]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched/fair.c
Merge branch 'linus' into sched/core, to resolve conflicts
[mirror_ubuntu-zesty-kernel.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 lw->weight += inc;
119 lw->inv_weight = 0;
120 }
121
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126 }
127
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 lw->weight = w;
131 lw->inv_weight = 0;
132 }
133
134 /*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143 static int get_update_sysctl_factor(void)
144 {
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162 }
163
164 static void update_sysctl(void)
165 {
166 unsigned int factor = get_update_sysctl_factor();
167
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175
176 void sched_init_granularity(void)
177 {
178 update_sysctl();
179 }
180
181 #define WMULT_CONST (~0U)
182 #define WMULT_SHIFT 32
183
184 static void __update_inv_weight(struct load_weight *lw)
185 {
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199 }
200
201 /*
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212 */
213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214 {
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
217
218 __update_inv_weight(lw);
219
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
225 }
226
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
229
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
234
235 return mul_u64_u32_shr(delta_exec, fact, shift);
236 }
237
238
239 const struct sched_class fair_sched_class;
240
241 /**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
245 #ifdef CONFIG_FAIR_GROUP_SCHED
246
247 /* cpu runqueue to which this cfs_rq is attached */
248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249 {
250 return cfs_rq->rq;
251 }
252
253 /* An entity is a task if it doesn't "own" a runqueue */
254 #define entity_is_task(se) (!se->my_q)
255
256 static inline struct task_struct *task_of(struct sched_entity *se)
257 {
258 #ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260 #endif
261 return container_of(se, struct task_struct, se);
262 }
263
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269 {
270 return p->se.cfs_rq;
271 }
272
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275 {
276 return se->cfs_rq;
277 }
278
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281 {
282 return grp->my_q;
283 }
284
285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
287
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289 {
290 if (!cfs_rq->on_list) {
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
304 }
305
306 cfs_rq->on_list = 1;
307 /* We should have no load, but we need to update last_decay. */
308 update_cfs_rq_blocked_load(cfs_rq, 0);
309 }
310 }
311
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313 {
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318 }
319
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324 /* Do the two (enqueued) entities belong to the same group ? */
325 static inline int
326 is_same_group(struct sched_entity *se, struct sched_entity *pse)
327 {
328 if (se->cfs_rq == pse->cfs_rq)
329 return 1;
330
331 return 0;
332 }
333
334 static inline struct sched_entity *parent_entity(struct sched_entity *se)
335 {
336 return se->parent;
337 }
338
339 /* return depth at which a sched entity is present in the hierarchy */
340 static inline int depth_se(struct sched_entity *se)
341 {
342 int depth = 0;
343
344 for_each_sched_entity(se)
345 depth++;
346
347 return depth;
348 }
349
350 static void
351 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
352 {
353 int se_depth, pse_depth;
354
355 /*
356 * preemption test can be made between sibling entities who are in the
357 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
358 * both tasks until we find their ancestors who are siblings of common
359 * parent.
360 */
361
362 /* First walk up until both entities are at same depth */
363 se_depth = depth_se(*se);
364 pse_depth = depth_se(*pse);
365
366 while (se_depth > pse_depth) {
367 se_depth--;
368 *se = parent_entity(*se);
369 }
370
371 while (pse_depth > se_depth) {
372 pse_depth--;
373 *pse = parent_entity(*pse);
374 }
375
376 while (!is_same_group(*se, *pse)) {
377 *se = parent_entity(*se);
378 *pse = parent_entity(*pse);
379 }
380 }
381
382 #else /* !CONFIG_FAIR_GROUP_SCHED */
383
384 static inline struct task_struct *task_of(struct sched_entity *se)
385 {
386 return container_of(se, struct task_struct, se);
387 }
388
389 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
390 {
391 return container_of(cfs_rq, struct rq, cfs);
392 }
393
394 #define entity_is_task(se) 1
395
396 #define for_each_sched_entity(se) \
397 for (; se; se = NULL)
398
399 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
400 {
401 return &task_rq(p)->cfs;
402 }
403
404 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
405 {
406 struct task_struct *p = task_of(se);
407 struct rq *rq = task_rq(p);
408
409 return &rq->cfs;
410 }
411
412 /* runqueue "owned" by this group */
413 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
414 {
415 return NULL;
416 }
417
418 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
419 {
420 }
421
422 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
423 {
424 }
425
426 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
427 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
428
429 static inline int
430 is_same_group(struct sched_entity *se, struct sched_entity *pse)
431 {
432 return 1;
433 }
434
435 static inline struct sched_entity *parent_entity(struct sched_entity *se)
436 {
437 return NULL;
438 }
439
440 static inline void
441 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
442 {
443 }
444
445 #endif /* CONFIG_FAIR_GROUP_SCHED */
446
447 static __always_inline
448 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
449
450 /**************************************************************
451 * Scheduling class tree data structure manipulation methods:
452 */
453
454 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
455 {
456 s64 delta = (s64)(vruntime - max_vruntime);
457 if (delta > 0)
458 max_vruntime = vruntime;
459
460 return max_vruntime;
461 }
462
463 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
464 {
465 s64 delta = (s64)(vruntime - min_vruntime);
466 if (delta < 0)
467 min_vruntime = vruntime;
468
469 return min_vruntime;
470 }
471
472 static inline int entity_before(struct sched_entity *a,
473 struct sched_entity *b)
474 {
475 return (s64)(a->vruntime - b->vruntime) < 0;
476 }
477
478 static void update_min_vruntime(struct cfs_rq *cfs_rq)
479 {
480 u64 vruntime = cfs_rq->min_vruntime;
481
482 if (cfs_rq->curr)
483 vruntime = cfs_rq->curr->vruntime;
484
485 if (cfs_rq->rb_leftmost) {
486 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
487 struct sched_entity,
488 run_node);
489
490 if (!cfs_rq->curr)
491 vruntime = se->vruntime;
492 else
493 vruntime = min_vruntime(vruntime, se->vruntime);
494 }
495
496 /* ensure we never gain time by being placed backwards. */
497 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
498 #ifndef CONFIG_64BIT
499 smp_wmb();
500 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
501 #endif
502 }
503
504 /*
505 * Enqueue an entity into the rb-tree:
506 */
507 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
508 {
509 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
510 struct rb_node *parent = NULL;
511 struct sched_entity *entry;
512 int leftmost = 1;
513
514 /*
515 * Find the right place in the rbtree:
516 */
517 while (*link) {
518 parent = *link;
519 entry = rb_entry(parent, struct sched_entity, run_node);
520 /*
521 * We dont care about collisions. Nodes with
522 * the same key stay together.
523 */
524 if (entity_before(se, entry)) {
525 link = &parent->rb_left;
526 } else {
527 link = &parent->rb_right;
528 leftmost = 0;
529 }
530 }
531
532 /*
533 * Maintain a cache of leftmost tree entries (it is frequently
534 * used):
535 */
536 if (leftmost)
537 cfs_rq->rb_leftmost = &se->run_node;
538
539 rb_link_node(&se->run_node, parent, link);
540 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
541 }
542
543 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
544 {
545 if (cfs_rq->rb_leftmost == &se->run_node) {
546 struct rb_node *next_node;
547
548 next_node = rb_next(&se->run_node);
549 cfs_rq->rb_leftmost = next_node;
550 }
551
552 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
553 }
554
555 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
556 {
557 struct rb_node *left = cfs_rq->rb_leftmost;
558
559 if (!left)
560 return NULL;
561
562 return rb_entry(left, struct sched_entity, run_node);
563 }
564
565 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
566 {
567 struct rb_node *next = rb_next(&se->run_node);
568
569 if (!next)
570 return NULL;
571
572 return rb_entry(next, struct sched_entity, run_node);
573 }
574
575 #ifdef CONFIG_SCHED_DEBUG
576 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
577 {
578 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
579
580 if (!last)
581 return NULL;
582
583 return rb_entry(last, struct sched_entity, run_node);
584 }
585
586 /**************************************************************
587 * Scheduling class statistics methods:
588 */
589
590 int sched_proc_update_handler(struct ctl_table *table, int write,
591 void __user *buffer, size_t *lenp,
592 loff_t *ppos)
593 {
594 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
595 int factor = get_update_sysctl_factor();
596
597 if (ret || !write)
598 return ret;
599
600 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
601 sysctl_sched_min_granularity);
602
603 #define WRT_SYSCTL(name) \
604 (normalized_sysctl_##name = sysctl_##name / (factor))
605 WRT_SYSCTL(sched_min_granularity);
606 WRT_SYSCTL(sched_latency);
607 WRT_SYSCTL(sched_wakeup_granularity);
608 #undef WRT_SYSCTL
609
610 return 0;
611 }
612 #endif
613
614 /*
615 * delta /= w
616 */
617 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
618 {
619 if (unlikely(se->load.weight != NICE_0_LOAD))
620 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
621
622 return delta;
623 }
624
625 /*
626 * The idea is to set a period in which each task runs once.
627 *
628 * When there are too many tasks (sched_nr_latency) we have to stretch
629 * this period because otherwise the slices get too small.
630 *
631 * p = (nr <= nl) ? l : l*nr/nl
632 */
633 static u64 __sched_period(unsigned long nr_running)
634 {
635 u64 period = sysctl_sched_latency;
636 unsigned long nr_latency = sched_nr_latency;
637
638 if (unlikely(nr_running > nr_latency)) {
639 period = sysctl_sched_min_granularity;
640 period *= nr_running;
641 }
642
643 return period;
644 }
645
646 /*
647 * We calculate the wall-time slice from the period by taking a part
648 * proportional to the weight.
649 *
650 * s = p*P[w/rw]
651 */
652 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
653 {
654 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
655
656 for_each_sched_entity(se) {
657 struct load_weight *load;
658 struct load_weight lw;
659
660 cfs_rq = cfs_rq_of(se);
661 load = &cfs_rq->load;
662
663 if (unlikely(!se->on_rq)) {
664 lw = cfs_rq->load;
665
666 update_load_add(&lw, se->load.weight);
667 load = &lw;
668 }
669 slice = __calc_delta(slice, se->load.weight, load);
670 }
671 return slice;
672 }
673
674 /*
675 * We calculate the vruntime slice of a to-be-inserted task.
676 *
677 * vs = s/w
678 */
679 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
680 {
681 return calc_delta_fair(sched_slice(cfs_rq, se), se);
682 }
683
684 #ifdef CONFIG_SMP
685 static unsigned long task_h_load(struct task_struct *p);
686
687 static inline void __update_task_entity_contrib(struct sched_entity *se);
688
689 /* Give new task start runnable values to heavy its load in infant time */
690 void init_task_runnable_average(struct task_struct *p)
691 {
692 u32 slice;
693
694 p->se.avg.decay_count = 0;
695 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
696 p->se.avg.runnable_avg_sum = slice;
697 p->se.avg.runnable_avg_period = slice;
698 __update_task_entity_contrib(&p->se);
699 }
700 #else
701 void init_task_runnable_average(struct task_struct *p)
702 {
703 }
704 #endif
705
706 /*
707 * Update the current task's runtime statistics.
708 */
709 static void update_curr(struct cfs_rq *cfs_rq)
710 {
711 struct sched_entity *curr = cfs_rq->curr;
712 u64 now = rq_clock_task(rq_of(cfs_rq));
713 u64 delta_exec;
714
715 if (unlikely(!curr))
716 return;
717
718 delta_exec = now - curr->exec_start;
719 if (unlikely((s64)delta_exec <= 0))
720 return;
721
722 curr->exec_start = now;
723
724 schedstat_set(curr->statistics.exec_max,
725 max(delta_exec, curr->statistics.exec_max));
726
727 curr->sum_exec_runtime += delta_exec;
728 schedstat_add(cfs_rq, exec_clock, delta_exec);
729
730 curr->vruntime += calc_delta_fair(delta_exec, curr);
731 update_min_vruntime(cfs_rq);
732
733 if (entity_is_task(curr)) {
734 struct task_struct *curtask = task_of(curr);
735
736 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
737 cpuacct_charge(curtask, delta_exec);
738 account_group_exec_runtime(curtask, delta_exec);
739 }
740
741 account_cfs_rq_runtime(cfs_rq, delta_exec);
742 }
743
744 static inline void
745 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
746 {
747 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
748 }
749
750 /*
751 * Task is being enqueued - update stats:
752 */
753 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 {
755 /*
756 * Are we enqueueing a waiting task? (for current tasks
757 * a dequeue/enqueue event is a NOP)
758 */
759 if (se != cfs_rq->curr)
760 update_stats_wait_start(cfs_rq, se);
761 }
762
763 static void
764 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
765 {
766 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
767 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
768 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
769 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
770 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
771 #ifdef CONFIG_SCHEDSTATS
772 if (entity_is_task(se)) {
773 trace_sched_stat_wait(task_of(se),
774 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
775 }
776 #endif
777 schedstat_set(se->statistics.wait_start, 0);
778 }
779
780 static inline void
781 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
782 {
783 /*
784 * Mark the end of the wait period if dequeueing a
785 * waiting task:
786 */
787 if (se != cfs_rq->curr)
788 update_stats_wait_end(cfs_rq, se);
789 }
790
791 /*
792 * We are picking a new current task - update its stats:
793 */
794 static inline void
795 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
796 {
797 /*
798 * We are starting a new run period:
799 */
800 se->exec_start = rq_clock_task(rq_of(cfs_rq));
801 }
802
803 /**************************************************
804 * Scheduling class queueing methods:
805 */
806
807 #ifdef CONFIG_NUMA_BALANCING
808 /*
809 * Approximate time to scan a full NUMA task in ms. The task scan period is
810 * calculated based on the tasks virtual memory size and
811 * numa_balancing_scan_size.
812 */
813 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
814 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
815
816 /* Portion of address space to scan in MB */
817 unsigned int sysctl_numa_balancing_scan_size = 256;
818
819 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
820 unsigned int sysctl_numa_balancing_scan_delay = 1000;
821
822 static unsigned int task_nr_scan_windows(struct task_struct *p)
823 {
824 unsigned long rss = 0;
825 unsigned long nr_scan_pages;
826
827 /*
828 * Calculations based on RSS as non-present and empty pages are skipped
829 * by the PTE scanner and NUMA hinting faults should be trapped based
830 * on resident pages
831 */
832 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
833 rss = get_mm_rss(p->mm);
834 if (!rss)
835 rss = nr_scan_pages;
836
837 rss = round_up(rss, nr_scan_pages);
838 return rss / nr_scan_pages;
839 }
840
841 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
842 #define MAX_SCAN_WINDOW 2560
843
844 static unsigned int task_scan_min(struct task_struct *p)
845 {
846 unsigned int scan, floor;
847 unsigned int windows = 1;
848
849 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
850 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
851 floor = 1000 / windows;
852
853 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
854 return max_t(unsigned int, floor, scan);
855 }
856
857 static unsigned int task_scan_max(struct task_struct *p)
858 {
859 unsigned int smin = task_scan_min(p);
860 unsigned int smax;
861
862 /* Watch for min being lower than max due to floor calculations */
863 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
864 return max(smin, smax);
865 }
866
867 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
868 {
869 rq->nr_numa_running += (p->numa_preferred_nid != -1);
870 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
871 }
872
873 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
874 {
875 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
876 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
877 }
878
879 struct numa_group {
880 atomic_t refcount;
881
882 spinlock_t lock; /* nr_tasks, tasks */
883 int nr_tasks;
884 pid_t gid;
885 struct list_head task_list;
886
887 struct rcu_head rcu;
888 nodemask_t active_nodes;
889 unsigned long total_faults;
890 /*
891 * Faults_cpu is used to decide whether memory should move
892 * towards the CPU. As a consequence, these stats are weighted
893 * more by CPU use than by memory faults.
894 */
895 unsigned long *faults_cpu;
896 unsigned long faults[0];
897 };
898
899 /* Shared or private faults. */
900 #define NR_NUMA_HINT_FAULT_TYPES 2
901
902 /* Memory and CPU locality */
903 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
904
905 /* Averaged statistics, and temporary buffers. */
906 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
907
908 pid_t task_numa_group_id(struct task_struct *p)
909 {
910 return p->numa_group ? p->numa_group->gid : 0;
911 }
912
913 static inline int task_faults_idx(int nid, int priv)
914 {
915 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
916 }
917
918 static inline unsigned long task_faults(struct task_struct *p, int nid)
919 {
920 if (!p->numa_faults_memory)
921 return 0;
922
923 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
924 p->numa_faults_memory[task_faults_idx(nid, 1)];
925 }
926
927 static inline unsigned long group_faults(struct task_struct *p, int nid)
928 {
929 if (!p->numa_group)
930 return 0;
931
932 return p->numa_group->faults[task_faults_idx(nid, 0)] +
933 p->numa_group->faults[task_faults_idx(nid, 1)];
934 }
935
936 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
937 {
938 return group->faults_cpu[task_faults_idx(nid, 0)] +
939 group->faults_cpu[task_faults_idx(nid, 1)];
940 }
941
942 /*
943 * These return the fraction of accesses done by a particular task, or
944 * task group, on a particular numa node. The group weight is given a
945 * larger multiplier, in order to group tasks together that are almost
946 * evenly spread out between numa nodes.
947 */
948 static inline unsigned long task_weight(struct task_struct *p, int nid)
949 {
950 unsigned long total_faults;
951
952 if (!p->numa_faults_memory)
953 return 0;
954
955 total_faults = p->total_numa_faults;
956
957 if (!total_faults)
958 return 0;
959
960 return 1000 * task_faults(p, nid) / total_faults;
961 }
962
963 static inline unsigned long group_weight(struct task_struct *p, int nid)
964 {
965 if (!p->numa_group || !p->numa_group->total_faults)
966 return 0;
967
968 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
969 }
970
971 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
972 int src_nid, int dst_cpu)
973 {
974 struct numa_group *ng = p->numa_group;
975 int dst_nid = cpu_to_node(dst_cpu);
976 int last_cpupid, this_cpupid;
977
978 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
979
980 /*
981 * Multi-stage node selection is used in conjunction with a periodic
982 * migration fault to build a temporal task<->page relation. By using
983 * a two-stage filter we remove short/unlikely relations.
984 *
985 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
986 * a task's usage of a particular page (n_p) per total usage of this
987 * page (n_t) (in a given time-span) to a probability.
988 *
989 * Our periodic faults will sample this probability and getting the
990 * same result twice in a row, given these samples are fully
991 * independent, is then given by P(n)^2, provided our sample period
992 * is sufficiently short compared to the usage pattern.
993 *
994 * This quadric squishes small probabilities, making it less likely we
995 * act on an unlikely task<->page relation.
996 */
997 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
998 if (!cpupid_pid_unset(last_cpupid) &&
999 cpupid_to_nid(last_cpupid) != dst_nid)
1000 return false;
1001
1002 /* Always allow migrate on private faults */
1003 if (cpupid_match_pid(p, last_cpupid))
1004 return true;
1005
1006 /* A shared fault, but p->numa_group has not been set up yet. */
1007 if (!ng)
1008 return true;
1009
1010 /*
1011 * Do not migrate if the destination is not a node that
1012 * is actively used by this numa group.
1013 */
1014 if (!node_isset(dst_nid, ng->active_nodes))
1015 return false;
1016
1017 /*
1018 * Source is a node that is not actively used by this
1019 * numa group, while the destination is. Migrate.
1020 */
1021 if (!node_isset(src_nid, ng->active_nodes))
1022 return true;
1023
1024 /*
1025 * Both source and destination are nodes in active
1026 * use by this numa group. Maximize memory bandwidth
1027 * by migrating from more heavily used groups, to less
1028 * heavily used ones, spreading the load around.
1029 * Use a 1/4 hysteresis to avoid spurious page movement.
1030 */
1031 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1032 }
1033
1034 static unsigned long weighted_cpuload(const int cpu);
1035 static unsigned long source_load(int cpu, int type);
1036 static unsigned long target_load(int cpu, int type);
1037 static unsigned long power_of(int cpu);
1038 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1039
1040 /* Cached statistics for all CPUs within a node */
1041 struct numa_stats {
1042 unsigned long nr_running;
1043 unsigned long load;
1044
1045 /* Total compute capacity of CPUs on a node */
1046 unsigned long power;
1047
1048 /* Approximate capacity in terms of runnable tasks on a node */
1049 unsigned long capacity;
1050 int has_capacity;
1051 };
1052
1053 /*
1054 * XXX borrowed from update_sg_lb_stats
1055 */
1056 static void update_numa_stats(struct numa_stats *ns, int nid)
1057 {
1058 int cpu, cpus = 0;
1059
1060 memset(ns, 0, sizeof(*ns));
1061 for_each_cpu(cpu, cpumask_of_node(nid)) {
1062 struct rq *rq = cpu_rq(cpu);
1063
1064 ns->nr_running += rq->nr_running;
1065 ns->load += weighted_cpuload(cpu);
1066 ns->power += power_of(cpu);
1067
1068 cpus++;
1069 }
1070
1071 /*
1072 * If we raced with hotplug and there are no CPUs left in our mask
1073 * the @ns structure is NULL'ed and task_numa_compare() will
1074 * not find this node attractive.
1075 *
1076 * We'll either bail at !has_capacity, or we'll detect a huge imbalance
1077 * and bail there.
1078 */
1079 if (!cpus)
1080 return;
1081
1082 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1083 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1084 ns->has_capacity = (ns->nr_running < ns->capacity);
1085 }
1086
1087 struct task_numa_env {
1088 struct task_struct *p;
1089
1090 int src_cpu, src_nid;
1091 int dst_cpu, dst_nid;
1092
1093 struct numa_stats src_stats, dst_stats;
1094
1095 int imbalance_pct;
1096
1097 struct task_struct *best_task;
1098 long best_imp;
1099 int best_cpu;
1100 };
1101
1102 static void task_numa_assign(struct task_numa_env *env,
1103 struct task_struct *p, long imp)
1104 {
1105 if (env->best_task)
1106 put_task_struct(env->best_task);
1107 if (p)
1108 get_task_struct(p);
1109
1110 env->best_task = p;
1111 env->best_imp = imp;
1112 env->best_cpu = env->dst_cpu;
1113 }
1114
1115 /*
1116 * This checks if the overall compute and NUMA accesses of the system would
1117 * be improved if the source tasks was migrated to the target dst_cpu taking
1118 * into account that it might be best if task running on the dst_cpu should
1119 * be exchanged with the source task
1120 */
1121 static void task_numa_compare(struct task_numa_env *env,
1122 long taskimp, long groupimp)
1123 {
1124 struct rq *src_rq = cpu_rq(env->src_cpu);
1125 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1126 struct task_struct *cur;
1127 long dst_load, src_load;
1128 long load;
1129 long imp = (groupimp > 0) ? groupimp : taskimp;
1130
1131 rcu_read_lock();
1132 cur = ACCESS_ONCE(dst_rq->curr);
1133 if (cur->pid == 0) /* idle */
1134 cur = NULL;
1135
1136 /*
1137 * "imp" is the fault differential for the source task between the
1138 * source and destination node. Calculate the total differential for
1139 * the source task and potential destination task. The more negative
1140 * the value is, the more rmeote accesses that would be expected to
1141 * be incurred if the tasks were swapped.
1142 */
1143 if (cur) {
1144 /* Skip this swap candidate if cannot move to the source cpu */
1145 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1146 goto unlock;
1147
1148 /*
1149 * If dst and source tasks are in the same NUMA group, or not
1150 * in any group then look only at task weights.
1151 */
1152 if (cur->numa_group == env->p->numa_group) {
1153 imp = taskimp + task_weight(cur, env->src_nid) -
1154 task_weight(cur, env->dst_nid);
1155 /*
1156 * Add some hysteresis to prevent swapping the
1157 * tasks within a group over tiny differences.
1158 */
1159 if (cur->numa_group)
1160 imp -= imp/16;
1161 } else {
1162 /*
1163 * Compare the group weights. If a task is all by
1164 * itself (not part of a group), use the task weight
1165 * instead.
1166 */
1167 if (env->p->numa_group)
1168 imp = groupimp;
1169 else
1170 imp = taskimp;
1171
1172 if (cur->numa_group)
1173 imp += group_weight(cur, env->src_nid) -
1174 group_weight(cur, env->dst_nid);
1175 else
1176 imp += task_weight(cur, env->src_nid) -
1177 task_weight(cur, env->dst_nid);
1178 }
1179 }
1180
1181 if (imp < env->best_imp)
1182 goto unlock;
1183
1184 if (!cur) {
1185 /* Is there capacity at our destination? */
1186 if (env->src_stats.has_capacity &&
1187 !env->dst_stats.has_capacity)
1188 goto unlock;
1189
1190 goto balance;
1191 }
1192
1193 /* Balance doesn't matter much if we're running a task per cpu */
1194 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1195 goto assign;
1196
1197 /*
1198 * In the overloaded case, try and keep the load balanced.
1199 */
1200 balance:
1201 dst_load = env->dst_stats.load;
1202 src_load = env->src_stats.load;
1203
1204 /* XXX missing power terms */
1205 load = task_h_load(env->p);
1206 dst_load += load;
1207 src_load -= load;
1208
1209 if (cur) {
1210 load = task_h_load(cur);
1211 dst_load -= load;
1212 src_load += load;
1213 }
1214
1215 /* make src_load the smaller */
1216 if (dst_load < src_load)
1217 swap(dst_load, src_load);
1218
1219 if (src_load * env->imbalance_pct < dst_load * 100)
1220 goto unlock;
1221
1222 assign:
1223 task_numa_assign(env, cur, imp);
1224 unlock:
1225 rcu_read_unlock();
1226 }
1227
1228 static void task_numa_find_cpu(struct task_numa_env *env,
1229 long taskimp, long groupimp)
1230 {
1231 int cpu;
1232
1233 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1234 /* Skip this CPU if the source task cannot migrate */
1235 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1236 continue;
1237
1238 env->dst_cpu = cpu;
1239 task_numa_compare(env, taskimp, groupimp);
1240 }
1241 }
1242
1243 static int task_numa_migrate(struct task_struct *p)
1244 {
1245 struct task_numa_env env = {
1246 .p = p,
1247
1248 .src_cpu = task_cpu(p),
1249 .src_nid = task_node(p),
1250
1251 .imbalance_pct = 112,
1252
1253 .best_task = NULL,
1254 .best_imp = 0,
1255 .best_cpu = -1
1256 };
1257 struct sched_domain *sd;
1258 unsigned long taskweight, groupweight;
1259 int nid, ret;
1260 long taskimp, groupimp;
1261
1262 /*
1263 * Pick the lowest SD_NUMA domain, as that would have the smallest
1264 * imbalance and would be the first to start moving tasks about.
1265 *
1266 * And we want to avoid any moving of tasks about, as that would create
1267 * random movement of tasks -- counter the numa conditions we're trying
1268 * to satisfy here.
1269 */
1270 rcu_read_lock();
1271 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1272 if (sd)
1273 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1274 rcu_read_unlock();
1275
1276 /*
1277 * Cpusets can break the scheduler domain tree into smaller
1278 * balance domains, some of which do not cross NUMA boundaries.
1279 * Tasks that are "trapped" in such domains cannot be migrated
1280 * elsewhere, so there is no point in (re)trying.
1281 */
1282 if (unlikely(!sd)) {
1283 p->numa_preferred_nid = task_node(p);
1284 return -EINVAL;
1285 }
1286
1287 taskweight = task_weight(p, env.src_nid);
1288 groupweight = group_weight(p, env.src_nid);
1289 update_numa_stats(&env.src_stats, env.src_nid);
1290 env.dst_nid = p->numa_preferred_nid;
1291 taskimp = task_weight(p, env.dst_nid) - taskweight;
1292 groupimp = group_weight(p, env.dst_nid) - groupweight;
1293 update_numa_stats(&env.dst_stats, env.dst_nid);
1294
1295 /* If the preferred nid has capacity, try to use it. */
1296 if (env.dst_stats.has_capacity)
1297 task_numa_find_cpu(&env, taskimp, groupimp);
1298
1299 /* No space available on the preferred nid. Look elsewhere. */
1300 if (env.best_cpu == -1) {
1301 for_each_online_node(nid) {
1302 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1303 continue;
1304
1305 /* Only consider nodes where both task and groups benefit */
1306 taskimp = task_weight(p, nid) - taskweight;
1307 groupimp = group_weight(p, nid) - groupweight;
1308 if (taskimp < 0 && groupimp < 0)
1309 continue;
1310
1311 env.dst_nid = nid;
1312 update_numa_stats(&env.dst_stats, env.dst_nid);
1313 task_numa_find_cpu(&env, taskimp, groupimp);
1314 }
1315 }
1316
1317 /* No better CPU than the current one was found. */
1318 if (env.best_cpu == -1)
1319 return -EAGAIN;
1320
1321 sched_setnuma(p, env.dst_nid);
1322
1323 /*
1324 * Reset the scan period if the task is being rescheduled on an
1325 * alternative node to recheck if the tasks is now properly placed.
1326 */
1327 p->numa_scan_period = task_scan_min(p);
1328
1329 if (env.best_task == NULL) {
1330 ret = migrate_task_to(p, env.best_cpu);
1331 if (ret != 0)
1332 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1333 return ret;
1334 }
1335
1336 ret = migrate_swap(p, env.best_task);
1337 if (ret != 0)
1338 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1339 put_task_struct(env.best_task);
1340 return ret;
1341 }
1342
1343 /* Attempt to migrate a task to a CPU on the preferred node. */
1344 static void numa_migrate_preferred(struct task_struct *p)
1345 {
1346 /* This task has no NUMA fault statistics yet */
1347 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1348 return;
1349
1350 /* Periodically retry migrating the task to the preferred node */
1351 p->numa_migrate_retry = jiffies + HZ;
1352
1353 /* Success if task is already running on preferred CPU */
1354 if (task_node(p) == p->numa_preferred_nid)
1355 return;
1356
1357 /* Otherwise, try migrate to a CPU on the preferred node */
1358 task_numa_migrate(p);
1359 }
1360
1361 /*
1362 * Find the nodes on which the workload is actively running. We do this by
1363 * tracking the nodes from which NUMA hinting faults are triggered. This can
1364 * be different from the set of nodes where the workload's memory is currently
1365 * located.
1366 *
1367 * The bitmask is used to make smarter decisions on when to do NUMA page
1368 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1369 * are added when they cause over 6/16 of the maximum number of faults, but
1370 * only removed when they drop below 3/16.
1371 */
1372 static void update_numa_active_node_mask(struct numa_group *numa_group)
1373 {
1374 unsigned long faults, max_faults = 0;
1375 int nid;
1376
1377 for_each_online_node(nid) {
1378 faults = group_faults_cpu(numa_group, nid);
1379 if (faults > max_faults)
1380 max_faults = faults;
1381 }
1382
1383 for_each_online_node(nid) {
1384 faults = group_faults_cpu(numa_group, nid);
1385 if (!node_isset(nid, numa_group->active_nodes)) {
1386 if (faults > max_faults * 6 / 16)
1387 node_set(nid, numa_group->active_nodes);
1388 } else if (faults < max_faults * 3 / 16)
1389 node_clear(nid, numa_group->active_nodes);
1390 }
1391 }
1392
1393 /*
1394 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1395 * increments. The more local the fault statistics are, the higher the scan
1396 * period will be for the next scan window. If local/remote ratio is below
1397 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1398 * scan period will decrease
1399 */
1400 #define NUMA_PERIOD_SLOTS 10
1401 #define NUMA_PERIOD_THRESHOLD 3
1402
1403 /*
1404 * Increase the scan period (slow down scanning) if the majority of
1405 * our memory is already on our local node, or if the majority of
1406 * the page accesses are shared with other processes.
1407 * Otherwise, decrease the scan period.
1408 */
1409 static void update_task_scan_period(struct task_struct *p,
1410 unsigned long shared, unsigned long private)
1411 {
1412 unsigned int period_slot;
1413 int ratio;
1414 int diff;
1415
1416 unsigned long remote = p->numa_faults_locality[0];
1417 unsigned long local = p->numa_faults_locality[1];
1418
1419 /*
1420 * If there were no record hinting faults then either the task is
1421 * completely idle or all activity is areas that are not of interest
1422 * to automatic numa balancing. Scan slower
1423 */
1424 if (local + shared == 0) {
1425 p->numa_scan_period = min(p->numa_scan_period_max,
1426 p->numa_scan_period << 1);
1427
1428 p->mm->numa_next_scan = jiffies +
1429 msecs_to_jiffies(p->numa_scan_period);
1430
1431 return;
1432 }
1433
1434 /*
1435 * Prepare to scale scan period relative to the current period.
1436 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1437 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1438 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1439 */
1440 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1441 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1442 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1443 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1444 if (!slot)
1445 slot = 1;
1446 diff = slot * period_slot;
1447 } else {
1448 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1449
1450 /*
1451 * Scale scan rate increases based on sharing. There is an
1452 * inverse relationship between the degree of sharing and
1453 * the adjustment made to the scanning period. Broadly
1454 * speaking the intent is that there is little point
1455 * scanning faster if shared accesses dominate as it may
1456 * simply bounce migrations uselessly
1457 */
1458 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1459 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1460 }
1461
1462 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1463 task_scan_min(p), task_scan_max(p));
1464 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1465 }
1466
1467 /*
1468 * Get the fraction of time the task has been running since the last
1469 * NUMA placement cycle. The scheduler keeps similar statistics, but
1470 * decays those on a 32ms period, which is orders of magnitude off
1471 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1472 * stats only if the task is so new there are no NUMA statistics yet.
1473 */
1474 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1475 {
1476 u64 runtime, delta, now;
1477 /* Use the start of this time slice to avoid calculations. */
1478 now = p->se.exec_start;
1479 runtime = p->se.sum_exec_runtime;
1480
1481 if (p->last_task_numa_placement) {
1482 delta = runtime - p->last_sum_exec_runtime;
1483 *period = now - p->last_task_numa_placement;
1484 } else {
1485 delta = p->se.avg.runnable_avg_sum;
1486 *period = p->se.avg.runnable_avg_period;
1487 }
1488
1489 p->last_sum_exec_runtime = runtime;
1490 p->last_task_numa_placement = now;
1491
1492 return delta;
1493 }
1494
1495 static void task_numa_placement(struct task_struct *p)
1496 {
1497 int seq, nid, max_nid = -1, max_group_nid = -1;
1498 unsigned long max_faults = 0, max_group_faults = 0;
1499 unsigned long fault_types[2] = { 0, 0 };
1500 unsigned long total_faults;
1501 u64 runtime, period;
1502 spinlock_t *group_lock = NULL;
1503
1504 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1505 if (p->numa_scan_seq == seq)
1506 return;
1507 p->numa_scan_seq = seq;
1508 p->numa_scan_period_max = task_scan_max(p);
1509
1510 total_faults = p->numa_faults_locality[0] +
1511 p->numa_faults_locality[1];
1512 runtime = numa_get_avg_runtime(p, &period);
1513
1514 /* If the task is part of a group prevent parallel updates to group stats */
1515 if (p->numa_group) {
1516 group_lock = &p->numa_group->lock;
1517 spin_lock(group_lock);
1518 }
1519
1520 /* Find the node with the highest number of faults */
1521 for_each_online_node(nid) {
1522 unsigned long faults = 0, group_faults = 0;
1523 int priv, i;
1524
1525 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1526 long diff, f_diff, f_weight;
1527
1528 i = task_faults_idx(nid, priv);
1529
1530 /* Decay existing window, copy faults since last scan */
1531 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1532 fault_types[priv] += p->numa_faults_buffer_memory[i];
1533 p->numa_faults_buffer_memory[i] = 0;
1534
1535 /*
1536 * Normalize the faults_from, so all tasks in a group
1537 * count according to CPU use, instead of by the raw
1538 * number of faults. Tasks with little runtime have
1539 * little over-all impact on throughput, and thus their
1540 * faults are less important.
1541 */
1542 f_weight = div64_u64(runtime << 16, period + 1);
1543 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1544 (total_faults + 1);
1545 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1546 p->numa_faults_buffer_cpu[i] = 0;
1547
1548 p->numa_faults_memory[i] += diff;
1549 p->numa_faults_cpu[i] += f_diff;
1550 faults += p->numa_faults_memory[i];
1551 p->total_numa_faults += diff;
1552 if (p->numa_group) {
1553 /* safe because we can only change our own group */
1554 p->numa_group->faults[i] += diff;
1555 p->numa_group->faults_cpu[i] += f_diff;
1556 p->numa_group->total_faults += diff;
1557 group_faults += p->numa_group->faults[i];
1558 }
1559 }
1560
1561 if (faults > max_faults) {
1562 max_faults = faults;
1563 max_nid = nid;
1564 }
1565
1566 if (group_faults > max_group_faults) {
1567 max_group_faults = group_faults;
1568 max_group_nid = nid;
1569 }
1570 }
1571
1572 update_task_scan_period(p, fault_types[0], fault_types[1]);
1573
1574 if (p->numa_group) {
1575 update_numa_active_node_mask(p->numa_group);
1576 /*
1577 * If the preferred task and group nids are different,
1578 * iterate over the nodes again to find the best place.
1579 */
1580 if (max_nid != max_group_nid) {
1581 unsigned long weight, max_weight = 0;
1582
1583 for_each_online_node(nid) {
1584 weight = task_weight(p, nid) + group_weight(p, nid);
1585 if (weight > max_weight) {
1586 max_weight = weight;
1587 max_nid = nid;
1588 }
1589 }
1590 }
1591
1592 spin_unlock(group_lock);
1593 }
1594
1595 /* Preferred node as the node with the most faults */
1596 if (max_faults && max_nid != p->numa_preferred_nid) {
1597 /* Update the preferred nid and migrate task if possible */
1598 sched_setnuma(p, max_nid);
1599 numa_migrate_preferred(p);
1600 }
1601 }
1602
1603 static inline int get_numa_group(struct numa_group *grp)
1604 {
1605 return atomic_inc_not_zero(&grp->refcount);
1606 }
1607
1608 static inline void put_numa_group(struct numa_group *grp)
1609 {
1610 if (atomic_dec_and_test(&grp->refcount))
1611 kfree_rcu(grp, rcu);
1612 }
1613
1614 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1615 int *priv)
1616 {
1617 struct numa_group *grp, *my_grp;
1618 struct task_struct *tsk;
1619 bool join = false;
1620 int cpu = cpupid_to_cpu(cpupid);
1621 int i;
1622
1623 if (unlikely(!p->numa_group)) {
1624 unsigned int size = sizeof(struct numa_group) +
1625 4*nr_node_ids*sizeof(unsigned long);
1626
1627 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1628 if (!grp)
1629 return;
1630
1631 atomic_set(&grp->refcount, 1);
1632 spin_lock_init(&grp->lock);
1633 INIT_LIST_HEAD(&grp->task_list);
1634 grp->gid = p->pid;
1635 /* Second half of the array tracks nids where faults happen */
1636 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1637 nr_node_ids;
1638
1639 node_set(task_node(current), grp->active_nodes);
1640
1641 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1642 grp->faults[i] = p->numa_faults_memory[i];
1643
1644 grp->total_faults = p->total_numa_faults;
1645
1646 list_add(&p->numa_entry, &grp->task_list);
1647 grp->nr_tasks++;
1648 rcu_assign_pointer(p->numa_group, grp);
1649 }
1650
1651 rcu_read_lock();
1652 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1653
1654 if (!cpupid_match_pid(tsk, cpupid))
1655 goto no_join;
1656
1657 grp = rcu_dereference(tsk->numa_group);
1658 if (!grp)
1659 goto no_join;
1660
1661 my_grp = p->numa_group;
1662 if (grp == my_grp)
1663 goto no_join;
1664
1665 /*
1666 * Only join the other group if its bigger; if we're the bigger group,
1667 * the other task will join us.
1668 */
1669 if (my_grp->nr_tasks > grp->nr_tasks)
1670 goto no_join;
1671
1672 /*
1673 * Tie-break on the grp address.
1674 */
1675 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1676 goto no_join;
1677
1678 /* Always join threads in the same process. */
1679 if (tsk->mm == current->mm)
1680 join = true;
1681
1682 /* Simple filter to avoid false positives due to PID collisions */
1683 if (flags & TNF_SHARED)
1684 join = true;
1685
1686 /* Update priv based on whether false sharing was detected */
1687 *priv = !join;
1688
1689 if (join && !get_numa_group(grp))
1690 goto no_join;
1691
1692 rcu_read_unlock();
1693
1694 if (!join)
1695 return;
1696
1697 double_lock(&my_grp->lock, &grp->lock);
1698
1699 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1700 my_grp->faults[i] -= p->numa_faults_memory[i];
1701 grp->faults[i] += p->numa_faults_memory[i];
1702 }
1703 my_grp->total_faults -= p->total_numa_faults;
1704 grp->total_faults += p->total_numa_faults;
1705
1706 list_move(&p->numa_entry, &grp->task_list);
1707 my_grp->nr_tasks--;
1708 grp->nr_tasks++;
1709
1710 spin_unlock(&my_grp->lock);
1711 spin_unlock(&grp->lock);
1712
1713 rcu_assign_pointer(p->numa_group, grp);
1714
1715 put_numa_group(my_grp);
1716 return;
1717
1718 no_join:
1719 rcu_read_unlock();
1720 return;
1721 }
1722
1723 void task_numa_free(struct task_struct *p)
1724 {
1725 struct numa_group *grp = p->numa_group;
1726 int i;
1727 void *numa_faults = p->numa_faults_memory;
1728
1729 if (grp) {
1730 spin_lock(&grp->lock);
1731 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1732 grp->faults[i] -= p->numa_faults_memory[i];
1733 grp->total_faults -= p->total_numa_faults;
1734
1735 list_del(&p->numa_entry);
1736 grp->nr_tasks--;
1737 spin_unlock(&grp->lock);
1738 rcu_assign_pointer(p->numa_group, NULL);
1739 put_numa_group(grp);
1740 }
1741
1742 p->numa_faults_memory = NULL;
1743 p->numa_faults_buffer_memory = NULL;
1744 p->numa_faults_cpu= NULL;
1745 p->numa_faults_buffer_cpu = NULL;
1746 kfree(numa_faults);
1747 }
1748
1749 /*
1750 * Got a PROT_NONE fault for a page on @node.
1751 */
1752 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1753 {
1754 struct task_struct *p = current;
1755 bool migrated = flags & TNF_MIGRATED;
1756 int cpu_node = task_node(current);
1757 int priv;
1758
1759 if (!numabalancing_enabled)
1760 return;
1761
1762 /* for example, ksmd faulting in a user's mm */
1763 if (!p->mm)
1764 return;
1765
1766 /* Do not worry about placement if exiting */
1767 if (p->state == TASK_DEAD)
1768 return;
1769
1770 /* Allocate buffer to track faults on a per-node basis */
1771 if (unlikely(!p->numa_faults_memory)) {
1772 int size = sizeof(*p->numa_faults_memory) *
1773 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1774
1775 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1776 if (!p->numa_faults_memory)
1777 return;
1778
1779 BUG_ON(p->numa_faults_buffer_memory);
1780 /*
1781 * The averaged statistics, shared & private, memory & cpu,
1782 * occupy the first half of the array. The second half of the
1783 * array is for current counters, which are averaged into the
1784 * first set by task_numa_placement.
1785 */
1786 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1787 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1788 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1789 p->total_numa_faults = 0;
1790 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1791 }
1792
1793 /*
1794 * First accesses are treated as private, otherwise consider accesses
1795 * to be private if the accessing pid has not changed
1796 */
1797 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1798 priv = 1;
1799 } else {
1800 priv = cpupid_match_pid(p, last_cpupid);
1801 if (!priv && !(flags & TNF_NO_GROUP))
1802 task_numa_group(p, last_cpupid, flags, &priv);
1803 }
1804
1805 task_numa_placement(p);
1806
1807 /*
1808 * Retry task to preferred node migration periodically, in case it
1809 * case it previously failed, or the scheduler moved us.
1810 */
1811 if (time_after(jiffies, p->numa_migrate_retry))
1812 numa_migrate_preferred(p);
1813
1814 if (migrated)
1815 p->numa_pages_migrated += pages;
1816
1817 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1818 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1819 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1820 }
1821
1822 static void reset_ptenuma_scan(struct task_struct *p)
1823 {
1824 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1825 p->mm->numa_scan_offset = 0;
1826 }
1827
1828 /*
1829 * The expensive part of numa migration is done from task_work context.
1830 * Triggered from task_tick_numa().
1831 */
1832 void task_numa_work(struct callback_head *work)
1833 {
1834 unsigned long migrate, next_scan, now = jiffies;
1835 struct task_struct *p = current;
1836 struct mm_struct *mm = p->mm;
1837 struct vm_area_struct *vma;
1838 unsigned long start, end;
1839 unsigned long nr_pte_updates = 0;
1840 long pages;
1841
1842 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1843
1844 work->next = work; /* protect against double add */
1845 /*
1846 * Who cares about NUMA placement when they're dying.
1847 *
1848 * NOTE: make sure not to dereference p->mm before this check,
1849 * exit_task_work() happens _after_ exit_mm() so we could be called
1850 * without p->mm even though we still had it when we enqueued this
1851 * work.
1852 */
1853 if (p->flags & PF_EXITING)
1854 return;
1855
1856 if (!mm->numa_next_scan) {
1857 mm->numa_next_scan = now +
1858 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1859 }
1860
1861 /*
1862 * Enforce maximal scan/migration frequency..
1863 */
1864 migrate = mm->numa_next_scan;
1865 if (time_before(now, migrate))
1866 return;
1867
1868 if (p->numa_scan_period == 0) {
1869 p->numa_scan_period_max = task_scan_max(p);
1870 p->numa_scan_period = task_scan_min(p);
1871 }
1872
1873 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1874 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1875 return;
1876
1877 /*
1878 * Delay this task enough that another task of this mm will likely win
1879 * the next time around.
1880 */
1881 p->node_stamp += 2 * TICK_NSEC;
1882
1883 start = mm->numa_scan_offset;
1884 pages = sysctl_numa_balancing_scan_size;
1885 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1886 if (!pages)
1887 return;
1888
1889 down_read(&mm->mmap_sem);
1890 vma = find_vma(mm, start);
1891 if (!vma) {
1892 reset_ptenuma_scan(p);
1893 start = 0;
1894 vma = mm->mmap;
1895 }
1896 for (; vma; vma = vma->vm_next) {
1897 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1898 continue;
1899
1900 /*
1901 * Shared library pages mapped by multiple processes are not
1902 * migrated as it is expected they are cache replicated. Avoid
1903 * hinting faults in read-only file-backed mappings or the vdso
1904 * as migrating the pages will be of marginal benefit.
1905 */
1906 if (!vma->vm_mm ||
1907 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1908 continue;
1909
1910 /*
1911 * Skip inaccessible VMAs to avoid any confusion between
1912 * PROT_NONE and NUMA hinting ptes
1913 */
1914 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1915 continue;
1916
1917 do {
1918 start = max(start, vma->vm_start);
1919 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1920 end = min(end, vma->vm_end);
1921 nr_pte_updates += change_prot_numa(vma, start, end);
1922
1923 /*
1924 * Scan sysctl_numa_balancing_scan_size but ensure that
1925 * at least one PTE is updated so that unused virtual
1926 * address space is quickly skipped.
1927 */
1928 if (nr_pte_updates)
1929 pages -= (end - start) >> PAGE_SHIFT;
1930
1931 start = end;
1932 if (pages <= 0)
1933 goto out;
1934 } while (end != vma->vm_end);
1935 }
1936
1937 out:
1938 /*
1939 * It is possible to reach the end of the VMA list but the last few
1940 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1941 * would find the !migratable VMA on the next scan but not reset the
1942 * scanner to the start so check it now.
1943 */
1944 if (vma)
1945 mm->numa_scan_offset = start;
1946 else
1947 reset_ptenuma_scan(p);
1948 up_read(&mm->mmap_sem);
1949 }
1950
1951 /*
1952 * Drive the periodic memory faults..
1953 */
1954 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1955 {
1956 struct callback_head *work = &curr->numa_work;
1957 u64 period, now;
1958
1959 /*
1960 * We don't care about NUMA placement if we don't have memory.
1961 */
1962 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1963 return;
1964
1965 /*
1966 * Using runtime rather than walltime has the dual advantage that
1967 * we (mostly) drive the selection from busy threads and that the
1968 * task needs to have done some actual work before we bother with
1969 * NUMA placement.
1970 */
1971 now = curr->se.sum_exec_runtime;
1972 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1973
1974 if (now - curr->node_stamp > period) {
1975 if (!curr->node_stamp)
1976 curr->numa_scan_period = task_scan_min(curr);
1977 curr->node_stamp += period;
1978
1979 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1980 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1981 task_work_add(curr, work, true);
1982 }
1983 }
1984 }
1985 #else
1986 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1987 {
1988 }
1989
1990 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1991 {
1992 }
1993
1994 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1995 {
1996 }
1997 #endif /* CONFIG_NUMA_BALANCING */
1998
1999 static void
2000 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2001 {
2002 update_load_add(&cfs_rq->load, se->load.weight);
2003 if (!parent_entity(se))
2004 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2005 #ifdef CONFIG_SMP
2006 if (entity_is_task(se)) {
2007 struct rq *rq = rq_of(cfs_rq);
2008
2009 account_numa_enqueue(rq, task_of(se));
2010 list_add(&se->group_node, &rq->cfs_tasks);
2011 }
2012 #endif
2013 cfs_rq->nr_running++;
2014 }
2015
2016 static void
2017 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2018 {
2019 update_load_sub(&cfs_rq->load, se->load.weight);
2020 if (!parent_entity(se))
2021 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2022 if (entity_is_task(se)) {
2023 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2024 list_del_init(&se->group_node);
2025 }
2026 cfs_rq->nr_running--;
2027 }
2028
2029 #ifdef CONFIG_FAIR_GROUP_SCHED
2030 # ifdef CONFIG_SMP
2031 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2032 {
2033 long tg_weight;
2034
2035 /*
2036 * Use this CPU's actual weight instead of the last load_contribution
2037 * to gain a more accurate current total weight. See
2038 * update_cfs_rq_load_contribution().
2039 */
2040 tg_weight = atomic_long_read(&tg->load_avg);
2041 tg_weight -= cfs_rq->tg_load_contrib;
2042 tg_weight += cfs_rq->load.weight;
2043
2044 return tg_weight;
2045 }
2046
2047 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2048 {
2049 long tg_weight, load, shares;
2050
2051 tg_weight = calc_tg_weight(tg, cfs_rq);
2052 load = cfs_rq->load.weight;
2053
2054 shares = (tg->shares * load);
2055 if (tg_weight)
2056 shares /= tg_weight;
2057
2058 if (shares < MIN_SHARES)
2059 shares = MIN_SHARES;
2060 if (shares > tg->shares)
2061 shares = tg->shares;
2062
2063 return shares;
2064 }
2065 # else /* CONFIG_SMP */
2066 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2067 {
2068 return tg->shares;
2069 }
2070 # endif /* CONFIG_SMP */
2071 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2072 unsigned long weight)
2073 {
2074 if (se->on_rq) {
2075 /* commit outstanding execution time */
2076 if (cfs_rq->curr == se)
2077 update_curr(cfs_rq);
2078 account_entity_dequeue(cfs_rq, se);
2079 }
2080
2081 update_load_set(&se->load, weight);
2082
2083 if (se->on_rq)
2084 account_entity_enqueue(cfs_rq, se);
2085 }
2086
2087 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2088
2089 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2090 {
2091 struct task_group *tg;
2092 struct sched_entity *se;
2093 long shares;
2094
2095 tg = cfs_rq->tg;
2096 se = tg->se[cpu_of(rq_of(cfs_rq))];
2097 if (!se || throttled_hierarchy(cfs_rq))
2098 return;
2099 #ifndef CONFIG_SMP
2100 if (likely(se->load.weight == tg->shares))
2101 return;
2102 #endif
2103 shares = calc_cfs_shares(cfs_rq, tg);
2104
2105 reweight_entity(cfs_rq_of(se), se, shares);
2106 }
2107 #else /* CONFIG_FAIR_GROUP_SCHED */
2108 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2109 {
2110 }
2111 #endif /* CONFIG_FAIR_GROUP_SCHED */
2112
2113 #ifdef CONFIG_SMP
2114 /*
2115 * We choose a half-life close to 1 scheduling period.
2116 * Note: The tables below are dependent on this value.
2117 */
2118 #define LOAD_AVG_PERIOD 32
2119 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2120 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2121
2122 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2123 static const u32 runnable_avg_yN_inv[] = {
2124 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2125 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2126 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2127 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2128 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2129 0x85aac367, 0x82cd8698,
2130 };
2131
2132 /*
2133 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2134 * over-estimates when re-combining.
2135 */
2136 static const u32 runnable_avg_yN_sum[] = {
2137 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2138 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2139 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2140 };
2141
2142 /*
2143 * Approximate:
2144 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2145 */
2146 static __always_inline u64 decay_load(u64 val, u64 n)
2147 {
2148 unsigned int local_n;
2149
2150 if (!n)
2151 return val;
2152 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2153 return 0;
2154
2155 /* after bounds checking we can collapse to 32-bit */
2156 local_n = n;
2157
2158 /*
2159 * As y^PERIOD = 1/2, we can combine
2160 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2161 * With a look-up table which covers k^n (n<PERIOD)
2162 *
2163 * To achieve constant time decay_load.
2164 */
2165 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2166 val >>= local_n / LOAD_AVG_PERIOD;
2167 local_n %= LOAD_AVG_PERIOD;
2168 }
2169
2170 val *= runnable_avg_yN_inv[local_n];
2171 /* We don't use SRR here since we always want to round down. */
2172 return val >> 32;
2173 }
2174
2175 /*
2176 * For updates fully spanning n periods, the contribution to runnable
2177 * average will be: \Sum 1024*y^n
2178 *
2179 * We can compute this reasonably efficiently by combining:
2180 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2181 */
2182 static u32 __compute_runnable_contrib(u64 n)
2183 {
2184 u32 contrib = 0;
2185
2186 if (likely(n <= LOAD_AVG_PERIOD))
2187 return runnable_avg_yN_sum[n];
2188 else if (unlikely(n >= LOAD_AVG_MAX_N))
2189 return LOAD_AVG_MAX;
2190
2191 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2192 do {
2193 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2194 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2195
2196 n -= LOAD_AVG_PERIOD;
2197 } while (n > LOAD_AVG_PERIOD);
2198
2199 contrib = decay_load(contrib, n);
2200 return contrib + runnable_avg_yN_sum[n];
2201 }
2202
2203 /*
2204 * We can represent the historical contribution to runnable average as the
2205 * coefficients of a geometric series. To do this we sub-divide our runnable
2206 * history into segments of approximately 1ms (1024us); label the segment that
2207 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2208 *
2209 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2210 * p0 p1 p2
2211 * (now) (~1ms ago) (~2ms ago)
2212 *
2213 * Let u_i denote the fraction of p_i that the entity was runnable.
2214 *
2215 * We then designate the fractions u_i as our co-efficients, yielding the
2216 * following representation of historical load:
2217 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2218 *
2219 * We choose y based on the with of a reasonably scheduling period, fixing:
2220 * y^32 = 0.5
2221 *
2222 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2223 * approximately half as much as the contribution to load within the last ms
2224 * (u_0).
2225 *
2226 * When a period "rolls over" and we have new u_0`, multiplying the previous
2227 * sum again by y is sufficient to update:
2228 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2229 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2230 */
2231 static __always_inline int __update_entity_runnable_avg(u64 now,
2232 struct sched_avg *sa,
2233 int runnable)
2234 {
2235 u64 delta, periods;
2236 u32 runnable_contrib;
2237 int delta_w, decayed = 0;
2238
2239 delta = now - sa->last_runnable_update;
2240 /*
2241 * This should only happen when time goes backwards, which it
2242 * unfortunately does during sched clock init when we swap over to TSC.
2243 */
2244 if ((s64)delta < 0) {
2245 sa->last_runnable_update = now;
2246 return 0;
2247 }
2248
2249 /*
2250 * Use 1024ns as the unit of measurement since it's a reasonable
2251 * approximation of 1us and fast to compute.
2252 */
2253 delta >>= 10;
2254 if (!delta)
2255 return 0;
2256 sa->last_runnable_update = now;
2257
2258 /* delta_w is the amount already accumulated against our next period */
2259 delta_w = sa->runnable_avg_period % 1024;
2260 if (delta + delta_w >= 1024) {
2261 /* period roll-over */
2262 decayed = 1;
2263
2264 /*
2265 * Now that we know we're crossing a period boundary, figure
2266 * out how much from delta we need to complete the current
2267 * period and accrue it.
2268 */
2269 delta_w = 1024 - delta_w;
2270 if (runnable)
2271 sa->runnable_avg_sum += delta_w;
2272 sa->runnable_avg_period += delta_w;
2273
2274 delta -= delta_w;
2275
2276 /* Figure out how many additional periods this update spans */
2277 periods = delta / 1024;
2278 delta %= 1024;
2279
2280 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2281 periods + 1);
2282 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2283 periods + 1);
2284
2285 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2286 runnable_contrib = __compute_runnable_contrib(periods);
2287 if (runnable)
2288 sa->runnable_avg_sum += runnable_contrib;
2289 sa->runnable_avg_period += runnable_contrib;
2290 }
2291
2292 /* Remainder of delta accrued against u_0` */
2293 if (runnable)
2294 sa->runnable_avg_sum += delta;
2295 sa->runnable_avg_period += delta;
2296
2297 return decayed;
2298 }
2299
2300 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2301 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2302 {
2303 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2304 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2305
2306 decays -= se->avg.decay_count;
2307 if (!decays)
2308 return 0;
2309
2310 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2311 se->avg.decay_count = 0;
2312
2313 return decays;
2314 }
2315
2316 #ifdef CONFIG_FAIR_GROUP_SCHED
2317 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2318 int force_update)
2319 {
2320 struct task_group *tg = cfs_rq->tg;
2321 long tg_contrib;
2322
2323 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2324 tg_contrib -= cfs_rq->tg_load_contrib;
2325
2326 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2327 atomic_long_add(tg_contrib, &tg->load_avg);
2328 cfs_rq->tg_load_contrib += tg_contrib;
2329 }
2330 }
2331
2332 /*
2333 * Aggregate cfs_rq runnable averages into an equivalent task_group
2334 * representation for computing load contributions.
2335 */
2336 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2337 struct cfs_rq *cfs_rq)
2338 {
2339 struct task_group *tg = cfs_rq->tg;
2340 long contrib;
2341
2342 /* The fraction of a cpu used by this cfs_rq */
2343 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2344 sa->runnable_avg_period + 1);
2345 contrib -= cfs_rq->tg_runnable_contrib;
2346
2347 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2348 atomic_add(contrib, &tg->runnable_avg);
2349 cfs_rq->tg_runnable_contrib += contrib;
2350 }
2351 }
2352
2353 static inline void __update_group_entity_contrib(struct sched_entity *se)
2354 {
2355 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2356 struct task_group *tg = cfs_rq->tg;
2357 int runnable_avg;
2358
2359 u64 contrib;
2360
2361 contrib = cfs_rq->tg_load_contrib * tg->shares;
2362 se->avg.load_avg_contrib = div_u64(contrib,
2363 atomic_long_read(&tg->load_avg) + 1);
2364
2365 /*
2366 * For group entities we need to compute a correction term in the case
2367 * that they are consuming <1 cpu so that we would contribute the same
2368 * load as a task of equal weight.
2369 *
2370 * Explicitly co-ordinating this measurement would be expensive, but
2371 * fortunately the sum of each cpus contribution forms a usable
2372 * lower-bound on the true value.
2373 *
2374 * Consider the aggregate of 2 contributions. Either they are disjoint
2375 * (and the sum represents true value) or they are disjoint and we are
2376 * understating by the aggregate of their overlap.
2377 *
2378 * Extending this to N cpus, for a given overlap, the maximum amount we
2379 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2380 * cpus that overlap for this interval and w_i is the interval width.
2381 *
2382 * On a small machine; the first term is well-bounded which bounds the
2383 * total error since w_i is a subset of the period. Whereas on a
2384 * larger machine, while this first term can be larger, if w_i is the
2385 * of consequential size guaranteed to see n_i*w_i quickly converge to
2386 * our upper bound of 1-cpu.
2387 */
2388 runnable_avg = atomic_read(&tg->runnable_avg);
2389 if (runnable_avg < NICE_0_LOAD) {
2390 se->avg.load_avg_contrib *= runnable_avg;
2391 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2392 }
2393 }
2394 #else
2395 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2396 int force_update) {}
2397 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2398 struct cfs_rq *cfs_rq) {}
2399 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2400 #endif
2401
2402 static inline void __update_task_entity_contrib(struct sched_entity *se)
2403 {
2404 u32 contrib;
2405
2406 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2407 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2408 contrib /= (se->avg.runnable_avg_period + 1);
2409 se->avg.load_avg_contrib = scale_load(contrib);
2410 }
2411
2412 /* Compute the current contribution to load_avg by se, return any delta */
2413 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2414 {
2415 long old_contrib = se->avg.load_avg_contrib;
2416
2417 if (entity_is_task(se)) {
2418 __update_task_entity_contrib(se);
2419 } else {
2420 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2421 __update_group_entity_contrib(se);
2422 }
2423
2424 return se->avg.load_avg_contrib - old_contrib;
2425 }
2426
2427 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2428 long load_contrib)
2429 {
2430 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2431 cfs_rq->blocked_load_avg -= load_contrib;
2432 else
2433 cfs_rq->blocked_load_avg = 0;
2434 }
2435
2436 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2437
2438 /* Update a sched_entity's runnable average */
2439 static inline void update_entity_load_avg(struct sched_entity *se,
2440 int update_cfs_rq)
2441 {
2442 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2443 long contrib_delta;
2444 u64 now;
2445
2446 /*
2447 * For a group entity we need to use their owned cfs_rq_clock_task() in
2448 * case they are the parent of a throttled hierarchy.
2449 */
2450 if (entity_is_task(se))
2451 now = cfs_rq_clock_task(cfs_rq);
2452 else
2453 now = cfs_rq_clock_task(group_cfs_rq(se));
2454
2455 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2456 return;
2457
2458 contrib_delta = __update_entity_load_avg_contrib(se);
2459
2460 if (!update_cfs_rq)
2461 return;
2462
2463 if (se->on_rq)
2464 cfs_rq->runnable_load_avg += contrib_delta;
2465 else
2466 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2467 }
2468
2469 /*
2470 * Decay the load contributed by all blocked children and account this so that
2471 * their contribution may appropriately discounted when they wake up.
2472 */
2473 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2474 {
2475 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2476 u64 decays;
2477
2478 decays = now - cfs_rq->last_decay;
2479 if (!decays && !force_update)
2480 return;
2481
2482 if (atomic_long_read(&cfs_rq->removed_load)) {
2483 unsigned long removed_load;
2484 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2485 subtract_blocked_load_contrib(cfs_rq, removed_load);
2486 }
2487
2488 if (decays) {
2489 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2490 decays);
2491 atomic64_add(decays, &cfs_rq->decay_counter);
2492 cfs_rq->last_decay = now;
2493 }
2494
2495 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2496 }
2497
2498 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2499 {
2500 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2501 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2502 }
2503
2504 /* Add the load generated by se into cfs_rq's child load-average */
2505 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2506 struct sched_entity *se,
2507 int wakeup)
2508 {
2509 /*
2510 * We track migrations using entity decay_count <= 0, on a wake-up
2511 * migration we use a negative decay count to track the remote decays
2512 * accumulated while sleeping.
2513 *
2514 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2515 * are seen by enqueue_entity_load_avg() as a migration with an already
2516 * constructed load_avg_contrib.
2517 */
2518 if (unlikely(se->avg.decay_count <= 0)) {
2519 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2520 if (se->avg.decay_count) {
2521 /*
2522 * In a wake-up migration we have to approximate the
2523 * time sleeping. This is because we can't synchronize
2524 * clock_task between the two cpus, and it is not
2525 * guaranteed to be read-safe. Instead, we can
2526 * approximate this using our carried decays, which are
2527 * explicitly atomically readable.
2528 */
2529 se->avg.last_runnable_update -= (-se->avg.decay_count)
2530 << 20;
2531 update_entity_load_avg(se, 0);
2532 /* Indicate that we're now synchronized and on-rq */
2533 se->avg.decay_count = 0;
2534 }
2535 wakeup = 0;
2536 } else {
2537 __synchronize_entity_decay(se);
2538 }
2539
2540 /* migrated tasks did not contribute to our blocked load */
2541 if (wakeup) {
2542 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2543 update_entity_load_avg(se, 0);
2544 }
2545
2546 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2547 /* we force update consideration on load-balancer moves */
2548 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2549 }
2550
2551 /*
2552 * Remove se's load from this cfs_rq child load-average, if the entity is
2553 * transitioning to a blocked state we track its projected decay using
2554 * blocked_load_avg.
2555 */
2556 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2557 struct sched_entity *se,
2558 int sleep)
2559 {
2560 update_entity_load_avg(se, 1);
2561 /* we force update consideration on load-balancer moves */
2562 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2563
2564 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2565 if (sleep) {
2566 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2567 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2568 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2569 }
2570
2571 /*
2572 * Update the rq's load with the elapsed running time before entering
2573 * idle. if the last scheduled task is not a CFS task, idle_enter will
2574 * be the only way to update the runnable statistic.
2575 */
2576 void idle_enter_fair(struct rq *this_rq)
2577 {
2578 update_rq_runnable_avg(this_rq, 1);
2579 }
2580
2581 /*
2582 * Update the rq's load with the elapsed idle time before a task is
2583 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2584 * be the only way to update the runnable statistic.
2585 */
2586 void idle_exit_fair(struct rq *this_rq)
2587 {
2588 update_rq_runnable_avg(this_rq, 0);
2589 }
2590
2591 #else
2592 static inline void update_entity_load_avg(struct sched_entity *se,
2593 int update_cfs_rq) {}
2594 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2595 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2596 struct sched_entity *se,
2597 int wakeup) {}
2598 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2599 struct sched_entity *se,
2600 int sleep) {}
2601 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2602 int force_update) {}
2603 #endif
2604
2605 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2606 {
2607 #ifdef CONFIG_SCHEDSTATS
2608 struct task_struct *tsk = NULL;
2609
2610 if (entity_is_task(se))
2611 tsk = task_of(se);
2612
2613 if (se->statistics.sleep_start) {
2614 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2615
2616 if ((s64)delta < 0)
2617 delta = 0;
2618
2619 if (unlikely(delta > se->statistics.sleep_max))
2620 se->statistics.sleep_max = delta;
2621
2622 se->statistics.sleep_start = 0;
2623 se->statistics.sum_sleep_runtime += delta;
2624
2625 if (tsk) {
2626 account_scheduler_latency(tsk, delta >> 10, 1);
2627 trace_sched_stat_sleep(tsk, delta);
2628 }
2629 }
2630 if (se->statistics.block_start) {
2631 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2632
2633 if ((s64)delta < 0)
2634 delta = 0;
2635
2636 if (unlikely(delta > se->statistics.block_max))
2637 se->statistics.block_max = delta;
2638
2639 se->statistics.block_start = 0;
2640 se->statistics.sum_sleep_runtime += delta;
2641
2642 if (tsk) {
2643 if (tsk->in_iowait) {
2644 se->statistics.iowait_sum += delta;
2645 se->statistics.iowait_count++;
2646 trace_sched_stat_iowait(tsk, delta);
2647 }
2648
2649 trace_sched_stat_blocked(tsk, delta);
2650
2651 /*
2652 * Blocking time is in units of nanosecs, so shift by
2653 * 20 to get a milliseconds-range estimation of the
2654 * amount of time that the task spent sleeping:
2655 */
2656 if (unlikely(prof_on == SLEEP_PROFILING)) {
2657 profile_hits(SLEEP_PROFILING,
2658 (void *)get_wchan(tsk),
2659 delta >> 20);
2660 }
2661 account_scheduler_latency(tsk, delta >> 10, 0);
2662 }
2663 }
2664 #endif
2665 }
2666
2667 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2668 {
2669 #ifdef CONFIG_SCHED_DEBUG
2670 s64 d = se->vruntime - cfs_rq->min_vruntime;
2671
2672 if (d < 0)
2673 d = -d;
2674
2675 if (d > 3*sysctl_sched_latency)
2676 schedstat_inc(cfs_rq, nr_spread_over);
2677 #endif
2678 }
2679
2680 static void
2681 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2682 {
2683 u64 vruntime = cfs_rq->min_vruntime;
2684
2685 /*
2686 * The 'current' period is already promised to the current tasks,
2687 * however the extra weight of the new task will slow them down a
2688 * little, place the new task so that it fits in the slot that
2689 * stays open at the end.
2690 */
2691 if (initial && sched_feat(START_DEBIT))
2692 vruntime += sched_vslice(cfs_rq, se);
2693
2694 /* sleeps up to a single latency don't count. */
2695 if (!initial) {
2696 unsigned long thresh = sysctl_sched_latency;
2697
2698 /*
2699 * Halve their sleep time's effect, to allow
2700 * for a gentler effect of sleepers:
2701 */
2702 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2703 thresh >>= 1;
2704
2705 vruntime -= thresh;
2706 }
2707
2708 /* ensure we never gain time by being placed backwards. */
2709 se->vruntime = max_vruntime(se->vruntime, vruntime);
2710 }
2711
2712 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2713
2714 static void
2715 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2716 {
2717 /*
2718 * Update the normalized vruntime before updating min_vruntime
2719 * through calling update_curr().
2720 */
2721 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2722 se->vruntime += cfs_rq->min_vruntime;
2723
2724 /*
2725 * Update run-time statistics of the 'current'.
2726 */
2727 update_curr(cfs_rq);
2728 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2729 account_entity_enqueue(cfs_rq, se);
2730 update_cfs_shares(cfs_rq);
2731
2732 if (flags & ENQUEUE_WAKEUP) {
2733 place_entity(cfs_rq, se, 0);
2734 enqueue_sleeper(cfs_rq, se);
2735 }
2736
2737 update_stats_enqueue(cfs_rq, se);
2738 check_spread(cfs_rq, se);
2739 if (se != cfs_rq->curr)
2740 __enqueue_entity(cfs_rq, se);
2741 se->on_rq = 1;
2742
2743 if (cfs_rq->nr_running == 1) {
2744 list_add_leaf_cfs_rq(cfs_rq);
2745 check_enqueue_throttle(cfs_rq);
2746 }
2747 }
2748
2749 static void __clear_buddies_last(struct sched_entity *se)
2750 {
2751 for_each_sched_entity(se) {
2752 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2753 if (cfs_rq->last == se)
2754 cfs_rq->last = NULL;
2755 else
2756 break;
2757 }
2758 }
2759
2760 static void __clear_buddies_next(struct sched_entity *se)
2761 {
2762 for_each_sched_entity(se) {
2763 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2764 if (cfs_rq->next == se)
2765 cfs_rq->next = NULL;
2766 else
2767 break;
2768 }
2769 }
2770
2771 static void __clear_buddies_skip(struct sched_entity *se)
2772 {
2773 for_each_sched_entity(se) {
2774 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2775 if (cfs_rq->skip == se)
2776 cfs_rq->skip = NULL;
2777 else
2778 break;
2779 }
2780 }
2781
2782 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2783 {
2784 if (cfs_rq->last == se)
2785 __clear_buddies_last(se);
2786
2787 if (cfs_rq->next == se)
2788 __clear_buddies_next(se);
2789
2790 if (cfs_rq->skip == se)
2791 __clear_buddies_skip(se);
2792 }
2793
2794 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2795
2796 static void
2797 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2798 {
2799 /*
2800 * Update run-time statistics of the 'current'.
2801 */
2802 update_curr(cfs_rq);
2803 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2804
2805 update_stats_dequeue(cfs_rq, se);
2806 if (flags & DEQUEUE_SLEEP) {
2807 #ifdef CONFIG_SCHEDSTATS
2808 if (entity_is_task(se)) {
2809 struct task_struct *tsk = task_of(se);
2810
2811 if (tsk->state & TASK_INTERRUPTIBLE)
2812 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2813 if (tsk->state & TASK_UNINTERRUPTIBLE)
2814 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2815 }
2816 #endif
2817 }
2818
2819 clear_buddies(cfs_rq, se);
2820
2821 if (se != cfs_rq->curr)
2822 __dequeue_entity(cfs_rq, se);
2823 se->on_rq = 0;
2824 account_entity_dequeue(cfs_rq, se);
2825
2826 /*
2827 * Normalize the entity after updating the min_vruntime because the
2828 * update can refer to the ->curr item and we need to reflect this
2829 * movement in our normalized position.
2830 */
2831 if (!(flags & DEQUEUE_SLEEP))
2832 se->vruntime -= cfs_rq->min_vruntime;
2833
2834 /* return excess runtime on last dequeue */
2835 return_cfs_rq_runtime(cfs_rq);
2836
2837 update_min_vruntime(cfs_rq);
2838 update_cfs_shares(cfs_rq);
2839 }
2840
2841 /*
2842 * Preempt the current task with a newly woken task if needed:
2843 */
2844 static void
2845 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2846 {
2847 unsigned long ideal_runtime, delta_exec;
2848 struct sched_entity *se;
2849 s64 delta;
2850
2851 ideal_runtime = sched_slice(cfs_rq, curr);
2852 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2853 if (delta_exec > ideal_runtime) {
2854 resched_task(rq_of(cfs_rq)->curr);
2855 /*
2856 * The current task ran long enough, ensure it doesn't get
2857 * re-elected due to buddy favours.
2858 */
2859 clear_buddies(cfs_rq, curr);
2860 return;
2861 }
2862
2863 /*
2864 * Ensure that a task that missed wakeup preemption by a
2865 * narrow margin doesn't have to wait for a full slice.
2866 * This also mitigates buddy induced latencies under load.
2867 */
2868 if (delta_exec < sysctl_sched_min_granularity)
2869 return;
2870
2871 se = __pick_first_entity(cfs_rq);
2872 delta = curr->vruntime - se->vruntime;
2873
2874 if (delta < 0)
2875 return;
2876
2877 if (delta > ideal_runtime)
2878 resched_task(rq_of(cfs_rq)->curr);
2879 }
2880
2881 static void
2882 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2883 {
2884 /* 'current' is not kept within the tree. */
2885 if (se->on_rq) {
2886 /*
2887 * Any task has to be enqueued before it get to execute on
2888 * a CPU. So account for the time it spent waiting on the
2889 * runqueue.
2890 */
2891 update_stats_wait_end(cfs_rq, se);
2892 __dequeue_entity(cfs_rq, se);
2893 }
2894
2895 update_stats_curr_start(cfs_rq, se);
2896 cfs_rq->curr = se;
2897 #ifdef CONFIG_SCHEDSTATS
2898 /*
2899 * Track our maximum slice length, if the CPU's load is at
2900 * least twice that of our own weight (i.e. dont track it
2901 * when there are only lesser-weight tasks around):
2902 */
2903 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2904 se->statistics.slice_max = max(se->statistics.slice_max,
2905 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2906 }
2907 #endif
2908 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2909 }
2910
2911 static int
2912 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2913
2914 /*
2915 * Pick the next process, keeping these things in mind, in this order:
2916 * 1) keep things fair between processes/task groups
2917 * 2) pick the "next" process, since someone really wants that to run
2918 * 3) pick the "last" process, for cache locality
2919 * 4) do not run the "skip" process, if something else is available
2920 */
2921 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2922 {
2923 struct sched_entity *se = __pick_first_entity(cfs_rq);
2924 struct sched_entity *left = se;
2925
2926 /*
2927 * Avoid running the skip buddy, if running something else can
2928 * be done without getting too unfair.
2929 */
2930 if (cfs_rq->skip == se) {
2931 struct sched_entity *second = __pick_next_entity(se);
2932 if (second && wakeup_preempt_entity(second, left) < 1)
2933 se = second;
2934 }
2935
2936 /*
2937 * Prefer last buddy, try to return the CPU to a preempted task.
2938 */
2939 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2940 se = cfs_rq->last;
2941
2942 /*
2943 * Someone really wants this to run. If it's not unfair, run it.
2944 */
2945 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2946 se = cfs_rq->next;
2947
2948 clear_buddies(cfs_rq, se);
2949
2950 return se;
2951 }
2952
2953 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2954
2955 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2956 {
2957 /*
2958 * If still on the runqueue then deactivate_task()
2959 * was not called and update_curr() has to be done:
2960 */
2961 if (prev->on_rq)
2962 update_curr(cfs_rq);
2963
2964 /* throttle cfs_rqs exceeding runtime */
2965 check_cfs_rq_runtime(cfs_rq);
2966
2967 check_spread(cfs_rq, prev);
2968 if (prev->on_rq) {
2969 update_stats_wait_start(cfs_rq, prev);
2970 /* Put 'current' back into the tree. */
2971 __enqueue_entity(cfs_rq, prev);
2972 /* in !on_rq case, update occurred at dequeue */
2973 update_entity_load_avg(prev, 1);
2974 }
2975 cfs_rq->curr = NULL;
2976 }
2977
2978 static void
2979 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2980 {
2981 /*
2982 * Update run-time statistics of the 'current'.
2983 */
2984 update_curr(cfs_rq);
2985
2986 /*
2987 * Ensure that runnable average is periodically updated.
2988 */
2989 update_entity_load_avg(curr, 1);
2990 update_cfs_rq_blocked_load(cfs_rq, 1);
2991 update_cfs_shares(cfs_rq);
2992
2993 #ifdef CONFIG_SCHED_HRTICK
2994 /*
2995 * queued ticks are scheduled to match the slice, so don't bother
2996 * validating it and just reschedule.
2997 */
2998 if (queued) {
2999 resched_task(rq_of(cfs_rq)->curr);
3000 return;
3001 }
3002 /*
3003 * don't let the period tick interfere with the hrtick preemption
3004 */
3005 if (!sched_feat(DOUBLE_TICK) &&
3006 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3007 return;
3008 #endif
3009
3010 if (cfs_rq->nr_running > 1)
3011 check_preempt_tick(cfs_rq, curr);
3012 }
3013
3014
3015 /**************************************************
3016 * CFS bandwidth control machinery
3017 */
3018
3019 #ifdef CONFIG_CFS_BANDWIDTH
3020
3021 #ifdef HAVE_JUMP_LABEL
3022 static struct static_key __cfs_bandwidth_used;
3023
3024 static inline bool cfs_bandwidth_used(void)
3025 {
3026 return static_key_false(&__cfs_bandwidth_used);
3027 }
3028
3029 void cfs_bandwidth_usage_inc(void)
3030 {
3031 static_key_slow_inc(&__cfs_bandwidth_used);
3032 }
3033
3034 void cfs_bandwidth_usage_dec(void)
3035 {
3036 static_key_slow_dec(&__cfs_bandwidth_used);
3037 }
3038 #else /* HAVE_JUMP_LABEL */
3039 static bool cfs_bandwidth_used(void)
3040 {
3041 return true;
3042 }
3043
3044 void cfs_bandwidth_usage_inc(void) {}
3045 void cfs_bandwidth_usage_dec(void) {}
3046 #endif /* HAVE_JUMP_LABEL */
3047
3048 /*
3049 * default period for cfs group bandwidth.
3050 * default: 0.1s, units: nanoseconds
3051 */
3052 static inline u64 default_cfs_period(void)
3053 {
3054 return 100000000ULL;
3055 }
3056
3057 static inline u64 sched_cfs_bandwidth_slice(void)
3058 {
3059 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3060 }
3061
3062 /*
3063 * Replenish runtime according to assigned quota and update expiration time.
3064 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3065 * additional synchronization around rq->lock.
3066 *
3067 * requires cfs_b->lock
3068 */
3069 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3070 {
3071 u64 now;
3072
3073 if (cfs_b->quota == RUNTIME_INF)
3074 return;
3075
3076 now = sched_clock_cpu(smp_processor_id());
3077 cfs_b->runtime = cfs_b->quota;
3078 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3079 }
3080
3081 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3082 {
3083 return &tg->cfs_bandwidth;
3084 }
3085
3086 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3087 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3088 {
3089 if (unlikely(cfs_rq->throttle_count))
3090 return cfs_rq->throttled_clock_task;
3091
3092 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3093 }
3094
3095 /* returns 0 on failure to allocate runtime */
3096 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3097 {
3098 struct task_group *tg = cfs_rq->tg;
3099 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3100 u64 amount = 0, min_amount, expires;
3101
3102 /* note: this is a positive sum as runtime_remaining <= 0 */
3103 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3104
3105 raw_spin_lock(&cfs_b->lock);
3106 if (cfs_b->quota == RUNTIME_INF)
3107 amount = min_amount;
3108 else {
3109 /*
3110 * If the bandwidth pool has become inactive, then at least one
3111 * period must have elapsed since the last consumption.
3112 * Refresh the global state and ensure bandwidth timer becomes
3113 * active.
3114 */
3115 if (!cfs_b->timer_active) {
3116 __refill_cfs_bandwidth_runtime(cfs_b);
3117 __start_cfs_bandwidth(cfs_b);
3118 }
3119
3120 if (cfs_b->runtime > 0) {
3121 amount = min(cfs_b->runtime, min_amount);
3122 cfs_b->runtime -= amount;
3123 cfs_b->idle = 0;
3124 }
3125 }
3126 expires = cfs_b->runtime_expires;
3127 raw_spin_unlock(&cfs_b->lock);
3128
3129 cfs_rq->runtime_remaining += amount;
3130 /*
3131 * we may have advanced our local expiration to account for allowed
3132 * spread between our sched_clock and the one on which runtime was
3133 * issued.
3134 */
3135 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3136 cfs_rq->runtime_expires = expires;
3137
3138 return cfs_rq->runtime_remaining > 0;
3139 }
3140
3141 /*
3142 * Note: This depends on the synchronization provided by sched_clock and the
3143 * fact that rq->clock snapshots this value.
3144 */
3145 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3146 {
3147 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3148
3149 /* if the deadline is ahead of our clock, nothing to do */
3150 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3151 return;
3152
3153 if (cfs_rq->runtime_remaining < 0)
3154 return;
3155
3156 /*
3157 * If the local deadline has passed we have to consider the
3158 * possibility that our sched_clock is 'fast' and the global deadline
3159 * has not truly expired.
3160 *
3161 * Fortunately we can check determine whether this the case by checking
3162 * whether the global deadline has advanced.
3163 */
3164
3165 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3166 /* extend local deadline, drift is bounded above by 2 ticks */
3167 cfs_rq->runtime_expires += TICK_NSEC;
3168 } else {
3169 /* global deadline is ahead, expiration has passed */
3170 cfs_rq->runtime_remaining = 0;
3171 }
3172 }
3173
3174 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3175 {
3176 /* dock delta_exec before expiring quota (as it could span periods) */
3177 cfs_rq->runtime_remaining -= delta_exec;
3178 expire_cfs_rq_runtime(cfs_rq);
3179
3180 if (likely(cfs_rq->runtime_remaining > 0))
3181 return;
3182
3183 /*
3184 * if we're unable to extend our runtime we resched so that the active
3185 * hierarchy can be throttled
3186 */
3187 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3188 resched_task(rq_of(cfs_rq)->curr);
3189 }
3190
3191 static __always_inline
3192 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3193 {
3194 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3195 return;
3196
3197 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3198 }
3199
3200 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3201 {
3202 return cfs_bandwidth_used() && cfs_rq->throttled;
3203 }
3204
3205 /* check whether cfs_rq, or any parent, is throttled */
3206 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3207 {
3208 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3209 }
3210
3211 /*
3212 * Ensure that neither of the group entities corresponding to src_cpu or
3213 * dest_cpu are members of a throttled hierarchy when performing group
3214 * load-balance operations.
3215 */
3216 static inline int throttled_lb_pair(struct task_group *tg,
3217 int src_cpu, int dest_cpu)
3218 {
3219 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3220
3221 src_cfs_rq = tg->cfs_rq[src_cpu];
3222 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3223
3224 return throttled_hierarchy(src_cfs_rq) ||
3225 throttled_hierarchy(dest_cfs_rq);
3226 }
3227
3228 /* updated child weight may affect parent so we have to do this bottom up */
3229 static int tg_unthrottle_up(struct task_group *tg, void *data)
3230 {
3231 struct rq *rq = data;
3232 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3233
3234 cfs_rq->throttle_count--;
3235 #ifdef CONFIG_SMP
3236 if (!cfs_rq->throttle_count) {
3237 /* adjust cfs_rq_clock_task() */
3238 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3239 cfs_rq->throttled_clock_task;
3240 }
3241 #endif
3242
3243 return 0;
3244 }
3245
3246 static int tg_throttle_down(struct task_group *tg, void *data)
3247 {
3248 struct rq *rq = data;
3249 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3250
3251 /* group is entering throttled state, stop time */
3252 if (!cfs_rq->throttle_count)
3253 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3254 cfs_rq->throttle_count++;
3255
3256 return 0;
3257 }
3258
3259 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3260 {
3261 struct rq *rq = rq_of(cfs_rq);
3262 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3263 struct sched_entity *se;
3264 long task_delta, dequeue = 1;
3265
3266 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3267
3268 /* freeze hierarchy runnable averages while throttled */
3269 rcu_read_lock();
3270 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3271 rcu_read_unlock();
3272
3273 task_delta = cfs_rq->h_nr_running;
3274 for_each_sched_entity(se) {
3275 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3276 /* throttled entity or throttle-on-deactivate */
3277 if (!se->on_rq)
3278 break;
3279
3280 if (dequeue)
3281 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3282 qcfs_rq->h_nr_running -= task_delta;
3283
3284 if (qcfs_rq->load.weight)
3285 dequeue = 0;
3286 }
3287
3288 if (!se)
3289 rq->nr_running -= task_delta;
3290
3291 cfs_rq->throttled = 1;
3292 cfs_rq->throttled_clock = rq_clock(rq);
3293 raw_spin_lock(&cfs_b->lock);
3294 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3295 if (!cfs_b->timer_active)
3296 __start_cfs_bandwidth(cfs_b);
3297 raw_spin_unlock(&cfs_b->lock);
3298 }
3299
3300 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3301 {
3302 struct rq *rq = rq_of(cfs_rq);
3303 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3304 struct sched_entity *se;
3305 int enqueue = 1;
3306 long task_delta;
3307
3308 se = cfs_rq->tg->se[cpu_of(rq)];
3309
3310 cfs_rq->throttled = 0;
3311
3312 update_rq_clock(rq);
3313
3314 raw_spin_lock(&cfs_b->lock);
3315 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3316 list_del_rcu(&cfs_rq->throttled_list);
3317 raw_spin_unlock(&cfs_b->lock);
3318
3319 /* update hierarchical throttle state */
3320 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3321
3322 if (!cfs_rq->load.weight)
3323 return;
3324
3325 task_delta = cfs_rq->h_nr_running;
3326 for_each_sched_entity(se) {
3327 if (se->on_rq)
3328 enqueue = 0;
3329
3330 cfs_rq = cfs_rq_of(se);
3331 if (enqueue)
3332 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3333 cfs_rq->h_nr_running += task_delta;
3334
3335 if (cfs_rq_throttled(cfs_rq))
3336 break;
3337 }
3338
3339 if (!se)
3340 rq->nr_running += task_delta;
3341
3342 /* determine whether we need to wake up potentially idle cpu */
3343 if (rq->curr == rq->idle && rq->cfs.nr_running)
3344 resched_task(rq->curr);
3345 }
3346
3347 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3348 u64 remaining, u64 expires)
3349 {
3350 struct cfs_rq *cfs_rq;
3351 u64 runtime = remaining;
3352
3353 rcu_read_lock();
3354 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3355 throttled_list) {
3356 struct rq *rq = rq_of(cfs_rq);
3357
3358 raw_spin_lock(&rq->lock);
3359 if (!cfs_rq_throttled(cfs_rq))
3360 goto next;
3361
3362 runtime = -cfs_rq->runtime_remaining + 1;
3363 if (runtime > remaining)
3364 runtime = remaining;
3365 remaining -= runtime;
3366
3367 cfs_rq->runtime_remaining += runtime;
3368 cfs_rq->runtime_expires = expires;
3369
3370 /* we check whether we're throttled above */
3371 if (cfs_rq->runtime_remaining > 0)
3372 unthrottle_cfs_rq(cfs_rq);
3373
3374 next:
3375 raw_spin_unlock(&rq->lock);
3376
3377 if (!remaining)
3378 break;
3379 }
3380 rcu_read_unlock();
3381
3382 return remaining;
3383 }
3384
3385 /*
3386 * Responsible for refilling a task_group's bandwidth and unthrottling its
3387 * cfs_rqs as appropriate. If there has been no activity within the last
3388 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3389 * used to track this state.
3390 */
3391 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3392 {
3393 u64 runtime, runtime_expires;
3394 int idle = 1, throttled;
3395
3396 raw_spin_lock(&cfs_b->lock);
3397 /* no need to continue the timer with no bandwidth constraint */
3398 if (cfs_b->quota == RUNTIME_INF)
3399 goto out_unlock;
3400
3401 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3402 /* idle depends on !throttled (for the case of a large deficit) */
3403 idle = cfs_b->idle && !throttled;
3404 cfs_b->nr_periods += overrun;
3405
3406 /* if we're going inactive then everything else can be deferred */
3407 if (idle)
3408 goto out_unlock;
3409
3410 /*
3411 * if we have relooped after returning idle once, we need to update our
3412 * status as actually running, so that other cpus doing
3413 * __start_cfs_bandwidth will stop trying to cancel us.
3414 */
3415 cfs_b->timer_active = 1;
3416
3417 __refill_cfs_bandwidth_runtime(cfs_b);
3418
3419 if (!throttled) {
3420 /* mark as potentially idle for the upcoming period */
3421 cfs_b->idle = 1;
3422 goto out_unlock;
3423 }
3424
3425 /* account preceding periods in which throttling occurred */
3426 cfs_b->nr_throttled += overrun;
3427
3428 /*
3429 * There are throttled entities so we must first use the new bandwidth
3430 * to unthrottle them before making it generally available. This
3431 * ensures that all existing debts will be paid before a new cfs_rq is
3432 * allowed to run.
3433 */
3434 runtime = cfs_b->runtime;
3435 runtime_expires = cfs_b->runtime_expires;
3436 cfs_b->runtime = 0;
3437
3438 /*
3439 * This check is repeated as we are holding onto the new bandwidth
3440 * while we unthrottle. This can potentially race with an unthrottled
3441 * group trying to acquire new bandwidth from the global pool.
3442 */
3443 while (throttled && runtime > 0) {
3444 raw_spin_unlock(&cfs_b->lock);
3445 /* we can't nest cfs_b->lock while distributing bandwidth */
3446 runtime = distribute_cfs_runtime(cfs_b, runtime,
3447 runtime_expires);
3448 raw_spin_lock(&cfs_b->lock);
3449
3450 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3451 }
3452
3453 /* return (any) remaining runtime */
3454 cfs_b->runtime = runtime;
3455 /*
3456 * While we are ensured activity in the period following an
3457 * unthrottle, this also covers the case in which the new bandwidth is
3458 * insufficient to cover the existing bandwidth deficit. (Forcing the
3459 * timer to remain active while there are any throttled entities.)
3460 */
3461 cfs_b->idle = 0;
3462 out_unlock:
3463 if (idle)
3464 cfs_b->timer_active = 0;
3465 raw_spin_unlock(&cfs_b->lock);
3466
3467 return idle;
3468 }
3469
3470 /* a cfs_rq won't donate quota below this amount */
3471 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3472 /* minimum remaining period time to redistribute slack quota */
3473 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3474 /* how long we wait to gather additional slack before distributing */
3475 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3476
3477 /*
3478 * Are we near the end of the current quota period?
3479 *
3480 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3481 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3482 * migrate_hrtimers, base is never cleared, so we are fine.
3483 */
3484 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3485 {
3486 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3487 u64 remaining;
3488
3489 /* if the call-back is running a quota refresh is already occurring */
3490 if (hrtimer_callback_running(refresh_timer))
3491 return 1;
3492
3493 /* is a quota refresh about to occur? */
3494 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3495 if (remaining < min_expire)
3496 return 1;
3497
3498 return 0;
3499 }
3500
3501 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3502 {
3503 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3504
3505 /* if there's a quota refresh soon don't bother with slack */
3506 if (runtime_refresh_within(cfs_b, min_left))
3507 return;
3508
3509 start_bandwidth_timer(&cfs_b->slack_timer,
3510 ns_to_ktime(cfs_bandwidth_slack_period));
3511 }
3512
3513 /* we know any runtime found here is valid as update_curr() precedes return */
3514 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3515 {
3516 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3517 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3518
3519 if (slack_runtime <= 0)
3520 return;
3521
3522 raw_spin_lock(&cfs_b->lock);
3523 if (cfs_b->quota != RUNTIME_INF &&
3524 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3525 cfs_b->runtime += slack_runtime;
3526
3527 /* we are under rq->lock, defer unthrottling using a timer */
3528 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3529 !list_empty(&cfs_b->throttled_cfs_rq))
3530 start_cfs_slack_bandwidth(cfs_b);
3531 }
3532 raw_spin_unlock(&cfs_b->lock);
3533
3534 /* even if it's not valid for return we don't want to try again */
3535 cfs_rq->runtime_remaining -= slack_runtime;
3536 }
3537
3538 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3539 {
3540 if (!cfs_bandwidth_used())
3541 return;
3542
3543 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3544 return;
3545
3546 __return_cfs_rq_runtime(cfs_rq);
3547 }
3548
3549 /*
3550 * This is done with a timer (instead of inline with bandwidth return) since
3551 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3552 */
3553 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3554 {
3555 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3556 u64 expires;
3557
3558 /* confirm we're still not at a refresh boundary */
3559 raw_spin_lock(&cfs_b->lock);
3560 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3561 raw_spin_unlock(&cfs_b->lock);
3562 return;
3563 }
3564
3565 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3566 runtime = cfs_b->runtime;
3567 cfs_b->runtime = 0;
3568 }
3569 expires = cfs_b->runtime_expires;
3570 raw_spin_unlock(&cfs_b->lock);
3571
3572 if (!runtime)
3573 return;
3574
3575 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3576
3577 raw_spin_lock(&cfs_b->lock);
3578 if (expires == cfs_b->runtime_expires)
3579 cfs_b->runtime = runtime;
3580 raw_spin_unlock(&cfs_b->lock);
3581 }
3582
3583 /*
3584 * When a group wakes up we want to make sure that its quota is not already
3585 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3586 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3587 */
3588 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3589 {
3590 if (!cfs_bandwidth_used())
3591 return;
3592
3593 /* an active group must be handled by the update_curr()->put() path */
3594 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3595 return;
3596
3597 /* ensure the group is not already throttled */
3598 if (cfs_rq_throttled(cfs_rq))
3599 return;
3600
3601 /* update runtime allocation */
3602 account_cfs_rq_runtime(cfs_rq, 0);
3603 if (cfs_rq->runtime_remaining <= 0)
3604 throttle_cfs_rq(cfs_rq);
3605 }
3606
3607 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3608 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3609 {
3610 if (!cfs_bandwidth_used())
3611 return;
3612
3613 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3614 return;
3615
3616 /*
3617 * it's possible for a throttled entity to be forced into a running
3618 * state (e.g. set_curr_task), in this case we're finished.
3619 */
3620 if (cfs_rq_throttled(cfs_rq))
3621 return;
3622
3623 throttle_cfs_rq(cfs_rq);
3624 }
3625
3626 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3627 {
3628 struct cfs_bandwidth *cfs_b =
3629 container_of(timer, struct cfs_bandwidth, slack_timer);
3630 do_sched_cfs_slack_timer(cfs_b);
3631
3632 return HRTIMER_NORESTART;
3633 }
3634
3635 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3636 {
3637 struct cfs_bandwidth *cfs_b =
3638 container_of(timer, struct cfs_bandwidth, period_timer);
3639 ktime_t now;
3640 int overrun;
3641 int idle = 0;
3642
3643 for (;;) {
3644 now = hrtimer_cb_get_time(timer);
3645 overrun = hrtimer_forward(timer, now, cfs_b->period);
3646
3647 if (!overrun)
3648 break;
3649
3650 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3651 }
3652
3653 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3654 }
3655
3656 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3657 {
3658 raw_spin_lock_init(&cfs_b->lock);
3659 cfs_b->runtime = 0;
3660 cfs_b->quota = RUNTIME_INF;
3661 cfs_b->period = ns_to_ktime(default_cfs_period());
3662
3663 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3664 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3665 cfs_b->period_timer.function = sched_cfs_period_timer;
3666 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3667 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3668 }
3669
3670 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3671 {
3672 cfs_rq->runtime_enabled = 0;
3673 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3674 }
3675
3676 /* requires cfs_b->lock, may release to reprogram timer */
3677 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3678 {
3679 /*
3680 * The timer may be active because we're trying to set a new bandwidth
3681 * period or because we're racing with the tear-down path
3682 * (timer_active==0 becomes visible before the hrtimer call-back
3683 * terminates). In either case we ensure that it's re-programmed
3684 */
3685 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3686 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3687 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3688 raw_spin_unlock(&cfs_b->lock);
3689 cpu_relax();
3690 raw_spin_lock(&cfs_b->lock);
3691 /* if someone else restarted the timer then we're done */
3692 if (cfs_b->timer_active)
3693 return;
3694 }
3695
3696 cfs_b->timer_active = 1;
3697 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3698 }
3699
3700 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3701 {
3702 hrtimer_cancel(&cfs_b->period_timer);
3703 hrtimer_cancel(&cfs_b->slack_timer);
3704 }
3705
3706 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3707 {
3708 struct cfs_rq *cfs_rq;
3709
3710 for_each_leaf_cfs_rq(rq, cfs_rq) {
3711 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3712
3713 if (!cfs_rq->runtime_enabled)
3714 continue;
3715
3716 /*
3717 * clock_task is not advancing so we just need to make sure
3718 * there's some valid quota amount
3719 */
3720 cfs_rq->runtime_remaining = cfs_b->quota;
3721 if (cfs_rq_throttled(cfs_rq))
3722 unthrottle_cfs_rq(cfs_rq);
3723 }
3724 }
3725
3726 #else /* CONFIG_CFS_BANDWIDTH */
3727 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3728 {
3729 return rq_clock_task(rq_of(cfs_rq));
3730 }
3731
3732 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3733 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3734 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3735 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3736
3737 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3738 {
3739 return 0;
3740 }
3741
3742 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3743 {
3744 return 0;
3745 }
3746
3747 static inline int throttled_lb_pair(struct task_group *tg,
3748 int src_cpu, int dest_cpu)
3749 {
3750 return 0;
3751 }
3752
3753 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3754
3755 #ifdef CONFIG_FAIR_GROUP_SCHED
3756 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3757 #endif
3758
3759 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3760 {
3761 return NULL;
3762 }
3763 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3764 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3765
3766 #endif /* CONFIG_CFS_BANDWIDTH */
3767
3768 /**************************************************
3769 * CFS operations on tasks:
3770 */
3771
3772 #ifdef CONFIG_SCHED_HRTICK
3773 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3774 {
3775 struct sched_entity *se = &p->se;
3776 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3777
3778 WARN_ON(task_rq(p) != rq);
3779
3780 if (cfs_rq->nr_running > 1) {
3781 u64 slice = sched_slice(cfs_rq, se);
3782 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3783 s64 delta = slice - ran;
3784
3785 if (delta < 0) {
3786 if (rq->curr == p)
3787 resched_task(p);
3788 return;
3789 }
3790
3791 /*
3792 * Don't schedule slices shorter than 10000ns, that just
3793 * doesn't make sense. Rely on vruntime for fairness.
3794 */
3795 if (rq->curr != p)
3796 delta = max_t(s64, 10000LL, delta);
3797
3798 hrtick_start(rq, delta);
3799 }
3800 }
3801
3802 /*
3803 * called from enqueue/dequeue and updates the hrtick when the
3804 * current task is from our class and nr_running is low enough
3805 * to matter.
3806 */
3807 static void hrtick_update(struct rq *rq)
3808 {
3809 struct task_struct *curr = rq->curr;
3810
3811 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3812 return;
3813
3814 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3815 hrtick_start_fair(rq, curr);
3816 }
3817 #else /* !CONFIG_SCHED_HRTICK */
3818 static inline void
3819 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3820 {
3821 }
3822
3823 static inline void hrtick_update(struct rq *rq)
3824 {
3825 }
3826 #endif
3827
3828 /*
3829 * The enqueue_task method is called before nr_running is
3830 * increased. Here we update the fair scheduling stats and
3831 * then put the task into the rbtree:
3832 */
3833 static void
3834 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3835 {
3836 struct cfs_rq *cfs_rq;
3837 struct sched_entity *se = &p->se;
3838
3839 for_each_sched_entity(se) {
3840 if (se->on_rq)
3841 break;
3842 cfs_rq = cfs_rq_of(se);
3843 enqueue_entity(cfs_rq, se, flags);
3844
3845 /*
3846 * end evaluation on encountering a throttled cfs_rq
3847 *
3848 * note: in the case of encountering a throttled cfs_rq we will
3849 * post the final h_nr_running increment below.
3850 */
3851 if (cfs_rq_throttled(cfs_rq))
3852 break;
3853 cfs_rq->h_nr_running++;
3854
3855 flags = ENQUEUE_WAKEUP;
3856 }
3857
3858 for_each_sched_entity(se) {
3859 cfs_rq = cfs_rq_of(se);
3860 cfs_rq->h_nr_running++;
3861
3862 if (cfs_rq_throttled(cfs_rq))
3863 break;
3864
3865 update_cfs_shares(cfs_rq);
3866 update_entity_load_avg(se, 1);
3867 }
3868
3869 if (!se) {
3870 update_rq_runnable_avg(rq, rq->nr_running);
3871 inc_nr_running(rq);
3872 }
3873 hrtick_update(rq);
3874 }
3875
3876 static void set_next_buddy(struct sched_entity *se);
3877
3878 /*
3879 * The dequeue_task method is called before nr_running is
3880 * decreased. We remove the task from the rbtree and
3881 * update the fair scheduling stats:
3882 */
3883 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3884 {
3885 struct cfs_rq *cfs_rq;
3886 struct sched_entity *se = &p->se;
3887 int task_sleep = flags & DEQUEUE_SLEEP;
3888
3889 for_each_sched_entity(se) {
3890 cfs_rq = cfs_rq_of(se);
3891 dequeue_entity(cfs_rq, se, flags);
3892
3893 /*
3894 * end evaluation on encountering a throttled cfs_rq
3895 *
3896 * note: in the case of encountering a throttled cfs_rq we will
3897 * post the final h_nr_running decrement below.
3898 */
3899 if (cfs_rq_throttled(cfs_rq))
3900 break;
3901 cfs_rq->h_nr_running--;
3902
3903 /* Don't dequeue parent if it has other entities besides us */
3904 if (cfs_rq->load.weight) {
3905 /*
3906 * Bias pick_next to pick a task from this cfs_rq, as
3907 * p is sleeping when it is within its sched_slice.
3908 */
3909 if (task_sleep && parent_entity(se))
3910 set_next_buddy(parent_entity(se));
3911
3912 /* avoid re-evaluating load for this entity */
3913 se = parent_entity(se);
3914 break;
3915 }
3916 flags |= DEQUEUE_SLEEP;
3917 }
3918
3919 for_each_sched_entity(se) {
3920 cfs_rq = cfs_rq_of(se);
3921 cfs_rq->h_nr_running--;
3922
3923 if (cfs_rq_throttled(cfs_rq))
3924 break;
3925
3926 update_cfs_shares(cfs_rq);
3927 update_entity_load_avg(se, 1);
3928 }
3929
3930 if (!se) {
3931 dec_nr_running(rq);
3932 update_rq_runnable_avg(rq, 1);
3933 }
3934 hrtick_update(rq);
3935 }
3936
3937 #ifdef CONFIG_SMP
3938 /* Used instead of source_load when we know the type == 0 */
3939 static unsigned long weighted_cpuload(const int cpu)
3940 {
3941 return cpu_rq(cpu)->cfs.runnable_load_avg;
3942 }
3943
3944 /*
3945 * Return a low guess at the load of a migration-source cpu weighted
3946 * according to the scheduling class and "nice" value.
3947 *
3948 * We want to under-estimate the load of migration sources, to
3949 * balance conservatively.
3950 */
3951 static unsigned long source_load(int cpu, int type)
3952 {
3953 struct rq *rq = cpu_rq(cpu);
3954 unsigned long total = weighted_cpuload(cpu);
3955
3956 if (type == 0 || !sched_feat(LB_BIAS))
3957 return total;
3958
3959 return min(rq->cpu_load[type-1], total);
3960 }
3961
3962 /*
3963 * Return a high guess at the load of a migration-target cpu weighted
3964 * according to the scheduling class and "nice" value.
3965 */
3966 static unsigned long target_load(int cpu, int type)
3967 {
3968 struct rq *rq = cpu_rq(cpu);
3969 unsigned long total = weighted_cpuload(cpu);
3970
3971 if (type == 0 || !sched_feat(LB_BIAS))
3972 return total;
3973
3974 return max(rq->cpu_load[type-1], total);
3975 }
3976
3977 static unsigned long power_of(int cpu)
3978 {
3979 return cpu_rq(cpu)->cpu_power;
3980 }
3981
3982 static unsigned long cpu_avg_load_per_task(int cpu)
3983 {
3984 struct rq *rq = cpu_rq(cpu);
3985 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3986 unsigned long load_avg = rq->cfs.runnable_load_avg;
3987
3988 if (nr_running)
3989 return load_avg / nr_running;
3990
3991 return 0;
3992 }
3993
3994 static void record_wakee(struct task_struct *p)
3995 {
3996 /*
3997 * Rough decay (wiping) for cost saving, don't worry
3998 * about the boundary, really active task won't care
3999 * about the loss.
4000 */
4001 if (jiffies > current->wakee_flip_decay_ts + HZ) {
4002 current->wakee_flips = 0;
4003 current->wakee_flip_decay_ts = jiffies;
4004 }
4005
4006 if (current->last_wakee != p) {
4007 current->last_wakee = p;
4008 current->wakee_flips++;
4009 }
4010 }
4011
4012 static void task_waking_fair(struct task_struct *p)
4013 {
4014 struct sched_entity *se = &p->se;
4015 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4016 u64 min_vruntime;
4017
4018 #ifndef CONFIG_64BIT
4019 u64 min_vruntime_copy;
4020
4021 do {
4022 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4023 smp_rmb();
4024 min_vruntime = cfs_rq->min_vruntime;
4025 } while (min_vruntime != min_vruntime_copy);
4026 #else
4027 min_vruntime = cfs_rq->min_vruntime;
4028 #endif
4029
4030 se->vruntime -= min_vruntime;
4031 record_wakee(p);
4032 }
4033
4034 #ifdef CONFIG_FAIR_GROUP_SCHED
4035 /*
4036 * effective_load() calculates the load change as seen from the root_task_group
4037 *
4038 * Adding load to a group doesn't make a group heavier, but can cause movement
4039 * of group shares between cpus. Assuming the shares were perfectly aligned one
4040 * can calculate the shift in shares.
4041 *
4042 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4043 * on this @cpu and results in a total addition (subtraction) of @wg to the
4044 * total group weight.
4045 *
4046 * Given a runqueue weight distribution (rw_i) we can compute a shares
4047 * distribution (s_i) using:
4048 *
4049 * s_i = rw_i / \Sum rw_j (1)
4050 *
4051 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4052 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4053 * shares distribution (s_i):
4054 *
4055 * rw_i = { 2, 4, 1, 0 }
4056 * s_i = { 2/7, 4/7, 1/7, 0 }
4057 *
4058 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4059 * task used to run on and the CPU the waker is running on), we need to
4060 * compute the effect of waking a task on either CPU and, in case of a sync
4061 * wakeup, compute the effect of the current task going to sleep.
4062 *
4063 * So for a change of @wl to the local @cpu with an overall group weight change
4064 * of @wl we can compute the new shares distribution (s'_i) using:
4065 *
4066 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4067 *
4068 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4069 * differences in waking a task to CPU 0. The additional task changes the
4070 * weight and shares distributions like:
4071 *
4072 * rw'_i = { 3, 4, 1, 0 }
4073 * s'_i = { 3/8, 4/8, 1/8, 0 }
4074 *
4075 * We can then compute the difference in effective weight by using:
4076 *
4077 * dw_i = S * (s'_i - s_i) (3)
4078 *
4079 * Where 'S' is the group weight as seen by its parent.
4080 *
4081 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4082 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4083 * 4/7) times the weight of the group.
4084 */
4085 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4086 {
4087 struct sched_entity *se = tg->se[cpu];
4088
4089 if (!tg->parent) /* the trivial, non-cgroup case */
4090 return wl;
4091
4092 for_each_sched_entity(se) {
4093 long w, W;
4094
4095 tg = se->my_q->tg;
4096
4097 /*
4098 * W = @wg + \Sum rw_j
4099 */
4100 W = wg + calc_tg_weight(tg, se->my_q);
4101
4102 /*
4103 * w = rw_i + @wl
4104 */
4105 w = se->my_q->load.weight + wl;
4106
4107 /*
4108 * wl = S * s'_i; see (2)
4109 */
4110 if (W > 0 && w < W)
4111 wl = (w * tg->shares) / W;
4112 else
4113 wl = tg->shares;
4114
4115 /*
4116 * Per the above, wl is the new se->load.weight value; since
4117 * those are clipped to [MIN_SHARES, ...) do so now. See
4118 * calc_cfs_shares().
4119 */
4120 if (wl < MIN_SHARES)
4121 wl = MIN_SHARES;
4122
4123 /*
4124 * wl = dw_i = S * (s'_i - s_i); see (3)
4125 */
4126 wl -= se->load.weight;
4127
4128 /*
4129 * Recursively apply this logic to all parent groups to compute
4130 * the final effective load change on the root group. Since
4131 * only the @tg group gets extra weight, all parent groups can
4132 * only redistribute existing shares. @wl is the shift in shares
4133 * resulting from this level per the above.
4134 */
4135 wg = 0;
4136 }
4137
4138 return wl;
4139 }
4140 #else
4141
4142 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4143 {
4144 return wl;
4145 }
4146
4147 #endif
4148
4149 static int wake_wide(struct task_struct *p)
4150 {
4151 int factor = this_cpu_read(sd_llc_size);
4152
4153 /*
4154 * Yeah, it's the switching-frequency, could means many wakee or
4155 * rapidly switch, use factor here will just help to automatically
4156 * adjust the loose-degree, so bigger node will lead to more pull.
4157 */
4158 if (p->wakee_flips > factor) {
4159 /*
4160 * wakee is somewhat hot, it needs certain amount of cpu
4161 * resource, so if waker is far more hot, prefer to leave
4162 * it alone.
4163 */
4164 if (current->wakee_flips > (factor * p->wakee_flips))
4165 return 1;
4166 }
4167
4168 return 0;
4169 }
4170
4171 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4172 {
4173 s64 this_load, load;
4174 int idx, this_cpu, prev_cpu;
4175 unsigned long tl_per_task;
4176 struct task_group *tg;
4177 unsigned long weight;
4178 int balanced;
4179
4180 /*
4181 * If we wake multiple tasks be careful to not bounce
4182 * ourselves around too much.
4183 */
4184 if (wake_wide(p))
4185 return 0;
4186
4187 idx = sd->wake_idx;
4188 this_cpu = smp_processor_id();
4189 prev_cpu = task_cpu(p);
4190 load = source_load(prev_cpu, idx);
4191 this_load = target_load(this_cpu, idx);
4192
4193 /*
4194 * If sync wakeup then subtract the (maximum possible)
4195 * effect of the currently running task from the load
4196 * of the current CPU:
4197 */
4198 if (sync) {
4199 tg = task_group(current);
4200 weight = current->se.load.weight;
4201
4202 this_load += effective_load(tg, this_cpu, -weight, -weight);
4203 load += effective_load(tg, prev_cpu, 0, -weight);
4204 }
4205
4206 tg = task_group(p);
4207 weight = p->se.load.weight;
4208
4209 /*
4210 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4211 * due to the sync cause above having dropped this_load to 0, we'll
4212 * always have an imbalance, but there's really nothing you can do
4213 * about that, so that's good too.
4214 *
4215 * Otherwise check if either cpus are near enough in load to allow this
4216 * task to be woken on this_cpu.
4217 */
4218 if (this_load > 0) {
4219 s64 this_eff_load, prev_eff_load;
4220
4221 this_eff_load = 100;
4222 this_eff_load *= power_of(prev_cpu);
4223 this_eff_load *= this_load +
4224 effective_load(tg, this_cpu, weight, weight);
4225
4226 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4227 prev_eff_load *= power_of(this_cpu);
4228 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4229
4230 balanced = this_eff_load <= prev_eff_load;
4231 } else
4232 balanced = true;
4233
4234 /*
4235 * If the currently running task will sleep within
4236 * a reasonable amount of time then attract this newly
4237 * woken task:
4238 */
4239 if (sync && balanced)
4240 return 1;
4241
4242 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4243 tl_per_task = cpu_avg_load_per_task(this_cpu);
4244
4245 if (balanced ||
4246 (this_load <= load &&
4247 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4248 /*
4249 * This domain has SD_WAKE_AFFINE and
4250 * p is cache cold in this domain, and
4251 * there is no bad imbalance.
4252 */
4253 schedstat_inc(sd, ttwu_move_affine);
4254 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4255
4256 return 1;
4257 }
4258 return 0;
4259 }
4260
4261 /*
4262 * find_idlest_group finds and returns the least busy CPU group within the
4263 * domain.
4264 */
4265 static struct sched_group *
4266 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4267 int this_cpu, int sd_flag)
4268 {
4269 struct sched_group *idlest = NULL, *group = sd->groups;
4270 unsigned long min_load = ULONG_MAX, this_load = 0;
4271 int load_idx = sd->forkexec_idx;
4272 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4273
4274 if (sd_flag & SD_BALANCE_WAKE)
4275 load_idx = sd->wake_idx;
4276
4277 do {
4278 unsigned long load, avg_load;
4279 int local_group;
4280 int i;
4281
4282 /* Skip over this group if it has no CPUs allowed */
4283 if (!cpumask_intersects(sched_group_cpus(group),
4284 tsk_cpus_allowed(p)))
4285 continue;
4286
4287 local_group = cpumask_test_cpu(this_cpu,
4288 sched_group_cpus(group));
4289
4290 /* Tally up the load of all CPUs in the group */
4291 avg_load = 0;
4292
4293 for_each_cpu(i, sched_group_cpus(group)) {
4294 /* Bias balancing toward cpus of our domain */
4295 if (local_group)
4296 load = source_load(i, load_idx);
4297 else
4298 load = target_load(i, load_idx);
4299
4300 avg_load += load;
4301 }
4302
4303 /* Adjust by relative CPU power of the group */
4304 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4305
4306 if (local_group) {
4307 this_load = avg_load;
4308 } else if (avg_load < min_load) {
4309 min_load = avg_load;
4310 idlest = group;
4311 }
4312 } while (group = group->next, group != sd->groups);
4313
4314 if (!idlest || 100*this_load < imbalance*min_load)
4315 return NULL;
4316 return idlest;
4317 }
4318
4319 /*
4320 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4321 */
4322 static int
4323 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4324 {
4325 unsigned long load, min_load = ULONG_MAX;
4326 int idlest = -1;
4327 int i;
4328
4329 /* Traverse only the allowed CPUs */
4330 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4331 load = weighted_cpuload(i);
4332
4333 if (load < min_load || (load == min_load && i == this_cpu)) {
4334 min_load = load;
4335 idlest = i;
4336 }
4337 }
4338
4339 return idlest;
4340 }
4341
4342 /*
4343 * Try and locate an idle CPU in the sched_domain.
4344 */
4345 static int select_idle_sibling(struct task_struct *p, int target)
4346 {
4347 struct sched_domain *sd;
4348 struct sched_group *sg;
4349 int i = task_cpu(p);
4350
4351 if (idle_cpu(target))
4352 return target;
4353
4354 /*
4355 * If the prevous cpu is cache affine and idle, don't be stupid.
4356 */
4357 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4358 return i;
4359
4360 /*
4361 * Otherwise, iterate the domains and find an elegible idle cpu.
4362 */
4363 sd = rcu_dereference(per_cpu(sd_llc, target));
4364 for_each_lower_domain(sd) {
4365 sg = sd->groups;
4366 do {
4367 if (!cpumask_intersects(sched_group_cpus(sg),
4368 tsk_cpus_allowed(p)))
4369 goto next;
4370
4371 for_each_cpu(i, sched_group_cpus(sg)) {
4372 if (i == target || !idle_cpu(i))
4373 goto next;
4374 }
4375
4376 target = cpumask_first_and(sched_group_cpus(sg),
4377 tsk_cpus_allowed(p));
4378 goto done;
4379 next:
4380 sg = sg->next;
4381 } while (sg != sd->groups);
4382 }
4383 done:
4384 return target;
4385 }
4386
4387 /*
4388 * sched_balance_self: balance the current task (running on cpu) in domains
4389 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4390 * SD_BALANCE_EXEC.
4391 *
4392 * Balance, ie. select the least loaded group.
4393 *
4394 * Returns the target CPU number, or the same CPU if no balancing is needed.
4395 *
4396 * preempt must be disabled.
4397 */
4398 static int
4399 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4400 {
4401 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4402 int cpu = smp_processor_id();
4403 int new_cpu = cpu;
4404 int want_affine = 0;
4405 int sync = wake_flags & WF_SYNC;
4406
4407 if (p->nr_cpus_allowed == 1)
4408 return prev_cpu;
4409
4410 if (sd_flag & SD_BALANCE_WAKE) {
4411 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4412 want_affine = 1;
4413 new_cpu = prev_cpu;
4414 }
4415
4416 rcu_read_lock();
4417 for_each_domain(cpu, tmp) {
4418 if (!(tmp->flags & SD_LOAD_BALANCE))
4419 continue;
4420
4421 /*
4422 * If both cpu and prev_cpu are part of this domain,
4423 * cpu is a valid SD_WAKE_AFFINE target.
4424 */
4425 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4426 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4427 affine_sd = tmp;
4428 break;
4429 }
4430
4431 if (tmp->flags & sd_flag)
4432 sd = tmp;
4433 }
4434
4435 if (affine_sd) {
4436 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4437 prev_cpu = cpu;
4438
4439 new_cpu = select_idle_sibling(p, prev_cpu);
4440 goto unlock;
4441 }
4442
4443 while (sd) {
4444 struct sched_group *group;
4445 int weight;
4446
4447 if (!(sd->flags & sd_flag)) {
4448 sd = sd->child;
4449 continue;
4450 }
4451
4452 group = find_idlest_group(sd, p, cpu, sd_flag);
4453 if (!group) {
4454 sd = sd->child;
4455 continue;
4456 }
4457
4458 new_cpu = find_idlest_cpu(group, p, cpu);
4459 if (new_cpu == -1 || new_cpu == cpu) {
4460 /* Now try balancing at a lower domain level of cpu */
4461 sd = sd->child;
4462 continue;
4463 }
4464
4465 /* Now try balancing at a lower domain level of new_cpu */
4466 cpu = new_cpu;
4467 weight = sd->span_weight;
4468 sd = NULL;
4469 for_each_domain(cpu, tmp) {
4470 if (weight <= tmp->span_weight)
4471 break;
4472 if (tmp->flags & sd_flag)
4473 sd = tmp;
4474 }
4475 /* while loop will break here if sd == NULL */
4476 }
4477 unlock:
4478 rcu_read_unlock();
4479
4480 return new_cpu;
4481 }
4482
4483 /*
4484 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4485 * cfs_rq_of(p) references at time of call are still valid and identify the
4486 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4487 * other assumptions, including the state of rq->lock, should be made.
4488 */
4489 static void
4490 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4491 {
4492 struct sched_entity *se = &p->se;
4493 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4494
4495 /*
4496 * Load tracking: accumulate removed load so that it can be processed
4497 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4498 * to blocked load iff they have a positive decay-count. It can never
4499 * be negative here since on-rq tasks have decay-count == 0.
4500 */
4501 if (se->avg.decay_count) {
4502 se->avg.decay_count = -__synchronize_entity_decay(se);
4503 atomic_long_add(se->avg.load_avg_contrib,
4504 &cfs_rq->removed_load);
4505 }
4506 }
4507 #endif /* CONFIG_SMP */
4508
4509 static unsigned long
4510 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4511 {
4512 unsigned long gran = sysctl_sched_wakeup_granularity;
4513
4514 /*
4515 * Since its curr running now, convert the gran from real-time
4516 * to virtual-time in his units.
4517 *
4518 * By using 'se' instead of 'curr' we penalize light tasks, so
4519 * they get preempted easier. That is, if 'se' < 'curr' then
4520 * the resulting gran will be larger, therefore penalizing the
4521 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4522 * be smaller, again penalizing the lighter task.
4523 *
4524 * This is especially important for buddies when the leftmost
4525 * task is higher priority than the buddy.
4526 */
4527 return calc_delta_fair(gran, se);
4528 }
4529
4530 /*
4531 * Should 'se' preempt 'curr'.
4532 *
4533 * |s1
4534 * |s2
4535 * |s3
4536 * g
4537 * |<--->|c
4538 *
4539 * w(c, s1) = -1
4540 * w(c, s2) = 0
4541 * w(c, s3) = 1
4542 *
4543 */
4544 static int
4545 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4546 {
4547 s64 gran, vdiff = curr->vruntime - se->vruntime;
4548
4549 if (vdiff <= 0)
4550 return -1;
4551
4552 gran = wakeup_gran(curr, se);
4553 if (vdiff > gran)
4554 return 1;
4555
4556 return 0;
4557 }
4558
4559 static void set_last_buddy(struct sched_entity *se)
4560 {
4561 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4562 return;
4563
4564 for_each_sched_entity(se)
4565 cfs_rq_of(se)->last = se;
4566 }
4567
4568 static void set_next_buddy(struct sched_entity *se)
4569 {
4570 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4571 return;
4572
4573 for_each_sched_entity(se)
4574 cfs_rq_of(se)->next = se;
4575 }
4576
4577 static void set_skip_buddy(struct sched_entity *se)
4578 {
4579 for_each_sched_entity(se)
4580 cfs_rq_of(se)->skip = se;
4581 }
4582
4583 /*
4584 * Preempt the current task with a newly woken task if needed:
4585 */
4586 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4587 {
4588 struct task_struct *curr = rq->curr;
4589 struct sched_entity *se = &curr->se, *pse = &p->se;
4590 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4591 int scale = cfs_rq->nr_running >= sched_nr_latency;
4592 int next_buddy_marked = 0;
4593
4594 if (unlikely(se == pse))
4595 return;
4596
4597 /*
4598 * This is possible from callers such as move_task(), in which we
4599 * unconditionally check_prempt_curr() after an enqueue (which may have
4600 * lead to a throttle). This both saves work and prevents false
4601 * next-buddy nomination below.
4602 */
4603 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4604 return;
4605
4606 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4607 set_next_buddy(pse);
4608 next_buddy_marked = 1;
4609 }
4610
4611 /*
4612 * We can come here with TIF_NEED_RESCHED already set from new task
4613 * wake up path.
4614 *
4615 * Note: this also catches the edge-case of curr being in a throttled
4616 * group (e.g. via set_curr_task), since update_curr() (in the
4617 * enqueue of curr) will have resulted in resched being set. This
4618 * prevents us from potentially nominating it as a false LAST_BUDDY
4619 * below.
4620 */
4621 if (test_tsk_need_resched(curr))
4622 return;
4623
4624 /* Idle tasks are by definition preempted by non-idle tasks. */
4625 if (unlikely(curr->policy == SCHED_IDLE) &&
4626 likely(p->policy != SCHED_IDLE))
4627 goto preempt;
4628
4629 /*
4630 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4631 * is driven by the tick):
4632 */
4633 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4634 return;
4635
4636 find_matching_se(&se, &pse);
4637 update_curr(cfs_rq_of(se));
4638 BUG_ON(!pse);
4639 if (wakeup_preempt_entity(se, pse) == 1) {
4640 /*
4641 * Bias pick_next to pick the sched entity that is
4642 * triggering this preemption.
4643 */
4644 if (!next_buddy_marked)
4645 set_next_buddy(pse);
4646 goto preempt;
4647 }
4648
4649 return;
4650
4651 preempt:
4652 resched_task(curr);
4653 /*
4654 * Only set the backward buddy when the current task is still
4655 * on the rq. This can happen when a wakeup gets interleaved
4656 * with schedule on the ->pre_schedule() or idle_balance()
4657 * point, either of which can * drop the rq lock.
4658 *
4659 * Also, during early boot the idle thread is in the fair class,
4660 * for obvious reasons its a bad idea to schedule back to it.
4661 */
4662 if (unlikely(!se->on_rq || curr == rq->idle))
4663 return;
4664
4665 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4666 set_last_buddy(se);
4667 }
4668
4669 static struct task_struct *pick_next_task_fair(struct rq *rq)
4670 {
4671 struct task_struct *p;
4672 struct cfs_rq *cfs_rq = &rq->cfs;
4673 struct sched_entity *se;
4674
4675 if (!cfs_rq->nr_running)
4676 return NULL;
4677
4678 do {
4679 se = pick_next_entity(cfs_rq);
4680 set_next_entity(cfs_rq, se);
4681 cfs_rq = group_cfs_rq(se);
4682 } while (cfs_rq);
4683
4684 p = task_of(se);
4685 if (hrtick_enabled(rq))
4686 hrtick_start_fair(rq, p);
4687
4688 return p;
4689 }
4690
4691 /*
4692 * Account for a descheduled task:
4693 */
4694 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4695 {
4696 struct sched_entity *se = &prev->se;
4697 struct cfs_rq *cfs_rq;
4698
4699 for_each_sched_entity(se) {
4700 cfs_rq = cfs_rq_of(se);
4701 put_prev_entity(cfs_rq, se);
4702 }
4703 }
4704
4705 /*
4706 * sched_yield() is very simple
4707 *
4708 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4709 */
4710 static void yield_task_fair(struct rq *rq)
4711 {
4712 struct task_struct *curr = rq->curr;
4713 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4714 struct sched_entity *se = &curr->se;
4715
4716 /*
4717 * Are we the only task in the tree?
4718 */
4719 if (unlikely(rq->nr_running == 1))
4720 return;
4721
4722 clear_buddies(cfs_rq, se);
4723
4724 if (curr->policy != SCHED_BATCH) {
4725 update_rq_clock(rq);
4726 /*
4727 * Update run-time statistics of the 'current'.
4728 */
4729 update_curr(cfs_rq);
4730 /*
4731 * Tell update_rq_clock() that we've just updated,
4732 * so we don't do microscopic update in schedule()
4733 * and double the fastpath cost.
4734 */
4735 rq->skip_clock_update = 1;
4736 }
4737
4738 set_skip_buddy(se);
4739 }
4740
4741 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4742 {
4743 struct sched_entity *se = &p->se;
4744
4745 /* throttled hierarchies are not runnable */
4746 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4747 return false;
4748
4749 /* Tell the scheduler that we'd really like pse to run next. */
4750 set_next_buddy(se);
4751
4752 yield_task_fair(rq);
4753
4754 return true;
4755 }
4756
4757 #ifdef CONFIG_SMP
4758 /**************************************************
4759 * Fair scheduling class load-balancing methods.
4760 *
4761 * BASICS
4762 *
4763 * The purpose of load-balancing is to achieve the same basic fairness the
4764 * per-cpu scheduler provides, namely provide a proportional amount of compute
4765 * time to each task. This is expressed in the following equation:
4766 *
4767 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4768 *
4769 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4770 * W_i,0 is defined as:
4771 *
4772 * W_i,0 = \Sum_j w_i,j (2)
4773 *
4774 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4775 * is derived from the nice value as per prio_to_weight[].
4776 *
4777 * The weight average is an exponential decay average of the instantaneous
4778 * weight:
4779 *
4780 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4781 *
4782 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4783 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4784 * can also include other factors [XXX].
4785 *
4786 * To achieve this balance we define a measure of imbalance which follows
4787 * directly from (1):
4788 *
4789 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4790 *
4791 * We them move tasks around to minimize the imbalance. In the continuous
4792 * function space it is obvious this converges, in the discrete case we get
4793 * a few fun cases generally called infeasible weight scenarios.
4794 *
4795 * [XXX expand on:
4796 * - infeasible weights;
4797 * - local vs global optima in the discrete case. ]
4798 *
4799 *
4800 * SCHED DOMAINS
4801 *
4802 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4803 * for all i,j solution, we create a tree of cpus that follows the hardware
4804 * topology where each level pairs two lower groups (or better). This results
4805 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4806 * tree to only the first of the previous level and we decrease the frequency
4807 * of load-balance at each level inv. proportional to the number of cpus in
4808 * the groups.
4809 *
4810 * This yields:
4811 *
4812 * log_2 n 1 n
4813 * \Sum { --- * --- * 2^i } = O(n) (5)
4814 * i = 0 2^i 2^i
4815 * `- size of each group
4816 * | | `- number of cpus doing load-balance
4817 * | `- freq
4818 * `- sum over all levels
4819 *
4820 * Coupled with a limit on how many tasks we can migrate every balance pass,
4821 * this makes (5) the runtime complexity of the balancer.
4822 *
4823 * An important property here is that each CPU is still (indirectly) connected
4824 * to every other cpu in at most O(log n) steps:
4825 *
4826 * The adjacency matrix of the resulting graph is given by:
4827 *
4828 * log_2 n
4829 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4830 * k = 0
4831 *
4832 * And you'll find that:
4833 *
4834 * A^(log_2 n)_i,j != 0 for all i,j (7)
4835 *
4836 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4837 * The task movement gives a factor of O(m), giving a convergence complexity
4838 * of:
4839 *
4840 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4841 *
4842 *
4843 * WORK CONSERVING
4844 *
4845 * In order to avoid CPUs going idle while there's still work to do, new idle
4846 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4847 * tree itself instead of relying on other CPUs to bring it work.
4848 *
4849 * This adds some complexity to both (5) and (8) but it reduces the total idle
4850 * time.
4851 *
4852 * [XXX more?]
4853 *
4854 *
4855 * CGROUPS
4856 *
4857 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4858 *
4859 * s_k,i
4860 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4861 * S_k
4862 *
4863 * Where
4864 *
4865 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4866 *
4867 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4868 *
4869 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4870 * property.
4871 *
4872 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4873 * rewrite all of this once again.]
4874 */
4875
4876 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4877
4878 enum fbq_type { regular, remote, all };
4879
4880 #define LBF_ALL_PINNED 0x01
4881 #define LBF_NEED_BREAK 0x02
4882 #define LBF_DST_PINNED 0x04
4883 #define LBF_SOME_PINNED 0x08
4884
4885 struct lb_env {
4886 struct sched_domain *sd;
4887
4888 struct rq *src_rq;
4889 int src_cpu;
4890
4891 int dst_cpu;
4892 struct rq *dst_rq;
4893
4894 struct cpumask *dst_grpmask;
4895 int new_dst_cpu;
4896 enum cpu_idle_type idle;
4897 long imbalance;
4898 /* The set of CPUs under consideration for load-balancing */
4899 struct cpumask *cpus;
4900
4901 unsigned int flags;
4902
4903 unsigned int loop;
4904 unsigned int loop_break;
4905 unsigned int loop_max;
4906
4907 enum fbq_type fbq_type;
4908 };
4909
4910 /*
4911 * move_task - move a task from one runqueue to another runqueue.
4912 * Both runqueues must be locked.
4913 */
4914 static void move_task(struct task_struct *p, struct lb_env *env)
4915 {
4916 deactivate_task(env->src_rq, p, 0);
4917 set_task_cpu(p, env->dst_cpu);
4918 activate_task(env->dst_rq, p, 0);
4919 check_preempt_curr(env->dst_rq, p, 0);
4920 }
4921
4922 /*
4923 * Is this task likely cache-hot:
4924 */
4925 static int
4926 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4927 {
4928 s64 delta;
4929
4930 if (p->sched_class != &fair_sched_class)
4931 return 0;
4932
4933 if (unlikely(p->policy == SCHED_IDLE))
4934 return 0;
4935
4936 /*
4937 * Buddy candidates are cache hot:
4938 */
4939 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4940 (&p->se == cfs_rq_of(&p->se)->next ||
4941 &p->se == cfs_rq_of(&p->se)->last))
4942 return 1;
4943
4944 if (sysctl_sched_migration_cost == -1)
4945 return 1;
4946 if (sysctl_sched_migration_cost == 0)
4947 return 0;
4948
4949 delta = now - p->se.exec_start;
4950
4951 return delta < (s64)sysctl_sched_migration_cost;
4952 }
4953
4954 #ifdef CONFIG_NUMA_BALANCING
4955 /* Returns true if the destination node has incurred more faults */
4956 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4957 {
4958 int src_nid, dst_nid;
4959
4960 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
4961 !(env->sd->flags & SD_NUMA)) {
4962 return false;
4963 }
4964
4965 src_nid = cpu_to_node(env->src_cpu);
4966 dst_nid = cpu_to_node(env->dst_cpu);
4967
4968 if (src_nid == dst_nid)
4969 return false;
4970
4971 /* Always encourage migration to the preferred node. */
4972 if (dst_nid == p->numa_preferred_nid)
4973 return true;
4974
4975 /* If both task and group weight improve, this move is a winner. */
4976 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4977 group_weight(p, dst_nid) > group_weight(p, src_nid))
4978 return true;
4979
4980 return false;
4981 }
4982
4983
4984 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4985 {
4986 int src_nid, dst_nid;
4987
4988 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4989 return false;
4990
4991 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
4992 return false;
4993
4994 src_nid = cpu_to_node(env->src_cpu);
4995 dst_nid = cpu_to_node(env->dst_cpu);
4996
4997 if (src_nid == dst_nid)
4998 return false;
4999
5000 /* Migrating away from the preferred node is always bad. */
5001 if (src_nid == p->numa_preferred_nid)
5002 return true;
5003
5004 /* If either task or group weight get worse, don't do it. */
5005 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
5006 group_weight(p, dst_nid) < group_weight(p, src_nid))
5007 return true;
5008
5009 return false;
5010 }
5011
5012 #else
5013 static inline bool migrate_improves_locality(struct task_struct *p,
5014 struct lb_env *env)
5015 {
5016 return false;
5017 }
5018
5019 static inline bool migrate_degrades_locality(struct task_struct *p,
5020 struct lb_env *env)
5021 {
5022 return false;
5023 }
5024 #endif
5025
5026 /*
5027 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5028 */
5029 static
5030 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5031 {
5032 int tsk_cache_hot = 0;
5033 /*
5034 * We do not migrate tasks that are:
5035 * 1) throttled_lb_pair, or
5036 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5037 * 3) running (obviously), or
5038 * 4) are cache-hot on their current CPU.
5039 */
5040 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5041 return 0;
5042
5043 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5044 int cpu;
5045
5046 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5047
5048 env->flags |= LBF_SOME_PINNED;
5049
5050 /*
5051 * Remember if this task can be migrated to any other cpu in
5052 * our sched_group. We may want to revisit it if we couldn't
5053 * meet load balance goals by pulling other tasks on src_cpu.
5054 *
5055 * Also avoid computing new_dst_cpu if we have already computed
5056 * one in current iteration.
5057 */
5058 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5059 return 0;
5060
5061 /* Prevent to re-select dst_cpu via env's cpus */
5062 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5063 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5064 env->flags |= LBF_DST_PINNED;
5065 env->new_dst_cpu = cpu;
5066 break;
5067 }
5068 }
5069
5070 return 0;
5071 }
5072
5073 /* Record that we found atleast one task that could run on dst_cpu */
5074 env->flags &= ~LBF_ALL_PINNED;
5075
5076 if (task_running(env->src_rq, p)) {
5077 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5078 return 0;
5079 }
5080
5081 /*
5082 * Aggressive migration if:
5083 * 1) destination numa is preferred
5084 * 2) task is cache cold, or
5085 * 3) too many balance attempts have failed.
5086 */
5087 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
5088 if (!tsk_cache_hot)
5089 tsk_cache_hot = migrate_degrades_locality(p, env);
5090
5091 if (migrate_improves_locality(p, env)) {
5092 #ifdef CONFIG_SCHEDSTATS
5093 if (tsk_cache_hot) {
5094 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5095 schedstat_inc(p, se.statistics.nr_forced_migrations);
5096 }
5097 #endif
5098 return 1;
5099 }
5100
5101 if (!tsk_cache_hot ||
5102 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5103
5104 if (tsk_cache_hot) {
5105 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5106 schedstat_inc(p, se.statistics.nr_forced_migrations);
5107 }
5108
5109 return 1;
5110 }
5111
5112 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5113 return 0;
5114 }
5115
5116 /*
5117 * move_one_task tries to move exactly one task from busiest to this_rq, as
5118 * part of active balancing operations within "domain".
5119 * Returns 1 if successful and 0 otherwise.
5120 *
5121 * Called with both runqueues locked.
5122 */
5123 static int move_one_task(struct lb_env *env)
5124 {
5125 struct task_struct *p, *n;
5126
5127 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5128 if (!can_migrate_task(p, env))
5129 continue;
5130
5131 move_task(p, env);
5132 /*
5133 * Right now, this is only the second place move_task()
5134 * is called, so we can safely collect move_task()
5135 * stats here rather than inside move_task().
5136 */
5137 schedstat_inc(env->sd, lb_gained[env->idle]);
5138 return 1;
5139 }
5140 return 0;
5141 }
5142
5143 static const unsigned int sched_nr_migrate_break = 32;
5144
5145 /*
5146 * move_tasks tries to move up to imbalance weighted load from busiest to
5147 * this_rq, as part of a balancing operation within domain "sd".
5148 * Returns 1 if successful and 0 otherwise.
5149 *
5150 * Called with both runqueues locked.
5151 */
5152 static int move_tasks(struct lb_env *env)
5153 {
5154 struct list_head *tasks = &env->src_rq->cfs_tasks;
5155 struct task_struct *p;
5156 unsigned long load;
5157 int pulled = 0;
5158
5159 if (env->imbalance <= 0)
5160 return 0;
5161
5162 while (!list_empty(tasks)) {
5163 p = list_first_entry(tasks, struct task_struct, se.group_node);
5164
5165 env->loop++;
5166 /* We've more or less seen every task there is, call it quits */
5167 if (env->loop > env->loop_max)
5168 break;
5169
5170 /* take a breather every nr_migrate tasks */
5171 if (env->loop > env->loop_break) {
5172 env->loop_break += sched_nr_migrate_break;
5173 env->flags |= LBF_NEED_BREAK;
5174 break;
5175 }
5176
5177 if (!can_migrate_task(p, env))
5178 goto next;
5179
5180 load = task_h_load(p);
5181
5182 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5183 goto next;
5184
5185 if ((load / 2) > env->imbalance)
5186 goto next;
5187
5188 move_task(p, env);
5189 pulled++;
5190 env->imbalance -= load;
5191
5192 #ifdef CONFIG_PREEMPT
5193 /*
5194 * NEWIDLE balancing is a source of latency, so preemptible
5195 * kernels will stop after the first task is pulled to minimize
5196 * the critical section.
5197 */
5198 if (env->idle == CPU_NEWLY_IDLE)
5199 break;
5200 #endif
5201
5202 /*
5203 * We only want to steal up to the prescribed amount of
5204 * weighted load.
5205 */
5206 if (env->imbalance <= 0)
5207 break;
5208
5209 continue;
5210 next:
5211 list_move_tail(&p->se.group_node, tasks);
5212 }
5213
5214 /*
5215 * Right now, this is one of only two places move_task() is called,
5216 * so we can safely collect move_task() stats here rather than
5217 * inside move_task().
5218 */
5219 schedstat_add(env->sd, lb_gained[env->idle], pulled);
5220
5221 return pulled;
5222 }
5223
5224 #ifdef CONFIG_FAIR_GROUP_SCHED
5225 /*
5226 * update tg->load_weight by folding this cpu's load_avg
5227 */
5228 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5229 {
5230 struct sched_entity *se = tg->se[cpu];
5231 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5232
5233 /* throttled entities do not contribute to load */
5234 if (throttled_hierarchy(cfs_rq))
5235 return;
5236
5237 update_cfs_rq_blocked_load(cfs_rq, 1);
5238
5239 if (se) {
5240 update_entity_load_avg(se, 1);
5241 /*
5242 * We pivot on our runnable average having decayed to zero for
5243 * list removal. This generally implies that all our children
5244 * have also been removed (modulo rounding error or bandwidth
5245 * control); however, such cases are rare and we can fix these
5246 * at enqueue.
5247 *
5248 * TODO: fix up out-of-order children on enqueue.
5249 */
5250 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5251 list_del_leaf_cfs_rq(cfs_rq);
5252 } else {
5253 struct rq *rq = rq_of(cfs_rq);
5254 update_rq_runnable_avg(rq, rq->nr_running);
5255 }
5256 }
5257
5258 static void update_blocked_averages(int cpu)
5259 {
5260 struct rq *rq = cpu_rq(cpu);
5261 struct cfs_rq *cfs_rq;
5262 unsigned long flags;
5263
5264 raw_spin_lock_irqsave(&rq->lock, flags);
5265 update_rq_clock(rq);
5266 /*
5267 * Iterates the task_group tree in a bottom up fashion, see
5268 * list_add_leaf_cfs_rq() for details.
5269 */
5270 for_each_leaf_cfs_rq(rq, cfs_rq) {
5271 /*
5272 * Note: We may want to consider periodically releasing
5273 * rq->lock about these updates so that creating many task
5274 * groups does not result in continually extending hold time.
5275 */
5276 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5277 }
5278
5279 raw_spin_unlock_irqrestore(&rq->lock, flags);
5280 }
5281
5282 /*
5283 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5284 * This needs to be done in a top-down fashion because the load of a child
5285 * group is a fraction of its parents load.
5286 */
5287 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5288 {
5289 struct rq *rq = rq_of(cfs_rq);
5290 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5291 unsigned long now = jiffies;
5292 unsigned long load;
5293
5294 if (cfs_rq->last_h_load_update == now)
5295 return;
5296
5297 cfs_rq->h_load_next = NULL;
5298 for_each_sched_entity(se) {
5299 cfs_rq = cfs_rq_of(se);
5300 cfs_rq->h_load_next = se;
5301 if (cfs_rq->last_h_load_update == now)
5302 break;
5303 }
5304
5305 if (!se) {
5306 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5307 cfs_rq->last_h_load_update = now;
5308 }
5309
5310 while ((se = cfs_rq->h_load_next) != NULL) {
5311 load = cfs_rq->h_load;
5312 load = div64_ul(load * se->avg.load_avg_contrib,
5313 cfs_rq->runnable_load_avg + 1);
5314 cfs_rq = group_cfs_rq(se);
5315 cfs_rq->h_load = load;
5316 cfs_rq->last_h_load_update = now;
5317 }
5318 }
5319
5320 static unsigned long task_h_load(struct task_struct *p)
5321 {
5322 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5323
5324 update_cfs_rq_h_load(cfs_rq);
5325 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5326 cfs_rq->runnable_load_avg + 1);
5327 }
5328 #else
5329 static inline void update_blocked_averages(int cpu)
5330 {
5331 }
5332
5333 static unsigned long task_h_load(struct task_struct *p)
5334 {
5335 return p->se.avg.load_avg_contrib;
5336 }
5337 #endif
5338
5339 /********** Helpers for find_busiest_group ************************/
5340 /*
5341 * sg_lb_stats - stats of a sched_group required for load_balancing
5342 */
5343 struct sg_lb_stats {
5344 unsigned long avg_load; /*Avg load across the CPUs of the group */
5345 unsigned long group_load; /* Total load over the CPUs of the group */
5346 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5347 unsigned long load_per_task;
5348 unsigned long group_power;
5349 unsigned int sum_nr_running; /* Nr tasks running in the group */
5350 unsigned int group_capacity;
5351 unsigned int idle_cpus;
5352 unsigned int group_weight;
5353 int group_imb; /* Is there an imbalance in the group ? */
5354 int group_has_capacity; /* Is there extra capacity in the group? */
5355 #ifdef CONFIG_NUMA_BALANCING
5356 unsigned int nr_numa_running;
5357 unsigned int nr_preferred_running;
5358 #endif
5359 };
5360
5361 /*
5362 * sd_lb_stats - Structure to store the statistics of a sched_domain
5363 * during load balancing.
5364 */
5365 struct sd_lb_stats {
5366 struct sched_group *busiest; /* Busiest group in this sd */
5367 struct sched_group *local; /* Local group in this sd */
5368 unsigned long total_load; /* Total load of all groups in sd */
5369 unsigned long total_pwr; /* Total power of all groups in sd */
5370 unsigned long avg_load; /* Average load across all groups in sd */
5371
5372 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5373 struct sg_lb_stats local_stat; /* Statistics of the local group */
5374 };
5375
5376 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5377 {
5378 /*
5379 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5380 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5381 * We must however clear busiest_stat::avg_load because
5382 * update_sd_pick_busiest() reads this before assignment.
5383 */
5384 *sds = (struct sd_lb_stats){
5385 .busiest = NULL,
5386 .local = NULL,
5387 .total_load = 0UL,
5388 .total_pwr = 0UL,
5389 .busiest_stat = {
5390 .avg_load = 0UL,
5391 },
5392 };
5393 }
5394
5395 /**
5396 * get_sd_load_idx - Obtain the load index for a given sched domain.
5397 * @sd: The sched_domain whose load_idx is to be obtained.
5398 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5399 *
5400 * Return: The load index.
5401 */
5402 static inline int get_sd_load_idx(struct sched_domain *sd,
5403 enum cpu_idle_type idle)
5404 {
5405 int load_idx;
5406
5407 switch (idle) {
5408 case CPU_NOT_IDLE:
5409 load_idx = sd->busy_idx;
5410 break;
5411
5412 case CPU_NEWLY_IDLE:
5413 load_idx = sd->newidle_idx;
5414 break;
5415 default:
5416 load_idx = sd->idle_idx;
5417 break;
5418 }
5419
5420 return load_idx;
5421 }
5422
5423 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5424 {
5425 return SCHED_POWER_SCALE;
5426 }
5427
5428 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5429 {
5430 return default_scale_freq_power(sd, cpu);
5431 }
5432
5433 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5434 {
5435 unsigned long weight = sd->span_weight;
5436 unsigned long smt_gain = sd->smt_gain;
5437
5438 smt_gain /= weight;
5439
5440 return smt_gain;
5441 }
5442
5443 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5444 {
5445 return default_scale_smt_power(sd, cpu);
5446 }
5447
5448 static unsigned long scale_rt_power(int cpu)
5449 {
5450 struct rq *rq = cpu_rq(cpu);
5451 u64 total, available, age_stamp, avg;
5452
5453 /*
5454 * Since we're reading these variables without serialization make sure
5455 * we read them once before doing sanity checks on them.
5456 */
5457 age_stamp = ACCESS_ONCE(rq->age_stamp);
5458 avg = ACCESS_ONCE(rq->rt_avg);
5459
5460 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5461
5462 if (unlikely(total < avg)) {
5463 /* Ensures that power won't end up being negative */
5464 available = 0;
5465 } else {
5466 available = total - avg;
5467 }
5468
5469 if (unlikely((s64)total < SCHED_POWER_SCALE))
5470 total = SCHED_POWER_SCALE;
5471
5472 total >>= SCHED_POWER_SHIFT;
5473
5474 return div_u64(available, total);
5475 }
5476
5477 static void update_cpu_power(struct sched_domain *sd, int cpu)
5478 {
5479 unsigned long weight = sd->span_weight;
5480 unsigned long power = SCHED_POWER_SCALE;
5481 struct sched_group *sdg = sd->groups;
5482
5483 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5484 if (sched_feat(ARCH_POWER))
5485 power *= arch_scale_smt_power(sd, cpu);
5486 else
5487 power *= default_scale_smt_power(sd, cpu);
5488
5489 power >>= SCHED_POWER_SHIFT;
5490 }
5491
5492 sdg->sgp->power_orig = power;
5493
5494 if (sched_feat(ARCH_POWER))
5495 power *= arch_scale_freq_power(sd, cpu);
5496 else
5497 power *= default_scale_freq_power(sd, cpu);
5498
5499 power >>= SCHED_POWER_SHIFT;
5500
5501 power *= scale_rt_power(cpu);
5502 power >>= SCHED_POWER_SHIFT;
5503
5504 if (!power)
5505 power = 1;
5506
5507 cpu_rq(cpu)->cpu_power = power;
5508 sdg->sgp->power = power;
5509 }
5510
5511 void update_group_power(struct sched_domain *sd, int cpu)
5512 {
5513 struct sched_domain *child = sd->child;
5514 struct sched_group *group, *sdg = sd->groups;
5515 unsigned long power, power_orig;
5516 unsigned long interval;
5517
5518 interval = msecs_to_jiffies(sd->balance_interval);
5519 interval = clamp(interval, 1UL, max_load_balance_interval);
5520 sdg->sgp->next_update = jiffies + interval;
5521
5522 if (!child) {
5523 update_cpu_power(sd, cpu);
5524 return;
5525 }
5526
5527 power_orig = power = 0;
5528
5529 if (child->flags & SD_OVERLAP) {
5530 /*
5531 * SD_OVERLAP domains cannot assume that child groups
5532 * span the current group.
5533 */
5534
5535 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5536 struct sched_group_power *sgp;
5537 struct rq *rq = cpu_rq(cpu);
5538
5539 /*
5540 * build_sched_domains() -> init_sched_groups_power()
5541 * gets here before we've attached the domains to the
5542 * runqueues.
5543 *
5544 * Use power_of(), which is set irrespective of domains
5545 * in update_cpu_power().
5546 *
5547 * This avoids power/power_orig from being 0 and
5548 * causing divide-by-zero issues on boot.
5549 *
5550 * Runtime updates will correct power_orig.
5551 */
5552 if (unlikely(!rq->sd)) {
5553 power_orig += power_of(cpu);
5554 power += power_of(cpu);
5555 continue;
5556 }
5557
5558 sgp = rq->sd->groups->sgp;
5559 power_orig += sgp->power_orig;
5560 power += sgp->power;
5561 }
5562 } else {
5563 /*
5564 * !SD_OVERLAP domains can assume that child groups
5565 * span the current group.
5566 */
5567
5568 group = child->groups;
5569 do {
5570 power_orig += group->sgp->power_orig;
5571 power += group->sgp->power;
5572 group = group->next;
5573 } while (group != child->groups);
5574 }
5575
5576 sdg->sgp->power_orig = power_orig;
5577 sdg->sgp->power = power;
5578 }
5579
5580 /*
5581 * Try and fix up capacity for tiny siblings, this is needed when
5582 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5583 * which on its own isn't powerful enough.
5584 *
5585 * See update_sd_pick_busiest() and check_asym_packing().
5586 */
5587 static inline int
5588 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5589 {
5590 /*
5591 * Only siblings can have significantly less than SCHED_POWER_SCALE
5592 */
5593 if (!(sd->flags & SD_SHARE_CPUPOWER))
5594 return 0;
5595
5596 /*
5597 * If ~90% of the cpu_power is still there, we're good.
5598 */
5599 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5600 return 1;
5601
5602 return 0;
5603 }
5604
5605 /*
5606 * Group imbalance indicates (and tries to solve) the problem where balancing
5607 * groups is inadequate due to tsk_cpus_allowed() constraints.
5608 *
5609 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5610 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5611 * Something like:
5612 *
5613 * { 0 1 2 3 } { 4 5 6 7 }
5614 * * * * *
5615 *
5616 * If we were to balance group-wise we'd place two tasks in the first group and
5617 * two tasks in the second group. Clearly this is undesired as it will overload
5618 * cpu 3 and leave one of the cpus in the second group unused.
5619 *
5620 * The current solution to this issue is detecting the skew in the first group
5621 * by noticing the lower domain failed to reach balance and had difficulty
5622 * moving tasks due to affinity constraints.
5623 *
5624 * When this is so detected; this group becomes a candidate for busiest; see
5625 * update_sd_pick_busiest(). And calculate_imbalance() and
5626 * find_busiest_group() avoid some of the usual balance conditions to allow it
5627 * to create an effective group imbalance.
5628 *
5629 * This is a somewhat tricky proposition since the next run might not find the
5630 * group imbalance and decide the groups need to be balanced again. A most
5631 * subtle and fragile situation.
5632 */
5633
5634 static inline int sg_imbalanced(struct sched_group *group)
5635 {
5636 return group->sgp->imbalance;
5637 }
5638
5639 /*
5640 * Compute the group capacity.
5641 *
5642 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5643 * first dividing out the smt factor and computing the actual number of cores
5644 * and limit power unit capacity with that.
5645 */
5646 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5647 {
5648 unsigned int capacity, smt, cpus;
5649 unsigned int power, power_orig;
5650
5651 power = group->sgp->power;
5652 power_orig = group->sgp->power_orig;
5653 cpus = group->group_weight;
5654
5655 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5656 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5657 capacity = cpus / smt; /* cores */
5658
5659 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5660 if (!capacity)
5661 capacity = fix_small_capacity(env->sd, group);
5662
5663 return capacity;
5664 }
5665
5666 /**
5667 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5668 * @env: The load balancing environment.
5669 * @group: sched_group whose statistics are to be updated.
5670 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5671 * @local_group: Does group contain this_cpu.
5672 * @sgs: variable to hold the statistics for this group.
5673 */
5674 static inline void update_sg_lb_stats(struct lb_env *env,
5675 struct sched_group *group, int load_idx,
5676 int local_group, struct sg_lb_stats *sgs)
5677 {
5678 unsigned long load;
5679 int i;
5680
5681 memset(sgs, 0, sizeof(*sgs));
5682
5683 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5684 struct rq *rq = cpu_rq(i);
5685
5686 /* Bias balancing toward cpus of our domain */
5687 if (local_group)
5688 load = target_load(i, load_idx);
5689 else
5690 load = source_load(i, load_idx);
5691
5692 sgs->group_load += load;
5693 sgs->sum_nr_running += rq->nr_running;
5694 #ifdef CONFIG_NUMA_BALANCING
5695 sgs->nr_numa_running += rq->nr_numa_running;
5696 sgs->nr_preferred_running += rq->nr_preferred_running;
5697 #endif
5698 sgs->sum_weighted_load += weighted_cpuload(i);
5699 if (idle_cpu(i))
5700 sgs->idle_cpus++;
5701 }
5702
5703 /* Adjust by relative CPU power of the group */
5704 sgs->group_power = group->sgp->power;
5705 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5706
5707 if (sgs->sum_nr_running)
5708 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5709
5710 sgs->group_weight = group->group_weight;
5711
5712 sgs->group_imb = sg_imbalanced(group);
5713 sgs->group_capacity = sg_capacity(env, group);
5714
5715 if (sgs->group_capacity > sgs->sum_nr_running)
5716 sgs->group_has_capacity = 1;
5717 }
5718
5719 /**
5720 * update_sd_pick_busiest - return 1 on busiest group
5721 * @env: The load balancing environment.
5722 * @sds: sched_domain statistics
5723 * @sg: sched_group candidate to be checked for being the busiest
5724 * @sgs: sched_group statistics
5725 *
5726 * Determine if @sg is a busier group than the previously selected
5727 * busiest group.
5728 *
5729 * Return: %true if @sg is a busier group than the previously selected
5730 * busiest group. %false otherwise.
5731 */
5732 static bool update_sd_pick_busiest(struct lb_env *env,
5733 struct sd_lb_stats *sds,
5734 struct sched_group *sg,
5735 struct sg_lb_stats *sgs)
5736 {
5737 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5738 return false;
5739
5740 if (sgs->sum_nr_running > sgs->group_capacity)
5741 return true;
5742
5743 if (sgs->group_imb)
5744 return true;
5745
5746 /*
5747 * ASYM_PACKING needs to move all the work to the lowest
5748 * numbered CPUs in the group, therefore mark all groups
5749 * higher than ourself as busy.
5750 */
5751 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5752 env->dst_cpu < group_first_cpu(sg)) {
5753 if (!sds->busiest)
5754 return true;
5755
5756 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5757 return true;
5758 }
5759
5760 return false;
5761 }
5762
5763 #ifdef CONFIG_NUMA_BALANCING
5764 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5765 {
5766 if (sgs->sum_nr_running > sgs->nr_numa_running)
5767 return regular;
5768 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5769 return remote;
5770 return all;
5771 }
5772
5773 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5774 {
5775 if (rq->nr_running > rq->nr_numa_running)
5776 return regular;
5777 if (rq->nr_running > rq->nr_preferred_running)
5778 return remote;
5779 return all;
5780 }
5781 #else
5782 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5783 {
5784 return all;
5785 }
5786
5787 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5788 {
5789 return regular;
5790 }
5791 #endif /* CONFIG_NUMA_BALANCING */
5792
5793 /**
5794 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5795 * @env: The load balancing environment.
5796 * @sds: variable to hold the statistics for this sched_domain.
5797 */
5798 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5799 {
5800 struct sched_domain *child = env->sd->child;
5801 struct sched_group *sg = env->sd->groups;
5802 struct sg_lb_stats tmp_sgs;
5803 int load_idx, prefer_sibling = 0;
5804
5805 if (child && child->flags & SD_PREFER_SIBLING)
5806 prefer_sibling = 1;
5807
5808 load_idx = get_sd_load_idx(env->sd, env->idle);
5809
5810 do {
5811 struct sg_lb_stats *sgs = &tmp_sgs;
5812 int local_group;
5813
5814 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5815 if (local_group) {
5816 sds->local = sg;
5817 sgs = &sds->local_stat;
5818
5819 if (env->idle != CPU_NEWLY_IDLE ||
5820 time_after_eq(jiffies, sg->sgp->next_update))
5821 update_group_power(env->sd, env->dst_cpu);
5822 }
5823
5824 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5825
5826 if (local_group)
5827 goto next_group;
5828
5829 /*
5830 * In case the child domain prefers tasks go to siblings
5831 * first, lower the sg capacity to one so that we'll try
5832 * and move all the excess tasks away. We lower the capacity
5833 * of a group only if the local group has the capacity to fit
5834 * these excess tasks, i.e. nr_running < group_capacity. The
5835 * extra check prevents the case where you always pull from the
5836 * heaviest group when it is already under-utilized (possible
5837 * with a large weight task outweighs the tasks on the system).
5838 */
5839 if (prefer_sibling && sds->local &&
5840 sds->local_stat.group_has_capacity)
5841 sgs->group_capacity = min(sgs->group_capacity, 1U);
5842
5843 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5844 sds->busiest = sg;
5845 sds->busiest_stat = *sgs;
5846 }
5847
5848 next_group:
5849 /* Now, start updating sd_lb_stats */
5850 sds->total_load += sgs->group_load;
5851 sds->total_pwr += sgs->group_power;
5852
5853 sg = sg->next;
5854 } while (sg != env->sd->groups);
5855
5856 if (env->sd->flags & SD_NUMA)
5857 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5858 }
5859
5860 /**
5861 * check_asym_packing - Check to see if the group is packed into the
5862 * sched doman.
5863 *
5864 * This is primarily intended to used at the sibling level. Some
5865 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5866 * case of POWER7, it can move to lower SMT modes only when higher
5867 * threads are idle. When in lower SMT modes, the threads will
5868 * perform better since they share less core resources. Hence when we
5869 * have idle threads, we want them to be the higher ones.
5870 *
5871 * This packing function is run on idle threads. It checks to see if
5872 * the busiest CPU in this domain (core in the P7 case) has a higher
5873 * CPU number than the packing function is being run on. Here we are
5874 * assuming lower CPU number will be equivalent to lower a SMT thread
5875 * number.
5876 *
5877 * Return: 1 when packing is required and a task should be moved to
5878 * this CPU. The amount of the imbalance is returned in *imbalance.
5879 *
5880 * @env: The load balancing environment.
5881 * @sds: Statistics of the sched_domain which is to be packed
5882 */
5883 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5884 {
5885 int busiest_cpu;
5886
5887 if (!(env->sd->flags & SD_ASYM_PACKING))
5888 return 0;
5889
5890 if (!sds->busiest)
5891 return 0;
5892
5893 busiest_cpu = group_first_cpu(sds->busiest);
5894 if (env->dst_cpu > busiest_cpu)
5895 return 0;
5896
5897 env->imbalance = DIV_ROUND_CLOSEST(
5898 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5899 SCHED_POWER_SCALE);
5900
5901 return 1;
5902 }
5903
5904 /**
5905 * fix_small_imbalance - Calculate the minor imbalance that exists
5906 * amongst the groups of a sched_domain, during
5907 * load balancing.
5908 * @env: The load balancing environment.
5909 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
5910 */
5911 static inline
5912 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5913 {
5914 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5915 unsigned int imbn = 2;
5916 unsigned long scaled_busy_load_per_task;
5917 struct sg_lb_stats *local, *busiest;
5918
5919 local = &sds->local_stat;
5920 busiest = &sds->busiest_stat;
5921
5922 if (!local->sum_nr_running)
5923 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5924 else if (busiest->load_per_task > local->load_per_task)
5925 imbn = 1;
5926
5927 scaled_busy_load_per_task =
5928 (busiest->load_per_task * SCHED_POWER_SCALE) /
5929 busiest->group_power;
5930
5931 if (busiest->avg_load + scaled_busy_load_per_task >=
5932 local->avg_load + (scaled_busy_load_per_task * imbn)) {
5933 env->imbalance = busiest->load_per_task;
5934 return;
5935 }
5936
5937 /*
5938 * OK, we don't have enough imbalance to justify moving tasks,
5939 * however we may be able to increase total CPU power used by
5940 * moving them.
5941 */
5942
5943 pwr_now += busiest->group_power *
5944 min(busiest->load_per_task, busiest->avg_load);
5945 pwr_now += local->group_power *
5946 min(local->load_per_task, local->avg_load);
5947 pwr_now /= SCHED_POWER_SCALE;
5948
5949 /* Amount of load we'd subtract */
5950 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5951 busiest->group_power;
5952 if (busiest->avg_load > tmp) {
5953 pwr_move += busiest->group_power *
5954 min(busiest->load_per_task,
5955 busiest->avg_load - tmp);
5956 }
5957
5958 /* Amount of load we'd add */
5959 if (busiest->avg_load * busiest->group_power <
5960 busiest->load_per_task * SCHED_POWER_SCALE) {
5961 tmp = (busiest->avg_load * busiest->group_power) /
5962 local->group_power;
5963 } else {
5964 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5965 local->group_power;
5966 }
5967 pwr_move += local->group_power *
5968 min(local->load_per_task, local->avg_load + tmp);
5969 pwr_move /= SCHED_POWER_SCALE;
5970
5971 /* Move if we gain throughput */
5972 if (pwr_move > pwr_now)
5973 env->imbalance = busiest->load_per_task;
5974 }
5975
5976 /**
5977 * calculate_imbalance - Calculate the amount of imbalance present within the
5978 * groups of a given sched_domain during load balance.
5979 * @env: load balance environment
5980 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
5981 */
5982 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5983 {
5984 unsigned long max_pull, load_above_capacity = ~0UL;
5985 struct sg_lb_stats *local, *busiest;
5986
5987 local = &sds->local_stat;
5988 busiest = &sds->busiest_stat;
5989
5990 if (busiest->group_imb) {
5991 /*
5992 * In the group_imb case we cannot rely on group-wide averages
5993 * to ensure cpu-load equilibrium, look at wider averages. XXX
5994 */
5995 busiest->load_per_task =
5996 min(busiest->load_per_task, sds->avg_load);
5997 }
5998
5999 /*
6000 * In the presence of smp nice balancing, certain scenarios can have
6001 * max load less than avg load(as we skip the groups at or below
6002 * its cpu_power, while calculating max_load..)
6003 */
6004 if (busiest->avg_load <= sds->avg_load ||
6005 local->avg_load >= sds->avg_load) {
6006 env->imbalance = 0;
6007 return fix_small_imbalance(env, sds);
6008 }
6009
6010 if (!busiest->group_imb) {
6011 /*
6012 * Don't want to pull so many tasks that a group would go idle.
6013 * Except of course for the group_imb case, since then we might
6014 * have to drop below capacity to reach cpu-load equilibrium.
6015 */
6016 load_above_capacity =
6017 (busiest->sum_nr_running - busiest->group_capacity);
6018
6019 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
6020 load_above_capacity /= busiest->group_power;
6021 }
6022
6023 /*
6024 * We're trying to get all the cpus to the average_load, so we don't
6025 * want to push ourselves above the average load, nor do we wish to
6026 * reduce the max loaded cpu below the average load. At the same time,
6027 * we also don't want to reduce the group load below the group capacity
6028 * (so that we can implement power-savings policies etc). Thus we look
6029 * for the minimum possible imbalance.
6030 */
6031 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6032
6033 /* How much load to actually move to equalise the imbalance */
6034 env->imbalance = min(
6035 max_pull * busiest->group_power,
6036 (sds->avg_load - local->avg_load) * local->group_power
6037 ) / SCHED_POWER_SCALE;
6038
6039 /*
6040 * if *imbalance is less than the average load per runnable task
6041 * there is no guarantee that any tasks will be moved so we'll have
6042 * a think about bumping its value to force at least one task to be
6043 * moved
6044 */
6045 if (env->imbalance < busiest->load_per_task)
6046 return fix_small_imbalance(env, sds);
6047 }
6048
6049 /******* find_busiest_group() helpers end here *********************/
6050
6051 /**
6052 * find_busiest_group - Returns the busiest group within the sched_domain
6053 * if there is an imbalance. If there isn't an imbalance, and
6054 * the user has opted for power-savings, it returns a group whose
6055 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6056 * such a group exists.
6057 *
6058 * Also calculates the amount of weighted load which should be moved
6059 * to restore balance.
6060 *
6061 * @env: The load balancing environment.
6062 *
6063 * Return: - The busiest group if imbalance exists.
6064 * - If no imbalance and user has opted for power-savings balance,
6065 * return the least loaded group whose CPUs can be
6066 * put to idle by rebalancing its tasks onto our group.
6067 */
6068 static struct sched_group *find_busiest_group(struct lb_env *env)
6069 {
6070 struct sg_lb_stats *local, *busiest;
6071 struct sd_lb_stats sds;
6072
6073 init_sd_lb_stats(&sds);
6074
6075 /*
6076 * Compute the various statistics relavent for load balancing at
6077 * this level.
6078 */
6079 update_sd_lb_stats(env, &sds);
6080 local = &sds.local_stat;
6081 busiest = &sds.busiest_stat;
6082
6083 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6084 check_asym_packing(env, &sds))
6085 return sds.busiest;
6086
6087 /* There is no busy sibling group to pull tasks from */
6088 if (!sds.busiest || busiest->sum_nr_running == 0)
6089 goto out_balanced;
6090
6091 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
6092
6093 /*
6094 * If the busiest group is imbalanced the below checks don't
6095 * work because they assume all things are equal, which typically
6096 * isn't true due to cpus_allowed constraints and the like.
6097 */
6098 if (busiest->group_imb)
6099 goto force_balance;
6100
6101 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6102 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
6103 !busiest->group_has_capacity)
6104 goto force_balance;
6105
6106 /*
6107 * If the local group is more busy than the selected busiest group
6108 * don't try and pull any tasks.
6109 */
6110 if (local->avg_load >= busiest->avg_load)
6111 goto out_balanced;
6112
6113 /*
6114 * Don't pull any tasks if this group is already above the domain
6115 * average load.
6116 */
6117 if (local->avg_load >= sds.avg_load)
6118 goto out_balanced;
6119
6120 if (env->idle == CPU_IDLE) {
6121 /*
6122 * This cpu is idle. If the busiest group load doesn't
6123 * have more tasks than the number of available cpu's and
6124 * there is no imbalance between this and busiest group
6125 * wrt to idle cpu's, it is balanced.
6126 */
6127 if ((local->idle_cpus < busiest->idle_cpus) &&
6128 busiest->sum_nr_running <= busiest->group_weight)
6129 goto out_balanced;
6130 } else {
6131 /*
6132 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6133 * imbalance_pct to be conservative.
6134 */
6135 if (100 * busiest->avg_load <=
6136 env->sd->imbalance_pct * local->avg_load)
6137 goto out_balanced;
6138 }
6139
6140 force_balance:
6141 /* Looks like there is an imbalance. Compute it */
6142 calculate_imbalance(env, &sds);
6143 return sds.busiest;
6144
6145 out_balanced:
6146 env->imbalance = 0;
6147 return NULL;
6148 }
6149
6150 /*
6151 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6152 */
6153 static struct rq *find_busiest_queue(struct lb_env *env,
6154 struct sched_group *group)
6155 {
6156 struct rq *busiest = NULL, *rq;
6157 unsigned long busiest_load = 0, busiest_power = 1;
6158 int i;
6159
6160 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6161 unsigned long power, capacity, wl;
6162 enum fbq_type rt;
6163
6164 rq = cpu_rq(i);
6165 rt = fbq_classify_rq(rq);
6166
6167 /*
6168 * We classify groups/runqueues into three groups:
6169 * - regular: there are !numa tasks
6170 * - remote: there are numa tasks that run on the 'wrong' node
6171 * - all: there is no distinction
6172 *
6173 * In order to avoid migrating ideally placed numa tasks,
6174 * ignore those when there's better options.
6175 *
6176 * If we ignore the actual busiest queue to migrate another
6177 * task, the next balance pass can still reduce the busiest
6178 * queue by moving tasks around inside the node.
6179 *
6180 * If we cannot move enough load due to this classification
6181 * the next pass will adjust the group classification and
6182 * allow migration of more tasks.
6183 *
6184 * Both cases only affect the total convergence complexity.
6185 */
6186 if (rt > env->fbq_type)
6187 continue;
6188
6189 power = power_of(i);
6190 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6191 if (!capacity)
6192 capacity = fix_small_capacity(env->sd, group);
6193
6194 wl = weighted_cpuload(i);
6195
6196 /*
6197 * When comparing with imbalance, use weighted_cpuload()
6198 * which is not scaled with the cpu power.
6199 */
6200 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6201 continue;
6202
6203 /*
6204 * For the load comparisons with the other cpu's, consider
6205 * the weighted_cpuload() scaled with the cpu power, so that
6206 * the load can be moved away from the cpu that is potentially
6207 * running at a lower capacity.
6208 *
6209 * Thus we're looking for max(wl_i / power_i), crosswise
6210 * multiplication to rid ourselves of the division works out
6211 * to: wl_i * power_j > wl_j * power_i; where j is our
6212 * previous maximum.
6213 */
6214 if (wl * busiest_power > busiest_load * power) {
6215 busiest_load = wl;
6216 busiest_power = power;
6217 busiest = rq;
6218 }
6219 }
6220
6221 return busiest;
6222 }
6223
6224 /*
6225 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6226 * so long as it is large enough.
6227 */
6228 #define MAX_PINNED_INTERVAL 512
6229
6230 /* Working cpumask for load_balance and load_balance_newidle. */
6231 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6232
6233 static int need_active_balance(struct lb_env *env)
6234 {
6235 struct sched_domain *sd = env->sd;
6236
6237 if (env->idle == CPU_NEWLY_IDLE) {
6238
6239 /*
6240 * ASYM_PACKING needs to force migrate tasks from busy but
6241 * higher numbered CPUs in order to pack all tasks in the
6242 * lowest numbered CPUs.
6243 */
6244 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6245 return 1;
6246 }
6247
6248 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6249 }
6250
6251 static int active_load_balance_cpu_stop(void *data);
6252
6253 static int should_we_balance(struct lb_env *env)
6254 {
6255 struct sched_group *sg = env->sd->groups;
6256 struct cpumask *sg_cpus, *sg_mask;
6257 int cpu, balance_cpu = -1;
6258
6259 /*
6260 * In the newly idle case, we will allow all the cpu's
6261 * to do the newly idle load balance.
6262 */
6263 if (env->idle == CPU_NEWLY_IDLE)
6264 return 1;
6265
6266 sg_cpus = sched_group_cpus(sg);
6267 sg_mask = sched_group_mask(sg);
6268 /* Try to find first idle cpu */
6269 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6270 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6271 continue;
6272
6273 balance_cpu = cpu;
6274 break;
6275 }
6276
6277 if (balance_cpu == -1)
6278 balance_cpu = group_balance_cpu(sg);
6279
6280 /*
6281 * First idle cpu or the first cpu(busiest) in this sched group
6282 * is eligible for doing load balancing at this and above domains.
6283 */
6284 return balance_cpu == env->dst_cpu;
6285 }
6286
6287 /*
6288 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6289 * tasks if there is an imbalance.
6290 */
6291 static int load_balance(int this_cpu, struct rq *this_rq,
6292 struct sched_domain *sd, enum cpu_idle_type idle,
6293 int *continue_balancing)
6294 {
6295 int ld_moved, cur_ld_moved, active_balance = 0;
6296 struct sched_domain *sd_parent = sd->parent;
6297 struct sched_group *group;
6298 struct rq *busiest;
6299 unsigned long flags;
6300 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6301
6302 struct lb_env env = {
6303 .sd = sd,
6304 .dst_cpu = this_cpu,
6305 .dst_rq = this_rq,
6306 .dst_grpmask = sched_group_cpus(sd->groups),
6307 .idle = idle,
6308 .loop_break = sched_nr_migrate_break,
6309 .cpus = cpus,
6310 .fbq_type = all,
6311 };
6312
6313 /*
6314 * For NEWLY_IDLE load_balancing, we don't need to consider
6315 * other cpus in our group
6316 */
6317 if (idle == CPU_NEWLY_IDLE)
6318 env.dst_grpmask = NULL;
6319
6320 cpumask_copy(cpus, cpu_active_mask);
6321
6322 schedstat_inc(sd, lb_count[idle]);
6323
6324 redo:
6325 if (!should_we_balance(&env)) {
6326 *continue_balancing = 0;
6327 goto out_balanced;
6328 }
6329
6330 group = find_busiest_group(&env);
6331 if (!group) {
6332 schedstat_inc(sd, lb_nobusyg[idle]);
6333 goto out_balanced;
6334 }
6335
6336 busiest = find_busiest_queue(&env, group);
6337 if (!busiest) {
6338 schedstat_inc(sd, lb_nobusyq[idle]);
6339 goto out_balanced;
6340 }
6341
6342 BUG_ON(busiest == env.dst_rq);
6343
6344 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6345
6346 ld_moved = 0;
6347 if (busiest->nr_running > 1) {
6348 /*
6349 * Attempt to move tasks. If find_busiest_group has found
6350 * an imbalance but busiest->nr_running <= 1, the group is
6351 * still unbalanced. ld_moved simply stays zero, so it is
6352 * correctly treated as an imbalance.
6353 */
6354 env.flags |= LBF_ALL_PINNED;
6355 env.src_cpu = busiest->cpu;
6356 env.src_rq = busiest;
6357 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6358
6359 more_balance:
6360 local_irq_save(flags);
6361 double_rq_lock(env.dst_rq, busiest);
6362
6363 /*
6364 * cur_ld_moved - load moved in current iteration
6365 * ld_moved - cumulative load moved across iterations
6366 */
6367 cur_ld_moved = move_tasks(&env);
6368 ld_moved += cur_ld_moved;
6369 double_rq_unlock(env.dst_rq, busiest);
6370 local_irq_restore(flags);
6371
6372 /*
6373 * some other cpu did the load balance for us.
6374 */
6375 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6376 resched_cpu(env.dst_cpu);
6377
6378 if (env.flags & LBF_NEED_BREAK) {
6379 env.flags &= ~LBF_NEED_BREAK;
6380 goto more_balance;
6381 }
6382
6383 /*
6384 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6385 * us and move them to an alternate dst_cpu in our sched_group
6386 * where they can run. The upper limit on how many times we
6387 * iterate on same src_cpu is dependent on number of cpus in our
6388 * sched_group.
6389 *
6390 * This changes load balance semantics a bit on who can move
6391 * load to a given_cpu. In addition to the given_cpu itself
6392 * (or a ilb_cpu acting on its behalf where given_cpu is
6393 * nohz-idle), we now have balance_cpu in a position to move
6394 * load to given_cpu. In rare situations, this may cause
6395 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6396 * _independently_ and at _same_ time to move some load to
6397 * given_cpu) causing exceess load to be moved to given_cpu.
6398 * This however should not happen so much in practice and
6399 * moreover subsequent load balance cycles should correct the
6400 * excess load moved.
6401 */
6402 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6403
6404 /* Prevent to re-select dst_cpu via env's cpus */
6405 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6406
6407 env.dst_rq = cpu_rq(env.new_dst_cpu);
6408 env.dst_cpu = env.new_dst_cpu;
6409 env.flags &= ~LBF_DST_PINNED;
6410 env.loop = 0;
6411 env.loop_break = sched_nr_migrate_break;
6412
6413 /*
6414 * Go back to "more_balance" rather than "redo" since we
6415 * need to continue with same src_cpu.
6416 */
6417 goto more_balance;
6418 }
6419
6420 /*
6421 * We failed to reach balance because of affinity.
6422 */
6423 if (sd_parent) {
6424 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6425
6426 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6427 *group_imbalance = 1;
6428 } else if (*group_imbalance)
6429 *group_imbalance = 0;
6430 }
6431
6432 /* All tasks on this runqueue were pinned by CPU affinity */
6433 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6434 cpumask_clear_cpu(cpu_of(busiest), cpus);
6435 if (!cpumask_empty(cpus)) {
6436 env.loop = 0;
6437 env.loop_break = sched_nr_migrate_break;
6438 goto redo;
6439 }
6440 goto out_balanced;
6441 }
6442 }
6443
6444 if (!ld_moved) {
6445 schedstat_inc(sd, lb_failed[idle]);
6446 /*
6447 * Increment the failure counter only on periodic balance.
6448 * We do not want newidle balance, which can be very
6449 * frequent, pollute the failure counter causing
6450 * excessive cache_hot migrations and active balances.
6451 */
6452 if (idle != CPU_NEWLY_IDLE)
6453 sd->nr_balance_failed++;
6454
6455 if (need_active_balance(&env)) {
6456 raw_spin_lock_irqsave(&busiest->lock, flags);
6457
6458 /* don't kick the active_load_balance_cpu_stop,
6459 * if the curr task on busiest cpu can't be
6460 * moved to this_cpu
6461 */
6462 if (!cpumask_test_cpu(this_cpu,
6463 tsk_cpus_allowed(busiest->curr))) {
6464 raw_spin_unlock_irqrestore(&busiest->lock,
6465 flags);
6466 env.flags |= LBF_ALL_PINNED;
6467 goto out_one_pinned;
6468 }
6469
6470 /*
6471 * ->active_balance synchronizes accesses to
6472 * ->active_balance_work. Once set, it's cleared
6473 * only after active load balance is finished.
6474 */
6475 if (!busiest->active_balance) {
6476 busiest->active_balance = 1;
6477 busiest->push_cpu = this_cpu;
6478 active_balance = 1;
6479 }
6480 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6481
6482 if (active_balance) {
6483 stop_one_cpu_nowait(cpu_of(busiest),
6484 active_load_balance_cpu_stop, busiest,
6485 &busiest->active_balance_work);
6486 }
6487
6488 /*
6489 * We've kicked active balancing, reset the failure
6490 * counter.
6491 */
6492 sd->nr_balance_failed = sd->cache_nice_tries+1;
6493 }
6494 } else
6495 sd->nr_balance_failed = 0;
6496
6497 if (likely(!active_balance)) {
6498 /* We were unbalanced, so reset the balancing interval */
6499 sd->balance_interval = sd->min_interval;
6500 } else {
6501 /*
6502 * If we've begun active balancing, start to back off. This
6503 * case may not be covered by the all_pinned logic if there
6504 * is only 1 task on the busy runqueue (because we don't call
6505 * move_tasks).
6506 */
6507 if (sd->balance_interval < sd->max_interval)
6508 sd->balance_interval *= 2;
6509 }
6510
6511 goto out;
6512
6513 out_balanced:
6514 schedstat_inc(sd, lb_balanced[idle]);
6515
6516 sd->nr_balance_failed = 0;
6517
6518 out_one_pinned:
6519 /* tune up the balancing interval */
6520 if (((env.flags & LBF_ALL_PINNED) &&
6521 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6522 (sd->balance_interval < sd->max_interval))
6523 sd->balance_interval *= 2;
6524
6525 ld_moved = 0;
6526 out:
6527 return ld_moved;
6528 }
6529
6530 /*
6531 * idle_balance is called by schedule() if this_cpu is about to become
6532 * idle. Attempts to pull tasks from other CPUs.
6533 */
6534 void idle_balance(int this_cpu, struct rq *this_rq)
6535 {
6536 struct sched_domain *sd;
6537 int pulled_task = 0;
6538 unsigned long next_balance = jiffies + HZ;
6539 u64 curr_cost = 0;
6540
6541 this_rq->idle_stamp = rq_clock(this_rq);
6542
6543 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6544 return;
6545
6546 /*
6547 * Drop the rq->lock, but keep IRQ/preempt disabled.
6548 */
6549 raw_spin_unlock(&this_rq->lock);
6550
6551 update_blocked_averages(this_cpu);
6552 rcu_read_lock();
6553 for_each_domain(this_cpu, sd) {
6554 unsigned long interval;
6555 int continue_balancing = 1;
6556 u64 t0, domain_cost;
6557
6558 if (!(sd->flags & SD_LOAD_BALANCE))
6559 continue;
6560
6561 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6562 break;
6563
6564 if (sd->flags & SD_BALANCE_NEWIDLE) {
6565 t0 = sched_clock_cpu(this_cpu);
6566
6567 /* If we've pulled tasks over stop searching: */
6568 pulled_task = load_balance(this_cpu, this_rq,
6569 sd, CPU_NEWLY_IDLE,
6570 &continue_balancing);
6571
6572 domain_cost = sched_clock_cpu(this_cpu) - t0;
6573 if (domain_cost > sd->max_newidle_lb_cost)
6574 sd->max_newidle_lb_cost = domain_cost;
6575
6576 curr_cost += domain_cost;
6577 }
6578
6579 interval = msecs_to_jiffies(sd->balance_interval);
6580 if (time_after(next_balance, sd->last_balance + interval))
6581 next_balance = sd->last_balance + interval;
6582 if (pulled_task) {
6583 this_rq->idle_stamp = 0;
6584 break;
6585 }
6586 }
6587 rcu_read_unlock();
6588
6589 raw_spin_lock(&this_rq->lock);
6590
6591 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6592 /*
6593 * We are going idle. next_balance may be set based on
6594 * a busy processor. So reset next_balance.
6595 */
6596 this_rq->next_balance = next_balance;
6597 }
6598
6599 if (curr_cost > this_rq->max_idle_balance_cost)
6600 this_rq->max_idle_balance_cost = curr_cost;
6601 }
6602
6603 /*
6604 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6605 * running tasks off the busiest CPU onto idle CPUs. It requires at
6606 * least 1 task to be running on each physical CPU where possible, and
6607 * avoids physical / logical imbalances.
6608 */
6609 static int active_load_balance_cpu_stop(void *data)
6610 {
6611 struct rq *busiest_rq = data;
6612 int busiest_cpu = cpu_of(busiest_rq);
6613 int target_cpu = busiest_rq->push_cpu;
6614 struct rq *target_rq = cpu_rq(target_cpu);
6615 struct sched_domain *sd;
6616
6617 raw_spin_lock_irq(&busiest_rq->lock);
6618
6619 /* make sure the requested cpu hasn't gone down in the meantime */
6620 if (unlikely(busiest_cpu != smp_processor_id() ||
6621 !busiest_rq->active_balance))
6622 goto out_unlock;
6623
6624 /* Is there any task to move? */
6625 if (busiest_rq->nr_running <= 1)
6626 goto out_unlock;
6627
6628 /*
6629 * This condition is "impossible", if it occurs
6630 * we need to fix it. Originally reported by
6631 * Bjorn Helgaas on a 128-cpu setup.
6632 */
6633 BUG_ON(busiest_rq == target_rq);
6634
6635 /* move a task from busiest_rq to target_rq */
6636 double_lock_balance(busiest_rq, target_rq);
6637
6638 /* Search for an sd spanning us and the target CPU. */
6639 rcu_read_lock();
6640 for_each_domain(target_cpu, sd) {
6641 if ((sd->flags & SD_LOAD_BALANCE) &&
6642 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6643 break;
6644 }
6645
6646 if (likely(sd)) {
6647 struct lb_env env = {
6648 .sd = sd,
6649 .dst_cpu = target_cpu,
6650 .dst_rq = target_rq,
6651 .src_cpu = busiest_rq->cpu,
6652 .src_rq = busiest_rq,
6653 .idle = CPU_IDLE,
6654 };
6655
6656 schedstat_inc(sd, alb_count);
6657
6658 if (move_one_task(&env))
6659 schedstat_inc(sd, alb_pushed);
6660 else
6661 schedstat_inc(sd, alb_failed);
6662 }
6663 rcu_read_unlock();
6664 double_unlock_balance(busiest_rq, target_rq);
6665 out_unlock:
6666 busiest_rq->active_balance = 0;
6667 raw_spin_unlock_irq(&busiest_rq->lock);
6668 return 0;
6669 }
6670
6671 #ifdef CONFIG_NO_HZ_COMMON
6672 /*
6673 * idle load balancing details
6674 * - When one of the busy CPUs notice that there may be an idle rebalancing
6675 * needed, they will kick the idle load balancer, which then does idle
6676 * load balancing for all the idle CPUs.
6677 */
6678 static struct {
6679 cpumask_var_t idle_cpus_mask;
6680 atomic_t nr_cpus;
6681 unsigned long next_balance; /* in jiffy units */
6682 } nohz ____cacheline_aligned;
6683
6684 static inline int find_new_ilb(void)
6685 {
6686 int ilb = cpumask_first(nohz.idle_cpus_mask);
6687
6688 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6689 return ilb;
6690
6691 return nr_cpu_ids;
6692 }
6693
6694 /*
6695 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6696 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6697 * CPU (if there is one).
6698 */
6699 static void nohz_balancer_kick(void)
6700 {
6701 int ilb_cpu;
6702
6703 nohz.next_balance++;
6704
6705 ilb_cpu = find_new_ilb();
6706
6707 if (ilb_cpu >= nr_cpu_ids)
6708 return;
6709
6710 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6711 return;
6712 /*
6713 * Use smp_send_reschedule() instead of resched_cpu().
6714 * This way we generate a sched IPI on the target cpu which
6715 * is idle. And the softirq performing nohz idle load balance
6716 * will be run before returning from the IPI.
6717 */
6718 smp_send_reschedule(ilb_cpu);
6719 return;
6720 }
6721
6722 static inline void nohz_balance_exit_idle(int cpu)
6723 {
6724 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6725 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6726 atomic_dec(&nohz.nr_cpus);
6727 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6728 }
6729 }
6730
6731 static inline void set_cpu_sd_state_busy(void)
6732 {
6733 struct sched_domain *sd;
6734 int cpu = smp_processor_id();
6735
6736 rcu_read_lock();
6737 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6738
6739 if (!sd || !sd->nohz_idle)
6740 goto unlock;
6741 sd->nohz_idle = 0;
6742
6743 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6744 unlock:
6745 rcu_read_unlock();
6746 }
6747
6748 void set_cpu_sd_state_idle(void)
6749 {
6750 struct sched_domain *sd;
6751 int cpu = smp_processor_id();
6752
6753 rcu_read_lock();
6754 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6755
6756 if (!sd || sd->nohz_idle)
6757 goto unlock;
6758 sd->nohz_idle = 1;
6759
6760 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6761 unlock:
6762 rcu_read_unlock();
6763 }
6764
6765 /*
6766 * This routine will record that the cpu is going idle with tick stopped.
6767 * This info will be used in performing idle load balancing in the future.
6768 */
6769 void nohz_balance_enter_idle(int cpu)
6770 {
6771 /*
6772 * If this cpu is going down, then nothing needs to be done.
6773 */
6774 if (!cpu_active(cpu))
6775 return;
6776
6777 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6778 return;
6779
6780 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6781 atomic_inc(&nohz.nr_cpus);
6782 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6783 }
6784
6785 static int sched_ilb_notifier(struct notifier_block *nfb,
6786 unsigned long action, void *hcpu)
6787 {
6788 switch (action & ~CPU_TASKS_FROZEN) {
6789 case CPU_DYING:
6790 nohz_balance_exit_idle(smp_processor_id());
6791 return NOTIFY_OK;
6792 default:
6793 return NOTIFY_DONE;
6794 }
6795 }
6796 #endif
6797
6798 static DEFINE_SPINLOCK(balancing);
6799
6800 /*
6801 * Scale the max load_balance interval with the number of CPUs in the system.
6802 * This trades load-balance latency on larger machines for less cross talk.
6803 */
6804 void update_max_interval(void)
6805 {
6806 max_load_balance_interval = HZ*num_online_cpus()/10;
6807 }
6808
6809 /*
6810 * It checks each scheduling domain to see if it is due to be balanced,
6811 * and initiates a balancing operation if so.
6812 *
6813 * Balancing parameters are set up in init_sched_domains.
6814 */
6815 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
6816 {
6817 int continue_balancing = 1;
6818 int cpu = rq->cpu;
6819 unsigned long interval;
6820 struct sched_domain *sd;
6821 /* Earliest time when we have to do rebalance again */
6822 unsigned long next_balance = jiffies + 60*HZ;
6823 int update_next_balance = 0;
6824 int need_serialize, need_decay = 0;
6825 u64 max_cost = 0;
6826
6827 update_blocked_averages(cpu);
6828
6829 rcu_read_lock();
6830 for_each_domain(cpu, sd) {
6831 /*
6832 * Decay the newidle max times here because this is a regular
6833 * visit to all the domains. Decay ~1% per second.
6834 */
6835 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6836 sd->max_newidle_lb_cost =
6837 (sd->max_newidle_lb_cost * 253) / 256;
6838 sd->next_decay_max_lb_cost = jiffies + HZ;
6839 need_decay = 1;
6840 }
6841 max_cost += sd->max_newidle_lb_cost;
6842
6843 if (!(sd->flags & SD_LOAD_BALANCE))
6844 continue;
6845
6846 /*
6847 * Stop the load balance at this level. There is another
6848 * CPU in our sched group which is doing load balancing more
6849 * actively.
6850 */
6851 if (!continue_balancing) {
6852 if (need_decay)
6853 continue;
6854 break;
6855 }
6856
6857 interval = sd->balance_interval;
6858 if (idle != CPU_IDLE)
6859 interval *= sd->busy_factor;
6860
6861 /* scale ms to jiffies */
6862 interval = msecs_to_jiffies(interval);
6863 interval = clamp(interval, 1UL, max_load_balance_interval);
6864
6865 need_serialize = sd->flags & SD_SERIALIZE;
6866
6867 if (need_serialize) {
6868 if (!spin_trylock(&balancing))
6869 goto out;
6870 }
6871
6872 if (time_after_eq(jiffies, sd->last_balance + interval)) {
6873 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6874 /*
6875 * The LBF_DST_PINNED logic could have changed
6876 * env->dst_cpu, so we can't know our idle
6877 * state even if we migrated tasks. Update it.
6878 */
6879 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6880 }
6881 sd->last_balance = jiffies;
6882 }
6883 if (need_serialize)
6884 spin_unlock(&balancing);
6885 out:
6886 if (time_after(next_balance, sd->last_balance + interval)) {
6887 next_balance = sd->last_balance + interval;
6888 update_next_balance = 1;
6889 }
6890 }
6891 if (need_decay) {
6892 /*
6893 * Ensure the rq-wide value also decays but keep it at a
6894 * reasonable floor to avoid funnies with rq->avg_idle.
6895 */
6896 rq->max_idle_balance_cost =
6897 max((u64)sysctl_sched_migration_cost, max_cost);
6898 }
6899 rcu_read_unlock();
6900
6901 /*
6902 * next_balance will be updated only when there is a need.
6903 * When the cpu is attached to null domain for ex, it will not be
6904 * updated.
6905 */
6906 if (likely(update_next_balance))
6907 rq->next_balance = next_balance;
6908 }
6909
6910 #ifdef CONFIG_NO_HZ_COMMON
6911 /*
6912 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6913 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6914 */
6915 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
6916 {
6917 int this_cpu = this_rq->cpu;
6918 struct rq *rq;
6919 int balance_cpu;
6920
6921 if (idle != CPU_IDLE ||
6922 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6923 goto end;
6924
6925 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6926 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6927 continue;
6928
6929 /*
6930 * If this cpu gets work to do, stop the load balancing
6931 * work being done for other cpus. Next load
6932 * balancing owner will pick it up.
6933 */
6934 if (need_resched())
6935 break;
6936
6937 rq = cpu_rq(balance_cpu);
6938
6939 raw_spin_lock_irq(&rq->lock);
6940 update_rq_clock(rq);
6941 update_idle_cpu_load(rq);
6942 raw_spin_unlock_irq(&rq->lock);
6943
6944 rebalance_domains(rq, CPU_IDLE);
6945
6946 if (time_after(this_rq->next_balance, rq->next_balance))
6947 this_rq->next_balance = rq->next_balance;
6948 }
6949 nohz.next_balance = this_rq->next_balance;
6950 end:
6951 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6952 }
6953
6954 /*
6955 * Current heuristic for kicking the idle load balancer in the presence
6956 * of an idle cpu is the system.
6957 * - This rq has more than one task.
6958 * - At any scheduler domain level, this cpu's scheduler group has multiple
6959 * busy cpu's exceeding the group's power.
6960 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6961 * domain span are idle.
6962 */
6963 static inline int nohz_kick_needed(struct rq *rq)
6964 {
6965 unsigned long now = jiffies;
6966 struct sched_domain *sd;
6967 struct sched_group_power *sgp;
6968 int nr_busy, cpu = rq->cpu;
6969
6970 if (unlikely(rq->idle_balance))
6971 return 0;
6972
6973 /*
6974 * We may be recently in ticked or tickless idle mode. At the first
6975 * busy tick after returning from idle, we will update the busy stats.
6976 */
6977 set_cpu_sd_state_busy();
6978 nohz_balance_exit_idle(cpu);
6979
6980 /*
6981 * None are in tickless mode and hence no need for NOHZ idle load
6982 * balancing.
6983 */
6984 if (likely(!atomic_read(&nohz.nr_cpus)))
6985 return 0;
6986
6987 if (time_before(now, nohz.next_balance))
6988 return 0;
6989
6990 if (rq->nr_running >= 2)
6991 goto need_kick;
6992
6993 rcu_read_lock();
6994 sd = rcu_dereference(per_cpu(sd_busy, cpu));
6995
6996 if (sd) {
6997 sgp = sd->groups->sgp;
6998 nr_busy = atomic_read(&sgp->nr_busy_cpus);
6999
7000 if (nr_busy > 1)
7001 goto need_kick_unlock;
7002 }
7003
7004 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7005
7006 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7007 sched_domain_span(sd)) < cpu))
7008 goto need_kick_unlock;
7009
7010 rcu_read_unlock();
7011 return 0;
7012
7013 need_kick_unlock:
7014 rcu_read_unlock();
7015 need_kick:
7016 return 1;
7017 }
7018 #else
7019 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7020 #endif
7021
7022 /*
7023 * run_rebalance_domains is triggered when needed from the scheduler tick.
7024 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7025 */
7026 static void run_rebalance_domains(struct softirq_action *h)
7027 {
7028 struct rq *this_rq = this_rq();
7029 enum cpu_idle_type idle = this_rq->idle_balance ?
7030 CPU_IDLE : CPU_NOT_IDLE;
7031
7032 rebalance_domains(this_rq, idle);
7033
7034 /*
7035 * If this cpu has a pending nohz_balance_kick, then do the
7036 * balancing on behalf of the other idle cpus whose ticks are
7037 * stopped.
7038 */
7039 nohz_idle_balance(this_rq, idle);
7040 }
7041
7042 static inline int on_null_domain(struct rq *rq)
7043 {
7044 return !rcu_dereference_sched(rq->sd);
7045 }
7046
7047 /*
7048 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7049 */
7050 void trigger_load_balance(struct rq *rq)
7051 {
7052 /* Don't need to rebalance while attached to NULL domain */
7053 if (unlikely(on_null_domain(rq)))
7054 return;
7055
7056 if (time_after_eq(jiffies, rq->next_balance))
7057 raise_softirq(SCHED_SOFTIRQ);
7058 #ifdef CONFIG_NO_HZ_COMMON
7059 if (nohz_kick_needed(rq))
7060 nohz_balancer_kick();
7061 #endif
7062 }
7063
7064 static void rq_online_fair(struct rq *rq)
7065 {
7066 update_sysctl();
7067 }
7068
7069 static void rq_offline_fair(struct rq *rq)
7070 {
7071 update_sysctl();
7072
7073 /* Ensure any throttled groups are reachable by pick_next_task */
7074 unthrottle_offline_cfs_rqs(rq);
7075 }
7076
7077 #endif /* CONFIG_SMP */
7078
7079 /*
7080 * scheduler tick hitting a task of our scheduling class:
7081 */
7082 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7083 {
7084 struct cfs_rq *cfs_rq;
7085 struct sched_entity *se = &curr->se;
7086
7087 for_each_sched_entity(se) {
7088 cfs_rq = cfs_rq_of(se);
7089 entity_tick(cfs_rq, se, queued);
7090 }
7091
7092 if (numabalancing_enabled)
7093 task_tick_numa(rq, curr);
7094
7095 update_rq_runnable_avg(rq, 1);
7096 }
7097
7098 /*
7099 * called on fork with the child task as argument from the parent's context
7100 * - child not yet on the tasklist
7101 * - preemption disabled
7102 */
7103 static void task_fork_fair(struct task_struct *p)
7104 {
7105 struct cfs_rq *cfs_rq;
7106 struct sched_entity *se = &p->se, *curr;
7107 int this_cpu = smp_processor_id();
7108 struct rq *rq = this_rq();
7109 unsigned long flags;
7110
7111 raw_spin_lock_irqsave(&rq->lock, flags);
7112
7113 update_rq_clock(rq);
7114
7115 cfs_rq = task_cfs_rq(current);
7116 curr = cfs_rq->curr;
7117
7118 /*
7119 * Not only the cpu but also the task_group of the parent might have
7120 * been changed after parent->se.parent,cfs_rq were copied to
7121 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7122 * of child point to valid ones.
7123 */
7124 rcu_read_lock();
7125 __set_task_cpu(p, this_cpu);
7126 rcu_read_unlock();
7127
7128 update_curr(cfs_rq);
7129
7130 if (curr)
7131 se->vruntime = curr->vruntime;
7132 place_entity(cfs_rq, se, 1);
7133
7134 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7135 /*
7136 * Upon rescheduling, sched_class::put_prev_task() will place
7137 * 'current' within the tree based on its new key value.
7138 */
7139 swap(curr->vruntime, se->vruntime);
7140 resched_task(rq->curr);
7141 }
7142
7143 se->vruntime -= cfs_rq->min_vruntime;
7144
7145 raw_spin_unlock_irqrestore(&rq->lock, flags);
7146 }
7147
7148 /*
7149 * Priority of the task has changed. Check to see if we preempt
7150 * the current task.
7151 */
7152 static void
7153 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7154 {
7155 if (!p->se.on_rq)
7156 return;
7157
7158 /*
7159 * Reschedule if we are currently running on this runqueue and
7160 * our priority decreased, or if we are not currently running on
7161 * this runqueue and our priority is higher than the current's
7162 */
7163 if (rq->curr == p) {
7164 if (p->prio > oldprio)
7165 resched_task(rq->curr);
7166 } else
7167 check_preempt_curr(rq, p, 0);
7168 }
7169
7170 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7171 {
7172 struct sched_entity *se = &p->se;
7173 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7174
7175 /*
7176 * Ensure the task's vruntime is normalized, so that when its
7177 * switched back to the fair class the enqueue_entity(.flags=0) will
7178 * do the right thing.
7179 *
7180 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7181 * have normalized the vruntime, if it was !on_rq, then only when
7182 * the task is sleeping will it still have non-normalized vruntime.
7183 */
7184 if (!se->on_rq && p->state != TASK_RUNNING) {
7185 /*
7186 * Fix up our vruntime so that the current sleep doesn't
7187 * cause 'unlimited' sleep bonus.
7188 */
7189 place_entity(cfs_rq, se, 0);
7190 se->vruntime -= cfs_rq->min_vruntime;
7191 }
7192
7193 #ifdef CONFIG_SMP
7194 /*
7195 * Remove our load from contribution when we leave sched_fair
7196 * and ensure we don't carry in an old decay_count if we
7197 * switch back.
7198 */
7199 if (se->avg.decay_count) {
7200 __synchronize_entity_decay(se);
7201 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7202 }
7203 #endif
7204 }
7205
7206 /*
7207 * We switched to the sched_fair class.
7208 */
7209 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7210 {
7211 if (!p->se.on_rq)
7212 return;
7213
7214 /*
7215 * We were most likely switched from sched_rt, so
7216 * kick off the schedule if running, otherwise just see
7217 * if we can still preempt the current task.
7218 */
7219 if (rq->curr == p)
7220 resched_task(rq->curr);
7221 else
7222 check_preempt_curr(rq, p, 0);
7223 }
7224
7225 /* Account for a task changing its policy or group.
7226 *
7227 * This routine is mostly called to set cfs_rq->curr field when a task
7228 * migrates between groups/classes.
7229 */
7230 static void set_curr_task_fair(struct rq *rq)
7231 {
7232 struct sched_entity *se = &rq->curr->se;
7233
7234 for_each_sched_entity(se) {
7235 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7236
7237 set_next_entity(cfs_rq, se);
7238 /* ensure bandwidth has been allocated on our new cfs_rq */
7239 account_cfs_rq_runtime(cfs_rq, 0);
7240 }
7241 }
7242
7243 void init_cfs_rq(struct cfs_rq *cfs_rq)
7244 {
7245 cfs_rq->tasks_timeline = RB_ROOT;
7246 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7247 #ifndef CONFIG_64BIT
7248 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7249 #endif
7250 #ifdef CONFIG_SMP
7251 atomic64_set(&cfs_rq->decay_counter, 1);
7252 atomic_long_set(&cfs_rq->removed_load, 0);
7253 #endif
7254 }
7255
7256 #ifdef CONFIG_FAIR_GROUP_SCHED
7257 static void task_move_group_fair(struct task_struct *p, int on_rq)
7258 {
7259 struct cfs_rq *cfs_rq;
7260 /*
7261 * If the task was not on the rq at the time of this cgroup movement
7262 * it must have been asleep, sleeping tasks keep their ->vruntime
7263 * absolute on their old rq until wakeup (needed for the fair sleeper
7264 * bonus in place_entity()).
7265 *
7266 * If it was on the rq, we've just 'preempted' it, which does convert
7267 * ->vruntime to a relative base.
7268 *
7269 * Make sure both cases convert their relative position when migrating
7270 * to another cgroup's rq. This does somewhat interfere with the
7271 * fair sleeper stuff for the first placement, but who cares.
7272 */
7273 /*
7274 * When !on_rq, vruntime of the task has usually NOT been normalized.
7275 * But there are some cases where it has already been normalized:
7276 *
7277 * - Moving a forked child which is waiting for being woken up by
7278 * wake_up_new_task().
7279 * - Moving a task which has been woken up by try_to_wake_up() and
7280 * waiting for actually being woken up by sched_ttwu_pending().
7281 *
7282 * To prevent boost or penalty in the new cfs_rq caused by delta
7283 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7284 */
7285 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7286 on_rq = 1;
7287
7288 if (!on_rq)
7289 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7290 set_task_rq(p, task_cpu(p));
7291 if (!on_rq) {
7292 cfs_rq = cfs_rq_of(&p->se);
7293 p->se.vruntime += cfs_rq->min_vruntime;
7294 #ifdef CONFIG_SMP
7295 /*
7296 * migrate_task_rq_fair() will have removed our previous
7297 * contribution, but we must synchronize for ongoing future
7298 * decay.
7299 */
7300 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7301 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7302 #endif
7303 }
7304 }
7305
7306 void free_fair_sched_group(struct task_group *tg)
7307 {
7308 int i;
7309
7310 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7311
7312 for_each_possible_cpu(i) {
7313 if (tg->cfs_rq)
7314 kfree(tg->cfs_rq[i]);
7315 if (tg->se)
7316 kfree(tg->se[i]);
7317 }
7318
7319 kfree(tg->cfs_rq);
7320 kfree(tg->se);
7321 }
7322
7323 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7324 {
7325 struct cfs_rq *cfs_rq;
7326 struct sched_entity *se;
7327 int i;
7328
7329 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7330 if (!tg->cfs_rq)
7331 goto err;
7332 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7333 if (!tg->se)
7334 goto err;
7335
7336 tg->shares = NICE_0_LOAD;
7337
7338 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7339
7340 for_each_possible_cpu(i) {
7341 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7342 GFP_KERNEL, cpu_to_node(i));
7343 if (!cfs_rq)
7344 goto err;
7345
7346 se = kzalloc_node(sizeof(struct sched_entity),
7347 GFP_KERNEL, cpu_to_node(i));
7348 if (!se)
7349 goto err_free_rq;
7350
7351 init_cfs_rq(cfs_rq);
7352 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7353 }
7354
7355 return 1;
7356
7357 err_free_rq:
7358 kfree(cfs_rq);
7359 err:
7360 return 0;
7361 }
7362
7363 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7364 {
7365 struct rq *rq = cpu_rq(cpu);
7366 unsigned long flags;
7367
7368 /*
7369 * Only empty task groups can be destroyed; so we can speculatively
7370 * check on_list without danger of it being re-added.
7371 */
7372 if (!tg->cfs_rq[cpu]->on_list)
7373 return;
7374
7375 raw_spin_lock_irqsave(&rq->lock, flags);
7376 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7377 raw_spin_unlock_irqrestore(&rq->lock, flags);
7378 }
7379
7380 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7381 struct sched_entity *se, int cpu,
7382 struct sched_entity *parent)
7383 {
7384 struct rq *rq = cpu_rq(cpu);
7385
7386 cfs_rq->tg = tg;
7387 cfs_rq->rq = rq;
7388 init_cfs_rq_runtime(cfs_rq);
7389
7390 tg->cfs_rq[cpu] = cfs_rq;
7391 tg->se[cpu] = se;
7392
7393 /* se could be NULL for root_task_group */
7394 if (!se)
7395 return;
7396
7397 if (!parent)
7398 se->cfs_rq = &rq->cfs;
7399 else
7400 se->cfs_rq = parent->my_q;
7401
7402 se->my_q = cfs_rq;
7403 /* guarantee group entities always have weight */
7404 update_load_set(&se->load, NICE_0_LOAD);
7405 se->parent = parent;
7406 }
7407
7408 static DEFINE_MUTEX(shares_mutex);
7409
7410 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7411 {
7412 int i;
7413 unsigned long flags;
7414
7415 /*
7416 * We can't change the weight of the root cgroup.
7417 */
7418 if (!tg->se[0])
7419 return -EINVAL;
7420
7421 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7422
7423 mutex_lock(&shares_mutex);
7424 if (tg->shares == shares)
7425 goto done;
7426
7427 tg->shares = shares;
7428 for_each_possible_cpu(i) {
7429 struct rq *rq = cpu_rq(i);
7430 struct sched_entity *se;
7431
7432 se = tg->se[i];
7433 /* Propagate contribution to hierarchy */
7434 raw_spin_lock_irqsave(&rq->lock, flags);
7435
7436 /* Possible calls to update_curr() need rq clock */
7437 update_rq_clock(rq);
7438 for_each_sched_entity(se)
7439 update_cfs_shares(group_cfs_rq(se));
7440 raw_spin_unlock_irqrestore(&rq->lock, flags);
7441 }
7442
7443 done:
7444 mutex_unlock(&shares_mutex);
7445 return 0;
7446 }
7447 #else /* CONFIG_FAIR_GROUP_SCHED */
7448
7449 void free_fair_sched_group(struct task_group *tg) { }
7450
7451 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7452 {
7453 return 1;
7454 }
7455
7456 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7457
7458 #endif /* CONFIG_FAIR_GROUP_SCHED */
7459
7460
7461 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7462 {
7463 struct sched_entity *se = &task->se;
7464 unsigned int rr_interval = 0;
7465
7466 /*
7467 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7468 * idle runqueue:
7469 */
7470 if (rq->cfs.load.weight)
7471 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7472
7473 return rr_interval;
7474 }
7475
7476 /*
7477 * All the scheduling class methods:
7478 */
7479 const struct sched_class fair_sched_class = {
7480 .next = &idle_sched_class,
7481 .enqueue_task = enqueue_task_fair,
7482 .dequeue_task = dequeue_task_fair,
7483 .yield_task = yield_task_fair,
7484 .yield_to_task = yield_to_task_fair,
7485
7486 .check_preempt_curr = check_preempt_wakeup,
7487
7488 .pick_next_task = pick_next_task_fair,
7489 .put_prev_task = put_prev_task_fair,
7490
7491 #ifdef CONFIG_SMP
7492 .select_task_rq = select_task_rq_fair,
7493 .migrate_task_rq = migrate_task_rq_fair,
7494
7495 .rq_online = rq_online_fair,
7496 .rq_offline = rq_offline_fair,
7497
7498 .task_waking = task_waking_fair,
7499 #endif
7500
7501 .set_curr_task = set_curr_task_fair,
7502 .task_tick = task_tick_fair,
7503 .task_fork = task_fork_fair,
7504
7505 .prio_changed = prio_changed_fair,
7506 .switched_from = switched_from_fair,
7507 .switched_to = switched_to_fair,
7508
7509 .get_rr_interval = get_rr_interval_fair,
7510
7511 #ifdef CONFIG_FAIR_GROUP_SCHED
7512 .task_move_group = task_move_group_fair,
7513 #endif
7514 };
7515
7516 #ifdef CONFIG_SCHED_DEBUG
7517 void print_cfs_stats(struct seq_file *m, int cpu)
7518 {
7519 struct cfs_rq *cfs_rq;
7520
7521 rcu_read_lock();
7522 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7523 print_cfs_rq(m, cpu, cfs_rq);
7524 rcu_read_unlock();
7525 }
7526 #endif
7527
7528 __init void init_sched_fair_class(void)
7529 {
7530 #ifdef CONFIG_SMP
7531 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7532
7533 #ifdef CONFIG_NO_HZ_COMMON
7534 nohz.next_balance = jiffies;
7535 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7536 cpu_notifier(sched_ilb_notifier, 0);
7537 #endif
7538 #endif /* SMP */
7539
7540 }