]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/sched/fair.c
cpufreq: schedutil: Don't skip freq update if need_freq_update is set
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / fair.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include "sched.h"
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 *
28 * NOTE: this latency value is not the same as the concept of
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
32 *
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
35 *
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37 */
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40
41 /*
42 * The initial- and re-scaling of tunables is configurable
43 *
44 * Options are:
45 *
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 *
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
51 */
52 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
53
54 /*
55 * Minimal preemption granularity for CPU-bound tasks:
56 *
57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58 */
59 unsigned int sysctl_sched_min_granularity = 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
61
62 /*
63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
64 */
65 static unsigned int sched_nr_latency = 8;
66
67 /*
68 * After fork, child runs first. If set to 0 (default) then
69 * parent will (try to) run first.
70 */
71 unsigned int sysctl_sched_child_runs_first __read_mostly;
72
73 /*
74 * SCHED_OTHER wake-up granularity.
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 *
80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
81 */
82 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
83 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
84
85 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
86
87 int sched_thermal_decay_shift;
88 static int __init setup_sched_thermal_decay_shift(char *str)
89 {
90 int _shift = 0;
91
92 if (kstrtoint(str, 0, &_shift))
93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94
95 sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 return 1;
97 }
98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99
100 #ifdef CONFIG_SMP
101 /*
102 * For asym packing, by default the lower numbered CPU has higher priority.
103 */
104 int __weak arch_asym_cpu_priority(int cpu)
105 {
106 return -cpu;
107 }
108
109 /*
110 * The margin used when comparing utilization with CPU capacity.
111 *
112 * (default: ~20%)
113 */
114 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
115
116 #endif
117
118 #ifdef CONFIG_CFS_BANDWIDTH
119 /*
120 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
121 * each time a cfs_rq requests quota.
122 *
123 * Note: in the case that the slice exceeds the runtime remaining (either due
124 * to consumption or the quota being specified to be smaller than the slice)
125 * we will always only issue the remaining available time.
126 *
127 * (default: 5 msec, units: microseconds)
128 */
129 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
130 #endif
131
132 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
133 {
134 lw->weight += inc;
135 lw->inv_weight = 0;
136 }
137
138 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
139 {
140 lw->weight -= dec;
141 lw->inv_weight = 0;
142 }
143
144 static inline void update_load_set(struct load_weight *lw, unsigned long w)
145 {
146 lw->weight = w;
147 lw->inv_weight = 0;
148 }
149
150 /*
151 * Increase the granularity value when there are more CPUs,
152 * because with more CPUs the 'effective latency' as visible
153 * to users decreases. But the relationship is not linear,
154 * so pick a second-best guess by going with the log2 of the
155 * number of CPUs.
156 *
157 * This idea comes from the SD scheduler of Con Kolivas:
158 */
159 static unsigned int get_update_sysctl_factor(void)
160 {
161 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
162 unsigned int factor;
163
164 switch (sysctl_sched_tunable_scaling) {
165 case SCHED_TUNABLESCALING_NONE:
166 factor = 1;
167 break;
168 case SCHED_TUNABLESCALING_LINEAR:
169 factor = cpus;
170 break;
171 case SCHED_TUNABLESCALING_LOG:
172 default:
173 factor = 1 + ilog2(cpus);
174 break;
175 }
176
177 return factor;
178 }
179
180 static void update_sysctl(void)
181 {
182 unsigned int factor = get_update_sysctl_factor();
183
184 #define SET_SYSCTL(name) \
185 (sysctl_##name = (factor) * normalized_sysctl_##name)
186 SET_SYSCTL(sched_min_granularity);
187 SET_SYSCTL(sched_latency);
188 SET_SYSCTL(sched_wakeup_granularity);
189 #undef SET_SYSCTL
190 }
191
192 void __init sched_init_granularity(void)
193 {
194 update_sysctl();
195 }
196
197 #define WMULT_CONST (~0U)
198 #define WMULT_SHIFT 32
199
200 static void __update_inv_weight(struct load_weight *lw)
201 {
202 unsigned long w;
203
204 if (likely(lw->inv_weight))
205 return;
206
207 w = scale_load_down(lw->weight);
208
209 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
210 lw->inv_weight = 1;
211 else if (unlikely(!w))
212 lw->inv_weight = WMULT_CONST;
213 else
214 lw->inv_weight = WMULT_CONST / w;
215 }
216
217 /*
218 * delta_exec * weight / lw.weight
219 * OR
220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
221 *
222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
223 * we're guaranteed shift stays positive because inv_weight is guaranteed to
224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
225 *
226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
227 * weight/lw.weight <= 1, and therefore our shift will also be positive.
228 */
229 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
230 {
231 u64 fact = scale_load_down(weight);
232 int shift = WMULT_SHIFT;
233
234 __update_inv_weight(lw);
235
236 if (unlikely(fact >> 32)) {
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
240 }
241 }
242
243 fact = mul_u32_u32(fact, lw->inv_weight);
244
245 while (fact >> 32) {
246 fact >>= 1;
247 shift--;
248 }
249
250 return mul_u64_u32_shr(delta_exec, fact, shift);
251 }
252
253
254 const struct sched_class fair_sched_class;
255
256 /**************************************************************
257 * CFS operations on generic schedulable entities:
258 */
259
260 #ifdef CONFIG_FAIR_GROUP_SCHED
261 static inline struct task_struct *task_of(struct sched_entity *se)
262 {
263 SCHED_WARN_ON(!entity_is_task(se));
264 return container_of(se, struct task_struct, se);
265 }
266
267 /* Walk up scheduling entities hierarchy */
268 #define for_each_sched_entity(se) \
269 for (; se; se = se->parent)
270
271 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
272 {
273 return p->se.cfs_rq;
274 }
275
276 /* runqueue on which this entity is (to be) queued */
277 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
278 {
279 return se->cfs_rq;
280 }
281
282 /* runqueue "owned" by this group */
283 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
284 {
285 return grp->my_q;
286 }
287
288 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
289 {
290 if (!path)
291 return;
292
293 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
294 autogroup_path(cfs_rq->tg, path, len);
295 else if (cfs_rq && cfs_rq->tg->css.cgroup)
296 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
297 else
298 strlcpy(path, "(null)", len);
299 }
300
301 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302 {
303 struct rq *rq = rq_of(cfs_rq);
304 int cpu = cpu_of(rq);
305
306 if (cfs_rq->on_list)
307 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
308
309 cfs_rq->on_list = 1;
310
311 /*
312 * Ensure we either appear before our parent (if already
313 * enqueued) or force our parent to appear after us when it is
314 * enqueued. The fact that we always enqueue bottom-up
315 * reduces this to two cases and a special case for the root
316 * cfs_rq. Furthermore, it also means that we will always reset
317 * tmp_alone_branch either when the branch is connected
318 * to a tree or when we reach the top of the tree
319 */
320 if (cfs_rq->tg->parent &&
321 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
322 /*
323 * If parent is already on the list, we add the child
324 * just before. Thanks to circular linked property of
325 * the list, this means to put the child at the tail
326 * of the list that starts by parent.
327 */
328 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
329 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
330 /*
331 * The branch is now connected to its tree so we can
332 * reset tmp_alone_branch to the beginning of the
333 * list.
334 */
335 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
336 return true;
337 }
338
339 if (!cfs_rq->tg->parent) {
340 /*
341 * cfs rq without parent should be put
342 * at the tail of the list.
343 */
344 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
345 &rq->leaf_cfs_rq_list);
346 /*
347 * We have reach the top of a tree so we can reset
348 * tmp_alone_branch to the beginning of the list.
349 */
350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
351 return true;
352 }
353
354 /*
355 * The parent has not already been added so we want to
356 * make sure that it will be put after us.
357 * tmp_alone_branch points to the begin of the branch
358 * where we will add parent.
359 */
360 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
361 /*
362 * update tmp_alone_branch to points to the new begin
363 * of the branch
364 */
365 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
366 return false;
367 }
368
369 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
370 {
371 if (cfs_rq->on_list) {
372 struct rq *rq = rq_of(cfs_rq);
373
374 /*
375 * With cfs_rq being unthrottled/throttled during an enqueue,
376 * it can happen the tmp_alone_branch points the a leaf that
377 * we finally want to del. In this case, tmp_alone_branch moves
378 * to the prev element but it will point to rq->leaf_cfs_rq_list
379 * at the end of the enqueue.
380 */
381 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
382 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
383
384 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
385 cfs_rq->on_list = 0;
386 }
387 }
388
389 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
390 {
391 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
392 }
393
394 /* Iterate thr' all leaf cfs_rq's on a runqueue */
395 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
396 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
397 leaf_cfs_rq_list)
398
399 /* Do the two (enqueued) entities belong to the same group ? */
400 static inline struct cfs_rq *
401 is_same_group(struct sched_entity *se, struct sched_entity *pse)
402 {
403 if (se->cfs_rq == pse->cfs_rq)
404 return se->cfs_rq;
405
406 return NULL;
407 }
408
409 static inline struct sched_entity *parent_entity(struct sched_entity *se)
410 {
411 return se->parent;
412 }
413
414 static void
415 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
416 {
417 int se_depth, pse_depth;
418
419 /*
420 * preemption test can be made between sibling entities who are in the
421 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
422 * both tasks until we find their ancestors who are siblings of common
423 * parent.
424 */
425
426 /* First walk up until both entities are at same depth */
427 se_depth = (*se)->depth;
428 pse_depth = (*pse)->depth;
429
430 while (se_depth > pse_depth) {
431 se_depth--;
432 *se = parent_entity(*se);
433 }
434
435 while (pse_depth > se_depth) {
436 pse_depth--;
437 *pse = parent_entity(*pse);
438 }
439
440 while (!is_same_group(*se, *pse)) {
441 *se = parent_entity(*se);
442 *pse = parent_entity(*pse);
443 }
444 }
445
446 #else /* !CONFIG_FAIR_GROUP_SCHED */
447
448 static inline struct task_struct *task_of(struct sched_entity *se)
449 {
450 return container_of(se, struct task_struct, se);
451 }
452
453 #define for_each_sched_entity(se) \
454 for (; se; se = NULL)
455
456 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
457 {
458 return &task_rq(p)->cfs;
459 }
460
461 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
462 {
463 struct task_struct *p = task_of(se);
464 struct rq *rq = task_rq(p);
465
466 return &rq->cfs;
467 }
468
469 /* runqueue "owned" by this group */
470 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
471 {
472 return NULL;
473 }
474
475 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
476 {
477 if (path)
478 strlcpy(path, "(null)", len);
479 }
480
481 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482 {
483 return true;
484 }
485
486 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
487 {
488 }
489
490 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
491 {
492 }
493
494 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
495 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
496
497 static inline struct sched_entity *parent_entity(struct sched_entity *se)
498 {
499 return NULL;
500 }
501
502 static inline void
503 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
504 {
505 }
506
507 #endif /* CONFIG_FAIR_GROUP_SCHED */
508
509 static __always_inline
510 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
511
512 /**************************************************************
513 * Scheduling class tree data structure manipulation methods:
514 */
515
516 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
517 {
518 s64 delta = (s64)(vruntime - max_vruntime);
519 if (delta > 0)
520 max_vruntime = vruntime;
521
522 return max_vruntime;
523 }
524
525 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
526 {
527 s64 delta = (s64)(vruntime - min_vruntime);
528 if (delta < 0)
529 min_vruntime = vruntime;
530
531 return min_vruntime;
532 }
533
534 static inline int entity_before(struct sched_entity *a,
535 struct sched_entity *b)
536 {
537 return (s64)(a->vruntime - b->vruntime) < 0;
538 }
539
540 static void update_min_vruntime(struct cfs_rq *cfs_rq)
541 {
542 struct sched_entity *curr = cfs_rq->curr;
543 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
544
545 u64 vruntime = cfs_rq->min_vruntime;
546
547 if (curr) {
548 if (curr->on_rq)
549 vruntime = curr->vruntime;
550 else
551 curr = NULL;
552 }
553
554 if (leftmost) { /* non-empty tree */
555 struct sched_entity *se;
556 se = rb_entry(leftmost, struct sched_entity, run_node);
557
558 if (!curr)
559 vruntime = se->vruntime;
560 else
561 vruntime = min_vruntime(vruntime, se->vruntime);
562 }
563
564 /* ensure we never gain time by being placed backwards. */
565 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
566 #ifndef CONFIG_64BIT
567 smp_wmb();
568 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
569 #endif
570 }
571
572 /*
573 * Enqueue an entity into the rb-tree:
574 */
575 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
576 {
577 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
578 struct rb_node *parent = NULL;
579 struct sched_entity *entry;
580 bool leftmost = true;
581
582 /*
583 * Find the right place in the rbtree:
584 */
585 while (*link) {
586 parent = *link;
587 entry = rb_entry(parent, struct sched_entity, run_node);
588 /*
589 * We dont care about collisions. Nodes with
590 * the same key stay together.
591 */
592 if (entity_before(se, entry)) {
593 link = &parent->rb_left;
594 } else {
595 link = &parent->rb_right;
596 leftmost = false;
597 }
598 }
599
600 rb_link_node(&se->run_node, parent, link);
601 rb_insert_color_cached(&se->run_node,
602 &cfs_rq->tasks_timeline, leftmost);
603 }
604
605 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
606 {
607 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
608 }
609
610 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
611 {
612 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
613
614 if (!left)
615 return NULL;
616
617 return rb_entry(left, struct sched_entity, run_node);
618 }
619
620 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
621 {
622 struct rb_node *next = rb_next(&se->run_node);
623
624 if (!next)
625 return NULL;
626
627 return rb_entry(next, struct sched_entity, run_node);
628 }
629
630 #ifdef CONFIG_SCHED_DEBUG
631 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
632 {
633 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
634
635 if (!last)
636 return NULL;
637
638 return rb_entry(last, struct sched_entity, run_node);
639 }
640
641 /**************************************************************
642 * Scheduling class statistics methods:
643 */
644
645 int sched_proc_update_handler(struct ctl_table *table, int write,
646 void *buffer, size_t *lenp, loff_t *ppos)
647 {
648 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
649 unsigned int factor = get_update_sysctl_factor();
650
651 if (ret || !write)
652 return ret;
653
654 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
655 sysctl_sched_min_granularity);
656
657 #define WRT_SYSCTL(name) \
658 (normalized_sysctl_##name = sysctl_##name / (factor))
659 WRT_SYSCTL(sched_min_granularity);
660 WRT_SYSCTL(sched_latency);
661 WRT_SYSCTL(sched_wakeup_granularity);
662 #undef WRT_SYSCTL
663
664 return 0;
665 }
666 #endif
667
668 /*
669 * delta /= w
670 */
671 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
672 {
673 if (unlikely(se->load.weight != NICE_0_LOAD))
674 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
675
676 return delta;
677 }
678
679 /*
680 * The idea is to set a period in which each task runs once.
681 *
682 * When there are too many tasks (sched_nr_latency) we have to stretch
683 * this period because otherwise the slices get too small.
684 *
685 * p = (nr <= nl) ? l : l*nr/nl
686 */
687 static u64 __sched_period(unsigned long nr_running)
688 {
689 if (unlikely(nr_running > sched_nr_latency))
690 return nr_running * sysctl_sched_min_granularity;
691 else
692 return sysctl_sched_latency;
693 }
694
695 /*
696 * We calculate the wall-time slice from the period by taking a part
697 * proportional to the weight.
698 *
699 * s = p*P[w/rw]
700 */
701 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
702 {
703 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
704
705 for_each_sched_entity(se) {
706 struct load_weight *load;
707 struct load_weight lw;
708
709 cfs_rq = cfs_rq_of(se);
710 load = &cfs_rq->load;
711
712 if (unlikely(!se->on_rq)) {
713 lw = cfs_rq->load;
714
715 update_load_add(&lw, se->load.weight);
716 load = &lw;
717 }
718 slice = __calc_delta(slice, se->load.weight, load);
719 }
720 return slice;
721 }
722
723 /*
724 * We calculate the vruntime slice of a to-be-inserted task.
725 *
726 * vs = s/w
727 */
728 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
729 {
730 return calc_delta_fair(sched_slice(cfs_rq, se), se);
731 }
732
733 #include "pelt.h"
734 #ifdef CONFIG_SMP
735
736 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
737 static unsigned long task_h_load(struct task_struct *p);
738 static unsigned long capacity_of(int cpu);
739
740 /* Give new sched_entity start runnable values to heavy its load in infant time */
741 void init_entity_runnable_average(struct sched_entity *se)
742 {
743 struct sched_avg *sa = &se->avg;
744
745 memset(sa, 0, sizeof(*sa));
746
747 /*
748 * Tasks are initialized with full load to be seen as heavy tasks until
749 * they get a chance to stabilize to their real load level.
750 * Group entities are initialized with zero load to reflect the fact that
751 * nothing has been attached to the task group yet.
752 */
753 if (entity_is_task(se))
754 sa->load_avg = scale_load_down(se->load.weight);
755
756 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
757 }
758
759 static void attach_entity_cfs_rq(struct sched_entity *se);
760
761 /*
762 * With new tasks being created, their initial util_avgs are extrapolated
763 * based on the cfs_rq's current util_avg:
764 *
765 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
766 *
767 * However, in many cases, the above util_avg does not give a desired
768 * value. Moreover, the sum of the util_avgs may be divergent, such
769 * as when the series is a harmonic series.
770 *
771 * To solve this problem, we also cap the util_avg of successive tasks to
772 * only 1/2 of the left utilization budget:
773 *
774 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
775 *
776 * where n denotes the nth task and cpu_scale the CPU capacity.
777 *
778 * For example, for a CPU with 1024 of capacity, a simplest series from
779 * the beginning would be like:
780 *
781 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
782 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
783 *
784 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
785 * if util_avg > util_avg_cap.
786 */
787 void post_init_entity_util_avg(struct task_struct *p)
788 {
789 struct sched_entity *se = &p->se;
790 struct cfs_rq *cfs_rq = cfs_rq_of(se);
791 struct sched_avg *sa = &se->avg;
792 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
793 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
794
795 if (cap > 0) {
796 if (cfs_rq->avg.util_avg != 0) {
797 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
798 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
799
800 if (sa->util_avg > cap)
801 sa->util_avg = cap;
802 } else {
803 sa->util_avg = cap;
804 }
805 }
806
807 sa->runnable_avg = sa->util_avg;
808
809 if (p->sched_class != &fair_sched_class) {
810 /*
811 * For !fair tasks do:
812 *
813 update_cfs_rq_load_avg(now, cfs_rq);
814 attach_entity_load_avg(cfs_rq, se);
815 switched_from_fair(rq, p);
816 *
817 * such that the next switched_to_fair() has the
818 * expected state.
819 */
820 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
821 return;
822 }
823
824 attach_entity_cfs_rq(se);
825 }
826
827 #else /* !CONFIG_SMP */
828 void init_entity_runnable_average(struct sched_entity *se)
829 {
830 }
831 void post_init_entity_util_avg(struct task_struct *p)
832 {
833 }
834 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
835 {
836 }
837 #endif /* CONFIG_SMP */
838
839 /*
840 * Update the current task's runtime statistics.
841 */
842 static void update_curr(struct cfs_rq *cfs_rq)
843 {
844 struct sched_entity *curr = cfs_rq->curr;
845 u64 now = rq_clock_task(rq_of(cfs_rq));
846 u64 delta_exec;
847
848 if (unlikely(!curr))
849 return;
850
851 delta_exec = now - curr->exec_start;
852 if (unlikely((s64)delta_exec <= 0))
853 return;
854
855 curr->exec_start = now;
856
857 schedstat_set(curr->statistics.exec_max,
858 max(delta_exec, curr->statistics.exec_max));
859
860 curr->sum_exec_runtime += delta_exec;
861 schedstat_add(cfs_rq->exec_clock, delta_exec);
862
863 curr->vruntime += calc_delta_fair(delta_exec, curr);
864 update_min_vruntime(cfs_rq);
865
866 if (entity_is_task(curr)) {
867 struct task_struct *curtask = task_of(curr);
868
869 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
870 cgroup_account_cputime(curtask, delta_exec);
871 account_group_exec_runtime(curtask, delta_exec);
872 }
873
874 account_cfs_rq_runtime(cfs_rq, delta_exec);
875 }
876
877 static void update_curr_fair(struct rq *rq)
878 {
879 update_curr(cfs_rq_of(&rq->curr->se));
880 }
881
882 static inline void
883 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
884 {
885 u64 wait_start, prev_wait_start;
886
887 if (!schedstat_enabled())
888 return;
889
890 wait_start = rq_clock(rq_of(cfs_rq));
891 prev_wait_start = schedstat_val(se->statistics.wait_start);
892
893 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
894 likely(wait_start > prev_wait_start))
895 wait_start -= prev_wait_start;
896
897 __schedstat_set(se->statistics.wait_start, wait_start);
898 }
899
900 static inline void
901 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
902 {
903 struct task_struct *p;
904 u64 delta;
905
906 if (!schedstat_enabled())
907 return;
908
909 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
910
911 if (entity_is_task(se)) {
912 p = task_of(se);
913 if (task_on_rq_migrating(p)) {
914 /*
915 * Preserve migrating task's wait time so wait_start
916 * time stamp can be adjusted to accumulate wait time
917 * prior to migration.
918 */
919 __schedstat_set(se->statistics.wait_start, delta);
920 return;
921 }
922 trace_sched_stat_wait(p, delta);
923 }
924
925 __schedstat_set(se->statistics.wait_max,
926 max(schedstat_val(se->statistics.wait_max), delta));
927 __schedstat_inc(se->statistics.wait_count);
928 __schedstat_add(se->statistics.wait_sum, delta);
929 __schedstat_set(se->statistics.wait_start, 0);
930 }
931
932 static inline void
933 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
934 {
935 struct task_struct *tsk = NULL;
936 u64 sleep_start, block_start;
937
938 if (!schedstat_enabled())
939 return;
940
941 sleep_start = schedstat_val(se->statistics.sleep_start);
942 block_start = schedstat_val(se->statistics.block_start);
943
944 if (entity_is_task(se))
945 tsk = task_of(se);
946
947 if (sleep_start) {
948 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
949
950 if ((s64)delta < 0)
951 delta = 0;
952
953 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
954 __schedstat_set(se->statistics.sleep_max, delta);
955
956 __schedstat_set(se->statistics.sleep_start, 0);
957 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
958
959 if (tsk) {
960 account_scheduler_latency(tsk, delta >> 10, 1);
961 trace_sched_stat_sleep(tsk, delta);
962 }
963 }
964 if (block_start) {
965 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
966
967 if ((s64)delta < 0)
968 delta = 0;
969
970 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
971 __schedstat_set(se->statistics.block_max, delta);
972
973 __schedstat_set(se->statistics.block_start, 0);
974 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
975
976 if (tsk) {
977 if (tsk->in_iowait) {
978 __schedstat_add(se->statistics.iowait_sum, delta);
979 __schedstat_inc(se->statistics.iowait_count);
980 trace_sched_stat_iowait(tsk, delta);
981 }
982
983 trace_sched_stat_blocked(tsk, delta);
984
985 /*
986 * Blocking time is in units of nanosecs, so shift by
987 * 20 to get a milliseconds-range estimation of the
988 * amount of time that the task spent sleeping:
989 */
990 if (unlikely(prof_on == SLEEP_PROFILING)) {
991 profile_hits(SLEEP_PROFILING,
992 (void *)get_wchan(tsk),
993 delta >> 20);
994 }
995 account_scheduler_latency(tsk, delta >> 10, 0);
996 }
997 }
998 }
999
1000 /*
1001 * Task is being enqueued - update stats:
1002 */
1003 static inline void
1004 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1005 {
1006 if (!schedstat_enabled())
1007 return;
1008
1009 /*
1010 * Are we enqueueing a waiting task? (for current tasks
1011 * a dequeue/enqueue event is a NOP)
1012 */
1013 if (se != cfs_rq->curr)
1014 update_stats_wait_start(cfs_rq, se);
1015
1016 if (flags & ENQUEUE_WAKEUP)
1017 update_stats_enqueue_sleeper(cfs_rq, se);
1018 }
1019
1020 static inline void
1021 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1022 {
1023
1024 if (!schedstat_enabled())
1025 return;
1026
1027 /*
1028 * Mark the end of the wait period if dequeueing a
1029 * waiting task:
1030 */
1031 if (se != cfs_rq->curr)
1032 update_stats_wait_end(cfs_rq, se);
1033
1034 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1035 struct task_struct *tsk = task_of(se);
1036
1037 if (tsk->state & TASK_INTERRUPTIBLE)
1038 __schedstat_set(se->statistics.sleep_start,
1039 rq_clock(rq_of(cfs_rq)));
1040 if (tsk->state & TASK_UNINTERRUPTIBLE)
1041 __schedstat_set(se->statistics.block_start,
1042 rq_clock(rq_of(cfs_rq)));
1043 }
1044 }
1045
1046 /*
1047 * We are picking a new current task - update its stats:
1048 */
1049 static inline void
1050 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1051 {
1052 /*
1053 * We are starting a new run period:
1054 */
1055 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1056 }
1057
1058 /**************************************************
1059 * Scheduling class queueing methods:
1060 */
1061
1062 #ifdef CONFIG_NUMA_BALANCING
1063 /*
1064 * Approximate time to scan a full NUMA task in ms. The task scan period is
1065 * calculated based on the tasks virtual memory size and
1066 * numa_balancing_scan_size.
1067 */
1068 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1069 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1070
1071 /* Portion of address space to scan in MB */
1072 unsigned int sysctl_numa_balancing_scan_size = 256;
1073
1074 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1075 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1076
1077 struct numa_group {
1078 refcount_t refcount;
1079
1080 spinlock_t lock; /* nr_tasks, tasks */
1081 int nr_tasks;
1082 pid_t gid;
1083 int active_nodes;
1084
1085 struct rcu_head rcu;
1086 unsigned long total_faults;
1087 unsigned long max_faults_cpu;
1088 /*
1089 * Faults_cpu is used to decide whether memory should move
1090 * towards the CPU. As a consequence, these stats are weighted
1091 * more by CPU use than by memory faults.
1092 */
1093 unsigned long *faults_cpu;
1094 unsigned long faults[];
1095 };
1096
1097 /*
1098 * For functions that can be called in multiple contexts that permit reading
1099 * ->numa_group (see struct task_struct for locking rules).
1100 */
1101 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1102 {
1103 return rcu_dereference_check(p->numa_group, p == current ||
1104 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1105 }
1106
1107 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1108 {
1109 return rcu_dereference_protected(p->numa_group, p == current);
1110 }
1111
1112 static inline unsigned long group_faults_priv(struct numa_group *ng);
1113 static inline unsigned long group_faults_shared(struct numa_group *ng);
1114
1115 static unsigned int task_nr_scan_windows(struct task_struct *p)
1116 {
1117 unsigned long rss = 0;
1118 unsigned long nr_scan_pages;
1119
1120 /*
1121 * Calculations based on RSS as non-present and empty pages are skipped
1122 * by the PTE scanner and NUMA hinting faults should be trapped based
1123 * on resident pages
1124 */
1125 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1126 rss = get_mm_rss(p->mm);
1127 if (!rss)
1128 rss = nr_scan_pages;
1129
1130 rss = round_up(rss, nr_scan_pages);
1131 return rss / nr_scan_pages;
1132 }
1133
1134 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1135 #define MAX_SCAN_WINDOW 2560
1136
1137 static unsigned int task_scan_min(struct task_struct *p)
1138 {
1139 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1140 unsigned int scan, floor;
1141 unsigned int windows = 1;
1142
1143 if (scan_size < MAX_SCAN_WINDOW)
1144 windows = MAX_SCAN_WINDOW / scan_size;
1145 floor = 1000 / windows;
1146
1147 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1148 return max_t(unsigned int, floor, scan);
1149 }
1150
1151 static unsigned int task_scan_start(struct task_struct *p)
1152 {
1153 unsigned long smin = task_scan_min(p);
1154 unsigned long period = smin;
1155 struct numa_group *ng;
1156
1157 /* Scale the maximum scan period with the amount of shared memory. */
1158 rcu_read_lock();
1159 ng = rcu_dereference(p->numa_group);
1160 if (ng) {
1161 unsigned long shared = group_faults_shared(ng);
1162 unsigned long private = group_faults_priv(ng);
1163
1164 period *= refcount_read(&ng->refcount);
1165 period *= shared + 1;
1166 period /= private + shared + 1;
1167 }
1168 rcu_read_unlock();
1169
1170 return max(smin, period);
1171 }
1172
1173 static unsigned int task_scan_max(struct task_struct *p)
1174 {
1175 unsigned long smin = task_scan_min(p);
1176 unsigned long smax;
1177 struct numa_group *ng;
1178
1179 /* Watch for min being lower than max due to floor calculations */
1180 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1181
1182 /* Scale the maximum scan period with the amount of shared memory. */
1183 ng = deref_curr_numa_group(p);
1184 if (ng) {
1185 unsigned long shared = group_faults_shared(ng);
1186 unsigned long private = group_faults_priv(ng);
1187 unsigned long period = smax;
1188
1189 period *= refcount_read(&ng->refcount);
1190 period *= shared + 1;
1191 period /= private + shared + 1;
1192
1193 smax = max(smax, period);
1194 }
1195
1196 return max(smin, smax);
1197 }
1198
1199 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1200 {
1201 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1202 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1203 }
1204
1205 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1206 {
1207 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1208 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1209 }
1210
1211 /* Shared or private faults. */
1212 #define NR_NUMA_HINT_FAULT_TYPES 2
1213
1214 /* Memory and CPU locality */
1215 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1216
1217 /* Averaged statistics, and temporary buffers. */
1218 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1219
1220 pid_t task_numa_group_id(struct task_struct *p)
1221 {
1222 struct numa_group *ng;
1223 pid_t gid = 0;
1224
1225 rcu_read_lock();
1226 ng = rcu_dereference(p->numa_group);
1227 if (ng)
1228 gid = ng->gid;
1229 rcu_read_unlock();
1230
1231 return gid;
1232 }
1233
1234 /*
1235 * The averaged statistics, shared & private, memory & CPU,
1236 * occupy the first half of the array. The second half of the
1237 * array is for current counters, which are averaged into the
1238 * first set by task_numa_placement.
1239 */
1240 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1241 {
1242 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1243 }
1244
1245 static inline unsigned long task_faults(struct task_struct *p, int nid)
1246 {
1247 if (!p->numa_faults)
1248 return 0;
1249
1250 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1251 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1252 }
1253
1254 static inline unsigned long group_faults(struct task_struct *p, int nid)
1255 {
1256 struct numa_group *ng = deref_task_numa_group(p);
1257
1258 if (!ng)
1259 return 0;
1260
1261 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1262 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1263 }
1264
1265 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1266 {
1267 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1268 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1269 }
1270
1271 static inline unsigned long group_faults_priv(struct numa_group *ng)
1272 {
1273 unsigned long faults = 0;
1274 int node;
1275
1276 for_each_online_node(node) {
1277 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1278 }
1279
1280 return faults;
1281 }
1282
1283 static inline unsigned long group_faults_shared(struct numa_group *ng)
1284 {
1285 unsigned long faults = 0;
1286 int node;
1287
1288 for_each_online_node(node) {
1289 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1290 }
1291
1292 return faults;
1293 }
1294
1295 /*
1296 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1297 * considered part of a numa group's pseudo-interleaving set. Migrations
1298 * between these nodes are slowed down, to allow things to settle down.
1299 */
1300 #define ACTIVE_NODE_FRACTION 3
1301
1302 static bool numa_is_active_node(int nid, struct numa_group *ng)
1303 {
1304 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1305 }
1306
1307 /* Handle placement on systems where not all nodes are directly connected. */
1308 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1309 int maxdist, bool task)
1310 {
1311 unsigned long score = 0;
1312 int node;
1313
1314 /*
1315 * All nodes are directly connected, and the same distance
1316 * from each other. No need for fancy placement algorithms.
1317 */
1318 if (sched_numa_topology_type == NUMA_DIRECT)
1319 return 0;
1320
1321 /*
1322 * This code is called for each node, introducing N^2 complexity,
1323 * which should be ok given the number of nodes rarely exceeds 8.
1324 */
1325 for_each_online_node(node) {
1326 unsigned long faults;
1327 int dist = node_distance(nid, node);
1328
1329 /*
1330 * The furthest away nodes in the system are not interesting
1331 * for placement; nid was already counted.
1332 */
1333 if (dist == sched_max_numa_distance || node == nid)
1334 continue;
1335
1336 /*
1337 * On systems with a backplane NUMA topology, compare groups
1338 * of nodes, and move tasks towards the group with the most
1339 * memory accesses. When comparing two nodes at distance
1340 * "hoplimit", only nodes closer by than "hoplimit" are part
1341 * of each group. Skip other nodes.
1342 */
1343 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1344 dist >= maxdist)
1345 continue;
1346
1347 /* Add up the faults from nearby nodes. */
1348 if (task)
1349 faults = task_faults(p, node);
1350 else
1351 faults = group_faults(p, node);
1352
1353 /*
1354 * On systems with a glueless mesh NUMA topology, there are
1355 * no fixed "groups of nodes". Instead, nodes that are not
1356 * directly connected bounce traffic through intermediate
1357 * nodes; a numa_group can occupy any set of nodes.
1358 * The further away a node is, the less the faults count.
1359 * This seems to result in good task placement.
1360 */
1361 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1362 faults *= (sched_max_numa_distance - dist);
1363 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1364 }
1365
1366 score += faults;
1367 }
1368
1369 return score;
1370 }
1371
1372 /*
1373 * These return the fraction of accesses done by a particular task, or
1374 * task group, on a particular numa node. The group weight is given a
1375 * larger multiplier, in order to group tasks together that are almost
1376 * evenly spread out between numa nodes.
1377 */
1378 static inline unsigned long task_weight(struct task_struct *p, int nid,
1379 int dist)
1380 {
1381 unsigned long faults, total_faults;
1382
1383 if (!p->numa_faults)
1384 return 0;
1385
1386 total_faults = p->total_numa_faults;
1387
1388 if (!total_faults)
1389 return 0;
1390
1391 faults = task_faults(p, nid);
1392 faults += score_nearby_nodes(p, nid, dist, true);
1393
1394 return 1000 * faults / total_faults;
1395 }
1396
1397 static inline unsigned long group_weight(struct task_struct *p, int nid,
1398 int dist)
1399 {
1400 struct numa_group *ng = deref_task_numa_group(p);
1401 unsigned long faults, total_faults;
1402
1403 if (!ng)
1404 return 0;
1405
1406 total_faults = ng->total_faults;
1407
1408 if (!total_faults)
1409 return 0;
1410
1411 faults = group_faults(p, nid);
1412 faults += score_nearby_nodes(p, nid, dist, false);
1413
1414 return 1000 * faults / total_faults;
1415 }
1416
1417 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1418 int src_nid, int dst_cpu)
1419 {
1420 struct numa_group *ng = deref_curr_numa_group(p);
1421 int dst_nid = cpu_to_node(dst_cpu);
1422 int last_cpupid, this_cpupid;
1423
1424 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1425 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1426
1427 /*
1428 * Allow first faults or private faults to migrate immediately early in
1429 * the lifetime of a task. The magic number 4 is based on waiting for
1430 * two full passes of the "multi-stage node selection" test that is
1431 * executed below.
1432 */
1433 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1434 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1435 return true;
1436
1437 /*
1438 * Multi-stage node selection is used in conjunction with a periodic
1439 * migration fault to build a temporal task<->page relation. By using
1440 * a two-stage filter we remove short/unlikely relations.
1441 *
1442 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1443 * a task's usage of a particular page (n_p) per total usage of this
1444 * page (n_t) (in a given time-span) to a probability.
1445 *
1446 * Our periodic faults will sample this probability and getting the
1447 * same result twice in a row, given these samples are fully
1448 * independent, is then given by P(n)^2, provided our sample period
1449 * is sufficiently short compared to the usage pattern.
1450 *
1451 * This quadric squishes small probabilities, making it less likely we
1452 * act on an unlikely task<->page relation.
1453 */
1454 if (!cpupid_pid_unset(last_cpupid) &&
1455 cpupid_to_nid(last_cpupid) != dst_nid)
1456 return false;
1457
1458 /* Always allow migrate on private faults */
1459 if (cpupid_match_pid(p, last_cpupid))
1460 return true;
1461
1462 /* A shared fault, but p->numa_group has not been set up yet. */
1463 if (!ng)
1464 return true;
1465
1466 /*
1467 * Destination node is much more heavily used than the source
1468 * node? Allow migration.
1469 */
1470 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1471 ACTIVE_NODE_FRACTION)
1472 return true;
1473
1474 /*
1475 * Distribute memory according to CPU & memory use on each node,
1476 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1477 *
1478 * faults_cpu(dst) 3 faults_cpu(src)
1479 * --------------- * - > ---------------
1480 * faults_mem(dst) 4 faults_mem(src)
1481 */
1482 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1483 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1484 }
1485
1486 /*
1487 * 'numa_type' describes the node at the moment of load balancing.
1488 */
1489 enum numa_type {
1490 /* The node has spare capacity that can be used to run more tasks. */
1491 node_has_spare = 0,
1492 /*
1493 * The node is fully used and the tasks don't compete for more CPU
1494 * cycles. Nevertheless, some tasks might wait before running.
1495 */
1496 node_fully_busy,
1497 /*
1498 * The node is overloaded and can't provide expected CPU cycles to all
1499 * tasks.
1500 */
1501 node_overloaded
1502 };
1503
1504 /* Cached statistics for all CPUs within a node */
1505 struct numa_stats {
1506 unsigned long load;
1507 unsigned long runnable;
1508 unsigned long util;
1509 /* Total compute capacity of CPUs on a node */
1510 unsigned long compute_capacity;
1511 unsigned int nr_running;
1512 unsigned int weight;
1513 enum numa_type node_type;
1514 int idle_cpu;
1515 };
1516
1517 static inline bool is_core_idle(int cpu)
1518 {
1519 #ifdef CONFIG_SCHED_SMT
1520 int sibling;
1521
1522 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1523 if (cpu == sibling)
1524 continue;
1525
1526 if (!idle_cpu(cpu))
1527 return false;
1528 }
1529 #endif
1530
1531 return true;
1532 }
1533
1534 struct task_numa_env {
1535 struct task_struct *p;
1536
1537 int src_cpu, src_nid;
1538 int dst_cpu, dst_nid;
1539
1540 struct numa_stats src_stats, dst_stats;
1541
1542 int imbalance_pct;
1543 int dist;
1544
1545 struct task_struct *best_task;
1546 long best_imp;
1547 int best_cpu;
1548 };
1549
1550 static unsigned long cpu_load(struct rq *rq);
1551 static unsigned long cpu_runnable(struct rq *rq);
1552 static unsigned long cpu_util(int cpu);
1553 static inline long adjust_numa_imbalance(int imbalance, int nr_running);
1554
1555 static inline enum
1556 numa_type numa_classify(unsigned int imbalance_pct,
1557 struct numa_stats *ns)
1558 {
1559 if ((ns->nr_running > ns->weight) &&
1560 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1561 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1562 return node_overloaded;
1563
1564 if ((ns->nr_running < ns->weight) ||
1565 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1566 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1567 return node_has_spare;
1568
1569 return node_fully_busy;
1570 }
1571
1572 #ifdef CONFIG_SCHED_SMT
1573 /* Forward declarations of select_idle_sibling helpers */
1574 static inline bool test_idle_cores(int cpu, bool def);
1575 static inline int numa_idle_core(int idle_core, int cpu)
1576 {
1577 if (!static_branch_likely(&sched_smt_present) ||
1578 idle_core >= 0 || !test_idle_cores(cpu, false))
1579 return idle_core;
1580
1581 /*
1582 * Prefer cores instead of packing HT siblings
1583 * and triggering future load balancing.
1584 */
1585 if (is_core_idle(cpu))
1586 idle_core = cpu;
1587
1588 return idle_core;
1589 }
1590 #else
1591 static inline int numa_idle_core(int idle_core, int cpu)
1592 {
1593 return idle_core;
1594 }
1595 #endif
1596
1597 /*
1598 * Gather all necessary information to make NUMA balancing placement
1599 * decisions that are compatible with standard load balancer. This
1600 * borrows code and logic from update_sg_lb_stats but sharing a
1601 * common implementation is impractical.
1602 */
1603 static void update_numa_stats(struct task_numa_env *env,
1604 struct numa_stats *ns, int nid,
1605 bool find_idle)
1606 {
1607 int cpu, idle_core = -1;
1608
1609 memset(ns, 0, sizeof(*ns));
1610 ns->idle_cpu = -1;
1611
1612 rcu_read_lock();
1613 for_each_cpu(cpu, cpumask_of_node(nid)) {
1614 struct rq *rq = cpu_rq(cpu);
1615
1616 ns->load += cpu_load(rq);
1617 ns->runnable += cpu_runnable(rq);
1618 ns->util += cpu_util(cpu);
1619 ns->nr_running += rq->cfs.h_nr_running;
1620 ns->compute_capacity += capacity_of(cpu);
1621
1622 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1623 if (READ_ONCE(rq->numa_migrate_on) ||
1624 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1625 continue;
1626
1627 if (ns->idle_cpu == -1)
1628 ns->idle_cpu = cpu;
1629
1630 idle_core = numa_idle_core(idle_core, cpu);
1631 }
1632 }
1633 rcu_read_unlock();
1634
1635 ns->weight = cpumask_weight(cpumask_of_node(nid));
1636
1637 ns->node_type = numa_classify(env->imbalance_pct, ns);
1638
1639 if (idle_core >= 0)
1640 ns->idle_cpu = idle_core;
1641 }
1642
1643 static void task_numa_assign(struct task_numa_env *env,
1644 struct task_struct *p, long imp)
1645 {
1646 struct rq *rq = cpu_rq(env->dst_cpu);
1647
1648 /* Check if run-queue part of active NUMA balance. */
1649 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1650 int cpu;
1651 int start = env->dst_cpu;
1652
1653 /* Find alternative idle CPU. */
1654 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1655 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1656 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1657 continue;
1658 }
1659
1660 env->dst_cpu = cpu;
1661 rq = cpu_rq(env->dst_cpu);
1662 if (!xchg(&rq->numa_migrate_on, 1))
1663 goto assign;
1664 }
1665
1666 /* Failed to find an alternative idle CPU */
1667 return;
1668 }
1669
1670 assign:
1671 /*
1672 * Clear previous best_cpu/rq numa-migrate flag, since task now
1673 * found a better CPU to move/swap.
1674 */
1675 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1676 rq = cpu_rq(env->best_cpu);
1677 WRITE_ONCE(rq->numa_migrate_on, 0);
1678 }
1679
1680 if (env->best_task)
1681 put_task_struct(env->best_task);
1682 if (p)
1683 get_task_struct(p);
1684
1685 env->best_task = p;
1686 env->best_imp = imp;
1687 env->best_cpu = env->dst_cpu;
1688 }
1689
1690 static bool load_too_imbalanced(long src_load, long dst_load,
1691 struct task_numa_env *env)
1692 {
1693 long imb, old_imb;
1694 long orig_src_load, orig_dst_load;
1695 long src_capacity, dst_capacity;
1696
1697 /*
1698 * The load is corrected for the CPU capacity available on each node.
1699 *
1700 * src_load dst_load
1701 * ------------ vs ---------
1702 * src_capacity dst_capacity
1703 */
1704 src_capacity = env->src_stats.compute_capacity;
1705 dst_capacity = env->dst_stats.compute_capacity;
1706
1707 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1708
1709 orig_src_load = env->src_stats.load;
1710 orig_dst_load = env->dst_stats.load;
1711
1712 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1713
1714 /* Would this change make things worse? */
1715 return (imb > old_imb);
1716 }
1717
1718 /*
1719 * Maximum NUMA importance can be 1998 (2*999);
1720 * SMALLIMP @ 30 would be close to 1998/64.
1721 * Used to deter task migration.
1722 */
1723 #define SMALLIMP 30
1724
1725 /*
1726 * This checks if the overall compute and NUMA accesses of the system would
1727 * be improved if the source tasks was migrated to the target dst_cpu taking
1728 * into account that it might be best if task running on the dst_cpu should
1729 * be exchanged with the source task
1730 */
1731 static bool task_numa_compare(struct task_numa_env *env,
1732 long taskimp, long groupimp, bool maymove)
1733 {
1734 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1735 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1736 long imp = p_ng ? groupimp : taskimp;
1737 struct task_struct *cur;
1738 long src_load, dst_load;
1739 int dist = env->dist;
1740 long moveimp = imp;
1741 long load;
1742 bool stopsearch = false;
1743
1744 if (READ_ONCE(dst_rq->numa_migrate_on))
1745 return false;
1746
1747 rcu_read_lock();
1748 cur = rcu_dereference(dst_rq->curr);
1749 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1750 cur = NULL;
1751
1752 /*
1753 * Because we have preemption enabled we can get migrated around and
1754 * end try selecting ourselves (current == env->p) as a swap candidate.
1755 */
1756 if (cur == env->p) {
1757 stopsearch = true;
1758 goto unlock;
1759 }
1760
1761 if (!cur) {
1762 if (maymove && moveimp >= env->best_imp)
1763 goto assign;
1764 else
1765 goto unlock;
1766 }
1767
1768 /* Skip this swap candidate if cannot move to the source cpu. */
1769 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1770 goto unlock;
1771
1772 /*
1773 * Skip this swap candidate if it is not moving to its preferred
1774 * node and the best task is.
1775 */
1776 if (env->best_task &&
1777 env->best_task->numa_preferred_nid == env->src_nid &&
1778 cur->numa_preferred_nid != env->src_nid) {
1779 goto unlock;
1780 }
1781
1782 /*
1783 * "imp" is the fault differential for the source task between the
1784 * source and destination node. Calculate the total differential for
1785 * the source task and potential destination task. The more negative
1786 * the value is, the more remote accesses that would be expected to
1787 * be incurred if the tasks were swapped.
1788 *
1789 * If dst and source tasks are in the same NUMA group, or not
1790 * in any group then look only at task weights.
1791 */
1792 cur_ng = rcu_dereference(cur->numa_group);
1793 if (cur_ng == p_ng) {
1794 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1795 task_weight(cur, env->dst_nid, dist);
1796 /*
1797 * Add some hysteresis to prevent swapping the
1798 * tasks within a group over tiny differences.
1799 */
1800 if (cur_ng)
1801 imp -= imp / 16;
1802 } else {
1803 /*
1804 * Compare the group weights. If a task is all by itself
1805 * (not part of a group), use the task weight instead.
1806 */
1807 if (cur_ng && p_ng)
1808 imp += group_weight(cur, env->src_nid, dist) -
1809 group_weight(cur, env->dst_nid, dist);
1810 else
1811 imp += task_weight(cur, env->src_nid, dist) -
1812 task_weight(cur, env->dst_nid, dist);
1813 }
1814
1815 /* Discourage picking a task already on its preferred node */
1816 if (cur->numa_preferred_nid == env->dst_nid)
1817 imp -= imp / 16;
1818
1819 /*
1820 * Encourage picking a task that moves to its preferred node.
1821 * This potentially makes imp larger than it's maximum of
1822 * 1998 (see SMALLIMP and task_weight for why) but in this
1823 * case, it does not matter.
1824 */
1825 if (cur->numa_preferred_nid == env->src_nid)
1826 imp += imp / 8;
1827
1828 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1829 imp = moveimp;
1830 cur = NULL;
1831 goto assign;
1832 }
1833
1834 /*
1835 * Prefer swapping with a task moving to its preferred node over a
1836 * task that is not.
1837 */
1838 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1839 env->best_task->numa_preferred_nid != env->src_nid) {
1840 goto assign;
1841 }
1842
1843 /*
1844 * If the NUMA importance is less than SMALLIMP,
1845 * task migration might only result in ping pong
1846 * of tasks and also hurt performance due to cache
1847 * misses.
1848 */
1849 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1850 goto unlock;
1851
1852 /*
1853 * In the overloaded case, try and keep the load balanced.
1854 */
1855 load = task_h_load(env->p) - task_h_load(cur);
1856 if (!load)
1857 goto assign;
1858
1859 dst_load = env->dst_stats.load + load;
1860 src_load = env->src_stats.load - load;
1861
1862 if (load_too_imbalanced(src_load, dst_load, env))
1863 goto unlock;
1864
1865 assign:
1866 /* Evaluate an idle CPU for a task numa move. */
1867 if (!cur) {
1868 int cpu = env->dst_stats.idle_cpu;
1869
1870 /* Nothing cached so current CPU went idle since the search. */
1871 if (cpu < 0)
1872 cpu = env->dst_cpu;
1873
1874 /*
1875 * If the CPU is no longer truly idle and the previous best CPU
1876 * is, keep using it.
1877 */
1878 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1879 idle_cpu(env->best_cpu)) {
1880 cpu = env->best_cpu;
1881 }
1882
1883 env->dst_cpu = cpu;
1884 }
1885
1886 task_numa_assign(env, cur, imp);
1887
1888 /*
1889 * If a move to idle is allowed because there is capacity or load
1890 * balance improves then stop the search. While a better swap
1891 * candidate may exist, a search is not free.
1892 */
1893 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1894 stopsearch = true;
1895
1896 /*
1897 * If a swap candidate must be identified and the current best task
1898 * moves its preferred node then stop the search.
1899 */
1900 if (!maymove && env->best_task &&
1901 env->best_task->numa_preferred_nid == env->src_nid) {
1902 stopsearch = true;
1903 }
1904 unlock:
1905 rcu_read_unlock();
1906
1907 return stopsearch;
1908 }
1909
1910 static void task_numa_find_cpu(struct task_numa_env *env,
1911 long taskimp, long groupimp)
1912 {
1913 bool maymove = false;
1914 int cpu;
1915
1916 /*
1917 * If dst node has spare capacity, then check if there is an
1918 * imbalance that would be overruled by the load balancer.
1919 */
1920 if (env->dst_stats.node_type == node_has_spare) {
1921 unsigned int imbalance;
1922 int src_running, dst_running;
1923
1924 /*
1925 * Would movement cause an imbalance? Note that if src has
1926 * more running tasks that the imbalance is ignored as the
1927 * move improves the imbalance from the perspective of the
1928 * CPU load balancer.
1929 * */
1930 src_running = env->src_stats.nr_running - 1;
1931 dst_running = env->dst_stats.nr_running + 1;
1932 imbalance = max(0, dst_running - src_running);
1933 imbalance = adjust_numa_imbalance(imbalance, dst_running);
1934
1935 /* Use idle CPU if there is no imbalance */
1936 if (!imbalance) {
1937 maymove = true;
1938 if (env->dst_stats.idle_cpu >= 0) {
1939 env->dst_cpu = env->dst_stats.idle_cpu;
1940 task_numa_assign(env, NULL, 0);
1941 return;
1942 }
1943 }
1944 } else {
1945 long src_load, dst_load, load;
1946 /*
1947 * If the improvement from just moving env->p direction is better
1948 * than swapping tasks around, check if a move is possible.
1949 */
1950 load = task_h_load(env->p);
1951 dst_load = env->dst_stats.load + load;
1952 src_load = env->src_stats.load - load;
1953 maymove = !load_too_imbalanced(src_load, dst_load, env);
1954 }
1955
1956 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1957 /* Skip this CPU if the source task cannot migrate */
1958 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1959 continue;
1960
1961 env->dst_cpu = cpu;
1962 if (task_numa_compare(env, taskimp, groupimp, maymove))
1963 break;
1964 }
1965 }
1966
1967 static int task_numa_migrate(struct task_struct *p)
1968 {
1969 struct task_numa_env env = {
1970 .p = p,
1971
1972 .src_cpu = task_cpu(p),
1973 .src_nid = task_node(p),
1974
1975 .imbalance_pct = 112,
1976
1977 .best_task = NULL,
1978 .best_imp = 0,
1979 .best_cpu = -1,
1980 };
1981 unsigned long taskweight, groupweight;
1982 struct sched_domain *sd;
1983 long taskimp, groupimp;
1984 struct numa_group *ng;
1985 struct rq *best_rq;
1986 int nid, ret, dist;
1987
1988 /*
1989 * Pick the lowest SD_NUMA domain, as that would have the smallest
1990 * imbalance and would be the first to start moving tasks about.
1991 *
1992 * And we want to avoid any moving of tasks about, as that would create
1993 * random movement of tasks -- counter the numa conditions we're trying
1994 * to satisfy here.
1995 */
1996 rcu_read_lock();
1997 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1998 if (sd)
1999 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2000 rcu_read_unlock();
2001
2002 /*
2003 * Cpusets can break the scheduler domain tree into smaller
2004 * balance domains, some of which do not cross NUMA boundaries.
2005 * Tasks that are "trapped" in such domains cannot be migrated
2006 * elsewhere, so there is no point in (re)trying.
2007 */
2008 if (unlikely(!sd)) {
2009 sched_setnuma(p, task_node(p));
2010 return -EINVAL;
2011 }
2012
2013 env.dst_nid = p->numa_preferred_nid;
2014 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2015 taskweight = task_weight(p, env.src_nid, dist);
2016 groupweight = group_weight(p, env.src_nid, dist);
2017 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2018 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2019 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2020 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2021
2022 /* Try to find a spot on the preferred nid. */
2023 task_numa_find_cpu(&env, taskimp, groupimp);
2024
2025 /*
2026 * Look at other nodes in these cases:
2027 * - there is no space available on the preferred_nid
2028 * - the task is part of a numa_group that is interleaved across
2029 * multiple NUMA nodes; in order to better consolidate the group,
2030 * we need to check other locations.
2031 */
2032 ng = deref_curr_numa_group(p);
2033 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2034 for_each_online_node(nid) {
2035 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2036 continue;
2037
2038 dist = node_distance(env.src_nid, env.dst_nid);
2039 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2040 dist != env.dist) {
2041 taskweight = task_weight(p, env.src_nid, dist);
2042 groupweight = group_weight(p, env.src_nid, dist);
2043 }
2044
2045 /* Only consider nodes where both task and groups benefit */
2046 taskimp = task_weight(p, nid, dist) - taskweight;
2047 groupimp = group_weight(p, nid, dist) - groupweight;
2048 if (taskimp < 0 && groupimp < 0)
2049 continue;
2050
2051 env.dist = dist;
2052 env.dst_nid = nid;
2053 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2054 task_numa_find_cpu(&env, taskimp, groupimp);
2055 }
2056 }
2057
2058 /*
2059 * If the task is part of a workload that spans multiple NUMA nodes,
2060 * and is migrating into one of the workload's active nodes, remember
2061 * this node as the task's preferred numa node, so the workload can
2062 * settle down.
2063 * A task that migrated to a second choice node will be better off
2064 * trying for a better one later. Do not set the preferred node here.
2065 */
2066 if (ng) {
2067 if (env.best_cpu == -1)
2068 nid = env.src_nid;
2069 else
2070 nid = cpu_to_node(env.best_cpu);
2071
2072 if (nid != p->numa_preferred_nid)
2073 sched_setnuma(p, nid);
2074 }
2075
2076 /* No better CPU than the current one was found. */
2077 if (env.best_cpu == -1) {
2078 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2079 return -EAGAIN;
2080 }
2081
2082 best_rq = cpu_rq(env.best_cpu);
2083 if (env.best_task == NULL) {
2084 ret = migrate_task_to(p, env.best_cpu);
2085 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2086 if (ret != 0)
2087 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2088 return ret;
2089 }
2090
2091 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2092 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2093
2094 if (ret != 0)
2095 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2096 put_task_struct(env.best_task);
2097 return ret;
2098 }
2099
2100 /* Attempt to migrate a task to a CPU on the preferred node. */
2101 static void numa_migrate_preferred(struct task_struct *p)
2102 {
2103 unsigned long interval = HZ;
2104
2105 /* This task has no NUMA fault statistics yet */
2106 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2107 return;
2108
2109 /* Periodically retry migrating the task to the preferred node */
2110 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2111 p->numa_migrate_retry = jiffies + interval;
2112
2113 /* Success if task is already running on preferred CPU */
2114 if (task_node(p) == p->numa_preferred_nid)
2115 return;
2116
2117 /* Otherwise, try migrate to a CPU on the preferred node */
2118 task_numa_migrate(p);
2119 }
2120
2121 /*
2122 * Find out how many nodes on the workload is actively running on. Do this by
2123 * tracking the nodes from which NUMA hinting faults are triggered. This can
2124 * be different from the set of nodes where the workload's memory is currently
2125 * located.
2126 */
2127 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2128 {
2129 unsigned long faults, max_faults = 0;
2130 int nid, active_nodes = 0;
2131
2132 for_each_online_node(nid) {
2133 faults = group_faults_cpu(numa_group, nid);
2134 if (faults > max_faults)
2135 max_faults = faults;
2136 }
2137
2138 for_each_online_node(nid) {
2139 faults = group_faults_cpu(numa_group, nid);
2140 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2141 active_nodes++;
2142 }
2143
2144 numa_group->max_faults_cpu = max_faults;
2145 numa_group->active_nodes = active_nodes;
2146 }
2147
2148 /*
2149 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2150 * increments. The more local the fault statistics are, the higher the scan
2151 * period will be for the next scan window. If local/(local+remote) ratio is
2152 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2153 * the scan period will decrease. Aim for 70% local accesses.
2154 */
2155 #define NUMA_PERIOD_SLOTS 10
2156 #define NUMA_PERIOD_THRESHOLD 7
2157
2158 /*
2159 * Increase the scan period (slow down scanning) if the majority of
2160 * our memory is already on our local node, or if the majority of
2161 * the page accesses are shared with other processes.
2162 * Otherwise, decrease the scan period.
2163 */
2164 static void update_task_scan_period(struct task_struct *p,
2165 unsigned long shared, unsigned long private)
2166 {
2167 unsigned int period_slot;
2168 int lr_ratio, ps_ratio;
2169 int diff;
2170
2171 unsigned long remote = p->numa_faults_locality[0];
2172 unsigned long local = p->numa_faults_locality[1];
2173
2174 /*
2175 * If there were no record hinting faults then either the task is
2176 * completely idle or all activity is areas that are not of interest
2177 * to automatic numa balancing. Related to that, if there were failed
2178 * migration then it implies we are migrating too quickly or the local
2179 * node is overloaded. In either case, scan slower
2180 */
2181 if (local + shared == 0 || p->numa_faults_locality[2]) {
2182 p->numa_scan_period = min(p->numa_scan_period_max,
2183 p->numa_scan_period << 1);
2184
2185 p->mm->numa_next_scan = jiffies +
2186 msecs_to_jiffies(p->numa_scan_period);
2187
2188 return;
2189 }
2190
2191 /*
2192 * Prepare to scale scan period relative to the current period.
2193 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2194 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2195 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2196 */
2197 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2198 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2199 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2200
2201 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2202 /*
2203 * Most memory accesses are local. There is no need to
2204 * do fast NUMA scanning, since memory is already local.
2205 */
2206 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2207 if (!slot)
2208 slot = 1;
2209 diff = slot * period_slot;
2210 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2211 /*
2212 * Most memory accesses are shared with other tasks.
2213 * There is no point in continuing fast NUMA scanning,
2214 * since other tasks may just move the memory elsewhere.
2215 */
2216 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2217 if (!slot)
2218 slot = 1;
2219 diff = slot * period_slot;
2220 } else {
2221 /*
2222 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2223 * yet they are not on the local NUMA node. Speed up
2224 * NUMA scanning to get the memory moved over.
2225 */
2226 int ratio = max(lr_ratio, ps_ratio);
2227 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2228 }
2229
2230 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2231 task_scan_min(p), task_scan_max(p));
2232 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2233 }
2234
2235 /*
2236 * Get the fraction of time the task has been running since the last
2237 * NUMA placement cycle. The scheduler keeps similar statistics, but
2238 * decays those on a 32ms period, which is orders of magnitude off
2239 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2240 * stats only if the task is so new there are no NUMA statistics yet.
2241 */
2242 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2243 {
2244 u64 runtime, delta, now;
2245 /* Use the start of this time slice to avoid calculations. */
2246 now = p->se.exec_start;
2247 runtime = p->se.sum_exec_runtime;
2248
2249 if (p->last_task_numa_placement) {
2250 delta = runtime - p->last_sum_exec_runtime;
2251 *period = now - p->last_task_numa_placement;
2252
2253 /* Avoid time going backwards, prevent potential divide error: */
2254 if (unlikely((s64)*period < 0))
2255 *period = 0;
2256 } else {
2257 delta = p->se.avg.load_sum;
2258 *period = LOAD_AVG_MAX;
2259 }
2260
2261 p->last_sum_exec_runtime = runtime;
2262 p->last_task_numa_placement = now;
2263
2264 return delta;
2265 }
2266
2267 /*
2268 * Determine the preferred nid for a task in a numa_group. This needs to
2269 * be done in a way that produces consistent results with group_weight,
2270 * otherwise workloads might not converge.
2271 */
2272 static int preferred_group_nid(struct task_struct *p, int nid)
2273 {
2274 nodemask_t nodes;
2275 int dist;
2276
2277 /* Direct connections between all NUMA nodes. */
2278 if (sched_numa_topology_type == NUMA_DIRECT)
2279 return nid;
2280
2281 /*
2282 * On a system with glueless mesh NUMA topology, group_weight
2283 * scores nodes according to the number of NUMA hinting faults on
2284 * both the node itself, and on nearby nodes.
2285 */
2286 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2287 unsigned long score, max_score = 0;
2288 int node, max_node = nid;
2289
2290 dist = sched_max_numa_distance;
2291
2292 for_each_online_node(node) {
2293 score = group_weight(p, node, dist);
2294 if (score > max_score) {
2295 max_score = score;
2296 max_node = node;
2297 }
2298 }
2299 return max_node;
2300 }
2301
2302 /*
2303 * Finding the preferred nid in a system with NUMA backplane
2304 * interconnect topology is more involved. The goal is to locate
2305 * tasks from numa_groups near each other in the system, and
2306 * untangle workloads from different sides of the system. This requires
2307 * searching down the hierarchy of node groups, recursively searching
2308 * inside the highest scoring group of nodes. The nodemask tricks
2309 * keep the complexity of the search down.
2310 */
2311 nodes = node_online_map;
2312 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2313 unsigned long max_faults = 0;
2314 nodemask_t max_group = NODE_MASK_NONE;
2315 int a, b;
2316
2317 /* Are there nodes at this distance from each other? */
2318 if (!find_numa_distance(dist))
2319 continue;
2320
2321 for_each_node_mask(a, nodes) {
2322 unsigned long faults = 0;
2323 nodemask_t this_group;
2324 nodes_clear(this_group);
2325
2326 /* Sum group's NUMA faults; includes a==b case. */
2327 for_each_node_mask(b, nodes) {
2328 if (node_distance(a, b) < dist) {
2329 faults += group_faults(p, b);
2330 node_set(b, this_group);
2331 node_clear(b, nodes);
2332 }
2333 }
2334
2335 /* Remember the top group. */
2336 if (faults > max_faults) {
2337 max_faults = faults;
2338 max_group = this_group;
2339 /*
2340 * subtle: at the smallest distance there is
2341 * just one node left in each "group", the
2342 * winner is the preferred nid.
2343 */
2344 nid = a;
2345 }
2346 }
2347 /* Next round, evaluate the nodes within max_group. */
2348 if (!max_faults)
2349 break;
2350 nodes = max_group;
2351 }
2352 return nid;
2353 }
2354
2355 static void task_numa_placement(struct task_struct *p)
2356 {
2357 int seq, nid, max_nid = NUMA_NO_NODE;
2358 unsigned long max_faults = 0;
2359 unsigned long fault_types[2] = { 0, 0 };
2360 unsigned long total_faults;
2361 u64 runtime, period;
2362 spinlock_t *group_lock = NULL;
2363 struct numa_group *ng;
2364
2365 /*
2366 * The p->mm->numa_scan_seq field gets updated without
2367 * exclusive access. Use READ_ONCE() here to ensure
2368 * that the field is read in a single access:
2369 */
2370 seq = READ_ONCE(p->mm->numa_scan_seq);
2371 if (p->numa_scan_seq == seq)
2372 return;
2373 p->numa_scan_seq = seq;
2374 p->numa_scan_period_max = task_scan_max(p);
2375
2376 total_faults = p->numa_faults_locality[0] +
2377 p->numa_faults_locality[1];
2378 runtime = numa_get_avg_runtime(p, &period);
2379
2380 /* If the task is part of a group prevent parallel updates to group stats */
2381 ng = deref_curr_numa_group(p);
2382 if (ng) {
2383 group_lock = &ng->lock;
2384 spin_lock_irq(group_lock);
2385 }
2386
2387 /* Find the node with the highest number of faults */
2388 for_each_online_node(nid) {
2389 /* Keep track of the offsets in numa_faults array */
2390 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2391 unsigned long faults = 0, group_faults = 0;
2392 int priv;
2393
2394 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2395 long diff, f_diff, f_weight;
2396
2397 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2398 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2399 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2400 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2401
2402 /* Decay existing window, copy faults since last scan */
2403 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2404 fault_types[priv] += p->numa_faults[membuf_idx];
2405 p->numa_faults[membuf_idx] = 0;
2406
2407 /*
2408 * Normalize the faults_from, so all tasks in a group
2409 * count according to CPU use, instead of by the raw
2410 * number of faults. Tasks with little runtime have
2411 * little over-all impact on throughput, and thus their
2412 * faults are less important.
2413 */
2414 f_weight = div64_u64(runtime << 16, period + 1);
2415 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2416 (total_faults + 1);
2417 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2418 p->numa_faults[cpubuf_idx] = 0;
2419
2420 p->numa_faults[mem_idx] += diff;
2421 p->numa_faults[cpu_idx] += f_diff;
2422 faults += p->numa_faults[mem_idx];
2423 p->total_numa_faults += diff;
2424 if (ng) {
2425 /*
2426 * safe because we can only change our own group
2427 *
2428 * mem_idx represents the offset for a given
2429 * nid and priv in a specific region because it
2430 * is at the beginning of the numa_faults array.
2431 */
2432 ng->faults[mem_idx] += diff;
2433 ng->faults_cpu[mem_idx] += f_diff;
2434 ng->total_faults += diff;
2435 group_faults += ng->faults[mem_idx];
2436 }
2437 }
2438
2439 if (!ng) {
2440 if (faults > max_faults) {
2441 max_faults = faults;
2442 max_nid = nid;
2443 }
2444 } else if (group_faults > max_faults) {
2445 max_faults = group_faults;
2446 max_nid = nid;
2447 }
2448 }
2449
2450 if (ng) {
2451 numa_group_count_active_nodes(ng);
2452 spin_unlock_irq(group_lock);
2453 max_nid = preferred_group_nid(p, max_nid);
2454 }
2455
2456 if (max_faults) {
2457 /* Set the new preferred node */
2458 if (max_nid != p->numa_preferred_nid)
2459 sched_setnuma(p, max_nid);
2460 }
2461
2462 update_task_scan_period(p, fault_types[0], fault_types[1]);
2463 }
2464
2465 static inline int get_numa_group(struct numa_group *grp)
2466 {
2467 return refcount_inc_not_zero(&grp->refcount);
2468 }
2469
2470 static inline void put_numa_group(struct numa_group *grp)
2471 {
2472 if (refcount_dec_and_test(&grp->refcount))
2473 kfree_rcu(grp, rcu);
2474 }
2475
2476 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2477 int *priv)
2478 {
2479 struct numa_group *grp, *my_grp;
2480 struct task_struct *tsk;
2481 bool join = false;
2482 int cpu = cpupid_to_cpu(cpupid);
2483 int i;
2484
2485 if (unlikely(!deref_curr_numa_group(p))) {
2486 unsigned int size = sizeof(struct numa_group) +
2487 4*nr_node_ids*sizeof(unsigned long);
2488
2489 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2490 if (!grp)
2491 return;
2492
2493 refcount_set(&grp->refcount, 1);
2494 grp->active_nodes = 1;
2495 grp->max_faults_cpu = 0;
2496 spin_lock_init(&grp->lock);
2497 grp->gid = p->pid;
2498 /* Second half of the array tracks nids where faults happen */
2499 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2500 nr_node_ids;
2501
2502 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2503 grp->faults[i] = p->numa_faults[i];
2504
2505 grp->total_faults = p->total_numa_faults;
2506
2507 grp->nr_tasks++;
2508 rcu_assign_pointer(p->numa_group, grp);
2509 }
2510
2511 rcu_read_lock();
2512 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2513
2514 if (!cpupid_match_pid(tsk, cpupid))
2515 goto no_join;
2516
2517 grp = rcu_dereference(tsk->numa_group);
2518 if (!grp)
2519 goto no_join;
2520
2521 my_grp = deref_curr_numa_group(p);
2522 if (grp == my_grp)
2523 goto no_join;
2524
2525 /*
2526 * Only join the other group if its bigger; if we're the bigger group,
2527 * the other task will join us.
2528 */
2529 if (my_grp->nr_tasks > grp->nr_tasks)
2530 goto no_join;
2531
2532 /*
2533 * Tie-break on the grp address.
2534 */
2535 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2536 goto no_join;
2537
2538 /* Always join threads in the same process. */
2539 if (tsk->mm == current->mm)
2540 join = true;
2541
2542 /* Simple filter to avoid false positives due to PID collisions */
2543 if (flags & TNF_SHARED)
2544 join = true;
2545
2546 /* Update priv based on whether false sharing was detected */
2547 *priv = !join;
2548
2549 if (join && !get_numa_group(grp))
2550 goto no_join;
2551
2552 rcu_read_unlock();
2553
2554 if (!join)
2555 return;
2556
2557 BUG_ON(irqs_disabled());
2558 double_lock_irq(&my_grp->lock, &grp->lock);
2559
2560 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2561 my_grp->faults[i] -= p->numa_faults[i];
2562 grp->faults[i] += p->numa_faults[i];
2563 }
2564 my_grp->total_faults -= p->total_numa_faults;
2565 grp->total_faults += p->total_numa_faults;
2566
2567 my_grp->nr_tasks--;
2568 grp->nr_tasks++;
2569
2570 spin_unlock(&my_grp->lock);
2571 spin_unlock_irq(&grp->lock);
2572
2573 rcu_assign_pointer(p->numa_group, grp);
2574
2575 put_numa_group(my_grp);
2576 return;
2577
2578 no_join:
2579 rcu_read_unlock();
2580 return;
2581 }
2582
2583 /*
2584 * Get rid of NUMA staticstics associated with a task (either current or dead).
2585 * If @final is set, the task is dead and has reached refcount zero, so we can
2586 * safely free all relevant data structures. Otherwise, there might be
2587 * concurrent reads from places like load balancing and procfs, and we should
2588 * reset the data back to default state without freeing ->numa_faults.
2589 */
2590 void task_numa_free(struct task_struct *p, bool final)
2591 {
2592 /* safe: p either is current or is being freed by current */
2593 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2594 unsigned long *numa_faults = p->numa_faults;
2595 unsigned long flags;
2596 int i;
2597
2598 if (!numa_faults)
2599 return;
2600
2601 if (grp) {
2602 spin_lock_irqsave(&grp->lock, flags);
2603 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2604 grp->faults[i] -= p->numa_faults[i];
2605 grp->total_faults -= p->total_numa_faults;
2606
2607 grp->nr_tasks--;
2608 spin_unlock_irqrestore(&grp->lock, flags);
2609 RCU_INIT_POINTER(p->numa_group, NULL);
2610 put_numa_group(grp);
2611 }
2612
2613 if (final) {
2614 p->numa_faults = NULL;
2615 kfree(numa_faults);
2616 } else {
2617 p->total_numa_faults = 0;
2618 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2619 numa_faults[i] = 0;
2620 }
2621 }
2622
2623 /*
2624 * Got a PROT_NONE fault for a page on @node.
2625 */
2626 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2627 {
2628 struct task_struct *p = current;
2629 bool migrated = flags & TNF_MIGRATED;
2630 int cpu_node = task_node(current);
2631 int local = !!(flags & TNF_FAULT_LOCAL);
2632 struct numa_group *ng;
2633 int priv;
2634
2635 if (!static_branch_likely(&sched_numa_balancing))
2636 return;
2637
2638 /* for example, ksmd faulting in a user's mm */
2639 if (!p->mm)
2640 return;
2641
2642 /* Allocate buffer to track faults on a per-node basis */
2643 if (unlikely(!p->numa_faults)) {
2644 int size = sizeof(*p->numa_faults) *
2645 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2646
2647 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2648 if (!p->numa_faults)
2649 return;
2650
2651 p->total_numa_faults = 0;
2652 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2653 }
2654
2655 /*
2656 * First accesses are treated as private, otherwise consider accesses
2657 * to be private if the accessing pid has not changed
2658 */
2659 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2660 priv = 1;
2661 } else {
2662 priv = cpupid_match_pid(p, last_cpupid);
2663 if (!priv && !(flags & TNF_NO_GROUP))
2664 task_numa_group(p, last_cpupid, flags, &priv);
2665 }
2666
2667 /*
2668 * If a workload spans multiple NUMA nodes, a shared fault that
2669 * occurs wholly within the set of nodes that the workload is
2670 * actively using should be counted as local. This allows the
2671 * scan rate to slow down when a workload has settled down.
2672 */
2673 ng = deref_curr_numa_group(p);
2674 if (!priv && !local && ng && ng->active_nodes > 1 &&
2675 numa_is_active_node(cpu_node, ng) &&
2676 numa_is_active_node(mem_node, ng))
2677 local = 1;
2678
2679 /*
2680 * Retry to migrate task to preferred node periodically, in case it
2681 * previously failed, or the scheduler moved us.
2682 */
2683 if (time_after(jiffies, p->numa_migrate_retry)) {
2684 task_numa_placement(p);
2685 numa_migrate_preferred(p);
2686 }
2687
2688 if (migrated)
2689 p->numa_pages_migrated += pages;
2690 if (flags & TNF_MIGRATE_FAIL)
2691 p->numa_faults_locality[2] += pages;
2692
2693 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2694 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2695 p->numa_faults_locality[local] += pages;
2696 }
2697
2698 static void reset_ptenuma_scan(struct task_struct *p)
2699 {
2700 /*
2701 * We only did a read acquisition of the mmap sem, so
2702 * p->mm->numa_scan_seq is written to without exclusive access
2703 * and the update is not guaranteed to be atomic. That's not
2704 * much of an issue though, since this is just used for
2705 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2706 * expensive, to avoid any form of compiler optimizations:
2707 */
2708 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2709 p->mm->numa_scan_offset = 0;
2710 }
2711
2712 /*
2713 * The expensive part of numa migration is done from task_work context.
2714 * Triggered from task_tick_numa().
2715 */
2716 static void task_numa_work(struct callback_head *work)
2717 {
2718 unsigned long migrate, next_scan, now = jiffies;
2719 struct task_struct *p = current;
2720 struct mm_struct *mm = p->mm;
2721 u64 runtime = p->se.sum_exec_runtime;
2722 struct vm_area_struct *vma;
2723 unsigned long start, end;
2724 unsigned long nr_pte_updates = 0;
2725 long pages, virtpages;
2726
2727 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2728
2729 work->next = work;
2730 /*
2731 * Who cares about NUMA placement when they're dying.
2732 *
2733 * NOTE: make sure not to dereference p->mm before this check,
2734 * exit_task_work() happens _after_ exit_mm() so we could be called
2735 * without p->mm even though we still had it when we enqueued this
2736 * work.
2737 */
2738 if (p->flags & PF_EXITING)
2739 return;
2740
2741 if (!mm->numa_next_scan) {
2742 mm->numa_next_scan = now +
2743 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2744 }
2745
2746 /*
2747 * Enforce maximal scan/migration frequency..
2748 */
2749 migrate = mm->numa_next_scan;
2750 if (time_before(now, migrate))
2751 return;
2752
2753 if (p->numa_scan_period == 0) {
2754 p->numa_scan_period_max = task_scan_max(p);
2755 p->numa_scan_period = task_scan_start(p);
2756 }
2757
2758 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2759 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2760 return;
2761
2762 /*
2763 * Delay this task enough that another task of this mm will likely win
2764 * the next time around.
2765 */
2766 p->node_stamp += 2 * TICK_NSEC;
2767
2768 start = mm->numa_scan_offset;
2769 pages = sysctl_numa_balancing_scan_size;
2770 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2771 virtpages = pages * 8; /* Scan up to this much virtual space */
2772 if (!pages)
2773 return;
2774
2775
2776 if (!mmap_read_trylock(mm))
2777 return;
2778 vma = find_vma(mm, start);
2779 if (!vma) {
2780 reset_ptenuma_scan(p);
2781 start = 0;
2782 vma = mm->mmap;
2783 }
2784 for (; vma; vma = vma->vm_next) {
2785 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2786 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2787 continue;
2788 }
2789
2790 /*
2791 * Shared library pages mapped by multiple processes are not
2792 * migrated as it is expected they are cache replicated. Avoid
2793 * hinting faults in read-only file-backed mappings or the vdso
2794 * as migrating the pages will be of marginal benefit.
2795 */
2796 if (!vma->vm_mm ||
2797 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2798 continue;
2799
2800 /*
2801 * Skip inaccessible VMAs to avoid any confusion between
2802 * PROT_NONE and NUMA hinting ptes
2803 */
2804 if (!vma_is_accessible(vma))
2805 continue;
2806
2807 do {
2808 start = max(start, vma->vm_start);
2809 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2810 end = min(end, vma->vm_end);
2811 nr_pte_updates = change_prot_numa(vma, start, end);
2812
2813 /*
2814 * Try to scan sysctl_numa_balancing_size worth of
2815 * hpages that have at least one present PTE that
2816 * is not already pte-numa. If the VMA contains
2817 * areas that are unused or already full of prot_numa
2818 * PTEs, scan up to virtpages, to skip through those
2819 * areas faster.
2820 */
2821 if (nr_pte_updates)
2822 pages -= (end - start) >> PAGE_SHIFT;
2823 virtpages -= (end - start) >> PAGE_SHIFT;
2824
2825 start = end;
2826 if (pages <= 0 || virtpages <= 0)
2827 goto out;
2828
2829 cond_resched();
2830 } while (end != vma->vm_end);
2831 }
2832
2833 out:
2834 /*
2835 * It is possible to reach the end of the VMA list but the last few
2836 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2837 * would find the !migratable VMA on the next scan but not reset the
2838 * scanner to the start so check it now.
2839 */
2840 if (vma)
2841 mm->numa_scan_offset = start;
2842 else
2843 reset_ptenuma_scan(p);
2844 mmap_read_unlock(mm);
2845
2846 /*
2847 * Make sure tasks use at least 32x as much time to run other code
2848 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2849 * Usually update_task_scan_period slows down scanning enough; on an
2850 * overloaded system we need to limit overhead on a per task basis.
2851 */
2852 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2853 u64 diff = p->se.sum_exec_runtime - runtime;
2854 p->node_stamp += 32 * diff;
2855 }
2856 }
2857
2858 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2859 {
2860 int mm_users = 0;
2861 struct mm_struct *mm = p->mm;
2862
2863 if (mm) {
2864 mm_users = atomic_read(&mm->mm_users);
2865 if (mm_users == 1) {
2866 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2867 mm->numa_scan_seq = 0;
2868 }
2869 }
2870 p->node_stamp = 0;
2871 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2872 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2873 /* Protect against double add, see task_tick_numa and task_numa_work */
2874 p->numa_work.next = &p->numa_work;
2875 p->numa_faults = NULL;
2876 RCU_INIT_POINTER(p->numa_group, NULL);
2877 p->last_task_numa_placement = 0;
2878 p->last_sum_exec_runtime = 0;
2879
2880 init_task_work(&p->numa_work, task_numa_work);
2881
2882 /* New address space, reset the preferred nid */
2883 if (!(clone_flags & CLONE_VM)) {
2884 p->numa_preferred_nid = NUMA_NO_NODE;
2885 return;
2886 }
2887
2888 /*
2889 * New thread, keep existing numa_preferred_nid which should be copied
2890 * already by arch_dup_task_struct but stagger when scans start.
2891 */
2892 if (mm) {
2893 unsigned int delay;
2894
2895 delay = min_t(unsigned int, task_scan_max(current),
2896 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2897 delay += 2 * TICK_NSEC;
2898 p->node_stamp = delay;
2899 }
2900 }
2901
2902 /*
2903 * Drive the periodic memory faults..
2904 */
2905 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2906 {
2907 struct callback_head *work = &curr->numa_work;
2908 u64 period, now;
2909
2910 /*
2911 * We don't care about NUMA placement if we don't have memory.
2912 */
2913 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2914 return;
2915
2916 /*
2917 * Using runtime rather than walltime has the dual advantage that
2918 * we (mostly) drive the selection from busy threads and that the
2919 * task needs to have done some actual work before we bother with
2920 * NUMA placement.
2921 */
2922 now = curr->se.sum_exec_runtime;
2923 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2924
2925 if (now > curr->node_stamp + period) {
2926 if (!curr->node_stamp)
2927 curr->numa_scan_period = task_scan_start(curr);
2928 curr->node_stamp += period;
2929
2930 if (!time_before(jiffies, curr->mm->numa_next_scan))
2931 task_work_add(curr, work, TWA_RESUME);
2932 }
2933 }
2934
2935 static void update_scan_period(struct task_struct *p, int new_cpu)
2936 {
2937 int src_nid = cpu_to_node(task_cpu(p));
2938 int dst_nid = cpu_to_node(new_cpu);
2939
2940 if (!static_branch_likely(&sched_numa_balancing))
2941 return;
2942
2943 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2944 return;
2945
2946 if (src_nid == dst_nid)
2947 return;
2948
2949 /*
2950 * Allow resets if faults have been trapped before one scan
2951 * has completed. This is most likely due to a new task that
2952 * is pulled cross-node due to wakeups or load balancing.
2953 */
2954 if (p->numa_scan_seq) {
2955 /*
2956 * Avoid scan adjustments if moving to the preferred
2957 * node or if the task was not previously running on
2958 * the preferred node.
2959 */
2960 if (dst_nid == p->numa_preferred_nid ||
2961 (p->numa_preferred_nid != NUMA_NO_NODE &&
2962 src_nid != p->numa_preferred_nid))
2963 return;
2964 }
2965
2966 p->numa_scan_period = task_scan_start(p);
2967 }
2968
2969 #else
2970 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2971 {
2972 }
2973
2974 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2975 {
2976 }
2977
2978 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2979 {
2980 }
2981
2982 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2983 {
2984 }
2985
2986 #endif /* CONFIG_NUMA_BALANCING */
2987
2988 static void
2989 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2990 {
2991 update_load_add(&cfs_rq->load, se->load.weight);
2992 #ifdef CONFIG_SMP
2993 if (entity_is_task(se)) {
2994 struct rq *rq = rq_of(cfs_rq);
2995
2996 account_numa_enqueue(rq, task_of(se));
2997 list_add(&se->group_node, &rq->cfs_tasks);
2998 }
2999 #endif
3000 cfs_rq->nr_running++;
3001 }
3002
3003 static void
3004 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3005 {
3006 update_load_sub(&cfs_rq->load, se->load.weight);
3007 #ifdef CONFIG_SMP
3008 if (entity_is_task(se)) {
3009 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3010 list_del_init(&se->group_node);
3011 }
3012 #endif
3013 cfs_rq->nr_running--;
3014 }
3015
3016 /*
3017 * Signed add and clamp on underflow.
3018 *
3019 * Explicitly do a load-store to ensure the intermediate value never hits
3020 * memory. This allows lockless observations without ever seeing the negative
3021 * values.
3022 */
3023 #define add_positive(_ptr, _val) do { \
3024 typeof(_ptr) ptr = (_ptr); \
3025 typeof(_val) val = (_val); \
3026 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3027 \
3028 res = var + val; \
3029 \
3030 if (val < 0 && res > var) \
3031 res = 0; \
3032 \
3033 WRITE_ONCE(*ptr, res); \
3034 } while (0)
3035
3036 /*
3037 * Unsigned subtract and clamp on underflow.
3038 *
3039 * Explicitly do a load-store to ensure the intermediate value never hits
3040 * memory. This allows lockless observations without ever seeing the negative
3041 * values.
3042 */
3043 #define sub_positive(_ptr, _val) do { \
3044 typeof(_ptr) ptr = (_ptr); \
3045 typeof(*ptr) val = (_val); \
3046 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3047 res = var - val; \
3048 if (res > var) \
3049 res = 0; \
3050 WRITE_ONCE(*ptr, res); \
3051 } while (0)
3052
3053 /*
3054 * Remove and clamp on negative, from a local variable.
3055 *
3056 * A variant of sub_positive(), which does not use explicit load-store
3057 * and is thus optimized for local variable updates.
3058 */
3059 #define lsub_positive(_ptr, _val) do { \
3060 typeof(_ptr) ptr = (_ptr); \
3061 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3062 } while (0)
3063
3064 #ifdef CONFIG_SMP
3065 static inline void
3066 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3067 {
3068 cfs_rq->avg.load_avg += se->avg.load_avg;
3069 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3070 }
3071
3072 static inline void
3073 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3074 {
3075 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3076 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3077 }
3078 #else
3079 static inline void
3080 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3081 static inline void
3082 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3083 #endif
3084
3085 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3086 unsigned long weight)
3087 {
3088 if (se->on_rq) {
3089 /* commit outstanding execution time */
3090 if (cfs_rq->curr == se)
3091 update_curr(cfs_rq);
3092 update_load_sub(&cfs_rq->load, se->load.weight);
3093 }
3094 dequeue_load_avg(cfs_rq, se);
3095
3096 update_load_set(&se->load, weight);
3097
3098 #ifdef CONFIG_SMP
3099 do {
3100 u32 divider = get_pelt_divider(&se->avg);
3101
3102 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3103 } while (0);
3104 #endif
3105
3106 enqueue_load_avg(cfs_rq, se);
3107 if (se->on_rq)
3108 update_load_add(&cfs_rq->load, se->load.weight);
3109
3110 }
3111
3112 void reweight_task(struct task_struct *p, int prio)
3113 {
3114 struct sched_entity *se = &p->se;
3115 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3116 struct load_weight *load = &se->load;
3117 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3118
3119 reweight_entity(cfs_rq, se, weight);
3120 load->inv_weight = sched_prio_to_wmult[prio];
3121 }
3122
3123 #ifdef CONFIG_FAIR_GROUP_SCHED
3124 #ifdef CONFIG_SMP
3125 /*
3126 * All this does is approximate the hierarchical proportion which includes that
3127 * global sum we all love to hate.
3128 *
3129 * That is, the weight of a group entity, is the proportional share of the
3130 * group weight based on the group runqueue weights. That is:
3131 *
3132 * tg->weight * grq->load.weight
3133 * ge->load.weight = ----------------------------- (1)
3134 * \Sum grq->load.weight
3135 *
3136 * Now, because computing that sum is prohibitively expensive to compute (been
3137 * there, done that) we approximate it with this average stuff. The average
3138 * moves slower and therefore the approximation is cheaper and more stable.
3139 *
3140 * So instead of the above, we substitute:
3141 *
3142 * grq->load.weight -> grq->avg.load_avg (2)
3143 *
3144 * which yields the following:
3145 *
3146 * tg->weight * grq->avg.load_avg
3147 * ge->load.weight = ------------------------------ (3)
3148 * tg->load_avg
3149 *
3150 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3151 *
3152 * That is shares_avg, and it is right (given the approximation (2)).
3153 *
3154 * The problem with it is that because the average is slow -- it was designed
3155 * to be exactly that of course -- this leads to transients in boundary
3156 * conditions. In specific, the case where the group was idle and we start the
3157 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3158 * yielding bad latency etc..
3159 *
3160 * Now, in that special case (1) reduces to:
3161 *
3162 * tg->weight * grq->load.weight
3163 * ge->load.weight = ----------------------------- = tg->weight (4)
3164 * grp->load.weight
3165 *
3166 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3167 *
3168 * So what we do is modify our approximation (3) to approach (4) in the (near)
3169 * UP case, like:
3170 *
3171 * ge->load.weight =
3172 *
3173 * tg->weight * grq->load.weight
3174 * --------------------------------------------------- (5)
3175 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3176 *
3177 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3178 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3179 *
3180 *
3181 * tg->weight * grq->load.weight
3182 * ge->load.weight = ----------------------------- (6)
3183 * tg_load_avg'
3184 *
3185 * Where:
3186 *
3187 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3188 * max(grq->load.weight, grq->avg.load_avg)
3189 *
3190 * And that is shares_weight and is icky. In the (near) UP case it approaches
3191 * (4) while in the normal case it approaches (3). It consistently
3192 * overestimates the ge->load.weight and therefore:
3193 *
3194 * \Sum ge->load.weight >= tg->weight
3195 *
3196 * hence icky!
3197 */
3198 static long calc_group_shares(struct cfs_rq *cfs_rq)
3199 {
3200 long tg_weight, tg_shares, load, shares;
3201 struct task_group *tg = cfs_rq->tg;
3202
3203 tg_shares = READ_ONCE(tg->shares);
3204
3205 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3206
3207 tg_weight = atomic_long_read(&tg->load_avg);
3208
3209 /* Ensure tg_weight >= load */
3210 tg_weight -= cfs_rq->tg_load_avg_contrib;
3211 tg_weight += load;
3212
3213 shares = (tg_shares * load);
3214 if (tg_weight)
3215 shares /= tg_weight;
3216
3217 /*
3218 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3219 * of a group with small tg->shares value. It is a floor value which is
3220 * assigned as a minimum load.weight to the sched_entity representing
3221 * the group on a CPU.
3222 *
3223 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3224 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3225 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3226 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3227 * instead of 0.
3228 */
3229 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3230 }
3231 #endif /* CONFIG_SMP */
3232
3233 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3234
3235 /*
3236 * Recomputes the group entity based on the current state of its group
3237 * runqueue.
3238 */
3239 static void update_cfs_group(struct sched_entity *se)
3240 {
3241 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3242 long shares;
3243
3244 if (!gcfs_rq)
3245 return;
3246
3247 if (throttled_hierarchy(gcfs_rq))
3248 return;
3249
3250 #ifndef CONFIG_SMP
3251 shares = READ_ONCE(gcfs_rq->tg->shares);
3252
3253 if (likely(se->load.weight == shares))
3254 return;
3255 #else
3256 shares = calc_group_shares(gcfs_rq);
3257 #endif
3258
3259 reweight_entity(cfs_rq_of(se), se, shares);
3260 }
3261
3262 #else /* CONFIG_FAIR_GROUP_SCHED */
3263 static inline void update_cfs_group(struct sched_entity *se)
3264 {
3265 }
3266 #endif /* CONFIG_FAIR_GROUP_SCHED */
3267
3268 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3269 {
3270 struct rq *rq = rq_of(cfs_rq);
3271
3272 if (&rq->cfs == cfs_rq) {
3273 /*
3274 * There are a few boundary cases this might miss but it should
3275 * get called often enough that that should (hopefully) not be
3276 * a real problem.
3277 *
3278 * It will not get called when we go idle, because the idle
3279 * thread is a different class (!fair), nor will the utilization
3280 * number include things like RT tasks.
3281 *
3282 * As is, the util number is not freq-invariant (we'd have to
3283 * implement arch_scale_freq_capacity() for that).
3284 *
3285 * See cpu_util().
3286 */
3287 cpufreq_update_util(rq, flags);
3288 }
3289 }
3290
3291 #ifdef CONFIG_SMP
3292 #ifdef CONFIG_FAIR_GROUP_SCHED
3293 /**
3294 * update_tg_load_avg - update the tg's load avg
3295 * @cfs_rq: the cfs_rq whose avg changed
3296 *
3297 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3298 * However, because tg->load_avg is a global value there are performance
3299 * considerations.
3300 *
3301 * In order to avoid having to look at the other cfs_rq's, we use a
3302 * differential update where we store the last value we propagated. This in
3303 * turn allows skipping updates if the differential is 'small'.
3304 *
3305 * Updating tg's load_avg is necessary before update_cfs_share().
3306 */
3307 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3308 {
3309 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3310
3311 /*
3312 * No need to update load_avg for root_task_group as it is not used.
3313 */
3314 if (cfs_rq->tg == &root_task_group)
3315 return;
3316
3317 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3318 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3319 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3320 }
3321 }
3322
3323 /*
3324 * Called within set_task_rq() right before setting a task's CPU. The
3325 * caller only guarantees p->pi_lock is held; no other assumptions,
3326 * including the state of rq->lock, should be made.
3327 */
3328 void set_task_rq_fair(struct sched_entity *se,
3329 struct cfs_rq *prev, struct cfs_rq *next)
3330 {
3331 u64 p_last_update_time;
3332 u64 n_last_update_time;
3333
3334 if (!sched_feat(ATTACH_AGE_LOAD))
3335 return;
3336
3337 /*
3338 * We are supposed to update the task to "current" time, then its up to
3339 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3340 * getting what current time is, so simply throw away the out-of-date
3341 * time. This will result in the wakee task is less decayed, but giving
3342 * the wakee more load sounds not bad.
3343 */
3344 if (!(se->avg.last_update_time && prev))
3345 return;
3346
3347 #ifndef CONFIG_64BIT
3348 {
3349 u64 p_last_update_time_copy;
3350 u64 n_last_update_time_copy;
3351
3352 do {
3353 p_last_update_time_copy = prev->load_last_update_time_copy;
3354 n_last_update_time_copy = next->load_last_update_time_copy;
3355
3356 smp_rmb();
3357
3358 p_last_update_time = prev->avg.last_update_time;
3359 n_last_update_time = next->avg.last_update_time;
3360
3361 } while (p_last_update_time != p_last_update_time_copy ||
3362 n_last_update_time != n_last_update_time_copy);
3363 }
3364 #else
3365 p_last_update_time = prev->avg.last_update_time;
3366 n_last_update_time = next->avg.last_update_time;
3367 #endif
3368 __update_load_avg_blocked_se(p_last_update_time, se);
3369 se->avg.last_update_time = n_last_update_time;
3370 }
3371
3372
3373 /*
3374 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3375 * propagate its contribution. The key to this propagation is the invariant
3376 * that for each group:
3377 *
3378 * ge->avg == grq->avg (1)
3379 *
3380 * _IFF_ we look at the pure running and runnable sums. Because they
3381 * represent the very same entity, just at different points in the hierarchy.
3382 *
3383 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3384 * and simply copies the running/runnable sum over (but still wrong, because
3385 * the group entity and group rq do not have their PELT windows aligned).
3386 *
3387 * However, update_tg_cfs_load() is more complex. So we have:
3388 *
3389 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3390 *
3391 * And since, like util, the runnable part should be directly transferable,
3392 * the following would _appear_ to be the straight forward approach:
3393 *
3394 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3395 *
3396 * And per (1) we have:
3397 *
3398 * ge->avg.runnable_avg == grq->avg.runnable_avg
3399 *
3400 * Which gives:
3401 *
3402 * ge->load.weight * grq->avg.load_avg
3403 * ge->avg.load_avg = ----------------------------------- (4)
3404 * grq->load.weight
3405 *
3406 * Except that is wrong!
3407 *
3408 * Because while for entities historical weight is not important and we
3409 * really only care about our future and therefore can consider a pure
3410 * runnable sum, runqueues can NOT do this.
3411 *
3412 * We specifically want runqueues to have a load_avg that includes
3413 * historical weights. Those represent the blocked load, the load we expect
3414 * to (shortly) return to us. This only works by keeping the weights as
3415 * integral part of the sum. We therefore cannot decompose as per (3).
3416 *
3417 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3418 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3419 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3420 * runnable section of these tasks overlap (or not). If they were to perfectly
3421 * align the rq as a whole would be runnable 2/3 of the time. If however we
3422 * always have at least 1 runnable task, the rq as a whole is always runnable.
3423 *
3424 * So we'll have to approximate.. :/
3425 *
3426 * Given the constraint:
3427 *
3428 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3429 *
3430 * We can construct a rule that adds runnable to a rq by assuming minimal
3431 * overlap.
3432 *
3433 * On removal, we'll assume each task is equally runnable; which yields:
3434 *
3435 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3436 *
3437 * XXX: only do this for the part of runnable > running ?
3438 *
3439 */
3440
3441 static inline void
3442 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3443 {
3444 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3445 u32 divider;
3446
3447 /* Nothing to update */
3448 if (!delta)
3449 return;
3450
3451 /*
3452 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3453 * See ___update_load_avg() for details.
3454 */
3455 divider = get_pelt_divider(&cfs_rq->avg);
3456
3457 /* Set new sched_entity's utilization */
3458 se->avg.util_avg = gcfs_rq->avg.util_avg;
3459 se->avg.util_sum = se->avg.util_avg * divider;
3460
3461 /* Update parent cfs_rq utilization */
3462 add_positive(&cfs_rq->avg.util_avg, delta);
3463 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3464 }
3465
3466 static inline void
3467 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3468 {
3469 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3470 u32 divider;
3471
3472 /* Nothing to update */
3473 if (!delta)
3474 return;
3475
3476 /*
3477 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3478 * See ___update_load_avg() for details.
3479 */
3480 divider = get_pelt_divider(&cfs_rq->avg);
3481
3482 /* Set new sched_entity's runnable */
3483 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3484 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3485
3486 /* Update parent cfs_rq runnable */
3487 add_positive(&cfs_rq->avg.runnable_avg, delta);
3488 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3489 }
3490
3491 static inline void
3492 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3493 {
3494 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3495 unsigned long load_avg;
3496 u64 load_sum = 0;
3497 s64 delta_sum;
3498 u32 divider;
3499
3500 if (!runnable_sum)
3501 return;
3502
3503 gcfs_rq->prop_runnable_sum = 0;
3504
3505 /*
3506 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3507 * See ___update_load_avg() for details.
3508 */
3509 divider = get_pelt_divider(&cfs_rq->avg);
3510
3511 if (runnable_sum >= 0) {
3512 /*
3513 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3514 * the CPU is saturated running == runnable.
3515 */
3516 runnable_sum += se->avg.load_sum;
3517 runnable_sum = min_t(long, runnable_sum, divider);
3518 } else {
3519 /*
3520 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3521 * assuming all tasks are equally runnable.
3522 */
3523 if (scale_load_down(gcfs_rq->load.weight)) {
3524 load_sum = div_s64(gcfs_rq->avg.load_sum,
3525 scale_load_down(gcfs_rq->load.weight));
3526 }
3527
3528 /* But make sure to not inflate se's runnable */
3529 runnable_sum = min(se->avg.load_sum, load_sum);
3530 }
3531
3532 /*
3533 * runnable_sum can't be lower than running_sum
3534 * Rescale running sum to be in the same range as runnable sum
3535 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3536 * runnable_sum is in [0 : LOAD_AVG_MAX]
3537 */
3538 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3539 runnable_sum = max(runnable_sum, running_sum);
3540
3541 load_sum = (s64)se_weight(se) * runnable_sum;
3542 load_avg = div_s64(load_sum, divider);
3543
3544 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3545 delta_avg = load_avg - se->avg.load_avg;
3546
3547 se->avg.load_sum = runnable_sum;
3548 se->avg.load_avg = load_avg;
3549 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3550 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3551 }
3552
3553 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3554 {
3555 cfs_rq->propagate = 1;
3556 cfs_rq->prop_runnable_sum += runnable_sum;
3557 }
3558
3559 /* Update task and its cfs_rq load average */
3560 static inline int propagate_entity_load_avg(struct sched_entity *se)
3561 {
3562 struct cfs_rq *cfs_rq, *gcfs_rq;
3563
3564 if (entity_is_task(se))
3565 return 0;
3566
3567 gcfs_rq = group_cfs_rq(se);
3568 if (!gcfs_rq->propagate)
3569 return 0;
3570
3571 gcfs_rq->propagate = 0;
3572
3573 cfs_rq = cfs_rq_of(se);
3574
3575 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3576
3577 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3578 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3579 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3580
3581 trace_pelt_cfs_tp(cfs_rq);
3582 trace_pelt_se_tp(se);
3583
3584 return 1;
3585 }
3586
3587 /*
3588 * Check if we need to update the load and the utilization of a blocked
3589 * group_entity:
3590 */
3591 static inline bool skip_blocked_update(struct sched_entity *se)
3592 {
3593 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3594
3595 /*
3596 * If sched_entity still have not zero load or utilization, we have to
3597 * decay it:
3598 */
3599 if (se->avg.load_avg || se->avg.util_avg)
3600 return false;
3601
3602 /*
3603 * If there is a pending propagation, we have to update the load and
3604 * the utilization of the sched_entity:
3605 */
3606 if (gcfs_rq->propagate)
3607 return false;
3608
3609 /*
3610 * Otherwise, the load and the utilization of the sched_entity is
3611 * already zero and there is no pending propagation, so it will be a
3612 * waste of time to try to decay it:
3613 */
3614 return true;
3615 }
3616
3617 #else /* CONFIG_FAIR_GROUP_SCHED */
3618
3619 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3620
3621 static inline int propagate_entity_load_avg(struct sched_entity *se)
3622 {
3623 return 0;
3624 }
3625
3626 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3627
3628 #endif /* CONFIG_FAIR_GROUP_SCHED */
3629
3630 /**
3631 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3632 * @now: current time, as per cfs_rq_clock_pelt()
3633 * @cfs_rq: cfs_rq to update
3634 *
3635 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3636 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3637 * post_init_entity_util_avg().
3638 *
3639 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3640 *
3641 * Returns true if the load decayed or we removed load.
3642 *
3643 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3644 * call update_tg_load_avg() when this function returns true.
3645 */
3646 static inline int
3647 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3648 {
3649 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3650 struct sched_avg *sa = &cfs_rq->avg;
3651 int decayed = 0;
3652
3653 if (cfs_rq->removed.nr) {
3654 unsigned long r;
3655 u32 divider = get_pelt_divider(&cfs_rq->avg);
3656
3657 raw_spin_lock(&cfs_rq->removed.lock);
3658 swap(cfs_rq->removed.util_avg, removed_util);
3659 swap(cfs_rq->removed.load_avg, removed_load);
3660 swap(cfs_rq->removed.runnable_avg, removed_runnable);
3661 cfs_rq->removed.nr = 0;
3662 raw_spin_unlock(&cfs_rq->removed.lock);
3663
3664 r = removed_load;
3665 sub_positive(&sa->load_avg, r);
3666 sub_positive(&sa->load_sum, r * divider);
3667
3668 r = removed_util;
3669 sub_positive(&sa->util_avg, r);
3670 sub_positive(&sa->util_sum, r * divider);
3671
3672 r = removed_runnable;
3673 sub_positive(&sa->runnable_avg, r);
3674 sub_positive(&sa->runnable_sum, r * divider);
3675
3676 /*
3677 * removed_runnable is the unweighted version of removed_load so we
3678 * can use it to estimate removed_load_sum.
3679 */
3680 add_tg_cfs_propagate(cfs_rq,
3681 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3682
3683 decayed = 1;
3684 }
3685
3686 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3687
3688 #ifndef CONFIG_64BIT
3689 smp_wmb();
3690 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3691 #endif
3692
3693 return decayed;
3694 }
3695
3696 /**
3697 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3698 * @cfs_rq: cfs_rq to attach to
3699 * @se: sched_entity to attach
3700 *
3701 * Must call update_cfs_rq_load_avg() before this, since we rely on
3702 * cfs_rq->avg.last_update_time being current.
3703 */
3704 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3705 {
3706 /*
3707 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3708 * See ___update_load_avg() for details.
3709 */
3710 u32 divider = get_pelt_divider(&cfs_rq->avg);
3711
3712 /*
3713 * When we attach the @se to the @cfs_rq, we must align the decay
3714 * window because without that, really weird and wonderful things can
3715 * happen.
3716 *
3717 * XXX illustrate
3718 */
3719 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3720 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3721
3722 /*
3723 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3724 * period_contrib. This isn't strictly correct, but since we're
3725 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3726 * _sum a little.
3727 */
3728 se->avg.util_sum = se->avg.util_avg * divider;
3729
3730 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3731
3732 se->avg.load_sum = divider;
3733 if (se_weight(se)) {
3734 se->avg.load_sum =
3735 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3736 }
3737
3738 enqueue_load_avg(cfs_rq, se);
3739 cfs_rq->avg.util_avg += se->avg.util_avg;
3740 cfs_rq->avg.util_sum += se->avg.util_sum;
3741 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3742 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3743
3744 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3745
3746 cfs_rq_util_change(cfs_rq, 0);
3747
3748 trace_pelt_cfs_tp(cfs_rq);
3749 }
3750
3751 /**
3752 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3753 * @cfs_rq: cfs_rq to detach from
3754 * @se: sched_entity to detach
3755 *
3756 * Must call update_cfs_rq_load_avg() before this, since we rely on
3757 * cfs_rq->avg.last_update_time being current.
3758 */
3759 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3760 {
3761 dequeue_load_avg(cfs_rq, se);
3762 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3763 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3764 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3765 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3766
3767 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3768
3769 cfs_rq_util_change(cfs_rq, 0);
3770
3771 trace_pelt_cfs_tp(cfs_rq);
3772 }
3773
3774 /*
3775 * Optional action to be done while updating the load average
3776 */
3777 #define UPDATE_TG 0x1
3778 #define SKIP_AGE_LOAD 0x2
3779 #define DO_ATTACH 0x4
3780
3781 /* Update task and its cfs_rq load average */
3782 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3783 {
3784 u64 now = cfs_rq_clock_pelt(cfs_rq);
3785 int decayed;
3786
3787 /*
3788 * Track task load average for carrying it to new CPU after migrated, and
3789 * track group sched_entity load average for task_h_load calc in migration
3790 */
3791 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3792 __update_load_avg_se(now, cfs_rq, se);
3793
3794 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3795 decayed |= propagate_entity_load_avg(se);
3796
3797 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3798
3799 /*
3800 * DO_ATTACH means we're here from enqueue_entity().
3801 * !last_update_time means we've passed through
3802 * migrate_task_rq_fair() indicating we migrated.
3803 *
3804 * IOW we're enqueueing a task on a new CPU.
3805 */
3806 attach_entity_load_avg(cfs_rq, se);
3807 update_tg_load_avg(cfs_rq);
3808
3809 } else if (decayed) {
3810 cfs_rq_util_change(cfs_rq, 0);
3811
3812 if (flags & UPDATE_TG)
3813 update_tg_load_avg(cfs_rq);
3814 }
3815 }
3816
3817 #ifndef CONFIG_64BIT
3818 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3819 {
3820 u64 last_update_time_copy;
3821 u64 last_update_time;
3822
3823 do {
3824 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3825 smp_rmb();
3826 last_update_time = cfs_rq->avg.last_update_time;
3827 } while (last_update_time != last_update_time_copy);
3828
3829 return last_update_time;
3830 }
3831 #else
3832 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3833 {
3834 return cfs_rq->avg.last_update_time;
3835 }
3836 #endif
3837
3838 /*
3839 * Synchronize entity load avg of dequeued entity without locking
3840 * the previous rq.
3841 */
3842 static void sync_entity_load_avg(struct sched_entity *se)
3843 {
3844 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3845 u64 last_update_time;
3846
3847 last_update_time = cfs_rq_last_update_time(cfs_rq);
3848 __update_load_avg_blocked_se(last_update_time, se);
3849 }
3850
3851 /*
3852 * Task first catches up with cfs_rq, and then subtract
3853 * itself from the cfs_rq (task must be off the queue now).
3854 */
3855 static void remove_entity_load_avg(struct sched_entity *se)
3856 {
3857 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3858 unsigned long flags;
3859
3860 /*
3861 * tasks cannot exit without having gone through wake_up_new_task() ->
3862 * post_init_entity_util_avg() which will have added things to the
3863 * cfs_rq, so we can remove unconditionally.
3864 */
3865
3866 sync_entity_load_avg(se);
3867
3868 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3869 ++cfs_rq->removed.nr;
3870 cfs_rq->removed.util_avg += se->avg.util_avg;
3871 cfs_rq->removed.load_avg += se->avg.load_avg;
3872 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
3873 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3874 }
3875
3876 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3877 {
3878 return cfs_rq->avg.runnable_avg;
3879 }
3880
3881 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3882 {
3883 return cfs_rq->avg.load_avg;
3884 }
3885
3886 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3887
3888 static inline unsigned long task_util(struct task_struct *p)
3889 {
3890 return READ_ONCE(p->se.avg.util_avg);
3891 }
3892
3893 static inline unsigned long _task_util_est(struct task_struct *p)
3894 {
3895 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3896
3897 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3898 }
3899
3900 static inline unsigned long task_util_est(struct task_struct *p)
3901 {
3902 return max(task_util(p), _task_util_est(p));
3903 }
3904
3905 #ifdef CONFIG_UCLAMP_TASK
3906 static inline unsigned long uclamp_task_util(struct task_struct *p)
3907 {
3908 return clamp(task_util_est(p),
3909 uclamp_eff_value(p, UCLAMP_MIN),
3910 uclamp_eff_value(p, UCLAMP_MAX));
3911 }
3912 #else
3913 static inline unsigned long uclamp_task_util(struct task_struct *p)
3914 {
3915 return task_util_est(p);
3916 }
3917 #endif
3918
3919 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3920 struct task_struct *p)
3921 {
3922 unsigned int enqueued;
3923
3924 if (!sched_feat(UTIL_EST))
3925 return;
3926
3927 /* Update root cfs_rq's estimated utilization */
3928 enqueued = cfs_rq->avg.util_est.enqueued;
3929 enqueued += _task_util_est(p);
3930 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3931
3932 trace_sched_util_est_cfs_tp(cfs_rq);
3933 }
3934
3935 /*
3936 * Check if a (signed) value is within a specified (unsigned) margin,
3937 * based on the observation that:
3938 *
3939 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3940 *
3941 * NOTE: this only works when value + maring < INT_MAX.
3942 */
3943 static inline bool within_margin(int value, int margin)
3944 {
3945 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3946 }
3947
3948 static void
3949 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3950 {
3951 long last_ewma_diff;
3952 struct util_est ue;
3953 int cpu;
3954
3955 if (!sched_feat(UTIL_EST))
3956 return;
3957
3958 /* Update root cfs_rq's estimated utilization */
3959 ue.enqueued = cfs_rq->avg.util_est.enqueued;
3960 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3961 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3962
3963 trace_sched_util_est_cfs_tp(cfs_rq);
3964
3965 /*
3966 * Skip update of task's estimated utilization when the task has not
3967 * yet completed an activation, e.g. being migrated.
3968 */
3969 if (!task_sleep)
3970 return;
3971
3972 /*
3973 * If the PELT values haven't changed since enqueue time,
3974 * skip the util_est update.
3975 */
3976 ue = p->se.avg.util_est;
3977 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3978 return;
3979
3980 /*
3981 * Reset EWMA on utilization increases, the moving average is used only
3982 * to smooth utilization decreases.
3983 */
3984 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3985 if (sched_feat(UTIL_EST_FASTUP)) {
3986 if (ue.ewma < ue.enqueued) {
3987 ue.ewma = ue.enqueued;
3988 goto done;
3989 }
3990 }
3991
3992 /*
3993 * Skip update of task's estimated utilization when its EWMA is
3994 * already ~1% close to its last activation value.
3995 */
3996 last_ewma_diff = ue.enqueued - ue.ewma;
3997 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3998 return;
3999
4000 /*
4001 * To avoid overestimation of actual task utilization, skip updates if
4002 * we cannot grant there is idle time in this CPU.
4003 */
4004 cpu = cpu_of(rq_of(cfs_rq));
4005 if (task_util(p) > capacity_orig_of(cpu))
4006 return;
4007
4008 /*
4009 * Update Task's estimated utilization
4010 *
4011 * When *p completes an activation we can consolidate another sample
4012 * of the task size. This is done by storing the current PELT value
4013 * as ue.enqueued and by using this value to update the Exponential
4014 * Weighted Moving Average (EWMA):
4015 *
4016 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4017 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4018 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4019 * = w * ( last_ewma_diff ) + ewma(t-1)
4020 * = w * (last_ewma_diff + ewma(t-1) / w)
4021 *
4022 * Where 'w' is the weight of new samples, which is configured to be
4023 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4024 */
4025 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4026 ue.ewma += last_ewma_diff;
4027 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4028 done:
4029 WRITE_ONCE(p->se.avg.util_est, ue);
4030
4031 trace_sched_util_est_se_tp(&p->se);
4032 }
4033
4034 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4035 {
4036 return fits_capacity(uclamp_task_util(p), capacity);
4037 }
4038
4039 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4040 {
4041 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4042 return;
4043
4044 if (!p) {
4045 rq->misfit_task_load = 0;
4046 return;
4047 }
4048
4049 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4050 rq->misfit_task_load = 0;
4051 return;
4052 }
4053
4054 /*
4055 * Make sure that misfit_task_load will not be null even if
4056 * task_h_load() returns 0.
4057 */
4058 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4059 }
4060
4061 #else /* CONFIG_SMP */
4062
4063 #define UPDATE_TG 0x0
4064 #define SKIP_AGE_LOAD 0x0
4065 #define DO_ATTACH 0x0
4066
4067 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4068 {
4069 cfs_rq_util_change(cfs_rq, 0);
4070 }
4071
4072 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4073
4074 static inline void
4075 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4076 static inline void
4077 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4078
4079 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4080 {
4081 return 0;
4082 }
4083
4084 static inline void
4085 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4086
4087 static inline void
4088 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4089 bool task_sleep) {}
4090 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4091
4092 #endif /* CONFIG_SMP */
4093
4094 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4095 {
4096 #ifdef CONFIG_SCHED_DEBUG
4097 s64 d = se->vruntime - cfs_rq->min_vruntime;
4098
4099 if (d < 0)
4100 d = -d;
4101
4102 if (d > 3*sysctl_sched_latency)
4103 schedstat_inc(cfs_rq->nr_spread_over);
4104 #endif
4105 }
4106
4107 static void
4108 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4109 {
4110 u64 vruntime = cfs_rq->min_vruntime;
4111
4112 /*
4113 * The 'current' period is already promised to the current tasks,
4114 * however the extra weight of the new task will slow them down a
4115 * little, place the new task so that it fits in the slot that
4116 * stays open at the end.
4117 */
4118 if (initial && sched_feat(START_DEBIT))
4119 vruntime += sched_vslice(cfs_rq, se);
4120
4121 /* sleeps up to a single latency don't count. */
4122 if (!initial) {
4123 unsigned long thresh = sysctl_sched_latency;
4124
4125 /*
4126 * Halve their sleep time's effect, to allow
4127 * for a gentler effect of sleepers:
4128 */
4129 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4130 thresh >>= 1;
4131
4132 vruntime -= thresh;
4133 }
4134
4135 /* ensure we never gain time by being placed backwards. */
4136 se->vruntime = max_vruntime(se->vruntime, vruntime);
4137 }
4138
4139 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4140
4141 static inline void check_schedstat_required(void)
4142 {
4143 #ifdef CONFIG_SCHEDSTATS
4144 if (schedstat_enabled())
4145 return;
4146
4147 /* Force schedstat enabled if a dependent tracepoint is active */
4148 if (trace_sched_stat_wait_enabled() ||
4149 trace_sched_stat_sleep_enabled() ||
4150 trace_sched_stat_iowait_enabled() ||
4151 trace_sched_stat_blocked_enabled() ||
4152 trace_sched_stat_runtime_enabled()) {
4153 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4154 "stat_blocked and stat_runtime require the "
4155 "kernel parameter schedstats=enable or "
4156 "kernel.sched_schedstats=1\n");
4157 }
4158 #endif
4159 }
4160
4161 static inline bool cfs_bandwidth_used(void);
4162
4163 /*
4164 * MIGRATION
4165 *
4166 * dequeue
4167 * update_curr()
4168 * update_min_vruntime()
4169 * vruntime -= min_vruntime
4170 *
4171 * enqueue
4172 * update_curr()
4173 * update_min_vruntime()
4174 * vruntime += min_vruntime
4175 *
4176 * this way the vruntime transition between RQs is done when both
4177 * min_vruntime are up-to-date.
4178 *
4179 * WAKEUP (remote)
4180 *
4181 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4182 * vruntime -= min_vruntime
4183 *
4184 * enqueue
4185 * update_curr()
4186 * update_min_vruntime()
4187 * vruntime += min_vruntime
4188 *
4189 * this way we don't have the most up-to-date min_vruntime on the originating
4190 * CPU and an up-to-date min_vruntime on the destination CPU.
4191 */
4192
4193 static void
4194 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4195 {
4196 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4197 bool curr = cfs_rq->curr == se;
4198
4199 /*
4200 * If we're the current task, we must renormalise before calling
4201 * update_curr().
4202 */
4203 if (renorm && curr)
4204 se->vruntime += cfs_rq->min_vruntime;
4205
4206 update_curr(cfs_rq);
4207
4208 /*
4209 * Otherwise, renormalise after, such that we're placed at the current
4210 * moment in time, instead of some random moment in the past. Being
4211 * placed in the past could significantly boost this task to the
4212 * fairness detriment of existing tasks.
4213 */
4214 if (renorm && !curr)
4215 se->vruntime += cfs_rq->min_vruntime;
4216
4217 /*
4218 * When enqueuing a sched_entity, we must:
4219 * - Update loads to have both entity and cfs_rq synced with now.
4220 * - Add its load to cfs_rq->runnable_avg
4221 * - For group_entity, update its weight to reflect the new share of
4222 * its group cfs_rq
4223 * - Add its new weight to cfs_rq->load.weight
4224 */
4225 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4226 se_update_runnable(se);
4227 update_cfs_group(se);
4228 account_entity_enqueue(cfs_rq, se);
4229
4230 if (flags & ENQUEUE_WAKEUP)
4231 place_entity(cfs_rq, se, 0);
4232
4233 check_schedstat_required();
4234 update_stats_enqueue(cfs_rq, se, flags);
4235 check_spread(cfs_rq, se);
4236 if (!curr)
4237 __enqueue_entity(cfs_rq, se);
4238 se->on_rq = 1;
4239
4240 /*
4241 * When bandwidth control is enabled, cfs might have been removed
4242 * because of a parent been throttled but cfs->nr_running > 1. Try to
4243 * add it unconditionnally.
4244 */
4245 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4246 list_add_leaf_cfs_rq(cfs_rq);
4247
4248 if (cfs_rq->nr_running == 1)
4249 check_enqueue_throttle(cfs_rq);
4250 }
4251
4252 static void __clear_buddies_last(struct sched_entity *se)
4253 {
4254 for_each_sched_entity(se) {
4255 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4256 if (cfs_rq->last != se)
4257 break;
4258
4259 cfs_rq->last = NULL;
4260 }
4261 }
4262
4263 static void __clear_buddies_next(struct sched_entity *se)
4264 {
4265 for_each_sched_entity(se) {
4266 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4267 if (cfs_rq->next != se)
4268 break;
4269
4270 cfs_rq->next = NULL;
4271 }
4272 }
4273
4274 static void __clear_buddies_skip(struct sched_entity *se)
4275 {
4276 for_each_sched_entity(se) {
4277 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4278 if (cfs_rq->skip != se)
4279 break;
4280
4281 cfs_rq->skip = NULL;
4282 }
4283 }
4284
4285 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4286 {
4287 if (cfs_rq->last == se)
4288 __clear_buddies_last(se);
4289
4290 if (cfs_rq->next == se)
4291 __clear_buddies_next(se);
4292
4293 if (cfs_rq->skip == se)
4294 __clear_buddies_skip(se);
4295 }
4296
4297 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4298
4299 static void
4300 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4301 {
4302 /*
4303 * Update run-time statistics of the 'current'.
4304 */
4305 update_curr(cfs_rq);
4306
4307 /*
4308 * When dequeuing a sched_entity, we must:
4309 * - Update loads to have both entity and cfs_rq synced with now.
4310 * - Subtract its load from the cfs_rq->runnable_avg.
4311 * - Subtract its previous weight from cfs_rq->load.weight.
4312 * - For group entity, update its weight to reflect the new share
4313 * of its group cfs_rq.
4314 */
4315 update_load_avg(cfs_rq, se, UPDATE_TG);
4316 se_update_runnable(se);
4317
4318 update_stats_dequeue(cfs_rq, se, flags);
4319
4320 clear_buddies(cfs_rq, se);
4321
4322 if (se != cfs_rq->curr)
4323 __dequeue_entity(cfs_rq, se);
4324 se->on_rq = 0;
4325 account_entity_dequeue(cfs_rq, se);
4326
4327 /*
4328 * Normalize after update_curr(); which will also have moved
4329 * min_vruntime if @se is the one holding it back. But before doing
4330 * update_min_vruntime() again, which will discount @se's position and
4331 * can move min_vruntime forward still more.
4332 */
4333 if (!(flags & DEQUEUE_SLEEP))
4334 se->vruntime -= cfs_rq->min_vruntime;
4335
4336 /* return excess runtime on last dequeue */
4337 return_cfs_rq_runtime(cfs_rq);
4338
4339 update_cfs_group(se);
4340
4341 /*
4342 * Now advance min_vruntime if @se was the entity holding it back,
4343 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4344 * put back on, and if we advance min_vruntime, we'll be placed back
4345 * further than we started -- ie. we'll be penalized.
4346 */
4347 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4348 update_min_vruntime(cfs_rq);
4349 }
4350
4351 /*
4352 * Preempt the current task with a newly woken task if needed:
4353 */
4354 static void
4355 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4356 {
4357 unsigned long ideal_runtime, delta_exec;
4358 struct sched_entity *se;
4359 s64 delta;
4360
4361 ideal_runtime = sched_slice(cfs_rq, curr);
4362 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4363 if (delta_exec > ideal_runtime) {
4364 resched_curr(rq_of(cfs_rq));
4365 /*
4366 * The current task ran long enough, ensure it doesn't get
4367 * re-elected due to buddy favours.
4368 */
4369 clear_buddies(cfs_rq, curr);
4370 return;
4371 }
4372
4373 /*
4374 * Ensure that a task that missed wakeup preemption by a
4375 * narrow margin doesn't have to wait for a full slice.
4376 * This also mitigates buddy induced latencies under load.
4377 */
4378 if (delta_exec < sysctl_sched_min_granularity)
4379 return;
4380
4381 se = __pick_first_entity(cfs_rq);
4382 delta = curr->vruntime - se->vruntime;
4383
4384 if (delta < 0)
4385 return;
4386
4387 if (delta > ideal_runtime)
4388 resched_curr(rq_of(cfs_rq));
4389 }
4390
4391 static void
4392 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4393 {
4394 /* 'current' is not kept within the tree. */
4395 if (se->on_rq) {
4396 /*
4397 * Any task has to be enqueued before it get to execute on
4398 * a CPU. So account for the time it spent waiting on the
4399 * runqueue.
4400 */
4401 update_stats_wait_end(cfs_rq, se);
4402 __dequeue_entity(cfs_rq, se);
4403 update_load_avg(cfs_rq, se, UPDATE_TG);
4404 }
4405
4406 update_stats_curr_start(cfs_rq, se);
4407 cfs_rq->curr = se;
4408
4409 /*
4410 * Track our maximum slice length, if the CPU's load is at
4411 * least twice that of our own weight (i.e. dont track it
4412 * when there are only lesser-weight tasks around):
4413 */
4414 if (schedstat_enabled() &&
4415 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4416 schedstat_set(se->statistics.slice_max,
4417 max((u64)schedstat_val(se->statistics.slice_max),
4418 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4419 }
4420
4421 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4422 }
4423
4424 static int
4425 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4426
4427 /*
4428 * Pick the next process, keeping these things in mind, in this order:
4429 * 1) keep things fair between processes/task groups
4430 * 2) pick the "next" process, since someone really wants that to run
4431 * 3) pick the "last" process, for cache locality
4432 * 4) do not run the "skip" process, if something else is available
4433 */
4434 static struct sched_entity *
4435 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4436 {
4437 struct sched_entity *left = __pick_first_entity(cfs_rq);
4438 struct sched_entity *se;
4439
4440 /*
4441 * If curr is set we have to see if its left of the leftmost entity
4442 * still in the tree, provided there was anything in the tree at all.
4443 */
4444 if (!left || (curr && entity_before(curr, left)))
4445 left = curr;
4446
4447 se = left; /* ideally we run the leftmost entity */
4448
4449 /*
4450 * Avoid running the skip buddy, if running something else can
4451 * be done without getting too unfair.
4452 */
4453 if (cfs_rq->skip == se) {
4454 struct sched_entity *second;
4455
4456 if (se == curr) {
4457 second = __pick_first_entity(cfs_rq);
4458 } else {
4459 second = __pick_next_entity(se);
4460 if (!second || (curr && entity_before(curr, second)))
4461 second = curr;
4462 }
4463
4464 if (second && wakeup_preempt_entity(second, left) < 1)
4465 se = second;
4466 }
4467
4468 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4469 /*
4470 * Someone really wants this to run. If it's not unfair, run it.
4471 */
4472 se = cfs_rq->next;
4473 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4474 /*
4475 * Prefer last buddy, try to return the CPU to a preempted task.
4476 */
4477 se = cfs_rq->last;
4478 }
4479
4480 clear_buddies(cfs_rq, se);
4481
4482 return se;
4483 }
4484
4485 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4486
4487 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4488 {
4489 /*
4490 * If still on the runqueue then deactivate_task()
4491 * was not called and update_curr() has to be done:
4492 */
4493 if (prev->on_rq)
4494 update_curr(cfs_rq);
4495
4496 /* throttle cfs_rqs exceeding runtime */
4497 check_cfs_rq_runtime(cfs_rq);
4498
4499 check_spread(cfs_rq, prev);
4500
4501 if (prev->on_rq) {
4502 update_stats_wait_start(cfs_rq, prev);
4503 /* Put 'current' back into the tree. */
4504 __enqueue_entity(cfs_rq, prev);
4505 /* in !on_rq case, update occurred at dequeue */
4506 update_load_avg(cfs_rq, prev, 0);
4507 }
4508 cfs_rq->curr = NULL;
4509 }
4510
4511 static void
4512 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4513 {
4514 /*
4515 * Update run-time statistics of the 'current'.
4516 */
4517 update_curr(cfs_rq);
4518
4519 /*
4520 * Ensure that runnable average is periodically updated.
4521 */
4522 update_load_avg(cfs_rq, curr, UPDATE_TG);
4523 update_cfs_group(curr);
4524
4525 #ifdef CONFIG_SCHED_HRTICK
4526 /*
4527 * queued ticks are scheduled to match the slice, so don't bother
4528 * validating it and just reschedule.
4529 */
4530 if (queued) {
4531 resched_curr(rq_of(cfs_rq));
4532 return;
4533 }
4534 /*
4535 * don't let the period tick interfere with the hrtick preemption
4536 */
4537 if (!sched_feat(DOUBLE_TICK) &&
4538 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4539 return;
4540 #endif
4541
4542 if (cfs_rq->nr_running > 1)
4543 check_preempt_tick(cfs_rq, curr);
4544 }
4545
4546
4547 /**************************************************
4548 * CFS bandwidth control machinery
4549 */
4550
4551 #ifdef CONFIG_CFS_BANDWIDTH
4552
4553 #ifdef CONFIG_JUMP_LABEL
4554 static struct static_key __cfs_bandwidth_used;
4555
4556 static inline bool cfs_bandwidth_used(void)
4557 {
4558 return static_key_false(&__cfs_bandwidth_used);
4559 }
4560
4561 void cfs_bandwidth_usage_inc(void)
4562 {
4563 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4564 }
4565
4566 void cfs_bandwidth_usage_dec(void)
4567 {
4568 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4569 }
4570 #else /* CONFIG_JUMP_LABEL */
4571 static bool cfs_bandwidth_used(void)
4572 {
4573 return true;
4574 }
4575
4576 void cfs_bandwidth_usage_inc(void) {}
4577 void cfs_bandwidth_usage_dec(void) {}
4578 #endif /* CONFIG_JUMP_LABEL */
4579
4580 /*
4581 * default period for cfs group bandwidth.
4582 * default: 0.1s, units: nanoseconds
4583 */
4584 static inline u64 default_cfs_period(void)
4585 {
4586 return 100000000ULL;
4587 }
4588
4589 static inline u64 sched_cfs_bandwidth_slice(void)
4590 {
4591 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4592 }
4593
4594 /*
4595 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4596 * directly instead of rq->clock to avoid adding additional synchronization
4597 * around rq->lock.
4598 *
4599 * requires cfs_b->lock
4600 */
4601 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4602 {
4603 if (cfs_b->quota != RUNTIME_INF)
4604 cfs_b->runtime = cfs_b->quota;
4605 }
4606
4607 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4608 {
4609 return &tg->cfs_bandwidth;
4610 }
4611
4612 /* returns 0 on failure to allocate runtime */
4613 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4614 struct cfs_rq *cfs_rq, u64 target_runtime)
4615 {
4616 u64 min_amount, amount = 0;
4617
4618 lockdep_assert_held(&cfs_b->lock);
4619
4620 /* note: this is a positive sum as runtime_remaining <= 0 */
4621 min_amount = target_runtime - cfs_rq->runtime_remaining;
4622
4623 if (cfs_b->quota == RUNTIME_INF)
4624 amount = min_amount;
4625 else {
4626 start_cfs_bandwidth(cfs_b);
4627
4628 if (cfs_b->runtime > 0) {
4629 amount = min(cfs_b->runtime, min_amount);
4630 cfs_b->runtime -= amount;
4631 cfs_b->idle = 0;
4632 }
4633 }
4634
4635 cfs_rq->runtime_remaining += amount;
4636
4637 return cfs_rq->runtime_remaining > 0;
4638 }
4639
4640 /* returns 0 on failure to allocate runtime */
4641 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4642 {
4643 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4644 int ret;
4645
4646 raw_spin_lock(&cfs_b->lock);
4647 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4648 raw_spin_unlock(&cfs_b->lock);
4649
4650 return ret;
4651 }
4652
4653 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4654 {
4655 /* dock delta_exec before expiring quota (as it could span periods) */
4656 cfs_rq->runtime_remaining -= delta_exec;
4657
4658 if (likely(cfs_rq->runtime_remaining > 0))
4659 return;
4660
4661 if (cfs_rq->throttled)
4662 return;
4663 /*
4664 * if we're unable to extend our runtime we resched so that the active
4665 * hierarchy can be throttled
4666 */
4667 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4668 resched_curr(rq_of(cfs_rq));
4669 }
4670
4671 static __always_inline
4672 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4673 {
4674 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4675 return;
4676
4677 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4678 }
4679
4680 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4681 {
4682 return cfs_bandwidth_used() && cfs_rq->throttled;
4683 }
4684
4685 /* check whether cfs_rq, or any parent, is throttled */
4686 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4687 {
4688 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4689 }
4690
4691 /*
4692 * Ensure that neither of the group entities corresponding to src_cpu or
4693 * dest_cpu are members of a throttled hierarchy when performing group
4694 * load-balance operations.
4695 */
4696 static inline int throttled_lb_pair(struct task_group *tg,
4697 int src_cpu, int dest_cpu)
4698 {
4699 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4700
4701 src_cfs_rq = tg->cfs_rq[src_cpu];
4702 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4703
4704 return throttled_hierarchy(src_cfs_rq) ||
4705 throttled_hierarchy(dest_cfs_rq);
4706 }
4707
4708 static int tg_unthrottle_up(struct task_group *tg, void *data)
4709 {
4710 struct rq *rq = data;
4711 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4712
4713 cfs_rq->throttle_count--;
4714 if (!cfs_rq->throttle_count) {
4715 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4716 cfs_rq->throttled_clock_task;
4717
4718 /* Add cfs_rq with already running entity in the list */
4719 if (cfs_rq->nr_running >= 1)
4720 list_add_leaf_cfs_rq(cfs_rq);
4721 }
4722
4723 return 0;
4724 }
4725
4726 static int tg_throttle_down(struct task_group *tg, void *data)
4727 {
4728 struct rq *rq = data;
4729 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4730
4731 /* group is entering throttled state, stop time */
4732 if (!cfs_rq->throttle_count) {
4733 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4734 list_del_leaf_cfs_rq(cfs_rq);
4735 }
4736 cfs_rq->throttle_count++;
4737
4738 return 0;
4739 }
4740
4741 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4742 {
4743 struct rq *rq = rq_of(cfs_rq);
4744 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4745 struct sched_entity *se;
4746 long task_delta, idle_task_delta, dequeue = 1;
4747
4748 raw_spin_lock(&cfs_b->lock);
4749 /* This will start the period timer if necessary */
4750 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4751 /*
4752 * We have raced with bandwidth becoming available, and if we
4753 * actually throttled the timer might not unthrottle us for an
4754 * entire period. We additionally needed to make sure that any
4755 * subsequent check_cfs_rq_runtime calls agree not to throttle
4756 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4757 * for 1ns of runtime rather than just check cfs_b.
4758 */
4759 dequeue = 0;
4760 } else {
4761 list_add_tail_rcu(&cfs_rq->throttled_list,
4762 &cfs_b->throttled_cfs_rq);
4763 }
4764 raw_spin_unlock(&cfs_b->lock);
4765
4766 if (!dequeue)
4767 return false; /* Throttle no longer required. */
4768
4769 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4770
4771 /* freeze hierarchy runnable averages while throttled */
4772 rcu_read_lock();
4773 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4774 rcu_read_unlock();
4775
4776 task_delta = cfs_rq->h_nr_running;
4777 idle_task_delta = cfs_rq->idle_h_nr_running;
4778 for_each_sched_entity(se) {
4779 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4780 /* throttled entity or throttle-on-deactivate */
4781 if (!se->on_rq)
4782 break;
4783
4784 if (dequeue) {
4785 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4786 } else {
4787 update_load_avg(qcfs_rq, se, 0);
4788 se_update_runnable(se);
4789 }
4790
4791 qcfs_rq->h_nr_running -= task_delta;
4792 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4793
4794 if (qcfs_rq->load.weight)
4795 dequeue = 0;
4796 }
4797
4798 if (!se)
4799 sub_nr_running(rq, task_delta);
4800
4801 /*
4802 * Note: distribution will already see us throttled via the
4803 * throttled-list. rq->lock protects completion.
4804 */
4805 cfs_rq->throttled = 1;
4806 cfs_rq->throttled_clock = rq_clock(rq);
4807 return true;
4808 }
4809
4810 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4811 {
4812 struct rq *rq = rq_of(cfs_rq);
4813 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4814 struct sched_entity *se;
4815 long task_delta, idle_task_delta;
4816
4817 se = cfs_rq->tg->se[cpu_of(rq)];
4818
4819 cfs_rq->throttled = 0;
4820
4821 update_rq_clock(rq);
4822
4823 raw_spin_lock(&cfs_b->lock);
4824 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4825 list_del_rcu(&cfs_rq->throttled_list);
4826 raw_spin_unlock(&cfs_b->lock);
4827
4828 /* update hierarchical throttle state */
4829 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4830
4831 if (!cfs_rq->load.weight)
4832 return;
4833
4834 task_delta = cfs_rq->h_nr_running;
4835 idle_task_delta = cfs_rq->idle_h_nr_running;
4836 for_each_sched_entity(se) {
4837 if (se->on_rq)
4838 break;
4839 cfs_rq = cfs_rq_of(se);
4840 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4841
4842 cfs_rq->h_nr_running += task_delta;
4843 cfs_rq->idle_h_nr_running += idle_task_delta;
4844
4845 /* end evaluation on encountering a throttled cfs_rq */
4846 if (cfs_rq_throttled(cfs_rq))
4847 goto unthrottle_throttle;
4848 }
4849
4850 for_each_sched_entity(se) {
4851 cfs_rq = cfs_rq_of(se);
4852
4853 update_load_avg(cfs_rq, se, UPDATE_TG);
4854 se_update_runnable(se);
4855
4856 cfs_rq->h_nr_running += task_delta;
4857 cfs_rq->idle_h_nr_running += idle_task_delta;
4858
4859
4860 /* end evaluation on encountering a throttled cfs_rq */
4861 if (cfs_rq_throttled(cfs_rq))
4862 goto unthrottle_throttle;
4863
4864 /*
4865 * One parent has been throttled and cfs_rq removed from the
4866 * list. Add it back to not break the leaf list.
4867 */
4868 if (throttled_hierarchy(cfs_rq))
4869 list_add_leaf_cfs_rq(cfs_rq);
4870 }
4871
4872 /* At this point se is NULL and we are at root level*/
4873 add_nr_running(rq, task_delta);
4874
4875 unthrottle_throttle:
4876 /*
4877 * The cfs_rq_throttled() breaks in the above iteration can result in
4878 * incomplete leaf list maintenance, resulting in triggering the
4879 * assertion below.
4880 */
4881 for_each_sched_entity(se) {
4882 cfs_rq = cfs_rq_of(se);
4883
4884 if (list_add_leaf_cfs_rq(cfs_rq))
4885 break;
4886 }
4887
4888 assert_list_leaf_cfs_rq(rq);
4889
4890 /* Determine whether we need to wake up potentially idle CPU: */
4891 if (rq->curr == rq->idle && rq->cfs.nr_running)
4892 resched_curr(rq);
4893 }
4894
4895 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4896 {
4897 struct cfs_rq *cfs_rq;
4898 u64 runtime, remaining = 1;
4899
4900 rcu_read_lock();
4901 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4902 throttled_list) {
4903 struct rq *rq = rq_of(cfs_rq);
4904 struct rq_flags rf;
4905
4906 rq_lock_irqsave(rq, &rf);
4907 if (!cfs_rq_throttled(cfs_rq))
4908 goto next;
4909
4910 /* By the above check, this should never be true */
4911 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4912
4913 raw_spin_lock(&cfs_b->lock);
4914 runtime = -cfs_rq->runtime_remaining + 1;
4915 if (runtime > cfs_b->runtime)
4916 runtime = cfs_b->runtime;
4917 cfs_b->runtime -= runtime;
4918 remaining = cfs_b->runtime;
4919 raw_spin_unlock(&cfs_b->lock);
4920
4921 cfs_rq->runtime_remaining += runtime;
4922
4923 /* we check whether we're throttled above */
4924 if (cfs_rq->runtime_remaining > 0)
4925 unthrottle_cfs_rq(cfs_rq);
4926
4927 next:
4928 rq_unlock_irqrestore(rq, &rf);
4929
4930 if (!remaining)
4931 break;
4932 }
4933 rcu_read_unlock();
4934 }
4935
4936 /*
4937 * Responsible for refilling a task_group's bandwidth and unthrottling its
4938 * cfs_rqs as appropriate. If there has been no activity within the last
4939 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4940 * used to track this state.
4941 */
4942 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4943 {
4944 int throttled;
4945
4946 /* no need to continue the timer with no bandwidth constraint */
4947 if (cfs_b->quota == RUNTIME_INF)
4948 goto out_deactivate;
4949
4950 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4951 cfs_b->nr_periods += overrun;
4952
4953 /*
4954 * idle depends on !throttled (for the case of a large deficit), and if
4955 * we're going inactive then everything else can be deferred
4956 */
4957 if (cfs_b->idle && !throttled)
4958 goto out_deactivate;
4959
4960 __refill_cfs_bandwidth_runtime(cfs_b);
4961
4962 if (!throttled) {
4963 /* mark as potentially idle for the upcoming period */
4964 cfs_b->idle = 1;
4965 return 0;
4966 }
4967
4968 /* account preceding periods in which throttling occurred */
4969 cfs_b->nr_throttled += overrun;
4970
4971 /*
4972 * This check is repeated as we release cfs_b->lock while we unthrottle.
4973 */
4974 while (throttled && cfs_b->runtime > 0) {
4975 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4976 /* we can't nest cfs_b->lock while distributing bandwidth */
4977 distribute_cfs_runtime(cfs_b);
4978 raw_spin_lock_irqsave(&cfs_b->lock, flags);
4979
4980 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4981 }
4982
4983 /*
4984 * While we are ensured activity in the period following an
4985 * unthrottle, this also covers the case in which the new bandwidth is
4986 * insufficient to cover the existing bandwidth deficit. (Forcing the
4987 * timer to remain active while there are any throttled entities.)
4988 */
4989 cfs_b->idle = 0;
4990
4991 return 0;
4992
4993 out_deactivate:
4994 return 1;
4995 }
4996
4997 /* a cfs_rq won't donate quota below this amount */
4998 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4999 /* minimum remaining period time to redistribute slack quota */
5000 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5001 /* how long we wait to gather additional slack before distributing */
5002 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5003
5004 /*
5005 * Are we near the end of the current quota period?
5006 *
5007 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5008 * hrtimer base being cleared by hrtimer_start. In the case of
5009 * migrate_hrtimers, base is never cleared, so we are fine.
5010 */
5011 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5012 {
5013 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5014 u64 remaining;
5015
5016 /* if the call-back is running a quota refresh is already occurring */
5017 if (hrtimer_callback_running(refresh_timer))
5018 return 1;
5019
5020 /* is a quota refresh about to occur? */
5021 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5022 if (remaining < min_expire)
5023 return 1;
5024
5025 return 0;
5026 }
5027
5028 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5029 {
5030 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5031
5032 /* if there's a quota refresh soon don't bother with slack */
5033 if (runtime_refresh_within(cfs_b, min_left))
5034 return;
5035
5036 /* don't push forwards an existing deferred unthrottle */
5037 if (cfs_b->slack_started)
5038 return;
5039 cfs_b->slack_started = true;
5040
5041 hrtimer_start(&cfs_b->slack_timer,
5042 ns_to_ktime(cfs_bandwidth_slack_period),
5043 HRTIMER_MODE_REL);
5044 }
5045
5046 /* we know any runtime found here is valid as update_curr() precedes return */
5047 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5048 {
5049 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5050 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5051
5052 if (slack_runtime <= 0)
5053 return;
5054
5055 raw_spin_lock(&cfs_b->lock);
5056 if (cfs_b->quota != RUNTIME_INF) {
5057 cfs_b->runtime += slack_runtime;
5058
5059 /* we are under rq->lock, defer unthrottling using a timer */
5060 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5061 !list_empty(&cfs_b->throttled_cfs_rq))
5062 start_cfs_slack_bandwidth(cfs_b);
5063 }
5064 raw_spin_unlock(&cfs_b->lock);
5065
5066 /* even if it's not valid for return we don't want to try again */
5067 cfs_rq->runtime_remaining -= slack_runtime;
5068 }
5069
5070 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5071 {
5072 if (!cfs_bandwidth_used())
5073 return;
5074
5075 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5076 return;
5077
5078 __return_cfs_rq_runtime(cfs_rq);
5079 }
5080
5081 /*
5082 * This is done with a timer (instead of inline with bandwidth return) since
5083 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5084 */
5085 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5086 {
5087 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5088 unsigned long flags;
5089
5090 /* confirm we're still not at a refresh boundary */
5091 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5092 cfs_b->slack_started = false;
5093
5094 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5095 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5096 return;
5097 }
5098
5099 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5100 runtime = cfs_b->runtime;
5101
5102 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5103
5104 if (!runtime)
5105 return;
5106
5107 distribute_cfs_runtime(cfs_b);
5108
5109 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5110 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5111 }
5112
5113 /*
5114 * When a group wakes up we want to make sure that its quota is not already
5115 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5116 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5117 */
5118 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5119 {
5120 if (!cfs_bandwidth_used())
5121 return;
5122
5123 /* an active group must be handled by the update_curr()->put() path */
5124 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5125 return;
5126
5127 /* ensure the group is not already throttled */
5128 if (cfs_rq_throttled(cfs_rq))
5129 return;
5130
5131 /* update runtime allocation */
5132 account_cfs_rq_runtime(cfs_rq, 0);
5133 if (cfs_rq->runtime_remaining <= 0)
5134 throttle_cfs_rq(cfs_rq);
5135 }
5136
5137 static void sync_throttle(struct task_group *tg, int cpu)
5138 {
5139 struct cfs_rq *pcfs_rq, *cfs_rq;
5140
5141 if (!cfs_bandwidth_used())
5142 return;
5143
5144 if (!tg->parent)
5145 return;
5146
5147 cfs_rq = tg->cfs_rq[cpu];
5148 pcfs_rq = tg->parent->cfs_rq[cpu];
5149
5150 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5151 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5152 }
5153
5154 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5155 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5156 {
5157 if (!cfs_bandwidth_used())
5158 return false;
5159
5160 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5161 return false;
5162
5163 /*
5164 * it's possible for a throttled entity to be forced into a running
5165 * state (e.g. set_curr_task), in this case we're finished.
5166 */
5167 if (cfs_rq_throttled(cfs_rq))
5168 return true;
5169
5170 return throttle_cfs_rq(cfs_rq);
5171 }
5172
5173 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5174 {
5175 struct cfs_bandwidth *cfs_b =
5176 container_of(timer, struct cfs_bandwidth, slack_timer);
5177
5178 do_sched_cfs_slack_timer(cfs_b);
5179
5180 return HRTIMER_NORESTART;
5181 }
5182
5183 extern const u64 max_cfs_quota_period;
5184
5185 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5186 {
5187 struct cfs_bandwidth *cfs_b =
5188 container_of(timer, struct cfs_bandwidth, period_timer);
5189 unsigned long flags;
5190 int overrun;
5191 int idle = 0;
5192 int count = 0;
5193
5194 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5195 for (;;) {
5196 overrun = hrtimer_forward_now(timer, cfs_b->period);
5197 if (!overrun)
5198 break;
5199
5200 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5201
5202 if (++count > 3) {
5203 u64 new, old = ktime_to_ns(cfs_b->period);
5204
5205 /*
5206 * Grow period by a factor of 2 to avoid losing precision.
5207 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5208 * to fail.
5209 */
5210 new = old * 2;
5211 if (new < max_cfs_quota_period) {
5212 cfs_b->period = ns_to_ktime(new);
5213 cfs_b->quota *= 2;
5214
5215 pr_warn_ratelimited(
5216 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5217 smp_processor_id(),
5218 div_u64(new, NSEC_PER_USEC),
5219 div_u64(cfs_b->quota, NSEC_PER_USEC));
5220 } else {
5221 pr_warn_ratelimited(
5222 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5223 smp_processor_id(),
5224 div_u64(old, NSEC_PER_USEC),
5225 div_u64(cfs_b->quota, NSEC_PER_USEC));
5226 }
5227
5228 /* reset count so we don't come right back in here */
5229 count = 0;
5230 }
5231 }
5232 if (idle)
5233 cfs_b->period_active = 0;
5234 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5235
5236 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5237 }
5238
5239 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5240 {
5241 raw_spin_lock_init(&cfs_b->lock);
5242 cfs_b->runtime = 0;
5243 cfs_b->quota = RUNTIME_INF;
5244 cfs_b->period = ns_to_ktime(default_cfs_period());
5245
5246 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5247 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5248 cfs_b->period_timer.function = sched_cfs_period_timer;
5249 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5250 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5251 cfs_b->slack_started = false;
5252 }
5253
5254 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5255 {
5256 cfs_rq->runtime_enabled = 0;
5257 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5258 }
5259
5260 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5261 {
5262 lockdep_assert_held(&cfs_b->lock);
5263
5264 if (cfs_b->period_active)
5265 return;
5266
5267 cfs_b->period_active = 1;
5268 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5269 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5270 }
5271
5272 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5273 {
5274 /* init_cfs_bandwidth() was not called */
5275 if (!cfs_b->throttled_cfs_rq.next)
5276 return;
5277
5278 hrtimer_cancel(&cfs_b->period_timer);
5279 hrtimer_cancel(&cfs_b->slack_timer);
5280 }
5281
5282 /*
5283 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5284 *
5285 * The race is harmless, since modifying bandwidth settings of unhooked group
5286 * bits doesn't do much.
5287 */
5288
5289 /* cpu online calback */
5290 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5291 {
5292 struct task_group *tg;
5293
5294 lockdep_assert_held(&rq->lock);
5295
5296 rcu_read_lock();
5297 list_for_each_entry_rcu(tg, &task_groups, list) {
5298 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5299 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5300
5301 raw_spin_lock(&cfs_b->lock);
5302 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5303 raw_spin_unlock(&cfs_b->lock);
5304 }
5305 rcu_read_unlock();
5306 }
5307
5308 /* cpu offline callback */
5309 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5310 {
5311 struct task_group *tg;
5312
5313 lockdep_assert_held(&rq->lock);
5314
5315 rcu_read_lock();
5316 list_for_each_entry_rcu(tg, &task_groups, list) {
5317 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5318
5319 if (!cfs_rq->runtime_enabled)
5320 continue;
5321
5322 /*
5323 * clock_task is not advancing so we just need to make sure
5324 * there's some valid quota amount
5325 */
5326 cfs_rq->runtime_remaining = 1;
5327 /*
5328 * Offline rq is schedulable till CPU is completely disabled
5329 * in take_cpu_down(), so we prevent new cfs throttling here.
5330 */
5331 cfs_rq->runtime_enabled = 0;
5332
5333 if (cfs_rq_throttled(cfs_rq))
5334 unthrottle_cfs_rq(cfs_rq);
5335 }
5336 rcu_read_unlock();
5337 }
5338
5339 #else /* CONFIG_CFS_BANDWIDTH */
5340
5341 static inline bool cfs_bandwidth_used(void)
5342 {
5343 return false;
5344 }
5345
5346 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5347 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5348 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5349 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5350 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5351
5352 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5353 {
5354 return 0;
5355 }
5356
5357 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5358 {
5359 return 0;
5360 }
5361
5362 static inline int throttled_lb_pair(struct task_group *tg,
5363 int src_cpu, int dest_cpu)
5364 {
5365 return 0;
5366 }
5367
5368 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5369
5370 #ifdef CONFIG_FAIR_GROUP_SCHED
5371 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5372 #endif
5373
5374 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5375 {
5376 return NULL;
5377 }
5378 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5379 static inline void update_runtime_enabled(struct rq *rq) {}
5380 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5381
5382 #endif /* CONFIG_CFS_BANDWIDTH */
5383
5384 /**************************************************
5385 * CFS operations on tasks:
5386 */
5387
5388 #ifdef CONFIG_SCHED_HRTICK
5389 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5390 {
5391 struct sched_entity *se = &p->se;
5392 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5393
5394 SCHED_WARN_ON(task_rq(p) != rq);
5395
5396 if (rq->cfs.h_nr_running > 1) {
5397 u64 slice = sched_slice(cfs_rq, se);
5398 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5399 s64 delta = slice - ran;
5400
5401 if (delta < 0) {
5402 if (rq->curr == p)
5403 resched_curr(rq);
5404 return;
5405 }
5406 hrtick_start(rq, delta);
5407 }
5408 }
5409
5410 /*
5411 * called from enqueue/dequeue and updates the hrtick when the
5412 * current task is from our class and nr_running is low enough
5413 * to matter.
5414 */
5415 static void hrtick_update(struct rq *rq)
5416 {
5417 struct task_struct *curr = rq->curr;
5418
5419 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5420 return;
5421
5422 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5423 hrtick_start_fair(rq, curr);
5424 }
5425 #else /* !CONFIG_SCHED_HRTICK */
5426 static inline void
5427 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5428 {
5429 }
5430
5431 static inline void hrtick_update(struct rq *rq)
5432 {
5433 }
5434 #endif
5435
5436 #ifdef CONFIG_SMP
5437 static inline unsigned long cpu_util(int cpu);
5438
5439 static inline bool cpu_overutilized(int cpu)
5440 {
5441 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5442 }
5443
5444 static inline void update_overutilized_status(struct rq *rq)
5445 {
5446 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5447 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5448 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5449 }
5450 }
5451 #else
5452 static inline void update_overutilized_status(struct rq *rq) { }
5453 #endif
5454
5455 /* Runqueue only has SCHED_IDLE tasks enqueued */
5456 static int sched_idle_rq(struct rq *rq)
5457 {
5458 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5459 rq->nr_running);
5460 }
5461
5462 #ifdef CONFIG_SMP
5463 static int sched_idle_cpu(int cpu)
5464 {
5465 return sched_idle_rq(cpu_rq(cpu));
5466 }
5467 #endif
5468
5469 /*
5470 * The enqueue_task method is called before nr_running is
5471 * increased. Here we update the fair scheduling stats and
5472 * then put the task into the rbtree:
5473 */
5474 static void
5475 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5476 {
5477 struct cfs_rq *cfs_rq;
5478 struct sched_entity *se = &p->se;
5479 int idle_h_nr_running = task_has_idle_policy(p);
5480
5481 /*
5482 * The code below (indirectly) updates schedutil which looks at
5483 * the cfs_rq utilization to select a frequency.
5484 * Let's add the task's estimated utilization to the cfs_rq's
5485 * estimated utilization, before we update schedutil.
5486 */
5487 util_est_enqueue(&rq->cfs, p);
5488
5489 /*
5490 * If in_iowait is set, the code below may not trigger any cpufreq
5491 * utilization updates, so do it here explicitly with the IOWAIT flag
5492 * passed.
5493 */
5494 if (p->in_iowait)
5495 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5496
5497 for_each_sched_entity(se) {
5498 if (se->on_rq)
5499 break;
5500 cfs_rq = cfs_rq_of(se);
5501 enqueue_entity(cfs_rq, se, flags);
5502
5503 cfs_rq->h_nr_running++;
5504 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5505
5506 /* end evaluation on encountering a throttled cfs_rq */
5507 if (cfs_rq_throttled(cfs_rq))
5508 goto enqueue_throttle;
5509
5510 flags = ENQUEUE_WAKEUP;
5511 }
5512
5513 for_each_sched_entity(se) {
5514 cfs_rq = cfs_rq_of(se);
5515
5516 update_load_avg(cfs_rq, se, UPDATE_TG);
5517 se_update_runnable(se);
5518 update_cfs_group(se);
5519
5520 cfs_rq->h_nr_running++;
5521 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5522
5523 /* end evaluation on encountering a throttled cfs_rq */
5524 if (cfs_rq_throttled(cfs_rq))
5525 goto enqueue_throttle;
5526
5527 /*
5528 * One parent has been throttled and cfs_rq removed from the
5529 * list. Add it back to not break the leaf list.
5530 */
5531 if (throttled_hierarchy(cfs_rq))
5532 list_add_leaf_cfs_rq(cfs_rq);
5533 }
5534
5535 /* At this point se is NULL and we are at root level*/
5536 add_nr_running(rq, 1);
5537
5538 /*
5539 * Since new tasks are assigned an initial util_avg equal to
5540 * half of the spare capacity of their CPU, tiny tasks have the
5541 * ability to cross the overutilized threshold, which will
5542 * result in the load balancer ruining all the task placement
5543 * done by EAS. As a way to mitigate that effect, do not account
5544 * for the first enqueue operation of new tasks during the
5545 * overutilized flag detection.
5546 *
5547 * A better way of solving this problem would be to wait for
5548 * the PELT signals of tasks to converge before taking them
5549 * into account, but that is not straightforward to implement,
5550 * and the following generally works well enough in practice.
5551 */
5552 if (flags & ENQUEUE_WAKEUP)
5553 update_overutilized_status(rq);
5554
5555 enqueue_throttle:
5556 if (cfs_bandwidth_used()) {
5557 /*
5558 * When bandwidth control is enabled; the cfs_rq_throttled()
5559 * breaks in the above iteration can result in incomplete
5560 * leaf list maintenance, resulting in triggering the assertion
5561 * below.
5562 */
5563 for_each_sched_entity(se) {
5564 cfs_rq = cfs_rq_of(se);
5565
5566 if (list_add_leaf_cfs_rq(cfs_rq))
5567 break;
5568 }
5569 }
5570
5571 assert_list_leaf_cfs_rq(rq);
5572
5573 hrtick_update(rq);
5574 }
5575
5576 static void set_next_buddy(struct sched_entity *se);
5577
5578 /*
5579 * The dequeue_task method is called before nr_running is
5580 * decreased. We remove the task from the rbtree and
5581 * update the fair scheduling stats:
5582 */
5583 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5584 {
5585 struct cfs_rq *cfs_rq;
5586 struct sched_entity *se = &p->se;
5587 int task_sleep = flags & DEQUEUE_SLEEP;
5588 int idle_h_nr_running = task_has_idle_policy(p);
5589 bool was_sched_idle = sched_idle_rq(rq);
5590
5591 for_each_sched_entity(se) {
5592 cfs_rq = cfs_rq_of(se);
5593 dequeue_entity(cfs_rq, se, flags);
5594
5595 cfs_rq->h_nr_running--;
5596 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5597
5598 /* end evaluation on encountering a throttled cfs_rq */
5599 if (cfs_rq_throttled(cfs_rq))
5600 goto dequeue_throttle;
5601
5602 /* Don't dequeue parent if it has other entities besides us */
5603 if (cfs_rq->load.weight) {
5604 /* Avoid re-evaluating load for this entity: */
5605 se = parent_entity(se);
5606 /*
5607 * Bias pick_next to pick a task from this cfs_rq, as
5608 * p is sleeping when it is within its sched_slice.
5609 */
5610 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5611 set_next_buddy(se);
5612 break;
5613 }
5614 flags |= DEQUEUE_SLEEP;
5615 }
5616
5617 for_each_sched_entity(se) {
5618 cfs_rq = cfs_rq_of(se);
5619
5620 update_load_avg(cfs_rq, se, UPDATE_TG);
5621 se_update_runnable(se);
5622 update_cfs_group(se);
5623
5624 cfs_rq->h_nr_running--;
5625 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5626
5627 /* end evaluation on encountering a throttled cfs_rq */
5628 if (cfs_rq_throttled(cfs_rq))
5629 goto dequeue_throttle;
5630
5631 }
5632
5633 /* At this point se is NULL and we are at root level*/
5634 sub_nr_running(rq, 1);
5635
5636 /* balance early to pull high priority tasks */
5637 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5638 rq->next_balance = jiffies;
5639
5640 dequeue_throttle:
5641 util_est_dequeue(&rq->cfs, p, task_sleep);
5642 hrtick_update(rq);
5643 }
5644
5645 #ifdef CONFIG_SMP
5646
5647 /* Working cpumask for: load_balance, load_balance_newidle. */
5648 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5649 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5650
5651 #ifdef CONFIG_NO_HZ_COMMON
5652
5653 static struct {
5654 cpumask_var_t idle_cpus_mask;
5655 atomic_t nr_cpus;
5656 int has_blocked; /* Idle CPUS has blocked load */
5657 unsigned long next_balance; /* in jiffy units */
5658 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5659 } nohz ____cacheline_aligned;
5660
5661 #endif /* CONFIG_NO_HZ_COMMON */
5662
5663 static unsigned long cpu_load(struct rq *rq)
5664 {
5665 return cfs_rq_load_avg(&rq->cfs);
5666 }
5667
5668 /*
5669 * cpu_load_without - compute CPU load without any contributions from *p
5670 * @cpu: the CPU which load is requested
5671 * @p: the task which load should be discounted
5672 *
5673 * The load of a CPU is defined by the load of tasks currently enqueued on that
5674 * CPU as well as tasks which are currently sleeping after an execution on that
5675 * CPU.
5676 *
5677 * This method returns the load of the specified CPU by discounting the load of
5678 * the specified task, whenever the task is currently contributing to the CPU
5679 * load.
5680 */
5681 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5682 {
5683 struct cfs_rq *cfs_rq;
5684 unsigned int load;
5685
5686 /* Task has no contribution or is new */
5687 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5688 return cpu_load(rq);
5689
5690 cfs_rq = &rq->cfs;
5691 load = READ_ONCE(cfs_rq->avg.load_avg);
5692
5693 /* Discount task's util from CPU's util */
5694 lsub_positive(&load, task_h_load(p));
5695
5696 return load;
5697 }
5698
5699 static unsigned long cpu_runnable(struct rq *rq)
5700 {
5701 return cfs_rq_runnable_avg(&rq->cfs);
5702 }
5703
5704 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5705 {
5706 struct cfs_rq *cfs_rq;
5707 unsigned int runnable;
5708
5709 /* Task has no contribution or is new */
5710 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5711 return cpu_runnable(rq);
5712
5713 cfs_rq = &rq->cfs;
5714 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5715
5716 /* Discount task's runnable from CPU's runnable */
5717 lsub_positive(&runnable, p->se.avg.runnable_avg);
5718
5719 return runnable;
5720 }
5721
5722 static unsigned long capacity_of(int cpu)
5723 {
5724 return cpu_rq(cpu)->cpu_capacity;
5725 }
5726
5727 static void record_wakee(struct task_struct *p)
5728 {
5729 /*
5730 * Only decay a single time; tasks that have less then 1 wakeup per
5731 * jiffy will not have built up many flips.
5732 */
5733 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5734 current->wakee_flips >>= 1;
5735 current->wakee_flip_decay_ts = jiffies;
5736 }
5737
5738 if (current->last_wakee != p) {
5739 current->last_wakee = p;
5740 current->wakee_flips++;
5741 }
5742 }
5743
5744 /*
5745 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5746 *
5747 * A waker of many should wake a different task than the one last awakened
5748 * at a frequency roughly N times higher than one of its wakees.
5749 *
5750 * In order to determine whether we should let the load spread vs consolidating
5751 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5752 * partner, and a factor of lls_size higher frequency in the other.
5753 *
5754 * With both conditions met, we can be relatively sure that the relationship is
5755 * non-monogamous, with partner count exceeding socket size.
5756 *
5757 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5758 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5759 * socket size.
5760 */
5761 static int wake_wide(struct task_struct *p)
5762 {
5763 unsigned int master = current->wakee_flips;
5764 unsigned int slave = p->wakee_flips;
5765 int factor = __this_cpu_read(sd_llc_size);
5766
5767 if (master < slave)
5768 swap(master, slave);
5769 if (slave < factor || master < slave * factor)
5770 return 0;
5771 return 1;
5772 }
5773
5774 /*
5775 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5776 * soonest. For the purpose of speed we only consider the waking and previous
5777 * CPU.
5778 *
5779 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5780 * cache-affine and is (or will be) idle.
5781 *
5782 * wake_affine_weight() - considers the weight to reflect the average
5783 * scheduling latency of the CPUs. This seems to work
5784 * for the overloaded case.
5785 */
5786 static int
5787 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5788 {
5789 /*
5790 * If this_cpu is idle, it implies the wakeup is from interrupt
5791 * context. Only allow the move if cache is shared. Otherwise an
5792 * interrupt intensive workload could force all tasks onto one
5793 * node depending on the IO topology or IRQ affinity settings.
5794 *
5795 * If the prev_cpu is idle and cache affine then avoid a migration.
5796 * There is no guarantee that the cache hot data from an interrupt
5797 * is more important than cache hot data on the prev_cpu and from
5798 * a cpufreq perspective, it's better to have higher utilisation
5799 * on one CPU.
5800 */
5801 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5802 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5803
5804 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5805 return this_cpu;
5806
5807 return nr_cpumask_bits;
5808 }
5809
5810 static int
5811 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5812 int this_cpu, int prev_cpu, int sync)
5813 {
5814 s64 this_eff_load, prev_eff_load;
5815 unsigned long task_load;
5816
5817 this_eff_load = cpu_load(cpu_rq(this_cpu));
5818
5819 if (sync) {
5820 unsigned long current_load = task_h_load(current);
5821
5822 if (current_load > this_eff_load)
5823 return this_cpu;
5824
5825 this_eff_load -= current_load;
5826 }
5827
5828 task_load = task_h_load(p);
5829
5830 this_eff_load += task_load;
5831 if (sched_feat(WA_BIAS))
5832 this_eff_load *= 100;
5833 this_eff_load *= capacity_of(prev_cpu);
5834
5835 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5836 prev_eff_load -= task_load;
5837 if (sched_feat(WA_BIAS))
5838 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5839 prev_eff_load *= capacity_of(this_cpu);
5840
5841 /*
5842 * If sync, adjust the weight of prev_eff_load such that if
5843 * prev_eff == this_eff that select_idle_sibling() will consider
5844 * stacking the wakee on top of the waker if no other CPU is
5845 * idle.
5846 */
5847 if (sync)
5848 prev_eff_load += 1;
5849
5850 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5851 }
5852
5853 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5854 int this_cpu, int prev_cpu, int sync)
5855 {
5856 int target = nr_cpumask_bits;
5857
5858 if (sched_feat(WA_IDLE))
5859 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5860
5861 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5862 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5863
5864 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5865 if (target == nr_cpumask_bits)
5866 return prev_cpu;
5867
5868 schedstat_inc(sd->ttwu_move_affine);
5869 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5870 return target;
5871 }
5872
5873 static struct sched_group *
5874 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5875
5876 /*
5877 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5878 */
5879 static int
5880 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5881 {
5882 unsigned long load, min_load = ULONG_MAX;
5883 unsigned int min_exit_latency = UINT_MAX;
5884 u64 latest_idle_timestamp = 0;
5885 int least_loaded_cpu = this_cpu;
5886 int shallowest_idle_cpu = -1;
5887 int i;
5888
5889 /* Check if we have any choice: */
5890 if (group->group_weight == 1)
5891 return cpumask_first(sched_group_span(group));
5892
5893 /* Traverse only the allowed CPUs */
5894 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5895 if (sched_idle_cpu(i))
5896 return i;
5897
5898 if (available_idle_cpu(i)) {
5899 struct rq *rq = cpu_rq(i);
5900 struct cpuidle_state *idle = idle_get_state(rq);
5901 if (idle && idle->exit_latency < min_exit_latency) {
5902 /*
5903 * We give priority to a CPU whose idle state
5904 * has the smallest exit latency irrespective
5905 * of any idle timestamp.
5906 */
5907 min_exit_latency = idle->exit_latency;
5908 latest_idle_timestamp = rq->idle_stamp;
5909 shallowest_idle_cpu = i;
5910 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5911 rq->idle_stamp > latest_idle_timestamp) {
5912 /*
5913 * If equal or no active idle state, then
5914 * the most recently idled CPU might have
5915 * a warmer cache.
5916 */
5917 latest_idle_timestamp = rq->idle_stamp;
5918 shallowest_idle_cpu = i;
5919 }
5920 } else if (shallowest_idle_cpu == -1) {
5921 load = cpu_load(cpu_rq(i));
5922 if (load < min_load) {
5923 min_load = load;
5924 least_loaded_cpu = i;
5925 }
5926 }
5927 }
5928
5929 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5930 }
5931
5932 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5933 int cpu, int prev_cpu, int sd_flag)
5934 {
5935 int new_cpu = cpu;
5936
5937 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5938 return prev_cpu;
5939
5940 /*
5941 * We need task's util for cpu_util_without, sync it up to
5942 * prev_cpu's last_update_time.
5943 */
5944 if (!(sd_flag & SD_BALANCE_FORK))
5945 sync_entity_load_avg(&p->se);
5946
5947 while (sd) {
5948 struct sched_group *group;
5949 struct sched_domain *tmp;
5950 int weight;
5951
5952 if (!(sd->flags & sd_flag)) {
5953 sd = sd->child;
5954 continue;
5955 }
5956
5957 group = find_idlest_group(sd, p, cpu);
5958 if (!group) {
5959 sd = sd->child;
5960 continue;
5961 }
5962
5963 new_cpu = find_idlest_group_cpu(group, p, cpu);
5964 if (new_cpu == cpu) {
5965 /* Now try balancing at a lower domain level of 'cpu': */
5966 sd = sd->child;
5967 continue;
5968 }
5969
5970 /* Now try balancing at a lower domain level of 'new_cpu': */
5971 cpu = new_cpu;
5972 weight = sd->span_weight;
5973 sd = NULL;
5974 for_each_domain(cpu, tmp) {
5975 if (weight <= tmp->span_weight)
5976 break;
5977 if (tmp->flags & sd_flag)
5978 sd = tmp;
5979 }
5980 }
5981
5982 return new_cpu;
5983 }
5984
5985 #ifdef CONFIG_SCHED_SMT
5986 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5987 EXPORT_SYMBOL_GPL(sched_smt_present);
5988
5989 static inline void set_idle_cores(int cpu, int val)
5990 {
5991 struct sched_domain_shared *sds;
5992
5993 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5994 if (sds)
5995 WRITE_ONCE(sds->has_idle_cores, val);
5996 }
5997
5998 static inline bool test_idle_cores(int cpu, bool def)
5999 {
6000 struct sched_domain_shared *sds;
6001
6002 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6003 if (sds)
6004 return READ_ONCE(sds->has_idle_cores);
6005
6006 return def;
6007 }
6008
6009 /*
6010 * Scans the local SMT mask to see if the entire core is idle, and records this
6011 * information in sd_llc_shared->has_idle_cores.
6012 *
6013 * Since SMT siblings share all cache levels, inspecting this limited remote
6014 * state should be fairly cheap.
6015 */
6016 void __update_idle_core(struct rq *rq)
6017 {
6018 int core = cpu_of(rq);
6019 int cpu;
6020
6021 rcu_read_lock();
6022 if (test_idle_cores(core, true))
6023 goto unlock;
6024
6025 for_each_cpu(cpu, cpu_smt_mask(core)) {
6026 if (cpu == core)
6027 continue;
6028
6029 if (!available_idle_cpu(cpu))
6030 goto unlock;
6031 }
6032
6033 set_idle_cores(core, 1);
6034 unlock:
6035 rcu_read_unlock();
6036 }
6037
6038 /*
6039 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6040 * there are no idle cores left in the system; tracked through
6041 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6042 */
6043 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6044 {
6045 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6046 int core, cpu;
6047
6048 if (!static_branch_likely(&sched_smt_present))
6049 return -1;
6050
6051 if (!test_idle_cores(target, false))
6052 return -1;
6053
6054 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6055
6056 for_each_cpu_wrap(core, cpus, target) {
6057 bool idle = true;
6058
6059 for_each_cpu(cpu, cpu_smt_mask(core)) {
6060 if (!available_idle_cpu(cpu)) {
6061 idle = false;
6062 break;
6063 }
6064 }
6065 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6066
6067 if (idle)
6068 return core;
6069 }
6070
6071 /*
6072 * Failed to find an idle core; stop looking for one.
6073 */
6074 set_idle_cores(target, 0);
6075
6076 return -1;
6077 }
6078
6079 /*
6080 * Scan the local SMT mask for idle CPUs.
6081 */
6082 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6083 {
6084 int cpu;
6085
6086 if (!static_branch_likely(&sched_smt_present))
6087 return -1;
6088
6089 for_each_cpu(cpu, cpu_smt_mask(target)) {
6090 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6091 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6092 continue;
6093 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6094 return cpu;
6095 }
6096
6097 return -1;
6098 }
6099
6100 #else /* CONFIG_SCHED_SMT */
6101
6102 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6103 {
6104 return -1;
6105 }
6106
6107 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6108 {
6109 return -1;
6110 }
6111
6112 #endif /* CONFIG_SCHED_SMT */
6113
6114 /*
6115 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6116 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6117 * average idle time for this rq (as found in rq->avg_idle).
6118 */
6119 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6120 {
6121 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6122 struct sched_domain *this_sd;
6123 u64 avg_cost, avg_idle;
6124 u64 time;
6125 int this = smp_processor_id();
6126 int cpu, nr = INT_MAX;
6127
6128 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6129 if (!this_sd)
6130 return -1;
6131
6132 /*
6133 * Due to large variance we need a large fuzz factor; hackbench in
6134 * particularly is sensitive here.
6135 */
6136 avg_idle = this_rq()->avg_idle / 512;
6137 avg_cost = this_sd->avg_scan_cost + 1;
6138
6139 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6140 return -1;
6141
6142 if (sched_feat(SIS_PROP)) {
6143 u64 span_avg = sd->span_weight * avg_idle;
6144 if (span_avg > 4*avg_cost)
6145 nr = div_u64(span_avg, avg_cost);
6146 else
6147 nr = 4;
6148 }
6149
6150 time = cpu_clock(this);
6151
6152 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6153
6154 for_each_cpu_wrap(cpu, cpus, target) {
6155 if (!--nr)
6156 return -1;
6157 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6158 break;
6159 }
6160
6161 time = cpu_clock(this) - time;
6162 update_avg(&this_sd->avg_scan_cost, time);
6163
6164 return cpu;
6165 }
6166
6167 /*
6168 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6169 * the task fits. If no CPU is big enough, but there are idle ones, try to
6170 * maximize capacity.
6171 */
6172 static int
6173 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6174 {
6175 unsigned long best_cap = 0;
6176 int cpu, best_cpu = -1;
6177 struct cpumask *cpus;
6178
6179 sync_entity_load_avg(&p->se);
6180
6181 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6182 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6183
6184 for_each_cpu_wrap(cpu, cpus, target) {
6185 unsigned long cpu_cap = capacity_of(cpu);
6186
6187 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6188 continue;
6189 if (task_fits_capacity(p, cpu_cap))
6190 return cpu;
6191
6192 if (cpu_cap > best_cap) {
6193 best_cap = cpu_cap;
6194 best_cpu = cpu;
6195 }
6196 }
6197
6198 return best_cpu;
6199 }
6200
6201 /*
6202 * Try and locate an idle core/thread in the LLC cache domain.
6203 */
6204 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6205 {
6206 struct sched_domain *sd;
6207 int i, recent_used_cpu;
6208
6209 /*
6210 * For asymmetric CPU capacity systems, our domain of interest is
6211 * sd_asym_cpucapacity rather than sd_llc.
6212 */
6213 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6214 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6215 /*
6216 * On an asymmetric CPU capacity system where an exclusive
6217 * cpuset defines a symmetric island (i.e. one unique
6218 * capacity_orig value through the cpuset), the key will be set
6219 * but the CPUs within that cpuset will not have a domain with
6220 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6221 * capacity path.
6222 */
6223 if (!sd)
6224 goto symmetric;
6225
6226 i = select_idle_capacity(p, sd, target);
6227 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6228 }
6229
6230 symmetric:
6231 if (available_idle_cpu(target) || sched_idle_cpu(target))
6232 return target;
6233
6234 /*
6235 * If the previous CPU is cache affine and idle, don't be stupid:
6236 */
6237 if (prev != target && cpus_share_cache(prev, target) &&
6238 (available_idle_cpu(prev) || sched_idle_cpu(prev)))
6239 return prev;
6240
6241 /*
6242 * Allow a per-cpu kthread to stack with the wakee if the
6243 * kworker thread and the tasks previous CPUs are the same.
6244 * The assumption is that the wakee queued work for the
6245 * per-cpu kthread that is now complete and the wakeup is
6246 * essentially a sync wakeup. An obvious example of this
6247 * pattern is IO completions.
6248 */
6249 if (is_per_cpu_kthread(current) &&
6250 prev == smp_processor_id() &&
6251 this_rq()->nr_running <= 1) {
6252 return prev;
6253 }
6254
6255 /* Check a recently used CPU as a potential idle candidate: */
6256 recent_used_cpu = p->recent_used_cpu;
6257 if (recent_used_cpu != prev &&
6258 recent_used_cpu != target &&
6259 cpus_share_cache(recent_used_cpu, target) &&
6260 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6261 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
6262 /*
6263 * Replace recent_used_cpu with prev as it is a potential
6264 * candidate for the next wake:
6265 */
6266 p->recent_used_cpu = prev;
6267 return recent_used_cpu;
6268 }
6269
6270 sd = rcu_dereference(per_cpu(sd_llc, target));
6271 if (!sd)
6272 return target;
6273
6274 i = select_idle_core(p, sd, target);
6275 if ((unsigned)i < nr_cpumask_bits)
6276 return i;
6277
6278 i = select_idle_cpu(p, sd, target);
6279 if ((unsigned)i < nr_cpumask_bits)
6280 return i;
6281
6282 i = select_idle_smt(p, sd, target);
6283 if ((unsigned)i < nr_cpumask_bits)
6284 return i;
6285
6286 return target;
6287 }
6288
6289 /**
6290 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6291 * @cpu: the CPU to get the utilization of
6292 *
6293 * The unit of the return value must be the one of capacity so we can compare
6294 * the utilization with the capacity of the CPU that is available for CFS task
6295 * (ie cpu_capacity).
6296 *
6297 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6298 * recent utilization of currently non-runnable tasks on a CPU. It represents
6299 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6300 * capacity_orig is the cpu_capacity available at the highest frequency
6301 * (arch_scale_freq_capacity()).
6302 * The utilization of a CPU converges towards a sum equal to or less than the
6303 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6304 * the running time on this CPU scaled by capacity_curr.
6305 *
6306 * The estimated utilization of a CPU is defined to be the maximum between its
6307 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6308 * currently RUNNABLE on that CPU.
6309 * This allows to properly represent the expected utilization of a CPU which
6310 * has just got a big task running since a long sleep period. At the same time
6311 * however it preserves the benefits of the "blocked utilization" in
6312 * describing the potential for other tasks waking up on the same CPU.
6313 *
6314 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6315 * higher than capacity_orig because of unfortunate rounding in
6316 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6317 * the average stabilizes with the new running time. We need to check that the
6318 * utilization stays within the range of [0..capacity_orig] and cap it if
6319 * necessary. Without utilization capping, a group could be seen as overloaded
6320 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6321 * available capacity. We allow utilization to overshoot capacity_curr (but not
6322 * capacity_orig) as it useful for predicting the capacity required after task
6323 * migrations (scheduler-driven DVFS).
6324 *
6325 * Return: the (estimated) utilization for the specified CPU
6326 */
6327 static inline unsigned long cpu_util(int cpu)
6328 {
6329 struct cfs_rq *cfs_rq;
6330 unsigned int util;
6331
6332 cfs_rq = &cpu_rq(cpu)->cfs;
6333 util = READ_ONCE(cfs_rq->avg.util_avg);
6334
6335 if (sched_feat(UTIL_EST))
6336 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6337
6338 return min_t(unsigned long, util, capacity_orig_of(cpu));
6339 }
6340
6341 /*
6342 * cpu_util_without: compute cpu utilization without any contributions from *p
6343 * @cpu: the CPU which utilization is requested
6344 * @p: the task which utilization should be discounted
6345 *
6346 * The utilization of a CPU is defined by the utilization of tasks currently
6347 * enqueued on that CPU as well as tasks which are currently sleeping after an
6348 * execution on that CPU.
6349 *
6350 * This method returns the utilization of the specified CPU by discounting the
6351 * utilization of the specified task, whenever the task is currently
6352 * contributing to the CPU utilization.
6353 */
6354 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6355 {
6356 struct cfs_rq *cfs_rq;
6357 unsigned int util;
6358
6359 /* Task has no contribution or is new */
6360 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6361 return cpu_util(cpu);
6362
6363 cfs_rq = &cpu_rq(cpu)->cfs;
6364 util = READ_ONCE(cfs_rq->avg.util_avg);
6365
6366 /* Discount task's util from CPU's util */
6367 lsub_positive(&util, task_util(p));
6368
6369 /*
6370 * Covered cases:
6371 *
6372 * a) if *p is the only task sleeping on this CPU, then:
6373 * cpu_util (== task_util) > util_est (== 0)
6374 * and thus we return:
6375 * cpu_util_without = (cpu_util - task_util) = 0
6376 *
6377 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6378 * IDLE, then:
6379 * cpu_util >= task_util
6380 * cpu_util > util_est (== 0)
6381 * and thus we discount *p's blocked utilization to return:
6382 * cpu_util_without = (cpu_util - task_util) >= 0
6383 *
6384 * c) if other tasks are RUNNABLE on that CPU and
6385 * util_est > cpu_util
6386 * then we use util_est since it returns a more restrictive
6387 * estimation of the spare capacity on that CPU, by just
6388 * considering the expected utilization of tasks already
6389 * runnable on that CPU.
6390 *
6391 * Cases a) and b) are covered by the above code, while case c) is
6392 * covered by the following code when estimated utilization is
6393 * enabled.
6394 */
6395 if (sched_feat(UTIL_EST)) {
6396 unsigned int estimated =
6397 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6398
6399 /*
6400 * Despite the following checks we still have a small window
6401 * for a possible race, when an execl's select_task_rq_fair()
6402 * races with LB's detach_task():
6403 *
6404 * detach_task()
6405 * p->on_rq = TASK_ON_RQ_MIGRATING;
6406 * ---------------------------------- A
6407 * deactivate_task() \
6408 * dequeue_task() + RaceTime
6409 * util_est_dequeue() /
6410 * ---------------------------------- B
6411 *
6412 * The additional check on "current == p" it's required to
6413 * properly fix the execl regression and it helps in further
6414 * reducing the chances for the above race.
6415 */
6416 if (unlikely(task_on_rq_queued(p) || current == p))
6417 lsub_positive(&estimated, _task_util_est(p));
6418
6419 util = max(util, estimated);
6420 }
6421
6422 /*
6423 * Utilization (estimated) can exceed the CPU capacity, thus let's
6424 * clamp to the maximum CPU capacity to ensure consistency with
6425 * the cpu_util call.
6426 */
6427 return min_t(unsigned long, util, capacity_orig_of(cpu));
6428 }
6429
6430 /*
6431 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6432 * to @dst_cpu.
6433 */
6434 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6435 {
6436 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6437 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6438
6439 /*
6440 * If @p migrates from @cpu to another, remove its contribution. Or,
6441 * if @p migrates from another CPU to @cpu, add its contribution. In
6442 * the other cases, @cpu is not impacted by the migration, so the
6443 * util_avg should already be correct.
6444 */
6445 if (task_cpu(p) == cpu && dst_cpu != cpu)
6446 sub_positive(&util, task_util(p));
6447 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6448 util += task_util(p);
6449
6450 if (sched_feat(UTIL_EST)) {
6451 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6452
6453 /*
6454 * During wake-up, the task isn't enqueued yet and doesn't
6455 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6456 * so just add it (if needed) to "simulate" what will be
6457 * cpu_util() after the task has been enqueued.
6458 */
6459 if (dst_cpu == cpu)
6460 util_est += _task_util_est(p);
6461
6462 util = max(util, util_est);
6463 }
6464
6465 return min(util, capacity_orig_of(cpu));
6466 }
6467
6468 /*
6469 * compute_energy(): Estimates the energy that @pd would consume if @p was
6470 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6471 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6472 * to compute what would be the energy if we decided to actually migrate that
6473 * task.
6474 */
6475 static long
6476 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6477 {
6478 struct cpumask *pd_mask = perf_domain_span(pd);
6479 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6480 unsigned long max_util = 0, sum_util = 0;
6481 int cpu;
6482
6483 /*
6484 * The capacity state of CPUs of the current rd can be driven by CPUs
6485 * of another rd if they belong to the same pd. So, account for the
6486 * utilization of these CPUs too by masking pd with cpu_online_mask
6487 * instead of the rd span.
6488 *
6489 * If an entire pd is outside of the current rd, it will not appear in
6490 * its pd list and will not be accounted by compute_energy().
6491 */
6492 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6493 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6494 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6495
6496 /*
6497 * Busy time computation: utilization clamping is not
6498 * required since the ratio (sum_util / cpu_capacity)
6499 * is already enough to scale the EM reported power
6500 * consumption at the (eventually clamped) cpu_capacity.
6501 */
6502 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6503 ENERGY_UTIL, NULL);
6504
6505 /*
6506 * Performance domain frequency: utilization clamping
6507 * must be considered since it affects the selection
6508 * of the performance domain frequency.
6509 * NOTE: in case RT tasks are running, by default the
6510 * FREQUENCY_UTIL's utilization can be max OPP.
6511 */
6512 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6513 FREQUENCY_UTIL, tsk);
6514 max_util = max(max_util, cpu_util);
6515 }
6516
6517 return em_cpu_energy(pd->em_pd, max_util, sum_util);
6518 }
6519
6520 /*
6521 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6522 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6523 * spare capacity in each performance domain and uses it as a potential
6524 * candidate to execute the task. Then, it uses the Energy Model to figure
6525 * out which of the CPU candidates is the most energy-efficient.
6526 *
6527 * The rationale for this heuristic is as follows. In a performance domain,
6528 * all the most energy efficient CPU candidates (according to the Energy
6529 * Model) are those for which we'll request a low frequency. When there are
6530 * several CPUs for which the frequency request will be the same, we don't
6531 * have enough data to break the tie between them, because the Energy Model
6532 * only includes active power costs. With this model, if we assume that
6533 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6534 * the maximum spare capacity in a performance domain is guaranteed to be among
6535 * the best candidates of the performance domain.
6536 *
6537 * In practice, it could be preferable from an energy standpoint to pack
6538 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6539 * but that could also hurt our chances to go cluster idle, and we have no
6540 * ways to tell with the current Energy Model if this is actually a good
6541 * idea or not. So, find_energy_efficient_cpu() basically favors
6542 * cluster-packing, and spreading inside a cluster. That should at least be
6543 * a good thing for latency, and this is consistent with the idea that most
6544 * of the energy savings of EAS come from the asymmetry of the system, and
6545 * not so much from breaking the tie between identical CPUs. That's also the
6546 * reason why EAS is enabled in the topology code only for systems where
6547 * SD_ASYM_CPUCAPACITY is set.
6548 *
6549 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6550 * they don't have any useful utilization data yet and it's not possible to
6551 * forecast their impact on energy consumption. Consequently, they will be
6552 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6553 * to be energy-inefficient in some use-cases. The alternative would be to
6554 * bias new tasks towards specific types of CPUs first, or to try to infer
6555 * their util_avg from the parent task, but those heuristics could hurt
6556 * other use-cases too. So, until someone finds a better way to solve this,
6557 * let's keep things simple by re-using the existing slow path.
6558 */
6559 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6560 {
6561 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6562 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6563 unsigned long cpu_cap, util, base_energy = 0;
6564 int cpu, best_energy_cpu = prev_cpu;
6565 struct sched_domain *sd;
6566 struct perf_domain *pd;
6567
6568 rcu_read_lock();
6569 pd = rcu_dereference(rd->pd);
6570 if (!pd || READ_ONCE(rd->overutilized))
6571 goto fail;
6572
6573 /*
6574 * Energy-aware wake-up happens on the lowest sched_domain starting
6575 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6576 */
6577 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6578 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6579 sd = sd->parent;
6580 if (!sd)
6581 goto fail;
6582
6583 sync_entity_load_avg(&p->se);
6584 if (!task_util_est(p))
6585 goto unlock;
6586
6587 for (; pd; pd = pd->next) {
6588 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6589 unsigned long base_energy_pd;
6590 int max_spare_cap_cpu = -1;
6591
6592 /* Compute the 'base' energy of the pd, without @p */
6593 base_energy_pd = compute_energy(p, -1, pd);
6594 base_energy += base_energy_pd;
6595
6596 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6597 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6598 continue;
6599
6600 util = cpu_util_next(cpu, p, cpu);
6601 cpu_cap = capacity_of(cpu);
6602 spare_cap = cpu_cap;
6603 lsub_positive(&spare_cap, util);
6604
6605 /*
6606 * Skip CPUs that cannot satisfy the capacity request.
6607 * IOW, placing the task there would make the CPU
6608 * overutilized. Take uclamp into account to see how
6609 * much capacity we can get out of the CPU; this is
6610 * aligned with schedutil_cpu_util().
6611 */
6612 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6613 if (!fits_capacity(util, cpu_cap))
6614 continue;
6615
6616 /* Always use prev_cpu as a candidate. */
6617 if (cpu == prev_cpu) {
6618 prev_delta = compute_energy(p, prev_cpu, pd);
6619 prev_delta -= base_energy_pd;
6620 best_delta = min(best_delta, prev_delta);
6621 }
6622
6623 /*
6624 * Find the CPU with the maximum spare capacity in
6625 * the performance domain
6626 */
6627 if (spare_cap > max_spare_cap) {
6628 max_spare_cap = spare_cap;
6629 max_spare_cap_cpu = cpu;
6630 }
6631 }
6632
6633 /* Evaluate the energy impact of using this CPU. */
6634 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6635 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6636 cur_delta -= base_energy_pd;
6637 if (cur_delta < best_delta) {
6638 best_delta = cur_delta;
6639 best_energy_cpu = max_spare_cap_cpu;
6640 }
6641 }
6642 }
6643 unlock:
6644 rcu_read_unlock();
6645
6646 /*
6647 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6648 * least 6% of the energy used by prev_cpu.
6649 */
6650 if (prev_delta == ULONG_MAX)
6651 return best_energy_cpu;
6652
6653 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6654 return best_energy_cpu;
6655
6656 return prev_cpu;
6657
6658 fail:
6659 rcu_read_unlock();
6660
6661 return -1;
6662 }
6663
6664 /*
6665 * select_task_rq_fair: Select target runqueue for the waking task in domains
6666 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6667 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6668 *
6669 * Balances load by selecting the idlest CPU in the idlest group, or under
6670 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6671 *
6672 * Returns the target CPU number.
6673 *
6674 * preempt must be disabled.
6675 */
6676 static int
6677 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6678 {
6679 struct sched_domain *tmp, *sd = NULL;
6680 int cpu = smp_processor_id();
6681 int new_cpu = prev_cpu;
6682 int want_affine = 0;
6683 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6684
6685 if (sd_flag & SD_BALANCE_WAKE) {
6686 record_wakee(p);
6687
6688 if (sched_energy_enabled()) {
6689 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6690 if (new_cpu >= 0)
6691 return new_cpu;
6692 new_cpu = prev_cpu;
6693 }
6694
6695 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6696 }
6697
6698 rcu_read_lock();
6699 for_each_domain(cpu, tmp) {
6700 /*
6701 * If both 'cpu' and 'prev_cpu' are part of this domain,
6702 * cpu is a valid SD_WAKE_AFFINE target.
6703 */
6704 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6705 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6706 if (cpu != prev_cpu)
6707 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6708
6709 sd = NULL; /* Prefer wake_affine over balance flags */
6710 break;
6711 }
6712
6713 if (tmp->flags & sd_flag)
6714 sd = tmp;
6715 else if (!want_affine)
6716 break;
6717 }
6718
6719 if (unlikely(sd)) {
6720 /* Slow path */
6721 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6722 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6723 /* Fast path */
6724
6725 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6726
6727 if (want_affine)
6728 current->recent_used_cpu = cpu;
6729 }
6730 rcu_read_unlock();
6731
6732 return new_cpu;
6733 }
6734
6735 static void detach_entity_cfs_rq(struct sched_entity *se);
6736
6737 /*
6738 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6739 * cfs_rq_of(p) references at time of call are still valid and identify the
6740 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6741 */
6742 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6743 {
6744 /*
6745 * As blocked tasks retain absolute vruntime the migration needs to
6746 * deal with this by subtracting the old and adding the new
6747 * min_vruntime -- the latter is done by enqueue_entity() when placing
6748 * the task on the new runqueue.
6749 */
6750 if (p->state == TASK_WAKING) {
6751 struct sched_entity *se = &p->se;
6752 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6753 u64 min_vruntime;
6754
6755 #ifndef CONFIG_64BIT
6756 u64 min_vruntime_copy;
6757
6758 do {
6759 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6760 smp_rmb();
6761 min_vruntime = cfs_rq->min_vruntime;
6762 } while (min_vruntime != min_vruntime_copy);
6763 #else
6764 min_vruntime = cfs_rq->min_vruntime;
6765 #endif
6766
6767 se->vruntime -= min_vruntime;
6768 }
6769
6770 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6771 /*
6772 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6773 * rq->lock and can modify state directly.
6774 */
6775 lockdep_assert_held(&task_rq(p)->lock);
6776 detach_entity_cfs_rq(&p->se);
6777
6778 } else {
6779 /*
6780 * We are supposed to update the task to "current" time, then
6781 * its up to date and ready to go to new CPU/cfs_rq. But we
6782 * have difficulty in getting what current time is, so simply
6783 * throw away the out-of-date time. This will result in the
6784 * wakee task is less decayed, but giving the wakee more load
6785 * sounds not bad.
6786 */
6787 remove_entity_load_avg(&p->se);
6788 }
6789
6790 /* Tell new CPU we are migrated */
6791 p->se.avg.last_update_time = 0;
6792
6793 /* We have migrated, no longer consider this task hot */
6794 p->se.exec_start = 0;
6795
6796 update_scan_period(p, new_cpu);
6797 }
6798
6799 static void task_dead_fair(struct task_struct *p)
6800 {
6801 remove_entity_load_avg(&p->se);
6802 }
6803
6804 static int
6805 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6806 {
6807 if (rq->nr_running)
6808 return 1;
6809
6810 return newidle_balance(rq, rf) != 0;
6811 }
6812 #endif /* CONFIG_SMP */
6813
6814 static unsigned long wakeup_gran(struct sched_entity *se)
6815 {
6816 unsigned long gran = sysctl_sched_wakeup_granularity;
6817
6818 /*
6819 * Since its curr running now, convert the gran from real-time
6820 * to virtual-time in his units.
6821 *
6822 * By using 'se' instead of 'curr' we penalize light tasks, so
6823 * they get preempted easier. That is, if 'se' < 'curr' then
6824 * the resulting gran will be larger, therefore penalizing the
6825 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6826 * be smaller, again penalizing the lighter task.
6827 *
6828 * This is especially important for buddies when the leftmost
6829 * task is higher priority than the buddy.
6830 */
6831 return calc_delta_fair(gran, se);
6832 }
6833
6834 /*
6835 * Should 'se' preempt 'curr'.
6836 *
6837 * |s1
6838 * |s2
6839 * |s3
6840 * g
6841 * |<--->|c
6842 *
6843 * w(c, s1) = -1
6844 * w(c, s2) = 0
6845 * w(c, s3) = 1
6846 *
6847 */
6848 static int
6849 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6850 {
6851 s64 gran, vdiff = curr->vruntime - se->vruntime;
6852
6853 if (vdiff <= 0)
6854 return -1;
6855
6856 gran = wakeup_gran(se);
6857 if (vdiff > gran)
6858 return 1;
6859
6860 return 0;
6861 }
6862
6863 static void set_last_buddy(struct sched_entity *se)
6864 {
6865 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6866 return;
6867
6868 for_each_sched_entity(se) {
6869 if (SCHED_WARN_ON(!se->on_rq))
6870 return;
6871 cfs_rq_of(se)->last = se;
6872 }
6873 }
6874
6875 static void set_next_buddy(struct sched_entity *se)
6876 {
6877 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6878 return;
6879
6880 for_each_sched_entity(se) {
6881 if (SCHED_WARN_ON(!se->on_rq))
6882 return;
6883 cfs_rq_of(se)->next = se;
6884 }
6885 }
6886
6887 static void set_skip_buddy(struct sched_entity *se)
6888 {
6889 for_each_sched_entity(se)
6890 cfs_rq_of(se)->skip = se;
6891 }
6892
6893 /*
6894 * Preempt the current task with a newly woken task if needed:
6895 */
6896 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6897 {
6898 struct task_struct *curr = rq->curr;
6899 struct sched_entity *se = &curr->se, *pse = &p->se;
6900 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6901 int scale = cfs_rq->nr_running >= sched_nr_latency;
6902 int next_buddy_marked = 0;
6903
6904 if (unlikely(se == pse))
6905 return;
6906
6907 /*
6908 * This is possible from callers such as attach_tasks(), in which we
6909 * unconditionally check_prempt_curr() after an enqueue (which may have
6910 * lead to a throttle). This both saves work and prevents false
6911 * next-buddy nomination below.
6912 */
6913 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6914 return;
6915
6916 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6917 set_next_buddy(pse);
6918 next_buddy_marked = 1;
6919 }
6920
6921 /*
6922 * We can come here with TIF_NEED_RESCHED already set from new task
6923 * wake up path.
6924 *
6925 * Note: this also catches the edge-case of curr being in a throttled
6926 * group (e.g. via set_curr_task), since update_curr() (in the
6927 * enqueue of curr) will have resulted in resched being set. This
6928 * prevents us from potentially nominating it as a false LAST_BUDDY
6929 * below.
6930 */
6931 if (test_tsk_need_resched(curr))
6932 return;
6933
6934 /* Idle tasks are by definition preempted by non-idle tasks. */
6935 if (unlikely(task_has_idle_policy(curr)) &&
6936 likely(!task_has_idle_policy(p)))
6937 goto preempt;
6938
6939 /*
6940 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6941 * is driven by the tick):
6942 */
6943 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6944 return;
6945
6946 find_matching_se(&se, &pse);
6947 update_curr(cfs_rq_of(se));
6948 BUG_ON(!pse);
6949 if (wakeup_preempt_entity(se, pse) == 1) {
6950 /*
6951 * Bias pick_next to pick the sched entity that is
6952 * triggering this preemption.
6953 */
6954 if (!next_buddy_marked)
6955 set_next_buddy(pse);
6956 goto preempt;
6957 }
6958
6959 return;
6960
6961 preempt:
6962 resched_curr(rq);
6963 /*
6964 * Only set the backward buddy when the current task is still
6965 * on the rq. This can happen when a wakeup gets interleaved
6966 * with schedule on the ->pre_schedule() or idle_balance()
6967 * point, either of which can * drop the rq lock.
6968 *
6969 * Also, during early boot the idle thread is in the fair class,
6970 * for obvious reasons its a bad idea to schedule back to it.
6971 */
6972 if (unlikely(!se->on_rq || curr == rq->idle))
6973 return;
6974
6975 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6976 set_last_buddy(se);
6977 }
6978
6979 struct task_struct *
6980 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6981 {
6982 struct cfs_rq *cfs_rq = &rq->cfs;
6983 struct sched_entity *se;
6984 struct task_struct *p;
6985 int new_tasks;
6986
6987 again:
6988 if (!sched_fair_runnable(rq))
6989 goto idle;
6990
6991 #ifdef CONFIG_FAIR_GROUP_SCHED
6992 if (!prev || prev->sched_class != &fair_sched_class)
6993 goto simple;
6994
6995 /*
6996 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6997 * likely that a next task is from the same cgroup as the current.
6998 *
6999 * Therefore attempt to avoid putting and setting the entire cgroup
7000 * hierarchy, only change the part that actually changes.
7001 */
7002
7003 do {
7004 struct sched_entity *curr = cfs_rq->curr;
7005
7006 /*
7007 * Since we got here without doing put_prev_entity() we also
7008 * have to consider cfs_rq->curr. If it is still a runnable
7009 * entity, update_curr() will update its vruntime, otherwise
7010 * forget we've ever seen it.
7011 */
7012 if (curr) {
7013 if (curr->on_rq)
7014 update_curr(cfs_rq);
7015 else
7016 curr = NULL;
7017
7018 /*
7019 * This call to check_cfs_rq_runtime() will do the
7020 * throttle and dequeue its entity in the parent(s).
7021 * Therefore the nr_running test will indeed
7022 * be correct.
7023 */
7024 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7025 cfs_rq = &rq->cfs;
7026
7027 if (!cfs_rq->nr_running)
7028 goto idle;
7029
7030 goto simple;
7031 }
7032 }
7033
7034 se = pick_next_entity(cfs_rq, curr);
7035 cfs_rq = group_cfs_rq(se);
7036 } while (cfs_rq);
7037
7038 p = task_of(se);
7039
7040 /*
7041 * Since we haven't yet done put_prev_entity and if the selected task
7042 * is a different task than we started out with, try and touch the
7043 * least amount of cfs_rqs.
7044 */
7045 if (prev != p) {
7046 struct sched_entity *pse = &prev->se;
7047
7048 while (!(cfs_rq = is_same_group(se, pse))) {
7049 int se_depth = se->depth;
7050 int pse_depth = pse->depth;
7051
7052 if (se_depth <= pse_depth) {
7053 put_prev_entity(cfs_rq_of(pse), pse);
7054 pse = parent_entity(pse);
7055 }
7056 if (se_depth >= pse_depth) {
7057 set_next_entity(cfs_rq_of(se), se);
7058 se = parent_entity(se);
7059 }
7060 }
7061
7062 put_prev_entity(cfs_rq, pse);
7063 set_next_entity(cfs_rq, se);
7064 }
7065
7066 goto done;
7067 simple:
7068 #endif
7069 if (prev)
7070 put_prev_task(rq, prev);
7071
7072 do {
7073 se = pick_next_entity(cfs_rq, NULL);
7074 set_next_entity(cfs_rq, se);
7075 cfs_rq = group_cfs_rq(se);
7076 } while (cfs_rq);
7077
7078 p = task_of(se);
7079
7080 done: __maybe_unused;
7081 #ifdef CONFIG_SMP
7082 /*
7083 * Move the next running task to the front of
7084 * the list, so our cfs_tasks list becomes MRU
7085 * one.
7086 */
7087 list_move(&p->se.group_node, &rq->cfs_tasks);
7088 #endif
7089
7090 if (hrtick_enabled(rq))
7091 hrtick_start_fair(rq, p);
7092
7093 update_misfit_status(p, rq);
7094
7095 return p;
7096
7097 idle:
7098 if (!rf)
7099 return NULL;
7100
7101 new_tasks = newidle_balance(rq, rf);
7102
7103 /*
7104 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7105 * possible for any higher priority task to appear. In that case we
7106 * must re-start the pick_next_entity() loop.
7107 */
7108 if (new_tasks < 0)
7109 return RETRY_TASK;
7110
7111 if (new_tasks > 0)
7112 goto again;
7113
7114 /*
7115 * rq is about to be idle, check if we need to update the
7116 * lost_idle_time of clock_pelt
7117 */
7118 update_idle_rq_clock_pelt(rq);
7119
7120 return NULL;
7121 }
7122
7123 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7124 {
7125 return pick_next_task_fair(rq, NULL, NULL);
7126 }
7127
7128 /*
7129 * Account for a descheduled task:
7130 */
7131 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7132 {
7133 struct sched_entity *se = &prev->se;
7134 struct cfs_rq *cfs_rq;
7135
7136 for_each_sched_entity(se) {
7137 cfs_rq = cfs_rq_of(se);
7138 put_prev_entity(cfs_rq, se);
7139 }
7140 }
7141
7142 /*
7143 * sched_yield() is very simple
7144 *
7145 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7146 */
7147 static void yield_task_fair(struct rq *rq)
7148 {
7149 struct task_struct *curr = rq->curr;
7150 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7151 struct sched_entity *se = &curr->se;
7152
7153 /*
7154 * Are we the only task in the tree?
7155 */
7156 if (unlikely(rq->nr_running == 1))
7157 return;
7158
7159 clear_buddies(cfs_rq, se);
7160
7161 if (curr->policy != SCHED_BATCH) {
7162 update_rq_clock(rq);
7163 /*
7164 * Update run-time statistics of the 'current'.
7165 */
7166 update_curr(cfs_rq);
7167 /*
7168 * Tell update_rq_clock() that we've just updated,
7169 * so we don't do microscopic update in schedule()
7170 * and double the fastpath cost.
7171 */
7172 rq_clock_skip_update(rq);
7173 }
7174
7175 set_skip_buddy(se);
7176 }
7177
7178 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7179 {
7180 struct sched_entity *se = &p->se;
7181
7182 /* throttled hierarchies are not runnable */
7183 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7184 return false;
7185
7186 /* Tell the scheduler that we'd really like pse to run next. */
7187 set_next_buddy(se);
7188
7189 yield_task_fair(rq);
7190
7191 return true;
7192 }
7193
7194 #ifdef CONFIG_SMP
7195 /**************************************************
7196 * Fair scheduling class load-balancing methods.
7197 *
7198 * BASICS
7199 *
7200 * The purpose of load-balancing is to achieve the same basic fairness the
7201 * per-CPU scheduler provides, namely provide a proportional amount of compute
7202 * time to each task. This is expressed in the following equation:
7203 *
7204 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7205 *
7206 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7207 * W_i,0 is defined as:
7208 *
7209 * W_i,0 = \Sum_j w_i,j (2)
7210 *
7211 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7212 * is derived from the nice value as per sched_prio_to_weight[].
7213 *
7214 * The weight average is an exponential decay average of the instantaneous
7215 * weight:
7216 *
7217 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7218 *
7219 * C_i is the compute capacity of CPU i, typically it is the
7220 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7221 * can also include other factors [XXX].
7222 *
7223 * To achieve this balance we define a measure of imbalance which follows
7224 * directly from (1):
7225 *
7226 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7227 *
7228 * We them move tasks around to minimize the imbalance. In the continuous
7229 * function space it is obvious this converges, in the discrete case we get
7230 * a few fun cases generally called infeasible weight scenarios.
7231 *
7232 * [XXX expand on:
7233 * - infeasible weights;
7234 * - local vs global optima in the discrete case. ]
7235 *
7236 *
7237 * SCHED DOMAINS
7238 *
7239 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7240 * for all i,j solution, we create a tree of CPUs that follows the hardware
7241 * topology where each level pairs two lower groups (or better). This results
7242 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7243 * tree to only the first of the previous level and we decrease the frequency
7244 * of load-balance at each level inv. proportional to the number of CPUs in
7245 * the groups.
7246 *
7247 * This yields:
7248 *
7249 * log_2 n 1 n
7250 * \Sum { --- * --- * 2^i } = O(n) (5)
7251 * i = 0 2^i 2^i
7252 * `- size of each group
7253 * | | `- number of CPUs doing load-balance
7254 * | `- freq
7255 * `- sum over all levels
7256 *
7257 * Coupled with a limit on how many tasks we can migrate every balance pass,
7258 * this makes (5) the runtime complexity of the balancer.
7259 *
7260 * An important property here is that each CPU is still (indirectly) connected
7261 * to every other CPU in at most O(log n) steps:
7262 *
7263 * The adjacency matrix of the resulting graph is given by:
7264 *
7265 * log_2 n
7266 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7267 * k = 0
7268 *
7269 * And you'll find that:
7270 *
7271 * A^(log_2 n)_i,j != 0 for all i,j (7)
7272 *
7273 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7274 * The task movement gives a factor of O(m), giving a convergence complexity
7275 * of:
7276 *
7277 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7278 *
7279 *
7280 * WORK CONSERVING
7281 *
7282 * In order to avoid CPUs going idle while there's still work to do, new idle
7283 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7284 * tree itself instead of relying on other CPUs to bring it work.
7285 *
7286 * This adds some complexity to both (5) and (8) but it reduces the total idle
7287 * time.
7288 *
7289 * [XXX more?]
7290 *
7291 *
7292 * CGROUPS
7293 *
7294 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7295 *
7296 * s_k,i
7297 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7298 * S_k
7299 *
7300 * Where
7301 *
7302 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7303 *
7304 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7305 *
7306 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7307 * property.
7308 *
7309 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7310 * rewrite all of this once again.]
7311 */
7312
7313 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7314
7315 enum fbq_type { regular, remote, all };
7316
7317 /*
7318 * 'group_type' describes the group of CPUs at the moment of load balancing.
7319 *
7320 * The enum is ordered by pulling priority, with the group with lowest priority
7321 * first so the group_type can simply be compared when selecting the busiest
7322 * group. See update_sd_pick_busiest().
7323 */
7324 enum group_type {
7325 /* The group has spare capacity that can be used to run more tasks. */
7326 group_has_spare = 0,
7327 /*
7328 * The group is fully used and the tasks don't compete for more CPU
7329 * cycles. Nevertheless, some tasks might wait before running.
7330 */
7331 group_fully_busy,
7332 /*
7333 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7334 * and must be migrated to a more powerful CPU.
7335 */
7336 group_misfit_task,
7337 /*
7338 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7339 * and the task should be migrated to it instead of running on the
7340 * current CPU.
7341 */
7342 group_asym_packing,
7343 /*
7344 * The tasks' affinity constraints previously prevented the scheduler
7345 * from balancing the load across the system.
7346 */
7347 group_imbalanced,
7348 /*
7349 * The CPU is overloaded and can't provide expected CPU cycles to all
7350 * tasks.
7351 */
7352 group_overloaded
7353 };
7354
7355 enum migration_type {
7356 migrate_load = 0,
7357 migrate_util,
7358 migrate_task,
7359 migrate_misfit
7360 };
7361
7362 #define LBF_ALL_PINNED 0x01
7363 #define LBF_NEED_BREAK 0x02
7364 #define LBF_DST_PINNED 0x04
7365 #define LBF_SOME_PINNED 0x08
7366 #define LBF_NOHZ_STATS 0x10
7367 #define LBF_NOHZ_AGAIN 0x20
7368
7369 struct lb_env {
7370 struct sched_domain *sd;
7371
7372 struct rq *src_rq;
7373 int src_cpu;
7374
7375 int dst_cpu;
7376 struct rq *dst_rq;
7377
7378 struct cpumask *dst_grpmask;
7379 int new_dst_cpu;
7380 enum cpu_idle_type idle;
7381 long imbalance;
7382 /* The set of CPUs under consideration for load-balancing */
7383 struct cpumask *cpus;
7384
7385 unsigned int flags;
7386
7387 unsigned int loop;
7388 unsigned int loop_break;
7389 unsigned int loop_max;
7390
7391 enum fbq_type fbq_type;
7392 enum migration_type migration_type;
7393 struct list_head tasks;
7394 };
7395
7396 /*
7397 * Is this task likely cache-hot:
7398 */
7399 static int task_hot(struct task_struct *p, struct lb_env *env)
7400 {
7401 s64 delta;
7402
7403 lockdep_assert_held(&env->src_rq->lock);
7404
7405 if (p->sched_class != &fair_sched_class)
7406 return 0;
7407
7408 if (unlikely(task_has_idle_policy(p)))
7409 return 0;
7410
7411 /* SMT siblings share cache */
7412 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7413 return 0;
7414
7415 /*
7416 * Buddy candidates are cache hot:
7417 */
7418 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7419 (&p->se == cfs_rq_of(&p->se)->next ||
7420 &p->se == cfs_rq_of(&p->se)->last))
7421 return 1;
7422
7423 if (sysctl_sched_migration_cost == -1)
7424 return 1;
7425 if (sysctl_sched_migration_cost == 0)
7426 return 0;
7427
7428 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7429
7430 return delta < (s64)sysctl_sched_migration_cost;
7431 }
7432
7433 #ifdef CONFIG_NUMA_BALANCING
7434 /*
7435 * Returns 1, if task migration degrades locality
7436 * Returns 0, if task migration improves locality i.e migration preferred.
7437 * Returns -1, if task migration is not affected by locality.
7438 */
7439 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7440 {
7441 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7442 unsigned long src_weight, dst_weight;
7443 int src_nid, dst_nid, dist;
7444
7445 if (!static_branch_likely(&sched_numa_balancing))
7446 return -1;
7447
7448 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7449 return -1;
7450
7451 src_nid = cpu_to_node(env->src_cpu);
7452 dst_nid = cpu_to_node(env->dst_cpu);
7453
7454 if (src_nid == dst_nid)
7455 return -1;
7456
7457 /* Migrating away from the preferred node is always bad. */
7458 if (src_nid == p->numa_preferred_nid) {
7459 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7460 return 1;
7461 else
7462 return -1;
7463 }
7464
7465 /* Encourage migration to the preferred node. */
7466 if (dst_nid == p->numa_preferred_nid)
7467 return 0;
7468
7469 /* Leaving a core idle is often worse than degrading locality. */
7470 if (env->idle == CPU_IDLE)
7471 return -1;
7472
7473 dist = node_distance(src_nid, dst_nid);
7474 if (numa_group) {
7475 src_weight = group_weight(p, src_nid, dist);
7476 dst_weight = group_weight(p, dst_nid, dist);
7477 } else {
7478 src_weight = task_weight(p, src_nid, dist);
7479 dst_weight = task_weight(p, dst_nid, dist);
7480 }
7481
7482 return dst_weight < src_weight;
7483 }
7484
7485 #else
7486 static inline int migrate_degrades_locality(struct task_struct *p,
7487 struct lb_env *env)
7488 {
7489 return -1;
7490 }
7491 #endif
7492
7493 /*
7494 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7495 */
7496 static
7497 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7498 {
7499 int tsk_cache_hot;
7500
7501 lockdep_assert_held(&env->src_rq->lock);
7502
7503 /*
7504 * We do not migrate tasks that are:
7505 * 1) throttled_lb_pair, or
7506 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7507 * 3) running (obviously), or
7508 * 4) are cache-hot on their current CPU.
7509 */
7510 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7511 return 0;
7512
7513 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7514 int cpu;
7515
7516 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7517
7518 env->flags |= LBF_SOME_PINNED;
7519
7520 /*
7521 * Remember if this task can be migrated to any other CPU in
7522 * our sched_group. We may want to revisit it if we couldn't
7523 * meet load balance goals by pulling other tasks on src_cpu.
7524 *
7525 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7526 * already computed one in current iteration.
7527 */
7528 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7529 return 0;
7530
7531 /* Prevent to re-select dst_cpu via env's CPUs: */
7532 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7533 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7534 env->flags |= LBF_DST_PINNED;
7535 env->new_dst_cpu = cpu;
7536 break;
7537 }
7538 }
7539
7540 return 0;
7541 }
7542
7543 /* Record that we found atleast one task that could run on dst_cpu */
7544 env->flags &= ~LBF_ALL_PINNED;
7545
7546 if (task_running(env->src_rq, p)) {
7547 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7548 return 0;
7549 }
7550
7551 /*
7552 * Aggressive migration if:
7553 * 1) destination numa is preferred
7554 * 2) task is cache cold, or
7555 * 3) too many balance attempts have failed.
7556 */
7557 tsk_cache_hot = migrate_degrades_locality(p, env);
7558 if (tsk_cache_hot == -1)
7559 tsk_cache_hot = task_hot(p, env);
7560
7561 if (tsk_cache_hot <= 0 ||
7562 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7563 if (tsk_cache_hot == 1) {
7564 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7565 schedstat_inc(p->se.statistics.nr_forced_migrations);
7566 }
7567 return 1;
7568 }
7569
7570 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7571 return 0;
7572 }
7573
7574 /*
7575 * detach_task() -- detach the task for the migration specified in env
7576 */
7577 static void detach_task(struct task_struct *p, struct lb_env *env)
7578 {
7579 lockdep_assert_held(&env->src_rq->lock);
7580
7581 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7582 set_task_cpu(p, env->dst_cpu);
7583 }
7584
7585 /*
7586 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7587 * part of active balancing operations within "domain".
7588 *
7589 * Returns a task if successful and NULL otherwise.
7590 */
7591 static struct task_struct *detach_one_task(struct lb_env *env)
7592 {
7593 struct task_struct *p;
7594
7595 lockdep_assert_held(&env->src_rq->lock);
7596
7597 list_for_each_entry_reverse(p,
7598 &env->src_rq->cfs_tasks, se.group_node) {
7599 if (!can_migrate_task(p, env))
7600 continue;
7601
7602 detach_task(p, env);
7603
7604 /*
7605 * Right now, this is only the second place where
7606 * lb_gained[env->idle] is updated (other is detach_tasks)
7607 * so we can safely collect stats here rather than
7608 * inside detach_tasks().
7609 */
7610 schedstat_inc(env->sd->lb_gained[env->idle]);
7611 return p;
7612 }
7613 return NULL;
7614 }
7615
7616 static const unsigned int sched_nr_migrate_break = 32;
7617
7618 /*
7619 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7620 * busiest_rq, as part of a balancing operation within domain "sd".
7621 *
7622 * Returns number of detached tasks if successful and 0 otherwise.
7623 */
7624 static int detach_tasks(struct lb_env *env)
7625 {
7626 struct list_head *tasks = &env->src_rq->cfs_tasks;
7627 unsigned long util, load;
7628 struct task_struct *p;
7629 int detached = 0;
7630
7631 lockdep_assert_held(&env->src_rq->lock);
7632
7633 if (env->imbalance <= 0)
7634 return 0;
7635
7636 while (!list_empty(tasks)) {
7637 /*
7638 * We don't want to steal all, otherwise we may be treated likewise,
7639 * which could at worst lead to a livelock crash.
7640 */
7641 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7642 break;
7643
7644 p = list_last_entry(tasks, struct task_struct, se.group_node);
7645
7646 env->loop++;
7647 /* We've more or less seen every task there is, call it quits */
7648 if (env->loop > env->loop_max)
7649 break;
7650
7651 /* take a breather every nr_migrate tasks */
7652 if (env->loop > env->loop_break) {
7653 env->loop_break += sched_nr_migrate_break;
7654 env->flags |= LBF_NEED_BREAK;
7655 break;
7656 }
7657
7658 if (!can_migrate_task(p, env))
7659 goto next;
7660
7661 switch (env->migration_type) {
7662 case migrate_load:
7663 /*
7664 * Depending of the number of CPUs and tasks and the
7665 * cgroup hierarchy, task_h_load() can return a null
7666 * value. Make sure that env->imbalance decreases
7667 * otherwise detach_tasks() will stop only after
7668 * detaching up to loop_max tasks.
7669 */
7670 load = max_t(unsigned long, task_h_load(p), 1);
7671
7672 if (sched_feat(LB_MIN) &&
7673 load < 16 && !env->sd->nr_balance_failed)
7674 goto next;
7675
7676 /*
7677 * Make sure that we don't migrate too much load.
7678 * Nevertheless, let relax the constraint if
7679 * scheduler fails to find a good waiting task to
7680 * migrate.
7681 */
7682
7683 if ((load >> env->sd->nr_balance_failed) > env->imbalance)
7684 goto next;
7685
7686 env->imbalance -= load;
7687 break;
7688
7689 case migrate_util:
7690 util = task_util_est(p);
7691
7692 if (util > env->imbalance)
7693 goto next;
7694
7695 env->imbalance -= util;
7696 break;
7697
7698 case migrate_task:
7699 env->imbalance--;
7700 break;
7701
7702 case migrate_misfit:
7703 /* This is not a misfit task */
7704 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7705 goto next;
7706
7707 env->imbalance = 0;
7708 break;
7709 }
7710
7711 detach_task(p, env);
7712 list_add(&p->se.group_node, &env->tasks);
7713
7714 detached++;
7715
7716 #ifdef CONFIG_PREEMPTION
7717 /*
7718 * NEWIDLE balancing is a source of latency, so preemptible
7719 * kernels will stop after the first task is detached to minimize
7720 * the critical section.
7721 */
7722 if (env->idle == CPU_NEWLY_IDLE)
7723 break;
7724 #endif
7725
7726 /*
7727 * We only want to steal up to the prescribed amount of
7728 * load/util/tasks.
7729 */
7730 if (env->imbalance <= 0)
7731 break;
7732
7733 continue;
7734 next:
7735 list_move(&p->se.group_node, tasks);
7736 }
7737
7738 /*
7739 * Right now, this is one of only two places we collect this stat
7740 * so we can safely collect detach_one_task() stats here rather
7741 * than inside detach_one_task().
7742 */
7743 schedstat_add(env->sd->lb_gained[env->idle], detached);
7744
7745 return detached;
7746 }
7747
7748 /*
7749 * attach_task() -- attach the task detached by detach_task() to its new rq.
7750 */
7751 static void attach_task(struct rq *rq, struct task_struct *p)
7752 {
7753 lockdep_assert_held(&rq->lock);
7754
7755 BUG_ON(task_rq(p) != rq);
7756 activate_task(rq, p, ENQUEUE_NOCLOCK);
7757 check_preempt_curr(rq, p, 0);
7758 }
7759
7760 /*
7761 * attach_one_task() -- attaches the task returned from detach_one_task() to
7762 * its new rq.
7763 */
7764 static void attach_one_task(struct rq *rq, struct task_struct *p)
7765 {
7766 struct rq_flags rf;
7767
7768 rq_lock(rq, &rf);
7769 update_rq_clock(rq);
7770 attach_task(rq, p);
7771 rq_unlock(rq, &rf);
7772 }
7773
7774 /*
7775 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7776 * new rq.
7777 */
7778 static void attach_tasks(struct lb_env *env)
7779 {
7780 struct list_head *tasks = &env->tasks;
7781 struct task_struct *p;
7782 struct rq_flags rf;
7783
7784 rq_lock(env->dst_rq, &rf);
7785 update_rq_clock(env->dst_rq);
7786
7787 while (!list_empty(tasks)) {
7788 p = list_first_entry(tasks, struct task_struct, se.group_node);
7789 list_del_init(&p->se.group_node);
7790
7791 attach_task(env->dst_rq, p);
7792 }
7793
7794 rq_unlock(env->dst_rq, &rf);
7795 }
7796
7797 #ifdef CONFIG_NO_HZ_COMMON
7798 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7799 {
7800 if (cfs_rq->avg.load_avg)
7801 return true;
7802
7803 if (cfs_rq->avg.util_avg)
7804 return true;
7805
7806 return false;
7807 }
7808
7809 static inline bool others_have_blocked(struct rq *rq)
7810 {
7811 if (READ_ONCE(rq->avg_rt.util_avg))
7812 return true;
7813
7814 if (READ_ONCE(rq->avg_dl.util_avg))
7815 return true;
7816
7817 if (thermal_load_avg(rq))
7818 return true;
7819
7820 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7821 if (READ_ONCE(rq->avg_irq.util_avg))
7822 return true;
7823 #endif
7824
7825 return false;
7826 }
7827
7828 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7829 {
7830 rq->last_blocked_load_update_tick = jiffies;
7831
7832 if (!has_blocked)
7833 rq->has_blocked_load = 0;
7834 }
7835 #else
7836 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7837 static inline bool others_have_blocked(struct rq *rq) { return false; }
7838 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7839 #endif
7840
7841 static bool __update_blocked_others(struct rq *rq, bool *done)
7842 {
7843 const struct sched_class *curr_class;
7844 u64 now = rq_clock_pelt(rq);
7845 unsigned long thermal_pressure;
7846 bool decayed;
7847
7848 /*
7849 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7850 * DL and IRQ signals have been updated before updating CFS.
7851 */
7852 curr_class = rq->curr->sched_class;
7853
7854 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7855
7856 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7857 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7858 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
7859 update_irq_load_avg(rq, 0);
7860
7861 if (others_have_blocked(rq))
7862 *done = false;
7863
7864 return decayed;
7865 }
7866
7867 #ifdef CONFIG_FAIR_GROUP_SCHED
7868
7869 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7870 {
7871 if (cfs_rq->load.weight)
7872 return false;
7873
7874 if (cfs_rq->avg.load_sum)
7875 return false;
7876
7877 if (cfs_rq->avg.util_sum)
7878 return false;
7879
7880 if (cfs_rq->avg.runnable_sum)
7881 return false;
7882
7883 return true;
7884 }
7885
7886 static bool __update_blocked_fair(struct rq *rq, bool *done)
7887 {
7888 struct cfs_rq *cfs_rq, *pos;
7889 bool decayed = false;
7890 int cpu = cpu_of(rq);
7891
7892 /*
7893 * Iterates the task_group tree in a bottom up fashion, see
7894 * list_add_leaf_cfs_rq() for details.
7895 */
7896 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7897 struct sched_entity *se;
7898
7899 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
7900 update_tg_load_avg(cfs_rq);
7901
7902 if (cfs_rq == &rq->cfs)
7903 decayed = true;
7904 }
7905
7906 /* Propagate pending load changes to the parent, if any: */
7907 se = cfs_rq->tg->se[cpu];
7908 if (se && !skip_blocked_update(se))
7909 update_load_avg(cfs_rq_of(se), se, 0);
7910
7911 /*
7912 * There can be a lot of idle CPU cgroups. Don't let fully
7913 * decayed cfs_rqs linger on the list.
7914 */
7915 if (cfs_rq_is_decayed(cfs_rq))
7916 list_del_leaf_cfs_rq(cfs_rq);
7917
7918 /* Don't need periodic decay once load/util_avg are null */
7919 if (cfs_rq_has_blocked(cfs_rq))
7920 *done = false;
7921 }
7922
7923 return decayed;
7924 }
7925
7926 /*
7927 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7928 * This needs to be done in a top-down fashion because the load of a child
7929 * group is a fraction of its parents load.
7930 */
7931 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7932 {
7933 struct rq *rq = rq_of(cfs_rq);
7934 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7935 unsigned long now = jiffies;
7936 unsigned long load;
7937
7938 if (cfs_rq->last_h_load_update == now)
7939 return;
7940
7941 WRITE_ONCE(cfs_rq->h_load_next, NULL);
7942 for_each_sched_entity(se) {
7943 cfs_rq = cfs_rq_of(se);
7944 WRITE_ONCE(cfs_rq->h_load_next, se);
7945 if (cfs_rq->last_h_load_update == now)
7946 break;
7947 }
7948
7949 if (!se) {
7950 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7951 cfs_rq->last_h_load_update = now;
7952 }
7953
7954 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7955 load = cfs_rq->h_load;
7956 load = div64_ul(load * se->avg.load_avg,
7957 cfs_rq_load_avg(cfs_rq) + 1);
7958 cfs_rq = group_cfs_rq(se);
7959 cfs_rq->h_load = load;
7960 cfs_rq->last_h_load_update = now;
7961 }
7962 }
7963
7964 static unsigned long task_h_load(struct task_struct *p)
7965 {
7966 struct cfs_rq *cfs_rq = task_cfs_rq(p);
7967
7968 update_cfs_rq_h_load(cfs_rq);
7969 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7970 cfs_rq_load_avg(cfs_rq) + 1);
7971 }
7972 #else
7973 static bool __update_blocked_fair(struct rq *rq, bool *done)
7974 {
7975 struct cfs_rq *cfs_rq = &rq->cfs;
7976 bool decayed;
7977
7978 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7979 if (cfs_rq_has_blocked(cfs_rq))
7980 *done = false;
7981
7982 return decayed;
7983 }
7984
7985 static unsigned long task_h_load(struct task_struct *p)
7986 {
7987 return p->se.avg.load_avg;
7988 }
7989 #endif
7990
7991 static void update_blocked_averages(int cpu)
7992 {
7993 bool decayed = false, done = true;
7994 struct rq *rq = cpu_rq(cpu);
7995 struct rq_flags rf;
7996
7997 rq_lock_irqsave(rq, &rf);
7998 update_rq_clock(rq);
7999
8000 decayed |= __update_blocked_others(rq, &done);
8001 decayed |= __update_blocked_fair(rq, &done);
8002
8003 update_blocked_load_status(rq, !done);
8004 if (decayed)
8005 cpufreq_update_util(rq, 0);
8006 rq_unlock_irqrestore(rq, &rf);
8007 }
8008
8009 /********** Helpers for find_busiest_group ************************/
8010
8011 /*
8012 * sg_lb_stats - stats of a sched_group required for load_balancing
8013 */
8014 struct sg_lb_stats {
8015 unsigned long avg_load; /*Avg load across the CPUs of the group */
8016 unsigned long group_load; /* Total load over the CPUs of the group */
8017 unsigned long group_capacity;
8018 unsigned long group_util; /* Total utilization over the CPUs of the group */
8019 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8020 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8021 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8022 unsigned int idle_cpus;
8023 unsigned int group_weight;
8024 enum group_type group_type;
8025 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8026 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8027 #ifdef CONFIG_NUMA_BALANCING
8028 unsigned int nr_numa_running;
8029 unsigned int nr_preferred_running;
8030 #endif
8031 };
8032
8033 /*
8034 * sd_lb_stats - Structure to store the statistics of a sched_domain
8035 * during load balancing.
8036 */
8037 struct sd_lb_stats {
8038 struct sched_group *busiest; /* Busiest group in this sd */
8039 struct sched_group *local; /* Local group in this sd */
8040 unsigned long total_load; /* Total load of all groups in sd */
8041 unsigned long total_capacity; /* Total capacity of all groups in sd */
8042 unsigned long avg_load; /* Average load across all groups in sd */
8043 unsigned int prefer_sibling; /* tasks should go to sibling first */
8044
8045 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8046 struct sg_lb_stats local_stat; /* Statistics of the local group */
8047 };
8048
8049 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8050 {
8051 /*
8052 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8053 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8054 * We must however set busiest_stat::group_type and
8055 * busiest_stat::idle_cpus to the worst busiest group because
8056 * update_sd_pick_busiest() reads these before assignment.
8057 */
8058 *sds = (struct sd_lb_stats){
8059 .busiest = NULL,
8060 .local = NULL,
8061 .total_load = 0UL,
8062 .total_capacity = 0UL,
8063 .busiest_stat = {
8064 .idle_cpus = UINT_MAX,
8065 .group_type = group_has_spare,
8066 },
8067 };
8068 }
8069
8070 static unsigned long scale_rt_capacity(int cpu)
8071 {
8072 struct rq *rq = cpu_rq(cpu);
8073 unsigned long max = arch_scale_cpu_capacity(cpu);
8074 unsigned long used, free;
8075 unsigned long irq;
8076
8077 irq = cpu_util_irq(rq);
8078
8079 if (unlikely(irq >= max))
8080 return 1;
8081
8082 /*
8083 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8084 * (running and not running) with weights 0 and 1024 respectively.
8085 * avg_thermal.load_avg tracks thermal pressure and the weighted
8086 * average uses the actual delta max capacity(load).
8087 */
8088 used = READ_ONCE(rq->avg_rt.util_avg);
8089 used += READ_ONCE(rq->avg_dl.util_avg);
8090 used += thermal_load_avg(rq);
8091
8092 if (unlikely(used >= max))
8093 return 1;
8094
8095 free = max - used;
8096
8097 return scale_irq_capacity(free, irq, max);
8098 }
8099
8100 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8101 {
8102 unsigned long capacity = scale_rt_capacity(cpu);
8103 struct sched_group *sdg = sd->groups;
8104
8105 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8106
8107 if (!capacity)
8108 capacity = 1;
8109
8110 cpu_rq(cpu)->cpu_capacity = capacity;
8111 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8112
8113 sdg->sgc->capacity = capacity;
8114 sdg->sgc->min_capacity = capacity;
8115 sdg->sgc->max_capacity = capacity;
8116 }
8117
8118 void update_group_capacity(struct sched_domain *sd, int cpu)
8119 {
8120 struct sched_domain *child = sd->child;
8121 struct sched_group *group, *sdg = sd->groups;
8122 unsigned long capacity, min_capacity, max_capacity;
8123 unsigned long interval;
8124
8125 interval = msecs_to_jiffies(sd->balance_interval);
8126 interval = clamp(interval, 1UL, max_load_balance_interval);
8127 sdg->sgc->next_update = jiffies + interval;
8128
8129 if (!child) {
8130 update_cpu_capacity(sd, cpu);
8131 return;
8132 }
8133
8134 capacity = 0;
8135 min_capacity = ULONG_MAX;
8136 max_capacity = 0;
8137
8138 if (child->flags & SD_OVERLAP) {
8139 /*
8140 * SD_OVERLAP domains cannot assume that child groups
8141 * span the current group.
8142 */
8143
8144 for_each_cpu(cpu, sched_group_span(sdg)) {
8145 unsigned long cpu_cap = capacity_of(cpu);
8146
8147 capacity += cpu_cap;
8148 min_capacity = min(cpu_cap, min_capacity);
8149 max_capacity = max(cpu_cap, max_capacity);
8150 }
8151 } else {
8152 /*
8153 * !SD_OVERLAP domains can assume that child groups
8154 * span the current group.
8155 */
8156
8157 group = child->groups;
8158 do {
8159 struct sched_group_capacity *sgc = group->sgc;
8160
8161 capacity += sgc->capacity;
8162 min_capacity = min(sgc->min_capacity, min_capacity);
8163 max_capacity = max(sgc->max_capacity, max_capacity);
8164 group = group->next;
8165 } while (group != child->groups);
8166 }
8167
8168 sdg->sgc->capacity = capacity;
8169 sdg->sgc->min_capacity = min_capacity;
8170 sdg->sgc->max_capacity = max_capacity;
8171 }
8172
8173 /*
8174 * Check whether the capacity of the rq has been noticeably reduced by side
8175 * activity. The imbalance_pct is used for the threshold.
8176 * Return true is the capacity is reduced
8177 */
8178 static inline int
8179 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8180 {
8181 return ((rq->cpu_capacity * sd->imbalance_pct) <
8182 (rq->cpu_capacity_orig * 100));
8183 }
8184
8185 /*
8186 * Check whether a rq has a misfit task and if it looks like we can actually
8187 * help that task: we can migrate the task to a CPU of higher capacity, or
8188 * the task's current CPU is heavily pressured.
8189 */
8190 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8191 {
8192 return rq->misfit_task_load &&
8193 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8194 check_cpu_capacity(rq, sd));
8195 }
8196
8197 /*
8198 * Group imbalance indicates (and tries to solve) the problem where balancing
8199 * groups is inadequate due to ->cpus_ptr constraints.
8200 *
8201 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8202 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8203 * Something like:
8204 *
8205 * { 0 1 2 3 } { 4 5 6 7 }
8206 * * * * *
8207 *
8208 * If we were to balance group-wise we'd place two tasks in the first group and
8209 * two tasks in the second group. Clearly this is undesired as it will overload
8210 * cpu 3 and leave one of the CPUs in the second group unused.
8211 *
8212 * The current solution to this issue is detecting the skew in the first group
8213 * by noticing the lower domain failed to reach balance and had difficulty
8214 * moving tasks due to affinity constraints.
8215 *
8216 * When this is so detected; this group becomes a candidate for busiest; see
8217 * update_sd_pick_busiest(). And calculate_imbalance() and
8218 * find_busiest_group() avoid some of the usual balance conditions to allow it
8219 * to create an effective group imbalance.
8220 *
8221 * This is a somewhat tricky proposition since the next run might not find the
8222 * group imbalance and decide the groups need to be balanced again. A most
8223 * subtle and fragile situation.
8224 */
8225
8226 static inline int sg_imbalanced(struct sched_group *group)
8227 {
8228 return group->sgc->imbalance;
8229 }
8230
8231 /*
8232 * group_has_capacity returns true if the group has spare capacity that could
8233 * be used by some tasks.
8234 * We consider that a group has spare capacity if the * number of task is
8235 * smaller than the number of CPUs or if the utilization is lower than the
8236 * available capacity for CFS tasks.
8237 * For the latter, we use a threshold to stabilize the state, to take into
8238 * account the variance of the tasks' load and to return true if the available
8239 * capacity in meaningful for the load balancer.
8240 * As an example, an available capacity of 1% can appear but it doesn't make
8241 * any benefit for the load balance.
8242 */
8243 static inline bool
8244 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8245 {
8246 if (sgs->sum_nr_running < sgs->group_weight)
8247 return true;
8248
8249 if ((sgs->group_capacity * imbalance_pct) <
8250 (sgs->group_runnable * 100))
8251 return false;
8252
8253 if ((sgs->group_capacity * 100) >
8254 (sgs->group_util * imbalance_pct))
8255 return true;
8256
8257 return false;
8258 }
8259
8260 /*
8261 * group_is_overloaded returns true if the group has more tasks than it can
8262 * handle.
8263 * group_is_overloaded is not equals to !group_has_capacity because a group
8264 * with the exact right number of tasks, has no more spare capacity but is not
8265 * overloaded so both group_has_capacity and group_is_overloaded return
8266 * false.
8267 */
8268 static inline bool
8269 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8270 {
8271 if (sgs->sum_nr_running <= sgs->group_weight)
8272 return false;
8273
8274 if ((sgs->group_capacity * 100) <
8275 (sgs->group_util * imbalance_pct))
8276 return true;
8277
8278 if ((sgs->group_capacity * imbalance_pct) <
8279 (sgs->group_runnable * 100))
8280 return true;
8281
8282 return false;
8283 }
8284
8285 /*
8286 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8287 * per-CPU capacity than sched_group ref.
8288 */
8289 static inline bool
8290 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8291 {
8292 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8293 }
8294
8295 /*
8296 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8297 * per-CPU capacity_orig than sched_group ref.
8298 */
8299 static inline bool
8300 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8301 {
8302 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
8303 }
8304
8305 static inline enum
8306 group_type group_classify(unsigned int imbalance_pct,
8307 struct sched_group *group,
8308 struct sg_lb_stats *sgs)
8309 {
8310 if (group_is_overloaded(imbalance_pct, sgs))
8311 return group_overloaded;
8312
8313 if (sg_imbalanced(group))
8314 return group_imbalanced;
8315
8316 if (sgs->group_asym_packing)
8317 return group_asym_packing;
8318
8319 if (sgs->group_misfit_task_load)
8320 return group_misfit_task;
8321
8322 if (!group_has_capacity(imbalance_pct, sgs))
8323 return group_fully_busy;
8324
8325 return group_has_spare;
8326 }
8327
8328 static bool update_nohz_stats(struct rq *rq, bool force)
8329 {
8330 #ifdef CONFIG_NO_HZ_COMMON
8331 unsigned int cpu = rq->cpu;
8332
8333 if (!rq->has_blocked_load)
8334 return false;
8335
8336 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8337 return false;
8338
8339 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8340 return true;
8341
8342 update_blocked_averages(cpu);
8343
8344 return rq->has_blocked_load;
8345 #else
8346 return false;
8347 #endif
8348 }
8349
8350 /**
8351 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8352 * @env: The load balancing environment.
8353 * @group: sched_group whose statistics are to be updated.
8354 * @sgs: variable to hold the statistics for this group.
8355 * @sg_status: Holds flag indicating the status of the sched_group
8356 */
8357 static inline void update_sg_lb_stats(struct lb_env *env,
8358 struct sched_group *group,
8359 struct sg_lb_stats *sgs,
8360 int *sg_status)
8361 {
8362 int i, nr_running, local_group;
8363
8364 memset(sgs, 0, sizeof(*sgs));
8365
8366 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8367
8368 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8369 struct rq *rq = cpu_rq(i);
8370
8371 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8372 env->flags |= LBF_NOHZ_AGAIN;
8373
8374 sgs->group_load += cpu_load(rq);
8375 sgs->group_util += cpu_util(i);
8376 sgs->group_runnable += cpu_runnable(rq);
8377 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8378
8379 nr_running = rq->nr_running;
8380 sgs->sum_nr_running += nr_running;
8381
8382 if (nr_running > 1)
8383 *sg_status |= SG_OVERLOAD;
8384
8385 if (cpu_overutilized(i))
8386 *sg_status |= SG_OVERUTILIZED;
8387
8388 #ifdef CONFIG_NUMA_BALANCING
8389 sgs->nr_numa_running += rq->nr_numa_running;
8390 sgs->nr_preferred_running += rq->nr_preferred_running;
8391 #endif
8392 /*
8393 * No need to call idle_cpu() if nr_running is not 0
8394 */
8395 if (!nr_running && idle_cpu(i)) {
8396 sgs->idle_cpus++;
8397 /* Idle cpu can't have misfit task */
8398 continue;
8399 }
8400
8401 if (local_group)
8402 continue;
8403
8404 /* Check for a misfit task on the cpu */
8405 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8406 sgs->group_misfit_task_load < rq->misfit_task_load) {
8407 sgs->group_misfit_task_load = rq->misfit_task_load;
8408 *sg_status |= SG_OVERLOAD;
8409 }
8410 }
8411
8412 /* Check if dst CPU is idle and preferred to this group */
8413 if (env->sd->flags & SD_ASYM_PACKING &&
8414 env->idle != CPU_NOT_IDLE &&
8415 sgs->sum_h_nr_running &&
8416 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8417 sgs->group_asym_packing = 1;
8418 }
8419
8420 sgs->group_capacity = group->sgc->capacity;
8421
8422 sgs->group_weight = group->group_weight;
8423
8424 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8425
8426 /* Computing avg_load makes sense only when group is overloaded */
8427 if (sgs->group_type == group_overloaded)
8428 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8429 sgs->group_capacity;
8430 }
8431
8432 /**
8433 * update_sd_pick_busiest - return 1 on busiest group
8434 * @env: The load balancing environment.
8435 * @sds: sched_domain statistics
8436 * @sg: sched_group candidate to be checked for being the busiest
8437 * @sgs: sched_group statistics
8438 *
8439 * Determine if @sg is a busier group than the previously selected
8440 * busiest group.
8441 *
8442 * Return: %true if @sg is a busier group than the previously selected
8443 * busiest group. %false otherwise.
8444 */
8445 static bool update_sd_pick_busiest(struct lb_env *env,
8446 struct sd_lb_stats *sds,
8447 struct sched_group *sg,
8448 struct sg_lb_stats *sgs)
8449 {
8450 struct sg_lb_stats *busiest = &sds->busiest_stat;
8451
8452 /* Make sure that there is at least one task to pull */
8453 if (!sgs->sum_h_nr_running)
8454 return false;
8455
8456 /*
8457 * Don't try to pull misfit tasks we can't help.
8458 * We can use max_capacity here as reduction in capacity on some
8459 * CPUs in the group should either be possible to resolve
8460 * internally or be covered by avg_load imbalance (eventually).
8461 */
8462 if (sgs->group_type == group_misfit_task &&
8463 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8464 sds->local_stat.group_type != group_has_spare))
8465 return false;
8466
8467 if (sgs->group_type > busiest->group_type)
8468 return true;
8469
8470 if (sgs->group_type < busiest->group_type)
8471 return false;
8472
8473 /*
8474 * The candidate and the current busiest group are the same type of
8475 * group. Let check which one is the busiest according to the type.
8476 */
8477
8478 switch (sgs->group_type) {
8479 case group_overloaded:
8480 /* Select the overloaded group with highest avg_load. */
8481 if (sgs->avg_load <= busiest->avg_load)
8482 return false;
8483 break;
8484
8485 case group_imbalanced:
8486 /*
8487 * Select the 1st imbalanced group as we don't have any way to
8488 * choose one more than another.
8489 */
8490 return false;
8491
8492 case group_asym_packing:
8493 /* Prefer to move from lowest priority CPU's work */
8494 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8495 return false;
8496 break;
8497
8498 case group_misfit_task:
8499 /*
8500 * If we have more than one misfit sg go with the biggest
8501 * misfit.
8502 */
8503 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8504 return false;
8505 break;
8506
8507 case group_fully_busy:
8508 /*
8509 * Select the fully busy group with highest avg_load. In
8510 * theory, there is no need to pull task from such kind of
8511 * group because tasks have all compute capacity that they need
8512 * but we can still improve the overall throughput by reducing
8513 * contention when accessing shared HW resources.
8514 *
8515 * XXX for now avg_load is not computed and always 0 so we
8516 * select the 1st one.
8517 */
8518 if (sgs->avg_load <= busiest->avg_load)
8519 return false;
8520 break;
8521
8522 case group_has_spare:
8523 /*
8524 * Select not overloaded group with lowest number of idle cpus
8525 * and highest number of running tasks. We could also compare
8526 * the spare capacity which is more stable but it can end up
8527 * that the group has less spare capacity but finally more idle
8528 * CPUs which means less opportunity to pull tasks.
8529 */
8530 if (sgs->idle_cpus > busiest->idle_cpus)
8531 return false;
8532 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8533 (sgs->sum_nr_running <= busiest->sum_nr_running))
8534 return false;
8535
8536 break;
8537 }
8538
8539 /*
8540 * Candidate sg has no more than one task per CPU and has higher
8541 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8542 * throughput. Maximize throughput, power/energy consequences are not
8543 * considered.
8544 */
8545 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8546 (sgs->group_type <= group_fully_busy) &&
8547 (group_smaller_min_cpu_capacity(sds->local, sg)))
8548 return false;
8549
8550 return true;
8551 }
8552
8553 #ifdef CONFIG_NUMA_BALANCING
8554 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8555 {
8556 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8557 return regular;
8558 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8559 return remote;
8560 return all;
8561 }
8562
8563 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8564 {
8565 if (rq->nr_running > rq->nr_numa_running)
8566 return regular;
8567 if (rq->nr_running > rq->nr_preferred_running)
8568 return remote;
8569 return all;
8570 }
8571 #else
8572 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8573 {
8574 return all;
8575 }
8576
8577 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8578 {
8579 return regular;
8580 }
8581 #endif /* CONFIG_NUMA_BALANCING */
8582
8583
8584 struct sg_lb_stats;
8585
8586 /*
8587 * task_running_on_cpu - return 1 if @p is running on @cpu.
8588 */
8589
8590 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8591 {
8592 /* Task has no contribution or is new */
8593 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8594 return 0;
8595
8596 if (task_on_rq_queued(p))
8597 return 1;
8598
8599 return 0;
8600 }
8601
8602 /**
8603 * idle_cpu_without - would a given CPU be idle without p ?
8604 * @cpu: the processor on which idleness is tested.
8605 * @p: task which should be ignored.
8606 *
8607 * Return: 1 if the CPU would be idle. 0 otherwise.
8608 */
8609 static int idle_cpu_without(int cpu, struct task_struct *p)
8610 {
8611 struct rq *rq = cpu_rq(cpu);
8612
8613 if (rq->curr != rq->idle && rq->curr != p)
8614 return 0;
8615
8616 /*
8617 * rq->nr_running can't be used but an updated version without the
8618 * impact of p on cpu must be used instead. The updated nr_running
8619 * be computed and tested before calling idle_cpu_without().
8620 */
8621
8622 #ifdef CONFIG_SMP
8623 if (rq->ttwu_pending)
8624 return 0;
8625 #endif
8626
8627 return 1;
8628 }
8629
8630 /*
8631 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8632 * @sd: The sched_domain level to look for idlest group.
8633 * @group: sched_group whose statistics are to be updated.
8634 * @sgs: variable to hold the statistics for this group.
8635 * @p: The task for which we look for the idlest group/CPU.
8636 */
8637 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8638 struct sched_group *group,
8639 struct sg_lb_stats *sgs,
8640 struct task_struct *p)
8641 {
8642 int i, nr_running;
8643
8644 memset(sgs, 0, sizeof(*sgs));
8645
8646 for_each_cpu(i, sched_group_span(group)) {
8647 struct rq *rq = cpu_rq(i);
8648 unsigned int local;
8649
8650 sgs->group_load += cpu_load_without(rq, p);
8651 sgs->group_util += cpu_util_without(i, p);
8652 sgs->group_runnable += cpu_runnable_without(rq, p);
8653 local = task_running_on_cpu(i, p);
8654 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8655
8656 nr_running = rq->nr_running - local;
8657 sgs->sum_nr_running += nr_running;
8658
8659 /*
8660 * No need to call idle_cpu_without() if nr_running is not 0
8661 */
8662 if (!nr_running && idle_cpu_without(i, p))
8663 sgs->idle_cpus++;
8664
8665 }
8666
8667 /* Check if task fits in the group */
8668 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8669 !task_fits_capacity(p, group->sgc->max_capacity)) {
8670 sgs->group_misfit_task_load = 1;
8671 }
8672
8673 sgs->group_capacity = group->sgc->capacity;
8674
8675 sgs->group_weight = group->group_weight;
8676
8677 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8678
8679 /*
8680 * Computing avg_load makes sense only when group is fully busy or
8681 * overloaded
8682 */
8683 if (sgs->group_type == group_fully_busy ||
8684 sgs->group_type == group_overloaded)
8685 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8686 sgs->group_capacity;
8687 }
8688
8689 static bool update_pick_idlest(struct sched_group *idlest,
8690 struct sg_lb_stats *idlest_sgs,
8691 struct sched_group *group,
8692 struct sg_lb_stats *sgs)
8693 {
8694 if (sgs->group_type < idlest_sgs->group_type)
8695 return true;
8696
8697 if (sgs->group_type > idlest_sgs->group_type)
8698 return false;
8699
8700 /*
8701 * The candidate and the current idlest group are the same type of
8702 * group. Let check which one is the idlest according to the type.
8703 */
8704
8705 switch (sgs->group_type) {
8706 case group_overloaded:
8707 case group_fully_busy:
8708 /* Select the group with lowest avg_load. */
8709 if (idlest_sgs->avg_load <= sgs->avg_load)
8710 return false;
8711 break;
8712
8713 case group_imbalanced:
8714 case group_asym_packing:
8715 /* Those types are not used in the slow wakeup path */
8716 return false;
8717
8718 case group_misfit_task:
8719 /* Select group with the highest max capacity */
8720 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8721 return false;
8722 break;
8723
8724 case group_has_spare:
8725 /* Select group with most idle CPUs */
8726 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8727 return false;
8728
8729 /* Select group with lowest group_util */
8730 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8731 idlest_sgs->group_util <= sgs->group_util)
8732 return false;
8733
8734 break;
8735 }
8736
8737 return true;
8738 }
8739
8740 /*
8741 * find_idlest_group() finds and returns the least busy CPU group within the
8742 * domain.
8743 *
8744 * Assumes p is allowed on at least one CPU in sd.
8745 */
8746 static struct sched_group *
8747 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8748 {
8749 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8750 struct sg_lb_stats local_sgs, tmp_sgs;
8751 struct sg_lb_stats *sgs;
8752 unsigned long imbalance;
8753 struct sg_lb_stats idlest_sgs = {
8754 .avg_load = UINT_MAX,
8755 .group_type = group_overloaded,
8756 };
8757
8758 imbalance = scale_load_down(NICE_0_LOAD) *
8759 (sd->imbalance_pct-100) / 100;
8760
8761 do {
8762 int local_group;
8763
8764 /* Skip over this group if it has no CPUs allowed */
8765 if (!cpumask_intersects(sched_group_span(group),
8766 p->cpus_ptr))
8767 continue;
8768
8769 local_group = cpumask_test_cpu(this_cpu,
8770 sched_group_span(group));
8771
8772 if (local_group) {
8773 sgs = &local_sgs;
8774 local = group;
8775 } else {
8776 sgs = &tmp_sgs;
8777 }
8778
8779 update_sg_wakeup_stats(sd, group, sgs, p);
8780
8781 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8782 idlest = group;
8783 idlest_sgs = *sgs;
8784 }
8785
8786 } while (group = group->next, group != sd->groups);
8787
8788
8789 /* There is no idlest group to push tasks to */
8790 if (!idlest)
8791 return NULL;
8792
8793 /* The local group has been skipped because of CPU affinity */
8794 if (!local)
8795 return idlest;
8796
8797 /*
8798 * If the local group is idler than the selected idlest group
8799 * don't try and push the task.
8800 */
8801 if (local_sgs.group_type < idlest_sgs.group_type)
8802 return NULL;
8803
8804 /*
8805 * If the local group is busier than the selected idlest group
8806 * try and push the task.
8807 */
8808 if (local_sgs.group_type > idlest_sgs.group_type)
8809 return idlest;
8810
8811 switch (local_sgs.group_type) {
8812 case group_overloaded:
8813 case group_fully_busy:
8814 /*
8815 * When comparing groups across NUMA domains, it's possible for
8816 * the local domain to be very lightly loaded relative to the
8817 * remote domains but "imbalance" skews the comparison making
8818 * remote CPUs look much more favourable. When considering
8819 * cross-domain, add imbalance to the load on the remote node
8820 * and consider staying local.
8821 */
8822
8823 if ((sd->flags & SD_NUMA) &&
8824 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8825 return NULL;
8826
8827 /*
8828 * If the local group is less loaded than the selected
8829 * idlest group don't try and push any tasks.
8830 */
8831 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8832 return NULL;
8833
8834 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8835 return NULL;
8836 break;
8837
8838 case group_imbalanced:
8839 case group_asym_packing:
8840 /* Those type are not used in the slow wakeup path */
8841 return NULL;
8842
8843 case group_misfit_task:
8844 /* Select group with the highest max capacity */
8845 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8846 return NULL;
8847 break;
8848
8849 case group_has_spare:
8850 if (sd->flags & SD_NUMA) {
8851 #ifdef CONFIG_NUMA_BALANCING
8852 int idlest_cpu;
8853 /*
8854 * If there is spare capacity at NUMA, try to select
8855 * the preferred node
8856 */
8857 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8858 return NULL;
8859
8860 idlest_cpu = cpumask_first(sched_group_span(idlest));
8861 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8862 return idlest;
8863 #endif
8864 /*
8865 * Otherwise, keep the task on this node to stay close
8866 * its wakeup source and improve locality. If there is
8867 * a real need of migration, periodic load balance will
8868 * take care of it.
8869 */
8870 if (local_sgs.idle_cpus)
8871 return NULL;
8872 }
8873
8874 /*
8875 * Select group with highest number of idle CPUs. We could also
8876 * compare the utilization which is more stable but it can end
8877 * up that the group has less spare capacity but finally more
8878 * idle CPUs which means more opportunity to run task.
8879 */
8880 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8881 return NULL;
8882 break;
8883 }
8884
8885 return idlest;
8886 }
8887
8888 /**
8889 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8890 * @env: The load balancing environment.
8891 * @sds: variable to hold the statistics for this sched_domain.
8892 */
8893
8894 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8895 {
8896 struct sched_domain *child = env->sd->child;
8897 struct sched_group *sg = env->sd->groups;
8898 struct sg_lb_stats *local = &sds->local_stat;
8899 struct sg_lb_stats tmp_sgs;
8900 int sg_status = 0;
8901
8902 #ifdef CONFIG_NO_HZ_COMMON
8903 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8904 env->flags |= LBF_NOHZ_STATS;
8905 #endif
8906
8907 do {
8908 struct sg_lb_stats *sgs = &tmp_sgs;
8909 int local_group;
8910
8911 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8912 if (local_group) {
8913 sds->local = sg;
8914 sgs = local;
8915
8916 if (env->idle != CPU_NEWLY_IDLE ||
8917 time_after_eq(jiffies, sg->sgc->next_update))
8918 update_group_capacity(env->sd, env->dst_cpu);
8919 }
8920
8921 update_sg_lb_stats(env, sg, sgs, &sg_status);
8922
8923 if (local_group)
8924 goto next_group;
8925
8926
8927 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8928 sds->busiest = sg;
8929 sds->busiest_stat = *sgs;
8930 }
8931
8932 next_group:
8933 /* Now, start updating sd_lb_stats */
8934 sds->total_load += sgs->group_load;
8935 sds->total_capacity += sgs->group_capacity;
8936
8937 sg = sg->next;
8938 } while (sg != env->sd->groups);
8939
8940 /* Tag domain that child domain prefers tasks go to siblings first */
8941 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8942
8943 #ifdef CONFIG_NO_HZ_COMMON
8944 if ((env->flags & LBF_NOHZ_AGAIN) &&
8945 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8946
8947 WRITE_ONCE(nohz.next_blocked,
8948 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8949 }
8950 #endif
8951
8952 if (env->sd->flags & SD_NUMA)
8953 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8954
8955 if (!env->sd->parent) {
8956 struct root_domain *rd = env->dst_rq->rd;
8957
8958 /* update overload indicator if we are at root domain */
8959 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8960
8961 /* Update over-utilization (tipping point, U >= 0) indicator */
8962 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8963 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
8964 } else if (sg_status & SG_OVERUTILIZED) {
8965 struct root_domain *rd = env->dst_rq->rd;
8966
8967 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8968 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
8969 }
8970 }
8971
8972 static inline long adjust_numa_imbalance(int imbalance, int nr_running)
8973 {
8974 unsigned int imbalance_min;
8975
8976 /*
8977 * Allow a small imbalance based on a simple pair of communicating
8978 * tasks that remain local when the source domain is almost idle.
8979 */
8980 imbalance_min = 2;
8981 if (nr_running <= imbalance_min)
8982 return 0;
8983
8984 return imbalance;
8985 }
8986
8987 /**
8988 * calculate_imbalance - Calculate the amount of imbalance present within the
8989 * groups of a given sched_domain during load balance.
8990 * @env: load balance environment
8991 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8992 */
8993 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8994 {
8995 struct sg_lb_stats *local, *busiest;
8996
8997 local = &sds->local_stat;
8998 busiest = &sds->busiest_stat;
8999
9000 if (busiest->group_type == group_misfit_task) {
9001 /* Set imbalance to allow misfit tasks to be balanced. */
9002 env->migration_type = migrate_misfit;
9003 env->imbalance = 1;
9004 return;
9005 }
9006
9007 if (busiest->group_type == group_asym_packing) {
9008 /*
9009 * In case of asym capacity, we will try to migrate all load to
9010 * the preferred CPU.
9011 */
9012 env->migration_type = migrate_task;
9013 env->imbalance = busiest->sum_h_nr_running;
9014 return;
9015 }
9016
9017 if (busiest->group_type == group_imbalanced) {
9018 /*
9019 * In the group_imb case we cannot rely on group-wide averages
9020 * to ensure CPU-load equilibrium, try to move any task to fix
9021 * the imbalance. The next load balance will take care of
9022 * balancing back the system.
9023 */
9024 env->migration_type = migrate_task;
9025 env->imbalance = 1;
9026 return;
9027 }
9028
9029 /*
9030 * Try to use spare capacity of local group without overloading it or
9031 * emptying busiest.
9032 */
9033 if (local->group_type == group_has_spare) {
9034 if (busiest->group_type > group_fully_busy) {
9035 /*
9036 * If busiest is overloaded, try to fill spare
9037 * capacity. This might end up creating spare capacity
9038 * in busiest or busiest still being overloaded but
9039 * there is no simple way to directly compute the
9040 * amount of load to migrate in order to balance the
9041 * system.
9042 */
9043 env->migration_type = migrate_util;
9044 env->imbalance = max(local->group_capacity, local->group_util) -
9045 local->group_util;
9046
9047 /*
9048 * In some cases, the group's utilization is max or even
9049 * higher than capacity because of migrations but the
9050 * local CPU is (newly) idle. There is at least one
9051 * waiting task in this overloaded busiest group. Let's
9052 * try to pull it.
9053 */
9054 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9055 env->migration_type = migrate_task;
9056 env->imbalance = 1;
9057 }
9058
9059 return;
9060 }
9061
9062 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9063 unsigned int nr_diff = busiest->sum_nr_running;
9064 /*
9065 * When prefer sibling, evenly spread running tasks on
9066 * groups.
9067 */
9068 env->migration_type = migrate_task;
9069 lsub_positive(&nr_diff, local->sum_nr_running);
9070 env->imbalance = nr_diff >> 1;
9071 } else {
9072
9073 /*
9074 * If there is no overload, we just want to even the number of
9075 * idle cpus.
9076 */
9077 env->migration_type = migrate_task;
9078 env->imbalance = max_t(long, 0, (local->idle_cpus -
9079 busiest->idle_cpus) >> 1);
9080 }
9081
9082 /* Consider allowing a small imbalance between NUMA groups */
9083 if (env->sd->flags & SD_NUMA)
9084 env->imbalance = adjust_numa_imbalance(env->imbalance,
9085 busiest->sum_nr_running);
9086
9087 return;
9088 }
9089
9090 /*
9091 * Local is fully busy but has to take more load to relieve the
9092 * busiest group
9093 */
9094 if (local->group_type < group_overloaded) {
9095 /*
9096 * Local will become overloaded so the avg_load metrics are
9097 * finally needed.
9098 */
9099
9100 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9101 local->group_capacity;
9102
9103 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9104 sds->total_capacity;
9105 /*
9106 * If the local group is more loaded than the selected
9107 * busiest group don't try to pull any tasks.
9108 */
9109 if (local->avg_load >= busiest->avg_load) {
9110 env->imbalance = 0;
9111 return;
9112 }
9113 }
9114
9115 /*
9116 * Both group are or will become overloaded and we're trying to get all
9117 * the CPUs to the average_load, so we don't want to push ourselves
9118 * above the average load, nor do we wish to reduce the max loaded CPU
9119 * below the average load. At the same time, we also don't want to
9120 * reduce the group load below the group capacity. Thus we look for
9121 * the minimum possible imbalance.
9122 */
9123 env->migration_type = migrate_load;
9124 env->imbalance = min(
9125 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9126 (sds->avg_load - local->avg_load) * local->group_capacity
9127 ) / SCHED_CAPACITY_SCALE;
9128 }
9129
9130 /******* find_busiest_group() helpers end here *********************/
9131
9132 /*
9133 * Decision matrix according to the local and busiest group type:
9134 *
9135 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9136 * has_spare nr_idle balanced N/A N/A balanced balanced
9137 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9138 * misfit_task force N/A N/A N/A force force
9139 * asym_packing force force N/A N/A force force
9140 * imbalanced force force N/A N/A force force
9141 * overloaded force force N/A N/A force avg_load
9142 *
9143 * N/A : Not Applicable because already filtered while updating
9144 * statistics.
9145 * balanced : The system is balanced for these 2 groups.
9146 * force : Calculate the imbalance as load migration is probably needed.
9147 * avg_load : Only if imbalance is significant enough.
9148 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9149 * different in groups.
9150 */
9151
9152 /**
9153 * find_busiest_group - Returns the busiest group within the sched_domain
9154 * if there is an imbalance.
9155 *
9156 * Also calculates the amount of runnable load which should be moved
9157 * to restore balance.
9158 *
9159 * @env: The load balancing environment.
9160 *
9161 * Return: - The busiest group if imbalance exists.
9162 */
9163 static struct sched_group *find_busiest_group(struct lb_env *env)
9164 {
9165 struct sg_lb_stats *local, *busiest;
9166 struct sd_lb_stats sds;
9167
9168 init_sd_lb_stats(&sds);
9169
9170 /*
9171 * Compute the various statistics relevant for load balancing at
9172 * this level.
9173 */
9174 update_sd_lb_stats(env, &sds);
9175
9176 if (sched_energy_enabled()) {
9177 struct root_domain *rd = env->dst_rq->rd;
9178
9179 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9180 goto out_balanced;
9181 }
9182
9183 local = &sds.local_stat;
9184 busiest = &sds.busiest_stat;
9185
9186 /* There is no busy sibling group to pull tasks from */
9187 if (!sds.busiest)
9188 goto out_balanced;
9189
9190 /* Misfit tasks should be dealt with regardless of the avg load */
9191 if (busiest->group_type == group_misfit_task)
9192 goto force_balance;
9193
9194 /* ASYM feature bypasses nice load balance check */
9195 if (busiest->group_type == group_asym_packing)
9196 goto force_balance;
9197
9198 /*
9199 * If the busiest group is imbalanced the below checks don't
9200 * work because they assume all things are equal, which typically
9201 * isn't true due to cpus_ptr constraints and the like.
9202 */
9203 if (busiest->group_type == group_imbalanced)
9204 goto force_balance;
9205
9206 /*
9207 * If the local group is busier than the selected busiest group
9208 * don't try and pull any tasks.
9209 */
9210 if (local->group_type > busiest->group_type)
9211 goto out_balanced;
9212
9213 /*
9214 * When groups are overloaded, use the avg_load to ensure fairness
9215 * between tasks.
9216 */
9217 if (local->group_type == group_overloaded) {
9218 /*
9219 * If the local group is more loaded than the selected
9220 * busiest group don't try to pull any tasks.
9221 */
9222 if (local->avg_load >= busiest->avg_load)
9223 goto out_balanced;
9224
9225 /* XXX broken for overlapping NUMA groups */
9226 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9227 sds.total_capacity;
9228
9229 /*
9230 * Don't pull any tasks if this group is already above the
9231 * domain average load.
9232 */
9233 if (local->avg_load >= sds.avg_load)
9234 goto out_balanced;
9235
9236 /*
9237 * If the busiest group is more loaded, use imbalance_pct to be
9238 * conservative.
9239 */
9240 if (100 * busiest->avg_load <=
9241 env->sd->imbalance_pct * local->avg_load)
9242 goto out_balanced;
9243 }
9244
9245 /* Try to move all excess tasks to child's sibling domain */
9246 if (sds.prefer_sibling && local->group_type == group_has_spare &&
9247 busiest->sum_nr_running > local->sum_nr_running + 1)
9248 goto force_balance;
9249
9250 if (busiest->group_type != group_overloaded) {
9251 if (env->idle == CPU_NOT_IDLE)
9252 /*
9253 * If the busiest group is not overloaded (and as a
9254 * result the local one too) but this CPU is already
9255 * busy, let another idle CPU try to pull task.
9256 */
9257 goto out_balanced;
9258
9259 if (busiest->group_weight > 1 &&
9260 local->idle_cpus <= (busiest->idle_cpus + 1))
9261 /*
9262 * If the busiest group is not overloaded
9263 * and there is no imbalance between this and busiest
9264 * group wrt idle CPUs, it is balanced. The imbalance
9265 * becomes significant if the diff is greater than 1
9266 * otherwise we might end up to just move the imbalance
9267 * on another group. Of course this applies only if
9268 * there is more than 1 CPU per group.
9269 */
9270 goto out_balanced;
9271
9272 if (busiest->sum_h_nr_running == 1)
9273 /*
9274 * busiest doesn't have any tasks waiting to run
9275 */
9276 goto out_balanced;
9277 }
9278
9279 force_balance:
9280 /* Looks like there is an imbalance. Compute it */
9281 calculate_imbalance(env, &sds);
9282 return env->imbalance ? sds.busiest : NULL;
9283
9284 out_balanced:
9285 env->imbalance = 0;
9286 return NULL;
9287 }
9288
9289 /*
9290 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9291 */
9292 static struct rq *find_busiest_queue(struct lb_env *env,
9293 struct sched_group *group)
9294 {
9295 struct rq *busiest = NULL, *rq;
9296 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9297 unsigned int busiest_nr = 0;
9298 int i;
9299
9300 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9301 unsigned long capacity, load, util;
9302 unsigned int nr_running;
9303 enum fbq_type rt;
9304
9305 rq = cpu_rq(i);
9306 rt = fbq_classify_rq(rq);
9307
9308 /*
9309 * We classify groups/runqueues into three groups:
9310 * - regular: there are !numa tasks
9311 * - remote: there are numa tasks that run on the 'wrong' node
9312 * - all: there is no distinction
9313 *
9314 * In order to avoid migrating ideally placed numa tasks,
9315 * ignore those when there's better options.
9316 *
9317 * If we ignore the actual busiest queue to migrate another
9318 * task, the next balance pass can still reduce the busiest
9319 * queue by moving tasks around inside the node.
9320 *
9321 * If we cannot move enough load due to this classification
9322 * the next pass will adjust the group classification and
9323 * allow migration of more tasks.
9324 *
9325 * Both cases only affect the total convergence complexity.
9326 */
9327 if (rt > env->fbq_type)
9328 continue;
9329
9330 capacity = capacity_of(i);
9331 nr_running = rq->cfs.h_nr_running;
9332
9333 /*
9334 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9335 * eventually lead to active_balancing high->low capacity.
9336 * Higher per-CPU capacity is considered better than balancing
9337 * average load.
9338 */
9339 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9340 capacity_of(env->dst_cpu) < capacity &&
9341 nr_running == 1)
9342 continue;
9343
9344 switch (env->migration_type) {
9345 case migrate_load:
9346 /*
9347 * When comparing with load imbalance, use cpu_load()
9348 * which is not scaled with the CPU capacity.
9349 */
9350 load = cpu_load(rq);
9351
9352 if (nr_running == 1 && load > env->imbalance &&
9353 !check_cpu_capacity(rq, env->sd))
9354 break;
9355
9356 /*
9357 * For the load comparisons with the other CPUs,
9358 * consider the cpu_load() scaled with the CPU
9359 * capacity, so that the load can be moved away
9360 * from the CPU that is potentially running at a
9361 * lower capacity.
9362 *
9363 * Thus we're looking for max(load_i / capacity_i),
9364 * crosswise multiplication to rid ourselves of the
9365 * division works out to:
9366 * load_i * capacity_j > load_j * capacity_i;
9367 * where j is our previous maximum.
9368 */
9369 if (load * busiest_capacity > busiest_load * capacity) {
9370 busiest_load = load;
9371 busiest_capacity = capacity;
9372 busiest = rq;
9373 }
9374 break;
9375
9376 case migrate_util:
9377 util = cpu_util(cpu_of(rq));
9378
9379 /*
9380 * Don't try to pull utilization from a CPU with one
9381 * running task. Whatever its utilization, we will fail
9382 * detach the task.
9383 */
9384 if (nr_running <= 1)
9385 continue;
9386
9387 if (busiest_util < util) {
9388 busiest_util = util;
9389 busiest = rq;
9390 }
9391 break;
9392
9393 case migrate_task:
9394 if (busiest_nr < nr_running) {
9395 busiest_nr = nr_running;
9396 busiest = rq;
9397 }
9398 break;
9399
9400 case migrate_misfit:
9401 /*
9402 * For ASYM_CPUCAPACITY domains with misfit tasks we
9403 * simply seek the "biggest" misfit task.
9404 */
9405 if (rq->misfit_task_load > busiest_load) {
9406 busiest_load = rq->misfit_task_load;
9407 busiest = rq;
9408 }
9409
9410 break;
9411
9412 }
9413 }
9414
9415 return busiest;
9416 }
9417
9418 /*
9419 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9420 * so long as it is large enough.
9421 */
9422 #define MAX_PINNED_INTERVAL 512
9423
9424 static inline bool
9425 asym_active_balance(struct lb_env *env)
9426 {
9427 /*
9428 * ASYM_PACKING needs to force migrate tasks from busy but
9429 * lower priority CPUs in order to pack all tasks in the
9430 * highest priority CPUs.
9431 */
9432 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9433 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9434 }
9435
9436 static inline bool
9437 voluntary_active_balance(struct lb_env *env)
9438 {
9439 struct sched_domain *sd = env->sd;
9440
9441 if (asym_active_balance(env))
9442 return 1;
9443
9444 /*
9445 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9446 * It's worth migrating the task if the src_cpu's capacity is reduced
9447 * because of other sched_class or IRQs if more capacity stays
9448 * available on dst_cpu.
9449 */
9450 if ((env->idle != CPU_NOT_IDLE) &&
9451 (env->src_rq->cfs.h_nr_running == 1)) {
9452 if ((check_cpu_capacity(env->src_rq, sd)) &&
9453 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9454 return 1;
9455 }
9456
9457 if (env->migration_type == migrate_misfit)
9458 return 1;
9459
9460 return 0;
9461 }
9462
9463 static int need_active_balance(struct lb_env *env)
9464 {
9465 struct sched_domain *sd = env->sd;
9466
9467 if (voluntary_active_balance(env))
9468 return 1;
9469
9470 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9471 }
9472
9473 static int active_load_balance_cpu_stop(void *data);
9474
9475 static int should_we_balance(struct lb_env *env)
9476 {
9477 struct sched_group *sg = env->sd->groups;
9478 int cpu;
9479
9480 /*
9481 * Ensure the balancing environment is consistent; can happen
9482 * when the softirq triggers 'during' hotplug.
9483 */
9484 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9485 return 0;
9486
9487 /*
9488 * In the newly idle case, we will allow all the CPUs
9489 * to do the newly idle load balance.
9490 */
9491 if (env->idle == CPU_NEWLY_IDLE)
9492 return 1;
9493
9494 /* Try to find first idle CPU */
9495 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9496 if (!idle_cpu(cpu))
9497 continue;
9498
9499 /* Are we the first idle CPU? */
9500 return cpu == env->dst_cpu;
9501 }
9502
9503 /* Are we the first CPU of this group ? */
9504 return group_balance_cpu(sg) == env->dst_cpu;
9505 }
9506
9507 /*
9508 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9509 * tasks if there is an imbalance.
9510 */
9511 static int load_balance(int this_cpu, struct rq *this_rq,
9512 struct sched_domain *sd, enum cpu_idle_type idle,
9513 int *continue_balancing)
9514 {
9515 int ld_moved, cur_ld_moved, active_balance = 0;
9516 struct sched_domain *sd_parent = sd->parent;
9517 struct sched_group *group;
9518 struct rq *busiest;
9519 struct rq_flags rf;
9520 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9521
9522 struct lb_env env = {
9523 .sd = sd,
9524 .dst_cpu = this_cpu,
9525 .dst_rq = this_rq,
9526 .dst_grpmask = sched_group_span(sd->groups),
9527 .idle = idle,
9528 .loop_break = sched_nr_migrate_break,
9529 .cpus = cpus,
9530 .fbq_type = all,
9531 .tasks = LIST_HEAD_INIT(env.tasks),
9532 };
9533
9534 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9535
9536 schedstat_inc(sd->lb_count[idle]);
9537
9538 redo:
9539 if (!should_we_balance(&env)) {
9540 *continue_balancing = 0;
9541 goto out_balanced;
9542 }
9543
9544 group = find_busiest_group(&env);
9545 if (!group) {
9546 schedstat_inc(sd->lb_nobusyg[idle]);
9547 goto out_balanced;
9548 }
9549
9550 busiest = find_busiest_queue(&env, group);
9551 if (!busiest) {
9552 schedstat_inc(sd->lb_nobusyq[idle]);
9553 goto out_balanced;
9554 }
9555
9556 BUG_ON(busiest == env.dst_rq);
9557
9558 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9559
9560 env.src_cpu = busiest->cpu;
9561 env.src_rq = busiest;
9562
9563 ld_moved = 0;
9564 if (busiest->nr_running > 1) {
9565 /*
9566 * Attempt to move tasks. If find_busiest_group has found
9567 * an imbalance but busiest->nr_running <= 1, the group is
9568 * still unbalanced. ld_moved simply stays zero, so it is
9569 * correctly treated as an imbalance.
9570 */
9571 env.flags |= LBF_ALL_PINNED;
9572 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
9573
9574 more_balance:
9575 rq_lock_irqsave(busiest, &rf);
9576 update_rq_clock(busiest);
9577
9578 /*
9579 * cur_ld_moved - load moved in current iteration
9580 * ld_moved - cumulative load moved across iterations
9581 */
9582 cur_ld_moved = detach_tasks(&env);
9583
9584 /*
9585 * We've detached some tasks from busiest_rq. Every
9586 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9587 * unlock busiest->lock, and we are able to be sure
9588 * that nobody can manipulate the tasks in parallel.
9589 * See task_rq_lock() family for the details.
9590 */
9591
9592 rq_unlock(busiest, &rf);
9593
9594 if (cur_ld_moved) {
9595 attach_tasks(&env);
9596 ld_moved += cur_ld_moved;
9597 }
9598
9599 local_irq_restore(rf.flags);
9600
9601 if (env.flags & LBF_NEED_BREAK) {
9602 env.flags &= ~LBF_NEED_BREAK;
9603 goto more_balance;
9604 }
9605
9606 /*
9607 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9608 * us and move them to an alternate dst_cpu in our sched_group
9609 * where they can run. The upper limit on how many times we
9610 * iterate on same src_cpu is dependent on number of CPUs in our
9611 * sched_group.
9612 *
9613 * This changes load balance semantics a bit on who can move
9614 * load to a given_cpu. In addition to the given_cpu itself
9615 * (or a ilb_cpu acting on its behalf where given_cpu is
9616 * nohz-idle), we now have balance_cpu in a position to move
9617 * load to given_cpu. In rare situations, this may cause
9618 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9619 * _independently_ and at _same_ time to move some load to
9620 * given_cpu) causing exceess load to be moved to given_cpu.
9621 * This however should not happen so much in practice and
9622 * moreover subsequent load balance cycles should correct the
9623 * excess load moved.
9624 */
9625 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9626
9627 /* Prevent to re-select dst_cpu via env's CPUs */
9628 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9629
9630 env.dst_rq = cpu_rq(env.new_dst_cpu);
9631 env.dst_cpu = env.new_dst_cpu;
9632 env.flags &= ~LBF_DST_PINNED;
9633 env.loop = 0;
9634 env.loop_break = sched_nr_migrate_break;
9635
9636 /*
9637 * Go back to "more_balance" rather than "redo" since we
9638 * need to continue with same src_cpu.
9639 */
9640 goto more_balance;
9641 }
9642
9643 /*
9644 * We failed to reach balance because of affinity.
9645 */
9646 if (sd_parent) {
9647 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9648
9649 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9650 *group_imbalance = 1;
9651 }
9652
9653 /* All tasks on this runqueue were pinned by CPU affinity */
9654 if (unlikely(env.flags & LBF_ALL_PINNED)) {
9655 __cpumask_clear_cpu(cpu_of(busiest), cpus);
9656 /*
9657 * Attempting to continue load balancing at the current
9658 * sched_domain level only makes sense if there are
9659 * active CPUs remaining as possible busiest CPUs to
9660 * pull load from which are not contained within the
9661 * destination group that is receiving any migrated
9662 * load.
9663 */
9664 if (!cpumask_subset(cpus, env.dst_grpmask)) {
9665 env.loop = 0;
9666 env.loop_break = sched_nr_migrate_break;
9667 goto redo;
9668 }
9669 goto out_all_pinned;
9670 }
9671 }
9672
9673 if (!ld_moved) {
9674 schedstat_inc(sd->lb_failed[idle]);
9675 /*
9676 * Increment the failure counter only on periodic balance.
9677 * We do not want newidle balance, which can be very
9678 * frequent, pollute the failure counter causing
9679 * excessive cache_hot migrations and active balances.
9680 */
9681 if (idle != CPU_NEWLY_IDLE)
9682 sd->nr_balance_failed++;
9683
9684 if (need_active_balance(&env)) {
9685 unsigned long flags;
9686
9687 raw_spin_lock_irqsave(&busiest->lock, flags);
9688
9689 /*
9690 * Don't kick the active_load_balance_cpu_stop,
9691 * if the curr task on busiest CPU can't be
9692 * moved to this_cpu:
9693 */
9694 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9695 raw_spin_unlock_irqrestore(&busiest->lock,
9696 flags);
9697 env.flags |= LBF_ALL_PINNED;
9698 goto out_one_pinned;
9699 }
9700
9701 /*
9702 * ->active_balance synchronizes accesses to
9703 * ->active_balance_work. Once set, it's cleared
9704 * only after active load balance is finished.
9705 */
9706 if (!busiest->active_balance) {
9707 busiest->active_balance = 1;
9708 busiest->push_cpu = this_cpu;
9709 active_balance = 1;
9710 }
9711 raw_spin_unlock_irqrestore(&busiest->lock, flags);
9712
9713 if (active_balance) {
9714 stop_one_cpu_nowait(cpu_of(busiest),
9715 active_load_balance_cpu_stop, busiest,
9716 &busiest->active_balance_work);
9717 }
9718
9719 /* We've kicked active balancing, force task migration. */
9720 sd->nr_balance_failed = sd->cache_nice_tries+1;
9721 }
9722 } else
9723 sd->nr_balance_failed = 0;
9724
9725 if (likely(!active_balance) || voluntary_active_balance(&env)) {
9726 /* We were unbalanced, so reset the balancing interval */
9727 sd->balance_interval = sd->min_interval;
9728 } else {
9729 /*
9730 * If we've begun active balancing, start to back off. This
9731 * case may not be covered by the all_pinned logic if there
9732 * is only 1 task on the busy runqueue (because we don't call
9733 * detach_tasks).
9734 */
9735 if (sd->balance_interval < sd->max_interval)
9736 sd->balance_interval *= 2;
9737 }
9738
9739 goto out;
9740
9741 out_balanced:
9742 /*
9743 * We reach balance although we may have faced some affinity
9744 * constraints. Clear the imbalance flag only if other tasks got
9745 * a chance to move and fix the imbalance.
9746 */
9747 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9748 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9749
9750 if (*group_imbalance)
9751 *group_imbalance = 0;
9752 }
9753
9754 out_all_pinned:
9755 /*
9756 * We reach balance because all tasks are pinned at this level so
9757 * we can't migrate them. Let the imbalance flag set so parent level
9758 * can try to migrate them.
9759 */
9760 schedstat_inc(sd->lb_balanced[idle]);
9761
9762 sd->nr_balance_failed = 0;
9763
9764 out_one_pinned:
9765 ld_moved = 0;
9766
9767 /*
9768 * newidle_balance() disregards balance intervals, so we could
9769 * repeatedly reach this code, which would lead to balance_interval
9770 * skyrocketting in a short amount of time. Skip the balance_interval
9771 * increase logic to avoid that.
9772 */
9773 if (env.idle == CPU_NEWLY_IDLE)
9774 goto out;
9775
9776 /* tune up the balancing interval */
9777 if ((env.flags & LBF_ALL_PINNED &&
9778 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9779 sd->balance_interval < sd->max_interval)
9780 sd->balance_interval *= 2;
9781 out:
9782 return ld_moved;
9783 }
9784
9785 static inline unsigned long
9786 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9787 {
9788 unsigned long interval = sd->balance_interval;
9789
9790 if (cpu_busy)
9791 interval *= sd->busy_factor;
9792
9793 /* scale ms to jiffies */
9794 interval = msecs_to_jiffies(interval);
9795
9796 /*
9797 * Reduce likelihood of busy balancing at higher domains racing with
9798 * balancing at lower domains by preventing their balancing periods
9799 * from being multiples of each other.
9800 */
9801 if (cpu_busy)
9802 interval -= 1;
9803
9804 interval = clamp(interval, 1UL, max_load_balance_interval);
9805
9806 return interval;
9807 }
9808
9809 static inline void
9810 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9811 {
9812 unsigned long interval, next;
9813
9814 /* used by idle balance, so cpu_busy = 0 */
9815 interval = get_sd_balance_interval(sd, 0);
9816 next = sd->last_balance + interval;
9817
9818 if (time_after(*next_balance, next))
9819 *next_balance = next;
9820 }
9821
9822 /*
9823 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9824 * running tasks off the busiest CPU onto idle CPUs. It requires at
9825 * least 1 task to be running on each physical CPU where possible, and
9826 * avoids physical / logical imbalances.
9827 */
9828 static int active_load_balance_cpu_stop(void *data)
9829 {
9830 struct rq *busiest_rq = data;
9831 int busiest_cpu = cpu_of(busiest_rq);
9832 int target_cpu = busiest_rq->push_cpu;
9833 struct rq *target_rq = cpu_rq(target_cpu);
9834 struct sched_domain *sd;
9835 struct task_struct *p = NULL;
9836 struct rq_flags rf;
9837
9838 rq_lock_irq(busiest_rq, &rf);
9839 /*
9840 * Between queueing the stop-work and running it is a hole in which
9841 * CPUs can become inactive. We should not move tasks from or to
9842 * inactive CPUs.
9843 */
9844 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9845 goto out_unlock;
9846
9847 /* Make sure the requested CPU hasn't gone down in the meantime: */
9848 if (unlikely(busiest_cpu != smp_processor_id() ||
9849 !busiest_rq->active_balance))
9850 goto out_unlock;
9851
9852 /* Is there any task to move? */
9853 if (busiest_rq->nr_running <= 1)
9854 goto out_unlock;
9855
9856 /*
9857 * This condition is "impossible", if it occurs
9858 * we need to fix it. Originally reported by
9859 * Bjorn Helgaas on a 128-CPU setup.
9860 */
9861 BUG_ON(busiest_rq == target_rq);
9862
9863 /* Search for an sd spanning us and the target CPU. */
9864 rcu_read_lock();
9865 for_each_domain(target_cpu, sd) {
9866 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9867 break;
9868 }
9869
9870 if (likely(sd)) {
9871 struct lb_env env = {
9872 .sd = sd,
9873 .dst_cpu = target_cpu,
9874 .dst_rq = target_rq,
9875 .src_cpu = busiest_rq->cpu,
9876 .src_rq = busiest_rq,
9877 .idle = CPU_IDLE,
9878 /*
9879 * can_migrate_task() doesn't need to compute new_dst_cpu
9880 * for active balancing. Since we have CPU_IDLE, but no
9881 * @dst_grpmask we need to make that test go away with lying
9882 * about DST_PINNED.
9883 */
9884 .flags = LBF_DST_PINNED,
9885 };
9886
9887 schedstat_inc(sd->alb_count);
9888 update_rq_clock(busiest_rq);
9889
9890 p = detach_one_task(&env);
9891 if (p) {
9892 schedstat_inc(sd->alb_pushed);
9893 /* Active balancing done, reset the failure counter. */
9894 sd->nr_balance_failed = 0;
9895 } else {
9896 schedstat_inc(sd->alb_failed);
9897 }
9898 }
9899 rcu_read_unlock();
9900 out_unlock:
9901 busiest_rq->active_balance = 0;
9902 rq_unlock(busiest_rq, &rf);
9903
9904 if (p)
9905 attach_one_task(target_rq, p);
9906
9907 local_irq_enable();
9908
9909 return 0;
9910 }
9911
9912 static DEFINE_SPINLOCK(balancing);
9913
9914 /*
9915 * Scale the max load_balance interval with the number of CPUs in the system.
9916 * This trades load-balance latency on larger machines for less cross talk.
9917 */
9918 void update_max_interval(void)
9919 {
9920 max_load_balance_interval = HZ*num_online_cpus()/10;
9921 }
9922
9923 /*
9924 * It checks each scheduling domain to see if it is due to be balanced,
9925 * and initiates a balancing operation if so.
9926 *
9927 * Balancing parameters are set up in init_sched_domains.
9928 */
9929 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9930 {
9931 int continue_balancing = 1;
9932 int cpu = rq->cpu;
9933 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9934 unsigned long interval;
9935 struct sched_domain *sd;
9936 /* Earliest time when we have to do rebalance again */
9937 unsigned long next_balance = jiffies + 60*HZ;
9938 int update_next_balance = 0;
9939 int need_serialize, need_decay = 0;
9940 u64 max_cost = 0;
9941
9942 rcu_read_lock();
9943 for_each_domain(cpu, sd) {
9944 /*
9945 * Decay the newidle max times here because this is a regular
9946 * visit to all the domains. Decay ~1% per second.
9947 */
9948 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9949 sd->max_newidle_lb_cost =
9950 (sd->max_newidle_lb_cost * 253) / 256;
9951 sd->next_decay_max_lb_cost = jiffies + HZ;
9952 need_decay = 1;
9953 }
9954 max_cost += sd->max_newidle_lb_cost;
9955
9956 /*
9957 * Stop the load balance at this level. There is another
9958 * CPU in our sched group which is doing load balancing more
9959 * actively.
9960 */
9961 if (!continue_balancing) {
9962 if (need_decay)
9963 continue;
9964 break;
9965 }
9966
9967 interval = get_sd_balance_interval(sd, busy);
9968
9969 need_serialize = sd->flags & SD_SERIALIZE;
9970 if (need_serialize) {
9971 if (!spin_trylock(&balancing))
9972 goto out;
9973 }
9974
9975 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9976 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9977 /*
9978 * The LBF_DST_PINNED logic could have changed
9979 * env->dst_cpu, so we can't know our idle
9980 * state even if we migrated tasks. Update it.
9981 */
9982 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9983 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9984 }
9985 sd->last_balance = jiffies;
9986 interval = get_sd_balance_interval(sd, busy);
9987 }
9988 if (need_serialize)
9989 spin_unlock(&balancing);
9990 out:
9991 if (time_after(next_balance, sd->last_balance + interval)) {
9992 next_balance = sd->last_balance + interval;
9993 update_next_balance = 1;
9994 }
9995 }
9996 if (need_decay) {
9997 /*
9998 * Ensure the rq-wide value also decays but keep it at a
9999 * reasonable floor to avoid funnies with rq->avg_idle.
10000 */
10001 rq->max_idle_balance_cost =
10002 max((u64)sysctl_sched_migration_cost, max_cost);
10003 }
10004 rcu_read_unlock();
10005
10006 /*
10007 * next_balance will be updated only when there is a need.
10008 * When the cpu is attached to null domain for ex, it will not be
10009 * updated.
10010 */
10011 if (likely(update_next_balance)) {
10012 rq->next_balance = next_balance;
10013
10014 #ifdef CONFIG_NO_HZ_COMMON
10015 /*
10016 * If this CPU has been elected to perform the nohz idle
10017 * balance. Other idle CPUs have already rebalanced with
10018 * nohz_idle_balance() and nohz.next_balance has been
10019 * updated accordingly. This CPU is now running the idle load
10020 * balance for itself and we need to update the
10021 * nohz.next_balance accordingly.
10022 */
10023 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
10024 nohz.next_balance = rq->next_balance;
10025 #endif
10026 }
10027 }
10028
10029 static inline int on_null_domain(struct rq *rq)
10030 {
10031 return unlikely(!rcu_dereference_sched(rq->sd));
10032 }
10033
10034 #ifdef CONFIG_NO_HZ_COMMON
10035 /*
10036 * idle load balancing details
10037 * - When one of the busy CPUs notice that there may be an idle rebalancing
10038 * needed, they will kick the idle load balancer, which then does idle
10039 * load balancing for all the idle CPUs.
10040 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10041 * anywhere yet.
10042 */
10043
10044 static inline int find_new_ilb(void)
10045 {
10046 int ilb;
10047
10048 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10049 housekeeping_cpumask(HK_FLAG_MISC)) {
10050 if (idle_cpu(ilb))
10051 return ilb;
10052 }
10053
10054 return nr_cpu_ids;
10055 }
10056
10057 /*
10058 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10059 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10060 */
10061 static void kick_ilb(unsigned int flags)
10062 {
10063 int ilb_cpu;
10064
10065 /*
10066 * Increase nohz.next_balance only when if full ilb is triggered but
10067 * not if we only update stats.
10068 */
10069 if (flags & NOHZ_BALANCE_KICK)
10070 nohz.next_balance = jiffies+1;
10071
10072 ilb_cpu = find_new_ilb();
10073
10074 if (ilb_cpu >= nr_cpu_ids)
10075 return;
10076
10077 /*
10078 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10079 * the first flag owns it; cleared by nohz_csd_func().
10080 */
10081 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10082 if (flags & NOHZ_KICK_MASK)
10083 return;
10084
10085 /*
10086 * This way we generate an IPI on the target CPU which
10087 * is idle. And the softirq performing nohz idle load balance
10088 * will be run before returning from the IPI.
10089 */
10090 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10091 }
10092
10093 /*
10094 * Current decision point for kicking the idle load balancer in the presence
10095 * of idle CPUs in the system.
10096 */
10097 static void nohz_balancer_kick(struct rq *rq)
10098 {
10099 unsigned long now = jiffies;
10100 struct sched_domain_shared *sds;
10101 struct sched_domain *sd;
10102 int nr_busy, i, cpu = rq->cpu;
10103 unsigned int flags = 0;
10104
10105 if (unlikely(rq->idle_balance))
10106 return;
10107
10108 /*
10109 * We may be recently in ticked or tickless idle mode. At the first
10110 * busy tick after returning from idle, we will update the busy stats.
10111 */
10112 nohz_balance_exit_idle(rq);
10113
10114 /*
10115 * None are in tickless mode and hence no need for NOHZ idle load
10116 * balancing.
10117 */
10118 if (likely(!atomic_read(&nohz.nr_cpus)))
10119 return;
10120
10121 if (READ_ONCE(nohz.has_blocked) &&
10122 time_after(now, READ_ONCE(nohz.next_blocked)))
10123 flags = NOHZ_STATS_KICK;
10124
10125 if (time_before(now, nohz.next_balance))
10126 goto out;
10127
10128 if (rq->nr_running >= 2) {
10129 flags = NOHZ_KICK_MASK;
10130 goto out;
10131 }
10132
10133 rcu_read_lock();
10134
10135 sd = rcu_dereference(rq->sd);
10136 if (sd) {
10137 /*
10138 * If there's a CFS task and the current CPU has reduced
10139 * capacity; kick the ILB to see if there's a better CPU to run
10140 * on.
10141 */
10142 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10143 flags = NOHZ_KICK_MASK;
10144 goto unlock;
10145 }
10146 }
10147
10148 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10149 if (sd) {
10150 /*
10151 * When ASYM_PACKING; see if there's a more preferred CPU
10152 * currently idle; in which case, kick the ILB to move tasks
10153 * around.
10154 */
10155 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10156 if (sched_asym_prefer(i, cpu)) {
10157 flags = NOHZ_KICK_MASK;
10158 goto unlock;
10159 }
10160 }
10161 }
10162
10163 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10164 if (sd) {
10165 /*
10166 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10167 * to run the misfit task on.
10168 */
10169 if (check_misfit_status(rq, sd)) {
10170 flags = NOHZ_KICK_MASK;
10171 goto unlock;
10172 }
10173
10174 /*
10175 * For asymmetric systems, we do not want to nicely balance
10176 * cache use, instead we want to embrace asymmetry and only
10177 * ensure tasks have enough CPU capacity.
10178 *
10179 * Skip the LLC logic because it's not relevant in that case.
10180 */
10181 goto unlock;
10182 }
10183
10184 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10185 if (sds) {
10186 /*
10187 * If there is an imbalance between LLC domains (IOW we could
10188 * increase the overall cache use), we need some less-loaded LLC
10189 * domain to pull some load. Likewise, we may need to spread
10190 * load within the current LLC domain (e.g. packed SMT cores but
10191 * other CPUs are idle). We can't really know from here how busy
10192 * the others are - so just get a nohz balance going if it looks
10193 * like this LLC domain has tasks we could move.
10194 */
10195 nr_busy = atomic_read(&sds->nr_busy_cpus);
10196 if (nr_busy > 1) {
10197 flags = NOHZ_KICK_MASK;
10198 goto unlock;
10199 }
10200 }
10201 unlock:
10202 rcu_read_unlock();
10203 out:
10204 if (flags)
10205 kick_ilb(flags);
10206 }
10207
10208 static void set_cpu_sd_state_busy(int cpu)
10209 {
10210 struct sched_domain *sd;
10211
10212 rcu_read_lock();
10213 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10214
10215 if (!sd || !sd->nohz_idle)
10216 goto unlock;
10217 sd->nohz_idle = 0;
10218
10219 atomic_inc(&sd->shared->nr_busy_cpus);
10220 unlock:
10221 rcu_read_unlock();
10222 }
10223
10224 void nohz_balance_exit_idle(struct rq *rq)
10225 {
10226 SCHED_WARN_ON(rq != this_rq());
10227
10228 if (likely(!rq->nohz_tick_stopped))
10229 return;
10230
10231 rq->nohz_tick_stopped = 0;
10232 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10233 atomic_dec(&nohz.nr_cpus);
10234
10235 set_cpu_sd_state_busy(rq->cpu);
10236 }
10237
10238 static void set_cpu_sd_state_idle(int cpu)
10239 {
10240 struct sched_domain *sd;
10241
10242 rcu_read_lock();
10243 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10244
10245 if (!sd || sd->nohz_idle)
10246 goto unlock;
10247 sd->nohz_idle = 1;
10248
10249 atomic_dec(&sd->shared->nr_busy_cpus);
10250 unlock:
10251 rcu_read_unlock();
10252 }
10253
10254 /*
10255 * This routine will record that the CPU is going idle with tick stopped.
10256 * This info will be used in performing idle load balancing in the future.
10257 */
10258 void nohz_balance_enter_idle(int cpu)
10259 {
10260 struct rq *rq = cpu_rq(cpu);
10261
10262 SCHED_WARN_ON(cpu != smp_processor_id());
10263
10264 /* If this CPU is going down, then nothing needs to be done: */
10265 if (!cpu_active(cpu))
10266 return;
10267
10268 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10269 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10270 return;
10271
10272 /*
10273 * Can be set safely without rq->lock held
10274 * If a clear happens, it will have evaluated last additions because
10275 * rq->lock is held during the check and the clear
10276 */
10277 rq->has_blocked_load = 1;
10278
10279 /*
10280 * The tick is still stopped but load could have been added in the
10281 * meantime. We set the nohz.has_blocked flag to trig a check of the
10282 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10283 * of nohz.has_blocked can only happen after checking the new load
10284 */
10285 if (rq->nohz_tick_stopped)
10286 goto out;
10287
10288 /* If we're a completely isolated CPU, we don't play: */
10289 if (on_null_domain(rq))
10290 return;
10291
10292 rq->nohz_tick_stopped = 1;
10293
10294 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10295 atomic_inc(&nohz.nr_cpus);
10296
10297 /*
10298 * Ensures that if nohz_idle_balance() fails to observe our
10299 * @idle_cpus_mask store, it must observe the @has_blocked
10300 * store.
10301 */
10302 smp_mb__after_atomic();
10303
10304 set_cpu_sd_state_idle(cpu);
10305
10306 out:
10307 /*
10308 * Each time a cpu enter idle, we assume that it has blocked load and
10309 * enable the periodic update of the load of idle cpus
10310 */
10311 WRITE_ONCE(nohz.has_blocked, 1);
10312 }
10313
10314 /*
10315 * Internal function that runs load balance for all idle cpus. The load balance
10316 * can be a simple update of blocked load or a complete load balance with
10317 * tasks movement depending of flags.
10318 * The function returns false if the loop has stopped before running
10319 * through all idle CPUs.
10320 */
10321 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10322 enum cpu_idle_type idle)
10323 {
10324 /* Earliest time when we have to do rebalance again */
10325 unsigned long now = jiffies;
10326 unsigned long next_balance = now + 60*HZ;
10327 bool has_blocked_load = false;
10328 int update_next_balance = 0;
10329 int this_cpu = this_rq->cpu;
10330 int balance_cpu;
10331 int ret = false;
10332 struct rq *rq;
10333
10334 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10335
10336 /*
10337 * We assume there will be no idle load after this update and clear
10338 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10339 * set the has_blocked flag and trig another update of idle load.
10340 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10341 * setting the flag, we are sure to not clear the state and not
10342 * check the load of an idle cpu.
10343 */
10344 WRITE_ONCE(nohz.has_blocked, 0);
10345
10346 /*
10347 * Ensures that if we miss the CPU, we must see the has_blocked
10348 * store from nohz_balance_enter_idle().
10349 */
10350 smp_mb();
10351
10352 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
10353 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
10354 continue;
10355
10356 /*
10357 * If this CPU gets work to do, stop the load balancing
10358 * work being done for other CPUs. Next load
10359 * balancing owner will pick it up.
10360 */
10361 if (need_resched()) {
10362 has_blocked_load = true;
10363 goto abort;
10364 }
10365
10366 rq = cpu_rq(balance_cpu);
10367
10368 has_blocked_load |= update_nohz_stats(rq, true);
10369
10370 /*
10371 * If time for next balance is due,
10372 * do the balance.
10373 */
10374 if (time_after_eq(jiffies, rq->next_balance)) {
10375 struct rq_flags rf;
10376
10377 rq_lock_irqsave(rq, &rf);
10378 update_rq_clock(rq);
10379 rq_unlock_irqrestore(rq, &rf);
10380
10381 if (flags & NOHZ_BALANCE_KICK)
10382 rebalance_domains(rq, CPU_IDLE);
10383 }
10384
10385 if (time_after(next_balance, rq->next_balance)) {
10386 next_balance = rq->next_balance;
10387 update_next_balance = 1;
10388 }
10389 }
10390
10391 /*
10392 * next_balance will be updated only when there is a need.
10393 * When the CPU is attached to null domain for ex, it will not be
10394 * updated.
10395 */
10396 if (likely(update_next_balance))
10397 nohz.next_balance = next_balance;
10398
10399 /* Newly idle CPU doesn't need an update */
10400 if (idle != CPU_NEWLY_IDLE) {
10401 update_blocked_averages(this_cpu);
10402 has_blocked_load |= this_rq->has_blocked_load;
10403 }
10404
10405 if (flags & NOHZ_BALANCE_KICK)
10406 rebalance_domains(this_rq, CPU_IDLE);
10407
10408 WRITE_ONCE(nohz.next_blocked,
10409 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10410
10411 /* The full idle balance loop has been done */
10412 ret = true;
10413
10414 abort:
10415 /* There is still blocked load, enable periodic update */
10416 if (has_blocked_load)
10417 WRITE_ONCE(nohz.has_blocked, 1);
10418
10419 return ret;
10420 }
10421
10422 /*
10423 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10424 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10425 */
10426 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10427 {
10428 unsigned int flags = this_rq->nohz_idle_balance;
10429
10430 if (!flags)
10431 return false;
10432
10433 this_rq->nohz_idle_balance = 0;
10434
10435 if (idle != CPU_IDLE)
10436 return false;
10437
10438 _nohz_idle_balance(this_rq, flags, idle);
10439
10440 return true;
10441 }
10442
10443 static void nohz_newidle_balance(struct rq *this_rq)
10444 {
10445 int this_cpu = this_rq->cpu;
10446
10447 /*
10448 * This CPU doesn't want to be disturbed by scheduler
10449 * housekeeping
10450 */
10451 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10452 return;
10453
10454 /* Will wake up very soon. No time for doing anything else*/
10455 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10456 return;
10457
10458 /* Don't need to update blocked load of idle CPUs*/
10459 if (!READ_ONCE(nohz.has_blocked) ||
10460 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10461 return;
10462
10463 raw_spin_unlock(&this_rq->lock);
10464 /*
10465 * This CPU is going to be idle and blocked load of idle CPUs
10466 * need to be updated. Run the ilb locally as it is a good
10467 * candidate for ilb instead of waking up another idle CPU.
10468 * Kick an normal ilb if we failed to do the update.
10469 */
10470 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10471 kick_ilb(NOHZ_STATS_KICK);
10472 raw_spin_lock(&this_rq->lock);
10473 }
10474
10475 #else /* !CONFIG_NO_HZ_COMMON */
10476 static inline void nohz_balancer_kick(struct rq *rq) { }
10477
10478 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10479 {
10480 return false;
10481 }
10482
10483 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10484 #endif /* CONFIG_NO_HZ_COMMON */
10485
10486 /*
10487 * idle_balance is called by schedule() if this_cpu is about to become
10488 * idle. Attempts to pull tasks from other CPUs.
10489 *
10490 * Returns:
10491 * < 0 - we released the lock and there are !fair tasks present
10492 * 0 - failed, no new tasks
10493 * > 0 - success, new (fair) tasks present
10494 */
10495 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10496 {
10497 unsigned long next_balance = jiffies + HZ;
10498 int this_cpu = this_rq->cpu;
10499 struct sched_domain *sd;
10500 int pulled_task = 0;
10501 u64 curr_cost = 0;
10502
10503 update_misfit_status(NULL, this_rq);
10504 /*
10505 * We must set idle_stamp _before_ calling idle_balance(), such that we
10506 * measure the duration of idle_balance() as idle time.
10507 */
10508 this_rq->idle_stamp = rq_clock(this_rq);
10509
10510 /*
10511 * Do not pull tasks towards !active CPUs...
10512 */
10513 if (!cpu_active(this_cpu))
10514 return 0;
10515
10516 /*
10517 * This is OK, because current is on_cpu, which avoids it being picked
10518 * for load-balance and preemption/IRQs are still disabled avoiding
10519 * further scheduler activity on it and we're being very careful to
10520 * re-start the picking loop.
10521 */
10522 rq_unpin_lock(this_rq, rf);
10523
10524 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10525 !READ_ONCE(this_rq->rd->overload)) {
10526
10527 rcu_read_lock();
10528 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10529 if (sd)
10530 update_next_balance(sd, &next_balance);
10531 rcu_read_unlock();
10532
10533 nohz_newidle_balance(this_rq);
10534
10535 goto out;
10536 }
10537
10538 raw_spin_unlock(&this_rq->lock);
10539
10540 update_blocked_averages(this_cpu);
10541 rcu_read_lock();
10542 for_each_domain(this_cpu, sd) {
10543 int continue_balancing = 1;
10544 u64 t0, domain_cost;
10545
10546 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10547 update_next_balance(sd, &next_balance);
10548 break;
10549 }
10550
10551 if (sd->flags & SD_BALANCE_NEWIDLE) {
10552 t0 = sched_clock_cpu(this_cpu);
10553
10554 pulled_task = load_balance(this_cpu, this_rq,
10555 sd, CPU_NEWLY_IDLE,
10556 &continue_balancing);
10557
10558 domain_cost = sched_clock_cpu(this_cpu) - t0;
10559 if (domain_cost > sd->max_newidle_lb_cost)
10560 sd->max_newidle_lb_cost = domain_cost;
10561
10562 curr_cost += domain_cost;
10563 }
10564
10565 update_next_balance(sd, &next_balance);
10566
10567 /*
10568 * Stop searching for tasks to pull if there are
10569 * now runnable tasks on this rq.
10570 */
10571 if (pulled_task || this_rq->nr_running > 0)
10572 break;
10573 }
10574 rcu_read_unlock();
10575
10576 raw_spin_lock(&this_rq->lock);
10577
10578 if (curr_cost > this_rq->max_idle_balance_cost)
10579 this_rq->max_idle_balance_cost = curr_cost;
10580
10581 out:
10582 /*
10583 * While browsing the domains, we released the rq lock, a task could
10584 * have been enqueued in the meantime. Since we're not going idle,
10585 * pretend we pulled a task.
10586 */
10587 if (this_rq->cfs.h_nr_running && !pulled_task)
10588 pulled_task = 1;
10589
10590 /* Move the next balance forward */
10591 if (time_after(this_rq->next_balance, next_balance))
10592 this_rq->next_balance = next_balance;
10593
10594 /* Is there a task of a high priority class? */
10595 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10596 pulled_task = -1;
10597
10598 if (pulled_task)
10599 this_rq->idle_stamp = 0;
10600
10601 rq_repin_lock(this_rq, rf);
10602
10603 return pulled_task;
10604 }
10605
10606 /*
10607 * run_rebalance_domains is triggered when needed from the scheduler tick.
10608 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10609 */
10610 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10611 {
10612 struct rq *this_rq = this_rq();
10613 enum cpu_idle_type idle = this_rq->idle_balance ?
10614 CPU_IDLE : CPU_NOT_IDLE;
10615
10616 /*
10617 * If this CPU has a pending nohz_balance_kick, then do the
10618 * balancing on behalf of the other idle CPUs whose ticks are
10619 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10620 * give the idle CPUs a chance to load balance. Else we may
10621 * load balance only within the local sched_domain hierarchy
10622 * and abort nohz_idle_balance altogether if we pull some load.
10623 */
10624 if (nohz_idle_balance(this_rq, idle))
10625 return;
10626
10627 /* normal load balance */
10628 update_blocked_averages(this_rq->cpu);
10629 rebalance_domains(this_rq, idle);
10630 }
10631
10632 /*
10633 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10634 */
10635 void trigger_load_balance(struct rq *rq)
10636 {
10637 /* Don't need to rebalance while attached to NULL domain */
10638 if (unlikely(on_null_domain(rq)))
10639 return;
10640
10641 if (time_after_eq(jiffies, rq->next_balance))
10642 raise_softirq(SCHED_SOFTIRQ);
10643
10644 nohz_balancer_kick(rq);
10645 }
10646
10647 static void rq_online_fair(struct rq *rq)
10648 {
10649 update_sysctl();
10650
10651 update_runtime_enabled(rq);
10652 }
10653
10654 static void rq_offline_fair(struct rq *rq)
10655 {
10656 update_sysctl();
10657
10658 /* Ensure any throttled groups are reachable by pick_next_task */
10659 unthrottle_offline_cfs_rqs(rq);
10660 }
10661
10662 #endif /* CONFIG_SMP */
10663
10664 /*
10665 * scheduler tick hitting a task of our scheduling class.
10666 *
10667 * NOTE: This function can be called remotely by the tick offload that
10668 * goes along full dynticks. Therefore no local assumption can be made
10669 * and everything must be accessed through the @rq and @curr passed in
10670 * parameters.
10671 */
10672 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10673 {
10674 struct cfs_rq *cfs_rq;
10675 struct sched_entity *se = &curr->se;
10676
10677 for_each_sched_entity(se) {
10678 cfs_rq = cfs_rq_of(se);
10679 entity_tick(cfs_rq, se, queued);
10680 }
10681
10682 if (static_branch_unlikely(&sched_numa_balancing))
10683 task_tick_numa(rq, curr);
10684
10685 update_misfit_status(curr, rq);
10686 update_overutilized_status(task_rq(curr));
10687 }
10688
10689 /*
10690 * called on fork with the child task as argument from the parent's context
10691 * - child not yet on the tasklist
10692 * - preemption disabled
10693 */
10694 static void task_fork_fair(struct task_struct *p)
10695 {
10696 struct cfs_rq *cfs_rq;
10697 struct sched_entity *se = &p->se, *curr;
10698 struct rq *rq = this_rq();
10699 struct rq_flags rf;
10700
10701 rq_lock(rq, &rf);
10702 update_rq_clock(rq);
10703
10704 cfs_rq = task_cfs_rq(current);
10705 curr = cfs_rq->curr;
10706 if (curr) {
10707 update_curr(cfs_rq);
10708 se->vruntime = curr->vruntime;
10709 }
10710 place_entity(cfs_rq, se, 1);
10711
10712 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10713 /*
10714 * Upon rescheduling, sched_class::put_prev_task() will place
10715 * 'current' within the tree based on its new key value.
10716 */
10717 swap(curr->vruntime, se->vruntime);
10718 resched_curr(rq);
10719 }
10720
10721 se->vruntime -= cfs_rq->min_vruntime;
10722 rq_unlock(rq, &rf);
10723 }
10724
10725 /*
10726 * Priority of the task has changed. Check to see if we preempt
10727 * the current task.
10728 */
10729 static void
10730 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10731 {
10732 if (!task_on_rq_queued(p))
10733 return;
10734
10735 if (rq->cfs.nr_running == 1)
10736 return;
10737
10738 /*
10739 * Reschedule if we are currently running on this runqueue and
10740 * our priority decreased, or if we are not currently running on
10741 * this runqueue and our priority is higher than the current's
10742 */
10743 if (rq->curr == p) {
10744 if (p->prio > oldprio)
10745 resched_curr(rq);
10746 } else
10747 check_preempt_curr(rq, p, 0);
10748 }
10749
10750 static inline bool vruntime_normalized(struct task_struct *p)
10751 {
10752 struct sched_entity *se = &p->se;
10753
10754 /*
10755 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10756 * the dequeue_entity(.flags=0) will already have normalized the
10757 * vruntime.
10758 */
10759 if (p->on_rq)
10760 return true;
10761
10762 /*
10763 * When !on_rq, vruntime of the task has usually NOT been normalized.
10764 * But there are some cases where it has already been normalized:
10765 *
10766 * - A forked child which is waiting for being woken up by
10767 * wake_up_new_task().
10768 * - A task which has been woken up by try_to_wake_up() and
10769 * waiting for actually being woken up by sched_ttwu_pending().
10770 */
10771 if (!se->sum_exec_runtime ||
10772 (p->state == TASK_WAKING && p->sched_remote_wakeup))
10773 return true;
10774
10775 return false;
10776 }
10777
10778 #ifdef CONFIG_FAIR_GROUP_SCHED
10779 /*
10780 * Propagate the changes of the sched_entity across the tg tree to make it
10781 * visible to the root
10782 */
10783 static void propagate_entity_cfs_rq(struct sched_entity *se)
10784 {
10785 struct cfs_rq *cfs_rq;
10786
10787 /* Start to propagate at parent */
10788 se = se->parent;
10789
10790 for_each_sched_entity(se) {
10791 cfs_rq = cfs_rq_of(se);
10792
10793 if (cfs_rq_throttled(cfs_rq))
10794 break;
10795
10796 update_load_avg(cfs_rq, se, UPDATE_TG);
10797 }
10798 }
10799 #else
10800 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10801 #endif
10802
10803 static void detach_entity_cfs_rq(struct sched_entity *se)
10804 {
10805 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10806
10807 /* Catch up with the cfs_rq and remove our load when we leave */
10808 update_load_avg(cfs_rq, se, 0);
10809 detach_entity_load_avg(cfs_rq, se);
10810 update_tg_load_avg(cfs_rq);
10811 propagate_entity_cfs_rq(se);
10812 }
10813
10814 static void attach_entity_cfs_rq(struct sched_entity *se)
10815 {
10816 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10817
10818 #ifdef CONFIG_FAIR_GROUP_SCHED
10819 /*
10820 * Since the real-depth could have been changed (only FAIR
10821 * class maintain depth value), reset depth properly.
10822 */
10823 se->depth = se->parent ? se->parent->depth + 1 : 0;
10824 #endif
10825
10826 /* Synchronize entity with its cfs_rq */
10827 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10828 attach_entity_load_avg(cfs_rq, se);
10829 update_tg_load_avg(cfs_rq);
10830 propagate_entity_cfs_rq(se);
10831 }
10832
10833 static void detach_task_cfs_rq(struct task_struct *p)
10834 {
10835 struct sched_entity *se = &p->se;
10836 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10837
10838 if (!vruntime_normalized(p)) {
10839 /*
10840 * Fix up our vruntime so that the current sleep doesn't
10841 * cause 'unlimited' sleep bonus.
10842 */
10843 place_entity(cfs_rq, se, 0);
10844 se->vruntime -= cfs_rq->min_vruntime;
10845 }
10846
10847 detach_entity_cfs_rq(se);
10848 }
10849
10850 static void attach_task_cfs_rq(struct task_struct *p)
10851 {
10852 struct sched_entity *se = &p->se;
10853 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10854
10855 attach_entity_cfs_rq(se);
10856
10857 if (!vruntime_normalized(p))
10858 se->vruntime += cfs_rq->min_vruntime;
10859 }
10860
10861 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10862 {
10863 detach_task_cfs_rq(p);
10864 }
10865
10866 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10867 {
10868 attach_task_cfs_rq(p);
10869
10870 if (task_on_rq_queued(p)) {
10871 /*
10872 * We were most likely switched from sched_rt, so
10873 * kick off the schedule if running, otherwise just see
10874 * if we can still preempt the current task.
10875 */
10876 if (rq->curr == p)
10877 resched_curr(rq);
10878 else
10879 check_preempt_curr(rq, p, 0);
10880 }
10881 }
10882
10883 /* Account for a task changing its policy or group.
10884 *
10885 * This routine is mostly called to set cfs_rq->curr field when a task
10886 * migrates between groups/classes.
10887 */
10888 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10889 {
10890 struct sched_entity *se = &p->se;
10891
10892 #ifdef CONFIG_SMP
10893 if (task_on_rq_queued(p)) {
10894 /*
10895 * Move the next running task to the front of the list, so our
10896 * cfs_tasks list becomes MRU one.
10897 */
10898 list_move(&se->group_node, &rq->cfs_tasks);
10899 }
10900 #endif
10901
10902 for_each_sched_entity(se) {
10903 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10904
10905 set_next_entity(cfs_rq, se);
10906 /* ensure bandwidth has been allocated on our new cfs_rq */
10907 account_cfs_rq_runtime(cfs_rq, 0);
10908 }
10909 }
10910
10911 void init_cfs_rq(struct cfs_rq *cfs_rq)
10912 {
10913 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10914 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10915 #ifndef CONFIG_64BIT
10916 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10917 #endif
10918 #ifdef CONFIG_SMP
10919 raw_spin_lock_init(&cfs_rq->removed.lock);
10920 #endif
10921 }
10922
10923 #ifdef CONFIG_FAIR_GROUP_SCHED
10924 static void task_set_group_fair(struct task_struct *p)
10925 {
10926 struct sched_entity *se = &p->se;
10927
10928 set_task_rq(p, task_cpu(p));
10929 se->depth = se->parent ? se->parent->depth + 1 : 0;
10930 }
10931
10932 static void task_move_group_fair(struct task_struct *p)
10933 {
10934 detach_task_cfs_rq(p);
10935 set_task_rq(p, task_cpu(p));
10936
10937 #ifdef CONFIG_SMP
10938 /* Tell se's cfs_rq has been changed -- migrated */
10939 p->se.avg.last_update_time = 0;
10940 #endif
10941 attach_task_cfs_rq(p);
10942 }
10943
10944 static void task_change_group_fair(struct task_struct *p, int type)
10945 {
10946 switch (type) {
10947 case TASK_SET_GROUP:
10948 task_set_group_fair(p);
10949 break;
10950
10951 case TASK_MOVE_GROUP:
10952 task_move_group_fair(p);
10953 break;
10954 }
10955 }
10956
10957 void free_fair_sched_group(struct task_group *tg)
10958 {
10959 int i;
10960
10961 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10962
10963 for_each_possible_cpu(i) {
10964 if (tg->cfs_rq)
10965 kfree(tg->cfs_rq[i]);
10966 if (tg->se)
10967 kfree(tg->se[i]);
10968 }
10969
10970 kfree(tg->cfs_rq);
10971 kfree(tg->se);
10972 }
10973
10974 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10975 {
10976 struct sched_entity *se;
10977 struct cfs_rq *cfs_rq;
10978 int i;
10979
10980 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10981 if (!tg->cfs_rq)
10982 goto err;
10983 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10984 if (!tg->se)
10985 goto err;
10986
10987 tg->shares = NICE_0_LOAD;
10988
10989 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10990
10991 for_each_possible_cpu(i) {
10992 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10993 GFP_KERNEL, cpu_to_node(i));
10994 if (!cfs_rq)
10995 goto err;
10996
10997 se = kzalloc_node(sizeof(struct sched_entity),
10998 GFP_KERNEL, cpu_to_node(i));
10999 if (!se)
11000 goto err_free_rq;
11001
11002 init_cfs_rq(cfs_rq);
11003 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11004 init_entity_runnable_average(se);
11005 }
11006
11007 return 1;
11008
11009 err_free_rq:
11010 kfree(cfs_rq);
11011 err:
11012 return 0;
11013 }
11014
11015 void online_fair_sched_group(struct task_group *tg)
11016 {
11017 struct sched_entity *se;
11018 struct rq_flags rf;
11019 struct rq *rq;
11020 int i;
11021
11022 for_each_possible_cpu(i) {
11023 rq = cpu_rq(i);
11024 se = tg->se[i];
11025 rq_lock_irq(rq, &rf);
11026 update_rq_clock(rq);
11027 attach_entity_cfs_rq(se);
11028 sync_throttle(tg, i);
11029 rq_unlock_irq(rq, &rf);
11030 }
11031 }
11032
11033 void unregister_fair_sched_group(struct task_group *tg)
11034 {
11035 unsigned long flags;
11036 struct rq *rq;
11037 int cpu;
11038
11039 for_each_possible_cpu(cpu) {
11040 if (tg->se[cpu])
11041 remove_entity_load_avg(tg->se[cpu]);
11042
11043 /*
11044 * Only empty task groups can be destroyed; so we can speculatively
11045 * check on_list without danger of it being re-added.
11046 */
11047 if (!tg->cfs_rq[cpu]->on_list)
11048 continue;
11049
11050 rq = cpu_rq(cpu);
11051
11052 raw_spin_lock_irqsave(&rq->lock, flags);
11053 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11054 raw_spin_unlock_irqrestore(&rq->lock, flags);
11055 }
11056 }
11057
11058 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11059 struct sched_entity *se, int cpu,
11060 struct sched_entity *parent)
11061 {
11062 struct rq *rq = cpu_rq(cpu);
11063
11064 cfs_rq->tg = tg;
11065 cfs_rq->rq = rq;
11066 init_cfs_rq_runtime(cfs_rq);
11067
11068 tg->cfs_rq[cpu] = cfs_rq;
11069 tg->se[cpu] = se;
11070
11071 /* se could be NULL for root_task_group */
11072 if (!se)
11073 return;
11074
11075 if (!parent) {
11076 se->cfs_rq = &rq->cfs;
11077 se->depth = 0;
11078 } else {
11079 se->cfs_rq = parent->my_q;
11080 se->depth = parent->depth + 1;
11081 }
11082
11083 se->my_q = cfs_rq;
11084 /* guarantee group entities always have weight */
11085 update_load_set(&se->load, NICE_0_LOAD);
11086 se->parent = parent;
11087 }
11088
11089 static DEFINE_MUTEX(shares_mutex);
11090
11091 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11092 {
11093 int i;
11094
11095 /*
11096 * We can't change the weight of the root cgroup.
11097 */
11098 if (!tg->se[0])
11099 return -EINVAL;
11100
11101 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11102
11103 mutex_lock(&shares_mutex);
11104 if (tg->shares == shares)
11105 goto done;
11106
11107 tg->shares = shares;
11108 for_each_possible_cpu(i) {
11109 struct rq *rq = cpu_rq(i);
11110 struct sched_entity *se = tg->se[i];
11111 struct rq_flags rf;
11112
11113 /* Propagate contribution to hierarchy */
11114 rq_lock_irqsave(rq, &rf);
11115 update_rq_clock(rq);
11116 for_each_sched_entity(se) {
11117 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11118 update_cfs_group(se);
11119 }
11120 rq_unlock_irqrestore(rq, &rf);
11121 }
11122
11123 done:
11124 mutex_unlock(&shares_mutex);
11125 return 0;
11126 }
11127 #else /* CONFIG_FAIR_GROUP_SCHED */
11128
11129 void free_fair_sched_group(struct task_group *tg) { }
11130
11131 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11132 {
11133 return 1;
11134 }
11135
11136 void online_fair_sched_group(struct task_group *tg) { }
11137
11138 void unregister_fair_sched_group(struct task_group *tg) { }
11139
11140 #endif /* CONFIG_FAIR_GROUP_SCHED */
11141
11142
11143 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11144 {
11145 struct sched_entity *se = &task->se;
11146 unsigned int rr_interval = 0;
11147
11148 /*
11149 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11150 * idle runqueue:
11151 */
11152 if (rq->cfs.load.weight)
11153 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11154
11155 return rr_interval;
11156 }
11157
11158 /*
11159 * All the scheduling class methods:
11160 */
11161 const struct sched_class fair_sched_class
11162 __section("__fair_sched_class") = {
11163 .enqueue_task = enqueue_task_fair,
11164 .dequeue_task = dequeue_task_fair,
11165 .yield_task = yield_task_fair,
11166 .yield_to_task = yield_to_task_fair,
11167
11168 .check_preempt_curr = check_preempt_wakeup,
11169
11170 .pick_next_task = __pick_next_task_fair,
11171 .put_prev_task = put_prev_task_fair,
11172 .set_next_task = set_next_task_fair,
11173
11174 #ifdef CONFIG_SMP
11175 .balance = balance_fair,
11176 .select_task_rq = select_task_rq_fair,
11177 .migrate_task_rq = migrate_task_rq_fair,
11178
11179 .rq_online = rq_online_fair,
11180 .rq_offline = rq_offline_fair,
11181
11182 .task_dead = task_dead_fair,
11183 .set_cpus_allowed = set_cpus_allowed_common,
11184 #endif
11185
11186 .task_tick = task_tick_fair,
11187 .task_fork = task_fork_fair,
11188
11189 .prio_changed = prio_changed_fair,
11190 .switched_from = switched_from_fair,
11191 .switched_to = switched_to_fair,
11192
11193 .get_rr_interval = get_rr_interval_fair,
11194
11195 .update_curr = update_curr_fair,
11196
11197 #ifdef CONFIG_FAIR_GROUP_SCHED
11198 .task_change_group = task_change_group_fair,
11199 #endif
11200
11201 #ifdef CONFIG_UCLAMP_TASK
11202 .uclamp_enabled = 1,
11203 #endif
11204 };
11205
11206 #ifdef CONFIG_SCHED_DEBUG
11207 void print_cfs_stats(struct seq_file *m, int cpu)
11208 {
11209 struct cfs_rq *cfs_rq, *pos;
11210
11211 rcu_read_lock();
11212 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11213 print_cfs_rq(m, cpu, cfs_rq);
11214 rcu_read_unlock();
11215 }
11216
11217 #ifdef CONFIG_NUMA_BALANCING
11218 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11219 {
11220 int node;
11221 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11222 struct numa_group *ng;
11223
11224 rcu_read_lock();
11225 ng = rcu_dereference(p->numa_group);
11226 for_each_online_node(node) {
11227 if (p->numa_faults) {
11228 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11229 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11230 }
11231 if (ng) {
11232 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11233 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11234 }
11235 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11236 }
11237 rcu_read_unlock();
11238 }
11239 #endif /* CONFIG_NUMA_BALANCING */
11240 #endif /* CONFIG_SCHED_DEBUG */
11241
11242 __init void init_sched_fair_class(void)
11243 {
11244 #ifdef CONFIG_SMP
11245 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11246
11247 #ifdef CONFIG_NO_HZ_COMMON
11248 nohz.next_balance = jiffies;
11249 nohz.next_blocked = jiffies;
11250 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11251 #endif
11252 #endif /* SMP */
11253
11254 }
11255
11256 /*
11257 * Helper functions to facilitate extracting info from tracepoints.
11258 */
11259
11260 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11261 {
11262 #ifdef CONFIG_SMP
11263 return cfs_rq ? &cfs_rq->avg : NULL;
11264 #else
11265 return NULL;
11266 #endif
11267 }
11268 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11269
11270 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11271 {
11272 if (!cfs_rq) {
11273 if (str)
11274 strlcpy(str, "(null)", len);
11275 else
11276 return NULL;
11277 }
11278
11279 cfs_rq_tg_path(cfs_rq, str, len);
11280 return str;
11281 }
11282 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11283
11284 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11285 {
11286 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11287 }
11288 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11289
11290 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11291 {
11292 #ifdef CONFIG_SMP
11293 return rq ? &rq->avg_rt : NULL;
11294 #else
11295 return NULL;
11296 #endif
11297 }
11298 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11299
11300 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11301 {
11302 #ifdef CONFIG_SMP
11303 return rq ? &rq->avg_dl : NULL;
11304 #else
11305 return NULL;
11306 #endif
11307 }
11308 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11309
11310 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11311 {
11312 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11313 return rq ? &rq->avg_irq : NULL;
11314 #else
11315 return NULL;
11316 #endif
11317 }
11318 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11319
11320 int sched_trace_rq_cpu(struct rq *rq)
11321 {
11322 return rq ? cpu_of(rq) : -1;
11323 }
11324 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11325
11326 int sched_trace_rq_cpu_capacity(struct rq *rq)
11327 {
11328 return rq ?
11329 #ifdef CONFIG_SMP
11330 rq->cpu_capacity
11331 #else
11332 SCHED_CAPACITY_SCALE
11333 #endif
11334 : -1;
11335 }
11336 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11337
11338 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11339 {
11340 #ifdef CONFIG_SMP
11341 return rd ? rd->span : NULL;
11342 #else
11343 return NULL;
11344 #endif
11345 }
11346 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11347
11348 int sched_trace_rq_nr_running(struct rq *rq)
11349 {
11350 return rq ? rq->nr_running : -1;
11351 }
11352 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);