weight);
3013 #ifdef CONFIG_SMP
3014 if (entity_is_task(se)) {
3015 struct rq *rq = rq_of(cfs_rq);
3016
3017 account_numa_enqueue(rq, task_of(se));
3018 list_add(&se->group_node, &rq->cfs_tasks);
3019 }
3020 #endif
3021 cfs_rq->nr_running++;
3022 }
3023
3024 static void
3025 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3026 {
3027 update_load_sub(&cfs_rq->load, se->load.weight);
3028 #ifdef CONFIG_SMP
3029 if (entity_is_task(se)) {
3030 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3031 list_del_init(&se->group_node);
3032 }
3033 #endif
3034 cfs_rq->nr_running--;
3035 }
3036
3037 /*
3038 * Signed add and clamp on underflow.
3039 *
3040 * Explicitly do a load-store to ensure the intermediate value never hits
3041 * memory. This allows lockless observations without ever seeing the negative
3042 * values.
3043 */
3044 #define add_positive(_ptr, _val) do { \
3045 typeof(_ptr) ptr = (_ptr); \
3046 typeof(_val) val = (_val); \
3047 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3048 \
3049 res = var + val; \
3050 \
3051 if (val < 0 && res > var) \
3052 res = 0; \
3053 \
3054 WRITE_ONCE(*ptr, res); \
3055 } while (0)
3056
3057 /*
3058 * Unsigned subtract and clamp on underflow.
3059 *
3060 * Explicitly do a load-store to ensure the intermediate value never hits
3061 * memory. This allows lockless observations without ever seeing the negative
3062 * values.
3063 */
3064 #define sub_positive(_ptr, _val) do { \
3065 typeof(_ptr) ptr = (_ptr); \
3066 typeof(*ptr) val = (_val); \
3067 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3068 res = var - val; \
3069 if (res > var) \
3070 res = 0; \
3071 WRITE_ONCE(*ptr, res); \
3072 } while (0)
3073
3074 /*
3075 * Remove and clamp on negative, from a local variable.
3076 *
3077 * A variant of sub_positive(), which does not use explicit load-store
3078 * and is thus optimized for local variable updates.
3079 */
3080 #define lsub_positive(_ptr, _val) do { \
3081 typeof(_ptr) ptr = (_ptr); \
3082 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3083 } while (0)
3084
3085 #ifdef CONFIG_SMP
3086 static inline void
3087 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3088 {
3089 cfs_rq->avg.load_avg += se->avg.load_avg;
3090 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3091 }
3092
3093 static inline void
3094 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3095 {
3096 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3097 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3098 }
3099 #else
3100 static inline void
3101 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3102 static inline void
3103 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3104 #endif
3105
3106 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3107 unsigned long weight)
3108 {
3109 if (se->on_rq) {
3110 /* commit outstanding execution time */
3111 if (cfs_rq->curr == se)
3112 update_curr(cfs_rq);
3113 update_load_sub(&cfs_rq->load, se->load.weight);
3114 }
3115 dequeue_load_avg(cfs_rq, se);
3116
3117 update_load_set(&se->load, weight);
3118
3119 #ifdef CONFIG_SMP
3120 do {
3121 u32 divider = get_pelt_divider(&se->avg);
3122
3123 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3124 } while (0);
3125 #endif
3126
3127 enqueue_load_avg(cfs_rq, se);
3128 if (se->on_rq)
3129 update_load_add(&cfs_rq->load, se->load.weight);
3130
3131 }
3132
3133 void reweight_task(struct task_struct *p, int prio)
3134 {
3135 struct sched_entity *se = &p->se;
3136 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3137 struct load_weight *load = &se->load;
3138 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3139
3140 reweight_entity(cfs_rq, se, weight);
3141 load->inv_weight = sched_prio_to_wmult[prio];
3142 }
3143
3144 #ifdef CONFIG_FAIR_GROUP_SCHED
3145 #ifdef CONFIG_SMP
3146 /*
3147 * All this does is approximate the hierarchical proportion which includes that
3148 * global sum we all love to hate.
3149 *
3150 * That is, the weight of a group entity, is the proportional share of the
3151 * group weight based on the group runqueue weights. That is:
3152 *
3153 * tg->weight * grq->load.weight
3154 * ge->load.weight = ----------------------------- (1)
3155 * \Sum grq->load.weight
3156 *
3157 * Now, because computing that sum is prohibitively expensive to compute (been
3158 * there, done that) we approximate it with this average stuff. The average
3159 * moves slower and therefore the approximation is cheaper and more stable.
3160 *
3161 * So instead of the above, we substitute:
3162 *
3163 * grq->load.weight -> grq->avg.load_avg (2)
3164 *
3165 * which yields the following:
3166 *
3167 * tg->weight * grq->avg.load_avg
3168 * ge->load.weight = ------------------------------ (3)
3169 * tg->load_avg
3170 *
3171 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3172 *
3173 * That is shares_avg, and it is right (given the approximation (2)).
3174 *
3175 * The problem with it is that because the average is slow -- it was designed
3176 * to be exactly that of course -- this leads to transients in boundary
3177 * conditions. In specific, the case where the group was idle and we start the
3178 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3179 * yielding bad latency etc..
3180 *
3181 * Now, in that special case (1) reduces to:
3182 *
3183 * tg->weight * grq->load.weight
3184 * ge->load.weight = ----------------------------- = tg->weight (4)
3185 * grp->load.weight
3186 *
3187 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3188 *
3189 * So what we do is modify our approximation (3) to approach (4) in the (near)
3190 * UP case, like:
3191 *
3192 * ge->load.weight =
3193 *
3194 * tg->weight * grq->load.weight
3195 * --------------------------------------------------- (5)
3196 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3197 *
3198 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3199 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3200 *
3201 *
3202 * tg->weight * grq->load.weight
3203 * ge->load.weight = ----------------------------- (6)
3204 * tg_load_avg'
3205 *
3206 * Where:
3207 *
3208 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3209 * max(grq->load.weight, grq->avg.load_avg)
3210 *
3211 * And that is shares_weight and is icky. In the (near) UP case it approaches
3212 * (4) while in the normal case it approaches (3). It consistently
3213 * overestimates the ge->load.weight and therefore:
3214 *
3215 * \Sum ge->load.weight >= tg->weight
3216 *
3217 * hence icky!
3218 */
3219 static long calc_group_shares(struct cfs_rq *cfs_rq)
3220 {
3221 long tg_weight, tg_shares, load, shares;
3222 struct task_group *tg = cfs_rq->tg;
3223
3224 tg_shares = READ_ONCE(tg->shares);
3225
3226 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3227
3228 tg_weight = atomic_long_read(&tg->load_avg);
3229
3230 /* Ensure tg_weight >= load */
3231 tg_weight -= cfs_rq->tg_load_avg_contrib;
3232 tg_weight += load;
3233
3234 shares = (tg_shares * load);
3235 if (tg_weight)
3236 shares /= tg_weight;
3237
3238 /*
3239 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3240 * of a group with small tg->shares value. It is a floor value which is
3241 * assigned as a minimum load.weight to the sched_entity representing
3242 * the group on a CPU.
3243 *
3244 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3245 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3246 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3247 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3248 * instead of 0.
3249 */
3250 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3251 }
3252 #endif /* CONFIG_SMP */
3253
3254 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3255
3256 /*
3257 * Recomputes the group entity based on the current state of its group
3258 * runqueue.
3259 */
3260 static void update_cfs_group(struct sched_entity *se)
3261 {
3262 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3263 long shares;
3264
3265 if (!gcfs_rq)
3266 return;
3267
3268 if (throttled_hierarchy(gcfs_rq))
3269 return;
3270
3271 #ifndef CONFIG_SMP
3272 shares = READ_ONCE(gcfs_rq->tg->shares);
3273
3274 if (likely(se->load.weight == shares))
3275 return;
3276 #else
3277 shares = calc_group_shares(gcfs_rq);
3278 #endif
3279
3280 reweight_entity(cfs_rq_of(se), se, shares);
3281 }
3282
3283 #else /* CONFIG_FAIR_GROUP_SCHED */
3284 static inline void update_cfs_group(struct sched_entity *se)
3285 {
3286 }
3287 #endif /* CONFIG_FAIR_GROUP_SCHED */
3288
3289 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3290 {
3291 struct rq *rq = rq_of(cfs_rq);
3292
3293 if (&rq->cfs == cfs_rq) {
3294 /*
3295 * There are a few boundary cases this might miss but it should
3296 * get called often enough that that should (hopefully) not be
3297 * a real problem.
3298 *
3299 * It will not get called when we go idle, because the idle
3300 * thread is a different class (!fair), nor will the utilization
3301 * number include things like RT tasks.
3302 *
3303 * As is, the util number is not freq-invariant (we'd have to
3304 * implement arch_scale_freq_capacity() for that).
3305 *
3306 * See cpu_util().
3307 */
3308 cpufreq_update_util(rq, flags);
3309 }
3310 }
3311
3312 #ifdef CONFIG_SMP
3313 #ifdef CONFIG_FAIR_GROUP_SCHED
3314 /**
3315 * update_tg_load_avg - update the tg's load avg
3316 * @cfs_rq: the cfs_rq whose avg changed
3317 *
3318 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3319 * However, because tg->load_avg is a global value there are performance
3320 * considerations.
3321 *
3322 * In order to avoid having to look at the other cfs_rq's, we use a
3323 * differential update where we store the last value we propagated. This in
3324 * turn allows skipping updates if the differential is 'small'.
3325 *
3326 * Updating tg's load_avg is necessary before update_cfs_share().
3327 */
3328 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3329 {
3330 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3331
3332 /*
3333 * No need to update load_avg for root_task_group as it is not used.
3334 */
3335 if (cfs_rq->tg == &root_task_group)
3336 return;
3337
3338 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3339 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3340 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3341 }
3342 }
3343
3344 /*
3345 * Called within set_task_rq() right before setting a task's CPU. The
3346 * caller only guarantees p->pi_lock is held; no other assumptions,
3347 * including the state of rq->lock, should be made.
3348 */
3349 void set_task_rq_fair(struct sched_entity *se,
3350 struct cfs_rq *prev, struct cfs_rq *next)
3351 {
3352 u64 p_last_update_time;
3353 u64 n_last_update_time;
3354
3355 if (!sched_feat(ATTACH_AGE_LOAD))
3356 return;
3357
3358 /*
3359 * We are supposed to update the task to "current" time, then its up to
3360 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3361 * getting what current time is, so simply throw away the out-of-date
3362 * time. This will result in the wakee task is less decayed, but giving
3363 * the wakee more load sounds not bad.
3364 */
3365 if (!(se->avg.last_update_time && prev))
3366 return;
3367
3368 #ifndef CONFIG_64BIT
3369 {
3370 u64 p_last_update_time_copy;
3371 u64 n_last_update_time_copy;
3372
3373 do {
3374 p_last_update_time_copy = prev->load_last_update_time_copy;
3375 n_last_update_time_copy = next->load_last_update_time_copy;
3376
3377 smp_rmb();
3378
3379 p_last_update_time = prev->avg.last_update_time;
3380 n_last_update_time = next->avg.last_update_time;
3381
3382 } while (p_last_update_time != p_last_update_time_copy ||
3383 n_last_update_time != n_last_update_time_copy);
3384 }
3385 #else
3386 p_last_update_time = prev->avg.last_update_time;
3387 n_last_update_time = next->avg.last_update_time;
3388 #endif
3389 __update_load_avg_blocked_se(p_last_update_time, se);
3390 se->avg.last_update_time = n_last_update_time;
3391 }
3392
3393
3394 /*
3395 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3396 * propagate its contribution. The key to this propagation is the invariant
3397 * that for each group:
3398 *
3399 * ge->avg == grq->avg (1)
3400 *
3401 * _IFF_ we look at the pure running and runnable sums. Because they
3402 * represent the very same entity, just at different points in the hierarchy.
3403 *
3404 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3405 * and simply copies the running/runnable sum over (but still wrong, because
3406 * the group entity and group rq do not have their PELT windows aligned).
3407 *
3408 * However, update_tg_cfs_load() is more complex. So we have:
3409 *
3410 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3411 *
3412 * And since, like util, the runnable part should be directly transferable,
3413 * the following would _appear_ to be the straight forward approach:
3414 *
3415 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3416 *
3417 * And per (1) we have:
3418 *
3419 * ge->avg.runnable_avg == grq->avg.runnable_avg
3420 *
3421 * Which gives:
3422 *
3423 * ge->load.weight * grq->avg.load_avg
3424 * ge->avg.load_avg = ----------------------------------- (4)
3425 * grq->load.weight
3426 *
3427 * Except that is wrong!
3428 *
3429 * Because while for entities historical weight is not important and we
3430 * really only care about our future and therefore can consider a pure
3431 * runnable sum, runqueues can NOT do this.
3432 *
3433 * We specifically want runqueues to have a load_avg that includes
3434 * historical weights. Those represent the blocked load, the load we expect
3435 * to (shortly) return to us. This only works by keeping the weights as
3436 * integral part of the sum. We therefore cannot decompose as per (3).
3437 *
3438 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3439 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3440 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3441 * runnable section of these tasks overlap (or not). If they were to perfectly
3442 * align the rq as a whole would be runnable 2/3 of the time. If however we
3443 * always have at least 1 runnable task, the rq as a whole is always runnable.
3444 *
3445 * So we'll have to approximate.. :/
3446 *
3447 * Given the constraint:
3448 *
3449 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3450 *
3451 * We can construct a rule that adds runnable to a rq by assuming minimal
3452 * overlap.
3453 *
3454 * On removal, we'll assume each task is equally runnable; which yields:
3455 *
3456 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3457 *
3458 * XXX: only do this for the part of runnable > running ?
3459 *
3460 */
3461
3462 static inline void
3463 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3464 {
3465 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3466 u32 divider;
3467
3468 /* Nothing to update */
3469 if (!delta)
3470 return;
3471
3472 /*
3473 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3474 * See ___update_load_avg() for details.
3475 */
3476 divider = get_pelt_divider(&cfs_rq->avg);
3477
3478 /* Set new sched_entity's utilization */
3479 se->avg.util_avg = gcfs_rq->avg.util_avg;
3480 se->avg.util_sum = se->avg.util_avg * divider;
3481
3482 /* Update parent cfs_rq utilization */
3483 add_positive(&cfs_rq->avg.util_avg, delta);
3484 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3485 }
3486
3487 static inline void
3488 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3489 {
3490 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3491 u32 divider;
3492
3493 /* Nothing to update */
3494 if (!delta)
3495 return;
3496
3497 /*
3498 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3499 * See ___update_load_avg() for details.
3500 */
3501 divider = get_pelt_divider(&cfs_rq->avg);
3502
3503 /* Set new sched_entity's runnable */
3504 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3505 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3506
3507 /* Update parent cfs_rq runnable */
3508 add_positive(&cfs_rq->avg.runnable_avg, delta);
3509 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3510 }
3511
3512 static inline void
3513 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3514 {
3515 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3516 unsigned long load_avg;
3517 u64 load_sum = 0;
3518 u32 divider;
3519
3520 if (!runnable_sum)
3521 return;
3522
3523 gcfs_rq->prop_runnable_sum = 0;
3524
3525 /*
3526 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3527 * See ___update_load_avg() for details.
3528 */
3529 divider = get_pelt_divider(&cfs_rq->avg);
3530
3531 if (runnable_sum >= 0) {
3532 /*
3533 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3534 * the CPU is saturated running == runnable.
3535 */
3536 runnable_sum += se->avg.load_sum;
3537 runnable_sum = min_t(long, runnable_sum, divider);
3538 } else {
3539 /*
3540 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3541 * assuming all tasks are equally runnable.
3542 */
3543 if (scale_load_down(gcfs_rq->load.weight)) {
3544 load_sum = div_s64(gcfs_rq->avg.load_sum,
3545 scale_load_down(gcfs_rq->load.weight));
3546 }
3547
3548 /* But make sure to not inflate se's runnable */
3549 runnable_sum = min(se->avg.load_sum, load_sum);
3550 }
3551
3552 /*
3553 * runnable_sum can't be lower than running_sum
3554 * Rescale running sum to be in the same range as runnable sum
3555 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3556 * runnable_sum is in [0 : LOAD_AVG_MAX]
3557 */
3558 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3559 runnable_sum = max(runnable_sum, running_sum);
3560
3561 load_sum = (s64)se_weight(se) * runnable_sum;
3562 load_avg = div_s64(load_sum, divider);
3563
3564 delta = load_avg - se->avg.load_avg;
3565
3566 se->avg.load_sum = runnable_sum;
3567 se->avg.load_avg = load_avg;
3568
3569 add_positive(&cfs_rq->avg.load_avg, delta);
3570 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3571 }
3572
3573 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3574 {
3575 cfs_rq->propagate = 1;
3576 cfs_rq->prop_runnable_sum += runnable_sum;
3577 }
3578
3579 /* Update task and its cfs_rq load average */
3580 static inline int propagate_entity_load_avg(struct sched_entity *se)
3581 {
3582 struct cfs_rq *cfs_rq, *gcfs_rq;
3583
3584 if (entity_is_task(se))
3585 return 0;
3586
3587 gcfs_rq = group_cfs_rq(se);
3588 if (!gcfs_rq->propagate)
3589 return 0;
3590
3591 gcfs_rq->propagate = 0;
3592
3593 cfs_rq = cfs_rq_of(se);
3594
3595 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3596
3597 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3598 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3599 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3600
3601 trace_pelt_cfs_tp(cfs_rq);
3602 trace_pelt_se_tp(se);
3603
3604 return 1;
3605 }
3606
3607 /*
3608 * Check if we need to update the load and the utilization of a blocked
3609 * group_entity:
3610 */
3611 static inline bool skip_blocked_update(struct sched_entity *se)
3612 {
3613 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3614
3615 /*
3616 * If sched_entity still have not zero load or utilization, we have to
3617 * decay it:
3618 */
3619 if (se->avg.load_avg || se->avg.util_avg)
3620 return false;
3621
3622 /*
3623 * If there is a pending propagation, we have to update the load and
3624 * the utilization of the sched_entity:
3625 */
3626 if (gcfs_rq->propagate)
3627 return false;
3628
3629 /*
3630 * Otherwise, the load and the utilization of the sched_entity is
3631 * already zero and there is no pending propagation, so it will be a
3632 * waste of time to try to decay it:
3633 */
3634 return true;
3635 }
3636
3637 #else /* CONFIG_FAIR_GROUP_SCHED */
3638
3639 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3640
3641 static inline int propagate_entity_load_avg(struct sched_entity *se)
3642 {
3643 return 0;
3644 }
3645
3646 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3647
3648 #endif /* CONFIG_FAIR_GROUP_SCHED */
3649
3650 /**
3651 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3652 * @now: current time, as per cfs_rq_clock_pelt()
3653 * @cfs_rq: cfs_rq to update
3654 *
3655 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3656 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3657 * post_init_entity_util_avg().
3658 *
3659 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3660 *
3661 * Returns true if the load decayed or we removed load.
3662 *
3663 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3664 * call update_tg_load_avg() when this function returns true.
3665 */
3666 static inline int
3667 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3668 {
3669 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3670 struct sched_avg *sa = &cfs_rq->avg;
3671 int decayed = 0;
3672
3673 if (cfs_rq->removed.nr) {
3674 unsigned long r;
3675 u32 divider = get_pelt_divider(&cfs_rq->avg);
3676
3677 raw_spin_lock(&cfs_rq->removed.lock);
3678 swap(cfs_rq->removed.util_avg, removed_util);
3679 swap(cfs_rq->removed.load_avg, removed_load);
3680 swap(cfs_rq->removed.runnable_avg, removed_runnable);
3681 cfs_rq->removed.nr = 0;
3682 raw_spin_unlock(&cfs_rq->removed.lock);
3683
3684 r = removed_load;
3685 sub_positive(&sa->load_avg, r);
3686 sub_positive(&sa->load_sum, r * divider);
3687
3688 r = removed_util;
3689 sub_positive(&sa->util_avg, r);
3690 sub_positive(&sa->util_sum, r * divider);
3691
3692 r = removed_runnable;
3693 sub_positive(&sa->runnable_avg, r);
3694 sub_positive(&sa->runnable_sum, r * divider);
3695
3696 /*
3697 * removed_runnable is the unweighted version of removed_load so we
3698 * can use it to estimate removed_load_sum.
3699 */
3700 add_tg_cfs_propagate(cfs_rq,
3701 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3702
3703 decayed = 1;
3704 }
3705
3706 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3707
3708 #ifndef CONFIG_64BIT
3709 smp_wmb();
3710 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3711 #endif
3712
3713 return decayed;
3714 }
3715
3716 /**
3717 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3718 * @cfs_rq: cfs_rq to attach to
3719 * @se: sched_entity to attach
3720 *
3721 * Must call update_cfs_rq_load_avg() before this, since we rely on
3722 * cfs_rq->avg.last_update_time being current.
3723 */
3724 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3725 {
3726 /*
3727 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3728 * See ___update_load_avg() for details.
3729 */
3730 u32 divider = get_pelt_divider(&cfs_rq->avg);
3731
3732 /*
3733 * When we attach the @se to the @cfs_rq, we must align the decay
3734 * window because without that, really weird and wonderful things can
3735 * happen.
3736 *
3737 * XXX illustrate
3738 */
3739 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3740 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3741
3742 /*
3743 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3744 * period_contrib. This isn't strictly correct, but since we're
3745 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3746 * _sum a little.
3747 */
3748 se->avg.util_sum = se->avg.util_avg * divider;
3749
3750 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3751
3752 se->avg.load_sum = divider;
3753 if (se_weight(se)) {
3754 se->avg.load_sum =
3755 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3756 }
3757
3758 enqueue_load_avg(cfs_rq, se);
3759 cfs_rq->avg.util_avg += se->avg.util_avg;
3760 cfs_rq->avg.util_sum += se->avg.util_sum;
3761 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3762 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3763
3764 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3765
3766 cfs_rq_util_change(cfs_rq, 0);
3767
3768 trace_pelt_cfs_tp(cfs_rq);
3769 }
3770
3771 /**
3772 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3773 * @cfs_rq: cfs_rq to detach from
3774 * @se: sched_entity to detach
3775 *
3776 * Must call update_cfs_rq_load_avg() before this, since we rely on
3777 * cfs_rq->avg.last_update_time being current.
3778 */
3779 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3780 {
3781 dequeue_load_avg(cfs_rq, se);
3782 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3783 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3784 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3785 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3786
3787 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3788
3789 cfs_rq_util_change(cfs_rq, 0);
3790
3791 trace_pelt_cfs_tp(cfs_rq);
3792 }
3793
3794 /*
3795 * Optional action to be done while updating the load average
3796 */
3797 #define UPDATE_TG 0x1
3798 #define SKIP_AGE_LOAD 0x2
3799 #define DO_ATTACH 0x4
3800
3801 /* Update task and its cfs_rq load average */
3802 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3803 {
3804 u64 now = cfs_rq_clock_pelt(cfs_rq);
3805 int decayed;
3806
3807 /*
3808 * Track task load average for carrying it to new CPU after migrated, and
3809 * track group sched_entity load average for task_h_load calc in migration
3810 */
3811 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3812 __update_load_avg_se(now, cfs_rq, se);
3813
3814 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3815 decayed |= propagate_entity_load_avg(se);
3816
3817 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3818
3819 /*
3820 * DO_ATTACH means we're here from enqueue_entity().
3821 * !last_update_time means we've passed through
3822 * migrate_task_rq_fair() indicating we migrated.
3823 *
3824 * IOW we're enqueueing a task on a new CPU.
3825 */
3826 attach_entity_load_avg(cfs_rq, se);
3827 update_tg_load_avg(cfs_rq);
3828
3829 } else if (decayed) {
3830 cfs_rq_util_change(cfs_rq, 0);
3831
3832 if (flags & UPDATE_TG)
3833 update_tg_load_avg(cfs_rq);
3834 }
3835 }
3836
3837 #ifndef CONFIG_64BIT
3838 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3839 {
3840 u64 last_update_time_copy;
3841 u64 last_update_time;
3842
3843 do {
3844 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3845 smp_rmb();
3846 last_update_time = cfs_rq->avg.last_update_time;
3847 } while (last_update_time != last_update_time_copy);
3848
3849 return last_update_time;
3850 }
3851 #else
3852 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3853 {
3854 return cfs_rq->avg.last_update_time;
3855 }
3856 #endif
3857
3858 /*
3859 * Synchronize entity load avg of dequeued entity without locking
3860 * the previous rq.
3861 */
3862 static void sync_entity_load_avg(struct sched_entity *se)
3863 {
3864 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3865 u64 last_update_time;
3866
3867 last_update_time = cfs_rq_last_update_time(cfs_rq);
3868 __update_load_avg_blocked_se(last_update_time, se);
3869 }
3870
3871 /*
3872 * Task first catches up with cfs_rq, and then subtract
3873 * itself from the cfs_rq (task must be off the queue now).
3874 */
3875 static void remove_entity_load_avg(struct sched_entity *se)
3876 {
3877 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3878 unsigned long flags;
3879
3880 /*
3881 * tasks cannot exit without having gone through wake_up_new_task() ->
3882 * post_init_entity_util_avg() which will have added things to the
3883 * cfs_rq, so we can remove unconditionally.
3884 */
3885
3886 sync_entity_load_avg(se);
3887
3888 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3889 ++cfs_rq->removed.nr;
3890 cfs_rq->removed.util_avg += se->avg.util_avg;
3891 cfs_rq->removed.load_avg += se->avg.load_avg;
3892 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
3893 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3894 }
3895
3896 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3897 {
3898 return cfs_rq->avg.runnable_avg;
3899 }
3900
3901 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3902 {
3903 return cfs_rq->avg.load_avg;
3904 }
3905
3906 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3907
3908 static inline unsigned long task_util(struct task_struct *p)
3909 {
3910 return READ_ONCE(p->se.avg.util_avg);
3911 }
3912
3913 static inline unsigned long _task_util_est(struct task_struct *p)
3914 {
3915 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3916
3917 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3918 }
3919
3920 static inline unsigned long task_util_est(struct task_struct *p)
3921 {
3922 return max(task_util(p), _task_util_est(p));
3923 }
3924
3925 #ifdef CONFIG_UCLAMP_TASK
3926 static inline unsigned long uclamp_task_util(struct task_struct *p)
3927 {
3928 return clamp(task_util_est(p),
3929 uclamp_eff_value(p, UCLAMP_MIN),
3930 uclamp_eff_value(p, UCLAMP_MAX));
3931 }
3932 #else
3933 static inline unsigned long uclamp_task_util(struct task_struct *p)
3934 {
3935 return task_util_est(p);
3936 }
3937 #endif
3938
3939 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3940 struct task_struct *p)
3941 {
3942 unsigned int enqueued;
3943
3944 if (!sched_feat(UTIL_EST))
3945 return;
3946
3947 /* Update root cfs_rq's estimated utilization */
3948 enqueued = cfs_rq->avg.util_est.enqueued;
3949 enqueued += _task_util_est(p);
3950 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3951
3952 trace_sched_util_est_cfs_tp(cfs_rq);
3953 }
3954
3955 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
3956 struct task_struct *p)
3957 {
3958 unsigned int enqueued;
3959
3960 if (!sched_feat(UTIL_EST))
3961 return;
3962
3963 /* Update root cfs_rq's estimated utilization */
3964 enqueued = cfs_rq->avg.util_est.enqueued;
3965 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
3966 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3967
3968 trace_sched_util_est_cfs_tp(cfs_rq);
3969 }
3970
3971 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
3972
3973 /*
3974 * Check if a (signed) value is within a specified (unsigned) margin,
3975 * based on the observation that:
3976 *
3977 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3978 *
3979 * NOTE: this only works when value + maring < INT_MAX.
3980 */
3981 static inline bool within_margin(int value, int margin)
3982 {
3983 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3984 }
3985
3986 static inline void util_est_update(struct cfs_rq *cfs_rq,
3987 struct task_struct *p,
3988 bool task_sleep)
3989 {
3990 long last_ewma_diff, last_enqueued_diff;
3991 struct util_est ue;
3992
3993 if (!sched_feat(UTIL_EST))
3994 return;
3995
3996 /*
3997 * Skip update of task's estimated utilization when the task has not
3998 * yet completed an activation, e.g. being migrated.
3999 */
4000 if (!task_sleep)
4001 return;
4002
4003 /*
4004 * If the PELT values haven't changed since enqueue time,
4005 * skip the util_est update.
4006 */
4007 ue = p->se.avg.util_est;
4008 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4009 return;
4010
4011 last_enqueued_diff = ue.enqueued;
4012
4013 /*
4014 * Reset EWMA on utilization increases, the moving average is used only
4015 * to smooth utilization decreases.
4016 */
4017 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
4018 if (sched_feat(UTIL_EST_FASTUP)) {
4019 if (ue.ewma < ue.enqueued) {
4020 ue.ewma = ue.enqueued;
4021 goto done;
4022 }
4023 }
4024
4025 /*
4026 * Skip update of task's estimated utilization when its members are
4027 * already ~1% close to its last activation value.
4028 */
4029 last_ewma_diff = ue.enqueued - ue.ewma;
4030 last_enqueued_diff -= ue.enqueued;
4031 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4032 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4033 goto done;
4034
4035 return;
4036 }
4037
4038 /*
4039 * To avoid overestimation of actual task utilization, skip updates if
4040 * we cannot grant there is idle time in this CPU.
4041 */
4042 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4043 return;
4044
4045 /*
4046 * Update Task's estimated utilization
4047 *
4048 * When *p completes an activation we can consolidate another sample
4049 * of the task size. This is done by storing the current PELT value
4050 * as ue.enqueued and by using this value to update the Exponential
4051 * Weighted Moving Average (EWMA):
4052 *
4053 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4054 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4055 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4056 * = w * ( last_ewma_diff ) + ewma(t-1)
4057 * = w * (last_ewma_diff + ewma(t-1) / w)
4058 *
4059 * Where 'w' is the weight of new samples, which is configured to be
4060 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4061 */
4062 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4063 ue.ewma += last_ewma_diff;
4064 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4065 done:
4066 WRITE_ONCE(p->se.avg.util_est, ue);
4067
4068 trace_sched_util_est_se_tp(&p->se);
4069 }
4070
4071 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4072 {
4073 return fits_capacity(uclamp_task_util(p), capacity);
4074 }
4075
4076 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4077 {
4078 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4079 return;
4080
4081 if (!p || p->nr_cpus_allowed == 1) {
4082 rq->misfit_task_load = 0;
4083 return;
4084 }
4085
4086 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4087 rq->misfit_task_load = 0;
4088 return;
4089 }
4090
4091 /*
4092 * Make sure that misfit_task_load will not be null even if
4093 * task_h_load() returns 0.
4094 */
4095 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4096 }
4097
4098 #else /* CONFIG_SMP */
4099
4100 #define UPDATE_TG 0x0
4101 #define SKIP_AGE_LOAD 0x0
4102 #define DO_ATTACH 0x0
4103
4104 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4105 {
4106 cfs_rq_util_change(cfs_rq, 0);
4107 }
4108
4109 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4110
4111 static inline void
4112 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4113 static inline void
4114 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4115
4116 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4117 {
4118 return 0;
4119 }
4120
4121 static inline void
4122 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4123
4124 static inline void
4125 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4126
4127 static inline void
4128 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4129 bool task_sleep) {}
4130 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4131
4132 #endif /* CONFIG_SMP */
4133
4134 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4135 {
4136 #ifdef CONFIG_SCHED_DEBUG
4137 s64 d = se->vruntime - cfs_rq->min_vruntime;
4138
4139 if (d < 0)
4140 d = -d;
4141
4142 if (d > 3*sysctl_sched_latency)
4143 schedstat_inc(cfs_rq->nr_spread_over);
4144 #endif
4145 }
4146
4147 static void
4148 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4149 {
4150 u64 vruntime = cfs_rq->min_vruntime;
4151
4152 /*
4153 * The 'current' period is already promised to the current tasks,
4154 * however the extra weight of the new task will slow them down a
4155 * little, place the new task so that it fits in the slot that
4156 * stays open at the end.
4157 */
4158 if (initial && sched_feat(START_DEBIT))
4159 vruntime += sched_vslice(cfs_rq, se);
4160
4161 /* sleeps up to a single latency don't count. */
4162 if (!initial) {
4163 unsigned long thresh = sysctl_sched_latency;
4164
4165 /*
4166 * Halve their sleep time's effect, to allow
4167 * for a gentler effect of sleepers:
4168 */
4169 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4170 thresh >>= 1;
4171
4172 vruntime -= thresh;
4173 }
4174
4175 /* ensure we never gain time by being placed backwards. */
4176 se->vruntime = max_vruntime(se->vruntime, vruntime);
4177 }
4178
4179 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4180
4181 static inline void check_schedstat_required(void)
4182 {
4183 #ifdef CONFIG_SCHEDSTATS
4184 if (schedstat_enabled())
4185 return;
4186
4187 /* Force schedstat enabled if a dependent tracepoint is active */
4188 if (trace_sched_stat_wait_enabled() ||
4189 trace_sched_stat_sleep_enabled() ||
4190 trace_sched_stat_iowait_enabled() ||
4191 trace_sched_stat_blocked_enabled() ||
4192 trace_sched_stat_runtime_enabled()) {
4193 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4194 "stat_blocked and stat_runtime require the "
4195 "kernel parameter schedstats=enable or "
4196 "kernel.sched_schedstats=1\n");
4197 }
4198 #endif
4199 }
4200
4201 static inline bool cfs_bandwidth_used(void);
4202
4203 /*
4204 * MIGRATION
4205 *
4206 * dequeue
4207 * update_curr()
4208 * update_min_vruntime()
4209 * vruntime -= min_vruntime
4210 *
4211 * enqueue
4212 * update_curr()
4213 * update_min_vruntime()
4214 * vruntime += min_vruntime
4215 *
4216 * this way the vruntime transition between RQs is done when both
4217 * min_vruntime are up-to-date.
4218 *
4219 * WAKEUP (remote)
4220 *
4221 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4222 * vruntime -= min_vruntime
4223 *
4224 * enqueue
4225 * update_curr()
4226 * update_min_vruntime()
4227 * vruntime += min_vruntime
4228 *
4229 * this way we don't have the most up-to-date min_vruntime on the originating
4230 * CPU and an up-to-date min_vruntime on the destination CPU.
4231 */
4232
4233 static void
4234 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4235 {
4236 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4237 bool curr = cfs_rq->curr == se;
4238
4239 /*
4240 * If we're the current task, we must renormalise before calling
4241 * update_curr().
4242 */
4243 if (renorm && curr)
4244 se->vruntime += cfs_rq->min_vruntime;
4245
4246 update_curr(cfs_rq);
4247
4248 /*
4249 * Otherwise, renormalise after, such that we're placed at the current
4250 * moment in time, instead of some random moment in the past. Being
4251 * placed in the past could significantly boost this task to the
4252 * fairness detriment of existing tasks.
4253 */
4254 if (renorm && !curr)
4255 se->vruntime += cfs_rq->min_vruntime;
4256
4257 /*
4258 * When enqueuing a sched_entity, we must:
4259 * - Update loads to have both entity and cfs_rq synced with now.
4260 * - Add its load to cfs_rq->runnable_avg
4261 * - For group_entity, update its weight to reflect the new share of
4262 * its group cfs_rq
4263 * - Add its new weight to cfs_rq->load.weight
4264 */
4265 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4266 se_update_runnable(se);
4267 update_cfs_group(se);
4268 account_entity_enqueue(cfs_rq, se);
4269
4270 if (flags & ENQUEUE_WAKEUP)
4271 place_entity(cfs_rq, se, 0);
4272
4273 check_schedstat_required();
4274 update_stats_enqueue(cfs_rq, se, flags);
4275 check_spread(cfs_rq, se);
4276 if (!curr)
4277 __enqueue_entity(cfs_rq, se);
4278 se->on_rq = 1;
4279
4280 /*
4281 * When bandwidth control is enabled, cfs might have been removed
4282 * because of a parent been throttled but cfs->nr_running > 1. Try to
4283 * add it unconditionnally.
4284 */
4285 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4286 list_add_leaf_cfs_rq(cfs_rq);
4287
4288 if (cfs_rq->nr_running == 1)
4289 check_enqueue_throttle(cfs_rq);
4290 }
4291
4292 static void __clear_buddies_last(struct sched_entity *se)
4293 {
4294 for_each_sched_entity(se) {
4295 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4296 if (cfs_rq->last != se)
4297 break;
4298
4299 cfs_rq->last = NULL;
4300 }
4301 }
4302
4303 static void __clear_buddies_next(struct sched_entity *se)
4304 {
4305 for_each_sched_entity(se) {
4306 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4307 if (cfs_rq->next != se)
4308 break;
4309
4310 cfs_rq->next = NULL;
4311 }
4312 }
4313
4314 static void __clear_buddies_skip(struct sched_entity *se)
4315 {
4316 for_each_sched_entity(se) {
4317 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4318 if (cfs_rq->skip != se)
4319 break;
4320
4321 cfs_rq->skip = NULL;
4322 }
4323 }
4324
4325 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4326 {
4327 if (cfs_rq->last == se)
4328 __clear_buddies_last(se);
4329
4330 if (cfs_rq->next == se)
4331 __clear_buddies_next(se);
4332
4333 if (cfs_rq->skip == se)
4334 __clear_buddies_skip(se);
4335 }
4336
4337 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4338
4339 static void
4340 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4341 {
4342 /*
4343 * Update run-time statistics of the 'current'.
4344 */
4345 update_curr(cfs_rq);
4346
4347 /*
4348 * When dequeuing a sched_entity, we must:
4349 * - Update loads to have both entity and cfs_rq synced with now.
4350 * - Subtract its load from the cfs_rq->runnable_avg.
4351 * - Subtract its previous weight from cfs_rq->load.weight.
4352 * - For group entity, update its weight to reflect the new share
4353 * of its group cfs_rq.
4354 */
4355 update_load_avg(cfs_rq, se, UPDATE_TG);
4356 se_update_runnable(se);
4357
4358 update_stats_dequeue(cfs_rq, se, flags);
4359
4360 clear_buddies(cfs_rq, se);
4361
4362 if (se != cfs_rq->curr)
4363 __dequeue_entity(cfs_rq, se);
4364 se->on_rq = 0;
4365 account_entity_dequeue(cfs_rq, se);
4366
4367 /*
4368 * Normalize after update_curr(); which will also have moved
4369 * min_vruntime if @se is the one holding it back. But before doing
4370 * update_min_vruntime() again, which will discount @se's position and
4371 * can move min_vruntime forward still more.
4372 */
4373 if (!(flags & DEQUEUE_SLEEP))
4374 se->vruntime -= cfs_rq->min_vruntime;
4375
4376 /* return excess runtime on last dequeue */
4377 return_cfs_rq_runtime(cfs_rq);
4378
4379 update_cfs_group(se);
4380
4381 /*
4382 * Now advance min_vruntime if @se was the entity holding it back,
4383 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4384 * put back on, and if we advance min_vruntime, we'll be placed back
4385 * further than we started -- ie. we'll be penalized.
4386 */
4387 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4388 update_min_vruntime(cfs_rq);
4389 }
4390
4391 /*
4392 * Preempt the current task with a newly woken task if needed:
4393 */
4394 static void
4395 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4396 {
4397 unsigned long ideal_runtime, delta_exec;
4398 struct sched_entity *se;
4399 s64 delta;
4400
4401 ideal_runtime = sched_slice(cfs_rq, curr);
4402 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4403 if (delta_exec > ideal_runtime) {
4404 resched_curr(rq_of(cfs_rq));
4405 /*
4406 * The current task ran long enough, ensure it doesn't get
4407 * re-elected due to buddy favours.
4408 */
4409 clear_buddies(cfs_rq, curr);
4410 return;
4411 }
4412
4413 /*
4414 * Ensure that a task that missed wakeup preemption by a
4415 * narrow margin doesn't have to wait for a full slice.
4416 * This also mitigates buddy induced latencies under load.
4417 */
4418 if (delta_exec < sysctl_sched_min_granularity)
4419 return;
4420
4421 se = __pick_first_entity(cfs_rq);
4422 delta = curr->vruntime - se->vruntime;
4423
4424 if (delta < 0)
4425 return;
4426
4427 if (delta > ideal_runtime)
4428 resched_curr(rq_of(cfs_rq));
4429 }
4430
4431 static void
4432 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4433 {
4434 /* 'current' is not kept within the tree. */
4435 if (se->on_rq) {
4436 /*
4437 * Any task has to be enqueued before it get to execute on
4438 * a CPU. So account for the time it spent waiting on the
4439 * runqueue.
4440 */
4441 update_stats_wait_end(cfs_rq, se);
4442 __dequeue_entity(cfs_rq, se);
4443 update_load_avg(cfs_rq, se, UPDATE_TG);
4444 }
4445
4446 update_stats_curr_start(cfs_rq, se);
4447 cfs_rq->curr = se;
4448
4449 /*
4450 * Track our maximum slice length, if the CPU's load is at
4451 * least twice that of our own weight (i.e. dont track it
4452 * when there are only lesser-weight tasks around):
4453 */
4454 if (schedstat_enabled() &&
4455 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4456 schedstat_set(se->statistics.slice_max,
4457 max((u64)schedstat_val(se->statistics.slice_max),
4458 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4459 }
4460
4461 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4462 }
4463
4464 static int
4465 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4466
4467 /*
4468 * Pick the next process, keeping these things in mind, in this order:
4469 * 1) keep things fair between processes/task groups
4470 * 2) pick the "next" process, since someone really wants that to run
4471 * 3) pick the "last" process, for cache locality
4472 * 4) do not run the "skip" process, if something else is available
4473 */
4474 static struct sched_entity *
4475 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4476 {
4477 struct sched_entity *left = __pick_first_entity(cfs_rq);
4478 struct sched_entity *se;
4479
4480 /*
4481 * If curr is set we have to see if its left of the leftmost entity
4482 * still in the tree, provided there was anything in the tree at all.
4483 */
4484 if (!left || (curr && entity_before(curr, left)))
4485 left = curr;
4486
4487 se = left; /* ideally we run the leftmost entity */
4488
4489 /*
4490 * Avoid running the skip buddy, if running something else can
4491 * be done without getting too unfair.
4492 */
4493 if (cfs_rq->skip == se) {
4494 struct sched_entity *second;
4495
4496 if (se == curr) {
4497 second = __pick_first_entity(cfs_rq);
4498 } else {
4499 second = __pick_next_entity(se);
4500 if (!second || (curr && entity_before(curr, second)))
4501 second = curr;
4502 }
4503
4504 if (second && wakeup_preempt_entity(second, left) < 1)
4505 se = second;
4506 }
4507
4508 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4509 /*
4510 * Someone really wants this to run. If it's not unfair, run it.
4511 */
4512 se = cfs_rq->next;
4513 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4514 /*
4515 * Prefer last buddy, try to return the CPU to a preempted task.
4516 */
4517 se = cfs_rq->last;
4518 }
4519
4520 clear_buddies(cfs_rq, se);
4521
4522 return se;
4523 }
4524
4525 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4526
4527 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4528 {
4529 /*
4530 * If still on the runqueue then deactivate_task()
4531 * was not called and update_curr() has to be done:
4532 */
4533 if (prev->on_rq)
4534 update_curr(cfs_rq);
4535
4536 /* throttle cfs_rqs exceeding runtime */
4537 check_cfs_rq_runtime(cfs_rq);
4538
4539 check_spread(cfs_rq, prev);
4540
4541 if (prev->on_rq) {
4542 update_stats_wait_start(cfs_rq, prev);
4543 /* Put 'current' back into the tree. */
4544 __enqueue_entity(cfs_rq, prev);
4545 /* in !on_rq case, update occurred at dequeue */
4546 update_load_avg(cfs_rq, prev, 0);
4547 }
4548 cfs_rq->curr = NULL;
4549 }
4550
4551 static void
4552 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4553 {
4554 /*
4555 * Update run-time statistics of the 'current'.
4556 */
4557 update_curr(cfs_rq);
4558
4559 /*
4560 * Ensure that runnable average is periodically updated.
4561 */
4562 update_load_avg(cfs_rq, curr, UPDATE_TG);
4563 update_cfs_group(curr);
4564
4565 #ifdef CONFIG_SCHED_HRTICK
4566 /*
4567 * queued ticks are scheduled to match the slice, so don't bother
4568 * validating it and just reschedule.
4569 */
4570 if (queued) {
4571 resched_curr(rq_of(cfs_rq));
4572 return;
4573 }
4574 /*
4575 * don't let the period tick interfere with the hrtick preemption
4576 */
4577 if (!sched_feat(DOUBLE_TICK) &&
4578 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4579 return;
4580 #endif
4581
4582 if (cfs_rq->nr_running > 1)
4583 check_preempt_tick(cfs_rq, curr);
4584 }
4585
4586
4587 /**************************************************
4588 * CFS bandwidth control machinery
4589 */
4590
4591 #ifdef CONFIG_CFS_BANDWIDTH
4592
4593 #ifdef CONFIG_JUMP_LABEL
4594 static struct static_key __cfs_bandwidth_used;
4595
4596 static inline bool cfs_bandwidth_used(void)
4597 {
4598 return static_key_false(&__cfs_bandwidth_used);
4599 }
4600
4601 void cfs_bandwidth_usage_inc(void)
4602 {
4603 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4604 }
4605
4606 void cfs_bandwidth_usage_dec(void)
4607 {
4608 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4609 }
4610 #else /* CONFIG_JUMP_LABEL */
4611 static bool cfs_bandwidth_used(void)
4612 {
4613 return true;
4614 }
4615
4616 void cfs_bandwidth_usage_inc(void) {}
4617 void cfs_bandwidth_usage_dec(void) {}
4618 #endif /* CONFIG_JUMP_LABEL */
4619
4620 /*
4621 * default period for cfs group bandwidth.
4622 * default: 0.1s, units: nanoseconds
4623 */
4624 static inline u64 default_cfs_period(void)
4625 {
4626 return 100000000ULL;
4627 }
4628
4629 static inline u64 sched_cfs_bandwidth_slice(void)
4630 {
4631 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4632 }
4633
4634 /*
4635 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4636 * directly instead of rq->clock to avoid adding additional synchronization
4637 * around rq->lock.
4638 *
4639 * requires cfs_b->lock
4640 */
4641 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4642 {
4643 if (cfs_b->quota != RUNTIME_INF)
4644 cfs_b->runtime = cfs_b->quota;
4645 }
4646
4647 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4648 {
4649 return &tg->cfs_bandwidth;
4650 }
4651
4652 /* returns 0 on failure to allocate runtime */
4653 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4654 struct cfs_rq *cfs_rq, u64 target_runtime)
4655 {
4656 u64 min_amount, amount = 0;
4657
4658 lockdep_assert_held(&cfs_b->lock);
4659
4660 /* note: this is a positive sum as runtime_remaining <= 0 */
4661 min_amount = target_runtime - cfs_rq->runtime_remaining;
4662
4663 if (cfs_b->quota == RUNTIME_INF)
4664 amount = min_amount;
4665 else {
4666 start_cfs_bandwidth(cfs_b);
4667
4668 if (cfs_b->runtime > 0) {
4669 amount = min(cfs_b->runtime, min_amount);
4670 cfs_b->runtime -= amount;
4671 cfs_b->idle = 0;
4672 }
4673 }
4674
4675 cfs_rq->runtime_remaining += amount;
4676
4677 return cfs_rq->runtime_remaining > 0;
4678 }
4679
4680 /* returns 0 on failure to allocate runtime */
4681 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4682 {
4683 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4684 int ret;
4685
4686 raw_spin_lock(&cfs_b->lock);
4687 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4688 raw_spin_unlock(&cfs_b->lock);
4689
4690 return ret;
4691 }
4692
4693 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4694 {
4695 /* dock delta_exec before expiring quota (as it could span periods) */
4696 cfs_rq->runtime_remaining -= delta_exec;
4697
4698 if (likely(cfs_rq->runtime_remaining > 0))
4699 return;
4700
4701 if (cfs_rq->throttled)
4702 return;
4703 /*
4704 * if we're unable to extend our runtime we resched so that the active
4705 * hierarchy can be throttled
4706 */
4707 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4708 resched_curr(rq_of(cfs_rq));
4709 }
4710
4711 static __always_inline
4712 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4713 {
4714 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4715 return;
4716
4717 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4718 }
4719
4720 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4721 {
4722 return cfs_bandwidth_used() && cfs_rq->throttled;
4723 }
4724
4725 /* check whether cfs_rq, or any parent, is throttled */
4726 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4727 {
4728 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4729 }
4730
4731 /*
4732 * Ensure that neither of the group entities corresponding to src_cpu or
4733 * dest_cpu are members of a throttled hierarchy when performing group
4734 * load-balance operations.
4735 */
4736 static inline int throttled_lb_pair(struct task_group *tg,
4737 int src_cpu, int dest_cpu)
4738 {
4739 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4740
4741 src_cfs_rq = tg->cfs_rq[src_cpu];
4742 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4743
4744 return throttled_hierarchy(src_cfs_rq) ||
4745 throttled_hierarchy(dest_cfs_rq);
4746 }
4747
4748 static int tg_unthrottle_up(struct task_group *tg, void *data)
4749 {
4750 struct rq *rq = data;
4751 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4752
4753 cfs_rq->throttle_count--;
4754 if (!cfs_rq->throttle_count) {
4755 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4756 cfs_rq->throttled_clock_task;
4757
4758 /* Add cfs_rq with already running entity in the list */
4759 if (cfs_rq->nr_running >= 1)
4760 list_add_leaf_cfs_rq(cfs_rq);
4761 }
4762
4763 return 0;
4764 }
4765
4766 static int tg_throttle_down(struct task_group *tg, void *data)
4767 {
4768 struct rq *rq = data;
4769 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4770
4771 /* group is entering throttled state, stop time */
4772 if (!cfs_rq->throttle_count) {
4773 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4774 list_del_leaf_cfs_rq(cfs_rq);
4775 }
4776 cfs_rq->throttle_count++;
4777
4778 return 0;
4779 }
4780
4781 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4782 {
4783 struct rq *rq = rq_of(cfs_rq);
4784 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4785 struct sched_entity *se;
4786 long task_delta, idle_task_delta, dequeue = 1;
4787
4788 raw_spin_lock(&cfs_b->lock);
4789 /* This will start the period timer if necessary */
4790 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4791 /*
4792 * We have raced with bandwidth becoming available, and if we
4793 * actually throttled the timer might not unthrottle us for an
4794 * entire period. We additionally needed to make sure that any
4795 * subsequent check_cfs_rq_runtime calls agree not to throttle
4796 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4797 * for 1ns of runtime rather than just check cfs_b.
4798 */
4799 dequeue = 0;
4800 } else {
4801 list_add_tail_rcu(&cfs_rq->throttled_list,
4802 &cfs_b->throttled_cfs_rq);
4803 }
4804 raw_spin_unlock(&cfs_b->lock);
4805
4806 if (!dequeue)
4807 return false; /* Throttle no longer required. */
4808
4809 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4810
4811 /* freeze hierarchy runnable averages while throttled */
4812 rcu_read_lock();
4813 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4814 rcu_read_unlock();
4815
4816 task_delta = cfs_rq->h_nr_running;
4817 idle_task_delta = cfs_rq->idle_h_nr_running;
4818 for_each_sched_entity(se) {
4819 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4820 /* throttled entity or throttle-on-deactivate */
4821 if (!se->on_rq)
4822 goto done;
4823
4824 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4825
4826 qcfs_rq->h_nr_running -= task_delta;
4827 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4828
4829 if (qcfs_rq->load.weight) {
4830 /* Avoid re-evaluating load for this entity: */
4831 se = parent_entity(se);
4832 break;
4833 }
4834 }
4835
4836 for_each_sched_entity(se) {
4837 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4838 /* throttled entity or throttle-on-deactivate */
4839 if (!se->on_rq)
4840 goto done;
4841
4842 update_load_avg(qcfs_rq, se, 0);
4843 se_update_runnable(se);
4844
4845 qcfs_rq->h_nr_running -= task_delta;
4846 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4847 }
4848
4849 /* At this point se is NULL and we are at root level*/
4850 sub_nr_running(rq, task_delta);
4851
4852 done:
4853 /*
4854 * Note: distribution will already see us throttled via the
4855 * throttled-list. rq->lock protects completion.
4856 */
4857 cfs_rq->throttled = 1;
4858 cfs_rq->throttled_clock = rq_clock(rq);
4859 return true;
4860 }
4861
4862 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4863 {
4864 struct rq *rq = rq_of(cfs_rq);
4865 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4866 struct sched_entity *se;
4867 long task_delta, idle_task_delta;
4868
4869 se = cfs_rq->tg->se[cpu_of(rq)];
4870
4871 cfs_rq->throttled = 0;
4872
4873 update_rq_clock(rq);
4874
4875 raw_spin_lock(&cfs_b->lock);
4876 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4877 list_del_rcu(&cfs_rq->throttled_list);
4878 raw_spin_unlock(&cfs_b->lock);
4879
4880 /* update hierarchical throttle state */
4881 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4882
4883 if (!cfs_rq->load.weight)
4884 return;
4885
4886 task_delta = cfs_rq->h_nr_running;
4887 idle_task_delta = cfs_rq->idle_h_nr_running;
4888 for_each_sched_entity(se) {
4889 if (se->on_rq)
4890 break;
4891 cfs_rq = cfs_rq_of(se);
4892 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4893
4894 cfs_rq->h_nr_running += task_delta;
4895 cfs_rq->idle_h_nr_running += idle_task_delta;
4896
4897 /* end evaluation on encountering a throttled cfs_rq */
4898 if (cfs_rq_throttled(cfs_rq))
4899 goto unthrottle_throttle;
4900 }
4901
4902 for_each_sched_entity(se) {
4903 cfs_rq = cfs_rq_of(se);
4904
4905 update_load_avg(cfs_rq, se, UPDATE_TG);
4906 se_update_runnable(se);
4907
4908 cfs_rq->h_nr_running += task_delta;
4909 cfs_rq->idle_h_nr_running += idle_task_delta;
4910
4911
4912 /* end evaluation on encountering a throttled cfs_rq */
4913 if (cfs_rq_throttled(cfs_rq))
4914 goto unthrottle_throttle;
4915
4916 /*
4917 * One parent has been throttled and cfs_rq removed from the
4918 * list. Add it back to not break the leaf list.
4919 */
4920 if (throttled_hierarchy(cfs_rq))
4921 list_add_leaf_cfs_rq(cfs_rq);
4922 }
4923
4924 /* At this point se is NULL and we are at root level*/
4925 add_nr_running(rq, task_delta);
4926
4927 unthrottle_throttle:
4928 /*
4929 * The cfs_rq_throttled() breaks in the above iteration can result in
4930 * incomplete leaf list maintenance, resulting in triggering the
4931 * assertion below.
4932 */
4933 for_each_sched_entity(se) {
4934 cfs_rq = cfs_rq_of(se);
4935
4936 if (list_add_leaf_cfs_rq(cfs_rq))
4937 break;
4938 }
4939
4940 assert_list_leaf_cfs_rq(rq);
4941
4942 /* Determine whether we need to wake up potentially idle CPU: */
4943 if (rq->curr == rq->idle && rq->cfs.nr_running)
4944 resched_curr(rq);
4945 }
4946
4947 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4948 {
4949 struct cfs_rq *cfs_rq;
4950 u64 runtime, remaining = 1;
4951
4952 rcu_read_lock();
4953 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4954 throttled_list) {
4955 struct rq *rq = rq_of(cfs_rq);
4956 struct rq_flags rf;
4957
4958 rq_lock_irqsave(rq, &rf);
4959 if (!cfs_rq_throttled(cfs_rq))
4960 goto next;
4961
4962 /* By the above check, this should never be true */
4963 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4964
4965 raw_spin_lock(&cfs_b->lock);
4966 runtime = -cfs_rq->runtime_remaining + 1;
4967 if (runtime > cfs_b->runtime)
4968 runtime = cfs_b->runtime;
4969 cfs_b->runtime -= runtime;
4970 remaining = cfs_b->runtime;
4971 raw_spin_unlock(&cfs_b->lock);
4972
4973 cfs_rq->runtime_remaining += runtime;
4974
4975 /* we check whether we're throttled above */
4976 if (cfs_rq->runtime_remaining > 0)
4977 unthrottle_cfs_rq(cfs_rq);
4978
4979 next:
4980 rq_unlock_irqrestore(rq, &rf);
4981
4982 if (!remaining)
4983 break;
4984 }
4985 rcu_read_unlock();
4986 }
4987
4988 /*
4989 * Responsible for refilling a task_group's bandwidth and unthrottling its
4990 * cfs_rqs as appropriate. If there has been no activity within the last
4991 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4992 * used to track this state.
4993 */
4994 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4995 {
4996 int throttled;
4997
4998 /* no need to continue the timer with no bandwidth constraint */
4999 if (cfs_b->quota == RUNTIME_INF)
5000 goto out_deactivate;
5001
5002 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5003 cfs_b->nr_periods += overrun;
5004
5005 /*
5006 * idle depends on !throttled (for the case of a large deficit), and if
5007 * we're going inactive then everything else can be deferred
5008 */
5009 if (cfs_b->idle && !throttled)
5010 goto out_deactivate;
5011
5012 __refill_cfs_bandwidth_runtime(cfs_b);
5013
5014 if (!throttled) {
5015 /* mark as potentially idle for the upcoming period */
5016 cfs_b->idle = 1;
5017 return 0;
5018 }
5019
5020 /* account preceding periods in which throttling occurred */
5021 cfs_b->nr_throttled += overrun;
5022
5023 /*
5024 * This check is repeated as we release cfs_b->lock while we unthrottle.
5025 */
5026 while (throttled && cfs_b->runtime > 0) {
5027 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5028 /* we can't nest cfs_b->lock while distributing bandwidth */
5029 distribute_cfs_runtime(cfs_b);
5030 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5031
5032 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5033 }
5034
5035 /*
5036 * While we are ensured activity in the period following an
5037 * unthrottle, this also covers the case in which the new bandwidth is
5038 * insufficient to cover the existing bandwidth deficit. (Forcing the
5039 * timer to remain active while there are any throttled entities.)
5040 */
5041 cfs_b->idle = 0;
5042
5043 return 0;
5044
5045 out_deactivate:
5046 return 1;
5047 }
5048
5049 /* a cfs_rq won't donate quota below this amount */
5050 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5051 /* minimum remaining period time to redistribute slack quota */
5052 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5053 /* how long we wait to gather additional slack before distributing */
5054 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5055
5056 /*
5057 * Are we near the end of the current quota period?
5058 *
5059 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5060 * hrtimer base being cleared by hrtimer_start. In the case of
5061 * migrate_hrtimers, base is never cleared, so we are fine.
5062 */
5063 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5064 {
5065 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5066 u64 remaining;
5067
5068 /* if the call-back is running a quota refresh is already occurring */
5069 if (hrtimer_callback_running(refresh_timer))
5070 return 1;
5071
5072 /* is a quota refresh about to occur? */
5073 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5074 if (remaining < min_expire)
5075 return 1;
5076
5077 return 0;
5078 }
5079
5080 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5081 {
5082 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5083
5084 /* if there's a quota refresh soon don't bother with slack */
5085 if (runtime_refresh_within(cfs_b, min_left))
5086 return;
5087
5088 /* don't push forwards an existing deferred unthrottle */
5089 if (cfs_b->slack_started)
5090 return;
5091 cfs_b->slack_started = true;
5092
5093 hrtimer_start(&cfs_b->slack_timer,
5094 ns_to_ktime(cfs_bandwidth_slack_period),
5095 HRTIMER_MODE_REL);
5096 }
5097
5098 /* we know any runtime found here is valid as update_curr() precedes return */
5099 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5100 {
5101 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5102 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5103
5104 if (slack_runtime <= 0)
5105 return;
5106
5107 raw_spin_lock(&cfs_b->lock);
5108 if (cfs_b->quota != RUNTIME_INF) {
5109 cfs_b->runtime += slack_runtime;
5110
5111 /* we are under rq->lock, defer unthrottling using a timer */
5112 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5113 !list_empty(&cfs_b->throttled_cfs_rq))
5114 start_cfs_slack_bandwidth(cfs_b);
5115 }
5116 raw_spin_unlock(&cfs_b->lock);
5117
5118 /* even if it's not valid for return we don't want to try again */
5119 cfs_rq->runtime_remaining -= slack_runtime;
5120 }
5121
5122 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5123 {
5124 if (!cfs_bandwidth_used())
5125 return;
5126
5127 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5128 return;
5129
5130 __return_cfs_rq_runtime(cfs_rq);
5131 }
5132
5133 /*
5134 * This is done with a timer (instead of inline with bandwidth return) since
5135 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5136 */
5137 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5138 {
5139 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5140 unsigned long flags;
5141
5142 /* confirm we're still not at a refresh boundary */
5143 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5144 cfs_b->slack_started = false;
5145
5146 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5147 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5148 return;
5149 }
5150
5151 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5152 runtime = cfs_b->runtime;
5153
5154 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5155
5156 if (!runtime)
5157 return;
5158
5159 distribute_cfs_runtime(cfs_b);
5160 }
5161
5162 /*
5163 * When a group wakes up we want to make sure that its quota is not already
5164 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5165 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5166 */
5167 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5168 {
5169 if (!cfs_bandwidth_used())
5170 return;
5171
5172 /* an active group must be handled by the update_curr()->put() path */
5173 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5174 return;
5175
5176 /* ensure the group is not already throttled */
5177 if (cfs_rq_throttled(cfs_rq))
5178 return;
5179
5180 /* update runtime allocation */
5181 account_cfs_rq_runtime(cfs_rq, 0);
5182 if (cfs_rq->runtime_remaining <= 0)
5183 throttle_cfs_rq(cfs_rq);
5184 }
5185
5186 static void sync_throttle(struct task_group *tg, int cpu)
5187 {
5188 struct cfs_rq *pcfs_rq, *cfs_rq;
5189
5190 if (!cfs_bandwidth_used())
5191 return;
5192
5193 if (!tg->parent)
5194 return;
5195
5196 cfs_rq = tg->cfs_rq[cpu];
5197 pcfs_rq = tg->parent->cfs_rq[cpu];
5198
5199 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5200 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5201 }
5202
5203 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5204 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5205 {
5206 if (!cfs_bandwidth_used())
5207 return false;
5208
5209 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5210 return false;
5211
5212 /*
5213 * it's possible for a throttled entity to be forced into a running
5214 * state (e.g. set_curr_task), in this case we're finished.
5215 */
5216 if (cfs_rq_throttled(cfs_rq))
5217 return true;
5218
5219 return throttle_cfs_rq(cfs_rq);
5220 }
5221
5222 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5223 {
5224 struct cfs_bandwidth *cfs_b =
5225 container_of(timer, struct cfs_bandwidth, slack_timer);
5226
5227 do_sched_cfs_slack_timer(cfs_b);
5228
5229 return HRTIMER_NORESTART;
5230 }
5231
5232 extern const u64 max_cfs_quota_period;
5233
5234 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5235 {
5236 struct cfs_bandwidth *cfs_b =
5237 container_of(timer, struct cfs_bandwidth, period_timer);
5238 unsigned long flags;
5239 int overrun;
5240 int idle = 0;
5241 int count = 0;
5242
5243 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5244 for (;;) {
5245 overrun = hrtimer_forward_now(timer, cfs_b->period);
5246 if (!overrun)
5247 break;
5248
5249 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5250
5251 if (++count > 3) {
5252 u64 new, old = ktime_to_ns(cfs_b->period);
5253
5254 /*
5255 * Grow period by a factor of 2 to avoid losing precision.
5256 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5257 * to fail.
5258 */
5259 new = old * 2;
5260 if (new < max_cfs_quota_period) {
5261 cfs_b->period = ns_to_ktime(new);
5262 cfs_b->quota *= 2;
5263
5264 pr_warn_ratelimited(
5265 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5266 smp_processor_id(),
5267 div_u64(new, NSEC_PER_USEC),
5268 div_u64(cfs_b->quota, NSEC_PER_USEC));
5269 } else {
5270 pr_warn_ratelimited(
5271 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5272 smp_processor_id(),
5273 div_u64(old, NSEC_PER_USEC),
5274 div_u64(cfs_b->quota, NSEC_PER_USEC));
5275 }
5276
5277 /* reset count so we don't come right back in here */
5278 count = 0;
5279 }
5280 }
5281 if (idle)
5282 cfs_b->period_active = 0;
5283 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5284
5285 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5286 }
5287
5288 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5289 {
5290 raw_spin_lock_init(&cfs_b->lock);
5291 cfs_b->runtime = 0;
5292 cfs_b->quota = RUNTIME_INF;
5293 cfs_b->period = ns_to_ktime(default_cfs_period());
5294
5295 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5296 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5297 cfs_b->period_timer.function = sched_cfs_period_timer;
5298 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5299 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5300 cfs_b->slack_started = false;
5301 }
5302
5303 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5304 {
5305 cfs_rq->runtime_enabled = 0;
5306 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5307 }
5308
5309 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5310 {
5311 lockdep_assert_held(&cfs_b->lock);
5312
5313 if (cfs_b->period_active)
5314 return;
5315
5316 cfs_b->period_active = 1;
5317 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5318 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5319 }
5320
5321 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5322 {
5323 /* init_cfs_bandwidth() was not called */
5324 if (!cfs_b->throttled_cfs_rq.next)
5325 return;
5326
5327 hrtimer_cancel(&cfs_b->period_timer);
5328 hrtimer_cancel(&cfs_b->slack_timer);
5329 }
5330
5331 /*
5332 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5333 *
5334 * The race is harmless, since modifying bandwidth settings of unhooked group
5335 * bits doesn't do much.
5336 */
5337
5338 /* cpu online calback */
5339 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5340 {
5341 struct task_group *tg;
5342
5343 lockdep_assert_held(&rq->lock);
5344
5345 rcu_read_lock();
5346 list_for_each_entry_rcu(tg, &task_groups, list) {
5347 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5348 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5349
5350 raw_spin_lock(&cfs_b->lock);
5351 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5352 raw_spin_unlock(&cfs_b->lock);
5353 }
5354 rcu_read_unlock();
5355 }
5356
5357 /* cpu offline callback */
5358 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5359 {
5360 struct task_group *tg;
5361
5362 lockdep_assert_held(&rq->lock);
5363
5364 rcu_read_lock();
5365 list_for_each_entry_rcu(tg, &task_groups, list) {
5366 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5367
5368 if (!cfs_rq->runtime_enabled)
5369 continue;
5370
5371 /*
5372 * clock_task is not advancing so we just need to make sure
5373 * there's some valid quota amount
5374 */
5375 cfs_rq->runtime_remaining = 1;
5376 /*
5377 * Offline rq is schedulable till CPU is completely disabled
5378 * in take_cpu_down(), so we prevent new cfs throttling here.
5379 */
5380 cfs_rq->runtime_enabled = 0;
5381
5382 if (cfs_rq_throttled(cfs_rq))
5383 unthrottle_cfs_rq(cfs_rq);
5384 }
5385 rcu_read_unlock();
5386 }
5387
5388 #else /* CONFIG_CFS_BANDWIDTH */
5389
5390 static inline bool cfs_bandwidth_used(void)
5391 {
5392 return false;
5393 }
5394
5395 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5396 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5397 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5398 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5399 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5400
5401 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5402 {
5403 return 0;
5404 }
5405
5406 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5407 {
5408 return 0;
5409 }
5410
5411 static inline int throttled_lb_pair(struct task_group *tg,
5412 int src_cpu, int dest_cpu)
5413 {
5414 return 0;
5415 }
5416
5417 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5418
5419 #ifdef CONFIG_FAIR_GROUP_SCHED
5420 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5421 #endif
5422
5423 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5424 {
5425 return NULL;
5426 }
5427 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5428 static inline void update_runtime_enabled(struct rq *rq) {}
5429 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5430
5431 #endif /* CONFIG_CFS_BANDWIDTH */
5432
5433 /**************************************************
5434 * CFS operations on tasks:
5435 */
5436
5437 #ifdef CONFIG_SCHED_HRTICK
5438 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5439 {
5440 struct sched_entity *se = &p->se;
5441 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5442
5443 SCHED_WARN_ON(task_rq(p) != rq);
5444
5445 if (rq->cfs.h_nr_running > 1) {
5446 u64 slice = sched_slice(cfs_rq, se);
5447 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5448 s64 delta = slice - ran;
5449
5450 if (delta < 0) {
5451 if (rq->curr == p)
5452 resched_curr(rq);
5453 return;
5454 }
5455 hrtick_start(rq, delta);
5456 }
5457 }
5458
5459 /*
5460 * called from enqueue/dequeue and updates the hrtick when the
5461 * current task is from our class and nr_running is low enough
5462 * to matter.
5463 */
5464 static void hrtick_update(struct rq *rq)
5465 {
5466 struct task_struct *curr = rq->curr;
5467
5468 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5469 return;
5470
5471 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5472 hrtick_start_fair(rq, curr);
5473 }
5474 #else /* !CONFIG_SCHED_HRTICK */
5475 static inline void
5476 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5477 {
5478 }
5479
5480 static inline void hrtick_update(struct rq *rq)
5481 {
5482 }
5483 #endif
5484
5485 #ifdef CONFIG_SMP
5486 static inline unsigned long cpu_util(int cpu);
5487
5488 static inline bool cpu_overutilized(int cpu)
5489 {
5490 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5491 }
5492
5493 static inline void update_overutilized_status(struct rq *rq)
5494 {
5495 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5496 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5497 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5498 }
5499 }
5500 #else
5501 static inline void update_overutilized_status(struct rq *rq) { }
5502 #endif
5503
5504 /* Runqueue only has SCHED_IDLE tasks enqueued */
5505 static int sched_idle_rq(struct rq *rq)
5506 {
5507 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5508 rq->nr_running);
5509 }
5510
5511 #ifdef CONFIG_SMP
5512 static int sched_idle_cpu(int cpu)
5513 {
5514 return sched_idle_rq(cpu_rq(cpu));
5515 }
5516 #endif
5517
5518 /*
5519 * The enqueue_task method is called before nr_running is
5520 * increased. Here we update the fair scheduling stats and
5521 * then put the task into the rbtree:
5522 */
5523 static void
5524 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5525 {
5526 struct cfs_rq *cfs_rq;
5527 struct sched_entity *se = &p->se;
5528 int idle_h_nr_running = task_has_idle_policy(p);
5529 int task_new = !(flags & ENQUEUE_WAKEUP);
5530
5531 /*
5532 * The code below (indirectly) updates schedutil which looks at
5533 * the cfs_rq utilization to select a frequency.
5534 * Let's add the task's estimated utilization to the cfs_rq's
5535 * estimated utilization, before we update schedutil.
5536 */
5537 util_est_enqueue(&rq->cfs, p);
5538
5539 /*
5540 * If in_iowait is set, the code below may not trigger any cpufreq
5541 * utilization updates, so do it here explicitly with the IOWAIT flag
5542 * passed.
5543 */
5544 if (p->in_iowait)
5545 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5546
5547 for_each_sched_entity(se) {
5548 if (se->on_rq)
5549 break;
5550 cfs_rq = cfs_rq_of(se);
5551 enqueue_entity(cfs_rq, se, flags);
5552
5553 cfs_rq->h_nr_running++;
5554 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5555
5556 /* end evaluation on encountering a throttled cfs_rq */
5557 if (cfs_rq_throttled(cfs_rq))
5558 goto enqueue_throttle;
5559
5560 flags = ENQUEUE_WAKEUP;
5561 }
5562
5563 for_each_sched_entity(se) {
5564 cfs_rq = cfs_rq_of(se);
5565
5566 update_load_avg(cfs_rq, se, UPDATE_TG);
5567 se_update_runnable(se);
5568 update_cfs_group(se);
5569
5570 cfs_rq->h_nr_running++;
5571 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5572
5573 /* end evaluation on encountering a throttled cfs_rq */
5574 if (cfs_rq_throttled(cfs_rq))
5575 goto enqueue_throttle;
5576
5577 /*
5578 * One parent has been throttled and cfs_rq removed from the
5579 * list. Add it back to not break the leaf list.
5580 */
5581 if (throttled_hierarchy(cfs_rq))
5582 list_add_leaf_cfs_rq(cfs_rq);
5583 }
5584
5585 /* At this point se is NULL and we are at root level*/
5586 add_nr_running(rq, 1);
5587
5588 /*
5589 * Since new tasks are assigned an initial util_avg equal to
5590 * half of the spare capacity of their CPU, tiny tasks have the
5591 * ability to cross the overutilized threshold, which will
5592 * result in the load balancer ruining all the task placement
5593 * done by EAS. As a way to mitigate that effect, do not account
5594 * for the first enqueue operation of new tasks during the
5595 * overutilized flag detection.
5596 *
5597 * A better way of solving this problem would be to wait for
5598 * the PELT signals of tasks to converge before taking them
5599 * into account, but that is not straightforward to implement,
5600 * and the following generally works well enough in practice.
5601 */
5602 if (!task_new)
5603 update_overutilized_status(rq);
5604
5605 enqueue_throttle:
5606 if (cfs_bandwidth_used()) {
5607 /*
5608 * When bandwidth control is enabled; the cfs_rq_throttled()
5609 * breaks in the above iteration can result in incomplete
5610 * leaf list maintenance, resulting in triggering the assertion
5611 * below.
5612 */
5613 for_each_sched_entity(se) {
5614 cfs_rq = cfs_rq_of(se);
5615
5616 if (list_add_leaf_cfs_rq(cfs_rq))
5617 break;
5618 }
5619 }
5620
5621 assert_list_leaf_cfs_rq(rq);
5622
5623 hrtick_update(rq);
5624 }
5625
5626 static void set_next_buddy(struct sched_entity *se);
5627
5628 /*
5629 * The dequeue_task method is called before nr_running is
5630 * decreased. We remove the task from the rbtree and
5631 * update the fair scheduling stats:
5632 */
5633 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5634 {
5635 struct cfs_rq *cfs_rq;
5636 struct sched_entity *se = &p->se;
5637 int task_sleep = flags & DEQUEUE_SLEEP;
5638 int idle_h_nr_running = task_has_idle_policy(p);
5639 bool was_sched_idle = sched_idle_rq(rq);
5640
5641 util_est_dequeue(&rq->cfs, p);
5642
5643 for_each_sched_entity(se) {
5644 cfs_rq = cfs_rq_of(se);
5645 dequeue_entity(cfs_rq, se, flags);
5646
5647 cfs_rq->h_nr_running--;
5648 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5649
5650 /* end evaluation on encountering a throttled cfs_rq */
5651 if (cfs_rq_throttled(cfs_rq))
5652 goto dequeue_throttle;
5653
5654 /* Don't dequeue parent if it has other entities besides us */
5655 if (cfs_rq->load.weight) {
5656 /* Avoid re-evaluating load for this entity: */
5657 se = parent_entity(se);
5658 /*
5659 * Bias pick_next to pick a task from this cfs_rq, as
5660 * p is sleeping when it is within its sched_slice.
5661 */
5662 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5663 set_next_buddy(se);
5664 break;
5665 }
5666 flags |= DEQUEUE_SLEEP;
5667 }
5668
5669 for_each_sched_entity(se) {
5670 cfs_rq = cfs_rq_of(se);
5671
5672 update_load_avg(cfs_rq, se, UPDATE_TG);
5673 se_update_runnable(se);
5674 update_cfs_group(se);
5675
5676 cfs_rq->h_nr_running--;
5677 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5678
5679 /* end evaluation on encountering a throttled cfs_rq */
5680 if (cfs_rq_throttled(cfs_rq))
5681 goto dequeue_throttle;
5682
5683 }
5684
5685 /* At this point se is NULL and we are at root level*/
5686 sub_nr_running(rq, 1);
5687
5688 /* balance early to pull high priority tasks */
5689 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5690 rq->next_balance = jiffies;
5691
5692 dequeue_throttle:
5693 util_est_update(&rq->cfs, p, task_sleep);
5694 hrtick_update(rq);
5695 }
5696
5697 #ifdef CONFIG_SMP
5698
5699 /* Working cpumask for: load_balance, load_balance_newidle. */
5700 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5701 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5702
5703 #ifdef CONFIG_NO_HZ_COMMON
5704
5705 static struct {
5706 cpumask_var_t idle_cpus_mask;
5707 atomic_t nr_cpus;
5708 int has_blocked; /* Idle CPUS has blocked load */
5709 unsigned long next_balance; /* in jiffy units */
5710 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5711 } nohz ____cacheline_aligned;
5712
5713 #endif /* CONFIG_NO_HZ_COMMON */
5714
5715 static unsigned long cpu_load(struct rq *rq)
5716 {
5717 return cfs_rq_load_avg(&rq->cfs);
5718 }
5719
5720 /*
5721 * cpu_load_without - compute CPU load without any contributions from *p
5722 * @cpu: the CPU which load is requested
5723 * @p: the task which load should be discounted
5724 *
5725 * The load of a CPU is defined by the load of tasks currently enqueued on that
5726 * CPU as well as tasks which are currently sleeping after an execution on that
5727 * CPU.
5728 *
5729 * This method returns the load of the specified CPU by discounting the load of
5730 * the specified task, whenever the task is currently contributing to the CPU
5731 * load.
5732 */
5733 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5734 {
5735 struct cfs_rq *cfs_rq;
5736 unsigned int load;
5737
5738 /* Task has no contribution or is new */
5739 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5740 return cpu_load(rq);
5741
5742 cfs_rq = &rq->cfs;
5743 load = READ_ONCE(cfs_rq->avg.load_avg);
5744
5745 /* Discount task's util from CPU's util */
5746 lsub_positive(&load, task_h_load(p));
5747
5748 return load;
5749 }
5750
5751 static unsigned long cpu_runnable(struct rq *rq)
5752 {
5753 return cfs_rq_runnable_avg(&rq->cfs);
5754 }
5755
5756 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5757 {
5758 struct cfs_rq *cfs_rq;
5759 unsigned int runnable;
5760
5761 /* Task has no contribution or is new */
5762 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5763 return cpu_runnable(rq);
5764
5765 cfs_rq = &rq->cfs;
5766 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5767
5768 /* Discount task's runnable from CPU's runnable */
5769 lsub_positive(&runnable, p->se.avg.runnable_avg);
5770
5771 return runnable;
5772 }
5773
5774 static unsigned long capacity_of(int cpu)
5775 {
5776 return cpu_rq(cpu)->cpu_capacity;
5777 }
5778
5779 static void record_wakee(struct task_struct *p)
5780 {
5781 /*
5782 * Only decay a single time; tasks that have less then 1 wakeup per
5783 * jiffy will not have built up many flips.
5784 */
5785 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5786 current->wakee_flips >>= 1;
5787 current->wakee_flip_decay_ts = jiffies;
5788 }
5789
5790 if (current->last_wakee != p) {
5791 current->last_wakee = p;
5792 current->wakee_flips++;
5793 }
5794 }
5795
5796 /*
5797 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5798 *
5799 * A waker of many should wake a different task than the one last awakened
5800 * at a frequency roughly N times higher than one of its wakees.
5801 *
5802 * In order to determine whether we should let the load spread vs consolidating
5803 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5804 * partner, and a factor of lls_size higher frequency in the other.
5805 *
5806 * With both conditions met, we can be relatively sure that the relationship is
5807 * non-monogamous, with partner count exceeding socket size.
5808 *
5809 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5810 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5811 * socket size.
5812 */
5813 static int wake_wide(struct task_struct *p)
5814 {
5815 unsigned int master = current->wakee_flips;
5816 unsigned int slave = p->wakee_flips;
5817 int factor = __this_cpu_read(sd_llc_size);
5818
5819 if (master < slave)
5820 swap(master, slave);
5821 if (slave < factor || master < slave * factor)
5822 return 0;
5823 return 1;
5824 }
5825
5826 /*
5827 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5828 * soonest. For the purpose of speed we only consider the waking and previous
5829 * CPU.
5830 *
5831 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5832 * cache-affine and is (or will be) idle.
5833 *
5834 * wake_affine_weight() - considers the weight to reflect the average
5835 * scheduling latency of the CPUs. This seems to work
5836 * for the overloaded case.
5837 */
5838 static int
5839 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5840 {
5841 /*
5842 * If this_cpu is idle, it implies the wakeup is from interrupt
5843 * context. Only allow the move if cache is shared. Otherwise an
5844 * interrupt intensive workload could force all tasks onto one
5845 * node depending on the IO topology or IRQ affinity settings.
5846 *
5847 * If the prev_cpu is idle and cache affine then avoid a migration.
5848 * There is no guarantee that the cache hot data from an interrupt
5849 * is more important than cache hot data on the prev_cpu and from
5850 * a cpufreq perspective, it's better to have higher utilisation
5851 * on one CPU.
5852 */
5853 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5854 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5855
5856 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5857 return this_cpu;
5858
5859 if (available_idle_cpu(prev_cpu))
5860 return prev_cpu;
5861
5862 return nr_cpumask_bits;
5863 }
5864
5865 static int
5866 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5867 int this_cpu, int prev_cpu, int sync)
5868 {
5869 s64 this_eff_load, prev_eff_load;
5870 unsigned long task_load;
5871
5872 this_eff_load = cpu_load(cpu_rq(this_cpu));
5873
5874 if (sync) {
5875 unsigned long current_load = task_h_load(current);
5876
5877 if (current_load > this_eff_load)
5878 return this_cpu;
5879
5880 this_eff_load -= current_load;
5881 }
5882
5883 task_load = task_h_load(p);
5884
5885 this_eff_load += task_load;
5886 if (sched_feat(WA_BIAS))
5887 this_eff_load *= 100;
5888 this_eff_load *= capacity_of(prev_cpu);
5889
5890 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5891 prev_eff_load -= task_load;
5892 if (sched_feat(WA_BIAS))
5893 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5894 prev_eff_load *= capacity_of(this_cpu);
5895
5896 /*
5897 * If sync, adjust the weight of prev_eff_load such that if
5898 * prev_eff == this_eff that select_idle_sibling() will consider
5899 * stacking the wakee on top of the waker if no other CPU is
5900 * idle.
5901 */
5902 if (sync)
5903 prev_eff_load += 1;
5904
5905 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5906 }
5907
5908 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5909 int this_cpu, int prev_cpu, int sync)
5910 {
5911 int target = nr_cpumask_bits;
5912
5913 if (sched_feat(WA_IDLE))
5914 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5915
5916 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5917 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5918
5919 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5920 if (target == nr_cpumask_bits)
5921 return prev_cpu;
5922
5923 schedstat_inc(sd->ttwu_move_affine);
5924 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5925 return target;
5926 }
5927
5928 static struct sched_group *
5929 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5930
5931 /*
5932 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5933 */
5934 static int
5935 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5936 {
5937 unsigned long load, min_load = ULONG_MAX;
5938 unsigned int min_exit_latency = UINT_MAX;
5939 u64 latest_idle_timestamp = 0;
5940 int least_loaded_cpu = this_cpu;
5941 int shallowest_idle_cpu = -1;
5942 int i;
5943
5944 /* Check if we have any choice: */
5945 if (group->group_weight == 1)
5946 return cpumask_first(sched_group_span(group));
5947
5948 /* Traverse only the allowed CPUs */
5949 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5950 if (sched_idle_cpu(i))
5951 return i;
5952
5953 if (available_idle_cpu(i)) {
5954 struct rq *rq = cpu_rq(i);
5955 struct cpuidle_state *idle = idle_get_state(rq);
5956 if (idle && idle->exit_latency < min_exit_latency) {
5957 /*
5958 * We give priority to a CPU whose idle state
5959 * has the smallest exit latency irrespective
5960 * of any idle timestamp.
5961 */
5962 min_exit_latency = idle->exit_latency;
5963 latest_idle_timestamp = rq->idle_stamp;
5964 shallowest_idle_cpu = i;
5965 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5966 rq->idle_stamp > latest_idle_timestamp) {
5967 /*
5968 * If equal or no active idle state, then
5969 * the most recently idled CPU might have
5970 * a warmer cache.
5971 */
5972 latest_idle_timestamp = rq->idle_stamp;
5973 shallowest_idle_cpu = i;
5974 }
5975 } else if (shallowest_idle_cpu == -1) {
5976 load = cpu_load(cpu_rq(i));
5977 if (load < min_load) {
5978 min_load = load;
5979 least_loaded_cpu = i;
5980 }
5981 }
5982 }
5983
5984 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5985 }
5986
5987 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5988 int cpu, int prev_cpu, int sd_flag)
5989 {
5990 int new_cpu = cpu;
5991
5992 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5993 return prev_cpu;
5994
5995 /*
5996 * We need task's util for cpu_util_without, sync it up to
5997 * prev_cpu's last_update_time.
5998 */
5999 if (!(sd_flag & SD_BALANCE_FORK))
6000 sync_entity_load_avg(&p->se);
6001
6002 while (sd) {
6003 struct sched_group *group;
6004 struct sched_domain *tmp;
6005 int weight;
6006
6007 if (!(sd->flags & sd_flag)) {
6008 sd = sd->child;
6009 continue;
6010 }
6011
6012 group = find_idlest_group(sd, p, cpu);
6013 if (!group) {
6014 sd = sd->child;
6015 continue;
6016 }
6017
6018 new_cpu = find_idlest_group_cpu(group, p, cpu);
6019 if (new_cpu == cpu) {
6020 /* Now try balancing at a lower domain level of 'cpu': */
6021 sd = sd->child;
6022 continue;
6023 }
6024
6025 /* Now try balancing at a lower domain level of 'new_cpu': */
6026 cpu = new_cpu;
6027 weight = sd->span_weight;
6028 sd = NULL;
6029 for_each_domain(cpu, tmp) {
6030 if (weight <= tmp->span_weight)
6031 break;
6032 if (tmp->flags & sd_flag)
6033 sd = tmp;
6034 }
6035 }
6036
6037 return new_cpu;
6038 }
6039
6040 #ifdef CONFIG_SCHED_SMT
6041 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6042 EXPORT_SYMBOL_GPL(sched_smt_present);
6043
6044 static inline void set_idle_cores(int cpu, int val)
6045 {
6046 struct sched_domain_shared *sds;
6047
6048 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6049 if (sds)
6050 WRITE_ONCE(sds->has_idle_cores, val);
6051 }
6052
6053 static inline bool test_idle_cores(int cpu, bool def)
6054 {
6055 struct sched_domain_shared *sds;
6056
6057 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6058 if (sds)
6059 return READ_ONCE(sds->has_idle_cores);
6060
6061 return def;
6062 }
6063
6064 /*
6065 * Scans the local SMT mask to see if the entire core is idle, and records this
6066 * information in sd_llc_shared->has_idle_cores.
6067 *
6068 * Since SMT siblings share all cache levels, inspecting this limited remote
6069 * state should be fairly cheap.
6070 */
6071 void __update_idle_core(struct rq *rq)
6072 {
6073 int core = cpu_of(rq);
6074 int cpu;
6075
6076 rcu_read_lock();
6077 if (test_idle_cores(core, true))
6078 goto unlock;
6079
6080 for_each_cpu(cpu, cpu_smt_mask(core)) {
6081 if (cpu == core)
6082 continue;
6083
6084 if (!available_idle_cpu(cpu))
6085 goto unlock;
6086 }
6087
6088 set_idle_cores(core, 1);
6089 unlock:
6090 rcu_read_unlock();
6091 }
6092
6093 /*
6094 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6095 * there are no idle cores left in the system; tracked through
6096 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6097 */
6098 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6099 {
6100 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6101 int core, cpu;
6102
6103 if (!static_branch_likely(&sched_smt_present))
6104 return -1;
6105
6106 if (!test_idle_cores(target, false))
6107 return -1;
6108
6109 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6110
6111 for_each_cpu_wrap(core, cpus, target) {
6112 bool idle = true;
6113
6114 for_each_cpu(cpu, cpu_smt_mask(core)) {
6115 if (!available_idle_cpu(cpu)) {
6116 idle = false;
6117 break;
6118 }
6119 }
6120
6121 if (idle)
6122 return core;
6123
6124 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6125 }
6126
6127 /*
6128 * Failed to find an idle core; stop looking for one.
6129 */
6130 set_idle_cores(target, 0);
6131
6132 return -1;
6133 }
6134
6135 /*
6136 * Scan the local SMT mask for idle CPUs.
6137 */
6138 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6139 {
6140 int cpu;
6141
6142 if (!static_branch_likely(&sched_smt_present))
6143 return -1;
6144
6145 for_each_cpu(cpu, cpu_smt_mask(target)) {
6146 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6147 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6148 continue;
6149 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6150 return cpu;
6151 }
6152
6153 return -1;
6154 }
6155
6156 #else /* CONFIG_SCHED_SMT */
6157
6158 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6159 {
6160 return -1;
6161 }
6162
6163 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6164 {
6165 return -1;
6166 }
6167
6168 #endif /* CONFIG_SCHED_SMT */
6169
6170 /*
6171 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6172 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6173 * average idle time for this rq (as found in rq->avg_idle).
6174 */
6175 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6176 {
6177 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6178 struct sched_domain *this_sd;
6179 u64 avg_cost, avg_idle;
6180 u64 time;
6181 int this = smp_processor_id();
6182 int cpu, nr = INT_MAX;
6183
6184 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6185 if (!this_sd)
6186 return -1;
6187
6188 /*
6189 * Due to large variance we need a large fuzz factor; hackbench in
6190 * particularly is sensitive here.
6191 */
6192 avg_idle = this_rq()->avg_idle / 512;
6193 avg_cost = this_sd->avg_scan_cost + 1;
6194
6195 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6196 return -1;
6197
6198 if (sched_feat(SIS_PROP)) {
6199 u64 span_avg = sd->span_weight * avg_idle;
6200 if (span_avg > 4*avg_cost)
6201 nr = div_u64(span_avg, avg_cost);
6202 else
6203 nr = 4;
6204 }
6205
6206 time = cpu_clock(this);
6207
6208 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6209
6210 for_each_cpu_wrap(cpu, cpus, target) {
6211 if (!--nr)
6212 return -1;
6213 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6214 break;
6215 }
6216
6217 time = cpu_clock(this) - time;
6218 update_avg(&this_sd->avg_scan_cost, time);
6219
6220 return cpu;
6221 }
6222
6223 /*
6224 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6225 * the task fits. If no CPU is big enough, but there are idle ones, try to
6226 * maximize capacity.
6227 */
6228 static int
6229 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6230 {
6231 unsigned long task_util, best_cap = 0;
6232 int cpu, best_cpu = -1;
6233 struct cpumask *cpus;
6234
6235 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6236 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6237
6238 task_util = uclamp_task_util(p);
6239
6240 for_each_cpu_wrap(cpu, cpus, target) {
6241 unsigned long cpu_cap = capacity_of(cpu);
6242
6243 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6244 continue;
6245 if (fits_capacity(task_util, cpu_cap))
6246 return cpu;
6247
6248 if (cpu_cap > best_cap) {
6249 best_cap = cpu_cap;
6250 best_cpu = cpu;
6251 }
6252 }
6253
6254 return best_cpu;
6255 }
6256
6257 static inline bool asym_fits_capacity(int task_util, int cpu)
6258 {
6259 if (static_branch_unlikely(&sched_asym_cpucapacity))
6260 return fits_capacity(task_util, capacity_of(cpu));
6261
6262 return true;
6263 }
6264
6265 /*
6266 * Try and locate an idle core/thread in the LLC cache domain.
6267 */
6268 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6269 {
6270 struct sched_domain *sd;
6271 unsigned long task_util;
6272 int i, recent_used_cpu;
6273
6274 /*
6275 * On asymmetric system, update task utilization because we will check
6276 * that the task fits with cpu's capacity.
6277 */
6278 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6279 sync_entity_load_avg(&p->se);
6280 task_util = uclamp_task_util(p);
6281 }
6282
6283 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6284 asym_fits_capacity(task_util, target))
6285 return target;
6286
6287 /*
6288 * If the previous CPU is cache affine and idle, don't be stupid:
6289 */
6290 if (prev != target && cpus_share_cache(prev, target) &&
6291 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6292 asym_fits_capacity(task_util, prev))
6293 return prev;
6294
6295 /*
6296 * Allow a per-cpu kthread to stack with the wakee if the
6297 * kworker thread and the tasks previous CPUs are the same.
6298 * The assumption is that the wakee queued work for the
6299 * per-cpu kthread that is now complete and the wakeup is
6300 * essentially a sync wakeup. An obvious example of this
6301 * pattern is IO completions.
6302 */
6303 if (is_per_cpu_kthread(current) &&
6304 prev == smp_processor_id() &&
6305 this_rq()->nr_running <= 1) {
6306 return prev;
6307 }
6308
6309 /* Check a recently used CPU as a potential idle candidate: */
6310 recent_used_cpu = p->recent_used_cpu;
6311 if (recent_used_cpu != prev &&
6312 recent_used_cpu != target &&
6313 cpus_share_cache(recent_used_cpu, target) &&
6314 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6315 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6316 asym_fits_capacity(task_util, recent_used_cpu)) {
6317 /*
6318 * Replace recent_used_cpu with prev as it is a potential
6319 * candidate for the next wake:
6320 */
6321 p->recent_used_cpu = prev;
6322 return recent_used_cpu;
6323 }
6324
6325 /*
6326 * For asymmetric CPU capacity systems, our domain of interest is
6327 * sd_asym_cpucapacity rather than sd_llc.
6328 */
6329 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6330 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6331 /*
6332 * On an asymmetric CPU capacity system where an exclusive
6333 * cpuset defines a symmetric island (i.e. one unique
6334 * capacity_orig value through the cpuset), the key will be set
6335 * but the CPUs within that cpuset will not have a domain with
6336 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6337 * capacity path.
6338 */
6339 if (sd) {
6340 i = select_idle_capacity(p, sd, target);
6341 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6342 }
6343 }
6344
6345 sd = rcu_dereference(per_cpu(sd_llc, target));
6346 if (!sd)
6347 return target;
6348
6349 i = select_idle_core(p, sd, target);
6350 if ((unsigned)i < nr_cpumask_bits)
6351 return i;
6352
6353 i = select_idle_cpu(p, sd, target);
6354 if ((unsigned)i < nr_cpumask_bits)
6355 return i;
6356
6357 i = select_idle_smt(p, sd, target);
6358 if ((unsigned)i < nr_cpumask_bits)
6359 return i;
6360
6361 return target;
6362 }
6363
6364 /**
6365 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
6366 * @cpu: the CPU to get the utilization of
6367 *
6368 * The unit of the return value must be the one of capacity so we can compare
6369 * the utilization with the capacity of the CPU that is available for CFS task
6370 * (ie cpu_capacity).
6371 *
6372 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6373 * recent utilization of currently non-runnable tasks on a CPU. It represents
6374 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6375 * capacity_orig is the cpu_capacity available at the highest frequency
6376 * (arch_scale_freq_capacity()).
6377 * The utilization of a CPU converges towards a sum equal to or less than the
6378 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6379 * the running time on this CPU scaled by capacity_curr.
6380 *
6381 * The estimated utilization of a CPU is defined to be the maximum between its
6382 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6383 * currently RUNNABLE on that CPU.
6384 * This allows to properly represent the expected utilization of a CPU which
6385 * has just got a big task running since a long sleep period. At the same time
6386 * however it preserves the benefits of the "blocked utilization" in
6387 * describing the potential for other tasks waking up on the same CPU.
6388 *
6389 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6390 * higher than capacity_orig because of unfortunate rounding in
6391 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6392 * the average stabilizes with the new running time. We need to check that the
6393 * utilization stays within the range of [0..capacity_orig] and cap it if
6394 * necessary. Without utilization capping, a group could be seen as overloaded
6395 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6396 * available capacity. We allow utilization to overshoot capacity_curr (but not
6397 * capacity_orig) as it useful for predicting the capacity required after task
6398 * migrations (scheduler-driven DVFS).
6399 *
6400 * Return: the (estimated) utilization for the specified CPU
6401 */
6402 static inline unsigned long cpu_util(int cpu)
6403 {
6404 struct cfs_rq *cfs_rq;
6405 unsigned int util;
6406
6407 cfs_rq = &cpu_rq(cpu)->cfs;
6408 util = READ_ONCE(cfs_rq->avg.util_avg);
6409
6410 if (sched_feat(UTIL_EST))
6411 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6412
6413 return min_t(unsigned long, util, capacity_orig_of(cpu));
6414 }
6415
6416 /*
6417 * cpu_util_without: compute cpu utilization without any contributions from *p
6418 * @cpu: the CPU which utilization is requested
6419 * @p: the task which utilization should be discounted
6420 *
6421 * The utilization of a CPU is defined by the utilization of tasks currently
6422 * enqueued on that CPU as well as tasks which are currently sleeping after an
6423 * execution on that CPU.
6424 *
6425 * This method returns the utilization of the specified CPU by discounting the
6426 * utilization of the specified task, whenever the task is currently
6427 * contributing to the CPU utilization.
6428 */
6429 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6430 {
6431 struct cfs_rq *cfs_rq;
6432 unsigned int util;
6433
6434 /* Task has no contribution or is new */
6435 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6436 return cpu_util(cpu);
6437
6438 cfs_rq = &cpu_rq(cpu)->cfs;
6439 util = READ_ONCE(cfs_rq->avg.util_avg);
6440
6441 /* Discount task's util from CPU's util */
6442 lsub_positive(&util, task_util(p));
6443
6444 /*
6445 * Covered cases:
6446 *
6447 * a) if *p is the only task sleeping on this CPU, then:
6448 * cpu_util (== task_util) > util_est (== 0)
6449 * and thus we return:
6450 * cpu_util_without = (cpu_util - task_util) = 0
6451 *
6452 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6453 * IDLE, then:
6454 * cpu_util >= task_util
6455 * cpu_util > util_est (== 0)
6456 * and thus we discount *p's blocked utilization to return:
6457 * cpu_util_without = (cpu_util - task_util) >= 0
6458 *
6459 * c) if other tasks are RUNNABLE on that CPU and
6460 * util_est > cpu_util
6461 * then we use util_est since it returns a more restrictive
6462 * estimation of the spare capacity on that CPU, by just
6463 * considering the expected utilization of tasks already
6464 * runnable on that CPU.
6465 *
6466 * Cases a) and b) are covered by the above code, while case c) is
6467 * covered by the following code when estimated utilization is
6468 * enabled.
6469 */
6470 if (sched_feat(UTIL_EST)) {
6471 unsigned int estimated =
6472 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6473
6474 /*
6475 * Despite the following checks we still have a small window
6476 * for a possible race, when an execl's select_task_rq_fair()
6477 * races with LB's detach_task():
6478 *
6479 * detach_task()
6480 * p->on_rq = TASK_ON_RQ_MIGRATING;
6481 * ---------------------------------- A
6482 * deactivate_task() \
6483 * dequeue_task() + RaceTime
6484 * util_est_dequeue() /
6485 * ---------------------------------- B
6486 *
6487 * The additional check on "current == p" it's required to
6488 * properly fix the execl regression and it helps in further
6489 * reducing the chances for the above race.
6490 */
6491 if (unlikely(task_on_rq_queued(p) || current == p))
6492 lsub_positive(&estimated, _task_util_est(p));
6493
6494 util = max(util, estimated);
6495 }
6496
6497 /*
6498 * Utilization (estimated) can exceed the CPU capacity, thus let's
6499 * clamp to the maximum CPU capacity to ensure consistency with
6500 * the cpu_util call.
6501 */
6502 return min_t(unsigned long, util, capacity_orig_of(cpu));
6503 }
6504
6505 /*
6506 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6507 * to @dst_cpu.
6508 */
6509 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6510 {
6511 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6512 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6513
6514 /*
6515 * If @p migrates from @cpu to another, remove its contribution. Or,
6516 * if @p migrates from another CPU to @cpu, add its contribution. In
6517 * the other cases, @cpu is not impacted by the migration, so the
6518 * util_avg should already be correct.
6519 */
6520 if (task_cpu(p) == cpu && dst_cpu != cpu)
6521 sub_positive(&util, task_util(p));
6522 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6523 util += task_util(p);
6524
6525 if (sched_feat(UTIL_EST)) {
6526 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6527
6528 /*
6529 * During wake-up, the task isn't enqueued yet and doesn't
6530 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6531 * so just add it (if needed) to "simulate" what will be
6532 * cpu_util() after the task has been enqueued.
6533 */
6534 if (dst_cpu == cpu)
6535 util_est += _task_util_est(p);
6536
6537 util = max(util, util_est);
6538 }
6539
6540 return min(util, capacity_orig_of(cpu));
6541 }
6542
6543 /*
6544 * compute_energy(): Estimates the energy that @pd would consume if @p was
6545 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6546 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6547 * to compute what would be the energy if we decided to actually migrate that
6548 * task.
6549 */
6550 static long
6551 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6552 {
6553 struct cpumask *pd_mask = perf_domain_span(pd);
6554 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6555 unsigned long max_util = 0, sum_util = 0;
6556 int cpu;
6557
6558 /*
6559 * The capacity state of CPUs of the current rd can be driven by CPUs
6560 * of another rd if they belong to the same pd. So, account for the
6561 * utilization of these CPUs too by masking pd with cpu_online_mask
6562 * instead of the rd span.
6563 *
6564 * If an entire pd is outside of the current rd, it will not appear in
6565 * its pd list and will not be accounted by compute_energy().
6566 */
6567 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6568 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6569 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6570
6571 /*
6572 * Busy time computation: utilization clamping is not
6573 * required since the ratio (sum_util / cpu_capacity)
6574 * is already enough to scale the EM reported power
6575 * consumption at the (eventually clamped) cpu_capacity.
6576 */
6577 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6578 ENERGY_UTIL, NULL);
6579
6580 /*
6581 * Performance domain frequency: utilization clamping
6582 * must be considered since it affects the selection
6583 * of the performance domain frequency.
6584 * NOTE: in case RT tasks are running, by default the
6585 * FREQUENCY_UTIL's utilization can be max OPP.
6586 */
6587 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6588 FREQUENCY_UTIL, tsk);
6589 max_util = max(max_util, cpu_util);
6590 }
6591
6592 return em_cpu_energy(pd->em_pd, max_util, sum_util);
6593 }
6594
6595 /*
6596 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6597 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6598 * spare capacity in each performance domain and uses it as a potential
6599 * candidate to execute the task. Then, it uses the Energy Model to figure
6600 * out which of the CPU candidates is the most energy-efficient.
6601 *
6602 * The rationale for this heuristic is as follows. In a performance domain,
6603 * all the most energy efficient CPU candidates (according to the Energy
6604 * Model) are those for which we'll request a low frequency. When there are
6605 * several CPUs for which the frequency request will be the same, we don't
6606 * have enough data to break the tie between them, because the Energy Model
6607 * only includes active power costs. With this model, if we assume that
6608 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6609 * the maximum spare capacity in a performance domain is guaranteed to be among
6610 * the best candidates of the performance domain.
6611 *
6612 * In practice, it could be preferable from an energy standpoint to pack
6613 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6614 * but that could also hurt our chances to go cluster idle, and we have no
6615 * ways to tell with the current Energy Model if this is actually a good
6616 * idea or not. So, find_energy_efficient_cpu() basically favors
6617 * cluster-packing, and spreading inside a cluster. That should at least be
6618 * a good thing for latency, and this is consistent with the idea that most
6619 * of the energy savings of EAS come from the asymmetry of the system, and
6620 * not so much from breaking the tie between identical CPUs. That's also the
6621 * reason why EAS is enabled in the topology code only for systems where
6622 * SD_ASYM_CPUCAPACITY is set.
6623 *
6624 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6625 * they don't have any useful utilization data yet and it's not possible to
6626 * forecast their impact on energy consumption. Consequently, they will be
6627 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6628 * to be energy-inefficient in some use-cases. The alternative would be to
6629 * bias new tasks towards specific types of CPUs first, or to try to infer
6630 * their util_avg from the parent task, but those heuristics could hurt
6631 * other use-cases too. So, until someone finds a better way to solve this,
6632 * let's keep things simple by re-using the existing slow path.
6633 */
6634 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6635 {
6636 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6637 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6638 unsigned long cpu_cap, util, base_energy = 0;
6639 int cpu, best_energy_cpu = prev_cpu;
6640 struct sched_domain *sd;
6641 struct perf_domain *pd;
6642
6643 rcu_read_lock();
6644 pd = rcu_dereference(rd->pd);
6645 if (!pd || READ_ONCE(rd->overutilized))
6646 goto fail;
6647
6648 /*
6649 * Energy-aware wake-up happens on the lowest sched_domain starting
6650 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6651 */
6652 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6653 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6654 sd = sd->parent;
6655 if (!sd)
6656 goto fail;
6657
6658 sync_entity_load_avg(&p->se);
6659 if (!task_util_est(p))
6660 goto unlock;
6661
6662 for (; pd; pd = pd->next) {
6663 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6664 unsigned long base_energy_pd;
6665 int max_spare_cap_cpu = -1;
6666
6667 /* Compute the 'base' energy of the pd, without @p */
6668 base_energy_pd = compute_energy(p, -1, pd);
6669 base_energy += base_energy_pd;
6670
6671 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6672 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6673 continue;
6674
6675 util = cpu_util_next(cpu, p, cpu);
6676 cpu_cap = capacity_of(cpu);
6677 spare_cap = cpu_cap;
6678 lsub_positive(&spare_cap, util);
6679
6680 /*
6681 * Skip CPUs that cannot satisfy the capacity request.
6682 * IOW, placing the task there would make the CPU
6683 * overutilized. Take uclamp into account to see how
6684 * much capacity we can get out of the CPU; this is
6685 * aligned with schedutil_cpu_util().
6686 */
6687 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6688 if (!fits_capacity(util, cpu_cap))
6689 continue;
6690
6691 /* Always use prev_cpu as a candidate. */
6692 if (cpu == prev_cpu) {
6693 prev_delta = compute_energy(p, prev_cpu, pd);
6694 prev_delta -= base_energy_pd;
6695 best_delta = min(best_delta, prev_delta);
6696 }
6697
6698 /*
6699 * Find the CPU with the maximum spare capacity in
6700 * the performance domain
6701 */
6702 if (spare_cap > max_spare_cap) {
6703 max_spare_cap = spare_cap;
6704 max_spare_cap_cpu = cpu;
6705 }
6706 }
6707
6708 /* Evaluate the energy impact of using this CPU. */
6709 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6710 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6711 cur_delta -= base_energy_pd;
6712 if (cur_delta < best_delta) {
6713 best_delta = cur_delta;
6714 best_energy_cpu = max_spare_cap_cpu;
6715 }
6716 }
6717 }
6718 unlock:
6719 rcu_read_unlock();
6720
6721 /*
6722 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6723 * least 6% of the energy used by prev_cpu.
6724 */
6725 if (prev_delta == ULONG_MAX)
6726 return best_energy_cpu;
6727
6728 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6729 return best_energy_cpu;
6730
6731 return prev_cpu;
6732
6733 fail:
6734 rcu_read_unlock();
6735
6736 return -1;
6737 }
6738
6739 /*
6740 * select_task_rq_fair: Select target runqueue for the waking task in domains
6741 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6742 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6743 *
6744 * Balances load by selecting the idlest CPU in the idlest group, or under
6745 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6746 *
6747 * Returns the target CPU number.
6748 *
6749 * preempt must be disabled.
6750 */
6751 static int
6752 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6753 {
6754 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6755 struct sched_domain *tmp, *sd = NULL;
6756 int cpu = smp_processor_id();
6757 int new_cpu = prev_cpu;
6758 int want_affine = 0;
6759 /* SD_flags and WF_flags share the first nibble */
6760 int sd_flag = wake_flags & 0xF;
6761
6762 if (wake_flags & WF_TTWU) {
6763 record_wakee(p);
6764
6765 if (sched_energy_enabled()) {
6766 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6767 if (new_cpu >= 0)
6768 return new_cpu;
6769 new_cpu = prev_cpu;
6770 }
6771
6772 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6773 }
6774
6775 rcu_read_lock();
6776 for_each_domain(cpu, tmp) {
6777 /*
6778 * If both 'cpu' and 'prev_cpu' are part of this domain,
6779 * cpu is a valid SD_WAKE_AFFINE target.
6780 */
6781 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6782 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6783 if (cpu != prev_cpu)
6784 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6785
6786 sd = NULL; /* Prefer wake_affine over balance flags */
6787 break;
6788 }
6789
6790 if (tmp->flags & sd_flag)
6791 sd = tmp;
6792 else if (!want_affine)
6793 break;
6794 }
6795
6796 if (unlikely(sd)) {
6797 /* Slow path */
6798 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6799 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
6800 /* Fast path */
6801 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6802
6803 if (want_affine)
6804 current->recent_used_cpu = cpu;
6805 }
6806 rcu_read_unlock();
6807
6808 return new_cpu;
6809 }
6810
6811 static void detach_entity_cfs_rq(struct sched_entity *se);
6812
6813 /*
6814 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6815 * cfs_rq_of(p) references at time of call are still valid and identify the
6816 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6817 */
6818 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6819 {
6820 /*
6821 * As blocked tasks retain absolute vruntime the migration needs to
6822 * deal with this by subtracting the old and adding the new
6823 * min_vruntime -- the latter is done by enqueue_entity() when placing
6824 * the task on the new runqueue.
6825 */
6826 if (p->state == TASK_WAKING) {
6827 struct sched_entity *se = &p->se;
6828 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6829 u64 min_vruntime;
6830
6831 #ifndef CONFIG_64BIT
6832 u64 min_vruntime_copy;
6833
6834 do {
6835 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6836 smp_rmb();
6837 min_vruntime = cfs_rq->min_vruntime;
6838 } while (min_vruntime != min_vruntime_copy);
6839 #else
6840 min_vruntime = cfs_rq->min_vruntime;
6841 #endif
6842
6843 se->vruntime -= min_vruntime;
6844 }
6845
6846 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6847 /*
6848 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6849 * rq->lock and can modify state directly.
6850 */
6851 lockdep_assert_held(&task_rq(p)->lock);
6852 detach_entity_cfs_rq(&p->se);
6853
6854 } else {
6855 /*
6856 * We are supposed to update the task to "current" time, then
6857 * its up to date and ready to go to new CPU/cfs_rq. But we
6858 * have difficulty in getting what current time is, so simply
6859 * throw away the out-of-date time. This will result in the
6860 * wakee task is less decayed, but giving the wakee more load
6861 * sounds not bad.
6862 */
6863 remove_entity_load_avg(&p->se);
6864 }
6865
6866 /* Tell new CPU we are migrated */
6867 p->se.avg.last_update_time = 0;
6868
6869 /* We have migrated, no longer consider this task hot */
6870 p->se.exec_start = 0;
6871
6872 update_scan_period(p, new_cpu);
6873 }
6874
6875 static void task_dead_fair(struct task_struct *p)
6876 {
6877 remove_entity_load_avg(&p->se);
6878 }
6879
6880 static int
6881 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6882 {
6883 if (rq->nr_running)
6884 return 1;
6885
6886 return newidle_balance(rq, rf) != 0;
6887 }
6888 #endif /* CONFIG_SMP */
6889
6890 static unsigned long wakeup_gran(struct sched_entity *se)
6891 {
6892 unsigned long gran = sysctl_sched_wakeup_granularity;
6893
6894 /*
6895 * Since its curr running now, convert the gran from real-time
6896 * to virtual-time in his units.
6897 *
6898 * By using 'se' instead of 'curr' we penalize light tasks, so
6899 * they get preempted easier. That is, if 'se' < 'curr' then
6900 * the resulting gran will be larger, therefore penalizing the
6901 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6902 * be smaller, again penalizing the lighter task.
6903 *
6904 * This is especially important for buddies when the leftmost
6905 * task is higher priority than the buddy.
6906 */
6907 return calc_delta_fair(gran, se);
6908 }
6909
6910 /*
6911 * Should 'se' preempt 'curr'.
6912 *
6913 * |s1
6914 * |s2
6915 * |s3
6916 * g
6917 * |<--->|c
6918 *
6919 * w(c, s1) = -1
6920 * w(c, s2) = 0
6921 * w(c, s3) = 1
6922 *
6923 */
6924 static int
6925 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6926 {
6927 s64 gran, vdiff = curr->vruntime - se->vruntime;
6928
6929 if (vdiff <= 0)
6930 return -1;
6931
6932 gran = wakeup_gran(se);
6933 if (vdiff > gran)
6934 return 1;
6935
6936 return 0;
6937 }
6938
6939 static void set_last_buddy(struct sched_entity *se)
6940 {
6941 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6942 return;
6943
6944 for_each_sched_entity(se) {
6945 if (SCHED_WARN_ON(!se->on_rq))
6946 return;
6947 cfs_rq_of(se)->last = se;
6948 }
6949 }
6950
6951 static void set_next_buddy(struct sched_entity *se)
6952 {
6953 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6954 return;
6955
6956 for_each_sched_entity(se) {
6957 if (SCHED_WARN_ON(!se->on_rq))
6958 return;
6959 cfs_rq_of(se)->next = se;
6960 }
6961 }
6962
6963 static void set_skip_buddy(struct sched_entity *se)
6964 {
6965 for_each_sched_entity(se)
6966 cfs_rq_of(se)->skip = se;
6967 }
6968
6969 /*
6970 * Preempt the current task with a newly woken task if needed:
6971 */
6972 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6973 {
6974 struct task_struct *curr = rq->curr;
6975 struct sched_entity *se = &curr->se, *pse = &p->se;
6976 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6977 int scale = cfs_rq->nr_running >= sched_nr_latency;
6978 int next_buddy_marked = 0;
6979
6980 if (unlikely(se == pse))
6981 return;
6982
6983 /*
6984 * This is possible from callers such as attach_tasks(), in which we
6985 * unconditionally check_prempt_curr() after an enqueue (which may have
6986 * lead to a throttle). This both saves work and prevents false
6987 * next-buddy nomination below.
6988 */
6989 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6990 return;
6991
6992 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6993 set_next_buddy(pse);
6994 next_buddy_marked = 1;
6995 }
6996
6997 /*
6998 * We can come here with TIF_NEED_RESCHED already set from new task
6999 * wake up path.
7000 *
7001 * Note: this also catches the edge-case of curr being in a throttled
7002 * group (e.g. via set_curr_task), since update_curr() (in the
7003 * enqueue of curr) will have resulted in resched being set. This
7004 * prevents us from potentially nominating it as a false LAST_BUDDY
7005 * below.
7006 */
7007 if (test_tsk_need_resched(curr))
7008 return;
7009
7010 /* Idle tasks are by definition preempted by non-idle tasks. */
7011 if (unlikely(task_has_idle_policy(curr)) &&
7012 likely(!task_has_idle_policy(p)))
7013 goto preempt;
7014
7015 /*
7016 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7017 * is driven by the tick):
7018 */
7019 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7020 return;
7021
7022 find_matching_se(&se, &pse);
7023 update_curr(cfs_rq_of(se));
7024 BUG_ON(!pse);
7025 if (wakeup_preempt_entity(se, pse) == 1) {
7026 /*
7027 * Bias pick_next to pick the sched entity that is
7028 * triggering this preemption.
7029 */
7030 if (!next_buddy_marked)
7031 set_next_buddy(pse);
7032 goto preempt;
7033 }
7034
7035 return;
7036
7037 preempt:
7038 resched_curr(rq);
7039 /*
7040 * Only set the backward buddy when the current task is still
7041 * on the rq. This can happen when a wakeup gets interleaved
7042 * with schedule on the ->pre_schedule() or idle_balance()
7043 * point, either of which can * drop the rq lock.
7044 *
7045 * Also, during early boot the idle thread is in the fair class,
7046 * for obvious reasons its a bad idea to schedule back to it.
7047 */
7048 if (unlikely(!se->on_rq || curr == rq->idle))
7049 return;
7050
7051 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7052 set_last_buddy(se);
7053 }
7054
7055 struct task_struct *
7056 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7057 {
7058 struct cfs_rq *cfs_rq = &rq->cfs;
7059 struct sched_entity *se;
7060 struct task_struct *p;
7061 int new_tasks;
7062
7063 again:
7064 if (!sched_fair_runnable(rq))
7065 goto idle;
7066
7067 #ifdef CONFIG_FAIR_GROUP_SCHED
7068 if (!prev || prev->sched_class != &fair_sched_class)
7069 goto simple;
7070
7071 /*
7072 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7073 * likely that a next task is from the same cgroup as the current.
7074 *
7075 * Therefore attempt to avoid putting and setting the entire cgroup
7076 * hierarchy, only change the part that actually changes.
7077 */
7078
7079 do {
7080 struct sched_entity *curr = cfs_rq->curr;
7081
7082 /*
7083 * Since we got here without doing put_prev_entity() we also
7084 * have to consider cfs_rq->curr. If it is still a runnable
7085 * entity, update_curr() will update its vruntime, otherwise
7086 * forget we've ever seen it.
7087 */
7088 if (curr) {
7089 if (curr->on_rq)
7090 update_curr(cfs_rq);
7091 else
7092 curr = NULL;
7093
7094 /*
7095 * This call to check_cfs_rq_runtime() will do the
7096 * throttle and dequeue its entity in the parent(s).
7097 * Therefore the nr_running test will indeed
7098 * be correct.
7099 */
7100 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7101 cfs_rq = &rq->cfs;
7102
7103 if (!cfs_rq->nr_running)
7104 goto idle;
7105
7106 goto simple;
7107 }
7108 }
7109
7110 se = pick_next_entity(cfs_rq, curr);
7111 cfs_rq = group_cfs_rq(se);
7112 } while (cfs_rq);
7113
7114 p = task_of(se);
7115
7116 /*
7117 * Since we haven't yet done put_prev_entity and if the selected task
7118 * is a different task than we started out with, try and touch the
7119 * least amount of cfs_rqs.
7120 */
7121 if (prev != p) {
7122 struct sched_entity *pse = &prev->se;
7123
7124 while (!(cfs_rq = is_same_group(se, pse))) {
7125 int se_depth = se->depth;
7126 int pse_depth = pse->depth;
7127
7128 if (se_depth <= pse_depth) {
7129 put_prev_entity(cfs_rq_of(pse), pse);
7130 pse = parent_entity(pse);
7131 }
7132 if (se_depth >= pse_depth) {
7133 set_next_entity(cfs_rq_of(se), se);
7134 se = parent_entity(se);
7135 }
7136 }
7137
7138 put_prev_entity(cfs_rq, pse);
7139 set_next_entity(cfs_rq, se);
7140 }
7141
7142 goto done;
7143 simple:
7144 #endif
7145 if (prev)
7146 put_prev_task(rq, prev);
7147
7148 do {
7149 se = pick_next_entity(cfs_rq, NULL);
7150 set_next_entity(cfs_rq, se);
7151 cfs_rq = group_cfs_rq(se);
7152 } while (cfs_rq);
7153
7154 p = task_of(se);
7155
7156 done: __maybe_unused;
7157 #ifdef CONFIG_SMP
7158 /*
7159 * Move the next running task to the front of
7160 * the list, so our cfs_tasks list becomes MRU
7161 * one.
7162 */
7163 list_move(&p->se.group_node, &rq->cfs_tasks);
7164 #endif
7165
7166 if (hrtick_enabled(rq))
7167 hrtick_start_fair(rq, p);
7168
7169 update_misfit_status(p, rq);
7170
7171 return p;
7172
7173 idle:
7174 if (!rf)
7175 return NULL;
7176
7177 new_tasks = newidle_balance(rq, rf);
7178
7179 /*
7180 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7181 * possible for any higher priority task to appear. In that case we
7182 * must re-start the pick_next_entity() loop.
7183 */
7184 if (new_tasks < 0)
7185 return RETRY_TASK;
7186
7187 if (new_tasks > 0)
7188 goto again;
7189
7190 /*
7191 * rq is about to be idle, check if we need to update the
7192 * lost_idle_time of clock_pelt
7193 */
7194 update_idle_rq_clock_pelt(rq);
7195
7196 return NULL;
7197 }
7198
7199 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7200 {
7201 return pick_next_task_fair(rq, NULL, NULL);
7202 }
7203
7204 /*
7205 * Account for a descheduled task:
7206 */
7207 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7208 {
7209 struct sched_entity *se = &prev->se;
7210 struct cfs_rq *cfs_rq;
7211
7212 for_each_sched_entity(se) {
7213 cfs_rq = cfs_rq_of(se);
7214 put_prev_entity(cfs_rq, se);
7215 }
7216 }
7217
7218 /*
7219 * sched_yield() is very simple
7220 *
7221 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7222 */
7223 static void yield_task_fair(struct rq *rq)
7224 {
7225 struct task_struct *curr = rq->curr;
7226 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7227 struct sched_entity *se = &curr->se;
7228
7229 /*
7230 * Are we the only task in the tree?
7231 */
7232 if (unlikely(rq->nr_running == 1))
7233 return;
7234
7235 clear_buddies(cfs_rq, se);
7236
7237 if (curr->policy != SCHED_BATCH) {
7238 update_rq_clock(rq);
7239 /*
7240 * Update run-time statistics of the 'current'.
7241 */
7242 update_curr(cfs_rq);
7243 /*
7244 * Tell update_rq_clock() that we've just updated,
7245 * so we don't do microscopic update in schedule()
7246 * and double the fastpath cost.
7247 */
7248 rq_clock_skip_update(rq);
7249 }
7250
7251 set_skip_buddy(se);
7252 }
7253
7254 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7255 {
7256 struct sched_entity *se = &p->se;
7257
7258 /* throttled hierarchies are not runnable */
7259 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7260 return false;
7261
7262 /* Tell the scheduler that we'd really like pse to run next. */
7263 set_next_buddy(se);
7264
7265 yield_task_fair(rq);
7266
7267 return true;
7268 }
7269
7270 #ifdef CONFIG_SMP
7271 /**************************************************
7272 * Fair scheduling class load-balancing methods.
7273 *
7274 * BASICS
7275 *
7276 * The purpose of load-balancing is to achieve the same basic fairness the
7277 * per-CPU scheduler provides, namely provide a proportional amount of compute
7278 * time to each task. This is expressed in the following equation:
7279 *
7280 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7281 *
7282 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7283 * W_i,0 is defined as:
7284 *
7285 * W_i,0 = \Sum_j w_i,j (2)
7286 *
7287 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7288 * is derived from the nice value as per sched_prio_to_weight[].
7289 *
7290 * The weight average is an exponential decay average of the instantaneous
7291 * weight:
7292 *
7293 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7294 *
7295 * C_i is the compute capacity of CPU i, typically it is the
7296 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7297 * can also include other factors [XXX].
7298 *
7299 * To achieve this balance we define a measure of imbalance which follows
7300 * directly from (1):
7301 *
7302 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7303 *
7304 * We them move tasks around to minimize the imbalance. In the continuous
7305 * function space it is obvious this converges, in the discrete case we get
7306 * a few fun cases generally called infeasible weight scenarios.
7307 *
7308 * [XXX expand on:
7309 * - infeasible weights;
7310 * - local vs global optima in the discrete case. ]
7311 *
7312 *
7313 * SCHED DOMAINS
7314 *
7315 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7316 * for all i,j solution, we create a tree of CPUs that follows the hardware
7317 * topology where each level pairs two lower groups (or better). This results
7318 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7319 * tree to only the first of the previous level and we decrease the frequency
7320 * of load-balance at each level inv. proportional to the number of CPUs in
7321 * the groups.
7322 *
7323 * This yields:
7324 *
7325 * log_2 n 1 n
7326 * \Sum { --- * --- * 2^i } = O(n) (5)
7327 * i = 0 2^i 2^i
7328 * `- size of each group
7329 * | | `- number of CPUs doing load-balance
7330 * | `- freq
7331 * `- sum over all levels
7332 *
7333 * Coupled with a limit on how many tasks we can migrate every balance pass,
7334 * this makes (5) the runtime complexity of the balancer.
7335 *
7336 * An important property here is that each CPU is still (indirectly) connected
7337 * to every other CPU in at most O(log n) steps:
7338 *
7339 * The adjacency matrix of the resulting graph is given by:
7340 *
7341 * log_2 n
7342 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7343 * k = 0
7344 *
7345 * And you'll find that:
7346 *
7347 * A^(log_2 n)_i,j != 0 for all i,j (7)
7348 *
7349 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7350 * The task movement gives a factor of O(m), giving a convergence complexity
7351 * of:
7352 *
7353 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7354 *
7355 *
7356 * WORK CONSERVING
7357 *
7358 * In order to avoid CPUs going idle while there's still work to do, new idle
7359 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7360 * tree itself instead of relying on other CPUs to bring it work.
7361 *
7362 * This adds some complexity to both (5) and (8) but it reduces the total idle
7363 * time.
7364 *
7365 * [XXX more?]
7366 *
7367 *
7368 * CGROUPS
7369 *
7370 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7371 *
7372 * s_k,i
7373 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7374 * S_k
7375 *
7376 * Where
7377 *
7378 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7379 *
7380 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7381 *
7382 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7383 * property.
7384 *
7385 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7386 * rewrite all of this once again.]
7387 */
7388
7389 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7390
7391 enum fbq_type { regular, remote, all };
7392
7393 /*
7394 * 'group_type' describes the group of CPUs at the moment of load balancing.
7395 *
7396 * The enum is ordered by pulling priority, with the group with lowest priority
7397 * first so the group_type can simply be compared when selecting the busiest
7398 * group. See update_sd_pick_busiest().
7399 */
7400 enum group_type {
7401 /* The group has spare capacity that can be used to run more tasks. */
7402 group_has_spare = 0,
7403 /*
7404 * The group is fully used and the tasks don't compete for more CPU
7405 * cycles. Nevertheless, some tasks might wait before running.
7406 */
7407 group_fully_busy,
7408 /*
7409 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7410 * and must be migrated to a more powerful CPU.
7411 */
7412 group_misfit_task,
7413 /*
7414 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7415 * and the task should be migrated to it instead of running on the
7416 * current CPU.
7417 */
7418 group_asym_packing,
7419 /*
7420 * The tasks' affinity constraints previously prevented the scheduler
7421 * from balancing the load across the system.
7422 */
7423 group_imbalanced,
7424 /*
7425 * The CPU is overloaded and can't provide expected CPU cycles to all
7426 * tasks.
7427 */
7428 group_overloaded
7429 };
7430
7431 enum migration_type {
7432 migrate_load = 0,
7433 migrate_util,
7434 migrate_task,
7435 migrate_misfit
7436 };
7437
7438 #define LBF_ALL_PINNED 0x01
7439 #define LBF_NEED_BREAK 0x02
7440 #define LBF_DST_PINNED 0x04
7441 #define LBF_SOME_PINNED 0x08
7442 #define LBF_NOHZ_STATS 0x10
7443 #define LBF_NOHZ_AGAIN 0x20
7444
7445 struct lb_env {
7446 struct sched_domain *sd;
7447
7448 struct rq *src_rq;
7449 int src_cpu;
7450
7451 int dst_cpu;
7452 struct rq *dst_rq;
7453
7454 struct cpumask *dst_grpmask;
7455 int new_dst_cpu;
7456 enum cpu_idle_type idle;
7457 long imbalance;
7458 /* The set of CPUs under consideration for load-balancing */
7459 struct cpumask *cpus;
7460
7461 unsigned int flags;
7462
7463 unsigned int loop;
7464 unsigned int loop_break;
7465 unsigned int loop_max;
7466
7467 enum fbq_type fbq_type;
7468 enum migration_type migration_type;
7469 struct list_head tasks;
7470 };
7471
7472 /*
7473 * Is this task likely cache-hot:
7474 */
7475 static int task_hot(struct task_struct *p, struct lb_env *env)
7476 {
7477 s64 delta;
7478
7479 lockdep_assert_held(&env->src_rq->lock);
7480
7481 if (p->sched_class != &fair_sched_class)
7482 return 0;
7483
7484 if (unlikely(task_has_idle_policy(p)))
7485 return 0;
7486
7487 /* SMT siblings share cache */
7488 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7489 return 0;
7490
7491 /*
7492 * Buddy candidates are cache hot:
7493 */
7494 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7495 (&p->se == cfs_rq_of(&p->se)->next ||
7496 &p->se == cfs_rq_of(&p->se)->last))
7497 return 1;
7498
7499 if (sysctl_sched_migration_cost == -1)
7500 return 1;
7501 if (sysctl_sched_migration_cost == 0)
7502 return 0;
7503
7504 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7505
7506 return delta < (s64)sysctl_sched_migration_cost;
7507 }
7508
7509 #ifdef CONFIG_NUMA_BALANCING
7510 /*
7511 * Returns 1, if task migration degrades locality
7512 * Returns 0, if task migration improves locality i.e migration preferred.
7513 * Returns -1, if task migration is not affected by locality.
7514 */
7515 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7516 {
7517 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7518 unsigned long src_weight, dst_weight;
7519 int src_nid, dst_nid, dist;
7520
7521 if (!static_branch_likely(&sched_numa_balancing))
7522 return -1;
7523
7524 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7525 return -1;
7526
7527 src_nid = cpu_to_node(env->src_cpu);
7528 dst_nid = cpu_to_node(env->dst_cpu);
7529
7530 if (src_nid == dst_nid)
7531 return -1;
7532
7533 /* Migrating away from the preferred node is always bad. */
7534 if (src_nid == p->numa_preferred_nid) {
7535 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7536 return 1;
7537 else
7538 return -1;
7539 }
7540
7541 /* Encourage migration to the preferred node. */
7542 if (dst_nid == p->numa_preferred_nid)
7543 return 0;
7544
7545 /* Leaving a core idle is often worse than degrading locality. */
7546 if (env->idle == CPU_IDLE)
7547 return -1;
7548
7549 dist = node_distance(src_nid, dst_nid);
7550 if (numa_group) {
7551 src_weight = group_weight(p, src_nid, dist);
7552 dst_weight = group_weight(p, dst_nid, dist);
7553 } else {
7554 src_weight = task_weight(p, src_nid, dist);
7555 dst_weight = task_weight(p, dst_nid, dist);
7556 }
7557
7558 return dst_weight < src_weight;
7559 }
7560
7561 #else
7562 static inline int migrate_degrades_locality(struct task_struct *p,
7563 struct lb_env *env)
7564 {
7565 return -1;
7566 }
7567 #endif
7568
7569 /*
7570 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7571 */
7572 static
7573 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7574 {
7575 int tsk_cache_hot;
7576
7577 lockdep_assert_held(&env->src_rq->lock);
7578
7579 /*
7580 * We do not migrate tasks that are:
7581 * 1) throttled_lb_pair, or
7582 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7583 * 3) running (obviously), or
7584 * 4) are cache-hot on their current CPU.
7585 */
7586 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7587 return 0;
7588
7589 /* Disregard pcpu kthreads; they are where they need to be. */
7590 if (kthread_is_per_cpu(p))
7591 return 0;
7592
7593 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7594 int cpu;
7595
7596 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7597
7598 env->flags |= LBF_SOME_PINNED;
7599
7600 /*
7601 * Remember if this task can be migrated to any other CPU in
7602 * our sched_group. We may want to revisit it if we couldn't
7603 * meet load balance goals by pulling other tasks on src_cpu.
7604 *
7605 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7606 * already computed one in current iteration.
7607 */
7608 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7609 return 0;
7610
7611 /* Prevent to re-select dst_cpu via env's CPUs: */
7612 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7613 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7614 env->flags |= LBF_DST_PINNED;
7615 env->new_dst_cpu = cpu;
7616 break;
7617 }
7618 }
7619
7620 return 0;
7621 }
7622
7623 /* Record that we found atleast one task that could run on dst_cpu */
7624 env->flags &= ~LBF_ALL_PINNED;
7625
7626 if (task_running(env->src_rq, p)) {
7627 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7628 return 0;
7629 }
7630
7631 /*
7632 * Aggressive migration if:
7633 * 1) destination numa is preferred
7634 * 2) task is cache cold, or
7635 * 3) too many balance attempts have failed.
7636 */
7637 tsk_cache_hot = migrate_degrades_locality(p, env);
7638 if (tsk_cache_hot == -1)
7639 tsk_cache_hot = task_hot(p, env);
7640
7641 if (tsk_cache_hot <= 0 ||
7642 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7643 if (tsk_cache_hot == 1) {
7644 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7645 schedstat_inc(p->se.statistics.nr_forced_migrations);
7646 }
7647 return 1;
7648 }
7649
7650 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7651 return 0;
7652 }
7653
7654 /*
7655 * detach_task() -- detach the task for the migration specified in env
7656 */
7657 static void detach_task(struct task_struct *p, struct lb_env *env)
7658 {
7659 lockdep_assert_held(&env->src_rq->lock);
7660
7661 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7662 set_task_cpu(p, env->dst_cpu);
7663 }
7664
7665 /*
7666 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7667 * part of active balancing operations within "domain".
7668 *
7669 * Returns a task if successful and NULL otherwise.
7670 */
7671 static struct task_struct *detach_one_task(struct lb_env *env)
7672 {
7673 struct task_struct *p;
7674
7675 lockdep_assert_held(&env->src_rq->lock);
7676
7677 list_for_each_entry_reverse(p,
7678 &env->src_rq->cfs_tasks, se.group_node) {
7679 if (!can_migrate_task(p, env))
7680 continue;
7681
7682 detach_task(p, env);
7683
7684 /*
7685 * Right now, this is only the second place where
7686 * lb_gained[env->idle] is updated (other is detach_tasks)
7687 * so we can safely collect stats here rather than
7688 * inside detach_tasks().
7689 */
7690 schedstat_inc(env->sd->lb_gained[env->idle]);
7691 return p;
7692 }
7693 return NULL;
7694 }
7695
7696 static const unsigned int sched_nr_migrate_break = 32;
7697
7698 /*
7699 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7700 * busiest_rq, as part of a balancing operation within domain "sd".
7701 *
7702 * Returns number of detached tasks if successful and 0 otherwise.
7703 */
7704 static int detach_tasks(struct lb_env *env)
7705 {
7706 struct list_head *tasks = &env->src_rq->cfs_tasks;
7707 unsigned long util, load;
7708 struct task_struct *p;
7709 int detached = 0;
7710
7711 lockdep_assert_held(&env->src_rq->lock);
7712
7713 if (env->imbalance <= 0)
7714 return 0;
7715
7716 while (!list_empty(tasks)) {
7717 /*
7718 * We don't want to steal all, otherwise we may be treated likewise,
7719 * which could at worst lead to a livelock crash.
7720 */
7721 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7722 break;
7723
7724 p = list_last_entry(tasks, struct task_struct, se.group_node);
7725
7726 env->loop++;
7727 /* We've more or less seen every task there is, call it quits */
7728 if (env->loop > env->loop_max)
7729 break;
7730
7731 /* take a breather every nr_migrate tasks */
7732 if (env->loop > env->loop_break) {
7733 env->loop_break += sched_nr_migrate_break;
7734 env->flags |= LBF_NEED_BREAK;
7735 break;
7736 }
7737
7738 if (!can_migrate_task(p, env))
7739 goto next;
7740
7741 switch (env->migration_type) {
7742 case migrate_load:
7743 /*
7744 * Depending of the number of CPUs and tasks and the
7745 * cgroup hierarchy, task_h_load() can return a null
7746 * value. Make sure that env->imbalance decreases
7747 * otherwise detach_tasks() will stop only after
7748 * detaching up to loop_max tasks.
7749 */
7750 load = max_t(unsigned long, task_h_load(p), 1);
7751
7752 if (sched_feat(LB_MIN) &&
7753 load < 16 && !env->sd->nr_balance_failed)
7754 goto next;
7755
7756 /*
7757 * Make sure that we don't migrate too much load.
7758 * Nevertheless, let relax the constraint if
7759 * scheduler fails to find a good waiting task to
7760 * migrate.
7761 */
7762 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7763 goto next;
7764
7765 env->imbalance -= load;
7766 break;
7767
7768 case migrate_util:
7769 util = task_util_est(p);
7770
7771 if (util > env->imbalance)
7772 goto next;
7773
7774 env->imbalance -= util;
7775 break;
7776
7777 case migrate_task:
7778 env->imbalance--;
7779 break;
7780
7781 case migrate_misfit:
7782 /* This is not a misfit task */
7783 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7784 goto next;
7785
7786 env->imbalance = 0;
7787 break;
7788 }
7789
7790 detach_task(p, env);
7791 list_add(&p->se.group_node, &env->tasks);
7792
7793 detached++;
7794
7795 #ifdef CONFIG_PREEMPTION
7796 /*
7797 * NEWIDLE balancing is a source of latency, so preemptible
7798 * kernels will stop after the first task is detached to minimize
7799 * the critical section.
7800 */
7801 if (env->idle == CPU_NEWLY_IDLE)
7802 break;
7803 #endif
7804
7805 /*
7806 * We only want to steal up to the prescribed amount of
7807 * load/util/tasks.
7808 */
7809 if (env->imbalance <= 0)
7810 break;
7811
7812 continue;
7813 next:
7814 list_move(&p->se.group_node, tasks);
7815 }
7816
7817 /*
7818 * Right now, this is one of only two places we collect this stat
7819 * so we can safely collect detach_one_task() stats here rather
7820 * than inside detach_one_task().
7821 */
7822 schedstat_add(env->sd->lb_gained[env->idle], detached);
7823
7824 return detached;
7825 }
7826
7827 /*
7828 * attach_task() -- attach the task detached by detach_task() to its new rq.
7829 */
7830 static void attach_task(struct rq *rq, struct task_struct *p)
7831 {
7832 lockdep_assert_held(&rq->lock);
7833
7834 BUG_ON(task_rq(p) != rq);
7835 activate_task(rq, p, ENQUEUE_NOCLOCK);
7836 check_preempt_curr(rq, p, 0);
7837 }
7838
7839 /*
7840 * attach_one_task() -- attaches the task returned from detach_one_task() to
7841 * its new rq.
7842 */
7843 static void attach_one_task(struct rq *rq, struct task_struct *p)
7844 {
7845 struct rq_flags rf;
7846
7847 rq_lock(rq, &rf);
7848 update_rq_clock(rq);
7849 attach_task(rq, p);
7850 rq_unlock(rq, &rf);
7851 }
7852
7853 /*
7854 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7855 * new rq.
7856 */
7857 static void attach_tasks(struct lb_env *env)
7858 {
7859 struct list_head *tasks = &env->tasks;
7860 struct task_struct *p;
7861 struct rq_flags rf;
7862
7863 rq_lock(env->dst_rq, &rf);
7864 update_rq_clock(env->dst_rq);
7865
7866 while (!list_empty(tasks)) {
7867 p = list_first_entry(tasks, struct task_struct, se.group_node);
7868 list_del_init(&p->se.group_node);
7869
7870 attach_task(env->dst_rq, p);
7871 }
7872
7873 rq_unlock(env->dst_rq, &rf);
7874 }
7875
7876 #ifdef CONFIG_NO_HZ_COMMON
7877 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7878 {
7879 if (cfs_rq->avg.load_avg)
7880 return true;
7881
7882 if (cfs_rq->avg.util_avg)
7883 return true;
7884
7885 return false;
7886 }
7887
7888 static inline bool others_have_blocked(struct rq *rq)
7889 {
7890 if (READ_ONCE(rq->avg_rt.util_avg))
7891 return true;
7892
7893 if (READ_ONCE(rq->avg_dl.util_avg))
7894 return true;
7895
7896 if (thermal_load_avg(rq))
7897 return true;
7898
7899 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7900 if (READ_ONCE(rq->avg_irq.util_avg))
7901 return true;
7902 #endif
7903
7904 return false;
7905 }
7906
7907 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7908 {
7909 rq->last_blocked_load_update_tick = jiffies;
7910
7911 if (!has_blocked)
7912 rq->has_blocked_load = 0;
7913 }
7914 #else
7915 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7916 static inline bool others_have_blocked(struct rq *rq) { return false; }
7917 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7918 #endif
7919
7920 static bool __update_blocked_others(struct rq *rq, bool *done)
7921 {
7922 const struct sched_class *curr_class;
7923 u64 now = rq_clock_pelt(rq);
7924 unsigned long thermal_pressure;
7925 bool decayed;
7926
7927 /*
7928 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7929 * DL and IRQ signals have been updated before updating CFS.
7930 */
7931 curr_class = rq->curr->sched_class;
7932
7933 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7934
7935 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7936 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7937 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
7938 update_irq_load_avg(rq, 0);
7939
7940 if (others_have_blocked(rq))
7941 *done = false;
7942
7943 return decayed;
7944 }
7945
7946 #ifdef CONFIG_FAIR_GROUP_SCHED
7947
7948 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7949 {
7950 if (cfs_rq->load.weight)
7951 return false;
7952
7953 if (cfs_rq->avg.load_sum)
7954 return false;
7955
7956 if (cfs_rq->avg.util_sum)
7957 return false;
7958
7959 if (cfs_rq->avg.runnable_sum)
7960 return false;
7961
7962 return true;
7963 }
7964
7965 static bool __update_blocked_fair(struct rq *rq, bool *done)
7966 {
7967 struct cfs_rq *cfs_rq, *pos;
7968 bool decayed = false;
7969 int cpu = cpu_of(rq);
7970
7971 /*
7972 * Iterates the task_group tree in a bottom up fashion, see
7973 * list_add_leaf_cfs_rq() for details.
7974 */
7975 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7976 struct sched_entity *se;
7977
7978 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
7979 update_tg_load_avg(cfs_rq);
7980
7981 if (cfs_rq == &rq->cfs)
7982 decayed = true;
7983 }
7984
7985 /* Propagate pending load changes to the parent, if any: */
7986 se = cfs_rq->tg->se[cpu];
7987 if (se && !skip_blocked_update(se))
7988 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
7989
7990 /*
7991 * There can be a lot of idle CPU cgroups. Don't let fully
7992 * decayed cfs_rqs linger on the list.
7993 */
7994 if (cfs_rq_is_decayed(cfs_rq))
7995 list_del_leaf_cfs_rq(cfs_rq);
7996
7997 /* Don't need periodic decay once load/util_avg are null */
7998 if (cfs_rq_has_blocked(cfs_rq))
7999 *done = false;
8000 }
8001
8002 return decayed;
8003 }
8004
8005 /*
8006 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8007 * This needs to be done in a top-down fashion because the load of a child
8008 * group is a fraction of its parents load.
8009 */
8010 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8011 {
8012 struct rq *rq = rq_of(cfs_rq);
8013 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8014 unsigned long now = jiffies;
8015 unsigned long load;
8016
8017 if (cfs_rq->last_h_load_update == now)
8018 return;
8019
8020 WRITE_ONCE(cfs_rq->h_load_next, NULL);
8021 for_each_sched_entity(se) {
8022 cfs_rq = cfs_rq_of(se);
8023 WRITE_ONCE(cfs_rq->h_load_next, se);
8024 if (cfs_rq->last_h_load_update == now)
8025 break;
8026 }
8027
8028 if (!se) {
8029 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8030 cfs_rq->last_h_load_update = now;
8031 }
8032
8033 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8034 load = cfs_rq->h_load;
8035 load = div64_ul(load * se->avg.load_avg,
8036 cfs_rq_load_avg(cfs_rq) + 1);
8037 cfs_rq = group_cfs_rq(se);
8038 cfs_rq->h_load = load;
8039 cfs_rq->last_h_load_update = now;
8040 }
8041 }
8042
8043 static unsigned long task_h_load(struct task_struct *p)
8044 {
8045 struct cfs_rq *cfs_rq = task_cfs_rq(p);
8046
8047 update_cfs_rq_h_load(cfs_rq);
8048 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8049 cfs_rq_load_avg(cfs_rq) + 1);
8050 }
8051 #else
8052 static bool __update_blocked_fair(struct rq *rq, bool *done)
8053 {
8054 struct cfs_rq *cfs_rq = &rq->cfs;
8055 bool decayed;
8056
8057 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8058 if (cfs_rq_has_blocked(cfs_rq))
8059 *done = false;
8060
8061 return decayed;
8062 }
8063
8064 static unsigned long task_h_load(struct task_struct *p)
8065 {
8066 return p->se.avg.load_avg;
8067 }
8068 #endif
8069
8070 static void update_blocked_averages(int cpu)
8071 {
8072 bool decayed = false, done = true;
8073 struct rq *rq = cpu_rq(cpu);
8074 struct rq_flags rf;
8075
8076 rq_lock_irqsave(rq, &rf);
8077 update_rq_clock(rq);
8078
8079 decayed |= __update_blocked_others(rq, &done);
8080 decayed |= __update_blocked_fair(rq, &done);
8081
8082 update_blocked_load_status(rq, !done);
8083 if (decayed)
8084 cpufreq_update_util(rq, 0);
8085 rq_unlock_irqrestore(rq, &rf);
8086 }
8087
8088 /********** Helpers for find_busiest_group ************************/
8089
8090 /*
8091 * sg_lb_stats - stats of a sched_group required for load_balancing
8092 */
8093 struct sg_lb_stats {
8094 unsigned long avg_load; /*Avg load across the CPUs of the group */
8095 unsigned long group_load; /* Total load over the CPUs of the group */
8096 unsigned long group_capacity;
8097 unsigned long group_util; /* Total utilization over the CPUs of the group */
8098 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8099 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8100 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8101 unsigned int idle_cpus;
8102 unsigned int group_weight;
8103 enum group_type group_type;
8104 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8105 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8106 #ifdef CONFIG_NUMA_BALANCING
8107 unsigned int nr_numa_running;
8108 unsigned int nr_preferred_running;
8109 #endif
8110 };
8111
8112 /*
8113 * sd_lb_stats - Structure to store the statistics of a sched_domain
8114 * during load balancing.
8115 */
8116 struct sd_lb_stats {
8117 struct sched_group *busiest; /* Busiest group in this sd */
8118 struct sched_group *local; /* Local group in this sd */
8119 unsigned long total_load; /* Total load of all groups in sd */
8120 unsigned long total_capacity; /* Total capacity of all groups in sd */
8121 unsigned long avg_load; /* Average load across all groups in sd */
8122 unsigned int prefer_sibling; /* tasks should go to sibling first */
8123
8124 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8125 struct sg_lb_stats local_stat; /* Statistics of the local group */
8126 };
8127
8128 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8129 {
8130 /*
8131 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8132 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8133 * We must however set busiest_stat::group_type and
8134 * busiest_stat::idle_cpus to the worst busiest group because
8135 * update_sd_pick_busiest() reads these before assignment.
8136 */
8137 *sds = (struct sd_lb_stats){
8138 .busiest = NULL,
8139 .local = NULL,
8140 .total_load = 0UL,
8141 .total_capacity = 0UL,
8142 .busiest_stat = {
8143 .idle_cpus = UINT_MAX,
8144 .group_type = group_has_spare,
8145 },
8146 };
8147 }
8148
8149 static unsigned long scale_rt_capacity(int cpu)
8150 {
8151 struct rq *rq = cpu_rq(cpu);
8152 unsigned long max = arch_scale_cpu_capacity(cpu);
8153 unsigned long used, free;
8154 unsigned long irq;
8155
8156 irq = cpu_util_irq(rq);
8157
8158 if (unlikely(irq >= max))
8159 return 1;
8160
8161 /*
8162 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8163 * (running and not running) with weights 0 and 1024 respectively.
8164 * avg_thermal.load_avg tracks thermal pressure and the weighted
8165 * average uses the actual delta max capacity(load).
8166 */
8167 used = READ_ONCE(rq->avg_rt.util_avg);
8168 used += READ_ONCE(rq->avg_dl.util_avg);
8169 used += thermal_load_avg(rq);
8170
8171 if (unlikely(used >= max))
8172 return 1;
8173
8174 free = max - used;
8175
8176 return scale_irq_capacity(free, irq, max);
8177 }
8178
8179 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8180 {
8181 unsigned long capacity = scale_rt_capacity(cpu);
8182 struct sched_group *sdg = sd->groups;
8183
8184 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8185
8186 if (!capacity)
8187 capacity = 1;
8188
8189 cpu_rq(cpu)->cpu_capacity = capacity;
8190 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8191
8192 sdg->sgc->capacity = capacity;
8193 sdg->sgc->min_capacity = capacity;
8194 sdg->sgc->max_capacity = capacity;
8195 }
8196
8197 void update_group_capacity(struct sched_domain *sd, int cpu)
8198 {
8199 struct sched_domain *child = sd->child;
8200 struct sched_group *group, *sdg = sd->groups;
8201 unsigned long capacity, min_capacity, max_capacity;
8202 unsigned long interval;
8203
8204 interval = msecs_to_jiffies(sd->balance_interval);
8205 interval = clamp(interval, 1UL, max_load_balance_interval);
8206 sdg->sgc->next_update = jiffies + interval;
8207
8208 if (!child) {
8209 update_cpu_capacity(sd, cpu);
8210 return;
8211 }
8212
8213 capacity = 0;
8214 min_capacity = ULONG_MAX;
8215 max_capacity = 0;
8216
8217 if (child->flags & SD_OVERLAP) {
8218 /*
8219 * SD_OVERLAP domains cannot assume that child groups
8220 * span the current group.
8221 */
8222
8223 for_each_cpu(cpu, sched_group_span(sdg)) {
8224 unsigned long cpu_cap = capacity_of(cpu);
8225
8226 capacity += cpu_cap;
8227 min_capacity = min(cpu_cap, min_capacity);
8228 max_capacity = max(cpu_cap, max_capacity);
8229 }
8230 } else {
8231 /*
8232 * !SD_OVERLAP domains can assume that child groups
8233 * span the current group.
8234 */
8235
8236 group = child->groups;
8237 do {
8238 struct sched_group_capacity *sgc = group->sgc;
8239
8240 capacity += sgc->capacity;
8241 min_capacity = min(sgc->min_capacity, min_capacity);
8242 max_capacity = max(sgc->max_capacity, max_capacity);
8243 group = group->next;
8244 } while (group != child->groups);
8245 }
8246
8247 sdg->sgc->capacity = capacity;
8248 sdg->sgc->min_capacity = min_capacity;
8249 sdg->sgc->max_capacity = max_capacity;
8250 }
8251
8252 /*
8253 * Check whether the capacity of the rq has been noticeably reduced by side
8254 * activity. The imbalance_pct is used for the threshold.
8255 * Return true is the capacity is reduced
8256 */
8257 static inline int
8258 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8259 {
8260 return ((rq->cpu_capacity * sd->imbalance_pct) <
8261 (rq->cpu_capacity_orig * 100));
8262 }
8263
8264 /*
8265 * Check whether a rq has a misfit task and if it looks like we can actually
8266 * help that task: we can migrate the task to a CPU of higher capacity, or
8267 * the task's current CPU is heavily pressured.
8268 */
8269 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8270 {
8271 return rq->misfit_task_load &&
8272 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8273 check_cpu_capacity(rq, sd));
8274 }
8275
8276 /*
8277 * Group imbalance indicates (and tries to solve) the problem where balancing
8278 * groups is inadequate due to ->cpus_ptr constraints.
8279 *
8280 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8281 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8282 * Something like:
8283 *
8284 * { 0 1 2 3 } { 4 5 6 7 }
8285 * * * * *
8286 *
8287 * If we were to balance group-wise we'd place two tasks in the first group and
8288 * two tasks in the second group. Clearly this is undesired as it will overload
8289 * cpu 3 and leave one of the CPUs in the second group unused.
8290 *
8291 * The current solution to this issue is detecting the skew in the first group
8292 * by noticing the lower domain failed to reach balance and had difficulty
8293 * moving tasks due to affinity constraints.
8294 *
8295 * When this is so detected; this group becomes a candidate for busiest; see
8296 * update_sd_pick_busiest(). And calculate_imbalance() and
8297 * find_busiest_group() avoid some of the usual balance conditions to allow it
8298 * to create an effective group imbalance.
8299 *
8300 * This is a somewhat tricky proposition since the next run might not find the
8301 * group imbalance and decide the groups need to be balanced again. A most
8302 * subtle and fragile situation.
8303 */
8304
8305 static inline int sg_imbalanced(struct sched_group *group)
8306 {
8307 return group->sgc->imbalance;
8308 }
8309
8310 /*
8311 * group_has_capacity returns true if the group has spare capacity that could
8312 * be used by some tasks.
8313 * We consider that a group has spare capacity if the * number of task is
8314 * smaller than the number of CPUs or if the utilization is lower than the
8315 * available capacity for CFS tasks.
8316 * For the latter, we use a threshold to stabilize the state, to take into
8317 * account the variance of the tasks' load and to return true if the available
8318 * capacity in meaningful for the load balancer.
8319 * As an example, an available capacity of 1% can appear but it doesn't make
8320 * any benefit for the load balance.
8321 */
8322 static inline bool
8323 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8324 {
8325 if (sgs->sum_nr_running < sgs->group_weight)
8326 return true;
8327
8328 if ((sgs->group_capacity * imbalance_pct) <
8329 (sgs->group_runnable * 100))
8330 return false;
8331
8332 if ((sgs->group_capacity * 100) >
8333 (sgs->group_util * imbalance_pct))
8334 return true;
8335
8336 return false;
8337 }
8338
8339 /*
8340 * group_is_overloaded returns true if the group has more tasks than it can
8341 * handle.
8342 * group_is_overloaded is not equals to !group_has_capacity because a group
8343 * with the exact right number of tasks, has no more spare capacity but is not
8344 * overloaded so both group_has_capacity and group_is_overloaded return
8345 * false.
8346 */
8347 static inline bool
8348 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8349 {
8350 if (sgs->sum_nr_running <= sgs->group_weight)
8351 return false;
8352
8353 if ((sgs->group_capacity * 100) <
8354 (sgs->group_util * imbalance_pct))
8355 return true;
8356
8357 if ((sgs->group_capacity * imbalance_pct) <
8358 (sgs->group_runnable * 100))
8359 return true;
8360
8361 return false;
8362 }
8363
8364 /*
8365 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8366 * per-CPU capacity than sched_group ref.
8367 */
8368 static inline bool
8369 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8370 {
8371 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8372 }
8373
8374 /*
8375 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8376 * per-CPU capacity_orig than sched_group ref.
8377 */
8378 static inline bool
8379 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8380 {
8381 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
8382 }
8383
8384 static inline enum
8385 group_type group_classify(unsigned int imbalance_pct,
8386 struct sched_group *group,
8387 struct sg_lb_stats *sgs)
8388 {
8389 if (group_is_overloaded(imbalance_pct, sgs))
8390 return group_overloaded;
8391
8392 if (sg_imbalanced(group))
8393 return group_imbalanced;
8394
8395 if (sgs->group_asym_packing)
8396 return group_asym_packing;
8397
8398 if (sgs->group_misfit_task_load)
8399 return group_misfit_task;
8400
8401 if (!group_has_capacity(imbalance_pct, sgs))
8402 return group_fully_busy;
8403
8404 return group_has_spare;
8405 }
8406
8407 static bool update_nohz_stats(struct rq *rq, bool force)
8408 {
8409 #ifdef CONFIG_NO_HZ_COMMON
8410 unsigned int cpu = rq->cpu;
8411
8412 if (!rq->has_blocked_load)
8413 return false;
8414
8415 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8416 return false;
8417
8418 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8419 return true;
8420
8421 update_blocked_averages(cpu);
8422
8423 return rq->has_blocked_load;
8424 #else
8425 return false;
8426 #endif
8427 }
8428
8429 /**
8430 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8431 * @env: The load balancing environment.
8432 * @group: sched_group whose statistics are to be updated.
8433 * @sgs: variable to hold the statistics for this group.
8434 * @sg_status: Holds flag indicating the status of the sched_group
8435 */
8436 static inline void update_sg_lb_stats(struct lb_env *env,
8437 struct sched_group *group,
8438 struct sg_lb_stats *sgs,
8439 int *sg_status)
8440 {
8441 int i, nr_running, local_group;
8442
8443 memset(sgs, 0, sizeof(*sgs));
8444
8445 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8446
8447 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8448 struct rq *rq = cpu_rq(i);
8449
8450 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8451 env->flags |= LBF_NOHZ_AGAIN;
8452
8453 sgs->group_load += cpu_load(rq);
8454 sgs->group_util += cpu_util(i);
8455 sgs->group_runnable += cpu_runnable(rq);
8456 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8457
8458 nr_running = rq->nr_running;
8459 sgs->sum_nr_running += nr_running;
8460
8461 if (nr_running > 1)
8462 *sg_status |= SG_OVERLOAD;
8463
8464 if (cpu_overutilized(i))
8465 *sg_status |= SG_OVERUTILIZED;
8466
8467 #ifdef CONFIG_NUMA_BALANCING
8468 sgs->nr_numa_running += rq->nr_numa_running;
8469 sgs->nr_preferred_running += rq->nr_preferred_running;
8470 #endif
8471 /*
8472 * No need to call idle_cpu() if nr_running is not 0
8473 */
8474 if (!nr_running && idle_cpu(i)) {
8475 sgs->idle_cpus++;
8476 /* Idle cpu can't have misfit task */
8477 continue;
8478 }
8479
8480 if (local_group)
8481 continue;
8482
8483 /* Check for a misfit task on the cpu */
8484 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8485 sgs->group_misfit_task_load < rq->misfit_task_load) {
8486 sgs->group_misfit_task_load = rq->misfit_task_load;
8487 *sg_status |= SG_OVERLOAD;
8488 }
8489 }
8490
8491 /* Check if dst CPU is idle and preferred to this group */
8492 if (env->sd->flags & SD_ASYM_PACKING &&
8493 env->idle != CPU_NOT_IDLE &&
8494 sgs->sum_h_nr_running &&
8495 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8496 sgs->group_asym_packing = 1;
8497 }
8498
8499 sgs->group_capacity = group->sgc->capacity;
8500
8501 sgs->group_weight = group->group_weight;
8502
8503 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8504
8505 /* Computing avg_load makes sense only when group is overloaded */
8506 if (sgs->group_type == group_overloaded)
8507 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8508 sgs->group_capacity;
8509 }
8510
8511 /**
8512 * update_sd_pick_busiest - return 1 on busiest group
8513 * @env: The load balancing environment.
8514 * @sds: sched_domain statistics
8515 * @sg: sched_group candidate to be checked for being the busiest
8516 * @sgs: sched_group statistics
8517 *
8518 * Determine if @sg is a busier group than the previously selected
8519 * busiest group.
8520 *
8521 * Return: %true if @sg is a busier group than the previously selected
8522 * busiest group. %false otherwise.
8523 */
8524 static bool update_sd_pick_busiest(struct lb_env *env,
8525 struct sd_lb_stats *sds,
8526 struct sched_group *sg,
8527 struct sg_lb_stats *sgs)
8528 {
8529 struct sg_lb_stats *busiest = &sds->busiest_stat;
8530
8531 /* Make sure that there is at least one task to pull */
8532 if (!sgs->sum_h_nr_running)
8533 return false;
8534
8535 /*
8536 * Don't try to pull misfit tasks we can't help.
8537 * We can use max_capacity here as reduction in capacity on some
8538 * CPUs in the group should either be possible to resolve
8539 * internally or be covered by avg_load imbalance (eventually).
8540 */
8541 if (sgs->group_type == group_misfit_task &&
8542 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8543 sds->local_stat.group_type != group_has_spare))
8544 return false;
8545
8546 if (sgs->group_type > busiest->group_type)
8547 return true;
8548
8549 if (sgs->group_type < busiest->group_type)
8550 return false;
8551
8552 /*
8553 * The candidate and the current busiest group are the same type of
8554 * group. Let check which one is the busiest according to the type.
8555 */
8556
8557 switch (sgs->group_type) {
8558 case group_overloaded:
8559 /* Select the overloaded group with highest avg_load. */
8560 if (sgs->avg_load <= busiest->avg_load)
8561 return false;
8562 break;
8563
8564 case group_imbalanced:
8565 /*
8566 * Select the 1st imbalanced group as we don't have any way to
8567 * choose one more than another.
8568 */
8569 return false;
8570
8571 case group_asym_packing:
8572 /* Prefer to move from lowest priority CPU's work */
8573 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8574 return false;
8575 break;
8576
8577 case group_misfit_task:
8578 /*
8579 * If we have more than one misfit sg go with the biggest
8580 * misfit.
8581 */
8582 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8583 return false;
8584 break;
8585
8586 case group_fully_busy:
8587 /*
8588 * Select the fully busy group with highest avg_load. In
8589 * theory, there is no need to pull task from such kind of
8590 * group because tasks have all compute capacity that they need
8591 * but we can still improve the overall throughput by reducing
8592 * contention when accessing shared HW resources.
8593 *
8594 * XXX for now avg_load is not computed and always 0 so we
8595 * select the 1st one.
8596 */
8597 if (sgs->avg_load <= busiest->avg_load)
8598 return false;
8599 break;
8600
8601 case group_has_spare:
8602 /*
8603 * Select not overloaded group with lowest number of idle cpus
8604 * and highest number of running tasks. We could also compare
8605 * the spare capacity which is more stable but it can end up
8606 * that the group has less spare capacity but finally more idle
8607 * CPUs which means less opportunity to pull tasks.
8608 */
8609 if (sgs->idle_cpus > busiest->idle_cpus)
8610 return false;
8611 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8612 (sgs->sum_nr_running <= busiest->sum_nr_running))
8613 return false;
8614
8615 break;
8616 }
8617
8618 /*
8619 * Candidate sg has no more than one task per CPU and has higher
8620 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8621 * throughput. Maximize throughput, power/energy consequences are not
8622 * considered.
8623 */
8624 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8625 (sgs->group_type <= group_fully_busy) &&
8626 (group_smaller_min_cpu_capacity(sds->local, sg)))
8627 return false;
8628
8629 return true;
8630 }
8631
8632 #ifdef CONFIG_NUMA_BALANCING
8633 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8634 {
8635 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8636 return regular;
8637 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8638 return remote;
8639 return all;
8640 }
8641
8642 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8643 {
8644 if (rq->nr_running > rq->nr_numa_running)
8645 return regular;
8646 if (rq->nr_running > rq->nr_preferred_running)
8647 return remote;
8648 return all;
8649 }
8650 #else
8651 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8652 {
8653 return all;
8654 }
8655
8656 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8657 {
8658 return regular;
8659 }
8660 #endif /* CONFIG_NUMA_BALANCING */
8661
8662
8663 struct sg_lb_stats;
8664
8665 /*
8666 * task_running_on_cpu - return 1 if @p is running on @cpu.
8667 */
8668
8669 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8670 {
8671 /* Task has no contribution or is new */
8672 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8673 return 0;
8674
8675 if (task_on_rq_queued(p))
8676 return 1;
8677
8678 return 0;
8679 }
8680
8681 /**
8682 * idle_cpu_without - would a given CPU be idle without p ?
8683 * @cpu: the processor on which idleness is tested.
8684 * @p: task which should be ignored.
8685 *
8686 * Return: 1 if the CPU would be idle. 0 otherwise.
8687 */
8688 static int idle_cpu_without(int cpu, struct task_struct *p)
8689 {
8690 struct rq *rq = cpu_rq(cpu);
8691
8692 if (rq->curr != rq->idle && rq->curr != p)
8693 return 0;
8694
8695 /*
8696 * rq->nr_running can't be used but an updated version without the
8697 * impact of p on cpu must be used instead. The updated nr_running
8698 * be computed and tested before calling idle_cpu_without().
8699 */
8700
8701 #ifdef CONFIG_SMP
8702 if (rq->ttwu_pending)
8703 return 0;
8704 #endif
8705
8706 return 1;
8707 }
8708
8709 /*
8710 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8711 * @sd: The sched_domain level to look for idlest group.
8712 * @group: sched_group whose statistics are to be updated.
8713 * @sgs: variable to hold the statistics for this group.
8714 * @p: The task for which we look for the idlest group/CPU.
8715 */
8716 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8717 struct sched_group *group,
8718 struct sg_lb_stats *sgs,
8719 struct task_struct *p)
8720 {
8721 int i, nr_running;
8722
8723 memset(sgs, 0, sizeof(*sgs));
8724
8725 for_each_cpu(i, sched_group_span(group)) {
8726 struct rq *rq = cpu_rq(i);
8727 unsigned int local;
8728
8729 sgs->group_load += cpu_load_without(rq, p);
8730 sgs->group_util += cpu_util_without(i, p);
8731 sgs->group_runnable += cpu_runnable_without(rq, p);
8732 local = task_running_on_cpu(i, p);
8733 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8734
8735 nr_running = rq->nr_running - local;
8736 sgs->sum_nr_running += nr_running;
8737
8738 /*
8739 * No need to call idle_cpu_without() if nr_running is not 0
8740 */
8741 if (!nr_running && idle_cpu_without(i, p))
8742 sgs->idle_cpus++;
8743
8744 }
8745
8746 /* Check if task fits in the group */
8747 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8748 !task_fits_capacity(p, group->sgc->max_capacity)) {
8749 sgs->group_misfit_task_load = 1;
8750 }
8751
8752 sgs->group_capacity = group->sgc->capacity;
8753
8754 sgs->group_weight = group->group_weight;
8755
8756 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8757
8758 /*
8759 * Computing avg_load makes sense only when group is fully busy or
8760 * overloaded
8761 */
8762 if (sgs->group_type == group_fully_busy ||
8763 sgs->group_type == group_overloaded)
8764 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8765 sgs->group_capacity;
8766 }
8767
8768 static bool update_pick_idlest(struct sched_group *idlest,
8769 struct sg_lb_stats *idlest_sgs,
8770 struct sched_group *group,
8771 struct sg_lb_stats *sgs)
8772 {
8773 if (sgs->group_type < idlest_sgs->group_type)
8774 return true;
8775
8776 if (sgs->group_type > idlest_sgs->group_type)
8777 return false;
8778
8779 /*
8780 * The candidate and the current idlest group are the same type of
8781 * group. Let check which one is the idlest according to the type.
8782 */
8783
8784 switch (sgs->group_type) {
8785 case group_overloaded:
8786 case group_fully_busy:
8787 /* Select the group with lowest avg_load. */
8788 if (idlest_sgs->avg_load <= sgs->avg_load)
8789 return false;
8790 break;
8791
8792 case group_imbalanced:
8793 case group_asym_packing:
8794 /* Those types are not used in the slow wakeup path */
8795 return false;
8796
8797 case group_misfit_task:
8798 /* Select group with the highest max capacity */
8799 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8800 return false;
8801 break;
8802
8803 case group_has_spare:
8804 /* Select group with most idle CPUs */
8805 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8806 return false;
8807
8808 /* Select group with lowest group_util */
8809 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8810 idlest_sgs->group_util <= sgs->group_util)
8811 return false;
8812
8813 break;
8814 }
8815
8816 return true;
8817 }
8818
8819 /*
8820 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
8821 * This is an approximation as the number of running tasks may not be
8822 * related to the number of busy CPUs due to sched_setaffinity.
8823 */
8824 static inline bool allow_numa_imbalance(int dst_running, int dst_weight)
8825 {
8826 return (dst_running < (dst_weight >> 2));
8827 }
8828
8829 /*
8830 * find_idlest_group() finds and returns the least busy CPU group within the
8831 * domain.
8832 *
8833 * Assumes p is allowed on at least one CPU in sd.
8834 */
8835 static struct sched_group *
8836 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8837 {
8838 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8839 struct sg_lb_stats local_sgs, tmp_sgs;
8840 struct sg_lb_stats *sgs;
8841 unsigned long imbalance;
8842 struct sg_lb_stats idlest_sgs = {
8843 .avg_load = UINT_MAX,
8844 .group_type = group_overloaded,
8845 };
8846
8847 do {
8848 int local_group;
8849
8850 /* Skip over this group if it has no CPUs allowed */
8851 if (!cpumask_intersects(sched_group_span(group),
8852 p->cpus_ptr))
8853 continue;
8854
8855 local_group = cpumask_test_cpu(this_cpu,
8856 sched_group_span(group));
8857
8858 if (local_group) {
8859 sgs = &local_sgs;
8860 local = group;
8861 } else {
8862 sgs = &tmp_sgs;
8863 }
8864
8865 update_sg_wakeup_stats(sd, group, sgs, p);
8866
8867 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8868 idlest = group;
8869 idlest_sgs = *sgs;
8870 }
8871
8872 } while (group = group->next, group != sd->groups);
8873
8874
8875 /* There is no idlest group to push tasks to */
8876 if (!idlest)
8877 return NULL;
8878
8879 /* The local group has been skipped because of CPU affinity */
8880 if (!local)
8881 return idlest;
8882
8883 /*
8884 * If the local group is idler than the selected idlest group
8885 * don't try and push the task.
8886 */
8887 if (local_sgs.group_type < idlest_sgs.group_type)
8888 return NULL;
8889
8890 /*
8891 * If the local group is busier than the selected idlest group
8892 * try and push the task.
8893 */
8894 if (local_sgs.group_type > idlest_sgs.group_type)
8895 return idlest;
8896
8897 switch (local_sgs.group_type) {
8898 case group_overloaded:
8899 case group_fully_busy:
8900
8901 /* Calculate allowed imbalance based on load */
8902 imbalance = scale_load_down(NICE_0_LOAD) *
8903 (sd->imbalance_pct-100) / 100;
8904
8905 /*
8906 * When comparing groups across NUMA domains, it's possible for
8907 * the local domain to be very lightly loaded relative to the
8908 * remote domains but "imbalance" skews the comparison making
8909 * remote CPUs look much more favourable. When considering
8910 * cross-domain, add imbalance to the load on the remote node
8911 * and consider staying local.
8912 */
8913
8914 if ((sd->flags & SD_NUMA) &&
8915 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8916 return NULL;
8917
8918 /*
8919 * If the local group is less loaded than the selected
8920 * idlest group don't try and push any tasks.
8921 */
8922 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8923 return NULL;
8924
8925 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8926 return NULL;
8927 break;
8928
8929 case group_imbalanced:
8930 case group_asym_packing:
8931 /* Those type are not used in the slow wakeup path */
8932 return NULL;
8933
8934 case group_misfit_task:
8935 /* Select group with the highest max capacity */
8936 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8937 return NULL;
8938 break;
8939
8940 case group_has_spare:
8941 if (sd->flags & SD_NUMA) {
8942 #ifdef CONFIG_NUMA_BALANCING
8943 int idlest_cpu;
8944 /*
8945 * If there is spare capacity at NUMA, try to select
8946 * the preferred node
8947 */
8948 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8949 return NULL;
8950
8951 idlest_cpu = cpumask_first(sched_group_span(idlest));
8952 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8953 return idlest;
8954 #endif
8955 /*
8956 * Otherwise, keep the task on this node to stay close
8957 * its wakeup source and improve locality. If there is
8958 * a real need of migration, periodic load balance will
8959 * take care of it.
8960 */
8961 if (allow_numa_imbalance(local_sgs.sum_nr_running, sd->span_weight))
8962 return NULL;
8963 }
8964
8965 /*
8966 * Select group with highest number of idle CPUs. We could also
8967 * compare the utilization which is more stable but it can end
8968 * up that the group has less spare capacity but finally more
8969 * idle CPUs which means more opportunity to run task.
8970 */
8971 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8972 return NULL;
8973 break;
8974 }
8975
8976 return idlest;
8977 }
8978
8979 /**
8980 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8981 * @env: The load balancing environment.
8982 * @sds: variable to hold the statistics for this sched_domain.
8983 */
8984
8985 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8986 {
8987 struct sched_domain *child = env->sd->child;
8988 struct sched_group *sg = env->sd->groups;
8989 struct sg_lb_stats *local = &sds->local_stat;
8990 struct sg_lb_stats tmp_sgs;
8991 int sg_status = 0;
8992
8993 #ifdef CONFIG_NO_HZ_COMMON
8994 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8995 env->flags |= LBF_NOHZ_STATS;
8996 #endif
8997
8998 do {
8999 struct sg_lb_stats *sgs = &tmp_sgs;
9000 int local_group;
9001
9002 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9003 if (local_group) {
9004 sds->local = sg;
9005 sgs = local;
9006
9007 if (env->idle != CPU_NEWLY_IDLE ||
9008 time_after_eq(jiffies, sg->sgc->next_update))
9009 update_group_capacity(env->sd, env->dst_cpu);
9010 }
9011
9012 update_sg_lb_stats(env, sg, sgs, &sg_status);
9013
9014 if (local_group)
9015 goto next_group;
9016
9017
9018 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9019 sds->busiest = sg;
9020 sds->busiest_stat = *sgs;
9021 }
9022
9023 next_group:
9024 /* Now, start updating sd_lb_stats */
9025 sds->total_load += sgs->group_load;
9026 sds->total_capacity += sgs->group_capacity;
9027
9028 sg = sg->next;
9029 } while (sg != env->sd->groups);
9030
9031 /* Tag domain that child domain prefers tasks go to siblings first */
9032 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9033
9034 #ifdef CONFIG_NO_HZ_COMMON
9035 if ((env->flags & LBF_NOHZ_AGAIN) &&
9036 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
9037
9038 WRITE_ONCE(nohz.next_blocked,
9039 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
9040 }
9041 #endif
9042
9043 if (env->sd->flags & SD_NUMA)
9044 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9045
9046 if (!env->sd->parent) {
9047 struct root_domain *rd = env->dst_rq->rd;
9048
9049 /* update overload indicator if we are at root domain */
9050 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9051
9052 /* Update over-utilization (tipping point, U >= 0) indicator */
9053 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9054 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9055 } else if (sg_status & SG_OVERUTILIZED) {
9056 struct root_domain *rd = env->dst_rq->rd;
9057
9058 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9059 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9060 }
9061 }
9062
9063 #define NUMA_IMBALANCE_MIN 2
9064
9065 static inline long adjust_numa_imbalance(int imbalance,
9066 int dst_running, int dst_weight)
9067 {
9068 if (!allow_numa_imbalance(dst_running, dst_weight))
9069 return imbalance;
9070
9071 /*
9072 * Allow a small imbalance based on a simple pair of communicating
9073 * tasks that remain local when the destination is lightly loaded.
9074 */
9075 if (imbalance <= NUMA_IMBALANCE_MIN)
9076 return 0;
9077
9078 return imbalance;
9079 }
9080
9081 /**
9082 * calculate_imbalance - Calculate the amount of imbalance present within the
9083 * groups of a given sched_domain during load balance.
9084 * @env: load balance environment
9085 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9086 */
9087 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9088 {
9089 struct sg_lb_stats *local, *busiest;
9090
9091 local = &sds->local_stat;
9092 busiest = &sds->busiest_stat;
9093
9094 if (busiest->group_type == group_misfit_task) {
9095 /* Set imbalance to allow misfit tasks to be balanced. */
9096 env->migration_type = migrate_misfit;
9097 env->imbalance = 1;
9098 return;
9099 }
9100
9101 if (busiest->group_type == group_asym_packing) {
9102 /*
9103 * In case of asym capacity, we will try to migrate all load to
9104 * the preferred CPU.
9105 */
9106 env->migration_type = migrate_task;
9107 env->imbalance = busiest->sum_h_nr_running;
9108 return;
9109 }
9110
9111 if (busiest->group_type == group_imbalanced) {
9112 /*
9113 * In the group_imb case we cannot rely on group-wide averages
9114 * to ensure CPU-load equilibrium, try to move any task to fix
9115 * the imbalance. The next load balance will take care of
9116 * balancing back the system.
9117 */
9118 env->migration_type = migrate_task;
9119 env->imbalance = 1;
9120 return;
9121 }
9122
9123 /*
9124 * Try to use spare capacity of local group without overloading it or
9125 * emptying busiest.
9126 */
9127 if (local->group_type == group_has_spare) {
9128 if ((busiest->group_type > group_fully_busy) &&
9129 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9130 /*
9131 * If busiest is overloaded, try to fill spare
9132 * capacity. This might end up creating spare capacity
9133 * in busiest or busiest still being overloaded but
9134 * there is no simple way to directly compute the
9135 * amount of load to migrate in order to balance the
9136 * system.
9137 */
9138 env->migration_type = migrate_util;
9139 env->imbalance = max(local->group_capacity, local->group_util) -
9140 local->group_util;
9141
9142 /*
9143 * In some cases, the group's utilization is max or even
9144 * higher than capacity because of migrations but the
9145 * local CPU is (newly) idle. There is at least one
9146 * waiting task in this overloaded busiest group. Let's
9147 * try to pull it.
9148 */
9149 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9150 env->migration_type = migrate_task;
9151 env->imbalance = 1;
9152 }
9153
9154 return;
9155 }
9156
9157 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9158 unsigned int nr_diff = busiest->sum_nr_running;
9159 /*
9160 * When prefer sibling, evenly spread running tasks on
9161 * groups.
9162 */
9163 env->migration_type = migrate_task;
9164 lsub_positive(&nr_diff, local->sum_nr_running);
9165 env->imbalance = nr_diff >> 1;
9166 } else {
9167
9168 /*
9169 * If there is no overload, we just want to even the number of
9170 * idle cpus.
9171 */
9172 env->migration_type = migrate_task;
9173 env->imbalance = max_t(long, 0, (local->idle_cpus -
9174 busiest->idle_cpus) >> 1);
9175 }
9176
9177 /* Consider allowing a small imbalance between NUMA groups */
9178 if (env->sd->flags & SD_NUMA) {
9179 env->imbalance = adjust_numa_imbalance(env->imbalance,
9180 busiest->sum_nr_running, busiest->group_weight);
9181 }
9182
9183 return;
9184 }
9185
9186 /*
9187 * Local is fully busy but has to take more load to relieve the
9188 * busiest group
9189 */
9190 if (local->group_type < group_overloaded) {
9191 /*
9192 * Local will become overloaded so the avg_load metrics are
9193 * finally needed.
9194 */
9195
9196 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9197 local->group_capacity;
9198
9199 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9200 sds->total_capacity;
9201 /*
9202 * If the local group is more loaded than the selected
9203 * busiest group don't try to pull any tasks.
9204 */
9205 if (local->avg_load >= busiest->avg_load) {
9206 env->imbalance = 0;
9207 return;
9208 }
9209 }
9210
9211 /*
9212 * Both group are or will become overloaded and we're trying to get all
9213 * the CPUs to the average_load, so we don't want to push ourselves
9214 * above the average load, nor do we wish to reduce the max loaded CPU
9215 * below the average load. At the same time, we also don't want to
9216 * reduce the group load below the group capacity. Thus we look for
9217 * the minimum possible imbalance.
9218 */
9219 env->migration_type = migrate_load;
9220 env->imbalance = min(
9221 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9222 (sds->avg_load - local->avg_load) * local->group_capacity
9223 ) / SCHED_CAPACITY_SCALE;
9224 }
9225
9226 /******* find_busiest_group() helpers end here *********************/
9227
9228 /*
9229 * Decision matrix according to the local and busiest group type:
9230 *
9231 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9232 * has_spare nr_idle balanced N/A N/A balanced balanced
9233 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9234 * misfit_task force N/A N/A N/A force force
9235 * asym_packing force force N/A N/A force force
9236 * imbalanced force force N/A N/A force force
9237 * overloaded force force N/A N/A force avg_load
9238 *
9239 * N/A : Not Applicable because already filtered while updating
9240 * statistics.
9241 * balanced : The system is balanced for these 2 groups.
9242 * force : Calculate the imbalance as load migration is probably needed.
9243 * avg_load : Only if imbalance is significant enough.
9244 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9245 * different in groups.
9246 */
9247
9248 /**
9249 * find_busiest_group - Returns the busiest group within the sched_domain
9250 * if there is an imbalance.
9251 *
9252 * Also calculates the amount of runnable load which should be moved
9253 * to restore balance.
9254 *
9255 * @env: The load balancing environment.
9256 *
9257 * Return: - The busiest group if imbalance exists.
9258 */
9259 static struct sched_group *find_busiest_group(struct lb_env *env)
9260 {
9261 struct sg_lb_stats *local, *busiest;
9262 struct sd_lb_stats sds;
9263
9264 init_sd_lb_stats(&sds);
9265
9266 /*
9267 * Compute the various statistics relevant for load balancing at
9268 * this level.
9269 */
9270 update_sd_lb_stats(env, &sds);
9271
9272 if (sched_energy_enabled()) {
9273 struct root_domain *rd = env->dst_rq->rd;
9274
9275 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9276 goto out_balanced;
9277 }
9278
9279 local = &sds.local_stat;
9280 busiest = &sds.busiest_stat;
9281
9282 /* There is no busy sibling group to pull tasks from */
9283 if (!sds.busiest)
9284 goto out_balanced;
9285
9286 /* Misfit tasks should be dealt with regardless of the avg load */
9287 if (busiest->group_type == group_misfit_task)
9288 goto force_balance;
9289
9290 /* ASYM feature bypasses nice load balance check */
9291 if (busiest->group_type == group_asym_packing)
9292 goto force_balance;
9293
9294 /*
9295 * If the busiest group is imbalanced the below checks don't
9296 * work because they assume all things are equal, which typically
9297 * isn't true due to cpus_ptr constraints and the like.
9298 */
9299 if (busiest->group_type == group_imbalanced)
9300 goto force_balance;
9301
9302 /*
9303 * If the local group is busier than the selected busiest group
9304 * don't try and pull any tasks.
9305 */
9306 if (local->group_type > busiest->group_type)
9307 goto out_balanced;
9308
9309 /*
9310 * When groups are overloaded, use the avg_load to ensure fairness
9311 * between tasks.
9312 */
9313 if (local->group_type == group_overloaded) {
9314 /*
9315 * If the local group is more loaded than the selected
9316 * busiest group don't try to pull any tasks.
9317 */
9318 if (local->avg_load >= busiest->avg_load)
9319 goto out_balanced;
9320
9321 /* XXX broken for overlapping NUMA groups */
9322 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9323 sds.total_capacity;
9324
9325 /*
9326 * Don't pull any tasks if this group is already above the
9327 * domain average load.
9328 */
9329 if (local->avg_load >= sds.avg_load)
9330 goto out_balanced;
9331
9332 /*
9333 * If the busiest group is more loaded, use imbalance_pct to be
9334 * conservative.
9335 */
9336 if (100 * busiest->avg_load <=
9337 env->sd->imbalance_pct * local->avg_load)
9338 goto out_balanced;
9339 }
9340
9341 /* Try to move all excess tasks to child's sibling domain */
9342 if (sds.prefer_sibling && local->group_type == group_has_spare &&
9343 busiest->sum_nr_running > local->sum_nr_running + 1)
9344 goto force_balance;
9345
9346 if (busiest->group_type != group_overloaded) {
9347 if (env->idle == CPU_NOT_IDLE)
9348 /*
9349 * If the busiest group is not overloaded (and as a
9350 * result the local one too) but this CPU is already
9351 * busy, let another idle CPU try to pull task.
9352 */
9353 goto out_balanced;
9354
9355 if (busiest->group_weight > 1 &&
9356 local->idle_cpus <= (busiest->idle_cpus + 1))
9357 /*
9358 * If the busiest group is not overloaded
9359 * and there is no imbalance between this and busiest
9360 * group wrt idle CPUs, it is balanced. The imbalance
9361 * becomes significant if the diff is greater than 1
9362 * otherwise we might end up to just move the imbalance
9363 * on another group. Of course this applies only if
9364 * there is more than 1 CPU per group.
9365 */
9366 goto out_balanced;
9367
9368 if (busiest->sum_h_nr_running == 1)
9369 /*
9370 * busiest doesn't have any tasks waiting to run
9371 */
9372 goto out_balanced;
9373 }
9374
9375 force_balance:
9376 /* Looks like there is an imbalance. Compute it */
9377 calculate_imbalance(env, &sds);
9378 return env->imbalance ? sds.busiest : NULL;
9379
9380 out_balanced:
9381 env->imbalance = 0;
9382 return NULL;
9383 }
9384
9385 /*
9386 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9387 */
9388 static struct rq *find_busiest_queue(struct lb_env *env,
9389 struct sched_group *group)
9390 {
9391 struct rq *busiest = NULL, *rq;
9392 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9393 unsigned int busiest_nr = 0;
9394 int i;
9395
9396 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9397 unsigned long capacity, load, util;
9398 unsigned int nr_running;
9399 enum fbq_type rt;
9400
9401 rq = cpu_rq(i);
9402 rt = fbq_classify_rq(rq);
9403
9404 /*
9405 * We classify groups/runqueues into three groups:
9406 * - regular: there are !numa tasks
9407 * - remote: there are numa tasks that run on the 'wrong' node
9408 * - all: there is no distinction
9409 *
9410 * In order to avoid migrating ideally placed numa tasks,
9411 * ignore those when there's better options.
9412 *
9413 * If we ignore the actual busiest queue to migrate another
9414 * task, the next balance pass can still reduce the busiest
9415 * queue by moving tasks around inside the node.
9416 *
9417 * If we cannot move enough load due to this classification
9418 * the next pass will adjust the group classification and
9419 * allow migration of more tasks.
9420 *
9421 * Both cases only affect the total convergence complexity.
9422 */
9423 if (rt > env->fbq_type)
9424 continue;
9425
9426 capacity = capacity_of(i);
9427 nr_running = rq->cfs.h_nr_running;
9428
9429 /*
9430 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9431 * eventually lead to active_balancing high->low capacity.
9432 * Higher per-CPU capacity is considered better than balancing
9433 * average load.
9434 */
9435 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9436 capacity_of(env->dst_cpu) < capacity &&
9437 nr_running == 1)
9438 continue;
9439
9440 switch (env->migration_type) {
9441 case migrate_load:
9442 /*
9443 * When comparing with load imbalance, use cpu_load()
9444 * which is not scaled with the CPU capacity.
9445 */
9446 load = cpu_load(rq);
9447
9448 if (nr_running == 1 && load > env->imbalance &&
9449 !check_cpu_capacity(rq, env->sd))
9450 break;
9451
9452 /*
9453 * For the load comparisons with the other CPUs,
9454 * consider the cpu_load() scaled with the CPU
9455 * capacity, so that the load can be moved away
9456 * from the CPU that is potentially running at a
9457 * lower capacity.
9458 *
9459 * Thus we're looking for max(load_i / capacity_i),
9460 * crosswise multiplication to rid ourselves of the
9461 * division works out to:
9462 * load_i * capacity_j > load_j * capacity_i;
9463 * where j is our previous maximum.
9464 */
9465 if (load * busiest_capacity > busiest_load * capacity) {
9466 busiest_load = load;
9467 busiest_capacity = capacity;
9468 busiest = rq;
9469 }
9470 break;
9471
9472 case migrate_util:
9473 util = cpu_util(cpu_of(rq));
9474
9475 /*
9476 * Don't try to pull utilization from a CPU with one
9477 * running task. Whatever its utilization, we will fail
9478 * detach the task.
9479 */
9480 if (nr_running <= 1)
9481 continue;
9482
9483 if (busiest_util < util) {
9484 busiest_util = util;
9485 busiest = rq;
9486 }
9487 break;
9488
9489 case migrate_task:
9490 if (busiest_nr < nr_running) {
9491 busiest_nr = nr_running;
9492 busiest = rq;
9493 }
9494 break;
9495
9496 case migrate_misfit:
9497 /*
9498 * For ASYM_CPUCAPACITY domains with misfit tasks we
9499 * simply seek the "biggest" misfit task.
9500 */
9501 if (rq->misfit_task_load > busiest_load) {
9502 busiest_load = rq->misfit_task_load;
9503 busiest = rq;
9504 }
9505
9506 break;
9507
9508 }
9509 }
9510
9511 return busiest;
9512 }
9513
9514 /*
9515 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9516 * so long as it is large enough.
9517 */
9518 #define MAX_PINNED_INTERVAL 512
9519
9520 static inline bool
9521 asym_active_balance(struct lb_env *env)
9522 {
9523 /*
9524 * ASYM_PACKING needs to force migrate tasks from busy but
9525 * lower priority CPUs in order to pack all tasks in the
9526 * highest priority CPUs.
9527 */
9528 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9529 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9530 }
9531
9532 static inline bool
9533 voluntary_active_balance(struct lb_env *env)
9534 {
9535 struct sched_domain *sd = env->sd;
9536
9537 if (asym_active_balance(env))
9538 return 1;
9539
9540 /*
9541 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9542 * It's worth migrating the task if the src_cpu's capacity is reduced
9543 * because of other sched_class or IRQs if more capacity stays
9544 * available on dst_cpu.
9545 */
9546 if ((env->idle != CPU_NOT_IDLE) &&
9547 (env->src_rq->cfs.h_nr_running == 1)) {
9548 if ((check_cpu_capacity(env->src_rq, sd)) &&
9549 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9550 return 1;
9551 }
9552
9553 if (env->migration_type == migrate_misfit)
9554 return 1;
9555
9556 return 0;
9557 }
9558
9559 static int need_active_balance(struct lb_env *env)
9560 {
9561 struct sched_domain *sd = env->sd;
9562
9563 if (voluntary_active_balance(env))
9564 return 1;
9565
9566 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9567 }
9568
9569 static int active_load_balance_cpu_stop(void *data);
9570
9571 static int should_we_balance(struct lb_env *env)
9572 {
9573 struct sched_group *sg = env->sd->groups;
9574 int cpu;
9575
9576 /*
9577 * Ensure the balancing environment is consistent; can happen
9578 * when the softirq triggers 'during' hotplug.
9579 */
9580 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9581 return 0;
9582
9583 /*
9584 * In the newly idle case, we will allow all the CPUs
9585 * to do the newly idle load balance.
9586 */
9587 if (env->idle == CPU_NEWLY_IDLE)
9588 return 1;
9589
9590 /* Try to find first idle CPU */
9591 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9592 if (!idle_cpu(cpu))
9593 continue;
9594
9595 /* Are we the first idle CPU? */
9596 return cpu == env->dst_cpu;
9597 }
9598
9599 /* Are we the first CPU of this group ? */
9600 return group_balance_cpu(sg) == env->dst_cpu;
9601 }
9602
9603 /*
9604 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9605 * tasks if there is an imbalance.
9606 */
9607 static int load_balance(int this_cpu, struct rq *this_rq,
9608 struct sched_domain *sd, enum cpu_idle_type idle,
9609 int *continue_balancing)
9610 {
9611 int ld_moved, cur_ld_moved, active_balance = 0;
9612 struct sched_domain *sd_parent = sd->parent;
9613 struct sched_group *group;
9614 struct rq *busiest;
9615 struct rq_flags rf;
9616 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9617
9618 struct lb_env env = {
9619 .sd = sd,
9620 .dst_cpu = this_cpu,
9621 .dst_rq = this_rq,
9622 .dst_grpmask = sched_group_span(sd->groups),
9623 .idle = idle,
9624 .loop_break = sched_nr_migrate_break,
9625 .cpus = cpus,
9626 .fbq_type = all,
9627 .tasks = LIST_HEAD_INIT(env.tasks),
9628 };
9629
9630 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9631
9632 schedstat_inc(sd->lb_count[idle]);
9633
9634 redo:
9635 if (!should_we_balance(&env)) {
9636 *continue_balancing = 0;
9637 goto out_balanced;
9638 }
9639
9640 group = find_busiest_group(&env);
9641 if (!group) {
9642 schedstat_inc(sd->lb_nobusyg[idle]);
9643 goto out_balanced;
9644 }
9645
9646 busiest = find_busiest_queue(&env, group);
9647 if (!busiest) {
9648 schedstat_inc(sd->lb_nobusyq[idle]);
9649 goto out_balanced;
9650 }
9651
9652 BUG_ON(busiest == env.dst_rq);
9653
9654 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9655
9656 env.src_cpu = busiest->cpu;
9657 env.src_rq = busiest;
9658
9659 ld_moved = 0;
9660 if (busiest->nr_running > 1) {
9661 /*
9662 * Attempt to move tasks. If find_busiest_group has found
9663 * an imbalance but busiest->nr_running <= 1, the group is
9664 * still unbalanced. ld_moved simply stays zero, so it is
9665 * correctly treated as an imbalance.
9666 */
9667 env.flags |= LBF_ALL_PINNED;
9668 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
9669
9670 more_balance:
9671 rq_lock_irqsave(busiest, &rf);
9672 update_rq_clock(busiest);
9673
9674 /*
9675 * cur_ld_moved - load moved in current iteration
9676 * ld_moved - cumulative load moved across iterations
9677 */
9678 cur_ld_moved = detach_tasks(&env);
9679
9680 /*
9681 * We've detached some tasks from busiest_rq. Every
9682 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9683 * unlock busiest->lock, and we are able to be sure
9684 * that nobody can manipulate the tasks in parallel.
9685 * See task_rq_lock() family for the details.
9686 */
9687
9688 rq_unlock(busiest, &rf);
9689
9690 if (cur_ld_moved) {
9691 attach_tasks(&env);
9692 ld_moved += cur_ld_moved;
9693 }
9694
9695 local_irq_restore(rf.flags);
9696
9697 if (env.flags & LBF_NEED_BREAK) {
9698 env.flags &= ~LBF_NEED_BREAK;
9699 goto more_balance;
9700 }
9701
9702 /*
9703 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9704 * us and move them to an alternate dst_cpu in our sched_group
9705 * where they can run. The upper limit on how many times we
9706 * iterate on same src_cpu is dependent on number of CPUs in our
9707 * sched_group.
9708 *
9709 * This changes load balance semantics a bit on who can move
9710 * load to a given_cpu. In addition to the given_cpu itself
9711 * (or a ilb_cpu acting on its behalf where given_cpu is
9712 * nohz-idle), we now have balance_cpu in a position to move
9713 * load to given_cpu. In rare situations, this may cause
9714 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9715 * _independently_ and at _same_ time to move some load to
9716 * given_cpu) causing exceess load to be moved to given_cpu.
9717 * This however should not happen so much in practice and
9718 * moreover subsequent load balance cycles should correct the
9719 * excess load moved.
9720 */
9721 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9722
9723 /* Prevent to re-select dst_cpu via env's CPUs */
9724 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9725
9726 env.dst_rq = cpu_rq(env.new_dst_cpu);
9727 env.dst_cpu = env.new_dst_cpu;
9728 env.flags &= ~LBF_DST_PINNED;
9729 env.loop = 0;
9730 env.loop_break = sched_nr_migrate_break;
9731
9732 /*
9733 * Go back to "more_balance" rather than "redo" since we
9734 * need to continue with same src_cpu.
9735 */
9736 goto more_balance;
9737 }
9738
9739 /*
9740 * We failed to reach balance because of affinity.
9741 */
9742 if (sd_parent) {
9743 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9744
9745 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9746 *group_imbalance = 1;
9747 }
9748
9749 /* All tasks on this runqueue were pinned by CPU affinity */
9750 if (unlikely(env.flags & LBF_ALL_PINNED)) {
9751 __cpumask_clear_cpu(cpu_of(busiest), cpus);
9752 /*
9753 * Attempting to continue load balancing at the current
9754 * sched_domain level only makes sense if there are
9755 * active CPUs remaining as possible busiest CPUs to
9756 * pull load from which are not contained within the
9757 * destination group that is receiving any migrated
9758 * load.
9759 */
9760 if (!cpumask_subset(cpus, env.dst_grpmask)) {
9761 env.loop = 0;
9762 env.loop_break = sched_nr_migrate_break;
9763 goto redo;
9764 }
9765 goto out_all_pinned;
9766 }
9767 }
9768
9769 if (!ld_moved) {
9770 schedstat_inc(sd->lb_failed[idle]);
9771 /*
9772 * Increment the failure counter only on periodic balance.
9773 * We do not want newidle balance, which can be very
9774 * frequent, pollute the failure counter causing
9775 * excessive cache_hot migrations and active balances.
9776 */
9777 if (idle != CPU_NEWLY_IDLE)
9778 sd->nr_balance_failed++;
9779
9780 if (need_active_balance(&env)) {
9781 unsigned long flags;
9782
9783 raw_spin_lock_irqsave(&busiest->lock, flags);
9784
9785 /*
9786 * Don't kick the active_load_balance_cpu_stop,
9787 * if the curr task on busiest CPU can't be
9788 * moved to this_cpu:
9789 */
9790 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9791 raw_spin_unlock_irqrestore(&busiest->lock,
9792 flags);
9793 env.flags |= LBF_ALL_PINNED;
9794 goto out_one_pinned;
9795 }
9796
9797 /*
9798 * ->active_balance synchronizes accesses to
9799 * ->active_balance_work. Once set, it's cleared
9800 * only after active load balance is finished.
9801 */
9802 if (!busiest->active_balance) {
9803 busiest->active_balance = 1;
9804 busiest->push_cpu = this_cpu;
9805 active_balance = 1;
9806 }
9807 raw_spin_unlock_irqrestore(&busiest->lock, flags);
9808
9809 if (active_balance) {
9810 stop_one_cpu_nowait(cpu_of(busiest),
9811 active_load_balance_cpu_stop, busiest,
9812 &busiest->active_balance_work);
9813 }
9814
9815 /* We've kicked active balancing, force task migration. */
9816 sd->nr_balance_failed = sd->cache_nice_tries+1;
9817 }
9818 } else
9819 sd->nr_balance_failed = 0;
9820
9821 if (likely(!active_balance) || voluntary_active_balance(&env)) {
9822 /* We were unbalanced, so reset the balancing interval */
9823 sd->balance_interval = sd->min_interval;
9824 } else {
9825 /*
9826 * If we've begun active balancing, start to back off. This
9827 * case may not be covered by the all_pinned logic if there
9828 * is only 1 task on the busy runqueue (because we don't call
9829 * detach_tasks).
9830 */
9831 if (sd->balance_interval < sd->max_interval)
9832 sd->balance_interval *= 2;
9833 }
9834
9835 goto out;
9836
9837 out_balanced:
9838 /*
9839 * We reach balance although we may have faced some affinity
9840 * constraints. Clear the imbalance flag only if other tasks got
9841 * a chance to move and fix the imbalance.
9842 */
9843 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9844 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9845
9846 if (*group_imbalance)
9847 *group_imbalance = 0;
9848 }
9849
9850 out_all_pinned:
9851 /*
9852 * We reach balance because all tasks are pinned at this level so
9853 * we can't migrate them. Let the imbalance flag set so parent level
9854 * can try to migrate them.
9855 */
9856 schedstat_inc(sd->lb_balanced[idle]);
9857
9858 sd->nr_balance_failed = 0;
9859
9860 out_one_pinned:
9861 ld_moved = 0;
9862
9863 /*
9864 * newidle_balance() disregards balance intervals, so we could
9865 * repeatedly reach this code, which would lead to balance_interval
9866 * skyrocketting in a short amount of time. Skip the balance_interval
9867 * increase logic to avoid that.
9868 */
9869 if (env.idle == CPU_NEWLY_IDLE)
9870 goto out;
9871
9872 /* tune up the balancing interval */
9873 if ((env.flags & LBF_ALL_PINNED &&
9874 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9875 sd->balance_interval < sd->max_interval)
9876 sd->balance_interval *= 2;
9877 out:
9878 return ld_moved;
9879 }
9880
9881 static inline unsigned long
9882 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9883 {
9884 unsigned long interval = sd->balance_interval;
9885
9886 if (cpu_busy)
9887 interval *= sd->busy_factor;
9888
9889 /* scale ms to jiffies */
9890 interval = msecs_to_jiffies(interval);
9891
9892 /*
9893 * Reduce likelihood of busy balancing at higher domains racing with
9894 * balancing at lower domains by preventing their balancing periods
9895 * from being multiples of each other.
9896 */
9897 if (cpu_busy)
9898 interval -= 1;
9899
9900 interval = clamp(interval, 1UL, max_load_balance_interval);
9901
9902 return interval;
9903 }
9904
9905 static inline void
9906 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9907 {
9908 unsigned long interval, next;
9909
9910 /* used by idle balance, so cpu_busy = 0 */
9911 interval = get_sd_balance_interval(sd, 0);
9912 next = sd->last_balance + interval;
9913
9914 if (time_after(*next_balance, next))
9915 *next_balance = next;
9916 }
9917
9918 /*
9919 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9920 * running tasks off the busiest CPU onto idle CPUs. It requires at
9921 * least 1 task to be running on each physical CPU where possible, and
9922 * avoids physical / logical imbalances.
9923 */
9924 static int active_load_balance_cpu_stop(void *data)
9925 {
9926 struct rq *busiest_rq = data;
9927 int busiest_cpu = cpu_of(busiest_rq);
9928 int target_cpu = busiest_rq->push_cpu;
9929 struct rq *target_rq = cpu_rq(target_cpu);
9930 struct sched_domain *sd;
9931 struct task_struct *p = NULL;
9932 struct rq_flags rf;
9933
9934 rq_lock_irq(busiest_rq, &rf);
9935 /*
9936 * Between queueing the stop-work and running it is a hole in which
9937 * CPUs can become inactive. We should not move tasks from or to
9938 * inactive CPUs.
9939 */
9940 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9941 goto out_unlock;
9942
9943 /* Make sure the requested CPU hasn't gone down in the meantime: */
9944 if (unlikely(busiest_cpu != smp_processor_id() ||
9945 !busiest_rq->active_balance))
9946 goto out_unlock;
9947
9948 /* Is there any task to move? */
9949 if (busiest_rq->nr_running <= 1)
9950 goto out_unlock;
9951
9952 /*
9953 * This condition is "impossible", if it occurs
9954 * we need to fix it. Originally reported by
9955 * Bjorn Helgaas on a 128-CPU setup.
9956 */
9957 BUG_ON(busiest_rq == target_rq);
9958
9959 /* Search for an sd spanning us and the target CPU. */
9960 rcu_read_lock();
9961 for_each_domain(target_cpu, sd) {
9962 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9963 break;
9964 }
9965
9966 if (likely(sd)) {
9967 struct lb_env env = {
9968 .sd = sd,
9969 .dst_cpu = target_cpu,
9970 .dst_rq = target_rq,
9971 .src_cpu = busiest_rq->cpu,
9972 .src_rq = busiest_rq,
9973 .idle = CPU_IDLE,
9974 /*
9975 * can_migrate_task() doesn't need to compute new_dst_cpu
9976 * for active balancing. Since we have CPU_IDLE, but no
9977 * @dst_grpmask we need to make that test go away with lying
9978 * about DST_PINNED.
9979 */
9980 .flags = LBF_DST_PINNED,
9981 };
9982
9983 schedstat_inc(sd->alb_count);
9984 update_rq_clock(busiest_rq);
9985
9986 p = detach_one_task(&env);
9987 if (p) {
9988 schedstat_inc(sd->alb_pushed);
9989 /* Active balancing done, reset the failure counter. */
9990 sd->nr_balance_failed = 0;
9991 } else {
9992 schedstat_inc(sd->alb_failed);
9993 }
9994 }
9995 rcu_read_unlock();
9996 out_unlock:
9997 busiest_rq->active_balance = 0;
9998 rq_unlock(busiest_rq, &rf);
9999
10000 if (p)
10001 attach_one_task(target_rq, p);
10002
10003 local_irq_enable();
10004
10005 return 0;
10006 }
10007
10008 static DEFINE_SPINLOCK(balancing);
10009
10010 /*
10011 * Scale the max load_balance interval with the number of CPUs in the system.
10012 * This trades load-balance latency on larger machines for less cross talk.
10013 */
10014 void update_max_interval(void)
10015 {
10016 max_load_balance_interval = HZ*num_online_cpus()/10;
10017 }
10018
10019 /*
10020 * It checks each scheduling domain to see if it is due to be balanced,
10021 * and initiates a balancing operation if so.
10022 *
10023 * Balancing parameters are set up in init_sched_domains.
10024 */
10025 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10026 {
10027 int continue_balancing = 1;
10028 int cpu = rq->cpu;
10029 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10030 unsigned long interval;
10031 struct sched_domain *sd;
10032 /* Earliest time when we have to do rebalance again */
10033 unsigned long next_balance = jiffies + 60*HZ;
10034 int update_next_balance = 0;
10035 int need_serialize, need_decay = 0;
10036 u64 max_cost = 0;
10037
10038 rcu_read_lock();
10039 for_each_domain(cpu, sd) {
10040 /*
10041 * Decay the newidle max times here because this is a regular
10042 * visit to all the domains. Decay ~1% per second.
10043 */
10044 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10045 sd->max_newidle_lb_cost =
10046 (sd->max_newidle_lb_cost * 253) / 256;
10047 sd->next_decay_max_lb_cost = jiffies + HZ;
10048 need_decay = 1;
10049 }
10050 max_cost += sd->max_newidle_lb_cost;
10051
10052 /*
10053 * Stop the load balance at this level. There is another
10054 * CPU in our sched group which is doing load balancing more
10055 * actively.
10056 */
10057 if (!continue_balancing) {
10058 if (need_decay)
10059 continue;
10060 break;
10061 }
10062
10063 interval = get_sd_balance_interval(sd, busy);
10064
10065 need_serialize = sd->flags & SD_SERIALIZE;
10066 if (need_serialize) {
10067 if (!spin_trylock(&balancing))
10068 goto out;
10069 }
10070
10071 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10072 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10073 /*
10074 * The LBF_DST_PINNED logic could have changed
10075 * env->dst_cpu, so we can't know our idle
10076 * state even if we migrated tasks. Update it.
10077 */
10078 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10079 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10080 }
10081 sd->last_balance = jiffies;
10082 interval = get_sd_balance_interval(sd, busy);
10083 }
10084 if (need_serialize)
10085 spin_unlock(&balancing);
10086 out:
10087 if (time_after(next_balance, sd->last_balance + interval)) {
10088 next_balance = sd->last_balance + interval;
10089 update_next_balance = 1;
10090 }
10091 }
10092 if (need_decay) {
10093 /*
10094 * Ensure the rq-wide value also decays but keep it at a
10095 * reasonable floor to avoid funnies with rq->avg_idle.
10096 */
10097 rq->max_idle_balance_cost =
10098 max((u64)sysctl_sched_migration_cost, max_cost);
10099 }
10100 rcu_read_unlock();
10101
10102 /*
10103 * next_balance will be updated only when there is a need.
10104 * When the cpu is attached to null domain for ex, it will not be
10105 * updated.
10106 */
10107 if (likely(update_next_balance)) {
10108 rq->next_balance = next_balance;
10109
10110 #ifdef CONFIG_NO_HZ_COMMON
10111 /*
10112 * If this CPU has been elected to perform the nohz idle
10113 * balance. Other idle CPUs have already rebalanced with
10114 * nohz_idle_balance() and nohz.next_balance has been
10115 * updated accordingly. This CPU is now running the idle load
10116 * balance for itself and we need to update the
10117 * nohz.next_balance accordingly.
10118 */
10119 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
10120 nohz.next_balance = rq->next_balance;
10121 #endif
10122 }
10123 }
10124
10125 static inline int on_null_domain(struct rq *rq)
10126 {
10127 return unlikely(!rcu_dereference_sched(rq->sd));
10128 }
10129
10130 #ifdef CONFIG_NO_HZ_COMMON
10131 /*
10132 * idle load balancing details
10133 * - When one of the busy CPUs notice that there may be an idle rebalancing
10134 * needed, they will kick the idle load balancer, which then does idle
10135 * load balancing for all the idle CPUs.
10136 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10137 * anywhere yet.
10138 */
10139
10140 static inline int find_new_ilb(void)
10141 {
10142 int ilb;
10143
10144 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10145 housekeeping_cpumask(HK_FLAG_MISC)) {
10146
10147 if (ilb == smp_processor_id())
10148 continue;
10149
10150 if (idle_cpu(ilb))
10151 return ilb;
10152 }
10153
10154 return nr_cpu_ids;
10155 }
10156
10157 /*
10158 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10159 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10160 */
10161 static void kick_ilb(unsigned int flags)
10162 {
10163 int ilb_cpu;
10164
10165 /*
10166 * Increase nohz.next_balance only when if full ilb is triggered but
10167 * not if we only update stats.
10168 */
10169 if (flags & NOHZ_BALANCE_KICK)
10170 nohz.next_balance = jiffies+1;
10171
10172 ilb_cpu = find_new_ilb();
10173
10174 if (ilb_cpu >= nr_cpu_ids)
10175 return;
10176
10177 /*
10178 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10179 * the first flag owns it; cleared by nohz_csd_func().
10180 */
10181 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10182 if (flags & NOHZ_KICK_MASK)
10183 return;
10184
10185 /*
10186 * This way we generate an IPI on the target CPU which
10187 * is idle. And the softirq performing nohz idle load balance
10188 * will be run before returning from the IPI.
10189 */
10190 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10191 }
10192
10193 /*
10194 * Current decision point for kicking the idle load balancer in the presence
10195 * of idle CPUs in the system.
10196 */
10197 static void nohz_balancer_kick(struct rq *rq)
10198 {
10199 unsigned long now = jiffies;
10200 struct sched_domain_shared *sds;
10201 struct sched_domain *sd;
10202 int nr_busy, i, cpu = rq->cpu;
10203 unsigned int flags = 0;
10204
10205 if (unlikely(rq->idle_balance))
10206 return;
10207
10208 /*
10209 * We may be recently in ticked or tickless idle mode. At the first
10210 * busy tick after returning from idle, we will update the busy stats.
10211 */
10212 nohz_balance_exit_idle(rq);
10213
10214 /*
10215 * None are in tickless mode and hence no need for NOHZ idle load
10216 * balancing.
10217 */
10218 if (likely(!atomic_read(&nohz.nr_cpus)))
10219 return;
10220
10221 if (READ_ONCE(nohz.has_blocked) &&
10222 time_after(now, READ_ONCE(nohz.next_blocked)))
10223 flags = NOHZ_STATS_KICK;
10224
10225 if (time_before(now, nohz.next_balance))
10226 goto out;
10227
10228 if (rq->nr_running >= 2) {
10229 flags = NOHZ_KICK_MASK;
10230 goto out;
10231 }
10232
10233 rcu_read_lock();
10234
10235 sd = rcu_dereference(rq->sd);
10236 if (sd) {
10237 /*
10238 * If there's a CFS task and the current CPU has reduced
10239 * capacity; kick the ILB to see if there's a better CPU to run
10240 * on.
10241 */
10242 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10243 flags = NOHZ_KICK_MASK;
10244 goto unlock;
10245 }
10246 }
10247
10248 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10249 if (sd) {
10250 /*
10251 * When ASYM_PACKING; see if there's a more preferred CPU
10252 * currently idle; in which case, kick the ILB to move tasks
10253 * around.
10254 */
10255 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10256 if (sched_asym_prefer(i, cpu)) {
10257 flags = NOHZ_KICK_MASK;
10258 goto unlock;
10259 }
10260 }
10261 }
10262
10263 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10264 if (sd) {
10265 /*
10266 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10267 * to run the misfit task on.
10268 */
10269 if (check_misfit_status(rq, sd)) {
10270 flags = NOHZ_KICK_MASK;
10271 goto unlock;
10272 }
10273
10274 /*
10275 * For asymmetric systems, we do not want to nicely balance
10276 * cache use, instead we want to embrace asymmetry and only
10277 * ensure tasks have enough CPU capacity.
10278 *
10279 * Skip the LLC logic because it's not relevant in that case.
10280 */
10281 goto unlock;
10282 }
10283
10284 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10285 if (sds) {
10286 /*
10287 * If there is an imbalance between LLC domains (IOW we could
10288 * increase the overall cache use), we need some less-loaded LLC
10289 * domain to pull some load. Likewise, we may need to spread
10290 * load within the current LLC domain (e.g. packed SMT cores but
10291 * other CPUs are idle). We can't really know from here how busy
10292 * the others are - so just get a nohz balance going if it looks
10293 * like this LLC domain has tasks we could move.
10294 */
10295 nr_busy = atomic_read(&sds->nr_busy_cpus);
10296 if (nr_busy > 1) {
10297 flags = NOHZ_KICK_MASK;
10298 goto unlock;
10299 }
10300 }
10301 unlock:
10302 rcu_read_unlock();
10303 out:
10304 if (flags)
10305 kick_ilb(flags);
10306 }
10307
10308 static void set_cpu_sd_state_busy(int cpu)
10309 {
10310 struct sched_domain *sd;
10311
10312 rcu_read_lock();
10313 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10314
10315 if (!sd || !sd->nohz_idle)
10316 goto unlock;
10317 sd->nohz_idle = 0;
10318
10319 atomic_inc(&sd->shared->nr_busy_cpus);
10320 unlock:
10321 rcu_read_unlock();
10322 }
10323
10324 void nohz_balance_exit_idle(struct rq *rq)
10325 {
10326 SCHED_WARN_ON(rq != this_rq());
10327
10328 if (likely(!rq->nohz_tick_stopped))
10329 return;
10330
10331 rq->nohz_tick_stopped = 0;
10332 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10333 atomic_dec(&nohz.nr_cpus);
10334
10335 set_cpu_sd_state_busy(rq->cpu);
10336 }
10337
10338 static void set_cpu_sd_state_idle(int cpu)
10339 {
10340 struct sched_domain *sd;
10341
10342 rcu_read_lock();
10343 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10344
10345 if (!sd || sd->nohz_idle)
10346 goto unlock;
10347 sd->nohz_idle = 1;
10348
10349 atomic_dec(&sd->shared->nr_busy_cpus);
10350 unlock:
10351 rcu_read_unlock();
10352 }
10353
10354 /*
10355 * This routine will record that the CPU is going idle with tick stopped.
10356 * This info will be used in performing idle load balancing in the future.
10357 */
10358 void nohz_balance_enter_idle(int cpu)
10359 {
10360 struct rq *rq = cpu_rq(cpu);
10361
10362 SCHED_WARN_ON(cpu != smp_processor_id());
10363
10364 /* If this CPU is going down, then nothing needs to be done: */
10365 if (!cpu_active(cpu))
10366 return;
10367
10368 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10369 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10370 return;
10371
10372 /*
10373 * Can be set safely without rq->lock held
10374 * If a clear happens, it will have evaluated last additions because
10375 * rq->lock is held during the check and the clear
10376 */
10377 rq->has_blocked_load = 1;
10378
10379 /*
10380 * The tick is still stopped but load could have been added in the
10381 * meantime. We set the nohz.has_blocked flag to trig a check of the
10382 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10383 * of nohz.has_blocked can only happen after checking the new load
10384 */
10385 if (rq->nohz_tick_stopped)
10386 goto out;
10387
10388 /* If we're a completely isolated CPU, we don't play: */
10389 if (on_null_domain(rq))
10390 return;
10391
10392 rq->nohz_tick_stopped = 1;
10393
10394 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10395 atomic_inc(&nohz.nr_cpus);
10396
10397 /*
10398 * Ensures that if nohz_idle_balance() fails to observe our
10399 * @idle_cpus_mask store, it must observe the @has_blocked
10400 * store.
10401 */
10402 smp_mb__after_atomic();
10403
10404 set_cpu_sd_state_idle(cpu);
10405
10406 out:
10407 /*
10408 * Each time a cpu enter idle, we assume that it has blocked load and
10409 * enable the periodic update of the load of idle cpus
10410 */
10411 WRITE_ONCE(nohz.has_blocked, 1);
10412 }
10413
10414 /*
10415 * Internal function that runs load balance for all idle cpus. The load balance
10416 * can be a simple update of blocked load or a complete load balance with
10417 * tasks movement depending of flags.
10418 * The function returns false if the loop has stopped before running
10419 * through all idle CPUs.
10420 */
10421 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10422 enum cpu_idle_type idle)
10423 {
10424 /* Earliest time when we have to do rebalance again */
10425 unsigned long now = jiffies;
10426 unsigned long next_balance = now + 60*HZ;
10427 bool has_blocked_load = false;
10428 int update_next_balance = 0;
10429 int this_cpu = this_rq->cpu;
10430 int balance_cpu;
10431 int ret = false;
10432 struct rq *rq;
10433
10434 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10435
10436 /*
10437 * We assume there will be no idle load after this update and clear
10438 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10439 * set the has_blocked flag and trig another update of idle load.
10440 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10441 * setting the flag, we are sure to not clear the state and not
10442 * check the load of an idle cpu.
10443 */
10444 WRITE_ONCE(nohz.has_blocked, 0);
10445
10446 /*
10447 * Ensures that if we miss the CPU, we must see the has_blocked
10448 * store from nohz_balance_enter_idle().
10449 */
10450 smp_mb();
10451
10452 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
10453 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
10454 continue;
10455
10456 /*
10457 * If this CPU gets work to do, stop the load balancing
10458 * work being done for other CPUs. Next load
10459 * balancing owner will pick it up.
10460 */
10461 if (need_resched()) {
10462 has_blocked_load = true;
10463 goto abort;
10464 }
10465
10466 rq = cpu_rq(balance_cpu);
10467
10468 has_blocked_load |= update_nohz_stats(rq, true);
10469
10470 /*
10471 * If time for next balance is due,
10472 * do the balance.
10473 */
10474 if (time_after_eq(jiffies, rq->next_balance)) {
10475 struct rq_flags rf;
10476
10477 rq_lock_irqsave(rq, &rf);
10478 update_rq_clock(rq);
10479 rq_unlock_irqrestore(rq, &rf);
10480
10481 if (flags & NOHZ_BALANCE_KICK)
10482 rebalance_domains(rq, CPU_IDLE);
10483 }
10484
10485 if (time_after(next_balance, rq->next_balance)) {
10486 next_balance = rq->next_balance;
10487 update_next_balance = 1;
10488 }
10489 }
10490
10491 /*
10492 * next_balance will be updated only when there is a need.
10493 * When the CPU is attached to null domain for ex, it will not be
10494 * updated.
10495 */
10496 if (likely(update_next_balance))
10497 nohz.next_balance = next_balance;
10498
10499 /* Newly idle CPU doesn't need an update */
10500 if (idle != CPU_NEWLY_IDLE) {
10501 update_blocked_averages(this_cpu);
10502 has_blocked_load |= this_rq->has_blocked_load;
10503 }
10504
10505 if (flags & NOHZ_BALANCE_KICK)
10506 rebalance_domains(this_rq, CPU_IDLE);
10507
10508 WRITE_ONCE(nohz.next_blocked,
10509 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10510
10511 /* The full idle balance loop has been done */
10512 ret = true;
10513
10514 abort:
10515 /* There is still blocked load, enable periodic update */
10516 if (has_blocked_load)
10517 WRITE_ONCE(nohz.has_blocked, 1);
10518
10519 return ret;
10520 }
10521
10522 /*
10523 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10524 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10525 */
10526 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10527 {
10528 unsigned int flags = this_rq->nohz_idle_balance;
10529
10530 if (!flags)
10531 return false;
10532
10533 this_rq->nohz_idle_balance = 0;
10534
10535 if (idle != CPU_IDLE)
10536 return false;
10537
10538 _nohz_idle_balance(this_rq, flags, idle);
10539
10540 return true;
10541 }
10542
10543 static void nohz_newidle_balance(struct rq *this_rq)
10544 {
10545 int this_cpu = this_rq->cpu;
10546
10547 /*
10548 * This CPU doesn't want to be disturbed by scheduler
10549 * housekeeping
10550 */
10551 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10552 return;
10553
10554 /* Will wake up very soon. No time for doing anything else*/
10555 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10556 return;
10557
10558 /* Don't need to update blocked load of idle CPUs*/
10559 if (!READ_ONCE(nohz.has_blocked) ||
10560 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10561 return;
10562
10563 raw_spin_unlock(&this_rq->lock);
10564 /*
10565 * This CPU is going to be idle and blocked load of idle CPUs
10566 * need to be updated. Run the ilb locally as it is a good
10567 * candidate for ilb instead of waking up another idle CPU.
10568 * Kick an normal ilb if we failed to do the update.
10569 */
10570 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10571 kick_ilb(NOHZ_STATS_KICK);
10572 raw_spin_lock(&this_rq->lock);
10573 }
10574
10575 #else /* !CONFIG_NO_HZ_COMMON */
10576 static inline void nohz_balancer_kick(struct rq *rq) { }
10577
10578 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10579 {
10580 return false;
10581 }
10582
10583 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10584 #endif /* CONFIG_NO_HZ_COMMON */
10585
10586 /*
10587 * newidle_balance is called by schedule() if this_cpu is about to become
10588 * idle. Attempts to pull tasks from other CPUs.
10589 *
10590 * Returns:
10591 * < 0 - we released the lock and there are !fair tasks present
10592 * 0 - failed, no new tasks
10593 * > 0 - success, new (fair) tasks present
10594 */
10595 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10596 {
10597 unsigned long next_balance = jiffies + HZ;
10598 int this_cpu = this_rq->cpu;
10599 struct sched_domain *sd;
10600 int pulled_task = 0;
10601 u64 curr_cost = 0;
10602
10603 update_misfit_status(NULL, this_rq);
10604 /*
10605 * We must set idle_stamp _before_ calling idle_balance(), such that we
10606 * measure the duration of idle_balance() as idle time.
10607 */
10608 this_rq->idle_stamp = rq_clock(this_rq);
10609
10610 /*
10611 * Do not pull tasks towards !active CPUs...
10612 */
10613 if (!cpu_active(this_cpu))
10614 return 0;
10615
10616 /*
10617 * This is OK, because current is on_cpu, which avoids it being picked
10618 * for load-balance and preemption/IRQs are still disabled avoiding
10619 * further scheduler activity on it and we're being very careful to
10620 * re-start the picking loop.
10621 */
10622 rq_unpin_lock(this_rq, rf);
10623
10624 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10625 !READ_ONCE(this_rq->rd->overload)) {
10626
10627 rcu_read_lock();
10628 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10629 if (sd)
10630 update_next_balance(sd, &next_balance);
10631 rcu_read_unlock();
10632
10633 nohz_newidle_balance(this_rq);
10634
10635 goto out;
10636 }
10637
10638 raw_spin_unlock(&this_rq->lock);
10639
10640 update_blocked_averages(this_cpu);
10641 rcu_read_lock();
10642 for_each_domain(this_cpu, sd) {
10643 int continue_balancing = 1;
10644 u64 t0, domain_cost;
10645
10646 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10647 update_next_balance(sd, &next_balance);
10648 break;
10649 }
10650
10651 if (sd->flags & SD_BALANCE_NEWIDLE) {
10652 t0 = sched_clock_cpu(this_cpu);
10653
10654 pulled_task = load_balance(this_cpu, this_rq,
10655 sd, CPU_NEWLY_IDLE,
10656 &continue_balancing);
10657
10658 domain_cost = sched_clock_cpu(this_cpu) - t0;
10659 if (domain_cost > sd->max_newidle_lb_cost)
10660 sd->max_newidle_lb_cost = domain_cost;
10661
10662 curr_cost += domain_cost;
10663 }
10664
10665 update_next_balance(sd, &next_balance);
10666
10667 /*
10668 * Stop searching for tasks to pull if there are
10669 * now runnable tasks on this rq.
10670 */
10671 if (pulled_task || this_rq->nr_running > 0)
10672 break;
10673 }
10674 rcu_read_unlock();
10675
10676 raw_spin_lock(&this_rq->lock);
10677
10678 if (curr_cost > this_rq->max_idle_balance_cost)
10679 this_rq->max_idle_balance_cost = curr_cost;
10680
10681 out:
10682 /*
10683 * While browsing the domains, we released the rq lock, a task could
10684 * have been enqueued in the meantime. Since we're not going idle,
10685 * pretend we pulled a task.
10686 */
10687 if (this_rq->cfs.h_nr_running && !pulled_task)
10688 pulled_task = 1;
10689
10690 /* Move the next balance forward */
10691 if (time_after(this_rq->next_balance, next_balance))
10692 this_rq->next_balance = next_balance;
10693
10694 /* Is there a task of a high priority class? */
10695 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10696 pulled_task = -1;
10697
10698 if (pulled_task)
10699 this_rq->idle_stamp = 0;
10700
10701 rq_repin_lock(this_rq, rf);
10702
10703 return pulled_task;
10704 }
10705
10706 /*
10707 * run_rebalance_domains is triggered when needed from the scheduler tick.
10708 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10709 */
10710 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10711 {
10712 struct rq *this_rq = this_rq();
10713 enum cpu_idle_type idle = this_rq->idle_balance ?
10714 CPU_IDLE : CPU_NOT_IDLE;
10715
10716 /*
10717 * If this CPU has a pending nohz_balance_kick, then do the
10718 * balancing on behalf of the other idle CPUs whose ticks are
10719 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10720 * give the idle CPUs a chance to load balance. Else we may
10721 * load balance only within the local sched_domain hierarchy
10722 * and abort nohz_idle_balance altogether if we pull some load.
10723 */
10724 if (nohz_idle_balance(this_rq, idle))
10725 return;
10726
10727 /* normal load balance */
10728 update_blocked_averages(this_rq->cpu);
10729 rebalance_domains(this_rq, idle);
10730 }
10731
10732 /*
10733 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10734 */
10735 void trigger_load_balance(struct rq *rq)
10736 {
10737 /* Don't need to rebalance while attached to NULL domain */
10738 if (unlikely(on_null_domain(rq)))
10739 return;
10740
10741 if (time_after_eq(jiffies, rq->next_balance))
10742 raise_softirq(SCHED_SOFTIRQ);
10743
10744 nohz_balancer_kick(rq);
10745 }
10746
10747 static void rq_online_fair(struct rq *rq)
10748 {
10749 update_sysctl();
10750
10751 update_runtime_enabled(rq);
10752 }
10753
10754 static void rq_offline_fair(struct rq *rq)
10755 {
10756 update_sysctl();
10757
10758 /* Ensure any throttled groups are reachable by pick_next_task */
10759 unthrottle_offline_cfs_rqs(rq);
10760 }
10761
10762 #endif /* CONFIG_SMP */
10763
10764 /*
10765 * scheduler tick hitting a task of our scheduling class.
10766 *
10767 * NOTE: This function can be called remotely by the tick offload that
10768 * goes along full dynticks. Therefore no local assumption can be made
10769 * and everything must be accessed through the @rq and @curr passed in
10770 * parameters.
10771 */
10772 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10773 {
10774 struct cfs_rq *cfs_rq;
10775 struct sched_entity *se = &curr->se;
10776
10777 for_each_sched_entity(se) {
10778 cfs_rq = cfs_rq_of(se);
10779 entity_tick(cfs_rq, se, queued);
10780 }
10781
10782 if (static_branch_unlikely(&sched_numa_balancing))
10783 task_tick_numa(rq, curr);
10784
10785 update_misfit_status(curr, rq);
10786 update_overutilized_status(task_rq(curr));
10787 }
10788
10789 /*
10790 * called on fork with the child task as argument from the parent's context
10791 * - child not yet on the tasklist
10792 * - preemption disabled
10793 */
10794 static void task_fork_fair(struct task_struct *p)
10795 {
10796 struct cfs_rq *cfs_rq;
10797 struct sched_entity *se = &p->se, *curr;
10798 struct rq *rq = this_rq();
10799 struct rq_flags rf;
10800
10801 rq_lock(rq, &rf);
10802 update_rq_clock(rq);
10803
10804 cfs_rq = task_cfs_rq(current);
10805 curr = cfs_rq->curr;
10806 if (curr) {
10807 update_curr(cfs_rq);
10808 se->vruntime = curr->vruntime;
10809 }
10810 place_entity(cfs_rq, se, 1);
10811
10812 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10813 /*
10814 * Upon rescheduling, sched_class::put_prev_task() will place
10815 * 'current' within the tree based on its new key value.
10816 */
10817 swap(curr->vruntime, se->vruntime);
10818 resched_curr(rq);
10819 }
10820
10821 se->vruntime -= cfs_rq->min_vruntime;
10822 rq_unlock(rq, &rf);
10823 }
10824
10825 /*
10826 * Priority of the task has changed. Check to see if we preempt
10827 * the current task.
10828 */
10829 static void
10830 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10831 {
10832 if (!task_on_rq_queued(p))
10833 return;
10834
10835 if (rq->cfs.nr_running == 1)
10836 return;
10837
10838 /*
10839 * Reschedule if we are currently running on this runqueue and
10840 * our priority decreased, or if we are not currently running on
10841 * this runqueue and our priority is higher than the current's
10842 */
10843 if (rq->curr == p) {
10844 if (p->prio > oldprio)
10845 resched_curr(rq);
10846 } else
10847 check_preempt_curr(rq, p, 0);
10848 }
10849
10850 static inline bool vruntime_normalized(struct task_struct *p)
10851 {
10852 struct sched_entity *se = &p->se;
10853
10854 /*
10855 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10856 * the dequeue_entity(.flags=0) will already have normalized the
10857 * vruntime.
10858 */
10859 if (p->on_rq)
10860 return true;
10861
10862 /*
10863 * When !on_rq, vruntime of the task has usually NOT been normalized.
10864 * But there are some cases where it has already been normalized:
10865 *
10866 * - A forked child which is waiting for being woken up by
10867 * wake_up_new_task().
10868 * - A task which has been woken up by try_to_wake_up() and
10869 * waiting for actually being woken up by sched_ttwu_pending().
10870 */
10871 if (!se->sum_exec_runtime ||
10872 (p->state == TASK_WAKING && p->sched_remote_wakeup))
10873 return true;
10874
10875 return false;
10876 }
10877
10878 #ifdef CONFIG_FAIR_GROUP_SCHED
10879 /*
10880 * Propagate the changes of the sched_entity across the tg tree to make it
10881 * visible to the root
10882 */
10883 static void propagate_entity_cfs_rq(struct sched_entity *se)
10884 {
10885 struct cfs_rq *cfs_rq;
10886
10887 list_add_leaf_cfs_rq(cfs_rq_of(se));
10888
10889 /* Start to propagate at parent */
10890 se = se->parent;
10891
10892 for_each_sched_entity(se) {
10893 cfs_rq = cfs_rq_of(se);
10894
10895 if (!cfs_rq_throttled(cfs_rq)){
10896 update_load_avg(cfs_rq, se, UPDATE_TG);
10897 list_add_leaf_cfs_rq(cfs_rq);
10898 continue;
10899 }
10900
10901 if (list_add_leaf_cfs_rq(cfs_rq))
10902 break;
10903 }
10904 }
10905 #else
10906 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10907 #endif
10908
10909 static void detach_entity_cfs_rq(struct sched_entity *se)
10910 {
10911 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10912
10913 /* Catch up with the cfs_rq and remove our load when we leave */
10914 update_load_avg(cfs_rq, se, 0);
10915 detach_entity_load_avg(cfs_rq, se);
10916 update_tg_load_avg(cfs_rq);
10917 propagate_entity_cfs_rq(se);
10918 }
10919
10920 static void attach_entity_cfs_rq(struct sched_entity *se)
10921 {
10922 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10923
10924 #ifdef CONFIG_FAIR_GROUP_SCHED
10925 /*
10926 * Since the real-depth could have been changed (only FAIR
10927 * class maintain depth value), reset depth properly.
10928 */
10929 se->depth = se->parent ? se->parent->depth + 1 : 0;
10930 #endif
10931
10932 /* Synchronize entity with its cfs_rq */
10933 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10934 attach_entity_load_avg(cfs_rq, se);
10935 update_tg_load_avg(cfs_rq);
10936 propagate_entity_cfs_rq(se);
10937 }
10938
10939 static void detach_task_cfs_rq(struct task_struct *p)
10940 {
10941 struct sched_entity *se = &p->se;
10942 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10943
10944 if (!vruntime_normalized(p)) {
10945 /*
10946 * Fix up our vruntime so that the current sleep doesn't
10947 * cause 'unlimited' sleep bonus.
10948 */
10949 place_entity(cfs_rq, se, 0);
10950 se->vruntime -= cfs_rq->min_vruntime;
10951 }
10952
10953 detach_entity_cfs_rq(se);
10954 }
10955
10956 static void attach_task_cfs_rq(struct task_struct *p)
10957 {
10958 struct sched_entity *se = &p->se;
10959 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10960
10961 attach_entity_cfs_rq(se);
10962
10963 if (!vruntime_normalized(p))
10964 se->vruntime += cfs_rq->min_vruntime;
10965 }
10966
10967 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10968 {
10969 detach_task_cfs_rq(p);
10970 }
10971
10972 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10973 {
10974 attach_task_cfs_rq(p);
10975
10976 if (task_on_rq_queued(p)) {
10977 /*
10978 * We were most likely switched from sched_rt, so
10979 * kick off the schedule if running, otherwise just see
10980 * if we can still preempt the current task.
10981 */
10982 if (rq->curr == p)
10983 resched_curr(rq);
10984 else
10985 check_preempt_curr(rq, p, 0);
10986 }
10987 }
10988
10989 /* Account for a task changing its policy or group.
10990 *
10991 * This routine is mostly called to set cfs_rq->curr field when a task
10992 * migrates between groups/classes.
10993 */
10994 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10995 {
10996 struct sched_entity *se = &p->se;
10997
10998 #ifdef CONFIG_SMP
10999 if (task_on_rq_queued(p)) {
11000 /*
11001 * Move the next running task to the front of the list, so our
11002 * cfs_tasks list becomes MRU one.
11003 */
11004 list_move(&se->group_node, &rq->cfs_tasks);
11005 }
11006 #endif
11007
11008 for_each_sched_entity(se) {
11009 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11010
11011 set_next_entity(cfs_rq, se);
11012 /* ensure bandwidth has been allocated on our new cfs_rq */
11013 account_cfs_rq_runtime(cfs_rq, 0);
11014 }
11015 }
11016
11017 void init_cfs_rq(struct cfs_rq *cfs_rq)
11018 {
11019 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11020 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11021 #ifndef CONFIG_64BIT
11022 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11023 #endif
11024 #ifdef CONFIG_SMP
11025 raw_spin_lock_init(&cfs_rq->removed.lock);
11026 #endif
11027 }
11028
11029 #ifdef CONFIG_FAIR_GROUP_SCHED
11030 static void task_set_group_fair(struct task_struct *p)
11031 {
11032 struct sched_entity *se = &p->se;
11033
11034 set_task_rq(p, task_cpu(p));
11035 se->depth = se->parent ? se->parent->depth + 1 : 0;
11036 }
11037
11038 static void task_move_group_fair(struct task_struct *p)
11039 {
11040 detach_task_cfs_rq(p);
11041 set_task_rq(p, task_cpu(p));
11042
11043 #ifdef CONFIG_SMP
11044 /* Tell se's cfs_rq has been changed -- migrated */
11045 p->se.avg.last_update_time = 0;
11046 #endif
11047 attach_task_cfs_rq(p);
11048 }
11049
11050 static void task_change_group_fair(struct task_struct *p, int type)
11051 {
11052 switch (type) {
11053 case TASK_SET_GROUP:
11054 task_set_group_fair(p);
11055 break;
11056
11057 case TASK_MOVE_GROUP:
11058 task_move_group_fair(p);
11059 break;
11060 }
11061 }
11062
11063 void free_fair_sched_group(struct task_group *tg)
11064 {
11065 int i;
11066
11067 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11068
11069 for_each_possible_cpu(i) {
11070 if (tg->cfs_rq)
11071 kfree(tg->cfs_rq[i]);
11072 if (tg->se)
11073 kfree(tg->se[i]);
11074 }
11075
11076 kfree(tg->cfs_rq);
11077 kfree(tg->se);
11078 }
11079
11080 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11081 {
11082 struct sched_entity *se;
11083 struct cfs_rq *cfs_rq;
11084 int i;
11085
11086 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11087 if (!tg->cfs_rq)
11088 goto err;
11089 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11090 if (!tg->se)
11091 goto err;
11092
11093 tg->shares = NICE_0_LOAD;
11094
11095 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11096
11097 for_each_possible_cpu(i) {
11098 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11099 GFP_KERNEL, cpu_to_node(i));
11100 if (!cfs_rq)
11101 goto err;
11102
11103 se = kzalloc_node(sizeof(struct sched_entity),
11104 GFP_KERNEL, cpu_to_node(i));
11105 if (!se)
11106 goto err_free_rq;
11107
11108 init_cfs_rq(cfs_rq);
11109 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11110 init_entity_runnable_average(se);
11111 }
11112
11113 return 1;
11114
11115 err_free_rq:
11116 kfree(cfs_rq);
11117 err:
11118 return 0;
11119 }
11120
11121 void online_fair_sched_group(struct task_group *tg)
11122 {
11123 struct sched_entity *se;
11124 struct rq_flags rf;
11125 struct rq *rq;
11126 int i;
11127
11128 for_each_possible_cpu(i) {
11129 rq = cpu_rq(i);
11130 se = tg->se[i];
11131 rq_lock_irq(rq, &rf);
11132 update_rq_clock(rq);
11133 attach_entity_cfs_rq(se);
11134 sync_throttle(tg, i);
11135 rq_unlock_irq(rq, &rf);
11136 }
11137 }
11138
11139 void unregister_fair_sched_group(struct task_group *tg)
11140 {
11141 unsigned long flags;
11142 struct rq *rq;
11143 int cpu;
11144
11145 for_each_possible_cpu(cpu) {
11146 if (tg->se[cpu])
11147 remove_entity_load_avg(tg->se[cpu]);
11148
11149 /*
11150 * Only empty task groups can be destroyed; so we can speculatively
11151 * check on_list without danger of it being re-added.
11152 */
11153 if (!tg->cfs_rq[cpu]->on_list)
11154 continue;
11155
11156 rq = cpu_rq(cpu);
11157
11158 raw_spin_lock_irqsave(&rq->lock, flags);
11159 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11160 raw_spin_unlock_irqrestore(&rq->lock, flags);
11161 }
11162 }
11163
11164 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11165 struct sched_entity *se, int cpu,
11166 struct sched_entity *parent)
11167 {
11168 struct rq *rq = cpu_rq(cpu);
11169
11170 cfs_rq->tg = tg;
11171 cfs_rq->rq = rq;
11172 init_cfs_rq_runtime(cfs_rq);
11173
11174 tg->cfs_rq[cpu] = cfs_rq;
11175 tg->se[cpu] = se;
11176
11177 /* se could be NULL for root_task_group */
11178 if (!se)
11179 return;
11180
11181 if (!parent) {
11182 se->cfs_rq = &rq->cfs;
11183 se->depth = 0;
11184 } else {
11185 se->cfs_rq = parent->my_q;
11186 se->depth = parent->depth + 1;
11187 }
11188
11189 se->my_q = cfs_rq;
11190 /* guarantee group entities always have weight */
11191 update_load_set(&se->load, NICE_0_LOAD);
11192 se->parent = parent;
11193 }
11194
11195 static DEFINE_MUTEX(shares_mutex);
11196
11197 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11198 {
11199 int i;
11200
11201 /*
11202 * We can't change the weight of the root cgroup.
11203 */
11204 if (!tg->se[0])
11205 return -EINVAL;
11206
11207 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11208
11209 mutex_lock(&shares_mutex);
11210 if (tg->shares == shares)
11211 goto done;
11212
11213 tg->shares = shares;
11214 for_each_possible_cpu(i) {
11215 struct rq *rq = cpu_rq(i);
11216 struct sched_entity *se = tg->se[i];
11217 struct rq_flags rf;
11218
11219 /* Propagate contribution to hierarchy */
11220 rq_lock_irqsave(rq, &rf);
11221 update_rq_clock(rq);
11222 for_each_sched_entity(se) {
11223 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11224 update_cfs_group(se);
11225 }
11226 rq_unlock_irqrestore(rq, &rf);
11227 }
11228
11229 done:
11230 mutex_unlock(&shares_mutex);
11231 return 0;
11232 }
11233 #else /* CONFIG_FAIR_GROUP_SCHED */
11234
11235 void free_fair_sched_group(struct task_group *tg) { }
11236
11237 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11238 {
11239 return 1;
11240 }
11241
11242 void online_fair_sched_group(struct task_group *tg) { }
11243
11244 void unregister_fair_sched_group(struct task_group *tg) { }
11245
11246 #endif /* CONFIG_FAIR_GROUP_SCHED */
11247
11248
11249 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11250 {
11251 struct sched_entity *se = &task->se;
11252 unsigned int rr_interval = 0;
11253
11254 /*
11255 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11256 * idle runqueue:
11257 */
11258 if (rq->cfs.load.weight)
11259 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11260
11261 return rr_interval;
11262 }
11263
11264 /*
11265 * All the scheduling class methods:
11266 */
11267 DEFINE_SCHED_CLASS(fair) = {
11268
11269 .enqueue_task = enqueue_task_fair,
11270 .dequeue_task = dequeue_task_fair,
11271 .yield_task = yield_task_fair,
11272 .yield_to_task = yield_to_task_fair,
11273
11274 .check_preempt_curr = check_preempt_wakeup,
11275
11276 .pick_next_task = __pick_next_task_fair,
11277 .put_prev_task = put_prev_task_fair,
11278 .set_next_task = set_next_task_fair,
11279
11280 #ifdef CONFIG_SMP
11281 .balance = balance_fair,
11282 .select_task_rq = select_task_rq_fair,
11283 .migrate_task_rq = migrate_task_rq_fair,
11284
11285 .rq_online = rq_online_fair,
11286 .rq_offline = rq_offline_fair,
11287
11288 .task_dead = task_dead_fair,
11289 .set_cpus_allowed = set_cpus_allowed_common,
11290 #endif
11291
11292 .task_tick = task_tick_fair,
11293 .task_fork = task_fork_fair,
11294
11295 .prio_changed = prio_changed_fair,
11296 .switched_from = switched_from_fair,
11297 .switched_to = switched_to_fair,
11298
11299 .get_rr_interval = get_rr_interval_fair,
11300
11301 .update_curr = update_curr_fair,
11302
11303 #ifdef CONFIG_FAIR_GROUP_SCHED
11304 .task_change_group = task_change_group_fair,
11305 #endif
11306
11307 #ifdef CONFIG_UCLAMP_TASK
11308 .uclamp_enabled = 1,
11309 #endif
11310 };
11311
11312 #ifdef CONFIG_SCHED_DEBUG
11313 void print_cfs_stats(struct seq_file *m, int cpu)
11314 {
11315 struct cfs_rq *cfs_rq, *pos;
11316
11317 rcu_read_lock();
11318 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11319 print_cfs_rq(m, cpu, cfs_rq);
11320 rcu_read_unlock();
11321 }
11322
11323 #ifdef CONFIG_NUMA_BALANCING
11324 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11325 {
11326 int node;
11327 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11328 struct numa_group *ng;
11329
11330 rcu_read_lock();
11331 ng = rcu_dereference(p->numa_group);
11332 for_each_online_node(node) {
11333 if (p->numa_faults) {
11334 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11335 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11336 }
11337 if (ng) {
11338 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11339 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11340 }
11341 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11342 }
11343 rcu_read_unlock();
11344 }
11345 #endif /* CONFIG_NUMA_BALANCING */
11346 #endif /* CONFIG_SCHED_DEBUG */
11347
11348 __init void init_sched_fair_class(void)
11349 {
11350 #ifdef CONFIG_SMP
11351 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11352
11353 #ifdef CONFIG_NO_HZ_COMMON
11354 nohz.next_balance = jiffies;
11355 nohz.next_blocked = jiffies;
11356 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11357 #endif
11358 #endif /* SMP */
11359
11360 }
11361
11362 /*
11363 * Helper functions to facilitate extracting info from tracepoints.
11364 */
11365
11366 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11367 {
11368 #ifdef CONFIG_SMP
11369 return cfs_rq ? &cfs_rq->avg : NULL;
11370 #else
11371 return NULL;
11372 #endif
11373 }
11374 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11375
11376 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11377 {
11378 if (!cfs_rq) {
11379 if (str)
11380 strlcpy(str, "(null)", len);
11381 else
11382 return NULL;
11383 }
11384
11385 cfs_rq_tg_path(cfs_rq, str, len);
11386 return str;
11387 }
11388 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11389
11390 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11391 {
11392 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11393 }
11394 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11395
11396 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11397 {
11398 #ifdef CONFIG_SMP
11399 return rq ? &rq->avg_rt : NULL;
11400 #else
11401 return NULL;
11402 #endif
11403 }
11404 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11405
11406 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11407 {
11408 #ifdef CONFIG_SMP
11409 return rq ? &rq->avg_dl : NULL;
11410 #else
11411 return NULL;
11412 #endif
11413 }
11414 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11415
11416 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11417 {
11418 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11419 return rq ? &rq->avg_irq : NULL;
11420 #else
11421 return NULL;
11422 #endif
11423 }
11424 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11425
11426 int sched_trace_rq_cpu(struct rq *rq)
11427 {
11428 return rq ? cpu_of(rq) : -1;
11429 }
11430 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11431
11432 int sched_trace_rq_cpu_capacity(struct rq *rq)
11433 {
11434 return rq ?
11435 #ifdef CONFIG_SMP
11436 rq->cpu_capacity
11437 #else
11438 SCHED_CAPACITY_SCALE
11439 #endif
11440 : -1;
11441 }
11442 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11443
11444 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11445 {
11446 #ifdef CONFIG_SMP
11447 return rd ? rd->span : NULL;
11448 #else
11449 return NULL;
11450 #endif
11451 }
11452 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11453
11454 int sched_trace_rq_nr_running(struct rq *rq)
11455 {
11456 return rq ? rq->nr_running : -1;
11457 }
11458 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);