]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched/fair.c
mm: numa: Do not group on RO pages
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 lw->weight += inc;
119 lw->inv_weight = 0;
120 }
121
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126 }
127
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 lw->weight = w;
131 lw->inv_weight = 0;
132 }
133
134 /*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143 static int get_update_sysctl_factor(void)
144 {
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162 }
163
164 static void update_sysctl(void)
165 {
166 unsigned int factor = get_update_sysctl_factor();
167
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175
176 void sched_init_granularity(void)
177 {
178 update_sysctl();
179 }
180
181 #if BITS_PER_LONG == 32
182 # define WMULT_CONST (~0UL)
183 #else
184 # define WMULT_CONST (1UL << 32)
185 #endif
186
187 #define WMULT_SHIFT 32
188
189 /*
190 * Shift right and round:
191 */
192 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194 /*
195 * delta *= weight / lw
196 */
197 static unsigned long
198 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200 {
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234 }
235
236
237 const struct sched_class fair_sched_class;
238
239 /**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243 #ifdef CONFIG_FAIR_GROUP_SCHED
244
245 /* cpu runqueue to which this cfs_rq is attached */
246 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247 {
248 return cfs_rq->rq;
249 }
250
251 /* An entity is a task if it doesn't "own" a runqueue */
252 #define entity_is_task(se) (!se->my_q)
253
254 static inline struct task_struct *task_of(struct sched_entity *se)
255 {
256 #ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258 #endif
259 return container_of(se, struct task_struct, se);
260 }
261
262 /* Walk up scheduling entities hierarchy */
263 #define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267 {
268 return p->se.cfs_rq;
269 }
270
271 /* runqueue on which this entity is (to be) queued */
272 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273 {
274 return se->cfs_rq;
275 }
276
277 /* runqueue "owned" by this group */
278 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279 {
280 return grp->my_q;
281 }
282
283 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 /* We should have no load, but we need to update last_decay. */
306 update_cfs_rq_blocked_load(cfs_rq, 0);
307 }
308 }
309
310 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311 {
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316 }
317
318 /* Iterate thr' all leaf cfs_rq's on a runqueue */
319 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322 /* Do the two (enqueued) entities belong to the same group ? */
323 static inline int
324 is_same_group(struct sched_entity *se, struct sched_entity *pse)
325 {
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330 }
331
332 static inline struct sched_entity *parent_entity(struct sched_entity *se)
333 {
334 return se->parent;
335 }
336
337 /* return depth at which a sched entity is present in the hierarchy */
338 static inline int depth_se(struct sched_entity *se)
339 {
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346 }
347
348 static void
349 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350 {
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378 }
379
380 #else /* !CONFIG_FAIR_GROUP_SCHED */
381
382 static inline struct task_struct *task_of(struct sched_entity *se)
383 {
384 return container_of(se, struct task_struct, se);
385 }
386
387 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388 {
389 return container_of(cfs_rq, struct rq, cfs);
390 }
391
392 #define entity_is_task(se) 1
393
394 #define for_each_sched_entity(se) \
395 for (; se; se = NULL)
396
397 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
398 {
399 return &task_rq(p)->cfs;
400 }
401
402 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403 {
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408 }
409
410 /* runqueue "owned" by this group */
411 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412 {
413 return NULL;
414 }
415
416 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417 {
418 }
419
420 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421 {
422 }
423
424 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427 static inline int
428 is_same_group(struct sched_entity *se, struct sched_entity *pse)
429 {
430 return 1;
431 }
432
433 static inline struct sched_entity *parent_entity(struct sched_entity *se)
434 {
435 return NULL;
436 }
437
438 static inline void
439 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440 {
441 }
442
443 #endif /* CONFIG_FAIR_GROUP_SCHED */
444
445 static __always_inline
446 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
447
448 /**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
452 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
453 {
454 s64 delta = (s64)(vruntime - max_vruntime);
455 if (delta > 0)
456 max_vruntime = vruntime;
457
458 return max_vruntime;
459 }
460
461 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
462 {
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468 }
469
470 static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472 {
473 return (s64)(a->vruntime - b->vruntime) < 0;
474 }
475
476 static void update_min_vruntime(struct cfs_rq *cfs_rq)
477 {
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
488 if (!cfs_rq->curr)
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
494 /* ensure we never gain time by being placed backwards. */
495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
496 #ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499 #endif
500 }
501
502 /*
503 * Enqueue an entity into the rb-tree:
504 */
505 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
506 {
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
522 if (entity_before(se, entry)) {
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
534 if (leftmost)
535 cfs_rq->rb_leftmost = &se->run_node;
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
539 }
540
541 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 {
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
548 }
549
550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
551 }
552
553 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
554 {
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
561 }
562
563 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564 {
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571 }
572
573 #ifdef CONFIG_SCHED_DEBUG
574 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
575 {
576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
577
578 if (!last)
579 return NULL;
580
581 return rb_entry(last, struct sched_entity, run_node);
582 }
583
584 /**************************************************************
585 * Scheduling class statistics methods:
586 */
587
588 int sched_proc_update_handler(struct ctl_table *table, int write,
589 void __user *buffer, size_t *lenp,
590 loff_t *ppos)
591 {
592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
593 int factor = get_update_sysctl_factor();
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
601 #define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
606 #undef WRT_SYSCTL
607
608 return 0;
609 }
610 #endif
611
612 /*
613 * delta /= w
614 */
615 static inline unsigned long
616 calc_delta_fair(unsigned long delta, struct sched_entity *se)
617 {
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
620
621 return delta;
622 }
623
624 /*
625 * The idea is to set a period in which each task runs once.
626 *
627 * When there are too many tasks (sched_nr_latency) we have to stretch
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
632 static u64 __sched_period(unsigned long nr_running)
633 {
634 u64 period = sysctl_sched_latency;
635 unsigned long nr_latency = sched_nr_latency;
636
637 if (unlikely(nr_running > nr_latency)) {
638 period = sysctl_sched_min_granularity;
639 period *= nr_running;
640 }
641
642 return period;
643 }
644
645 /*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
649 * s = p*P[w/rw]
650 */
651 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
654
655 for_each_sched_entity(se) {
656 struct load_weight *load;
657 struct load_weight lw;
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
661
662 if (unlikely(!se->on_rq)) {
663 lw = cfs_rq->load;
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
671 }
672
673 /*
674 * We calculate the vruntime slice of a to-be-inserted task.
675 *
676 * vs = s/w
677 */
678 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
679 {
680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
681 }
682
683 #ifdef CONFIG_SMP
684 static unsigned long task_h_load(struct task_struct *p);
685
686 static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688 /* Give new task start runnable values to heavy its load in infant time */
689 void init_task_runnable_average(struct task_struct *p)
690 {
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698 }
699 #else
700 void init_task_runnable_average(struct task_struct *p)
701 {
702 }
703 #endif
704
705 /*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709 static inline void
710 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
712 {
713 unsigned long delta_exec_weighted;
714
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
717
718 curr->sum_exec_runtime += delta_exec;
719 schedstat_add(cfs_rq, exec_clock, delta_exec);
720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
721
722 curr->vruntime += delta_exec_weighted;
723 update_min_vruntime(cfs_rq);
724 }
725
726 static void update_curr(struct cfs_rq *cfs_rq)
727 {
728 struct sched_entity *curr = cfs_rq->curr;
729 u64 now = rq_clock_task(rq_of(cfs_rq));
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
740 delta_exec = (unsigned long)(now - curr->exec_start);
741 if (!delta_exec)
742 return;
743
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
751 cpuacct_charge(curtask, delta_exec);
752 account_group_exec_runtime(curtask, delta_exec);
753 }
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
756 }
757
758 static inline void
759 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
760 {
761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
762 }
763
764 /*
765 * Task is being enqueued - update stats:
766 */
767 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 {
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
773 if (se != cfs_rq->curr)
774 update_stats_wait_start(cfs_rq, se);
775 }
776
777 static void
778 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 {
780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
785 #ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
789 }
790 #endif
791 schedstat_set(se->statistics.wait_start, 0);
792 }
793
794 static inline void
795 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
796 {
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
801 if (se != cfs_rq->curr)
802 update_stats_wait_end(cfs_rq, se);
803 }
804
805 /*
806 * We are picking a new current task - update its stats:
807 */
808 static inline void
809 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
810 {
811 /*
812 * We are starting a new run period:
813 */
814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
815 }
816
817 /**************************************************
818 * Scheduling class queueing methods:
819 */
820
821 #ifdef CONFIG_NUMA_BALANCING
822 /*
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
826 */
827 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829 unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
830
831 /* Portion of address space to scan in MB */
832 unsigned int sysctl_numa_balancing_scan_size = 256;
833
834 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835 unsigned int sysctl_numa_balancing_scan_delay = 1000;
836
837 static unsigned int task_nr_scan_windows(struct task_struct *p)
838 {
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
841
842 /*
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
845 * on resident pages
846 */
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
849 if (!rss)
850 rss = nr_scan_pages;
851
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
854 }
855
856 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857 #define MAX_SCAN_WINDOW 2560
858
859 static unsigned int task_scan_min(struct task_struct *p)
860 {
861 unsigned int scan, floor;
862 unsigned int windows = 1;
863
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
867
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
870 }
871
872 static unsigned int task_scan_max(struct task_struct *p)
873 {
874 unsigned int smin = task_scan_min(p);
875 unsigned int smax;
876
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
880 }
881
882 /*
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
888 */
889 unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
890
891 struct numa_group {
892 atomic_t refcount;
893
894 spinlock_t lock; /* nr_tasks, tasks */
895 int nr_tasks;
896 pid_t gid;
897 struct list_head task_list;
898
899 struct rcu_head rcu;
900 atomic_long_t faults[0];
901 };
902
903 pid_t task_numa_group_id(struct task_struct *p)
904 {
905 return p->numa_group ? p->numa_group->gid : 0;
906 }
907
908 static inline int task_faults_idx(int nid, int priv)
909 {
910 return 2 * nid + priv;
911 }
912
913 static inline unsigned long task_faults(struct task_struct *p, int nid)
914 {
915 if (!p->numa_faults)
916 return 0;
917
918 return p->numa_faults[task_faults_idx(nid, 0)] +
919 p->numa_faults[task_faults_idx(nid, 1)];
920 }
921
922 static unsigned long weighted_cpuload(const int cpu);
923 static unsigned long source_load(int cpu, int type);
924 static unsigned long target_load(int cpu, int type);
925 static unsigned long power_of(int cpu);
926 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
927
928 /* Cached statistics for all CPUs within a node */
929 struct numa_stats {
930 unsigned long nr_running;
931 unsigned long load;
932
933 /* Total compute capacity of CPUs on a node */
934 unsigned long power;
935
936 /* Approximate capacity in terms of runnable tasks on a node */
937 unsigned long capacity;
938 int has_capacity;
939 };
940
941 /*
942 * XXX borrowed from update_sg_lb_stats
943 */
944 static void update_numa_stats(struct numa_stats *ns, int nid)
945 {
946 int cpu;
947
948 memset(ns, 0, sizeof(*ns));
949 for_each_cpu(cpu, cpumask_of_node(nid)) {
950 struct rq *rq = cpu_rq(cpu);
951
952 ns->nr_running += rq->nr_running;
953 ns->load += weighted_cpuload(cpu);
954 ns->power += power_of(cpu);
955 }
956
957 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
958 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
959 ns->has_capacity = (ns->nr_running < ns->capacity);
960 }
961
962 struct task_numa_env {
963 struct task_struct *p;
964
965 int src_cpu, src_nid;
966 int dst_cpu, dst_nid;
967
968 struct numa_stats src_stats, dst_stats;
969
970 int imbalance_pct, idx;
971
972 struct task_struct *best_task;
973 long best_imp;
974 int best_cpu;
975 };
976
977 static void task_numa_assign(struct task_numa_env *env,
978 struct task_struct *p, long imp)
979 {
980 if (env->best_task)
981 put_task_struct(env->best_task);
982 if (p)
983 get_task_struct(p);
984
985 env->best_task = p;
986 env->best_imp = imp;
987 env->best_cpu = env->dst_cpu;
988 }
989
990 /*
991 * This checks if the overall compute and NUMA accesses of the system would
992 * be improved if the source tasks was migrated to the target dst_cpu taking
993 * into account that it might be best if task running on the dst_cpu should
994 * be exchanged with the source task
995 */
996 static void task_numa_compare(struct task_numa_env *env, long imp)
997 {
998 struct rq *src_rq = cpu_rq(env->src_cpu);
999 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1000 struct task_struct *cur;
1001 long dst_load, src_load;
1002 long load;
1003
1004 rcu_read_lock();
1005 cur = ACCESS_ONCE(dst_rq->curr);
1006 if (cur->pid == 0) /* idle */
1007 cur = NULL;
1008
1009 /*
1010 * "imp" is the fault differential for the source task between the
1011 * source and destination node. Calculate the total differential for
1012 * the source task and potential destination task. The more negative
1013 * the value is, the more rmeote accesses that would be expected to
1014 * be incurred if the tasks were swapped.
1015 */
1016 if (cur) {
1017 /* Skip this swap candidate if cannot move to the source cpu */
1018 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1019 goto unlock;
1020
1021 imp += task_faults(cur, env->src_nid) -
1022 task_faults(cur, env->dst_nid);
1023 }
1024
1025 if (imp < env->best_imp)
1026 goto unlock;
1027
1028 if (!cur) {
1029 /* Is there capacity at our destination? */
1030 if (env->src_stats.has_capacity &&
1031 !env->dst_stats.has_capacity)
1032 goto unlock;
1033
1034 goto balance;
1035 }
1036
1037 /* Balance doesn't matter much if we're running a task per cpu */
1038 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1039 goto assign;
1040
1041 /*
1042 * In the overloaded case, try and keep the load balanced.
1043 */
1044 balance:
1045 dst_load = env->dst_stats.load;
1046 src_load = env->src_stats.load;
1047
1048 /* XXX missing power terms */
1049 load = task_h_load(env->p);
1050 dst_load += load;
1051 src_load -= load;
1052
1053 if (cur) {
1054 load = task_h_load(cur);
1055 dst_load -= load;
1056 src_load += load;
1057 }
1058
1059 /* make src_load the smaller */
1060 if (dst_load < src_load)
1061 swap(dst_load, src_load);
1062
1063 if (src_load * env->imbalance_pct < dst_load * 100)
1064 goto unlock;
1065
1066 assign:
1067 task_numa_assign(env, cur, imp);
1068 unlock:
1069 rcu_read_unlock();
1070 }
1071
1072 static void task_numa_find_cpu(struct task_numa_env *env, long imp)
1073 {
1074 int cpu;
1075
1076 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1077 /* Skip this CPU if the source task cannot migrate */
1078 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1079 continue;
1080
1081 env->dst_cpu = cpu;
1082 task_numa_compare(env, imp);
1083 }
1084 }
1085
1086 static int task_numa_migrate(struct task_struct *p)
1087 {
1088 struct task_numa_env env = {
1089 .p = p,
1090
1091 .src_cpu = task_cpu(p),
1092 .src_nid = cpu_to_node(task_cpu(p)),
1093
1094 .imbalance_pct = 112,
1095
1096 .best_task = NULL,
1097 .best_imp = 0,
1098 .best_cpu = -1
1099 };
1100 struct sched_domain *sd;
1101 unsigned long faults;
1102 int nid, ret;
1103 long imp;
1104
1105 /*
1106 * Pick the lowest SD_NUMA domain, as that would have the smallest
1107 * imbalance and would be the first to start moving tasks about.
1108 *
1109 * And we want to avoid any moving of tasks about, as that would create
1110 * random movement of tasks -- counter the numa conditions we're trying
1111 * to satisfy here.
1112 */
1113 rcu_read_lock();
1114 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1115 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1116 rcu_read_unlock();
1117
1118 faults = task_faults(p, env.src_nid);
1119 update_numa_stats(&env.src_stats, env.src_nid);
1120 env.dst_nid = p->numa_preferred_nid;
1121 imp = task_faults(env.p, env.dst_nid) - faults;
1122 update_numa_stats(&env.dst_stats, env.dst_nid);
1123
1124 /* If the preferred nid has capacity, try to use it. */
1125 if (env.dst_stats.has_capacity)
1126 task_numa_find_cpu(&env, imp);
1127
1128 /* No space available on the preferred nid. Look elsewhere. */
1129 if (env.best_cpu == -1) {
1130 for_each_online_node(nid) {
1131 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1132 continue;
1133
1134 /* Only consider nodes that recorded more faults */
1135 imp = task_faults(env.p, nid) - faults;
1136 if (imp < 0)
1137 continue;
1138
1139 env.dst_nid = nid;
1140 update_numa_stats(&env.dst_stats, env.dst_nid);
1141 task_numa_find_cpu(&env, imp);
1142 }
1143 }
1144
1145 /* No better CPU than the current one was found. */
1146 if (env.best_cpu == -1)
1147 return -EAGAIN;
1148
1149 if (env.best_task == NULL) {
1150 int ret = migrate_task_to(p, env.best_cpu);
1151 return ret;
1152 }
1153
1154 ret = migrate_swap(p, env.best_task);
1155 put_task_struct(env.best_task);
1156 return ret;
1157 }
1158
1159 /* Attempt to migrate a task to a CPU on the preferred node. */
1160 static void numa_migrate_preferred(struct task_struct *p)
1161 {
1162 /* Success if task is already running on preferred CPU */
1163 p->numa_migrate_retry = 0;
1164 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1165 /*
1166 * If migration is temporarily disabled due to a task migration
1167 * then re-enable it now as the task is running on its
1168 * preferred node and memory should migrate locally
1169 */
1170 if (!p->numa_migrate_seq)
1171 p->numa_migrate_seq++;
1172 return;
1173 }
1174
1175 /* This task has no NUMA fault statistics yet */
1176 if (unlikely(p->numa_preferred_nid == -1))
1177 return;
1178
1179 /* Otherwise, try migrate to a CPU on the preferred node */
1180 if (task_numa_migrate(p) != 0)
1181 p->numa_migrate_retry = jiffies + HZ*5;
1182 }
1183
1184 static void task_numa_placement(struct task_struct *p)
1185 {
1186 int seq, nid, max_nid = -1;
1187 unsigned long max_faults = 0;
1188
1189 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1190 if (p->numa_scan_seq == seq)
1191 return;
1192 p->numa_scan_seq = seq;
1193 p->numa_migrate_seq++;
1194 p->numa_scan_period_max = task_scan_max(p);
1195
1196 /* Find the node with the highest number of faults */
1197 for_each_online_node(nid) {
1198 unsigned long faults = 0;
1199 int priv, i;
1200
1201 for (priv = 0; priv < 2; priv++) {
1202 long diff;
1203
1204 i = task_faults_idx(nid, priv);
1205 diff = -p->numa_faults[i];
1206
1207 /* Decay existing window, copy faults since last scan */
1208 p->numa_faults[i] >>= 1;
1209 p->numa_faults[i] += p->numa_faults_buffer[i];
1210 p->numa_faults_buffer[i] = 0;
1211
1212 faults += p->numa_faults[i];
1213 diff += p->numa_faults[i];
1214 if (p->numa_group) {
1215 /* safe because we can only change our own group */
1216 atomic_long_add(diff, &p->numa_group->faults[i]);
1217 }
1218 }
1219
1220 if (faults > max_faults) {
1221 max_faults = faults;
1222 max_nid = nid;
1223 }
1224 }
1225
1226 /* Preferred node as the node with the most faults */
1227 if (max_faults && max_nid != p->numa_preferred_nid) {
1228 /* Update the preferred nid and migrate task if possible */
1229 p->numa_preferred_nid = max_nid;
1230 p->numa_migrate_seq = 1;
1231 numa_migrate_preferred(p);
1232 }
1233 }
1234
1235 static inline int get_numa_group(struct numa_group *grp)
1236 {
1237 return atomic_inc_not_zero(&grp->refcount);
1238 }
1239
1240 static inline void put_numa_group(struct numa_group *grp)
1241 {
1242 if (atomic_dec_and_test(&grp->refcount))
1243 kfree_rcu(grp, rcu);
1244 }
1245
1246 static void double_lock(spinlock_t *l1, spinlock_t *l2)
1247 {
1248 if (l1 > l2)
1249 swap(l1, l2);
1250
1251 spin_lock(l1);
1252 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1253 }
1254
1255 static void task_numa_group(struct task_struct *p, int cpupid)
1256 {
1257 struct numa_group *grp, *my_grp;
1258 struct task_struct *tsk;
1259 bool join = false;
1260 int cpu = cpupid_to_cpu(cpupid);
1261 int i;
1262
1263 if (unlikely(!p->numa_group)) {
1264 unsigned int size = sizeof(struct numa_group) +
1265 2*nr_node_ids*sizeof(atomic_long_t);
1266
1267 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1268 if (!grp)
1269 return;
1270
1271 atomic_set(&grp->refcount, 1);
1272 spin_lock_init(&grp->lock);
1273 INIT_LIST_HEAD(&grp->task_list);
1274 grp->gid = p->pid;
1275
1276 for (i = 0; i < 2*nr_node_ids; i++)
1277 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1278
1279 list_add(&p->numa_entry, &grp->task_list);
1280 grp->nr_tasks++;
1281 rcu_assign_pointer(p->numa_group, grp);
1282 }
1283
1284 rcu_read_lock();
1285 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1286
1287 if (!cpupid_match_pid(tsk, cpupid))
1288 goto unlock;
1289
1290 grp = rcu_dereference(tsk->numa_group);
1291 if (!grp)
1292 goto unlock;
1293
1294 my_grp = p->numa_group;
1295 if (grp == my_grp)
1296 goto unlock;
1297
1298 /*
1299 * Only join the other group if its bigger; if we're the bigger group,
1300 * the other task will join us.
1301 */
1302 if (my_grp->nr_tasks > grp->nr_tasks)
1303 goto unlock;
1304
1305 /*
1306 * Tie-break on the grp address.
1307 */
1308 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1309 goto unlock;
1310
1311 if (!get_numa_group(grp))
1312 goto unlock;
1313
1314 join = true;
1315
1316 unlock:
1317 rcu_read_unlock();
1318
1319 if (!join)
1320 return;
1321
1322 for (i = 0; i < 2*nr_node_ids; i++) {
1323 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1324 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1325 }
1326
1327 double_lock(&my_grp->lock, &grp->lock);
1328
1329 list_move(&p->numa_entry, &grp->task_list);
1330 my_grp->nr_tasks--;
1331 grp->nr_tasks++;
1332
1333 spin_unlock(&my_grp->lock);
1334 spin_unlock(&grp->lock);
1335
1336 rcu_assign_pointer(p->numa_group, grp);
1337
1338 put_numa_group(my_grp);
1339 }
1340
1341 void task_numa_free(struct task_struct *p)
1342 {
1343 struct numa_group *grp = p->numa_group;
1344 int i;
1345
1346 if (grp) {
1347 for (i = 0; i < 2*nr_node_ids; i++)
1348 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1349
1350 spin_lock(&grp->lock);
1351 list_del(&p->numa_entry);
1352 grp->nr_tasks--;
1353 spin_unlock(&grp->lock);
1354 rcu_assign_pointer(p->numa_group, NULL);
1355 put_numa_group(grp);
1356 }
1357
1358 kfree(p->numa_faults);
1359 }
1360
1361 /*
1362 * Got a PROT_NONE fault for a page on @node.
1363 */
1364 void task_numa_fault(int last_cpupid, int node, int pages, int flags)
1365 {
1366 struct task_struct *p = current;
1367 bool migrated = flags & TNF_MIGRATED;
1368 int priv;
1369
1370 if (!numabalancing_enabled)
1371 return;
1372
1373 /* for example, ksmd faulting in a user's mm */
1374 if (!p->mm)
1375 return;
1376
1377 /* Allocate buffer to track faults on a per-node basis */
1378 if (unlikely(!p->numa_faults)) {
1379 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
1380
1381 /* numa_faults and numa_faults_buffer share the allocation */
1382 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1383 if (!p->numa_faults)
1384 return;
1385
1386 BUG_ON(p->numa_faults_buffer);
1387 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
1388 }
1389
1390 /*
1391 * First accesses are treated as private, otherwise consider accesses
1392 * to be private if the accessing pid has not changed
1393 */
1394 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1395 priv = 1;
1396 } else {
1397 priv = cpupid_match_pid(p, last_cpupid);
1398 if (!priv && !(flags & TNF_NO_GROUP))
1399 task_numa_group(p, last_cpupid);
1400 }
1401
1402 /*
1403 * If pages are properly placed (did not migrate) then scan slower.
1404 * This is reset periodically in case of phase changes
1405 */
1406 if (!migrated) {
1407 /* Initialise if necessary */
1408 if (!p->numa_scan_period_max)
1409 p->numa_scan_period_max = task_scan_max(p);
1410
1411 p->numa_scan_period = min(p->numa_scan_period_max,
1412 p->numa_scan_period + 10);
1413 }
1414
1415 task_numa_placement(p);
1416
1417 /* Retry task to preferred node migration if it previously failed */
1418 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1419 numa_migrate_preferred(p);
1420
1421 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
1422 }
1423
1424 static void reset_ptenuma_scan(struct task_struct *p)
1425 {
1426 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1427 p->mm->numa_scan_offset = 0;
1428 }
1429
1430 /*
1431 * The expensive part of numa migration is done from task_work context.
1432 * Triggered from task_tick_numa().
1433 */
1434 void task_numa_work(struct callback_head *work)
1435 {
1436 unsigned long migrate, next_scan, now = jiffies;
1437 struct task_struct *p = current;
1438 struct mm_struct *mm = p->mm;
1439 struct vm_area_struct *vma;
1440 unsigned long start, end;
1441 unsigned long nr_pte_updates = 0;
1442 long pages;
1443
1444 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1445
1446 work->next = work; /* protect against double add */
1447 /*
1448 * Who cares about NUMA placement when they're dying.
1449 *
1450 * NOTE: make sure not to dereference p->mm before this check,
1451 * exit_task_work() happens _after_ exit_mm() so we could be called
1452 * without p->mm even though we still had it when we enqueued this
1453 * work.
1454 */
1455 if (p->flags & PF_EXITING)
1456 return;
1457
1458 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1459 mm->numa_next_scan = now +
1460 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1461 mm->numa_next_reset = now +
1462 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1463 }
1464
1465 /*
1466 * Reset the scan period if enough time has gone by. Objective is that
1467 * scanning will be reduced if pages are properly placed. As tasks
1468 * can enter different phases this needs to be re-examined. Lacking
1469 * proper tracking of reference behaviour, this blunt hammer is used.
1470 */
1471 migrate = mm->numa_next_reset;
1472 if (time_after(now, migrate)) {
1473 p->numa_scan_period = task_scan_min(p);
1474 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1475 xchg(&mm->numa_next_reset, next_scan);
1476 }
1477
1478 /*
1479 * Enforce maximal scan/migration frequency..
1480 */
1481 migrate = mm->numa_next_scan;
1482 if (time_before(now, migrate))
1483 return;
1484
1485 if (p->numa_scan_period == 0) {
1486 p->numa_scan_period_max = task_scan_max(p);
1487 p->numa_scan_period = task_scan_min(p);
1488 }
1489
1490 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1491 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1492 return;
1493
1494 /*
1495 * Delay this task enough that another task of this mm will likely win
1496 * the next time around.
1497 */
1498 p->node_stamp += 2 * TICK_NSEC;
1499
1500 start = mm->numa_scan_offset;
1501 pages = sysctl_numa_balancing_scan_size;
1502 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1503 if (!pages)
1504 return;
1505
1506 down_read(&mm->mmap_sem);
1507 vma = find_vma(mm, start);
1508 if (!vma) {
1509 reset_ptenuma_scan(p);
1510 start = 0;
1511 vma = mm->mmap;
1512 }
1513 for (; vma; vma = vma->vm_next) {
1514 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1515 continue;
1516
1517 /*
1518 * Shared library pages mapped by multiple processes are not
1519 * migrated as it is expected they are cache replicated. Avoid
1520 * hinting faults in read-only file-backed mappings or the vdso
1521 * as migrating the pages will be of marginal benefit.
1522 */
1523 if (!vma->vm_mm ||
1524 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1525 continue;
1526
1527 do {
1528 start = max(start, vma->vm_start);
1529 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1530 end = min(end, vma->vm_end);
1531 nr_pte_updates += change_prot_numa(vma, start, end);
1532
1533 /*
1534 * Scan sysctl_numa_balancing_scan_size but ensure that
1535 * at least one PTE is updated so that unused virtual
1536 * address space is quickly skipped.
1537 */
1538 if (nr_pte_updates)
1539 pages -= (end - start) >> PAGE_SHIFT;
1540
1541 start = end;
1542 if (pages <= 0)
1543 goto out;
1544 } while (end != vma->vm_end);
1545 }
1546
1547 out:
1548 /*
1549 * If the whole process was scanned without updates then no NUMA
1550 * hinting faults are being recorded and scan rate should be lower.
1551 */
1552 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1553 p->numa_scan_period = min(p->numa_scan_period_max,
1554 p->numa_scan_period << 1);
1555
1556 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1557 mm->numa_next_scan = next_scan;
1558 }
1559
1560 /*
1561 * It is possible to reach the end of the VMA list but the last few
1562 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1563 * would find the !migratable VMA on the next scan but not reset the
1564 * scanner to the start so check it now.
1565 */
1566 if (vma)
1567 mm->numa_scan_offset = start;
1568 else
1569 reset_ptenuma_scan(p);
1570 up_read(&mm->mmap_sem);
1571 }
1572
1573 /*
1574 * Drive the periodic memory faults..
1575 */
1576 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1577 {
1578 struct callback_head *work = &curr->numa_work;
1579 u64 period, now;
1580
1581 /*
1582 * We don't care about NUMA placement if we don't have memory.
1583 */
1584 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1585 return;
1586
1587 /*
1588 * Using runtime rather than walltime has the dual advantage that
1589 * we (mostly) drive the selection from busy threads and that the
1590 * task needs to have done some actual work before we bother with
1591 * NUMA placement.
1592 */
1593 now = curr->se.sum_exec_runtime;
1594 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1595
1596 if (now - curr->node_stamp > period) {
1597 if (!curr->node_stamp)
1598 curr->numa_scan_period = task_scan_min(curr);
1599 curr->node_stamp += period;
1600
1601 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1602 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1603 task_work_add(curr, work, true);
1604 }
1605 }
1606 }
1607 #else
1608 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1609 {
1610 }
1611 #endif /* CONFIG_NUMA_BALANCING */
1612
1613 static void
1614 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1615 {
1616 update_load_add(&cfs_rq->load, se->load.weight);
1617 if (!parent_entity(se))
1618 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1619 #ifdef CONFIG_SMP
1620 if (entity_is_task(se))
1621 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1622 #endif
1623 cfs_rq->nr_running++;
1624 }
1625
1626 static void
1627 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1628 {
1629 update_load_sub(&cfs_rq->load, se->load.weight);
1630 if (!parent_entity(se))
1631 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1632 if (entity_is_task(se))
1633 list_del_init(&se->group_node);
1634 cfs_rq->nr_running--;
1635 }
1636
1637 #ifdef CONFIG_FAIR_GROUP_SCHED
1638 # ifdef CONFIG_SMP
1639 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1640 {
1641 long tg_weight;
1642
1643 /*
1644 * Use this CPU's actual weight instead of the last load_contribution
1645 * to gain a more accurate current total weight. See
1646 * update_cfs_rq_load_contribution().
1647 */
1648 tg_weight = atomic_long_read(&tg->load_avg);
1649 tg_weight -= cfs_rq->tg_load_contrib;
1650 tg_weight += cfs_rq->load.weight;
1651
1652 return tg_weight;
1653 }
1654
1655 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1656 {
1657 long tg_weight, load, shares;
1658
1659 tg_weight = calc_tg_weight(tg, cfs_rq);
1660 load = cfs_rq->load.weight;
1661
1662 shares = (tg->shares * load);
1663 if (tg_weight)
1664 shares /= tg_weight;
1665
1666 if (shares < MIN_SHARES)
1667 shares = MIN_SHARES;
1668 if (shares > tg->shares)
1669 shares = tg->shares;
1670
1671 return shares;
1672 }
1673 # else /* CONFIG_SMP */
1674 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1675 {
1676 return tg->shares;
1677 }
1678 # endif /* CONFIG_SMP */
1679 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1680 unsigned long weight)
1681 {
1682 if (se->on_rq) {
1683 /* commit outstanding execution time */
1684 if (cfs_rq->curr == se)
1685 update_curr(cfs_rq);
1686 account_entity_dequeue(cfs_rq, se);
1687 }
1688
1689 update_load_set(&se->load, weight);
1690
1691 if (se->on_rq)
1692 account_entity_enqueue(cfs_rq, se);
1693 }
1694
1695 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1696
1697 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1698 {
1699 struct task_group *tg;
1700 struct sched_entity *se;
1701 long shares;
1702
1703 tg = cfs_rq->tg;
1704 se = tg->se[cpu_of(rq_of(cfs_rq))];
1705 if (!se || throttled_hierarchy(cfs_rq))
1706 return;
1707 #ifndef CONFIG_SMP
1708 if (likely(se->load.weight == tg->shares))
1709 return;
1710 #endif
1711 shares = calc_cfs_shares(cfs_rq, tg);
1712
1713 reweight_entity(cfs_rq_of(se), se, shares);
1714 }
1715 #else /* CONFIG_FAIR_GROUP_SCHED */
1716 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1717 {
1718 }
1719 #endif /* CONFIG_FAIR_GROUP_SCHED */
1720
1721 #ifdef CONFIG_SMP
1722 /*
1723 * We choose a half-life close to 1 scheduling period.
1724 * Note: The tables below are dependent on this value.
1725 */
1726 #define LOAD_AVG_PERIOD 32
1727 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1728 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1729
1730 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1731 static const u32 runnable_avg_yN_inv[] = {
1732 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1733 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1734 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1735 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1736 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1737 0x85aac367, 0x82cd8698,
1738 };
1739
1740 /*
1741 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1742 * over-estimates when re-combining.
1743 */
1744 static const u32 runnable_avg_yN_sum[] = {
1745 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1746 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1747 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1748 };
1749
1750 /*
1751 * Approximate:
1752 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1753 */
1754 static __always_inline u64 decay_load(u64 val, u64 n)
1755 {
1756 unsigned int local_n;
1757
1758 if (!n)
1759 return val;
1760 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1761 return 0;
1762
1763 /* after bounds checking we can collapse to 32-bit */
1764 local_n = n;
1765
1766 /*
1767 * As y^PERIOD = 1/2, we can combine
1768 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1769 * With a look-up table which covers k^n (n<PERIOD)
1770 *
1771 * To achieve constant time decay_load.
1772 */
1773 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1774 val >>= local_n / LOAD_AVG_PERIOD;
1775 local_n %= LOAD_AVG_PERIOD;
1776 }
1777
1778 val *= runnable_avg_yN_inv[local_n];
1779 /* We don't use SRR here since we always want to round down. */
1780 return val >> 32;
1781 }
1782
1783 /*
1784 * For updates fully spanning n periods, the contribution to runnable
1785 * average will be: \Sum 1024*y^n
1786 *
1787 * We can compute this reasonably efficiently by combining:
1788 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1789 */
1790 static u32 __compute_runnable_contrib(u64 n)
1791 {
1792 u32 contrib = 0;
1793
1794 if (likely(n <= LOAD_AVG_PERIOD))
1795 return runnable_avg_yN_sum[n];
1796 else if (unlikely(n >= LOAD_AVG_MAX_N))
1797 return LOAD_AVG_MAX;
1798
1799 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1800 do {
1801 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1802 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1803
1804 n -= LOAD_AVG_PERIOD;
1805 } while (n > LOAD_AVG_PERIOD);
1806
1807 contrib = decay_load(contrib, n);
1808 return contrib + runnable_avg_yN_sum[n];
1809 }
1810
1811 /*
1812 * We can represent the historical contribution to runnable average as the
1813 * coefficients of a geometric series. To do this we sub-divide our runnable
1814 * history into segments of approximately 1ms (1024us); label the segment that
1815 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1816 *
1817 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1818 * p0 p1 p2
1819 * (now) (~1ms ago) (~2ms ago)
1820 *
1821 * Let u_i denote the fraction of p_i that the entity was runnable.
1822 *
1823 * We then designate the fractions u_i as our co-efficients, yielding the
1824 * following representation of historical load:
1825 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1826 *
1827 * We choose y based on the with of a reasonably scheduling period, fixing:
1828 * y^32 = 0.5
1829 *
1830 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1831 * approximately half as much as the contribution to load within the last ms
1832 * (u_0).
1833 *
1834 * When a period "rolls over" and we have new u_0`, multiplying the previous
1835 * sum again by y is sufficient to update:
1836 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1837 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1838 */
1839 static __always_inline int __update_entity_runnable_avg(u64 now,
1840 struct sched_avg *sa,
1841 int runnable)
1842 {
1843 u64 delta, periods;
1844 u32 runnable_contrib;
1845 int delta_w, decayed = 0;
1846
1847 delta = now - sa->last_runnable_update;
1848 /*
1849 * This should only happen when time goes backwards, which it
1850 * unfortunately does during sched clock init when we swap over to TSC.
1851 */
1852 if ((s64)delta < 0) {
1853 sa->last_runnable_update = now;
1854 return 0;
1855 }
1856
1857 /*
1858 * Use 1024ns as the unit of measurement since it's a reasonable
1859 * approximation of 1us and fast to compute.
1860 */
1861 delta >>= 10;
1862 if (!delta)
1863 return 0;
1864 sa->last_runnable_update = now;
1865
1866 /* delta_w is the amount already accumulated against our next period */
1867 delta_w = sa->runnable_avg_period % 1024;
1868 if (delta + delta_w >= 1024) {
1869 /* period roll-over */
1870 decayed = 1;
1871
1872 /*
1873 * Now that we know we're crossing a period boundary, figure
1874 * out how much from delta we need to complete the current
1875 * period and accrue it.
1876 */
1877 delta_w = 1024 - delta_w;
1878 if (runnable)
1879 sa->runnable_avg_sum += delta_w;
1880 sa->runnable_avg_period += delta_w;
1881
1882 delta -= delta_w;
1883
1884 /* Figure out how many additional periods this update spans */
1885 periods = delta / 1024;
1886 delta %= 1024;
1887
1888 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1889 periods + 1);
1890 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1891 periods + 1);
1892
1893 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1894 runnable_contrib = __compute_runnable_contrib(periods);
1895 if (runnable)
1896 sa->runnable_avg_sum += runnable_contrib;
1897 sa->runnable_avg_period += runnable_contrib;
1898 }
1899
1900 /* Remainder of delta accrued against u_0` */
1901 if (runnable)
1902 sa->runnable_avg_sum += delta;
1903 sa->runnable_avg_period += delta;
1904
1905 return decayed;
1906 }
1907
1908 /* Synchronize an entity's decay with its parenting cfs_rq.*/
1909 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1910 {
1911 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1912 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1913
1914 decays -= se->avg.decay_count;
1915 if (!decays)
1916 return 0;
1917
1918 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1919 se->avg.decay_count = 0;
1920
1921 return decays;
1922 }
1923
1924 #ifdef CONFIG_FAIR_GROUP_SCHED
1925 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1926 int force_update)
1927 {
1928 struct task_group *tg = cfs_rq->tg;
1929 long tg_contrib;
1930
1931 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1932 tg_contrib -= cfs_rq->tg_load_contrib;
1933
1934 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1935 atomic_long_add(tg_contrib, &tg->load_avg);
1936 cfs_rq->tg_load_contrib += tg_contrib;
1937 }
1938 }
1939
1940 /*
1941 * Aggregate cfs_rq runnable averages into an equivalent task_group
1942 * representation for computing load contributions.
1943 */
1944 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1945 struct cfs_rq *cfs_rq)
1946 {
1947 struct task_group *tg = cfs_rq->tg;
1948 long contrib;
1949
1950 /* The fraction of a cpu used by this cfs_rq */
1951 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1952 sa->runnable_avg_period + 1);
1953 contrib -= cfs_rq->tg_runnable_contrib;
1954
1955 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1956 atomic_add(contrib, &tg->runnable_avg);
1957 cfs_rq->tg_runnable_contrib += contrib;
1958 }
1959 }
1960
1961 static inline void __update_group_entity_contrib(struct sched_entity *se)
1962 {
1963 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1964 struct task_group *tg = cfs_rq->tg;
1965 int runnable_avg;
1966
1967 u64 contrib;
1968
1969 contrib = cfs_rq->tg_load_contrib * tg->shares;
1970 se->avg.load_avg_contrib = div_u64(contrib,
1971 atomic_long_read(&tg->load_avg) + 1);
1972
1973 /*
1974 * For group entities we need to compute a correction term in the case
1975 * that they are consuming <1 cpu so that we would contribute the same
1976 * load as a task of equal weight.
1977 *
1978 * Explicitly co-ordinating this measurement would be expensive, but
1979 * fortunately the sum of each cpus contribution forms a usable
1980 * lower-bound on the true value.
1981 *
1982 * Consider the aggregate of 2 contributions. Either they are disjoint
1983 * (and the sum represents true value) or they are disjoint and we are
1984 * understating by the aggregate of their overlap.
1985 *
1986 * Extending this to N cpus, for a given overlap, the maximum amount we
1987 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1988 * cpus that overlap for this interval and w_i is the interval width.
1989 *
1990 * On a small machine; the first term is well-bounded which bounds the
1991 * total error since w_i is a subset of the period. Whereas on a
1992 * larger machine, while this first term can be larger, if w_i is the
1993 * of consequential size guaranteed to see n_i*w_i quickly converge to
1994 * our upper bound of 1-cpu.
1995 */
1996 runnable_avg = atomic_read(&tg->runnable_avg);
1997 if (runnable_avg < NICE_0_LOAD) {
1998 se->avg.load_avg_contrib *= runnable_avg;
1999 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2000 }
2001 }
2002 #else
2003 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2004 int force_update) {}
2005 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2006 struct cfs_rq *cfs_rq) {}
2007 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2008 #endif
2009
2010 static inline void __update_task_entity_contrib(struct sched_entity *se)
2011 {
2012 u32 contrib;
2013
2014 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2015 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2016 contrib /= (se->avg.runnable_avg_period + 1);
2017 se->avg.load_avg_contrib = scale_load(contrib);
2018 }
2019
2020 /* Compute the current contribution to load_avg by se, return any delta */
2021 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2022 {
2023 long old_contrib = se->avg.load_avg_contrib;
2024
2025 if (entity_is_task(se)) {
2026 __update_task_entity_contrib(se);
2027 } else {
2028 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2029 __update_group_entity_contrib(se);
2030 }
2031
2032 return se->avg.load_avg_contrib - old_contrib;
2033 }
2034
2035 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2036 long load_contrib)
2037 {
2038 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2039 cfs_rq->blocked_load_avg -= load_contrib;
2040 else
2041 cfs_rq->blocked_load_avg = 0;
2042 }
2043
2044 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2045
2046 /* Update a sched_entity's runnable average */
2047 static inline void update_entity_load_avg(struct sched_entity *se,
2048 int update_cfs_rq)
2049 {
2050 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2051 long contrib_delta;
2052 u64 now;
2053
2054 /*
2055 * For a group entity we need to use their owned cfs_rq_clock_task() in
2056 * case they are the parent of a throttled hierarchy.
2057 */
2058 if (entity_is_task(se))
2059 now = cfs_rq_clock_task(cfs_rq);
2060 else
2061 now = cfs_rq_clock_task(group_cfs_rq(se));
2062
2063 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2064 return;
2065
2066 contrib_delta = __update_entity_load_avg_contrib(se);
2067
2068 if (!update_cfs_rq)
2069 return;
2070
2071 if (se->on_rq)
2072 cfs_rq->runnable_load_avg += contrib_delta;
2073 else
2074 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2075 }
2076
2077 /*
2078 * Decay the load contributed by all blocked children and account this so that
2079 * their contribution may appropriately discounted when they wake up.
2080 */
2081 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2082 {
2083 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2084 u64 decays;
2085
2086 decays = now - cfs_rq->last_decay;
2087 if (!decays && !force_update)
2088 return;
2089
2090 if (atomic_long_read(&cfs_rq->removed_load)) {
2091 unsigned long removed_load;
2092 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2093 subtract_blocked_load_contrib(cfs_rq, removed_load);
2094 }
2095
2096 if (decays) {
2097 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2098 decays);
2099 atomic64_add(decays, &cfs_rq->decay_counter);
2100 cfs_rq->last_decay = now;
2101 }
2102
2103 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2104 }
2105
2106 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2107 {
2108 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2109 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2110 }
2111
2112 /* Add the load generated by se into cfs_rq's child load-average */
2113 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2114 struct sched_entity *se,
2115 int wakeup)
2116 {
2117 /*
2118 * We track migrations using entity decay_count <= 0, on a wake-up
2119 * migration we use a negative decay count to track the remote decays
2120 * accumulated while sleeping.
2121 *
2122 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2123 * are seen by enqueue_entity_load_avg() as a migration with an already
2124 * constructed load_avg_contrib.
2125 */
2126 if (unlikely(se->avg.decay_count <= 0)) {
2127 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2128 if (se->avg.decay_count) {
2129 /*
2130 * In a wake-up migration we have to approximate the
2131 * time sleeping. This is because we can't synchronize
2132 * clock_task between the two cpus, and it is not
2133 * guaranteed to be read-safe. Instead, we can
2134 * approximate this using our carried decays, which are
2135 * explicitly atomically readable.
2136 */
2137 se->avg.last_runnable_update -= (-se->avg.decay_count)
2138 << 20;
2139 update_entity_load_avg(se, 0);
2140 /* Indicate that we're now synchronized and on-rq */
2141 se->avg.decay_count = 0;
2142 }
2143 wakeup = 0;
2144 } else {
2145 /*
2146 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2147 * would have made count negative); we must be careful to avoid
2148 * double-accounting blocked time after synchronizing decays.
2149 */
2150 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2151 << 20;
2152 }
2153
2154 /* migrated tasks did not contribute to our blocked load */
2155 if (wakeup) {
2156 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2157 update_entity_load_avg(se, 0);
2158 }
2159
2160 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2161 /* we force update consideration on load-balancer moves */
2162 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2163 }
2164
2165 /*
2166 * Remove se's load from this cfs_rq child load-average, if the entity is
2167 * transitioning to a blocked state we track its projected decay using
2168 * blocked_load_avg.
2169 */
2170 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2171 struct sched_entity *se,
2172 int sleep)
2173 {
2174 update_entity_load_avg(se, 1);
2175 /* we force update consideration on load-balancer moves */
2176 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2177
2178 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2179 if (sleep) {
2180 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2181 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2182 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2183 }
2184
2185 /*
2186 * Update the rq's load with the elapsed running time before entering
2187 * idle. if the last scheduled task is not a CFS task, idle_enter will
2188 * be the only way to update the runnable statistic.
2189 */
2190 void idle_enter_fair(struct rq *this_rq)
2191 {
2192 update_rq_runnable_avg(this_rq, 1);
2193 }
2194
2195 /*
2196 * Update the rq's load with the elapsed idle time before a task is
2197 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2198 * be the only way to update the runnable statistic.
2199 */
2200 void idle_exit_fair(struct rq *this_rq)
2201 {
2202 update_rq_runnable_avg(this_rq, 0);
2203 }
2204
2205 #else
2206 static inline void update_entity_load_avg(struct sched_entity *se,
2207 int update_cfs_rq) {}
2208 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2209 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2210 struct sched_entity *se,
2211 int wakeup) {}
2212 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2213 struct sched_entity *se,
2214 int sleep) {}
2215 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2216 int force_update) {}
2217 #endif
2218
2219 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2220 {
2221 #ifdef CONFIG_SCHEDSTATS
2222 struct task_struct *tsk = NULL;
2223
2224 if (entity_is_task(se))
2225 tsk = task_of(se);
2226
2227 if (se->statistics.sleep_start) {
2228 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2229
2230 if ((s64)delta < 0)
2231 delta = 0;
2232
2233 if (unlikely(delta > se->statistics.sleep_max))
2234 se->statistics.sleep_max = delta;
2235
2236 se->statistics.sleep_start = 0;
2237 se->statistics.sum_sleep_runtime += delta;
2238
2239 if (tsk) {
2240 account_scheduler_latency(tsk, delta >> 10, 1);
2241 trace_sched_stat_sleep(tsk, delta);
2242 }
2243 }
2244 if (se->statistics.block_start) {
2245 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2246
2247 if ((s64)delta < 0)
2248 delta = 0;
2249
2250 if (unlikely(delta > se->statistics.block_max))
2251 se->statistics.block_max = delta;
2252
2253 se->statistics.block_start = 0;
2254 se->statistics.sum_sleep_runtime += delta;
2255
2256 if (tsk) {
2257 if (tsk->in_iowait) {
2258 se->statistics.iowait_sum += delta;
2259 se->statistics.iowait_count++;
2260 trace_sched_stat_iowait(tsk, delta);
2261 }
2262
2263 trace_sched_stat_blocked(tsk, delta);
2264
2265 /*
2266 * Blocking time is in units of nanosecs, so shift by
2267 * 20 to get a milliseconds-range estimation of the
2268 * amount of time that the task spent sleeping:
2269 */
2270 if (unlikely(prof_on == SLEEP_PROFILING)) {
2271 profile_hits(SLEEP_PROFILING,
2272 (void *)get_wchan(tsk),
2273 delta >> 20);
2274 }
2275 account_scheduler_latency(tsk, delta >> 10, 0);
2276 }
2277 }
2278 #endif
2279 }
2280
2281 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2282 {
2283 #ifdef CONFIG_SCHED_DEBUG
2284 s64 d = se->vruntime - cfs_rq->min_vruntime;
2285
2286 if (d < 0)
2287 d = -d;
2288
2289 if (d > 3*sysctl_sched_latency)
2290 schedstat_inc(cfs_rq, nr_spread_over);
2291 #endif
2292 }
2293
2294 static void
2295 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2296 {
2297 u64 vruntime = cfs_rq->min_vruntime;
2298
2299 /*
2300 * The 'current' period is already promised to the current tasks,
2301 * however the extra weight of the new task will slow them down a
2302 * little, place the new task so that it fits in the slot that
2303 * stays open at the end.
2304 */
2305 if (initial && sched_feat(START_DEBIT))
2306 vruntime += sched_vslice(cfs_rq, se);
2307
2308 /* sleeps up to a single latency don't count. */
2309 if (!initial) {
2310 unsigned long thresh = sysctl_sched_latency;
2311
2312 /*
2313 * Halve their sleep time's effect, to allow
2314 * for a gentler effect of sleepers:
2315 */
2316 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2317 thresh >>= 1;
2318
2319 vruntime -= thresh;
2320 }
2321
2322 /* ensure we never gain time by being placed backwards. */
2323 se->vruntime = max_vruntime(se->vruntime, vruntime);
2324 }
2325
2326 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2327
2328 static void
2329 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2330 {
2331 /*
2332 * Update the normalized vruntime before updating min_vruntime
2333 * through calling update_curr().
2334 */
2335 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2336 se->vruntime += cfs_rq->min_vruntime;
2337
2338 /*
2339 * Update run-time statistics of the 'current'.
2340 */
2341 update_curr(cfs_rq);
2342 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2343 account_entity_enqueue(cfs_rq, se);
2344 update_cfs_shares(cfs_rq);
2345
2346 if (flags & ENQUEUE_WAKEUP) {
2347 place_entity(cfs_rq, se, 0);
2348 enqueue_sleeper(cfs_rq, se);
2349 }
2350
2351 update_stats_enqueue(cfs_rq, se);
2352 check_spread(cfs_rq, se);
2353 if (se != cfs_rq->curr)
2354 __enqueue_entity(cfs_rq, se);
2355 se->on_rq = 1;
2356
2357 if (cfs_rq->nr_running == 1) {
2358 list_add_leaf_cfs_rq(cfs_rq);
2359 check_enqueue_throttle(cfs_rq);
2360 }
2361 }
2362
2363 static void __clear_buddies_last(struct sched_entity *se)
2364 {
2365 for_each_sched_entity(se) {
2366 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2367 if (cfs_rq->last == se)
2368 cfs_rq->last = NULL;
2369 else
2370 break;
2371 }
2372 }
2373
2374 static void __clear_buddies_next(struct sched_entity *se)
2375 {
2376 for_each_sched_entity(se) {
2377 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2378 if (cfs_rq->next == se)
2379 cfs_rq->next = NULL;
2380 else
2381 break;
2382 }
2383 }
2384
2385 static void __clear_buddies_skip(struct sched_entity *se)
2386 {
2387 for_each_sched_entity(se) {
2388 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2389 if (cfs_rq->skip == se)
2390 cfs_rq->skip = NULL;
2391 else
2392 break;
2393 }
2394 }
2395
2396 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2397 {
2398 if (cfs_rq->last == se)
2399 __clear_buddies_last(se);
2400
2401 if (cfs_rq->next == se)
2402 __clear_buddies_next(se);
2403
2404 if (cfs_rq->skip == se)
2405 __clear_buddies_skip(se);
2406 }
2407
2408 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2409
2410 static void
2411 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2412 {
2413 /*
2414 * Update run-time statistics of the 'current'.
2415 */
2416 update_curr(cfs_rq);
2417 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2418
2419 update_stats_dequeue(cfs_rq, se);
2420 if (flags & DEQUEUE_SLEEP) {
2421 #ifdef CONFIG_SCHEDSTATS
2422 if (entity_is_task(se)) {
2423 struct task_struct *tsk = task_of(se);
2424
2425 if (tsk->state & TASK_INTERRUPTIBLE)
2426 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2427 if (tsk->state & TASK_UNINTERRUPTIBLE)
2428 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2429 }
2430 #endif
2431 }
2432
2433 clear_buddies(cfs_rq, se);
2434
2435 if (se != cfs_rq->curr)
2436 __dequeue_entity(cfs_rq, se);
2437 se->on_rq = 0;
2438 account_entity_dequeue(cfs_rq, se);
2439
2440 /*
2441 * Normalize the entity after updating the min_vruntime because the
2442 * update can refer to the ->curr item and we need to reflect this
2443 * movement in our normalized position.
2444 */
2445 if (!(flags & DEQUEUE_SLEEP))
2446 se->vruntime -= cfs_rq->min_vruntime;
2447
2448 /* return excess runtime on last dequeue */
2449 return_cfs_rq_runtime(cfs_rq);
2450
2451 update_min_vruntime(cfs_rq);
2452 update_cfs_shares(cfs_rq);
2453 }
2454
2455 /*
2456 * Preempt the current task with a newly woken task if needed:
2457 */
2458 static void
2459 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2460 {
2461 unsigned long ideal_runtime, delta_exec;
2462 struct sched_entity *se;
2463 s64 delta;
2464
2465 ideal_runtime = sched_slice(cfs_rq, curr);
2466 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2467 if (delta_exec > ideal_runtime) {
2468 resched_task(rq_of(cfs_rq)->curr);
2469 /*
2470 * The current task ran long enough, ensure it doesn't get
2471 * re-elected due to buddy favours.
2472 */
2473 clear_buddies(cfs_rq, curr);
2474 return;
2475 }
2476
2477 /*
2478 * Ensure that a task that missed wakeup preemption by a
2479 * narrow margin doesn't have to wait for a full slice.
2480 * This also mitigates buddy induced latencies under load.
2481 */
2482 if (delta_exec < sysctl_sched_min_granularity)
2483 return;
2484
2485 se = __pick_first_entity(cfs_rq);
2486 delta = curr->vruntime - se->vruntime;
2487
2488 if (delta < 0)
2489 return;
2490
2491 if (delta > ideal_runtime)
2492 resched_task(rq_of(cfs_rq)->curr);
2493 }
2494
2495 static void
2496 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2497 {
2498 /* 'current' is not kept within the tree. */
2499 if (se->on_rq) {
2500 /*
2501 * Any task has to be enqueued before it get to execute on
2502 * a CPU. So account for the time it spent waiting on the
2503 * runqueue.
2504 */
2505 update_stats_wait_end(cfs_rq, se);
2506 __dequeue_entity(cfs_rq, se);
2507 }
2508
2509 update_stats_curr_start(cfs_rq, se);
2510 cfs_rq->curr = se;
2511 #ifdef CONFIG_SCHEDSTATS
2512 /*
2513 * Track our maximum slice length, if the CPU's load is at
2514 * least twice that of our own weight (i.e. dont track it
2515 * when there are only lesser-weight tasks around):
2516 */
2517 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2518 se->statistics.slice_max = max(se->statistics.slice_max,
2519 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2520 }
2521 #endif
2522 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2523 }
2524
2525 static int
2526 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2527
2528 /*
2529 * Pick the next process, keeping these things in mind, in this order:
2530 * 1) keep things fair between processes/task groups
2531 * 2) pick the "next" process, since someone really wants that to run
2532 * 3) pick the "last" process, for cache locality
2533 * 4) do not run the "skip" process, if something else is available
2534 */
2535 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2536 {
2537 struct sched_entity *se = __pick_first_entity(cfs_rq);
2538 struct sched_entity *left = se;
2539
2540 /*
2541 * Avoid running the skip buddy, if running something else can
2542 * be done without getting too unfair.
2543 */
2544 if (cfs_rq->skip == se) {
2545 struct sched_entity *second = __pick_next_entity(se);
2546 if (second && wakeup_preempt_entity(second, left) < 1)
2547 se = second;
2548 }
2549
2550 /*
2551 * Prefer last buddy, try to return the CPU to a preempted task.
2552 */
2553 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2554 se = cfs_rq->last;
2555
2556 /*
2557 * Someone really wants this to run. If it's not unfair, run it.
2558 */
2559 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2560 se = cfs_rq->next;
2561
2562 clear_buddies(cfs_rq, se);
2563
2564 return se;
2565 }
2566
2567 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2568
2569 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2570 {
2571 /*
2572 * If still on the runqueue then deactivate_task()
2573 * was not called and update_curr() has to be done:
2574 */
2575 if (prev->on_rq)
2576 update_curr(cfs_rq);
2577
2578 /* throttle cfs_rqs exceeding runtime */
2579 check_cfs_rq_runtime(cfs_rq);
2580
2581 check_spread(cfs_rq, prev);
2582 if (prev->on_rq) {
2583 update_stats_wait_start(cfs_rq, prev);
2584 /* Put 'current' back into the tree. */
2585 __enqueue_entity(cfs_rq, prev);
2586 /* in !on_rq case, update occurred at dequeue */
2587 update_entity_load_avg(prev, 1);
2588 }
2589 cfs_rq->curr = NULL;
2590 }
2591
2592 static void
2593 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2594 {
2595 /*
2596 * Update run-time statistics of the 'current'.
2597 */
2598 update_curr(cfs_rq);
2599
2600 /*
2601 * Ensure that runnable average is periodically updated.
2602 */
2603 update_entity_load_avg(curr, 1);
2604 update_cfs_rq_blocked_load(cfs_rq, 1);
2605 update_cfs_shares(cfs_rq);
2606
2607 #ifdef CONFIG_SCHED_HRTICK
2608 /*
2609 * queued ticks are scheduled to match the slice, so don't bother
2610 * validating it and just reschedule.
2611 */
2612 if (queued) {
2613 resched_task(rq_of(cfs_rq)->curr);
2614 return;
2615 }
2616 /*
2617 * don't let the period tick interfere with the hrtick preemption
2618 */
2619 if (!sched_feat(DOUBLE_TICK) &&
2620 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2621 return;
2622 #endif
2623
2624 if (cfs_rq->nr_running > 1)
2625 check_preempt_tick(cfs_rq, curr);
2626 }
2627
2628
2629 /**************************************************
2630 * CFS bandwidth control machinery
2631 */
2632
2633 #ifdef CONFIG_CFS_BANDWIDTH
2634
2635 #ifdef HAVE_JUMP_LABEL
2636 static struct static_key __cfs_bandwidth_used;
2637
2638 static inline bool cfs_bandwidth_used(void)
2639 {
2640 return static_key_false(&__cfs_bandwidth_used);
2641 }
2642
2643 void account_cfs_bandwidth_used(int enabled, int was_enabled)
2644 {
2645 /* only need to count groups transitioning between enabled/!enabled */
2646 if (enabled && !was_enabled)
2647 static_key_slow_inc(&__cfs_bandwidth_used);
2648 else if (!enabled && was_enabled)
2649 static_key_slow_dec(&__cfs_bandwidth_used);
2650 }
2651 #else /* HAVE_JUMP_LABEL */
2652 static bool cfs_bandwidth_used(void)
2653 {
2654 return true;
2655 }
2656
2657 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2658 #endif /* HAVE_JUMP_LABEL */
2659
2660 /*
2661 * default period for cfs group bandwidth.
2662 * default: 0.1s, units: nanoseconds
2663 */
2664 static inline u64 default_cfs_period(void)
2665 {
2666 return 100000000ULL;
2667 }
2668
2669 static inline u64 sched_cfs_bandwidth_slice(void)
2670 {
2671 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2672 }
2673
2674 /*
2675 * Replenish runtime according to assigned quota and update expiration time.
2676 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2677 * additional synchronization around rq->lock.
2678 *
2679 * requires cfs_b->lock
2680 */
2681 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2682 {
2683 u64 now;
2684
2685 if (cfs_b->quota == RUNTIME_INF)
2686 return;
2687
2688 now = sched_clock_cpu(smp_processor_id());
2689 cfs_b->runtime = cfs_b->quota;
2690 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2691 }
2692
2693 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2694 {
2695 return &tg->cfs_bandwidth;
2696 }
2697
2698 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2699 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2700 {
2701 if (unlikely(cfs_rq->throttle_count))
2702 return cfs_rq->throttled_clock_task;
2703
2704 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2705 }
2706
2707 /* returns 0 on failure to allocate runtime */
2708 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2709 {
2710 struct task_group *tg = cfs_rq->tg;
2711 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2712 u64 amount = 0, min_amount, expires;
2713
2714 /* note: this is a positive sum as runtime_remaining <= 0 */
2715 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2716
2717 raw_spin_lock(&cfs_b->lock);
2718 if (cfs_b->quota == RUNTIME_INF)
2719 amount = min_amount;
2720 else {
2721 /*
2722 * If the bandwidth pool has become inactive, then at least one
2723 * period must have elapsed since the last consumption.
2724 * Refresh the global state and ensure bandwidth timer becomes
2725 * active.
2726 */
2727 if (!cfs_b->timer_active) {
2728 __refill_cfs_bandwidth_runtime(cfs_b);
2729 __start_cfs_bandwidth(cfs_b);
2730 }
2731
2732 if (cfs_b->runtime > 0) {
2733 amount = min(cfs_b->runtime, min_amount);
2734 cfs_b->runtime -= amount;
2735 cfs_b->idle = 0;
2736 }
2737 }
2738 expires = cfs_b->runtime_expires;
2739 raw_spin_unlock(&cfs_b->lock);
2740
2741 cfs_rq->runtime_remaining += amount;
2742 /*
2743 * we may have advanced our local expiration to account for allowed
2744 * spread between our sched_clock and the one on which runtime was
2745 * issued.
2746 */
2747 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2748 cfs_rq->runtime_expires = expires;
2749
2750 return cfs_rq->runtime_remaining > 0;
2751 }
2752
2753 /*
2754 * Note: This depends on the synchronization provided by sched_clock and the
2755 * fact that rq->clock snapshots this value.
2756 */
2757 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2758 {
2759 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2760
2761 /* if the deadline is ahead of our clock, nothing to do */
2762 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2763 return;
2764
2765 if (cfs_rq->runtime_remaining < 0)
2766 return;
2767
2768 /*
2769 * If the local deadline has passed we have to consider the
2770 * possibility that our sched_clock is 'fast' and the global deadline
2771 * has not truly expired.
2772 *
2773 * Fortunately we can check determine whether this the case by checking
2774 * whether the global deadline has advanced.
2775 */
2776
2777 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2778 /* extend local deadline, drift is bounded above by 2 ticks */
2779 cfs_rq->runtime_expires += TICK_NSEC;
2780 } else {
2781 /* global deadline is ahead, expiration has passed */
2782 cfs_rq->runtime_remaining = 0;
2783 }
2784 }
2785
2786 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2787 unsigned long delta_exec)
2788 {
2789 /* dock delta_exec before expiring quota (as it could span periods) */
2790 cfs_rq->runtime_remaining -= delta_exec;
2791 expire_cfs_rq_runtime(cfs_rq);
2792
2793 if (likely(cfs_rq->runtime_remaining > 0))
2794 return;
2795
2796 /*
2797 * if we're unable to extend our runtime we resched so that the active
2798 * hierarchy can be throttled
2799 */
2800 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2801 resched_task(rq_of(cfs_rq)->curr);
2802 }
2803
2804 static __always_inline
2805 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2806 {
2807 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2808 return;
2809
2810 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2811 }
2812
2813 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2814 {
2815 return cfs_bandwidth_used() && cfs_rq->throttled;
2816 }
2817
2818 /* check whether cfs_rq, or any parent, is throttled */
2819 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2820 {
2821 return cfs_bandwidth_used() && cfs_rq->throttle_count;
2822 }
2823
2824 /*
2825 * Ensure that neither of the group entities corresponding to src_cpu or
2826 * dest_cpu are members of a throttled hierarchy when performing group
2827 * load-balance operations.
2828 */
2829 static inline int throttled_lb_pair(struct task_group *tg,
2830 int src_cpu, int dest_cpu)
2831 {
2832 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2833
2834 src_cfs_rq = tg->cfs_rq[src_cpu];
2835 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2836
2837 return throttled_hierarchy(src_cfs_rq) ||
2838 throttled_hierarchy(dest_cfs_rq);
2839 }
2840
2841 /* updated child weight may affect parent so we have to do this bottom up */
2842 static int tg_unthrottle_up(struct task_group *tg, void *data)
2843 {
2844 struct rq *rq = data;
2845 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2846
2847 cfs_rq->throttle_count--;
2848 #ifdef CONFIG_SMP
2849 if (!cfs_rq->throttle_count) {
2850 /* adjust cfs_rq_clock_task() */
2851 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
2852 cfs_rq->throttled_clock_task;
2853 }
2854 #endif
2855
2856 return 0;
2857 }
2858
2859 static int tg_throttle_down(struct task_group *tg, void *data)
2860 {
2861 struct rq *rq = data;
2862 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2863
2864 /* group is entering throttled state, stop time */
2865 if (!cfs_rq->throttle_count)
2866 cfs_rq->throttled_clock_task = rq_clock_task(rq);
2867 cfs_rq->throttle_count++;
2868
2869 return 0;
2870 }
2871
2872 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2873 {
2874 struct rq *rq = rq_of(cfs_rq);
2875 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2876 struct sched_entity *se;
2877 long task_delta, dequeue = 1;
2878
2879 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2880
2881 /* freeze hierarchy runnable averages while throttled */
2882 rcu_read_lock();
2883 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2884 rcu_read_unlock();
2885
2886 task_delta = cfs_rq->h_nr_running;
2887 for_each_sched_entity(se) {
2888 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2889 /* throttled entity or throttle-on-deactivate */
2890 if (!se->on_rq)
2891 break;
2892
2893 if (dequeue)
2894 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2895 qcfs_rq->h_nr_running -= task_delta;
2896
2897 if (qcfs_rq->load.weight)
2898 dequeue = 0;
2899 }
2900
2901 if (!se)
2902 rq->nr_running -= task_delta;
2903
2904 cfs_rq->throttled = 1;
2905 cfs_rq->throttled_clock = rq_clock(rq);
2906 raw_spin_lock(&cfs_b->lock);
2907 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2908 raw_spin_unlock(&cfs_b->lock);
2909 }
2910
2911 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2912 {
2913 struct rq *rq = rq_of(cfs_rq);
2914 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2915 struct sched_entity *se;
2916 int enqueue = 1;
2917 long task_delta;
2918
2919 se = cfs_rq->tg->se[cpu_of(rq)];
2920
2921 cfs_rq->throttled = 0;
2922
2923 update_rq_clock(rq);
2924
2925 raw_spin_lock(&cfs_b->lock);
2926 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
2927 list_del_rcu(&cfs_rq->throttled_list);
2928 raw_spin_unlock(&cfs_b->lock);
2929
2930 /* update hierarchical throttle state */
2931 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2932
2933 if (!cfs_rq->load.weight)
2934 return;
2935
2936 task_delta = cfs_rq->h_nr_running;
2937 for_each_sched_entity(se) {
2938 if (se->on_rq)
2939 enqueue = 0;
2940
2941 cfs_rq = cfs_rq_of(se);
2942 if (enqueue)
2943 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2944 cfs_rq->h_nr_running += task_delta;
2945
2946 if (cfs_rq_throttled(cfs_rq))
2947 break;
2948 }
2949
2950 if (!se)
2951 rq->nr_running += task_delta;
2952
2953 /* determine whether we need to wake up potentially idle cpu */
2954 if (rq->curr == rq->idle && rq->cfs.nr_running)
2955 resched_task(rq->curr);
2956 }
2957
2958 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2959 u64 remaining, u64 expires)
2960 {
2961 struct cfs_rq *cfs_rq;
2962 u64 runtime = remaining;
2963
2964 rcu_read_lock();
2965 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2966 throttled_list) {
2967 struct rq *rq = rq_of(cfs_rq);
2968
2969 raw_spin_lock(&rq->lock);
2970 if (!cfs_rq_throttled(cfs_rq))
2971 goto next;
2972
2973 runtime = -cfs_rq->runtime_remaining + 1;
2974 if (runtime > remaining)
2975 runtime = remaining;
2976 remaining -= runtime;
2977
2978 cfs_rq->runtime_remaining += runtime;
2979 cfs_rq->runtime_expires = expires;
2980
2981 /* we check whether we're throttled above */
2982 if (cfs_rq->runtime_remaining > 0)
2983 unthrottle_cfs_rq(cfs_rq);
2984
2985 next:
2986 raw_spin_unlock(&rq->lock);
2987
2988 if (!remaining)
2989 break;
2990 }
2991 rcu_read_unlock();
2992
2993 return remaining;
2994 }
2995
2996 /*
2997 * Responsible for refilling a task_group's bandwidth and unthrottling its
2998 * cfs_rqs as appropriate. If there has been no activity within the last
2999 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3000 * used to track this state.
3001 */
3002 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3003 {
3004 u64 runtime, runtime_expires;
3005 int idle = 1, throttled;
3006
3007 raw_spin_lock(&cfs_b->lock);
3008 /* no need to continue the timer with no bandwidth constraint */
3009 if (cfs_b->quota == RUNTIME_INF)
3010 goto out_unlock;
3011
3012 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3013 /* idle depends on !throttled (for the case of a large deficit) */
3014 idle = cfs_b->idle && !throttled;
3015 cfs_b->nr_periods += overrun;
3016
3017 /* if we're going inactive then everything else can be deferred */
3018 if (idle)
3019 goto out_unlock;
3020
3021 __refill_cfs_bandwidth_runtime(cfs_b);
3022
3023 if (!throttled) {
3024 /* mark as potentially idle for the upcoming period */
3025 cfs_b->idle = 1;
3026 goto out_unlock;
3027 }
3028
3029 /* account preceding periods in which throttling occurred */
3030 cfs_b->nr_throttled += overrun;
3031
3032 /*
3033 * There are throttled entities so we must first use the new bandwidth
3034 * to unthrottle them before making it generally available. This
3035 * ensures that all existing debts will be paid before a new cfs_rq is
3036 * allowed to run.
3037 */
3038 runtime = cfs_b->runtime;
3039 runtime_expires = cfs_b->runtime_expires;
3040 cfs_b->runtime = 0;
3041
3042 /*
3043 * This check is repeated as we are holding onto the new bandwidth
3044 * while we unthrottle. This can potentially race with an unthrottled
3045 * group trying to acquire new bandwidth from the global pool.
3046 */
3047 while (throttled && runtime > 0) {
3048 raw_spin_unlock(&cfs_b->lock);
3049 /* we can't nest cfs_b->lock while distributing bandwidth */
3050 runtime = distribute_cfs_runtime(cfs_b, runtime,
3051 runtime_expires);
3052 raw_spin_lock(&cfs_b->lock);
3053
3054 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3055 }
3056
3057 /* return (any) remaining runtime */
3058 cfs_b->runtime = runtime;
3059 /*
3060 * While we are ensured activity in the period following an
3061 * unthrottle, this also covers the case in which the new bandwidth is
3062 * insufficient to cover the existing bandwidth deficit. (Forcing the
3063 * timer to remain active while there are any throttled entities.)
3064 */
3065 cfs_b->idle = 0;
3066 out_unlock:
3067 if (idle)
3068 cfs_b->timer_active = 0;
3069 raw_spin_unlock(&cfs_b->lock);
3070
3071 return idle;
3072 }
3073
3074 /* a cfs_rq won't donate quota below this amount */
3075 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3076 /* minimum remaining period time to redistribute slack quota */
3077 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3078 /* how long we wait to gather additional slack before distributing */
3079 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3080
3081 /* are we near the end of the current quota period? */
3082 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3083 {
3084 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3085 u64 remaining;
3086
3087 /* if the call-back is running a quota refresh is already occurring */
3088 if (hrtimer_callback_running(refresh_timer))
3089 return 1;
3090
3091 /* is a quota refresh about to occur? */
3092 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3093 if (remaining < min_expire)
3094 return 1;
3095
3096 return 0;
3097 }
3098
3099 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3100 {
3101 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3102
3103 /* if there's a quota refresh soon don't bother with slack */
3104 if (runtime_refresh_within(cfs_b, min_left))
3105 return;
3106
3107 start_bandwidth_timer(&cfs_b->slack_timer,
3108 ns_to_ktime(cfs_bandwidth_slack_period));
3109 }
3110
3111 /* we know any runtime found here is valid as update_curr() precedes return */
3112 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3113 {
3114 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3115 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3116
3117 if (slack_runtime <= 0)
3118 return;
3119
3120 raw_spin_lock(&cfs_b->lock);
3121 if (cfs_b->quota != RUNTIME_INF &&
3122 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3123 cfs_b->runtime += slack_runtime;
3124
3125 /* we are under rq->lock, defer unthrottling using a timer */
3126 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3127 !list_empty(&cfs_b->throttled_cfs_rq))
3128 start_cfs_slack_bandwidth(cfs_b);
3129 }
3130 raw_spin_unlock(&cfs_b->lock);
3131
3132 /* even if it's not valid for return we don't want to try again */
3133 cfs_rq->runtime_remaining -= slack_runtime;
3134 }
3135
3136 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3137 {
3138 if (!cfs_bandwidth_used())
3139 return;
3140
3141 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3142 return;
3143
3144 __return_cfs_rq_runtime(cfs_rq);
3145 }
3146
3147 /*
3148 * This is done with a timer (instead of inline with bandwidth return) since
3149 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3150 */
3151 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3152 {
3153 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3154 u64 expires;
3155
3156 /* confirm we're still not at a refresh boundary */
3157 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3158 return;
3159
3160 raw_spin_lock(&cfs_b->lock);
3161 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3162 runtime = cfs_b->runtime;
3163 cfs_b->runtime = 0;
3164 }
3165 expires = cfs_b->runtime_expires;
3166 raw_spin_unlock(&cfs_b->lock);
3167
3168 if (!runtime)
3169 return;
3170
3171 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3172
3173 raw_spin_lock(&cfs_b->lock);
3174 if (expires == cfs_b->runtime_expires)
3175 cfs_b->runtime = runtime;
3176 raw_spin_unlock(&cfs_b->lock);
3177 }
3178
3179 /*
3180 * When a group wakes up we want to make sure that its quota is not already
3181 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3182 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3183 */
3184 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3185 {
3186 if (!cfs_bandwidth_used())
3187 return;
3188
3189 /* an active group must be handled by the update_curr()->put() path */
3190 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3191 return;
3192
3193 /* ensure the group is not already throttled */
3194 if (cfs_rq_throttled(cfs_rq))
3195 return;
3196
3197 /* update runtime allocation */
3198 account_cfs_rq_runtime(cfs_rq, 0);
3199 if (cfs_rq->runtime_remaining <= 0)
3200 throttle_cfs_rq(cfs_rq);
3201 }
3202
3203 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3204 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3205 {
3206 if (!cfs_bandwidth_used())
3207 return;
3208
3209 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3210 return;
3211
3212 /*
3213 * it's possible for a throttled entity to be forced into a running
3214 * state (e.g. set_curr_task), in this case we're finished.
3215 */
3216 if (cfs_rq_throttled(cfs_rq))
3217 return;
3218
3219 throttle_cfs_rq(cfs_rq);
3220 }
3221
3222 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3223 {
3224 struct cfs_bandwidth *cfs_b =
3225 container_of(timer, struct cfs_bandwidth, slack_timer);
3226 do_sched_cfs_slack_timer(cfs_b);
3227
3228 return HRTIMER_NORESTART;
3229 }
3230
3231 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3232 {
3233 struct cfs_bandwidth *cfs_b =
3234 container_of(timer, struct cfs_bandwidth, period_timer);
3235 ktime_t now;
3236 int overrun;
3237 int idle = 0;
3238
3239 for (;;) {
3240 now = hrtimer_cb_get_time(timer);
3241 overrun = hrtimer_forward(timer, now, cfs_b->period);
3242
3243 if (!overrun)
3244 break;
3245
3246 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3247 }
3248
3249 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3250 }
3251
3252 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3253 {
3254 raw_spin_lock_init(&cfs_b->lock);
3255 cfs_b->runtime = 0;
3256 cfs_b->quota = RUNTIME_INF;
3257 cfs_b->period = ns_to_ktime(default_cfs_period());
3258
3259 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3260 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3261 cfs_b->period_timer.function = sched_cfs_period_timer;
3262 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3263 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3264 }
3265
3266 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3267 {
3268 cfs_rq->runtime_enabled = 0;
3269 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3270 }
3271
3272 /* requires cfs_b->lock, may release to reprogram timer */
3273 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3274 {
3275 /*
3276 * The timer may be active because we're trying to set a new bandwidth
3277 * period or because we're racing with the tear-down path
3278 * (timer_active==0 becomes visible before the hrtimer call-back
3279 * terminates). In either case we ensure that it's re-programmed
3280 */
3281 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3282 raw_spin_unlock(&cfs_b->lock);
3283 /* ensure cfs_b->lock is available while we wait */
3284 hrtimer_cancel(&cfs_b->period_timer);
3285
3286 raw_spin_lock(&cfs_b->lock);
3287 /* if someone else restarted the timer then we're done */
3288 if (cfs_b->timer_active)
3289 return;
3290 }
3291
3292 cfs_b->timer_active = 1;
3293 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3294 }
3295
3296 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3297 {
3298 hrtimer_cancel(&cfs_b->period_timer);
3299 hrtimer_cancel(&cfs_b->slack_timer);
3300 }
3301
3302 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3303 {
3304 struct cfs_rq *cfs_rq;
3305
3306 for_each_leaf_cfs_rq(rq, cfs_rq) {
3307 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3308
3309 if (!cfs_rq->runtime_enabled)
3310 continue;
3311
3312 /*
3313 * clock_task is not advancing so we just need to make sure
3314 * there's some valid quota amount
3315 */
3316 cfs_rq->runtime_remaining = cfs_b->quota;
3317 if (cfs_rq_throttled(cfs_rq))
3318 unthrottle_cfs_rq(cfs_rq);
3319 }
3320 }
3321
3322 #else /* CONFIG_CFS_BANDWIDTH */
3323 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3324 {
3325 return rq_clock_task(rq_of(cfs_rq));
3326 }
3327
3328 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3329 unsigned long delta_exec) {}
3330 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3331 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3332 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3333
3334 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3335 {
3336 return 0;
3337 }
3338
3339 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3340 {
3341 return 0;
3342 }
3343
3344 static inline int throttled_lb_pair(struct task_group *tg,
3345 int src_cpu, int dest_cpu)
3346 {
3347 return 0;
3348 }
3349
3350 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3351
3352 #ifdef CONFIG_FAIR_GROUP_SCHED
3353 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3354 #endif
3355
3356 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3357 {
3358 return NULL;
3359 }
3360 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3361 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3362
3363 #endif /* CONFIG_CFS_BANDWIDTH */
3364
3365 /**************************************************
3366 * CFS operations on tasks:
3367 */
3368
3369 #ifdef CONFIG_SCHED_HRTICK
3370 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3371 {
3372 struct sched_entity *se = &p->se;
3373 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3374
3375 WARN_ON(task_rq(p) != rq);
3376
3377 if (cfs_rq->nr_running > 1) {
3378 u64 slice = sched_slice(cfs_rq, se);
3379 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3380 s64 delta = slice - ran;
3381
3382 if (delta < 0) {
3383 if (rq->curr == p)
3384 resched_task(p);
3385 return;
3386 }
3387
3388 /*
3389 * Don't schedule slices shorter than 10000ns, that just
3390 * doesn't make sense. Rely on vruntime for fairness.
3391 */
3392 if (rq->curr != p)
3393 delta = max_t(s64, 10000LL, delta);
3394
3395 hrtick_start(rq, delta);
3396 }
3397 }
3398
3399 /*
3400 * called from enqueue/dequeue and updates the hrtick when the
3401 * current task is from our class and nr_running is low enough
3402 * to matter.
3403 */
3404 static void hrtick_update(struct rq *rq)
3405 {
3406 struct task_struct *curr = rq->curr;
3407
3408 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3409 return;
3410
3411 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3412 hrtick_start_fair(rq, curr);
3413 }
3414 #else /* !CONFIG_SCHED_HRTICK */
3415 static inline void
3416 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3417 {
3418 }
3419
3420 static inline void hrtick_update(struct rq *rq)
3421 {
3422 }
3423 #endif
3424
3425 /*
3426 * The enqueue_task method is called before nr_running is
3427 * increased. Here we update the fair scheduling stats and
3428 * then put the task into the rbtree:
3429 */
3430 static void
3431 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3432 {
3433 struct cfs_rq *cfs_rq;
3434 struct sched_entity *se = &p->se;
3435
3436 for_each_sched_entity(se) {
3437 if (se->on_rq)
3438 break;
3439 cfs_rq = cfs_rq_of(se);
3440 enqueue_entity(cfs_rq, se, flags);
3441
3442 /*
3443 * end evaluation on encountering a throttled cfs_rq
3444 *
3445 * note: in the case of encountering a throttled cfs_rq we will
3446 * post the final h_nr_running increment below.
3447 */
3448 if (cfs_rq_throttled(cfs_rq))
3449 break;
3450 cfs_rq->h_nr_running++;
3451
3452 flags = ENQUEUE_WAKEUP;
3453 }
3454
3455 for_each_sched_entity(se) {
3456 cfs_rq = cfs_rq_of(se);
3457 cfs_rq->h_nr_running++;
3458
3459 if (cfs_rq_throttled(cfs_rq))
3460 break;
3461
3462 update_cfs_shares(cfs_rq);
3463 update_entity_load_avg(se, 1);
3464 }
3465
3466 if (!se) {
3467 update_rq_runnable_avg(rq, rq->nr_running);
3468 inc_nr_running(rq);
3469 }
3470 hrtick_update(rq);
3471 }
3472
3473 static void set_next_buddy(struct sched_entity *se);
3474
3475 /*
3476 * The dequeue_task method is called before nr_running is
3477 * decreased. We remove the task from the rbtree and
3478 * update the fair scheduling stats:
3479 */
3480 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3481 {
3482 struct cfs_rq *cfs_rq;
3483 struct sched_entity *se = &p->se;
3484 int task_sleep = flags & DEQUEUE_SLEEP;
3485
3486 for_each_sched_entity(se) {
3487 cfs_rq = cfs_rq_of(se);
3488 dequeue_entity(cfs_rq, se, flags);
3489
3490 /*
3491 * end evaluation on encountering a throttled cfs_rq
3492 *
3493 * note: in the case of encountering a throttled cfs_rq we will
3494 * post the final h_nr_running decrement below.
3495 */
3496 if (cfs_rq_throttled(cfs_rq))
3497 break;
3498 cfs_rq->h_nr_running--;
3499
3500 /* Don't dequeue parent if it has other entities besides us */
3501 if (cfs_rq->load.weight) {
3502 /*
3503 * Bias pick_next to pick a task from this cfs_rq, as
3504 * p is sleeping when it is within its sched_slice.
3505 */
3506 if (task_sleep && parent_entity(se))
3507 set_next_buddy(parent_entity(se));
3508
3509 /* avoid re-evaluating load for this entity */
3510 se = parent_entity(se);
3511 break;
3512 }
3513 flags |= DEQUEUE_SLEEP;
3514 }
3515
3516 for_each_sched_entity(se) {
3517 cfs_rq = cfs_rq_of(se);
3518 cfs_rq->h_nr_running--;
3519
3520 if (cfs_rq_throttled(cfs_rq))
3521 break;
3522
3523 update_cfs_shares(cfs_rq);
3524 update_entity_load_avg(se, 1);
3525 }
3526
3527 if (!se) {
3528 dec_nr_running(rq);
3529 update_rq_runnable_avg(rq, 1);
3530 }
3531 hrtick_update(rq);
3532 }
3533
3534 #ifdef CONFIG_SMP
3535 /* Used instead of source_load when we know the type == 0 */
3536 static unsigned long weighted_cpuload(const int cpu)
3537 {
3538 return cpu_rq(cpu)->cfs.runnable_load_avg;
3539 }
3540
3541 /*
3542 * Return a low guess at the load of a migration-source cpu weighted
3543 * according to the scheduling class and "nice" value.
3544 *
3545 * We want to under-estimate the load of migration sources, to
3546 * balance conservatively.
3547 */
3548 static unsigned long source_load(int cpu, int type)
3549 {
3550 struct rq *rq = cpu_rq(cpu);
3551 unsigned long total = weighted_cpuload(cpu);
3552
3553 if (type == 0 || !sched_feat(LB_BIAS))
3554 return total;
3555
3556 return min(rq->cpu_load[type-1], total);
3557 }
3558
3559 /*
3560 * Return a high guess at the load of a migration-target cpu weighted
3561 * according to the scheduling class and "nice" value.
3562 */
3563 static unsigned long target_load(int cpu, int type)
3564 {
3565 struct rq *rq = cpu_rq(cpu);
3566 unsigned long total = weighted_cpuload(cpu);
3567
3568 if (type == 0 || !sched_feat(LB_BIAS))
3569 return total;
3570
3571 return max(rq->cpu_load[type-1], total);
3572 }
3573
3574 static unsigned long power_of(int cpu)
3575 {
3576 return cpu_rq(cpu)->cpu_power;
3577 }
3578
3579 static unsigned long cpu_avg_load_per_task(int cpu)
3580 {
3581 struct rq *rq = cpu_rq(cpu);
3582 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3583 unsigned long load_avg = rq->cfs.runnable_load_avg;
3584
3585 if (nr_running)
3586 return load_avg / nr_running;
3587
3588 return 0;
3589 }
3590
3591 static void record_wakee(struct task_struct *p)
3592 {
3593 /*
3594 * Rough decay (wiping) for cost saving, don't worry
3595 * about the boundary, really active task won't care
3596 * about the loss.
3597 */
3598 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3599 current->wakee_flips = 0;
3600 current->wakee_flip_decay_ts = jiffies;
3601 }
3602
3603 if (current->last_wakee != p) {
3604 current->last_wakee = p;
3605 current->wakee_flips++;
3606 }
3607 }
3608
3609 static void task_waking_fair(struct task_struct *p)
3610 {
3611 struct sched_entity *se = &p->se;
3612 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3613 u64 min_vruntime;
3614
3615 #ifndef CONFIG_64BIT
3616 u64 min_vruntime_copy;
3617
3618 do {
3619 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3620 smp_rmb();
3621 min_vruntime = cfs_rq->min_vruntime;
3622 } while (min_vruntime != min_vruntime_copy);
3623 #else
3624 min_vruntime = cfs_rq->min_vruntime;
3625 #endif
3626
3627 se->vruntime -= min_vruntime;
3628 record_wakee(p);
3629 }
3630
3631 #ifdef CONFIG_FAIR_GROUP_SCHED
3632 /*
3633 * effective_load() calculates the load change as seen from the root_task_group
3634 *
3635 * Adding load to a group doesn't make a group heavier, but can cause movement
3636 * of group shares between cpus. Assuming the shares were perfectly aligned one
3637 * can calculate the shift in shares.
3638 *
3639 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3640 * on this @cpu and results in a total addition (subtraction) of @wg to the
3641 * total group weight.
3642 *
3643 * Given a runqueue weight distribution (rw_i) we can compute a shares
3644 * distribution (s_i) using:
3645 *
3646 * s_i = rw_i / \Sum rw_j (1)
3647 *
3648 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3649 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3650 * shares distribution (s_i):
3651 *
3652 * rw_i = { 2, 4, 1, 0 }
3653 * s_i = { 2/7, 4/7, 1/7, 0 }
3654 *
3655 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3656 * task used to run on and the CPU the waker is running on), we need to
3657 * compute the effect of waking a task on either CPU and, in case of a sync
3658 * wakeup, compute the effect of the current task going to sleep.
3659 *
3660 * So for a change of @wl to the local @cpu with an overall group weight change
3661 * of @wl we can compute the new shares distribution (s'_i) using:
3662 *
3663 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3664 *
3665 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3666 * differences in waking a task to CPU 0. The additional task changes the
3667 * weight and shares distributions like:
3668 *
3669 * rw'_i = { 3, 4, 1, 0 }
3670 * s'_i = { 3/8, 4/8, 1/8, 0 }
3671 *
3672 * We can then compute the difference in effective weight by using:
3673 *
3674 * dw_i = S * (s'_i - s_i) (3)
3675 *
3676 * Where 'S' is the group weight as seen by its parent.
3677 *
3678 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3679 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3680 * 4/7) times the weight of the group.
3681 */
3682 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3683 {
3684 struct sched_entity *se = tg->se[cpu];
3685
3686 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
3687 return wl;
3688
3689 for_each_sched_entity(se) {
3690 long w, W;
3691
3692 tg = se->my_q->tg;
3693
3694 /*
3695 * W = @wg + \Sum rw_j
3696 */
3697 W = wg + calc_tg_weight(tg, se->my_q);
3698
3699 /*
3700 * w = rw_i + @wl
3701 */
3702 w = se->my_q->load.weight + wl;
3703
3704 /*
3705 * wl = S * s'_i; see (2)
3706 */
3707 if (W > 0 && w < W)
3708 wl = (w * tg->shares) / W;
3709 else
3710 wl = tg->shares;
3711
3712 /*
3713 * Per the above, wl is the new se->load.weight value; since
3714 * those are clipped to [MIN_SHARES, ...) do so now. See
3715 * calc_cfs_shares().
3716 */
3717 if (wl < MIN_SHARES)
3718 wl = MIN_SHARES;
3719
3720 /*
3721 * wl = dw_i = S * (s'_i - s_i); see (3)
3722 */
3723 wl -= se->load.weight;
3724
3725 /*
3726 * Recursively apply this logic to all parent groups to compute
3727 * the final effective load change on the root group. Since
3728 * only the @tg group gets extra weight, all parent groups can
3729 * only redistribute existing shares. @wl is the shift in shares
3730 * resulting from this level per the above.
3731 */
3732 wg = 0;
3733 }
3734
3735 return wl;
3736 }
3737 #else
3738
3739 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3740 {
3741 return wl;
3742 }
3743
3744 #endif
3745
3746 static int wake_wide(struct task_struct *p)
3747 {
3748 int factor = this_cpu_read(sd_llc_size);
3749
3750 /*
3751 * Yeah, it's the switching-frequency, could means many wakee or
3752 * rapidly switch, use factor here will just help to automatically
3753 * adjust the loose-degree, so bigger node will lead to more pull.
3754 */
3755 if (p->wakee_flips > factor) {
3756 /*
3757 * wakee is somewhat hot, it needs certain amount of cpu
3758 * resource, so if waker is far more hot, prefer to leave
3759 * it alone.
3760 */
3761 if (current->wakee_flips > (factor * p->wakee_flips))
3762 return 1;
3763 }
3764
3765 return 0;
3766 }
3767
3768 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3769 {
3770 s64 this_load, load;
3771 int idx, this_cpu, prev_cpu;
3772 unsigned long tl_per_task;
3773 struct task_group *tg;
3774 unsigned long weight;
3775 int balanced;
3776
3777 /*
3778 * If we wake multiple tasks be careful to not bounce
3779 * ourselves around too much.
3780 */
3781 if (wake_wide(p))
3782 return 0;
3783
3784 idx = sd->wake_idx;
3785 this_cpu = smp_processor_id();
3786 prev_cpu = task_cpu(p);
3787 load = source_load(prev_cpu, idx);
3788 this_load = target_load(this_cpu, idx);
3789
3790 /*
3791 * If sync wakeup then subtract the (maximum possible)
3792 * effect of the currently running task from the load
3793 * of the current CPU:
3794 */
3795 if (sync) {
3796 tg = task_group(current);
3797 weight = current->se.load.weight;
3798
3799 this_load += effective_load(tg, this_cpu, -weight, -weight);
3800 load += effective_load(tg, prev_cpu, 0, -weight);
3801 }
3802
3803 tg = task_group(p);
3804 weight = p->se.load.weight;
3805
3806 /*
3807 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3808 * due to the sync cause above having dropped this_load to 0, we'll
3809 * always have an imbalance, but there's really nothing you can do
3810 * about that, so that's good too.
3811 *
3812 * Otherwise check if either cpus are near enough in load to allow this
3813 * task to be woken on this_cpu.
3814 */
3815 if (this_load > 0) {
3816 s64 this_eff_load, prev_eff_load;
3817
3818 this_eff_load = 100;
3819 this_eff_load *= power_of(prev_cpu);
3820 this_eff_load *= this_load +
3821 effective_load(tg, this_cpu, weight, weight);
3822
3823 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3824 prev_eff_load *= power_of(this_cpu);
3825 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3826
3827 balanced = this_eff_load <= prev_eff_load;
3828 } else
3829 balanced = true;
3830
3831 /*
3832 * If the currently running task will sleep within
3833 * a reasonable amount of time then attract this newly
3834 * woken task:
3835 */
3836 if (sync && balanced)
3837 return 1;
3838
3839 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3840 tl_per_task = cpu_avg_load_per_task(this_cpu);
3841
3842 if (balanced ||
3843 (this_load <= load &&
3844 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3845 /*
3846 * This domain has SD_WAKE_AFFINE and
3847 * p is cache cold in this domain, and
3848 * there is no bad imbalance.
3849 */
3850 schedstat_inc(sd, ttwu_move_affine);
3851 schedstat_inc(p, se.statistics.nr_wakeups_affine);
3852
3853 return 1;
3854 }
3855 return 0;
3856 }
3857
3858 /*
3859 * find_idlest_group finds and returns the least busy CPU group within the
3860 * domain.
3861 */
3862 static struct sched_group *
3863 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3864 int this_cpu, int load_idx)
3865 {
3866 struct sched_group *idlest = NULL, *group = sd->groups;
3867 unsigned long min_load = ULONG_MAX, this_load = 0;
3868 int imbalance = 100 + (sd->imbalance_pct-100)/2;
3869
3870 do {
3871 unsigned long load, avg_load;
3872 int local_group;
3873 int i;
3874
3875 /* Skip over this group if it has no CPUs allowed */
3876 if (!cpumask_intersects(sched_group_cpus(group),
3877 tsk_cpus_allowed(p)))
3878 continue;
3879
3880 local_group = cpumask_test_cpu(this_cpu,
3881 sched_group_cpus(group));
3882
3883 /* Tally up the load of all CPUs in the group */
3884 avg_load = 0;
3885
3886 for_each_cpu(i, sched_group_cpus(group)) {
3887 /* Bias balancing toward cpus of our domain */
3888 if (local_group)
3889 load = source_load(i, load_idx);
3890 else
3891 load = target_load(i, load_idx);
3892
3893 avg_load += load;
3894 }
3895
3896 /* Adjust by relative CPU power of the group */
3897 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3898
3899 if (local_group) {
3900 this_load = avg_load;
3901 } else if (avg_load < min_load) {
3902 min_load = avg_load;
3903 idlest = group;
3904 }
3905 } while (group = group->next, group != sd->groups);
3906
3907 if (!idlest || 100*this_load < imbalance*min_load)
3908 return NULL;
3909 return idlest;
3910 }
3911
3912 /*
3913 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3914 */
3915 static int
3916 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3917 {
3918 unsigned long load, min_load = ULONG_MAX;
3919 int idlest = -1;
3920 int i;
3921
3922 /* Traverse only the allowed CPUs */
3923 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3924 load = weighted_cpuload(i);
3925
3926 if (load < min_load || (load == min_load && i == this_cpu)) {
3927 min_load = load;
3928 idlest = i;
3929 }
3930 }
3931
3932 return idlest;
3933 }
3934
3935 /*
3936 * Try and locate an idle CPU in the sched_domain.
3937 */
3938 static int select_idle_sibling(struct task_struct *p, int target)
3939 {
3940 struct sched_domain *sd;
3941 struct sched_group *sg;
3942 int i = task_cpu(p);
3943
3944 if (idle_cpu(target))
3945 return target;
3946
3947 /*
3948 * If the prevous cpu is cache affine and idle, don't be stupid.
3949 */
3950 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3951 return i;
3952
3953 /*
3954 * Otherwise, iterate the domains and find an elegible idle cpu.
3955 */
3956 sd = rcu_dereference(per_cpu(sd_llc, target));
3957 for_each_lower_domain(sd) {
3958 sg = sd->groups;
3959 do {
3960 if (!cpumask_intersects(sched_group_cpus(sg),
3961 tsk_cpus_allowed(p)))
3962 goto next;
3963
3964 for_each_cpu(i, sched_group_cpus(sg)) {
3965 if (i == target || !idle_cpu(i))
3966 goto next;
3967 }
3968
3969 target = cpumask_first_and(sched_group_cpus(sg),
3970 tsk_cpus_allowed(p));
3971 goto done;
3972 next:
3973 sg = sg->next;
3974 } while (sg != sd->groups);
3975 }
3976 done:
3977 return target;
3978 }
3979
3980 /*
3981 * sched_balance_self: balance the current task (running on cpu) in domains
3982 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3983 * SD_BALANCE_EXEC.
3984 *
3985 * Balance, ie. select the least loaded group.
3986 *
3987 * Returns the target CPU number, or the same CPU if no balancing is needed.
3988 *
3989 * preempt must be disabled.
3990 */
3991 static int
3992 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
3993 {
3994 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3995 int cpu = smp_processor_id();
3996 int new_cpu = cpu;
3997 int want_affine = 0;
3998 int sync = wake_flags & WF_SYNC;
3999
4000 if (p->nr_cpus_allowed == 1)
4001 return prev_cpu;
4002
4003 if (sd_flag & SD_BALANCE_WAKE) {
4004 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4005 want_affine = 1;
4006 new_cpu = prev_cpu;
4007 }
4008
4009 rcu_read_lock();
4010 for_each_domain(cpu, tmp) {
4011 if (!(tmp->flags & SD_LOAD_BALANCE))
4012 continue;
4013
4014 /*
4015 * If both cpu and prev_cpu are part of this domain,
4016 * cpu is a valid SD_WAKE_AFFINE target.
4017 */
4018 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4019 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4020 affine_sd = tmp;
4021 break;
4022 }
4023
4024 if (tmp->flags & sd_flag)
4025 sd = tmp;
4026 }
4027
4028 if (affine_sd) {
4029 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4030 prev_cpu = cpu;
4031
4032 new_cpu = select_idle_sibling(p, prev_cpu);
4033 goto unlock;
4034 }
4035
4036 while (sd) {
4037 int load_idx = sd->forkexec_idx;
4038 struct sched_group *group;
4039 int weight;
4040
4041 if (!(sd->flags & sd_flag)) {
4042 sd = sd->child;
4043 continue;
4044 }
4045
4046 if (sd_flag & SD_BALANCE_WAKE)
4047 load_idx = sd->wake_idx;
4048
4049 group = find_idlest_group(sd, p, cpu, load_idx);
4050 if (!group) {
4051 sd = sd->child;
4052 continue;
4053 }
4054
4055 new_cpu = find_idlest_cpu(group, p, cpu);
4056 if (new_cpu == -1 || new_cpu == cpu) {
4057 /* Now try balancing at a lower domain level of cpu */
4058 sd = sd->child;
4059 continue;
4060 }
4061
4062 /* Now try balancing at a lower domain level of new_cpu */
4063 cpu = new_cpu;
4064 weight = sd->span_weight;
4065 sd = NULL;
4066 for_each_domain(cpu, tmp) {
4067 if (weight <= tmp->span_weight)
4068 break;
4069 if (tmp->flags & sd_flag)
4070 sd = tmp;
4071 }
4072 /* while loop will break here if sd == NULL */
4073 }
4074 unlock:
4075 rcu_read_unlock();
4076
4077 return new_cpu;
4078 }
4079
4080 /*
4081 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4082 * cfs_rq_of(p) references at time of call are still valid and identify the
4083 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4084 * other assumptions, including the state of rq->lock, should be made.
4085 */
4086 static void
4087 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4088 {
4089 struct sched_entity *se = &p->se;
4090 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4091
4092 /*
4093 * Load tracking: accumulate removed load so that it can be processed
4094 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4095 * to blocked load iff they have a positive decay-count. It can never
4096 * be negative here since on-rq tasks have decay-count == 0.
4097 */
4098 if (se->avg.decay_count) {
4099 se->avg.decay_count = -__synchronize_entity_decay(se);
4100 atomic_long_add(se->avg.load_avg_contrib,
4101 &cfs_rq->removed_load);
4102 }
4103 }
4104 #endif /* CONFIG_SMP */
4105
4106 static unsigned long
4107 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4108 {
4109 unsigned long gran = sysctl_sched_wakeup_granularity;
4110
4111 /*
4112 * Since its curr running now, convert the gran from real-time
4113 * to virtual-time in his units.
4114 *
4115 * By using 'se' instead of 'curr' we penalize light tasks, so
4116 * they get preempted easier. That is, if 'se' < 'curr' then
4117 * the resulting gran will be larger, therefore penalizing the
4118 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4119 * be smaller, again penalizing the lighter task.
4120 *
4121 * This is especially important for buddies when the leftmost
4122 * task is higher priority than the buddy.
4123 */
4124 return calc_delta_fair(gran, se);
4125 }
4126
4127 /*
4128 * Should 'se' preempt 'curr'.
4129 *
4130 * |s1
4131 * |s2
4132 * |s3
4133 * g
4134 * |<--->|c
4135 *
4136 * w(c, s1) = -1
4137 * w(c, s2) = 0
4138 * w(c, s3) = 1
4139 *
4140 */
4141 static int
4142 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4143 {
4144 s64 gran, vdiff = curr->vruntime - se->vruntime;
4145
4146 if (vdiff <= 0)
4147 return -1;
4148
4149 gran = wakeup_gran(curr, se);
4150 if (vdiff > gran)
4151 return 1;
4152
4153 return 0;
4154 }
4155
4156 static void set_last_buddy(struct sched_entity *se)
4157 {
4158 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4159 return;
4160
4161 for_each_sched_entity(se)
4162 cfs_rq_of(se)->last = se;
4163 }
4164
4165 static void set_next_buddy(struct sched_entity *se)
4166 {
4167 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4168 return;
4169
4170 for_each_sched_entity(se)
4171 cfs_rq_of(se)->next = se;
4172 }
4173
4174 static void set_skip_buddy(struct sched_entity *se)
4175 {
4176 for_each_sched_entity(se)
4177 cfs_rq_of(se)->skip = se;
4178 }
4179
4180 /*
4181 * Preempt the current task with a newly woken task if needed:
4182 */
4183 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4184 {
4185 struct task_struct *curr = rq->curr;
4186 struct sched_entity *se = &curr->se, *pse = &p->se;
4187 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4188 int scale = cfs_rq->nr_running >= sched_nr_latency;
4189 int next_buddy_marked = 0;
4190
4191 if (unlikely(se == pse))
4192 return;
4193
4194 /*
4195 * This is possible from callers such as move_task(), in which we
4196 * unconditionally check_prempt_curr() after an enqueue (which may have
4197 * lead to a throttle). This both saves work and prevents false
4198 * next-buddy nomination below.
4199 */
4200 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4201 return;
4202
4203 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4204 set_next_buddy(pse);
4205 next_buddy_marked = 1;
4206 }
4207
4208 /*
4209 * We can come here with TIF_NEED_RESCHED already set from new task
4210 * wake up path.
4211 *
4212 * Note: this also catches the edge-case of curr being in a throttled
4213 * group (e.g. via set_curr_task), since update_curr() (in the
4214 * enqueue of curr) will have resulted in resched being set. This
4215 * prevents us from potentially nominating it as a false LAST_BUDDY
4216 * below.
4217 */
4218 if (test_tsk_need_resched(curr))
4219 return;
4220
4221 /* Idle tasks are by definition preempted by non-idle tasks. */
4222 if (unlikely(curr->policy == SCHED_IDLE) &&
4223 likely(p->policy != SCHED_IDLE))
4224 goto preempt;
4225
4226 /*
4227 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4228 * is driven by the tick):
4229 */
4230 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4231 return;
4232
4233 find_matching_se(&se, &pse);
4234 update_curr(cfs_rq_of(se));
4235 BUG_ON(!pse);
4236 if (wakeup_preempt_entity(se, pse) == 1) {
4237 /*
4238 * Bias pick_next to pick the sched entity that is
4239 * triggering this preemption.
4240 */
4241 if (!next_buddy_marked)
4242 set_next_buddy(pse);
4243 goto preempt;
4244 }
4245
4246 return;
4247
4248 preempt:
4249 resched_task(curr);
4250 /*
4251 * Only set the backward buddy when the current task is still
4252 * on the rq. This can happen when a wakeup gets interleaved
4253 * with schedule on the ->pre_schedule() or idle_balance()
4254 * point, either of which can * drop the rq lock.
4255 *
4256 * Also, during early boot the idle thread is in the fair class,
4257 * for obvious reasons its a bad idea to schedule back to it.
4258 */
4259 if (unlikely(!se->on_rq || curr == rq->idle))
4260 return;
4261
4262 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4263 set_last_buddy(se);
4264 }
4265
4266 static struct task_struct *pick_next_task_fair(struct rq *rq)
4267 {
4268 struct task_struct *p;
4269 struct cfs_rq *cfs_rq = &rq->cfs;
4270 struct sched_entity *se;
4271
4272 if (!cfs_rq->nr_running)
4273 return NULL;
4274
4275 do {
4276 se = pick_next_entity(cfs_rq);
4277 set_next_entity(cfs_rq, se);
4278 cfs_rq = group_cfs_rq(se);
4279 } while (cfs_rq);
4280
4281 p = task_of(se);
4282 if (hrtick_enabled(rq))
4283 hrtick_start_fair(rq, p);
4284
4285 return p;
4286 }
4287
4288 /*
4289 * Account for a descheduled task:
4290 */
4291 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4292 {
4293 struct sched_entity *se = &prev->se;
4294 struct cfs_rq *cfs_rq;
4295
4296 for_each_sched_entity(se) {
4297 cfs_rq = cfs_rq_of(se);
4298 put_prev_entity(cfs_rq, se);
4299 }
4300 }
4301
4302 /*
4303 * sched_yield() is very simple
4304 *
4305 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4306 */
4307 static void yield_task_fair(struct rq *rq)
4308 {
4309 struct task_struct *curr = rq->curr;
4310 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4311 struct sched_entity *se = &curr->se;
4312
4313 /*
4314 * Are we the only task in the tree?
4315 */
4316 if (unlikely(rq->nr_running == 1))
4317 return;
4318
4319 clear_buddies(cfs_rq, se);
4320
4321 if (curr->policy != SCHED_BATCH) {
4322 update_rq_clock(rq);
4323 /*
4324 * Update run-time statistics of the 'current'.
4325 */
4326 update_curr(cfs_rq);
4327 /*
4328 * Tell update_rq_clock() that we've just updated,
4329 * so we don't do microscopic update in schedule()
4330 * and double the fastpath cost.
4331 */
4332 rq->skip_clock_update = 1;
4333 }
4334
4335 set_skip_buddy(se);
4336 }
4337
4338 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4339 {
4340 struct sched_entity *se = &p->se;
4341
4342 /* throttled hierarchies are not runnable */
4343 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4344 return false;
4345
4346 /* Tell the scheduler that we'd really like pse to run next. */
4347 set_next_buddy(se);
4348
4349 yield_task_fair(rq);
4350
4351 return true;
4352 }
4353
4354 #ifdef CONFIG_SMP
4355 /**************************************************
4356 * Fair scheduling class load-balancing methods.
4357 *
4358 * BASICS
4359 *
4360 * The purpose of load-balancing is to achieve the same basic fairness the
4361 * per-cpu scheduler provides, namely provide a proportional amount of compute
4362 * time to each task. This is expressed in the following equation:
4363 *
4364 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4365 *
4366 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4367 * W_i,0 is defined as:
4368 *
4369 * W_i,0 = \Sum_j w_i,j (2)
4370 *
4371 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4372 * is derived from the nice value as per prio_to_weight[].
4373 *
4374 * The weight average is an exponential decay average of the instantaneous
4375 * weight:
4376 *
4377 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4378 *
4379 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4380 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4381 * can also include other factors [XXX].
4382 *
4383 * To achieve this balance we define a measure of imbalance which follows
4384 * directly from (1):
4385 *
4386 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4387 *
4388 * We them move tasks around to minimize the imbalance. In the continuous
4389 * function space it is obvious this converges, in the discrete case we get
4390 * a few fun cases generally called infeasible weight scenarios.
4391 *
4392 * [XXX expand on:
4393 * - infeasible weights;
4394 * - local vs global optima in the discrete case. ]
4395 *
4396 *
4397 * SCHED DOMAINS
4398 *
4399 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4400 * for all i,j solution, we create a tree of cpus that follows the hardware
4401 * topology where each level pairs two lower groups (or better). This results
4402 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4403 * tree to only the first of the previous level and we decrease the frequency
4404 * of load-balance at each level inv. proportional to the number of cpus in
4405 * the groups.
4406 *
4407 * This yields:
4408 *
4409 * log_2 n 1 n
4410 * \Sum { --- * --- * 2^i } = O(n) (5)
4411 * i = 0 2^i 2^i
4412 * `- size of each group
4413 * | | `- number of cpus doing load-balance
4414 * | `- freq
4415 * `- sum over all levels
4416 *
4417 * Coupled with a limit on how many tasks we can migrate every balance pass,
4418 * this makes (5) the runtime complexity of the balancer.
4419 *
4420 * An important property here is that each CPU is still (indirectly) connected
4421 * to every other cpu in at most O(log n) steps:
4422 *
4423 * The adjacency matrix of the resulting graph is given by:
4424 *
4425 * log_2 n
4426 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4427 * k = 0
4428 *
4429 * And you'll find that:
4430 *
4431 * A^(log_2 n)_i,j != 0 for all i,j (7)
4432 *
4433 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4434 * The task movement gives a factor of O(m), giving a convergence complexity
4435 * of:
4436 *
4437 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4438 *
4439 *
4440 * WORK CONSERVING
4441 *
4442 * In order to avoid CPUs going idle while there's still work to do, new idle
4443 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4444 * tree itself instead of relying on other CPUs to bring it work.
4445 *
4446 * This adds some complexity to both (5) and (8) but it reduces the total idle
4447 * time.
4448 *
4449 * [XXX more?]
4450 *
4451 *
4452 * CGROUPS
4453 *
4454 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4455 *
4456 * s_k,i
4457 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4458 * S_k
4459 *
4460 * Where
4461 *
4462 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4463 *
4464 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4465 *
4466 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4467 * property.
4468 *
4469 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4470 * rewrite all of this once again.]
4471 */
4472
4473 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4474
4475 #define LBF_ALL_PINNED 0x01
4476 #define LBF_NEED_BREAK 0x02
4477 #define LBF_DST_PINNED 0x04
4478 #define LBF_SOME_PINNED 0x08
4479
4480 struct lb_env {
4481 struct sched_domain *sd;
4482
4483 struct rq *src_rq;
4484 int src_cpu;
4485
4486 int dst_cpu;
4487 struct rq *dst_rq;
4488
4489 struct cpumask *dst_grpmask;
4490 int new_dst_cpu;
4491 enum cpu_idle_type idle;
4492 long imbalance;
4493 /* The set of CPUs under consideration for load-balancing */
4494 struct cpumask *cpus;
4495
4496 unsigned int flags;
4497
4498 unsigned int loop;
4499 unsigned int loop_break;
4500 unsigned int loop_max;
4501 };
4502
4503 /*
4504 * move_task - move a task from one runqueue to another runqueue.
4505 * Both runqueues must be locked.
4506 */
4507 static void move_task(struct task_struct *p, struct lb_env *env)
4508 {
4509 deactivate_task(env->src_rq, p, 0);
4510 set_task_cpu(p, env->dst_cpu);
4511 activate_task(env->dst_rq, p, 0);
4512 check_preempt_curr(env->dst_rq, p, 0);
4513 #ifdef CONFIG_NUMA_BALANCING
4514 if (p->numa_preferred_nid != -1) {
4515 int src_nid = cpu_to_node(env->src_cpu);
4516 int dst_nid = cpu_to_node(env->dst_cpu);
4517
4518 /*
4519 * If the load balancer has moved the task then limit
4520 * migrations from taking place in the short term in
4521 * case this is a short-lived migration.
4522 */
4523 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4524 p->numa_migrate_seq = 0;
4525 }
4526 #endif
4527 }
4528
4529 /*
4530 * Is this task likely cache-hot:
4531 */
4532 static int
4533 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4534 {
4535 s64 delta;
4536
4537 if (p->sched_class != &fair_sched_class)
4538 return 0;
4539
4540 if (unlikely(p->policy == SCHED_IDLE))
4541 return 0;
4542
4543 /*
4544 * Buddy candidates are cache hot:
4545 */
4546 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4547 (&p->se == cfs_rq_of(&p->se)->next ||
4548 &p->se == cfs_rq_of(&p->se)->last))
4549 return 1;
4550
4551 if (sysctl_sched_migration_cost == -1)
4552 return 1;
4553 if (sysctl_sched_migration_cost == 0)
4554 return 0;
4555
4556 delta = now - p->se.exec_start;
4557
4558 return delta < (s64)sysctl_sched_migration_cost;
4559 }
4560
4561 #ifdef CONFIG_NUMA_BALANCING
4562 /* Returns true if the destination node has incurred more faults */
4563 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4564 {
4565 int src_nid, dst_nid;
4566
4567 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4568 !(env->sd->flags & SD_NUMA)) {
4569 return false;
4570 }
4571
4572 src_nid = cpu_to_node(env->src_cpu);
4573 dst_nid = cpu_to_node(env->dst_cpu);
4574
4575 if (src_nid == dst_nid ||
4576 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4577 return false;
4578
4579 if (dst_nid == p->numa_preferred_nid ||
4580 task_faults(p, dst_nid) > task_faults(p, src_nid))
4581 return true;
4582
4583 return false;
4584 }
4585
4586
4587 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4588 {
4589 int src_nid, dst_nid;
4590
4591 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4592 return false;
4593
4594 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4595 return false;
4596
4597 src_nid = cpu_to_node(env->src_cpu);
4598 dst_nid = cpu_to_node(env->dst_cpu);
4599
4600 if (src_nid == dst_nid ||
4601 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4602 return false;
4603
4604 if (task_faults(p, dst_nid) < task_faults(p, src_nid))
4605 return true;
4606
4607 return false;
4608 }
4609
4610 #else
4611 static inline bool migrate_improves_locality(struct task_struct *p,
4612 struct lb_env *env)
4613 {
4614 return false;
4615 }
4616
4617 static inline bool migrate_degrades_locality(struct task_struct *p,
4618 struct lb_env *env)
4619 {
4620 return false;
4621 }
4622 #endif
4623
4624 /*
4625 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4626 */
4627 static
4628 int can_migrate_task(struct task_struct *p, struct lb_env *env)
4629 {
4630 int tsk_cache_hot = 0;
4631 /*
4632 * We do not migrate tasks that are:
4633 * 1) throttled_lb_pair, or
4634 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4635 * 3) running (obviously), or
4636 * 4) are cache-hot on their current CPU.
4637 */
4638 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4639 return 0;
4640
4641 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4642 int cpu;
4643
4644 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4645
4646 env->flags |= LBF_SOME_PINNED;
4647
4648 /*
4649 * Remember if this task can be migrated to any other cpu in
4650 * our sched_group. We may want to revisit it if we couldn't
4651 * meet load balance goals by pulling other tasks on src_cpu.
4652 *
4653 * Also avoid computing new_dst_cpu if we have already computed
4654 * one in current iteration.
4655 */
4656 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4657 return 0;
4658
4659 /* Prevent to re-select dst_cpu via env's cpus */
4660 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4661 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4662 env->flags |= LBF_DST_PINNED;
4663 env->new_dst_cpu = cpu;
4664 break;
4665 }
4666 }
4667
4668 return 0;
4669 }
4670
4671 /* Record that we found atleast one task that could run on dst_cpu */
4672 env->flags &= ~LBF_ALL_PINNED;
4673
4674 if (task_running(env->src_rq, p)) {
4675 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4676 return 0;
4677 }
4678
4679 /*
4680 * Aggressive migration if:
4681 * 1) destination numa is preferred
4682 * 2) task is cache cold, or
4683 * 3) too many balance attempts have failed.
4684 */
4685 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4686 if (!tsk_cache_hot)
4687 tsk_cache_hot = migrate_degrades_locality(p, env);
4688
4689 if (migrate_improves_locality(p, env)) {
4690 #ifdef CONFIG_SCHEDSTATS
4691 if (tsk_cache_hot) {
4692 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4693 schedstat_inc(p, se.statistics.nr_forced_migrations);
4694 }
4695 #endif
4696 return 1;
4697 }
4698
4699 if (!tsk_cache_hot ||
4700 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4701
4702 if (tsk_cache_hot) {
4703 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4704 schedstat_inc(p, se.statistics.nr_forced_migrations);
4705 }
4706
4707 return 1;
4708 }
4709
4710 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4711 return 0;
4712 }
4713
4714 /*
4715 * move_one_task tries to move exactly one task from busiest to this_rq, as
4716 * part of active balancing operations within "domain".
4717 * Returns 1 if successful and 0 otherwise.
4718 *
4719 * Called with both runqueues locked.
4720 */
4721 static int move_one_task(struct lb_env *env)
4722 {
4723 struct task_struct *p, *n;
4724
4725 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4726 if (!can_migrate_task(p, env))
4727 continue;
4728
4729 move_task(p, env);
4730 /*
4731 * Right now, this is only the second place move_task()
4732 * is called, so we can safely collect move_task()
4733 * stats here rather than inside move_task().
4734 */
4735 schedstat_inc(env->sd, lb_gained[env->idle]);
4736 return 1;
4737 }
4738 return 0;
4739 }
4740
4741 static const unsigned int sched_nr_migrate_break = 32;
4742
4743 /*
4744 * move_tasks tries to move up to imbalance weighted load from busiest to
4745 * this_rq, as part of a balancing operation within domain "sd".
4746 * Returns 1 if successful and 0 otherwise.
4747 *
4748 * Called with both runqueues locked.
4749 */
4750 static int move_tasks(struct lb_env *env)
4751 {
4752 struct list_head *tasks = &env->src_rq->cfs_tasks;
4753 struct task_struct *p;
4754 unsigned long load;
4755 int pulled = 0;
4756
4757 if (env->imbalance <= 0)
4758 return 0;
4759
4760 while (!list_empty(tasks)) {
4761 p = list_first_entry(tasks, struct task_struct, se.group_node);
4762
4763 env->loop++;
4764 /* We've more or less seen every task there is, call it quits */
4765 if (env->loop > env->loop_max)
4766 break;
4767
4768 /* take a breather every nr_migrate tasks */
4769 if (env->loop > env->loop_break) {
4770 env->loop_break += sched_nr_migrate_break;
4771 env->flags |= LBF_NEED_BREAK;
4772 break;
4773 }
4774
4775 if (!can_migrate_task(p, env))
4776 goto next;
4777
4778 load = task_h_load(p);
4779
4780 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4781 goto next;
4782
4783 if ((load / 2) > env->imbalance)
4784 goto next;
4785
4786 move_task(p, env);
4787 pulled++;
4788 env->imbalance -= load;
4789
4790 #ifdef CONFIG_PREEMPT
4791 /*
4792 * NEWIDLE balancing is a source of latency, so preemptible
4793 * kernels will stop after the first task is pulled to minimize
4794 * the critical section.
4795 */
4796 if (env->idle == CPU_NEWLY_IDLE)
4797 break;
4798 #endif
4799
4800 /*
4801 * We only want to steal up to the prescribed amount of
4802 * weighted load.
4803 */
4804 if (env->imbalance <= 0)
4805 break;
4806
4807 continue;
4808 next:
4809 list_move_tail(&p->se.group_node, tasks);
4810 }
4811
4812 /*
4813 * Right now, this is one of only two places move_task() is called,
4814 * so we can safely collect move_task() stats here rather than
4815 * inside move_task().
4816 */
4817 schedstat_add(env->sd, lb_gained[env->idle], pulled);
4818
4819 return pulled;
4820 }
4821
4822 #ifdef CONFIG_FAIR_GROUP_SCHED
4823 /*
4824 * update tg->load_weight by folding this cpu's load_avg
4825 */
4826 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4827 {
4828 struct sched_entity *se = tg->se[cpu];
4829 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4830
4831 /* throttled entities do not contribute to load */
4832 if (throttled_hierarchy(cfs_rq))
4833 return;
4834
4835 update_cfs_rq_blocked_load(cfs_rq, 1);
4836
4837 if (se) {
4838 update_entity_load_avg(se, 1);
4839 /*
4840 * We pivot on our runnable average having decayed to zero for
4841 * list removal. This generally implies that all our children
4842 * have also been removed (modulo rounding error or bandwidth
4843 * control); however, such cases are rare and we can fix these
4844 * at enqueue.
4845 *
4846 * TODO: fix up out-of-order children on enqueue.
4847 */
4848 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4849 list_del_leaf_cfs_rq(cfs_rq);
4850 } else {
4851 struct rq *rq = rq_of(cfs_rq);
4852 update_rq_runnable_avg(rq, rq->nr_running);
4853 }
4854 }
4855
4856 static void update_blocked_averages(int cpu)
4857 {
4858 struct rq *rq = cpu_rq(cpu);
4859 struct cfs_rq *cfs_rq;
4860 unsigned long flags;
4861
4862 raw_spin_lock_irqsave(&rq->lock, flags);
4863 update_rq_clock(rq);
4864 /*
4865 * Iterates the task_group tree in a bottom up fashion, see
4866 * list_add_leaf_cfs_rq() for details.
4867 */
4868 for_each_leaf_cfs_rq(rq, cfs_rq) {
4869 /*
4870 * Note: We may want to consider periodically releasing
4871 * rq->lock about these updates so that creating many task
4872 * groups does not result in continually extending hold time.
4873 */
4874 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4875 }
4876
4877 raw_spin_unlock_irqrestore(&rq->lock, flags);
4878 }
4879
4880 /*
4881 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
4882 * This needs to be done in a top-down fashion because the load of a child
4883 * group is a fraction of its parents load.
4884 */
4885 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
4886 {
4887 struct rq *rq = rq_of(cfs_rq);
4888 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
4889 unsigned long now = jiffies;
4890 unsigned long load;
4891
4892 if (cfs_rq->last_h_load_update == now)
4893 return;
4894
4895 cfs_rq->h_load_next = NULL;
4896 for_each_sched_entity(se) {
4897 cfs_rq = cfs_rq_of(se);
4898 cfs_rq->h_load_next = se;
4899 if (cfs_rq->last_h_load_update == now)
4900 break;
4901 }
4902
4903 if (!se) {
4904 cfs_rq->h_load = cfs_rq->runnable_load_avg;
4905 cfs_rq->last_h_load_update = now;
4906 }
4907
4908 while ((se = cfs_rq->h_load_next) != NULL) {
4909 load = cfs_rq->h_load;
4910 load = div64_ul(load * se->avg.load_avg_contrib,
4911 cfs_rq->runnable_load_avg + 1);
4912 cfs_rq = group_cfs_rq(se);
4913 cfs_rq->h_load = load;
4914 cfs_rq->last_h_load_update = now;
4915 }
4916 }
4917
4918 static unsigned long task_h_load(struct task_struct *p)
4919 {
4920 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4921
4922 update_cfs_rq_h_load(cfs_rq);
4923 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4924 cfs_rq->runnable_load_avg + 1);
4925 }
4926 #else
4927 static inline void update_blocked_averages(int cpu)
4928 {
4929 }
4930
4931 static unsigned long task_h_load(struct task_struct *p)
4932 {
4933 return p->se.avg.load_avg_contrib;
4934 }
4935 #endif
4936
4937 /********** Helpers for find_busiest_group ************************/
4938 /*
4939 * sg_lb_stats - stats of a sched_group required for load_balancing
4940 */
4941 struct sg_lb_stats {
4942 unsigned long avg_load; /*Avg load across the CPUs of the group */
4943 unsigned long group_load; /* Total load over the CPUs of the group */
4944 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4945 unsigned long load_per_task;
4946 unsigned long group_power;
4947 unsigned int sum_nr_running; /* Nr tasks running in the group */
4948 unsigned int group_capacity;
4949 unsigned int idle_cpus;
4950 unsigned int group_weight;
4951 int group_imb; /* Is there an imbalance in the group ? */
4952 int group_has_capacity; /* Is there extra capacity in the group? */
4953 };
4954
4955 /*
4956 * sd_lb_stats - Structure to store the statistics of a sched_domain
4957 * during load balancing.
4958 */
4959 struct sd_lb_stats {
4960 struct sched_group *busiest; /* Busiest group in this sd */
4961 struct sched_group *local; /* Local group in this sd */
4962 unsigned long total_load; /* Total load of all groups in sd */
4963 unsigned long total_pwr; /* Total power of all groups in sd */
4964 unsigned long avg_load; /* Average load across all groups in sd */
4965
4966 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
4967 struct sg_lb_stats local_stat; /* Statistics of the local group */
4968 };
4969
4970 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
4971 {
4972 /*
4973 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
4974 * local_stat because update_sg_lb_stats() does a full clear/assignment.
4975 * We must however clear busiest_stat::avg_load because
4976 * update_sd_pick_busiest() reads this before assignment.
4977 */
4978 *sds = (struct sd_lb_stats){
4979 .busiest = NULL,
4980 .local = NULL,
4981 .total_load = 0UL,
4982 .total_pwr = 0UL,
4983 .busiest_stat = {
4984 .avg_load = 0UL,
4985 },
4986 };
4987 }
4988
4989 /**
4990 * get_sd_load_idx - Obtain the load index for a given sched domain.
4991 * @sd: The sched_domain whose load_idx is to be obtained.
4992 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4993 *
4994 * Return: The load index.
4995 */
4996 static inline int get_sd_load_idx(struct sched_domain *sd,
4997 enum cpu_idle_type idle)
4998 {
4999 int load_idx;
5000
5001 switch (idle) {
5002 case CPU_NOT_IDLE:
5003 load_idx = sd->busy_idx;
5004 break;
5005
5006 case CPU_NEWLY_IDLE:
5007 load_idx = sd->newidle_idx;
5008 break;
5009 default:
5010 load_idx = sd->idle_idx;
5011 break;
5012 }
5013
5014 return load_idx;
5015 }
5016
5017 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5018 {
5019 return SCHED_POWER_SCALE;
5020 }
5021
5022 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5023 {
5024 return default_scale_freq_power(sd, cpu);
5025 }
5026
5027 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5028 {
5029 unsigned long weight = sd->span_weight;
5030 unsigned long smt_gain = sd->smt_gain;
5031
5032 smt_gain /= weight;
5033
5034 return smt_gain;
5035 }
5036
5037 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5038 {
5039 return default_scale_smt_power(sd, cpu);
5040 }
5041
5042 static unsigned long scale_rt_power(int cpu)
5043 {
5044 struct rq *rq = cpu_rq(cpu);
5045 u64 total, available, age_stamp, avg;
5046
5047 /*
5048 * Since we're reading these variables without serialization make sure
5049 * we read them once before doing sanity checks on them.
5050 */
5051 age_stamp = ACCESS_ONCE(rq->age_stamp);
5052 avg = ACCESS_ONCE(rq->rt_avg);
5053
5054 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5055
5056 if (unlikely(total < avg)) {
5057 /* Ensures that power won't end up being negative */
5058 available = 0;
5059 } else {
5060 available = total - avg;
5061 }
5062
5063 if (unlikely((s64)total < SCHED_POWER_SCALE))
5064 total = SCHED_POWER_SCALE;
5065
5066 total >>= SCHED_POWER_SHIFT;
5067
5068 return div_u64(available, total);
5069 }
5070
5071 static void update_cpu_power(struct sched_domain *sd, int cpu)
5072 {
5073 unsigned long weight = sd->span_weight;
5074 unsigned long power = SCHED_POWER_SCALE;
5075 struct sched_group *sdg = sd->groups;
5076
5077 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5078 if (sched_feat(ARCH_POWER))
5079 power *= arch_scale_smt_power(sd, cpu);
5080 else
5081 power *= default_scale_smt_power(sd, cpu);
5082
5083 power >>= SCHED_POWER_SHIFT;
5084 }
5085
5086 sdg->sgp->power_orig = power;
5087
5088 if (sched_feat(ARCH_POWER))
5089 power *= arch_scale_freq_power(sd, cpu);
5090 else
5091 power *= default_scale_freq_power(sd, cpu);
5092
5093 power >>= SCHED_POWER_SHIFT;
5094
5095 power *= scale_rt_power(cpu);
5096 power >>= SCHED_POWER_SHIFT;
5097
5098 if (!power)
5099 power = 1;
5100
5101 cpu_rq(cpu)->cpu_power = power;
5102 sdg->sgp->power = power;
5103 }
5104
5105 void update_group_power(struct sched_domain *sd, int cpu)
5106 {
5107 struct sched_domain *child = sd->child;
5108 struct sched_group *group, *sdg = sd->groups;
5109 unsigned long power, power_orig;
5110 unsigned long interval;
5111
5112 interval = msecs_to_jiffies(sd->balance_interval);
5113 interval = clamp(interval, 1UL, max_load_balance_interval);
5114 sdg->sgp->next_update = jiffies + interval;
5115
5116 if (!child) {
5117 update_cpu_power(sd, cpu);
5118 return;
5119 }
5120
5121 power_orig = power = 0;
5122
5123 if (child->flags & SD_OVERLAP) {
5124 /*
5125 * SD_OVERLAP domains cannot assume that child groups
5126 * span the current group.
5127 */
5128
5129 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5130 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5131
5132 power_orig += sg->sgp->power_orig;
5133 power += sg->sgp->power;
5134 }
5135 } else {
5136 /*
5137 * !SD_OVERLAP domains can assume that child groups
5138 * span the current group.
5139 */
5140
5141 group = child->groups;
5142 do {
5143 power_orig += group->sgp->power_orig;
5144 power += group->sgp->power;
5145 group = group->next;
5146 } while (group != child->groups);
5147 }
5148
5149 sdg->sgp->power_orig = power_orig;
5150 sdg->sgp->power = power;
5151 }
5152
5153 /*
5154 * Try and fix up capacity for tiny siblings, this is needed when
5155 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5156 * which on its own isn't powerful enough.
5157 *
5158 * See update_sd_pick_busiest() and check_asym_packing().
5159 */
5160 static inline int
5161 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5162 {
5163 /*
5164 * Only siblings can have significantly less than SCHED_POWER_SCALE
5165 */
5166 if (!(sd->flags & SD_SHARE_CPUPOWER))
5167 return 0;
5168
5169 /*
5170 * If ~90% of the cpu_power is still there, we're good.
5171 */
5172 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5173 return 1;
5174
5175 return 0;
5176 }
5177
5178 /*
5179 * Group imbalance indicates (and tries to solve) the problem where balancing
5180 * groups is inadequate due to tsk_cpus_allowed() constraints.
5181 *
5182 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5183 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5184 * Something like:
5185 *
5186 * { 0 1 2 3 } { 4 5 6 7 }
5187 * * * * *
5188 *
5189 * If we were to balance group-wise we'd place two tasks in the first group and
5190 * two tasks in the second group. Clearly this is undesired as it will overload
5191 * cpu 3 and leave one of the cpus in the second group unused.
5192 *
5193 * The current solution to this issue is detecting the skew in the first group
5194 * by noticing the lower domain failed to reach balance and had difficulty
5195 * moving tasks due to affinity constraints.
5196 *
5197 * When this is so detected; this group becomes a candidate for busiest; see
5198 * update_sd_pick_busiest(). And calculcate_imbalance() and
5199 * find_busiest_group() avoid some of the usual balance conditions to allow it
5200 * to create an effective group imbalance.
5201 *
5202 * This is a somewhat tricky proposition since the next run might not find the
5203 * group imbalance and decide the groups need to be balanced again. A most
5204 * subtle and fragile situation.
5205 */
5206
5207 static inline int sg_imbalanced(struct sched_group *group)
5208 {
5209 return group->sgp->imbalance;
5210 }
5211
5212 /*
5213 * Compute the group capacity.
5214 *
5215 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5216 * first dividing out the smt factor and computing the actual number of cores
5217 * and limit power unit capacity with that.
5218 */
5219 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5220 {
5221 unsigned int capacity, smt, cpus;
5222 unsigned int power, power_orig;
5223
5224 power = group->sgp->power;
5225 power_orig = group->sgp->power_orig;
5226 cpus = group->group_weight;
5227
5228 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5229 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5230 capacity = cpus / smt; /* cores */
5231
5232 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5233 if (!capacity)
5234 capacity = fix_small_capacity(env->sd, group);
5235
5236 return capacity;
5237 }
5238
5239 /**
5240 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5241 * @env: The load balancing environment.
5242 * @group: sched_group whose statistics are to be updated.
5243 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5244 * @local_group: Does group contain this_cpu.
5245 * @sgs: variable to hold the statistics for this group.
5246 */
5247 static inline void update_sg_lb_stats(struct lb_env *env,
5248 struct sched_group *group, int load_idx,
5249 int local_group, struct sg_lb_stats *sgs)
5250 {
5251 unsigned long nr_running;
5252 unsigned long load;
5253 int i;
5254
5255 memset(sgs, 0, sizeof(*sgs));
5256
5257 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5258 struct rq *rq = cpu_rq(i);
5259
5260 nr_running = rq->nr_running;
5261
5262 /* Bias balancing toward cpus of our domain */
5263 if (local_group)
5264 load = target_load(i, load_idx);
5265 else
5266 load = source_load(i, load_idx);
5267
5268 sgs->group_load += load;
5269 sgs->sum_nr_running += nr_running;
5270 sgs->sum_weighted_load += weighted_cpuload(i);
5271 if (idle_cpu(i))
5272 sgs->idle_cpus++;
5273 }
5274
5275 /* Adjust by relative CPU power of the group */
5276 sgs->group_power = group->sgp->power;
5277 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5278
5279 if (sgs->sum_nr_running)
5280 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5281
5282 sgs->group_weight = group->group_weight;
5283
5284 sgs->group_imb = sg_imbalanced(group);
5285 sgs->group_capacity = sg_capacity(env, group);
5286
5287 if (sgs->group_capacity > sgs->sum_nr_running)
5288 sgs->group_has_capacity = 1;
5289 }
5290
5291 /**
5292 * update_sd_pick_busiest - return 1 on busiest group
5293 * @env: The load balancing environment.
5294 * @sds: sched_domain statistics
5295 * @sg: sched_group candidate to be checked for being the busiest
5296 * @sgs: sched_group statistics
5297 *
5298 * Determine if @sg is a busier group than the previously selected
5299 * busiest group.
5300 *
5301 * Return: %true if @sg is a busier group than the previously selected
5302 * busiest group. %false otherwise.
5303 */
5304 static bool update_sd_pick_busiest(struct lb_env *env,
5305 struct sd_lb_stats *sds,
5306 struct sched_group *sg,
5307 struct sg_lb_stats *sgs)
5308 {
5309 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5310 return false;
5311
5312 if (sgs->sum_nr_running > sgs->group_capacity)
5313 return true;
5314
5315 if (sgs->group_imb)
5316 return true;
5317
5318 /*
5319 * ASYM_PACKING needs to move all the work to the lowest
5320 * numbered CPUs in the group, therefore mark all groups
5321 * higher than ourself as busy.
5322 */
5323 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5324 env->dst_cpu < group_first_cpu(sg)) {
5325 if (!sds->busiest)
5326 return true;
5327
5328 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5329 return true;
5330 }
5331
5332 return false;
5333 }
5334
5335 /**
5336 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5337 * @env: The load balancing environment.
5338 * @balance: Should we balance.
5339 * @sds: variable to hold the statistics for this sched_domain.
5340 */
5341 static inline void update_sd_lb_stats(struct lb_env *env,
5342 struct sd_lb_stats *sds)
5343 {
5344 struct sched_domain *child = env->sd->child;
5345 struct sched_group *sg = env->sd->groups;
5346 struct sg_lb_stats tmp_sgs;
5347 int load_idx, prefer_sibling = 0;
5348
5349 if (child && child->flags & SD_PREFER_SIBLING)
5350 prefer_sibling = 1;
5351
5352 load_idx = get_sd_load_idx(env->sd, env->idle);
5353
5354 do {
5355 struct sg_lb_stats *sgs = &tmp_sgs;
5356 int local_group;
5357
5358 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5359 if (local_group) {
5360 sds->local = sg;
5361 sgs = &sds->local_stat;
5362
5363 if (env->idle != CPU_NEWLY_IDLE ||
5364 time_after_eq(jiffies, sg->sgp->next_update))
5365 update_group_power(env->sd, env->dst_cpu);
5366 }
5367
5368 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5369
5370 if (local_group)
5371 goto next_group;
5372
5373 /*
5374 * In case the child domain prefers tasks go to siblings
5375 * first, lower the sg capacity to one so that we'll try
5376 * and move all the excess tasks away. We lower the capacity
5377 * of a group only if the local group has the capacity to fit
5378 * these excess tasks, i.e. nr_running < group_capacity. The
5379 * extra check prevents the case where you always pull from the
5380 * heaviest group when it is already under-utilized (possible
5381 * with a large weight task outweighs the tasks on the system).
5382 */
5383 if (prefer_sibling && sds->local &&
5384 sds->local_stat.group_has_capacity)
5385 sgs->group_capacity = min(sgs->group_capacity, 1U);
5386
5387 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5388 sds->busiest = sg;
5389 sds->busiest_stat = *sgs;
5390 }
5391
5392 next_group:
5393 /* Now, start updating sd_lb_stats */
5394 sds->total_load += sgs->group_load;
5395 sds->total_pwr += sgs->group_power;
5396
5397 sg = sg->next;
5398 } while (sg != env->sd->groups);
5399 }
5400
5401 /**
5402 * check_asym_packing - Check to see if the group is packed into the
5403 * sched doman.
5404 *
5405 * This is primarily intended to used at the sibling level. Some
5406 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5407 * case of POWER7, it can move to lower SMT modes only when higher
5408 * threads are idle. When in lower SMT modes, the threads will
5409 * perform better since they share less core resources. Hence when we
5410 * have idle threads, we want them to be the higher ones.
5411 *
5412 * This packing function is run on idle threads. It checks to see if
5413 * the busiest CPU in this domain (core in the P7 case) has a higher
5414 * CPU number than the packing function is being run on. Here we are
5415 * assuming lower CPU number will be equivalent to lower a SMT thread
5416 * number.
5417 *
5418 * Return: 1 when packing is required and a task should be moved to
5419 * this CPU. The amount of the imbalance is returned in *imbalance.
5420 *
5421 * @env: The load balancing environment.
5422 * @sds: Statistics of the sched_domain which is to be packed
5423 */
5424 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5425 {
5426 int busiest_cpu;
5427
5428 if (!(env->sd->flags & SD_ASYM_PACKING))
5429 return 0;
5430
5431 if (!sds->busiest)
5432 return 0;
5433
5434 busiest_cpu = group_first_cpu(sds->busiest);
5435 if (env->dst_cpu > busiest_cpu)
5436 return 0;
5437
5438 env->imbalance = DIV_ROUND_CLOSEST(
5439 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5440 SCHED_POWER_SCALE);
5441
5442 return 1;
5443 }
5444
5445 /**
5446 * fix_small_imbalance - Calculate the minor imbalance that exists
5447 * amongst the groups of a sched_domain, during
5448 * load balancing.
5449 * @env: The load balancing environment.
5450 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
5451 */
5452 static inline
5453 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5454 {
5455 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5456 unsigned int imbn = 2;
5457 unsigned long scaled_busy_load_per_task;
5458 struct sg_lb_stats *local, *busiest;
5459
5460 local = &sds->local_stat;
5461 busiest = &sds->busiest_stat;
5462
5463 if (!local->sum_nr_running)
5464 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5465 else if (busiest->load_per_task > local->load_per_task)
5466 imbn = 1;
5467
5468 scaled_busy_load_per_task =
5469 (busiest->load_per_task * SCHED_POWER_SCALE) /
5470 busiest->group_power;
5471
5472 if (busiest->avg_load + scaled_busy_load_per_task >=
5473 local->avg_load + (scaled_busy_load_per_task * imbn)) {
5474 env->imbalance = busiest->load_per_task;
5475 return;
5476 }
5477
5478 /*
5479 * OK, we don't have enough imbalance to justify moving tasks,
5480 * however we may be able to increase total CPU power used by
5481 * moving them.
5482 */
5483
5484 pwr_now += busiest->group_power *
5485 min(busiest->load_per_task, busiest->avg_load);
5486 pwr_now += local->group_power *
5487 min(local->load_per_task, local->avg_load);
5488 pwr_now /= SCHED_POWER_SCALE;
5489
5490 /* Amount of load we'd subtract */
5491 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5492 busiest->group_power;
5493 if (busiest->avg_load > tmp) {
5494 pwr_move += busiest->group_power *
5495 min(busiest->load_per_task,
5496 busiest->avg_load - tmp);
5497 }
5498
5499 /* Amount of load we'd add */
5500 if (busiest->avg_load * busiest->group_power <
5501 busiest->load_per_task * SCHED_POWER_SCALE) {
5502 tmp = (busiest->avg_load * busiest->group_power) /
5503 local->group_power;
5504 } else {
5505 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5506 local->group_power;
5507 }
5508 pwr_move += local->group_power *
5509 min(local->load_per_task, local->avg_load + tmp);
5510 pwr_move /= SCHED_POWER_SCALE;
5511
5512 /* Move if we gain throughput */
5513 if (pwr_move > pwr_now)
5514 env->imbalance = busiest->load_per_task;
5515 }
5516
5517 /**
5518 * calculate_imbalance - Calculate the amount of imbalance present within the
5519 * groups of a given sched_domain during load balance.
5520 * @env: load balance environment
5521 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
5522 */
5523 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5524 {
5525 unsigned long max_pull, load_above_capacity = ~0UL;
5526 struct sg_lb_stats *local, *busiest;
5527
5528 local = &sds->local_stat;
5529 busiest = &sds->busiest_stat;
5530
5531 if (busiest->group_imb) {
5532 /*
5533 * In the group_imb case we cannot rely on group-wide averages
5534 * to ensure cpu-load equilibrium, look at wider averages. XXX
5535 */
5536 busiest->load_per_task =
5537 min(busiest->load_per_task, sds->avg_load);
5538 }
5539
5540 /*
5541 * In the presence of smp nice balancing, certain scenarios can have
5542 * max load less than avg load(as we skip the groups at or below
5543 * its cpu_power, while calculating max_load..)
5544 */
5545 if (busiest->avg_load <= sds->avg_load ||
5546 local->avg_load >= sds->avg_load) {
5547 env->imbalance = 0;
5548 return fix_small_imbalance(env, sds);
5549 }
5550
5551 if (!busiest->group_imb) {
5552 /*
5553 * Don't want to pull so many tasks that a group would go idle.
5554 * Except of course for the group_imb case, since then we might
5555 * have to drop below capacity to reach cpu-load equilibrium.
5556 */
5557 load_above_capacity =
5558 (busiest->sum_nr_running - busiest->group_capacity);
5559
5560 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5561 load_above_capacity /= busiest->group_power;
5562 }
5563
5564 /*
5565 * We're trying to get all the cpus to the average_load, so we don't
5566 * want to push ourselves above the average load, nor do we wish to
5567 * reduce the max loaded cpu below the average load. At the same time,
5568 * we also don't want to reduce the group load below the group capacity
5569 * (so that we can implement power-savings policies etc). Thus we look
5570 * for the minimum possible imbalance.
5571 */
5572 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5573
5574 /* How much load to actually move to equalise the imbalance */
5575 env->imbalance = min(
5576 max_pull * busiest->group_power,
5577 (sds->avg_load - local->avg_load) * local->group_power
5578 ) / SCHED_POWER_SCALE;
5579
5580 /*
5581 * if *imbalance is less than the average load per runnable task
5582 * there is no guarantee that any tasks will be moved so we'll have
5583 * a think about bumping its value to force at least one task to be
5584 * moved
5585 */
5586 if (env->imbalance < busiest->load_per_task)
5587 return fix_small_imbalance(env, sds);
5588 }
5589
5590 /******* find_busiest_group() helpers end here *********************/
5591
5592 /**
5593 * find_busiest_group - Returns the busiest group within the sched_domain
5594 * if there is an imbalance. If there isn't an imbalance, and
5595 * the user has opted for power-savings, it returns a group whose
5596 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5597 * such a group exists.
5598 *
5599 * Also calculates the amount of weighted load which should be moved
5600 * to restore balance.
5601 *
5602 * @env: The load balancing environment.
5603 *
5604 * Return: - The busiest group if imbalance exists.
5605 * - If no imbalance and user has opted for power-savings balance,
5606 * return the least loaded group whose CPUs can be
5607 * put to idle by rebalancing its tasks onto our group.
5608 */
5609 static struct sched_group *find_busiest_group(struct lb_env *env)
5610 {
5611 struct sg_lb_stats *local, *busiest;
5612 struct sd_lb_stats sds;
5613
5614 init_sd_lb_stats(&sds);
5615
5616 /*
5617 * Compute the various statistics relavent for load balancing at
5618 * this level.
5619 */
5620 update_sd_lb_stats(env, &sds);
5621 local = &sds.local_stat;
5622 busiest = &sds.busiest_stat;
5623
5624 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5625 check_asym_packing(env, &sds))
5626 return sds.busiest;
5627
5628 /* There is no busy sibling group to pull tasks from */
5629 if (!sds.busiest || busiest->sum_nr_running == 0)
5630 goto out_balanced;
5631
5632 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5633
5634 /*
5635 * If the busiest group is imbalanced the below checks don't
5636 * work because they assume all things are equal, which typically
5637 * isn't true due to cpus_allowed constraints and the like.
5638 */
5639 if (busiest->group_imb)
5640 goto force_balance;
5641
5642 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
5643 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5644 !busiest->group_has_capacity)
5645 goto force_balance;
5646
5647 /*
5648 * If the local group is more busy than the selected busiest group
5649 * don't try and pull any tasks.
5650 */
5651 if (local->avg_load >= busiest->avg_load)
5652 goto out_balanced;
5653
5654 /*
5655 * Don't pull any tasks if this group is already above the domain
5656 * average load.
5657 */
5658 if (local->avg_load >= sds.avg_load)
5659 goto out_balanced;
5660
5661 if (env->idle == CPU_IDLE) {
5662 /*
5663 * This cpu is idle. If the busiest group load doesn't
5664 * have more tasks than the number of available cpu's and
5665 * there is no imbalance between this and busiest group
5666 * wrt to idle cpu's, it is balanced.
5667 */
5668 if ((local->idle_cpus < busiest->idle_cpus) &&
5669 busiest->sum_nr_running <= busiest->group_weight)
5670 goto out_balanced;
5671 } else {
5672 /*
5673 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5674 * imbalance_pct to be conservative.
5675 */
5676 if (100 * busiest->avg_load <=
5677 env->sd->imbalance_pct * local->avg_load)
5678 goto out_balanced;
5679 }
5680
5681 force_balance:
5682 /* Looks like there is an imbalance. Compute it */
5683 calculate_imbalance(env, &sds);
5684 return sds.busiest;
5685
5686 out_balanced:
5687 env->imbalance = 0;
5688 return NULL;
5689 }
5690
5691 /*
5692 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5693 */
5694 static struct rq *find_busiest_queue(struct lb_env *env,
5695 struct sched_group *group)
5696 {
5697 struct rq *busiest = NULL, *rq;
5698 unsigned long busiest_load = 0, busiest_power = 1;
5699 int i;
5700
5701 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5702 unsigned long power = power_of(i);
5703 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5704 SCHED_POWER_SCALE);
5705 unsigned long wl;
5706
5707 if (!capacity)
5708 capacity = fix_small_capacity(env->sd, group);
5709
5710 rq = cpu_rq(i);
5711 wl = weighted_cpuload(i);
5712
5713 /*
5714 * When comparing with imbalance, use weighted_cpuload()
5715 * which is not scaled with the cpu power.
5716 */
5717 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
5718 continue;
5719
5720 /*
5721 * For the load comparisons with the other cpu's, consider
5722 * the weighted_cpuload() scaled with the cpu power, so that
5723 * the load can be moved away from the cpu that is potentially
5724 * running at a lower capacity.
5725 *
5726 * Thus we're looking for max(wl_i / power_i), crosswise
5727 * multiplication to rid ourselves of the division works out
5728 * to: wl_i * power_j > wl_j * power_i; where j is our
5729 * previous maximum.
5730 */
5731 if (wl * busiest_power > busiest_load * power) {
5732 busiest_load = wl;
5733 busiest_power = power;
5734 busiest = rq;
5735 }
5736 }
5737
5738 return busiest;
5739 }
5740
5741 /*
5742 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5743 * so long as it is large enough.
5744 */
5745 #define MAX_PINNED_INTERVAL 512
5746
5747 /* Working cpumask for load_balance and load_balance_newidle. */
5748 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5749
5750 static int need_active_balance(struct lb_env *env)
5751 {
5752 struct sched_domain *sd = env->sd;
5753
5754 if (env->idle == CPU_NEWLY_IDLE) {
5755
5756 /*
5757 * ASYM_PACKING needs to force migrate tasks from busy but
5758 * higher numbered CPUs in order to pack all tasks in the
5759 * lowest numbered CPUs.
5760 */
5761 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
5762 return 1;
5763 }
5764
5765 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5766 }
5767
5768 static int active_load_balance_cpu_stop(void *data);
5769
5770 static int should_we_balance(struct lb_env *env)
5771 {
5772 struct sched_group *sg = env->sd->groups;
5773 struct cpumask *sg_cpus, *sg_mask;
5774 int cpu, balance_cpu = -1;
5775
5776 /*
5777 * In the newly idle case, we will allow all the cpu's
5778 * to do the newly idle load balance.
5779 */
5780 if (env->idle == CPU_NEWLY_IDLE)
5781 return 1;
5782
5783 sg_cpus = sched_group_cpus(sg);
5784 sg_mask = sched_group_mask(sg);
5785 /* Try to find first idle cpu */
5786 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5787 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5788 continue;
5789
5790 balance_cpu = cpu;
5791 break;
5792 }
5793
5794 if (balance_cpu == -1)
5795 balance_cpu = group_balance_cpu(sg);
5796
5797 /*
5798 * First idle cpu or the first cpu(busiest) in this sched group
5799 * is eligible for doing load balancing at this and above domains.
5800 */
5801 return balance_cpu == env->dst_cpu;
5802 }
5803
5804 /*
5805 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5806 * tasks if there is an imbalance.
5807 */
5808 static int load_balance(int this_cpu, struct rq *this_rq,
5809 struct sched_domain *sd, enum cpu_idle_type idle,
5810 int *continue_balancing)
5811 {
5812 int ld_moved, cur_ld_moved, active_balance = 0;
5813 struct sched_domain *sd_parent = sd->parent;
5814 struct sched_group *group;
5815 struct rq *busiest;
5816 unsigned long flags;
5817 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
5818
5819 struct lb_env env = {
5820 .sd = sd,
5821 .dst_cpu = this_cpu,
5822 .dst_rq = this_rq,
5823 .dst_grpmask = sched_group_cpus(sd->groups),
5824 .idle = idle,
5825 .loop_break = sched_nr_migrate_break,
5826 .cpus = cpus,
5827 };
5828
5829 /*
5830 * For NEWLY_IDLE load_balancing, we don't need to consider
5831 * other cpus in our group
5832 */
5833 if (idle == CPU_NEWLY_IDLE)
5834 env.dst_grpmask = NULL;
5835
5836 cpumask_copy(cpus, cpu_active_mask);
5837
5838 schedstat_inc(sd, lb_count[idle]);
5839
5840 redo:
5841 if (!should_we_balance(&env)) {
5842 *continue_balancing = 0;
5843 goto out_balanced;
5844 }
5845
5846 group = find_busiest_group(&env);
5847 if (!group) {
5848 schedstat_inc(sd, lb_nobusyg[idle]);
5849 goto out_balanced;
5850 }
5851
5852 busiest = find_busiest_queue(&env, group);
5853 if (!busiest) {
5854 schedstat_inc(sd, lb_nobusyq[idle]);
5855 goto out_balanced;
5856 }
5857
5858 BUG_ON(busiest == env.dst_rq);
5859
5860 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5861
5862 ld_moved = 0;
5863 if (busiest->nr_running > 1) {
5864 /*
5865 * Attempt to move tasks. If find_busiest_group has found
5866 * an imbalance but busiest->nr_running <= 1, the group is
5867 * still unbalanced. ld_moved simply stays zero, so it is
5868 * correctly treated as an imbalance.
5869 */
5870 env.flags |= LBF_ALL_PINNED;
5871 env.src_cpu = busiest->cpu;
5872 env.src_rq = busiest;
5873 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
5874
5875 more_balance:
5876 local_irq_save(flags);
5877 double_rq_lock(env.dst_rq, busiest);
5878
5879 /*
5880 * cur_ld_moved - load moved in current iteration
5881 * ld_moved - cumulative load moved across iterations
5882 */
5883 cur_ld_moved = move_tasks(&env);
5884 ld_moved += cur_ld_moved;
5885 double_rq_unlock(env.dst_rq, busiest);
5886 local_irq_restore(flags);
5887
5888 /*
5889 * some other cpu did the load balance for us.
5890 */
5891 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5892 resched_cpu(env.dst_cpu);
5893
5894 if (env.flags & LBF_NEED_BREAK) {
5895 env.flags &= ~LBF_NEED_BREAK;
5896 goto more_balance;
5897 }
5898
5899 /*
5900 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5901 * us and move them to an alternate dst_cpu in our sched_group
5902 * where they can run. The upper limit on how many times we
5903 * iterate on same src_cpu is dependent on number of cpus in our
5904 * sched_group.
5905 *
5906 * This changes load balance semantics a bit on who can move
5907 * load to a given_cpu. In addition to the given_cpu itself
5908 * (or a ilb_cpu acting on its behalf where given_cpu is
5909 * nohz-idle), we now have balance_cpu in a position to move
5910 * load to given_cpu. In rare situations, this may cause
5911 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5912 * _independently_ and at _same_ time to move some load to
5913 * given_cpu) causing exceess load to be moved to given_cpu.
5914 * This however should not happen so much in practice and
5915 * moreover subsequent load balance cycles should correct the
5916 * excess load moved.
5917 */
5918 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
5919
5920 /* Prevent to re-select dst_cpu via env's cpus */
5921 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5922
5923 env.dst_rq = cpu_rq(env.new_dst_cpu);
5924 env.dst_cpu = env.new_dst_cpu;
5925 env.flags &= ~LBF_DST_PINNED;
5926 env.loop = 0;
5927 env.loop_break = sched_nr_migrate_break;
5928
5929 /*
5930 * Go back to "more_balance" rather than "redo" since we
5931 * need to continue with same src_cpu.
5932 */
5933 goto more_balance;
5934 }
5935
5936 /*
5937 * We failed to reach balance because of affinity.
5938 */
5939 if (sd_parent) {
5940 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
5941
5942 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5943 *group_imbalance = 1;
5944 } else if (*group_imbalance)
5945 *group_imbalance = 0;
5946 }
5947
5948 /* All tasks on this runqueue were pinned by CPU affinity */
5949 if (unlikely(env.flags & LBF_ALL_PINNED)) {
5950 cpumask_clear_cpu(cpu_of(busiest), cpus);
5951 if (!cpumask_empty(cpus)) {
5952 env.loop = 0;
5953 env.loop_break = sched_nr_migrate_break;
5954 goto redo;
5955 }
5956 goto out_balanced;
5957 }
5958 }
5959
5960 if (!ld_moved) {
5961 schedstat_inc(sd, lb_failed[idle]);
5962 /*
5963 * Increment the failure counter only on periodic balance.
5964 * We do not want newidle balance, which can be very
5965 * frequent, pollute the failure counter causing
5966 * excessive cache_hot migrations and active balances.
5967 */
5968 if (idle != CPU_NEWLY_IDLE)
5969 sd->nr_balance_failed++;
5970
5971 if (need_active_balance(&env)) {
5972 raw_spin_lock_irqsave(&busiest->lock, flags);
5973
5974 /* don't kick the active_load_balance_cpu_stop,
5975 * if the curr task on busiest cpu can't be
5976 * moved to this_cpu
5977 */
5978 if (!cpumask_test_cpu(this_cpu,
5979 tsk_cpus_allowed(busiest->curr))) {
5980 raw_spin_unlock_irqrestore(&busiest->lock,
5981 flags);
5982 env.flags |= LBF_ALL_PINNED;
5983 goto out_one_pinned;
5984 }
5985
5986 /*
5987 * ->active_balance synchronizes accesses to
5988 * ->active_balance_work. Once set, it's cleared
5989 * only after active load balance is finished.
5990 */
5991 if (!busiest->active_balance) {
5992 busiest->active_balance = 1;
5993 busiest->push_cpu = this_cpu;
5994 active_balance = 1;
5995 }
5996 raw_spin_unlock_irqrestore(&busiest->lock, flags);
5997
5998 if (active_balance) {
5999 stop_one_cpu_nowait(cpu_of(busiest),
6000 active_load_balance_cpu_stop, busiest,
6001 &busiest->active_balance_work);
6002 }
6003
6004 /*
6005 * We've kicked active balancing, reset the failure
6006 * counter.
6007 */
6008 sd->nr_balance_failed = sd->cache_nice_tries+1;
6009 }
6010 } else
6011 sd->nr_balance_failed = 0;
6012
6013 if (likely(!active_balance)) {
6014 /* We were unbalanced, so reset the balancing interval */
6015 sd->balance_interval = sd->min_interval;
6016 } else {
6017 /*
6018 * If we've begun active balancing, start to back off. This
6019 * case may not be covered by the all_pinned logic if there
6020 * is only 1 task on the busy runqueue (because we don't call
6021 * move_tasks).
6022 */
6023 if (sd->balance_interval < sd->max_interval)
6024 sd->balance_interval *= 2;
6025 }
6026
6027 goto out;
6028
6029 out_balanced:
6030 schedstat_inc(sd, lb_balanced[idle]);
6031
6032 sd->nr_balance_failed = 0;
6033
6034 out_one_pinned:
6035 /* tune up the balancing interval */
6036 if (((env.flags & LBF_ALL_PINNED) &&
6037 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6038 (sd->balance_interval < sd->max_interval))
6039 sd->balance_interval *= 2;
6040
6041 ld_moved = 0;
6042 out:
6043 return ld_moved;
6044 }
6045
6046 /*
6047 * idle_balance is called by schedule() if this_cpu is about to become
6048 * idle. Attempts to pull tasks from other CPUs.
6049 */
6050 void idle_balance(int this_cpu, struct rq *this_rq)
6051 {
6052 struct sched_domain *sd;
6053 int pulled_task = 0;
6054 unsigned long next_balance = jiffies + HZ;
6055 u64 curr_cost = 0;
6056
6057 this_rq->idle_stamp = rq_clock(this_rq);
6058
6059 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6060 return;
6061
6062 /*
6063 * Drop the rq->lock, but keep IRQ/preempt disabled.
6064 */
6065 raw_spin_unlock(&this_rq->lock);
6066
6067 update_blocked_averages(this_cpu);
6068 rcu_read_lock();
6069 for_each_domain(this_cpu, sd) {
6070 unsigned long interval;
6071 int continue_balancing = 1;
6072 u64 t0, domain_cost;
6073
6074 if (!(sd->flags & SD_LOAD_BALANCE))
6075 continue;
6076
6077 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6078 break;
6079
6080 if (sd->flags & SD_BALANCE_NEWIDLE) {
6081 t0 = sched_clock_cpu(this_cpu);
6082
6083 /* If we've pulled tasks over stop searching: */
6084 pulled_task = load_balance(this_cpu, this_rq,
6085 sd, CPU_NEWLY_IDLE,
6086 &continue_balancing);
6087
6088 domain_cost = sched_clock_cpu(this_cpu) - t0;
6089 if (domain_cost > sd->max_newidle_lb_cost)
6090 sd->max_newidle_lb_cost = domain_cost;
6091
6092 curr_cost += domain_cost;
6093 }
6094
6095 interval = msecs_to_jiffies(sd->balance_interval);
6096 if (time_after(next_balance, sd->last_balance + interval))
6097 next_balance = sd->last_balance + interval;
6098 if (pulled_task) {
6099 this_rq->idle_stamp = 0;
6100 break;
6101 }
6102 }
6103 rcu_read_unlock();
6104
6105 raw_spin_lock(&this_rq->lock);
6106
6107 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6108 /*
6109 * We are going idle. next_balance may be set based on
6110 * a busy processor. So reset next_balance.
6111 */
6112 this_rq->next_balance = next_balance;
6113 }
6114
6115 if (curr_cost > this_rq->max_idle_balance_cost)
6116 this_rq->max_idle_balance_cost = curr_cost;
6117 }
6118
6119 /*
6120 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6121 * running tasks off the busiest CPU onto idle CPUs. It requires at
6122 * least 1 task to be running on each physical CPU where possible, and
6123 * avoids physical / logical imbalances.
6124 */
6125 static int active_load_balance_cpu_stop(void *data)
6126 {
6127 struct rq *busiest_rq = data;
6128 int busiest_cpu = cpu_of(busiest_rq);
6129 int target_cpu = busiest_rq->push_cpu;
6130 struct rq *target_rq = cpu_rq(target_cpu);
6131 struct sched_domain *sd;
6132
6133 raw_spin_lock_irq(&busiest_rq->lock);
6134
6135 /* make sure the requested cpu hasn't gone down in the meantime */
6136 if (unlikely(busiest_cpu != smp_processor_id() ||
6137 !busiest_rq->active_balance))
6138 goto out_unlock;
6139
6140 /* Is there any task to move? */
6141 if (busiest_rq->nr_running <= 1)
6142 goto out_unlock;
6143
6144 /*
6145 * This condition is "impossible", if it occurs
6146 * we need to fix it. Originally reported by
6147 * Bjorn Helgaas on a 128-cpu setup.
6148 */
6149 BUG_ON(busiest_rq == target_rq);
6150
6151 /* move a task from busiest_rq to target_rq */
6152 double_lock_balance(busiest_rq, target_rq);
6153
6154 /* Search for an sd spanning us and the target CPU. */
6155 rcu_read_lock();
6156 for_each_domain(target_cpu, sd) {
6157 if ((sd->flags & SD_LOAD_BALANCE) &&
6158 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6159 break;
6160 }
6161
6162 if (likely(sd)) {
6163 struct lb_env env = {
6164 .sd = sd,
6165 .dst_cpu = target_cpu,
6166 .dst_rq = target_rq,
6167 .src_cpu = busiest_rq->cpu,
6168 .src_rq = busiest_rq,
6169 .idle = CPU_IDLE,
6170 };
6171
6172 schedstat_inc(sd, alb_count);
6173
6174 if (move_one_task(&env))
6175 schedstat_inc(sd, alb_pushed);
6176 else
6177 schedstat_inc(sd, alb_failed);
6178 }
6179 rcu_read_unlock();
6180 double_unlock_balance(busiest_rq, target_rq);
6181 out_unlock:
6182 busiest_rq->active_balance = 0;
6183 raw_spin_unlock_irq(&busiest_rq->lock);
6184 return 0;
6185 }
6186
6187 #ifdef CONFIG_NO_HZ_COMMON
6188 /*
6189 * idle load balancing details
6190 * - When one of the busy CPUs notice that there may be an idle rebalancing
6191 * needed, they will kick the idle load balancer, which then does idle
6192 * load balancing for all the idle CPUs.
6193 */
6194 static struct {
6195 cpumask_var_t idle_cpus_mask;
6196 atomic_t nr_cpus;
6197 unsigned long next_balance; /* in jiffy units */
6198 } nohz ____cacheline_aligned;
6199
6200 static inline int find_new_ilb(int call_cpu)
6201 {
6202 int ilb = cpumask_first(nohz.idle_cpus_mask);
6203
6204 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6205 return ilb;
6206
6207 return nr_cpu_ids;
6208 }
6209
6210 /*
6211 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6212 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6213 * CPU (if there is one).
6214 */
6215 static void nohz_balancer_kick(int cpu)
6216 {
6217 int ilb_cpu;
6218
6219 nohz.next_balance++;
6220
6221 ilb_cpu = find_new_ilb(cpu);
6222
6223 if (ilb_cpu >= nr_cpu_ids)
6224 return;
6225
6226 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6227 return;
6228 /*
6229 * Use smp_send_reschedule() instead of resched_cpu().
6230 * This way we generate a sched IPI on the target cpu which
6231 * is idle. And the softirq performing nohz idle load balance
6232 * will be run before returning from the IPI.
6233 */
6234 smp_send_reschedule(ilb_cpu);
6235 return;
6236 }
6237
6238 static inline void nohz_balance_exit_idle(int cpu)
6239 {
6240 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6241 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6242 atomic_dec(&nohz.nr_cpus);
6243 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6244 }
6245 }
6246
6247 static inline void set_cpu_sd_state_busy(void)
6248 {
6249 struct sched_domain *sd;
6250
6251 rcu_read_lock();
6252 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
6253
6254 if (!sd || !sd->nohz_idle)
6255 goto unlock;
6256 sd->nohz_idle = 0;
6257
6258 for (; sd; sd = sd->parent)
6259 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6260 unlock:
6261 rcu_read_unlock();
6262 }
6263
6264 void set_cpu_sd_state_idle(void)
6265 {
6266 struct sched_domain *sd;
6267
6268 rcu_read_lock();
6269 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
6270
6271 if (!sd || sd->nohz_idle)
6272 goto unlock;
6273 sd->nohz_idle = 1;
6274
6275 for (; sd; sd = sd->parent)
6276 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6277 unlock:
6278 rcu_read_unlock();
6279 }
6280
6281 /*
6282 * This routine will record that the cpu is going idle with tick stopped.
6283 * This info will be used in performing idle load balancing in the future.
6284 */
6285 void nohz_balance_enter_idle(int cpu)
6286 {
6287 /*
6288 * If this cpu is going down, then nothing needs to be done.
6289 */
6290 if (!cpu_active(cpu))
6291 return;
6292
6293 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6294 return;
6295
6296 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6297 atomic_inc(&nohz.nr_cpus);
6298 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6299 }
6300
6301 static int sched_ilb_notifier(struct notifier_block *nfb,
6302 unsigned long action, void *hcpu)
6303 {
6304 switch (action & ~CPU_TASKS_FROZEN) {
6305 case CPU_DYING:
6306 nohz_balance_exit_idle(smp_processor_id());
6307 return NOTIFY_OK;
6308 default:
6309 return NOTIFY_DONE;
6310 }
6311 }
6312 #endif
6313
6314 static DEFINE_SPINLOCK(balancing);
6315
6316 /*
6317 * Scale the max load_balance interval with the number of CPUs in the system.
6318 * This trades load-balance latency on larger machines for less cross talk.
6319 */
6320 void update_max_interval(void)
6321 {
6322 max_load_balance_interval = HZ*num_online_cpus()/10;
6323 }
6324
6325 /*
6326 * It checks each scheduling domain to see if it is due to be balanced,
6327 * and initiates a balancing operation if so.
6328 *
6329 * Balancing parameters are set up in init_sched_domains.
6330 */
6331 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6332 {
6333 int continue_balancing = 1;
6334 struct rq *rq = cpu_rq(cpu);
6335 unsigned long interval;
6336 struct sched_domain *sd;
6337 /* Earliest time when we have to do rebalance again */
6338 unsigned long next_balance = jiffies + 60*HZ;
6339 int update_next_balance = 0;
6340 int need_serialize, need_decay = 0;
6341 u64 max_cost = 0;
6342
6343 update_blocked_averages(cpu);
6344
6345 rcu_read_lock();
6346 for_each_domain(cpu, sd) {
6347 /*
6348 * Decay the newidle max times here because this is a regular
6349 * visit to all the domains. Decay ~1% per second.
6350 */
6351 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6352 sd->max_newidle_lb_cost =
6353 (sd->max_newidle_lb_cost * 253) / 256;
6354 sd->next_decay_max_lb_cost = jiffies + HZ;
6355 need_decay = 1;
6356 }
6357 max_cost += sd->max_newidle_lb_cost;
6358
6359 if (!(sd->flags & SD_LOAD_BALANCE))
6360 continue;
6361
6362 /*
6363 * Stop the load balance at this level. There is another
6364 * CPU in our sched group which is doing load balancing more
6365 * actively.
6366 */
6367 if (!continue_balancing) {
6368 if (need_decay)
6369 continue;
6370 break;
6371 }
6372
6373 interval = sd->balance_interval;
6374 if (idle != CPU_IDLE)
6375 interval *= sd->busy_factor;
6376
6377 /* scale ms to jiffies */
6378 interval = msecs_to_jiffies(interval);
6379 interval = clamp(interval, 1UL, max_load_balance_interval);
6380
6381 need_serialize = sd->flags & SD_SERIALIZE;
6382
6383 if (need_serialize) {
6384 if (!spin_trylock(&balancing))
6385 goto out;
6386 }
6387
6388 if (time_after_eq(jiffies, sd->last_balance + interval)) {
6389 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6390 /*
6391 * The LBF_DST_PINNED logic could have changed
6392 * env->dst_cpu, so we can't know our idle
6393 * state even if we migrated tasks. Update it.
6394 */
6395 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6396 }
6397 sd->last_balance = jiffies;
6398 }
6399 if (need_serialize)
6400 spin_unlock(&balancing);
6401 out:
6402 if (time_after(next_balance, sd->last_balance + interval)) {
6403 next_balance = sd->last_balance + interval;
6404 update_next_balance = 1;
6405 }
6406 }
6407 if (need_decay) {
6408 /*
6409 * Ensure the rq-wide value also decays but keep it at a
6410 * reasonable floor to avoid funnies with rq->avg_idle.
6411 */
6412 rq->max_idle_balance_cost =
6413 max((u64)sysctl_sched_migration_cost, max_cost);
6414 }
6415 rcu_read_unlock();
6416
6417 /*
6418 * next_balance will be updated only when there is a need.
6419 * When the cpu is attached to null domain for ex, it will not be
6420 * updated.
6421 */
6422 if (likely(update_next_balance))
6423 rq->next_balance = next_balance;
6424 }
6425
6426 #ifdef CONFIG_NO_HZ_COMMON
6427 /*
6428 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6429 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6430 */
6431 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6432 {
6433 struct rq *this_rq = cpu_rq(this_cpu);
6434 struct rq *rq;
6435 int balance_cpu;
6436
6437 if (idle != CPU_IDLE ||
6438 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6439 goto end;
6440
6441 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6442 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6443 continue;
6444
6445 /*
6446 * If this cpu gets work to do, stop the load balancing
6447 * work being done for other cpus. Next load
6448 * balancing owner will pick it up.
6449 */
6450 if (need_resched())
6451 break;
6452
6453 rq = cpu_rq(balance_cpu);
6454
6455 raw_spin_lock_irq(&rq->lock);
6456 update_rq_clock(rq);
6457 update_idle_cpu_load(rq);
6458 raw_spin_unlock_irq(&rq->lock);
6459
6460 rebalance_domains(balance_cpu, CPU_IDLE);
6461
6462 if (time_after(this_rq->next_balance, rq->next_balance))
6463 this_rq->next_balance = rq->next_balance;
6464 }
6465 nohz.next_balance = this_rq->next_balance;
6466 end:
6467 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6468 }
6469
6470 /*
6471 * Current heuristic for kicking the idle load balancer in the presence
6472 * of an idle cpu is the system.
6473 * - This rq has more than one task.
6474 * - At any scheduler domain level, this cpu's scheduler group has multiple
6475 * busy cpu's exceeding the group's power.
6476 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6477 * domain span are idle.
6478 */
6479 static inline int nohz_kick_needed(struct rq *rq, int cpu)
6480 {
6481 unsigned long now = jiffies;
6482 struct sched_domain *sd;
6483
6484 if (unlikely(idle_cpu(cpu)))
6485 return 0;
6486
6487 /*
6488 * We may be recently in ticked or tickless idle mode. At the first
6489 * busy tick after returning from idle, we will update the busy stats.
6490 */
6491 set_cpu_sd_state_busy();
6492 nohz_balance_exit_idle(cpu);
6493
6494 /*
6495 * None are in tickless mode and hence no need for NOHZ idle load
6496 * balancing.
6497 */
6498 if (likely(!atomic_read(&nohz.nr_cpus)))
6499 return 0;
6500
6501 if (time_before(now, nohz.next_balance))
6502 return 0;
6503
6504 if (rq->nr_running >= 2)
6505 goto need_kick;
6506
6507 rcu_read_lock();
6508 for_each_domain(cpu, sd) {
6509 struct sched_group *sg = sd->groups;
6510 struct sched_group_power *sgp = sg->sgp;
6511 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
6512
6513 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
6514 goto need_kick_unlock;
6515
6516 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6517 && (cpumask_first_and(nohz.idle_cpus_mask,
6518 sched_domain_span(sd)) < cpu))
6519 goto need_kick_unlock;
6520
6521 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6522 break;
6523 }
6524 rcu_read_unlock();
6525 return 0;
6526
6527 need_kick_unlock:
6528 rcu_read_unlock();
6529 need_kick:
6530 return 1;
6531 }
6532 #else
6533 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6534 #endif
6535
6536 /*
6537 * run_rebalance_domains is triggered when needed from the scheduler tick.
6538 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6539 */
6540 static void run_rebalance_domains(struct softirq_action *h)
6541 {
6542 int this_cpu = smp_processor_id();
6543 struct rq *this_rq = cpu_rq(this_cpu);
6544 enum cpu_idle_type idle = this_rq->idle_balance ?
6545 CPU_IDLE : CPU_NOT_IDLE;
6546
6547 rebalance_domains(this_cpu, idle);
6548
6549 /*
6550 * If this cpu has a pending nohz_balance_kick, then do the
6551 * balancing on behalf of the other idle cpus whose ticks are
6552 * stopped.
6553 */
6554 nohz_idle_balance(this_cpu, idle);
6555 }
6556
6557 static inline int on_null_domain(int cpu)
6558 {
6559 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
6560 }
6561
6562 /*
6563 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
6564 */
6565 void trigger_load_balance(struct rq *rq, int cpu)
6566 {
6567 /* Don't need to rebalance while attached to NULL domain */
6568 if (time_after_eq(jiffies, rq->next_balance) &&
6569 likely(!on_null_domain(cpu)))
6570 raise_softirq(SCHED_SOFTIRQ);
6571 #ifdef CONFIG_NO_HZ_COMMON
6572 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
6573 nohz_balancer_kick(cpu);
6574 #endif
6575 }
6576
6577 static void rq_online_fair(struct rq *rq)
6578 {
6579 update_sysctl();
6580 }
6581
6582 static void rq_offline_fair(struct rq *rq)
6583 {
6584 update_sysctl();
6585
6586 /* Ensure any throttled groups are reachable by pick_next_task */
6587 unthrottle_offline_cfs_rqs(rq);
6588 }
6589
6590 #endif /* CONFIG_SMP */
6591
6592 /*
6593 * scheduler tick hitting a task of our scheduling class:
6594 */
6595 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6596 {
6597 struct cfs_rq *cfs_rq;
6598 struct sched_entity *se = &curr->se;
6599
6600 for_each_sched_entity(se) {
6601 cfs_rq = cfs_rq_of(se);
6602 entity_tick(cfs_rq, se, queued);
6603 }
6604
6605 if (numabalancing_enabled)
6606 task_tick_numa(rq, curr);
6607
6608 update_rq_runnable_avg(rq, 1);
6609 }
6610
6611 /*
6612 * called on fork with the child task as argument from the parent's context
6613 * - child not yet on the tasklist
6614 * - preemption disabled
6615 */
6616 static void task_fork_fair(struct task_struct *p)
6617 {
6618 struct cfs_rq *cfs_rq;
6619 struct sched_entity *se = &p->se, *curr;
6620 int this_cpu = smp_processor_id();
6621 struct rq *rq = this_rq();
6622 unsigned long flags;
6623
6624 raw_spin_lock_irqsave(&rq->lock, flags);
6625
6626 update_rq_clock(rq);
6627
6628 cfs_rq = task_cfs_rq(current);
6629 curr = cfs_rq->curr;
6630
6631 /*
6632 * Not only the cpu but also the task_group of the parent might have
6633 * been changed after parent->se.parent,cfs_rq were copied to
6634 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6635 * of child point to valid ones.
6636 */
6637 rcu_read_lock();
6638 __set_task_cpu(p, this_cpu);
6639 rcu_read_unlock();
6640
6641 update_curr(cfs_rq);
6642
6643 if (curr)
6644 se->vruntime = curr->vruntime;
6645 place_entity(cfs_rq, se, 1);
6646
6647 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
6648 /*
6649 * Upon rescheduling, sched_class::put_prev_task() will place
6650 * 'current' within the tree based on its new key value.
6651 */
6652 swap(curr->vruntime, se->vruntime);
6653 resched_task(rq->curr);
6654 }
6655
6656 se->vruntime -= cfs_rq->min_vruntime;
6657
6658 raw_spin_unlock_irqrestore(&rq->lock, flags);
6659 }
6660
6661 /*
6662 * Priority of the task has changed. Check to see if we preempt
6663 * the current task.
6664 */
6665 static void
6666 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6667 {
6668 if (!p->se.on_rq)
6669 return;
6670
6671 /*
6672 * Reschedule if we are currently running on this runqueue and
6673 * our priority decreased, or if we are not currently running on
6674 * this runqueue and our priority is higher than the current's
6675 */
6676 if (rq->curr == p) {
6677 if (p->prio > oldprio)
6678 resched_task(rq->curr);
6679 } else
6680 check_preempt_curr(rq, p, 0);
6681 }
6682
6683 static void switched_from_fair(struct rq *rq, struct task_struct *p)
6684 {
6685 struct sched_entity *se = &p->se;
6686 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6687
6688 /*
6689 * Ensure the task's vruntime is normalized, so that when its
6690 * switched back to the fair class the enqueue_entity(.flags=0) will
6691 * do the right thing.
6692 *
6693 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6694 * have normalized the vruntime, if it was !on_rq, then only when
6695 * the task is sleeping will it still have non-normalized vruntime.
6696 */
6697 if (!se->on_rq && p->state != TASK_RUNNING) {
6698 /*
6699 * Fix up our vruntime so that the current sleep doesn't
6700 * cause 'unlimited' sleep bonus.
6701 */
6702 place_entity(cfs_rq, se, 0);
6703 se->vruntime -= cfs_rq->min_vruntime;
6704 }
6705
6706 #ifdef CONFIG_SMP
6707 /*
6708 * Remove our load from contribution when we leave sched_fair
6709 * and ensure we don't carry in an old decay_count if we
6710 * switch back.
6711 */
6712 if (se->avg.decay_count) {
6713 __synchronize_entity_decay(se);
6714 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
6715 }
6716 #endif
6717 }
6718
6719 /*
6720 * We switched to the sched_fair class.
6721 */
6722 static void switched_to_fair(struct rq *rq, struct task_struct *p)
6723 {
6724 if (!p->se.on_rq)
6725 return;
6726
6727 /*
6728 * We were most likely switched from sched_rt, so
6729 * kick off the schedule if running, otherwise just see
6730 * if we can still preempt the current task.
6731 */
6732 if (rq->curr == p)
6733 resched_task(rq->curr);
6734 else
6735 check_preempt_curr(rq, p, 0);
6736 }
6737
6738 /* Account for a task changing its policy or group.
6739 *
6740 * This routine is mostly called to set cfs_rq->curr field when a task
6741 * migrates between groups/classes.
6742 */
6743 static void set_curr_task_fair(struct rq *rq)
6744 {
6745 struct sched_entity *se = &rq->curr->se;
6746
6747 for_each_sched_entity(se) {
6748 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6749
6750 set_next_entity(cfs_rq, se);
6751 /* ensure bandwidth has been allocated on our new cfs_rq */
6752 account_cfs_rq_runtime(cfs_rq, 0);
6753 }
6754 }
6755
6756 void init_cfs_rq(struct cfs_rq *cfs_rq)
6757 {
6758 cfs_rq->tasks_timeline = RB_ROOT;
6759 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6760 #ifndef CONFIG_64BIT
6761 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6762 #endif
6763 #ifdef CONFIG_SMP
6764 atomic64_set(&cfs_rq->decay_counter, 1);
6765 atomic_long_set(&cfs_rq->removed_load, 0);
6766 #endif
6767 }
6768
6769 #ifdef CONFIG_FAIR_GROUP_SCHED
6770 static void task_move_group_fair(struct task_struct *p, int on_rq)
6771 {
6772 struct cfs_rq *cfs_rq;
6773 /*
6774 * If the task was not on the rq at the time of this cgroup movement
6775 * it must have been asleep, sleeping tasks keep their ->vruntime
6776 * absolute on their old rq until wakeup (needed for the fair sleeper
6777 * bonus in place_entity()).
6778 *
6779 * If it was on the rq, we've just 'preempted' it, which does convert
6780 * ->vruntime to a relative base.
6781 *
6782 * Make sure both cases convert their relative position when migrating
6783 * to another cgroup's rq. This does somewhat interfere with the
6784 * fair sleeper stuff for the first placement, but who cares.
6785 */
6786 /*
6787 * When !on_rq, vruntime of the task has usually NOT been normalized.
6788 * But there are some cases where it has already been normalized:
6789 *
6790 * - Moving a forked child which is waiting for being woken up by
6791 * wake_up_new_task().
6792 * - Moving a task which has been woken up by try_to_wake_up() and
6793 * waiting for actually being woken up by sched_ttwu_pending().
6794 *
6795 * To prevent boost or penalty in the new cfs_rq caused by delta
6796 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6797 */
6798 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
6799 on_rq = 1;
6800
6801 if (!on_rq)
6802 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6803 set_task_rq(p, task_cpu(p));
6804 if (!on_rq) {
6805 cfs_rq = cfs_rq_of(&p->se);
6806 p->se.vruntime += cfs_rq->min_vruntime;
6807 #ifdef CONFIG_SMP
6808 /*
6809 * migrate_task_rq_fair() will have removed our previous
6810 * contribution, but we must synchronize for ongoing future
6811 * decay.
6812 */
6813 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6814 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6815 #endif
6816 }
6817 }
6818
6819 void free_fair_sched_group(struct task_group *tg)
6820 {
6821 int i;
6822
6823 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6824
6825 for_each_possible_cpu(i) {
6826 if (tg->cfs_rq)
6827 kfree(tg->cfs_rq[i]);
6828 if (tg->se)
6829 kfree(tg->se[i]);
6830 }
6831
6832 kfree(tg->cfs_rq);
6833 kfree(tg->se);
6834 }
6835
6836 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6837 {
6838 struct cfs_rq *cfs_rq;
6839 struct sched_entity *se;
6840 int i;
6841
6842 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6843 if (!tg->cfs_rq)
6844 goto err;
6845 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6846 if (!tg->se)
6847 goto err;
6848
6849 tg->shares = NICE_0_LOAD;
6850
6851 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6852
6853 for_each_possible_cpu(i) {
6854 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6855 GFP_KERNEL, cpu_to_node(i));
6856 if (!cfs_rq)
6857 goto err;
6858
6859 se = kzalloc_node(sizeof(struct sched_entity),
6860 GFP_KERNEL, cpu_to_node(i));
6861 if (!se)
6862 goto err_free_rq;
6863
6864 init_cfs_rq(cfs_rq);
6865 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6866 }
6867
6868 return 1;
6869
6870 err_free_rq:
6871 kfree(cfs_rq);
6872 err:
6873 return 0;
6874 }
6875
6876 void unregister_fair_sched_group(struct task_group *tg, int cpu)
6877 {
6878 struct rq *rq = cpu_rq(cpu);
6879 unsigned long flags;
6880
6881 /*
6882 * Only empty task groups can be destroyed; so we can speculatively
6883 * check on_list without danger of it being re-added.
6884 */
6885 if (!tg->cfs_rq[cpu]->on_list)
6886 return;
6887
6888 raw_spin_lock_irqsave(&rq->lock, flags);
6889 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6890 raw_spin_unlock_irqrestore(&rq->lock, flags);
6891 }
6892
6893 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6894 struct sched_entity *se, int cpu,
6895 struct sched_entity *parent)
6896 {
6897 struct rq *rq = cpu_rq(cpu);
6898
6899 cfs_rq->tg = tg;
6900 cfs_rq->rq = rq;
6901 init_cfs_rq_runtime(cfs_rq);
6902
6903 tg->cfs_rq[cpu] = cfs_rq;
6904 tg->se[cpu] = se;
6905
6906 /* se could be NULL for root_task_group */
6907 if (!se)
6908 return;
6909
6910 if (!parent)
6911 se->cfs_rq = &rq->cfs;
6912 else
6913 se->cfs_rq = parent->my_q;
6914
6915 se->my_q = cfs_rq;
6916 update_load_set(&se->load, 0);
6917 se->parent = parent;
6918 }
6919
6920 static DEFINE_MUTEX(shares_mutex);
6921
6922 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6923 {
6924 int i;
6925 unsigned long flags;
6926
6927 /*
6928 * We can't change the weight of the root cgroup.
6929 */
6930 if (!tg->se[0])
6931 return -EINVAL;
6932
6933 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6934
6935 mutex_lock(&shares_mutex);
6936 if (tg->shares == shares)
6937 goto done;
6938
6939 tg->shares = shares;
6940 for_each_possible_cpu(i) {
6941 struct rq *rq = cpu_rq(i);
6942 struct sched_entity *se;
6943
6944 se = tg->se[i];
6945 /* Propagate contribution to hierarchy */
6946 raw_spin_lock_irqsave(&rq->lock, flags);
6947
6948 /* Possible calls to update_curr() need rq clock */
6949 update_rq_clock(rq);
6950 for_each_sched_entity(se)
6951 update_cfs_shares(group_cfs_rq(se));
6952 raw_spin_unlock_irqrestore(&rq->lock, flags);
6953 }
6954
6955 done:
6956 mutex_unlock(&shares_mutex);
6957 return 0;
6958 }
6959 #else /* CONFIG_FAIR_GROUP_SCHED */
6960
6961 void free_fair_sched_group(struct task_group *tg) { }
6962
6963 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6964 {
6965 return 1;
6966 }
6967
6968 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6969
6970 #endif /* CONFIG_FAIR_GROUP_SCHED */
6971
6972
6973 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6974 {
6975 struct sched_entity *se = &task->se;
6976 unsigned int rr_interval = 0;
6977
6978 /*
6979 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6980 * idle runqueue:
6981 */
6982 if (rq->cfs.load.weight)
6983 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6984
6985 return rr_interval;
6986 }
6987
6988 /*
6989 * All the scheduling class methods:
6990 */
6991 const struct sched_class fair_sched_class = {
6992 .next = &idle_sched_class,
6993 .enqueue_task = enqueue_task_fair,
6994 .dequeue_task = dequeue_task_fair,
6995 .yield_task = yield_task_fair,
6996 .yield_to_task = yield_to_task_fair,
6997
6998 .check_preempt_curr = check_preempt_wakeup,
6999
7000 .pick_next_task = pick_next_task_fair,
7001 .put_prev_task = put_prev_task_fair,
7002
7003 #ifdef CONFIG_SMP
7004 .select_task_rq = select_task_rq_fair,
7005 .migrate_task_rq = migrate_task_rq_fair,
7006
7007 .rq_online = rq_online_fair,
7008 .rq_offline = rq_offline_fair,
7009
7010 .task_waking = task_waking_fair,
7011 #endif
7012
7013 .set_curr_task = set_curr_task_fair,
7014 .task_tick = task_tick_fair,
7015 .task_fork = task_fork_fair,
7016
7017 .prio_changed = prio_changed_fair,
7018 .switched_from = switched_from_fair,
7019 .switched_to = switched_to_fair,
7020
7021 .get_rr_interval = get_rr_interval_fair,
7022
7023 #ifdef CONFIG_FAIR_GROUP_SCHED
7024 .task_move_group = task_move_group_fair,
7025 #endif
7026 };
7027
7028 #ifdef CONFIG_SCHED_DEBUG
7029 void print_cfs_stats(struct seq_file *m, int cpu)
7030 {
7031 struct cfs_rq *cfs_rq;
7032
7033 rcu_read_lock();
7034 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7035 print_cfs_rq(m, cpu, cfs_rq);
7036 rcu_read_unlock();
7037 }
7038 #endif
7039
7040 __init void init_sched_fair_class(void)
7041 {
7042 #ifdef CONFIG_SMP
7043 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7044
7045 #ifdef CONFIG_NO_HZ_COMMON
7046 nohz.next_balance = jiffies;
7047 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7048 cpu_notifier(sched_ilb_notifier, 0);
7049 #endif
7050 #endif /* SMP */
7051
7052 }