]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched/fair.c
3abc651bc38a2bdd156d0dec3e8bfc9be007d2ee
[mirror_ubuntu-jammy-kernel.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 lw->weight += inc;
119 lw->inv_weight = 0;
120 }
121
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126 }
127
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 lw->weight = w;
131 lw->inv_weight = 0;
132 }
133
134 /*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143 static int get_update_sysctl_factor(void)
144 {
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162 }
163
164 static void update_sysctl(void)
165 {
166 unsigned int factor = get_update_sysctl_factor();
167
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175
176 void sched_init_granularity(void)
177 {
178 update_sysctl();
179 }
180
181 #if BITS_PER_LONG == 32
182 # define WMULT_CONST (~0UL)
183 #else
184 # define WMULT_CONST (1UL << 32)
185 #endif
186
187 #define WMULT_SHIFT 32
188
189 /*
190 * Shift right and round:
191 */
192 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194 /*
195 * delta *= weight / lw
196 */
197 static unsigned long
198 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200 {
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234 }
235
236
237 const struct sched_class fair_sched_class;
238
239 /**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243 #ifdef CONFIG_FAIR_GROUP_SCHED
244
245 /* cpu runqueue to which this cfs_rq is attached */
246 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247 {
248 return cfs_rq->rq;
249 }
250
251 /* An entity is a task if it doesn't "own" a runqueue */
252 #define entity_is_task(se) (!se->my_q)
253
254 static inline struct task_struct *task_of(struct sched_entity *se)
255 {
256 #ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258 #endif
259 return container_of(se, struct task_struct, se);
260 }
261
262 /* Walk up scheduling entities hierarchy */
263 #define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267 {
268 return p->se.cfs_rq;
269 }
270
271 /* runqueue on which this entity is (to be) queued */
272 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273 {
274 return se->cfs_rq;
275 }
276
277 /* runqueue "owned" by this group */
278 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279 {
280 return grp->my_q;
281 }
282
283 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 /* We should have no load, but we need to update last_decay. */
306 update_cfs_rq_blocked_load(cfs_rq, 0);
307 }
308 }
309
310 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311 {
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316 }
317
318 /* Iterate thr' all leaf cfs_rq's on a runqueue */
319 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322 /* Do the two (enqueued) entities belong to the same group ? */
323 static inline int
324 is_same_group(struct sched_entity *se, struct sched_entity *pse)
325 {
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330 }
331
332 static inline struct sched_entity *parent_entity(struct sched_entity *se)
333 {
334 return se->parent;
335 }
336
337 /* return depth at which a sched entity is present in the hierarchy */
338 static inline int depth_se(struct sched_entity *se)
339 {
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346 }
347
348 static void
349 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350 {
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378 }
379
380 #else /* !CONFIG_FAIR_GROUP_SCHED */
381
382 static inline struct task_struct *task_of(struct sched_entity *se)
383 {
384 return container_of(se, struct task_struct, se);
385 }
386
387 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388 {
389 return container_of(cfs_rq, struct rq, cfs);
390 }
391
392 #define entity_is_task(se) 1
393
394 #define for_each_sched_entity(se) \
395 for (; se; se = NULL)
396
397 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
398 {
399 return &task_rq(p)->cfs;
400 }
401
402 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403 {
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408 }
409
410 /* runqueue "owned" by this group */
411 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412 {
413 return NULL;
414 }
415
416 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417 {
418 }
419
420 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421 {
422 }
423
424 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427 static inline int
428 is_same_group(struct sched_entity *se, struct sched_entity *pse)
429 {
430 return 1;
431 }
432
433 static inline struct sched_entity *parent_entity(struct sched_entity *se)
434 {
435 return NULL;
436 }
437
438 static inline void
439 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440 {
441 }
442
443 #endif /* CONFIG_FAIR_GROUP_SCHED */
444
445 static __always_inline
446 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
447
448 /**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
452 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
453 {
454 s64 delta = (s64)(vruntime - max_vruntime);
455 if (delta > 0)
456 max_vruntime = vruntime;
457
458 return max_vruntime;
459 }
460
461 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
462 {
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468 }
469
470 static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472 {
473 return (s64)(a->vruntime - b->vruntime) < 0;
474 }
475
476 static void update_min_vruntime(struct cfs_rq *cfs_rq)
477 {
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
488 if (!cfs_rq->curr)
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
494 /* ensure we never gain time by being placed backwards. */
495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
496 #ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499 #endif
500 }
501
502 /*
503 * Enqueue an entity into the rb-tree:
504 */
505 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
506 {
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
522 if (entity_before(se, entry)) {
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
534 if (leftmost)
535 cfs_rq->rb_leftmost = &se->run_node;
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
539 }
540
541 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 {
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
548 }
549
550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
551 }
552
553 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
554 {
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
561 }
562
563 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564 {
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571 }
572
573 #ifdef CONFIG_SCHED_DEBUG
574 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
575 {
576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
577
578 if (!last)
579 return NULL;
580
581 return rb_entry(last, struct sched_entity, run_node);
582 }
583
584 /**************************************************************
585 * Scheduling class statistics methods:
586 */
587
588 int sched_proc_update_handler(struct ctl_table *table, int write,
589 void __user *buffer, size_t *lenp,
590 loff_t *ppos)
591 {
592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
593 int factor = get_update_sysctl_factor();
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
601 #define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
606 #undef WRT_SYSCTL
607
608 return 0;
609 }
610 #endif
611
612 /*
613 * delta /= w
614 */
615 static inline unsigned long
616 calc_delta_fair(unsigned long delta, struct sched_entity *se)
617 {
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
620
621 return delta;
622 }
623
624 /*
625 * The idea is to set a period in which each task runs once.
626 *
627 * When there are too many tasks (sched_nr_latency) we have to stretch
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
632 static u64 __sched_period(unsigned long nr_running)
633 {
634 u64 period = sysctl_sched_latency;
635 unsigned long nr_latency = sched_nr_latency;
636
637 if (unlikely(nr_running > nr_latency)) {
638 period = sysctl_sched_min_granularity;
639 period *= nr_running;
640 }
641
642 return period;
643 }
644
645 /*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
649 * s = p*P[w/rw]
650 */
651 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
654
655 for_each_sched_entity(se) {
656 struct load_weight *load;
657 struct load_weight lw;
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
661
662 if (unlikely(!se->on_rq)) {
663 lw = cfs_rq->load;
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
671 }
672
673 /*
674 * We calculate the vruntime slice of a to-be-inserted task.
675 *
676 * vs = s/w
677 */
678 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
679 {
680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
681 }
682
683 #ifdef CONFIG_SMP
684 static inline void __update_task_entity_contrib(struct sched_entity *se);
685
686 /* Give new task start runnable values to heavy its load in infant time */
687 void init_task_runnable_average(struct task_struct *p)
688 {
689 u32 slice;
690
691 p->se.avg.decay_count = 0;
692 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
693 p->se.avg.runnable_avg_sum = slice;
694 p->se.avg.runnable_avg_period = slice;
695 __update_task_entity_contrib(&p->se);
696 }
697 #else
698 void init_task_runnable_average(struct task_struct *p)
699 {
700 }
701 #endif
702
703 /*
704 * Update the current task's runtime statistics. Skip current tasks that
705 * are not in our scheduling class.
706 */
707 static inline void
708 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
709 unsigned long delta_exec)
710 {
711 unsigned long delta_exec_weighted;
712
713 schedstat_set(curr->statistics.exec_max,
714 max((u64)delta_exec, curr->statistics.exec_max));
715
716 curr->sum_exec_runtime += delta_exec;
717 schedstat_add(cfs_rq, exec_clock, delta_exec);
718 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
719
720 curr->vruntime += delta_exec_weighted;
721 update_min_vruntime(cfs_rq);
722 }
723
724 static void update_curr(struct cfs_rq *cfs_rq)
725 {
726 struct sched_entity *curr = cfs_rq->curr;
727 u64 now = rq_clock_task(rq_of(cfs_rq));
728 unsigned long delta_exec;
729
730 if (unlikely(!curr))
731 return;
732
733 /*
734 * Get the amount of time the current task was running
735 * since the last time we changed load (this cannot
736 * overflow on 32 bits):
737 */
738 delta_exec = (unsigned long)(now - curr->exec_start);
739 if (!delta_exec)
740 return;
741
742 __update_curr(cfs_rq, curr, delta_exec);
743 curr->exec_start = now;
744
745 if (entity_is_task(curr)) {
746 struct task_struct *curtask = task_of(curr);
747
748 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
749 cpuacct_charge(curtask, delta_exec);
750 account_group_exec_runtime(curtask, delta_exec);
751 }
752
753 account_cfs_rq_runtime(cfs_rq, delta_exec);
754 }
755
756 static inline void
757 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
758 {
759 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
760 }
761
762 /*
763 * Task is being enqueued - update stats:
764 */
765 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
766 {
767 /*
768 * Are we enqueueing a waiting task? (for current tasks
769 * a dequeue/enqueue event is a NOP)
770 */
771 if (se != cfs_rq->curr)
772 update_stats_wait_start(cfs_rq, se);
773 }
774
775 static void
776 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
777 {
778 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
779 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
780 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
781 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
782 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
783 #ifdef CONFIG_SCHEDSTATS
784 if (entity_is_task(se)) {
785 trace_sched_stat_wait(task_of(se),
786 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
787 }
788 #endif
789 schedstat_set(se->statistics.wait_start, 0);
790 }
791
792 static inline void
793 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794 {
795 /*
796 * Mark the end of the wait period if dequeueing a
797 * waiting task:
798 */
799 if (se != cfs_rq->curr)
800 update_stats_wait_end(cfs_rq, se);
801 }
802
803 /*
804 * We are picking a new current task - update its stats:
805 */
806 static inline void
807 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
808 {
809 /*
810 * We are starting a new run period:
811 */
812 se->exec_start = rq_clock_task(rq_of(cfs_rq));
813 }
814
815 /**************************************************
816 * Scheduling class queueing methods:
817 */
818
819 #ifdef CONFIG_NUMA_BALANCING
820 /*
821 * Approximate time to scan a full NUMA task in ms. The task scan period is
822 * calculated based on the tasks virtual memory size and
823 * numa_balancing_scan_size.
824 */
825 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
826 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
827 unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
828
829 /* Portion of address space to scan in MB */
830 unsigned int sysctl_numa_balancing_scan_size = 256;
831
832 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
833 unsigned int sysctl_numa_balancing_scan_delay = 1000;
834
835 static unsigned int task_nr_scan_windows(struct task_struct *p)
836 {
837 unsigned long rss = 0;
838 unsigned long nr_scan_pages;
839
840 /*
841 * Calculations based on RSS as non-present and empty pages are skipped
842 * by the PTE scanner and NUMA hinting faults should be trapped based
843 * on resident pages
844 */
845 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
846 rss = get_mm_rss(p->mm);
847 if (!rss)
848 rss = nr_scan_pages;
849
850 rss = round_up(rss, nr_scan_pages);
851 return rss / nr_scan_pages;
852 }
853
854 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
855 #define MAX_SCAN_WINDOW 2560
856
857 static unsigned int task_scan_min(struct task_struct *p)
858 {
859 unsigned int scan, floor;
860 unsigned int windows = 1;
861
862 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
863 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
864 floor = 1000 / windows;
865
866 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
867 return max_t(unsigned int, floor, scan);
868 }
869
870 static unsigned int task_scan_max(struct task_struct *p)
871 {
872 unsigned int smin = task_scan_min(p);
873 unsigned int smax;
874
875 /* Watch for min being lower than max due to floor calculations */
876 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
877 return max(smin, smax);
878 }
879
880 static void task_numa_placement(struct task_struct *p)
881 {
882 int seq, nid, max_nid = -1;
883 unsigned long max_faults = 0;
884
885 if (!p->mm) /* for example, ksmd faulting in a user's mm */
886 return;
887 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
888 if (p->numa_scan_seq == seq)
889 return;
890 p->numa_scan_seq = seq;
891 p->numa_scan_period_max = task_scan_max(p);
892
893 /* Find the node with the highest number of faults */
894 for_each_online_node(nid) {
895 unsigned long faults;
896
897 /* Decay existing window and copy faults since last scan */
898 p->numa_faults[nid] >>= 1;
899 p->numa_faults[nid] += p->numa_faults_buffer[nid];
900 p->numa_faults_buffer[nid] = 0;
901
902 faults = p->numa_faults[nid];
903 if (faults > max_faults) {
904 max_faults = faults;
905 max_nid = nid;
906 }
907 }
908
909 /* Update the tasks preferred node if necessary */
910 if (max_faults && max_nid != p->numa_preferred_nid)
911 p->numa_preferred_nid = max_nid;
912 }
913
914 /*
915 * Got a PROT_NONE fault for a page on @node.
916 */
917 void task_numa_fault(int node, int pages, bool migrated)
918 {
919 struct task_struct *p = current;
920
921 if (!numabalancing_enabled)
922 return;
923
924 /* Allocate buffer to track faults on a per-node basis */
925 if (unlikely(!p->numa_faults)) {
926 int size = sizeof(*p->numa_faults) * nr_node_ids;
927
928 /* numa_faults and numa_faults_buffer share the allocation */
929 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
930 if (!p->numa_faults)
931 return;
932
933 BUG_ON(p->numa_faults_buffer);
934 p->numa_faults_buffer = p->numa_faults + nr_node_ids;
935 }
936
937 /*
938 * If pages are properly placed (did not migrate) then scan slower.
939 * This is reset periodically in case of phase changes
940 */
941 if (!migrated) {
942 /* Initialise if necessary */
943 if (!p->numa_scan_period_max)
944 p->numa_scan_period_max = task_scan_max(p);
945
946 p->numa_scan_period = min(p->numa_scan_period_max,
947 p->numa_scan_period + 10);
948 }
949
950 task_numa_placement(p);
951
952 p->numa_faults_buffer[node] += pages;
953 }
954
955 static void reset_ptenuma_scan(struct task_struct *p)
956 {
957 ACCESS_ONCE(p->mm->numa_scan_seq)++;
958 p->mm->numa_scan_offset = 0;
959 }
960
961 /*
962 * The expensive part of numa migration is done from task_work context.
963 * Triggered from task_tick_numa().
964 */
965 void task_numa_work(struct callback_head *work)
966 {
967 unsigned long migrate, next_scan, now = jiffies;
968 struct task_struct *p = current;
969 struct mm_struct *mm = p->mm;
970 struct vm_area_struct *vma;
971 unsigned long start, end;
972 unsigned long nr_pte_updates = 0;
973 long pages;
974
975 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
976
977 work->next = work; /* protect against double add */
978 /*
979 * Who cares about NUMA placement when they're dying.
980 *
981 * NOTE: make sure not to dereference p->mm before this check,
982 * exit_task_work() happens _after_ exit_mm() so we could be called
983 * without p->mm even though we still had it when we enqueued this
984 * work.
985 */
986 if (p->flags & PF_EXITING)
987 return;
988
989 if (!mm->numa_next_reset || !mm->numa_next_scan) {
990 mm->numa_next_scan = now +
991 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
992 mm->numa_next_reset = now +
993 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
994 }
995
996 /*
997 * Reset the scan period if enough time has gone by. Objective is that
998 * scanning will be reduced if pages are properly placed. As tasks
999 * can enter different phases this needs to be re-examined. Lacking
1000 * proper tracking of reference behaviour, this blunt hammer is used.
1001 */
1002 migrate = mm->numa_next_reset;
1003 if (time_after(now, migrate)) {
1004 p->numa_scan_period = task_scan_min(p);
1005 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1006 xchg(&mm->numa_next_reset, next_scan);
1007 }
1008
1009 /*
1010 * Enforce maximal scan/migration frequency..
1011 */
1012 migrate = mm->numa_next_scan;
1013 if (time_before(now, migrate))
1014 return;
1015
1016 if (p->numa_scan_period == 0) {
1017 p->numa_scan_period_max = task_scan_max(p);
1018 p->numa_scan_period = task_scan_min(p);
1019 }
1020
1021 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1022 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1023 return;
1024
1025 /*
1026 * Delay this task enough that another task of this mm will likely win
1027 * the next time around.
1028 */
1029 p->node_stamp += 2 * TICK_NSEC;
1030
1031 start = mm->numa_scan_offset;
1032 pages = sysctl_numa_balancing_scan_size;
1033 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1034 if (!pages)
1035 return;
1036
1037 down_read(&mm->mmap_sem);
1038 vma = find_vma(mm, start);
1039 if (!vma) {
1040 reset_ptenuma_scan(p);
1041 start = 0;
1042 vma = mm->mmap;
1043 }
1044 for (; vma; vma = vma->vm_next) {
1045 if (!vma_migratable(vma))
1046 continue;
1047
1048 /* Skip small VMAs. They are not likely to be of relevance */
1049 if (vma->vm_end - vma->vm_start < HPAGE_SIZE)
1050 continue;
1051
1052 do {
1053 start = max(start, vma->vm_start);
1054 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1055 end = min(end, vma->vm_end);
1056 nr_pte_updates += change_prot_numa(vma, start, end);
1057
1058 /*
1059 * Scan sysctl_numa_balancing_scan_size but ensure that
1060 * at least one PTE is updated so that unused virtual
1061 * address space is quickly skipped.
1062 */
1063 if (nr_pte_updates)
1064 pages -= (end - start) >> PAGE_SHIFT;
1065
1066 start = end;
1067 if (pages <= 0)
1068 goto out;
1069 } while (end != vma->vm_end);
1070 }
1071
1072 out:
1073 /*
1074 * If the whole process was scanned without updates then no NUMA
1075 * hinting faults are being recorded and scan rate should be lower.
1076 */
1077 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1078 p->numa_scan_period = min(p->numa_scan_period_max,
1079 p->numa_scan_period << 1);
1080
1081 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1082 mm->numa_next_scan = next_scan;
1083 }
1084
1085 /*
1086 * It is possible to reach the end of the VMA list but the last few
1087 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1088 * would find the !migratable VMA on the next scan but not reset the
1089 * scanner to the start so check it now.
1090 */
1091 if (vma)
1092 mm->numa_scan_offset = start;
1093 else
1094 reset_ptenuma_scan(p);
1095 up_read(&mm->mmap_sem);
1096 }
1097
1098 /*
1099 * Drive the periodic memory faults..
1100 */
1101 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1102 {
1103 struct callback_head *work = &curr->numa_work;
1104 u64 period, now;
1105
1106 /*
1107 * We don't care about NUMA placement if we don't have memory.
1108 */
1109 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1110 return;
1111
1112 /*
1113 * Using runtime rather than walltime has the dual advantage that
1114 * we (mostly) drive the selection from busy threads and that the
1115 * task needs to have done some actual work before we bother with
1116 * NUMA placement.
1117 */
1118 now = curr->se.sum_exec_runtime;
1119 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1120
1121 if (now - curr->node_stamp > period) {
1122 if (!curr->node_stamp)
1123 curr->numa_scan_period = task_scan_min(curr);
1124 curr->node_stamp += period;
1125
1126 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1127 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1128 task_work_add(curr, work, true);
1129 }
1130 }
1131 }
1132 #else
1133 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1134 {
1135 }
1136 #endif /* CONFIG_NUMA_BALANCING */
1137
1138 static void
1139 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1140 {
1141 update_load_add(&cfs_rq->load, se->load.weight);
1142 if (!parent_entity(se))
1143 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1144 #ifdef CONFIG_SMP
1145 if (entity_is_task(se))
1146 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
1147 #endif
1148 cfs_rq->nr_running++;
1149 }
1150
1151 static void
1152 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1153 {
1154 update_load_sub(&cfs_rq->load, se->load.weight);
1155 if (!parent_entity(se))
1156 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1157 if (entity_is_task(se))
1158 list_del_init(&se->group_node);
1159 cfs_rq->nr_running--;
1160 }
1161
1162 #ifdef CONFIG_FAIR_GROUP_SCHED
1163 # ifdef CONFIG_SMP
1164 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1165 {
1166 long tg_weight;
1167
1168 /*
1169 * Use this CPU's actual weight instead of the last load_contribution
1170 * to gain a more accurate current total weight. See
1171 * update_cfs_rq_load_contribution().
1172 */
1173 tg_weight = atomic_long_read(&tg->load_avg);
1174 tg_weight -= cfs_rq->tg_load_contrib;
1175 tg_weight += cfs_rq->load.weight;
1176
1177 return tg_weight;
1178 }
1179
1180 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1181 {
1182 long tg_weight, load, shares;
1183
1184 tg_weight = calc_tg_weight(tg, cfs_rq);
1185 load = cfs_rq->load.weight;
1186
1187 shares = (tg->shares * load);
1188 if (tg_weight)
1189 shares /= tg_weight;
1190
1191 if (shares < MIN_SHARES)
1192 shares = MIN_SHARES;
1193 if (shares > tg->shares)
1194 shares = tg->shares;
1195
1196 return shares;
1197 }
1198 # else /* CONFIG_SMP */
1199 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1200 {
1201 return tg->shares;
1202 }
1203 # endif /* CONFIG_SMP */
1204 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1205 unsigned long weight)
1206 {
1207 if (se->on_rq) {
1208 /* commit outstanding execution time */
1209 if (cfs_rq->curr == se)
1210 update_curr(cfs_rq);
1211 account_entity_dequeue(cfs_rq, se);
1212 }
1213
1214 update_load_set(&se->load, weight);
1215
1216 if (se->on_rq)
1217 account_entity_enqueue(cfs_rq, se);
1218 }
1219
1220 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1221
1222 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1223 {
1224 struct task_group *tg;
1225 struct sched_entity *se;
1226 long shares;
1227
1228 tg = cfs_rq->tg;
1229 se = tg->se[cpu_of(rq_of(cfs_rq))];
1230 if (!se || throttled_hierarchy(cfs_rq))
1231 return;
1232 #ifndef CONFIG_SMP
1233 if (likely(se->load.weight == tg->shares))
1234 return;
1235 #endif
1236 shares = calc_cfs_shares(cfs_rq, tg);
1237
1238 reweight_entity(cfs_rq_of(se), se, shares);
1239 }
1240 #else /* CONFIG_FAIR_GROUP_SCHED */
1241 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1242 {
1243 }
1244 #endif /* CONFIG_FAIR_GROUP_SCHED */
1245
1246 #ifdef CONFIG_SMP
1247 /*
1248 * We choose a half-life close to 1 scheduling period.
1249 * Note: The tables below are dependent on this value.
1250 */
1251 #define LOAD_AVG_PERIOD 32
1252 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1253 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1254
1255 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1256 static const u32 runnable_avg_yN_inv[] = {
1257 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1258 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1259 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1260 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1261 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1262 0x85aac367, 0x82cd8698,
1263 };
1264
1265 /*
1266 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1267 * over-estimates when re-combining.
1268 */
1269 static const u32 runnable_avg_yN_sum[] = {
1270 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1271 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1272 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1273 };
1274
1275 /*
1276 * Approximate:
1277 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1278 */
1279 static __always_inline u64 decay_load(u64 val, u64 n)
1280 {
1281 unsigned int local_n;
1282
1283 if (!n)
1284 return val;
1285 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1286 return 0;
1287
1288 /* after bounds checking we can collapse to 32-bit */
1289 local_n = n;
1290
1291 /*
1292 * As y^PERIOD = 1/2, we can combine
1293 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1294 * With a look-up table which covers k^n (n<PERIOD)
1295 *
1296 * To achieve constant time decay_load.
1297 */
1298 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1299 val >>= local_n / LOAD_AVG_PERIOD;
1300 local_n %= LOAD_AVG_PERIOD;
1301 }
1302
1303 val *= runnable_avg_yN_inv[local_n];
1304 /* We don't use SRR here since we always want to round down. */
1305 return val >> 32;
1306 }
1307
1308 /*
1309 * For updates fully spanning n periods, the contribution to runnable
1310 * average will be: \Sum 1024*y^n
1311 *
1312 * We can compute this reasonably efficiently by combining:
1313 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1314 */
1315 static u32 __compute_runnable_contrib(u64 n)
1316 {
1317 u32 contrib = 0;
1318
1319 if (likely(n <= LOAD_AVG_PERIOD))
1320 return runnable_avg_yN_sum[n];
1321 else if (unlikely(n >= LOAD_AVG_MAX_N))
1322 return LOAD_AVG_MAX;
1323
1324 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1325 do {
1326 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1327 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1328
1329 n -= LOAD_AVG_PERIOD;
1330 } while (n > LOAD_AVG_PERIOD);
1331
1332 contrib = decay_load(contrib, n);
1333 return contrib + runnable_avg_yN_sum[n];
1334 }
1335
1336 /*
1337 * We can represent the historical contribution to runnable average as the
1338 * coefficients of a geometric series. To do this we sub-divide our runnable
1339 * history into segments of approximately 1ms (1024us); label the segment that
1340 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1341 *
1342 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1343 * p0 p1 p2
1344 * (now) (~1ms ago) (~2ms ago)
1345 *
1346 * Let u_i denote the fraction of p_i that the entity was runnable.
1347 *
1348 * We then designate the fractions u_i as our co-efficients, yielding the
1349 * following representation of historical load:
1350 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1351 *
1352 * We choose y based on the with of a reasonably scheduling period, fixing:
1353 * y^32 = 0.5
1354 *
1355 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1356 * approximately half as much as the contribution to load within the last ms
1357 * (u_0).
1358 *
1359 * When a period "rolls over" and we have new u_0`, multiplying the previous
1360 * sum again by y is sufficient to update:
1361 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1362 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1363 */
1364 static __always_inline int __update_entity_runnable_avg(u64 now,
1365 struct sched_avg *sa,
1366 int runnable)
1367 {
1368 u64 delta, periods;
1369 u32 runnable_contrib;
1370 int delta_w, decayed = 0;
1371
1372 delta = now - sa->last_runnable_update;
1373 /*
1374 * This should only happen when time goes backwards, which it
1375 * unfortunately does during sched clock init when we swap over to TSC.
1376 */
1377 if ((s64)delta < 0) {
1378 sa->last_runnable_update = now;
1379 return 0;
1380 }
1381
1382 /*
1383 * Use 1024ns as the unit of measurement since it's a reasonable
1384 * approximation of 1us and fast to compute.
1385 */
1386 delta >>= 10;
1387 if (!delta)
1388 return 0;
1389 sa->last_runnable_update = now;
1390
1391 /* delta_w is the amount already accumulated against our next period */
1392 delta_w = sa->runnable_avg_period % 1024;
1393 if (delta + delta_w >= 1024) {
1394 /* period roll-over */
1395 decayed = 1;
1396
1397 /*
1398 * Now that we know we're crossing a period boundary, figure
1399 * out how much from delta we need to complete the current
1400 * period and accrue it.
1401 */
1402 delta_w = 1024 - delta_w;
1403 if (runnable)
1404 sa->runnable_avg_sum += delta_w;
1405 sa->runnable_avg_period += delta_w;
1406
1407 delta -= delta_w;
1408
1409 /* Figure out how many additional periods this update spans */
1410 periods = delta / 1024;
1411 delta %= 1024;
1412
1413 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1414 periods + 1);
1415 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1416 periods + 1);
1417
1418 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1419 runnable_contrib = __compute_runnable_contrib(periods);
1420 if (runnable)
1421 sa->runnable_avg_sum += runnable_contrib;
1422 sa->runnable_avg_period += runnable_contrib;
1423 }
1424
1425 /* Remainder of delta accrued against u_0` */
1426 if (runnable)
1427 sa->runnable_avg_sum += delta;
1428 sa->runnable_avg_period += delta;
1429
1430 return decayed;
1431 }
1432
1433 /* Synchronize an entity's decay with its parenting cfs_rq.*/
1434 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1435 {
1436 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1437 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1438
1439 decays -= se->avg.decay_count;
1440 if (!decays)
1441 return 0;
1442
1443 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1444 se->avg.decay_count = 0;
1445
1446 return decays;
1447 }
1448
1449 #ifdef CONFIG_FAIR_GROUP_SCHED
1450 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1451 int force_update)
1452 {
1453 struct task_group *tg = cfs_rq->tg;
1454 long tg_contrib;
1455
1456 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1457 tg_contrib -= cfs_rq->tg_load_contrib;
1458
1459 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1460 atomic_long_add(tg_contrib, &tg->load_avg);
1461 cfs_rq->tg_load_contrib += tg_contrib;
1462 }
1463 }
1464
1465 /*
1466 * Aggregate cfs_rq runnable averages into an equivalent task_group
1467 * representation for computing load contributions.
1468 */
1469 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1470 struct cfs_rq *cfs_rq)
1471 {
1472 struct task_group *tg = cfs_rq->tg;
1473 long contrib;
1474
1475 /* The fraction of a cpu used by this cfs_rq */
1476 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1477 sa->runnable_avg_period + 1);
1478 contrib -= cfs_rq->tg_runnable_contrib;
1479
1480 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1481 atomic_add(contrib, &tg->runnable_avg);
1482 cfs_rq->tg_runnable_contrib += contrib;
1483 }
1484 }
1485
1486 static inline void __update_group_entity_contrib(struct sched_entity *se)
1487 {
1488 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1489 struct task_group *tg = cfs_rq->tg;
1490 int runnable_avg;
1491
1492 u64 contrib;
1493
1494 contrib = cfs_rq->tg_load_contrib * tg->shares;
1495 se->avg.load_avg_contrib = div_u64(contrib,
1496 atomic_long_read(&tg->load_avg) + 1);
1497
1498 /*
1499 * For group entities we need to compute a correction term in the case
1500 * that they are consuming <1 cpu so that we would contribute the same
1501 * load as a task of equal weight.
1502 *
1503 * Explicitly co-ordinating this measurement would be expensive, but
1504 * fortunately the sum of each cpus contribution forms a usable
1505 * lower-bound on the true value.
1506 *
1507 * Consider the aggregate of 2 contributions. Either they are disjoint
1508 * (and the sum represents true value) or they are disjoint and we are
1509 * understating by the aggregate of their overlap.
1510 *
1511 * Extending this to N cpus, for a given overlap, the maximum amount we
1512 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1513 * cpus that overlap for this interval and w_i is the interval width.
1514 *
1515 * On a small machine; the first term is well-bounded which bounds the
1516 * total error since w_i is a subset of the period. Whereas on a
1517 * larger machine, while this first term can be larger, if w_i is the
1518 * of consequential size guaranteed to see n_i*w_i quickly converge to
1519 * our upper bound of 1-cpu.
1520 */
1521 runnable_avg = atomic_read(&tg->runnable_avg);
1522 if (runnable_avg < NICE_0_LOAD) {
1523 se->avg.load_avg_contrib *= runnable_avg;
1524 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1525 }
1526 }
1527 #else
1528 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1529 int force_update) {}
1530 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1531 struct cfs_rq *cfs_rq) {}
1532 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1533 #endif
1534
1535 static inline void __update_task_entity_contrib(struct sched_entity *se)
1536 {
1537 u32 contrib;
1538
1539 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1540 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1541 contrib /= (se->avg.runnable_avg_period + 1);
1542 se->avg.load_avg_contrib = scale_load(contrib);
1543 }
1544
1545 /* Compute the current contribution to load_avg by se, return any delta */
1546 static long __update_entity_load_avg_contrib(struct sched_entity *se)
1547 {
1548 long old_contrib = se->avg.load_avg_contrib;
1549
1550 if (entity_is_task(se)) {
1551 __update_task_entity_contrib(se);
1552 } else {
1553 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1554 __update_group_entity_contrib(se);
1555 }
1556
1557 return se->avg.load_avg_contrib - old_contrib;
1558 }
1559
1560 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1561 long load_contrib)
1562 {
1563 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1564 cfs_rq->blocked_load_avg -= load_contrib;
1565 else
1566 cfs_rq->blocked_load_avg = 0;
1567 }
1568
1569 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1570
1571 /* Update a sched_entity's runnable average */
1572 static inline void update_entity_load_avg(struct sched_entity *se,
1573 int update_cfs_rq)
1574 {
1575 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1576 long contrib_delta;
1577 u64 now;
1578
1579 /*
1580 * For a group entity we need to use their owned cfs_rq_clock_task() in
1581 * case they are the parent of a throttled hierarchy.
1582 */
1583 if (entity_is_task(se))
1584 now = cfs_rq_clock_task(cfs_rq);
1585 else
1586 now = cfs_rq_clock_task(group_cfs_rq(se));
1587
1588 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1589 return;
1590
1591 contrib_delta = __update_entity_load_avg_contrib(se);
1592
1593 if (!update_cfs_rq)
1594 return;
1595
1596 if (se->on_rq)
1597 cfs_rq->runnable_load_avg += contrib_delta;
1598 else
1599 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1600 }
1601
1602 /*
1603 * Decay the load contributed by all blocked children and account this so that
1604 * their contribution may appropriately discounted when they wake up.
1605 */
1606 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1607 {
1608 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1609 u64 decays;
1610
1611 decays = now - cfs_rq->last_decay;
1612 if (!decays && !force_update)
1613 return;
1614
1615 if (atomic_long_read(&cfs_rq->removed_load)) {
1616 unsigned long removed_load;
1617 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
1618 subtract_blocked_load_contrib(cfs_rq, removed_load);
1619 }
1620
1621 if (decays) {
1622 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1623 decays);
1624 atomic64_add(decays, &cfs_rq->decay_counter);
1625 cfs_rq->last_decay = now;
1626 }
1627
1628 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1629 }
1630
1631 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1632 {
1633 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
1634 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
1635 }
1636
1637 /* Add the load generated by se into cfs_rq's child load-average */
1638 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1639 struct sched_entity *se,
1640 int wakeup)
1641 {
1642 /*
1643 * We track migrations using entity decay_count <= 0, on a wake-up
1644 * migration we use a negative decay count to track the remote decays
1645 * accumulated while sleeping.
1646 *
1647 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1648 * are seen by enqueue_entity_load_avg() as a migration with an already
1649 * constructed load_avg_contrib.
1650 */
1651 if (unlikely(se->avg.decay_count <= 0)) {
1652 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
1653 if (se->avg.decay_count) {
1654 /*
1655 * In a wake-up migration we have to approximate the
1656 * time sleeping. This is because we can't synchronize
1657 * clock_task between the two cpus, and it is not
1658 * guaranteed to be read-safe. Instead, we can
1659 * approximate this using our carried decays, which are
1660 * explicitly atomically readable.
1661 */
1662 se->avg.last_runnable_update -= (-se->avg.decay_count)
1663 << 20;
1664 update_entity_load_avg(se, 0);
1665 /* Indicate that we're now synchronized and on-rq */
1666 se->avg.decay_count = 0;
1667 }
1668 wakeup = 0;
1669 } else {
1670 /*
1671 * Task re-woke on same cpu (or else migrate_task_rq_fair()
1672 * would have made count negative); we must be careful to avoid
1673 * double-accounting blocked time after synchronizing decays.
1674 */
1675 se->avg.last_runnable_update += __synchronize_entity_decay(se)
1676 << 20;
1677 }
1678
1679 /* migrated tasks did not contribute to our blocked load */
1680 if (wakeup) {
1681 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1682 update_entity_load_avg(se, 0);
1683 }
1684
1685 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1686 /* we force update consideration on load-balancer moves */
1687 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1688 }
1689
1690 /*
1691 * Remove se's load from this cfs_rq child load-average, if the entity is
1692 * transitioning to a blocked state we track its projected decay using
1693 * blocked_load_avg.
1694 */
1695 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1696 struct sched_entity *se,
1697 int sleep)
1698 {
1699 update_entity_load_avg(se, 1);
1700 /* we force update consideration on load-balancer moves */
1701 update_cfs_rq_blocked_load(cfs_rq, !sleep);
1702
1703 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1704 if (sleep) {
1705 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1706 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1707 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
1708 }
1709
1710 /*
1711 * Update the rq's load with the elapsed running time before entering
1712 * idle. if the last scheduled task is not a CFS task, idle_enter will
1713 * be the only way to update the runnable statistic.
1714 */
1715 void idle_enter_fair(struct rq *this_rq)
1716 {
1717 update_rq_runnable_avg(this_rq, 1);
1718 }
1719
1720 /*
1721 * Update the rq's load with the elapsed idle time before a task is
1722 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
1723 * be the only way to update the runnable statistic.
1724 */
1725 void idle_exit_fair(struct rq *this_rq)
1726 {
1727 update_rq_runnable_avg(this_rq, 0);
1728 }
1729
1730 #else
1731 static inline void update_entity_load_avg(struct sched_entity *se,
1732 int update_cfs_rq) {}
1733 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1734 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1735 struct sched_entity *se,
1736 int wakeup) {}
1737 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1738 struct sched_entity *se,
1739 int sleep) {}
1740 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1741 int force_update) {}
1742 #endif
1743
1744 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1745 {
1746 #ifdef CONFIG_SCHEDSTATS
1747 struct task_struct *tsk = NULL;
1748
1749 if (entity_is_task(se))
1750 tsk = task_of(se);
1751
1752 if (se->statistics.sleep_start) {
1753 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
1754
1755 if ((s64)delta < 0)
1756 delta = 0;
1757
1758 if (unlikely(delta > se->statistics.sleep_max))
1759 se->statistics.sleep_max = delta;
1760
1761 se->statistics.sleep_start = 0;
1762 se->statistics.sum_sleep_runtime += delta;
1763
1764 if (tsk) {
1765 account_scheduler_latency(tsk, delta >> 10, 1);
1766 trace_sched_stat_sleep(tsk, delta);
1767 }
1768 }
1769 if (se->statistics.block_start) {
1770 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
1771
1772 if ((s64)delta < 0)
1773 delta = 0;
1774
1775 if (unlikely(delta > se->statistics.block_max))
1776 se->statistics.block_max = delta;
1777
1778 se->statistics.block_start = 0;
1779 se->statistics.sum_sleep_runtime += delta;
1780
1781 if (tsk) {
1782 if (tsk->in_iowait) {
1783 se->statistics.iowait_sum += delta;
1784 se->statistics.iowait_count++;
1785 trace_sched_stat_iowait(tsk, delta);
1786 }
1787
1788 trace_sched_stat_blocked(tsk, delta);
1789
1790 /*
1791 * Blocking time is in units of nanosecs, so shift by
1792 * 20 to get a milliseconds-range estimation of the
1793 * amount of time that the task spent sleeping:
1794 */
1795 if (unlikely(prof_on == SLEEP_PROFILING)) {
1796 profile_hits(SLEEP_PROFILING,
1797 (void *)get_wchan(tsk),
1798 delta >> 20);
1799 }
1800 account_scheduler_latency(tsk, delta >> 10, 0);
1801 }
1802 }
1803 #endif
1804 }
1805
1806 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1807 {
1808 #ifdef CONFIG_SCHED_DEBUG
1809 s64 d = se->vruntime - cfs_rq->min_vruntime;
1810
1811 if (d < 0)
1812 d = -d;
1813
1814 if (d > 3*sysctl_sched_latency)
1815 schedstat_inc(cfs_rq, nr_spread_over);
1816 #endif
1817 }
1818
1819 static void
1820 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1821 {
1822 u64 vruntime = cfs_rq->min_vruntime;
1823
1824 /*
1825 * The 'current' period is already promised to the current tasks,
1826 * however the extra weight of the new task will slow them down a
1827 * little, place the new task so that it fits in the slot that
1828 * stays open at the end.
1829 */
1830 if (initial && sched_feat(START_DEBIT))
1831 vruntime += sched_vslice(cfs_rq, se);
1832
1833 /* sleeps up to a single latency don't count. */
1834 if (!initial) {
1835 unsigned long thresh = sysctl_sched_latency;
1836
1837 /*
1838 * Halve their sleep time's effect, to allow
1839 * for a gentler effect of sleepers:
1840 */
1841 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1842 thresh >>= 1;
1843
1844 vruntime -= thresh;
1845 }
1846
1847 /* ensure we never gain time by being placed backwards. */
1848 se->vruntime = max_vruntime(se->vruntime, vruntime);
1849 }
1850
1851 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1852
1853 static void
1854 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1855 {
1856 /*
1857 * Update the normalized vruntime before updating min_vruntime
1858 * through calling update_curr().
1859 */
1860 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1861 se->vruntime += cfs_rq->min_vruntime;
1862
1863 /*
1864 * Update run-time statistics of the 'current'.
1865 */
1866 update_curr(cfs_rq);
1867 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
1868 account_entity_enqueue(cfs_rq, se);
1869 update_cfs_shares(cfs_rq);
1870
1871 if (flags & ENQUEUE_WAKEUP) {
1872 place_entity(cfs_rq, se, 0);
1873 enqueue_sleeper(cfs_rq, se);
1874 }
1875
1876 update_stats_enqueue(cfs_rq, se);
1877 check_spread(cfs_rq, se);
1878 if (se != cfs_rq->curr)
1879 __enqueue_entity(cfs_rq, se);
1880 se->on_rq = 1;
1881
1882 if (cfs_rq->nr_running == 1) {
1883 list_add_leaf_cfs_rq(cfs_rq);
1884 check_enqueue_throttle(cfs_rq);
1885 }
1886 }
1887
1888 static void __clear_buddies_last(struct sched_entity *se)
1889 {
1890 for_each_sched_entity(se) {
1891 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1892 if (cfs_rq->last == se)
1893 cfs_rq->last = NULL;
1894 else
1895 break;
1896 }
1897 }
1898
1899 static void __clear_buddies_next(struct sched_entity *se)
1900 {
1901 for_each_sched_entity(se) {
1902 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1903 if (cfs_rq->next == se)
1904 cfs_rq->next = NULL;
1905 else
1906 break;
1907 }
1908 }
1909
1910 static void __clear_buddies_skip(struct sched_entity *se)
1911 {
1912 for_each_sched_entity(se) {
1913 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1914 if (cfs_rq->skip == se)
1915 cfs_rq->skip = NULL;
1916 else
1917 break;
1918 }
1919 }
1920
1921 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1922 {
1923 if (cfs_rq->last == se)
1924 __clear_buddies_last(se);
1925
1926 if (cfs_rq->next == se)
1927 __clear_buddies_next(se);
1928
1929 if (cfs_rq->skip == se)
1930 __clear_buddies_skip(se);
1931 }
1932
1933 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1934
1935 static void
1936 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1937 {
1938 /*
1939 * Update run-time statistics of the 'current'.
1940 */
1941 update_curr(cfs_rq);
1942 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
1943
1944 update_stats_dequeue(cfs_rq, se);
1945 if (flags & DEQUEUE_SLEEP) {
1946 #ifdef CONFIG_SCHEDSTATS
1947 if (entity_is_task(se)) {
1948 struct task_struct *tsk = task_of(se);
1949
1950 if (tsk->state & TASK_INTERRUPTIBLE)
1951 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
1952 if (tsk->state & TASK_UNINTERRUPTIBLE)
1953 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
1954 }
1955 #endif
1956 }
1957
1958 clear_buddies(cfs_rq, se);
1959
1960 if (se != cfs_rq->curr)
1961 __dequeue_entity(cfs_rq, se);
1962 se->on_rq = 0;
1963 account_entity_dequeue(cfs_rq, se);
1964
1965 /*
1966 * Normalize the entity after updating the min_vruntime because the
1967 * update can refer to the ->curr item and we need to reflect this
1968 * movement in our normalized position.
1969 */
1970 if (!(flags & DEQUEUE_SLEEP))
1971 se->vruntime -= cfs_rq->min_vruntime;
1972
1973 /* return excess runtime on last dequeue */
1974 return_cfs_rq_runtime(cfs_rq);
1975
1976 update_min_vruntime(cfs_rq);
1977 update_cfs_shares(cfs_rq);
1978 }
1979
1980 /*
1981 * Preempt the current task with a newly woken task if needed:
1982 */
1983 static void
1984 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1985 {
1986 unsigned long ideal_runtime, delta_exec;
1987 struct sched_entity *se;
1988 s64 delta;
1989
1990 ideal_runtime = sched_slice(cfs_rq, curr);
1991 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1992 if (delta_exec > ideal_runtime) {
1993 resched_task(rq_of(cfs_rq)->curr);
1994 /*
1995 * The current task ran long enough, ensure it doesn't get
1996 * re-elected due to buddy favours.
1997 */
1998 clear_buddies(cfs_rq, curr);
1999 return;
2000 }
2001
2002 /*
2003 * Ensure that a task that missed wakeup preemption by a
2004 * narrow margin doesn't have to wait for a full slice.
2005 * This also mitigates buddy induced latencies under load.
2006 */
2007 if (delta_exec < sysctl_sched_min_granularity)
2008 return;
2009
2010 se = __pick_first_entity(cfs_rq);
2011 delta = curr->vruntime - se->vruntime;
2012
2013 if (delta < 0)
2014 return;
2015
2016 if (delta > ideal_runtime)
2017 resched_task(rq_of(cfs_rq)->curr);
2018 }
2019
2020 static void
2021 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2022 {
2023 /* 'current' is not kept within the tree. */
2024 if (se->on_rq) {
2025 /*
2026 * Any task has to be enqueued before it get to execute on
2027 * a CPU. So account for the time it spent waiting on the
2028 * runqueue.
2029 */
2030 update_stats_wait_end(cfs_rq, se);
2031 __dequeue_entity(cfs_rq, se);
2032 }
2033
2034 update_stats_curr_start(cfs_rq, se);
2035 cfs_rq->curr = se;
2036 #ifdef CONFIG_SCHEDSTATS
2037 /*
2038 * Track our maximum slice length, if the CPU's load is at
2039 * least twice that of our own weight (i.e. dont track it
2040 * when there are only lesser-weight tasks around):
2041 */
2042 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2043 se->statistics.slice_max = max(se->statistics.slice_max,
2044 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2045 }
2046 #endif
2047 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2048 }
2049
2050 static int
2051 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2052
2053 /*
2054 * Pick the next process, keeping these things in mind, in this order:
2055 * 1) keep things fair between processes/task groups
2056 * 2) pick the "next" process, since someone really wants that to run
2057 * 3) pick the "last" process, for cache locality
2058 * 4) do not run the "skip" process, if something else is available
2059 */
2060 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2061 {
2062 struct sched_entity *se = __pick_first_entity(cfs_rq);
2063 struct sched_entity *left = se;
2064
2065 /*
2066 * Avoid running the skip buddy, if running something else can
2067 * be done without getting too unfair.
2068 */
2069 if (cfs_rq->skip == se) {
2070 struct sched_entity *second = __pick_next_entity(se);
2071 if (second && wakeup_preempt_entity(second, left) < 1)
2072 se = second;
2073 }
2074
2075 /*
2076 * Prefer last buddy, try to return the CPU to a preempted task.
2077 */
2078 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2079 se = cfs_rq->last;
2080
2081 /*
2082 * Someone really wants this to run. If it's not unfair, run it.
2083 */
2084 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2085 se = cfs_rq->next;
2086
2087 clear_buddies(cfs_rq, se);
2088
2089 return se;
2090 }
2091
2092 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2093
2094 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2095 {
2096 /*
2097 * If still on the runqueue then deactivate_task()
2098 * was not called and update_curr() has to be done:
2099 */
2100 if (prev->on_rq)
2101 update_curr(cfs_rq);
2102
2103 /* throttle cfs_rqs exceeding runtime */
2104 check_cfs_rq_runtime(cfs_rq);
2105
2106 check_spread(cfs_rq, prev);
2107 if (prev->on_rq) {
2108 update_stats_wait_start(cfs_rq, prev);
2109 /* Put 'current' back into the tree. */
2110 __enqueue_entity(cfs_rq, prev);
2111 /* in !on_rq case, update occurred at dequeue */
2112 update_entity_load_avg(prev, 1);
2113 }
2114 cfs_rq->curr = NULL;
2115 }
2116
2117 static void
2118 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2119 {
2120 /*
2121 * Update run-time statistics of the 'current'.
2122 */
2123 update_curr(cfs_rq);
2124
2125 /*
2126 * Ensure that runnable average is periodically updated.
2127 */
2128 update_entity_load_avg(curr, 1);
2129 update_cfs_rq_blocked_load(cfs_rq, 1);
2130 update_cfs_shares(cfs_rq);
2131
2132 #ifdef CONFIG_SCHED_HRTICK
2133 /*
2134 * queued ticks are scheduled to match the slice, so don't bother
2135 * validating it and just reschedule.
2136 */
2137 if (queued) {
2138 resched_task(rq_of(cfs_rq)->curr);
2139 return;
2140 }
2141 /*
2142 * don't let the period tick interfere with the hrtick preemption
2143 */
2144 if (!sched_feat(DOUBLE_TICK) &&
2145 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2146 return;
2147 #endif
2148
2149 if (cfs_rq->nr_running > 1)
2150 check_preempt_tick(cfs_rq, curr);
2151 }
2152
2153
2154 /**************************************************
2155 * CFS bandwidth control machinery
2156 */
2157
2158 #ifdef CONFIG_CFS_BANDWIDTH
2159
2160 #ifdef HAVE_JUMP_LABEL
2161 static struct static_key __cfs_bandwidth_used;
2162
2163 static inline bool cfs_bandwidth_used(void)
2164 {
2165 return static_key_false(&__cfs_bandwidth_used);
2166 }
2167
2168 void account_cfs_bandwidth_used(int enabled, int was_enabled)
2169 {
2170 /* only need to count groups transitioning between enabled/!enabled */
2171 if (enabled && !was_enabled)
2172 static_key_slow_inc(&__cfs_bandwidth_used);
2173 else if (!enabled && was_enabled)
2174 static_key_slow_dec(&__cfs_bandwidth_used);
2175 }
2176 #else /* HAVE_JUMP_LABEL */
2177 static bool cfs_bandwidth_used(void)
2178 {
2179 return true;
2180 }
2181
2182 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2183 #endif /* HAVE_JUMP_LABEL */
2184
2185 /*
2186 * default period for cfs group bandwidth.
2187 * default: 0.1s, units: nanoseconds
2188 */
2189 static inline u64 default_cfs_period(void)
2190 {
2191 return 100000000ULL;
2192 }
2193
2194 static inline u64 sched_cfs_bandwidth_slice(void)
2195 {
2196 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2197 }
2198
2199 /*
2200 * Replenish runtime according to assigned quota and update expiration time.
2201 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2202 * additional synchronization around rq->lock.
2203 *
2204 * requires cfs_b->lock
2205 */
2206 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2207 {
2208 u64 now;
2209
2210 if (cfs_b->quota == RUNTIME_INF)
2211 return;
2212
2213 now = sched_clock_cpu(smp_processor_id());
2214 cfs_b->runtime = cfs_b->quota;
2215 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2216 }
2217
2218 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2219 {
2220 return &tg->cfs_bandwidth;
2221 }
2222
2223 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2224 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2225 {
2226 if (unlikely(cfs_rq->throttle_count))
2227 return cfs_rq->throttled_clock_task;
2228
2229 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2230 }
2231
2232 /* returns 0 on failure to allocate runtime */
2233 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2234 {
2235 struct task_group *tg = cfs_rq->tg;
2236 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2237 u64 amount = 0, min_amount, expires;
2238
2239 /* note: this is a positive sum as runtime_remaining <= 0 */
2240 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2241
2242 raw_spin_lock(&cfs_b->lock);
2243 if (cfs_b->quota == RUNTIME_INF)
2244 amount = min_amount;
2245 else {
2246 /*
2247 * If the bandwidth pool has become inactive, then at least one
2248 * period must have elapsed since the last consumption.
2249 * Refresh the global state and ensure bandwidth timer becomes
2250 * active.
2251 */
2252 if (!cfs_b->timer_active) {
2253 __refill_cfs_bandwidth_runtime(cfs_b);
2254 __start_cfs_bandwidth(cfs_b);
2255 }
2256
2257 if (cfs_b->runtime > 0) {
2258 amount = min(cfs_b->runtime, min_amount);
2259 cfs_b->runtime -= amount;
2260 cfs_b->idle = 0;
2261 }
2262 }
2263 expires = cfs_b->runtime_expires;
2264 raw_spin_unlock(&cfs_b->lock);
2265
2266 cfs_rq->runtime_remaining += amount;
2267 /*
2268 * we may have advanced our local expiration to account for allowed
2269 * spread between our sched_clock and the one on which runtime was
2270 * issued.
2271 */
2272 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2273 cfs_rq->runtime_expires = expires;
2274
2275 return cfs_rq->runtime_remaining > 0;
2276 }
2277
2278 /*
2279 * Note: This depends on the synchronization provided by sched_clock and the
2280 * fact that rq->clock snapshots this value.
2281 */
2282 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2283 {
2284 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2285
2286 /* if the deadline is ahead of our clock, nothing to do */
2287 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2288 return;
2289
2290 if (cfs_rq->runtime_remaining < 0)
2291 return;
2292
2293 /*
2294 * If the local deadline has passed we have to consider the
2295 * possibility that our sched_clock is 'fast' and the global deadline
2296 * has not truly expired.
2297 *
2298 * Fortunately we can check determine whether this the case by checking
2299 * whether the global deadline has advanced.
2300 */
2301
2302 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2303 /* extend local deadline, drift is bounded above by 2 ticks */
2304 cfs_rq->runtime_expires += TICK_NSEC;
2305 } else {
2306 /* global deadline is ahead, expiration has passed */
2307 cfs_rq->runtime_remaining = 0;
2308 }
2309 }
2310
2311 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2312 unsigned long delta_exec)
2313 {
2314 /* dock delta_exec before expiring quota (as it could span periods) */
2315 cfs_rq->runtime_remaining -= delta_exec;
2316 expire_cfs_rq_runtime(cfs_rq);
2317
2318 if (likely(cfs_rq->runtime_remaining > 0))
2319 return;
2320
2321 /*
2322 * if we're unable to extend our runtime we resched so that the active
2323 * hierarchy can be throttled
2324 */
2325 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2326 resched_task(rq_of(cfs_rq)->curr);
2327 }
2328
2329 static __always_inline
2330 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
2331 {
2332 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
2333 return;
2334
2335 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2336 }
2337
2338 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2339 {
2340 return cfs_bandwidth_used() && cfs_rq->throttled;
2341 }
2342
2343 /* check whether cfs_rq, or any parent, is throttled */
2344 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2345 {
2346 return cfs_bandwidth_used() && cfs_rq->throttle_count;
2347 }
2348
2349 /*
2350 * Ensure that neither of the group entities corresponding to src_cpu or
2351 * dest_cpu are members of a throttled hierarchy when performing group
2352 * load-balance operations.
2353 */
2354 static inline int throttled_lb_pair(struct task_group *tg,
2355 int src_cpu, int dest_cpu)
2356 {
2357 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2358
2359 src_cfs_rq = tg->cfs_rq[src_cpu];
2360 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2361
2362 return throttled_hierarchy(src_cfs_rq) ||
2363 throttled_hierarchy(dest_cfs_rq);
2364 }
2365
2366 /* updated child weight may affect parent so we have to do this bottom up */
2367 static int tg_unthrottle_up(struct task_group *tg, void *data)
2368 {
2369 struct rq *rq = data;
2370 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2371
2372 cfs_rq->throttle_count--;
2373 #ifdef CONFIG_SMP
2374 if (!cfs_rq->throttle_count) {
2375 /* adjust cfs_rq_clock_task() */
2376 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
2377 cfs_rq->throttled_clock_task;
2378 }
2379 #endif
2380
2381 return 0;
2382 }
2383
2384 static int tg_throttle_down(struct task_group *tg, void *data)
2385 {
2386 struct rq *rq = data;
2387 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2388
2389 /* group is entering throttled state, stop time */
2390 if (!cfs_rq->throttle_count)
2391 cfs_rq->throttled_clock_task = rq_clock_task(rq);
2392 cfs_rq->throttle_count++;
2393
2394 return 0;
2395 }
2396
2397 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2398 {
2399 struct rq *rq = rq_of(cfs_rq);
2400 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2401 struct sched_entity *se;
2402 long task_delta, dequeue = 1;
2403
2404 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2405
2406 /* freeze hierarchy runnable averages while throttled */
2407 rcu_read_lock();
2408 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2409 rcu_read_unlock();
2410
2411 task_delta = cfs_rq->h_nr_running;
2412 for_each_sched_entity(se) {
2413 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2414 /* throttled entity or throttle-on-deactivate */
2415 if (!se->on_rq)
2416 break;
2417
2418 if (dequeue)
2419 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2420 qcfs_rq->h_nr_running -= task_delta;
2421
2422 if (qcfs_rq->load.weight)
2423 dequeue = 0;
2424 }
2425
2426 if (!se)
2427 rq->nr_running -= task_delta;
2428
2429 cfs_rq->throttled = 1;
2430 cfs_rq->throttled_clock = rq_clock(rq);
2431 raw_spin_lock(&cfs_b->lock);
2432 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2433 raw_spin_unlock(&cfs_b->lock);
2434 }
2435
2436 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2437 {
2438 struct rq *rq = rq_of(cfs_rq);
2439 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2440 struct sched_entity *se;
2441 int enqueue = 1;
2442 long task_delta;
2443
2444 se = cfs_rq->tg->se[cpu_of(rq)];
2445
2446 cfs_rq->throttled = 0;
2447
2448 update_rq_clock(rq);
2449
2450 raw_spin_lock(&cfs_b->lock);
2451 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
2452 list_del_rcu(&cfs_rq->throttled_list);
2453 raw_spin_unlock(&cfs_b->lock);
2454
2455 /* update hierarchical throttle state */
2456 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2457
2458 if (!cfs_rq->load.weight)
2459 return;
2460
2461 task_delta = cfs_rq->h_nr_running;
2462 for_each_sched_entity(se) {
2463 if (se->on_rq)
2464 enqueue = 0;
2465
2466 cfs_rq = cfs_rq_of(se);
2467 if (enqueue)
2468 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2469 cfs_rq->h_nr_running += task_delta;
2470
2471 if (cfs_rq_throttled(cfs_rq))
2472 break;
2473 }
2474
2475 if (!se)
2476 rq->nr_running += task_delta;
2477
2478 /* determine whether we need to wake up potentially idle cpu */
2479 if (rq->curr == rq->idle && rq->cfs.nr_running)
2480 resched_task(rq->curr);
2481 }
2482
2483 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2484 u64 remaining, u64 expires)
2485 {
2486 struct cfs_rq *cfs_rq;
2487 u64 runtime = remaining;
2488
2489 rcu_read_lock();
2490 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2491 throttled_list) {
2492 struct rq *rq = rq_of(cfs_rq);
2493
2494 raw_spin_lock(&rq->lock);
2495 if (!cfs_rq_throttled(cfs_rq))
2496 goto next;
2497
2498 runtime = -cfs_rq->runtime_remaining + 1;
2499 if (runtime > remaining)
2500 runtime = remaining;
2501 remaining -= runtime;
2502
2503 cfs_rq->runtime_remaining += runtime;
2504 cfs_rq->runtime_expires = expires;
2505
2506 /* we check whether we're throttled above */
2507 if (cfs_rq->runtime_remaining > 0)
2508 unthrottle_cfs_rq(cfs_rq);
2509
2510 next:
2511 raw_spin_unlock(&rq->lock);
2512
2513 if (!remaining)
2514 break;
2515 }
2516 rcu_read_unlock();
2517
2518 return remaining;
2519 }
2520
2521 /*
2522 * Responsible for refilling a task_group's bandwidth and unthrottling its
2523 * cfs_rqs as appropriate. If there has been no activity within the last
2524 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2525 * used to track this state.
2526 */
2527 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2528 {
2529 u64 runtime, runtime_expires;
2530 int idle = 1, throttled;
2531
2532 raw_spin_lock(&cfs_b->lock);
2533 /* no need to continue the timer with no bandwidth constraint */
2534 if (cfs_b->quota == RUNTIME_INF)
2535 goto out_unlock;
2536
2537 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2538 /* idle depends on !throttled (for the case of a large deficit) */
2539 idle = cfs_b->idle && !throttled;
2540 cfs_b->nr_periods += overrun;
2541
2542 /* if we're going inactive then everything else can be deferred */
2543 if (idle)
2544 goto out_unlock;
2545
2546 __refill_cfs_bandwidth_runtime(cfs_b);
2547
2548 if (!throttled) {
2549 /* mark as potentially idle for the upcoming period */
2550 cfs_b->idle = 1;
2551 goto out_unlock;
2552 }
2553
2554 /* account preceding periods in which throttling occurred */
2555 cfs_b->nr_throttled += overrun;
2556
2557 /*
2558 * There are throttled entities so we must first use the new bandwidth
2559 * to unthrottle them before making it generally available. This
2560 * ensures that all existing debts will be paid before a new cfs_rq is
2561 * allowed to run.
2562 */
2563 runtime = cfs_b->runtime;
2564 runtime_expires = cfs_b->runtime_expires;
2565 cfs_b->runtime = 0;
2566
2567 /*
2568 * This check is repeated as we are holding onto the new bandwidth
2569 * while we unthrottle. This can potentially race with an unthrottled
2570 * group trying to acquire new bandwidth from the global pool.
2571 */
2572 while (throttled && runtime > 0) {
2573 raw_spin_unlock(&cfs_b->lock);
2574 /* we can't nest cfs_b->lock while distributing bandwidth */
2575 runtime = distribute_cfs_runtime(cfs_b, runtime,
2576 runtime_expires);
2577 raw_spin_lock(&cfs_b->lock);
2578
2579 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2580 }
2581
2582 /* return (any) remaining runtime */
2583 cfs_b->runtime = runtime;
2584 /*
2585 * While we are ensured activity in the period following an
2586 * unthrottle, this also covers the case in which the new bandwidth is
2587 * insufficient to cover the existing bandwidth deficit. (Forcing the
2588 * timer to remain active while there are any throttled entities.)
2589 */
2590 cfs_b->idle = 0;
2591 out_unlock:
2592 if (idle)
2593 cfs_b->timer_active = 0;
2594 raw_spin_unlock(&cfs_b->lock);
2595
2596 return idle;
2597 }
2598
2599 /* a cfs_rq won't donate quota below this amount */
2600 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2601 /* minimum remaining period time to redistribute slack quota */
2602 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2603 /* how long we wait to gather additional slack before distributing */
2604 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2605
2606 /* are we near the end of the current quota period? */
2607 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2608 {
2609 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2610 u64 remaining;
2611
2612 /* if the call-back is running a quota refresh is already occurring */
2613 if (hrtimer_callback_running(refresh_timer))
2614 return 1;
2615
2616 /* is a quota refresh about to occur? */
2617 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2618 if (remaining < min_expire)
2619 return 1;
2620
2621 return 0;
2622 }
2623
2624 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2625 {
2626 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2627
2628 /* if there's a quota refresh soon don't bother with slack */
2629 if (runtime_refresh_within(cfs_b, min_left))
2630 return;
2631
2632 start_bandwidth_timer(&cfs_b->slack_timer,
2633 ns_to_ktime(cfs_bandwidth_slack_period));
2634 }
2635
2636 /* we know any runtime found here is valid as update_curr() precedes return */
2637 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2638 {
2639 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2640 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2641
2642 if (slack_runtime <= 0)
2643 return;
2644
2645 raw_spin_lock(&cfs_b->lock);
2646 if (cfs_b->quota != RUNTIME_INF &&
2647 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2648 cfs_b->runtime += slack_runtime;
2649
2650 /* we are under rq->lock, defer unthrottling using a timer */
2651 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2652 !list_empty(&cfs_b->throttled_cfs_rq))
2653 start_cfs_slack_bandwidth(cfs_b);
2654 }
2655 raw_spin_unlock(&cfs_b->lock);
2656
2657 /* even if it's not valid for return we don't want to try again */
2658 cfs_rq->runtime_remaining -= slack_runtime;
2659 }
2660
2661 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2662 {
2663 if (!cfs_bandwidth_used())
2664 return;
2665
2666 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2667 return;
2668
2669 __return_cfs_rq_runtime(cfs_rq);
2670 }
2671
2672 /*
2673 * This is done with a timer (instead of inline with bandwidth return) since
2674 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2675 */
2676 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2677 {
2678 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2679 u64 expires;
2680
2681 /* confirm we're still not at a refresh boundary */
2682 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2683 return;
2684
2685 raw_spin_lock(&cfs_b->lock);
2686 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2687 runtime = cfs_b->runtime;
2688 cfs_b->runtime = 0;
2689 }
2690 expires = cfs_b->runtime_expires;
2691 raw_spin_unlock(&cfs_b->lock);
2692
2693 if (!runtime)
2694 return;
2695
2696 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2697
2698 raw_spin_lock(&cfs_b->lock);
2699 if (expires == cfs_b->runtime_expires)
2700 cfs_b->runtime = runtime;
2701 raw_spin_unlock(&cfs_b->lock);
2702 }
2703
2704 /*
2705 * When a group wakes up we want to make sure that its quota is not already
2706 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2707 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2708 */
2709 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2710 {
2711 if (!cfs_bandwidth_used())
2712 return;
2713
2714 /* an active group must be handled by the update_curr()->put() path */
2715 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2716 return;
2717
2718 /* ensure the group is not already throttled */
2719 if (cfs_rq_throttled(cfs_rq))
2720 return;
2721
2722 /* update runtime allocation */
2723 account_cfs_rq_runtime(cfs_rq, 0);
2724 if (cfs_rq->runtime_remaining <= 0)
2725 throttle_cfs_rq(cfs_rq);
2726 }
2727
2728 /* conditionally throttle active cfs_rq's from put_prev_entity() */
2729 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2730 {
2731 if (!cfs_bandwidth_used())
2732 return;
2733
2734 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2735 return;
2736
2737 /*
2738 * it's possible for a throttled entity to be forced into a running
2739 * state (e.g. set_curr_task), in this case we're finished.
2740 */
2741 if (cfs_rq_throttled(cfs_rq))
2742 return;
2743
2744 throttle_cfs_rq(cfs_rq);
2745 }
2746
2747 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2748 {
2749 struct cfs_bandwidth *cfs_b =
2750 container_of(timer, struct cfs_bandwidth, slack_timer);
2751 do_sched_cfs_slack_timer(cfs_b);
2752
2753 return HRTIMER_NORESTART;
2754 }
2755
2756 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2757 {
2758 struct cfs_bandwidth *cfs_b =
2759 container_of(timer, struct cfs_bandwidth, period_timer);
2760 ktime_t now;
2761 int overrun;
2762 int idle = 0;
2763
2764 for (;;) {
2765 now = hrtimer_cb_get_time(timer);
2766 overrun = hrtimer_forward(timer, now, cfs_b->period);
2767
2768 if (!overrun)
2769 break;
2770
2771 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2772 }
2773
2774 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2775 }
2776
2777 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2778 {
2779 raw_spin_lock_init(&cfs_b->lock);
2780 cfs_b->runtime = 0;
2781 cfs_b->quota = RUNTIME_INF;
2782 cfs_b->period = ns_to_ktime(default_cfs_period());
2783
2784 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2785 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2786 cfs_b->period_timer.function = sched_cfs_period_timer;
2787 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2788 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2789 }
2790
2791 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2792 {
2793 cfs_rq->runtime_enabled = 0;
2794 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2795 }
2796
2797 /* requires cfs_b->lock, may release to reprogram timer */
2798 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2799 {
2800 /*
2801 * The timer may be active because we're trying to set a new bandwidth
2802 * period or because we're racing with the tear-down path
2803 * (timer_active==0 becomes visible before the hrtimer call-back
2804 * terminates). In either case we ensure that it's re-programmed
2805 */
2806 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2807 raw_spin_unlock(&cfs_b->lock);
2808 /* ensure cfs_b->lock is available while we wait */
2809 hrtimer_cancel(&cfs_b->period_timer);
2810
2811 raw_spin_lock(&cfs_b->lock);
2812 /* if someone else restarted the timer then we're done */
2813 if (cfs_b->timer_active)
2814 return;
2815 }
2816
2817 cfs_b->timer_active = 1;
2818 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2819 }
2820
2821 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2822 {
2823 hrtimer_cancel(&cfs_b->period_timer);
2824 hrtimer_cancel(&cfs_b->slack_timer);
2825 }
2826
2827 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
2828 {
2829 struct cfs_rq *cfs_rq;
2830
2831 for_each_leaf_cfs_rq(rq, cfs_rq) {
2832 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2833
2834 if (!cfs_rq->runtime_enabled)
2835 continue;
2836
2837 /*
2838 * clock_task is not advancing so we just need to make sure
2839 * there's some valid quota amount
2840 */
2841 cfs_rq->runtime_remaining = cfs_b->quota;
2842 if (cfs_rq_throttled(cfs_rq))
2843 unthrottle_cfs_rq(cfs_rq);
2844 }
2845 }
2846
2847 #else /* CONFIG_CFS_BANDWIDTH */
2848 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2849 {
2850 return rq_clock_task(rq_of(cfs_rq));
2851 }
2852
2853 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2854 unsigned long delta_exec) {}
2855 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2856 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2857 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2858
2859 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2860 {
2861 return 0;
2862 }
2863
2864 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2865 {
2866 return 0;
2867 }
2868
2869 static inline int throttled_lb_pair(struct task_group *tg,
2870 int src_cpu, int dest_cpu)
2871 {
2872 return 0;
2873 }
2874
2875 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2876
2877 #ifdef CONFIG_FAIR_GROUP_SCHED
2878 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2879 #endif
2880
2881 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2882 {
2883 return NULL;
2884 }
2885 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2886 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2887
2888 #endif /* CONFIG_CFS_BANDWIDTH */
2889
2890 /**************************************************
2891 * CFS operations on tasks:
2892 */
2893
2894 #ifdef CONFIG_SCHED_HRTICK
2895 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2896 {
2897 struct sched_entity *se = &p->se;
2898 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2899
2900 WARN_ON(task_rq(p) != rq);
2901
2902 if (cfs_rq->nr_running > 1) {
2903 u64 slice = sched_slice(cfs_rq, se);
2904 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2905 s64 delta = slice - ran;
2906
2907 if (delta < 0) {
2908 if (rq->curr == p)
2909 resched_task(p);
2910 return;
2911 }
2912
2913 /*
2914 * Don't schedule slices shorter than 10000ns, that just
2915 * doesn't make sense. Rely on vruntime for fairness.
2916 */
2917 if (rq->curr != p)
2918 delta = max_t(s64, 10000LL, delta);
2919
2920 hrtick_start(rq, delta);
2921 }
2922 }
2923
2924 /*
2925 * called from enqueue/dequeue and updates the hrtick when the
2926 * current task is from our class and nr_running is low enough
2927 * to matter.
2928 */
2929 static void hrtick_update(struct rq *rq)
2930 {
2931 struct task_struct *curr = rq->curr;
2932
2933 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2934 return;
2935
2936 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2937 hrtick_start_fair(rq, curr);
2938 }
2939 #else /* !CONFIG_SCHED_HRTICK */
2940 static inline void
2941 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2942 {
2943 }
2944
2945 static inline void hrtick_update(struct rq *rq)
2946 {
2947 }
2948 #endif
2949
2950 /*
2951 * The enqueue_task method is called before nr_running is
2952 * increased. Here we update the fair scheduling stats and
2953 * then put the task into the rbtree:
2954 */
2955 static void
2956 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2957 {
2958 struct cfs_rq *cfs_rq;
2959 struct sched_entity *se = &p->se;
2960
2961 for_each_sched_entity(se) {
2962 if (se->on_rq)
2963 break;
2964 cfs_rq = cfs_rq_of(se);
2965 enqueue_entity(cfs_rq, se, flags);
2966
2967 /*
2968 * end evaluation on encountering a throttled cfs_rq
2969 *
2970 * note: in the case of encountering a throttled cfs_rq we will
2971 * post the final h_nr_running increment below.
2972 */
2973 if (cfs_rq_throttled(cfs_rq))
2974 break;
2975 cfs_rq->h_nr_running++;
2976
2977 flags = ENQUEUE_WAKEUP;
2978 }
2979
2980 for_each_sched_entity(se) {
2981 cfs_rq = cfs_rq_of(se);
2982 cfs_rq->h_nr_running++;
2983
2984 if (cfs_rq_throttled(cfs_rq))
2985 break;
2986
2987 update_cfs_shares(cfs_rq);
2988 update_entity_load_avg(se, 1);
2989 }
2990
2991 if (!se) {
2992 update_rq_runnable_avg(rq, rq->nr_running);
2993 inc_nr_running(rq);
2994 }
2995 hrtick_update(rq);
2996 }
2997
2998 static void set_next_buddy(struct sched_entity *se);
2999
3000 /*
3001 * The dequeue_task method is called before nr_running is
3002 * decreased. We remove the task from the rbtree and
3003 * update the fair scheduling stats:
3004 */
3005 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3006 {
3007 struct cfs_rq *cfs_rq;
3008 struct sched_entity *se = &p->se;
3009 int task_sleep = flags & DEQUEUE_SLEEP;
3010
3011 for_each_sched_entity(se) {
3012 cfs_rq = cfs_rq_of(se);
3013 dequeue_entity(cfs_rq, se, flags);
3014
3015 /*
3016 * end evaluation on encountering a throttled cfs_rq
3017 *
3018 * note: in the case of encountering a throttled cfs_rq we will
3019 * post the final h_nr_running decrement below.
3020 */
3021 if (cfs_rq_throttled(cfs_rq))
3022 break;
3023 cfs_rq->h_nr_running--;
3024
3025 /* Don't dequeue parent if it has other entities besides us */
3026 if (cfs_rq->load.weight) {
3027 /*
3028 * Bias pick_next to pick a task from this cfs_rq, as
3029 * p is sleeping when it is within its sched_slice.
3030 */
3031 if (task_sleep && parent_entity(se))
3032 set_next_buddy(parent_entity(se));
3033
3034 /* avoid re-evaluating load for this entity */
3035 se = parent_entity(se);
3036 break;
3037 }
3038 flags |= DEQUEUE_SLEEP;
3039 }
3040
3041 for_each_sched_entity(se) {
3042 cfs_rq = cfs_rq_of(se);
3043 cfs_rq->h_nr_running--;
3044
3045 if (cfs_rq_throttled(cfs_rq))
3046 break;
3047
3048 update_cfs_shares(cfs_rq);
3049 update_entity_load_avg(se, 1);
3050 }
3051
3052 if (!se) {
3053 dec_nr_running(rq);
3054 update_rq_runnable_avg(rq, 1);
3055 }
3056 hrtick_update(rq);
3057 }
3058
3059 #ifdef CONFIG_SMP
3060 /* Used instead of source_load when we know the type == 0 */
3061 static unsigned long weighted_cpuload(const int cpu)
3062 {
3063 return cpu_rq(cpu)->cfs.runnable_load_avg;
3064 }
3065
3066 /*
3067 * Return a low guess at the load of a migration-source cpu weighted
3068 * according to the scheduling class and "nice" value.
3069 *
3070 * We want to under-estimate the load of migration sources, to
3071 * balance conservatively.
3072 */
3073 static unsigned long source_load(int cpu, int type)
3074 {
3075 struct rq *rq = cpu_rq(cpu);
3076 unsigned long total = weighted_cpuload(cpu);
3077
3078 if (type == 0 || !sched_feat(LB_BIAS))
3079 return total;
3080
3081 return min(rq->cpu_load[type-1], total);
3082 }
3083
3084 /*
3085 * Return a high guess at the load of a migration-target cpu weighted
3086 * according to the scheduling class and "nice" value.
3087 */
3088 static unsigned long target_load(int cpu, int type)
3089 {
3090 struct rq *rq = cpu_rq(cpu);
3091 unsigned long total = weighted_cpuload(cpu);
3092
3093 if (type == 0 || !sched_feat(LB_BIAS))
3094 return total;
3095
3096 return max(rq->cpu_load[type-1], total);
3097 }
3098
3099 static unsigned long power_of(int cpu)
3100 {
3101 return cpu_rq(cpu)->cpu_power;
3102 }
3103
3104 static unsigned long cpu_avg_load_per_task(int cpu)
3105 {
3106 struct rq *rq = cpu_rq(cpu);
3107 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3108 unsigned long load_avg = rq->cfs.runnable_load_avg;
3109
3110 if (nr_running)
3111 return load_avg / nr_running;
3112
3113 return 0;
3114 }
3115
3116 static void record_wakee(struct task_struct *p)
3117 {
3118 /*
3119 * Rough decay (wiping) for cost saving, don't worry
3120 * about the boundary, really active task won't care
3121 * about the loss.
3122 */
3123 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3124 current->wakee_flips = 0;
3125 current->wakee_flip_decay_ts = jiffies;
3126 }
3127
3128 if (current->last_wakee != p) {
3129 current->last_wakee = p;
3130 current->wakee_flips++;
3131 }
3132 }
3133
3134 static void task_waking_fair(struct task_struct *p)
3135 {
3136 struct sched_entity *se = &p->se;
3137 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3138 u64 min_vruntime;
3139
3140 #ifndef CONFIG_64BIT
3141 u64 min_vruntime_copy;
3142
3143 do {
3144 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3145 smp_rmb();
3146 min_vruntime = cfs_rq->min_vruntime;
3147 } while (min_vruntime != min_vruntime_copy);
3148 #else
3149 min_vruntime = cfs_rq->min_vruntime;
3150 #endif
3151
3152 se->vruntime -= min_vruntime;
3153 record_wakee(p);
3154 }
3155
3156 #ifdef CONFIG_FAIR_GROUP_SCHED
3157 /*
3158 * effective_load() calculates the load change as seen from the root_task_group
3159 *
3160 * Adding load to a group doesn't make a group heavier, but can cause movement
3161 * of group shares between cpus. Assuming the shares were perfectly aligned one
3162 * can calculate the shift in shares.
3163 *
3164 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3165 * on this @cpu and results in a total addition (subtraction) of @wg to the
3166 * total group weight.
3167 *
3168 * Given a runqueue weight distribution (rw_i) we can compute a shares
3169 * distribution (s_i) using:
3170 *
3171 * s_i = rw_i / \Sum rw_j (1)
3172 *
3173 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3174 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3175 * shares distribution (s_i):
3176 *
3177 * rw_i = { 2, 4, 1, 0 }
3178 * s_i = { 2/7, 4/7, 1/7, 0 }
3179 *
3180 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3181 * task used to run on and the CPU the waker is running on), we need to
3182 * compute the effect of waking a task on either CPU and, in case of a sync
3183 * wakeup, compute the effect of the current task going to sleep.
3184 *
3185 * So for a change of @wl to the local @cpu with an overall group weight change
3186 * of @wl we can compute the new shares distribution (s'_i) using:
3187 *
3188 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3189 *
3190 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3191 * differences in waking a task to CPU 0. The additional task changes the
3192 * weight and shares distributions like:
3193 *
3194 * rw'_i = { 3, 4, 1, 0 }
3195 * s'_i = { 3/8, 4/8, 1/8, 0 }
3196 *
3197 * We can then compute the difference in effective weight by using:
3198 *
3199 * dw_i = S * (s'_i - s_i) (3)
3200 *
3201 * Where 'S' is the group weight as seen by its parent.
3202 *
3203 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3204 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3205 * 4/7) times the weight of the group.
3206 */
3207 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3208 {
3209 struct sched_entity *se = tg->se[cpu];
3210
3211 if (!tg->parent) /* the trivial, non-cgroup case */
3212 return wl;
3213
3214 for_each_sched_entity(se) {
3215 long w, W;
3216
3217 tg = se->my_q->tg;
3218
3219 /*
3220 * W = @wg + \Sum rw_j
3221 */
3222 W = wg + calc_tg_weight(tg, se->my_q);
3223
3224 /*
3225 * w = rw_i + @wl
3226 */
3227 w = se->my_q->load.weight + wl;
3228
3229 /*
3230 * wl = S * s'_i; see (2)
3231 */
3232 if (W > 0 && w < W)
3233 wl = (w * tg->shares) / W;
3234 else
3235 wl = tg->shares;
3236
3237 /*
3238 * Per the above, wl is the new se->load.weight value; since
3239 * those are clipped to [MIN_SHARES, ...) do so now. See
3240 * calc_cfs_shares().
3241 */
3242 if (wl < MIN_SHARES)
3243 wl = MIN_SHARES;
3244
3245 /*
3246 * wl = dw_i = S * (s'_i - s_i); see (3)
3247 */
3248 wl -= se->load.weight;
3249
3250 /*
3251 * Recursively apply this logic to all parent groups to compute
3252 * the final effective load change on the root group. Since
3253 * only the @tg group gets extra weight, all parent groups can
3254 * only redistribute existing shares. @wl is the shift in shares
3255 * resulting from this level per the above.
3256 */
3257 wg = 0;
3258 }
3259
3260 return wl;
3261 }
3262 #else
3263
3264 static inline unsigned long effective_load(struct task_group *tg, int cpu,
3265 unsigned long wl, unsigned long wg)
3266 {
3267 return wl;
3268 }
3269
3270 #endif
3271
3272 static int wake_wide(struct task_struct *p)
3273 {
3274 int factor = this_cpu_read(sd_llc_size);
3275
3276 /*
3277 * Yeah, it's the switching-frequency, could means many wakee or
3278 * rapidly switch, use factor here will just help to automatically
3279 * adjust the loose-degree, so bigger node will lead to more pull.
3280 */
3281 if (p->wakee_flips > factor) {
3282 /*
3283 * wakee is somewhat hot, it needs certain amount of cpu
3284 * resource, so if waker is far more hot, prefer to leave
3285 * it alone.
3286 */
3287 if (current->wakee_flips > (factor * p->wakee_flips))
3288 return 1;
3289 }
3290
3291 return 0;
3292 }
3293
3294 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
3295 {
3296 s64 this_load, load;
3297 int idx, this_cpu, prev_cpu;
3298 unsigned long tl_per_task;
3299 struct task_group *tg;
3300 unsigned long weight;
3301 int balanced;
3302
3303 /*
3304 * If we wake multiple tasks be careful to not bounce
3305 * ourselves around too much.
3306 */
3307 if (wake_wide(p))
3308 return 0;
3309
3310 idx = sd->wake_idx;
3311 this_cpu = smp_processor_id();
3312 prev_cpu = task_cpu(p);
3313 load = source_load(prev_cpu, idx);
3314 this_load = target_load(this_cpu, idx);
3315
3316 /*
3317 * If sync wakeup then subtract the (maximum possible)
3318 * effect of the currently running task from the load
3319 * of the current CPU:
3320 */
3321 if (sync) {
3322 tg = task_group(current);
3323 weight = current->se.load.weight;
3324
3325 this_load += effective_load(tg, this_cpu, -weight, -weight);
3326 load += effective_load(tg, prev_cpu, 0, -weight);
3327 }
3328
3329 tg = task_group(p);
3330 weight = p->se.load.weight;
3331
3332 /*
3333 * In low-load situations, where prev_cpu is idle and this_cpu is idle
3334 * due to the sync cause above having dropped this_load to 0, we'll
3335 * always have an imbalance, but there's really nothing you can do
3336 * about that, so that's good too.
3337 *
3338 * Otherwise check if either cpus are near enough in load to allow this
3339 * task to be woken on this_cpu.
3340 */
3341 if (this_load > 0) {
3342 s64 this_eff_load, prev_eff_load;
3343
3344 this_eff_load = 100;
3345 this_eff_load *= power_of(prev_cpu);
3346 this_eff_load *= this_load +
3347 effective_load(tg, this_cpu, weight, weight);
3348
3349 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3350 prev_eff_load *= power_of(this_cpu);
3351 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3352
3353 balanced = this_eff_load <= prev_eff_load;
3354 } else
3355 balanced = true;
3356
3357 /*
3358 * If the currently running task will sleep within
3359 * a reasonable amount of time then attract this newly
3360 * woken task:
3361 */
3362 if (sync && balanced)
3363 return 1;
3364
3365 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
3366 tl_per_task = cpu_avg_load_per_task(this_cpu);
3367
3368 if (balanced ||
3369 (this_load <= load &&
3370 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
3371 /*
3372 * This domain has SD_WAKE_AFFINE and
3373 * p is cache cold in this domain, and
3374 * there is no bad imbalance.
3375 */
3376 schedstat_inc(sd, ttwu_move_affine);
3377 schedstat_inc(p, se.statistics.nr_wakeups_affine);
3378
3379 return 1;
3380 }
3381 return 0;
3382 }
3383
3384 /*
3385 * find_idlest_group finds and returns the least busy CPU group within the
3386 * domain.
3387 */
3388 static struct sched_group *
3389 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
3390 int this_cpu, int load_idx)
3391 {
3392 struct sched_group *idlest = NULL, *group = sd->groups;
3393 unsigned long min_load = ULONG_MAX, this_load = 0;
3394 int imbalance = 100 + (sd->imbalance_pct-100)/2;
3395
3396 do {
3397 unsigned long load, avg_load;
3398 int local_group;
3399 int i;
3400
3401 /* Skip over this group if it has no CPUs allowed */
3402 if (!cpumask_intersects(sched_group_cpus(group),
3403 tsk_cpus_allowed(p)))
3404 continue;
3405
3406 local_group = cpumask_test_cpu(this_cpu,
3407 sched_group_cpus(group));
3408
3409 /* Tally up the load of all CPUs in the group */
3410 avg_load = 0;
3411
3412 for_each_cpu(i, sched_group_cpus(group)) {
3413 /* Bias balancing toward cpus of our domain */
3414 if (local_group)
3415 load = source_load(i, load_idx);
3416 else
3417 load = target_load(i, load_idx);
3418
3419 avg_load += load;
3420 }
3421
3422 /* Adjust by relative CPU power of the group */
3423 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
3424
3425 if (local_group) {
3426 this_load = avg_load;
3427 } else if (avg_load < min_load) {
3428 min_load = avg_load;
3429 idlest = group;
3430 }
3431 } while (group = group->next, group != sd->groups);
3432
3433 if (!idlest || 100*this_load < imbalance*min_load)
3434 return NULL;
3435 return idlest;
3436 }
3437
3438 /*
3439 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3440 */
3441 static int
3442 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3443 {
3444 unsigned long load, min_load = ULONG_MAX;
3445 int idlest = -1;
3446 int i;
3447
3448 /* Traverse only the allowed CPUs */
3449 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3450 load = weighted_cpuload(i);
3451
3452 if (load < min_load || (load == min_load && i == this_cpu)) {
3453 min_load = load;
3454 idlest = i;
3455 }
3456 }
3457
3458 return idlest;
3459 }
3460
3461 /*
3462 * Try and locate an idle CPU in the sched_domain.
3463 */
3464 static int select_idle_sibling(struct task_struct *p, int target)
3465 {
3466 struct sched_domain *sd;
3467 struct sched_group *sg;
3468 int i = task_cpu(p);
3469
3470 if (idle_cpu(target))
3471 return target;
3472
3473 /*
3474 * If the prevous cpu is cache affine and idle, don't be stupid.
3475 */
3476 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3477 return i;
3478
3479 /*
3480 * Otherwise, iterate the domains and find an elegible idle cpu.
3481 */
3482 sd = rcu_dereference(per_cpu(sd_llc, target));
3483 for_each_lower_domain(sd) {
3484 sg = sd->groups;
3485 do {
3486 if (!cpumask_intersects(sched_group_cpus(sg),
3487 tsk_cpus_allowed(p)))
3488 goto next;
3489
3490 for_each_cpu(i, sched_group_cpus(sg)) {
3491 if (i == target || !idle_cpu(i))
3492 goto next;
3493 }
3494
3495 target = cpumask_first_and(sched_group_cpus(sg),
3496 tsk_cpus_allowed(p));
3497 goto done;
3498 next:
3499 sg = sg->next;
3500 } while (sg != sd->groups);
3501 }
3502 done:
3503 return target;
3504 }
3505
3506 /*
3507 * sched_balance_self: balance the current task (running on cpu) in domains
3508 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3509 * SD_BALANCE_EXEC.
3510 *
3511 * Balance, ie. select the least loaded group.
3512 *
3513 * Returns the target CPU number, or the same CPU if no balancing is needed.
3514 *
3515 * preempt must be disabled.
3516 */
3517 static int
3518 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
3519 {
3520 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3521 int cpu = smp_processor_id();
3522 int prev_cpu = task_cpu(p);
3523 int new_cpu = cpu;
3524 int want_affine = 0;
3525 int sync = wake_flags & WF_SYNC;
3526
3527 if (p->nr_cpus_allowed == 1)
3528 return prev_cpu;
3529
3530 if (sd_flag & SD_BALANCE_WAKE) {
3531 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3532 want_affine = 1;
3533 new_cpu = prev_cpu;
3534 }
3535
3536 rcu_read_lock();
3537 for_each_domain(cpu, tmp) {
3538 if (!(tmp->flags & SD_LOAD_BALANCE))
3539 continue;
3540
3541 /*
3542 * If both cpu and prev_cpu are part of this domain,
3543 * cpu is a valid SD_WAKE_AFFINE target.
3544 */
3545 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3546 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3547 affine_sd = tmp;
3548 break;
3549 }
3550
3551 if (tmp->flags & sd_flag)
3552 sd = tmp;
3553 }
3554
3555 if (affine_sd) {
3556 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3557 prev_cpu = cpu;
3558
3559 new_cpu = select_idle_sibling(p, prev_cpu);
3560 goto unlock;
3561 }
3562
3563 while (sd) {
3564 int load_idx = sd->forkexec_idx;
3565 struct sched_group *group;
3566 int weight;
3567
3568 if (!(sd->flags & sd_flag)) {
3569 sd = sd->child;
3570 continue;
3571 }
3572
3573 if (sd_flag & SD_BALANCE_WAKE)
3574 load_idx = sd->wake_idx;
3575
3576 group = find_idlest_group(sd, p, cpu, load_idx);
3577 if (!group) {
3578 sd = sd->child;
3579 continue;
3580 }
3581
3582 new_cpu = find_idlest_cpu(group, p, cpu);
3583 if (new_cpu == -1 || new_cpu == cpu) {
3584 /* Now try balancing at a lower domain level of cpu */
3585 sd = sd->child;
3586 continue;
3587 }
3588
3589 /* Now try balancing at a lower domain level of new_cpu */
3590 cpu = new_cpu;
3591 weight = sd->span_weight;
3592 sd = NULL;
3593 for_each_domain(cpu, tmp) {
3594 if (weight <= tmp->span_weight)
3595 break;
3596 if (tmp->flags & sd_flag)
3597 sd = tmp;
3598 }
3599 /* while loop will break here if sd == NULL */
3600 }
3601 unlock:
3602 rcu_read_unlock();
3603
3604 return new_cpu;
3605 }
3606
3607 /*
3608 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3609 * cfs_rq_of(p) references at time of call are still valid and identify the
3610 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3611 * other assumptions, including the state of rq->lock, should be made.
3612 */
3613 static void
3614 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3615 {
3616 struct sched_entity *se = &p->se;
3617 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3618
3619 /*
3620 * Load tracking: accumulate removed load so that it can be processed
3621 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3622 * to blocked load iff they have a positive decay-count. It can never
3623 * be negative here since on-rq tasks have decay-count == 0.
3624 */
3625 if (se->avg.decay_count) {
3626 se->avg.decay_count = -__synchronize_entity_decay(se);
3627 atomic_long_add(se->avg.load_avg_contrib,
3628 &cfs_rq->removed_load);
3629 }
3630 }
3631 #endif /* CONFIG_SMP */
3632
3633 static unsigned long
3634 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3635 {
3636 unsigned long gran = sysctl_sched_wakeup_granularity;
3637
3638 /*
3639 * Since its curr running now, convert the gran from real-time
3640 * to virtual-time in his units.
3641 *
3642 * By using 'se' instead of 'curr' we penalize light tasks, so
3643 * they get preempted easier. That is, if 'se' < 'curr' then
3644 * the resulting gran will be larger, therefore penalizing the
3645 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3646 * be smaller, again penalizing the lighter task.
3647 *
3648 * This is especially important for buddies when the leftmost
3649 * task is higher priority than the buddy.
3650 */
3651 return calc_delta_fair(gran, se);
3652 }
3653
3654 /*
3655 * Should 'se' preempt 'curr'.
3656 *
3657 * |s1
3658 * |s2
3659 * |s3
3660 * g
3661 * |<--->|c
3662 *
3663 * w(c, s1) = -1
3664 * w(c, s2) = 0
3665 * w(c, s3) = 1
3666 *
3667 */
3668 static int
3669 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3670 {
3671 s64 gran, vdiff = curr->vruntime - se->vruntime;
3672
3673 if (vdiff <= 0)
3674 return -1;
3675
3676 gran = wakeup_gran(curr, se);
3677 if (vdiff > gran)
3678 return 1;
3679
3680 return 0;
3681 }
3682
3683 static void set_last_buddy(struct sched_entity *se)
3684 {
3685 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3686 return;
3687
3688 for_each_sched_entity(se)
3689 cfs_rq_of(se)->last = se;
3690 }
3691
3692 static void set_next_buddy(struct sched_entity *se)
3693 {
3694 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3695 return;
3696
3697 for_each_sched_entity(se)
3698 cfs_rq_of(se)->next = se;
3699 }
3700
3701 static void set_skip_buddy(struct sched_entity *se)
3702 {
3703 for_each_sched_entity(se)
3704 cfs_rq_of(se)->skip = se;
3705 }
3706
3707 /*
3708 * Preempt the current task with a newly woken task if needed:
3709 */
3710 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3711 {
3712 struct task_struct *curr = rq->curr;
3713 struct sched_entity *se = &curr->se, *pse = &p->se;
3714 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3715 int scale = cfs_rq->nr_running >= sched_nr_latency;
3716 int next_buddy_marked = 0;
3717
3718 if (unlikely(se == pse))
3719 return;
3720
3721 /*
3722 * This is possible from callers such as move_task(), in which we
3723 * unconditionally check_prempt_curr() after an enqueue (which may have
3724 * lead to a throttle). This both saves work and prevents false
3725 * next-buddy nomination below.
3726 */
3727 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3728 return;
3729
3730 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3731 set_next_buddy(pse);
3732 next_buddy_marked = 1;
3733 }
3734
3735 /*
3736 * We can come here with TIF_NEED_RESCHED already set from new task
3737 * wake up path.
3738 *
3739 * Note: this also catches the edge-case of curr being in a throttled
3740 * group (e.g. via set_curr_task), since update_curr() (in the
3741 * enqueue of curr) will have resulted in resched being set. This
3742 * prevents us from potentially nominating it as a false LAST_BUDDY
3743 * below.
3744 */
3745 if (test_tsk_need_resched(curr))
3746 return;
3747
3748 /* Idle tasks are by definition preempted by non-idle tasks. */
3749 if (unlikely(curr->policy == SCHED_IDLE) &&
3750 likely(p->policy != SCHED_IDLE))
3751 goto preempt;
3752
3753 /*
3754 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3755 * is driven by the tick):
3756 */
3757 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3758 return;
3759
3760 find_matching_se(&se, &pse);
3761 update_curr(cfs_rq_of(se));
3762 BUG_ON(!pse);
3763 if (wakeup_preempt_entity(se, pse) == 1) {
3764 /*
3765 * Bias pick_next to pick the sched entity that is
3766 * triggering this preemption.
3767 */
3768 if (!next_buddy_marked)
3769 set_next_buddy(pse);
3770 goto preempt;
3771 }
3772
3773 return;
3774
3775 preempt:
3776 resched_task(curr);
3777 /*
3778 * Only set the backward buddy when the current task is still
3779 * on the rq. This can happen when a wakeup gets interleaved
3780 * with schedule on the ->pre_schedule() or idle_balance()
3781 * point, either of which can * drop the rq lock.
3782 *
3783 * Also, during early boot the idle thread is in the fair class,
3784 * for obvious reasons its a bad idea to schedule back to it.
3785 */
3786 if (unlikely(!se->on_rq || curr == rq->idle))
3787 return;
3788
3789 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3790 set_last_buddy(se);
3791 }
3792
3793 static struct task_struct *pick_next_task_fair(struct rq *rq)
3794 {
3795 struct task_struct *p;
3796 struct cfs_rq *cfs_rq = &rq->cfs;
3797 struct sched_entity *se;
3798
3799 if (!cfs_rq->nr_running)
3800 return NULL;
3801
3802 do {
3803 se = pick_next_entity(cfs_rq);
3804 set_next_entity(cfs_rq, se);
3805 cfs_rq = group_cfs_rq(se);
3806 } while (cfs_rq);
3807
3808 p = task_of(se);
3809 if (hrtick_enabled(rq))
3810 hrtick_start_fair(rq, p);
3811
3812 return p;
3813 }
3814
3815 /*
3816 * Account for a descheduled task:
3817 */
3818 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3819 {
3820 struct sched_entity *se = &prev->se;
3821 struct cfs_rq *cfs_rq;
3822
3823 for_each_sched_entity(se) {
3824 cfs_rq = cfs_rq_of(se);
3825 put_prev_entity(cfs_rq, se);
3826 }
3827 }
3828
3829 /*
3830 * sched_yield() is very simple
3831 *
3832 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3833 */
3834 static void yield_task_fair(struct rq *rq)
3835 {
3836 struct task_struct *curr = rq->curr;
3837 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3838 struct sched_entity *se = &curr->se;
3839
3840 /*
3841 * Are we the only task in the tree?
3842 */
3843 if (unlikely(rq->nr_running == 1))
3844 return;
3845
3846 clear_buddies(cfs_rq, se);
3847
3848 if (curr->policy != SCHED_BATCH) {
3849 update_rq_clock(rq);
3850 /*
3851 * Update run-time statistics of the 'current'.
3852 */
3853 update_curr(cfs_rq);
3854 /*
3855 * Tell update_rq_clock() that we've just updated,
3856 * so we don't do microscopic update in schedule()
3857 * and double the fastpath cost.
3858 */
3859 rq->skip_clock_update = 1;
3860 }
3861
3862 set_skip_buddy(se);
3863 }
3864
3865 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3866 {
3867 struct sched_entity *se = &p->se;
3868
3869 /* throttled hierarchies are not runnable */
3870 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3871 return false;
3872
3873 /* Tell the scheduler that we'd really like pse to run next. */
3874 set_next_buddy(se);
3875
3876 yield_task_fair(rq);
3877
3878 return true;
3879 }
3880
3881 #ifdef CONFIG_SMP
3882 /**************************************************
3883 * Fair scheduling class load-balancing methods.
3884 *
3885 * BASICS
3886 *
3887 * The purpose of load-balancing is to achieve the same basic fairness the
3888 * per-cpu scheduler provides, namely provide a proportional amount of compute
3889 * time to each task. This is expressed in the following equation:
3890 *
3891 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3892 *
3893 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3894 * W_i,0 is defined as:
3895 *
3896 * W_i,0 = \Sum_j w_i,j (2)
3897 *
3898 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3899 * is derived from the nice value as per prio_to_weight[].
3900 *
3901 * The weight average is an exponential decay average of the instantaneous
3902 * weight:
3903 *
3904 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3905 *
3906 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3907 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3908 * can also include other factors [XXX].
3909 *
3910 * To achieve this balance we define a measure of imbalance which follows
3911 * directly from (1):
3912 *
3913 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3914 *
3915 * We them move tasks around to minimize the imbalance. In the continuous
3916 * function space it is obvious this converges, in the discrete case we get
3917 * a few fun cases generally called infeasible weight scenarios.
3918 *
3919 * [XXX expand on:
3920 * - infeasible weights;
3921 * - local vs global optima in the discrete case. ]
3922 *
3923 *
3924 * SCHED DOMAINS
3925 *
3926 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3927 * for all i,j solution, we create a tree of cpus that follows the hardware
3928 * topology where each level pairs two lower groups (or better). This results
3929 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3930 * tree to only the first of the previous level and we decrease the frequency
3931 * of load-balance at each level inv. proportional to the number of cpus in
3932 * the groups.
3933 *
3934 * This yields:
3935 *
3936 * log_2 n 1 n
3937 * \Sum { --- * --- * 2^i } = O(n) (5)
3938 * i = 0 2^i 2^i
3939 * `- size of each group
3940 * | | `- number of cpus doing load-balance
3941 * | `- freq
3942 * `- sum over all levels
3943 *
3944 * Coupled with a limit on how many tasks we can migrate every balance pass,
3945 * this makes (5) the runtime complexity of the balancer.
3946 *
3947 * An important property here is that each CPU is still (indirectly) connected
3948 * to every other cpu in at most O(log n) steps:
3949 *
3950 * The adjacency matrix of the resulting graph is given by:
3951 *
3952 * log_2 n
3953 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3954 * k = 0
3955 *
3956 * And you'll find that:
3957 *
3958 * A^(log_2 n)_i,j != 0 for all i,j (7)
3959 *
3960 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3961 * The task movement gives a factor of O(m), giving a convergence complexity
3962 * of:
3963 *
3964 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3965 *
3966 *
3967 * WORK CONSERVING
3968 *
3969 * In order to avoid CPUs going idle while there's still work to do, new idle
3970 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3971 * tree itself instead of relying on other CPUs to bring it work.
3972 *
3973 * This adds some complexity to both (5) and (8) but it reduces the total idle
3974 * time.
3975 *
3976 * [XXX more?]
3977 *
3978 *
3979 * CGROUPS
3980 *
3981 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3982 *
3983 * s_k,i
3984 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3985 * S_k
3986 *
3987 * Where
3988 *
3989 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3990 *
3991 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3992 *
3993 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3994 * property.
3995 *
3996 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3997 * rewrite all of this once again.]
3998 */
3999
4000 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4001
4002 #define LBF_ALL_PINNED 0x01
4003 #define LBF_NEED_BREAK 0x02
4004 #define LBF_DST_PINNED 0x04
4005 #define LBF_SOME_PINNED 0x08
4006
4007 struct lb_env {
4008 struct sched_domain *sd;
4009
4010 struct rq *src_rq;
4011 int src_cpu;
4012
4013 int dst_cpu;
4014 struct rq *dst_rq;
4015
4016 struct cpumask *dst_grpmask;
4017 int new_dst_cpu;
4018 enum cpu_idle_type idle;
4019 long imbalance;
4020 /* The set of CPUs under consideration for load-balancing */
4021 struct cpumask *cpus;
4022
4023 unsigned int flags;
4024
4025 unsigned int loop;
4026 unsigned int loop_break;
4027 unsigned int loop_max;
4028 };
4029
4030 /*
4031 * move_task - move a task from one runqueue to another runqueue.
4032 * Both runqueues must be locked.
4033 */
4034 static void move_task(struct task_struct *p, struct lb_env *env)
4035 {
4036 deactivate_task(env->src_rq, p, 0);
4037 set_task_cpu(p, env->dst_cpu);
4038 activate_task(env->dst_rq, p, 0);
4039 check_preempt_curr(env->dst_rq, p, 0);
4040 }
4041
4042 /*
4043 * Is this task likely cache-hot:
4044 */
4045 static int
4046 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4047 {
4048 s64 delta;
4049
4050 if (p->sched_class != &fair_sched_class)
4051 return 0;
4052
4053 if (unlikely(p->policy == SCHED_IDLE))
4054 return 0;
4055
4056 /*
4057 * Buddy candidates are cache hot:
4058 */
4059 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4060 (&p->se == cfs_rq_of(&p->se)->next ||
4061 &p->se == cfs_rq_of(&p->se)->last))
4062 return 1;
4063
4064 if (sysctl_sched_migration_cost == -1)
4065 return 1;
4066 if (sysctl_sched_migration_cost == 0)
4067 return 0;
4068
4069 delta = now - p->se.exec_start;
4070
4071 return delta < (s64)sysctl_sched_migration_cost;
4072 }
4073
4074 /*
4075 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4076 */
4077 static
4078 int can_migrate_task(struct task_struct *p, struct lb_env *env)
4079 {
4080 int tsk_cache_hot = 0;
4081 /*
4082 * We do not migrate tasks that are:
4083 * 1) throttled_lb_pair, or
4084 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4085 * 3) running (obviously), or
4086 * 4) are cache-hot on their current CPU.
4087 */
4088 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4089 return 0;
4090
4091 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4092 int cpu;
4093
4094 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4095
4096 env->flags |= LBF_SOME_PINNED;
4097
4098 /*
4099 * Remember if this task can be migrated to any other cpu in
4100 * our sched_group. We may want to revisit it if we couldn't
4101 * meet load balance goals by pulling other tasks on src_cpu.
4102 *
4103 * Also avoid computing new_dst_cpu if we have already computed
4104 * one in current iteration.
4105 */
4106 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4107 return 0;
4108
4109 /* Prevent to re-select dst_cpu via env's cpus */
4110 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4111 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4112 env->flags |= LBF_DST_PINNED;
4113 env->new_dst_cpu = cpu;
4114 break;
4115 }
4116 }
4117
4118 return 0;
4119 }
4120
4121 /* Record that we found atleast one task that could run on dst_cpu */
4122 env->flags &= ~LBF_ALL_PINNED;
4123
4124 if (task_running(env->src_rq, p)) {
4125 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4126 return 0;
4127 }
4128
4129 /*
4130 * Aggressive migration if:
4131 * 1) task is cache cold, or
4132 * 2) too many balance attempts have failed.
4133 */
4134
4135 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4136 if (!tsk_cache_hot ||
4137 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4138
4139 if (tsk_cache_hot) {
4140 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4141 schedstat_inc(p, se.statistics.nr_forced_migrations);
4142 }
4143
4144 return 1;
4145 }
4146
4147 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4148 return 0;
4149 }
4150
4151 /*
4152 * move_one_task tries to move exactly one task from busiest to this_rq, as
4153 * part of active balancing operations within "domain".
4154 * Returns 1 if successful and 0 otherwise.
4155 *
4156 * Called with both runqueues locked.
4157 */
4158 static int move_one_task(struct lb_env *env)
4159 {
4160 struct task_struct *p, *n;
4161
4162 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4163 if (!can_migrate_task(p, env))
4164 continue;
4165
4166 move_task(p, env);
4167 /*
4168 * Right now, this is only the second place move_task()
4169 * is called, so we can safely collect move_task()
4170 * stats here rather than inside move_task().
4171 */
4172 schedstat_inc(env->sd, lb_gained[env->idle]);
4173 return 1;
4174 }
4175 return 0;
4176 }
4177
4178 static unsigned long task_h_load(struct task_struct *p);
4179
4180 static const unsigned int sched_nr_migrate_break = 32;
4181
4182 /*
4183 * move_tasks tries to move up to imbalance weighted load from busiest to
4184 * this_rq, as part of a balancing operation within domain "sd".
4185 * Returns 1 if successful and 0 otherwise.
4186 *
4187 * Called with both runqueues locked.
4188 */
4189 static int move_tasks(struct lb_env *env)
4190 {
4191 struct list_head *tasks = &env->src_rq->cfs_tasks;
4192 struct task_struct *p;
4193 unsigned long load;
4194 int pulled = 0;
4195
4196 if (env->imbalance <= 0)
4197 return 0;
4198
4199 while (!list_empty(tasks)) {
4200 p = list_first_entry(tasks, struct task_struct, se.group_node);
4201
4202 env->loop++;
4203 /* We've more or less seen every task there is, call it quits */
4204 if (env->loop > env->loop_max)
4205 break;
4206
4207 /* take a breather every nr_migrate tasks */
4208 if (env->loop > env->loop_break) {
4209 env->loop_break += sched_nr_migrate_break;
4210 env->flags |= LBF_NEED_BREAK;
4211 break;
4212 }
4213
4214 if (!can_migrate_task(p, env))
4215 goto next;
4216
4217 load = task_h_load(p);
4218
4219 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
4220 goto next;
4221
4222 if ((load / 2) > env->imbalance)
4223 goto next;
4224
4225 move_task(p, env);
4226 pulled++;
4227 env->imbalance -= load;
4228
4229 #ifdef CONFIG_PREEMPT
4230 /*
4231 * NEWIDLE balancing is a source of latency, so preemptible
4232 * kernels will stop after the first task is pulled to minimize
4233 * the critical section.
4234 */
4235 if (env->idle == CPU_NEWLY_IDLE)
4236 break;
4237 #endif
4238
4239 /*
4240 * We only want to steal up to the prescribed amount of
4241 * weighted load.
4242 */
4243 if (env->imbalance <= 0)
4244 break;
4245
4246 continue;
4247 next:
4248 list_move_tail(&p->se.group_node, tasks);
4249 }
4250
4251 /*
4252 * Right now, this is one of only two places move_task() is called,
4253 * so we can safely collect move_task() stats here rather than
4254 * inside move_task().
4255 */
4256 schedstat_add(env->sd, lb_gained[env->idle], pulled);
4257
4258 return pulled;
4259 }
4260
4261 #ifdef CONFIG_FAIR_GROUP_SCHED
4262 /*
4263 * update tg->load_weight by folding this cpu's load_avg
4264 */
4265 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
4266 {
4267 struct sched_entity *se = tg->se[cpu];
4268 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
4269
4270 /* throttled entities do not contribute to load */
4271 if (throttled_hierarchy(cfs_rq))
4272 return;
4273
4274 update_cfs_rq_blocked_load(cfs_rq, 1);
4275
4276 if (se) {
4277 update_entity_load_avg(se, 1);
4278 /*
4279 * We pivot on our runnable average having decayed to zero for
4280 * list removal. This generally implies that all our children
4281 * have also been removed (modulo rounding error or bandwidth
4282 * control); however, such cases are rare and we can fix these
4283 * at enqueue.
4284 *
4285 * TODO: fix up out-of-order children on enqueue.
4286 */
4287 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4288 list_del_leaf_cfs_rq(cfs_rq);
4289 } else {
4290 struct rq *rq = rq_of(cfs_rq);
4291 update_rq_runnable_avg(rq, rq->nr_running);
4292 }
4293 }
4294
4295 static void update_blocked_averages(int cpu)
4296 {
4297 struct rq *rq = cpu_rq(cpu);
4298 struct cfs_rq *cfs_rq;
4299 unsigned long flags;
4300
4301 raw_spin_lock_irqsave(&rq->lock, flags);
4302 update_rq_clock(rq);
4303 /*
4304 * Iterates the task_group tree in a bottom up fashion, see
4305 * list_add_leaf_cfs_rq() for details.
4306 */
4307 for_each_leaf_cfs_rq(rq, cfs_rq) {
4308 /*
4309 * Note: We may want to consider periodically releasing
4310 * rq->lock about these updates so that creating many task
4311 * groups does not result in continually extending hold time.
4312 */
4313 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
4314 }
4315
4316 raw_spin_unlock_irqrestore(&rq->lock, flags);
4317 }
4318
4319 /*
4320 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
4321 * This needs to be done in a top-down fashion because the load of a child
4322 * group is a fraction of its parents load.
4323 */
4324 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
4325 {
4326 struct rq *rq = rq_of(cfs_rq);
4327 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
4328 unsigned long now = jiffies;
4329 unsigned long load;
4330
4331 if (cfs_rq->last_h_load_update == now)
4332 return;
4333
4334 cfs_rq->h_load_next = NULL;
4335 for_each_sched_entity(se) {
4336 cfs_rq = cfs_rq_of(se);
4337 cfs_rq->h_load_next = se;
4338 if (cfs_rq->last_h_load_update == now)
4339 break;
4340 }
4341
4342 if (!se) {
4343 cfs_rq->h_load = cfs_rq->runnable_load_avg;
4344 cfs_rq->last_h_load_update = now;
4345 }
4346
4347 while ((se = cfs_rq->h_load_next) != NULL) {
4348 load = cfs_rq->h_load;
4349 load = div64_ul(load * se->avg.load_avg_contrib,
4350 cfs_rq->runnable_load_avg + 1);
4351 cfs_rq = group_cfs_rq(se);
4352 cfs_rq->h_load = load;
4353 cfs_rq->last_h_load_update = now;
4354 }
4355 }
4356
4357 static unsigned long task_h_load(struct task_struct *p)
4358 {
4359 struct cfs_rq *cfs_rq = task_cfs_rq(p);
4360
4361 update_cfs_rq_h_load(cfs_rq);
4362 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4363 cfs_rq->runnable_load_avg + 1);
4364 }
4365 #else
4366 static inline void update_blocked_averages(int cpu)
4367 {
4368 }
4369
4370 static unsigned long task_h_load(struct task_struct *p)
4371 {
4372 return p->se.avg.load_avg_contrib;
4373 }
4374 #endif
4375
4376 /********** Helpers for find_busiest_group ************************/
4377 /*
4378 * sg_lb_stats - stats of a sched_group required for load_balancing
4379 */
4380 struct sg_lb_stats {
4381 unsigned long avg_load; /*Avg load across the CPUs of the group */
4382 unsigned long group_load; /* Total load over the CPUs of the group */
4383 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
4384 unsigned long load_per_task;
4385 unsigned long group_power;
4386 unsigned int sum_nr_running; /* Nr tasks running in the group */
4387 unsigned int group_capacity;
4388 unsigned int idle_cpus;
4389 unsigned int group_weight;
4390 int group_imb; /* Is there an imbalance in the group ? */
4391 int group_has_capacity; /* Is there extra capacity in the group? */
4392 };
4393
4394 /*
4395 * sd_lb_stats - Structure to store the statistics of a sched_domain
4396 * during load balancing.
4397 */
4398 struct sd_lb_stats {
4399 struct sched_group *busiest; /* Busiest group in this sd */
4400 struct sched_group *local; /* Local group in this sd */
4401 unsigned long total_load; /* Total load of all groups in sd */
4402 unsigned long total_pwr; /* Total power of all groups in sd */
4403 unsigned long avg_load; /* Average load across all groups in sd */
4404
4405 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
4406 struct sg_lb_stats local_stat; /* Statistics of the local group */
4407 };
4408
4409 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
4410 {
4411 /*
4412 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
4413 * local_stat because update_sg_lb_stats() does a full clear/assignment.
4414 * We must however clear busiest_stat::avg_load because
4415 * update_sd_pick_busiest() reads this before assignment.
4416 */
4417 *sds = (struct sd_lb_stats){
4418 .busiest = NULL,
4419 .local = NULL,
4420 .total_load = 0UL,
4421 .total_pwr = 0UL,
4422 .busiest_stat = {
4423 .avg_load = 0UL,
4424 },
4425 };
4426 }
4427
4428 /**
4429 * get_sd_load_idx - Obtain the load index for a given sched domain.
4430 * @sd: The sched_domain whose load_idx is to be obtained.
4431 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4432 *
4433 * Return: The load index.
4434 */
4435 static inline int get_sd_load_idx(struct sched_domain *sd,
4436 enum cpu_idle_type idle)
4437 {
4438 int load_idx;
4439
4440 switch (idle) {
4441 case CPU_NOT_IDLE:
4442 load_idx = sd->busy_idx;
4443 break;
4444
4445 case CPU_NEWLY_IDLE:
4446 load_idx = sd->newidle_idx;
4447 break;
4448 default:
4449 load_idx = sd->idle_idx;
4450 break;
4451 }
4452
4453 return load_idx;
4454 }
4455
4456 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4457 {
4458 return SCHED_POWER_SCALE;
4459 }
4460
4461 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4462 {
4463 return default_scale_freq_power(sd, cpu);
4464 }
4465
4466 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4467 {
4468 unsigned long weight = sd->span_weight;
4469 unsigned long smt_gain = sd->smt_gain;
4470
4471 smt_gain /= weight;
4472
4473 return smt_gain;
4474 }
4475
4476 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4477 {
4478 return default_scale_smt_power(sd, cpu);
4479 }
4480
4481 static unsigned long scale_rt_power(int cpu)
4482 {
4483 struct rq *rq = cpu_rq(cpu);
4484 u64 total, available, age_stamp, avg;
4485
4486 /*
4487 * Since we're reading these variables without serialization make sure
4488 * we read them once before doing sanity checks on them.
4489 */
4490 age_stamp = ACCESS_ONCE(rq->age_stamp);
4491 avg = ACCESS_ONCE(rq->rt_avg);
4492
4493 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
4494
4495 if (unlikely(total < avg)) {
4496 /* Ensures that power won't end up being negative */
4497 available = 0;
4498 } else {
4499 available = total - avg;
4500 }
4501
4502 if (unlikely((s64)total < SCHED_POWER_SCALE))
4503 total = SCHED_POWER_SCALE;
4504
4505 total >>= SCHED_POWER_SHIFT;
4506
4507 return div_u64(available, total);
4508 }
4509
4510 static void update_cpu_power(struct sched_domain *sd, int cpu)
4511 {
4512 unsigned long weight = sd->span_weight;
4513 unsigned long power = SCHED_POWER_SCALE;
4514 struct sched_group *sdg = sd->groups;
4515
4516 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4517 if (sched_feat(ARCH_POWER))
4518 power *= arch_scale_smt_power(sd, cpu);
4519 else
4520 power *= default_scale_smt_power(sd, cpu);
4521
4522 power >>= SCHED_POWER_SHIFT;
4523 }
4524
4525 sdg->sgp->power_orig = power;
4526
4527 if (sched_feat(ARCH_POWER))
4528 power *= arch_scale_freq_power(sd, cpu);
4529 else
4530 power *= default_scale_freq_power(sd, cpu);
4531
4532 power >>= SCHED_POWER_SHIFT;
4533
4534 power *= scale_rt_power(cpu);
4535 power >>= SCHED_POWER_SHIFT;
4536
4537 if (!power)
4538 power = 1;
4539
4540 cpu_rq(cpu)->cpu_power = power;
4541 sdg->sgp->power = power;
4542 }
4543
4544 void update_group_power(struct sched_domain *sd, int cpu)
4545 {
4546 struct sched_domain *child = sd->child;
4547 struct sched_group *group, *sdg = sd->groups;
4548 unsigned long power, power_orig;
4549 unsigned long interval;
4550
4551 interval = msecs_to_jiffies(sd->balance_interval);
4552 interval = clamp(interval, 1UL, max_load_balance_interval);
4553 sdg->sgp->next_update = jiffies + interval;
4554
4555 if (!child) {
4556 update_cpu_power(sd, cpu);
4557 return;
4558 }
4559
4560 power_orig = power = 0;
4561
4562 if (child->flags & SD_OVERLAP) {
4563 /*
4564 * SD_OVERLAP domains cannot assume that child groups
4565 * span the current group.
4566 */
4567
4568 for_each_cpu(cpu, sched_group_cpus(sdg)) {
4569 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
4570
4571 power_orig += sg->sgp->power_orig;
4572 power += sg->sgp->power;
4573 }
4574 } else {
4575 /*
4576 * !SD_OVERLAP domains can assume that child groups
4577 * span the current group.
4578 */
4579
4580 group = child->groups;
4581 do {
4582 power_orig += group->sgp->power_orig;
4583 power += group->sgp->power;
4584 group = group->next;
4585 } while (group != child->groups);
4586 }
4587
4588 sdg->sgp->power_orig = power_orig;
4589 sdg->sgp->power = power;
4590 }
4591
4592 /*
4593 * Try and fix up capacity for tiny siblings, this is needed when
4594 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4595 * which on its own isn't powerful enough.
4596 *
4597 * See update_sd_pick_busiest() and check_asym_packing().
4598 */
4599 static inline int
4600 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4601 {
4602 /*
4603 * Only siblings can have significantly less than SCHED_POWER_SCALE
4604 */
4605 if (!(sd->flags & SD_SHARE_CPUPOWER))
4606 return 0;
4607
4608 /*
4609 * If ~90% of the cpu_power is still there, we're good.
4610 */
4611 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4612 return 1;
4613
4614 return 0;
4615 }
4616
4617 /*
4618 * Group imbalance indicates (and tries to solve) the problem where balancing
4619 * groups is inadequate due to tsk_cpus_allowed() constraints.
4620 *
4621 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
4622 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
4623 * Something like:
4624 *
4625 * { 0 1 2 3 } { 4 5 6 7 }
4626 * * * * *
4627 *
4628 * If we were to balance group-wise we'd place two tasks in the first group and
4629 * two tasks in the second group. Clearly this is undesired as it will overload
4630 * cpu 3 and leave one of the cpus in the second group unused.
4631 *
4632 * The current solution to this issue is detecting the skew in the first group
4633 * by noticing the lower domain failed to reach balance and had difficulty
4634 * moving tasks due to affinity constraints.
4635 *
4636 * When this is so detected; this group becomes a candidate for busiest; see
4637 * update_sd_pick_busiest(). And calculcate_imbalance() and
4638 * find_busiest_group() avoid some of the usual balance conditions to allow it
4639 * to create an effective group imbalance.
4640 *
4641 * This is a somewhat tricky proposition since the next run might not find the
4642 * group imbalance and decide the groups need to be balanced again. A most
4643 * subtle and fragile situation.
4644 */
4645
4646 static inline int sg_imbalanced(struct sched_group *group)
4647 {
4648 return group->sgp->imbalance;
4649 }
4650
4651 /*
4652 * Compute the group capacity.
4653 *
4654 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
4655 * first dividing out the smt factor and computing the actual number of cores
4656 * and limit power unit capacity with that.
4657 */
4658 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
4659 {
4660 unsigned int capacity, smt, cpus;
4661 unsigned int power, power_orig;
4662
4663 power = group->sgp->power;
4664 power_orig = group->sgp->power_orig;
4665 cpus = group->group_weight;
4666
4667 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
4668 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
4669 capacity = cpus / smt; /* cores */
4670
4671 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
4672 if (!capacity)
4673 capacity = fix_small_capacity(env->sd, group);
4674
4675 return capacity;
4676 }
4677
4678 /**
4679 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4680 * @env: The load balancing environment.
4681 * @group: sched_group whose statistics are to be updated.
4682 * @load_idx: Load index of sched_domain of this_cpu for load calc.
4683 * @local_group: Does group contain this_cpu.
4684 * @sgs: variable to hold the statistics for this group.
4685 */
4686 static inline void update_sg_lb_stats(struct lb_env *env,
4687 struct sched_group *group, int load_idx,
4688 int local_group, struct sg_lb_stats *sgs)
4689 {
4690 unsigned long nr_running;
4691 unsigned long load;
4692 int i;
4693
4694 memset(sgs, 0, sizeof(*sgs));
4695
4696 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4697 struct rq *rq = cpu_rq(i);
4698
4699 nr_running = rq->nr_running;
4700
4701 /* Bias balancing toward cpus of our domain */
4702 if (local_group)
4703 load = target_load(i, load_idx);
4704 else
4705 load = source_load(i, load_idx);
4706
4707 sgs->group_load += load;
4708 sgs->sum_nr_running += nr_running;
4709 sgs->sum_weighted_load += weighted_cpuload(i);
4710 if (idle_cpu(i))
4711 sgs->idle_cpus++;
4712 }
4713
4714 /* Adjust by relative CPU power of the group */
4715 sgs->group_power = group->sgp->power;
4716 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
4717
4718 if (sgs->sum_nr_running)
4719 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4720
4721 sgs->group_weight = group->group_weight;
4722
4723 sgs->group_imb = sg_imbalanced(group);
4724 sgs->group_capacity = sg_capacity(env, group);
4725
4726 if (sgs->group_capacity > sgs->sum_nr_running)
4727 sgs->group_has_capacity = 1;
4728 }
4729
4730 /**
4731 * update_sd_pick_busiest - return 1 on busiest group
4732 * @env: The load balancing environment.
4733 * @sds: sched_domain statistics
4734 * @sg: sched_group candidate to be checked for being the busiest
4735 * @sgs: sched_group statistics
4736 *
4737 * Determine if @sg is a busier group than the previously selected
4738 * busiest group.
4739 *
4740 * Return: %true if @sg is a busier group than the previously selected
4741 * busiest group. %false otherwise.
4742 */
4743 static bool update_sd_pick_busiest(struct lb_env *env,
4744 struct sd_lb_stats *sds,
4745 struct sched_group *sg,
4746 struct sg_lb_stats *sgs)
4747 {
4748 if (sgs->avg_load <= sds->busiest_stat.avg_load)
4749 return false;
4750
4751 if (sgs->sum_nr_running > sgs->group_capacity)
4752 return true;
4753
4754 if (sgs->group_imb)
4755 return true;
4756
4757 /*
4758 * ASYM_PACKING needs to move all the work to the lowest
4759 * numbered CPUs in the group, therefore mark all groups
4760 * higher than ourself as busy.
4761 */
4762 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4763 env->dst_cpu < group_first_cpu(sg)) {
4764 if (!sds->busiest)
4765 return true;
4766
4767 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4768 return true;
4769 }
4770
4771 return false;
4772 }
4773
4774 /**
4775 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4776 * @env: The load balancing environment.
4777 * @balance: Should we balance.
4778 * @sds: variable to hold the statistics for this sched_domain.
4779 */
4780 static inline void update_sd_lb_stats(struct lb_env *env,
4781 struct sd_lb_stats *sds)
4782 {
4783 struct sched_domain *child = env->sd->child;
4784 struct sched_group *sg = env->sd->groups;
4785 struct sg_lb_stats tmp_sgs;
4786 int load_idx, prefer_sibling = 0;
4787
4788 if (child && child->flags & SD_PREFER_SIBLING)
4789 prefer_sibling = 1;
4790
4791 load_idx = get_sd_load_idx(env->sd, env->idle);
4792
4793 do {
4794 struct sg_lb_stats *sgs = &tmp_sgs;
4795 int local_group;
4796
4797 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
4798 if (local_group) {
4799 sds->local = sg;
4800 sgs = &sds->local_stat;
4801
4802 if (env->idle != CPU_NEWLY_IDLE ||
4803 time_after_eq(jiffies, sg->sgp->next_update))
4804 update_group_power(env->sd, env->dst_cpu);
4805 }
4806
4807 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
4808
4809 if (local_group)
4810 goto next_group;
4811
4812 /*
4813 * In case the child domain prefers tasks go to siblings
4814 * first, lower the sg capacity to one so that we'll try
4815 * and move all the excess tasks away. We lower the capacity
4816 * of a group only if the local group has the capacity to fit
4817 * these excess tasks, i.e. nr_running < group_capacity. The
4818 * extra check prevents the case where you always pull from the
4819 * heaviest group when it is already under-utilized (possible
4820 * with a large weight task outweighs the tasks on the system).
4821 */
4822 if (prefer_sibling && sds->local &&
4823 sds->local_stat.group_has_capacity)
4824 sgs->group_capacity = min(sgs->group_capacity, 1U);
4825
4826 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
4827 sds->busiest = sg;
4828 sds->busiest_stat = *sgs;
4829 }
4830
4831 next_group:
4832 /* Now, start updating sd_lb_stats */
4833 sds->total_load += sgs->group_load;
4834 sds->total_pwr += sgs->group_power;
4835
4836 sg = sg->next;
4837 } while (sg != env->sd->groups);
4838 }
4839
4840 /**
4841 * check_asym_packing - Check to see if the group is packed into the
4842 * sched doman.
4843 *
4844 * This is primarily intended to used at the sibling level. Some
4845 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4846 * case of POWER7, it can move to lower SMT modes only when higher
4847 * threads are idle. When in lower SMT modes, the threads will
4848 * perform better since they share less core resources. Hence when we
4849 * have idle threads, we want them to be the higher ones.
4850 *
4851 * This packing function is run on idle threads. It checks to see if
4852 * the busiest CPU in this domain (core in the P7 case) has a higher
4853 * CPU number than the packing function is being run on. Here we are
4854 * assuming lower CPU number will be equivalent to lower a SMT thread
4855 * number.
4856 *
4857 * Return: 1 when packing is required and a task should be moved to
4858 * this CPU. The amount of the imbalance is returned in *imbalance.
4859 *
4860 * @env: The load balancing environment.
4861 * @sds: Statistics of the sched_domain which is to be packed
4862 */
4863 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4864 {
4865 int busiest_cpu;
4866
4867 if (!(env->sd->flags & SD_ASYM_PACKING))
4868 return 0;
4869
4870 if (!sds->busiest)
4871 return 0;
4872
4873 busiest_cpu = group_first_cpu(sds->busiest);
4874 if (env->dst_cpu > busiest_cpu)
4875 return 0;
4876
4877 env->imbalance = DIV_ROUND_CLOSEST(
4878 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
4879 SCHED_POWER_SCALE);
4880
4881 return 1;
4882 }
4883
4884 /**
4885 * fix_small_imbalance - Calculate the minor imbalance that exists
4886 * amongst the groups of a sched_domain, during
4887 * load balancing.
4888 * @env: The load balancing environment.
4889 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4890 */
4891 static inline
4892 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4893 {
4894 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4895 unsigned int imbn = 2;
4896 unsigned long scaled_busy_load_per_task;
4897 struct sg_lb_stats *local, *busiest;
4898
4899 local = &sds->local_stat;
4900 busiest = &sds->busiest_stat;
4901
4902 if (!local->sum_nr_running)
4903 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
4904 else if (busiest->load_per_task > local->load_per_task)
4905 imbn = 1;
4906
4907 scaled_busy_load_per_task =
4908 (busiest->load_per_task * SCHED_POWER_SCALE) /
4909 busiest->group_power;
4910
4911 if (busiest->avg_load + scaled_busy_load_per_task >=
4912 local->avg_load + (scaled_busy_load_per_task * imbn)) {
4913 env->imbalance = busiest->load_per_task;
4914 return;
4915 }
4916
4917 /*
4918 * OK, we don't have enough imbalance to justify moving tasks,
4919 * however we may be able to increase total CPU power used by
4920 * moving them.
4921 */
4922
4923 pwr_now += busiest->group_power *
4924 min(busiest->load_per_task, busiest->avg_load);
4925 pwr_now += local->group_power *
4926 min(local->load_per_task, local->avg_load);
4927 pwr_now /= SCHED_POWER_SCALE;
4928
4929 /* Amount of load we'd subtract */
4930 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
4931 busiest->group_power;
4932 if (busiest->avg_load > tmp) {
4933 pwr_move += busiest->group_power *
4934 min(busiest->load_per_task,
4935 busiest->avg_load - tmp);
4936 }
4937
4938 /* Amount of load we'd add */
4939 if (busiest->avg_load * busiest->group_power <
4940 busiest->load_per_task * SCHED_POWER_SCALE) {
4941 tmp = (busiest->avg_load * busiest->group_power) /
4942 local->group_power;
4943 } else {
4944 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
4945 local->group_power;
4946 }
4947 pwr_move += local->group_power *
4948 min(local->load_per_task, local->avg_load + tmp);
4949 pwr_move /= SCHED_POWER_SCALE;
4950
4951 /* Move if we gain throughput */
4952 if (pwr_move > pwr_now)
4953 env->imbalance = busiest->load_per_task;
4954 }
4955
4956 /**
4957 * calculate_imbalance - Calculate the amount of imbalance present within the
4958 * groups of a given sched_domain during load balance.
4959 * @env: load balance environment
4960 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4961 */
4962 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4963 {
4964 unsigned long max_pull, load_above_capacity = ~0UL;
4965 struct sg_lb_stats *local, *busiest;
4966
4967 local = &sds->local_stat;
4968 busiest = &sds->busiest_stat;
4969
4970 if (busiest->group_imb) {
4971 /*
4972 * In the group_imb case we cannot rely on group-wide averages
4973 * to ensure cpu-load equilibrium, look at wider averages. XXX
4974 */
4975 busiest->load_per_task =
4976 min(busiest->load_per_task, sds->avg_load);
4977 }
4978
4979 /*
4980 * In the presence of smp nice balancing, certain scenarios can have
4981 * max load less than avg load(as we skip the groups at or below
4982 * its cpu_power, while calculating max_load..)
4983 */
4984 if (busiest->avg_load <= sds->avg_load ||
4985 local->avg_load >= sds->avg_load) {
4986 env->imbalance = 0;
4987 return fix_small_imbalance(env, sds);
4988 }
4989
4990 if (!busiest->group_imb) {
4991 /*
4992 * Don't want to pull so many tasks that a group would go idle.
4993 * Except of course for the group_imb case, since then we might
4994 * have to drop below capacity to reach cpu-load equilibrium.
4995 */
4996 load_above_capacity =
4997 (busiest->sum_nr_running - busiest->group_capacity);
4998
4999 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5000 load_above_capacity /= busiest->group_power;
5001 }
5002
5003 /*
5004 * We're trying to get all the cpus to the average_load, so we don't
5005 * want to push ourselves above the average load, nor do we wish to
5006 * reduce the max loaded cpu below the average load. At the same time,
5007 * we also don't want to reduce the group load below the group capacity
5008 * (so that we can implement power-savings policies etc). Thus we look
5009 * for the minimum possible imbalance.
5010 */
5011 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5012
5013 /* How much load to actually move to equalise the imbalance */
5014 env->imbalance = min(
5015 max_pull * busiest->group_power,
5016 (sds->avg_load - local->avg_load) * local->group_power
5017 ) / SCHED_POWER_SCALE;
5018
5019 /*
5020 * if *imbalance is less than the average load per runnable task
5021 * there is no guarantee that any tasks will be moved so we'll have
5022 * a think about bumping its value to force at least one task to be
5023 * moved
5024 */
5025 if (env->imbalance < busiest->load_per_task)
5026 return fix_small_imbalance(env, sds);
5027 }
5028
5029 /******* find_busiest_group() helpers end here *********************/
5030
5031 /**
5032 * find_busiest_group - Returns the busiest group within the sched_domain
5033 * if there is an imbalance. If there isn't an imbalance, and
5034 * the user has opted for power-savings, it returns a group whose
5035 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5036 * such a group exists.
5037 *
5038 * Also calculates the amount of weighted load which should be moved
5039 * to restore balance.
5040 *
5041 * @env: The load balancing environment.
5042 *
5043 * Return: - The busiest group if imbalance exists.
5044 * - If no imbalance and user has opted for power-savings balance,
5045 * return the least loaded group whose CPUs can be
5046 * put to idle by rebalancing its tasks onto our group.
5047 */
5048 static struct sched_group *find_busiest_group(struct lb_env *env)
5049 {
5050 struct sg_lb_stats *local, *busiest;
5051 struct sd_lb_stats sds;
5052
5053 init_sd_lb_stats(&sds);
5054
5055 /*
5056 * Compute the various statistics relavent for load balancing at
5057 * this level.
5058 */
5059 update_sd_lb_stats(env, &sds);
5060 local = &sds.local_stat;
5061 busiest = &sds.busiest_stat;
5062
5063 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5064 check_asym_packing(env, &sds))
5065 return sds.busiest;
5066
5067 /* There is no busy sibling group to pull tasks from */
5068 if (!sds.busiest || busiest->sum_nr_running == 0)
5069 goto out_balanced;
5070
5071 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5072
5073 /*
5074 * If the busiest group is imbalanced the below checks don't
5075 * work because they assume all things are equal, which typically
5076 * isn't true due to cpus_allowed constraints and the like.
5077 */
5078 if (busiest->group_imb)
5079 goto force_balance;
5080
5081 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
5082 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5083 !busiest->group_has_capacity)
5084 goto force_balance;
5085
5086 /*
5087 * If the local group is more busy than the selected busiest group
5088 * don't try and pull any tasks.
5089 */
5090 if (local->avg_load >= busiest->avg_load)
5091 goto out_balanced;
5092
5093 /*
5094 * Don't pull any tasks if this group is already above the domain
5095 * average load.
5096 */
5097 if (local->avg_load >= sds.avg_load)
5098 goto out_balanced;
5099
5100 if (env->idle == CPU_IDLE) {
5101 /*
5102 * This cpu is idle. If the busiest group load doesn't
5103 * have more tasks than the number of available cpu's and
5104 * there is no imbalance between this and busiest group
5105 * wrt to idle cpu's, it is balanced.
5106 */
5107 if ((local->idle_cpus < busiest->idle_cpus) &&
5108 busiest->sum_nr_running <= busiest->group_weight)
5109 goto out_balanced;
5110 } else {
5111 /*
5112 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5113 * imbalance_pct to be conservative.
5114 */
5115 if (100 * busiest->avg_load <=
5116 env->sd->imbalance_pct * local->avg_load)
5117 goto out_balanced;
5118 }
5119
5120 force_balance:
5121 /* Looks like there is an imbalance. Compute it */
5122 calculate_imbalance(env, &sds);
5123 return sds.busiest;
5124
5125 out_balanced:
5126 env->imbalance = 0;
5127 return NULL;
5128 }
5129
5130 /*
5131 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5132 */
5133 static struct rq *find_busiest_queue(struct lb_env *env,
5134 struct sched_group *group)
5135 {
5136 struct rq *busiest = NULL, *rq;
5137 unsigned long busiest_load = 0, busiest_power = 1;
5138 int i;
5139
5140 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5141 unsigned long power = power_of(i);
5142 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5143 SCHED_POWER_SCALE);
5144 unsigned long wl;
5145
5146 if (!capacity)
5147 capacity = fix_small_capacity(env->sd, group);
5148
5149 rq = cpu_rq(i);
5150 wl = weighted_cpuload(i);
5151
5152 /*
5153 * When comparing with imbalance, use weighted_cpuload()
5154 * which is not scaled with the cpu power.
5155 */
5156 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
5157 continue;
5158
5159 /*
5160 * For the load comparisons with the other cpu's, consider
5161 * the weighted_cpuload() scaled with the cpu power, so that
5162 * the load can be moved away from the cpu that is potentially
5163 * running at a lower capacity.
5164 *
5165 * Thus we're looking for max(wl_i / power_i), crosswise
5166 * multiplication to rid ourselves of the division works out
5167 * to: wl_i * power_j > wl_j * power_i; where j is our
5168 * previous maximum.
5169 */
5170 if (wl * busiest_power > busiest_load * power) {
5171 busiest_load = wl;
5172 busiest_power = power;
5173 busiest = rq;
5174 }
5175 }
5176
5177 return busiest;
5178 }
5179
5180 /*
5181 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5182 * so long as it is large enough.
5183 */
5184 #define MAX_PINNED_INTERVAL 512
5185
5186 /* Working cpumask for load_balance and load_balance_newidle. */
5187 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5188
5189 static int need_active_balance(struct lb_env *env)
5190 {
5191 struct sched_domain *sd = env->sd;
5192
5193 if (env->idle == CPU_NEWLY_IDLE) {
5194
5195 /*
5196 * ASYM_PACKING needs to force migrate tasks from busy but
5197 * higher numbered CPUs in order to pack all tasks in the
5198 * lowest numbered CPUs.
5199 */
5200 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
5201 return 1;
5202 }
5203
5204 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5205 }
5206
5207 static int active_load_balance_cpu_stop(void *data);
5208
5209 static int should_we_balance(struct lb_env *env)
5210 {
5211 struct sched_group *sg = env->sd->groups;
5212 struct cpumask *sg_cpus, *sg_mask;
5213 int cpu, balance_cpu = -1;
5214
5215 /*
5216 * In the newly idle case, we will allow all the cpu's
5217 * to do the newly idle load balance.
5218 */
5219 if (env->idle == CPU_NEWLY_IDLE)
5220 return 1;
5221
5222 sg_cpus = sched_group_cpus(sg);
5223 sg_mask = sched_group_mask(sg);
5224 /* Try to find first idle cpu */
5225 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5226 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5227 continue;
5228
5229 balance_cpu = cpu;
5230 break;
5231 }
5232
5233 if (balance_cpu == -1)
5234 balance_cpu = group_balance_cpu(sg);
5235
5236 /*
5237 * First idle cpu or the first cpu(busiest) in this sched group
5238 * is eligible for doing load balancing at this and above domains.
5239 */
5240 return balance_cpu == env->dst_cpu;
5241 }
5242
5243 /*
5244 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5245 * tasks if there is an imbalance.
5246 */
5247 static int load_balance(int this_cpu, struct rq *this_rq,
5248 struct sched_domain *sd, enum cpu_idle_type idle,
5249 int *continue_balancing)
5250 {
5251 int ld_moved, cur_ld_moved, active_balance = 0;
5252 struct sched_domain *sd_parent = sd->parent;
5253 struct sched_group *group;
5254 struct rq *busiest;
5255 unsigned long flags;
5256 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
5257
5258 struct lb_env env = {
5259 .sd = sd,
5260 .dst_cpu = this_cpu,
5261 .dst_rq = this_rq,
5262 .dst_grpmask = sched_group_cpus(sd->groups),
5263 .idle = idle,
5264 .loop_break = sched_nr_migrate_break,
5265 .cpus = cpus,
5266 };
5267
5268 /*
5269 * For NEWLY_IDLE load_balancing, we don't need to consider
5270 * other cpus in our group
5271 */
5272 if (idle == CPU_NEWLY_IDLE)
5273 env.dst_grpmask = NULL;
5274
5275 cpumask_copy(cpus, cpu_active_mask);
5276
5277 schedstat_inc(sd, lb_count[idle]);
5278
5279 redo:
5280 if (!should_we_balance(&env)) {
5281 *continue_balancing = 0;
5282 goto out_balanced;
5283 }
5284
5285 group = find_busiest_group(&env);
5286 if (!group) {
5287 schedstat_inc(sd, lb_nobusyg[idle]);
5288 goto out_balanced;
5289 }
5290
5291 busiest = find_busiest_queue(&env, group);
5292 if (!busiest) {
5293 schedstat_inc(sd, lb_nobusyq[idle]);
5294 goto out_balanced;
5295 }
5296
5297 BUG_ON(busiest == env.dst_rq);
5298
5299 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
5300
5301 ld_moved = 0;
5302 if (busiest->nr_running > 1) {
5303 /*
5304 * Attempt to move tasks. If find_busiest_group has found
5305 * an imbalance but busiest->nr_running <= 1, the group is
5306 * still unbalanced. ld_moved simply stays zero, so it is
5307 * correctly treated as an imbalance.
5308 */
5309 env.flags |= LBF_ALL_PINNED;
5310 env.src_cpu = busiest->cpu;
5311 env.src_rq = busiest;
5312 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
5313
5314 more_balance:
5315 local_irq_save(flags);
5316 double_rq_lock(env.dst_rq, busiest);
5317
5318 /*
5319 * cur_ld_moved - load moved in current iteration
5320 * ld_moved - cumulative load moved across iterations
5321 */
5322 cur_ld_moved = move_tasks(&env);
5323 ld_moved += cur_ld_moved;
5324 double_rq_unlock(env.dst_rq, busiest);
5325 local_irq_restore(flags);
5326
5327 /*
5328 * some other cpu did the load balance for us.
5329 */
5330 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5331 resched_cpu(env.dst_cpu);
5332
5333 if (env.flags & LBF_NEED_BREAK) {
5334 env.flags &= ~LBF_NEED_BREAK;
5335 goto more_balance;
5336 }
5337
5338 /*
5339 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5340 * us and move them to an alternate dst_cpu in our sched_group
5341 * where they can run. The upper limit on how many times we
5342 * iterate on same src_cpu is dependent on number of cpus in our
5343 * sched_group.
5344 *
5345 * This changes load balance semantics a bit on who can move
5346 * load to a given_cpu. In addition to the given_cpu itself
5347 * (or a ilb_cpu acting on its behalf where given_cpu is
5348 * nohz-idle), we now have balance_cpu in a position to move
5349 * load to given_cpu. In rare situations, this may cause
5350 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5351 * _independently_ and at _same_ time to move some load to
5352 * given_cpu) causing exceess load to be moved to given_cpu.
5353 * This however should not happen so much in practice and
5354 * moreover subsequent load balance cycles should correct the
5355 * excess load moved.
5356 */
5357 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
5358
5359 /* Prevent to re-select dst_cpu via env's cpus */
5360 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5361
5362 env.dst_rq = cpu_rq(env.new_dst_cpu);
5363 env.dst_cpu = env.new_dst_cpu;
5364 env.flags &= ~LBF_DST_PINNED;
5365 env.loop = 0;
5366 env.loop_break = sched_nr_migrate_break;
5367
5368 /*
5369 * Go back to "more_balance" rather than "redo" since we
5370 * need to continue with same src_cpu.
5371 */
5372 goto more_balance;
5373 }
5374
5375 /*
5376 * We failed to reach balance because of affinity.
5377 */
5378 if (sd_parent) {
5379 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
5380
5381 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5382 *group_imbalance = 1;
5383 } else if (*group_imbalance)
5384 *group_imbalance = 0;
5385 }
5386
5387 /* All tasks on this runqueue were pinned by CPU affinity */
5388 if (unlikely(env.flags & LBF_ALL_PINNED)) {
5389 cpumask_clear_cpu(cpu_of(busiest), cpus);
5390 if (!cpumask_empty(cpus)) {
5391 env.loop = 0;
5392 env.loop_break = sched_nr_migrate_break;
5393 goto redo;
5394 }
5395 goto out_balanced;
5396 }
5397 }
5398
5399 if (!ld_moved) {
5400 schedstat_inc(sd, lb_failed[idle]);
5401 /*
5402 * Increment the failure counter only on periodic balance.
5403 * We do not want newidle balance, which can be very
5404 * frequent, pollute the failure counter causing
5405 * excessive cache_hot migrations and active balances.
5406 */
5407 if (idle != CPU_NEWLY_IDLE)
5408 sd->nr_balance_failed++;
5409
5410 if (need_active_balance(&env)) {
5411 raw_spin_lock_irqsave(&busiest->lock, flags);
5412
5413 /* don't kick the active_load_balance_cpu_stop,
5414 * if the curr task on busiest cpu can't be
5415 * moved to this_cpu
5416 */
5417 if (!cpumask_test_cpu(this_cpu,
5418 tsk_cpus_allowed(busiest->curr))) {
5419 raw_spin_unlock_irqrestore(&busiest->lock,
5420 flags);
5421 env.flags |= LBF_ALL_PINNED;
5422 goto out_one_pinned;
5423 }
5424
5425 /*
5426 * ->active_balance synchronizes accesses to
5427 * ->active_balance_work. Once set, it's cleared
5428 * only after active load balance is finished.
5429 */
5430 if (!busiest->active_balance) {
5431 busiest->active_balance = 1;
5432 busiest->push_cpu = this_cpu;
5433 active_balance = 1;
5434 }
5435 raw_spin_unlock_irqrestore(&busiest->lock, flags);
5436
5437 if (active_balance) {
5438 stop_one_cpu_nowait(cpu_of(busiest),
5439 active_load_balance_cpu_stop, busiest,
5440 &busiest->active_balance_work);
5441 }
5442
5443 /*
5444 * We've kicked active balancing, reset the failure
5445 * counter.
5446 */
5447 sd->nr_balance_failed = sd->cache_nice_tries+1;
5448 }
5449 } else
5450 sd->nr_balance_failed = 0;
5451
5452 if (likely(!active_balance)) {
5453 /* We were unbalanced, so reset the balancing interval */
5454 sd->balance_interval = sd->min_interval;
5455 } else {
5456 /*
5457 * If we've begun active balancing, start to back off. This
5458 * case may not be covered by the all_pinned logic if there
5459 * is only 1 task on the busy runqueue (because we don't call
5460 * move_tasks).
5461 */
5462 if (sd->balance_interval < sd->max_interval)
5463 sd->balance_interval *= 2;
5464 }
5465
5466 goto out;
5467
5468 out_balanced:
5469 schedstat_inc(sd, lb_balanced[idle]);
5470
5471 sd->nr_balance_failed = 0;
5472
5473 out_one_pinned:
5474 /* tune up the balancing interval */
5475 if (((env.flags & LBF_ALL_PINNED) &&
5476 sd->balance_interval < MAX_PINNED_INTERVAL) ||
5477 (sd->balance_interval < sd->max_interval))
5478 sd->balance_interval *= 2;
5479
5480 ld_moved = 0;
5481 out:
5482 return ld_moved;
5483 }
5484
5485 /*
5486 * idle_balance is called by schedule() if this_cpu is about to become
5487 * idle. Attempts to pull tasks from other CPUs.
5488 */
5489 void idle_balance(int this_cpu, struct rq *this_rq)
5490 {
5491 struct sched_domain *sd;
5492 int pulled_task = 0;
5493 unsigned long next_balance = jiffies + HZ;
5494 u64 curr_cost = 0;
5495
5496 this_rq->idle_stamp = rq_clock(this_rq);
5497
5498 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5499 return;
5500
5501 /*
5502 * Drop the rq->lock, but keep IRQ/preempt disabled.
5503 */
5504 raw_spin_unlock(&this_rq->lock);
5505
5506 update_blocked_averages(this_cpu);
5507 rcu_read_lock();
5508 for_each_domain(this_cpu, sd) {
5509 unsigned long interval;
5510 int continue_balancing = 1;
5511 u64 t0, domain_cost;
5512
5513 if (!(sd->flags & SD_LOAD_BALANCE))
5514 continue;
5515
5516 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
5517 break;
5518
5519 if (sd->flags & SD_BALANCE_NEWIDLE) {
5520 t0 = sched_clock_cpu(this_cpu);
5521
5522 /* If we've pulled tasks over stop searching: */
5523 pulled_task = load_balance(this_cpu, this_rq,
5524 sd, CPU_NEWLY_IDLE,
5525 &continue_balancing);
5526
5527 domain_cost = sched_clock_cpu(this_cpu) - t0;
5528 if (domain_cost > sd->max_newidle_lb_cost)
5529 sd->max_newidle_lb_cost = domain_cost;
5530
5531 curr_cost += domain_cost;
5532 }
5533
5534 interval = msecs_to_jiffies(sd->balance_interval);
5535 if (time_after(next_balance, sd->last_balance + interval))
5536 next_balance = sd->last_balance + interval;
5537 if (pulled_task) {
5538 this_rq->idle_stamp = 0;
5539 break;
5540 }
5541 }
5542 rcu_read_unlock();
5543
5544 raw_spin_lock(&this_rq->lock);
5545
5546 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5547 /*
5548 * We are going idle. next_balance may be set based on
5549 * a busy processor. So reset next_balance.
5550 */
5551 this_rq->next_balance = next_balance;
5552 }
5553
5554 if (curr_cost > this_rq->max_idle_balance_cost)
5555 this_rq->max_idle_balance_cost = curr_cost;
5556 }
5557
5558 /*
5559 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5560 * running tasks off the busiest CPU onto idle CPUs. It requires at
5561 * least 1 task to be running on each physical CPU where possible, and
5562 * avoids physical / logical imbalances.
5563 */
5564 static int active_load_balance_cpu_stop(void *data)
5565 {
5566 struct rq *busiest_rq = data;
5567 int busiest_cpu = cpu_of(busiest_rq);
5568 int target_cpu = busiest_rq->push_cpu;
5569 struct rq *target_rq = cpu_rq(target_cpu);
5570 struct sched_domain *sd;
5571
5572 raw_spin_lock_irq(&busiest_rq->lock);
5573
5574 /* make sure the requested cpu hasn't gone down in the meantime */
5575 if (unlikely(busiest_cpu != smp_processor_id() ||
5576 !busiest_rq->active_balance))
5577 goto out_unlock;
5578
5579 /* Is there any task to move? */
5580 if (busiest_rq->nr_running <= 1)
5581 goto out_unlock;
5582
5583 /*
5584 * This condition is "impossible", if it occurs
5585 * we need to fix it. Originally reported by
5586 * Bjorn Helgaas on a 128-cpu setup.
5587 */
5588 BUG_ON(busiest_rq == target_rq);
5589
5590 /* move a task from busiest_rq to target_rq */
5591 double_lock_balance(busiest_rq, target_rq);
5592
5593 /* Search for an sd spanning us and the target CPU. */
5594 rcu_read_lock();
5595 for_each_domain(target_cpu, sd) {
5596 if ((sd->flags & SD_LOAD_BALANCE) &&
5597 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5598 break;
5599 }
5600
5601 if (likely(sd)) {
5602 struct lb_env env = {
5603 .sd = sd,
5604 .dst_cpu = target_cpu,
5605 .dst_rq = target_rq,
5606 .src_cpu = busiest_rq->cpu,
5607 .src_rq = busiest_rq,
5608 .idle = CPU_IDLE,
5609 };
5610
5611 schedstat_inc(sd, alb_count);
5612
5613 if (move_one_task(&env))
5614 schedstat_inc(sd, alb_pushed);
5615 else
5616 schedstat_inc(sd, alb_failed);
5617 }
5618 rcu_read_unlock();
5619 double_unlock_balance(busiest_rq, target_rq);
5620 out_unlock:
5621 busiest_rq->active_balance = 0;
5622 raw_spin_unlock_irq(&busiest_rq->lock);
5623 return 0;
5624 }
5625
5626 #ifdef CONFIG_NO_HZ_COMMON
5627 /*
5628 * idle load balancing details
5629 * - When one of the busy CPUs notice that there may be an idle rebalancing
5630 * needed, they will kick the idle load balancer, which then does idle
5631 * load balancing for all the idle CPUs.
5632 */
5633 static struct {
5634 cpumask_var_t idle_cpus_mask;
5635 atomic_t nr_cpus;
5636 unsigned long next_balance; /* in jiffy units */
5637 } nohz ____cacheline_aligned;
5638
5639 static inline int find_new_ilb(int call_cpu)
5640 {
5641 int ilb = cpumask_first(nohz.idle_cpus_mask);
5642
5643 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5644 return ilb;
5645
5646 return nr_cpu_ids;
5647 }
5648
5649 /*
5650 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5651 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5652 * CPU (if there is one).
5653 */
5654 static void nohz_balancer_kick(int cpu)
5655 {
5656 int ilb_cpu;
5657
5658 nohz.next_balance++;
5659
5660 ilb_cpu = find_new_ilb(cpu);
5661
5662 if (ilb_cpu >= nr_cpu_ids)
5663 return;
5664
5665 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5666 return;
5667 /*
5668 * Use smp_send_reschedule() instead of resched_cpu().
5669 * This way we generate a sched IPI on the target cpu which
5670 * is idle. And the softirq performing nohz idle load balance
5671 * will be run before returning from the IPI.
5672 */
5673 smp_send_reschedule(ilb_cpu);
5674 return;
5675 }
5676
5677 static inline void nohz_balance_exit_idle(int cpu)
5678 {
5679 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5680 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5681 atomic_dec(&nohz.nr_cpus);
5682 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5683 }
5684 }
5685
5686 static inline void set_cpu_sd_state_busy(void)
5687 {
5688 struct sched_domain *sd;
5689
5690 rcu_read_lock();
5691 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
5692
5693 if (!sd || !sd->nohz_idle)
5694 goto unlock;
5695 sd->nohz_idle = 0;
5696
5697 for (; sd; sd = sd->parent)
5698 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5699 unlock:
5700 rcu_read_unlock();
5701 }
5702
5703 void set_cpu_sd_state_idle(void)
5704 {
5705 struct sched_domain *sd;
5706
5707 rcu_read_lock();
5708 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
5709
5710 if (!sd || sd->nohz_idle)
5711 goto unlock;
5712 sd->nohz_idle = 1;
5713
5714 for (; sd; sd = sd->parent)
5715 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5716 unlock:
5717 rcu_read_unlock();
5718 }
5719
5720 /*
5721 * This routine will record that the cpu is going idle with tick stopped.
5722 * This info will be used in performing idle load balancing in the future.
5723 */
5724 void nohz_balance_enter_idle(int cpu)
5725 {
5726 /*
5727 * If this cpu is going down, then nothing needs to be done.
5728 */
5729 if (!cpu_active(cpu))
5730 return;
5731
5732 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5733 return;
5734
5735 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5736 atomic_inc(&nohz.nr_cpus);
5737 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5738 }
5739
5740 static int sched_ilb_notifier(struct notifier_block *nfb,
5741 unsigned long action, void *hcpu)
5742 {
5743 switch (action & ~CPU_TASKS_FROZEN) {
5744 case CPU_DYING:
5745 nohz_balance_exit_idle(smp_processor_id());
5746 return NOTIFY_OK;
5747 default:
5748 return NOTIFY_DONE;
5749 }
5750 }
5751 #endif
5752
5753 static DEFINE_SPINLOCK(balancing);
5754
5755 /*
5756 * Scale the max load_balance interval with the number of CPUs in the system.
5757 * This trades load-balance latency on larger machines for less cross talk.
5758 */
5759 void update_max_interval(void)
5760 {
5761 max_load_balance_interval = HZ*num_online_cpus()/10;
5762 }
5763
5764 /*
5765 * It checks each scheduling domain to see if it is due to be balanced,
5766 * and initiates a balancing operation if so.
5767 *
5768 * Balancing parameters are set up in init_sched_domains.
5769 */
5770 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5771 {
5772 int continue_balancing = 1;
5773 struct rq *rq = cpu_rq(cpu);
5774 unsigned long interval;
5775 struct sched_domain *sd;
5776 /* Earliest time when we have to do rebalance again */
5777 unsigned long next_balance = jiffies + 60*HZ;
5778 int update_next_balance = 0;
5779 int need_serialize, need_decay = 0;
5780 u64 max_cost = 0;
5781
5782 update_blocked_averages(cpu);
5783
5784 rcu_read_lock();
5785 for_each_domain(cpu, sd) {
5786 /*
5787 * Decay the newidle max times here because this is a regular
5788 * visit to all the domains. Decay ~1% per second.
5789 */
5790 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
5791 sd->max_newidle_lb_cost =
5792 (sd->max_newidle_lb_cost * 253) / 256;
5793 sd->next_decay_max_lb_cost = jiffies + HZ;
5794 need_decay = 1;
5795 }
5796 max_cost += sd->max_newidle_lb_cost;
5797
5798 if (!(sd->flags & SD_LOAD_BALANCE))
5799 continue;
5800
5801 /*
5802 * Stop the load balance at this level. There is another
5803 * CPU in our sched group which is doing load balancing more
5804 * actively.
5805 */
5806 if (!continue_balancing) {
5807 if (need_decay)
5808 continue;
5809 break;
5810 }
5811
5812 interval = sd->balance_interval;
5813 if (idle != CPU_IDLE)
5814 interval *= sd->busy_factor;
5815
5816 /* scale ms to jiffies */
5817 interval = msecs_to_jiffies(interval);
5818 interval = clamp(interval, 1UL, max_load_balance_interval);
5819
5820 need_serialize = sd->flags & SD_SERIALIZE;
5821
5822 if (need_serialize) {
5823 if (!spin_trylock(&balancing))
5824 goto out;
5825 }
5826
5827 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5828 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
5829 /*
5830 * The LBF_DST_PINNED logic could have changed
5831 * env->dst_cpu, so we can't know our idle
5832 * state even if we migrated tasks. Update it.
5833 */
5834 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
5835 }
5836 sd->last_balance = jiffies;
5837 }
5838 if (need_serialize)
5839 spin_unlock(&balancing);
5840 out:
5841 if (time_after(next_balance, sd->last_balance + interval)) {
5842 next_balance = sd->last_balance + interval;
5843 update_next_balance = 1;
5844 }
5845 }
5846 if (need_decay) {
5847 /*
5848 * Ensure the rq-wide value also decays but keep it at a
5849 * reasonable floor to avoid funnies with rq->avg_idle.
5850 */
5851 rq->max_idle_balance_cost =
5852 max((u64)sysctl_sched_migration_cost, max_cost);
5853 }
5854 rcu_read_unlock();
5855
5856 /*
5857 * next_balance will be updated only when there is a need.
5858 * When the cpu is attached to null domain for ex, it will not be
5859 * updated.
5860 */
5861 if (likely(update_next_balance))
5862 rq->next_balance = next_balance;
5863 }
5864
5865 #ifdef CONFIG_NO_HZ_COMMON
5866 /*
5867 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
5868 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5869 */
5870 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5871 {
5872 struct rq *this_rq = cpu_rq(this_cpu);
5873 struct rq *rq;
5874 int balance_cpu;
5875
5876 if (idle != CPU_IDLE ||
5877 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5878 goto end;
5879
5880 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5881 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5882 continue;
5883
5884 /*
5885 * If this cpu gets work to do, stop the load balancing
5886 * work being done for other cpus. Next load
5887 * balancing owner will pick it up.
5888 */
5889 if (need_resched())
5890 break;
5891
5892 rq = cpu_rq(balance_cpu);
5893
5894 raw_spin_lock_irq(&rq->lock);
5895 update_rq_clock(rq);
5896 update_idle_cpu_load(rq);
5897 raw_spin_unlock_irq(&rq->lock);
5898
5899 rebalance_domains(balance_cpu, CPU_IDLE);
5900
5901 if (time_after(this_rq->next_balance, rq->next_balance))
5902 this_rq->next_balance = rq->next_balance;
5903 }
5904 nohz.next_balance = this_rq->next_balance;
5905 end:
5906 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5907 }
5908
5909 /*
5910 * Current heuristic for kicking the idle load balancer in the presence
5911 * of an idle cpu is the system.
5912 * - This rq has more than one task.
5913 * - At any scheduler domain level, this cpu's scheduler group has multiple
5914 * busy cpu's exceeding the group's power.
5915 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5916 * domain span are idle.
5917 */
5918 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5919 {
5920 unsigned long now = jiffies;
5921 struct sched_domain *sd;
5922
5923 if (unlikely(idle_cpu(cpu)))
5924 return 0;
5925
5926 /*
5927 * We may be recently in ticked or tickless idle mode. At the first
5928 * busy tick after returning from idle, we will update the busy stats.
5929 */
5930 set_cpu_sd_state_busy();
5931 nohz_balance_exit_idle(cpu);
5932
5933 /*
5934 * None are in tickless mode and hence no need for NOHZ idle load
5935 * balancing.
5936 */
5937 if (likely(!atomic_read(&nohz.nr_cpus)))
5938 return 0;
5939
5940 if (time_before(now, nohz.next_balance))
5941 return 0;
5942
5943 if (rq->nr_running >= 2)
5944 goto need_kick;
5945
5946 rcu_read_lock();
5947 for_each_domain(cpu, sd) {
5948 struct sched_group *sg = sd->groups;
5949 struct sched_group_power *sgp = sg->sgp;
5950 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5951
5952 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5953 goto need_kick_unlock;
5954
5955 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5956 && (cpumask_first_and(nohz.idle_cpus_mask,
5957 sched_domain_span(sd)) < cpu))
5958 goto need_kick_unlock;
5959
5960 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5961 break;
5962 }
5963 rcu_read_unlock();
5964 return 0;
5965
5966 need_kick_unlock:
5967 rcu_read_unlock();
5968 need_kick:
5969 return 1;
5970 }
5971 #else
5972 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5973 #endif
5974
5975 /*
5976 * run_rebalance_domains is triggered when needed from the scheduler tick.
5977 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5978 */
5979 static void run_rebalance_domains(struct softirq_action *h)
5980 {
5981 int this_cpu = smp_processor_id();
5982 struct rq *this_rq = cpu_rq(this_cpu);
5983 enum cpu_idle_type idle = this_rq->idle_balance ?
5984 CPU_IDLE : CPU_NOT_IDLE;
5985
5986 rebalance_domains(this_cpu, idle);
5987
5988 /*
5989 * If this cpu has a pending nohz_balance_kick, then do the
5990 * balancing on behalf of the other idle cpus whose ticks are
5991 * stopped.
5992 */
5993 nohz_idle_balance(this_cpu, idle);
5994 }
5995
5996 static inline int on_null_domain(int cpu)
5997 {
5998 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5999 }
6000
6001 /*
6002 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
6003 */
6004 void trigger_load_balance(struct rq *rq, int cpu)
6005 {
6006 /* Don't need to rebalance while attached to NULL domain */
6007 if (time_after_eq(jiffies, rq->next_balance) &&
6008 likely(!on_null_domain(cpu)))
6009 raise_softirq(SCHED_SOFTIRQ);
6010 #ifdef CONFIG_NO_HZ_COMMON
6011 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
6012 nohz_balancer_kick(cpu);
6013 #endif
6014 }
6015
6016 static void rq_online_fair(struct rq *rq)
6017 {
6018 update_sysctl();
6019 }
6020
6021 static void rq_offline_fair(struct rq *rq)
6022 {
6023 update_sysctl();
6024
6025 /* Ensure any throttled groups are reachable by pick_next_task */
6026 unthrottle_offline_cfs_rqs(rq);
6027 }
6028
6029 #endif /* CONFIG_SMP */
6030
6031 /*
6032 * scheduler tick hitting a task of our scheduling class:
6033 */
6034 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6035 {
6036 struct cfs_rq *cfs_rq;
6037 struct sched_entity *se = &curr->se;
6038
6039 for_each_sched_entity(se) {
6040 cfs_rq = cfs_rq_of(se);
6041 entity_tick(cfs_rq, se, queued);
6042 }
6043
6044 if (numabalancing_enabled)
6045 task_tick_numa(rq, curr);
6046
6047 update_rq_runnable_avg(rq, 1);
6048 }
6049
6050 /*
6051 * called on fork with the child task as argument from the parent's context
6052 * - child not yet on the tasklist
6053 * - preemption disabled
6054 */
6055 static void task_fork_fair(struct task_struct *p)
6056 {
6057 struct cfs_rq *cfs_rq;
6058 struct sched_entity *se = &p->se, *curr;
6059 int this_cpu = smp_processor_id();
6060 struct rq *rq = this_rq();
6061 unsigned long flags;
6062
6063 raw_spin_lock_irqsave(&rq->lock, flags);
6064
6065 update_rq_clock(rq);
6066
6067 cfs_rq = task_cfs_rq(current);
6068 curr = cfs_rq->curr;
6069
6070 /*
6071 * Not only the cpu but also the task_group of the parent might have
6072 * been changed after parent->se.parent,cfs_rq were copied to
6073 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6074 * of child point to valid ones.
6075 */
6076 rcu_read_lock();
6077 __set_task_cpu(p, this_cpu);
6078 rcu_read_unlock();
6079
6080 update_curr(cfs_rq);
6081
6082 if (curr)
6083 se->vruntime = curr->vruntime;
6084 place_entity(cfs_rq, se, 1);
6085
6086 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
6087 /*
6088 * Upon rescheduling, sched_class::put_prev_task() will place
6089 * 'current' within the tree based on its new key value.
6090 */
6091 swap(curr->vruntime, se->vruntime);
6092 resched_task(rq->curr);
6093 }
6094
6095 se->vruntime -= cfs_rq->min_vruntime;
6096
6097 raw_spin_unlock_irqrestore(&rq->lock, flags);
6098 }
6099
6100 /*
6101 * Priority of the task has changed. Check to see if we preempt
6102 * the current task.
6103 */
6104 static void
6105 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6106 {
6107 if (!p->se.on_rq)
6108 return;
6109
6110 /*
6111 * Reschedule if we are currently running on this runqueue and
6112 * our priority decreased, or if we are not currently running on
6113 * this runqueue and our priority is higher than the current's
6114 */
6115 if (rq->curr == p) {
6116 if (p->prio > oldprio)
6117 resched_task(rq->curr);
6118 } else
6119 check_preempt_curr(rq, p, 0);
6120 }
6121
6122 static void switched_from_fair(struct rq *rq, struct task_struct *p)
6123 {
6124 struct sched_entity *se = &p->se;
6125 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6126
6127 /*
6128 * Ensure the task's vruntime is normalized, so that when its
6129 * switched back to the fair class the enqueue_entity(.flags=0) will
6130 * do the right thing.
6131 *
6132 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6133 * have normalized the vruntime, if it was !on_rq, then only when
6134 * the task is sleeping will it still have non-normalized vruntime.
6135 */
6136 if (!se->on_rq && p->state != TASK_RUNNING) {
6137 /*
6138 * Fix up our vruntime so that the current sleep doesn't
6139 * cause 'unlimited' sleep bonus.
6140 */
6141 place_entity(cfs_rq, se, 0);
6142 se->vruntime -= cfs_rq->min_vruntime;
6143 }
6144
6145 #ifdef CONFIG_SMP
6146 /*
6147 * Remove our load from contribution when we leave sched_fair
6148 * and ensure we don't carry in an old decay_count if we
6149 * switch back.
6150 */
6151 if (se->avg.decay_count) {
6152 __synchronize_entity_decay(se);
6153 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
6154 }
6155 #endif
6156 }
6157
6158 /*
6159 * We switched to the sched_fair class.
6160 */
6161 static void switched_to_fair(struct rq *rq, struct task_struct *p)
6162 {
6163 if (!p->se.on_rq)
6164 return;
6165
6166 /*
6167 * We were most likely switched from sched_rt, so
6168 * kick off the schedule if running, otherwise just see
6169 * if we can still preempt the current task.
6170 */
6171 if (rq->curr == p)
6172 resched_task(rq->curr);
6173 else
6174 check_preempt_curr(rq, p, 0);
6175 }
6176
6177 /* Account for a task changing its policy or group.
6178 *
6179 * This routine is mostly called to set cfs_rq->curr field when a task
6180 * migrates between groups/classes.
6181 */
6182 static void set_curr_task_fair(struct rq *rq)
6183 {
6184 struct sched_entity *se = &rq->curr->se;
6185
6186 for_each_sched_entity(se) {
6187 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6188
6189 set_next_entity(cfs_rq, se);
6190 /* ensure bandwidth has been allocated on our new cfs_rq */
6191 account_cfs_rq_runtime(cfs_rq, 0);
6192 }
6193 }
6194
6195 void init_cfs_rq(struct cfs_rq *cfs_rq)
6196 {
6197 cfs_rq->tasks_timeline = RB_ROOT;
6198 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6199 #ifndef CONFIG_64BIT
6200 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6201 #endif
6202 #ifdef CONFIG_SMP
6203 atomic64_set(&cfs_rq->decay_counter, 1);
6204 atomic_long_set(&cfs_rq->removed_load, 0);
6205 #endif
6206 }
6207
6208 #ifdef CONFIG_FAIR_GROUP_SCHED
6209 static void task_move_group_fair(struct task_struct *p, int on_rq)
6210 {
6211 struct cfs_rq *cfs_rq;
6212 /*
6213 * If the task was not on the rq at the time of this cgroup movement
6214 * it must have been asleep, sleeping tasks keep their ->vruntime
6215 * absolute on their old rq until wakeup (needed for the fair sleeper
6216 * bonus in place_entity()).
6217 *
6218 * If it was on the rq, we've just 'preempted' it, which does convert
6219 * ->vruntime to a relative base.
6220 *
6221 * Make sure both cases convert their relative position when migrating
6222 * to another cgroup's rq. This does somewhat interfere with the
6223 * fair sleeper stuff for the first placement, but who cares.
6224 */
6225 /*
6226 * When !on_rq, vruntime of the task has usually NOT been normalized.
6227 * But there are some cases where it has already been normalized:
6228 *
6229 * - Moving a forked child which is waiting for being woken up by
6230 * wake_up_new_task().
6231 * - Moving a task which has been woken up by try_to_wake_up() and
6232 * waiting for actually being woken up by sched_ttwu_pending().
6233 *
6234 * To prevent boost or penalty in the new cfs_rq caused by delta
6235 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6236 */
6237 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
6238 on_rq = 1;
6239
6240 if (!on_rq)
6241 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6242 set_task_rq(p, task_cpu(p));
6243 if (!on_rq) {
6244 cfs_rq = cfs_rq_of(&p->se);
6245 p->se.vruntime += cfs_rq->min_vruntime;
6246 #ifdef CONFIG_SMP
6247 /*
6248 * migrate_task_rq_fair() will have removed our previous
6249 * contribution, but we must synchronize for ongoing future
6250 * decay.
6251 */
6252 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6253 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6254 #endif
6255 }
6256 }
6257
6258 void free_fair_sched_group(struct task_group *tg)
6259 {
6260 int i;
6261
6262 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6263
6264 for_each_possible_cpu(i) {
6265 if (tg->cfs_rq)
6266 kfree(tg->cfs_rq[i]);
6267 if (tg->se)
6268 kfree(tg->se[i]);
6269 }
6270
6271 kfree(tg->cfs_rq);
6272 kfree(tg->se);
6273 }
6274
6275 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6276 {
6277 struct cfs_rq *cfs_rq;
6278 struct sched_entity *se;
6279 int i;
6280
6281 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6282 if (!tg->cfs_rq)
6283 goto err;
6284 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6285 if (!tg->se)
6286 goto err;
6287
6288 tg->shares = NICE_0_LOAD;
6289
6290 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6291
6292 for_each_possible_cpu(i) {
6293 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6294 GFP_KERNEL, cpu_to_node(i));
6295 if (!cfs_rq)
6296 goto err;
6297
6298 se = kzalloc_node(sizeof(struct sched_entity),
6299 GFP_KERNEL, cpu_to_node(i));
6300 if (!se)
6301 goto err_free_rq;
6302
6303 init_cfs_rq(cfs_rq);
6304 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6305 }
6306
6307 return 1;
6308
6309 err_free_rq:
6310 kfree(cfs_rq);
6311 err:
6312 return 0;
6313 }
6314
6315 void unregister_fair_sched_group(struct task_group *tg, int cpu)
6316 {
6317 struct rq *rq = cpu_rq(cpu);
6318 unsigned long flags;
6319
6320 /*
6321 * Only empty task groups can be destroyed; so we can speculatively
6322 * check on_list without danger of it being re-added.
6323 */
6324 if (!tg->cfs_rq[cpu]->on_list)
6325 return;
6326
6327 raw_spin_lock_irqsave(&rq->lock, flags);
6328 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6329 raw_spin_unlock_irqrestore(&rq->lock, flags);
6330 }
6331
6332 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6333 struct sched_entity *se, int cpu,
6334 struct sched_entity *parent)
6335 {
6336 struct rq *rq = cpu_rq(cpu);
6337
6338 cfs_rq->tg = tg;
6339 cfs_rq->rq = rq;
6340 init_cfs_rq_runtime(cfs_rq);
6341
6342 tg->cfs_rq[cpu] = cfs_rq;
6343 tg->se[cpu] = se;
6344
6345 /* se could be NULL for root_task_group */
6346 if (!se)
6347 return;
6348
6349 if (!parent)
6350 se->cfs_rq = &rq->cfs;
6351 else
6352 se->cfs_rq = parent->my_q;
6353
6354 se->my_q = cfs_rq;
6355 update_load_set(&se->load, 0);
6356 se->parent = parent;
6357 }
6358
6359 static DEFINE_MUTEX(shares_mutex);
6360
6361 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6362 {
6363 int i;
6364 unsigned long flags;
6365
6366 /*
6367 * We can't change the weight of the root cgroup.
6368 */
6369 if (!tg->se[0])
6370 return -EINVAL;
6371
6372 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6373
6374 mutex_lock(&shares_mutex);
6375 if (tg->shares == shares)
6376 goto done;
6377
6378 tg->shares = shares;
6379 for_each_possible_cpu(i) {
6380 struct rq *rq = cpu_rq(i);
6381 struct sched_entity *se;
6382
6383 se = tg->se[i];
6384 /* Propagate contribution to hierarchy */
6385 raw_spin_lock_irqsave(&rq->lock, flags);
6386
6387 /* Possible calls to update_curr() need rq clock */
6388 update_rq_clock(rq);
6389 for_each_sched_entity(se)
6390 update_cfs_shares(group_cfs_rq(se));
6391 raw_spin_unlock_irqrestore(&rq->lock, flags);
6392 }
6393
6394 done:
6395 mutex_unlock(&shares_mutex);
6396 return 0;
6397 }
6398 #else /* CONFIG_FAIR_GROUP_SCHED */
6399
6400 void free_fair_sched_group(struct task_group *tg) { }
6401
6402 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6403 {
6404 return 1;
6405 }
6406
6407 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6408
6409 #endif /* CONFIG_FAIR_GROUP_SCHED */
6410
6411
6412 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
6413 {
6414 struct sched_entity *se = &task->se;
6415 unsigned int rr_interval = 0;
6416
6417 /*
6418 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6419 * idle runqueue:
6420 */
6421 if (rq->cfs.load.weight)
6422 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
6423
6424 return rr_interval;
6425 }
6426
6427 /*
6428 * All the scheduling class methods:
6429 */
6430 const struct sched_class fair_sched_class = {
6431 .next = &idle_sched_class,
6432 .enqueue_task = enqueue_task_fair,
6433 .dequeue_task = dequeue_task_fair,
6434 .yield_task = yield_task_fair,
6435 .yield_to_task = yield_to_task_fair,
6436
6437 .check_preempt_curr = check_preempt_wakeup,
6438
6439 .pick_next_task = pick_next_task_fair,
6440 .put_prev_task = put_prev_task_fair,
6441
6442 #ifdef CONFIG_SMP
6443 .select_task_rq = select_task_rq_fair,
6444 .migrate_task_rq = migrate_task_rq_fair,
6445
6446 .rq_online = rq_online_fair,
6447 .rq_offline = rq_offline_fair,
6448
6449 .task_waking = task_waking_fair,
6450 #endif
6451
6452 .set_curr_task = set_curr_task_fair,
6453 .task_tick = task_tick_fair,
6454 .task_fork = task_fork_fair,
6455
6456 .prio_changed = prio_changed_fair,
6457 .switched_from = switched_from_fair,
6458 .switched_to = switched_to_fair,
6459
6460 .get_rr_interval = get_rr_interval_fair,
6461
6462 #ifdef CONFIG_FAIR_GROUP_SCHED
6463 .task_move_group = task_move_group_fair,
6464 #endif
6465 };
6466
6467 #ifdef CONFIG_SCHED_DEBUG
6468 void print_cfs_stats(struct seq_file *m, int cpu)
6469 {
6470 struct cfs_rq *cfs_rq;
6471
6472 rcu_read_lock();
6473 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
6474 print_cfs_rq(m, cpu, cfs_rq);
6475 rcu_read_unlock();
6476 }
6477 #endif
6478
6479 __init void init_sched_fair_class(void)
6480 {
6481 #ifdef CONFIG_SMP
6482 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6483
6484 #ifdef CONFIG_NO_HZ_COMMON
6485 nohz.next_balance = jiffies;
6486 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
6487 cpu_notifier(sched_ilb_notifier, 0);
6488 #endif
6489 #endif /* SMP */
6490
6491 }