]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched/fair.c
sched/tg: Use 'unsigned long' for load variable in task group
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 lw->weight += inc;
119 lw->inv_weight = 0;
120 }
121
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126 }
127
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 lw->weight = w;
131 lw->inv_weight = 0;
132 }
133
134 /*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143 static int get_update_sysctl_factor(void)
144 {
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162 }
163
164 static void update_sysctl(void)
165 {
166 unsigned int factor = get_update_sysctl_factor();
167
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175
176 void sched_init_granularity(void)
177 {
178 update_sysctl();
179 }
180
181 #if BITS_PER_LONG == 32
182 # define WMULT_CONST (~0UL)
183 #else
184 # define WMULT_CONST (1UL << 32)
185 #endif
186
187 #define WMULT_SHIFT 32
188
189 /*
190 * Shift right and round:
191 */
192 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194 /*
195 * delta *= weight / lw
196 */
197 static unsigned long
198 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200 {
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234 }
235
236
237 const struct sched_class fair_sched_class;
238
239 /**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243 #ifdef CONFIG_FAIR_GROUP_SCHED
244
245 /* cpu runqueue to which this cfs_rq is attached */
246 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247 {
248 return cfs_rq->rq;
249 }
250
251 /* An entity is a task if it doesn't "own" a runqueue */
252 #define entity_is_task(se) (!se->my_q)
253
254 static inline struct task_struct *task_of(struct sched_entity *se)
255 {
256 #ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258 #endif
259 return container_of(se, struct task_struct, se);
260 }
261
262 /* Walk up scheduling entities hierarchy */
263 #define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267 {
268 return p->se.cfs_rq;
269 }
270
271 /* runqueue on which this entity is (to be) queued */
272 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273 {
274 return se->cfs_rq;
275 }
276
277 /* runqueue "owned" by this group */
278 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279 {
280 return grp->my_q;
281 }
282
283 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 /* We should have no load, but we need to update last_decay. */
306 update_cfs_rq_blocked_load(cfs_rq, 0);
307 }
308 }
309
310 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311 {
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316 }
317
318 /* Iterate thr' all leaf cfs_rq's on a runqueue */
319 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322 /* Do the two (enqueued) entities belong to the same group ? */
323 static inline int
324 is_same_group(struct sched_entity *se, struct sched_entity *pse)
325 {
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330 }
331
332 static inline struct sched_entity *parent_entity(struct sched_entity *se)
333 {
334 return se->parent;
335 }
336
337 /* return depth at which a sched entity is present in the hierarchy */
338 static inline int depth_se(struct sched_entity *se)
339 {
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346 }
347
348 static void
349 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350 {
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378 }
379
380 #else /* !CONFIG_FAIR_GROUP_SCHED */
381
382 static inline struct task_struct *task_of(struct sched_entity *se)
383 {
384 return container_of(se, struct task_struct, se);
385 }
386
387 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388 {
389 return container_of(cfs_rq, struct rq, cfs);
390 }
391
392 #define entity_is_task(se) 1
393
394 #define for_each_sched_entity(se) \
395 for (; se; se = NULL)
396
397 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
398 {
399 return &task_rq(p)->cfs;
400 }
401
402 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403 {
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408 }
409
410 /* runqueue "owned" by this group */
411 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412 {
413 return NULL;
414 }
415
416 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417 {
418 }
419
420 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421 {
422 }
423
424 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427 static inline int
428 is_same_group(struct sched_entity *se, struct sched_entity *pse)
429 {
430 return 1;
431 }
432
433 static inline struct sched_entity *parent_entity(struct sched_entity *se)
434 {
435 return NULL;
436 }
437
438 static inline void
439 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440 {
441 }
442
443 #endif /* CONFIG_FAIR_GROUP_SCHED */
444
445 static __always_inline
446 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
447
448 /**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
452 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
453 {
454 s64 delta = (s64)(vruntime - max_vruntime);
455 if (delta > 0)
456 max_vruntime = vruntime;
457
458 return max_vruntime;
459 }
460
461 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
462 {
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468 }
469
470 static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472 {
473 return (s64)(a->vruntime - b->vruntime) < 0;
474 }
475
476 static void update_min_vruntime(struct cfs_rq *cfs_rq)
477 {
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
488 if (!cfs_rq->curr)
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
494 /* ensure we never gain time by being placed backwards. */
495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
496 #ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499 #endif
500 }
501
502 /*
503 * Enqueue an entity into the rb-tree:
504 */
505 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
506 {
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
522 if (entity_before(se, entry)) {
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
534 if (leftmost)
535 cfs_rq->rb_leftmost = &se->run_node;
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
539 }
540
541 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 {
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
548 }
549
550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
551 }
552
553 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
554 {
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
561 }
562
563 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564 {
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571 }
572
573 #ifdef CONFIG_SCHED_DEBUG
574 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
575 {
576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
577
578 if (!last)
579 return NULL;
580
581 return rb_entry(last, struct sched_entity, run_node);
582 }
583
584 /**************************************************************
585 * Scheduling class statistics methods:
586 */
587
588 int sched_proc_update_handler(struct ctl_table *table, int write,
589 void __user *buffer, size_t *lenp,
590 loff_t *ppos)
591 {
592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
593 int factor = get_update_sysctl_factor();
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
601 #define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
606 #undef WRT_SYSCTL
607
608 return 0;
609 }
610 #endif
611
612 /*
613 * delta /= w
614 */
615 static inline unsigned long
616 calc_delta_fair(unsigned long delta, struct sched_entity *se)
617 {
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
620
621 return delta;
622 }
623
624 /*
625 * The idea is to set a period in which each task runs once.
626 *
627 * When there are too many tasks (sched_nr_latency) we have to stretch
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
632 static u64 __sched_period(unsigned long nr_running)
633 {
634 u64 period = sysctl_sched_latency;
635 unsigned long nr_latency = sched_nr_latency;
636
637 if (unlikely(nr_running > nr_latency)) {
638 period = sysctl_sched_min_granularity;
639 period *= nr_running;
640 }
641
642 return period;
643 }
644
645 /*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
649 * s = p*P[w/rw]
650 */
651 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
654
655 for_each_sched_entity(se) {
656 struct load_weight *load;
657 struct load_weight lw;
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
661
662 if (unlikely(!se->on_rq)) {
663 lw = cfs_rq->load;
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
671 }
672
673 /*
674 * We calculate the vruntime slice of a to-be-inserted task.
675 *
676 * vs = s/w
677 */
678 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
679 {
680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
681 }
682
683 #ifdef CONFIG_SMP
684 static inline void __update_task_entity_contrib(struct sched_entity *se);
685
686 /* Give new task start runnable values to heavy its load in infant time */
687 void init_task_runnable_average(struct task_struct *p)
688 {
689 u32 slice;
690
691 p->se.avg.decay_count = 0;
692 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
693 p->se.avg.runnable_avg_sum = slice;
694 p->se.avg.runnable_avg_period = slice;
695 __update_task_entity_contrib(&p->se);
696 }
697 #else
698 void init_task_runnable_average(struct task_struct *p)
699 {
700 }
701 #endif
702
703 /*
704 * Update the current task's runtime statistics. Skip current tasks that
705 * are not in our scheduling class.
706 */
707 static inline void
708 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
709 unsigned long delta_exec)
710 {
711 unsigned long delta_exec_weighted;
712
713 schedstat_set(curr->statistics.exec_max,
714 max((u64)delta_exec, curr->statistics.exec_max));
715
716 curr->sum_exec_runtime += delta_exec;
717 schedstat_add(cfs_rq, exec_clock, delta_exec);
718 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
719
720 curr->vruntime += delta_exec_weighted;
721 update_min_vruntime(cfs_rq);
722 }
723
724 static void update_curr(struct cfs_rq *cfs_rq)
725 {
726 struct sched_entity *curr = cfs_rq->curr;
727 u64 now = rq_clock_task(rq_of(cfs_rq));
728 unsigned long delta_exec;
729
730 if (unlikely(!curr))
731 return;
732
733 /*
734 * Get the amount of time the current task was running
735 * since the last time we changed load (this cannot
736 * overflow on 32 bits):
737 */
738 delta_exec = (unsigned long)(now - curr->exec_start);
739 if (!delta_exec)
740 return;
741
742 __update_curr(cfs_rq, curr, delta_exec);
743 curr->exec_start = now;
744
745 if (entity_is_task(curr)) {
746 struct task_struct *curtask = task_of(curr);
747
748 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
749 cpuacct_charge(curtask, delta_exec);
750 account_group_exec_runtime(curtask, delta_exec);
751 }
752
753 account_cfs_rq_runtime(cfs_rq, delta_exec);
754 }
755
756 static inline void
757 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
758 {
759 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
760 }
761
762 /*
763 * Task is being enqueued - update stats:
764 */
765 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
766 {
767 /*
768 * Are we enqueueing a waiting task? (for current tasks
769 * a dequeue/enqueue event is a NOP)
770 */
771 if (se != cfs_rq->curr)
772 update_stats_wait_start(cfs_rq, se);
773 }
774
775 static void
776 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
777 {
778 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
779 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
780 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
781 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
782 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
783 #ifdef CONFIG_SCHEDSTATS
784 if (entity_is_task(se)) {
785 trace_sched_stat_wait(task_of(se),
786 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
787 }
788 #endif
789 schedstat_set(se->statistics.wait_start, 0);
790 }
791
792 static inline void
793 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794 {
795 /*
796 * Mark the end of the wait period if dequeueing a
797 * waiting task:
798 */
799 if (se != cfs_rq->curr)
800 update_stats_wait_end(cfs_rq, se);
801 }
802
803 /*
804 * We are picking a new current task - update its stats:
805 */
806 static inline void
807 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
808 {
809 /*
810 * We are starting a new run period:
811 */
812 se->exec_start = rq_clock_task(rq_of(cfs_rq));
813 }
814
815 /**************************************************
816 * Scheduling class queueing methods:
817 */
818
819 #ifdef CONFIG_NUMA_BALANCING
820 /*
821 * numa task sample period in ms
822 */
823 unsigned int sysctl_numa_balancing_scan_period_min = 100;
824 unsigned int sysctl_numa_balancing_scan_period_max = 100*50;
825 unsigned int sysctl_numa_balancing_scan_period_reset = 100*600;
826
827 /* Portion of address space to scan in MB */
828 unsigned int sysctl_numa_balancing_scan_size = 256;
829
830 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
831 unsigned int sysctl_numa_balancing_scan_delay = 1000;
832
833 static void task_numa_placement(struct task_struct *p)
834 {
835 int seq;
836
837 if (!p->mm) /* for example, ksmd faulting in a user's mm */
838 return;
839 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
840 if (p->numa_scan_seq == seq)
841 return;
842 p->numa_scan_seq = seq;
843
844 /* FIXME: Scheduling placement policy hints go here */
845 }
846
847 /*
848 * Got a PROT_NONE fault for a page on @node.
849 */
850 void task_numa_fault(int node, int pages, bool migrated)
851 {
852 struct task_struct *p = current;
853
854 if (!sched_feat_numa(NUMA))
855 return;
856
857 /* FIXME: Allocate task-specific structure for placement policy here */
858
859 /*
860 * If pages are properly placed (did not migrate) then scan slower.
861 * This is reset periodically in case of phase changes
862 */
863 if (!migrated)
864 p->numa_scan_period = min(sysctl_numa_balancing_scan_period_max,
865 p->numa_scan_period + jiffies_to_msecs(10));
866
867 task_numa_placement(p);
868 }
869
870 static void reset_ptenuma_scan(struct task_struct *p)
871 {
872 ACCESS_ONCE(p->mm->numa_scan_seq)++;
873 p->mm->numa_scan_offset = 0;
874 }
875
876 /*
877 * The expensive part of numa migration is done from task_work context.
878 * Triggered from task_tick_numa().
879 */
880 void task_numa_work(struct callback_head *work)
881 {
882 unsigned long migrate, next_scan, now = jiffies;
883 struct task_struct *p = current;
884 struct mm_struct *mm = p->mm;
885 struct vm_area_struct *vma;
886 unsigned long start, end;
887 long pages;
888
889 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
890
891 work->next = work; /* protect against double add */
892 /*
893 * Who cares about NUMA placement when they're dying.
894 *
895 * NOTE: make sure not to dereference p->mm before this check,
896 * exit_task_work() happens _after_ exit_mm() so we could be called
897 * without p->mm even though we still had it when we enqueued this
898 * work.
899 */
900 if (p->flags & PF_EXITING)
901 return;
902
903 /*
904 * We do not care about task placement until a task runs on a node
905 * other than the first one used by the address space. This is
906 * largely because migrations are driven by what CPU the task
907 * is running on. If it's never scheduled on another node, it'll
908 * not migrate so why bother trapping the fault.
909 */
910 if (mm->first_nid == NUMA_PTE_SCAN_INIT)
911 mm->first_nid = numa_node_id();
912 if (mm->first_nid != NUMA_PTE_SCAN_ACTIVE) {
913 /* Are we running on a new node yet? */
914 if (numa_node_id() == mm->first_nid &&
915 !sched_feat_numa(NUMA_FORCE))
916 return;
917
918 mm->first_nid = NUMA_PTE_SCAN_ACTIVE;
919 }
920
921 /*
922 * Reset the scan period if enough time has gone by. Objective is that
923 * scanning will be reduced if pages are properly placed. As tasks
924 * can enter different phases this needs to be re-examined. Lacking
925 * proper tracking of reference behaviour, this blunt hammer is used.
926 */
927 migrate = mm->numa_next_reset;
928 if (time_after(now, migrate)) {
929 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
930 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
931 xchg(&mm->numa_next_reset, next_scan);
932 }
933
934 /*
935 * Enforce maximal scan/migration frequency..
936 */
937 migrate = mm->numa_next_scan;
938 if (time_before(now, migrate))
939 return;
940
941 if (p->numa_scan_period == 0)
942 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
943
944 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
945 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
946 return;
947
948 /*
949 * Do not set pte_numa if the current running node is rate-limited.
950 * This loses statistics on the fault but if we are unwilling to
951 * migrate to this node, it is less likely we can do useful work
952 */
953 if (migrate_ratelimited(numa_node_id()))
954 return;
955
956 start = mm->numa_scan_offset;
957 pages = sysctl_numa_balancing_scan_size;
958 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
959 if (!pages)
960 return;
961
962 down_read(&mm->mmap_sem);
963 vma = find_vma(mm, start);
964 if (!vma) {
965 reset_ptenuma_scan(p);
966 start = 0;
967 vma = mm->mmap;
968 }
969 for (; vma; vma = vma->vm_next) {
970 if (!vma_migratable(vma))
971 continue;
972
973 /* Skip small VMAs. They are not likely to be of relevance */
974 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
975 continue;
976
977 do {
978 start = max(start, vma->vm_start);
979 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
980 end = min(end, vma->vm_end);
981 pages -= change_prot_numa(vma, start, end);
982
983 start = end;
984 if (pages <= 0)
985 goto out;
986 } while (end != vma->vm_end);
987 }
988
989 out:
990 /*
991 * It is possible to reach the end of the VMA list but the last few VMAs are
992 * not guaranteed to the vma_migratable. If they are not, we would find the
993 * !migratable VMA on the next scan but not reset the scanner to the start
994 * so check it now.
995 */
996 if (vma)
997 mm->numa_scan_offset = start;
998 else
999 reset_ptenuma_scan(p);
1000 up_read(&mm->mmap_sem);
1001 }
1002
1003 /*
1004 * Drive the periodic memory faults..
1005 */
1006 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1007 {
1008 struct callback_head *work = &curr->numa_work;
1009 u64 period, now;
1010
1011 /*
1012 * We don't care about NUMA placement if we don't have memory.
1013 */
1014 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1015 return;
1016
1017 /*
1018 * Using runtime rather than walltime has the dual advantage that
1019 * we (mostly) drive the selection from busy threads and that the
1020 * task needs to have done some actual work before we bother with
1021 * NUMA placement.
1022 */
1023 now = curr->se.sum_exec_runtime;
1024 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1025
1026 if (now - curr->node_stamp > period) {
1027 if (!curr->node_stamp)
1028 curr->numa_scan_period = sysctl_numa_balancing_scan_period_min;
1029 curr->node_stamp = now;
1030
1031 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1032 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1033 task_work_add(curr, work, true);
1034 }
1035 }
1036 }
1037 #else
1038 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1039 {
1040 }
1041 #endif /* CONFIG_NUMA_BALANCING */
1042
1043 static void
1044 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1045 {
1046 update_load_add(&cfs_rq->load, se->load.weight);
1047 if (!parent_entity(se))
1048 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1049 #ifdef CONFIG_SMP
1050 if (entity_is_task(se))
1051 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1052 #endif
1053 cfs_rq->nr_running++;
1054 }
1055
1056 static void
1057 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1058 {
1059 update_load_sub(&cfs_rq->load, se->load.weight);
1060 if (!parent_entity(se))
1061 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1062 if (entity_is_task(se))
1063 list_del_init(&se->group_node);
1064 cfs_rq->nr_running--;
1065 }
1066
1067 #ifdef CONFIG_FAIR_GROUP_SCHED
1068 # ifdef CONFIG_SMP
1069 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1070 {
1071 long tg_weight;
1072
1073 /*
1074 * Use this CPU's actual weight instead of the last load_contribution
1075 * to gain a more accurate current total weight. See
1076 * update_cfs_rq_load_contribution().
1077 */
1078 tg_weight = atomic_long_read(&tg->load_avg);
1079 tg_weight -= cfs_rq->tg_load_contrib;
1080 tg_weight += cfs_rq->load.weight;
1081
1082 return tg_weight;
1083 }
1084
1085 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1086 {
1087 long tg_weight, load, shares;
1088
1089 tg_weight = calc_tg_weight(tg, cfs_rq);
1090 load = cfs_rq->load.weight;
1091
1092 shares = (tg->shares * load);
1093 if (tg_weight)
1094 shares /= tg_weight;
1095
1096 if (shares < MIN_SHARES)
1097 shares = MIN_SHARES;
1098 if (shares > tg->shares)
1099 shares = tg->shares;
1100
1101 return shares;
1102 }
1103 # else /* CONFIG_SMP */
1104 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1105 {
1106 return tg->shares;
1107 }
1108 # endif /* CONFIG_SMP */
1109 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1110 unsigned long weight)
1111 {
1112 if (se->on_rq) {
1113 /* commit outstanding execution time */
1114 if (cfs_rq->curr == se)
1115 update_curr(cfs_rq);
1116 account_entity_dequeue(cfs_rq, se);
1117 }
1118
1119 update_load_set(&se->load, weight);
1120
1121 if (se->on_rq)
1122 account_entity_enqueue(cfs_rq, se);
1123 }
1124
1125 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1126
1127 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1128 {
1129 struct task_group *tg;
1130 struct sched_entity *se;
1131 long shares;
1132
1133 tg = cfs_rq->tg;
1134 se = tg->se[cpu_of(rq_of(cfs_rq))];
1135 if (!se || throttled_hierarchy(cfs_rq))
1136 return;
1137 #ifndef CONFIG_SMP
1138 if (likely(se->load.weight == tg->shares))
1139 return;
1140 #endif
1141 shares = calc_cfs_shares(cfs_rq, tg);
1142
1143 reweight_entity(cfs_rq_of(se), se, shares);
1144 }
1145 #else /* CONFIG_FAIR_GROUP_SCHED */
1146 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1147 {
1148 }
1149 #endif /* CONFIG_FAIR_GROUP_SCHED */
1150
1151 #ifdef CONFIG_SMP
1152 /*
1153 * We choose a half-life close to 1 scheduling period.
1154 * Note: The tables below are dependent on this value.
1155 */
1156 #define LOAD_AVG_PERIOD 32
1157 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1158 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1159
1160 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1161 static const u32 runnable_avg_yN_inv[] = {
1162 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1163 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1164 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1165 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1166 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1167 0x85aac367, 0x82cd8698,
1168 };
1169
1170 /*
1171 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1172 * over-estimates when re-combining.
1173 */
1174 static const u32 runnable_avg_yN_sum[] = {
1175 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1176 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1177 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1178 };
1179
1180 /*
1181 * Approximate:
1182 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1183 */
1184 static __always_inline u64 decay_load(u64 val, u64 n)
1185 {
1186 unsigned int local_n;
1187
1188 if (!n)
1189 return val;
1190 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1191 return 0;
1192
1193 /* after bounds checking we can collapse to 32-bit */
1194 local_n = n;
1195
1196 /*
1197 * As y^PERIOD = 1/2, we can combine
1198 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1199 * With a look-up table which covers k^n (n<PERIOD)
1200 *
1201 * To achieve constant time decay_load.
1202 */
1203 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1204 val >>= local_n / LOAD_AVG_PERIOD;
1205 local_n %= LOAD_AVG_PERIOD;
1206 }
1207
1208 val *= runnable_avg_yN_inv[local_n];
1209 /* We don't use SRR here since we always want to round down. */
1210 return val >> 32;
1211 }
1212
1213 /*
1214 * For updates fully spanning n periods, the contribution to runnable
1215 * average will be: \Sum 1024*y^n
1216 *
1217 * We can compute this reasonably efficiently by combining:
1218 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1219 */
1220 static u32 __compute_runnable_contrib(u64 n)
1221 {
1222 u32 contrib = 0;
1223
1224 if (likely(n <= LOAD_AVG_PERIOD))
1225 return runnable_avg_yN_sum[n];
1226 else if (unlikely(n >= LOAD_AVG_MAX_N))
1227 return LOAD_AVG_MAX;
1228
1229 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1230 do {
1231 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1232 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1233
1234 n -= LOAD_AVG_PERIOD;
1235 } while (n > LOAD_AVG_PERIOD);
1236
1237 contrib = decay_load(contrib, n);
1238 return contrib + runnable_avg_yN_sum[n];
1239 }
1240
1241 /*
1242 * We can represent the historical contribution to runnable average as the
1243 * coefficients of a geometric series. To do this we sub-divide our runnable
1244 * history into segments of approximately 1ms (1024us); label the segment that
1245 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1246 *
1247 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1248 * p0 p1 p2
1249 * (now) (~1ms ago) (~2ms ago)
1250 *
1251 * Let u_i denote the fraction of p_i that the entity was runnable.
1252 *
1253 * We then designate the fractions u_i as our co-efficients, yielding the
1254 * following representation of historical load:
1255 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1256 *
1257 * We choose y based on the with of a reasonably scheduling period, fixing:
1258 * y^32 = 0.5
1259 *
1260 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1261 * approximately half as much as the contribution to load within the last ms
1262 * (u_0).
1263 *
1264 * When a period "rolls over" and we have new u_0`, multiplying the previous
1265 * sum again by y is sufficient to update:
1266 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1267 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1268 */
1269 static __always_inline int __update_entity_runnable_avg(u64 now,
1270 struct sched_avg *sa,
1271 int runnable)
1272 {
1273 u64 delta, periods;
1274 u32 runnable_contrib;
1275 int delta_w, decayed = 0;
1276
1277 delta = now - sa->last_runnable_update;
1278 /*
1279 * This should only happen when time goes backwards, which it
1280 * unfortunately does during sched clock init when we swap over to TSC.
1281 */
1282 if ((s64)delta < 0) {
1283 sa->last_runnable_update = now;
1284 return 0;
1285 }
1286
1287 /*
1288 * Use 1024ns as the unit of measurement since it's a reasonable
1289 * approximation of 1us and fast to compute.
1290 */
1291 delta >>= 10;
1292 if (!delta)
1293 return 0;
1294 sa->last_runnable_update = now;
1295
1296 /* delta_w is the amount already accumulated against our next period */
1297 delta_w = sa->runnable_avg_period % 1024;
1298 if (delta + delta_w >= 1024) {
1299 /* period roll-over */
1300 decayed = 1;
1301
1302 /*
1303 * Now that we know we're crossing a period boundary, figure
1304 * out how much from delta we need to complete the current
1305 * period and accrue it.
1306 */
1307 delta_w = 1024 - delta_w;
1308 if (runnable)
1309 sa->runnable_avg_sum += delta_w;
1310 sa->runnable_avg_period += delta_w;
1311
1312 delta -= delta_w;
1313
1314 /* Figure out how many additional periods this update spans */
1315 periods = delta / 1024;
1316 delta %= 1024;
1317
1318 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1319 periods + 1);
1320 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1321 periods + 1);
1322
1323 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1324 runnable_contrib = __compute_runnable_contrib(periods);
1325 if (runnable)
1326 sa->runnable_avg_sum += runnable_contrib;
1327 sa->runnable_avg_period += runnable_contrib;
1328 }
1329
1330 /* Remainder of delta accrued against u_0` */
1331 if (runnable)
1332 sa->runnable_avg_sum += delta;
1333 sa->runnable_avg_period += delta;
1334
1335 return decayed;
1336 }
1337
1338 /* Synchronize an entity's decay with its parenting cfs_rq.*/
1339 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1340 {
1341 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1342 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1343
1344 decays -= se->avg.decay_count;
1345 if (!decays)
1346 return 0;
1347
1348 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1349 se->avg.decay_count = 0;
1350
1351 return decays;
1352 }
1353
1354 #ifdef CONFIG_FAIR_GROUP_SCHED
1355 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1356 int force_update)
1357 {
1358 struct task_group *tg = cfs_rq->tg;
1359 long tg_contrib;
1360
1361 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1362 tg_contrib -= cfs_rq->tg_load_contrib;
1363
1364 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1365 atomic_long_add(tg_contrib, &tg->load_avg);
1366 cfs_rq->tg_load_contrib += tg_contrib;
1367 }
1368 }
1369
1370 /*
1371 * Aggregate cfs_rq runnable averages into an equivalent task_group
1372 * representation for computing load contributions.
1373 */
1374 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1375 struct cfs_rq *cfs_rq)
1376 {
1377 struct task_group *tg = cfs_rq->tg;
1378 long contrib;
1379
1380 /* The fraction of a cpu used by this cfs_rq */
1381 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1382 sa->runnable_avg_period + 1);
1383 contrib -= cfs_rq->tg_runnable_contrib;
1384
1385 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1386 atomic_add(contrib, &tg->runnable_avg);
1387 cfs_rq->tg_runnable_contrib += contrib;
1388 }
1389 }
1390
1391 static inline void __update_group_entity_contrib(struct sched_entity *se)
1392 {
1393 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1394 struct task_group *tg = cfs_rq->tg;
1395 int runnable_avg;
1396
1397 u64 contrib;
1398
1399 contrib = cfs_rq->tg_load_contrib * tg->shares;
1400 se->avg.load_avg_contrib = div_u64(contrib,
1401 atomic_long_read(&tg->load_avg) + 1);
1402
1403 /*
1404 * For group entities we need to compute a correction term in the case
1405 * that they are consuming <1 cpu so that we would contribute the same
1406 * load as a task of equal weight.
1407 *
1408 * Explicitly co-ordinating this measurement would be expensive, but
1409 * fortunately the sum of each cpus contribution forms a usable
1410 * lower-bound on the true value.
1411 *
1412 * Consider the aggregate of 2 contributions. Either they are disjoint
1413 * (and the sum represents true value) or they are disjoint and we are
1414 * understating by the aggregate of their overlap.
1415 *
1416 * Extending this to N cpus, for a given overlap, the maximum amount we
1417 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1418 * cpus that overlap for this interval and w_i is the interval width.
1419 *
1420 * On a small machine; the first term is well-bounded which bounds the
1421 * total error since w_i is a subset of the period. Whereas on a
1422 * larger machine, while this first term can be larger, if w_i is the
1423 * of consequential size guaranteed to see n_i*w_i quickly converge to
1424 * our upper bound of 1-cpu.
1425 */
1426 runnable_avg = atomic_read(&tg->runnable_avg);
1427 if (runnable_avg < NICE_0_LOAD) {
1428 se->avg.load_avg_contrib *= runnable_avg;
1429 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1430 }
1431 }
1432 #else
1433 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1434 int force_update) {}
1435 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1436 struct cfs_rq *cfs_rq) {}
1437 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1438 #endif
1439
1440 static inline void __update_task_entity_contrib(struct sched_entity *se)
1441 {
1442 u32 contrib;
1443
1444 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1445 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1446 contrib /= (se->avg.runnable_avg_period + 1);
1447 se->avg.load_avg_contrib = scale_load(contrib);
1448 }
1449
1450 /* Compute the current contribution to load_avg by se, return any delta */
1451 static long __update_entity_load_avg_contrib(struct sched_entity *se)
1452 {
1453 long old_contrib = se->avg.load_avg_contrib;
1454
1455 if (entity_is_task(se)) {
1456 __update_task_entity_contrib(se);
1457 } else {
1458 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1459 __update_group_entity_contrib(se);
1460 }
1461
1462 return se->avg.load_avg_contrib - old_contrib;
1463 }
1464
1465 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1466 long load_contrib)
1467 {
1468 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1469 cfs_rq->blocked_load_avg -= load_contrib;
1470 else
1471 cfs_rq->blocked_load_avg = 0;
1472 }
1473
1474 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1475
1476 /* Update a sched_entity's runnable average */
1477 static inline void update_entity_load_avg(struct sched_entity *se,
1478 int update_cfs_rq)
1479 {
1480 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1481 long contrib_delta;
1482 u64 now;
1483
1484 /*
1485 * For a group entity we need to use their owned cfs_rq_clock_task() in
1486 * case they are the parent of a throttled hierarchy.
1487 */
1488 if (entity_is_task(se))
1489 now = cfs_rq_clock_task(cfs_rq);
1490 else
1491 now = cfs_rq_clock_task(group_cfs_rq(se));
1492
1493 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1494 return;
1495
1496 contrib_delta = __update_entity_load_avg_contrib(se);
1497
1498 if (!update_cfs_rq)
1499 return;
1500
1501 if (se->on_rq)
1502 cfs_rq->runnable_load_avg += contrib_delta;
1503 else
1504 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1505 }
1506
1507 /*
1508 * Decay the load contributed by all blocked children and account this so that
1509 * their contribution may appropriately discounted when they wake up.
1510 */
1511 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1512 {
1513 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1514 u64 decays;
1515
1516 decays = now - cfs_rq->last_decay;
1517 if (!decays && !force_update)
1518 return;
1519
1520 if (atomic64_read(&cfs_rq->removed_load)) {
1521 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1522 subtract_blocked_load_contrib(cfs_rq, removed_load);
1523 }
1524
1525 if (decays) {
1526 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1527 decays);
1528 atomic64_add(decays, &cfs_rq->decay_counter);
1529 cfs_rq->last_decay = now;
1530 }
1531
1532 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1533 }
1534
1535 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1536 {
1537 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
1538 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
1539 }
1540
1541 /* Add the load generated by se into cfs_rq's child load-average */
1542 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1543 struct sched_entity *se,
1544 int wakeup)
1545 {
1546 /*
1547 * We track migrations using entity decay_count <= 0, on a wake-up
1548 * migration we use a negative decay count to track the remote decays
1549 * accumulated while sleeping.
1550 *
1551 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1552 * are seen by enqueue_entity_load_avg() as a migration with an already
1553 * constructed load_avg_contrib.
1554 */
1555 if (unlikely(se->avg.decay_count <= 0)) {
1556 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
1557 if (se->avg.decay_count) {
1558 /*
1559 * In a wake-up migration we have to approximate the
1560 * time sleeping. This is because we can't synchronize
1561 * clock_task between the two cpus, and it is not
1562 * guaranteed to be read-safe. Instead, we can
1563 * approximate this using our carried decays, which are
1564 * explicitly atomically readable.
1565 */
1566 se->avg.last_runnable_update -= (-se->avg.decay_count)
1567 << 20;
1568 update_entity_load_avg(se, 0);
1569 /* Indicate that we're now synchronized and on-rq */
1570 se->avg.decay_count = 0;
1571 }
1572 wakeup = 0;
1573 } else {
1574 /*
1575 * Task re-woke on same cpu (or else migrate_task_rq_fair()
1576 * would have made count negative); we must be careful to avoid
1577 * double-accounting blocked time after synchronizing decays.
1578 */
1579 se->avg.last_runnable_update += __synchronize_entity_decay(se)
1580 << 20;
1581 }
1582
1583 /* migrated tasks did not contribute to our blocked load */
1584 if (wakeup) {
1585 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1586 update_entity_load_avg(se, 0);
1587 }
1588
1589 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1590 /* we force update consideration on load-balancer moves */
1591 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1592 }
1593
1594 /*
1595 * Remove se's load from this cfs_rq child load-average, if the entity is
1596 * transitioning to a blocked state we track its projected decay using
1597 * blocked_load_avg.
1598 */
1599 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1600 struct sched_entity *se,
1601 int sleep)
1602 {
1603 update_entity_load_avg(se, 1);
1604 /* we force update consideration on load-balancer moves */
1605 update_cfs_rq_blocked_load(cfs_rq, !sleep);
1606
1607 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1608 if (sleep) {
1609 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1610 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1611 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
1612 }
1613
1614 /*
1615 * Update the rq's load with the elapsed running time before entering
1616 * idle. if the last scheduled task is not a CFS task, idle_enter will
1617 * be the only way to update the runnable statistic.
1618 */
1619 void idle_enter_fair(struct rq *this_rq)
1620 {
1621 update_rq_runnable_avg(this_rq, 1);
1622 }
1623
1624 /*
1625 * Update the rq's load with the elapsed idle time before a task is
1626 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1627 * be the only way to update the runnable statistic.
1628 */
1629 void idle_exit_fair(struct rq *this_rq)
1630 {
1631 update_rq_runnable_avg(this_rq, 0);
1632 }
1633
1634 #else
1635 static inline void update_entity_load_avg(struct sched_entity *se,
1636 int update_cfs_rq) {}
1637 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1638 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1639 struct sched_entity *se,
1640 int wakeup) {}
1641 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1642 struct sched_entity *se,
1643 int sleep) {}
1644 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1645 int force_update) {}
1646 #endif
1647
1648 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1649 {
1650 #ifdef CONFIG_SCHEDSTATS
1651 struct task_struct *tsk = NULL;
1652
1653 if (entity_is_task(se))
1654 tsk = task_of(se);
1655
1656 if (se->statistics.sleep_start) {
1657 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
1658
1659 if ((s64)delta < 0)
1660 delta = 0;
1661
1662 if (unlikely(delta > se->statistics.sleep_max))
1663 se->statistics.sleep_max = delta;
1664
1665 se->statistics.sleep_start = 0;
1666 se->statistics.sum_sleep_runtime += delta;
1667
1668 if (tsk) {
1669 account_scheduler_latency(tsk, delta >> 10, 1);
1670 trace_sched_stat_sleep(tsk, delta);
1671 }
1672 }
1673 if (se->statistics.block_start) {
1674 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
1675
1676 if ((s64)delta < 0)
1677 delta = 0;
1678
1679 if (unlikely(delta > se->statistics.block_max))
1680 se->statistics.block_max = delta;
1681
1682 se->statistics.block_start = 0;
1683 se->statistics.sum_sleep_runtime += delta;
1684
1685 if (tsk) {
1686 if (tsk->in_iowait) {
1687 se->statistics.iowait_sum += delta;
1688 se->statistics.iowait_count++;
1689 trace_sched_stat_iowait(tsk, delta);
1690 }
1691
1692 trace_sched_stat_blocked(tsk, delta);
1693
1694 /*
1695 * Blocking time is in units of nanosecs, so shift by
1696 * 20 to get a milliseconds-range estimation of the
1697 * amount of time that the task spent sleeping:
1698 */
1699 if (unlikely(prof_on == SLEEP_PROFILING)) {
1700 profile_hits(SLEEP_PROFILING,
1701 (void *)get_wchan(tsk),
1702 delta >> 20);
1703 }
1704 account_scheduler_latency(tsk, delta >> 10, 0);
1705 }
1706 }
1707 #endif
1708 }
1709
1710 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1711 {
1712 #ifdef CONFIG_SCHED_DEBUG
1713 s64 d = se->vruntime - cfs_rq->min_vruntime;
1714
1715 if (d < 0)
1716 d = -d;
1717
1718 if (d > 3*sysctl_sched_latency)
1719 schedstat_inc(cfs_rq, nr_spread_over);
1720 #endif
1721 }
1722
1723 static void
1724 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1725 {
1726 u64 vruntime = cfs_rq->min_vruntime;
1727
1728 /*
1729 * The 'current' period is already promised to the current tasks,
1730 * however the extra weight of the new task will slow them down a
1731 * little, place the new task so that it fits in the slot that
1732 * stays open at the end.
1733 */
1734 if (initial && sched_feat(START_DEBIT))
1735 vruntime += sched_vslice(cfs_rq, se);
1736
1737 /* sleeps up to a single latency don't count. */
1738 if (!initial) {
1739 unsigned long thresh = sysctl_sched_latency;
1740
1741 /*
1742 * Halve their sleep time's effect, to allow
1743 * for a gentler effect of sleepers:
1744 */
1745 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1746 thresh >>= 1;
1747
1748 vruntime -= thresh;
1749 }
1750
1751 /* ensure we never gain time by being placed backwards. */
1752 se->vruntime = max_vruntime(se->vruntime, vruntime);
1753 }
1754
1755 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1756
1757 static void
1758 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1759 {
1760 /*
1761 * Update the normalized vruntime before updating min_vruntime
1762 * through callig update_curr().
1763 */
1764 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1765 se->vruntime += cfs_rq->min_vruntime;
1766
1767 /*
1768 * Update run-time statistics of the 'current'.
1769 */
1770 update_curr(cfs_rq);
1771 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
1772 account_entity_enqueue(cfs_rq, se);
1773 update_cfs_shares(cfs_rq);
1774
1775 if (flags & ENQUEUE_WAKEUP) {
1776 place_entity(cfs_rq, se, 0);
1777 enqueue_sleeper(cfs_rq, se);
1778 }
1779
1780 update_stats_enqueue(cfs_rq, se);
1781 check_spread(cfs_rq, se);
1782 if (se != cfs_rq->curr)
1783 __enqueue_entity(cfs_rq, se);
1784 se->on_rq = 1;
1785
1786 if (cfs_rq->nr_running == 1) {
1787 list_add_leaf_cfs_rq(cfs_rq);
1788 check_enqueue_throttle(cfs_rq);
1789 }
1790 }
1791
1792 static void __clear_buddies_last(struct sched_entity *se)
1793 {
1794 for_each_sched_entity(se) {
1795 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1796 if (cfs_rq->last == se)
1797 cfs_rq->last = NULL;
1798 else
1799 break;
1800 }
1801 }
1802
1803 static void __clear_buddies_next(struct sched_entity *se)
1804 {
1805 for_each_sched_entity(se) {
1806 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1807 if (cfs_rq->next == se)
1808 cfs_rq->next = NULL;
1809 else
1810 break;
1811 }
1812 }
1813
1814 static void __clear_buddies_skip(struct sched_entity *se)
1815 {
1816 for_each_sched_entity(se) {
1817 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1818 if (cfs_rq->skip == se)
1819 cfs_rq->skip = NULL;
1820 else
1821 break;
1822 }
1823 }
1824
1825 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1826 {
1827 if (cfs_rq->last == se)
1828 __clear_buddies_last(se);
1829
1830 if (cfs_rq->next == se)
1831 __clear_buddies_next(se);
1832
1833 if (cfs_rq->skip == se)
1834 __clear_buddies_skip(se);
1835 }
1836
1837 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1838
1839 static void
1840 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1841 {
1842 /*
1843 * Update run-time statistics of the 'current'.
1844 */
1845 update_curr(cfs_rq);
1846 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
1847
1848 update_stats_dequeue(cfs_rq, se);
1849 if (flags & DEQUEUE_SLEEP) {
1850 #ifdef CONFIG_SCHEDSTATS
1851 if (entity_is_task(se)) {
1852 struct task_struct *tsk = task_of(se);
1853
1854 if (tsk->state & TASK_INTERRUPTIBLE)
1855 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
1856 if (tsk->state & TASK_UNINTERRUPTIBLE)
1857 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
1858 }
1859 #endif
1860 }
1861
1862 clear_buddies(cfs_rq, se);
1863
1864 if (se != cfs_rq->curr)
1865 __dequeue_entity(cfs_rq, se);
1866 se->on_rq = 0;
1867 account_entity_dequeue(cfs_rq, se);
1868
1869 /*
1870 * Normalize the entity after updating the min_vruntime because the
1871 * update can refer to the ->curr item and we need to reflect this
1872 * movement in our normalized position.
1873 */
1874 if (!(flags & DEQUEUE_SLEEP))
1875 se->vruntime -= cfs_rq->min_vruntime;
1876
1877 /* return excess runtime on last dequeue */
1878 return_cfs_rq_runtime(cfs_rq);
1879
1880 update_min_vruntime(cfs_rq);
1881 update_cfs_shares(cfs_rq);
1882 }
1883
1884 /*
1885 * Preempt the current task with a newly woken task if needed:
1886 */
1887 static void
1888 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1889 {
1890 unsigned long ideal_runtime, delta_exec;
1891 struct sched_entity *se;
1892 s64 delta;
1893
1894 ideal_runtime = sched_slice(cfs_rq, curr);
1895 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1896 if (delta_exec > ideal_runtime) {
1897 resched_task(rq_of(cfs_rq)->curr);
1898 /*
1899 * The current task ran long enough, ensure it doesn't get
1900 * re-elected due to buddy favours.
1901 */
1902 clear_buddies(cfs_rq, curr);
1903 return;
1904 }
1905
1906 /*
1907 * Ensure that a task that missed wakeup preemption by a
1908 * narrow margin doesn't have to wait for a full slice.
1909 * This also mitigates buddy induced latencies under load.
1910 */
1911 if (delta_exec < sysctl_sched_min_granularity)
1912 return;
1913
1914 se = __pick_first_entity(cfs_rq);
1915 delta = curr->vruntime - se->vruntime;
1916
1917 if (delta < 0)
1918 return;
1919
1920 if (delta > ideal_runtime)
1921 resched_task(rq_of(cfs_rq)->curr);
1922 }
1923
1924 static void
1925 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1926 {
1927 /* 'current' is not kept within the tree. */
1928 if (se->on_rq) {
1929 /*
1930 * Any task has to be enqueued before it get to execute on
1931 * a CPU. So account for the time it spent waiting on the
1932 * runqueue.
1933 */
1934 update_stats_wait_end(cfs_rq, se);
1935 __dequeue_entity(cfs_rq, se);
1936 }
1937
1938 update_stats_curr_start(cfs_rq, se);
1939 cfs_rq->curr = se;
1940 #ifdef CONFIG_SCHEDSTATS
1941 /*
1942 * Track our maximum slice length, if the CPU's load is at
1943 * least twice that of our own weight (i.e. dont track it
1944 * when there are only lesser-weight tasks around):
1945 */
1946 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1947 se->statistics.slice_max = max(se->statistics.slice_max,
1948 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1949 }
1950 #endif
1951 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1952 }
1953
1954 static int
1955 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1956
1957 /*
1958 * Pick the next process, keeping these things in mind, in this order:
1959 * 1) keep things fair between processes/task groups
1960 * 2) pick the "next" process, since someone really wants that to run
1961 * 3) pick the "last" process, for cache locality
1962 * 4) do not run the "skip" process, if something else is available
1963 */
1964 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1965 {
1966 struct sched_entity *se = __pick_first_entity(cfs_rq);
1967 struct sched_entity *left = se;
1968
1969 /*
1970 * Avoid running the skip buddy, if running something else can
1971 * be done without getting too unfair.
1972 */
1973 if (cfs_rq->skip == se) {
1974 struct sched_entity *second = __pick_next_entity(se);
1975 if (second && wakeup_preempt_entity(second, left) < 1)
1976 se = second;
1977 }
1978
1979 /*
1980 * Prefer last buddy, try to return the CPU to a preempted task.
1981 */
1982 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1983 se = cfs_rq->last;
1984
1985 /*
1986 * Someone really wants this to run. If it's not unfair, run it.
1987 */
1988 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1989 se = cfs_rq->next;
1990
1991 clear_buddies(cfs_rq, se);
1992
1993 return se;
1994 }
1995
1996 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1997
1998 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1999 {
2000 /*
2001 * If still on the runqueue then deactivate_task()
2002 * was not called and update_curr() has to be done:
2003 */
2004 if (prev->on_rq)
2005 update_curr(cfs_rq);
2006
2007 /* throttle cfs_rqs exceeding runtime */
2008 check_cfs_rq_runtime(cfs_rq);
2009
2010 check_spread(cfs_rq, prev);
2011 if (prev->on_rq) {
2012 update_stats_wait_start(cfs_rq, prev);
2013 /* Put 'current' back into the tree. */
2014 __enqueue_entity(cfs_rq, prev);
2015 /* in !on_rq case, update occurred at dequeue */
2016 update_entity_load_avg(prev, 1);
2017 }
2018 cfs_rq->curr = NULL;
2019 }
2020
2021 static void
2022 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2023 {
2024 /*
2025 * Update run-time statistics of the 'current'.
2026 */
2027 update_curr(cfs_rq);
2028
2029 /*
2030 * Ensure that runnable average is periodically updated.
2031 */
2032 update_entity_load_avg(curr, 1);
2033 update_cfs_rq_blocked_load(cfs_rq, 1);
2034
2035 #ifdef CONFIG_SCHED_HRTICK
2036 /*
2037 * queued ticks are scheduled to match the slice, so don't bother
2038 * validating it and just reschedule.
2039 */
2040 if (queued) {
2041 resched_task(rq_of(cfs_rq)->curr);
2042 return;
2043 }
2044 /*
2045 * don't let the period tick interfere with the hrtick preemption
2046 */
2047 if (!sched_feat(DOUBLE_TICK) &&
2048 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2049 return;
2050 #endif
2051
2052 if (cfs_rq->nr_running > 1)
2053 check_preempt_tick(cfs_rq, curr);
2054 }
2055
2056
2057 /**************************************************
2058 * CFS bandwidth control machinery
2059 */
2060
2061 #ifdef CONFIG_CFS_BANDWIDTH
2062
2063 #ifdef HAVE_JUMP_LABEL
2064 static struct static_key __cfs_bandwidth_used;
2065
2066 static inline bool cfs_bandwidth_used(void)
2067 {
2068 return static_key_false(&__cfs_bandwidth_used);
2069 }
2070
2071 void account_cfs_bandwidth_used(int enabled, int was_enabled)
2072 {
2073 /* only need to count groups transitioning between enabled/!enabled */
2074 if (enabled && !was_enabled)
2075 static_key_slow_inc(&__cfs_bandwidth_used);
2076 else if (!enabled && was_enabled)
2077 static_key_slow_dec(&__cfs_bandwidth_used);
2078 }
2079 #else /* HAVE_JUMP_LABEL */
2080 static bool cfs_bandwidth_used(void)
2081 {
2082 return true;
2083 }
2084
2085 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2086 #endif /* HAVE_JUMP_LABEL */
2087
2088 /*
2089 * default period for cfs group bandwidth.
2090 * default: 0.1s, units: nanoseconds
2091 */
2092 static inline u64 default_cfs_period(void)
2093 {
2094 return 100000000ULL;
2095 }
2096
2097 static inline u64 sched_cfs_bandwidth_slice(void)
2098 {
2099 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2100 }
2101
2102 /*
2103 * Replenish runtime according to assigned quota and update expiration time.
2104 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2105 * additional synchronization around rq->lock.
2106 *
2107 * requires cfs_b->lock
2108 */
2109 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2110 {
2111 u64 now;
2112
2113 if (cfs_b->quota == RUNTIME_INF)
2114 return;
2115
2116 now = sched_clock_cpu(smp_processor_id());
2117 cfs_b->runtime = cfs_b->quota;
2118 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2119 }
2120
2121 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2122 {
2123 return &tg->cfs_bandwidth;
2124 }
2125
2126 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2127 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2128 {
2129 if (unlikely(cfs_rq->throttle_count))
2130 return cfs_rq->throttled_clock_task;
2131
2132 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2133 }
2134
2135 /* returns 0 on failure to allocate runtime */
2136 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2137 {
2138 struct task_group *tg = cfs_rq->tg;
2139 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2140 u64 amount = 0, min_amount, expires;
2141
2142 /* note: this is a positive sum as runtime_remaining <= 0 */
2143 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2144
2145 raw_spin_lock(&cfs_b->lock);
2146 if (cfs_b->quota == RUNTIME_INF)
2147 amount = min_amount;
2148 else {
2149 /*
2150 * If the bandwidth pool has become inactive, then at least one
2151 * period must have elapsed since the last consumption.
2152 * Refresh the global state and ensure bandwidth timer becomes
2153 * active.
2154 */
2155 if (!cfs_b->timer_active) {
2156 __refill_cfs_bandwidth_runtime(cfs_b);
2157 __start_cfs_bandwidth(cfs_b);
2158 }
2159
2160 if (cfs_b->runtime > 0) {
2161 amount = min(cfs_b->runtime, min_amount);
2162 cfs_b->runtime -= amount;
2163 cfs_b->idle = 0;
2164 }
2165 }
2166 expires = cfs_b->runtime_expires;
2167 raw_spin_unlock(&cfs_b->lock);
2168
2169 cfs_rq->runtime_remaining += amount;
2170 /*
2171 * we may have advanced our local expiration to account for allowed
2172 * spread between our sched_clock and the one on which runtime was
2173 * issued.
2174 */
2175 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2176 cfs_rq->runtime_expires = expires;
2177
2178 return cfs_rq->runtime_remaining > 0;
2179 }
2180
2181 /*
2182 * Note: This depends on the synchronization provided by sched_clock and the
2183 * fact that rq->clock snapshots this value.
2184 */
2185 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2186 {
2187 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2188
2189 /* if the deadline is ahead of our clock, nothing to do */
2190 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2191 return;
2192
2193 if (cfs_rq->runtime_remaining < 0)
2194 return;
2195
2196 /*
2197 * If the local deadline has passed we have to consider the
2198 * possibility that our sched_clock is 'fast' and the global deadline
2199 * has not truly expired.
2200 *
2201 * Fortunately we can check determine whether this the case by checking
2202 * whether the global deadline has advanced.
2203 */
2204
2205 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2206 /* extend local deadline, drift is bounded above by 2 ticks */
2207 cfs_rq->runtime_expires += TICK_NSEC;
2208 } else {
2209 /* global deadline is ahead, expiration has passed */
2210 cfs_rq->runtime_remaining = 0;
2211 }
2212 }
2213
2214 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2215 unsigned long delta_exec)
2216 {
2217 /* dock delta_exec before expiring quota (as it could span periods) */
2218 cfs_rq->runtime_remaining -= delta_exec;
2219 expire_cfs_rq_runtime(cfs_rq);
2220
2221 if (likely(cfs_rq->runtime_remaining > 0))
2222 return;
2223
2224 /*
2225 * if we're unable to extend our runtime we resched so that the active
2226 * hierarchy can be throttled
2227 */
2228 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2229 resched_task(rq_of(cfs_rq)->curr);
2230 }
2231
2232 static __always_inline
2233 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2234 {
2235 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2236 return;
2237
2238 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2239 }
2240
2241 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2242 {
2243 return cfs_bandwidth_used() && cfs_rq->throttled;
2244 }
2245
2246 /* check whether cfs_rq, or any parent, is throttled */
2247 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2248 {
2249 return cfs_bandwidth_used() && cfs_rq->throttle_count;
2250 }
2251
2252 /*
2253 * Ensure that neither of the group entities corresponding to src_cpu or
2254 * dest_cpu are members of a throttled hierarchy when performing group
2255 * load-balance operations.
2256 */
2257 static inline int throttled_lb_pair(struct task_group *tg,
2258 int src_cpu, int dest_cpu)
2259 {
2260 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2261
2262 src_cfs_rq = tg->cfs_rq[src_cpu];
2263 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2264
2265 return throttled_hierarchy(src_cfs_rq) ||
2266 throttled_hierarchy(dest_cfs_rq);
2267 }
2268
2269 /* updated child weight may affect parent so we have to do this bottom up */
2270 static int tg_unthrottle_up(struct task_group *tg, void *data)
2271 {
2272 struct rq *rq = data;
2273 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2274
2275 cfs_rq->throttle_count--;
2276 #ifdef CONFIG_SMP
2277 if (!cfs_rq->throttle_count) {
2278 /* adjust cfs_rq_clock_task() */
2279 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
2280 cfs_rq->throttled_clock_task;
2281 }
2282 #endif
2283
2284 return 0;
2285 }
2286
2287 static int tg_throttle_down(struct task_group *tg, void *data)
2288 {
2289 struct rq *rq = data;
2290 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2291
2292 /* group is entering throttled state, stop time */
2293 if (!cfs_rq->throttle_count)
2294 cfs_rq->throttled_clock_task = rq_clock_task(rq);
2295 cfs_rq->throttle_count++;
2296
2297 return 0;
2298 }
2299
2300 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2301 {
2302 struct rq *rq = rq_of(cfs_rq);
2303 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2304 struct sched_entity *se;
2305 long task_delta, dequeue = 1;
2306
2307 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2308
2309 /* freeze hierarchy runnable averages while throttled */
2310 rcu_read_lock();
2311 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2312 rcu_read_unlock();
2313
2314 task_delta = cfs_rq->h_nr_running;
2315 for_each_sched_entity(se) {
2316 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2317 /* throttled entity or throttle-on-deactivate */
2318 if (!se->on_rq)
2319 break;
2320
2321 if (dequeue)
2322 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2323 qcfs_rq->h_nr_running -= task_delta;
2324
2325 if (qcfs_rq->load.weight)
2326 dequeue = 0;
2327 }
2328
2329 if (!se)
2330 rq->nr_running -= task_delta;
2331
2332 cfs_rq->throttled = 1;
2333 cfs_rq->throttled_clock = rq_clock(rq);
2334 raw_spin_lock(&cfs_b->lock);
2335 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2336 raw_spin_unlock(&cfs_b->lock);
2337 }
2338
2339 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2340 {
2341 struct rq *rq = rq_of(cfs_rq);
2342 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2343 struct sched_entity *se;
2344 int enqueue = 1;
2345 long task_delta;
2346
2347 se = cfs_rq->tg->se[cpu_of(rq)];
2348
2349 cfs_rq->throttled = 0;
2350
2351 update_rq_clock(rq);
2352
2353 raw_spin_lock(&cfs_b->lock);
2354 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
2355 list_del_rcu(&cfs_rq->throttled_list);
2356 raw_spin_unlock(&cfs_b->lock);
2357
2358 /* update hierarchical throttle state */
2359 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2360
2361 if (!cfs_rq->load.weight)
2362 return;
2363
2364 task_delta = cfs_rq->h_nr_running;
2365 for_each_sched_entity(se) {
2366 if (se->on_rq)
2367 enqueue = 0;
2368
2369 cfs_rq = cfs_rq_of(se);
2370 if (enqueue)
2371 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2372 cfs_rq->h_nr_running += task_delta;
2373
2374 if (cfs_rq_throttled(cfs_rq))
2375 break;
2376 }
2377
2378 if (!se)
2379 rq->nr_running += task_delta;
2380
2381 /* determine whether we need to wake up potentially idle cpu */
2382 if (rq->curr == rq->idle && rq->cfs.nr_running)
2383 resched_task(rq->curr);
2384 }
2385
2386 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2387 u64 remaining, u64 expires)
2388 {
2389 struct cfs_rq *cfs_rq;
2390 u64 runtime = remaining;
2391
2392 rcu_read_lock();
2393 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2394 throttled_list) {
2395 struct rq *rq = rq_of(cfs_rq);
2396
2397 raw_spin_lock(&rq->lock);
2398 if (!cfs_rq_throttled(cfs_rq))
2399 goto next;
2400
2401 runtime = -cfs_rq->runtime_remaining + 1;
2402 if (runtime > remaining)
2403 runtime = remaining;
2404 remaining -= runtime;
2405
2406 cfs_rq->runtime_remaining += runtime;
2407 cfs_rq->runtime_expires = expires;
2408
2409 /* we check whether we're throttled above */
2410 if (cfs_rq->runtime_remaining > 0)
2411 unthrottle_cfs_rq(cfs_rq);
2412
2413 next:
2414 raw_spin_unlock(&rq->lock);
2415
2416 if (!remaining)
2417 break;
2418 }
2419 rcu_read_unlock();
2420
2421 return remaining;
2422 }
2423
2424 /*
2425 * Responsible for refilling a task_group's bandwidth and unthrottling its
2426 * cfs_rqs as appropriate. If there has been no activity within the last
2427 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2428 * used to track this state.
2429 */
2430 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2431 {
2432 u64 runtime, runtime_expires;
2433 int idle = 1, throttled;
2434
2435 raw_spin_lock(&cfs_b->lock);
2436 /* no need to continue the timer with no bandwidth constraint */
2437 if (cfs_b->quota == RUNTIME_INF)
2438 goto out_unlock;
2439
2440 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2441 /* idle depends on !throttled (for the case of a large deficit) */
2442 idle = cfs_b->idle && !throttled;
2443 cfs_b->nr_periods += overrun;
2444
2445 /* if we're going inactive then everything else can be deferred */
2446 if (idle)
2447 goto out_unlock;
2448
2449 __refill_cfs_bandwidth_runtime(cfs_b);
2450
2451 if (!throttled) {
2452 /* mark as potentially idle for the upcoming period */
2453 cfs_b->idle = 1;
2454 goto out_unlock;
2455 }
2456
2457 /* account preceding periods in which throttling occurred */
2458 cfs_b->nr_throttled += overrun;
2459
2460 /*
2461 * There are throttled entities so we must first use the new bandwidth
2462 * to unthrottle them before making it generally available. This
2463 * ensures that all existing debts will be paid before a new cfs_rq is
2464 * allowed to run.
2465 */
2466 runtime = cfs_b->runtime;
2467 runtime_expires = cfs_b->runtime_expires;
2468 cfs_b->runtime = 0;
2469
2470 /*
2471 * This check is repeated as we are holding onto the new bandwidth
2472 * while we unthrottle. This can potentially race with an unthrottled
2473 * group trying to acquire new bandwidth from the global pool.
2474 */
2475 while (throttled && runtime > 0) {
2476 raw_spin_unlock(&cfs_b->lock);
2477 /* we can't nest cfs_b->lock while distributing bandwidth */
2478 runtime = distribute_cfs_runtime(cfs_b, runtime,
2479 runtime_expires);
2480 raw_spin_lock(&cfs_b->lock);
2481
2482 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2483 }
2484
2485 /* return (any) remaining runtime */
2486 cfs_b->runtime = runtime;
2487 /*
2488 * While we are ensured activity in the period following an
2489 * unthrottle, this also covers the case in which the new bandwidth is
2490 * insufficient to cover the existing bandwidth deficit. (Forcing the
2491 * timer to remain active while there are any throttled entities.)
2492 */
2493 cfs_b->idle = 0;
2494 out_unlock:
2495 if (idle)
2496 cfs_b->timer_active = 0;
2497 raw_spin_unlock(&cfs_b->lock);
2498
2499 return idle;
2500 }
2501
2502 /* a cfs_rq won't donate quota below this amount */
2503 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2504 /* minimum remaining period time to redistribute slack quota */
2505 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2506 /* how long we wait to gather additional slack before distributing */
2507 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2508
2509 /* are we near the end of the current quota period? */
2510 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2511 {
2512 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2513 u64 remaining;
2514
2515 /* if the call-back is running a quota refresh is already occurring */
2516 if (hrtimer_callback_running(refresh_timer))
2517 return 1;
2518
2519 /* is a quota refresh about to occur? */
2520 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2521 if (remaining < min_expire)
2522 return 1;
2523
2524 return 0;
2525 }
2526
2527 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2528 {
2529 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2530
2531 /* if there's a quota refresh soon don't bother with slack */
2532 if (runtime_refresh_within(cfs_b, min_left))
2533 return;
2534
2535 start_bandwidth_timer(&cfs_b->slack_timer,
2536 ns_to_ktime(cfs_bandwidth_slack_period));
2537 }
2538
2539 /* we know any runtime found here is valid as update_curr() precedes return */
2540 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2541 {
2542 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2543 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2544
2545 if (slack_runtime <= 0)
2546 return;
2547
2548 raw_spin_lock(&cfs_b->lock);
2549 if (cfs_b->quota != RUNTIME_INF &&
2550 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2551 cfs_b->runtime += slack_runtime;
2552
2553 /* we are under rq->lock, defer unthrottling using a timer */
2554 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2555 !list_empty(&cfs_b->throttled_cfs_rq))
2556 start_cfs_slack_bandwidth(cfs_b);
2557 }
2558 raw_spin_unlock(&cfs_b->lock);
2559
2560 /* even if it's not valid for return we don't want to try again */
2561 cfs_rq->runtime_remaining -= slack_runtime;
2562 }
2563
2564 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2565 {
2566 if (!cfs_bandwidth_used())
2567 return;
2568
2569 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2570 return;
2571
2572 __return_cfs_rq_runtime(cfs_rq);
2573 }
2574
2575 /*
2576 * This is done with a timer (instead of inline with bandwidth return) since
2577 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2578 */
2579 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2580 {
2581 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2582 u64 expires;
2583
2584 /* confirm we're still not at a refresh boundary */
2585 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2586 return;
2587
2588 raw_spin_lock(&cfs_b->lock);
2589 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2590 runtime = cfs_b->runtime;
2591 cfs_b->runtime = 0;
2592 }
2593 expires = cfs_b->runtime_expires;
2594 raw_spin_unlock(&cfs_b->lock);
2595
2596 if (!runtime)
2597 return;
2598
2599 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2600
2601 raw_spin_lock(&cfs_b->lock);
2602 if (expires == cfs_b->runtime_expires)
2603 cfs_b->runtime = runtime;
2604 raw_spin_unlock(&cfs_b->lock);
2605 }
2606
2607 /*
2608 * When a group wakes up we want to make sure that its quota is not already
2609 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2610 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2611 */
2612 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2613 {
2614 if (!cfs_bandwidth_used())
2615 return;
2616
2617 /* an active group must be handled by the update_curr()->put() path */
2618 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2619 return;
2620
2621 /* ensure the group is not already throttled */
2622 if (cfs_rq_throttled(cfs_rq))
2623 return;
2624
2625 /* update runtime allocation */
2626 account_cfs_rq_runtime(cfs_rq, 0);
2627 if (cfs_rq->runtime_remaining <= 0)
2628 throttle_cfs_rq(cfs_rq);
2629 }
2630
2631 /* conditionally throttle active cfs_rq's from put_prev_entity() */
2632 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2633 {
2634 if (!cfs_bandwidth_used())
2635 return;
2636
2637 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2638 return;
2639
2640 /*
2641 * it's possible for a throttled entity to be forced into a running
2642 * state (e.g. set_curr_task), in this case we're finished.
2643 */
2644 if (cfs_rq_throttled(cfs_rq))
2645 return;
2646
2647 throttle_cfs_rq(cfs_rq);
2648 }
2649
2650 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2651 {
2652 struct cfs_bandwidth *cfs_b =
2653 container_of(timer, struct cfs_bandwidth, slack_timer);
2654 do_sched_cfs_slack_timer(cfs_b);
2655
2656 return HRTIMER_NORESTART;
2657 }
2658
2659 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2660 {
2661 struct cfs_bandwidth *cfs_b =
2662 container_of(timer, struct cfs_bandwidth, period_timer);
2663 ktime_t now;
2664 int overrun;
2665 int idle = 0;
2666
2667 for (;;) {
2668 now = hrtimer_cb_get_time(timer);
2669 overrun = hrtimer_forward(timer, now, cfs_b->period);
2670
2671 if (!overrun)
2672 break;
2673
2674 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2675 }
2676
2677 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2678 }
2679
2680 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2681 {
2682 raw_spin_lock_init(&cfs_b->lock);
2683 cfs_b->runtime = 0;
2684 cfs_b->quota = RUNTIME_INF;
2685 cfs_b->period = ns_to_ktime(default_cfs_period());
2686
2687 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2688 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2689 cfs_b->period_timer.function = sched_cfs_period_timer;
2690 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2691 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2692 }
2693
2694 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2695 {
2696 cfs_rq->runtime_enabled = 0;
2697 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2698 }
2699
2700 /* requires cfs_b->lock, may release to reprogram timer */
2701 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2702 {
2703 /*
2704 * The timer may be active because we're trying to set a new bandwidth
2705 * period or because we're racing with the tear-down path
2706 * (timer_active==0 becomes visible before the hrtimer call-back
2707 * terminates). In either case we ensure that it's re-programmed
2708 */
2709 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2710 raw_spin_unlock(&cfs_b->lock);
2711 /* ensure cfs_b->lock is available while we wait */
2712 hrtimer_cancel(&cfs_b->period_timer);
2713
2714 raw_spin_lock(&cfs_b->lock);
2715 /* if someone else restarted the timer then we're done */
2716 if (cfs_b->timer_active)
2717 return;
2718 }
2719
2720 cfs_b->timer_active = 1;
2721 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2722 }
2723
2724 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2725 {
2726 hrtimer_cancel(&cfs_b->period_timer);
2727 hrtimer_cancel(&cfs_b->slack_timer);
2728 }
2729
2730 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
2731 {
2732 struct cfs_rq *cfs_rq;
2733
2734 for_each_leaf_cfs_rq(rq, cfs_rq) {
2735 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2736
2737 if (!cfs_rq->runtime_enabled)
2738 continue;
2739
2740 /*
2741 * clock_task is not advancing so we just need to make sure
2742 * there's some valid quota amount
2743 */
2744 cfs_rq->runtime_remaining = cfs_b->quota;
2745 if (cfs_rq_throttled(cfs_rq))
2746 unthrottle_cfs_rq(cfs_rq);
2747 }
2748 }
2749
2750 #else /* CONFIG_CFS_BANDWIDTH */
2751 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2752 {
2753 return rq_clock_task(rq_of(cfs_rq));
2754 }
2755
2756 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2757 unsigned long delta_exec) {}
2758 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2759 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2760 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2761
2762 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2763 {
2764 return 0;
2765 }
2766
2767 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2768 {
2769 return 0;
2770 }
2771
2772 static inline int throttled_lb_pair(struct task_group *tg,
2773 int src_cpu, int dest_cpu)
2774 {
2775 return 0;
2776 }
2777
2778 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2779
2780 #ifdef CONFIG_FAIR_GROUP_SCHED
2781 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2782 #endif
2783
2784 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2785 {
2786 return NULL;
2787 }
2788 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2789 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2790
2791 #endif /* CONFIG_CFS_BANDWIDTH */
2792
2793 /**************************************************
2794 * CFS operations on tasks:
2795 */
2796
2797 #ifdef CONFIG_SCHED_HRTICK
2798 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2799 {
2800 struct sched_entity *se = &p->se;
2801 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2802
2803 WARN_ON(task_rq(p) != rq);
2804
2805 if (cfs_rq->nr_running > 1) {
2806 u64 slice = sched_slice(cfs_rq, se);
2807 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2808 s64 delta = slice - ran;
2809
2810 if (delta < 0) {
2811 if (rq->curr == p)
2812 resched_task(p);
2813 return;
2814 }
2815
2816 /*
2817 * Don't schedule slices shorter than 10000ns, that just
2818 * doesn't make sense. Rely on vruntime for fairness.
2819 */
2820 if (rq->curr != p)
2821 delta = max_t(s64, 10000LL, delta);
2822
2823 hrtick_start(rq, delta);
2824 }
2825 }
2826
2827 /*
2828 * called from enqueue/dequeue and updates the hrtick when the
2829 * current task is from our class and nr_running is low enough
2830 * to matter.
2831 */
2832 static void hrtick_update(struct rq *rq)
2833 {
2834 struct task_struct *curr = rq->curr;
2835
2836 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2837 return;
2838
2839 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2840 hrtick_start_fair(rq, curr);
2841 }
2842 #else /* !CONFIG_SCHED_HRTICK */
2843 static inline void
2844 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2845 {
2846 }
2847
2848 static inline void hrtick_update(struct rq *rq)
2849 {
2850 }
2851 #endif
2852
2853 /*
2854 * The enqueue_task method is called before nr_running is
2855 * increased. Here we update the fair scheduling stats and
2856 * then put the task into the rbtree:
2857 */
2858 static void
2859 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2860 {
2861 struct cfs_rq *cfs_rq;
2862 struct sched_entity *se = &p->se;
2863
2864 for_each_sched_entity(se) {
2865 if (se->on_rq)
2866 break;
2867 cfs_rq = cfs_rq_of(se);
2868 enqueue_entity(cfs_rq, se, flags);
2869
2870 /*
2871 * end evaluation on encountering a throttled cfs_rq
2872 *
2873 * note: in the case of encountering a throttled cfs_rq we will
2874 * post the final h_nr_running increment below.
2875 */
2876 if (cfs_rq_throttled(cfs_rq))
2877 break;
2878 cfs_rq->h_nr_running++;
2879
2880 flags = ENQUEUE_WAKEUP;
2881 }
2882
2883 for_each_sched_entity(se) {
2884 cfs_rq = cfs_rq_of(se);
2885 cfs_rq->h_nr_running++;
2886
2887 if (cfs_rq_throttled(cfs_rq))
2888 break;
2889
2890 update_cfs_shares(cfs_rq);
2891 update_entity_load_avg(se, 1);
2892 }
2893
2894 if (!se) {
2895 update_rq_runnable_avg(rq, rq->nr_running);
2896 inc_nr_running(rq);
2897 }
2898 hrtick_update(rq);
2899 }
2900
2901 static void set_next_buddy(struct sched_entity *se);
2902
2903 /*
2904 * The dequeue_task method is called before nr_running is
2905 * decreased. We remove the task from the rbtree and
2906 * update the fair scheduling stats:
2907 */
2908 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2909 {
2910 struct cfs_rq *cfs_rq;
2911 struct sched_entity *se = &p->se;
2912 int task_sleep = flags & DEQUEUE_SLEEP;
2913
2914 for_each_sched_entity(se) {
2915 cfs_rq = cfs_rq_of(se);
2916 dequeue_entity(cfs_rq, se, flags);
2917
2918 /*
2919 * end evaluation on encountering a throttled cfs_rq
2920 *
2921 * note: in the case of encountering a throttled cfs_rq we will
2922 * post the final h_nr_running decrement below.
2923 */
2924 if (cfs_rq_throttled(cfs_rq))
2925 break;
2926 cfs_rq->h_nr_running--;
2927
2928 /* Don't dequeue parent if it has other entities besides us */
2929 if (cfs_rq->load.weight) {
2930 /*
2931 * Bias pick_next to pick a task from this cfs_rq, as
2932 * p is sleeping when it is within its sched_slice.
2933 */
2934 if (task_sleep && parent_entity(se))
2935 set_next_buddy(parent_entity(se));
2936
2937 /* avoid re-evaluating load for this entity */
2938 se = parent_entity(se);
2939 break;
2940 }
2941 flags |= DEQUEUE_SLEEP;
2942 }
2943
2944 for_each_sched_entity(se) {
2945 cfs_rq = cfs_rq_of(se);
2946 cfs_rq->h_nr_running--;
2947
2948 if (cfs_rq_throttled(cfs_rq))
2949 break;
2950
2951 update_cfs_shares(cfs_rq);
2952 update_entity_load_avg(se, 1);
2953 }
2954
2955 if (!se) {
2956 dec_nr_running(rq);
2957 update_rq_runnable_avg(rq, 1);
2958 }
2959 hrtick_update(rq);
2960 }
2961
2962 #ifdef CONFIG_SMP
2963 /* Used instead of source_load when we know the type == 0 */
2964 static unsigned long weighted_cpuload(const int cpu)
2965 {
2966 return cpu_rq(cpu)->cfs.runnable_load_avg;
2967 }
2968
2969 /*
2970 * Return a low guess at the load of a migration-source cpu weighted
2971 * according to the scheduling class and "nice" value.
2972 *
2973 * We want to under-estimate the load of migration sources, to
2974 * balance conservatively.
2975 */
2976 static unsigned long source_load(int cpu, int type)
2977 {
2978 struct rq *rq = cpu_rq(cpu);
2979 unsigned long total = weighted_cpuload(cpu);
2980
2981 if (type == 0 || !sched_feat(LB_BIAS))
2982 return total;
2983
2984 return min(rq->cpu_load[type-1], total);
2985 }
2986
2987 /*
2988 * Return a high guess at the load of a migration-target cpu weighted
2989 * according to the scheduling class and "nice" value.
2990 */
2991 static unsigned long target_load(int cpu, int type)
2992 {
2993 struct rq *rq = cpu_rq(cpu);
2994 unsigned long total = weighted_cpuload(cpu);
2995
2996 if (type == 0 || !sched_feat(LB_BIAS))
2997 return total;
2998
2999 return max(rq->cpu_load[type-1], total);
3000 }
3001
3002 static unsigned long power_of(int cpu)
3003 {
3004 return cpu_rq(cpu)->cpu_power;
3005 }
3006
3007 static unsigned long cpu_avg_load_per_task(int cpu)
3008 {
3009 struct rq *rq = cpu_rq(cpu);
3010 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3011 unsigned long load_avg = rq->cfs.runnable_load_avg;
3012
3013 if (nr_running)
3014 return load_avg / nr_running;
3015
3016 return 0;
3017 }
3018
3019
3020 static void task_waking_fair(struct task_struct *p)
3021 {
3022 struct sched_entity *se = &p->se;
3023 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3024 u64 min_vruntime;
3025
3026 #ifndef CONFIG_64BIT
3027 u64 min_vruntime_copy;
3028
3029 do {
3030 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3031 smp_rmb();
3032 min_vruntime = cfs_rq->min_vruntime;
3033 } while (min_vruntime != min_vruntime_copy);
3034 #else
3035 min_vruntime = cfs_rq->min_vruntime;
3036 #endif
3037
3038 se->vruntime -= min_vruntime;
3039 }
3040
3041 #ifdef CONFIG_FAIR_GROUP_SCHED
3042 /*
3043 * effective_load() calculates the load change as seen from the root_task_group
3044 *
3045 * Adding load to a group doesn't make a group heavier, but can cause movement
3046 * of group shares between cpus. Assuming the shares were perfectly aligned one
3047 * can calculate the shift in shares.
3048 *
3049 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3050 * on this @cpu and results in a total addition (subtraction) of @wg to the
3051 * total group weight.
3052 *
3053 * Given a runqueue weight distribution (rw_i) we can compute a shares
3054 * distribution (s_i) using:
3055 *
3056 * s_i = rw_i / \Sum rw_j (1)
3057 *
3058 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3059 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3060 * shares distribution (s_i):
3061 *
3062 * rw_i = { 2, 4, 1, 0 }
3063 * s_i = { 2/7, 4/7, 1/7, 0 }
3064 *
3065 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3066 * task used to run on and the CPU the waker is running on), we need to
3067 * compute the effect of waking a task on either CPU and, in case of a sync
3068 * wakeup, compute the effect of the current task going to sleep.
3069 *
3070 * So for a change of @wl to the local @cpu with an overall group weight change
3071 * of @wl we can compute the new shares distribution (s'_i) using:
3072 *
3073 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3074 *
3075 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3076 * differences in waking a task to CPU 0. The additional task changes the
3077 * weight and shares distributions like:
3078 *
3079 * rw'_i = { 3, 4, 1, 0 }
3080 * s'_i = { 3/8, 4/8, 1/8, 0 }
3081 *
3082 * We can then compute the difference in effective weight by using:
3083 *
3084 * dw_i = S * (s'_i - s_i) (3)
3085 *
3086 * Where 'S' is the group weight as seen by its parent.
3087 *
3088 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3089 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3090 * 4/7) times the weight of the group.
3091 */
3092 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3093 {
3094 struct sched_entity *se = tg->se[cpu];
3095
3096 if (!tg->parent) /* the trivial, non-cgroup case */
3097 return wl;
3098
3099 for_each_sched_entity(se) {
3100 long w, W;
3101
3102 tg = se->my_q->tg;
3103
3104 /*
3105 * W = @wg + \Sum rw_j
3106 */
3107 W = wg + calc_tg_weight(tg, se->my_q);
3108
3109 /*
3110 * w = rw_i + @wl
3111 */
3112 w = se->my_q->load.weight + wl;
3113
3114 /*
3115 * wl = S * s'_i; see (2)
3116 */
3117 if (W > 0 && w < W)
3118 wl = (w * tg->shares) / W;
3119 else
3120 wl = tg->shares;
3121
3122 /*
3123 * Per the above, wl is the new se->load.weight value; since
3124 * those are clipped to [MIN_SHARES, ...) do so now. See
3125 * calc_cfs_shares().
3126 */
3127 if (wl < MIN_SHARES)
3128 wl = MIN_SHARES;
3129
3130 /*
3131 * wl = dw_i = S * (s'_i - s_i); see (3)
3132 */
3133 wl -= se->load.weight;
3134
3135 /*
3136 * Recursively apply this logic to all parent groups to compute
3137 * the final effective load change on the root group. Since
3138 * only the @tg group gets extra weight, all parent groups can
3139 * only redistribute existing shares. @wl is the shift in shares
3140 * resulting from this level per the above.
3141 */
3142 wg = 0;
3143 }
3144
3145 return wl;
3146 }
3147 #else
3148
3149 static inline unsigned long effective_load(struct task_group *tg, int cpu,
3150 unsigned long wl, unsigned long wg)
3151 {
3152 return wl;
3153 }
3154
3155 #endif
3156
3157 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3158 {
3159 s64 this_load, load;
3160 int idx, this_cpu, prev_cpu;
3161 unsigned long tl_per_task;
3162 struct task_group *tg;
3163 unsigned long weight;
3164 int balanced;
3165
3166 idx = sd->wake_idx;
3167 this_cpu = smp_processor_id();
3168 prev_cpu = task_cpu(p);
3169 load = source_load(prev_cpu, idx);
3170 this_load = target_load(this_cpu, idx);
3171
3172 /*
3173 * If sync wakeup then subtract the (maximum possible)
3174 * effect of the currently running task from the load
3175 * of the current CPU:
3176 */
3177 if (sync) {
3178 tg = task_group(current);
3179 weight = current->se.load.weight;
3180
3181 this_load += effective_load(tg, this_cpu, -weight, -weight);
3182 load += effective_load(tg, prev_cpu, 0, -weight);
3183 }
3184
3185 tg = task_group(p);
3186 weight = p->se.load.weight;
3187
3188 /*
3189 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3190 * due to the sync cause above having dropped this_load to 0, we'll
3191 * always have an imbalance, but there's really nothing you can do
3192 * about that, so that's good too.
3193 *
3194 * Otherwise check if either cpus are near enough in load to allow this
3195 * task to be woken on this_cpu.
3196 */
3197 if (this_load > 0) {
3198 s64 this_eff_load, prev_eff_load;
3199
3200 this_eff_load = 100;
3201 this_eff_load *= power_of(prev_cpu);
3202 this_eff_load *= this_load +
3203 effective_load(tg, this_cpu, weight, weight);
3204
3205 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3206 prev_eff_load *= power_of(this_cpu);
3207 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3208
3209 balanced = this_eff_load <= prev_eff_load;
3210 } else
3211 balanced = true;
3212
3213 /*
3214 * If the currently running task will sleep within
3215 * a reasonable amount of time then attract this newly
3216 * woken task:
3217 */
3218 if (sync && balanced)
3219 return 1;
3220
3221 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3222 tl_per_task = cpu_avg_load_per_task(this_cpu);
3223
3224 if (balanced ||
3225 (this_load <= load &&
3226 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3227 /*
3228 * This domain has SD_WAKE_AFFINE and
3229 * p is cache cold in this domain, and
3230 * there is no bad imbalance.
3231 */
3232 schedstat_inc(sd, ttwu_move_affine);
3233 schedstat_inc(p, se.statistics.nr_wakeups_affine);
3234
3235 return 1;
3236 }
3237 return 0;
3238 }
3239
3240 /*
3241 * find_idlest_group finds and returns the least busy CPU group within the
3242 * domain.
3243 */
3244 static struct sched_group *
3245 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3246 int this_cpu, int load_idx)
3247 {
3248 struct sched_group *idlest = NULL, *group = sd->groups;
3249 unsigned long min_load = ULONG_MAX, this_load = 0;
3250 int imbalance = 100 + (sd->imbalance_pct-100)/2;
3251
3252 do {
3253 unsigned long load, avg_load;
3254 int local_group;
3255 int i;
3256
3257 /* Skip over this group if it has no CPUs allowed */
3258 if (!cpumask_intersects(sched_group_cpus(group),
3259 tsk_cpus_allowed(p)))
3260 continue;
3261
3262 local_group = cpumask_test_cpu(this_cpu,
3263 sched_group_cpus(group));
3264
3265 /* Tally up the load of all CPUs in the group */
3266 avg_load = 0;
3267
3268 for_each_cpu(i, sched_group_cpus(group)) {
3269 /* Bias balancing toward cpus of our domain */
3270 if (local_group)
3271 load = source_load(i, load_idx);
3272 else
3273 load = target_load(i, load_idx);
3274
3275 avg_load += load;
3276 }
3277
3278 /* Adjust by relative CPU power of the group */
3279 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3280
3281 if (local_group) {
3282 this_load = avg_load;
3283 } else if (avg_load < min_load) {
3284 min_load = avg_load;
3285 idlest = group;
3286 }
3287 } while (group = group->next, group != sd->groups);
3288
3289 if (!idlest || 100*this_load < imbalance*min_load)
3290 return NULL;
3291 return idlest;
3292 }
3293
3294 /*
3295 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3296 */
3297 static int
3298 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3299 {
3300 unsigned long load, min_load = ULONG_MAX;
3301 int idlest = -1;
3302 int i;
3303
3304 /* Traverse only the allowed CPUs */
3305 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3306 load = weighted_cpuload(i);
3307
3308 if (load < min_load || (load == min_load && i == this_cpu)) {
3309 min_load = load;
3310 idlest = i;
3311 }
3312 }
3313
3314 return idlest;
3315 }
3316
3317 /*
3318 * Try and locate an idle CPU in the sched_domain.
3319 */
3320 static int select_idle_sibling(struct task_struct *p, int target)
3321 {
3322 struct sched_domain *sd;
3323 struct sched_group *sg;
3324 int i = task_cpu(p);
3325
3326 if (idle_cpu(target))
3327 return target;
3328
3329 /*
3330 * If the prevous cpu is cache affine and idle, don't be stupid.
3331 */
3332 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3333 return i;
3334
3335 /*
3336 * Otherwise, iterate the domains and find an elegible idle cpu.
3337 */
3338 sd = rcu_dereference(per_cpu(sd_llc, target));
3339 for_each_lower_domain(sd) {
3340 sg = sd->groups;
3341 do {
3342 if (!cpumask_intersects(sched_group_cpus(sg),
3343 tsk_cpus_allowed(p)))
3344 goto next;
3345
3346 for_each_cpu(i, sched_group_cpus(sg)) {
3347 if (i == target || !idle_cpu(i))
3348 goto next;
3349 }
3350
3351 target = cpumask_first_and(sched_group_cpus(sg),
3352 tsk_cpus_allowed(p));
3353 goto done;
3354 next:
3355 sg = sg->next;
3356 } while (sg != sd->groups);
3357 }
3358 done:
3359 return target;
3360 }
3361
3362 /*
3363 * sched_balance_self: balance the current task (running on cpu) in domains
3364 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3365 * SD_BALANCE_EXEC.
3366 *
3367 * Balance, ie. select the least loaded group.
3368 *
3369 * Returns the target CPU number, or the same CPU if no balancing is needed.
3370 *
3371 * preempt must be disabled.
3372 */
3373 static int
3374 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
3375 {
3376 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3377 int cpu = smp_processor_id();
3378 int prev_cpu = task_cpu(p);
3379 int new_cpu = cpu;
3380 int want_affine = 0;
3381 int sync = wake_flags & WF_SYNC;
3382
3383 if (p->nr_cpus_allowed == 1)
3384 return prev_cpu;
3385
3386 if (sd_flag & SD_BALANCE_WAKE) {
3387 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3388 want_affine = 1;
3389 new_cpu = prev_cpu;
3390 }
3391
3392 rcu_read_lock();
3393 for_each_domain(cpu, tmp) {
3394 if (!(tmp->flags & SD_LOAD_BALANCE))
3395 continue;
3396
3397 /*
3398 * If both cpu and prev_cpu are part of this domain,
3399 * cpu is a valid SD_WAKE_AFFINE target.
3400 */
3401 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3402 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3403 affine_sd = tmp;
3404 break;
3405 }
3406
3407 if (tmp->flags & sd_flag)
3408 sd = tmp;
3409 }
3410
3411 if (affine_sd) {
3412 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3413 prev_cpu = cpu;
3414
3415 new_cpu = select_idle_sibling(p, prev_cpu);
3416 goto unlock;
3417 }
3418
3419 while (sd) {
3420 int load_idx = sd->forkexec_idx;
3421 struct sched_group *group;
3422 int weight;
3423
3424 if (!(sd->flags & sd_flag)) {
3425 sd = sd->child;
3426 continue;
3427 }
3428
3429 if (sd_flag & SD_BALANCE_WAKE)
3430 load_idx = sd->wake_idx;
3431
3432 group = find_idlest_group(sd, p, cpu, load_idx);
3433 if (!group) {
3434 sd = sd->child;
3435 continue;
3436 }
3437
3438 new_cpu = find_idlest_cpu(group, p, cpu);
3439 if (new_cpu == -1 || new_cpu == cpu) {
3440 /* Now try balancing at a lower domain level of cpu */
3441 sd = sd->child;
3442 continue;
3443 }
3444
3445 /* Now try balancing at a lower domain level of new_cpu */
3446 cpu = new_cpu;
3447 weight = sd->span_weight;
3448 sd = NULL;
3449 for_each_domain(cpu, tmp) {
3450 if (weight <= tmp->span_weight)
3451 break;
3452 if (tmp->flags & sd_flag)
3453 sd = tmp;
3454 }
3455 /* while loop will break here if sd == NULL */
3456 }
3457 unlock:
3458 rcu_read_unlock();
3459
3460 return new_cpu;
3461 }
3462
3463 /*
3464 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3465 * cfs_rq_of(p) references at time of call are still valid and identify the
3466 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3467 * other assumptions, including the state of rq->lock, should be made.
3468 */
3469 static void
3470 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3471 {
3472 struct sched_entity *se = &p->se;
3473 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3474
3475 /*
3476 * Load tracking: accumulate removed load so that it can be processed
3477 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3478 * to blocked load iff they have a positive decay-count. It can never
3479 * be negative here since on-rq tasks have decay-count == 0.
3480 */
3481 if (se->avg.decay_count) {
3482 se->avg.decay_count = -__synchronize_entity_decay(se);
3483 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3484 }
3485 }
3486 #endif /* CONFIG_SMP */
3487
3488 static unsigned long
3489 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3490 {
3491 unsigned long gran = sysctl_sched_wakeup_granularity;
3492
3493 /*
3494 * Since its curr running now, convert the gran from real-time
3495 * to virtual-time in his units.
3496 *
3497 * By using 'se' instead of 'curr' we penalize light tasks, so
3498 * they get preempted easier. That is, if 'se' < 'curr' then
3499 * the resulting gran will be larger, therefore penalizing the
3500 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3501 * be smaller, again penalizing the lighter task.
3502 *
3503 * This is especially important for buddies when the leftmost
3504 * task is higher priority than the buddy.
3505 */
3506 return calc_delta_fair(gran, se);
3507 }
3508
3509 /*
3510 * Should 'se' preempt 'curr'.
3511 *
3512 * |s1
3513 * |s2
3514 * |s3
3515 * g
3516 * |<--->|c
3517 *
3518 * w(c, s1) = -1
3519 * w(c, s2) = 0
3520 * w(c, s3) = 1
3521 *
3522 */
3523 static int
3524 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3525 {
3526 s64 gran, vdiff = curr->vruntime - se->vruntime;
3527
3528 if (vdiff <= 0)
3529 return -1;
3530
3531 gran = wakeup_gran(curr, se);
3532 if (vdiff > gran)
3533 return 1;
3534
3535 return 0;
3536 }
3537
3538 static void set_last_buddy(struct sched_entity *se)
3539 {
3540 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3541 return;
3542
3543 for_each_sched_entity(se)
3544 cfs_rq_of(se)->last = se;
3545 }
3546
3547 static void set_next_buddy(struct sched_entity *se)
3548 {
3549 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3550 return;
3551
3552 for_each_sched_entity(se)
3553 cfs_rq_of(se)->next = se;
3554 }
3555
3556 static void set_skip_buddy(struct sched_entity *se)
3557 {
3558 for_each_sched_entity(se)
3559 cfs_rq_of(se)->skip = se;
3560 }
3561
3562 /*
3563 * Preempt the current task with a newly woken task if needed:
3564 */
3565 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3566 {
3567 struct task_struct *curr = rq->curr;
3568 struct sched_entity *se = &curr->se, *pse = &p->se;
3569 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3570 int scale = cfs_rq->nr_running >= sched_nr_latency;
3571 int next_buddy_marked = 0;
3572
3573 if (unlikely(se == pse))
3574 return;
3575
3576 /*
3577 * This is possible from callers such as move_task(), in which we
3578 * unconditionally check_prempt_curr() after an enqueue (which may have
3579 * lead to a throttle). This both saves work and prevents false
3580 * next-buddy nomination below.
3581 */
3582 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3583 return;
3584
3585 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3586 set_next_buddy(pse);
3587 next_buddy_marked = 1;
3588 }
3589
3590 /*
3591 * We can come here with TIF_NEED_RESCHED already set from new task
3592 * wake up path.
3593 *
3594 * Note: this also catches the edge-case of curr being in a throttled
3595 * group (e.g. via set_curr_task), since update_curr() (in the
3596 * enqueue of curr) will have resulted in resched being set. This
3597 * prevents us from potentially nominating it as a false LAST_BUDDY
3598 * below.
3599 */
3600 if (test_tsk_need_resched(curr))
3601 return;
3602
3603 /* Idle tasks are by definition preempted by non-idle tasks. */
3604 if (unlikely(curr->policy == SCHED_IDLE) &&
3605 likely(p->policy != SCHED_IDLE))
3606 goto preempt;
3607
3608 /*
3609 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3610 * is driven by the tick):
3611 */
3612 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3613 return;
3614
3615 find_matching_se(&se, &pse);
3616 update_curr(cfs_rq_of(se));
3617 BUG_ON(!pse);
3618 if (wakeup_preempt_entity(se, pse) == 1) {
3619 /*
3620 * Bias pick_next to pick the sched entity that is
3621 * triggering this preemption.
3622 */
3623 if (!next_buddy_marked)
3624 set_next_buddy(pse);
3625 goto preempt;
3626 }
3627
3628 return;
3629
3630 preempt:
3631 resched_task(curr);
3632 /*
3633 * Only set the backward buddy when the current task is still
3634 * on the rq. This can happen when a wakeup gets interleaved
3635 * with schedule on the ->pre_schedule() or idle_balance()
3636 * point, either of which can * drop the rq lock.
3637 *
3638 * Also, during early boot the idle thread is in the fair class,
3639 * for obvious reasons its a bad idea to schedule back to it.
3640 */
3641 if (unlikely(!se->on_rq || curr == rq->idle))
3642 return;
3643
3644 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3645 set_last_buddy(se);
3646 }
3647
3648 static struct task_struct *pick_next_task_fair(struct rq *rq)
3649 {
3650 struct task_struct *p;
3651 struct cfs_rq *cfs_rq = &rq->cfs;
3652 struct sched_entity *se;
3653
3654 if (!cfs_rq->nr_running)
3655 return NULL;
3656
3657 do {
3658 se = pick_next_entity(cfs_rq);
3659 set_next_entity(cfs_rq, se);
3660 cfs_rq = group_cfs_rq(se);
3661 } while (cfs_rq);
3662
3663 p = task_of(se);
3664 if (hrtick_enabled(rq))
3665 hrtick_start_fair(rq, p);
3666
3667 return p;
3668 }
3669
3670 /*
3671 * Account for a descheduled task:
3672 */
3673 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3674 {
3675 struct sched_entity *se = &prev->se;
3676 struct cfs_rq *cfs_rq;
3677
3678 for_each_sched_entity(se) {
3679 cfs_rq = cfs_rq_of(se);
3680 put_prev_entity(cfs_rq, se);
3681 }
3682 }
3683
3684 /*
3685 * sched_yield() is very simple
3686 *
3687 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3688 */
3689 static void yield_task_fair(struct rq *rq)
3690 {
3691 struct task_struct *curr = rq->curr;
3692 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3693 struct sched_entity *se = &curr->se;
3694
3695 /*
3696 * Are we the only task in the tree?
3697 */
3698 if (unlikely(rq->nr_running == 1))
3699 return;
3700
3701 clear_buddies(cfs_rq, se);
3702
3703 if (curr->policy != SCHED_BATCH) {
3704 update_rq_clock(rq);
3705 /*
3706 * Update run-time statistics of the 'current'.
3707 */
3708 update_curr(cfs_rq);
3709 /*
3710 * Tell update_rq_clock() that we've just updated,
3711 * so we don't do microscopic update in schedule()
3712 * and double the fastpath cost.
3713 */
3714 rq->skip_clock_update = 1;
3715 }
3716
3717 set_skip_buddy(se);
3718 }
3719
3720 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3721 {
3722 struct sched_entity *se = &p->se;
3723
3724 /* throttled hierarchies are not runnable */
3725 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3726 return false;
3727
3728 /* Tell the scheduler that we'd really like pse to run next. */
3729 set_next_buddy(se);
3730
3731 yield_task_fair(rq);
3732
3733 return true;
3734 }
3735
3736 #ifdef CONFIG_SMP
3737 /**************************************************
3738 * Fair scheduling class load-balancing methods.
3739 *
3740 * BASICS
3741 *
3742 * The purpose of load-balancing is to achieve the same basic fairness the
3743 * per-cpu scheduler provides, namely provide a proportional amount of compute
3744 * time to each task. This is expressed in the following equation:
3745 *
3746 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3747 *
3748 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3749 * W_i,0 is defined as:
3750 *
3751 * W_i,0 = \Sum_j w_i,j (2)
3752 *
3753 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3754 * is derived from the nice value as per prio_to_weight[].
3755 *
3756 * The weight average is an exponential decay average of the instantaneous
3757 * weight:
3758 *
3759 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3760 *
3761 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3762 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3763 * can also include other factors [XXX].
3764 *
3765 * To achieve this balance we define a measure of imbalance which follows
3766 * directly from (1):
3767 *
3768 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3769 *
3770 * We them move tasks around to minimize the imbalance. In the continuous
3771 * function space it is obvious this converges, in the discrete case we get
3772 * a few fun cases generally called infeasible weight scenarios.
3773 *
3774 * [XXX expand on:
3775 * - infeasible weights;
3776 * - local vs global optima in the discrete case. ]
3777 *
3778 *
3779 * SCHED DOMAINS
3780 *
3781 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3782 * for all i,j solution, we create a tree of cpus that follows the hardware
3783 * topology where each level pairs two lower groups (or better). This results
3784 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3785 * tree to only the first of the previous level and we decrease the frequency
3786 * of load-balance at each level inv. proportional to the number of cpus in
3787 * the groups.
3788 *
3789 * This yields:
3790 *
3791 * log_2 n 1 n
3792 * \Sum { --- * --- * 2^i } = O(n) (5)
3793 * i = 0 2^i 2^i
3794 * `- size of each group
3795 * | | `- number of cpus doing load-balance
3796 * | `- freq
3797 * `- sum over all levels
3798 *
3799 * Coupled with a limit on how many tasks we can migrate every balance pass,
3800 * this makes (5) the runtime complexity of the balancer.
3801 *
3802 * An important property here is that each CPU is still (indirectly) connected
3803 * to every other cpu in at most O(log n) steps:
3804 *
3805 * The adjacency matrix of the resulting graph is given by:
3806 *
3807 * log_2 n
3808 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3809 * k = 0
3810 *
3811 * And you'll find that:
3812 *
3813 * A^(log_2 n)_i,j != 0 for all i,j (7)
3814 *
3815 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3816 * The task movement gives a factor of O(m), giving a convergence complexity
3817 * of:
3818 *
3819 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3820 *
3821 *
3822 * WORK CONSERVING
3823 *
3824 * In order to avoid CPUs going idle while there's still work to do, new idle
3825 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3826 * tree itself instead of relying on other CPUs to bring it work.
3827 *
3828 * This adds some complexity to both (5) and (8) but it reduces the total idle
3829 * time.
3830 *
3831 * [XXX more?]
3832 *
3833 *
3834 * CGROUPS
3835 *
3836 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3837 *
3838 * s_k,i
3839 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3840 * S_k
3841 *
3842 * Where
3843 *
3844 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3845 *
3846 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3847 *
3848 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3849 * property.
3850 *
3851 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3852 * rewrite all of this once again.]
3853 */
3854
3855 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3856
3857 #define LBF_ALL_PINNED 0x01
3858 #define LBF_NEED_BREAK 0x02
3859 #define LBF_SOME_PINNED 0x04
3860
3861 struct lb_env {
3862 struct sched_domain *sd;
3863
3864 struct rq *src_rq;
3865 int src_cpu;
3866
3867 int dst_cpu;
3868 struct rq *dst_rq;
3869
3870 struct cpumask *dst_grpmask;
3871 int new_dst_cpu;
3872 enum cpu_idle_type idle;
3873 long imbalance;
3874 /* The set of CPUs under consideration for load-balancing */
3875 struct cpumask *cpus;
3876
3877 unsigned int flags;
3878
3879 unsigned int loop;
3880 unsigned int loop_break;
3881 unsigned int loop_max;
3882 };
3883
3884 /*
3885 * move_task - move a task from one runqueue to another runqueue.
3886 * Both runqueues must be locked.
3887 */
3888 static void move_task(struct task_struct *p, struct lb_env *env)
3889 {
3890 deactivate_task(env->src_rq, p, 0);
3891 set_task_cpu(p, env->dst_cpu);
3892 activate_task(env->dst_rq, p, 0);
3893 check_preempt_curr(env->dst_rq, p, 0);
3894 }
3895
3896 /*
3897 * Is this task likely cache-hot:
3898 */
3899 static int
3900 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3901 {
3902 s64 delta;
3903
3904 if (p->sched_class != &fair_sched_class)
3905 return 0;
3906
3907 if (unlikely(p->policy == SCHED_IDLE))
3908 return 0;
3909
3910 /*
3911 * Buddy candidates are cache hot:
3912 */
3913 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3914 (&p->se == cfs_rq_of(&p->se)->next ||
3915 &p->se == cfs_rq_of(&p->se)->last))
3916 return 1;
3917
3918 if (sysctl_sched_migration_cost == -1)
3919 return 1;
3920 if (sysctl_sched_migration_cost == 0)
3921 return 0;
3922
3923 delta = now - p->se.exec_start;
3924
3925 return delta < (s64)sysctl_sched_migration_cost;
3926 }
3927
3928 /*
3929 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3930 */
3931 static
3932 int can_migrate_task(struct task_struct *p, struct lb_env *env)
3933 {
3934 int tsk_cache_hot = 0;
3935 /*
3936 * We do not migrate tasks that are:
3937 * 1) throttled_lb_pair, or
3938 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3939 * 3) running (obviously), or
3940 * 4) are cache-hot on their current CPU.
3941 */
3942 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3943 return 0;
3944
3945 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3946 int cpu;
3947
3948 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3949
3950 /*
3951 * Remember if this task can be migrated to any other cpu in
3952 * our sched_group. We may want to revisit it if we couldn't
3953 * meet load balance goals by pulling other tasks on src_cpu.
3954 *
3955 * Also avoid computing new_dst_cpu if we have already computed
3956 * one in current iteration.
3957 */
3958 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3959 return 0;
3960
3961 /* Prevent to re-select dst_cpu via env's cpus */
3962 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
3963 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
3964 env->flags |= LBF_SOME_PINNED;
3965 env->new_dst_cpu = cpu;
3966 break;
3967 }
3968 }
3969
3970 return 0;
3971 }
3972
3973 /* Record that we found atleast one task that could run on dst_cpu */
3974 env->flags &= ~LBF_ALL_PINNED;
3975
3976 if (task_running(env->src_rq, p)) {
3977 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3978 return 0;
3979 }
3980
3981 /*
3982 * Aggressive migration if:
3983 * 1) task is cache cold, or
3984 * 2) too many balance attempts have failed.
3985 */
3986
3987 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
3988 if (!tsk_cache_hot ||
3989 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3990
3991 if (tsk_cache_hot) {
3992 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3993 schedstat_inc(p, se.statistics.nr_forced_migrations);
3994 }
3995
3996 return 1;
3997 }
3998
3999 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4000 return 0;
4001 }
4002
4003 /*
4004 * move_one_task tries to move exactly one task from busiest to this_rq, as
4005 * part of active balancing operations within "domain".
4006 * Returns 1 if successful and 0 otherwise.
4007 *
4008 * Called with both runqueues locked.
4009 */
4010 static int move_one_task(struct lb_env *env)
4011 {
4012 struct task_struct *p, *n;
4013
4014 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4015 if (!can_migrate_task(p, env))
4016 continue;
4017
4018 move_task(p, env);
4019 /*
4020 * Right now, this is only the second place move_task()
4021 * is called, so we can safely collect move_task()
4022 * stats here rather than inside move_task().
4023 */
4024 schedstat_inc(env->sd, lb_gained[env->idle]);
4025 return 1;
4026 }
4027 return 0;
4028 }
4029
4030 static unsigned long task_h_load(struct task_struct *p);
4031
4032 static const unsigned int sched_nr_migrate_break = 32;
4033
4034 /*
4035 * move_tasks tries to move up to imbalance weighted load from busiest to
4036 * this_rq, as part of a balancing operation within domain "sd".
4037 * Returns 1 if successful and 0 otherwise.
4038 *
4039 * Called with both runqueues locked.
4040 */
4041 static int move_tasks(struct lb_env *env)
4042 {
4043 struct list_head *tasks = &env->src_rq->cfs_tasks;
4044 struct task_struct *p;
4045 unsigned long load;
4046 int pulled = 0;
4047
4048 if (env->imbalance <= 0)
4049 return 0;
4050
4051 while (!list_empty(tasks)) {
4052 p = list_first_entry(tasks, struct task_struct, se.group_node);
4053
4054 env->loop++;
4055 /* We've more or less seen every task there is, call it quits */
4056 if (env->loop > env->loop_max)
4057 break;
4058
4059 /* take a breather every nr_migrate tasks */
4060 if (env->loop > env->loop_break) {
4061 env->loop_break += sched_nr_migrate_break;
4062 env->flags |= LBF_NEED_BREAK;
4063 break;
4064 }
4065
4066 if (!can_migrate_task(p, env))
4067 goto next;
4068
4069 load = task_h_load(p);
4070
4071 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4072 goto next;
4073
4074 if ((load / 2) > env->imbalance)
4075 goto next;
4076
4077 move_task(p, env);
4078 pulled++;
4079 env->imbalance -= load;
4080
4081 #ifdef CONFIG_PREEMPT
4082 /*
4083 * NEWIDLE balancing is a source of latency, so preemptible
4084 * kernels will stop after the first task is pulled to minimize
4085 * the critical section.
4086 */
4087 if (env->idle == CPU_NEWLY_IDLE)
4088 break;
4089 #endif
4090
4091 /*
4092 * We only want to steal up to the prescribed amount of
4093 * weighted load.
4094 */
4095 if (env->imbalance <= 0)
4096 break;
4097
4098 continue;
4099 next:
4100 list_move_tail(&p->se.group_node, tasks);
4101 }
4102
4103 /*
4104 * Right now, this is one of only two places move_task() is called,
4105 * so we can safely collect move_task() stats here rather than
4106 * inside move_task().
4107 */
4108 schedstat_add(env->sd, lb_gained[env->idle], pulled);
4109
4110 return pulled;
4111 }
4112
4113 #ifdef CONFIG_FAIR_GROUP_SCHED
4114 /*
4115 * update tg->load_weight by folding this cpu's load_avg
4116 */
4117 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4118 {
4119 struct sched_entity *se = tg->se[cpu];
4120 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4121
4122 /* throttled entities do not contribute to load */
4123 if (throttled_hierarchy(cfs_rq))
4124 return;
4125
4126 update_cfs_rq_blocked_load(cfs_rq, 1);
4127
4128 if (se) {
4129 update_entity_load_avg(se, 1);
4130 /*
4131 * We pivot on our runnable average having decayed to zero for
4132 * list removal. This generally implies that all our children
4133 * have also been removed (modulo rounding error or bandwidth
4134 * control); however, such cases are rare and we can fix these
4135 * at enqueue.
4136 *
4137 * TODO: fix up out-of-order children on enqueue.
4138 */
4139 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4140 list_del_leaf_cfs_rq(cfs_rq);
4141 } else {
4142 struct rq *rq = rq_of(cfs_rq);
4143 update_rq_runnable_avg(rq, rq->nr_running);
4144 }
4145 }
4146
4147 static void update_blocked_averages(int cpu)
4148 {
4149 struct rq *rq = cpu_rq(cpu);
4150 struct cfs_rq *cfs_rq;
4151 unsigned long flags;
4152
4153 raw_spin_lock_irqsave(&rq->lock, flags);
4154 update_rq_clock(rq);
4155 /*
4156 * Iterates the task_group tree in a bottom up fashion, see
4157 * list_add_leaf_cfs_rq() for details.
4158 */
4159 for_each_leaf_cfs_rq(rq, cfs_rq) {
4160 /*
4161 * Note: We may want to consider periodically releasing
4162 * rq->lock about these updates so that creating many task
4163 * groups does not result in continually extending hold time.
4164 */
4165 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4166 }
4167
4168 raw_spin_unlock_irqrestore(&rq->lock, flags);
4169 }
4170
4171 /*
4172 * Compute the cpu's hierarchical load factor for each task group.
4173 * This needs to be done in a top-down fashion because the load of a child
4174 * group is a fraction of its parents load.
4175 */
4176 static int tg_load_down(struct task_group *tg, void *data)
4177 {
4178 unsigned long load;
4179 long cpu = (long)data;
4180
4181 if (!tg->parent) {
4182 load = cpu_rq(cpu)->avg.load_avg_contrib;
4183 } else {
4184 load = tg->parent->cfs_rq[cpu]->h_load;
4185 load = div64_ul(load * tg->se[cpu]->avg.load_avg_contrib,
4186 tg->parent->cfs_rq[cpu]->runnable_load_avg + 1);
4187 }
4188
4189 tg->cfs_rq[cpu]->h_load = load;
4190
4191 return 0;
4192 }
4193
4194 static void update_h_load(long cpu)
4195 {
4196 struct rq *rq = cpu_rq(cpu);
4197 unsigned long now = jiffies;
4198
4199 if (rq->h_load_throttle == now)
4200 return;
4201
4202 rq->h_load_throttle = now;
4203
4204 rcu_read_lock();
4205 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
4206 rcu_read_unlock();
4207 }
4208
4209 static unsigned long task_h_load(struct task_struct *p)
4210 {
4211 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4212
4213 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4214 cfs_rq->runnable_load_avg + 1);
4215 }
4216 #else
4217 static inline void update_blocked_averages(int cpu)
4218 {
4219 }
4220
4221 static inline void update_h_load(long cpu)
4222 {
4223 }
4224
4225 static unsigned long task_h_load(struct task_struct *p)
4226 {
4227 return p->se.avg.load_avg_contrib;
4228 }
4229 #endif
4230
4231 /********** Helpers for find_busiest_group ************************/
4232 /*
4233 * sd_lb_stats - Structure to store the statistics of a sched_domain
4234 * during load balancing.
4235 */
4236 struct sd_lb_stats {
4237 struct sched_group *busiest; /* Busiest group in this sd */
4238 struct sched_group *this; /* Local group in this sd */
4239 unsigned long total_load; /* Total load of all groups in sd */
4240 unsigned long total_pwr; /* Total power of all groups in sd */
4241 unsigned long avg_load; /* Average load across all groups in sd */
4242
4243 /** Statistics of this group */
4244 unsigned long this_load;
4245 unsigned long this_load_per_task;
4246 unsigned long this_nr_running;
4247 unsigned long this_has_capacity;
4248 unsigned int this_idle_cpus;
4249
4250 /* Statistics of the busiest group */
4251 unsigned int busiest_idle_cpus;
4252 unsigned long max_load;
4253 unsigned long busiest_load_per_task;
4254 unsigned long busiest_nr_running;
4255 unsigned long busiest_group_capacity;
4256 unsigned long busiest_has_capacity;
4257 unsigned int busiest_group_weight;
4258
4259 int group_imb; /* Is there imbalance in this sd */
4260 };
4261
4262 /*
4263 * sg_lb_stats - stats of a sched_group required for load_balancing
4264 */
4265 struct sg_lb_stats {
4266 unsigned long avg_load; /*Avg load across the CPUs of the group */
4267 unsigned long group_load; /* Total load over the CPUs of the group */
4268 unsigned long sum_nr_running; /* Nr tasks running in the group */
4269 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4270 unsigned long group_capacity;
4271 unsigned long idle_cpus;
4272 unsigned long group_weight;
4273 int group_imb; /* Is there an imbalance in the group ? */
4274 int group_has_capacity; /* Is there extra capacity in the group? */
4275 };
4276
4277 /**
4278 * get_sd_load_idx - Obtain the load index for a given sched domain.
4279 * @sd: The sched_domain whose load_idx is to be obtained.
4280 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4281 */
4282 static inline int get_sd_load_idx(struct sched_domain *sd,
4283 enum cpu_idle_type idle)
4284 {
4285 int load_idx;
4286
4287 switch (idle) {
4288 case CPU_NOT_IDLE:
4289 load_idx = sd->busy_idx;
4290 break;
4291
4292 case CPU_NEWLY_IDLE:
4293 load_idx = sd->newidle_idx;
4294 break;
4295 default:
4296 load_idx = sd->idle_idx;
4297 break;
4298 }
4299
4300 return load_idx;
4301 }
4302
4303 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4304 {
4305 return SCHED_POWER_SCALE;
4306 }
4307
4308 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4309 {
4310 return default_scale_freq_power(sd, cpu);
4311 }
4312
4313 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4314 {
4315 unsigned long weight = sd->span_weight;
4316 unsigned long smt_gain = sd->smt_gain;
4317
4318 smt_gain /= weight;
4319
4320 return smt_gain;
4321 }
4322
4323 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4324 {
4325 return default_scale_smt_power(sd, cpu);
4326 }
4327
4328 static unsigned long scale_rt_power(int cpu)
4329 {
4330 struct rq *rq = cpu_rq(cpu);
4331 u64 total, available, age_stamp, avg;
4332
4333 /*
4334 * Since we're reading these variables without serialization make sure
4335 * we read them once before doing sanity checks on them.
4336 */
4337 age_stamp = ACCESS_ONCE(rq->age_stamp);
4338 avg = ACCESS_ONCE(rq->rt_avg);
4339
4340 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
4341
4342 if (unlikely(total < avg)) {
4343 /* Ensures that power won't end up being negative */
4344 available = 0;
4345 } else {
4346 available = total - avg;
4347 }
4348
4349 if (unlikely((s64)total < SCHED_POWER_SCALE))
4350 total = SCHED_POWER_SCALE;
4351
4352 total >>= SCHED_POWER_SHIFT;
4353
4354 return div_u64(available, total);
4355 }
4356
4357 static void update_cpu_power(struct sched_domain *sd, int cpu)
4358 {
4359 unsigned long weight = sd->span_weight;
4360 unsigned long power = SCHED_POWER_SCALE;
4361 struct sched_group *sdg = sd->groups;
4362
4363 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4364 if (sched_feat(ARCH_POWER))
4365 power *= arch_scale_smt_power(sd, cpu);
4366 else
4367 power *= default_scale_smt_power(sd, cpu);
4368
4369 power >>= SCHED_POWER_SHIFT;
4370 }
4371
4372 sdg->sgp->power_orig = power;
4373
4374 if (sched_feat(ARCH_POWER))
4375 power *= arch_scale_freq_power(sd, cpu);
4376 else
4377 power *= default_scale_freq_power(sd, cpu);
4378
4379 power >>= SCHED_POWER_SHIFT;
4380
4381 power *= scale_rt_power(cpu);
4382 power >>= SCHED_POWER_SHIFT;
4383
4384 if (!power)
4385 power = 1;
4386
4387 cpu_rq(cpu)->cpu_power = power;
4388 sdg->sgp->power = power;
4389 }
4390
4391 void update_group_power(struct sched_domain *sd, int cpu)
4392 {
4393 struct sched_domain *child = sd->child;
4394 struct sched_group *group, *sdg = sd->groups;
4395 unsigned long power;
4396 unsigned long interval;
4397
4398 interval = msecs_to_jiffies(sd->balance_interval);
4399 interval = clamp(interval, 1UL, max_load_balance_interval);
4400 sdg->sgp->next_update = jiffies + interval;
4401
4402 if (!child) {
4403 update_cpu_power(sd, cpu);
4404 return;
4405 }
4406
4407 power = 0;
4408
4409 if (child->flags & SD_OVERLAP) {
4410 /*
4411 * SD_OVERLAP domains cannot assume that child groups
4412 * span the current group.
4413 */
4414
4415 for_each_cpu(cpu, sched_group_cpus(sdg))
4416 power += power_of(cpu);
4417 } else {
4418 /*
4419 * !SD_OVERLAP domains can assume that child groups
4420 * span the current group.
4421 */
4422
4423 group = child->groups;
4424 do {
4425 power += group->sgp->power;
4426 group = group->next;
4427 } while (group != child->groups);
4428 }
4429
4430 sdg->sgp->power_orig = sdg->sgp->power = power;
4431 }
4432
4433 /*
4434 * Try and fix up capacity for tiny siblings, this is needed when
4435 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4436 * which on its own isn't powerful enough.
4437 *
4438 * See update_sd_pick_busiest() and check_asym_packing().
4439 */
4440 static inline int
4441 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4442 {
4443 /*
4444 * Only siblings can have significantly less than SCHED_POWER_SCALE
4445 */
4446 if (!(sd->flags & SD_SHARE_CPUPOWER))
4447 return 0;
4448
4449 /*
4450 * If ~90% of the cpu_power is still there, we're good.
4451 */
4452 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4453 return 1;
4454
4455 return 0;
4456 }
4457
4458 /**
4459 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4460 * @env: The load balancing environment.
4461 * @group: sched_group whose statistics are to be updated.
4462 * @load_idx: Load index of sched_domain of this_cpu for load calc.
4463 * @local_group: Does group contain this_cpu.
4464 * @balance: Should we balance.
4465 * @sgs: variable to hold the statistics for this group.
4466 */
4467 static inline void update_sg_lb_stats(struct lb_env *env,
4468 struct sched_group *group, int load_idx,
4469 int local_group, int *balance, struct sg_lb_stats *sgs)
4470 {
4471 unsigned long nr_running, max_nr_running, min_nr_running;
4472 unsigned long load, max_cpu_load, min_cpu_load;
4473 unsigned int balance_cpu = -1, first_idle_cpu = 0;
4474 unsigned long avg_load_per_task = 0;
4475 int i;
4476
4477 if (local_group)
4478 balance_cpu = group_balance_cpu(group);
4479
4480 /* Tally up the load of all CPUs in the group */
4481 max_cpu_load = 0;
4482 min_cpu_load = ~0UL;
4483 max_nr_running = 0;
4484 min_nr_running = ~0UL;
4485
4486 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4487 struct rq *rq = cpu_rq(i);
4488
4489 nr_running = rq->nr_running;
4490
4491 /* Bias balancing toward cpus of our domain */
4492 if (local_group) {
4493 if (idle_cpu(i) && !first_idle_cpu &&
4494 cpumask_test_cpu(i, sched_group_mask(group))) {
4495 first_idle_cpu = 1;
4496 balance_cpu = i;
4497 }
4498
4499 load = target_load(i, load_idx);
4500 } else {
4501 load = source_load(i, load_idx);
4502 if (load > max_cpu_load)
4503 max_cpu_load = load;
4504 if (min_cpu_load > load)
4505 min_cpu_load = load;
4506
4507 if (nr_running > max_nr_running)
4508 max_nr_running = nr_running;
4509 if (min_nr_running > nr_running)
4510 min_nr_running = nr_running;
4511 }
4512
4513 sgs->group_load += load;
4514 sgs->sum_nr_running += nr_running;
4515 sgs->sum_weighted_load += weighted_cpuload(i);
4516 if (idle_cpu(i))
4517 sgs->idle_cpus++;
4518 }
4519
4520 /*
4521 * First idle cpu or the first cpu(busiest) in this sched group
4522 * is eligible for doing load balancing at this and above
4523 * domains. In the newly idle case, we will allow all the cpu's
4524 * to do the newly idle load balance.
4525 */
4526 if (local_group) {
4527 if (env->idle != CPU_NEWLY_IDLE) {
4528 if (balance_cpu != env->dst_cpu) {
4529 *balance = 0;
4530 return;
4531 }
4532 update_group_power(env->sd, env->dst_cpu);
4533 } else if (time_after_eq(jiffies, group->sgp->next_update))
4534 update_group_power(env->sd, env->dst_cpu);
4535 }
4536
4537 /* Adjust by relative CPU power of the group */
4538 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
4539
4540 /*
4541 * Consider the group unbalanced when the imbalance is larger
4542 * than the average weight of a task.
4543 *
4544 * APZ: with cgroup the avg task weight can vary wildly and
4545 * might not be a suitable number - should we keep a
4546 * normalized nr_running number somewhere that negates
4547 * the hierarchy?
4548 */
4549 if (sgs->sum_nr_running)
4550 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4551
4552 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4553 (max_nr_running - min_nr_running) > 1)
4554 sgs->group_imb = 1;
4555
4556 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
4557 SCHED_POWER_SCALE);
4558 if (!sgs->group_capacity)
4559 sgs->group_capacity = fix_small_capacity(env->sd, group);
4560 sgs->group_weight = group->group_weight;
4561
4562 if (sgs->group_capacity > sgs->sum_nr_running)
4563 sgs->group_has_capacity = 1;
4564 }
4565
4566 /**
4567 * update_sd_pick_busiest - return 1 on busiest group
4568 * @env: The load balancing environment.
4569 * @sds: sched_domain statistics
4570 * @sg: sched_group candidate to be checked for being the busiest
4571 * @sgs: sched_group statistics
4572 *
4573 * Determine if @sg is a busier group than the previously selected
4574 * busiest group.
4575 */
4576 static bool update_sd_pick_busiest(struct lb_env *env,
4577 struct sd_lb_stats *sds,
4578 struct sched_group *sg,
4579 struct sg_lb_stats *sgs)
4580 {
4581 if (sgs->avg_load <= sds->max_load)
4582 return false;
4583
4584 if (sgs->sum_nr_running > sgs->group_capacity)
4585 return true;
4586
4587 if (sgs->group_imb)
4588 return true;
4589
4590 /*
4591 * ASYM_PACKING needs to move all the work to the lowest
4592 * numbered CPUs in the group, therefore mark all groups
4593 * higher than ourself as busy.
4594 */
4595 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4596 env->dst_cpu < group_first_cpu(sg)) {
4597 if (!sds->busiest)
4598 return true;
4599
4600 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4601 return true;
4602 }
4603
4604 return false;
4605 }
4606
4607 /**
4608 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4609 * @env: The load balancing environment.
4610 * @balance: Should we balance.
4611 * @sds: variable to hold the statistics for this sched_domain.
4612 */
4613 static inline void update_sd_lb_stats(struct lb_env *env,
4614 int *balance, struct sd_lb_stats *sds)
4615 {
4616 struct sched_domain *child = env->sd->child;
4617 struct sched_group *sg = env->sd->groups;
4618 struct sg_lb_stats sgs;
4619 int load_idx, prefer_sibling = 0;
4620
4621 if (child && child->flags & SD_PREFER_SIBLING)
4622 prefer_sibling = 1;
4623
4624 load_idx = get_sd_load_idx(env->sd, env->idle);
4625
4626 do {
4627 int local_group;
4628
4629 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
4630 memset(&sgs, 0, sizeof(sgs));
4631 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
4632
4633 if (local_group && !(*balance))
4634 return;
4635
4636 sds->total_load += sgs.group_load;
4637 sds->total_pwr += sg->sgp->power;
4638
4639 /*
4640 * In case the child domain prefers tasks go to siblings
4641 * first, lower the sg capacity to one so that we'll try
4642 * and move all the excess tasks away. We lower the capacity
4643 * of a group only if the local group has the capacity to fit
4644 * these excess tasks, i.e. nr_running < group_capacity. The
4645 * extra check prevents the case where you always pull from the
4646 * heaviest group when it is already under-utilized (possible
4647 * with a large weight task outweighs the tasks on the system).
4648 */
4649 if (prefer_sibling && !local_group && sds->this_has_capacity)
4650 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4651
4652 if (local_group) {
4653 sds->this_load = sgs.avg_load;
4654 sds->this = sg;
4655 sds->this_nr_running = sgs.sum_nr_running;
4656 sds->this_load_per_task = sgs.sum_weighted_load;
4657 sds->this_has_capacity = sgs.group_has_capacity;
4658 sds->this_idle_cpus = sgs.idle_cpus;
4659 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4660 sds->max_load = sgs.avg_load;
4661 sds->busiest = sg;
4662 sds->busiest_nr_running = sgs.sum_nr_running;
4663 sds->busiest_idle_cpus = sgs.idle_cpus;
4664 sds->busiest_group_capacity = sgs.group_capacity;
4665 sds->busiest_load_per_task = sgs.sum_weighted_load;
4666 sds->busiest_has_capacity = sgs.group_has_capacity;
4667 sds->busiest_group_weight = sgs.group_weight;
4668 sds->group_imb = sgs.group_imb;
4669 }
4670
4671 sg = sg->next;
4672 } while (sg != env->sd->groups);
4673 }
4674
4675 /**
4676 * check_asym_packing - Check to see if the group is packed into the
4677 * sched doman.
4678 *
4679 * This is primarily intended to used at the sibling level. Some
4680 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4681 * case of POWER7, it can move to lower SMT modes only when higher
4682 * threads are idle. When in lower SMT modes, the threads will
4683 * perform better since they share less core resources. Hence when we
4684 * have idle threads, we want them to be the higher ones.
4685 *
4686 * This packing function is run on idle threads. It checks to see if
4687 * the busiest CPU in this domain (core in the P7 case) has a higher
4688 * CPU number than the packing function is being run on. Here we are
4689 * assuming lower CPU number will be equivalent to lower a SMT thread
4690 * number.
4691 *
4692 * Returns 1 when packing is required and a task should be moved to
4693 * this CPU. The amount of the imbalance is returned in *imbalance.
4694 *
4695 * @env: The load balancing environment.
4696 * @sds: Statistics of the sched_domain which is to be packed
4697 */
4698 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4699 {
4700 int busiest_cpu;
4701
4702 if (!(env->sd->flags & SD_ASYM_PACKING))
4703 return 0;
4704
4705 if (!sds->busiest)
4706 return 0;
4707
4708 busiest_cpu = group_first_cpu(sds->busiest);
4709 if (env->dst_cpu > busiest_cpu)
4710 return 0;
4711
4712 env->imbalance = DIV_ROUND_CLOSEST(
4713 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4714
4715 return 1;
4716 }
4717
4718 /**
4719 * fix_small_imbalance - Calculate the minor imbalance that exists
4720 * amongst the groups of a sched_domain, during
4721 * load balancing.
4722 * @env: The load balancing environment.
4723 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4724 */
4725 static inline
4726 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4727 {
4728 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4729 unsigned int imbn = 2;
4730 unsigned long scaled_busy_load_per_task;
4731
4732 if (sds->this_nr_running) {
4733 sds->this_load_per_task /= sds->this_nr_running;
4734 if (sds->busiest_load_per_task >
4735 sds->this_load_per_task)
4736 imbn = 1;
4737 } else {
4738 sds->this_load_per_task =
4739 cpu_avg_load_per_task(env->dst_cpu);
4740 }
4741
4742 scaled_busy_load_per_task = sds->busiest_load_per_task
4743 * SCHED_POWER_SCALE;
4744 scaled_busy_load_per_task /= sds->busiest->sgp->power;
4745
4746 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4747 (scaled_busy_load_per_task * imbn)) {
4748 env->imbalance = sds->busiest_load_per_task;
4749 return;
4750 }
4751
4752 /*
4753 * OK, we don't have enough imbalance to justify moving tasks,
4754 * however we may be able to increase total CPU power used by
4755 * moving them.
4756 */
4757
4758 pwr_now += sds->busiest->sgp->power *
4759 min(sds->busiest_load_per_task, sds->max_load);
4760 pwr_now += sds->this->sgp->power *
4761 min(sds->this_load_per_task, sds->this_load);
4762 pwr_now /= SCHED_POWER_SCALE;
4763
4764 /* Amount of load we'd subtract */
4765 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4766 sds->busiest->sgp->power;
4767 if (sds->max_load > tmp)
4768 pwr_move += sds->busiest->sgp->power *
4769 min(sds->busiest_load_per_task, sds->max_load - tmp);
4770
4771 /* Amount of load we'd add */
4772 if (sds->max_load * sds->busiest->sgp->power <
4773 sds->busiest_load_per_task * SCHED_POWER_SCALE)
4774 tmp = (sds->max_load * sds->busiest->sgp->power) /
4775 sds->this->sgp->power;
4776 else
4777 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4778 sds->this->sgp->power;
4779 pwr_move += sds->this->sgp->power *
4780 min(sds->this_load_per_task, sds->this_load + tmp);
4781 pwr_move /= SCHED_POWER_SCALE;
4782
4783 /* Move if we gain throughput */
4784 if (pwr_move > pwr_now)
4785 env->imbalance = sds->busiest_load_per_task;
4786 }
4787
4788 /**
4789 * calculate_imbalance - Calculate the amount of imbalance present within the
4790 * groups of a given sched_domain during load balance.
4791 * @env: load balance environment
4792 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4793 */
4794 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4795 {
4796 unsigned long max_pull, load_above_capacity = ~0UL;
4797
4798 sds->busiest_load_per_task /= sds->busiest_nr_running;
4799 if (sds->group_imb) {
4800 sds->busiest_load_per_task =
4801 min(sds->busiest_load_per_task, sds->avg_load);
4802 }
4803
4804 /*
4805 * In the presence of smp nice balancing, certain scenarios can have
4806 * max load less than avg load(as we skip the groups at or below
4807 * its cpu_power, while calculating max_load..)
4808 */
4809 if (sds->max_load < sds->avg_load) {
4810 env->imbalance = 0;
4811 return fix_small_imbalance(env, sds);
4812 }
4813
4814 if (!sds->group_imb) {
4815 /*
4816 * Don't want to pull so many tasks that a group would go idle.
4817 */
4818 load_above_capacity = (sds->busiest_nr_running -
4819 sds->busiest_group_capacity);
4820
4821 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4822
4823 load_above_capacity /= sds->busiest->sgp->power;
4824 }
4825
4826 /*
4827 * We're trying to get all the cpus to the average_load, so we don't
4828 * want to push ourselves above the average load, nor do we wish to
4829 * reduce the max loaded cpu below the average load. At the same time,
4830 * we also don't want to reduce the group load below the group capacity
4831 * (so that we can implement power-savings policies etc). Thus we look
4832 * for the minimum possible imbalance.
4833 * Be careful of negative numbers as they'll appear as very large values
4834 * with unsigned longs.
4835 */
4836 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4837
4838 /* How much load to actually move to equalise the imbalance */
4839 env->imbalance = min(max_pull * sds->busiest->sgp->power,
4840 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
4841 / SCHED_POWER_SCALE;
4842
4843 /*
4844 * if *imbalance is less than the average load per runnable task
4845 * there is no guarantee that any tasks will be moved so we'll have
4846 * a think about bumping its value to force at least one task to be
4847 * moved
4848 */
4849 if (env->imbalance < sds->busiest_load_per_task)
4850 return fix_small_imbalance(env, sds);
4851
4852 }
4853
4854 /******* find_busiest_group() helpers end here *********************/
4855
4856 /**
4857 * find_busiest_group - Returns the busiest group within the sched_domain
4858 * if there is an imbalance. If there isn't an imbalance, and
4859 * the user has opted for power-savings, it returns a group whose
4860 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4861 * such a group exists.
4862 *
4863 * Also calculates the amount of weighted load which should be moved
4864 * to restore balance.
4865 *
4866 * @env: The load balancing environment.
4867 * @balance: Pointer to a variable indicating if this_cpu
4868 * is the appropriate cpu to perform load balancing at this_level.
4869 *
4870 * Returns: - the busiest group if imbalance exists.
4871 * - If no imbalance and user has opted for power-savings balance,
4872 * return the least loaded group whose CPUs can be
4873 * put to idle by rebalancing its tasks onto our group.
4874 */
4875 static struct sched_group *
4876 find_busiest_group(struct lb_env *env, int *balance)
4877 {
4878 struct sd_lb_stats sds;
4879
4880 memset(&sds, 0, sizeof(sds));
4881
4882 /*
4883 * Compute the various statistics relavent for load balancing at
4884 * this level.
4885 */
4886 update_sd_lb_stats(env, balance, &sds);
4887
4888 /*
4889 * this_cpu is not the appropriate cpu to perform load balancing at
4890 * this level.
4891 */
4892 if (!(*balance))
4893 goto ret;
4894
4895 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4896 check_asym_packing(env, &sds))
4897 return sds.busiest;
4898
4899 /* There is no busy sibling group to pull tasks from */
4900 if (!sds.busiest || sds.busiest_nr_running == 0)
4901 goto out_balanced;
4902
4903 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4904
4905 /*
4906 * If the busiest group is imbalanced the below checks don't
4907 * work because they assumes all things are equal, which typically
4908 * isn't true due to cpus_allowed constraints and the like.
4909 */
4910 if (sds.group_imb)
4911 goto force_balance;
4912
4913 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4914 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4915 !sds.busiest_has_capacity)
4916 goto force_balance;
4917
4918 /*
4919 * If the local group is more busy than the selected busiest group
4920 * don't try and pull any tasks.
4921 */
4922 if (sds.this_load >= sds.max_load)
4923 goto out_balanced;
4924
4925 /*
4926 * Don't pull any tasks if this group is already above the domain
4927 * average load.
4928 */
4929 if (sds.this_load >= sds.avg_load)
4930 goto out_balanced;
4931
4932 if (env->idle == CPU_IDLE) {
4933 /*
4934 * This cpu is idle. If the busiest group load doesn't
4935 * have more tasks than the number of available cpu's and
4936 * there is no imbalance between this and busiest group
4937 * wrt to idle cpu's, it is balanced.
4938 */
4939 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4940 sds.busiest_nr_running <= sds.busiest_group_weight)
4941 goto out_balanced;
4942 } else {
4943 /*
4944 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4945 * imbalance_pct to be conservative.
4946 */
4947 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4948 goto out_balanced;
4949 }
4950
4951 force_balance:
4952 /* Looks like there is an imbalance. Compute it */
4953 calculate_imbalance(env, &sds);
4954 return sds.busiest;
4955
4956 out_balanced:
4957 ret:
4958 env->imbalance = 0;
4959 return NULL;
4960 }
4961
4962 /*
4963 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4964 */
4965 static struct rq *find_busiest_queue(struct lb_env *env,
4966 struct sched_group *group)
4967 {
4968 struct rq *busiest = NULL, *rq;
4969 unsigned long max_load = 0;
4970 int i;
4971
4972 for_each_cpu(i, sched_group_cpus(group)) {
4973 unsigned long power = power_of(i);
4974 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4975 SCHED_POWER_SCALE);
4976 unsigned long wl;
4977
4978 if (!capacity)
4979 capacity = fix_small_capacity(env->sd, group);
4980
4981 if (!cpumask_test_cpu(i, env->cpus))
4982 continue;
4983
4984 rq = cpu_rq(i);
4985 wl = weighted_cpuload(i);
4986
4987 /*
4988 * When comparing with imbalance, use weighted_cpuload()
4989 * which is not scaled with the cpu power.
4990 */
4991 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4992 continue;
4993
4994 /*
4995 * For the load comparisons with the other cpu's, consider
4996 * the weighted_cpuload() scaled with the cpu power, so that
4997 * the load can be moved away from the cpu that is potentially
4998 * running at a lower capacity.
4999 */
5000 wl = (wl * SCHED_POWER_SCALE) / power;
5001
5002 if (wl > max_load) {
5003 max_load = wl;
5004 busiest = rq;
5005 }
5006 }
5007
5008 return busiest;
5009 }
5010
5011 /*
5012 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5013 * so long as it is large enough.
5014 */
5015 #define MAX_PINNED_INTERVAL 512
5016
5017 /* Working cpumask for load_balance and load_balance_newidle. */
5018 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5019
5020 static int need_active_balance(struct lb_env *env)
5021 {
5022 struct sched_domain *sd = env->sd;
5023
5024 if (env->idle == CPU_NEWLY_IDLE) {
5025
5026 /*
5027 * ASYM_PACKING needs to force migrate tasks from busy but
5028 * higher numbered CPUs in order to pack all tasks in the
5029 * lowest numbered CPUs.
5030 */
5031 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
5032 return 1;
5033 }
5034
5035 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5036 }
5037
5038 static int active_load_balance_cpu_stop(void *data);
5039
5040 /*
5041 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5042 * tasks if there is an imbalance.
5043 */
5044 static int load_balance(int this_cpu, struct rq *this_rq,
5045 struct sched_domain *sd, enum cpu_idle_type idle,
5046 int *balance)
5047 {
5048 int ld_moved, cur_ld_moved, active_balance = 0;
5049 struct sched_group *group;
5050 struct rq *busiest;
5051 unsigned long flags;
5052 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
5053
5054 struct lb_env env = {
5055 .sd = sd,
5056 .dst_cpu = this_cpu,
5057 .dst_rq = this_rq,
5058 .dst_grpmask = sched_group_cpus(sd->groups),
5059 .idle = idle,
5060 .loop_break = sched_nr_migrate_break,
5061 .cpus = cpus,
5062 };
5063
5064 /*
5065 * For NEWLY_IDLE load_balancing, we don't need to consider
5066 * other cpus in our group
5067 */
5068 if (idle == CPU_NEWLY_IDLE)
5069 env.dst_grpmask = NULL;
5070
5071 cpumask_copy(cpus, cpu_active_mask);
5072
5073 schedstat_inc(sd, lb_count[idle]);
5074
5075 redo:
5076 group = find_busiest_group(&env, balance);
5077
5078 if (*balance == 0)
5079 goto out_balanced;
5080
5081 if (!group) {
5082 schedstat_inc(sd, lb_nobusyg[idle]);
5083 goto out_balanced;
5084 }
5085
5086 busiest = find_busiest_queue(&env, group);
5087 if (!busiest) {
5088 schedstat_inc(sd, lb_nobusyq[idle]);
5089 goto out_balanced;
5090 }
5091
5092 BUG_ON(busiest == env.dst_rq);
5093
5094 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5095
5096 ld_moved = 0;
5097 if (busiest->nr_running > 1) {
5098 /*
5099 * Attempt to move tasks. If find_busiest_group has found
5100 * an imbalance but busiest->nr_running <= 1, the group is
5101 * still unbalanced. ld_moved simply stays zero, so it is
5102 * correctly treated as an imbalance.
5103 */
5104 env.flags |= LBF_ALL_PINNED;
5105 env.src_cpu = busiest->cpu;
5106 env.src_rq = busiest;
5107 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
5108
5109 update_h_load(env.src_cpu);
5110 more_balance:
5111 local_irq_save(flags);
5112 double_rq_lock(env.dst_rq, busiest);
5113
5114 /*
5115 * cur_ld_moved - load moved in current iteration
5116 * ld_moved - cumulative load moved across iterations
5117 */
5118 cur_ld_moved = move_tasks(&env);
5119 ld_moved += cur_ld_moved;
5120 double_rq_unlock(env.dst_rq, busiest);
5121 local_irq_restore(flags);
5122
5123 /*
5124 * some other cpu did the load balance for us.
5125 */
5126 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5127 resched_cpu(env.dst_cpu);
5128
5129 if (env.flags & LBF_NEED_BREAK) {
5130 env.flags &= ~LBF_NEED_BREAK;
5131 goto more_balance;
5132 }
5133
5134 /*
5135 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5136 * us and move them to an alternate dst_cpu in our sched_group
5137 * where they can run. The upper limit on how many times we
5138 * iterate on same src_cpu is dependent on number of cpus in our
5139 * sched_group.
5140 *
5141 * This changes load balance semantics a bit on who can move
5142 * load to a given_cpu. In addition to the given_cpu itself
5143 * (or a ilb_cpu acting on its behalf where given_cpu is
5144 * nohz-idle), we now have balance_cpu in a position to move
5145 * load to given_cpu. In rare situations, this may cause
5146 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5147 * _independently_ and at _same_ time to move some load to
5148 * given_cpu) causing exceess load to be moved to given_cpu.
5149 * This however should not happen so much in practice and
5150 * moreover subsequent load balance cycles should correct the
5151 * excess load moved.
5152 */
5153 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5154
5155 env.dst_rq = cpu_rq(env.new_dst_cpu);
5156 env.dst_cpu = env.new_dst_cpu;
5157 env.flags &= ~LBF_SOME_PINNED;
5158 env.loop = 0;
5159 env.loop_break = sched_nr_migrate_break;
5160
5161 /* Prevent to re-select dst_cpu via env's cpus */
5162 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5163
5164 /*
5165 * Go back to "more_balance" rather than "redo" since we
5166 * need to continue with same src_cpu.
5167 */
5168 goto more_balance;
5169 }
5170
5171 /* All tasks on this runqueue were pinned by CPU affinity */
5172 if (unlikely(env.flags & LBF_ALL_PINNED)) {
5173 cpumask_clear_cpu(cpu_of(busiest), cpus);
5174 if (!cpumask_empty(cpus)) {
5175 env.loop = 0;
5176 env.loop_break = sched_nr_migrate_break;
5177 goto redo;
5178 }
5179 goto out_balanced;
5180 }
5181 }
5182
5183 if (!ld_moved) {
5184 schedstat_inc(sd, lb_failed[idle]);
5185 /*
5186 * Increment the failure counter only on periodic balance.
5187 * We do not want newidle balance, which can be very
5188 * frequent, pollute the failure counter causing
5189 * excessive cache_hot migrations and active balances.
5190 */
5191 if (idle != CPU_NEWLY_IDLE)
5192 sd->nr_balance_failed++;
5193
5194 if (need_active_balance(&env)) {
5195 raw_spin_lock_irqsave(&busiest->lock, flags);
5196
5197 /* don't kick the active_load_balance_cpu_stop,
5198 * if the curr task on busiest cpu can't be
5199 * moved to this_cpu
5200 */
5201 if (!cpumask_test_cpu(this_cpu,
5202 tsk_cpus_allowed(busiest->curr))) {
5203 raw_spin_unlock_irqrestore(&busiest->lock,
5204 flags);
5205 env.flags |= LBF_ALL_PINNED;
5206 goto out_one_pinned;
5207 }
5208
5209 /*
5210 * ->active_balance synchronizes accesses to
5211 * ->active_balance_work. Once set, it's cleared
5212 * only after active load balance is finished.
5213 */
5214 if (!busiest->active_balance) {
5215 busiest->active_balance = 1;
5216 busiest->push_cpu = this_cpu;
5217 active_balance = 1;
5218 }
5219 raw_spin_unlock_irqrestore(&busiest->lock, flags);
5220
5221 if (active_balance) {
5222 stop_one_cpu_nowait(cpu_of(busiest),
5223 active_load_balance_cpu_stop, busiest,
5224 &busiest->active_balance_work);
5225 }
5226
5227 /*
5228 * We've kicked active balancing, reset the failure
5229 * counter.
5230 */
5231 sd->nr_balance_failed = sd->cache_nice_tries+1;
5232 }
5233 } else
5234 sd->nr_balance_failed = 0;
5235
5236 if (likely(!active_balance)) {
5237 /* We were unbalanced, so reset the balancing interval */
5238 sd->balance_interval = sd->min_interval;
5239 } else {
5240 /*
5241 * If we've begun active balancing, start to back off. This
5242 * case may not be covered by the all_pinned logic if there
5243 * is only 1 task on the busy runqueue (because we don't call
5244 * move_tasks).
5245 */
5246 if (sd->balance_interval < sd->max_interval)
5247 sd->balance_interval *= 2;
5248 }
5249
5250 goto out;
5251
5252 out_balanced:
5253 schedstat_inc(sd, lb_balanced[idle]);
5254
5255 sd->nr_balance_failed = 0;
5256
5257 out_one_pinned:
5258 /* tune up the balancing interval */
5259 if (((env.flags & LBF_ALL_PINNED) &&
5260 sd->balance_interval < MAX_PINNED_INTERVAL) ||
5261 (sd->balance_interval < sd->max_interval))
5262 sd->balance_interval *= 2;
5263
5264 ld_moved = 0;
5265 out:
5266 return ld_moved;
5267 }
5268
5269 /*
5270 * idle_balance is called by schedule() if this_cpu is about to become
5271 * idle. Attempts to pull tasks from other CPUs.
5272 */
5273 void idle_balance(int this_cpu, struct rq *this_rq)
5274 {
5275 struct sched_domain *sd;
5276 int pulled_task = 0;
5277 unsigned long next_balance = jiffies + HZ;
5278
5279 this_rq->idle_stamp = rq_clock(this_rq);
5280
5281 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5282 return;
5283
5284 /*
5285 * Drop the rq->lock, but keep IRQ/preempt disabled.
5286 */
5287 raw_spin_unlock(&this_rq->lock);
5288
5289 update_blocked_averages(this_cpu);
5290 rcu_read_lock();
5291 for_each_domain(this_cpu, sd) {
5292 unsigned long interval;
5293 int balance = 1;
5294
5295 if (!(sd->flags & SD_LOAD_BALANCE))
5296 continue;
5297
5298 if (sd->flags & SD_BALANCE_NEWIDLE) {
5299 /* If we've pulled tasks over stop searching: */
5300 pulled_task = load_balance(this_cpu, this_rq,
5301 sd, CPU_NEWLY_IDLE, &balance);
5302 }
5303
5304 interval = msecs_to_jiffies(sd->balance_interval);
5305 if (time_after(next_balance, sd->last_balance + interval))
5306 next_balance = sd->last_balance + interval;
5307 if (pulled_task) {
5308 this_rq->idle_stamp = 0;
5309 break;
5310 }
5311 }
5312 rcu_read_unlock();
5313
5314 raw_spin_lock(&this_rq->lock);
5315
5316 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5317 /*
5318 * We are going idle. next_balance may be set based on
5319 * a busy processor. So reset next_balance.
5320 */
5321 this_rq->next_balance = next_balance;
5322 }
5323 }
5324
5325 /*
5326 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5327 * running tasks off the busiest CPU onto idle CPUs. It requires at
5328 * least 1 task to be running on each physical CPU where possible, and
5329 * avoids physical / logical imbalances.
5330 */
5331 static int active_load_balance_cpu_stop(void *data)
5332 {
5333 struct rq *busiest_rq = data;
5334 int busiest_cpu = cpu_of(busiest_rq);
5335 int target_cpu = busiest_rq->push_cpu;
5336 struct rq *target_rq = cpu_rq(target_cpu);
5337 struct sched_domain *sd;
5338
5339 raw_spin_lock_irq(&busiest_rq->lock);
5340
5341 /* make sure the requested cpu hasn't gone down in the meantime */
5342 if (unlikely(busiest_cpu != smp_processor_id() ||
5343 !busiest_rq->active_balance))
5344 goto out_unlock;
5345
5346 /* Is there any task to move? */
5347 if (busiest_rq->nr_running <= 1)
5348 goto out_unlock;
5349
5350 /*
5351 * This condition is "impossible", if it occurs
5352 * we need to fix it. Originally reported by
5353 * Bjorn Helgaas on a 128-cpu setup.
5354 */
5355 BUG_ON(busiest_rq == target_rq);
5356
5357 /* move a task from busiest_rq to target_rq */
5358 double_lock_balance(busiest_rq, target_rq);
5359
5360 /* Search for an sd spanning us and the target CPU. */
5361 rcu_read_lock();
5362 for_each_domain(target_cpu, sd) {
5363 if ((sd->flags & SD_LOAD_BALANCE) &&
5364 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5365 break;
5366 }
5367
5368 if (likely(sd)) {
5369 struct lb_env env = {
5370 .sd = sd,
5371 .dst_cpu = target_cpu,
5372 .dst_rq = target_rq,
5373 .src_cpu = busiest_rq->cpu,
5374 .src_rq = busiest_rq,
5375 .idle = CPU_IDLE,
5376 };
5377
5378 schedstat_inc(sd, alb_count);
5379
5380 if (move_one_task(&env))
5381 schedstat_inc(sd, alb_pushed);
5382 else
5383 schedstat_inc(sd, alb_failed);
5384 }
5385 rcu_read_unlock();
5386 double_unlock_balance(busiest_rq, target_rq);
5387 out_unlock:
5388 busiest_rq->active_balance = 0;
5389 raw_spin_unlock_irq(&busiest_rq->lock);
5390 return 0;
5391 }
5392
5393 #ifdef CONFIG_NO_HZ_COMMON
5394 /*
5395 * idle load balancing details
5396 * - When one of the busy CPUs notice that there may be an idle rebalancing
5397 * needed, they will kick the idle load balancer, which then does idle
5398 * load balancing for all the idle CPUs.
5399 */
5400 static struct {
5401 cpumask_var_t idle_cpus_mask;
5402 atomic_t nr_cpus;
5403 unsigned long next_balance; /* in jiffy units */
5404 } nohz ____cacheline_aligned;
5405
5406 static inline int find_new_ilb(int call_cpu)
5407 {
5408 int ilb = cpumask_first(nohz.idle_cpus_mask);
5409
5410 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5411 return ilb;
5412
5413 return nr_cpu_ids;
5414 }
5415
5416 /*
5417 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5418 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5419 * CPU (if there is one).
5420 */
5421 static void nohz_balancer_kick(int cpu)
5422 {
5423 int ilb_cpu;
5424
5425 nohz.next_balance++;
5426
5427 ilb_cpu = find_new_ilb(cpu);
5428
5429 if (ilb_cpu >= nr_cpu_ids)
5430 return;
5431
5432 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5433 return;
5434 /*
5435 * Use smp_send_reschedule() instead of resched_cpu().
5436 * This way we generate a sched IPI on the target cpu which
5437 * is idle. And the softirq performing nohz idle load balance
5438 * will be run before returning from the IPI.
5439 */
5440 smp_send_reschedule(ilb_cpu);
5441 return;
5442 }
5443
5444 static inline void nohz_balance_exit_idle(int cpu)
5445 {
5446 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5447 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5448 atomic_dec(&nohz.nr_cpus);
5449 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5450 }
5451 }
5452
5453 static inline void set_cpu_sd_state_busy(void)
5454 {
5455 struct sched_domain *sd;
5456
5457 rcu_read_lock();
5458 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
5459
5460 if (!sd || !sd->nohz_idle)
5461 goto unlock;
5462 sd->nohz_idle = 0;
5463
5464 for (; sd; sd = sd->parent)
5465 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5466 unlock:
5467 rcu_read_unlock();
5468 }
5469
5470 void set_cpu_sd_state_idle(void)
5471 {
5472 struct sched_domain *sd;
5473
5474 rcu_read_lock();
5475 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
5476
5477 if (!sd || sd->nohz_idle)
5478 goto unlock;
5479 sd->nohz_idle = 1;
5480
5481 for (; sd; sd = sd->parent)
5482 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5483 unlock:
5484 rcu_read_unlock();
5485 }
5486
5487 /*
5488 * This routine will record that the cpu is going idle with tick stopped.
5489 * This info will be used in performing idle load balancing in the future.
5490 */
5491 void nohz_balance_enter_idle(int cpu)
5492 {
5493 /*
5494 * If this cpu is going down, then nothing needs to be done.
5495 */
5496 if (!cpu_active(cpu))
5497 return;
5498
5499 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5500 return;
5501
5502 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5503 atomic_inc(&nohz.nr_cpus);
5504 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5505 }
5506
5507 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5508 unsigned long action, void *hcpu)
5509 {
5510 switch (action & ~CPU_TASKS_FROZEN) {
5511 case CPU_DYING:
5512 nohz_balance_exit_idle(smp_processor_id());
5513 return NOTIFY_OK;
5514 default:
5515 return NOTIFY_DONE;
5516 }
5517 }
5518 #endif
5519
5520 static DEFINE_SPINLOCK(balancing);
5521
5522 /*
5523 * Scale the max load_balance interval with the number of CPUs in the system.
5524 * This trades load-balance latency on larger machines for less cross talk.
5525 */
5526 void update_max_interval(void)
5527 {
5528 max_load_balance_interval = HZ*num_online_cpus()/10;
5529 }
5530
5531 /*
5532 * It checks each scheduling domain to see if it is due to be balanced,
5533 * and initiates a balancing operation if so.
5534 *
5535 * Balancing parameters are set up in init_sched_domains.
5536 */
5537 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5538 {
5539 int balance = 1;
5540 struct rq *rq = cpu_rq(cpu);
5541 unsigned long interval;
5542 struct sched_domain *sd;
5543 /* Earliest time when we have to do rebalance again */
5544 unsigned long next_balance = jiffies + 60*HZ;
5545 int update_next_balance = 0;
5546 int need_serialize;
5547
5548 update_blocked_averages(cpu);
5549
5550 rcu_read_lock();
5551 for_each_domain(cpu, sd) {
5552 if (!(sd->flags & SD_LOAD_BALANCE))
5553 continue;
5554
5555 interval = sd->balance_interval;
5556 if (idle != CPU_IDLE)
5557 interval *= sd->busy_factor;
5558
5559 /* scale ms to jiffies */
5560 interval = msecs_to_jiffies(interval);
5561 interval = clamp(interval, 1UL, max_load_balance_interval);
5562
5563 need_serialize = sd->flags & SD_SERIALIZE;
5564
5565 if (need_serialize) {
5566 if (!spin_trylock(&balancing))
5567 goto out;
5568 }
5569
5570 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5571 if (load_balance(cpu, rq, sd, idle, &balance)) {
5572 /*
5573 * The LBF_SOME_PINNED logic could have changed
5574 * env->dst_cpu, so we can't know our idle
5575 * state even if we migrated tasks. Update it.
5576 */
5577 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
5578 }
5579 sd->last_balance = jiffies;
5580 }
5581 if (need_serialize)
5582 spin_unlock(&balancing);
5583 out:
5584 if (time_after(next_balance, sd->last_balance + interval)) {
5585 next_balance = sd->last_balance + interval;
5586 update_next_balance = 1;
5587 }
5588
5589 /*
5590 * Stop the load balance at this level. There is another
5591 * CPU in our sched group which is doing load balancing more
5592 * actively.
5593 */
5594 if (!balance)
5595 break;
5596 }
5597 rcu_read_unlock();
5598
5599 /*
5600 * next_balance will be updated only when there is a need.
5601 * When the cpu is attached to null domain for ex, it will not be
5602 * updated.
5603 */
5604 if (likely(update_next_balance))
5605 rq->next_balance = next_balance;
5606 }
5607
5608 #ifdef CONFIG_NO_HZ_COMMON
5609 /*
5610 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
5611 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5612 */
5613 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5614 {
5615 struct rq *this_rq = cpu_rq(this_cpu);
5616 struct rq *rq;
5617 int balance_cpu;
5618
5619 if (idle != CPU_IDLE ||
5620 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5621 goto end;
5622
5623 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5624 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5625 continue;
5626
5627 /*
5628 * If this cpu gets work to do, stop the load balancing
5629 * work being done for other cpus. Next load
5630 * balancing owner will pick it up.
5631 */
5632 if (need_resched())
5633 break;
5634
5635 rq = cpu_rq(balance_cpu);
5636
5637 raw_spin_lock_irq(&rq->lock);
5638 update_rq_clock(rq);
5639 update_idle_cpu_load(rq);
5640 raw_spin_unlock_irq(&rq->lock);
5641
5642 rebalance_domains(balance_cpu, CPU_IDLE);
5643
5644 if (time_after(this_rq->next_balance, rq->next_balance))
5645 this_rq->next_balance = rq->next_balance;
5646 }
5647 nohz.next_balance = this_rq->next_balance;
5648 end:
5649 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5650 }
5651
5652 /*
5653 * Current heuristic for kicking the idle load balancer in the presence
5654 * of an idle cpu is the system.
5655 * - This rq has more than one task.
5656 * - At any scheduler domain level, this cpu's scheduler group has multiple
5657 * busy cpu's exceeding the group's power.
5658 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5659 * domain span are idle.
5660 */
5661 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5662 {
5663 unsigned long now = jiffies;
5664 struct sched_domain *sd;
5665
5666 if (unlikely(idle_cpu(cpu)))
5667 return 0;
5668
5669 /*
5670 * We may be recently in ticked or tickless idle mode. At the first
5671 * busy tick after returning from idle, we will update the busy stats.
5672 */
5673 set_cpu_sd_state_busy();
5674 nohz_balance_exit_idle(cpu);
5675
5676 /*
5677 * None are in tickless mode and hence no need for NOHZ idle load
5678 * balancing.
5679 */
5680 if (likely(!atomic_read(&nohz.nr_cpus)))
5681 return 0;
5682
5683 if (time_before(now, nohz.next_balance))
5684 return 0;
5685
5686 if (rq->nr_running >= 2)
5687 goto need_kick;
5688
5689 rcu_read_lock();
5690 for_each_domain(cpu, sd) {
5691 struct sched_group *sg = sd->groups;
5692 struct sched_group_power *sgp = sg->sgp;
5693 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5694
5695 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5696 goto need_kick_unlock;
5697
5698 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5699 && (cpumask_first_and(nohz.idle_cpus_mask,
5700 sched_domain_span(sd)) < cpu))
5701 goto need_kick_unlock;
5702
5703 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5704 break;
5705 }
5706 rcu_read_unlock();
5707 return 0;
5708
5709 need_kick_unlock:
5710 rcu_read_unlock();
5711 need_kick:
5712 return 1;
5713 }
5714 #else
5715 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5716 #endif
5717
5718 /*
5719 * run_rebalance_domains is triggered when needed from the scheduler tick.
5720 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5721 */
5722 static void run_rebalance_domains(struct softirq_action *h)
5723 {
5724 int this_cpu = smp_processor_id();
5725 struct rq *this_rq = cpu_rq(this_cpu);
5726 enum cpu_idle_type idle = this_rq->idle_balance ?
5727 CPU_IDLE : CPU_NOT_IDLE;
5728
5729 rebalance_domains(this_cpu, idle);
5730
5731 /*
5732 * If this cpu has a pending nohz_balance_kick, then do the
5733 * balancing on behalf of the other idle cpus whose ticks are
5734 * stopped.
5735 */
5736 nohz_idle_balance(this_cpu, idle);
5737 }
5738
5739 static inline int on_null_domain(int cpu)
5740 {
5741 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5742 }
5743
5744 /*
5745 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5746 */
5747 void trigger_load_balance(struct rq *rq, int cpu)
5748 {
5749 /* Don't need to rebalance while attached to NULL domain */
5750 if (time_after_eq(jiffies, rq->next_balance) &&
5751 likely(!on_null_domain(cpu)))
5752 raise_softirq(SCHED_SOFTIRQ);
5753 #ifdef CONFIG_NO_HZ_COMMON
5754 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5755 nohz_balancer_kick(cpu);
5756 #endif
5757 }
5758
5759 static void rq_online_fair(struct rq *rq)
5760 {
5761 update_sysctl();
5762 }
5763
5764 static void rq_offline_fair(struct rq *rq)
5765 {
5766 update_sysctl();
5767
5768 /* Ensure any throttled groups are reachable by pick_next_task */
5769 unthrottle_offline_cfs_rqs(rq);
5770 }
5771
5772 #endif /* CONFIG_SMP */
5773
5774 /*
5775 * scheduler tick hitting a task of our scheduling class:
5776 */
5777 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5778 {
5779 struct cfs_rq *cfs_rq;
5780 struct sched_entity *se = &curr->se;
5781
5782 for_each_sched_entity(se) {
5783 cfs_rq = cfs_rq_of(se);
5784 entity_tick(cfs_rq, se, queued);
5785 }
5786
5787 if (sched_feat_numa(NUMA))
5788 task_tick_numa(rq, curr);
5789
5790 update_rq_runnable_avg(rq, 1);
5791 }
5792
5793 /*
5794 * called on fork with the child task as argument from the parent's context
5795 * - child not yet on the tasklist
5796 * - preemption disabled
5797 */
5798 static void task_fork_fair(struct task_struct *p)
5799 {
5800 struct cfs_rq *cfs_rq;
5801 struct sched_entity *se = &p->se, *curr;
5802 int this_cpu = smp_processor_id();
5803 struct rq *rq = this_rq();
5804 unsigned long flags;
5805
5806 raw_spin_lock_irqsave(&rq->lock, flags);
5807
5808 update_rq_clock(rq);
5809
5810 cfs_rq = task_cfs_rq(current);
5811 curr = cfs_rq->curr;
5812
5813 if (unlikely(task_cpu(p) != this_cpu)) {
5814 rcu_read_lock();
5815 __set_task_cpu(p, this_cpu);
5816 rcu_read_unlock();
5817 }
5818
5819 update_curr(cfs_rq);
5820
5821 if (curr)
5822 se->vruntime = curr->vruntime;
5823 place_entity(cfs_rq, se, 1);
5824
5825 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5826 /*
5827 * Upon rescheduling, sched_class::put_prev_task() will place
5828 * 'current' within the tree based on its new key value.
5829 */
5830 swap(curr->vruntime, se->vruntime);
5831 resched_task(rq->curr);
5832 }
5833
5834 se->vruntime -= cfs_rq->min_vruntime;
5835
5836 raw_spin_unlock_irqrestore(&rq->lock, flags);
5837 }
5838
5839 /*
5840 * Priority of the task has changed. Check to see if we preempt
5841 * the current task.
5842 */
5843 static void
5844 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5845 {
5846 if (!p->se.on_rq)
5847 return;
5848
5849 /*
5850 * Reschedule if we are currently running on this runqueue and
5851 * our priority decreased, or if we are not currently running on
5852 * this runqueue and our priority is higher than the current's
5853 */
5854 if (rq->curr == p) {
5855 if (p->prio > oldprio)
5856 resched_task(rq->curr);
5857 } else
5858 check_preempt_curr(rq, p, 0);
5859 }
5860
5861 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5862 {
5863 struct sched_entity *se = &p->se;
5864 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5865
5866 /*
5867 * Ensure the task's vruntime is normalized, so that when its
5868 * switched back to the fair class the enqueue_entity(.flags=0) will
5869 * do the right thing.
5870 *
5871 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5872 * have normalized the vruntime, if it was !on_rq, then only when
5873 * the task is sleeping will it still have non-normalized vruntime.
5874 */
5875 if (!se->on_rq && p->state != TASK_RUNNING) {
5876 /*
5877 * Fix up our vruntime so that the current sleep doesn't
5878 * cause 'unlimited' sleep bonus.
5879 */
5880 place_entity(cfs_rq, se, 0);
5881 se->vruntime -= cfs_rq->min_vruntime;
5882 }
5883
5884 #ifdef CONFIG_SMP
5885 /*
5886 * Remove our load from contribution when we leave sched_fair
5887 * and ensure we don't carry in an old decay_count if we
5888 * switch back.
5889 */
5890 if (p->se.avg.decay_count) {
5891 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5892 __synchronize_entity_decay(&p->se);
5893 subtract_blocked_load_contrib(cfs_rq,
5894 p->se.avg.load_avg_contrib);
5895 }
5896 #endif
5897 }
5898
5899 /*
5900 * We switched to the sched_fair class.
5901 */
5902 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5903 {
5904 if (!p->se.on_rq)
5905 return;
5906
5907 /*
5908 * We were most likely switched from sched_rt, so
5909 * kick off the schedule if running, otherwise just see
5910 * if we can still preempt the current task.
5911 */
5912 if (rq->curr == p)
5913 resched_task(rq->curr);
5914 else
5915 check_preempt_curr(rq, p, 0);
5916 }
5917
5918 /* Account for a task changing its policy or group.
5919 *
5920 * This routine is mostly called to set cfs_rq->curr field when a task
5921 * migrates between groups/classes.
5922 */
5923 static void set_curr_task_fair(struct rq *rq)
5924 {
5925 struct sched_entity *se = &rq->curr->se;
5926
5927 for_each_sched_entity(se) {
5928 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5929
5930 set_next_entity(cfs_rq, se);
5931 /* ensure bandwidth has been allocated on our new cfs_rq */
5932 account_cfs_rq_runtime(cfs_rq, 0);
5933 }
5934 }
5935
5936 void init_cfs_rq(struct cfs_rq *cfs_rq)
5937 {
5938 cfs_rq->tasks_timeline = RB_ROOT;
5939 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5940 #ifndef CONFIG_64BIT
5941 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5942 #endif
5943 #ifdef CONFIG_SMP
5944 atomic64_set(&cfs_rq->decay_counter, 1);
5945 atomic64_set(&cfs_rq->removed_load, 0);
5946 #endif
5947 }
5948
5949 #ifdef CONFIG_FAIR_GROUP_SCHED
5950 static void task_move_group_fair(struct task_struct *p, int on_rq)
5951 {
5952 struct cfs_rq *cfs_rq;
5953 /*
5954 * If the task was not on the rq at the time of this cgroup movement
5955 * it must have been asleep, sleeping tasks keep their ->vruntime
5956 * absolute on their old rq until wakeup (needed for the fair sleeper
5957 * bonus in place_entity()).
5958 *
5959 * If it was on the rq, we've just 'preempted' it, which does convert
5960 * ->vruntime to a relative base.
5961 *
5962 * Make sure both cases convert their relative position when migrating
5963 * to another cgroup's rq. This does somewhat interfere with the
5964 * fair sleeper stuff for the first placement, but who cares.
5965 */
5966 /*
5967 * When !on_rq, vruntime of the task has usually NOT been normalized.
5968 * But there are some cases where it has already been normalized:
5969 *
5970 * - Moving a forked child which is waiting for being woken up by
5971 * wake_up_new_task().
5972 * - Moving a task which has been woken up by try_to_wake_up() and
5973 * waiting for actually being woken up by sched_ttwu_pending().
5974 *
5975 * To prevent boost or penalty in the new cfs_rq caused by delta
5976 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5977 */
5978 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5979 on_rq = 1;
5980
5981 if (!on_rq)
5982 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5983 set_task_rq(p, task_cpu(p));
5984 if (!on_rq) {
5985 cfs_rq = cfs_rq_of(&p->se);
5986 p->se.vruntime += cfs_rq->min_vruntime;
5987 #ifdef CONFIG_SMP
5988 /*
5989 * migrate_task_rq_fair() will have removed our previous
5990 * contribution, but we must synchronize for ongoing future
5991 * decay.
5992 */
5993 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5994 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5995 #endif
5996 }
5997 }
5998
5999 void free_fair_sched_group(struct task_group *tg)
6000 {
6001 int i;
6002
6003 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6004
6005 for_each_possible_cpu(i) {
6006 if (tg->cfs_rq)
6007 kfree(tg->cfs_rq[i]);
6008 if (tg->se)
6009 kfree(tg->se[i]);
6010 }
6011
6012 kfree(tg->cfs_rq);
6013 kfree(tg->se);
6014 }
6015
6016 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6017 {
6018 struct cfs_rq *cfs_rq;
6019 struct sched_entity *se;
6020 int i;
6021
6022 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6023 if (!tg->cfs_rq)
6024 goto err;
6025 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6026 if (!tg->se)
6027 goto err;
6028
6029 tg->shares = NICE_0_LOAD;
6030
6031 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6032
6033 for_each_possible_cpu(i) {
6034 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6035 GFP_KERNEL, cpu_to_node(i));
6036 if (!cfs_rq)
6037 goto err;
6038
6039 se = kzalloc_node(sizeof(struct sched_entity),
6040 GFP_KERNEL, cpu_to_node(i));
6041 if (!se)
6042 goto err_free_rq;
6043
6044 init_cfs_rq(cfs_rq);
6045 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6046 }
6047
6048 return 1;
6049
6050 err_free_rq:
6051 kfree(cfs_rq);
6052 err:
6053 return 0;
6054 }
6055
6056 void unregister_fair_sched_group(struct task_group *tg, int cpu)
6057 {
6058 struct rq *rq = cpu_rq(cpu);
6059 unsigned long flags;
6060
6061 /*
6062 * Only empty task groups can be destroyed; so we can speculatively
6063 * check on_list without danger of it being re-added.
6064 */
6065 if (!tg->cfs_rq[cpu]->on_list)
6066 return;
6067
6068 raw_spin_lock_irqsave(&rq->lock, flags);
6069 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6070 raw_spin_unlock_irqrestore(&rq->lock, flags);
6071 }
6072
6073 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6074 struct sched_entity *se, int cpu,
6075 struct sched_entity *parent)
6076 {
6077 struct rq *rq = cpu_rq(cpu);
6078
6079 cfs_rq->tg = tg;
6080 cfs_rq->rq = rq;
6081 init_cfs_rq_runtime(cfs_rq);
6082
6083 tg->cfs_rq[cpu] = cfs_rq;
6084 tg->se[cpu] = se;
6085
6086 /* se could be NULL for root_task_group */
6087 if (!se)
6088 return;
6089
6090 if (!parent)
6091 se->cfs_rq = &rq->cfs;
6092 else
6093 se->cfs_rq = parent->my_q;
6094
6095 se->my_q = cfs_rq;
6096 update_load_set(&se->load, 0);
6097 se->parent = parent;
6098 }
6099
6100 static DEFINE_MUTEX(shares_mutex);
6101
6102 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6103 {
6104 int i;
6105 unsigned long flags;
6106
6107 /*
6108 * We can't change the weight of the root cgroup.
6109 */
6110 if (!tg->se[0])
6111 return -EINVAL;
6112
6113 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6114
6115 mutex_lock(&shares_mutex);
6116 if (tg->shares == shares)
6117 goto done;
6118
6119 tg->shares = shares;
6120 for_each_possible_cpu(i) {
6121 struct rq *rq = cpu_rq(i);
6122 struct sched_entity *se;
6123
6124 se = tg->se[i];
6125 /* Propagate contribution to hierarchy */
6126 raw_spin_lock_irqsave(&rq->lock, flags);
6127
6128 /* Possible calls to update_curr() need rq clock */
6129 update_rq_clock(rq);
6130 for_each_sched_entity(se)
6131 update_cfs_shares(group_cfs_rq(se));
6132 raw_spin_unlock_irqrestore(&rq->lock, flags);
6133 }
6134
6135 done:
6136 mutex_unlock(&shares_mutex);
6137 return 0;
6138 }
6139 #else /* CONFIG_FAIR_GROUP_SCHED */
6140
6141 void free_fair_sched_group(struct task_group *tg) { }
6142
6143 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6144 {
6145 return 1;
6146 }
6147
6148 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6149
6150 #endif /* CONFIG_FAIR_GROUP_SCHED */
6151
6152
6153 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6154 {
6155 struct sched_entity *se = &task->se;
6156 unsigned int rr_interval = 0;
6157
6158 /*
6159 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6160 * idle runqueue:
6161 */
6162 if (rq->cfs.load.weight)
6163 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6164
6165 return rr_interval;
6166 }
6167
6168 /*
6169 * All the scheduling class methods:
6170 */
6171 const struct sched_class fair_sched_class = {
6172 .next = &idle_sched_class,
6173 .enqueue_task = enqueue_task_fair,
6174 .dequeue_task = dequeue_task_fair,
6175 .yield_task = yield_task_fair,
6176 .yield_to_task = yield_to_task_fair,
6177
6178 .check_preempt_curr = check_preempt_wakeup,
6179
6180 .pick_next_task = pick_next_task_fair,
6181 .put_prev_task = put_prev_task_fair,
6182
6183 #ifdef CONFIG_SMP
6184 .select_task_rq = select_task_rq_fair,
6185 .migrate_task_rq = migrate_task_rq_fair,
6186
6187 .rq_online = rq_online_fair,
6188 .rq_offline = rq_offline_fair,
6189
6190 .task_waking = task_waking_fair,
6191 #endif
6192
6193 .set_curr_task = set_curr_task_fair,
6194 .task_tick = task_tick_fair,
6195 .task_fork = task_fork_fair,
6196
6197 .prio_changed = prio_changed_fair,
6198 .switched_from = switched_from_fair,
6199 .switched_to = switched_to_fair,
6200
6201 .get_rr_interval = get_rr_interval_fair,
6202
6203 #ifdef CONFIG_FAIR_GROUP_SCHED
6204 .task_move_group = task_move_group_fair,
6205 #endif
6206 };
6207
6208 #ifdef CONFIG_SCHED_DEBUG
6209 void print_cfs_stats(struct seq_file *m, int cpu)
6210 {
6211 struct cfs_rq *cfs_rq;
6212
6213 rcu_read_lock();
6214 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6215 print_cfs_rq(m, cpu, cfs_rq);
6216 rcu_read_unlock();
6217 }
6218 #endif
6219
6220 __init void init_sched_fair_class(void)
6221 {
6222 #ifdef CONFIG_SMP
6223 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6224
6225 #ifdef CONFIG_NO_HZ_COMMON
6226 nohz.next_balance = jiffies;
6227 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6228 cpu_notifier(sched_ilb_notifier, 0);
6229 #endif
6230 #endif /* SMP */
6231
6232 }