]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/fair.c
Merge branch 'sched/urgent' into sched/core
[mirror_ubuntu-artful-kernel.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29
30 #include <trace/events/sched.h>
31
32 #include "sched.h"
33
34 /*
35 * Targeted preemption latency for CPU-bound tasks:
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37 *
38 * NOTE: this latency value is not the same as the concept of
39 * 'timeslice length' - timeslices in CFS are of variable length
40 * and have no persistent notion like in traditional, time-slice
41 * based scheduling concepts.
42 *
43 * (to see the precise effective timeslice length of your workload,
44 * run vmstat and monitor the context-switches (cs) field)
45 */
46 unsigned int sysctl_sched_latency = 6000000ULL;
47 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
48
49 /*
50 * The initial- and re-scaling of tunables is configurable
51 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
52 *
53 * Options are:
54 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
55 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
56 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
57 */
58 enum sched_tunable_scaling sysctl_sched_tunable_scaling
59 = SCHED_TUNABLESCALING_LOG;
60
61 /*
62 * Minimal preemption granularity for CPU-bound tasks:
63 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
64 */
65 unsigned int sysctl_sched_min_granularity = 750000ULL;
66 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
67
68 /*
69 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
70 */
71 static unsigned int sched_nr_latency = 8;
72
73 /*
74 * After fork, child runs first. If set to 0 (default) then
75 * parent will (try to) run first.
76 */
77 unsigned int sysctl_sched_child_runs_first __read_mostly;
78
79 /*
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
92 /*
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
96 */
97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
98
99 #ifdef CONFIG_CFS_BANDWIDTH
100 /*
101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
102 * each time a cfs_rq requests quota.
103 *
104 * Note: in the case that the slice exceeds the runtime remaining (either due
105 * to consumption or the quota being specified to be smaller than the slice)
106 * we will always only issue the remaining available time.
107 *
108 * default: 5 msec, units: microseconds
109 */
110 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
111 #endif
112
113 /*
114 * Increase the granularity value when there are more CPUs,
115 * because with more CPUs the 'effective latency' as visible
116 * to users decreases. But the relationship is not linear,
117 * so pick a second-best guess by going with the log2 of the
118 * number of CPUs.
119 *
120 * This idea comes from the SD scheduler of Con Kolivas:
121 */
122 static int get_update_sysctl_factor(void)
123 {
124 unsigned int cpus = min_t(int, num_online_cpus(), 8);
125 unsigned int factor;
126
127 switch (sysctl_sched_tunable_scaling) {
128 case SCHED_TUNABLESCALING_NONE:
129 factor = 1;
130 break;
131 case SCHED_TUNABLESCALING_LINEAR:
132 factor = cpus;
133 break;
134 case SCHED_TUNABLESCALING_LOG:
135 default:
136 factor = 1 + ilog2(cpus);
137 break;
138 }
139
140 return factor;
141 }
142
143 static void update_sysctl(void)
144 {
145 unsigned int factor = get_update_sysctl_factor();
146
147 #define SET_SYSCTL(name) \
148 (sysctl_##name = (factor) * normalized_sysctl_##name)
149 SET_SYSCTL(sched_min_granularity);
150 SET_SYSCTL(sched_latency);
151 SET_SYSCTL(sched_wakeup_granularity);
152 #undef SET_SYSCTL
153 }
154
155 void sched_init_granularity(void)
156 {
157 update_sysctl();
158 }
159
160 #if BITS_PER_LONG == 32
161 # define WMULT_CONST (~0UL)
162 #else
163 # define WMULT_CONST (1UL << 32)
164 #endif
165
166 #define WMULT_SHIFT 32
167
168 /*
169 * Shift right and round:
170 */
171 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
172
173 /*
174 * delta *= weight / lw
175 */
176 static unsigned long
177 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
178 struct load_weight *lw)
179 {
180 u64 tmp;
181
182 /*
183 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
184 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
185 * 2^SCHED_LOAD_RESOLUTION.
186 */
187 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
188 tmp = (u64)delta_exec * scale_load_down(weight);
189 else
190 tmp = (u64)delta_exec;
191
192 if (!lw->inv_weight) {
193 unsigned long w = scale_load_down(lw->weight);
194
195 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
196 lw->inv_weight = 1;
197 else if (unlikely(!w))
198 lw->inv_weight = WMULT_CONST;
199 else
200 lw->inv_weight = WMULT_CONST / w;
201 }
202
203 /*
204 * Check whether we'd overflow the 64-bit multiplication:
205 */
206 if (unlikely(tmp > WMULT_CONST))
207 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
208 WMULT_SHIFT/2);
209 else
210 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
211
212 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
213 }
214
215
216 const struct sched_class fair_sched_class;
217
218 /**************************************************************
219 * CFS operations on generic schedulable entities:
220 */
221
222 #ifdef CONFIG_FAIR_GROUP_SCHED
223
224 /* cpu runqueue to which this cfs_rq is attached */
225 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
226 {
227 return cfs_rq->rq;
228 }
229
230 /* An entity is a task if it doesn't "own" a runqueue */
231 #define entity_is_task(se) (!se->my_q)
232
233 static inline struct task_struct *task_of(struct sched_entity *se)
234 {
235 #ifdef CONFIG_SCHED_DEBUG
236 WARN_ON_ONCE(!entity_is_task(se));
237 #endif
238 return container_of(se, struct task_struct, se);
239 }
240
241 /* Walk up scheduling entities hierarchy */
242 #define for_each_sched_entity(se) \
243 for (; se; se = se->parent)
244
245 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
246 {
247 return p->se.cfs_rq;
248 }
249
250 /* runqueue on which this entity is (to be) queued */
251 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
252 {
253 return se->cfs_rq;
254 }
255
256 /* runqueue "owned" by this group */
257 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
258 {
259 return grp->my_q;
260 }
261
262 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
263 int force_update);
264
265 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
266 {
267 if (!cfs_rq->on_list) {
268 /*
269 * Ensure we either appear before our parent (if already
270 * enqueued) or force our parent to appear after us when it is
271 * enqueued. The fact that we always enqueue bottom-up
272 * reduces this to two cases.
273 */
274 if (cfs_rq->tg->parent &&
275 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
276 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
277 &rq_of(cfs_rq)->leaf_cfs_rq_list);
278 } else {
279 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
280 &rq_of(cfs_rq)->leaf_cfs_rq_list);
281 }
282
283 cfs_rq->on_list = 1;
284 /* We should have no load, but we need to update last_decay. */
285 update_cfs_rq_blocked_load(cfs_rq, 0);
286 }
287 }
288
289 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 {
291 if (cfs_rq->on_list) {
292 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
293 cfs_rq->on_list = 0;
294 }
295 }
296
297 /* Iterate thr' all leaf cfs_rq's on a runqueue */
298 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
299 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
300
301 /* Do the two (enqueued) entities belong to the same group ? */
302 static inline int
303 is_same_group(struct sched_entity *se, struct sched_entity *pse)
304 {
305 if (se->cfs_rq == pse->cfs_rq)
306 return 1;
307
308 return 0;
309 }
310
311 static inline struct sched_entity *parent_entity(struct sched_entity *se)
312 {
313 return se->parent;
314 }
315
316 /* return depth at which a sched entity is present in the hierarchy */
317 static inline int depth_se(struct sched_entity *se)
318 {
319 int depth = 0;
320
321 for_each_sched_entity(se)
322 depth++;
323
324 return depth;
325 }
326
327 static void
328 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
329 {
330 int se_depth, pse_depth;
331
332 /*
333 * preemption test can be made between sibling entities who are in the
334 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
335 * both tasks until we find their ancestors who are siblings of common
336 * parent.
337 */
338
339 /* First walk up until both entities are at same depth */
340 se_depth = depth_se(*se);
341 pse_depth = depth_se(*pse);
342
343 while (se_depth > pse_depth) {
344 se_depth--;
345 *se = parent_entity(*se);
346 }
347
348 while (pse_depth > se_depth) {
349 pse_depth--;
350 *pse = parent_entity(*pse);
351 }
352
353 while (!is_same_group(*se, *pse)) {
354 *se = parent_entity(*se);
355 *pse = parent_entity(*pse);
356 }
357 }
358
359 #else /* !CONFIG_FAIR_GROUP_SCHED */
360
361 static inline struct task_struct *task_of(struct sched_entity *se)
362 {
363 return container_of(se, struct task_struct, se);
364 }
365
366 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
367 {
368 return container_of(cfs_rq, struct rq, cfs);
369 }
370
371 #define entity_is_task(se) 1
372
373 #define for_each_sched_entity(se) \
374 for (; se; se = NULL)
375
376 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
377 {
378 return &task_rq(p)->cfs;
379 }
380
381 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
382 {
383 struct task_struct *p = task_of(se);
384 struct rq *rq = task_rq(p);
385
386 return &rq->cfs;
387 }
388
389 /* runqueue "owned" by this group */
390 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
391 {
392 return NULL;
393 }
394
395 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
396 {
397 }
398
399 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
400 {
401 }
402
403 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
404 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
405
406 static inline int
407 is_same_group(struct sched_entity *se, struct sched_entity *pse)
408 {
409 return 1;
410 }
411
412 static inline struct sched_entity *parent_entity(struct sched_entity *se)
413 {
414 return NULL;
415 }
416
417 static inline void
418 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
419 {
420 }
421
422 #endif /* CONFIG_FAIR_GROUP_SCHED */
423
424 static __always_inline
425 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
426
427 /**************************************************************
428 * Scheduling class tree data structure manipulation methods:
429 */
430
431 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
432 {
433 s64 delta = (s64)(vruntime - min_vruntime);
434 if (delta > 0)
435 min_vruntime = vruntime;
436
437 return min_vruntime;
438 }
439
440 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
441 {
442 s64 delta = (s64)(vruntime - min_vruntime);
443 if (delta < 0)
444 min_vruntime = vruntime;
445
446 return min_vruntime;
447 }
448
449 static inline int entity_before(struct sched_entity *a,
450 struct sched_entity *b)
451 {
452 return (s64)(a->vruntime - b->vruntime) < 0;
453 }
454
455 static void update_min_vruntime(struct cfs_rq *cfs_rq)
456 {
457 u64 vruntime = cfs_rq->min_vruntime;
458
459 if (cfs_rq->curr)
460 vruntime = cfs_rq->curr->vruntime;
461
462 if (cfs_rq->rb_leftmost) {
463 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
464 struct sched_entity,
465 run_node);
466
467 if (!cfs_rq->curr)
468 vruntime = se->vruntime;
469 else
470 vruntime = min_vruntime(vruntime, se->vruntime);
471 }
472
473 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
474 #ifndef CONFIG_64BIT
475 smp_wmb();
476 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
477 #endif
478 }
479
480 /*
481 * Enqueue an entity into the rb-tree:
482 */
483 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
484 {
485 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
486 struct rb_node *parent = NULL;
487 struct sched_entity *entry;
488 int leftmost = 1;
489
490 /*
491 * Find the right place in the rbtree:
492 */
493 while (*link) {
494 parent = *link;
495 entry = rb_entry(parent, struct sched_entity, run_node);
496 /*
497 * We dont care about collisions. Nodes with
498 * the same key stay together.
499 */
500 if (entity_before(se, entry)) {
501 link = &parent->rb_left;
502 } else {
503 link = &parent->rb_right;
504 leftmost = 0;
505 }
506 }
507
508 /*
509 * Maintain a cache of leftmost tree entries (it is frequently
510 * used):
511 */
512 if (leftmost)
513 cfs_rq->rb_leftmost = &se->run_node;
514
515 rb_link_node(&se->run_node, parent, link);
516 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
517 }
518
519 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
520 {
521 if (cfs_rq->rb_leftmost == &se->run_node) {
522 struct rb_node *next_node;
523
524 next_node = rb_next(&se->run_node);
525 cfs_rq->rb_leftmost = next_node;
526 }
527
528 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
529 }
530
531 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
532 {
533 struct rb_node *left = cfs_rq->rb_leftmost;
534
535 if (!left)
536 return NULL;
537
538 return rb_entry(left, struct sched_entity, run_node);
539 }
540
541 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
542 {
543 struct rb_node *next = rb_next(&se->run_node);
544
545 if (!next)
546 return NULL;
547
548 return rb_entry(next, struct sched_entity, run_node);
549 }
550
551 #ifdef CONFIG_SCHED_DEBUG
552 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
553 {
554 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
555
556 if (!last)
557 return NULL;
558
559 return rb_entry(last, struct sched_entity, run_node);
560 }
561
562 /**************************************************************
563 * Scheduling class statistics methods:
564 */
565
566 int sched_proc_update_handler(struct ctl_table *table, int write,
567 void __user *buffer, size_t *lenp,
568 loff_t *ppos)
569 {
570 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
571 int factor = get_update_sysctl_factor();
572
573 if (ret || !write)
574 return ret;
575
576 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
577 sysctl_sched_min_granularity);
578
579 #define WRT_SYSCTL(name) \
580 (normalized_sysctl_##name = sysctl_##name / (factor))
581 WRT_SYSCTL(sched_min_granularity);
582 WRT_SYSCTL(sched_latency);
583 WRT_SYSCTL(sched_wakeup_granularity);
584 #undef WRT_SYSCTL
585
586 return 0;
587 }
588 #endif
589
590 /*
591 * delta /= w
592 */
593 static inline unsigned long
594 calc_delta_fair(unsigned long delta, struct sched_entity *se)
595 {
596 if (unlikely(se->load.weight != NICE_0_LOAD))
597 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
598
599 return delta;
600 }
601
602 /*
603 * The idea is to set a period in which each task runs once.
604 *
605 * When there are too many tasks (sched_nr_latency) we have to stretch
606 * this period because otherwise the slices get too small.
607 *
608 * p = (nr <= nl) ? l : l*nr/nl
609 */
610 static u64 __sched_period(unsigned long nr_running)
611 {
612 u64 period = sysctl_sched_latency;
613 unsigned long nr_latency = sched_nr_latency;
614
615 if (unlikely(nr_running > nr_latency)) {
616 period = sysctl_sched_min_granularity;
617 period *= nr_running;
618 }
619
620 return period;
621 }
622
623 /*
624 * We calculate the wall-time slice from the period by taking a part
625 * proportional to the weight.
626 *
627 * s = p*P[w/rw]
628 */
629 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
630 {
631 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
632
633 for_each_sched_entity(se) {
634 struct load_weight *load;
635 struct load_weight lw;
636
637 cfs_rq = cfs_rq_of(se);
638 load = &cfs_rq->load;
639
640 if (unlikely(!se->on_rq)) {
641 lw = cfs_rq->load;
642
643 update_load_add(&lw, se->load.weight);
644 load = &lw;
645 }
646 slice = calc_delta_mine(slice, se->load.weight, load);
647 }
648 return slice;
649 }
650
651 /*
652 * We calculate the vruntime slice of a to be inserted task
653 *
654 * vs = s/w
655 */
656 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
657 {
658 return calc_delta_fair(sched_slice(cfs_rq, se), se);
659 }
660
661 /*
662 * Update the current task's runtime statistics. Skip current tasks that
663 * are not in our scheduling class.
664 */
665 static inline void
666 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
667 unsigned long delta_exec)
668 {
669 unsigned long delta_exec_weighted;
670
671 schedstat_set(curr->statistics.exec_max,
672 max((u64)delta_exec, curr->statistics.exec_max));
673
674 curr->sum_exec_runtime += delta_exec;
675 schedstat_add(cfs_rq, exec_clock, delta_exec);
676 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
677
678 curr->vruntime += delta_exec_weighted;
679 update_min_vruntime(cfs_rq);
680 }
681
682 static void update_curr(struct cfs_rq *cfs_rq)
683 {
684 struct sched_entity *curr = cfs_rq->curr;
685 u64 now = rq_of(cfs_rq)->clock_task;
686 unsigned long delta_exec;
687
688 if (unlikely(!curr))
689 return;
690
691 /*
692 * Get the amount of time the current task was running
693 * since the last time we changed load (this cannot
694 * overflow on 32 bits):
695 */
696 delta_exec = (unsigned long)(now - curr->exec_start);
697 if (!delta_exec)
698 return;
699
700 __update_curr(cfs_rq, curr, delta_exec);
701 curr->exec_start = now;
702
703 if (entity_is_task(curr)) {
704 struct task_struct *curtask = task_of(curr);
705
706 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
707 cpuacct_charge(curtask, delta_exec);
708 account_group_exec_runtime(curtask, delta_exec);
709 }
710
711 account_cfs_rq_runtime(cfs_rq, delta_exec);
712 }
713
714 static inline void
715 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
716 {
717 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
718 }
719
720 /*
721 * Task is being enqueued - update stats:
722 */
723 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
724 {
725 /*
726 * Are we enqueueing a waiting task? (for current tasks
727 * a dequeue/enqueue event is a NOP)
728 */
729 if (se != cfs_rq->curr)
730 update_stats_wait_start(cfs_rq, se);
731 }
732
733 static void
734 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
735 {
736 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
737 rq_of(cfs_rq)->clock - se->statistics.wait_start));
738 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
739 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
740 rq_of(cfs_rq)->clock - se->statistics.wait_start);
741 #ifdef CONFIG_SCHEDSTATS
742 if (entity_is_task(se)) {
743 trace_sched_stat_wait(task_of(se),
744 rq_of(cfs_rq)->clock - se->statistics.wait_start);
745 }
746 #endif
747 schedstat_set(se->statistics.wait_start, 0);
748 }
749
750 static inline void
751 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
752 {
753 /*
754 * Mark the end of the wait period if dequeueing a
755 * waiting task:
756 */
757 if (se != cfs_rq->curr)
758 update_stats_wait_end(cfs_rq, se);
759 }
760
761 /*
762 * We are picking a new current task - update its stats:
763 */
764 static inline void
765 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
766 {
767 /*
768 * We are starting a new run period:
769 */
770 se->exec_start = rq_of(cfs_rq)->clock_task;
771 }
772
773 /**************************************************
774 * Scheduling class queueing methods:
775 */
776
777 static void
778 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 {
780 update_load_add(&cfs_rq->load, se->load.weight);
781 if (!parent_entity(se))
782 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
783 #ifdef CONFIG_SMP
784 if (entity_is_task(se))
785 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
786 #endif
787 cfs_rq->nr_running++;
788 }
789
790 static void
791 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
792 {
793 update_load_sub(&cfs_rq->load, se->load.weight);
794 if (!parent_entity(se))
795 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
796 if (entity_is_task(se))
797 list_del_init(&se->group_node);
798 cfs_rq->nr_running--;
799 }
800
801 #ifdef CONFIG_FAIR_GROUP_SCHED
802 # ifdef CONFIG_SMP
803 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
804 {
805 long tg_weight;
806
807 /*
808 * Use this CPU's actual weight instead of the last load_contribution
809 * to gain a more accurate current total weight. See
810 * update_cfs_rq_load_contribution().
811 */
812 tg_weight = atomic64_read(&tg->load_avg);
813 tg_weight -= cfs_rq->tg_load_contrib;
814 tg_weight += cfs_rq->load.weight;
815
816 return tg_weight;
817 }
818
819 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
820 {
821 long tg_weight, load, shares;
822
823 tg_weight = calc_tg_weight(tg, cfs_rq);
824 load = cfs_rq->load.weight;
825
826 shares = (tg->shares * load);
827 if (tg_weight)
828 shares /= tg_weight;
829
830 if (shares < MIN_SHARES)
831 shares = MIN_SHARES;
832 if (shares > tg->shares)
833 shares = tg->shares;
834
835 return shares;
836 }
837 # else /* CONFIG_SMP */
838 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
839 {
840 return tg->shares;
841 }
842 # endif /* CONFIG_SMP */
843 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
844 unsigned long weight)
845 {
846 if (se->on_rq) {
847 /* commit outstanding execution time */
848 if (cfs_rq->curr == se)
849 update_curr(cfs_rq);
850 account_entity_dequeue(cfs_rq, se);
851 }
852
853 update_load_set(&se->load, weight);
854
855 if (se->on_rq)
856 account_entity_enqueue(cfs_rq, se);
857 }
858
859 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
860
861 static void update_cfs_shares(struct cfs_rq *cfs_rq)
862 {
863 struct task_group *tg;
864 struct sched_entity *se;
865 long shares;
866
867 tg = cfs_rq->tg;
868 se = tg->se[cpu_of(rq_of(cfs_rq))];
869 if (!se || throttled_hierarchy(cfs_rq))
870 return;
871 #ifndef CONFIG_SMP
872 if (likely(se->load.weight == tg->shares))
873 return;
874 #endif
875 shares = calc_cfs_shares(cfs_rq, tg);
876
877 reweight_entity(cfs_rq_of(se), se, shares);
878 }
879 #else /* CONFIG_FAIR_GROUP_SCHED */
880 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
881 {
882 }
883 #endif /* CONFIG_FAIR_GROUP_SCHED */
884
885 /* Only depends on SMP, FAIR_GROUP_SCHED may be removed when useful in lb */
886 #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
887 /*
888 * We choose a half-life close to 1 scheduling period.
889 * Note: The tables below are dependent on this value.
890 */
891 #define LOAD_AVG_PERIOD 32
892 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
893 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
894
895 /* Precomputed fixed inverse multiplies for multiplication by y^n */
896 static const u32 runnable_avg_yN_inv[] = {
897 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
898 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
899 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
900 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
901 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
902 0x85aac367, 0x82cd8698,
903 };
904
905 /*
906 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
907 * over-estimates when re-combining.
908 */
909 static const u32 runnable_avg_yN_sum[] = {
910 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
911 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
912 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
913 };
914
915 /*
916 * Approximate:
917 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
918 */
919 static __always_inline u64 decay_load(u64 val, u64 n)
920 {
921 unsigned int local_n;
922
923 if (!n)
924 return val;
925 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
926 return 0;
927
928 /* after bounds checking we can collapse to 32-bit */
929 local_n = n;
930
931 /*
932 * As y^PERIOD = 1/2, we can combine
933 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
934 * With a look-up table which covers k^n (n<PERIOD)
935 *
936 * To achieve constant time decay_load.
937 */
938 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
939 val >>= local_n / LOAD_AVG_PERIOD;
940 local_n %= LOAD_AVG_PERIOD;
941 }
942
943 val *= runnable_avg_yN_inv[local_n];
944 /* We don't use SRR here since we always want to round down. */
945 return val >> 32;
946 }
947
948 /*
949 * For updates fully spanning n periods, the contribution to runnable
950 * average will be: \Sum 1024*y^n
951 *
952 * We can compute this reasonably efficiently by combining:
953 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
954 */
955 static u32 __compute_runnable_contrib(u64 n)
956 {
957 u32 contrib = 0;
958
959 if (likely(n <= LOAD_AVG_PERIOD))
960 return runnable_avg_yN_sum[n];
961 else if (unlikely(n >= LOAD_AVG_MAX_N))
962 return LOAD_AVG_MAX;
963
964 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
965 do {
966 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
967 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
968
969 n -= LOAD_AVG_PERIOD;
970 } while (n > LOAD_AVG_PERIOD);
971
972 contrib = decay_load(contrib, n);
973 return contrib + runnable_avg_yN_sum[n];
974 }
975
976 /*
977 * We can represent the historical contribution to runnable average as the
978 * coefficients of a geometric series. To do this we sub-divide our runnable
979 * history into segments of approximately 1ms (1024us); label the segment that
980 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
981 *
982 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
983 * p0 p1 p2
984 * (now) (~1ms ago) (~2ms ago)
985 *
986 * Let u_i denote the fraction of p_i that the entity was runnable.
987 *
988 * We then designate the fractions u_i as our co-efficients, yielding the
989 * following representation of historical load:
990 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
991 *
992 * We choose y based on the with of a reasonably scheduling period, fixing:
993 * y^32 = 0.5
994 *
995 * This means that the contribution to load ~32ms ago (u_32) will be weighted
996 * approximately half as much as the contribution to load within the last ms
997 * (u_0).
998 *
999 * When a period "rolls over" and we have new u_0`, multiplying the previous
1000 * sum again by y is sufficient to update:
1001 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1002 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1003 */
1004 static __always_inline int __update_entity_runnable_avg(u64 now,
1005 struct sched_avg *sa,
1006 int runnable)
1007 {
1008 u64 delta, periods;
1009 u32 runnable_contrib;
1010 int delta_w, decayed = 0;
1011
1012 delta = now - sa->last_runnable_update;
1013 /*
1014 * This should only happen when time goes backwards, which it
1015 * unfortunately does during sched clock init when we swap over to TSC.
1016 */
1017 if ((s64)delta < 0) {
1018 sa->last_runnable_update = now;
1019 return 0;
1020 }
1021
1022 /*
1023 * Use 1024ns as the unit of measurement since it's a reasonable
1024 * approximation of 1us and fast to compute.
1025 */
1026 delta >>= 10;
1027 if (!delta)
1028 return 0;
1029 sa->last_runnable_update = now;
1030
1031 /* delta_w is the amount already accumulated against our next period */
1032 delta_w = sa->runnable_avg_period % 1024;
1033 if (delta + delta_w >= 1024) {
1034 /* period roll-over */
1035 decayed = 1;
1036
1037 /*
1038 * Now that we know we're crossing a period boundary, figure
1039 * out how much from delta we need to complete the current
1040 * period and accrue it.
1041 */
1042 delta_w = 1024 - delta_w;
1043 if (runnable)
1044 sa->runnable_avg_sum += delta_w;
1045 sa->runnable_avg_period += delta_w;
1046
1047 delta -= delta_w;
1048
1049 /* Figure out how many additional periods this update spans */
1050 periods = delta / 1024;
1051 delta %= 1024;
1052
1053 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1054 periods + 1);
1055 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1056 periods + 1);
1057
1058 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1059 runnable_contrib = __compute_runnable_contrib(periods);
1060 if (runnable)
1061 sa->runnable_avg_sum += runnable_contrib;
1062 sa->runnable_avg_period += runnable_contrib;
1063 }
1064
1065 /* Remainder of delta accrued against u_0` */
1066 if (runnable)
1067 sa->runnable_avg_sum += delta;
1068 sa->runnable_avg_period += delta;
1069
1070 return decayed;
1071 }
1072
1073 /* Synchronize an entity's decay with its parenting cfs_rq.*/
1074 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
1075 {
1076 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1077 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1078
1079 decays -= se->avg.decay_count;
1080 if (!decays)
1081 return 0;
1082
1083 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1084 se->avg.decay_count = 0;
1085
1086 return decays;
1087 }
1088
1089 #ifdef CONFIG_FAIR_GROUP_SCHED
1090 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1091 int force_update)
1092 {
1093 struct task_group *tg = cfs_rq->tg;
1094 s64 tg_contrib;
1095
1096 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1097 tg_contrib -= cfs_rq->tg_load_contrib;
1098
1099 if (force_update || abs64(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1100 atomic64_add(tg_contrib, &tg->load_avg);
1101 cfs_rq->tg_load_contrib += tg_contrib;
1102 }
1103 }
1104
1105 /*
1106 * Aggregate cfs_rq runnable averages into an equivalent task_group
1107 * representation for computing load contributions.
1108 */
1109 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1110 struct cfs_rq *cfs_rq)
1111 {
1112 struct task_group *tg = cfs_rq->tg;
1113 long contrib;
1114
1115 /* The fraction of a cpu used by this cfs_rq */
1116 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1117 sa->runnable_avg_period + 1);
1118 contrib -= cfs_rq->tg_runnable_contrib;
1119
1120 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1121 atomic_add(contrib, &tg->runnable_avg);
1122 cfs_rq->tg_runnable_contrib += contrib;
1123 }
1124 }
1125
1126 static inline void __update_group_entity_contrib(struct sched_entity *se)
1127 {
1128 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1129 struct task_group *tg = cfs_rq->tg;
1130 int runnable_avg;
1131
1132 u64 contrib;
1133
1134 contrib = cfs_rq->tg_load_contrib * tg->shares;
1135 se->avg.load_avg_contrib = div64_u64(contrib,
1136 atomic64_read(&tg->load_avg) + 1);
1137
1138 /*
1139 * For group entities we need to compute a correction term in the case
1140 * that they are consuming <1 cpu so that we would contribute the same
1141 * load as a task of equal weight.
1142 *
1143 * Explicitly co-ordinating this measurement would be expensive, but
1144 * fortunately the sum of each cpus contribution forms a usable
1145 * lower-bound on the true value.
1146 *
1147 * Consider the aggregate of 2 contributions. Either they are disjoint
1148 * (and the sum represents true value) or they are disjoint and we are
1149 * understating by the aggregate of their overlap.
1150 *
1151 * Extending this to N cpus, for a given overlap, the maximum amount we
1152 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1153 * cpus that overlap for this interval and w_i is the interval width.
1154 *
1155 * On a small machine; the first term is well-bounded which bounds the
1156 * total error since w_i is a subset of the period. Whereas on a
1157 * larger machine, while this first term can be larger, if w_i is the
1158 * of consequential size guaranteed to see n_i*w_i quickly converge to
1159 * our upper bound of 1-cpu.
1160 */
1161 runnable_avg = atomic_read(&tg->runnable_avg);
1162 if (runnable_avg < NICE_0_LOAD) {
1163 se->avg.load_avg_contrib *= runnable_avg;
1164 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1165 }
1166 }
1167 #else
1168 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1169 int force_update) {}
1170 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1171 struct cfs_rq *cfs_rq) {}
1172 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
1173 #endif
1174
1175 static inline void __update_task_entity_contrib(struct sched_entity *se)
1176 {
1177 u32 contrib;
1178
1179 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1180 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1181 contrib /= (se->avg.runnable_avg_period + 1);
1182 se->avg.load_avg_contrib = scale_load(contrib);
1183 }
1184
1185 /* Compute the current contribution to load_avg by se, return any delta */
1186 static long __update_entity_load_avg_contrib(struct sched_entity *se)
1187 {
1188 long old_contrib = se->avg.load_avg_contrib;
1189
1190 if (entity_is_task(se)) {
1191 __update_task_entity_contrib(se);
1192 } else {
1193 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
1194 __update_group_entity_contrib(se);
1195 }
1196
1197 return se->avg.load_avg_contrib - old_contrib;
1198 }
1199
1200 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1201 long load_contrib)
1202 {
1203 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1204 cfs_rq->blocked_load_avg -= load_contrib;
1205 else
1206 cfs_rq->blocked_load_avg = 0;
1207 }
1208
1209 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1210
1211 /* Update a sched_entity's runnable average */
1212 static inline void update_entity_load_avg(struct sched_entity *se,
1213 int update_cfs_rq)
1214 {
1215 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1216 long contrib_delta;
1217 u64 now;
1218
1219 /*
1220 * For a group entity we need to use their owned cfs_rq_clock_task() in
1221 * case they are the parent of a throttled hierarchy.
1222 */
1223 if (entity_is_task(se))
1224 now = cfs_rq_clock_task(cfs_rq);
1225 else
1226 now = cfs_rq_clock_task(group_cfs_rq(se));
1227
1228 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
1229 return;
1230
1231 contrib_delta = __update_entity_load_avg_contrib(se);
1232
1233 if (!update_cfs_rq)
1234 return;
1235
1236 if (se->on_rq)
1237 cfs_rq->runnable_load_avg += contrib_delta;
1238 else
1239 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1240 }
1241
1242 /*
1243 * Decay the load contributed by all blocked children and account this so that
1244 * their contribution may appropriately discounted when they wake up.
1245 */
1246 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
1247 {
1248 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
1249 u64 decays;
1250
1251 decays = now - cfs_rq->last_decay;
1252 if (!decays && !force_update)
1253 return;
1254
1255 if (atomic64_read(&cfs_rq->removed_load)) {
1256 u64 removed_load = atomic64_xchg(&cfs_rq->removed_load, 0);
1257 subtract_blocked_load_contrib(cfs_rq, removed_load);
1258 }
1259
1260 if (decays) {
1261 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1262 decays);
1263 atomic64_add(decays, &cfs_rq->decay_counter);
1264 cfs_rq->last_decay = now;
1265 }
1266
1267 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
1268 update_cfs_shares(cfs_rq);
1269 }
1270
1271 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1272 {
1273 __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
1274 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
1275 }
1276
1277 /* Add the load generated by se into cfs_rq's child load-average */
1278 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1279 struct sched_entity *se,
1280 int wakeup)
1281 {
1282 /*
1283 * We track migrations using entity decay_count <= 0, on a wake-up
1284 * migration we use a negative decay count to track the remote decays
1285 * accumulated while sleeping.
1286 */
1287 if (unlikely(se->avg.decay_count <= 0)) {
1288 se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
1289 if (se->avg.decay_count) {
1290 /*
1291 * In a wake-up migration we have to approximate the
1292 * time sleeping. This is because we can't synchronize
1293 * clock_task between the two cpus, and it is not
1294 * guaranteed to be read-safe. Instead, we can
1295 * approximate this using our carried decays, which are
1296 * explicitly atomically readable.
1297 */
1298 se->avg.last_runnable_update -= (-se->avg.decay_count)
1299 << 20;
1300 update_entity_load_avg(se, 0);
1301 /* Indicate that we're now synchronized and on-rq */
1302 se->avg.decay_count = 0;
1303 }
1304 wakeup = 0;
1305 } else {
1306 __synchronize_entity_decay(se);
1307 }
1308
1309 /* migrated tasks did not contribute to our blocked load */
1310 if (wakeup) {
1311 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
1312 update_entity_load_avg(se, 0);
1313 }
1314
1315 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
1316 /* we force update consideration on load-balancer moves */
1317 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
1318 }
1319
1320 /*
1321 * Remove se's load from this cfs_rq child load-average, if the entity is
1322 * transitioning to a blocked state we track its projected decay using
1323 * blocked_load_avg.
1324 */
1325 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1326 struct sched_entity *se,
1327 int sleep)
1328 {
1329 update_entity_load_avg(se, 1);
1330 /* we force update consideration on load-balancer moves */
1331 update_cfs_rq_blocked_load(cfs_rq, !sleep);
1332
1333 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
1334 if (sleep) {
1335 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
1336 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
1337 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
1338 }
1339 #else
1340 static inline void update_entity_load_avg(struct sched_entity *se,
1341 int update_cfs_rq) {}
1342 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
1343 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
1344 struct sched_entity *se,
1345 int wakeup) {}
1346 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
1347 struct sched_entity *se,
1348 int sleep) {}
1349 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
1350 int force_update) {}
1351 #endif
1352
1353 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
1354 {
1355 #ifdef CONFIG_SCHEDSTATS
1356 struct task_struct *tsk = NULL;
1357
1358 if (entity_is_task(se))
1359 tsk = task_of(se);
1360
1361 if (se->statistics.sleep_start) {
1362 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
1363
1364 if ((s64)delta < 0)
1365 delta = 0;
1366
1367 if (unlikely(delta > se->statistics.sleep_max))
1368 se->statistics.sleep_max = delta;
1369
1370 se->statistics.sleep_start = 0;
1371 se->statistics.sum_sleep_runtime += delta;
1372
1373 if (tsk) {
1374 account_scheduler_latency(tsk, delta >> 10, 1);
1375 trace_sched_stat_sleep(tsk, delta);
1376 }
1377 }
1378 if (se->statistics.block_start) {
1379 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
1380
1381 if ((s64)delta < 0)
1382 delta = 0;
1383
1384 if (unlikely(delta > se->statistics.block_max))
1385 se->statistics.block_max = delta;
1386
1387 se->statistics.block_start = 0;
1388 se->statistics.sum_sleep_runtime += delta;
1389
1390 if (tsk) {
1391 if (tsk->in_iowait) {
1392 se->statistics.iowait_sum += delta;
1393 se->statistics.iowait_count++;
1394 trace_sched_stat_iowait(tsk, delta);
1395 }
1396
1397 trace_sched_stat_blocked(tsk, delta);
1398
1399 /*
1400 * Blocking time is in units of nanosecs, so shift by
1401 * 20 to get a milliseconds-range estimation of the
1402 * amount of time that the task spent sleeping:
1403 */
1404 if (unlikely(prof_on == SLEEP_PROFILING)) {
1405 profile_hits(SLEEP_PROFILING,
1406 (void *)get_wchan(tsk),
1407 delta >> 20);
1408 }
1409 account_scheduler_latency(tsk, delta >> 10, 0);
1410 }
1411 }
1412 #endif
1413 }
1414
1415 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
1416 {
1417 #ifdef CONFIG_SCHED_DEBUG
1418 s64 d = se->vruntime - cfs_rq->min_vruntime;
1419
1420 if (d < 0)
1421 d = -d;
1422
1423 if (d > 3*sysctl_sched_latency)
1424 schedstat_inc(cfs_rq, nr_spread_over);
1425 #endif
1426 }
1427
1428 static void
1429 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
1430 {
1431 u64 vruntime = cfs_rq->min_vruntime;
1432
1433 /*
1434 * The 'current' period is already promised to the current tasks,
1435 * however the extra weight of the new task will slow them down a
1436 * little, place the new task so that it fits in the slot that
1437 * stays open at the end.
1438 */
1439 if (initial && sched_feat(START_DEBIT))
1440 vruntime += sched_vslice(cfs_rq, se);
1441
1442 /* sleeps up to a single latency don't count. */
1443 if (!initial) {
1444 unsigned long thresh = sysctl_sched_latency;
1445
1446 /*
1447 * Halve their sleep time's effect, to allow
1448 * for a gentler effect of sleepers:
1449 */
1450 if (sched_feat(GENTLE_FAIR_SLEEPERS))
1451 thresh >>= 1;
1452
1453 vruntime -= thresh;
1454 }
1455
1456 /* ensure we never gain time by being placed backwards. */
1457 vruntime = max_vruntime(se->vruntime, vruntime);
1458
1459 se->vruntime = vruntime;
1460 }
1461
1462 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
1463
1464 static void
1465 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1466 {
1467 /*
1468 * Update the normalized vruntime before updating min_vruntime
1469 * through callig update_curr().
1470 */
1471 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
1472 se->vruntime += cfs_rq->min_vruntime;
1473
1474 /*
1475 * Update run-time statistics of the 'current'.
1476 */
1477 update_curr(cfs_rq);
1478 account_entity_enqueue(cfs_rq, se);
1479 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
1480
1481 if (flags & ENQUEUE_WAKEUP) {
1482 place_entity(cfs_rq, se, 0);
1483 enqueue_sleeper(cfs_rq, se);
1484 }
1485
1486 update_stats_enqueue(cfs_rq, se);
1487 check_spread(cfs_rq, se);
1488 if (se != cfs_rq->curr)
1489 __enqueue_entity(cfs_rq, se);
1490 se->on_rq = 1;
1491
1492 if (cfs_rq->nr_running == 1) {
1493 list_add_leaf_cfs_rq(cfs_rq);
1494 check_enqueue_throttle(cfs_rq);
1495 }
1496 }
1497
1498 static void __clear_buddies_last(struct sched_entity *se)
1499 {
1500 for_each_sched_entity(se) {
1501 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1502 if (cfs_rq->last == se)
1503 cfs_rq->last = NULL;
1504 else
1505 break;
1506 }
1507 }
1508
1509 static void __clear_buddies_next(struct sched_entity *se)
1510 {
1511 for_each_sched_entity(se) {
1512 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1513 if (cfs_rq->next == se)
1514 cfs_rq->next = NULL;
1515 else
1516 break;
1517 }
1518 }
1519
1520 static void __clear_buddies_skip(struct sched_entity *se)
1521 {
1522 for_each_sched_entity(se) {
1523 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1524 if (cfs_rq->skip == se)
1525 cfs_rq->skip = NULL;
1526 else
1527 break;
1528 }
1529 }
1530
1531 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1532 {
1533 if (cfs_rq->last == se)
1534 __clear_buddies_last(se);
1535
1536 if (cfs_rq->next == se)
1537 __clear_buddies_next(se);
1538
1539 if (cfs_rq->skip == se)
1540 __clear_buddies_skip(se);
1541 }
1542
1543 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1544
1545 static void
1546 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1547 {
1548 /*
1549 * Update run-time statistics of the 'current'.
1550 */
1551 update_curr(cfs_rq);
1552
1553 update_stats_dequeue(cfs_rq, se);
1554 if (flags & DEQUEUE_SLEEP) {
1555 #ifdef CONFIG_SCHEDSTATS
1556 if (entity_is_task(se)) {
1557 struct task_struct *tsk = task_of(se);
1558
1559 if (tsk->state & TASK_INTERRUPTIBLE)
1560 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1561 if (tsk->state & TASK_UNINTERRUPTIBLE)
1562 se->statistics.block_start = rq_of(cfs_rq)->clock;
1563 }
1564 #endif
1565 }
1566
1567 clear_buddies(cfs_rq, se);
1568
1569 if (se != cfs_rq->curr)
1570 __dequeue_entity(cfs_rq, se);
1571 account_entity_dequeue(cfs_rq, se);
1572 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
1573
1574 /*
1575 * Normalize the entity after updating the min_vruntime because the
1576 * update can refer to the ->curr item and we need to reflect this
1577 * movement in our normalized position.
1578 */
1579 if (!(flags & DEQUEUE_SLEEP))
1580 se->vruntime -= cfs_rq->min_vruntime;
1581
1582 /* return excess runtime on last dequeue */
1583 return_cfs_rq_runtime(cfs_rq);
1584
1585 update_min_vruntime(cfs_rq);
1586 se->on_rq = 0;
1587 }
1588
1589 /*
1590 * Preempt the current task with a newly woken task if needed:
1591 */
1592 static void
1593 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1594 {
1595 unsigned long ideal_runtime, delta_exec;
1596 struct sched_entity *se;
1597 s64 delta;
1598
1599 ideal_runtime = sched_slice(cfs_rq, curr);
1600 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1601 if (delta_exec > ideal_runtime) {
1602 resched_task(rq_of(cfs_rq)->curr);
1603 /*
1604 * The current task ran long enough, ensure it doesn't get
1605 * re-elected due to buddy favours.
1606 */
1607 clear_buddies(cfs_rq, curr);
1608 return;
1609 }
1610
1611 /*
1612 * Ensure that a task that missed wakeup preemption by a
1613 * narrow margin doesn't have to wait for a full slice.
1614 * This also mitigates buddy induced latencies under load.
1615 */
1616 if (delta_exec < sysctl_sched_min_granularity)
1617 return;
1618
1619 se = __pick_first_entity(cfs_rq);
1620 delta = curr->vruntime - se->vruntime;
1621
1622 if (delta < 0)
1623 return;
1624
1625 if (delta > ideal_runtime)
1626 resched_task(rq_of(cfs_rq)->curr);
1627 }
1628
1629 static void
1630 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1631 {
1632 /* 'current' is not kept within the tree. */
1633 if (se->on_rq) {
1634 /*
1635 * Any task has to be enqueued before it get to execute on
1636 * a CPU. So account for the time it spent waiting on the
1637 * runqueue.
1638 */
1639 update_stats_wait_end(cfs_rq, se);
1640 __dequeue_entity(cfs_rq, se);
1641 }
1642
1643 update_stats_curr_start(cfs_rq, se);
1644 cfs_rq->curr = se;
1645 #ifdef CONFIG_SCHEDSTATS
1646 /*
1647 * Track our maximum slice length, if the CPU's load is at
1648 * least twice that of our own weight (i.e. dont track it
1649 * when there are only lesser-weight tasks around):
1650 */
1651 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1652 se->statistics.slice_max = max(se->statistics.slice_max,
1653 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1654 }
1655 #endif
1656 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1657 }
1658
1659 static int
1660 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1661
1662 /*
1663 * Pick the next process, keeping these things in mind, in this order:
1664 * 1) keep things fair between processes/task groups
1665 * 2) pick the "next" process, since someone really wants that to run
1666 * 3) pick the "last" process, for cache locality
1667 * 4) do not run the "skip" process, if something else is available
1668 */
1669 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1670 {
1671 struct sched_entity *se = __pick_first_entity(cfs_rq);
1672 struct sched_entity *left = se;
1673
1674 /*
1675 * Avoid running the skip buddy, if running something else can
1676 * be done without getting too unfair.
1677 */
1678 if (cfs_rq->skip == se) {
1679 struct sched_entity *second = __pick_next_entity(se);
1680 if (second && wakeup_preempt_entity(second, left) < 1)
1681 se = second;
1682 }
1683
1684 /*
1685 * Prefer last buddy, try to return the CPU to a preempted task.
1686 */
1687 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1688 se = cfs_rq->last;
1689
1690 /*
1691 * Someone really wants this to run. If it's not unfair, run it.
1692 */
1693 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1694 se = cfs_rq->next;
1695
1696 clear_buddies(cfs_rq, se);
1697
1698 return se;
1699 }
1700
1701 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
1702
1703 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1704 {
1705 /*
1706 * If still on the runqueue then deactivate_task()
1707 * was not called and update_curr() has to be done:
1708 */
1709 if (prev->on_rq)
1710 update_curr(cfs_rq);
1711
1712 /* throttle cfs_rqs exceeding runtime */
1713 check_cfs_rq_runtime(cfs_rq);
1714
1715 check_spread(cfs_rq, prev);
1716 if (prev->on_rq) {
1717 update_stats_wait_start(cfs_rq, prev);
1718 /* Put 'current' back into the tree. */
1719 __enqueue_entity(cfs_rq, prev);
1720 /* in !on_rq case, update occurred at dequeue */
1721 update_entity_load_avg(prev, 1);
1722 }
1723 cfs_rq->curr = NULL;
1724 }
1725
1726 static void
1727 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1728 {
1729 /*
1730 * Update run-time statistics of the 'current'.
1731 */
1732 update_curr(cfs_rq);
1733
1734 /*
1735 * Ensure that runnable average is periodically updated.
1736 */
1737 update_entity_load_avg(curr, 1);
1738 update_cfs_rq_blocked_load(cfs_rq, 1);
1739
1740 #ifdef CONFIG_SCHED_HRTICK
1741 /*
1742 * queued ticks are scheduled to match the slice, so don't bother
1743 * validating it and just reschedule.
1744 */
1745 if (queued) {
1746 resched_task(rq_of(cfs_rq)->curr);
1747 return;
1748 }
1749 /*
1750 * don't let the period tick interfere with the hrtick preemption
1751 */
1752 if (!sched_feat(DOUBLE_TICK) &&
1753 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1754 return;
1755 #endif
1756
1757 if (cfs_rq->nr_running > 1)
1758 check_preempt_tick(cfs_rq, curr);
1759 }
1760
1761
1762 /**************************************************
1763 * CFS bandwidth control machinery
1764 */
1765
1766 #ifdef CONFIG_CFS_BANDWIDTH
1767
1768 #ifdef HAVE_JUMP_LABEL
1769 static struct static_key __cfs_bandwidth_used;
1770
1771 static inline bool cfs_bandwidth_used(void)
1772 {
1773 return static_key_false(&__cfs_bandwidth_used);
1774 }
1775
1776 void account_cfs_bandwidth_used(int enabled, int was_enabled)
1777 {
1778 /* only need to count groups transitioning between enabled/!enabled */
1779 if (enabled && !was_enabled)
1780 static_key_slow_inc(&__cfs_bandwidth_used);
1781 else if (!enabled && was_enabled)
1782 static_key_slow_dec(&__cfs_bandwidth_used);
1783 }
1784 #else /* HAVE_JUMP_LABEL */
1785 static bool cfs_bandwidth_used(void)
1786 {
1787 return true;
1788 }
1789
1790 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
1791 #endif /* HAVE_JUMP_LABEL */
1792
1793 /*
1794 * default period for cfs group bandwidth.
1795 * default: 0.1s, units: nanoseconds
1796 */
1797 static inline u64 default_cfs_period(void)
1798 {
1799 return 100000000ULL;
1800 }
1801
1802 static inline u64 sched_cfs_bandwidth_slice(void)
1803 {
1804 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
1805 }
1806
1807 /*
1808 * Replenish runtime according to assigned quota and update expiration time.
1809 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
1810 * additional synchronization around rq->lock.
1811 *
1812 * requires cfs_b->lock
1813 */
1814 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
1815 {
1816 u64 now;
1817
1818 if (cfs_b->quota == RUNTIME_INF)
1819 return;
1820
1821 now = sched_clock_cpu(smp_processor_id());
1822 cfs_b->runtime = cfs_b->quota;
1823 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
1824 }
1825
1826 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
1827 {
1828 return &tg->cfs_bandwidth;
1829 }
1830
1831 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
1832 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
1833 {
1834 if (unlikely(cfs_rq->throttle_count))
1835 return cfs_rq->throttled_clock_task;
1836
1837 return rq_of(cfs_rq)->clock_task - cfs_rq->throttled_clock_task_time;
1838 }
1839
1840 /* returns 0 on failure to allocate runtime */
1841 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1842 {
1843 struct task_group *tg = cfs_rq->tg;
1844 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
1845 u64 amount = 0, min_amount, expires;
1846
1847 /* note: this is a positive sum as runtime_remaining <= 0 */
1848 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
1849
1850 raw_spin_lock(&cfs_b->lock);
1851 if (cfs_b->quota == RUNTIME_INF)
1852 amount = min_amount;
1853 else {
1854 /*
1855 * If the bandwidth pool has become inactive, then at least one
1856 * period must have elapsed since the last consumption.
1857 * Refresh the global state and ensure bandwidth timer becomes
1858 * active.
1859 */
1860 if (!cfs_b->timer_active) {
1861 __refill_cfs_bandwidth_runtime(cfs_b);
1862 __start_cfs_bandwidth(cfs_b);
1863 }
1864
1865 if (cfs_b->runtime > 0) {
1866 amount = min(cfs_b->runtime, min_amount);
1867 cfs_b->runtime -= amount;
1868 cfs_b->idle = 0;
1869 }
1870 }
1871 expires = cfs_b->runtime_expires;
1872 raw_spin_unlock(&cfs_b->lock);
1873
1874 cfs_rq->runtime_remaining += amount;
1875 /*
1876 * we may have advanced our local expiration to account for allowed
1877 * spread between our sched_clock and the one on which runtime was
1878 * issued.
1879 */
1880 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
1881 cfs_rq->runtime_expires = expires;
1882
1883 return cfs_rq->runtime_remaining > 0;
1884 }
1885
1886 /*
1887 * Note: This depends on the synchronization provided by sched_clock and the
1888 * fact that rq->clock snapshots this value.
1889 */
1890 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
1891 {
1892 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
1893 struct rq *rq = rq_of(cfs_rq);
1894
1895 /* if the deadline is ahead of our clock, nothing to do */
1896 if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
1897 return;
1898
1899 if (cfs_rq->runtime_remaining < 0)
1900 return;
1901
1902 /*
1903 * If the local deadline has passed we have to consider the
1904 * possibility that our sched_clock is 'fast' and the global deadline
1905 * has not truly expired.
1906 *
1907 * Fortunately we can check determine whether this the case by checking
1908 * whether the global deadline has advanced.
1909 */
1910
1911 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
1912 /* extend local deadline, drift is bounded above by 2 ticks */
1913 cfs_rq->runtime_expires += TICK_NSEC;
1914 } else {
1915 /* global deadline is ahead, expiration has passed */
1916 cfs_rq->runtime_remaining = 0;
1917 }
1918 }
1919
1920 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
1921 unsigned long delta_exec)
1922 {
1923 /* dock delta_exec before expiring quota (as it could span periods) */
1924 cfs_rq->runtime_remaining -= delta_exec;
1925 expire_cfs_rq_runtime(cfs_rq);
1926
1927 if (likely(cfs_rq->runtime_remaining > 0))
1928 return;
1929
1930 /*
1931 * if we're unable to extend our runtime we resched so that the active
1932 * hierarchy can be throttled
1933 */
1934 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
1935 resched_task(rq_of(cfs_rq)->curr);
1936 }
1937
1938 static __always_inline
1939 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
1940 {
1941 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
1942 return;
1943
1944 __account_cfs_rq_runtime(cfs_rq, delta_exec);
1945 }
1946
1947 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
1948 {
1949 return cfs_bandwidth_used() && cfs_rq->throttled;
1950 }
1951
1952 /* check whether cfs_rq, or any parent, is throttled */
1953 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
1954 {
1955 return cfs_bandwidth_used() && cfs_rq->throttle_count;
1956 }
1957
1958 /*
1959 * Ensure that neither of the group entities corresponding to src_cpu or
1960 * dest_cpu are members of a throttled hierarchy when performing group
1961 * load-balance operations.
1962 */
1963 static inline int throttled_lb_pair(struct task_group *tg,
1964 int src_cpu, int dest_cpu)
1965 {
1966 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
1967
1968 src_cfs_rq = tg->cfs_rq[src_cpu];
1969 dest_cfs_rq = tg->cfs_rq[dest_cpu];
1970
1971 return throttled_hierarchy(src_cfs_rq) ||
1972 throttled_hierarchy(dest_cfs_rq);
1973 }
1974
1975 /* updated child weight may affect parent so we have to do this bottom up */
1976 static int tg_unthrottle_up(struct task_group *tg, void *data)
1977 {
1978 struct rq *rq = data;
1979 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1980
1981 cfs_rq->throttle_count--;
1982 #ifdef CONFIG_SMP
1983 if (!cfs_rq->throttle_count) {
1984 /* adjust cfs_rq_clock_task() */
1985 cfs_rq->throttled_clock_task_time += rq->clock_task -
1986 cfs_rq->throttled_clock_task;
1987 }
1988 #endif
1989
1990 return 0;
1991 }
1992
1993 static int tg_throttle_down(struct task_group *tg, void *data)
1994 {
1995 struct rq *rq = data;
1996 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
1997
1998 /* group is entering throttled state, stop time */
1999 if (!cfs_rq->throttle_count)
2000 cfs_rq->throttled_clock_task = rq->clock_task;
2001 cfs_rq->throttle_count++;
2002
2003 return 0;
2004 }
2005
2006 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
2007 {
2008 struct rq *rq = rq_of(cfs_rq);
2009 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2010 struct sched_entity *se;
2011 long task_delta, dequeue = 1;
2012
2013 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2014
2015 /* freeze hierarchy runnable averages while throttled */
2016 rcu_read_lock();
2017 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2018 rcu_read_unlock();
2019
2020 task_delta = cfs_rq->h_nr_running;
2021 for_each_sched_entity(se) {
2022 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2023 /* throttled entity or throttle-on-deactivate */
2024 if (!se->on_rq)
2025 break;
2026
2027 if (dequeue)
2028 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2029 qcfs_rq->h_nr_running -= task_delta;
2030
2031 if (qcfs_rq->load.weight)
2032 dequeue = 0;
2033 }
2034
2035 if (!se)
2036 rq->nr_running -= task_delta;
2037
2038 cfs_rq->throttled = 1;
2039 cfs_rq->throttled_clock = rq->clock;
2040 raw_spin_lock(&cfs_b->lock);
2041 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2042 raw_spin_unlock(&cfs_b->lock);
2043 }
2044
2045 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
2046 {
2047 struct rq *rq = rq_of(cfs_rq);
2048 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2049 struct sched_entity *se;
2050 int enqueue = 1;
2051 long task_delta;
2052
2053 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2054
2055 cfs_rq->throttled = 0;
2056 raw_spin_lock(&cfs_b->lock);
2057 cfs_b->throttled_time += rq->clock - cfs_rq->throttled_clock;
2058 list_del_rcu(&cfs_rq->throttled_list);
2059 raw_spin_unlock(&cfs_b->lock);
2060
2061 update_rq_clock(rq);
2062 /* update hierarchical throttle state */
2063 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2064
2065 if (!cfs_rq->load.weight)
2066 return;
2067
2068 task_delta = cfs_rq->h_nr_running;
2069 for_each_sched_entity(se) {
2070 if (se->on_rq)
2071 enqueue = 0;
2072
2073 cfs_rq = cfs_rq_of(se);
2074 if (enqueue)
2075 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2076 cfs_rq->h_nr_running += task_delta;
2077
2078 if (cfs_rq_throttled(cfs_rq))
2079 break;
2080 }
2081
2082 if (!se)
2083 rq->nr_running += task_delta;
2084
2085 /* determine whether we need to wake up potentially idle cpu */
2086 if (rq->curr == rq->idle && rq->cfs.nr_running)
2087 resched_task(rq->curr);
2088 }
2089
2090 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2091 u64 remaining, u64 expires)
2092 {
2093 struct cfs_rq *cfs_rq;
2094 u64 runtime = remaining;
2095
2096 rcu_read_lock();
2097 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2098 throttled_list) {
2099 struct rq *rq = rq_of(cfs_rq);
2100
2101 raw_spin_lock(&rq->lock);
2102 if (!cfs_rq_throttled(cfs_rq))
2103 goto next;
2104
2105 runtime = -cfs_rq->runtime_remaining + 1;
2106 if (runtime > remaining)
2107 runtime = remaining;
2108 remaining -= runtime;
2109
2110 cfs_rq->runtime_remaining += runtime;
2111 cfs_rq->runtime_expires = expires;
2112
2113 /* we check whether we're throttled above */
2114 if (cfs_rq->runtime_remaining > 0)
2115 unthrottle_cfs_rq(cfs_rq);
2116
2117 next:
2118 raw_spin_unlock(&rq->lock);
2119
2120 if (!remaining)
2121 break;
2122 }
2123 rcu_read_unlock();
2124
2125 return remaining;
2126 }
2127
2128 /*
2129 * Responsible for refilling a task_group's bandwidth and unthrottling its
2130 * cfs_rqs as appropriate. If there has been no activity within the last
2131 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2132 * used to track this state.
2133 */
2134 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2135 {
2136 u64 runtime, runtime_expires;
2137 int idle = 1, throttled;
2138
2139 raw_spin_lock(&cfs_b->lock);
2140 /* no need to continue the timer with no bandwidth constraint */
2141 if (cfs_b->quota == RUNTIME_INF)
2142 goto out_unlock;
2143
2144 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2145 /* idle depends on !throttled (for the case of a large deficit) */
2146 idle = cfs_b->idle && !throttled;
2147 cfs_b->nr_periods += overrun;
2148
2149 /* if we're going inactive then everything else can be deferred */
2150 if (idle)
2151 goto out_unlock;
2152
2153 __refill_cfs_bandwidth_runtime(cfs_b);
2154
2155 if (!throttled) {
2156 /* mark as potentially idle for the upcoming period */
2157 cfs_b->idle = 1;
2158 goto out_unlock;
2159 }
2160
2161 /* account preceding periods in which throttling occurred */
2162 cfs_b->nr_throttled += overrun;
2163
2164 /*
2165 * There are throttled entities so we must first use the new bandwidth
2166 * to unthrottle them before making it generally available. This
2167 * ensures that all existing debts will be paid before a new cfs_rq is
2168 * allowed to run.
2169 */
2170 runtime = cfs_b->runtime;
2171 runtime_expires = cfs_b->runtime_expires;
2172 cfs_b->runtime = 0;
2173
2174 /*
2175 * This check is repeated as we are holding onto the new bandwidth
2176 * while we unthrottle. This can potentially race with an unthrottled
2177 * group trying to acquire new bandwidth from the global pool.
2178 */
2179 while (throttled && runtime > 0) {
2180 raw_spin_unlock(&cfs_b->lock);
2181 /* we can't nest cfs_b->lock while distributing bandwidth */
2182 runtime = distribute_cfs_runtime(cfs_b, runtime,
2183 runtime_expires);
2184 raw_spin_lock(&cfs_b->lock);
2185
2186 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2187 }
2188
2189 /* return (any) remaining runtime */
2190 cfs_b->runtime = runtime;
2191 /*
2192 * While we are ensured activity in the period following an
2193 * unthrottle, this also covers the case in which the new bandwidth is
2194 * insufficient to cover the existing bandwidth deficit. (Forcing the
2195 * timer to remain active while there are any throttled entities.)
2196 */
2197 cfs_b->idle = 0;
2198 out_unlock:
2199 if (idle)
2200 cfs_b->timer_active = 0;
2201 raw_spin_unlock(&cfs_b->lock);
2202
2203 return idle;
2204 }
2205
2206 /* a cfs_rq won't donate quota below this amount */
2207 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2208 /* minimum remaining period time to redistribute slack quota */
2209 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2210 /* how long we wait to gather additional slack before distributing */
2211 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2212
2213 /* are we near the end of the current quota period? */
2214 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2215 {
2216 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2217 u64 remaining;
2218
2219 /* if the call-back is running a quota refresh is already occurring */
2220 if (hrtimer_callback_running(refresh_timer))
2221 return 1;
2222
2223 /* is a quota refresh about to occur? */
2224 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2225 if (remaining < min_expire)
2226 return 1;
2227
2228 return 0;
2229 }
2230
2231 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2232 {
2233 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2234
2235 /* if there's a quota refresh soon don't bother with slack */
2236 if (runtime_refresh_within(cfs_b, min_left))
2237 return;
2238
2239 start_bandwidth_timer(&cfs_b->slack_timer,
2240 ns_to_ktime(cfs_bandwidth_slack_period));
2241 }
2242
2243 /* we know any runtime found here is valid as update_curr() precedes return */
2244 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2245 {
2246 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2247 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2248
2249 if (slack_runtime <= 0)
2250 return;
2251
2252 raw_spin_lock(&cfs_b->lock);
2253 if (cfs_b->quota != RUNTIME_INF &&
2254 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2255 cfs_b->runtime += slack_runtime;
2256
2257 /* we are under rq->lock, defer unthrottling using a timer */
2258 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2259 !list_empty(&cfs_b->throttled_cfs_rq))
2260 start_cfs_slack_bandwidth(cfs_b);
2261 }
2262 raw_spin_unlock(&cfs_b->lock);
2263
2264 /* even if it's not valid for return we don't want to try again */
2265 cfs_rq->runtime_remaining -= slack_runtime;
2266 }
2267
2268 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2269 {
2270 if (!cfs_bandwidth_used())
2271 return;
2272
2273 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
2274 return;
2275
2276 __return_cfs_rq_runtime(cfs_rq);
2277 }
2278
2279 /*
2280 * This is done with a timer (instead of inline with bandwidth return) since
2281 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2282 */
2283 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2284 {
2285 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2286 u64 expires;
2287
2288 /* confirm we're still not at a refresh boundary */
2289 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2290 return;
2291
2292 raw_spin_lock(&cfs_b->lock);
2293 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2294 runtime = cfs_b->runtime;
2295 cfs_b->runtime = 0;
2296 }
2297 expires = cfs_b->runtime_expires;
2298 raw_spin_unlock(&cfs_b->lock);
2299
2300 if (!runtime)
2301 return;
2302
2303 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
2304
2305 raw_spin_lock(&cfs_b->lock);
2306 if (expires == cfs_b->runtime_expires)
2307 cfs_b->runtime = runtime;
2308 raw_spin_unlock(&cfs_b->lock);
2309 }
2310
2311 /*
2312 * When a group wakes up we want to make sure that its quota is not already
2313 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
2314 * runtime as update_curr() throttling can not not trigger until it's on-rq.
2315 */
2316 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
2317 {
2318 if (!cfs_bandwidth_used())
2319 return;
2320
2321 /* an active group must be handled by the update_curr()->put() path */
2322 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
2323 return;
2324
2325 /* ensure the group is not already throttled */
2326 if (cfs_rq_throttled(cfs_rq))
2327 return;
2328
2329 /* update runtime allocation */
2330 account_cfs_rq_runtime(cfs_rq, 0);
2331 if (cfs_rq->runtime_remaining <= 0)
2332 throttle_cfs_rq(cfs_rq);
2333 }
2334
2335 /* conditionally throttle active cfs_rq's from put_prev_entity() */
2336 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2337 {
2338 if (!cfs_bandwidth_used())
2339 return;
2340
2341 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
2342 return;
2343
2344 /*
2345 * it's possible for a throttled entity to be forced into a running
2346 * state (e.g. set_curr_task), in this case we're finished.
2347 */
2348 if (cfs_rq_throttled(cfs_rq))
2349 return;
2350
2351 throttle_cfs_rq(cfs_rq);
2352 }
2353
2354 static inline u64 default_cfs_period(void);
2355 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
2356 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
2357
2358 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
2359 {
2360 struct cfs_bandwidth *cfs_b =
2361 container_of(timer, struct cfs_bandwidth, slack_timer);
2362 do_sched_cfs_slack_timer(cfs_b);
2363
2364 return HRTIMER_NORESTART;
2365 }
2366
2367 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
2368 {
2369 struct cfs_bandwidth *cfs_b =
2370 container_of(timer, struct cfs_bandwidth, period_timer);
2371 ktime_t now;
2372 int overrun;
2373 int idle = 0;
2374
2375 for (;;) {
2376 now = hrtimer_cb_get_time(timer);
2377 overrun = hrtimer_forward(timer, now, cfs_b->period);
2378
2379 if (!overrun)
2380 break;
2381
2382 idle = do_sched_cfs_period_timer(cfs_b, overrun);
2383 }
2384
2385 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
2386 }
2387
2388 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2389 {
2390 raw_spin_lock_init(&cfs_b->lock);
2391 cfs_b->runtime = 0;
2392 cfs_b->quota = RUNTIME_INF;
2393 cfs_b->period = ns_to_ktime(default_cfs_period());
2394
2395 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
2396 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2397 cfs_b->period_timer.function = sched_cfs_period_timer;
2398 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2399 cfs_b->slack_timer.function = sched_cfs_slack_timer;
2400 }
2401
2402 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2403 {
2404 cfs_rq->runtime_enabled = 0;
2405 INIT_LIST_HEAD(&cfs_rq->throttled_list);
2406 }
2407
2408 /* requires cfs_b->lock, may release to reprogram timer */
2409 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2410 {
2411 /*
2412 * The timer may be active because we're trying to set a new bandwidth
2413 * period or because we're racing with the tear-down path
2414 * (timer_active==0 becomes visible before the hrtimer call-back
2415 * terminates). In either case we ensure that it's re-programmed
2416 */
2417 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
2418 raw_spin_unlock(&cfs_b->lock);
2419 /* ensure cfs_b->lock is available while we wait */
2420 hrtimer_cancel(&cfs_b->period_timer);
2421
2422 raw_spin_lock(&cfs_b->lock);
2423 /* if someone else restarted the timer then we're done */
2424 if (cfs_b->timer_active)
2425 return;
2426 }
2427
2428 cfs_b->timer_active = 1;
2429 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
2430 }
2431
2432 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
2433 {
2434 hrtimer_cancel(&cfs_b->period_timer);
2435 hrtimer_cancel(&cfs_b->slack_timer);
2436 }
2437
2438 static void unthrottle_offline_cfs_rqs(struct rq *rq)
2439 {
2440 struct cfs_rq *cfs_rq;
2441
2442 for_each_leaf_cfs_rq(rq, cfs_rq) {
2443 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2444
2445 if (!cfs_rq->runtime_enabled)
2446 continue;
2447
2448 /*
2449 * clock_task is not advancing so we just need to make sure
2450 * there's some valid quota amount
2451 */
2452 cfs_rq->runtime_remaining = cfs_b->quota;
2453 if (cfs_rq_throttled(cfs_rq))
2454 unthrottle_cfs_rq(cfs_rq);
2455 }
2456 }
2457
2458 #else /* CONFIG_CFS_BANDWIDTH */
2459 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2460 {
2461 return rq_of(cfs_rq)->clock_task;
2462 }
2463
2464 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2465 unsigned long delta_exec) {}
2466 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2467 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
2468 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2469
2470 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2471 {
2472 return 0;
2473 }
2474
2475 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2476 {
2477 return 0;
2478 }
2479
2480 static inline int throttled_lb_pair(struct task_group *tg,
2481 int src_cpu, int dest_cpu)
2482 {
2483 return 0;
2484 }
2485
2486 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2487
2488 #ifdef CONFIG_FAIR_GROUP_SCHED
2489 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
2490 #endif
2491
2492 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2493 {
2494 return NULL;
2495 }
2496 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
2497 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
2498
2499 #endif /* CONFIG_CFS_BANDWIDTH */
2500
2501 /**************************************************
2502 * CFS operations on tasks:
2503 */
2504
2505 #ifdef CONFIG_SCHED_HRTICK
2506 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
2507 {
2508 struct sched_entity *se = &p->se;
2509 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2510
2511 WARN_ON(task_rq(p) != rq);
2512
2513 if (cfs_rq->nr_running > 1) {
2514 u64 slice = sched_slice(cfs_rq, se);
2515 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
2516 s64 delta = slice - ran;
2517
2518 if (delta < 0) {
2519 if (rq->curr == p)
2520 resched_task(p);
2521 return;
2522 }
2523
2524 /*
2525 * Don't schedule slices shorter than 10000ns, that just
2526 * doesn't make sense. Rely on vruntime for fairness.
2527 */
2528 if (rq->curr != p)
2529 delta = max_t(s64, 10000LL, delta);
2530
2531 hrtick_start(rq, delta);
2532 }
2533 }
2534
2535 /*
2536 * called from enqueue/dequeue and updates the hrtick when the
2537 * current task is from our class and nr_running is low enough
2538 * to matter.
2539 */
2540 static void hrtick_update(struct rq *rq)
2541 {
2542 struct task_struct *curr = rq->curr;
2543
2544 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
2545 return;
2546
2547 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
2548 hrtick_start_fair(rq, curr);
2549 }
2550 #else /* !CONFIG_SCHED_HRTICK */
2551 static inline void
2552 hrtick_start_fair(struct rq *rq, struct task_struct *p)
2553 {
2554 }
2555
2556 static inline void hrtick_update(struct rq *rq)
2557 {
2558 }
2559 #endif
2560
2561 /*
2562 * The enqueue_task method is called before nr_running is
2563 * increased. Here we update the fair scheduling stats and
2564 * then put the task into the rbtree:
2565 */
2566 static void
2567 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2568 {
2569 struct cfs_rq *cfs_rq;
2570 struct sched_entity *se = &p->se;
2571
2572 for_each_sched_entity(se) {
2573 if (se->on_rq)
2574 break;
2575 cfs_rq = cfs_rq_of(se);
2576 enqueue_entity(cfs_rq, se, flags);
2577
2578 /*
2579 * end evaluation on encountering a throttled cfs_rq
2580 *
2581 * note: in the case of encountering a throttled cfs_rq we will
2582 * post the final h_nr_running increment below.
2583 */
2584 if (cfs_rq_throttled(cfs_rq))
2585 break;
2586 cfs_rq->h_nr_running++;
2587
2588 flags = ENQUEUE_WAKEUP;
2589 }
2590
2591 for_each_sched_entity(se) {
2592 cfs_rq = cfs_rq_of(se);
2593 cfs_rq->h_nr_running++;
2594
2595 if (cfs_rq_throttled(cfs_rq))
2596 break;
2597
2598 update_entity_load_avg(se, 1);
2599 update_cfs_rq_blocked_load(cfs_rq, 0);
2600 }
2601
2602 if (!se) {
2603 update_rq_runnable_avg(rq, rq->nr_running);
2604 inc_nr_running(rq);
2605 }
2606 hrtick_update(rq);
2607 }
2608
2609 static void set_next_buddy(struct sched_entity *se);
2610
2611 /*
2612 * The dequeue_task method is called before nr_running is
2613 * decreased. We remove the task from the rbtree and
2614 * update the fair scheduling stats:
2615 */
2616 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
2617 {
2618 struct cfs_rq *cfs_rq;
2619 struct sched_entity *se = &p->se;
2620 int task_sleep = flags & DEQUEUE_SLEEP;
2621
2622 for_each_sched_entity(se) {
2623 cfs_rq = cfs_rq_of(se);
2624 dequeue_entity(cfs_rq, se, flags);
2625
2626 /*
2627 * end evaluation on encountering a throttled cfs_rq
2628 *
2629 * note: in the case of encountering a throttled cfs_rq we will
2630 * post the final h_nr_running decrement below.
2631 */
2632 if (cfs_rq_throttled(cfs_rq))
2633 break;
2634 cfs_rq->h_nr_running--;
2635
2636 /* Don't dequeue parent if it has other entities besides us */
2637 if (cfs_rq->load.weight) {
2638 /*
2639 * Bias pick_next to pick a task from this cfs_rq, as
2640 * p is sleeping when it is within its sched_slice.
2641 */
2642 if (task_sleep && parent_entity(se))
2643 set_next_buddy(parent_entity(se));
2644
2645 /* avoid re-evaluating load for this entity */
2646 se = parent_entity(se);
2647 break;
2648 }
2649 flags |= DEQUEUE_SLEEP;
2650 }
2651
2652 for_each_sched_entity(se) {
2653 cfs_rq = cfs_rq_of(se);
2654 cfs_rq->h_nr_running--;
2655
2656 if (cfs_rq_throttled(cfs_rq))
2657 break;
2658
2659 update_entity_load_avg(se, 1);
2660 update_cfs_rq_blocked_load(cfs_rq, 0);
2661 }
2662
2663 if (!se) {
2664 dec_nr_running(rq);
2665 update_rq_runnable_avg(rq, 1);
2666 }
2667 hrtick_update(rq);
2668 }
2669
2670 #ifdef CONFIG_SMP
2671 /* Used instead of source_load when we know the type == 0 */
2672 static unsigned long weighted_cpuload(const int cpu)
2673 {
2674 return cpu_rq(cpu)->load.weight;
2675 }
2676
2677 /*
2678 * Return a low guess at the load of a migration-source cpu weighted
2679 * according to the scheduling class and "nice" value.
2680 *
2681 * We want to under-estimate the load of migration sources, to
2682 * balance conservatively.
2683 */
2684 static unsigned long source_load(int cpu, int type)
2685 {
2686 struct rq *rq = cpu_rq(cpu);
2687 unsigned long total = weighted_cpuload(cpu);
2688
2689 if (type == 0 || !sched_feat(LB_BIAS))
2690 return total;
2691
2692 return min(rq->cpu_load[type-1], total);
2693 }
2694
2695 /*
2696 * Return a high guess at the load of a migration-target cpu weighted
2697 * according to the scheduling class and "nice" value.
2698 */
2699 static unsigned long target_load(int cpu, int type)
2700 {
2701 struct rq *rq = cpu_rq(cpu);
2702 unsigned long total = weighted_cpuload(cpu);
2703
2704 if (type == 0 || !sched_feat(LB_BIAS))
2705 return total;
2706
2707 return max(rq->cpu_load[type-1], total);
2708 }
2709
2710 static unsigned long power_of(int cpu)
2711 {
2712 return cpu_rq(cpu)->cpu_power;
2713 }
2714
2715 static unsigned long cpu_avg_load_per_task(int cpu)
2716 {
2717 struct rq *rq = cpu_rq(cpu);
2718 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
2719
2720 if (nr_running)
2721 return rq->load.weight / nr_running;
2722
2723 return 0;
2724 }
2725
2726
2727 static void task_waking_fair(struct task_struct *p)
2728 {
2729 struct sched_entity *se = &p->se;
2730 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2731 u64 min_vruntime;
2732
2733 #ifndef CONFIG_64BIT
2734 u64 min_vruntime_copy;
2735
2736 do {
2737 min_vruntime_copy = cfs_rq->min_vruntime_copy;
2738 smp_rmb();
2739 min_vruntime = cfs_rq->min_vruntime;
2740 } while (min_vruntime != min_vruntime_copy);
2741 #else
2742 min_vruntime = cfs_rq->min_vruntime;
2743 #endif
2744
2745 se->vruntime -= min_vruntime;
2746 }
2747
2748 #ifdef CONFIG_FAIR_GROUP_SCHED
2749 /*
2750 * effective_load() calculates the load change as seen from the root_task_group
2751 *
2752 * Adding load to a group doesn't make a group heavier, but can cause movement
2753 * of group shares between cpus. Assuming the shares were perfectly aligned one
2754 * can calculate the shift in shares.
2755 *
2756 * Calculate the effective load difference if @wl is added (subtracted) to @tg
2757 * on this @cpu and results in a total addition (subtraction) of @wg to the
2758 * total group weight.
2759 *
2760 * Given a runqueue weight distribution (rw_i) we can compute a shares
2761 * distribution (s_i) using:
2762 *
2763 * s_i = rw_i / \Sum rw_j (1)
2764 *
2765 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
2766 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
2767 * shares distribution (s_i):
2768 *
2769 * rw_i = { 2, 4, 1, 0 }
2770 * s_i = { 2/7, 4/7, 1/7, 0 }
2771 *
2772 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
2773 * task used to run on and the CPU the waker is running on), we need to
2774 * compute the effect of waking a task on either CPU and, in case of a sync
2775 * wakeup, compute the effect of the current task going to sleep.
2776 *
2777 * So for a change of @wl to the local @cpu with an overall group weight change
2778 * of @wl we can compute the new shares distribution (s'_i) using:
2779 *
2780 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
2781 *
2782 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
2783 * differences in waking a task to CPU 0. The additional task changes the
2784 * weight and shares distributions like:
2785 *
2786 * rw'_i = { 3, 4, 1, 0 }
2787 * s'_i = { 3/8, 4/8, 1/8, 0 }
2788 *
2789 * We can then compute the difference in effective weight by using:
2790 *
2791 * dw_i = S * (s'_i - s_i) (3)
2792 *
2793 * Where 'S' is the group weight as seen by its parent.
2794 *
2795 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
2796 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
2797 * 4/7) times the weight of the group.
2798 */
2799 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
2800 {
2801 struct sched_entity *se = tg->se[cpu];
2802
2803 if (!tg->parent) /* the trivial, non-cgroup case */
2804 return wl;
2805
2806 for_each_sched_entity(se) {
2807 long w, W;
2808
2809 tg = se->my_q->tg;
2810
2811 /*
2812 * W = @wg + \Sum rw_j
2813 */
2814 W = wg + calc_tg_weight(tg, se->my_q);
2815
2816 /*
2817 * w = rw_i + @wl
2818 */
2819 w = se->my_q->load.weight + wl;
2820
2821 /*
2822 * wl = S * s'_i; see (2)
2823 */
2824 if (W > 0 && w < W)
2825 wl = (w * tg->shares) / W;
2826 else
2827 wl = tg->shares;
2828
2829 /*
2830 * Per the above, wl is the new se->load.weight value; since
2831 * those are clipped to [MIN_SHARES, ...) do so now. See
2832 * calc_cfs_shares().
2833 */
2834 if (wl < MIN_SHARES)
2835 wl = MIN_SHARES;
2836
2837 /*
2838 * wl = dw_i = S * (s'_i - s_i); see (3)
2839 */
2840 wl -= se->load.weight;
2841
2842 /*
2843 * Recursively apply this logic to all parent groups to compute
2844 * the final effective load change on the root group. Since
2845 * only the @tg group gets extra weight, all parent groups can
2846 * only redistribute existing shares. @wl is the shift in shares
2847 * resulting from this level per the above.
2848 */
2849 wg = 0;
2850 }
2851
2852 return wl;
2853 }
2854 #else
2855
2856 static inline unsigned long effective_load(struct task_group *tg, int cpu,
2857 unsigned long wl, unsigned long wg)
2858 {
2859 return wl;
2860 }
2861
2862 #endif
2863
2864 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
2865 {
2866 s64 this_load, load;
2867 int idx, this_cpu, prev_cpu;
2868 unsigned long tl_per_task;
2869 struct task_group *tg;
2870 unsigned long weight;
2871 int balanced;
2872
2873 idx = sd->wake_idx;
2874 this_cpu = smp_processor_id();
2875 prev_cpu = task_cpu(p);
2876 load = source_load(prev_cpu, idx);
2877 this_load = target_load(this_cpu, idx);
2878
2879 /*
2880 * If sync wakeup then subtract the (maximum possible)
2881 * effect of the currently running task from the load
2882 * of the current CPU:
2883 */
2884 if (sync) {
2885 tg = task_group(current);
2886 weight = current->se.load.weight;
2887
2888 this_load += effective_load(tg, this_cpu, -weight, -weight);
2889 load += effective_load(tg, prev_cpu, 0, -weight);
2890 }
2891
2892 tg = task_group(p);
2893 weight = p->se.load.weight;
2894
2895 /*
2896 * In low-load situations, where prev_cpu is idle and this_cpu is idle
2897 * due to the sync cause above having dropped this_load to 0, we'll
2898 * always have an imbalance, but there's really nothing you can do
2899 * about that, so that's good too.
2900 *
2901 * Otherwise check if either cpus are near enough in load to allow this
2902 * task to be woken on this_cpu.
2903 */
2904 if (this_load > 0) {
2905 s64 this_eff_load, prev_eff_load;
2906
2907 this_eff_load = 100;
2908 this_eff_load *= power_of(prev_cpu);
2909 this_eff_load *= this_load +
2910 effective_load(tg, this_cpu, weight, weight);
2911
2912 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
2913 prev_eff_load *= power_of(this_cpu);
2914 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
2915
2916 balanced = this_eff_load <= prev_eff_load;
2917 } else
2918 balanced = true;
2919
2920 /*
2921 * If the currently running task will sleep within
2922 * a reasonable amount of time then attract this newly
2923 * woken task:
2924 */
2925 if (sync && balanced)
2926 return 1;
2927
2928 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
2929 tl_per_task = cpu_avg_load_per_task(this_cpu);
2930
2931 if (balanced ||
2932 (this_load <= load &&
2933 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
2934 /*
2935 * This domain has SD_WAKE_AFFINE and
2936 * p is cache cold in this domain, and
2937 * there is no bad imbalance.
2938 */
2939 schedstat_inc(sd, ttwu_move_affine);
2940 schedstat_inc(p, se.statistics.nr_wakeups_affine);
2941
2942 return 1;
2943 }
2944 return 0;
2945 }
2946
2947 /*
2948 * find_idlest_group finds and returns the least busy CPU group within the
2949 * domain.
2950 */
2951 static struct sched_group *
2952 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
2953 int this_cpu, int load_idx)
2954 {
2955 struct sched_group *idlest = NULL, *group = sd->groups;
2956 unsigned long min_load = ULONG_MAX, this_load = 0;
2957 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2958
2959 do {
2960 unsigned long load, avg_load;
2961 int local_group;
2962 int i;
2963
2964 /* Skip over this group if it has no CPUs allowed */
2965 if (!cpumask_intersects(sched_group_cpus(group),
2966 tsk_cpus_allowed(p)))
2967 continue;
2968
2969 local_group = cpumask_test_cpu(this_cpu,
2970 sched_group_cpus(group));
2971
2972 /* Tally up the load of all CPUs in the group */
2973 avg_load = 0;
2974
2975 for_each_cpu(i, sched_group_cpus(group)) {
2976 /* Bias balancing toward cpus of our domain */
2977 if (local_group)
2978 load = source_load(i, load_idx);
2979 else
2980 load = target_load(i, load_idx);
2981
2982 avg_load += load;
2983 }
2984
2985 /* Adjust by relative CPU power of the group */
2986 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
2987
2988 if (local_group) {
2989 this_load = avg_load;
2990 } else if (avg_load < min_load) {
2991 min_load = avg_load;
2992 idlest = group;
2993 }
2994 } while (group = group->next, group != sd->groups);
2995
2996 if (!idlest || 100*this_load < imbalance*min_load)
2997 return NULL;
2998 return idlest;
2999 }
3000
3001 /*
3002 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3003 */
3004 static int
3005 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3006 {
3007 unsigned long load, min_load = ULONG_MAX;
3008 int idlest = -1;
3009 int i;
3010
3011 /* Traverse only the allowed CPUs */
3012 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
3013 load = weighted_cpuload(i);
3014
3015 if (load < min_load || (load == min_load && i == this_cpu)) {
3016 min_load = load;
3017 idlest = i;
3018 }
3019 }
3020
3021 return idlest;
3022 }
3023
3024 /*
3025 * Try and locate an idle CPU in the sched_domain.
3026 */
3027 static int select_idle_sibling(struct task_struct *p, int target)
3028 {
3029 int cpu = smp_processor_id();
3030 int prev_cpu = task_cpu(p);
3031 struct sched_domain *sd;
3032 struct sched_group *sg;
3033 int i;
3034
3035 /*
3036 * If the task is going to be woken-up on this cpu and if it is
3037 * already idle, then it is the right target.
3038 */
3039 if (target == cpu && idle_cpu(cpu))
3040 return cpu;
3041
3042 /*
3043 * If the task is going to be woken-up on the cpu where it previously
3044 * ran and if it is currently idle, then it the right target.
3045 */
3046 if (target == prev_cpu && idle_cpu(prev_cpu))
3047 return prev_cpu;
3048
3049 /*
3050 * Otherwise, iterate the domains and find an elegible idle cpu.
3051 */
3052 sd = rcu_dereference(per_cpu(sd_llc, target));
3053 for_each_lower_domain(sd) {
3054 sg = sd->groups;
3055 do {
3056 if (!cpumask_intersects(sched_group_cpus(sg),
3057 tsk_cpus_allowed(p)))
3058 goto next;
3059
3060 for_each_cpu(i, sched_group_cpus(sg)) {
3061 if (!idle_cpu(i))
3062 goto next;
3063 }
3064
3065 target = cpumask_first_and(sched_group_cpus(sg),
3066 tsk_cpus_allowed(p));
3067 goto done;
3068 next:
3069 sg = sg->next;
3070 } while (sg != sd->groups);
3071 }
3072 done:
3073 return target;
3074 }
3075
3076 /*
3077 * sched_balance_self: balance the current task (running on cpu) in domains
3078 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3079 * SD_BALANCE_EXEC.
3080 *
3081 * Balance, ie. select the least loaded group.
3082 *
3083 * Returns the target CPU number, or the same CPU if no balancing is needed.
3084 *
3085 * preempt must be disabled.
3086 */
3087 static int
3088 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
3089 {
3090 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
3091 int cpu = smp_processor_id();
3092 int prev_cpu = task_cpu(p);
3093 int new_cpu = cpu;
3094 int want_affine = 0;
3095 int sync = wake_flags & WF_SYNC;
3096
3097 if (p->nr_cpus_allowed == 1)
3098 return prev_cpu;
3099
3100 if (sd_flag & SD_BALANCE_WAKE) {
3101 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
3102 want_affine = 1;
3103 new_cpu = prev_cpu;
3104 }
3105
3106 rcu_read_lock();
3107 for_each_domain(cpu, tmp) {
3108 if (!(tmp->flags & SD_LOAD_BALANCE))
3109 continue;
3110
3111 /*
3112 * If both cpu and prev_cpu are part of this domain,
3113 * cpu is a valid SD_WAKE_AFFINE target.
3114 */
3115 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3116 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3117 affine_sd = tmp;
3118 break;
3119 }
3120
3121 if (tmp->flags & sd_flag)
3122 sd = tmp;
3123 }
3124
3125 if (affine_sd) {
3126 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
3127 prev_cpu = cpu;
3128
3129 new_cpu = select_idle_sibling(p, prev_cpu);
3130 goto unlock;
3131 }
3132
3133 while (sd) {
3134 int load_idx = sd->forkexec_idx;
3135 struct sched_group *group;
3136 int weight;
3137
3138 if (!(sd->flags & sd_flag)) {
3139 sd = sd->child;
3140 continue;
3141 }
3142
3143 if (sd_flag & SD_BALANCE_WAKE)
3144 load_idx = sd->wake_idx;
3145
3146 group = find_idlest_group(sd, p, cpu, load_idx);
3147 if (!group) {
3148 sd = sd->child;
3149 continue;
3150 }
3151
3152 new_cpu = find_idlest_cpu(group, p, cpu);
3153 if (new_cpu == -1 || new_cpu == cpu) {
3154 /* Now try balancing at a lower domain level of cpu */
3155 sd = sd->child;
3156 continue;
3157 }
3158
3159 /* Now try balancing at a lower domain level of new_cpu */
3160 cpu = new_cpu;
3161 weight = sd->span_weight;
3162 sd = NULL;
3163 for_each_domain(cpu, tmp) {
3164 if (weight <= tmp->span_weight)
3165 break;
3166 if (tmp->flags & sd_flag)
3167 sd = tmp;
3168 }
3169 /* while loop will break here if sd == NULL */
3170 }
3171 unlock:
3172 rcu_read_unlock();
3173
3174 return new_cpu;
3175 }
3176
3177 /*
3178 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
3179 * removed when useful for applications beyond shares distribution (e.g.
3180 * load-balance).
3181 */
3182 #ifdef CONFIG_FAIR_GROUP_SCHED
3183 /*
3184 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3185 * cfs_rq_of(p) references at time of call are still valid and identify the
3186 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3187 * other assumptions, including the state of rq->lock, should be made.
3188 */
3189 static void
3190 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3191 {
3192 struct sched_entity *se = &p->se;
3193 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3194
3195 /*
3196 * Load tracking: accumulate removed load so that it can be processed
3197 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3198 * to blocked load iff they have a positive decay-count. It can never
3199 * be negative here since on-rq tasks have decay-count == 0.
3200 */
3201 if (se->avg.decay_count) {
3202 se->avg.decay_count = -__synchronize_entity_decay(se);
3203 atomic64_add(se->avg.load_avg_contrib, &cfs_rq->removed_load);
3204 }
3205 }
3206 #endif
3207 #endif /* CONFIG_SMP */
3208
3209 static unsigned long
3210 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
3211 {
3212 unsigned long gran = sysctl_sched_wakeup_granularity;
3213
3214 /*
3215 * Since its curr running now, convert the gran from real-time
3216 * to virtual-time in his units.
3217 *
3218 * By using 'se' instead of 'curr' we penalize light tasks, so
3219 * they get preempted easier. That is, if 'se' < 'curr' then
3220 * the resulting gran will be larger, therefore penalizing the
3221 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3222 * be smaller, again penalizing the lighter task.
3223 *
3224 * This is especially important for buddies when the leftmost
3225 * task is higher priority than the buddy.
3226 */
3227 return calc_delta_fair(gran, se);
3228 }
3229
3230 /*
3231 * Should 'se' preempt 'curr'.
3232 *
3233 * |s1
3234 * |s2
3235 * |s3
3236 * g
3237 * |<--->|c
3238 *
3239 * w(c, s1) = -1
3240 * w(c, s2) = 0
3241 * w(c, s3) = 1
3242 *
3243 */
3244 static int
3245 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3246 {
3247 s64 gran, vdiff = curr->vruntime - se->vruntime;
3248
3249 if (vdiff <= 0)
3250 return -1;
3251
3252 gran = wakeup_gran(curr, se);
3253 if (vdiff > gran)
3254 return 1;
3255
3256 return 0;
3257 }
3258
3259 static void set_last_buddy(struct sched_entity *se)
3260 {
3261 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3262 return;
3263
3264 for_each_sched_entity(se)
3265 cfs_rq_of(se)->last = se;
3266 }
3267
3268 static void set_next_buddy(struct sched_entity *se)
3269 {
3270 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3271 return;
3272
3273 for_each_sched_entity(se)
3274 cfs_rq_of(se)->next = se;
3275 }
3276
3277 static void set_skip_buddy(struct sched_entity *se)
3278 {
3279 for_each_sched_entity(se)
3280 cfs_rq_of(se)->skip = se;
3281 }
3282
3283 /*
3284 * Preempt the current task with a newly woken task if needed:
3285 */
3286 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
3287 {
3288 struct task_struct *curr = rq->curr;
3289 struct sched_entity *se = &curr->se, *pse = &p->se;
3290 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3291 int scale = cfs_rq->nr_running >= sched_nr_latency;
3292 int next_buddy_marked = 0;
3293
3294 if (unlikely(se == pse))
3295 return;
3296
3297 /*
3298 * This is possible from callers such as move_task(), in which we
3299 * unconditionally check_prempt_curr() after an enqueue (which may have
3300 * lead to a throttle). This both saves work and prevents false
3301 * next-buddy nomination below.
3302 */
3303 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
3304 return;
3305
3306 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3307 set_next_buddy(pse);
3308 next_buddy_marked = 1;
3309 }
3310
3311 /*
3312 * We can come here with TIF_NEED_RESCHED already set from new task
3313 * wake up path.
3314 *
3315 * Note: this also catches the edge-case of curr being in a throttled
3316 * group (e.g. via set_curr_task), since update_curr() (in the
3317 * enqueue of curr) will have resulted in resched being set. This
3318 * prevents us from potentially nominating it as a false LAST_BUDDY
3319 * below.
3320 */
3321 if (test_tsk_need_resched(curr))
3322 return;
3323
3324 /* Idle tasks are by definition preempted by non-idle tasks. */
3325 if (unlikely(curr->policy == SCHED_IDLE) &&
3326 likely(p->policy != SCHED_IDLE))
3327 goto preempt;
3328
3329 /*
3330 * Batch and idle tasks do not preempt non-idle tasks (their preemption
3331 * is driven by the tick):
3332 */
3333 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
3334 return;
3335
3336 find_matching_se(&se, &pse);
3337 update_curr(cfs_rq_of(se));
3338 BUG_ON(!pse);
3339 if (wakeup_preempt_entity(se, pse) == 1) {
3340 /*
3341 * Bias pick_next to pick the sched entity that is
3342 * triggering this preemption.
3343 */
3344 if (!next_buddy_marked)
3345 set_next_buddy(pse);
3346 goto preempt;
3347 }
3348
3349 return;
3350
3351 preempt:
3352 resched_task(curr);
3353 /*
3354 * Only set the backward buddy when the current task is still
3355 * on the rq. This can happen when a wakeup gets interleaved
3356 * with schedule on the ->pre_schedule() or idle_balance()
3357 * point, either of which can * drop the rq lock.
3358 *
3359 * Also, during early boot the idle thread is in the fair class,
3360 * for obvious reasons its a bad idea to schedule back to it.
3361 */
3362 if (unlikely(!se->on_rq || curr == rq->idle))
3363 return;
3364
3365 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
3366 set_last_buddy(se);
3367 }
3368
3369 static struct task_struct *pick_next_task_fair(struct rq *rq)
3370 {
3371 struct task_struct *p;
3372 struct cfs_rq *cfs_rq = &rq->cfs;
3373 struct sched_entity *se;
3374
3375 if (!cfs_rq->nr_running)
3376 return NULL;
3377
3378 do {
3379 se = pick_next_entity(cfs_rq);
3380 set_next_entity(cfs_rq, se);
3381 cfs_rq = group_cfs_rq(se);
3382 } while (cfs_rq);
3383
3384 p = task_of(se);
3385 if (hrtick_enabled(rq))
3386 hrtick_start_fair(rq, p);
3387
3388 return p;
3389 }
3390
3391 /*
3392 * Account for a descheduled task:
3393 */
3394 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
3395 {
3396 struct sched_entity *se = &prev->se;
3397 struct cfs_rq *cfs_rq;
3398
3399 for_each_sched_entity(se) {
3400 cfs_rq = cfs_rq_of(se);
3401 put_prev_entity(cfs_rq, se);
3402 }
3403 }
3404
3405 /*
3406 * sched_yield() is very simple
3407 *
3408 * The magic of dealing with the ->skip buddy is in pick_next_entity.
3409 */
3410 static void yield_task_fair(struct rq *rq)
3411 {
3412 struct task_struct *curr = rq->curr;
3413 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
3414 struct sched_entity *se = &curr->se;
3415
3416 /*
3417 * Are we the only task in the tree?
3418 */
3419 if (unlikely(rq->nr_running == 1))
3420 return;
3421
3422 clear_buddies(cfs_rq, se);
3423
3424 if (curr->policy != SCHED_BATCH) {
3425 update_rq_clock(rq);
3426 /*
3427 * Update run-time statistics of the 'current'.
3428 */
3429 update_curr(cfs_rq);
3430 /*
3431 * Tell update_rq_clock() that we've just updated,
3432 * so we don't do microscopic update in schedule()
3433 * and double the fastpath cost.
3434 */
3435 rq->skip_clock_update = 1;
3436 }
3437
3438 set_skip_buddy(se);
3439 }
3440
3441 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
3442 {
3443 struct sched_entity *se = &p->se;
3444
3445 /* throttled hierarchies are not runnable */
3446 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
3447 return false;
3448
3449 /* Tell the scheduler that we'd really like pse to run next. */
3450 set_next_buddy(se);
3451
3452 yield_task_fair(rq);
3453
3454 return true;
3455 }
3456
3457 #ifdef CONFIG_SMP
3458 /**************************************************
3459 * Fair scheduling class load-balancing methods.
3460 *
3461 * BASICS
3462 *
3463 * The purpose of load-balancing is to achieve the same basic fairness the
3464 * per-cpu scheduler provides, namely provide a proportional amount of compute
3465 * time to each task. This is expressed in the following equation:
3466 *
3467 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
3468 *
3469 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
3470 * W_i,0 is defined as:
3471 *
3472 * W_i,0 = \Sum_j w_i,j (2)
3473 *
3474 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
3475 * is derived from the nice value as per prio_to_weight[].
3476 *
3477 * The weight average is an exponential decay average of the instantaneous
3478 * weight:
3479 *
3480 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
3481 *
3482 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
3483 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
3484 * can also include other factors [XXX].
3485 *
3486 * To achieve this balance we define a measure of imbalance which follows
3487 * directly from (1):
3488 *
3489 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
3490 *
3491 * We them move tasks around to minimize the imbalance. In the continuous
3492 * function space it is obvious this converges, in the discrete case we get
3493 * a few fun cases generally called infeasible weight scenarios.
3494 *
3495 * [XXX expand on:
3496 * - infeasible weights;
3497 * - local vs global optima in the discrete case. ]
3498 *
3499 *
3500 * SCHED DOMAINS
3501 *
3502 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
3503 * for all i,j solution, we create a tree of cpus that follows the hardware
3504 * topology where each level pairs two lower groups (or better). This results
3505 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
3506 * tree to only the first of the previous level and we decrease the frequency
3507 * of load-balance at each level inv. proportional to the number of cpus in
3508 * the groups.
3509 *
3510 * This yields:
3511 *
3512 * log_2 n 1 n
3513 * \Sum { --- * --- * 2^i } = O(n) (5)
3514 * i = 0 2^i 2^i
3515 * `- size of each group
3516 * | | `- number of cpus doing load-balance
3517 * | `- freq
3518 * `- sum over all levels
3519 *
3520 * Coupled with a limit on how many tasks we can migrate every balance pass,
3521 * this makes (5) the runtime complexity of the balancer.
3522 *
3523 * An important property here is that each CPU is still (indirectly) connected
3524 * to every other cpu in at most O(log n) steps:
3525 *
3526 * The adjacency matrix of the resulting graph is given by:
3527 *
3528 * log_2 n
3529 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
3530 * k = 0
3531 *
3532 * And you'll find that:
3533 *
3534 * A^(log_2 n)_i,j != 0 for all i,j (7)
3535 *
3536 * Showing there's indeed a path between every cpu in at most O(log n) steps.
3537 * The task movement gives a factor of O(m), giving a convergence complexity
3538 * of:
3539 *
3540 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
3541 *
3542 *
3543 * WORK CONSERVING
3544 *
3545 * In order to avoid CPUs going idle while there's still work to do, new idle
3546 * balancing is more aggressive and has the newly idle cpu iterate up the domain
3547 * tree itself instead of relying on other CPUs to bring it work.
3548 *
3549 * This adds some complexity to both (5) and (8) but it reduces the total idle
3550 * time.
3551 *
3552 * [XXX more?]
3553 *
3554 *
3555 * CGROUPS
3556 *
3557 * Cgroups make a horror show out of (2), instead of a simple sum we get:
3558 *
3559 * s_k,i
3560 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
3561 * S_k
3562 *
3563 * Where
3564 *
3565 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
3566 *
3567 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
3568 *
3569 * The big problem is S_k, its a global sum needed to compute a local (W_i)
3570 * property.
3571 *
3572 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
3573 * rewrite all of this once again.]
3574 */
3575
3576 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3577
3578 #define LBF_ALL_PINNED 0x01
3579 #define LBF_NEED_BREAK 0x02
3580 #define LBF_SOME_PINNED 0x04
3581
3582 struct lb_env {
3583 struct sched_domain *sd;
3584
3585 struct rq *src_rq;
3586 int src_cpu;
3587
3588 int dst_cpu;
3589 struct rq *dst_rq;
3590
3591 struct cpumask *dst_grpmask;
3592 int new_dst_cpu;
3593 enum cpu_idle_type idle;
3594 long imbalance;
3595 /* The set of CPUs under consideration for load-balancing */
3596 struct cpumask *cpus;
3597
3598 unsigned int flags;
3599
3600 unsigned int loop;
3601 unsigned int loop_break;
3602 unsigned int loop_max;
3603 };
3604
3605 /*
3606 * move_task - move a task from one runqueue to another runqueue.
3607 * Both runqueues must be locked.
3608 */
3609 static void move_task(struct task_struct *p, struct lb_env *env)
3610 {
3611 deactivate_task(env->src_rq, p, 0);
3612 set_task_cpu(p, env->dst_cpu);
3613 activate_task(env->dst_rq, p, 0);
3614 check_preempt_curr(env->dst_rq, p, 0);
3615 }
3616
3617 /*
3618 * Is this task likely cache-hot:
3619 */
3620 static int
3621 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
3622 {
3623 s64 delta;
3624
3625 if (p->sched_class != &fair_sched_class)
3626 return 0;
3627
3628 if (unlikely(p->policy == SCHED_IDLE))
3629 return 0;
3630
3631 /*
3632 * Buddy candidates are cache hot:
3633 */
3634 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
3635 (&p->se == cfs_rq_of(&p->se)->next ||
3636 &p->se == cfs_rq_of(&p->se)->last))
3637 return 1;
3638
3639 if (sysctl_sched_migration_cost == -1)
3640 return 1;
3641 if (sysctl_sched_migration_cost == 0)
3642 return 0;
3643
3644 delta = now - p->se.exec_start;
3645
3646 return delta < (s64)sysctl_sched_migration_cost;
3647 }
3648
3649 /*
3650 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3651 */
3652 static
3653 int can_migrate_task(struct task_struct *p, struct lb_env *env)
3654 {
3655 int tsk_cache_hot = 0;
3656 /*
3657 * We do not migrate tasks that are:
3658 * 1) running (obviously), or
3659 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3660 * 3) are cache-hot on their current CPU.
3661 */
3662 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
3663 int new_dst_cpu;
3664
3665 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
3666
3667 /*
3668 * Remember if this task can be migrated to any other cpu in
3669 * our sched_group. We may want to revisit it if we couldn't
3670 * meet load balance goals by pulling other tasks on src_cpu.
3671 *
3672 * Also avoid computing new_dst_cpu if we have already computed
3673 * one in current iteration.
3674 */
3675 if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
3676 return 0;
3677
3678 new_dst_cpu = cpumask_first_and(env->dst_grpmask,
3679 tsk_cpus_allowed(p));
3680 if (new_dst_cpu < nr_cpu_ids) {
3681 env->flags |= LBF_SOME_PINNED;
3682 env->new_dst_cpu = new_dst_cpu;
3683 }
3684 return 0;
3685 }
3686
3687 /* Record that we found atleast one task that could run on dst_cpu */
3688 env->flags &= ~LBF_ALL_PINNED;
3689
3690 if (task_running(env->src_rq, p)) {
3691 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
3692 return 0;
3693 }
3694
3695 /*
3696 * Aggressive migration if:
3697 * 1) task is cache cold, or
3698 * 2) too many balance attempts have failed.
3699 */
3700
3701 tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
3702 if (!tsk_cache_hot ||
3703 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
3704 #ifdef CONFIG_SCHEDSTATS
3705 if (tsk_cache_hot) {
3706 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
3707 schedstat_inc(p, se.statistics.nr_forced_migrations);
3708 }
3709 #endif
3710 return 1;
3711 }
3712
3713 if (tsk_cache_hot) {
3714 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
3715 return 0;
3716 }
3717 return 1;
3718 }
3719
3720 /*
3721 * move_one_task tries to move exactly one task from busiest to this_rq, as
3722 * part of active balancing operations within "domain".
3723 * Returns 1 if successful and 0 otherwise.
3724 *
3725 * Called with both runqueues locked.
3726 */
3727 static int move_one_task(struct lb_env *env)
3728 {
3729 struct task_struct *p, *n;
3730
3731 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
3732 if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
3733 continue;
3734
3735 if (!can_migrate_task(p, env))
3736 continue;
3737
3738 move_task(p, env);
3739 /*
3740 * Right now, this is only the second place move_task()
3741 * is called, so we can safely collect move_task()
3742 * stats here rather than inside move_task().
3743 */
3744 schedstat_inc(env->sd, lb_gained[env->idle]);
3745 return 1;
3746 }
3747 return 0;
3748 }
3749
3750 static unsigned long task_h_load(struct task_struct *p);
3751
3752 static const unsigned int sched_nr_migrate_break = 32;
3753
3754 /*
3755 * move_tasks tries to move up to imbalance weighted load from busiest to
3756 * this_rq, as part of a balancing operation within domain "sd".
3757 * Returns 1 if successful and 0 otherwise.
3758 *
3759 * Called with both runqueues locked.
3760 */
3761 static int move_tasks(struct lb_env *env)
3762 {
3763 struct list_head *tasks = &env->src_rq->cfs_tasks;
3764 struct task_struct *p;
3765 unsigned long load;
3766 int pulled = 0;
3767
3768 if (env->imbalance <= 0)
3769 return 0;
3770
3771 while (!list_empty(tasks)) {
3772 p = list_first_entry(tasks, struct task_struct, se.group_node);
3773
3774 env->loop++;
3775 /* We've more or less seen every task there is, call it quits */
3776 if (env->loop > env->loop_max)
3777 break;
3778
3779 /* take a breather every nr_migrate tasks */
3780 if (env->loop > env->loop_break) {
3781 env->loop_break += sched_nr_migrate_break;
3782 env->flags |= LBF_NEED_BREAK;
3783 break;
3784 }
3785
3786 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
3787 goto next;
3788
3789 load = task_h_load(p);
3790
3791 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
3792 goto next;
3793
3794 if ((load / 2) > env->imbalance)
3795 goto next;
3796
3797 if (!can_migrate_task(p, env))
3798 goto next;
3799
3800 move_task(p, env);
3801 pulled++;
3802 env->imbalance -= load;
3803
3804 #ifdef CONFIG_PREEMPT
3805 /*
3806 * NEWIDLE balancing is a source of latency, so preemptible
3807 * kernels will stop after the first task is pulled to minimize
3808 * the critical section.
3809 */
3810 if (env->idle == CPU_NEWLY_IDLE)
3811 break;
3812 #endif
3813
3814 /*
3815 * We only want to steal up to the prescribed amount of
3816 * weighted load.
3817 */
3818 if (env->imbalance <= 0)
3819 break;
3820
3821 continue;
3822 next:
3823 list_move_tail(&p->se.group_node, tasks);
3824 }
3825
3826 /*
3827 * Right now, this is one of only two places move_task() is called,
3828 * so we can safely collect move_task() stats here rather than
3829 * inside move_task().
3830 */
3831 schedstat_add(env->sd, lb_gained[env->idle], pulled);
3832
3833 return pulled;
3834 }
3835
3836 #ifdef CONFIG_FAIR_GROUP_SCHED
3837 /*
3838 * update tg->load_weight by folding this cpu's load_avg
3839 */
3840 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
3841 {
3842 struct sched_entity *se = tg->se[cpu];
3843 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
3844
3845 /* throttled entities do not contribute to load */
3846 if (throttled_hierarchy(cfs_rq))
3847 return;
3848
3849 update_cfs_rq_blocked_load(cfs_rq, 1);
3850
3851 if (se) {
3852 update_entity_load_avg(se, 1);
3853 /*
3854 * We pivot on our runnable average having decayed to zero for
3855 * list removal. This generally implies that all our children
3856 * have also been removed (modulo rounding error or bandwidth
3857 * control); however, such cases are rare and we can fix these
3858 * at enqueue.
3859 *
3860 * TODO: fix up out-of-order children on enqueue.
3861 */
3862 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
3863 list_del_leaf_cfs_rq(cfs_rq);
3864 } else {
3865 struct rq *rq = rq_of(cfs_rq);
3866 update_rq_runnable_avg(rq, rq->nr_running);
3867 }
3868 }
3869
3870 static void update_blocked_averages(int cpu)
3871 {
3872 struct rq *rq = cpu_rq(cpu);
3873 struct cfs_rq *cfs_rq;
3874 unsigned long flags;
3875
3876 raw_spin_lock_irqsave(&rq->lock, flags);
3877 update_rq_clock(rq);
3878 /*
3879 * Iterates the task_group tree in a bottom up fashion, see
3880 * list_add_leaf_cfs_rq() for details.
3881 */
3882 for_each_leaf_cfs_rq(rq, cfs_rq) {
3883 /*
3884 * Note: We may want to consider periodically releasing
3885 * rq->lock about these updates so that creating many task
3886 * groups does not result in continually extending hold time.
3887 */
3888 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
3889 }
3890
3891 raw_spin_unlock_irqrestore(&rq->lock, flags);
3892 }
3893
3894 /*
3895 * Compute the cpu's hierarchical load factor for each task group.
3896 * This needs to be done in a top-down fashion because the load of a child
3897 * group is a fraction of its parents load.
3898 */
3899 static int tg_load_down(struct task_group *tg, void *data)
3900 {
3901 unsigned long load;
3902 long cpu = (long)data;
3903
3904 if (!tg->parent) {
3905 load = cpu_rq(cpu)->load.weight;
3906 } else {
3907 load = tg->parent->cfs_rq[cpu]->h_load;
3908 load *= tg->se[cpu]->load.weight;
3909 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
3910 }
3911
3912 tg->cfs_rq[cpu]->h_load = load;
3913
3914 return 0;
3915 }
3916
3917 static void update_h_load(long cpu)
3918 {
3919 struct rq *rq = cpu_rq(cpu);
3920 unsigned long now = jiffies;
3921
3922 if (rq->h_load_throttle == now)
3923 return;
3924
3925 rq->h_load_throttle = now;
3926
3927 rcu_read_lock();
3928 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
3929 rcu_read_unlock();
3930 }
3931
3932 static unsigned long task_h_load(struct task_struct *p)
3933 {
3934 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3935 unsigned long load;
3936
3937 load = p->se.load.weight;
3938 load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
3939
3940 return load;
3941 }
3942 #else
3943 static inline void update_blocked_averages(int cpu)
3944 {
3945 }
3946
3947 static inline void update_h_load(long cpu)
3948 {
3949 }
3950
3951 static unsigned long task_h_load(struct task_struct *p)
3952 {
3953 return p->se.load.weight;
3954 }
3955 #endif
3956
3957 /********** Helpers for find_busiest_group ************************/
3958 /*
3959 * sd_lb_stats - Structure to store the statistics of a sched_domain
3960 * during load balancing.
3961 */
3962 struct sd_lb_stats {
3963 struct sched_group *busiest; /* Busiest group in this sd */
3964 struct sched_group *this; /* Local group in this sd */
3965 unsigned long total_load; /* Total load of all groups in sd */
3966 unsigned long total_pwr; /* Total power of all groups in sd */
3967 unsigned long avg_load; /* Average load across all groups in sd */
3968
3969 /** Statistics of this group */
3970 unsigned long this_load;
3971 unsigned long this_load_per_task;
3972 unsigned long this_nr_running;
3973 unsigned long this_has_capacity;
3974 unsigned int this_idle_cpus;
3975
3976 /* Statistics of the busiest group */
3977 unsigned int busiest_idle_cpus;
3978 unsigned long max_load;
3979 unsigned long busiest_load_per_task;
3980 unsigned long busiest_nr_running;
3981 unsigned long busiest_group_capacity;
3982 unsigned long busiest_has_capacity;
3983 unsigned int busiest_group_weight;
3984
3985 int group_imb; /* Is there imbalance in this sd */
3986 };
3987
3988 /*
3989 * sg_lb_stats - stats of a sched_group required for load_balancing
3990 */
3991 struct sg_lb_stats {
3992 unsigned long avg_load; /*Avg load across the CPUs of the group */
3993 unsigned long group_load; /* Total load over the CPUs of the group */
3994 unsigned long sum_nr_running; /* Nr tasks running in the group */
3995 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3996 unsigned long group_capacity;
3997 unsigned long idle_cpus;
3998 unsigned long group_weight;
3999 int group_imb; /* Is there an imbalance in the group ? */
4000 int group_has_capacity; /* Is there extra capacity in the group? */
4001 };
4002
4003 /**
4004 * get_sd_load_idx - Obtain the load index for a given sched domain.
4005 * @sd: The sched_domain whose load_idx is to be obtained.
4006 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
4007 */
4008 static inline int get_sd_load_idx(struct sched_domain *sd,
4009 enum cpu_idle_type idle)
4010 {
4011 int load_idx;
4012
4013 switch (idle) {
4014 case CPU_NOT_IDLE:
4015 load_idx = sd->busy_idx;
4016 break;
4017
4018 case CPU_NEWLY_IDLE:
4019 load_idx = sd->newidle_idx;
4020 break;
4021 default:
4022 load_idx = sd->idle_idx;
4023 break;
4024 }
4025
4026 return load_idx;
4027 }
4028
4029 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
4030 {
4031 return SCHED_POWER_SCALE;
4032 }
4033
4034 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4035 {
4036 return default_scale_freq_power(sd, cpu);
4037 }
4038
4039 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
4040 {
4041 unsigned long weight = sd->span_weight;
4042 unsigned long smt_gain = sd->smt_gain;
4043
4044 smt_gain /= weight;
4045
4046 return smt_gain;
4047 }
4048
4049 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4050 {
4051 return default_scale_smt_power(sd, cpu);
4052 }
4053
4054 unsigned long scale_rt_power(int cpu)
4055 {
4056 struct rq *rq = cpu_rq(cpu);
4057 u64 total, available, age_stamp, avg;
4058
4059 /*
4060 * Since we're reading these variables without serialization make sure
4061 * we read them once before doing sanity checks on them.
4062 */
4063 age_stamp = ACCESS_ONCE(rq->age_stamp);
4064 avg = ACCESS_ONCE(rq->rt_avg);
4065
4066 total = sched_avg_period() + (rq->clock - age_stamp);
4067
4068 if (unlikely(total < avg)) {
4069 /* Ensures that power won't end up being negative */
4070 available = 0;
4071 } else {
4072 available = total - avg;
4073 }
4074
4075 if (unlikely((s64)total < SCHED_POWER_SCALE))
4076 total = SCHED_POWER_SCALE;
4077
4078 total >>= SCHED_POWER_SHIFT;
4079
4080 return div_u64(available, total);
4081 }
4082
4083 static void update_cpu_power(struct sched_domain *sd, int cpu)
4084 {
4085 unsigned long weight = sd->span_weight;
4086 unsigned long power = SCHED_POWER_SCALE;
4087 struct sched_group *sdg = sd->groups;
4088
4089 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4090 if (sched_feat(ARCH_POWER))
4091 power *= arch_scale_smt_power(sd, cpu);
4092 else
4093 power *= default_scale_smt_power(sd, cpu);
4094
4095 power >>= SCHED_POWER_SHIFT;
4096 }
4097
4098 sdg->sgp->power_orig = power;
4099
4100 if (sched_feat(ARCH_POWER))
4101 power *= arch_scale_freq_power(sd, cpu);
4102 else
4103 power *= default_scale_freq_power(sd, cpu);
4104
4105 power >>= SCHED_POWER_SHIFT;
4106
4107 power *= scale_rt_power(cpu);
4108 power >>= SCHED_POWER_SHIFT;
4109
4110 if (!power)
4111 power = 1;
4112
4113 cpu_rq(cpu)->cpu_power = power;
4114 sdg->sgp->power = power;
4115 }
4116
4117 void update_group_power(struct sched_domain *sd, int cpu)
4118 {
4119 struct sched_domain *child = sd->child;
4120 struct sched_group *group, *sdg = sd->groups;
4121 unsigned long power;
4122 unsigned long interval;
4123
4124 interval = msecs_to_jiffies(sd->balance_interval);
4125 interval = clamp(interval, 1UL, max_load_balance_interval);
4126 sdg->sgp->next_update = jiffies + interval;
4127
4128 if (!child) {
4129 update_cpu_power(sd, cpu);
4130 return;
4131 }
4132
4133 power = 0;
4134
4135 if (child->flags & SD_OVERLAP) {
4136 /*
4137 * SD_OVERLAP domains cannot assume that child groups
4138 * span the current group.
4139 */
4140
4141 for_each_cpu(cpu, sched_group_cpus(sdg))
4142 power += power_of(cpu);
4143 } else {
4144 /*
4145 * !SD_OVERLAP domains can assume that child groups
4146 * span the current group.
4147 */
4148
4149 group = child->groups;
4150 do {
4151 power += group->sgp->power;
4152 group = group->next;
4153 } while (group != child->groups);
4154 }
4155
4156 sdg->sgp->power_orig = sdg->sgp->power = power;
4157 }
4158
4159 /*
4160 * Try and fix up capacity for tiny siblings, this is needed when
4161 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4162 * which on its own isn't powerful enough.
4163 *
4164 * See update_sd_pick_busiest() and check_asym_packing().
4165 */
4166 static inline int
4167 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4168 {
4169 /*
4170 * Only siblings can have significantly less than SCHED_POWER_SCALE
4171 */
4172 if (!(sd->flags & SD_SHARE_CPUPOWER))
4173 return 0;
4174
4175 /*
4176 * If ~90% of the cpu_power is still there, we're good.
4177 */
4178 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
4179 return 1;
4180
4181 return 0;
4182 }
4183
4184 /**
4185 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
4186 * @env: The load balancing environment.
4187 * @group: sched_group whose statistics are to be updated.
4188 * @load_idx: Load index of sched_domain of this_cpu for load calc.
4189 * @local_group: Does group contain this_cpu.
4190 * @balance: Should we balance.
4191 * @sgs: variable to hold the statistics for this group.
4192 */
4193 static inline void update_sg_lb_stats(struct lb_env *env,
4194 struct sched_group *group, int load_idx,
4195 int local_group, int *balance, struct sg_lb_stats *sgs)
4196 {
4197 unsigned long nr_running, max_nr_running, min_nr_running;
4198 unsigned long load, max_cpu_load, min_cpu_load;
4199 unsigned int balance_cpu = -1, first_idle_cpu = 0;
4200 unsigned long avg_load_per_task = 0;
4201 int i;
4202
4203 if (local_group)
4204 balance_cpu = group_balance_cpu(group);
4205
4206 /* Tally up the load of all CPUs in the group */
4207 max_cpu_load = 0;
4208 min_cpu_load = ~0UL;
4209 max_nr_running = 0;
4210 min_nr_running = ~0UL;
4211
4212 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
4213 struct rq *rq = cpu_rq(i);
4214
4215 nr_running = rq->nr_running;
4216
4217 /* Bias balancing toward cpus of our domain */
4218 if (local_group) {
4219 if (idle_cpu(i) && !first_idle_cpu &&
4220 cpumask_test_cpu(i, sched_group_mask(group))) {
4221 first_idle_cpu = 1;
4222 balance_cpu = i;
4223 }
4224
4225 load = target_load(i, load_idx);
4226 } else {
4227 load = source_load(i, load_idx);
4228 if (load > max_cpu_load)
4229 max_cpu_load = load;
4230 if (min_cpu_load > load)
4231 min_cpu_load = load;
4232
4233 if (nr_running > max_nr_running)
4234 max_nr_running = nr_running;
4235 if (min_nr_running > nr_running)
4236 min_nr_running = nr_running;
4237 }
4238
4239 sgs->group_load += load;
4240 sgs->sum_nr_running += nr_running;
4241 sgs->sum_weighted_load += weighted_cpuload(i);
4242 if (idle_cpu(i))
4243 sgs->idle_cpus++;
4244 }
4245
4246 /*
4247 * First idle cpu or the first cpu(busiest) in this sched group
4248 * is eligible for doing load balancing at this and above
4249 * domains. In the newly idle case, we will allow all the cpu's
4250 * to do the newly idle load balance.
4251 */
4252 if (local_group) {
4253 if (env->idle != CPU_NEWLY_IDLE) {
4254 if (balance_cpu != env->dst_cpu) {
4255 *balance = 0;
4256 return;
4257 }
4258 update_group_power(env->sd, env->dst_cpu);
4259 } else if (time_after_eq(jiffies, group->sgp->next_update))
4260 update_group_power(env->sd, env->dst_cpu);
4261 }
4262
4263 /* Adjust by relative CPU power of the group */
4264 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
4265
4266 /*
4267 * Consider the group unbalanced when the imbalance is larger
4268 * than the average weight of a task.
4269 *
4270 * APZ: with cgroup the avg task weight can vary wildly and
4271 * might not be a suitable number - should we keep a
4272 * normalized nr_running number somewhere that negates
4273 * the hierarchy?
4274 */
4275 if (sgs->sum_nr_running)
4276 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
4277
4278 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
4279 (max_nr_running - min_nr_running) > 1)
4280 sgs->group_imb = 1;
4281
4282 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
4283 SCHED_POWER_SCALE);
4284 if (!sgs->group_capacity)
4285 sgs->group_capacity = fix_small_capacity(env->sd, group);
4286 sgs->group_weight = group->group_weight;
4287
4288 if (sgs->group_capacity > sgs->sum_nr_running)
4289 sgs->group_has_capacity = 1;
4290 }
4291
4292 /**
4293 * update_sd_pick_busiest - return 1 on busiest group
4294 * @env: The load balancing environment.
4295 * @sds: sched_domain statistics
4296 * @sg: sched_group candidate to be checked for being the busiest
4297 * @sgs: sched_group statistics
4298 *
4299 * Determine if @sg is a busier group than the previously selected
4300 * busiest group.
4301 */
4302 static bool update_sd_pick_busiest(struct lb_env *env,
4303 struct sd_lb_stats *sds,
4304 struct sched_group *sg,
4305 struct sg_lb_stats *sgs)
4306 {
4307 if (sgs->avg_load <= sds->max_load)
4308 return false;
4309
4310 if (sgs->sum_nr_running > sgs->group_capacity)
4311 return true;
4312
4313 if (sgs->group_imb)
4314 return true;
4315
4316 /*
4317 * ASYM_PACKING needs to move all the work to the lowest
4318 * numbered CPUs in the group, therefore mark all groups
4319 * higher than ourself as busy.
4320 */
4321 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
4322 env->dst_cpu < group_first_cpu(sg)) {
4323 if (!sds->busiest)
4324 return true;
4325
4326 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
4327 return true;
4328 }
4329
4330 return false;
4331 }
4332
4333 /**
4334 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
4335 * @env: The load balancing environment.
4336 * @balance: Should we balance.
4337 * @sds: variable to hold the statistics for this sched_domain.
4338 */
4339 static inline void update_sd_lb_stats(struct lb_env *env,
4340 int *balance, struct sd_lb_stats *sds)
4341 {
4342 struct sched_domain *child = env->sd->child;
4343 struct sched_group *sg = env->sd->groups;
4344 struct sg_lb_stats sgs;
4345 int load_idx, prefer_sibling = 0;
4346
4347 if (child && child->flags & SD_PREFER_SIBLING)
4348 prefer_sibling = 1;
4349
4350 load_idx = get_sd_load_idx(env->sd, env->idle);
4351
4352 do {
4353 int local_group;
4354
4355 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
4356 memset(&sgs, 0, sizeof(sgs));
4357 update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
4358
4359 if (local_group && !(*balance))
4360 return;
4361
4362 sds->total_load += sgs.group_load;
4363 sds->total_pwr += sg->sgp->power;
4364
4365 /*
4366 * In case the child domain prefers tasks go to siblings
4367 * first, lower the sg capacity to one so that we'll try
4368 * and move all the excess tasks away. We lower the capacity
4369 * of a group only if the local group has the capacity to fit
4370 * these excess tasks, i.e. nr_running < group_capacity. The
4371 * extra check prevents the case where you always pull from the
4372 * heaviest group when it is already under-utilized (possible
4373 * with a large weight task outweighs the tasks on the system).
4374 */
4375 if (prefer_sibling && !local_group && sds->this_has_capacity)
4376 sgs.group_capacity = min(sgs.group_capacity, 1UL);
4377
4378 if (local_group) {
4379 sds->this_load = sgs.avg_load;
4380 sds->this = sg;
4381 sds->this_nr_running = sgs.sum_nr_running;
4382 sds->this_load_per_task = sgs.sum_weighted_load;
4383 sds->this_has_capacity = sgs.group_has_capacity;
4384 sds->this_idle_cpus = sgs.idle_cpus;
4385 } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
4386 sds->max_load = sgs.avg_load;
4387 sds->busiest = sg;
4388 sds->busiest_nr_running = sgs.sum_nr_running;
4389 sds->busiest_idle_cpus = sgs.idle_cpus;
4390 sds->busiest_group_capacity = sgs.group_capacity;
4391 sds->busiest_load_per_task = sgs.sum_weighted_load;
4392 sds->busiest_has_capacity = sgs.group_has_capacity;
4393 sds->busiest_group_weight = sgs.group_weight;
4394 sds->group_imb = sgs.group_imb;
4395 }
4396
4397 sg = sg->next;
4398 } while (sg != env->sd->groups);
4399 }
4400
4401 /**
4402 * check_asym_packing - Check to see if the group is packed into the
4403 * sched doman.
4404 *
4405 * This is primarily intended to used at the sibling level. Some
4406 * cores like POWER7 prefer to use lower numbered SMT threads. In the
4407 * case of POWER7, it can move to lower SMT modes only when higher
4408 * threads are idle. When in lower SMT modes, the threads will
4409 * perform better since they share less core resources. Hence when we
4410 * have idle threads, we want them to be the higher ones.
4411 *
4412 * This packing function is run on idle threads. It checks to see if
4413 * the busiest CPU in this domain (core in the P7 case) has a higher
4414 * CPU number than the packing function is being run on. Here we are
4415 * assuming lower CPU number will be equivalent to lower a SMT thread
4416 * number.
4417 *
4418 * Returns 1 when packing is required and a task should be moved to
4419 * this CPU. The amount of the imbalance is returned in *imbalance.
4420 *
4421 * @env: The load balancing environment.
4422 * @sds: Statistics of the sched_domain which is to be packed
4423 */
4424 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
4425 {
4426 int busiest_cpu;
4427
4428 if (!(env->sd->flags & SD_ASYM_PACKING))
4429 return 0;
4430
4431 if (!sds->busiest)
4432 return 0;
4433
4434 busiest_cpu = group_first_cpu(sds->busiest);
4435 if (env->dst_cpu > busiest_cpu)
4436 return 0;
4437
4438 env->imbalance = DIV_ROUND_CLOSEST(
4439 sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
4440
4441 return 1;
4442 }
4443
4444 /**
4445 * fix_small_imbalance - Calculate the minor imbalance that exists
4446 * amongst the groups of a sched_domain, during
4447 * load balancing.
4448 * @env: The load balancing environment.
4449 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
4450 */
4451 static inline
4452 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4453 {
4454 unsigned long tmp, pwr_now = 0, pwr_move = 0;
4455 unsigned int imbn = 2;
4456 unsigned long scaled_busy_load_per_task;
4457
4458 if (sds->this_nr_running) {
4459 sds->this_load_per_task /= sds->this_nr_running;
4460 if (sds->busiest_load_per_task >
4461 sds->this_load_per_task)
4462 imbn = 1;
4463 } else {
4464 sds->this_load_per_task =
4465 cpu_avg_load_per_task(env->dst_cpu);
4466 }
4467
4468 scaled_busy_load_per_task = sds->busiest_load_per_task
4469 * SCHED_POWER_SCALE;
4470 scaled_busy_load_per_task /= sds->busiest->sgp->power;
4471
4472 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
4473 (scaled_busy_load_per_task * imbn)) {
4474 env->imbalance = sds->busiest_load_per_task;
4475 return;
4476 }
4477
4478 /*
4479 * OK, we don't have enough imbalance to justify moving tasks,
4480 * however we may be able to increase total CPU power used by
4481 * moving them.
4482 */
4483
4484 pwr_now += sds->busiest->sgp->power *
4485 min(sds->busiest_load_per_task, sds->max_load);
4486 pwr_now += sds->this->sgp->power *
4487 min(sds->this_load_per_task, sds->this_load);
4488 pwr_now /= SCHED_POWER_SCALE;
4489
4490 /* Amount of load we'd subtract */
4491 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4492 sds->busiest->sgp->power;
4493 if (sds->max_load > tmp)
4494 pwr_move += sds->busiest->sgp->power *
4495 min(sds->busiest_load_per_task, sds->max_load - tmp);
4496
4497 /* Amount of load we'd add */
4498 if (sds->max_load * sds->busiest->sgp->power <
4499 sds->busiest_load_per_task * SCHED_POWER_SCALE)
4500 tmp = (sds->max_load * sds->busiest->sgp->power) /
4501 sds->this->sgp->power;
4502 else
4503 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
4504 sds->this->sgp->power;
4505 pwr_move += sds->this->sgp->power *
4506 min(sds->this_load_per_task, sds->this_load + tmp);
4507 pwr_move /= SCHED_POWER_SCALE;
4508
4509 /* Move if we gain throughput */
4510 if (pwr_move > pwr_now)
4511 env->imbalance = sds->busiest_load_per_task;
4512 }
4513
4514 /**
4515 * calculate_imbalance - Calculate the amount of imbalance present within the
4516 * groups of a given sched_domain during load balance.
4517 * @env: load balance environment
4518 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4519 */
4520 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
4521 {
4522 unsigned long max_pull, load_above_capacity = ~0UL;
4523
4524 sds->busiest_load_per_task /= sds->busiest_nr_running;
4525 if (sds->group_imb) {
4526 sds->busiest_load_per_task =
4527 min(sds->busiest_load_per_task, sds->avg_load);
4528 }
4529
4530 /*
4531 * In the presence of smp nice balancing, certain scenarios can have
4532 * max load less than avg load(as we skip the groups at or below
4533 * its cpu_power, while calculating max_load..)
4534 */
4535 if (sds->max_load < sds->avg_load) {
4536 env->imbalance = 0;
4537 return fix_small_imbalance(env, sds);
4538 }
4539
4540 if (!sds->group_imb) {
4541 /*
4542 * Don't want to pull so many tasks that a group would go idle.
4543 */
4544 load_above_capacity = (sds->busiest_nr_running -
4545 sds->busiest_group_capacity);
4546
4547 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
4548
4549 load_above_capacity /= sds->busiest->sgp->power;
4550 }
4551
4552 /*
4553 * We're trying to get all the cpus to the average_load, so we don't
4554 * want to push ourselves above the average load, nor do we wish to
4555 * reduce the max loaded cpu below the average load. At the same time,
4556 * we also don't want to reduce the group load below the group capacity
4557 * (so that we can implement power-savings policies etc). Thus we look
4558 * for the minimum possible imbalance.
4559 * Be careful of negative numbers as they'll appear as very large values
4560 * with unsigned longs.
4561 */
4562 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
4563
4564 /* How much load to actually move to equalise the imbalance */
4565 env->imbalance = min(max_pull * sds->busiest->sgp->power,
4566 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
4567 / SCHED_POWER_SCALE;
4568
4569 /*
4570 * if *imbalance is less than the average load per runnable task
4571 * there is no guarantee that any tasks will be moved so we'll have
4572 * a think about bumping its value to force at least one task to be
4573 * moved
4574 */
4575 if (env->imbalance < sds->busiest_load_per_task)
4576 return fix_small_imbalance(env, sds);
4577
4578 }
4579
4580 /******* find_busiest_group() helpers end here *********************/
4581
4582 /**
4583 * find_busiest_group - Returns the busiest group within the sched_domain
4584 * if there is an imbalance. If there isn't an imbalance, and
4585 * the user has opted for power-savings, it returns a group whose
4586 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4587 * such a group exists.
4588 *
4589 * Also calculates the amount of weighted load which should be moved
4590 * to restore balance.
4591 *
4592 * @env: The load balancing environment.
4593 * @balance: Pointer to a variable indicating if this_cpu
4594 * is the appropriate cpu to perform load balancing at this_level.
4595 *
4596 * Returns: - the busiest group if imbalance exists.
4597 * - If no imbalance and user has opted for power-savings balance,
4598 * return the least loaded group whose CPUs can be
4599 * put to idle by rebalancing its tasks onto our group.
4600 */
4601 static struct sched_group *
4602 find_busiest_group(struct lb_env *env, int *balance)
4603 {
4604 struct sd_lb_stats sds;
4605
4606 memset(&sds, 0, sizeof(sds));
4607
4608 /*
4609 * Compute the various statistics relavent for load balancing at
4610 * this level.
4611 */
4612 update_sd_lb_stats(env, balance, &sds);
4613
4614 /*
4615 * this_cpu is not the appropriate cpu to perform load balancing at
4616 * this level.
4617 */
4618 if (!(*balance))
4619 goto ret;
4620
4621 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
4622 check_asym_packing(env, &sds))
4623 return sds.busiest;
4624
4625 /* There is no busy sibling group to pull tasks from */
4626 if (!sds.busiest || sds.busiest_nr_running == 0)
4627 goto out_balanced;
4628
4629 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
4630
4631 /*
4632 * If the busiest group is imbalanced the below checks don't
4633 * work because they assumes all things are equal, which typically
4634 * isn't true due to cpus_allowed constraints and the like.
4635 */
4636 if (sds.group_imb)
4637 goto force_balance;
4638
4639 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
4640 if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
4641 !sds.busiest_has_capacity)
4642 goto force_balance;
4643
4644 /*
4645 * If the local group is more busy than the selected busiest group
4646 * don't try and pull any tasks.
4647 */
4648 if (sds.this_load >= sds.max_load)
4649 goto out_balanced;
4650
4651 /*
4652 * Don't pull any tasks if this group is already above the domain
4653 * average load.
4654 */
4655 if (sds.this_load >= sds.avg_load)
4656 goto out_balanced;
4657
4658 if (env->idle == CPU_IDLE) {
4659 /*
4660 * This cpu is idle. If the busiest group load doesn't
4661 * have more tasks than the number of available cpu's and
4662 * there is no imbalance between this and busiest group
4663 * wrt to idle cpu's, it is balanced.
4664 */
4665 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
4666 sds.busiest_nr_running <= sds.busiest_group_weight)
4667 goto out_balanced;
4668 } else {
4669 /*
4670 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
4671 * imbalance_pct to be conservative.
4672 */
4673 if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
4674 goto out_balanced;
4675 }
4676
4677 force_balance:
4678 /* Looks like there is an imbalance. Compute it */
4679 calculate_imbalance(env, &sds);
4680 return sds.busiest;
4681
4682 out_balanced:
4683 ret:
4684 env->imbalance = 0;
4685 return NULL;
4686 }
4687
4688 /*
4689 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4690 */
4691 static struct rq *find_busiest_queue(struct lb_env *env,
4692 struct sched_group *group)
4693 {
4694 struct rq *busiest = NULL, *rq;
4695 unsigned long max_load = 0;
4696 int i;
4697
4698 for_each_cpu(i, sched_group_cpus(group)) {
4699 unsigned long power = power_of(i);
4700 unsigned long capacity = DIV_ROUND_CLOSEST(power,
4701 SCHED_POWER_SCALE);
4702 unsigned long wl;
4703
4704 if (!capacity)
4705 capacity = fix_small_capacity(env->sd, group);
4706
4707 if (!cpumask_test_cpu(i, env->cpus))
4708 continue;
4709
4710 rq = cpu_rq(i);
4711 wl = weighted_cpuload(i);
4712
4713 /*
4714 * When comparing with imbalance, use weighted_cpuload()
4715 * which is not scaled with the cpu power.
4716 */
4717 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
4718 continue;
4719
4720 /*
4721 * For the load comparisons with the other cpu's, consider
4722 * the weighted_cpuload() scaled with the cpu power, so that
4723 * the load can be moved away from the cpu that is potentially
4724 * running at a lower capacity.
4725 */
4726 wl = (wl * SCHED_POWER_SCALE) / power;
4727
4728 if (wl > max_load) {
4729 max_load = wl;
4730 busiest = rq;
4731 }
4732 }
4733
4734 return busiest;
4735 }
4736
4737 /*
4738 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4739 * so long as it is large enough.
4740 */
4741 #define MAX_PINNED_INTERVAL 512
4742
4743 /* Working cpumask for load_balance and load_balance_newidle. */
4744 DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4745
4746 static int need_active_balance(struct lb_env *env)
4747 {
4748 struct sched_domain *sd = env->sd;
4749
4750 if (env->idle == CPU_NEWLY_IDLE) {
4751
4752 /*
4753 * ASYM_PACKING needs to force migrate tasks from busy but
4754 * higher numbered CPUs in order to pack all tasks in the
4755 * lowest numbered CPUs.
4756 */
4757 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
4758 return 1;
4759 }
4760
4761 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
4762 }
4763
4764 static int active_load_balance_cpu_stop(void *data);
4765
4766 /*
4767 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4768 * tasks if there is an imbalance.
4769 */
4770 static int load_balance(int this_cpu, struct rq *this_rq,
4771 struct sched_domain *sd, enum cpu_idle_type idle,
4772 int *balance)
4773 {
4774 int ld_moved, cur_ld_moved, active_balance = 0;
4775 int lb_iterations, max_lb_iterations;
4776 struct sched_group *group;
4777 struct rq *busiest;
4778 unsigned long flags;
4779 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4780
4781 struct lb_env env = {
4782 .sd = sd,
4783 .dst_cpu = this_cpu,
4784 .dst_rq = this_rq,
4785 .dst_grpmask = sched_group_cpus(sd->groups),
4786 .idle = idle,
4787 .loop_break = sched_nr_migrate_break,
4788 .cpus = cpus,
4789 };
4790
4791 cpumask_copy(cpus, cpu_active_mask);
4792 max_lb_iterations = cpumask_weight(env.dst_grpmask);
4793
4794 schedstat_inc(sd, lb_count[idle]);
4795
4796 redo:
4797 group = find_busiest_group(&env, balance);
4798
4799 if (*balance == 0)
4800 goto out_balanced;
4801
4802 if (!group) {
4803 schedstat_inc(sd, lb_nobusyg[idle]);
4804 goto out_balanced;
4805 }
4806
4807 busiest = find_busiest_queue(&env, group);
4808 if (!busiest) {
4809 schedstat_inc(sd, lb_nobusyq[idle]);
4810 goto out_balanced;
4811 }
4812
4813 BUG_ON(busiest == env.dst_rq);
4814
4815 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
4816
4817 ld_moved = 0;
4818 lb_iterations = 1;
4819 if (busiest->nr_running > 1) {
4820 /*
4821 * Attempt to move tasks. If find_busiest_group has found
4822 * an imbalance but busiest->nr_running <= 1, the group is
4823 * still unbalanced. ld_moved simply stays zero, so it is
4824 * correctly treated as an imbalance.
4825 */
4826 env.flags |= LBF_ALL_PINNED;
4827 env.src_cpu = busiest->cpu;
4828 env.src_rq = busiest;
4829 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
4830
4831 update_h_load(env.src_cpu);
4832 more_balance:
4833 local_irq_save(flags);
4834 double_rq_lock(env.dst_rq, busiest);
4835
4836 /*
4837 * cur_ld_moved - load moved in current iteration
4838 * ld_moved - cumulative load moved across iterations
4839 */
4840 cur_ld_moved = move_tasks(&env);
4841 ld_moved += cur_ld_moved;
4842 double_rq_unlock(env.dst_rq, busiest);
4843 local_irq_restore(flags);
4844
4845 if (env.flags & LBF_NEED_BREAK) {
4846 env.flags &= ~LBF_NEED_BREAK;
4847 goto more_balance;
4848 }
4849
4850 /*
4851 * some other cpu did the load balance for us.
4852 */
4853 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
4854 resched_cpu(env.dst_cpu);
4855
4856 /*
4857 * Revisit (affine) tasks on src_cpu that couldn't be moved to
4858 * us and move them to an alternate dst_cpu in our sched_group
4859 * where they can run. The upper limit on how many times we
4860 * iterate on same src_cpu is dependent on number of cpus in our
4861 * sched_group.
4862 *
4863 * This changes load balance semantics a bit on who can move
4864 * load to a given_cpu. In addition to the given_cpu itself
4865 * (or a ilb_cpu acting on its behalf where given_cpu is
4866 * nohz-idle), we now have balance_cpu in a position to move
4867 * load to given_cpu. In rare situations, this may cause
4868 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
4869 * _independently_ and at _same_ time to move some load to
4870 * given_cpu) causing exceess load to be moved to given_cpu.
4871 * This however should not happen so much in practice and
4872 * moreover subsequent load balance cycles should correct the
4873 * excess load moved.
4874 */
4875 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
4876 lb_iterations++ < max_lb_iterations) {
4877
4878 env.dst_rq = cpu_rq(env.new_dst_cpu);
4879 env.dst_cpu = env.new_dst_cpu;
4880 env.flags &= ~LBF_SOME_PINNED;
4881 env.loop = 0;
4882 env.loop_break = sched_nr_migrate_break;
4883 /*
4884 * Go back to "more_balance" rather than "redo" since we
4885 * need to continue with same src_cpu.
4886 */
4887 goto more_balance;
4888 }
4889
4890 /* All tasks on this runqueue were pinned by CPU affinity */
4891 if (unlikely(env.flags & LBF_ALL_PINNED)) {
4892 cpumask_clear_cpu(cpu_of(busiest), cpus);
4893 if (!cpumask_empty(cpus)) {
4894 env.loop = 0;
4895 env.loop_break = sched_nr_migrate_break;
4896 goto redo;
4897 }
4898 goto out_balanced;
4899 }
4900 }
4901
4902 if (!ld_moved) {
4903 schedstat_inc(sd, lb_failed[idle]);
4904 /*
4905 * Increment the failure counter only on periodic balance.
4906 * We do not want newidle balance, which can be very
4907 * frequent, pollute the failure counter causing
4908 * excessive cache_hot migrations and active balances.
4909 */
4910 if (idle != CPU_NEWLY_IDLE)
4911 sd->nr_balance_failed++;
4912
4913 if (need_active_balance(&env)) {
4914 raw_spin_lock_irqsave(&busiest->lock, flags);
4915
4916 /* don't kick the active_load_balance_cpu_stop,
4917 * if the curr task on busiest cpu can't be
4918 * moved to this_cpu
4919 */
4920 if (!cpumask_test_cpu(this_cpu,
4921 tsk_cpus_allowed(busiest->curr))) {
4922 raw_spin_unlock_irqrestore(&busiest->lock,
4923 flags);
4924 env.flags |= LBF_ALL_PINNED;
4925 goto out_one_pinned;
4926 }
4927
4928 /*
4929 * ->active_balance synchronizes accesses to
4930 * ->active_balance_work. Once set, it's cleared
4931 * only after active load balance is finished.
4932 */
4933 if (!busiest->active_balance) {
4934 busiest->active_balance = 1;
4935 busiest->push_cpu = this_cpu;
4936 active_balance = 1;
4937 }
4938 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4939
4940 if (active_balance) {
4941 stop_one_cpu_nowait(cpu_of(busiest),
4942 active_load_balance_cpu_stop, busiest,
4943 &busiest->active_balance_work);
4944 }
4945
4946 /*
4947 * We've kicked active balancing, reset the failure
4948 * counter.
4949 */
4950 sd->nr_balance_failed = sd->cache_nice_tries+1;
4951 }
4952 } else
4953 sd->nr_balance_failed = 0;
4954
4955 if (likely(!active_balance)) {
4956 /* We were unbalanced, so reset the balancing interval */
4957 sd->balance_interval = sd->min_interval;
4958 } else {
4959 /*
4960 * If we've begun active balancing, start to back off. This
4961 * case may not be covered by the all_pinned logic if there
4962 * is only 1 task on the busy runqueue (because we don't call
4963 * move_tasks).
4964 */
4965 if (sd->balance_interval < sd->max_interval)
4966 sd->balance_interval *= 2;
4967 }
4968
4969 goto out;
4970
4971 out_balanced:
4972 schedstat_inc(sd, lb_balanced[idle]);
4973
4974 sd->nr_balance_failed = 0;
4975
4976 out_one_pinned:
4977 /* tune up the balancing interval */
4978 if (((env.flags & LBF_ALL_PINNED) &&
4979 sd->balance_interval < MAX_PINNED_INTERVAL) ||
4980 (sd->balance_interval < sd->max_interval))
4981 sd->balance_interval *= 2;
4982
4983 ld_moved = 0;
4984 out:
4985 return ld_moved;
4986 }
4987
4988 /*
4989 * idle_balance is called by schedule() if this_cpu is about to become
4990 * idle. Attempts to pull tasks from other CPUs.
4991 */
4992 void idle_balance(int this_cpu, struct rq *this_rq)
4993 {
4994 struct sched_domain *sd;
4995 int pulled_task = 0;
4996 unsigned long next_balance = jiffies + HZ;
4997
4998 this_rq->idle_stamp = this_rq->clock;
4999
5000 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5001 return;
5002
5003 update_rq_runnable_avg(this_rq, 1);
5004
5005 /*
5006 * Drop the rq->lock, but keep IRQ/preempt disabled.
5007 */
5008 raw_spin_unlock(&this_rq->lock);
5009
5010 update_blocked_averages(this_cpu);
5011 rcu_read_lock();
5012 for_each_domain(this_cpu, sd) {
5013 unsigned long interval;
5014 int balance = 1;
5015
5016 if (!(sd->flags & SD_LOAD_BALANCE))
5017 continue;
5018
5019 if (sd->flags & SD_BALANCE_NEWIDLE) {
5020 /* If we've pulled tasks over stop searching: */
5021 pulled_task = load_balance(this_cpu, this_rq,
5022 sd, CPU_NEWLY_IDLE, &balance);
5023 }
5024
5025 interval = msecs_to_jiffies(sd->balance_interval);
5026 if (time_after(next_balance, sd->last_balance + interval))
5027 next_balance = sd->last_balance + interval;
5028 if (pulled_task) {
5029 this_rq->idle_stamp = 0;
5030 break;
5031 }
5032 }
5033 rcu_read_unlock();
5034
5035 raw_spin_lock(&this_rq->lock);
5036
5037 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5038 /*
5039 * We are going idle. next_balance may be set based on
5040 * a busy processor. So reset next_balance.
5041 */
5042 this_rq->next_balance = next_balance;
5043 }
5044 }
5045
5046 /*
5047 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5048 * running tasks off the busiest CPU onto idle CPUs. It requires at
5049 * least 1 task to be running on each physical CPU where possible, and
5050 * avoids physical / logical imbalances.
5051 */
5052 static int active_load_balance_cpu_stop(void *data)
5053 {
5054 struct rq *busiest_rq = data;
5055 int busiest_cpu = cpu_of(busiest_rq);
5056 int target_cpu = busiest_rq->push_cpu;
5057 struct rq *target_rq = cpu_rq(target_cpu);
5058 struct sched_domain *sd;
5059
5060 raw_spin_lock_irq(&busiest_rq->lock);
5061
5062 /* make sure the requested cpu hasn't gone down in the meantime */
5063 if (unlikely(busiest_cpu != smp_processor_id() ||
5064 !busiest_rq->active_balance))
5065 goto out_unlock;
5066
5067 /* Is there any task to move? */
5068 if (busiest_rq->nr_running <= 1)
5069 goto out_unlock;
5070
5071 /*
5072 * This condition is "impossible", if it occurs
5073 * we need to fix it. Originally reported by
5074 * Bjorn Helgaas on a 128-cpu setup.
5075 */
5076 BUG_ON(busiest_rq == target_rq);
5077
5078 /* move a task from busiest_rq to target_rq */
5079 double_lock_balance(busiest_rq, target_rq);
5080
5081 /* Search for an sd spanning us and the target CPU. */
5082 rcu_read_lock();
5083 for_each_domain(target_cpu, sd) {
5084 if ((sd->flags & SD_LOAD_BALANCE) &&
5085 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5086 break;
5087 }
5088
5089 if (likely(sd)) {
5090 struct lb_env env = {
5091 .sd = sd,
5092 .dst_cpu = target_cpu,
5093 .dst_rq = target_rq,
5094 .src_cpu = busiest_rq->cpu,
5095 .src_rq = busiest_rq,
5096 .idle = CPU_IDLE,
5097 };
5098
5099 schedstat_inc(sd, alb_count);
5100
5101 if (move_one_task(&env))
5102 schedstat_inc(sd, alb_pushed);
5103 else
5104 schedstat_inc(sd, alb_failed);
5105 }
5106 rcu_read_unlock();
5107 double_unlock_balance(busiest_rq, target_rq);
5108 out_unlock:
5109 busiest_rq->active_balance = 0;
5110 raw_spin_unlock_irq(&busiest_rq->lock);
5111 return 0;
5112 }
5113
5114 #ifdef CONFIG_NO_HZ
5115 /*
5116 * idle load balancing details
5117 * - When one of the busy CPUs notice that there may be an idle rebalancing
5118 * needed, they will kick the idle load balancer, which then does idle
5119 * load balancing for all the idle CPUs.
5120 */
5121 static struct {
5122 cpumask_var_t idle_cpus_mask;
5123 atomic_t nr_cpus;
5124 unsigned long next_balance; /* in jiffy units */
5125 } nohz ____cacheline_aligned;
5126
5127 static inline int find_new_ilb(int call_cpu)
5128 {
5129 int ilb = cpumask_first(nohz.idle_cpus_mask);
5130
5131 if (ilb < nr_cpu_ids && idle_cpu(ilb))
5132 return ilb;
5133
5134 return nr_cpu_ids;
5135 }
5136
5137 /*
5138 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
5139 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
5140 * CPU (if there is one).
5141 */
5142 static void nohz_balancer_kick(int cpu)
5143 {
5144 int ilb_cpu;
5145
5146 nohz.next_balance++;
5147
5148 ilb_cpu = find_new_ilb(cpu);
5149
5150 if (ilb_cpu >= nr_cpu_ids)
5151 return;
5152
5153 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
5154 return;
5155 /*
5156 * Use smp_send_reschedule() instead of resched_cpu().
5157 * This way we generate a sched IPI on the target cpu which
5158 * is idle. And the softirq performing nohz idle load balance
5159 * will be run before returning from the IPI.
5160 */
5161 smp_send_reschedule(ilb_cpu);
5162 return;
5163 }
5164
5165 static inline void nohz_balance_exit_idle(int cpu)
5166 {
5167 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
5168 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
5169 atomic_dec(&nohz.nr_cpus);
5170 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5171 }
5172 }
5173
5174 static inline void set_cpu_sd_state_busy(void)
5175 {
5176 struct sched_domain *sd;
5177 int cpu = smp_processor_id();
5178
5179 if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5180 return;
5181 clear_bit(NOHZ_IDLE, nohz_flags(cpu));
5182
5183 rcu_read_lock();
5184 for_each_domain(cpu, sd)
5185 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
5186 rcu_read_unlock();
5187 }
5188
5189 void set_cpu_sd_state_idle(void)
5190 {
5191 struct sched_domain *sd;
5192 int cpu = smp_processor_id();
5193
5194 if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
5195 return;
5196 set_bit(NOHZ_IDLE, nohz_flags(cpu));
5197
5198 rcu_read_lock();
5199 for_each_domain(cpu, sd)
5200 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
5201 rcu_read_unlock();
5202 }
5203
5204 /*
5205 * This routine will record that the cpu is going idle with tick stopped.
5206 * This info will be used in performing idle load balancing in the future.
5207 */
5208 void nohz_balance_enter_idle(int cpu)
5209 {
5210 /*
5211 * If this cpu is going down, then nothing needs to be done.
5212 */
5213 if (!cpu_active(cpu))
5214 return;
5215
5216 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
5217 return;
5218
5219 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
5220 atomic_inc(&nohz.nr_cpus);
5221 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
5222 }
5223
5224 static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
5225 unsigned long action, void *hcpu)
5226 {
5227 switch (action & ~CPU_TASKS_FROZEN) {
5228 case CPU_DYING:
5229 nohz_balance_exit_idle(smp_processor_id());
5230 return NOTIFY_OK;
5231 default:
5232 return NOTIFY_DONE;
5233 }
5234 }
5235 #endif
5236
5237 static DEFINE_SPINLOCK(balancing);
5238
5239 /*
5240 * Scale the max load_balance interval with the number of CPUs in the system.
5241 * This trades load-balance latency on larger machines for less cross talk.
5242 */
5243 void update_max_interval(void)
5244 {
5245 max_load_balance_interval = HZ*num_online_cpus()/10;
5246 }
5247
5248 /*
5249 * It checks each scheduling domain to see if it is due to be balanced,
5250 * and initiates a balancing operation if so.
5251 *
5252 * Balancing parameters are set up in arch_init_sched_domains.
5253 */
5254 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
5255 {
5256 int balance = 1;
5257 struct rq *rq = cpu_rq(cpu);
5258 unsigned long interval;
5259 struct sched_domain *sd;
5260 /* Earliest time when we have to do rebalance again */
5261 unsigned long next_balance = jiffies + 60*HZ;
5262 int update_next_balance = 0;
5263 int need_serialize;
5264
5265 update_blocked_averages(cpu);
5266
5267 rcu_read_lock();
5268 for_each_domain(cpu, sd) {
5269 if (!(sd->flags & SD_LOAD_BALANCE))
5270 continue;
5271
5272 interval = sd->balance_interval;
5273 if (idle != CPU_IDLE)
5274 interval *= sd->busy_factor;
5275
5276 /* scale ms to jiffies */
5277 interval = msecs_to_jiffies(interval);
5278 interval = clamp(interval, 1UL, max_load_balance_interval);
5279
5280 need_serialize = sd->flags & SD_SERIALIZE;
5281
5282 if (need_serialize) {
5283 if (!spin_trylock(&balancing))
5284 goto out;
5285 }
5286
5287 if (time_after_eq(jiffies, sd->last_balance + interval)) {
5288 if (load_balance(cpu, rq, sd, idle, &balance)) {
5289 /*
5290 * We've pulled tasks over so either we're no
5291 * longer idle.
5292 */
5293 idle = CPU_NOT_IDLE;
5294 }
5295 sd->last_balance = jiffies;
5296 }
5297 if (need_serialize)
5298 spin_unlock(&balancing);
5299 out:
5300 if (time_after(next_balance, sd->last_balance + interval)) {
5301 next_balance = sd->last_balance + interval;
5302 update_next_balance = 1;
5303 }
5304
5305 /*
5306 * Stop the load balance at this level. There is another
5307 * CPU in our sched group which is doing load balancing more
5308 * actively.
5309 */
5310 if (!balance)
5311 break;
5312 }
5313 rcu_read_unlock();
5314
5315 /*
5316 * next_balance will be updated only when there is a need.
5317 * When the cpu is attached to null domain for ex, it will not be
5318 * updated.
5319 */
5320 if (likely(update_next_balance))
5321 rq->next_balance = next_balance;
5322 }
5323
5324 #ifdef CONFIG_NO_HZ
5325 /*
5326 * In CONFIG_NO_HZ case, the idle balance kickee will do the
5327 * rebalancing for all the cpus for whom scheduler ticks are stopped.
5328 */
5329 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
5330 {
5331 struct rq *this_rq = cpu_rq(this_cpu);
5332 struct rq *rq;
5333 int balance_cpu;
5334
5335 if (idle != CPU_IDLE ||
5336 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
5337 goto end;
5338
5339 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
5340 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
5341 continue;
5342
5343 /*
5344 * If this cpu gets work to do, stop the load balancing
5345 * work being done for other cpus. Next load
5346 * balancing owner will pick it up.
5347 */
5348 if (need_resched())
5349 break;
5350
5351 rq = cpu_rq(balance_cpu);
5352
5353 raw_spin_lock_irq(&rq->lock);
5354 update_rq_clock(rq);
5355 update_idle_cpu_load(rq);
5356 raw_spin_unlock_irq(&rq->lock);
5357
5358 rebalance_domains(balance_cpu, CPU_IDLE);
5359
5360 if (time_after(this_rq->next_balance, rq->next_balance))
5361 this_rq->next_balance = rq->next_balance;
5362 }
5363 nohz.next_balance = this_rq->next_balance;
5364 end:
5365 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
5366 }
5367
5368 /*
5369 * Current heuristic for kicking the idle load balancer in the presence
5370 * of an idle cpu is the system.
5371 * - This rq has more than one task.
5372 * - At any scheduler domain level, this cpu's scheduler group has multiple
5373 * busy cpu's exceeding the group's power.
5374 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
5375 * domain span are idle.
5376 */
5377 static inline int nohz_kick_needed(struct rq *rq, int cpu)
5378 {
5379 unsigned long now = jiffies;
5380 struct sched_domain *sd;
5381
5382 if (unlikely(idle_cpu(cpu)))
5383 return 0;
5384
5385 /*
5386 * We may be recently in ticked or tickless idle mode. At the first
5387 * busy tick after returning from idle, we will update the busy stats.
5388 */
5389 set_cpu_sd_state_busy();
5390 nohz_balance_exit_idle(cpu);
5391
5392 /*
5393 * None are in tickless mode and hence no need for NOHZ idle load
5394 * balancing.
5395 */
5396 if (likely(!atomic_read(&nohz.nr_cpus)))
5397 return 0;
5398
5399 if (time_before(now, nohz.next_balance))
5400 return 0;
5401
5402 if (rq->nr_running >= 2)
5403 goto need_kick;
5404
5405 rcu_read_lock();
5406 for_each_domain(cpu, sd) {
5407 struct sched_group *sg = sd->groups;
5408 struct sched_group_power *sgp = sg->sgp;
5409 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
5410
5411 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
5412 goto need_kick_unlock;
5413
5414 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
5415 && (cpumask_first_and(nohz.idle_cpus_mask,
5416 sched_domain_span(sd)) < cpu))
5417 goto need_kick_unlock;
5418
5419 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
5420 break;
5421 }
5422 rcu_read_unlock();
5423 return 0;
5424
5425 need_kick_unlock:
5426 rcu_read_unlock();
5427 need_kick:
5428 return 1;
5429 }
5430 #else
5431 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
5432 #endif
5433
5434 /*
5435 * run_rebalance_domains is triggered when needed from the scheduler tick.
5436 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
5437 */
5438 static void run_rebalance_domains(struct softirq_action *h)
5439 {
5440 int this_cpu = smp_processor_id();
5441 struct rq *this_rq = cpu_rq(this_cpu);
5442 enum cpu_idle_type idle = this_rq->idle_balance ?
5443 CPU_IDLE : CPU_NOT_IDLE;
5444
5445 rebalance_domains(this_cpu, idle);
5446
5447 /*
5448 * If this cpu has a pending nohz_balance_kick, then do the
5449 * balancing on behalf of the other idle cpus whose ticks are
5450 * stopped.
5451 */
5452 nohz_idle_balance(this_cpu, idle);
5453 }
5454
5455 static inline int on_null_domain(int cpu)
5456 {
5457 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
5458 }
5459
5460 /*
5461 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
5462 */
5463 void trigger_load_balance(struct rq *rq, int cpu)
5464 {
5465 /* Don't need to rebalance while attached to NULL domain */
5466 if (time_after_eq(jiffies, rq->next_balance) &&
5467 likely(!on_null_domain(cpu)))
5468 raise_softirq(SCHED_SOFTIRQ);
5469 #ifdef CONFIG_NO_HZ
5470 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
5471 nohz_balancer_kick(cpu);
5472 #endif
5473 }
5474
5475 static void rq_online_fair(struct rq *rq)
5476 {
5477 update_sysctl();
5478 }
5479
5480 static void rq_offline_fair(struct rq *rq)
5481 {
5482 update_sysctl();
5483
5484 /* Ensure any throttled groups are reachable by pick_next_task */
5485 unthrottle_offline_cfs_rqs(rq);
5486 }
5487
5488 #endif /* CONFIG_SMP */
5489
5490 /*
5491 * scheduler tick hitting a task of our scheduling class:
5492 */
5493 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
5494 {
5495 struct cfs_rq *cfs_rq;
5496 struct sched_entity *se = &curr->se;
5497
5498 for_each_sched_entity(se) {
5499 cfs_rq = cfs_rq_of(se);
5500 entity_tick(cfs_rq, se, queued);
5501 }
5502
5503 update_rq_runnable_avg(rq, 1);
5504 }
5505
5506 /*
5507 * called on fork with the child task as argument from the parent's context
5508 * - child not yet on the tasklist
5509 * - preemption disabled
5510 */
5511 static void task_fork_fair(struct task_struct *p)
5512 {
5513 struct cfs_rq *cfs_rq;
5514 struct sched_entity *se = &p->se, *curr;
5515 int this_cpu = smp_processor_id();
5516 struct rq *rq = this_rq();
5517 unsigned long flags;
5518
5519 raw_spin_lock_irqsave(&rq->lock, flags);
5520
5521 update_rq_clock(rq);
5522
5523 cfs_rq = task_cfs_rq(current);
5524 curr = cfs_rq->curr;
5525
5526 if (unlikely(task_cpu(p) != this_cpu)) {
5527 rcu_read_lock();
5528 __set_task_cpu(p, this_cpu);
5529 rcu_read_unlock();
5530 }
5531
5532 update_curr(cfs_rq);
5533
5534 if (curr)
5535 se->vruntime = curr->vruntime;
5536 place_entity(cfs_rq, se, 1);
5537
5538 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
5539 /*
5540 * Upon rescheduling, sched_class::put_prev_task() will place
5541 * 'current' within the tree based on its new key value.
5542 */
5543 swap(curr->vruntime, se->vruntime);
5544 resched_task(rq->curr);
5545 }
5546
5547 se->vruntime -= cfs_rq->min_vruntime;
5548
5549 raw_spin_unlock_irqrestore(&rq->lock, flags);
5550 }
5551
5552 /*
5553 * Priority of the task has changed. Check to see if we preempt
5554 * the current task.
5555 */
5556 static void
5557 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
5558 {
5559 if (!p->se.on_rq)
5560 return;
5561
5562 /*
5563 * Reschedule if we are currently running on this runqueue and
5564 * our priority decreased, or if we are not currently running on
5565 * this runqueue and our priority is higher than the current's
5566 */
5567 if (rq->curr == p) {
5568 if (p->prio > oldprio)
5569 resched_task(rq->curr);
5570 } else
5571 check_preempt_curr(rq, p, 0);
5572 }
5573
5574 static void switched_from_fair(struct rq *rq, struct task_struct *p)
5575 {
5576 struct sched_entity *se = &p->se;
5577 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5578
5579 /*
5580 * Ensure the task's vruntime is normalized, so that when its
5581 * switched back to the fair class the enqueue_entity(.flags=0) will
5582 * do the right thing.
5583 *
5584 * If it was on_rq, then the dequeue_entity(.flags=0) will already
5585 * have normalized the vruntime, if it was !on_rq, then only when
5586 * the task is sleeping will it still have non-normalized vruntime.
5587 */
5588 if (!se->on_rq && p->state != TASK_RUNNING) {
5589 /*
5590 * Fix up our vruntime so that the current sleep doesn't
5591 * cause 'unlimited' sleep bonus.
5592 */
5593 place_entity(cfs_rq, se, 0);
5594 se->vruntime -= cfs_rq->min_vruntime;
5595 }
5596
5597 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5598 /*
5599 * Remove our load from contribution when we leave sched_fair
5600 * and ensure we don't carry in an old decay_count if we
5601 * switch back.
5602 */
5603 if (p->se.avg.decay_count) {
5604 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5605 __synchronize_entity_decay(&p->se);
5606 subtract_blocked_load_contrib(cfs_rq,
5607 p->se.avg.load_avg_contrib);
5608 }
5609 #endif
5610 }
5611
5612 /*
5613 * We switched to the sched_fair class.
5614 */
5615 static void switched_to_fair(struct rq *rq, struct task_struct *p)
5616 {
5617 if (!p->se.on_rq)
5618 return;
5619
5620 /*
5621 * We were most likely switched from sched_rt, so
5622 * kick off the schedule if running, otherwise just see
5623 * if we can still preempt the current task.
5624 */
5625 if (rq->curr == p)
5626 resched_task(rq->curr);
5627 else
5628 check_preempt_curr(rq, p, 0);
5629 }
5630
5631 /* Account for a task changing its policy or group.
5632 *
5633 * This routine is mostly called to set cfs_rq->curr field when a task
5634 * migrates between groups/classes.
5635 */
5636 static void set_curr_task_fair(struct rq *rq)
5637 {
5638 struct sched_entity *se = &rq->curr->se;
5639
5640 for_each_sched_entity(se) {
5641 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5642
5643 set_next_entity(cfs_rq, se);
5644 /* ensure bandwidth has been allocated on our new cfs_rq */
5645 account_cfs_rq_runtime(cfs_rq, 0);
5646 }
5647 }
5648
5649 void init_cfs_rq(struct cfs_rq *cfs_rq)
5650 {
5651 cfs_rq->tasks_timeline = RB_ROOT;
5652 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
5653 #ifndef CONFIG_64BIT
5654 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
5655 #endif
5656 #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
5657 atomic64_set(&cfs_rq->decay_counter, 1);
5658 atomic64_set(&cfs_rq->removed_load, 0);
5659 #endif
5660 }
5661
5662 #ifdef CONFIG_FAIR_GROUP_SCHED
5663 static void task_move_group_fair(struct task_struct *p, int on_rq)
5664 {
5665 struct cfs_rq *cfs_rq;
5666 /*
5667 * If the task was not on the rq at the time of this cgroup movement
5668 * it must have been asleep, sleeping tasks keep their ->vruntime
5669 * absolute on their old rq until wakeup (needed for the fair sleeper
5670 * bonus in place_entity()).
5671 *
5672 * If it was on the rq, we've just 'preempted' it, which does convert
5673 * ->vruntime to a relative base.
5674 *
5675 * Make sure both cases convert their relative position when migrating
5676 * to another cgroup's rq. This does somewhat interfere with the
5677 * fair sleeper stuff for the first placement, but who cares.
5678 */
5679 /*
5680 * When !on_rq, vruntime of the task has usually NOT been normalized.
5681 * But there are some cases where it has already been normalized:
5682 *
5683 * - Moving a forked child which is waiting for being woken up by
5684 * wake_up_new_task().
5685 * - Moving a task which has been woken up by try_to_wake_up() and
5686 * waiting for actually being woken up by sched_ttwu_pending().
5687 *
5688 * To prevent boost or penalty in the new cfs_rq caused by delta
5689 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
5690 */
5691 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
5692 on_rq = 1;
5693
5694 if (!on_rq)
5695 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
5696 set_task_rq(p, task_cpu(p));
5697 if (!on_rq) {
5698 cfs_rq = cfs_rq_of(&p->se);
5699 p->se.vruntime += cfs_rq->min_vruntime;
5700 #ifdef CONFIG_SMP
5701 /*
5702 * migrate_task_rq_fair() will have removed our previous
5703 * contribution, but we must synchronize for ongoing future
5704 * decay.
5705 */
5706 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
5707 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
5708 #endif
5709 }
5710 }
5711
5712 void free_fair_sched_group(struct task_group *tg)
5713 {
5714 int i;
5715
5716 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
5717
5718 for_each_possible_cpu(i) {
5719 if (tg->cfs_rq)
5720 kfree(tg->cfs_rq[i]);
5721 if (tg->se)
5722 kfree(tg->se[i]);
5723 }
5724
5725 kfree(tg->cfs_rq);
5726 kfree(tg->se);
5727 }
5728
5729 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5730 {
5731 struct cfs_rq *cfs_rq;
5732 struct sched_entity *se;
5733 int i;
5734
5735 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
5736 if (!tg->cfs_rq)
5737 goto err;
5738 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
5739 if (!tg->se)
5740 goto err;
5741
5742 tg->shares = NICE_0_LOAD;
5743
5744 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
5745
5746 for_each_possible_cpu(i) {
5747 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
5748 GFP_KERNEL, cpu_to_node(i));
5749 if (!cfs_rq)
5750 goto err;
5751
5752 se = kzalloc_node(sizeof(struct sched_entity),
5753 GFP_KERNEL, cpu_to_node(i));
5754 if (!se)
5755 goto err_free_rq;
5756
5757 init_cfs_rq(cfs_rq);
5758 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
5759 }
5760
5761 return 1;
5762
5763 err_free_rq:
5764 kfree(cfs_rq);
5765 err:
5766 return 0;
5767 }
5768
5769 void unregister_fair_sched_group(struct task_group *tg, int cpu)
5770 {
5771 struct rq *rq = cpu_rq(cpu);
5772 unsigned long flags;
5773
5774 /*
5775 * Only empty task groups can be destroyed; so we can speculatively
5776 * check on_list without danger of it being re-added.
5777 */
5778 if (!tg->cfs_rq[cpu]->on_list)
5779 return;
5780
5781 raw_spin_lock_irqsave(&rq->lock, flags);
5782 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
5783 raw_spin_unlock_irqrestore(&rq->lock, flags);
5784 }
5785
5786 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
5787 struct sched_entity *se, int cpu,
5788 struct sched_entity *parent)
5789 {
5790 struct rq *rq = cpu_rq(cpu);
5791
5792 cfs_rq->tg = tg;
5793 cfs_rq->rq = rq;
5794 init_cfs_rq_runtime(cfs_rq);
5795
5796 tg->cfs_rq[cpu] = cfs_rq;
5797 tg->se[cpu] = se;
5798
5799 /* se could be NULL for root_task_group */
5800 if (!se)
5801 return;
5802
5803 if (!parent)
5804 se->cfs_rq = &rq->cfs;
5805 else
5806 se->cfs_rq = parent->my_q;
5807
5808 se->my_q = cfs_rq;
5809 update_load_set(&se->load, 0);
5810 se->parent = parent;
5811 }
5812
5813 static DEFINE_MUTEX(shares_mutex);
5814
5815 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
5816 {
5817 int i;
5818 unsigned long flags;
5819
5820 /*
5821 * We can't change the weight of the root cgroup.
5822 */
5823 if (!tg->se[0])
5824 return -EINVAL;
5825
5826 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
5827
5828 mutex_lock(&shares_mutex);
5829 if (tg->shares == shares)
5830 goto done;
5831
5832 tg->shares = shares;
5833 for_each_possible_cpu(i) {
5834 struct rq *rq = cpu_rq(i);
5835 struct sched_entity *se;
5836
5837 se = tg->se[i];
5838 /* Propagate contribution to hierarchy */
5839 raw_spin_lock_irqsave(&rq->lock, flags);
5840 for_each_sched_entity(se) {
5841 update_cfs_shares(group_cfs_rq(se));
5842 /* update contribution to parent */
5843 update_entity_load_avg(se, 1);
5844 }
5845 raw_spin_unlock_irqrestore(&rq->lock, flags);
5846 }
5847
5848 done:
5849 mutex_unlock(&shares_mutex);
5850 return 0;
5851 }
5852 #else /* CONFIG_FAIR_GROUP_SCHED */
5853
5854 void free_fair_sched_group(struct task_group *tg) { }
5855
5856 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
5857 {
5858 return 1;
5859 }
5860
5861 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
5862
5863 #endif /* CONFIG_FAIR_GROUP_SCHED */
5864
5865
5866 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
5867 {
5868 struct sched_entity *se = &task->se;
5869 unsigned int rr_interval = 0;
5870
5871 /*
5872 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
5873 * idle runqueue:
5874 */
5875 if (rq->cfs.load.weight)
5876 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5877
5878 return rr_interval;
5879 }
5880
5881 /*
5882 * All the scheduling class methods:
5883 */
5884 const struct sched_class fair_sched_class = {
5885 .next = &idle_sched_class,
5886 .enqueue_task = enqueue_task_fair,
5887 .dequeue_task = dequeue_task_fair,
5888 .yield_task = yield_task_fair,
5889 .yield_to_task = yield_to_task_fair,
5890
5891 .check_preempt_curr = check_preempt_wakeup,
5892
5893 .pick_next_task = pick_next_task_fair,
5894 .put_prev_task = put_prev_task_fair,
5895
5896 #ifdef CONFIG_SMP
5897 .select_task_rq = select_task_rq_fair,
5898 #ifdef CONFIG_FAIR_GROUP_SCHED
5899 .migrate_task_rq = migrate_task_rq_fair,
5900 #endif
5901 .rq_online = rq_online_fair,
5902 .rq_offline = rq_offline_fair,
5903
5904 .task_waking = task_waking_fair,
5905 #endif
5906
5907 .set_curr_task = set_curr_task_fair,
5908 .task_tick = task_tick_fair,
5909 .task_fork = task_fork_fair,
5910
5911 .prio_changed = prio_changed_fair,
5912 .switched_from = switched_from_fair,
5913 .switched_to = switched_to_fair,
5914
5915 .get_rr_interval = get_rr_interval_fair,
5916
5917 #ifdef CONFIG_FAIR_GROUP_SCHED
5918 .task_move_group = task_move_group_fair,
5919 #endif
5920 };
5921
5922 #ifdef CONFIG_SCHED_DEBUG
5923 void print_cfs_stats(struct seq_file *m, int cpu)
5924 {
5925 struct cfs_rq *cfs_rq;
5926
5927 rcu_read_lock();
5928 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5929 print_cfs_rq(m, cpu, cfs_rq);
5930 rcu_read_unlock();
5931 }
5932 #endif
5933
5934 __init void init_sched_fair_class(void)
5935 {
5936 #ifdef CONFIG_SMP
5937 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
5938
5939 #ifdef CONFIG_NO_HZ
5940 nohz.next_balance = jiffies;
5941 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
5942 cpu_notifier(sched_ilb_notifier, 0);
5943 #endif
5944 #endif /* SMP */
5945
5946 }