]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/fair.c
sched/numa: Adjust scan rate in task_numa_placement
[mirror_ubuntu-artful-kernel.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 lw->weight += inc;
119 lw->inv_weight = 0;
120 }
121
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126 }
127
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 lw->weight = w;
131 lw->inv_weight = 0;
132 }
133
134 /*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143 static int get_update_sysctl_factor(void)
144 {
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162 }
163
164 static void update_sysctl(void)
165 {
166 unsigned int factor = get_update_sysctl_factor();
167
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175
176 void sched_init_granularity(void)
177 {
178 update_sysctl();
179 }
180
181 #if BITS_PER_LONG == 32
182 # define WMULT_CONST (~0UL)
183 #else
184 # define WMULT_CONST (1UL << 32)
185 #endif
186
187 #define WMULT_SHIFT 32
188
189 /*
190 * Shift right and round:
191 */
192 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194 /*
195 * delta *= weight / lw
196 */
197 static unsigned long
198 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200 {
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234 }
235
236
237 const struct sched_class fair_sched_class;
238
239 /**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243 #ifdef CONFIG_FAIR_GROUP_SCHED
244
245 /* cpu runqueue to which this cfs_rq is attached */
246 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247 {
248 return cfs_rq->rq;
249 }
250
251 /* An entity is a task if it doesn't "own" a runqueue */
252 #define entity_is_task(se) (!se->my_q)
253
254 static inline struct task_struct *task_of(struct sched_entity *se)
255 {
256 #ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258 #endif
259 return container_of(se, struct task_struct, se);
260 }
261
262 /* Walk up scheduling entities hierarchy */
263 #define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267 {
268 return p->se.cfs_rq;
269 }
270
271 /* runqueue on which this entity is (to be) queued */
272 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273 {
274 return se->cfs_rq;
275 }
276
277 /* runqueue "owned" by this group */
278 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279 {
280 return grp->my_q;
281 }
282
283 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
285
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 {
288 if (!cfs_rq->on_list) {
289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
303
304 cfs_rq->on_list = 1;
305 /* We should have no load, but we need to update last_decay. */
306 update_cfs_rq_blocked_load(cfs_rq, 0);
307 }
308 }
309
310 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311 {
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316 }
317
318 /* Iterate thr' all leaf cfs_rq's on a runqueue */
319 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322 /* Do the two (enqueued) entities belong to the same group ? */
323 static inline int
324 is_same_group(struct sched_entity *se, struct sched_entity *pse)
325 {
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330 }
331
332 static inline struct sched_entity *parent_entity(struct sched_entity *se)
333 {
334 return se->parent;
335 }
336
337 /* return depth at which a sched entity is present in the hierarchy */
338 static inline int depth_se(struct sched_entity *se)
339 {
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346 }
347
348 static void
349 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350 {
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378 }
379
380 #else /* !CONFIG_FAIR_GROUP_SCHED */
381
382 static inline struct task_struct *task_of(struct sched_entity *se)
383 {
384 return container_of(se, struct task_struct, se);
385 }
386
387 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388 {
389 return container_of(cfs_rq, struct rq, cfs);
390 }
391
392 #define entity_is_task(se) 1
393
394 #define for_each_sched_entity(se) \
395 for (; se; se = NULL)
396
397 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
398 {
399 return &task_rq(p)->cfs;
400 }
401
402 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403 {
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408 }
409
410 /* runqueue "owned" by this group */
411 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412 {
413 return NULL;
414 }
415
416 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417 {
418 }
419
420 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421 {
422 }
423
424 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427 static inline int
428 is_same_group(struct sched_entity *se, struct sched_entity *pse)
429 {
430 return 1;
431 }
432
433 static inline struct sched_entity *parent_entity(struct sched_entity *se)
434 {
435 return NULL;
436 }
437
438 static inline void
439 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440 {
441 }
442
443 #endif /* CONFIG_FAIR_GROUP_SCHED */
444
445 static __always_inline
446 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
447
448 /**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
452 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
453 {
454 s64 delta = (s64)(vruntime - max_vruntime);
455 if (delta > 0)
456 max_vruntime = vruntime;
457
458 return max_vruntime;
459 }
460
461 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
462 {
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468 }
469
470 static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472 {
473 return (s64)(a->vruntime - b->vruntime) < 0;
474 }
475
476 static void update_min_vruntime(struct cfs_rq *cfs_rq)
477 {
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
488 if (!cfs_rq->curr)
489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
494 /* ensure we never gain time by being placed backwards. */
495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
496 #ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499 #endif
500 }
501
502 /*
503 * Enqueue an entity into the rb-tree:
504 */
505 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
506 {
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
522 if (entity_before(se, entry)) {
523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
534 if (leftmost)
535 cfs_rq->rb_leftmost = &se->run_node;
536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
539 }
540
541 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 {
543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
548 }
549
550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
551 }
552
553 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
554 {
555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
561 }
562
563 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564 {
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571 }
572
573 #ifdef CONFIG_SCHED_DEBUG
574 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
575 {
576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
577
578 if (!last)
579 return NULL;
580
581 return rb_entry(last, struct sched_entity, run_node);
582 }
583
584 /**************************************************************
585 * Scheduling class statistics methods:
586 */
587
588 int sched_proc_update_handler(struct ctl_table *table, int write,
589 void __user *buffer, size_t *lenp,
590 loff_t *ppos)
591 {
592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
593 int factor = get_update_sysctl_factor();
594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
601 #define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
606 #undef WRT_SYSCTL
607
608 return 0;
609 }
610 #endif
611
612 /*
613 * delta /= w
614 */
615 static inline unsigned long
616 calc_delta_fair(unsigned long delta, struct sched_entity *se)
617 {
618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
620
621 return delta;
622 }
623
624 /*
625 * The idea is to set a period in which each task runs once.
626 *
627 * When there are too many tasks (sched_nr_latency) we have to stretch
628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
632 static u64 __sched_period(unsigned long nr_running)
633 {
634 u64 period = sysctl_sched_latency;
635 unsigned long nr_latency = sched_nr_latency;
636
637 if (unlikely(nr_running > nr_latency)) {
638 period = sysctl_sched_min_granularity;
639 period *= nr_running;
640 }
641
642 return period;
643 }
644
645 /*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
649 * s = p*P[w/rw]
650 */
651 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
654
655 for_each_sched_entity(se) {
656 struct load_weight *load;
657 struct load_weight lw;
658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
661
662 if (unlikely(!se->on_rq)) {
663 lw = cfs_rq->load;
664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
671 }
672
673 /*
674 * We calculate the vruntime slice of a to-be-inserted task.
675 *
676 * vs = s/w
677 */
678 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
679 {
680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
681 }
682
683 #ifdef CONFIG_SMP
684 static unsigned long task_h_load(struct task_struct *p);
685
686 static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688 /* Give new task start runnable values to heavy its load in infant time */
689 void init_task_runnable_average(struct task_struct *p)
690 {
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698 }
699 #else
700 void init_task_runnable_average(struct task_struct *p)
701 {
702 }
703 #endif
704
705 /*
706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709 static inline void
710 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
712 {
713 unsigned long delta_exec_weighted;
714
715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
717
718 curr->sum_exec_runtime += delta_exec;
719 schedstat_add(cfs_rq, exec_clock, delta_exec);
720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
721
722 curr->vruntime += delta_exec_weighted;
723 update_min_vruntime(cfs_rq);
724 }
725
726 static void update_curr(struct cfs_rq *cfs_rq)
727 {
728 struct sched_entity *curr = cfs_rq->curr;
729 u64 now = rq_clock_task(rq_of(cfs_rq));
730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
740 delta_exec = (unsigned long)(now - curr->exec_start);
741 if (!delta_exec)
742 return;
743
744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
751 cpuacct_charge(curtask, delta_exec);
752 account_group_exec_runtime(curtask, delta_exec);
753 }
754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
756 }
757
758 static inline void
759 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
760 {
761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
762 }
763
764 /*
765 * Task is being enqueued - update stats:
766 */
767 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 {
769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
773 if (se != cfs_rq->curr)
774 update_stats_wait_start(cfs_rq, se);
775 }
776
777 static void
778 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 {
780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
785 #ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
789 }
790 #endif
791 schedstat_set(se->statistics.wait_start, 0);
792 }
793
794 static inline void
795 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
796 {
797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
801 if (se != cfs_rq->curr)
802 update_stats_wait_end(cfs_rq, se);
803 }
804
805 /*
806 * We are picking a new current task - update its stats:
807 */
808 static inline void
809 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
810 {
811 /*
812 * We are starting a new run period:
813 */
814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
815 }
816
817 /**************************************************
818 * Scheduling class queueing methods:
819 */
820
821 #ifdef CONFIG_NUMA_BALANCING
822 /*
823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
826 */
827 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829 unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
830
831 /* Portion of address space to scan in MB */
832 unsigned int sysctl_numa_balancing_scan_size = 256;
833
834 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835 unsigned int sysctl_numa_balancing_scan_delay = 1000;
836
837 static unsigned int task_nr_scan_windows(struct task_struct *p)
838 {
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
841
842 /*
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
845 * on resident pages
846 */
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
849 if (!rss)
850 rss = nr_scan_pages;
851
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
854 }
855
856 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857 #define MAX_SCAN_WINDOW 2560
858
859 static unsigned int task_scan_min(struct task_struct *p)
860 {
861 unsigned int scan, floor;
862 unsigned int windows = 1;
863
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
867
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
870 }
871
872 static unsigned int task_scan_max(struct task_struct *p)
873 {
874 unsigned int smin = task_scan_min(p);
875 unsigned int smax;
876
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
880 }
881
882 /*
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
888 */
889 unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
890
891 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
892 {
893 rq->nr_numa_running += (p->numa_preferred_nid != -1);
894 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
895 }
896
897 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
898 {
899 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
900 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
901 }
902
903 struct numa_group {
904 atomic_t refcount;
905
906 spinlock_t lock; /* nr_tasks, tasks */
907 int nr_tasks;
908 pid_t gid;
909 struct list_head task_list;
910
911 struct rcu_head rcu;
912 atomic_long_t total_faults;
913 atomic_long_t faults[0];
914 };
915
916 pid_t task_numa_group_id(struct task_struct *p)
917 {
918 return p->numa_group ? p->numa_group->gid : 0;
919 }
920
921 static inline int task_faults_idx(int nid, int priv)
922 {
923 return 2 * nid + priv;
924 }
925
926 static inline unsigned long task_faults(struct task_struct *p, int nid)
927 {
928 if (!p->numa_faults)
929 return 0;
930
931 return p->numa_faults[task_faults_idx(nid, 0)] +
932 p->numa_faults[task_faults_idx(nid, 1)];
933 }
934
935 static inline unsigned long group_faults(struct task_struct *p, int nid)
936 {
937 if (!p->numa_group)
938 return 0;
939
940 return atomic_long_read(&p->numa_group->faults[2*nid]) +
941 atomic_long_read(&p->numa_group->faults[2*nid+1]);
942 }
943
944 /*
945 * These return the fraction of accesses done by a particular task, or
946 * task group, on a particular numa node. The group weight is given a
947 * larger multiplier, in order to group tasks together that are almost
948 * evenly spread out between numa nodes.
949 */
950 static inline unsigned long task_weight(struct task_struct *p, int nid)
951 {
952 unsigned long total_faults;
953
954 if (!p->numa_faults)
955 return 0;
956
957 total_faults = p->total_numa_faults;
958
959 if (!total_faults)
960 return 0;
961
962 return 1000 * task_faults(p, nid) / total_faults;
963 }
964
965 static inline unsigned long group_weight(struct task_struct *p, int nid)
966 {
967 unsigned long total_faults;
968
969 if (!p->numa_group)
970 return 0;
971
972 total_faults = atomic_long_read(&p->numa_group->total_faults);
973
974 if (!total_faults)
975 return 0;
976
977 return 1000 * group_faults(p, nid) / total_faults;
978 }
979
980 static unsigned long weighted_cpuload(const int cpu);
981 static unsigned long source_load(int cpu, int type);
982 static unsigned long target_load(int cpu, int type);
983 static unsigned long power_of(int cpu);
984 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
985
986 /* Cached statistics for all CPUs within a node */
987 struct numa_stats {
988 unsigned long nr_running;
989 unsigned long load;
990
991 /* Total compute capacity of CPUs on a node */
992 unsigned long power;
993
994 /* Approximate capacity in terms of runnable tasks on a node */
995 unsigned long capacity;
996 int has_capacity;
997 };
998
999 /*
1000 * XXX borrowed from update_sg_lb_stats
1001 */
1002 static void update_numa_stats(struct numa_stats *ns, int nid)
1003 {
1004 int cpu;
1005
1006 memset(ns, 0, sizeof(*ns));
1007 for_each_cpu(cpu, cpumask_of_node(nid)) {
1008 struct rq *rq = cpu_rq(cpu);
1009
1010 ns->nr_running += rq->nr_running;
1011 ns->load += weighted_cpuload(cpu);
1012 ns->power += power_of(cpu);
1013 }
1014
1015 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1016 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1017 ns->has_capacity = (ns->nr_running < ns->capacity);
1018 }
1019
1020 struct task_numa_env {
1021 struct task_struct *p;
1022
1023 int src_cpu, src_nid;
1024 int dst_cpu, dst_nid;
1025
1026 struct numa_stats src_stats, dst_stats;
1027
1028 int imbalance_pct, idx;
1029
1030 struct task_struct *best_task;
1031 long best_imp;
1032 int best_cpu;
1033 };
1034
1035 static void task_numa_assign(struct task_numa_env *env,
1036 struct task_struct *p, long imp)
1037 {
1038 if (env->best_task)
1039 put_task_struct(env->best_task);
1040 if (p)
1041 get_task_struct(p);
1042
1043 env->best_task = p;
1044 env->best_imp = imp;
1045 env->best_cpu = env->dst_cpu;
1046 }
1047
1048 /*
1049 * This checks if the overall compute and NUMA accesses of the system would
1050 * be improved if the source tasks was migrated to the target dst_cpu taking
1051 * into account that it might be best if task running on the dst_cpu should
1052 * be exchanged with the source task
1053 */
1054 static void task_numa_compare(struct task_numa_env *env,
1055 long taskimp, long groupimp)
1056 {
1057 struct rq *src_rq = cpu_rq(env->src_cpu);
1058 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1059 struct task_struct *cur;
1060 long dst_load, src_load;
1061 long load;
1062 long imp = (groupimp > 0) ? groupimp : taskimp;
1063
1064 rcu_read_lock();
1065 cur = ACCESS_ONCE(dst_rq->curr);
1066 if (cur->pid == 0) /* idle */
1067 cur = NULL;
1068
1069 /*
1070 * "imp" is the fault differential for the source task between the
1071 * source and destination node. Calculate the total differential for
1072 * the source task and potential destination task. The more negative
1073 * the value is, the more rmeote accesses that would be expected to
1074 * be incurred if the tasks were swapped.
1075 */
1076 if (cur) {
1077 /* Skip this swap candidate if cannot move to the source cpu */
1078 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1079 goto unlock;
1080
1081 /*
1082 * If dst and source tasks are in the same NUMA group, or not
1083 * in any group then look only at task weights.
1084 */
1085 if (cur->numa_group == env->p->numa_group) {
1086 imp = taskimp + task_weight(cur, env->src_nid) -
1087 task_weight(cur, env->dst_nid);
1088 /*
1089 * Add some hysteresis to prevent swapping the
1090 * tasks within a group over tiny differences.
1091 */
1092 if (cur->numa_group)
1093 imp -= imp/16;
1094 } else {
1095 /*
1096 * Compare the group weights. If a task is all by
1097 * itself (not part of a group), use the task weight
1098 * instead.
1099 */
1100 if (env->p->numa_group)
1101 imp = groupimp;
1102 else
1103 imp = taskimp;
1104
1105 if (cur->numa_group)
1106 imp += group_weight(cur, env->src_nid) -
1107 group_weight(cur, env->dst_nid);
1108 else
1109 imp += task_weight(cur, env->src_nid) -
1110 task_weight(cur, env->dst_nid);
1111 }
1112 }
1113
1114 if (imp < env->best_imp)
1115 goto unlock;
1116
1117 if (!cur) {
1118 /* Is there capacity at our destination? */
1119 if (env->src_stats.has_capacity &&
1120 !env->dst_stats.has_capacity)
1121 goto unlock;
1122
1123 goto balance;
1124 }
1125
1126 /* Balance doesn't matter much if we're running a task per cpu */
1127 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1128 goto assign;
1129
1130 /*
1131 * In the overloaded case, try and keep the load balanced.
1132 */
1133 balance:
1134 dst_load = env->dst_stats.load;
1135 src_load = env->src_stats.load;
1136
1137 /* XXX missing power terms */
1138 load = task_h_load(env->p);
1139 dst_load += load;
1140 src_load -= load;
1141
1142 if (cur) {
1143 load = task_h_load(cur);
1144 dst_load -= load;
1145 src_load += load;
1146 }
1147
1148 /* make src_load the smaller */
1149 if (dst_load < src_load)
1150 swap(dst_load, src_load);
1151
1152 if (src_load * env->imbalance_pct < dst_load * 100)
1153 goto unlock;
1154
1155 assign:
1156 task_numa_assign(env, cur, imp);
1157 unlock:
1158 rcu_read_unlock();
1159 }
1160
1161 static void task_numa_find_cpu(struct task_numa_env *env,
1162 long taskimp, long groupimp)
1163 {
1164 int cpu;
1165
1166 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1167 /* Skip this CPU if the source task cannot migrate */
1168 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1169 continue;
1170
1171 env->dst_cpu = cpu;
1172 task_numa_compare(env, taskimp, groupimp);
1173 }
1174 }
1175
1176 static int task_numa_migrate(struct task_struct *p)
1177 {
1178 struct task_numa_env env = {
1179 .p = p,
1180
1181 .src_cpu = task_cpu(p),
1182 .src_nid = task_node(p),
1183
1184 .imbalance_pct = 112,
1185
1186 .best_task = NULL,
1187 .best_imp = 0,
1188 .best_cpu = -1
1189 };
1190 struct sched_domain *sd;
1191 unsigned long taskweight, groupweight;
1192 int nid, ret;
1193 long taskimp, groupimp;
1194
1195 /*
1196 * Pick the lowest SD_NUMA domain, as that would have the smallest
1197 * imbalance and would be the first to start moving tasks about.
1198 *
1199 * And we want to avoid any moving of tasks about, as that would create
1200 * random movement of tasks -- counter the numa conditions we're trying
1201 * to satisfy here.
1202 */
1203 rcu_read_lock();
1204 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1205 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1206 rcu_read_unlock();
1207
1208 taskweight = task_weight(p, env.src_nid);
1209 groupweight = group_weight(p, env.src_nid);
1210 update_numa_stats(&env.src_stats, env.src_nid);
1211 env.dst_nid = p->numa_preferred_nid;
1212 taskimp = task_weight(p, env.dst_nid) - taskweight;
1213 groupimp = group_weight(p, env.dst_nid) - groupweight;
1214 update_numa_stats(&env.dst_stats, env.dst_nid);
1215
1216 /* If the preferred nid has capacity, try to use it. */
1217 if (env.dst_stats.has_capacity)
1218 task_numa_find_cpu(&env, taskimp, groupimp);
1219
1220 /* No space available on the preferred nid. Look elsewhere. */
1221 if (env.best_cpu == -1) {
1222 for_each_online_node(nid) {
1223 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1224 continue;
1225
1226 /* Only consider nodes where both task and groups benefit */
1227 taskimp = task_weight(p, nid) - taskweight;
1228 groupimp = group_weight(p, nid) - groupweight;
1229 if (taskimp < 0 && groupimp < 0)
1230 continue;
1231
1232 env.dst_nid = nid;
1233 update_numa_stats(&env.dst_stats, env.dst_nid);
1234 task_numa_find_cpu(&env, taskimp, groupimp);
1235 }
1236 }
1237
1238 /* No better CPU than the current one was found. */
1239 if (env.best_cpu == -1)
1240 return -EAGAIN;
1241
1242 sched_setnuma(p, env.dst_nid);
1243
1244 /*
1245 * Reset the scan period if the task is being rescheduled on an
1246 * alternative node to recheck if the tasks is now properly placed.
1247 */
1248 p->numa_scan_period = task_scan_min(p);
1249
1250 if (env.best_task == NULL) {
1251 int ret = migrate_task_to(p, env.best_cpu);
1252 return ret;
1253 }
1254
1255 ret = migrate_swap(p, env.best_task);
1256 put_task_struct(env.best_task);
1257 return ret;
1258 }
1259
1260 /* Attempt to migrate a task to a CPU on the preferred node. */
1261 static void numa_migrate_preferred(struct task_struct *p)
1262 {
1263 /* Success if task is already running on preferred CPU */
1264 p->numa_migrate_retry = 0;
1265 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1266 /*
1267 * If migration is temporarily disabled due to a task migration
1268 * then re-enable it now as the task is running on its
1269 * preferred node and memory should migrate locally
1270 */
1271 if (!p->numa_migrate_seq)
1272 p->numa_migrate_seq++;
1273 return;
1274 }
1275
1276 /* This task has no NUMA fault statistics yet */
1277 if (unlikely(p->numa_preferred_nid == -1))
1278 return;
1279
1280 /* Otherwise, try migrate to a CPU on the preferred node */
1281 if (task_numa_migrate(p) != 0)
1282 p->numa_migrate_retry = jiffies + HZ*5;
1283 }
1284
1285 /*
1286 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1287 * increments. The more local the fault statistics are, the higher the scan
1288 * period will be for the next scan window. If local/remote ratio is below
1289 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1290 * scan period will decrease
1291 */
1292 #define NUMA_PERIOD_SLOTS 10
1293 #define NUMA_PERIOD_THRESHOLD 3
1294
1295 /*
1296 * Increase the scan period (slow down scanning) if the majority of
1297 * our memory is already on our local node, or if the majority of
1298 * the page accesses are shared with other processes.
1299 * Otherwise, decrease the scan period.
1300 */
1301 static void update_task_scan_period(struct task_struct *p,
1302 unsigned long shared, unsigned long private)
1303 {
1304 unsigned int period_slot;
1305 int ratio;
1306 int diff;
1307
1308 unsigned long remote = p->numa_faults_locality[0];
1309 unsigned long local = p->numa_faults_locality[1];
1310
1311 /*
1312 * If there were no record hinting faults then either the task is
1313 * completely idle or all activity is areas that are not of interest
1314 * to automatic numa balancing. Scan slower
1315 */
1316 if (local + shared == 0) {
1317 p->numa_scan_period = min(p->numa_scan_period_max,
1318 p->numa_scan_period << 1);
1319
1320 p->mm->numa_next_scan = jiffies +
1321 msecs_to_jiffies(p->numa_scan_period);
1322
1323 return;
1324 }
1325
1326 /*
1327 * Prepare to scale scan period relative to the current period.
1328 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1329 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1330 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1331 */
1332 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1333 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1334 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1335 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1336 if (!slot)
1337 slot = 1;
1338 diff = slot * period_slot;
1339 } else {
1340 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1341
1342 /*
1343 * Scale scan rate increases based on sharing. There is an
1344 * inverse relationship between the degree of sharing and
1345 * the adjustment made to the scanning period. Broadly
1346 * speaking the intent is that there is little point
1347 * scanning faster if shared accesses dominate as it may
1348 * simply bounce migrations uselessly
1349 */
1350 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1351 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1352 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1353 }
1354
1355 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1356 task_scan_min(p), task_scan_max(p));
1357 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1358 }
1359
1360 static void task_numa_placement(struct task_struct *p)
1361 {
1362 int seq, nid, max_nid = -1, max_group_nid = -1;
1363 unsigned long max_faults = 0, max_group_faults = 0;
1364 unsigned long fault_types[2] = { 0, 0 };
1365 spinlock_t *group_lock = NULL;
1366
1367 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1368 if (p->numa_scan_seq == seq)
1369 return;
1370 p->numa_scan_seq = seq;
1371 p->numa_migrate_seq++;
1372 p->numa_scan_period_max = task_scan_max(p);
1373
1374 /* If the task is part of a group prevent parallel updates to group stats */
1375 if (p->numa_group) {
1376 group_lock = &p->numa_group->lock;
1377 spin_lock(group_lock);
1378 }
1379
1380 /* Find the node with the highest number of faults */
1381 for_each_online_node(nid) {
1382 unsigned long faults = 0, group_faults = 0;
1383 int priv, i;
1384
1385 for (priv = 0; priv < 2; priv++) {
1386 long diff;
1387
1388 i = task_faults_idx(nid, priv);
1389 diff = -p->numa_faults[i];
1390
1391 /* Decay existing window, copy faults since last scan */
1392 p->numa_faults[i] >>= 1;
1393 p->numa_faults[i] += p->numa_faults_buffer[i];
1394 fault_types[priv] += p->numa_faults_buffer[i];
1395 p->numa_faults_buffer[i] = 0;
1396
1397 faults += p->numa_faults[i];
1398 diff += p->numa_faults[i];
1399 p->total_numa_faults += diff;
1400 if (p->numa_group) {
1401 /* safe because we can only change our own group */
1402 atomic_long_add(diff, &p->numa_group->faults[i]);
1403 atomic_long_add(diff, &p->numa_group->total_faults);
1404 group_faults += atomic_long_read(&p->numa_group->faults[i]);
1405 }
1406 }
1407
1408 if (faults > max_faults) {
1409 max_faults = faults;
1410 max_nid = nid;
1411 }
1412
1413 if (group_faults > max_group_faults) {
1414 max_group_faults = group_faults;
1415 max_group_nid = nid;
1416 }
1417 }
1418
1419 update_task_scan_period(p, fault_types[0], fault_types[1]);
1420
1421 if (p->numa_group) {
1422 /*
1423 * If the preferred task and group nids are different,
1424 * iterate over the nodes again to find the best place.
1425 */
1426 if (max_nid != max_group_nid) {
1427 unsigned long weight, max_weight = 0;
1428
1429 for_each_online_node(nid) {
1430 weight = task_weight(p, nid) + group_weight(p, nid);
1431 if (weight > max_weight) {
1432 max_weight = weight;
1433 max_nid = nid;
1434 }
1435 }
1436 }
1437
1438 spin_unlock(group_lock);
1439 }
1440
1441 /* Preferred node as the node with the most faults */
1442 if (max_faults && max_nid != p->numa_preferred_nid) {
1443 /* Update the preferred nid and migrate task if possible */
1444 sched_setnuma(p, max_nid);
1445 numa_migrate_preferred(p);
1446 }
1447 }
1448
1449 static inline int get_numa_group(struct numa_group *grp)
1450 {
1451 return atomic_inc_not_zero(&grp->refcount);
1452 }
1453
1454 static inline void put_numa_group(struct numa_group *grp)
1455 {
1456 if (atomic_dec_and_test(&grp->refcount))
1457 kfree_rcu(grp, rcu);
1458 }
1459
1460 static void double_lock(spinlock_t *l1, spinlock_t *l2)
1461 {
1462 if (l1 > l2)
1463 swap(l1, l2);
1464
1465 spin_lock(l1);
1466 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1467 }
1468
1469 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1470 int *priv)
1471 {
1472 struct numa_group *grp, *my_grp;
1473 struct task_struct *tsk;
1474 bool join = false;
1475 int cpu = cpupid_to_cpu(cpupid);
1476 int i;
1477
1478 if (unlikely(!p->numa_group)) {
1479 unsigned int size = sizeof(struct numa_group) +
1480 2*nr_node_ids*sizeof(atomic_long_t);
1481
1482 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1483 if (!grp)
1484 return;
1485
1486 atomic_set(&grp->refcount, 1);
1487 spin_lock_init(&grp->lock);
1488 INIT_LIST_HEAD(&grp->task_list);
1489 grp->gid = p->pid;
1490
1491 for (i = 0; i < 2*nr_node_ids; i++)
1492 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1493
1494 atomic_long_set(&grp->total_faults, p->total_numa_faults);
1495
1496 list_add(&p->numa_entry, &grp->task_list);
1497 grp->nr_tasks++;
1498 rcu_assign_pointer(p->numa_group, grp);
1499 }
1500
1501 rcu_read_lock();
1502 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1503
1504 if (!cpupid_match_pid(tsk, cpupid))
1505 goto unlock;
1506
1507 grp = rcu_dereference(tsk->numa_group);
1508 if (!grp)
1509 goto unlock;
1510
1511 my_grp = p->numa_group;
1512 if (grp == my_grp)
1513 goto unlock;
1514
1515 /*
1516 * Only join the other group if its bigger; if we're the bigger group,
1517 * the other task will join us.
1518 */
1519 if (my_grp->nr_tasks > grp->nr_tasks)
1520 goto unlock;
1521
1522 /*
1523 * Tie-break on the grp address.
1524 */
1525 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1526 goto unlock;
1527
1528 /* Always join threads in the same process. */
1529 if (tsk->mm == current->mm)
1530 join = true;
1531
1532 /* Simple filter to avoid false positives due to PID collisions */
1533 if (flags & TNF_SHARED)
1534 join = true;
1535
1536 /* Update priv based on whether false sharing was detected */
1537 *priv = !join;
1538
1539 if (join && !get_numa_group(grp))
1540 join = false;
1541
1542 unlock:
1543 rcu_read_unlock();
1544
1545 if (!join)
1546 return;
1547
1548 for (i = 0; i < 2*nr_node_ids; i++) {
1549 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1550 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1551 }
1552 atomic_long_sub(p->total_numa_faults, &my_grp->total_faults);
1553 atomic_long_add(p->total_numa_faults, &grp->total_faults);
1554
1555 double_lock(&my_grp->lock, &grp->lock);
1556
1557 list_move(&p->numa_entry, &grp->task_list);
1558 my_grp->nr_tasks--;
1559 grp->nr_tasks++;
1560
1561 spin_unlock(&my_grp->lock);
1562 spin_unlock(&grp->lock);
1563
1564 rcu_assign_pointer(p->numa_group, grp);
1565
1566 put_numa_group(my_grp);
1567 }
1568
1569 void task_numa_free(struct task_struct *p)
1570 {
1571 struct numa_group *grp = p->numa_group;
1572 int i;
1573 void *numa_faults = p->numa_faults;
1574
1575 if (grp) {
1576 for (i = 0; i < 2*nr_node_ids; i++)
1577 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1578
1579 atomic_long_sub(p->total_numa_faults, &grp->total_faults);
1580
1581 spin_lock(&grp->lock);
1582 list_del(&p->numa_entry);
1583 grp->nr_tasks--;
1584 spin_unlock(&grp->lock);
1585 rcu_assign_pointer(p->numa_group, NULL);
1586 put_numa_group(grp);
1587 }
1588
1589 p->numa_faults = NULL;
1590 p->numa_faults_buffer = NULL;
1591 kfree(numa_faults);
1592 }
1593
1594 /*
1595 * Got a PROT_NONE fault for a page on @node.
1596 */
1597 void task_numa_fault(int last_cpupid, int node, int pages, int flags)
1598 {
1599 struct task_struct *p = current;
1600 bool migrated = flags & TNF_MIGRATED;
1601 int priv;
1602
1603 if (!numabalancing_enabled)
1604 return;
1605
1606 /* for example, ksmd faulting in a user's mm */
1607 if (!p->mm)
1608 return;
1609
1610 /* Do not worry about placement if exiting */
1611 if (p->state == TASK_DEAD)
1612 return;
1613
1614 /* Allocate buffer to track faults on a per-node basis */
1615 if (unlikely(!p->numa_faults)) {
1616 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
1617
1618 /* numa_faults and numa_faults_buffer share the allocation */
1619 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
1620 if (!p->numa_faults)
1621 return;
1622
1623 BUG_ON(p->numa_faults_buffer);
1624 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
1625 p->total_numa_faults = 0;
1626 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1627 }
1628
1629 /*
1630 * First accesses are treated as private, otherwise consider accesses
1631 * to be private if the accessing pid has not changed
1632 */
1633 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1634 priv = 1;
1635 } else {
1636 priv = cpupid_match_pid(p, last_cpupid);
1637 if (!priv && !(flags & TNF_NO_GROUP))
1638 task_numa_group(p, last_cpupid, flags, &priv);
1639 }
1640
1641 task_numa_placement(p);
1642
1643 /* Retry task to preferred node migration if it previously failed */
1644 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1645 numa_migrate_preferred(p);
1646
1647 if (migrated)
1648 p->numa_pages_migrated += pages;
1649
1650 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
1651 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
1652 }
1653
1654 static void reset_ptenuma_scan(struct task_struct *p)
1655 {
1656 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1657 p->mm->numa_scan_offset = 0;
1658 }
1659
1660 /*
1661 * The expensive part of numa migration is done from task_work context.
1662 * Triggered from task_tick_numa().
1663 */
1664 void task_numa_work(struct callback_head *work)
1665 {
1666 unsigned long migrate, next_scan, now = jiffies;
1667 struct task_struct *p = current;
1668 struct mm_struct *mm = p->mm;
1669 struct vm_area_struct *vma;
1670 unsigned long start, end;
1671 unsigned long nr_pte_updates = 0;
1672 long pages;
1673
1674 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1675
1676 work->next = work; /* protect against double add */
1677 /*
1678 * Who cares about NUMA placement when they're dying.
1679 *
1680 * NOTE: make sure not to dereference p->mm before this check,
1681 * exit_task_work() happens _after_ exit_mm() so we could be called
1682 * without p->mm even though we still had it when we enqueued this
1683 * work.
1684 */
1685 if (p->flags & PF_EXITING)
1686 return;
1687
1688 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1689 mm->numa_next_scan = now +
1690 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1691 mm->numa_next_reset = now +
1692 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1693 }
1694
1695 /*
1696 * Reset the scan period if enough time has gone by. Objective is that
1697 * scanning will be reduced if pages are properly placed. As tasks
1698 * can enter different phases this needs to be re-examined. Lacking
1699 * proper tracking of reference behaviour, this blunt hammer is used.
1700 */
1701 migrate = mm->numa_next_reset;
1702 if (time_after(now, migrate)) {
1703 p->numa_scan_period = task_scan_min(p);
1704 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1705 xchg(&mm->numa_next_reset, next_scan);
1706 }
1707
1708 /*
1709 * Enforce maximal scan/migration frequency..
1710 */
1711 migrate = mm->numa_next_scan;
1712 if (time_before(now, migrate))
1713 return;
1714
1715 if (p->numa_scan_period == 0) {
1716 p->numa_scan_period_max = task_scan_max(p);
1717 p->numa_scan_period = task_scan_min(p);
1718 }
1719
1720 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1721 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1722 return;
1723
1724 /*
1725 * Delay this task enough that another task of this mm will likely win
1726 * the next time around.
1727 */
1728 p->node_stamp += 2 * TICK_NSEC;
1729
1730 start = mm->numa_scan_offset;
1731 pages = sysctl_numa_balancing_scan_size;
1732 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1733 if (!pages)
1734 return;
1735
1736 down_read(&mm->mmap_sem);
1737 vma = find_vma(mm, start);
1738 if (!vma) {
1739 reset_ptenuma_scan(p);
1740 start = 0;
1741 vma = mm->mmap;
1742 }
1743 for (; vma; vma = vma->vm_next) {
1744 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1745 continue;
1746
1747 /*
1748 * Shared library pages mapped by multiple processes are not
1749 * migrated as it is expected they are cache replicated. Avoid
1750 * hinting faults in read-only file-backed mappings or the vdso
1751 * as migrating the pages will be of marginal benefit.
1752 */
1753 if (!vma->vm_mm ||
1754 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1755 continue;
1756
1757 do {
1758 start = max(start, vma->vm_start);
1759 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1760 end = min(end, vma->vm_end);
1761 nr_pte_updates += change_prot_numa(vma, start, end);
1762
1763 /*
1764 * Scan sysctl_numa_balancing_scan_size but ensure that
1765 * at least one PTE is updated so that unused virtual
1766 * address space is quickly skipped.
1767 */
1768 if (nr_pte_updates)
1769 pages -= (end - start) >> PAGE_SHIFT;
1770
1771 start = end;
1772 if (pages <= 0)
1773 goto out;
1774 } while (end != vma->vm_end);
1775 }
1776
1777 out:
1778 /*
1779 * It is possible to reach the end of the VMA list but the last few
1780 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1781 * would find the !migratable VMA on the next scan but not reset the
1782 * scanner to the start so check it now.
1783 */
1784 if (vma)
1785 mm->numa_scan_offset = start;
1786 else
1787 reset_ptenuma_scan(p);
1788 up_read(&mm->mmap_sem);
1789 }
1790
1791 /*
1792 * Drive the periodic memory faults..
1793 */
1794 void task_tick_numa(struct rq *rq, struct task_struct *curr)
1795 {
1796 struct callback_head *work = &curr->numa_work;
1797 u64 period, now;
1798
1799 /*
1800 * We don't care about NUMA placement if we don't have memory.
1801 */
1802 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1803 return;
1804
1805 /*
1806 * Using runtime rather than walltime has the dual advantage that
1807 * we (mostly) drive the selection from busy threads and that the
1808 * task needs to have done some actual work before we bother with
1809 * NUMA placement.
1810 */
1811 now = curr->se.sum_exec_runtime;
1812 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1813
1814 if (now - curr->node_stamp > period) {
1815 if (!curr->node_stamp)
1816 curr->numa_scan_period = task_scan_min(curr);
1817 curr->node_stamp += period;
1818
1819 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1820 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1821 task_work_add(curr, work, true);
1822 }
1823 }
1824 }
1825 #else
1826 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1827 {
1828 }
1829
1830 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1831 {
1832 }
1833
1834 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1835 {
1836 }
1837 #endif /* CONFIG_NUMA_BALANCING */
1838
1839 static void
1840 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1841 {
1842 update_load_add(&cfs_rq->load, se->load.weight);
1843 if (!parent_entity(se))
1844 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
1845 #ifdef CONFIG_SMP
1846 if (entity_is_task(se)) {
1847 struct rq *rq = rq_of(cfs_rq);
1848
1849 account_numa_enqueue(rq, task_of(se));
1850 list_add(&se->group_node, &rq->cfs_tasks);
1851 }
1852 #endif
1853 cfs_rq->nr_running++;
1854 }
1855
1856 static void
1857 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1858 {
1859 update_load_sub(&cfs_rq->load, se->load.weight);
1860 if (!parent_entity(se))
1861 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
1862 if (entity_is_task(se)) {
1863 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
1864 list_del_init(&se->group_node);
1865 }
1866 cfs_rq->nr_running--;
1867 }
1868
1869 #ifdef CONFIG_FAIR_GROUP_SCHED
1870 # ifdef CONFIG_SMP
1871 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1872 {
1873 long tg_weight;
1874
1875 /*
1876 * Use this CPU's actual weight instead of the last load_contribution
1877 * to gain a more accurate current total weight. See
1878 * update_cfs_rq_load_contribution().
1879 */
1880 tg_weight = atomic_long_read(&tg->load_avg);
1881 tg_weight -= cfs_rq->tg_load_contrib;
1882 tg_weight += cfs_rq->load.weight;
1883
1884 return tg_weight;
1885 }
1886
1887 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1888 {
1889 long tg_weight, load, shares;
1890
1891 tg_weight = calc_tg_weight(tg, cfs_rq);
1892 load = cfs_rq->load.weight;
1893
1894 shares = (tg->shares * load);
1895 if (tg_weight)
1896 shares /= tg_weight;
1897
1898 if (shares < MIN_SHARES)
1899 shares = MIN_SHARES;
1900 if (shares > tg->shares)
1901 shares = tg->shares;
1902
1903 return shares;
1904 }
1905 # else /* CONFIG_SMP */
1906 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
1907 {
1908 return tg->shares;
1909 }
1910 # endif /* CONFIG_SMP */
1911 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1912 unsigned long weight)
1913 {
1914 if (se->on_rq) {
1915 /* commit outstanding execution time */
1916 if (cfs_rq->curr == se)
1917 update_curr(cfs_rq);
1918 account_entity_dequeue(cfs_rq, se);
1919 }
1920
1921 update_load_set(&se->load, weight);
1922
1923 if (se->on_rq)
1924 account_entity_enqueue(cfs_rq, se);
1925 }
1926
1927 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1928
1929 static void update_cfs_shares(struct cfs_rq *cfs_rq)
1930 {
1931 struct task_group *tg;
1932 struct sched_entity *se;
1933 long shares;
1934
1935 tg = cfs_rq->tg;
1936 se = tg->se[cpu_of(rq_of(cfs_rq))];
1937 if (!se || throttled_hierarchy(cfs_rq))
1938 return;
1939 #ifndef CONFIG_SMP
1940 if (likely(se->load.weight == tg->shares))
1941 return;
1942 #endif
1943 shares = calc_cfs_shares(cfs_rq, tg);
1944
1945 reweight_entity(cfs_rq_of(se), se, shares);
1946 }
1947 #else /* CONFIG_FAIR_GROUP_SCHED */
1948 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
1949 {
1950 }
1951 #endif /* CONFIG_FAIR_GROUP_SCHED */
1952
1953 #ifdef CONFIG_SMP
1954 /*
1955 * We choose a half-life close to 1 scheduling period.
1956 * Note: The tables below are dependent on this value.
1957 */
1958 #define LOAD_AVG_PERIOD 32
1959 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1960 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1961
1962 /* Precomputed fixed inverse multiplies for multiplication by y^n */
1963 static const u32 runnable_avg_yN_inv[] = {
1964 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1965 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1966 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1967 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1968 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1969 0x85aac367, 0x82cd8698,
1970 };
1971
1972 /*
1973 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1974 * over-estimates when re-combining.
1975 */
1976 static const u32 runnable_avg_yN_sum[] = {
1977 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1978 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1979 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1980 };
1981
1982 /*
1983 * Approximate:
1984 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1985 */
1986 static __always_inline u64 decay_load(u64 val, u64 n)
1987 {
1988 unsigned int local_n;
1989
1990 if (!n)
1991 return val;
1992 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1993 return 0;
1994
1995 /* after bounds checking we can collapse to 32-bit */
1996 local_n = n;
1997
1998 /*
1999 * As y^PERIOD = 1/2, we can combine
2000 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2001 * With a look-up table which covers k^n (n<PERIOD)
2002 *
2003 * To achieve constant time decay_load.
2004 */
2005 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2006 val >>= local_n / LOAD_AVG_PERIOD;
2007 local_n %= LOAD_AVG_PERIOD;
2008 }
2009
2010 val *= runnable_avg_yN_inv[local_n];
2011 /* We don't use SRR here since we always want to round down. */
2012 return val >> 32;
2013 }
2014
2015 /*
2016 * For updates fully spanning n periods, the contribution to runnable
2017 * average will be: \Sum 1024*y^n
2018 *
2019 * We can compute this reasonably efficiently by combining:
2020 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2021 */
2022 static u32 __compute_runnable_contrib(u64 n)
2023 {
2024 u32 contrib = 0;
2025
2026 if (likely(n <= LOAD_AVG_PERIOD))
2027 return runnable_avg_yN_sum[n];
2028 else if (unlikely(n >= LOAD_AVG_MAX_N))
2029 return LOAD_AVG_MAX;
2030
2031 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2032 do {
2033 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2034 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2035
2036 n -= LOAD_AVG_PERIOD;
2037 } while (n > LOAD_AVG_PERIOD);
2038
2039 contrib = decay_load(contrib, n);
2040 return contrib + runnable_avg_yN_sum[n];
2041 }
2042
2043 /*
2044 * We can represent the historical contribution to runnable average as the
2045 * coefficients of a geometric series. To do this we sub-divide our runnable
2046 * history into segments of approximately 1ms (1024us); label the segment that
2047 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2048 *
2049 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2050 * p0 p1 p2
2051 * (now) (~1ms ago) (~2ms ago)
2052 *
2053 * Let u_i denote the fraction of p_i that the entity was runnable.
2054 *
2055 * We then designate the fractions u_i as our co-efficients, yielding the
2056 * following representation of historical load:
2057 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2058 *
2059 * We choose y based on the with of a reasonably scheduling period, fixing:
2060 * y^32 = 0.5
2061 *
2062 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2063 * approximately half as much as the contribution to load within the last ms
2064 * (u_0).
2065 *
2066 * When a period "rolls over" and we have new u_0`, multiplying the previous
2067 * sum again by y is sufficient to update:
2068 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2069 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2070 */
2071 static __always_inline int __update_entity_runnable_avg(u64 now,
2072 struct sched_avg *sa,
2073 int runnable)
2074 {
2075 u64 delta, periods;
2076 u32 runnable_contrib;
2077 int delta_w, decayed = 0;
2078
2079 delta = now - sa->last_runnable_update;
2080 /*
2081 * This should only happen when time goes backwards, which it
2082 * unfortunately does during sched clock init when we swap over to TSC.
2083 */
2084 if ((s64)delta < 0) {
2085 sa->last_runnable_update = now;
2086 return 0;
2087 }
2088
2089 /*
2090 * Use 1024ns as the unit of measurement since it's a reasonable
2091 * approximation of 1us and fast to compute.
2092 */
2093 delta >>= 10;
2094 if (!delta)
2095 return 0;
2096 sa->last_runnable_update = now;
2097
2098 /* delta_w is the amount already accumulated against our next period */
2099 delta_w = sa->runnable_avg_period % 1024;
2100 if (delta + delta_w >= 1024) {
2101 /* period roll-over */
2102 decayed = 1;
2103
2104 /*
2105 * Now that we know we're crossing a period boundary, figure
2106 * out how much from delta we need to complete the current
2107 * period and accrue it.
2108 */
2109 delta_w = 1024 - delta_w;
2110 if (runnable)
2111 sa->runnable_avg_sum += delta_w;
2112 sa->runnable_avg_period += delta_w;
2113
2114 delta -= delta_w;
2115
2116 /* Figure out how many additional periods this update spans */
2117 periods = delta / 1024;
2118 delta %= 1024;
2119
2120 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2121 periods + 1);
2122 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2123 periods + 1);
2124
2125 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2126 runnable_contrib = __compute_runnable_contrib(periods);
2127 if (runnable)
2128 sa->runnable_avg_sum += runnable_contrib;
2129 sa->runnable_avg_period += runnable_contrib;
2130 }
2131
2132 /* Remainder of delta accrued against u_0` */
2133 if (runnable)
2134 sa->runnable_avg_sum += delta;
2135 sa->runnable_avg_period += delta;
2136
2137 return decayed;
2138 }
2139
2140 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2141 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2142 {
2143 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2144 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2145
2146 decays -= se->avg.decay_count;
2147 if (!decays)
2148 return 0;
2149
2150 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2151 se->avg.decay_count = 0;
2152
2153 return decays;
2154 }
2155
2156 #ifdef CONFIG_FAIR_GROUP_SCHED
2157 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2158 int force_update)
2159 {
2160 struct task_group *tg = cfs_rq->tg;
2161 long tg_contrib;
2162
2163 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2164 tg_contrib -= cfs_rq->tg_load_contrib;
2165
2166 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2167 atomic_long_add(tg_contrib, &tg->load_avg);
2168 cfs_rq->tg_load_contrib += tg_contrib;
2169 }
2170 }
2171
2172 /*
2173 * Aggregate cfs_rq runnable averages into an equivalent task_group
2174 * representation for computing load contributions.
2175 */
2176 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2177 struct cfs_rq *cfs_rq)
2178 {
2179 struct task_group *tg = cfs_rq->tg;
2180 long contrib;
2181
2182 /* The fraction of a cpu used by this cfs_rq */
2183 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2184 sa->runnable_avg_period + 1);
2185 contrib -= cfs_rq->tg_runnable_contrib;
2186
2187 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2188 atomic_add(contrib, &tg->runnable_avg);
2189 cfs_rq->tg_runnable_contrib += contrib;
2190 }
2191 }
2192
2193 static inline void __update_group_entity_contrib(struct sched_entity *se)
2194 {
2195 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2196 struct task_group *tg = cfs_rq->tg;
2197 int runnable_avg;
2198
2199 u64 contrib;
2200
2201 contrib = cfs_rq->tg_load_contrib * tg->shares;
2202 se->avg.load_avg_contrib = div_u64(contrib,
2203 atomic_long_read(&tg->load_avg) + 1);
2204
2205 /*
2206 * For group entities we need to compute a correction term in the case
2207 * that they are consuming <1 cpu so that we would contribute the same
2208 * load as a task of equal weight.
2209 *
2210 * Explicitly co-ordinating this measurement would be expensive, but
2211 * fortunately the sum of each cpus contribution forms a usable
2212 * lower-bound on the true value.
2213 *
2214 * Consider the aggregate of 2 contributions. Either they are disjoint
2215 * (and the sum represents true value) or they are disjoint and we are
2216 * understating by the aggregate of their overlap.
2217 *
2218 * Extending this to N cpus, for a given overlap, the maximum amount we
2219 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2220 * cpus that overlap for this interval and w_i is the interval width.
2221 *
2222 * On a small machine; the first term is well-bounded which bounds the
2223 * total error since w_i is a subset of the period. Whereas on a
2224 * larger machine, while this first term can be larger, if w_i is the
2225 * of consequential size guaranteed to see n_i*w_i quickly converge to
2226 * our upper bound of 1-cpu.
2227 */
2228 runnable_avg = atomic_read(&tg->runnable_avg);
2229 if (runnable_avg < NICE_0_LOAD) {
2230 se->avg.load_avg_contrib *= runnable_avg;
2231 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2232 }
2233 }
2234 #else
2235 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2236 int force_update) {}
2237 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2238 struct cfs_rq *cfs_rq) {}
2239 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2240 #endif
2241
2242 static inline void __update_task_entity_contrib(struct sched_entity *se)
2243 {
2244 u32 contrib;
2245
2246 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2247 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2248 contrib /= (se->avg.runnable_avg_period + 1);
2249 se->avg.load_avg_contrib = scale_load(contrib);
2250 }
2251
2252 /* Compute the current contribution to load_avg by se, return any delta */
2253 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2254 {
2255 long old_contrib = se->avg.load_avg_contrib;
2256
2257 if (entity_is_task(se)) {
2258 __update_task_entity_contrib(se);
2259 } else {
2260 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2261 __update_group_entity_contrib(se);
2262 }
2263
2264 return se->avg.load_avg_contrib - old_contrib;
2265 }
2266
2267 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2268 long load_contrib)
2269 {
2270 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2271 cfs_rq->blocked_load_avg -= load_contrib;
2272 else
2273 cfs_rq->blocked_load_avg = 0;
2274 }
2275
2276 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2277
2278 /* Update a sched_entity's runnable average */
2279 static inline void update_entity_load_avg(struct sched_entity *se,
2280 int update_cfs_rq)
2281 {
2282 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2283 long contrib_delta;
2284 u64 now;
2285
2286 /*
2287 * For a group entity we need to use their owned cfs_rq_clock_task() in
2288 * case they are the parent of a throttled hierarchy.
2289 */
2290 if (entity_is_task(se))
2291 now = cfs_rq_clock_task(cfs_rq);
2292 else
2293 now = cfs_rq_clock_task(group_cfs_rq(se));
2294
2295 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2296 return;
2297
2298 contrib_delta = __update_entity_load_avg_contrib(se);
2299
2300 if (!update_cfs_rq)
2301 return;
2302
2303 if (se->on_rq)
2304 cfs_rq->runnable_load_avg += contrib_delta;
2305 else
2306 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2307 }
2308
2309 /*
2310 * Decay the load contributed by all blocked children and account this so that
2311 * their contribution may appropriately discounted when they wake up.
2312 */
2313 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2314 {
2315 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2316 u64 decays;
2317
2318 decays = now - cfs_rq->last_decay;
2319 if (!decays && !force_update)
2320 return;
2321
2322 if (atomic_long_read(&cfs_rq->removed_load)) {
2323 unsigned long removed_load;
2324 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2325 subtract_blocked_load_contrib(cfs_rq, removed_load);
2326 }
2327
2328 if (decays) {
2329 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2330 decays);
2331 atomic64_add(decays, &cfs_rq->decay_counter);
2332 cfs_rq->last_decay = now;
2333 }
2334
2335 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2336 }
2337
2338 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2339 {
2340 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2341 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2342 }
2343
2344 /* Add the load generated by se into cfs_rq's child load-average */
2345 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2346 struct sched_entity *se,
2347 int wakeup)
2348 {
2349 /*
2350 * We track migrations using entity decay_count <= 0, on a wake-up
2351 * migration we use a negative decay count to track the remote decays
2352 * accumulated while sleeping.
2353 *
2354 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2355 * are seen by enqueue_entity_load_avg() as a migration with an already
2356 * constructed load_avg_contrib.
2357 */
2358 if (unlikely(se->avg.decay_count <= 0)) {
2359 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2360 if (se->avg.decay_count) {
2361 /*
2362 * In a wake-up migration we have to approximate the
2363 * time sleeping. This is because we can't synchronize
2364 * clock_task between the two cpus, and it is not
2365 * guaranteed to be read-safe. Instead, we can
2366 * approximate this using our carried decays, which are
2367 * explicitly atomically readable.
2368 */
2369 se->avg.last_runnable_update -= (-se->avg.decay_count)
2370 << 20;
2371 update_entity_load_avg(se, 0);
2372 /* Indicate that we're now synchronized and on-rq */
2373 se->avg.decay_count = 0;
2374 }
2375 wakeup = 0;
2376 } else {
2377 /*
2378 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2379 * would have made count negative); we must be careful to avoid
2380 * double-accounting blocked time after synchronizing decays.
2381 */
2382 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2383 << 20;
2384 }
2385
2386 /* migrated tasks did not contribute to our blocked load */
2387 if (wakeup) {
2388 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2389 update_entity_load_avg(se, 0);
2390 }
2391
2392 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2393 /* we force update consideration on load-balancer moves */
2394 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2395 }
2396
2397 /*
2398 * Remove se's load from this cfs_rq child load-average, if the entity is
2399 * transitioning to a blocked state we track its projected decay using
2400 * blocked_load_avg.
2401 */
2402 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2403 struct sched_entity *se,
2404 int sleep)
2405 {
2406 update_entity_load_avg(se, 1);
2407 /* we force update consideration on load-balancer moves */
2408 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2409
2410 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2411 if (sleep) {
2412 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2413 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2414 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2415 }
2416
2417 /*
2418 * Update the rq's load with the elapsed running time before entering
2419 * idle. if the last scheduled task is not a CFS task, idle_enter will
2420 * be the only way to update the runnable statistic.
2421 */
2422 void idle_enter_fair(struct rq *this_rq)
2423 {
2424 update_rq_runnable_avg(this_rq, 1);
2425 }
2426
2427 /*
2428 * Update the rq's load with the elapsed idle time before a task is
2429 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2430 * be the only way to update the runnable statistic.
2431 */
2432 void idle_exit_fair(struct rq *this_rq)
2433 {
2434 update_rq_runnable_avg(this_rq, 0);
2435 }
2436
2437 #else
2438 static inline void update_entity_load_avg(struct sched_entity *se,
2439 int update_cfs_rq) {}
2440 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2441 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2442 struct sched_entity *se,
2443 int wakeup) {}
2444 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2445 struct sched_entity *se,
2446 int sleep) {}
2447 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2448 int force_update) {}
2449 #endif
2450
2451 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2452 {
2453 #ifdef CONFIG_SCHEDSTATS
2454 struct task_struct *tsk = NULL;
2455
2456 if (entity_is_task(se))
2457 tsk = task_of(se);
2458
2459 if (se->statistics.sleep_start) {
2460 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2461
2462 if ((s64)delta < 0)
2463 delta = 0;
2464
2465 if (unlikely(delta > se->statistics.sleep_max))
2466 se->statistics.sleep_max = delta;
2467
2468 se->statistics.sleep_start = 0;
2469 se->statistics.sum_sleep_runtime += delta;
2470
2471 if (tsk) {
2472 account_scheduler_latency(tsk, delta >> 10, 1);
2473 trace_sched_stat_sleep(tsk, delta);
2474 }
2475 }
2476 if (se->statistics.block_start) {
2477 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2478
2479 if ((s64)delta < 0)
2480 delta = 0;
2481
2482 if (unlikely(delta > se->statistics.block_max))
2483 se->statistics.block_max = delta;
2484
2485 se->statistics.block_start = 0;
2486 se->statistics.sum_sleep_runtime += delta;
2487
2488 if (tsk) {
2489 if (tsk->in_iowait) {
2490 se->statistics.iowait_sum += delta;
2491 se->statistics.iowait_count++;
2492 trace_sched_stat_iowait(tsk, delta);
2493 }
2494
2495 trace_sched_stat_blocked(tsk, delta);
2496
2497 /*
2498 * Blocking time is in units of nanosecs, so shift by
2499 * 20 to get a milliseconds-range estimation of the
2500 * amount of time that the task spent sleeping:
2501 */
2502 if (unlikely(prof_on == SLEEP_PROFILING)) {
2503 profile_hits(SLEEP_PROFILING,
2504 (void *)get_wchan(tsk),
2505 delta >> 20);
2506 }
2507 account_scheduler_latency(tsk, delta >> 10, 0);
2508 }
2509 }
2510 #endif
2511 }
2512
2513 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2514 {
2515 #ifdef CONFIG_SCHED_DEBUG
2516 s64 d = se->vruntime - cfs_rq->min_vruntime;
2517
2518 if (d < 0)
2519 d = -d;
2520
2521 if (d > 3*sysctl_sched_latency)
2522 schedstat_inc(cfs_rq, nr_spread_over);
2523 #endif
2524 }
2525
2526 static void
2527 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2528 {
2529 u64 vruntime = cfs_rq->min_vruntime;
2530
2531 /*
2532 * The 'current' period is already promised to the current tasks,
2533 * however the extra weight of the new task will slow them down a
2534 * little, place the new task so that it fits in the slot that
2535 * stays open at the end.
2536 */
2537 if (initial && sched_feat(START_DEBIT))
2538 vruntime += sched_vslice(cfs_rq, se);
2539
2540 /* sleeps up to a single latency don't count. */
2541 if (!initial) {
2542 unsigned long thresh = sysctl_sched_latency;
2543
2544 /*
2545 * Halve their sleep time's effect, to allow
2546 * for a gentler effect of sleepers:
2547 */
2548 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2549 thresh >>= 1;
2550
2551 vruntime -= thresh;
2552 }
2553
2554 /* ensure we never gain time by being placed backwards. */
2555 se->vruntime = max_vruntime(se->vruntime, vruntime);
2556 }
2557
2558 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2559
2560 static void
2561 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2562 {
2563 /*
2564 * Update the normalized vruntime before updating min_vruntime
2565 * through calling update_curr().
2566 */
2567 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2568 se->vruntime += cfs_rq->min_vruntime;
2569
2570 /*
2571 * Update run-time statistics of the 'current'.
2572 */
2573 update_curr(cfs_rq);
2574 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2575 account_entity_enqueue(cfs_rq, se);
2576 update_cfs_shares(cfs_rq);
2577
2578 if (flags & ENQUEUE_WAKEUP) {
2579 place_entity(cfs_rq, se, 0);
2580 enqueue_sleeper(cfs_rq, se);
2581 }
2582
2583 update_stats_enqueue(cfs_rq, se);
2584 check_spread(cfs_rq, se);
2585 if (se != cfs_rq->curr)
2586 __enqueue_entity(cfs_rq, se);
2587 se->on_rq = 1;
2588
2589 if (cfs_rq->nr_running == 1) {
2590 list_add_leaf_cfs_rq(cfs_rq);
2591 check_enqueue_throttle(cfs_rq);
2592 }
2593 }
2594
2595 static void __clear_buddies_last(struct sched_entity *se)
2596 {
2597 for_each_sched_entity(se) {
2598 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2599 if (cfs_rq->last == se)
2600 cfs_rq->last = NULL;
2601 else
2602 break;
2603 }
2604 }
2605
2606 static void __clear_buddies_next(struct sched_entity *se)
2607 {
2608 for_each_sched_entity(se) {
2609 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2610 if (cfs_rq->next == se)
2611 cfs_rq->next = NULL;
2612 else
2613 break;
2614 }
2615 }
2616
2617 static void __clear_buddies_skip(struct sched_entity *se)
2618 {
2619 for_each_sched_entity(se) {
2620 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2621 if (cfs_rq->skip == se)
2622 cfs_rq->skip = NULL;
2623 else
2624 break;
2625 }
2626 }
2627
2628 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2629 {
2630 if (cfs_rq->last == se)
2631 __clear_buddies_last(se);
2632
2633 if (cfs_rq->next == se)
2634 __clear_buddies_next(se);
2635
2636 if (cfs_rq->skip == se)
2637 __clear_buddies_skip(se);
2638 }
2639
2640 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2641
2642 static void
2643 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2644 {
2645 /*
2646 * Update run-time statistics of the 'current'.
2647 */
2648 update_curr(cfs_rq);
2649 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2650
2651 update_stats_dequeue(cfs_rq, se);
2652 if (flags & DEQUEUE_SLEEP) {
2653 #ifdef CONFIG_SCHEDSTATS
2654 if (entity_is_task(se)) {
2655 struct task_struct *tsk = task_of(se);
2656
2657 if (tsk->state & TASK_INTERRUPTIBLE)
2658 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2659 if (tsk->state & TASK_UNINTERRUPTIBLE)
2660 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2661 }
2662 #endif
2663 }
2664
2665 clear_buddies(cfs_rq, se);
2666
2667 if (se != cfs_rq->curr)
2668 __dequeue_entity(cfs_rq, se);
2669 se->on_rq = 0;
2670 account_entity_dequeue(cfs_rq, se);
2671
2672 /*
2673 * Normalize the entity after updating the min_vruntime because the
2674 * update can refer to the ->curr item and we need to reflect this
2675 * movement in our normalized position.
2676 */
2677 if (!(flags & DEQUEUE_SLEEP))
2678 se->vruntime -= cfs_rq->min_vruntime;
2679
2680 /* return excess runtime on last dequeue */
2681 return_cfs_rq_runtime(cfs_rq);
2682
2683 update_min_vruntime(cfs_rq);
2684 update_cfs_shares(cfs_rq);
2685 }
2686
2687 /*
2688 * Preempt the current task with a newly woken task if needed:
2689 */
2690 static void
2691 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2692 {
2693 unsigned long ideal_runtime, delta_exec;
2694 struct sched_entity *se;
2695 s64 delta;
2696
2697 ideal_runtime = sched_slice(cfs_rq, curr);
2698 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2699 if (delta_exec > ideal_runtime) {
2700 resched_task(rq_of(cfs_rq)->curr);
2701 /*
2702 * The current task ran long enough, ensure it doesn't get
2703 * re-elected due to buddy favours.
2704 */
2705 clear_buddies(cfs_rq, curr);
2706 return;
2707 }
2708
2709 /*
2710 * Ensure that a task that missed wakeup preemption by a
2711 * narrow margin doesn't have to wait for a full slice.
2712 * This also mitigates buddy induced latencies under load.
2713 */
2714 if (delta_exec < sysctl_sched_min_granularity)
2715 return;
2716
2717 se = __pick_first_entity(cfs_rq);
2718 delta = curr->vruntime - se->vruntime;
2719
2720 if (delta < 0)
2721 return;
2722
2723 if (delta > ideal_runtime)
2724 resched_task(rq_of(cfs_rq)->curr);
2725 }
2726
2727 static void
2728 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2729 {
2730 /* 'current' is not kept within the tree. */
2731 if (se->on_rq) {
2732 /*
2733 * Any task has to be enqueued before it get to execute on
2734 * a CPU. So account for the time it spent waiting on the
2735 * runqueue.
2736 */
2737 update_stats_wait_end(cfs_rq, se);
2738 __dequeue_entity(cfs_rq, se);
2739 }
2740
2741 update_stats_curr_start(cfs_rq, se);
2742 cfs_rq->curr = se;
2743 #ifdef CONFIG_SCHEDSTATS
2744 /*
2745 * Track our maximum slice length, if the CPU's load is at
2746 * least twice that of our own weight (i.e. dont track it
2747 * when there are only lesser-weight tasks around):
2748 */
2749 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2750 se->statistics.slice_max = max(se->statistics.slice_max,
2751 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2752 }
2753 #endif
2754 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2755 }
2756
2757 static int
2758 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2759
2760 /*
2761 * Pick the next process, keeping these things in mind, in this order:
2762 * 1) keep things fair between processes/task groups
2763 * 2) pick the "next" process, since someone really wants that to run
2764 * 3) pick the "last" process, for cache locality
2765 * 4) do not run the "skip" process, if something else is available
2766 */
2767 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
2768 {
2769 struct sched_entity *se = __pick_first_entity(cfs_rq);
2770 struct sched_entity *left = se;
2771
2772 /*
2773 * Avoid running the skip buddy, if running something else can
2774 * be done without getting too unfair.
2775 */
2776 if (cfs_rq->skip == se) {
2777 struct sched_entity *second = __pick_next_entity(se);
2778 if (second && wakeup_preempt_entity(second, left) < 1)
2779 se = second;
2780 }
2781
2782 /*
2783 * Prefer last buddy, try to return the CPU to a preempted task.
2784 */
2785 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2786 se = cfs_rq->last;
2787
2788 /*
2789 * Someone really wants this to run. If it's not unfair, run it.
2790 */
2791 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2792 se = cfs_rq->next;
2793
2794 clear_buddies(cfs_rq, se);
2795
2796 return se;
2797 }
2798
2799 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2800
2801 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
2802 {
2803 /*
2804 * If still on the runqueue then deactivate_task()
2805 * was not called and update_curr() has to be done:
2806 */
2807 if (prev->on_rq)
2808 update_curr(cfs_rq);
2809
2810 /* throttle cfs_rqs exceeding runtime */
2811 check_cfs_rq_runtime(cfs_rq);
2812
2813 check_spread(cfs_rq, prev);
2814 if (prev->on_rq) {
2815 update_stats_wait_start(cfs_rq, prev);
2816 /* Put 'current' back into the tree. */
2817 __enqueue_entity(cfs_rq, prev);
2818 /* in !on_rq case, update occurred at dequeue */
2819 update_entity_load_avg(prev, 1);
2820 }
2821 cfs_rq->curr = NULL;
2822 }
2823
2824 static void
2825 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
2826 {
2827 /*
2828 * Update run-time statistics of the 'current'.
2829 */
2830 update_curr(cfs_rq);
2831
2832 /*
2833 * Ensure that runnable average is periodically updated.
2834 */
2835 update_entity_load_avg(curr, 1);
2836 update_cfs_rq_blocked_load(cfs_rq, 1);
2837 update_cfs_shares(cfs_rq);
2838
2839 #ifdef CONFIG_SCHED_HRTICK
2840 /*
2841 * queued ticks are scheduled to match the slice, so don't bother
2842 * validating it and just reschedule.
2843 */
2844 if (queued) {
2845 resched_task(rq_of(cfs_rq)->curr);
2846 return;
2847 }
2848 /*
2849 * don't let the period tick interfere with the hrtick preemption
2850 */
2851 if (!sched_feat(DOUBLE_TICK) &&
2852 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2853 return;
2854 #endif
2855
2856 if (cfs_rq->nr_running > 1)
2857 check_preempt_tick(cfs_rq, curr);
2858 }
2859
2860
2861 /**************************************************
2862 * CFS bandwidth control machinery
2863 */
2864
2865 #ifdef CONFIG_CFS_BANDWIDTH
2866
2867 #ifdef HAVE_JUMP_LABEL
2868 static struct static_key __cfs_bandwidth_used;
2869
2870 static inline bool cfs_bandwidth_used(void)
2871 {
2872 return static_key_false(&__cfs_bandwidth_used);
2873 }
2874
2875 void account_cfs_bandwidth_used(int enabled, int was_enabled)
2876 {
2877 /* only need to count groups transitioning between enabled/!enabled */
2878 if (enabled && !was_enabled)
2879 static_key_slow_inc(&__cfs_bandwidth_used);
2880 else if (!enabled && was_enabled)
2881 static_key_slow_dec(&__cfs_bandwidth_used);
2882 }
2883 #else /* HAVE_JUMP_LABEL */
2884 static bool cfs_bandwidth_used(void)
2885 {
2886 return true;
2887 }
2888
2889 void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2890 #endif /* HAVE_JUMP_LABEL */
2891
2892 /*
2893 * default period for cfs group bandwidth.
2894 * default: 0.1s, units: nanoseconds
2895 */
2896 static inline u64 default_cfs_period(void)
2897 {
2898 return 100000000ULL;
2899 }
2900
2901 static inline u64 sched_cfs_bandwidth_slice(void)
2902 {
2903 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2904 }
2905
2906 /*
2907 * Replenish runtime according to assigned quota and update expiration time.
2908 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2909 * additional synchronization around rq->lock.
2910 *
2911 * requires cfs_b->lock
2912 */
2913 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
2914 {
2915 u64 now;
2916
2917 if (cfs_b->quota == RUNTIME_INF)
2918 return;
2919
2920 now = sched_clock_cpu(smp_processor_id());
2921 cfs_b->runtime = cfs_b->quota;
2922 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2923 }
2924
2925 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2926 {
2927 return &tg->cfs_bandwidth;
2928 }
2929
2930 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2931 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2932 {
2933 if (unlikely(cfs_rq->throttle_count))
2934 return cfs_rq->throttled_clock_task;
2935
2936 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
2937 }
2938
2939 /* returns 0 on failure to allocate runtime */
2940 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2941 {
2942 struct task_group *tg = cfs_rq->tg;
2943 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
2944 u64 amount = 0, min_amount, expires;
2945
2946 /* note: this is a positive sum as runtime_remaining <= 0 */
2947 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2948
2949 raw_spin_lock(&cfs_b->lock);
2950 if (cfs_b->quota == RUNTIME_INF)
2951 amount = min_amount;
2952 else {
2953 /*
2954 * If the bandwidth pool has become inactive, then at least one
2955 * period must have elapsed since the last consumption.
2956 * Refresh the global state and ensure bandwidth timer becomes
2957 * active.
2958 */
2959 if (!cfs_b->timer_active) {
2960 __refill_cfs_bandwidth_runtime(cfs_b);
2961 __start_cfs_bandwidth(cfs_b);
2962 }
2963
2964 if (cfs_b->runtime > 0) {
2965 amount = min(cfs_b->runtime, min_amount);
2966 cfs_b->runtime -= amount;
2967 cfs_b->idle = 0;
2968 }
2969 }
2970 expires = cfs_b->runtime_expires;
2971 raw_spin_unlock(&cfs_b->lock);
2972
2973 cfs_rq->runtime_remaining += amount;
2974 /*
2975 * we may have advanced our local expiration to account for allowed
2976 * spread between our sched_clock and the one on which runtime was
2977 * issued.
2978 */
2979 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2980 cfs_rq->runtime_expires = expires;
2981
2982 return cfs_rq->runtime_remaining > 0;
2983 }
2984
2985 /*
2986 * Note: This depends on the synchronization provided by sched_clock and the
2987 * fact that rq->clock snapshots this value.
2988 */
2989 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2990 {
2991 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2992
2993 /* if the deadline is ahead of our clock, nothing to do */
2994 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
2995 return;
2996
2997 if (cfs_rq->runtime_remaining < 0)
2998 return;
2999
3000 /*
3001 * If the local deadline has passed we have to consider the
3002 * possibility that our sched_clock is 'fast' and the global deadline
3003 * has not truly expired.
3004 *
3005 * Fortunately we can check determine whether this the case by checking
3006 * whether the global deadline has advanced.
3007 */
3008
3009 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
3010 /* extend local deadline, drift is bounded above by 2 ticks */
3011 cfs_rq->runtime_expires += TICK_NSEC;
3012 } else {
3013 /* global deadline is ahead, expiration has passed */
3014 cfs_rq->runtime_remaining = 0;
3015 }
3016 }
3017
3018 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3019 unsigned long delta_exec)
3020 {
3021 /* dock delta_exec before expiring quota (as it could span periods) */
3022 cfs_rq->runtime_remaining -= delta_exec;
3023 expire_cfs_rq_runtime(cfs_rq);
3024
3025 if (likely(cfs_rq->runtime_remaining > 0))
3026 return;
3027
3028 /*
3029 * if we're unable to extend our runtime we resched so that the active
3030 * hierarchy can be throttled
3031 */
3032 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3033 resched_task(rq_of(cfs_rq)->curr);
3034 }
3035
3036 static __always_inline
3037 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
3038 {
3039 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3040 return;
3041
3042 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3043 }
3044
3045 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3046 {
3047 return cfs_bandwidth_used() && cfs_rq->throttled;
3048 }
3049
3050 /* check whether cfs_rq, or any parent, is throttled */
3051 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3052 {
3053 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3054 }
3055
3056 /*
3057 * Ensure that neither of the group entities corresponding to src_cpu or
3058 * dest_cpu are members of a throttled hierarchy when performing group
3059 * load-balance operations.
3060 */
3061 static inline int throttled_lb_pair(struct task_group *tg,
3062 int src_cpu, int dest_cpu)
3063 {
3064 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3065
3066 src_cfs_rq = tg->cfs_rq[src_cpu];
3067 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3068
3069 return throttled_hierarchy(src_cfs_rq) ||
3070 throttled_hierarchy(dest_cfs_rq);
3071 }
3072
3073 /* updated child weight may affect parent so we have to do this bottom up */
3074 static int tg_unthrottle_up(struct task_group *tg, void *data)
3075 {
3076 struct rq *rq = data;
3077 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3078
3079 cfs_rq->throttle_count--;
3080 #ifdef CONFIG_SMP
3081 if (!cfs_rq->throttle_count) {
3082 /* adjust cfs_rq_clock_task() */
3083 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3084 cfs_rq->throttled_clock_task;
3085 }
3086 #endif
3087
3088 return 0;
3089 }
3090
3091 static int tg_throttle_down(struct task_group *tg, void *data)
3092 {
3093 struct rq *rq = data;
3094 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3095
3096 /* group is entering throttled state, stop time */
3097 if (!cfs_rq->throttle_count)
3098 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3099 cfs_rq->throttle_count++;
3100
3101 return 0;
3102 }
3103
3104 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3105 {
3106 struct rq *rq = rq_of(cfs_rq);
3107 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3108 struct sched_entity *se;
3109 long task_delta, dequeue = 1;
3110
3111 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3112
3113 /* freeze hierarchy runnable averages while throttled */
3114 rcu_read_lock();
3115 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3116 rcu_read_unlock();
3117
3118 task_delta = cfs_rq->h_nr_running;
3119 for_each_sched_entity(se) {
3120 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3121 /* throttled entity or throttle-on-deactivate */
3122 if (!se->on_rq)
3123 break;
3124
3125 if (dequeue)
3126 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3127 qcfs_rq->h_nr_running -= task_delta;
3128
3129 if (qcfs_rq->load.weight)
3130 dequeue = 0;
3131 }
3132
3133 if (!se)
3134 rq->nr_running -= task_delta;
3135
3136 cfs_rq->throttled = 1;
3137 cfs_rq->throttled_clock = rq_clock(rq);
3138 raw_spin_lock(&cfs_b->lock);
3139 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3140 raw_spin_unlock(&cfs_b->lock);
3141 }
3142
3143 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3144 {
3145 struct rq *rq = rq_of(cfs_rq);
3146 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3147 struct sched_entity *se;
3148 int enqueue = 1;
3149 long task_delta;
3150
3151 se = cfs_rq->tg->se[cpu_of(rq)];
3152
3153 cfs_rq->throttled = 0;
3154
3155 update_rq_clock(rq);
3156
3157 raw_spin_lock(&cfs_b->lock);
3158 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3159 list_del_rcu(&cfs_rq->throttled_list);
3160 raw_spin_unlock(&cfs_b->lock);
3161
3162 /* update hierarchical throttle state */
3163 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3164
3165 if (!cfs_rq->load.weight)
3166 return;
3167
3168 task_delta = cfs_rq->h_nr_running;
3169 for_each_sched_entity(se) {
3170 if (se->on_rq)
3171 enqueue = 0;
3172
3173 cfs_rq = cfs_rq_of(se);
3174 if (enqueue)
3175 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3176 cfs_rq->h_nr_running += task_delta;
3177
3178 if (cfs_rq_throttled(cfs_rq))
3179 break;
3180 }
3181
3182 if (!se)
3183 rq->nr_running += task_delta;
3184
3185 /* determine whether we need to wake up potentially idle cpu */
3186 if (rq->curr == rq->idle && rq->cfs.nr_running)
3187 resched_task(rq->curr);
3188 }
3189
3190 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3191 u64 remaining, u64 expires)
3192 {
3193 struct cfs_rq *cfs_rq;
3194 u64 runtime = remaining;
3195
3196 rcu_read_lock();
3197 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3198 throttled_list) {
3199 struct rq *rq = rq_of(cfs_rq);
3200
3201 raw_spin_lock(&rq->lock);
3202 if (!cfs_rq_throttled(cfs_rq))
3203 goto next;
3204
3205 runtime = -cfs_rq->runtime_remaining + 1;
3206 if (runtime > remaining)
3207 runtime = remaining;
3208 remaining -= runtime;
3209
3210 cfs_rq->runtime_remaining += runtime;
3211 cfs_rq->runtime_expires = expires;
3212
3213 /* we check whether we're throttled above */
3214 if (cfs_rq->runtime_remaining > 0)
3215 unthrottle_cfs_rq(cfs_rq);
3216
3217 next:
3218 raw_spin_unlock(&rq->lock);
3219
3220 if (!remaining)
3221 break;
3222 }
3223 rcu_read_unlock();
3224
3225 return remaining;
3226 }
3227
3228 /*
3229 * Responsible for refilling a task_group's bandwidth and unthrottling its
3230 * cfs_rqs as appropriate. If there has been no activity within the last
3231 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3232 * used to track this state.
3233 */
3234 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3235 {
3236 u64 runtime, runtime_expires;
3237 int idle = 1, throttled;
3238
3239 raw_spin_lock(&cfs_b->lock);
3240 /* no need to continue the timer with no bandwidth constraint */
3241 if (cfs_b->quota == RUNTIME_INF)
3242 goto out_unlock;
3243
3244 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3245 /* idle depends on !throttled (for the case of a large deficit) */
3246 idle = cfs_b->idle && !throttled;
3247 cfs_b->nr_periods += overrun;
3248
3249 /* if we're going inactive then everything else can be deferred */
3250 if (idle)
3251 goto out_unlock;
3252
3253 __refill_cfs_bandwidth_runtime(cfs_b);
3254
3255 if (!throttled) {
3256 /* mark as potentially idle for the upcoming period */
3257 cfs_b->idle = 1;
3258 goto out_unlock;
3259 }
3260
3261 /* account preceding periods in which throttling occurred */
3262 cfs_b->nr_throttled += overrun;
3263
3264 /*
3265 * There are throttled entities so we must first use the new bandwidth
3266 * to unthrottle them before making it generally available. This
3267 * ensures that all existing debts will be paid before a new cfs_rq is
3268 * allowed to run.
3269 */
3270 runtime = cfs_b->runtime;
3271 runtime_expires = cfs_b->runtime_expires;
3272 cfs_b->runtime = 0;
3273
3274 /*
3275 * This check is repeated as we are holding onto the new bandwidth
3276 * while we unthrottle. This can potentially race with an unthrottled
3277 * group trying to acquire new bandwidth from the global pool.
3278 */
3279 while (throttled && runtime > 0) {
3280 raw_spin_unlock(&cfs_b->lock);
3281 /* we can't nest cfs_b->lock while distributing bandwidth */
3282 runtime = distribute_cfs_runtime(cfs_b, runtime,
3283 runtime_expires);
3284 raw_spin_lock(&cfs_b->lock);
3285
3286 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3287 }
3288
3289 /* return (any) remaining runtime */
3290 cfs_b->runtime = runtime;
3291 /*
3292 * While we are ensured activity in the period following an
3293 * unthrottle, this also covers the case in which the new bandwidth is
3294 * insufficient to cover the existing bandwidth deficit. (Forcing the
3295 * timer to remain active while there are any throttled entities.)
3296 */
3297 cfs_b->idle = 0;
3298 out_unlock:
3299 if (idle)
3300 cfs_b->timer_active = 0;
3301 raw_spin_unlock(&cfs_b->lock);
3302
3303 return idle;
3304 }
3305
3306 /* a cfs_rq won't donate quota below this amount */
3307 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3308 /* minimum remaining period time to redistribute slack quota */
3309 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3310 /* how long we wait to gather additional slack before distributing */
3311 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3312
3313 /* are we near the end of the current quota period? */
3314 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3315 {
3316 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3317 u64 remaining;
3318
3319 /* if the call-back is running a quota refresh is already occurring */
3320 if (hrtimer_callback_running(refresh_timer))
3321 return 1;
3322
3323 /* is a quota refresh about to occur? */
3324 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3325 if (remaining < min_expire)
3326 return 1;
3327
3328 return 0;
3329 }
3330
3331 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3332 {
3333 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3334
3335 /* if there's a quota refresh soon don't bother with slack */
3336 if (runtime_refresh_within(cfs_b, min_left))
3337 return;
3338
3339 start_bandwidth_timer(&cfs_b->slack_timer,
3340 ns_to_ktime(cfs_bandwidth_slack_period));
3341 }
3342
3343 /* we know any runtime found here is valid as update_curr() precedes return */
3344 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3345 {
3346 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3347 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3348
3349 if (slack_runtime <= 0)
3350 return;
3351
3352 raw_spin_lock(&cfs_b->lock);
3353 if (cfs_b->quota != RUNTIME_INF &&
3354 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3355 cfs_b->runtime += slack_runtime;
3356
3357 /* we are under rq->lock, defer unthrottling using a timer */
3358 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3359 !list_empty(&cfs_b->throttled_cfs_rq))
3360 start_cfs_slack_bandwidth(cfs_b);
3361 }
3362 raw_spin_unlock(&cfs_b->lock);
3363
3364 /* even if it's not valid for return we don't want to try again */
3365 cfs_rq->runtime_remaining -= slack_runtime;
3366 }
3367
3368 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3369 {
3370 if (!cfs_bandwidth_used())
3371 return;
3372
3373 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3374 return;
3375
3376 __return_cfs_rq_runtime(cfs_rq);
3377 }
3378
3379 /*
3380 * This is done with a timer (instead of inline with bandwidth return) since
3381 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3382 */
3383 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3384 {
3385 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3386 u64 expires;
3387
3388 /* confirm we're still not at a refresh boundary */
3389 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3390 return;
3391
3392 raw_spin_lock(&cfs_b->lock);
3393 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3394 runtime = cfs_b->runtime;
3395 cfs_b->runtime = 0;
3396 }
3397 expires = cfs_b->runtime_expires;
3398 raw_spin_unlock(&cfs_b->lock);
3399
3400 if (!runtime)
3401 return;
3402
3403 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3404
3405 raw_spin_lock(&cfs_b->lock);
3406 if (expires == cfs_b->runtime_expires)
3407 cfs_b->runtime = runtime;
3408 raw_spin_unlock(&cfs_b->lock);
3409 }
3410
3411 /*
3412 * When a group wakes up we want to make sure that its quota is not already
3413 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3414 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3415 */
3416 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3417 {
3418 if (!cfs_bandwidth_used())
3419 return;
3420
3421 /* an active group must be handled by the update_curr()->put() path */
3422 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3423 return;
3424
3425 /* ensure the group is not already throttled */
3426 if (cfs_rq_throttled(cfs_rq))
3427 return;
3428
3429 /* update runtime allocation */
3430 account_cfs_rq_runtime(cfs_rq, 0);
3431 if (cfs_rq->runtime_remaining <= 0)
3432 throttle_cfs_rq(cfs_rq);
3433 }
3434
3435 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3436 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3437 {
3438 if (!cfs_bandwidth_used())
3439 return;
3440
3441 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3442 return;
3443
3444 /*
3445 * it's possible for a throttled entity to be forced into a running
3446 * state (e.g. set_curr_task), in this case we're finished.
3447 */
3448 if (cfs_rq_throttled(cfs_rq))
3449 return;
3450
3451 throttle_cfs_rq(cfs_rq);
3452 }
3453
3454 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3455 {
3456 struct cfs_bandwidth *cfs_b =
3457 container_of(timer, struct cfs_bandwidth, slack_timer);
3458 do_sched_cfs_slack_timer(cfs_b);
3459
3460 return HRTIMER_NORESTART;
3461 }
3462
3463 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3464 {
3465 struct cfs_bandwidth *cfs_b =
3466 container_of(timer, struct cfs_bandwidth, period_timer);
3467 ktime_t now;
3468 int overrun;
3469 int idle = 0;
3470
3471 for (;;) {
3472 now = hrtimer_cb_get_time(timer);
3473 overrun = hrtimer_forward(timer, now, cfs_b->period);
3474
3475 if (!overrun)
3476 break;
3477
3478 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3479 }
3480
3481 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3482 }
3483
3484 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3485 {
3486 raw_spin_lock_init(&cfs_b->lock);
3487 cfs_b->runtime = 0;
3488 cfs_b->quota = RUNTIME_INF;
3489 cfs_b->period = ns_to_ktime(default_cfs_period());
3490
3491 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3492 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3493 cfs_b->period_timer.function = sched_cfs_period_timer;
3494 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3495 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3496 }
3497
3498 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3499 {
3500 cfs_rq->runtime_enabled = 0;
3501 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3502 }
3503
3504 /* requires cfs_b->lock, may release to reprogram timer */
3505 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3506 {
3507 /*
3508 * The timer may be active because we're trying to set a new bandwidth
3509 * period or because we're racing with the tear-down path
3510 * (timer_active==0 becomes visible before the hrtimer call-back
3511 * terminates). In either case we ensure that it's re-programmed
3512 */
3513 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3514 raw_spin_unlock(&cfs_b->lock);
3515 /* ensure cfs_b->lock is available while we wait */
3516 hrtimer_cancel(&cfs_b->period_timer);
3517
3518 raw_spin_lock(&cfs_b->lock);
3519 /* if someone else restarted the timer then we're done */
3520 if (cfs_b->timer_active)
3521 return;
3522 }
3523
3524 cfs_b->timer_active = 1;
3525 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3526 }
3527
3528 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3529 {
3530 hrtimer_cancel(&cfs_b->period_timer);
3531 hrtimer_cancel(&cfs_b->slack_timer);
3532 }
3533
3534 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3535 {
3536 struct cfs_rq *cfs_rq;
3537
3538 for_each_leaf_cfs_rq(rq, cfs_rq) {
3539 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3540
3541 if (!cfs_rq->runtime_enabled)
3542 continue;
3543
3544 /*
3545 * clock_task is not advancing so we just need to make sure
3546 * there's some valid quota amount
3547 */
3548 cfs_rq->runtime_remaining = cfs_b->quota;
3549 if (cfs_rq_throttled(cfs_rq))
3550 unthrottle_cfs_rq(cfs_rq);
3551 }
3552 }
3553
3554 #else /* CONFIG_CFS_BANDWIDTH */
3555 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3556 {
3557 return rq_clock_task(rq_of(cfs_rq));
3558 }
3559
3560 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3561 unsigned long delta_exec) {}
3562 static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3563 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3564 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3565
3566 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3567 {
3568 return 0;
3569 }
3570
3571 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3572 {
3573 return 0;
3574 }
3575
3576 static inline int throttled_lb_pair(struct task_group *tg,
3577 int src_cpu, int dest_cpu)
3578 {
3579 return 0;
3580 }
3581
3582 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3583
3584 #ifdef CONFIG_FAIR_GROUP_SCHED
3585 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3586 #endif
3587
3588 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3589 {
3590 return NULL;
3591 }
3592 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3593 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3594
3595 #endif /* CONFIG_CFS_BANDWIDTH */
3596
3597 /**************************************************
3598 * CFS operations on tasks:
3599 */
3600
3601 #ifdef CONFIG_SCHED_HRTICK
3602 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3603 {
3604 struct sched_entity *se = &p->se;
3605 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3606
3607 WARN_ON(task_rq(p) != rq);
3608
3609 if (cfs_rq->nr_running > 1) {
3610 u64 slice = sched_slice(cfs_rq, se);
3611 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3612 s64 delta = slice - ran;
3613
3614 if (delta < 0) {
3615 if (rq->curr == p)
3616 resched_task(p);
3617 return;
3618 }
3619
3620 /*
3621 * Don't schedule slices shorter than 10000ns, that just
3622 * doesn't make sense. Rely on vruntime for fairness.
3623 */
3624 if (rq->curr != p)
3625 delta = max_t(s64, 10000LL, delta);
3626
3627 hrtick_start(rq, delta);
3628 }
3629 }
3630
3631 /*
3632 * called from enqueue/dequeue and updates the hrtick when the
3633 * current task is from our class and nr_running is low enough
3634 * to matter.
3635 */
3636 static void hrtick_update(struct rq *rq)
3637 {
3638 struct task_struct *curr = rq->curr;
3639
3640 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3641 return;
3642
3643 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3644 hrtick_start_fair(rq, curr);
3645 }
3646 #else /* !CONFIG_SCHED_HRTICK */
3647 static inline void
3648 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3649 {
3650 }
3651
3652 static inline void hrtick_update(struct rq *rq)
3653 {
3654 }
3655 #endif
3656
3657 /*
3658 * The enqueue_task method is called before nr_running is
3659 * increased. Here we update the fair scheduling stats and
3660 * then put the task into the rbtree:
3661 */
3662 static void
3663 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3664 {
3665 struct cfs_rq *cfs_rq;
3666 struct sched_entity *se = &p->se;
3667
3668 for_each_sched_entity(se) {
3669 if (se->on_rq)
3670 break;
3671 cfs_rq = cfs_rq_of(se);
3672 enqueue_entity(cfs_rq, se, flags);
3673
3674 /*
3675 * end evaluation on encountering a throttled cfs_rq
3676 *
3677 * note: in the case of encountering a throttled cfs_rq we will
3678 * post the final h_nr_running increment below.
3679 */
3680 if (cfs_rq_throttled(cfs_rq))
3681 break;
3682 cfs_rq->h_nr_running++;
3683
3684 flags = ENQUEUE_WAKEUP;
3685 }
3686
3687 for_each_sched_entity(se) {
3688 cfs_rq = cfs_rq_of(se);
3689 cfs_rq->h_nr_running++;
3690
3691 if (cfs_rq_throttled(cfs_rq))
3692 break;
3693
3694 update_cfs_shares(cfs_rq);
3695 update_entity_load_avg(se, 1);
3696 }
3697
3698 if (!se) {
3699 update_rq_runnable_avg(rq, rq->nr_running);
3700 inc_nr_running(rq);
3701 }
3702 hrtick_update(rq);
3703 }
3704
3705 static void set_next_buddy(struct sched_entity *se);
3706
3707 /*
3708 * The dequeue_task method is called before nr_running is
3709 * decreased. We remove the task from the rbtree and
3710 * update the fair scheduling stats:
3711 */
3712 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3713 {
3714 struct cfs_rq *cfs_rq;
3715 struct sched_entity *se = &p->se;
3716 int task_sleep = flags & DEQUEUE_SLEEP;
3717
3718 for_each_sched_entity(se) {
3719 cfs_rq = cfs_rq_of(se);
3720 dequeue_entity(cfs_rq, se, flags);
3721
3722 /*
3723 * end evaluation on encountering a throttled cfs_rq
3724 *
3725 * note: in the case of encountering a throttled cfs_rq we will
3726 * post the final h_nr_running decrement below.
3727 */
3728 if (cfs_rq_throttled(cfs_rq))
3729 break;
3730 cfs_rq->h_nr_running--;
3731
3732 /* Don't dequeue parent if it has other entities besides us */
3733 if (cfs_rq->load.weight) {
3734 /*
3735 * Bias pick_next to pick a task from this cfs_rq, as
3736 * p is sleeping when it is within its sched_slice.
3737 */
3738 if (task_sleep && parent_entity(se))
3739 set_next_buddy(parent_entity(se));
3740
3741 /* avoid re-evaluating load for this entity */
3742 se = parent_entity(se);
3743 break;
3744 }
3745 flags |= DEQUEUE_SLEEP;
3746 }
3747
3748 for_each_sched_entity(se) {
3749 cfs_rq = cfs_rq_of(se);
3750 cfs_rq->h_nr_running--;
3751
3752 if (cfs_rq_throttled(cfs_rq))
3753 break;
3754
3755 update_cfs_shares(cfs_rq);
3756 update_entity_load_avg(se, 1);
3757 }
3758
3759 if (!se) {
3760 dec_nr_running(rq);
3761 update_rq_runnable_avg(rq, 1);
3762 }
3763 hrtick_update(rq);
3764 }
3765
3766 #ifdef CONFIG_SMP
3767 /* Used instead of source_load when we know the type == 0 */
3768 static unsigned long weighted_cpuload(const int cpu)
3769 {
3770 return cpu_rq(cpu)->cfs.runnable_load_avg;
3771 }
3772
3773 /*
3774 * Return a low guess at the load of a migration-source cpu weighted
3775 * according to the scheduling class and "nice" value.
3776 *
3777 * We want to under-estimate the load of migration sources, to
3778 * balance conservatively.
3779 */
3780 static unsigned long source_load(int cpu, int type)
3781 {
3782 struct rq *rq = cpu_rq(cpu);
3783 unsigned long total = weighted_cpuload(cpu);
3784
3785 if (type == 0 || !sched_feat(LB_BIAS))
3786 return total;
3787
3788 return min(rq->cpu_load[type-1], total);
3789 }
3790
3791 /*
3792 * Return a high guess at the load of a migration-target cpu weighted
3793 * according to the scheduling class and "nice" value.
3794 */
3795 static unsigned long target_load(int cpu, int type)
3796 {
3797 struct rq *rq = cpu_rq(cpu);
3798 unsigned long total = weighted_cpuload(cpu);
3799
3800 if (type == 0 || !sched_feat(LB_BIAS))
3801 return total;
3802
3803 return max(rq->cpu_load[type-1], total);
3804 }
3805
3806 static unsigned long power_of(int cpu)
3807 {
3808 return cpu_rq(cpu)->cpu_power;
3809 }
3810
3811 static unsigned long cpu_avg_load_per_task(int cpu)
3812 {
3813 struct rq *rq = cpu_rq(cpu);
3814 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
3815 unsigned long load_avg = rq->cfs.runnable_load_avg;
3816
3817 if (nr_running)
3818 return load_avg / nr_running;
3819
3820 return 0;
3821 }
3822
3823 static void record_wakee(struct task_struct *p)
3824 {
3825 /*
3826 * Rough decay (wiping) for cost saving, don't worry
3827 * about the boundary, really active task won't care
3828 * about the loss.
3829 */
3830 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3831 current->wakee_flips = 0;
3832 current->wakee_flip_decay_ts = jiffies;
3833 }
3834
3835 if (current->last_wakee != p) {
3836 current->last_wakee = p;
3837 current->wakee_flips++;
3838 }
3839 }
3840
3841 static void task_waking_fair(struct task_struct *p)
3842 {
3843 struct sched_entity *se = &p->se;
3844 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3845 u64 min_vruntime;
3846
3847 #ifndef CONFIG_64BIT
3848 u64 min_vruntime_copy;
3849
3850 do {
3851 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3852 smp_rmb();
3853 min_vruntime = cfs_rq->min_vruntime;
3854 } while (min_vruntime != min_vruntime_copy);
3855 #else
3856 min_vruntime = cfs_rq->min_vruntime;
3857 #endif
3858
3859 se->vruntime -= min_vruntime;
3860 record_wakee(p);
3861 }
3862
3863 #ifdef CONFIG_FAIR_GROUP_SCHED
3864 /*
3865 * effective_load() calculates the load change as seen from the root_task_group
3866 *
3867 * Adding load to a group doesn't make a group heavier, but can cause movement
3868 * of group shares between cpus. Assuming the shares were perfectly aligned one
3869 * can calculate the shift in shares.
3870 *
3871 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3872 * on this @cpu and results in a total addition (subtraction) of @wg to the
3873 * total group weight.
3874 *
3875 * Given a runqueue weight distribution (rw_i) we can compute a shares
3876 * distribution (s_i) using:
3877 *
3878 * s_i = rw_i / \Sum rw_j (1)
3879 *
3880 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3881 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3882 * shares distribution (s_i):
3883 *
3884 * rw_i = { 2, 4, 1, 0 }
3885 * s_i = { 2/7, 4/7, 1/7, 0 }
3886 *
3887 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3888 * task used to run on and the CPU the waker is running on), we need to
3889 * compute the effect of waking a task on either CPU and, in case of a sync
3890 * wakeup, compute the effect of the current task going to sleep.
3891 *
3892 * So for a change of @wl to the local @cpu with an overall group weight change
3893 * of @wl we can compute the new shares distribution (s'_i) using:
3894 *
3895 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3896 *
3897 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3898 * differences in waking a task to CPU 0. The additional task changes the
3899 * weight and shares distributions like:
3900 *
3901 * rw'_i = { 3, 4, 1, 0 }
3902 * s'_i = { 3/8, 4/8, 1/8, 0 }
3903 *
3904 * We can then compute the difference in effective weight by using:
3905 *
3906 * dw_i = S * (s'_i - s_i) (3)
3907 *
3908 * Where 'S' is the group weight as seen by its parent.
3909 *
3910 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3911 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3912 * 4/7) times the weight of the group.
3913 */
3914 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3915 {
3916 struct sched_entity *se = tg->se[cpu];
3917
3918 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
3919 return wl;
3920
3921 for_each_sched_entity(se) {
3922 long w, W;
3923
3924 tg = se->my_q->tg;
3925
3926 /*
3927 * W = @wg + \Sum rw_j
3928 */
3929 W = wg + calc_tg_weight(tg, se->my_q);
3930
3931 /*
3932 * w = rw_i + @wl
3933 */
3934 w = se->my_q->load.weight + wl;
3935
3936 /*
3937 * wl = S * s'_i; see (2)
3938 */
3939 if (W > 0 && w < W)
3940 wl = (w * tg->shares) / W;
3941 else
3942 wl = tg->shares;
3943
3944 /*
3945 * Per the above, wl is the new se->load.weight value; since
3946 * those are clipped to [MIN_SHARES, ...) do so now. See
3947 * calc_cfs_shares().
3948 */
3949 if (wl < MIN_SHARES)
3950 wl = MIN_SHARES;
3951
3952 /*
3953 * wl = dw_i = S * (s'_i - s_i); see (3)
3954 */
3955 wl -= se->load.weight;
3956
3957 /*
3958 * Recursively apply this logic to all parent groups to compute
3959 * the final effective load change on the root group. Since
3960 * only the @tg group gets extra weight, all parent groups can
3961 * only redistribute existing shares. @wl is the shift in shares
3962 * resulting from this level per the above.
3963 */
3964 wg = 0;
3965 }
3966
3967 return wl;
3968 }
3969 #else
3970
3971 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
3972 {
3973 return wl;
3974 }
3975
3976 #endif
3977
3978 static int wake_wide(struct task_struct *p)
3979 {
3980 int factor = this_cpu_read(sd_llc_size);
3981
3982 /*
3983 * Yeah, it's the switching-frequency, could means many wakee or
3984 * rapidly switch, use factor here will just help to automatically
3985 * adjust the loose-degree, so bigger node will lead to more pull.
3986 */
3987 if (p->wakee_flips > factor) {
3988 /*
3989 * wakee is somewhat hot, it needs certain amount of cpu
3990 * resource, so if waker is far more hot, prefer to leave
3991 * it alone.
3992 */
3993 if (current->wakee_flips > (factor * p->wakee_flips))
3994 return 1;
3995 }
3996
3997 return 0;
3998 }
3999
4000 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4001 {
4002 s64 this_load, load;
4003 int idx, this_cpu, prev_cpu;
4004 unsigned long tl_per_task;
4005 struct task_group *tg;
4006 unsigned long weight;
4007 int balanced;
4008
4009 /*
4010 * If we wake multiple tasks be careful to not bounce
4011 * ourselves around too much.
4012 */
4013 if (wake_wide(p))
4014 return 0;
4015
4016 idx = sd->wake_idx;
4017 this_cpu = smp_processor_id();
4018 prev_cpu = task_cpu(p);
4019 load = source_load(prev_cpu, idx);
4020 this_load = target_load(this_cpu, idx);
4021
4022 /*
4023 * If sync wakeup then subtract the (maximum possible)
4024 * effect of the currently running task from the load
4025 * of the current CPU:
4026 */
4027 if (sync) {
4028 tg = task_group(current);
4029 weight = current->se.load.weight;
4030
4031 this_load += effective_load(tg, this_cpu, -weight, -weight);
4032 load += effective_load(tg, prev_cpu, 0, -weight);
4033 }
4034
4035 tg = task_group(p);
4036 weight = p->se.load.weight;
4037
4038 /*
4039 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4040 * due to the sync cause above having dropped this_load to 0, we'll
4041 * always have an imbalance, but there's really nothing you can do
4042 * about that, so that's good too.
4043 *
4044 * Otherwise check if either cpus are near enough in load to allow this
4045 * task to be woken on this_cpu.
4046 */
4047 if (this_load > 0) {
4048 s64 this_eff_load, prev_eff_load;
4049
4050 this_eff_load = 100;
4051 this_eff_load *= power_of(prev_cpu);
4052 this_eff_load *= this_load +
4053 effective_load(tg, this_cpu, weight, weight);
4054
4055 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4056 prev_eff_load *= power_of(this_cpu);
4057 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4058
4059 balanced = this_eff_load <= prev_eff_load;
4060 } else
4061 balanced = true;
4062
4063 /*
4064 * If the currently running task will sleep within
4065 * a reasonable amount of time then attract this newly
4066 * woken task:
4067 */
4068 if (sync && balanced)
4069 return 1;
4070
4071 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4072 tl_per_task = cpu_avg_load_per_task(this_cpu);
4073
4074 if (balanced ||
4075 (this_load <= load &&
4076 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4077 /*
4078 * This domain has SD_WAKE_AFFINE and
4079 * p is cache cold in this domain, and
4080 * there is no bad imbalance.
4081 */
4082 schedstat_inc(sd, ttwu_move_affine);
4083 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4084
4085 return 1;
4086 }
4087 return 0;
4088 }
4089
4090 /*
4091 * find_idlest_group finds and returns the least busy CPU group within the
4092 * domain.
4093 */
4094 static struct sched_group *
4095 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4096 int this_cpu, int load_idx)
4097 {
4098 struct sched_group *idlest = NULL, *group = sd->groups;
4099 unsigned long min_load = ULONG_MAX, this_load = 0;
4100 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4101
4102 do {
4103 unsigned long load, avg_load;
4104 int local_group;
4105 int i;
4106
4107 /* Skip over this group if it has no CPUs allowed */
4108 if (!cpumask_intersects(sched_group_cpus(group),
4109 tsk_cpus_allowed(p)))
4110 continue;
4111
4112 local_group = cpumask_test_cpu(this_cpu,
4113 sched_group_cpus(group));
4114
4115 /* Tally up the load of all CPUs in the group */
4116 avg_load = 0;
4117
4118 for_each_cpu(i, sched_group_cpus(group)) {
4119 /* Bias balancing toward cpus of our domain */
4120 if (local_group)
4121 load = source_load(i, load_idx);
4122 else
4123 load = target_load(i, load_idx);
4124
4125 avg_load += load;
4126 }
4127
4128 /* Adjust by relative CPU power of the group */
4129 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
4130
4131 if (local_group) {
4132 this_load = avg_load;
4133 } else if (avg_load < min_load) {
4134 min_load = avg_load;
4135 idlest = group;
4136 }
4137 } while (group = group->next, group != sd->groups);
4138
4139 if (!idlest || 100*this_load < imbalance*min_load)
4140 return NULL;
4141 return idlest;
4142 }
4143
4144 /*
4145 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4146 */
4147 static int
4148 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4149 {
4150 unsigned long load, min_load = ULONG_MAX;
4151 int idlest = -1;
4152 int i;
4153
4154 /* Traverse only the allowed CPUs */
4155 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4156 load = weighted_cpuload(i);
4157
4158 if (load < min_load || (load == min_load && i == this_cpu)) {
4159 min_load = load;
4160 idlest = i;
4161 }
4162 }
4163
4164 return idlest;
4165 }
4166
4167 /*
4168 * Try and locate an idle CPU in the sched_domain.
4169 */
4170 static int select_idle_sibling(struct task_struct *p, int target)
4171 {
4172 struct sched_domain *sd;
4173 struct sched_group *sg;
4174 int i = task_cpu(p);
4175
4176 if (idle_cpu(target))
4177 return target;
4178
4179 /*
4180 * If the prevous cpu is cache affine and idle, don't be stupid.
4181 */
4182 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4183 return i;
4184
4185 /*
4186 * Otherwise, iterate the domains and find an elegible idle cpu.
4187 */
4188 sd = rcu_dereference(per_cpu(sd_llc, target));
4189 for_each_lower_domain(sd) {
4190 sg = sd->groups;
4191 do {
4192 if (!cpumask_intersects(sched_group_cpus(sg),
4193 tsk_cpus_allowed(p)))
4194 goto next;
4195
4196 for_each_cpu(i, sched_group_cpus(sg)) {
4197 if (i == target || !idle_cpu(i))
4198 goto next;
4199 }
4200
4201 target = cpumask_first_and(sched_group_cpus(sg),
4202 tsk_cpus_allowed(p));
4203 goto done;
4204 next:
4205 sg = sg->next;
4206 } while (sg != sd->groups);
4207 }
4208 done:
4209 return target;
4210 }
4211
4212 /*
4213 * sched_balance_self: balance the current task (running on cpu) in domains
4214 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4215 * SD_BALANCE_EXEC.
4216 *
4217 * Balance, ie. select the least loaded group.
4218 *
4219 * Returns the target CPU number, or the same CPU if no balancing is needed.
4220 *
4221 * preempt must be disabled.
4222 */
4223 static int
4224 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4225 {
4226 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4227 int cpu = smp_processor_id();
4228 int new_cpu = cpu;
4229 int want_affine = 0;
4230 int sync = wake_flags & WF_SYNC;
4231
4232 if (p->nr_cpus_allowed == 1)
4233 return prev_cpu;
4234
4235 if (sd_flag & SD_BALANCE_WAKE) {
4236 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4237 want_affine = 1;
4238 new_cpu = prev_cpu;
4239 }
4240
4241 rcu_read_lock();
4242 for_each_domain(cpu, tmp) {
4243 if (!(tmp->flags & SD_LOAD_BALANCE))
4244 continue;
4245
4246 /*
4247 * If both cpu and prev_cpu are part of this domain,
4248 * cpu is a valid SD_WAKE_AFFINE target.
4249 */
4250 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4251 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4252 affine_sd = tmp;
4253 break;
4254 }
4255
4256 if (tmp->flags & sd_flag)
4257 sd = tmp;
4258 }
4259
4260 if (affine_sd) {
4261 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4262 prev_cpu = cpu;
4263
4264 new_cpu = select_idle_sibling(p, prev_cpu);
4265 goto unlock;
4266 }
4267
4268 while (sd) {
4269 int load_idx = sd->forkexec_idx;
4270 struct sched_group *group;
4271 int weight;
4272
4273 if (!(sd->flags & sd_flag)) {
4274 sd = sd->child;
4275 continue;
4276 }
4277
4278 if (sd_flag & SD_BALANCE_WAKE)
4279 load_idx = sd->wake_idx;
4280
4281 group = find_idlest_group(sd, p, cpu, load_idx);
4282 if (!group) {
4283 sd = sd->child;
4284 continue;
4285 }
4286
4287 new_cpu = find_idlest_cpu(group, p, cpu);
4288 if (new_cpu == -1 || new_cpu == cpu) {
4289 /* Now try balancing at a lower domain level of cpu */
4290 sd = sd->child;
4291 continue;
4292 }
4293
4294 /* Now try balancing at a lower domain level of new_cpu */
4295 cpu = new_cpu;
4296 weight = sd->span_weight;
4297 sd = NULL;
4298 for_each_domain(cpu, tmp) {
4299 if (weight <= tmp->span_weight)
4300 break;
4301 if (tmp->flags & sd_flag)
4302 sd = tmp;
4303 }
4304 /* while loop will break here if sd == NULL */
4305 }
4306 unlock:
4307 rcu_read_unlock();
4308
4309 return new_cpu;
4310 }
4311
4312 /*
4313 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4314 * cfs_rq_of(p) references at time of call are still valid and identify the
4315 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4316 * other assumptions, including the state of rq->lock, should be made.
4317 */
4318 static void
4319 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4320 {
4321 struct sched_entity *se = &p->se;
4322 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4323
4324 /*
4325 * Load tracking: accumulate removed load so that it can be processed
4326 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4327 * to blocked load iff they have a positive decay-count. It can never
4328 * be negative here since on-rq tasks have decay-count == 0.
4329 */
4330 if (se->avg.decay_count) {
4331 se->avg.decay_count = -__synchronize_entity_decay(se);
4332 atomic_long_add(se->avg.load_avg_contrib,
4333 &cfs_rq->removed_load);
4334 }
4335 }
4336 #endif /* CONFIG_SMP */
4337
4338 static unsigned long
4339 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4340 {
4341 unsigned long gran = sysctl_sched_wakeup_granularity;
4342
4343 /*
4344 * Since its curr running now, convert the gran from real-time
4345 * to virtual-time in his units.
4346 *
4347 * By using 'se' instead of 'curr' we penalize light tasks, so
4348 * they get preempted easier. That is, if 'se' < 'curr' then
4349 * the resulting gran will be larger, therefore penalizing the
4350 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4351 * be smaller, again penalizing the lighter task.
4352 *
4353 * This is especially important for buddies when the leftmost
4354 * task is higher priority than the buddy.
4355 */
4356 return calc_delta_fair(gran, se);
4357 }
4358
4359 /*
4360 * Should 'se' preempt 'curr'.
4361 *
4362 * |s1
4363 * |s2
4364 * |s3
4365 * g
4366 * |<--->|c
4367 *
4368 * w(c, s1) = -1
4369 * w(c, s2) = 0
4370 * w(c, s3) = 1
4371 *
4372 */
4373 static int
4374 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4375 {
4376 s64 gran, vdiff = curr->vruntime - se->vruntime;
4377
4378 if (vdiff <= 0)
4379 return -1;
4380
4381 gran = wakeup_gran(curr, se);
4382 if (vdiff > gran)
4383 return 1;
4384
4385 return 0;
4386 }
4387
4388 static void set_last_buddy(struct sched_entity *se)
4389 {
4390 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4391 return;
4392
4393 for_each_sched_entity(se)
4394 cfs_rq_of(se)->last = se;
4395 }
4396
4397 static void set_next_buddy(struct sched_entity *se)
4398 {
4399 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4400 return;
4401
4402 for_each_sched_entity(se)
4403 cfs_rq_of(se)->next = se;
4404 }
4405
4406 static void set_skip_buddy(struct sched_entity *se)
4407 {
4408 for_each_sched_entity(se)
4409 cfs_rq_of(se)->skip = se;
4410 }
4411
4412 /*
4413 * Preempt the current task with a newly woken task if needed:
4414 */
4415 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4416 {
4417 struct task_struct *curr = rq->curr;
4418 struct sched_entity *se = &curr->se, *pse = &p->se;
4419 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4420 int scale = cfs_rq->nr_running >= sched_nr_latency;
4421 int next_buddy_marked = 0;
4422
4423 if (unlikely(se == pse))
4424 return;
4425
4426 /*
4427 * This is possible from callers such as move_task(), in which we
4428 * unconditionally check_prempt_curr() after an enqueue (which may have
4429 * lead to a throttle). This both saves work and prevents false
4430 * next-buddy nomination below.
4431 */
4432 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4433 return;
4434
4435 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4436 set_next_buddy(pse);
4437 next_buddy_marked = 1;
4438 }
4439
4440 /*
4441 * We can come here with TIF_NEED_RESCHED already set from new task
4442 * wake up path.
4443 *
4444 * Note: this also catches the edge-case of curr being in a throttled
4445 * group (e.g. via set_curr_task), since update_curr() (in the
4446 * enqueue of curr) will have resulted in resched being set. This
4447 * prevents us from potentially nominating it as a false LAST_BUDDY
4448 * below.
4449 */
4450 if (test_tsk_need_resched(curr))
4451 return;
4452
4453 /* Idle tasks are by definition preempted by non-idle tasks. */
4454 if (unlikely(curr->policy == SCHED_IDLE) &&
4455 likely(p->policy != SCHED_IDLE))
4456 goto preempt;
4457
4458 /*
4459 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4460 * is driven by the tick):
4461 */
4462 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4463 return;
4464
4465 find_matching_se(&se, &pse);
4466 update_curr(cfs_rq_of(se));
4467 BUG_ON(!pse);
4468 if (wakeup_preempt_entity(se, pse) == 1) {
4469 /*
4470 * Bias pick_next to pick the sched entity that is
4471 * triggering this preemption.
4472 */
4473 if (!next_buddy_marked)
4474 set_next_buddy(pse);
4475 goto preempt;
4476 }
4477
4478 return;
4479
4480 preempt:
4481 resched_task(curr);
4482 /*
4483 * Only set the backward buddy when the current task is still
4484 * on the rq. This can happen when a wakeup gets interleaved
4485 * with schedule on the ->pre_schedule() or idle_balance()
4486 * point, either of which can * drop the rq lock.
4487 *
4488 * Also, during early boot the idle thread is in the fair class,
4489 * for obvious reasons its a bad idea to schedule back to it.
4490 */
4491 if (unlikely(!se->on_rq || curr == rq->idle))
4492 return;
4493
4494 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4495 set_last_buddy(se);
4496 }
4497
4498 static struct task_struct *pick_next_task_fair(struct rq *rq)
4499 {
4500 struct task_struct *p;
4501 struct cfs_rq *cfs_rq = &rq->cfs;
4502 struct sched_entity *se;
4503
4504 if (!cfs_rq->nr_running)
4505 return NULL;
4506
4507 do {
4508 se = pick_next_entity(cfs_rq);
4509 set_next_entity(cfs_rq, se);
4510 cfs_rq = group_cfs_rq(se);
4511 } while (cfs_rq);
4512
4513 p = task_of(se);
4514 if (hrtick_enabled(rq))
4515 hrtick_start_fair(rq, p);
4516
4517 return p;
4518 }
4519
4520 /*
4521 * Account for a descheduled task:
4522 */
4523 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4524 {
4525 struct sched_entity *se = &prev->se;
4526 struct cfs_rq *cfs_rq;
4527
4528 for_each_sched_entity(se) {
4529 cfs_rq = cfs_rq_of(se);
4530 put_prev_entity(cfs_rq, se);
4531 }
4532 }
4533
4534 /*
4535 * sched_yield() is very simple
4536 *
4537 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4538 */
4539 static void yield_task_fair(struct rq *rq)
4540 {
4541 struct task_struct *curr = rq->curr;
4542 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4543 struct sched_entity *se = &curr->se;
4544
4545 /*
4546 * Are we the only task in the tree?
4547 */
4548 if (unlikely(rq->nr_running == 1))
4549 return;
4550
4551 clear_buddies(cfs_rq, se);
4552
4553 if (curr->policy != SCHED_BATCH) {
4554 update_rq_clock(rq);
4555 /*
4556 * Update run-time statistics of the 'current'.
4557 */
4558 update_curr(cfs_rq);
4559 /*
4560 * Tell update_rq_clock() that we've just updated,
4561 * so we don't do microscopic update in schedule()
4562 * and double the fastpath cost.
4563 */
4564 rq->skip_clock_update = 1;
4565 }
4566
4567 set_skip_buddy(se);
4568 }
4569
4570 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4571 {
4572 struct sched_entity *se = &p->se;
4573
4574 /* throttled hierarchies are not runnable */
4575 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4576 return false;
4577
4578 /* Tell the scheduler that we'd really like pse to run next. */
4579 set_next_buddy(se);
4580
4581 yield_task_fair(rq);
4582
4583 return true;
4584 }
4585
4586 #ifdef CONFIG_SMP
4587 /**************************************************
4588 * Fair scheduling class load-balancing methods.
4589 *
4590 * BASICS
4591 *
4592 * The purpose of load-balancing is to achieve the same basic fairness the
4593 * per-cpu scheduler provides, namely provide a proportional amount of compute
4594 * time to each task. This is expressed in the following equation:
4595 *
4596 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4597 *
4598 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4599 * W_i,0 is defined as:
4600 *
4601 * W_i,0 = \Sum_j w_i,j (2)
4602 *
4603 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4604 * is derived from the nice value as per prio_to_weight[].
4605 *
4606 * The weight average is an exponential decay average of the instantaneous
4607 * weight:
4608 *
4609 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4610 *
4611 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4612 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4613 * can also include other factors [XXX].
4614 *
4615 * To achieve this balance we define a measure of imbalance which follows
4616 * directly from (1):
4617 *
4618 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4619 *
4620 * We them move tasks around to minimize the imbalance. In the continuous
4621 * function space it is obvious this converges, in the discrete case we get
4622 * a few fun cases generally called infeasible weight scenarios.
4623 *
4624 * [XXX expand on:
4625 * - infeasible weights;
4626 * - local vs global optima in the discrete case. ]
4627 *
4628 *
4629 * SCHED DOMAINS
4630 *
4631 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4632 * for all i,j solution, we create a tree of cpus that follows the hardware
4633 * topology where each level pairs two lower groups (or better). This results
4634 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4635 * tree to only the first of the previous level and we decrease the frequency
4636 * of load-balance at each level inv. proportional to the number of cpus in
4637 * the groups.
4638 *
4639 * This yields:
4640 *
4641 * log_2 n 1 n
4642 * \Sum { --- * --- * 2^i } = O(n) (5)
4643 * i = 0 2^i 2^i
4644 * `- size of each group
4645 * | | `- number of cpus doing load-balance
4646 * | `- freq
4647 * `- sum over all levels
4648 *
4649 * Coupled with a limit on how many tasks we can migrate every balance pass,
4650 * this makes (5) the runtime complexity of the balancer.
4651 *
4652 * An important property here is that each CPU is still (indirectly) connected
4653 * to every other cpu in at most O(log n) steps:
4654 *
4655 * The adjacency matrix of the resulting graph is given by:
4656 *
4657 * log_2 n
4658 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4659 * k = 0
4660 *
4661 * And you'll find that:
4662 *
4663 * A^(log_2 n)_i,j != 0 for all i,j (7)
4664 *
4665 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4666 * The task movement gives a factor of O(m), giving a convergence complexity
4667 * of:
4668 *
4669 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4670 *
4671 *
4672 * WORK CONSERVING
4673 *
4674 * In order to avoid CPUs going idle while there's still work to do, new idle
4675 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4676 * tree itself instead of relying on other CPUs to bring it work.
4677 *
4678 * This adds some complexity to both (5) and (8) but it reduces the total idle
4679 * time.
4680 *
4681 * [XXX more?]
4682 *
4683 *
4684 * CGROUPS
4685 *
4686 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4687 *
4688 * s_k,i
4689 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4690 * S_k
4691 *
4692 * Where
4693 *
4694 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4695 *
4696 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4697 *
4698 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4699 * property.
4700 *
4701 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4702 * rewrite all of this once again.]
4703 */
4704
4705 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4706
4707 enum fbq_type { regular, remote, all };
4708
4709 #define LBF_ALL_PINNED 0x01
4710 #define LBF_NEED_BREAK 0x02
4711 #define LBF_DST_PINNED 0x04
4712 #define LBF_SOME_PINNED 0x08
4713
4714 struct lb_env {
4715 struct sched_domain *sd;
4716
4717 struct rq *src_rq;
4718 int src_cpu;
4719
4720 int dst_cpu;
4721 struct rq *dst_rq;
4722
4723 struct cpumask *dst_grpmask;
4724 int new_dst_cpu;
4725 enum cpu_idle_type idle;
4726 long imbalance;
4727 /* The set of CPUs under consideration for load-balancing */
4728 struct cpumask *cpus;
4729
4730 unsigned int flags;
4731
4732 unsigned int loop;
4733 unsigned int loop_break;
4734 unsigned int loop_max;
4735
4736 enum fbq_type fbq_type;
4737 };
4738
4739 /*
4740 * move_task - move a task from one runqueue to another runqueue.
4741 * Both runqueues must be locked.
4742 */
4743 static void move_task(struct task_struct *p, struct lb_env *env)
4744 {
4745 deactivate_task(env->src_rq, p, 0);
4746 set_task_cpu(p, env->dst_cpu);
4747 activate_task(env->dst_rq, p, 0);
4748 check_preempt_curr(env->dst_rq, p, 0);
4749 #ifdef CONFIG_NUMA_BALANCING
4750 if (p->numa_preferred_nid != -1) {
4751 int src_nid = cpu_to_node(env->src_cpu);
4752 int dst_nid = cpu_to_node(env->dst_cpu);
4753
4754 /*
4755 * If the load balancer has moved the task then limit
4756 * migrations from taking place in the short term in
4757 * case this is a short-lived migration.
4758 */
4759 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4760 p->numa_migrate_seq = 0;
4761 }
4762 #endif
4763 }
4764
4765 /*
4766 * Is this task likely cache-hot:
4767 */
4768 static int
4769 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4770 {
4771 s64 delta;
4772
4773 if (p->sched_class != &fair_sched_class)
4774 return 0;
4775
4776 if (unlikely(p->policy == SCHED_IDLE))
4777 return 0;
4778
4779 /*
4780 * Buddy candidates are cache hot:
4781 */
4782 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4783 (&p->se == cfs_rq_of(&p->se)->next ||
4784 &p->se == cfs_rq_of(&p->se)->last))
4785 return 1;
4786
4787 if (sysctl_sched_migration_cost == -1)
4788 return 1;
4789 if (sysctl_sched_migration_cost == 0)
4790 return 0;
4791
4792 delta = now - p->se.exec_start;
4793
4794 return delta < (s64)sysctl_sched_migration_cost;
4795 }
4796
4797 #ifdef CONFIG_NUMA_BALANCING
4798 /* Returns true if the destination node has incurred more faults */
4799 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4800 {
4801 int src_nid, dst_nid;
4802
4803 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4804 !(env->sd->flags & SD_NUMA)) {
4805 return false;
4806 }
4807
4808 src_nid = cpu_to_node(env->src_cpu);
4809 dst_nid = cpu_to_node(env->dst_cpu);
4810
4811 if (src_nid == dst_nid)
4812 return false;
4813
4814 /* Always encourage migration to the preferred node. */
4815 if (dst_nid == p->numa_preferred_nid)
4816 return true;
4817
4818 /* If both task and group weight improve, this move is a winner. */
4819 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4820 group_weight(p, dst_nid) > group_weight(p, src_nid))
4821 return true;
4822
4823 return false;
4824 }
4825
4826
4827 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4828 {
4829 int src_nid, dst_nid;
4830
4831 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4832 return false;
4833
4834 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4835 return false;
4836
4837 src_nid = cpu_to_node(env->src_cpu);
4838 dst_nid = cpu_to_node(env->dst_cpu);
4839
4840 if (src_nid == dst_nid)
4841 return false;
4842
4843 /* Migrating away from the preferred node is always bad. */
4844 if (src_nid == p->numa_preferred_nid)
4845 return true;
4846
4847 /* If either task or group weight get worse, don't do it. */
4848 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4849 group_weight(p, dst_nid) < group_weight(p, src_nid))
4850 return true;
4851
4852 return false;
4853 }
4854
4855 #else
4856 static inline bool migrate_improves_locality(struct task_struct *p,
4857 struct lb_env *env)
4858 {
4859 return false;
4860 }
4861
4862 static inline bool migrate_degrades_locality(struct task_struct *p,
4863 struct lb_env *env)
4864 {
4865 return false;
4866 }
4867 #endif
4868
4869 /*
4870 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4871 */
4872 static
4873 int can_migrate_task(struct task_struct *p, struct lb_env *env)
4874 {
4875 int tsk_cache_hot = 0;
4876 /*
4877 * We do not migrate tasks that are:
4878 * 1) throttled_lb_pair, or
4879 * 2) cannot be migrated to this CPU due to cpus_allowed, or
4880 * 3) running (obviously), or
4881 * 4) are cache-hot on their current CPU.
4882 */
4883 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4884 return 0;
4885
4886 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
4887 int cpu;
4888
4889 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
4890
4891 env->flags |= LBF_SOME_PINNED;
4892
4893 /*
4894 * Remember if this task can be migrated to any other cpu in
4895 * our sched_group. We may want to revisit it if we couldn't
4896 * meet load balance goals by pulling other tasks on src_cpu.
4897 *
4898 * Also avoid computing new_dst_cpu if we have already computed
4899 * one in current iteration.
4900 */
4901 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
4902 return 0;
4903
4904 /* Prevent to re-select dst_cpu via env's cpus */
4905 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4906 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
4907 env->flags |= LBF_DST_PINNED;
4908 env->new_dst_cpu = cpu;
4909 break;
4910 }
4911 }
4912
4913 return 0;
4914 }
4915
4916 /* Record that we found atleast one task that could run on dst_cpu */
4917 env->flags &= ~LBF_ALL_PINNED;
4918
4919 if (task_running(env->src_rq, p)) {
4920 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
4921 return 0;
4922 }
4923
4924 /*
4925 * Aggressive migration if:
4926 * 1) destination numa is preferred
4927 * 2) task is cache cold, or
4928 * 3) too many balance attempts have failed.
4929 */
4930 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
4931 if (!tsk_cache_hot)
4932 tsk_cache_hot = migrate_degrades_locality(p, env);
4933
4934 if (migrate_improves_locality(p, env)) {
4935 #ifdef CONFIG_SCHEDSTATS
4936 if (tsk_cache_hot) {
4937 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4938 schedstat_inc(p, se.statistics.nr_forced_migrations);
4939 }
4940 #endif
4941 return 1;
4942 }
4943
4944 if (!tsk_cache_hot ||
4945 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
4946
4947 if (tsk_cache_hot) {
4948 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4949 schedstat_inc(p, se.statistics.nr_forced_migrations);
4950 }
4951
4952 return 1;
4953 }
4954
4955 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4956 return 0;
4957 }
4958
4959 /*
4960 * move_one_task tries to move exactly one task from busiest to this_rq, as
4961 * part of active balancing operations within "domain".
4962 * Returns 1 if successful and 0 otherwise.
4963 *
4964 * Called with both runqueues locked.
4965 */
4966 static int move_one_task(struct lb_env *env)
4967 {
4968 struct task_struct *p, *n;
4969
4970 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
4971 if (!can_migrate_task(p, env))
4972 continue;
4973
4974 move_task(p, env);
4975 /*
4976 * Right now, this is only the second place move_task()
4977 * is called, so we can safely collect move_task()
4978 * stats here rather than inside move_task().
4979 */
4980 schedstat_inc(env->sd, lb_gained[env->idle]);
4981 return 1;
4982 }
4983 return 0;
4984 }
4985
4986 static const unsigned int sched_nr_migrate_break = 32;
4987
4988 /*
4989 * move_tasks tries to move up to imbalance weighted load from busiest to
4990 * this_rq, as part of a balancing operation within domain "sd".
4991 * Returns 1 if successful and 0 otherwise.
4992 *
4993 * Called with both runqueues locked.
4994 */
4995 static int move_tasks(struct lb_env *env)
4996 {
4997 struct list_head *tasks = &env->src_rq->cfs_tasks;
4998 struct task_struct *p;
4999 unsigned long load;
5000 int pulled = 0;
5001
5002 if (env->imbalance <= 0)
5003 return 0;
5004
5005 while (!list_empty(tasks)) {
5006 p = list_first_entry(tasks, struct task_struct, se.group_node);
5007
5008 env->loop++;
5009 /* We've more or less seen every task there is, call it quits */
5010 if (env->loop > env->loop_max)
5011 break;
5012
5013 /* take a breather every nr_migrate tasks */
5014 if (env->loop > env->loop_break) {
5015 env->loop_break += sched_nr_migrate_break;
5016 env->flags |= LBF_NEED_BREAK;
5017 break;
5018 }
5019
5020 if (!can_migrate_task(p, env))
5021 goto next;
5022
5023 load = task_h_load(p);
5024
5025 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5026 goto next;
5027
5028 if ((load / 2) > env->imbalance)
5029 goto next;
5030
5031 move_task(p, env);
5032 pulled++;
5033 env->imbalance -= load;
5034
5035 #ifdef CONFIG_PREEMPT
5036 /*
5037 * NEWIDLE balancing is a source of latency, so preemptible
5038 * kernels will stop after the first task is pulled to minimize
5039 * the critical section.
5040 */
5041 if (env->idle == CPU_NEWLY_IDLE)
5042 break;
5043 #endif
5044
5045 /*
5046 * We only want to steal up to the prescribed amount of
5047 * weighted load.
5048 */
5049 if (env->imbalance <= 0)
5050 break;
5051
5052 continue;
5053 next:
5054 list_move_tail(&p->se.group_node, tasks);
5055 }
5056
5057 /*
5058 * Right now, this is one of only two places move_task() is called,
5059 * so we can safely collect move_task() stats here rather than
5060 * inside move_task().
5061 */
5062 schedstat_add(env->sd, lb_gained[env->idle], pulled);
5063
5064 return pulled;
5065 }
5066
5067 #ifdef CONFIG_FAIR_GROUP_SCHED
5068 /*
5069 * update tg->load_weight by folding this cpu's load_avg
5070 */
5071 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5072 {
5073 struct sched_entity *se = tg->se[cpu];
5074 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5075
5076 /* throttled entities do not contribute to load */
5077 if (throttled_hierarchy(cfs_rq))
5078 return;
5079
5080 update_cfs_rq_blocked_load(cfs_rq, 1);
5081
5082 if (se) {
5083 update_entity_load_avg(se, 1);
5084 /*
5085 * We pivot on our runnable average having decayed to zero for
5086 * list removal. This generally implies that all our children
5087 * have also been removed (modulo rounding error or bandwidth
5088 * control); however, such cases are rare and we can fix these
5089 * at enqueue.
5090 *
5091 * TODO: fix up out-of-order children on enqueue.
5092 */
5093 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5094 list_del_leaf_cfs_rq(cfs_rq);
5095 } else {
5096 struct rq *rq = rq_of(cfs_rq);
5097 update_rq_runnable_avg(rq, rq->nr_running);
5098 }
5099 }
5100
5101 static void update_blocked_averages(int cpu)
5102 {
5103 struct rq *rq = cpu_rq(cpu);
5104 struct cfs_rq *cfs_rq;
5105 unsigned long flags;
5106
5107 raw_spin_lock_irqsave(&rq->lock, flags);
5108 update_rq_clock(rq);
5109 /*
5110 * Iterates the task_group tree in a bottom up fashion, see
5111 * list_add_leaf_cfs_rq() for details.
5112 */
5113 for_each_leaf_cfs_rq(rq, cfs_rq) {
5114 /*
5115 * Note: We may want to consider periodically releasing
5116 * rq->lock about these updates so that creating many task
5117 * groups does not result in continually extending hold time.
5118 */
5119 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5120 }
5121
5122 raw_spin_unlock_irqrestore(&rq->lock, flags);
5123 }
5124
5125 /*
5126 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5127 * This needs to be done in a top-down fashion because the load of a child
5128 * group is a fraction of its parents load.
5129 */
5130 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5131 {
5132 struct rq *rq = rq_of(cfs_rq);
5133 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5134 unsigned long now = jiffies;
5135 unsigned long load;
5136
5137 if (cfs_rq->last_h_load_update == now)
5138 return;
5139
5140 cfs_rq->h_load_next = NULL;
5141 for_each_sched_entity(se) {
5142 cfs_rq = cfs_rq_of(se);
5143 cfs_rq->h_load_next = se;
5144 if (cfs_rq->last_h_load_update == now)
5145 break;
5146 }
5147
5148 if (!se) {
5149 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5150 cfs_rq->last_h_load_update = now;
5151 }
5152
5153 while ((se = cfs_rq->h_load_next) != NULL) {
5154 load = cfs_rq->h_load;
5155 load = div64_ul(load * se->avg.load_avg_contrib,
5156 cfs_rq->runnable_load_avg + 1);
5157 cfs_rq = group_cfs_rq(se);
5158 cfs_rq->h_load = load;
5159 cfs_rq->last_h_load_update = now;
5160 }
5161 }
5162
5163 static unsigned long task_h_load(struct task_struct *p)
5164 {
5165 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5166
5167 update_cfs_rq_h_load(cfs_rq);
5168 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5169 cfs_rq->runnable_load_avg + 1);
5170 }
5171 #else
5172 static inline void update_blocked_averages(int cpu)
5173 {
5174 }
5175
5176 static unsigned long task_h_load(struct task_struct *p)
5177 {
5178 return p->se.avg.load_avg_contrib;
5179 }
5180 #endif
5181
5182 /********** Helpers for find_busiest_group ************************/
5183 /*
5184 * sg_lb_stats - stats of a sched_group required for load_balancing
5185 */
5186 struct sg_lb_stats {
5187 unsigned long avg_load; /*Avg load across the CPUs of the group */
5188 unsigned long group_load; /* Total load over the CPUs of the group */
5189 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5190 unsigned long load_per_task;
5191 unsigned long group_power;
5192 unsigned int sum_nr_running; /* Nr tasks running in the group */
5193 unsigned int group_capacity;
5194 unsigned int idle_cpus;
5195 unsigned int group_weight;
5196 int group_imb; /* Is there an imbalance in the group ? */
5197 int group_has_capacity; /* Is there extra capacity in the group? */
5198 #ifdef CONFIG_NUMA_BALANCING
5199 unsigned int nr_numa_running;
5200 unsigned int nr_preferred_running;
5201 #endif
5202 };
5203
5204 /*
5205 * sd_lb_stats - Structure to store the statistics of a sched_domain
5206 * during load balancing.
5207 */
5208 struct sd_lb_stats {
5209 struct sched_group *busiest; /* Busiest group in this sd */
5210 struct sched_group *local; /* Local group in this sd */
5211 unsigned long total_load; /* Total load of all groups in sd */
5212 unsigned long total_pwr; /* Total power of all groups in sd */
5213 unsigned long avg_load; /* Average load across all groups in sd */
5214
5215 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5216 struct sg_lb_stats local_stat; /* Statistics of the local group */
5217 };
5218
5219 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5220 {
5221 /*
5222 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5223 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5224 * We must however clear busiest_stat::avg_load because
5225 * update_sd_pick_busiest() reads this before assignment.
5226 */
5227 *sds = (struct sd_lb_stats){
5228 .busiest = NULL,
5229 .local = NULL,
5230 .total_load = 0UL,
5231 .total_pwr = 0UL,
5232 .busiest_stat = {
5233 .avg_load = 0UL,
5234 },
5235 };
5236 }
5237
5238 /**
5239 * get_sd_load_idx - Obtain the load index for a given sched domain.
5240 * @sd: The sched_domain whose load_idx is to be obtained.
5241 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
5242 *
5243 * Return: The load index.
5244 */
5245 static inline int get_sd_load_idx(struct sched_domain *sd,
5246 enum cpu_idle_type idle)
5247 {
5248 int load_idx;
5249
5250 switch (idle) {
5251 case CPU_NOT_IDLE:
5252 load_idx = sd->busy_idx;
5253 break;
5254
5255 case CPU_NEWLY_IDLE:
5256 load_idx = sd->newidle_idx;
5257 break;
5258 default:
5259 load_idx = sd->idle_idx;
5260 break;
5261 }
5262
5263 return load_idx;
5264 }
5265
5266 static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
5267 {
5268 return SCHED_POWER_SCALE;
5269 }
5270
5271 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5272 {
5273 return default_scale_freq_power(sd, cpu);
5274 }
5275
5276 static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
5277 {
5278 unsigned long weight = sd->span_weight;
5279 unsigned long smt_gain = sd->smt_gain;
5280
5281 smt_gain /= weight;
5282
5283 return smt_gain;
5284 }
5285
5286 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5287 {
5288 return default_scale_smt_power(sd, cpu);
5289 }
5290
5291 static unsigned long scale_rt_power(int cpu)
5292 {
5293 struct rq *rq = cpu_rq(cpu);
5294 u64 total, available, age_stamp, avg;
5295
5296 /*
5297 * Since we're reading these variables without serialization make sure
5298 * we read them once before doing sanity checks on them.
5299 */
5300 age_stamp = ACCESS_ONCE(rq->age_stamp);
5301 avg = ACCESS_ONCE(rq->rt_avg);
5302
5303 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
5304
5305 if (unlikely(total < avg)) {
5306 /* Ensures that power won't end up being negative */
5307 available = 0;
5308 } else {
5309 available = total - avg;
5310 }
5311
5312 if (unlikely((s64)total < SCHED_POWER_SCALE))
5313 total = SCHED_POWER_SCALE;
5314
5315 total >>= SCHED_POWER_SHIFT;
5316
5317 return div_u64(available, total);
5318 }
5319
5320 static void update_cpu_power(struct sched_domain *sd, int cpu)
5321 {
5322 unsigned long weight = sd->span_weight;
5323 unsigned long power = SCHED_POWER_SCALE;
5324 struct sched_group *sdg = sd->groups;
5325
5326 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5327 if (sched_feat(ARCH_POWER))
5328 power *= arch_scale_smt_power(sd, cpu);
5329 else
5330 power *= default_scale_smt_power(sd, cpu);
5331
5332 power >>= SCHED_POWER_SHIFT;
5333 }
5334
5335 sdg->sgp->power_orig = power;
5336
5337 if (sched_feat(ARCH_POWER))
5338 power *= arch_scale_freq_power(sd, cpu);
5339 else
5340 power *= default_scale_freq_power(sd, cpu);
5341
5342 power >>= SCHED_POWER_SHIFT;
5343
5344 power *= scale_rt_power(cpu);
5345 power >>= SCHED_POWER_SHIFT;
5346
5347 if (!power)
5348 power = 1;
5349
5350 cpu_rq(cpu)->cpu_power = power;
5351 sdg->sgp->power = power;
5352 }
5353
5354 void update_group_power(struct sched_domain *sd, int cpu)
5355 {
5356 struct sched_domain *child = sd->child;
5357 struct sched_group *group, *sdg = sd->groups;
5358 unsigned long power, power_orig;
5359 unsigned long interval;
5360
5361 interval = msecs_to_jiffies(sd->balance_interval);
5362 interval = clamp(interval, 1UL, max_load_balance_interval);
5363 sdg->sgp->next_update = jiffies + interval;
5364
5365 if (!child) {
5366 update_cpu_power(sd, cpu);
5367 return;
5368 }
5369
5370 power_orig = power = 0;
5371
5372 if (child->flags & SD_OVERLAP) {
5373 /*
5374 * SD_OVERLAP domains cannot assume that child groups
5375 * span the current group.
5376 */
5377
5378 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5379 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5380
5381 power_orig += sg->sgp->power_orig;
5382 power += sg->sgp->power;
5383 }
5384 } else {
5385 /*
5386 * !SD_OVERLAP domains can assume that child groups
5387 * span the current group.
5388 */
5389
5390 group = child->groups;
5391 do {
5392 power_orig += group->sgp->power_orig;
5393 power += group->sgp->power;
5394 group = group->next;
5395 } while (group != child->groups);
5396 }
5397
5398 sdg->sgp->power_orig = power_orig;
5399 sdg->sgp->power = power;
5400 }
5401
5402 /*
5403 * Try and fix up capacity for tiny siblings, this is needed when
5404 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5405 * which on its own isn't powerful enough.
5406 *
5407 * See update_sd_pick_busiest() and check_asym_packing().
5408 */
5409 static inline int
5410 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5411 {
5412 /*
5413 * Only siblings can have significantly less than SCHED_POWER_SCALE
5414 */
5415 if (!(sd->flags & SD_SHARE_CPUPOWER))
5416 return 0;
5417
5418 /*
5419 * If ~90% of the cpu_power is still there, we're good.
5420 */
5421 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
5422 return 1;
5423
5424 return 0;
5425 }
5426
5427 /*
5428 * Group imbalance indicates (and tries to solve) the problem where balancing
5429 * groups is inadequate due to tsk_cpus_allowed() constraints.
5430 *
5431 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5432 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5433 * Something like:
5434 *
5435 * { 0 1 2 3 } { 4 5 6 7 }
5436 * * * * *
5437 *
5438 * If we were to balance group-wise we'd place two tasks in the first group and
5439 * two tasks in the second group. Clearly this is undesired as it will overload
5440 * cpu 3 and leave one of the cpus in the second group unused.
5441 *
5442 * The current solution to this issue is detecting the skew in the first group
5443 * by noticing the lower domain failed to reach balance and had difficulty
5444 * moving tasks due to affinity constraints.
5445 *
5446 * When this is so detected; this group becomes a candidate for busiest; see
5447 * update_sd_pick_busiest(). And calculcate_imbalance() and
5448 * find_busiest_group() avoid some of the usual balance conditions to allow it
5449 * to create an effective group imbalance.
5450 *
5451 * This is a somewhat tricky proposition since the next run might not find the
5452 * group imbalance and decide the groups need to be balanced again. A most
5453 * subtle and fragile situation.
5454 */
5455
5456 static inline int sg_imbalanced(struct sched_group *group)
5457 {
5458 return group->sgp->imbalance;
5459 }
5460
5461 /*
5462 * Compute the group capacity.
5463 *
5464 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5465 * first dividing out the smt factor and computing the actual number of cores
5466 * and limit power unit capacity with that.
5467 */
5468 static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5469 {
5470 unsigned int capacity, smt, cpus;
5471 unsigned int power, power_orig;
5472
5473 power = group->sgp->power;
5474 power_orig = group->sgp->power_orig;
5475 cpus = group->group_weight;
5476
5477 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5478 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5479 capacity = cpus / smt; /* cores */
5480
5481 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
5482 if (!capacity)
5483 capacity = fix_small_capacity(env->sd, group);
5484
5485 return capacity;
5486 }
5487
5488 /**
5489 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5490 * @env: The load balancing environment.
5491 * @group: sched_group whose statistics are to be updated.
5492 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5493 * @local_group: Does group contain this_cpu.
5494 * @sgs: variable to hold the statistics for this group.
5495 */
5496 static inline void update_sg_lb_stats(struct lb_env *env,
5497 struct sched_group *group, int load_idx,
5498 int local_group, struct sg_lb_stats *sgs)
5499 {
5500 unsigned long nr_running;
5501 unsigned long load;
5502 int i;
5503
5504 memset(sgs, 0, sizeof(*sgs));
5505
5506 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5507 struct rq *rq = cpu_rq(i);
5508
5509 nr_running = rq->nr_running;
5510
5511 /* Bias balancing toward cpus of our domain */
5512 if (local_group)
5513 load = target_load(i, load_idx);
5514 else
5515 load = source_load(i, load_idx);
5516
5517 sgs->group_load += load;
5518 sgs->sum_nr_running += nr_running;
5519 #ifdef CONFIG_NUMA_BALANCING
5520 sgs->nr_numa_running += rq->nr_numa_running;
5521 sgs->nr_preferred_running += rq->nr_preferred_running;
5522 #endif
5523 sgs->sum_weighted_load += weighted_cpuload(i);
5524 if (idle_cpu(i))
5525 sgs->idle_cpus++;
5526 }
5527
5528 /* Adjust by relative CPU power of the group */
5529 sgs->group_power = group->sgp->power;
5530 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
5531
5532 if (sgs->sum_nr_running)
5533 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5534
5535 sgs->group_weight = group->group_weight;
5536
5537 sgs->group_imb = sg_imbalanced(group);
5538 sgs->group_capacity = sg_capacity(env, group);
5539
5540 if (sgs->group_capacity > sgs->sum_nr_running)
5541 sgs->group_has_capacity = 1;
5542 }
5543
5544 /**
5545 * update_sd_pick_busiest - return 1 on busiest group
5546 * @env: The load balancing environment.
5547 * @sds: sched_domain statistics
5548 * @sg: sched_group candidate to be checked for being the busiest
5549 * @sgs: sched_group statistics
5550 *
5551 * Determine if @sg is a busier group than the previously selected
5552 * busiest group.
5553 *
5554 * Return: %true if @sg is a busier group than the previously selected
5555 * busiest group. %false otherwise.
5556 */
5557 static bool update_sd_pick_busiest(struct lb_env *env,
5558 struct sd_lb_stats *sds,
5559 struct sched_group *sg,
5560 struct sg_lb_stats *sgs)
5561 {
5562 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5563 return false;
5564
5565 if (sgs->sum_nr_running > sgs->group_capacity)
5566 return true;
5567
5568 if (sgs->group_imb)
5569 return true;
5570
5571 /*
5572 * ASYM_PACKING needs to move all the work to the lowest
5573 * numbered CPUs in the group, therefore mark all groups
5574 * higher than ourself as busy.
5575 */
5576 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5577 env->dst_cpu < group_first_cpu(sg)) {
5578 if (!sds->busiest)
5579 return true;
5580
5581 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5582 return true;
5583 }
5584
5585 return false;
5586 }
5587
5588 #ifdef CONFIG_NUMA_BALANCING
5589 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5590 {
5591 if (sgs->sum_nr_running > sgs->nr_numa_running)
5592 return regular;
5593 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5594 return remote;
5595 return all;
5596 }
5597
5598 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5599 {
5600 if (rq->nr_running > rq->nr_numa_running)
5601 return regular;
5602 if (rq->nr_running > rq->nr_preferred_running)
5603 return remote;
5604 return all;
5605 }
5606 #else
5607 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5608 {
5609 return all;
5610 }
5611
5612 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5613 {
5614 return regular;
5615 }
5616 #endif /* CONFIG_NUMA_BALANCING */
5617
5618 /**
5619 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
5620 * @env: The load balancing environment.
5621 * @balance: Should we balance.
5622 * @sds: variable to hold the statistics for this sched_domain.
5623 */
5624 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
5625 {
5626 struct sched_domain *child = env->sd->child;
5627 struct sched_group *sg = env->sd->groups;
5628 struct sg_lb_stats tmp_sgs;
5629 int load_idx, prefer_sibling = 0;
5630
5631 if (child && child->flags & SD_PREFER_SIBLING)
5632 prefer_sibling = 1;
5633
5634 load_idx = get_sd_load_idx(env->sd, env->idle);
5635
5636 do {
5637 struct sg_lb_stats *sgs = &tmp_sgs;
5638 int local_group;
5639
5640 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
5641 if (local_group) {
5642 sds->local = sg;
5643 sgs = &sds->local_stat;
5644
5645 if (env->idle != CPU_NEWLY_IDLE ||
5646 time_after_eq(jiffies, sg->sgp->next_update))
5647 update_group_power(env->sd, env->dst_cpu);
5648 }
5649
5650 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
5651
5652 if (local_group)
5653 goto next_group;
5654
5655 /*
5656 * In case the child domain prefers tasks go to siblings
5657 * first, lower the sg capacity to one so that we'll try
5658 * and move all the excess tasks away. We lower the capacity
5659 * of a group only if the local group has the capacity to fit
5660 * these excess tasks, i.e. nr_running < group_capacity. The
5661 * extra check prevents the case where you always pull from the
5662 * heaviest group when it is already under-utilized (possible
5663 * with a large weight task outweighs the tasks on the system).
5664 */
5665 if (prefer_sibling && sds->local &&
5666 sds->local_stat.group_has_capacity)
5667 sgs->group_capacity = min(sgs->group_capacity, 1U);
5668
5669 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
5670 sds->busiest = sg;
5671 sds->busiest_stat = *sgs;
5672 }
5673
5674 next_group:
5675 /* Now, start updating sd_lb_stats */
5676 sds->total_load += sgs->group_load;
5677 sds->total_pwr += sgs->group_power;
5678
5679 sg = sg->next;
5680 } while (sg != env->sd->groups);
5681
5682 if (env->sd->flags & SD_NUMA)
5683 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
5684 }
5685
5686 /**
5687 * check_asym_packing - Check to see if the group is packed into the
5688 * sched doman.
5689 *
5690 * This is primarily intended to used at the sibling level. Some
5691 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5692 * case of POWER7, it can move to lower SMT modes only when higher
5693 * threads are idle. When in lower SMT modes, the threads will
5694 * perform better since they share less core resources. Hence when we
5695 * have idle threads, we want them to be the higher ones.
5696 *
5697 * This packing function is run on idle threads. It checks to see if
5698 * the busiest CPU in this domain (core in the P7 case) has a higher
5699 * CPU number than the packing function is being run on. Here we are
5700 * assuming lower CPU number will be equivalent to lower a SMT thread
5701 * number.
5702 *
5703 * Return: 1 when packing is required and a task should be moved to
5704 * this CPU. The amount of the imbalance is returned in *imbalance.
5705 *
5706 * @env: The load balancing environment.
5707 * @sds: Statistics of the sched_domain which is to be packed
5708 */
5709 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
5710 {
5711 int busiest_cpu;
5712
5713 if (!(env->sd->flags & SD_ASYM_PACKING))
5714 return 0;
5715
5716 if (!sds->busiest)
5717 return 0;
5718
5719 busiest_cpu = group_first_cpu(sds->busiest);
5720 if (env->dst_cpu > busiest_cpu)
5721 return 0;
5722
5723 env->imbalance = DIV_ROUND_CLOSEST(
5724 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5725 SCHED_POWER_SCALE);
5726
5727 return 1;
5728 }
5729
5730 /**
5731 * fix_small_imbalance - Calculate the minor imbalance that exists
5732 * amongst the groups of a sched_domain, during
5733 * load balancing.
5734 * @env: The load balancing environment.
5735 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
5736 */
5737 static inline
5738 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5739 {
5740 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5741 unsigned int imbn = 2;
5742 unsigned long scaled_busy_load_per_task;
5743 struct sg_lb_stats *local, *busiest;
5744
5745 local = &sds->local_stat;
5746 busiest = &sds->busiest_stat;
5747
5748 if (!local->sum_nr_running)
5749 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5750 else if (busiest->load_per_task > local->load_per_task)
5751 imbn = 1;
5752
5753 scaled_busy_load_per_task =
5754 (busiest->load_per_task * SCHED_POWER_SCALE) /
5755 busiest->group_power;
5756
5757 if (busiest->avg_load + scaled_busy_load_per_task >=
5758 local->avg_load + (scaled_busy_load_per_task * imbn)) {
5759 env->imbalance = busiest->load_per_task;
5760 return;
5761 }
5762
5763 /*
5764 * OK, we don't have enough imbalance to justify moving tasks,
5765 * however we may be able to increase total CPU power used by
5766 * moving them.
5767 */
5768
5769 pwr_now += busiest->group_power *
5770 min(busiest->load_per_task, busiest->avg_load);
5771 pwr_now += local->group_power *
5772 min(local->load_per_task, local->avg_load);
5773 pwr_now /= SCHED_POWER_SCALE;
5774
5775 /* Amount of load we'd subtract */
5776 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5777 busiest->group_power;
5778 if (busiest->avg_load > tmp) {
5779 pwr_move += busiest->group_power *
5780 min(busiest->load_per_task,
5781 busiest->avg_load - tmp);
5782 }
5783
5784 /* Amount of load we'd add */
5785 if (busiest->avg_load * busiest->group_power <
5786 busiest->load_per_task * SCHED_POWER_SCALE) {
5787 tmp = (busiest->avg_load * busiest->group_power) /
5788 local->group_power;
5789 } else {
5790 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
5791 local->group_power;
5792 }
5793 pwr_move += local->group_power *
5794 min(local->load_per_task, local->avg_load + tmp);
5795 pwr_move /= SCHED_POWER_SCALE;
5796
5797 /* Move if we gain throughput */
5798 if (pwr_move > pwr_now)
5799 env->imbalance = busiest->load_per_task;
5800 }
5801
5802 /**
5803 * calculate_imbalance - Calculate the amount of imbalance present within the
5804 * groups of a given sched_domain during load balance.
5805 * @env: load balance environment
5806 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
5807 */
5808 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
5809 {
5810 unsigned long max_pull, load_above_capacity = ~0UL;
5811 struct sg_lb_stats *local, *busiest;
5812
5813 local = &sds->local_stat;
5814 busiest = &sds->busiest_stat;
5815
5816 if (busiest->group_imb) {
5817 /*
5818 * In the group_imb case we cannot rely on group-wide averages
5819 * to ensure cpu-load equilibrium, look at wider averages. XXX
5820 */
5821 busiest->load_per_task =
5822 min(busiest->load_per_task, sds->avg_load);
5823 }
5824
5825 /*
5826 * In the presence of smp nice balancing, certain scenarios can have
5827 * max load less than avg load(as we skip the groups at or below
5828 * its cpu_power, while calculating max_load..)
5829 */
5830 if (busiest->avg_load <= sds->avg_load ||
5831 local->avg_load >= sds->avg_load) {
5832 env->imbalance = 0;
5833 return fix_small_imbalance(env, sds);
5834 }
5835
5836 if (!busiest->group_imb) {
5837 /*
5838 * Don't want to pull so many tasks that a group would go idle.
5839 * Except of course for the group_imb case, since then we might
5840 * have to drop below capacity to reach cpu-load equilibrium.
5841 */
5842 load_above_capacity =
5843 (busiest->sum_nr_running - busiest->group_capacity);
5844
5845 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
5846 load_above_capacity /= busiest->group_power;
5847 }
5848
5849 /*
5850 * We're trying to get all the cpus to the average_load, so we don't
5851 * want to push ourselves above the average load, nor do we wish to
5852 * reduce the max loaded cpu below the average load. At the same time,
5853 * we also don't want to reduce the group load below the group capacity
5854 * (so that we can implement power-savings policies etc). Thus we look
5855 * for the minimum possible imbalance.
5856 */
5857 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
5858
5859 /* How much load to actually move to equalise the imbalance */
5860 env->imbalance = min(
5861 max_pull * busiest->group_power,
5862 (sds->avg_load - local->avg_load) * local->group_power
5863 ) / SCHED_POWER_SCALE;
5864
5865 /*
5866 * if *imbalance is less than the average load per runnable task
5867 * there is no guarantee that any tasks will be moved so we'll have
5868 * a think about bumping its value to force at least one task to be
5869 * moved
5870 */
5871 if (env->imbalance < busiest->load_per_task)
5872 return fix_small_imbalance(env, sds);
5873 }
5874
5875 /******* find_busiest_group() helpers end here *********************/
5876
5877 /**
5878 * find_busiest_group - Returns the busiest group within the sched_domain
5879 * if there is an imbalance. If there isn't an imbalance, and
5880 * the user has opted for power-savings, it returns a group whose
5881 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5882 * such a group exists.
5883 *
5884 * Also calculates the amount of weighted load which should be moved
5885 * to restore balance.
5886 *
5887 * @env: The load balancing environment.
5888 *
5889 * Return: - The busiest group if imbalance exists.
5890 * - If no imbalance and user has opted for power-savings balance,
5891 * return the least loaded group whose CPUs can be
5892 * put to idle by rebalancing its tasks onto our group.
5893 */
5894 static struct sched_group *find_busiest_group(struct lb_env *env)
5895 {
5896 struct sg_lb_stats *local, *busiest;
5897 struct sd_lb_stats sds;
5898
5899 init_sd_lb_stats(&sds);
5900
5901 /*
5902 * Compute the various statistics relavent for load balancing at
5903 * this level.
5904 */
5905 update_sd_lb_stats(env, &sds);
5906 local = &sds.local_stat;
5907 busiest = &sds.busiest_stat;
5908
5909 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5910 check_asym_packing(env, &sds))
5911 return sds.busiest;
5912
5913 /* There is no busy sibling group to pull tasks from */
5914 if (!sds.busiest || busiest->sum_nr_running == 0)
5915 goto out_balanced;
5916
5917 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
5918
5919 /*
5920 * If the busiest group is imbalanced the below checks don't
5921 * work because they assume all things are equal, which typically
5922 * isn't true due to cpus_allowed constraints and the like.
5923 */
5924 if (busiest->group_imb)
5925 goto force_balance;
5926
5927 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
5928 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5929 !busiest->group_has_capacity)
5930 goto force_balance;
5931
5932 /*
5933 * If the local group is more busy than the selected busiest group
5934 * don't try and pull any tasks.
5935 */
5936 if (local->avg_load >= busiest->avg_load)
5937 goto out_balanced;
5938
5939 /*
5940 * Don't pull any tasks if this group is already above the domain
5941 * average load.
5942 */
5943 if (local->avg_load >= sds.avg_load)
5944 goto out_balanced;
5945
5946 if (env->idle == CPU_IDLE) {
5947 /*
5948 * This cpu is idle. If the busiest group load doesn't
5949 * have more tasks than the number of available cpu's and
5950 * there is no imbalance between this and busiest group
5951 * wrt to idle cpu's, it is balanced.
5952 */
5953 if ((local->idle_cpus < busiest->idle_cpus) &&
5954 busiest->sum_nr_running <= busiest->group_weight)
5955 goto out_balanced;
5956 } else {
5957 /*
5958 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5959 * imbalance_pct to be conservative.
5960 */
5961 if (100 * busiest->avg_load <=
5962 env->sd->imbalance_pct * local->avg_load)
5963 goto out_balanced;
5964 }
5965
5966 force_balance:
5967 /* Looks like there is an imbalance. Compute it */
5968 calculate_imbalance(env, &sds);
5969 return sds.busiest;
5970
5971 out_balanced:
5972 env->imbalance = 0;
5973 return NULL;
5974 }
5975
5976 /*
5977 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5978 */
5979 static struct rq *find_busiest_queue(struct lb_env *env,
5980 struct sched_group *group)
5981 {
5982 struct rq *busiest = NULL, *rq;
5983 unsigned long busiest_load = 0, busiest_power = 1;
5984 int i;
5985
5986 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5987 unsigned long power, capacity, wl;
5988 enum fbq_type rt;
5989
5990 rq = cpu_rq(i);
5991 rt = fbq_classify_rq(rq);
5992
5993 /*
5994 * We classify groups/runqueues into three groups:
5995 * - regular: there are !numa tasks
5996 * - remote: there are numa tasks that run on the 'wrong' node
5997 * - all: there is no distinction
5998 *
5999 * In order to avoid migrating ideally placed numa tasks,
6000 * ignore those when there's better options.
6001 *
6002 * If we ignore the actual busiest queue to migrate another
6003 * task, the next balance pass can still reduce the busiest
6004 * queue by moving tasks around inside the node.
6005 *
6006 * If we cannot move enough load due to this classification
6007 * the next pass will adjust the group classification and
6008 * allow migration of more tasks.
6009 *
6010 * Both cases only affect the total convergence complexity.
6011 */
6012 if (rt > env->fbq_type)
6013 continue;
6014
6015 power = power_of(i);
6016 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
6017 if (!capacity)
6018 capacity = fix_small_capacity(env->sd, group);
6019
6020 wl = weighted_cpuload(i);
6021
6022 /*
6023 * When comparing with imbalance, use weighted_cpuload()
6024 * which is not scaled with the cpu power.
6025 */
6026 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
6027 continue;
6028
6029 /*
6030 * For the load comparisons with the other cpu's, consider
6031 * the weighted_cpuload() scaled with the cpu power, so that
6032 * the load can be moved away from the cpu that is potentially
6033 * running at a lower capacity.
6034 *
6035 * Thus we're looking for max(wl_i / power_i), crosswise
6036 * multiplication to rid ourselves of the division works out
6037 * to: wl_i * power_j > wl_j * power_i; where j is our
6038 * previous maximum.
6039 */
6040 if (wl * busiest_power > busiest_load * power) {
6041 busiest_load = wl;
6042 busiest_power = power;
6043 busiest = rq;
6044 }
6045 }
6046
6047 return busiest;
6048 }
6049
6050 /*
6051 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6052 * so long as it is large enough.
6053 */
6054 #define MAX_PINNED_INTERVAL 512
6055
6056 /* Working cpumask for load_balance and load_balance_newidle. */
6057 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6058
6059 static int need_active_balance(struct lb_env *env)
6060 {
6061 struct sched_domain *sd = env->sd;
6062
6063 if (env->idle == CPU_NEWLY_IDLE) {
6064
6065 /*
6066 * ASYM_PACKING needs to force migrate tasks from busy but
6067 * higher numbered CPUs in order to pack all tasks in the
6068 * lowest numbered CPUs.
6069 */
6070 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6071 return 1;
6072 }
6073
6074 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6075 }
6076
6077 static int active_load_balance_cpu_stop(void *data);
6078
6079 static int should_we_balance(struct lb_env *env)
6080 {
6081 struct sched_group *sg = env->sd->groups;
6082 struct cpumask *sg_cpus, *sg_mask;
6083 int cpu, balance_cpu = -1;
6084
6085 /*
6086 * In the newly idle case, we will allow all the cpu's
6087 * to do the newly idle load balance.
6088 */
6089 if (env->idle == CPU_NEWLY_IDLE)
6090 return 1;
6091
6092 sg_cpus = sched_group_cpus(sg);
6093 sg_mask = sched_group_mask(sg);
6094 /* Try to find first idle cpu */
6095 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6096 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6097 continue;
6098
6099 balance_cpu = cpu;
6100 break;
6101 }
6102
6103 if (balance_cpu == -1)
6104 balance_cpu = group_balance_cpu(sg);
6105
6106 /*
6107 * First idle cpu or the first cpu(busiest) in this sched group
6108 * is eligible for doing load balancing at this and above domains.
6109 */
6110 return balance_cpu == env->dst_cpu;
6111 }
6112
6113 /*
6114 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6115 * tasks if there is an imbalance.
6116 */
6117 static int load_balance(int this_cpu, struct rq *this_rq,
6118 struct sched_domain *sd, enum cpu_idle_type idle,
6119 int *continue_balancing)
6120 {
6121 int ld_moved, cur_ld_moved, active_balance = 0;
6122 struct sched_domain *sd_parent = sd->parent;
6123 struct sched_group *group;
6124 struct rq *busiest;
6125 unsigned long flags;
6126 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6127
6128 struct lb_env env = {
6129 .sd = sd,
6130 .dst_cpu = this_cpu,
6131 .dst_rq = this_rq,
6132 .dst_grpmask = sched_group_cpus(sd->groups),
6133 .idle = idle,
6134 .loop_break = sched_nr_migrate_break,
6135 .cpus = cpus,
6136 .fbq_type = all,
6137 };
6138
6139 /*
6140 * For NEWLY_IDLE load_balancing, we don't need to consider
6141 * other cpus in our group
6142 */
6143 if (idle == CPU_NEWLY_IDLE)
6144 env.dst_grpmask = NULL;
6145
6146 cpumask_copy(cpus, cpu_active_mask);
6147
6148 schedstat_inc(sd, lb_count[idle]);
6149
6150 redo:
6151 if (!should_we_balance(&env)) {
6152 *continue_balancing = 0;
6153 goto out_balanced;
6154 }
6155
6156 group = find_busiest_group(&env);
6157 if (!group) {
6158 schedstat_inc(sd, lb_nobusyg[idle]);
6159 goto out_balanced;
6160 }
6161
6162 busiest = find_busiest_queue(&env, group);
6163 if (!busiest) {
6164 schedstat_inc(sd, lb_nobusyq[idle]);
6165 goto out_balanced;
6166 }
6167
6168 BUG_ON(busiest == env.dst_rq);
6169
6170 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6171
6172 ld_moved = 0;
6173 if (busiest->nr_running > 1) {
6174 /*
6175 * Attempt to move tasks. If find_busiest_group has found
6176 * an imbalance but busiest->nr_running <= 1, the group is
6177 * still unbalanced. ld_moved simply stays zero, so it is
6178 * correctly treated as an imbalance.
6179 */
6180 env.flags |= LBF_ALL_PINNED;
6181 env.src_cpu = busiest->cpu;
6182 env.src_rq = busiest;
6183 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6184
6185 more_balance:
6186 local_irq_save(flags);
6187 double_rq_lock(env.dst_rq, busiest);
6188
6189 /*
6190 * cur_ld_moved - load moved in current iteration
6191 * ld_moved - cumulative load moved across iterations
6192 */
6193 cur_ld_moved = move_tasks(&env);
6194 ld_moved += cur_ld_moved;
6195 double_rq_unlock(env.dst_rq, busiest);
6196 local_irq_restore(flags);
6197
6198 /*
6199 * some other cpu did the load balance for us.
6200 */
6201 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6202 resched_cpu(env.dst_cpu);
6203
6204 if (env.flags & LBF_NEED_BREAK) {
6205 env.flags &= ~LBF_NEED_BREAK;
6206 goto more_balance;
6207 }
6208
6209 /*
6210 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6211 * us and move them to an alternate dst_cpu in our sched_group
6212 * where they can run. The upper limit on how many times we
6213 * iterate on same src_cpu is dependent on number of cpus in our
6214 * sched_group.
6215 *
6216 * This changes load balance semantics a bit on who can move
6217 * load to a given_cpu. In addition to the given_cpu itself
6218 * (or a ilb_cpu acting on its behalf where given_cpu is
6219 * nohz-idle), we now have balance_cpu in a position to move
6220 * load to given_cpu. In rare situations, this may cause
6221 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6222 * _independently_ and at _same_ time to move some load to
6223 * given_cpu) causing exceess load to be moved to given_cpu.
6224 * This however should not happen so much in practice and
6225 * moreover subsequent load balance cycles should correct the
6226 * excess load moved.
6227 */
6228 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6229
6230 /* Prevent to re-select dst_cpu via env's cpus */
6231 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6232
6233 env.dst_rq = cpu_rq(env.new_dst_cpu);
6234 env.dst_cpu = env.new_dst_cpu;
6235 env.flags &= ~LBF_DST_PINNED;
6236 env.loop = 0;
6237 env.loop_break = sched_nr_migrate_break;
6238
6239 /*
6240 * Go back to "more_balance" rather than "redo" since we
6241 * need to continue with same src_cpu.
6242 */
6243 goto more_balance;
6244 }
6245
6246 /*
6247 * We failed to reach balance because of affinity.
6248 */
6249 if (sd_parent) {
6250 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6251
6252 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6253 *group_imbalance = 1;
6254 } else if (*group_imbalance)
6255 *group_imbalance = 0;
6256 }
6257
6258 /* All tasks on this runqueue were pinned by CPU affinity */
6259 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6260 cpumask_clear_cpu(cpu_of(busiest), cpus);
6261 if (!cpumask_empty(cpus)) {
6262 env.loop = 0;
6263 env.loop_break = sched_nr_migrate_break;
6264 goto redo;
6265 }
6266 goto out_balanced;
6267 }
6268 }
6269
6270 if (!ld_moved) {
6271 schedstat_inc(sd, lb_failed[idle]);
6272 /*
6273 * Increment the failure counter only on periodic balance.
6274 * We do not want newidle balance, which can be very
6275 * frequent, pollute the failure counter causing
6276 * excessive cache_hot migrations and active balances.
6277 */
6278 if (idle != CPU_NEWLY_IDLE)
6279 sd->nr_balance_failed++;
6280
6281 if (need_active_balance(&env)) {
6282 raw_spin_lock_irqsave(&busiest->lock, flags);
6283
6284 /* don't kick the active_load_balance_cpu_stop,
6285 * if the curr task on busiest cpu can't be
6286 * moved to this_cpu
6287 */
6288 if (!cpumask_test_cpu(this_cpu,
6289 tsk_cpus_allowed(busiest->curr))) {
6290 raw_spin_unlock_irqrestore(&busiest->lock,
6291 flags);
6292 env.flags |= LBF_ALL_PINNED;
6293 goto out_one_pinned;
6294 }
6295
6296 /*
6297 * ->active_balance synchronizes accesses to
6298 * ->active_balance_work. Once set, it's cleared
6299 * only after active load balance is finished.
6300 */
6301 if (!busiest->active_balance) {
6302 busiest->active_balance = 1;
6303 busiest->push_cpu = this_cpu;
6304 active_balance = 1;
6305 }
6306 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6307
6308 if (active_balance) {
6309 stop_one_cpu_nowait(cpu_of(busiest),
6310 active_load_balance_cpu_stop, busiest,
6311 &busiest->active_balance_work);
6312 }
6313
6314 /*
6315 * We've kicked active balancing, reset the failure
6316 * counter.
6317 */
6318 sd->nr_balance_failed = sd->cache_nice_tries+1;
6319 }
6320 } else
6321 sd->nr_balance_failed = 0;
6322
6323 if (likely(!active_balance)) {
6324 /* We were unbalanced, so reset the balancing interval */
6325 sd->balance_interval = sd->min_interval;
6326 } else {
6327 /*
6328 * If we've begun active balancing, start to back off. This
6329 * case may not be covered by the all_pinned logic if there
6330 * is only 1 task on the busy runqueue (because we don't call
6331 * move_tasks).
6332 */
6333 if (sd->balance_interval < sd->max_interval)
6334 sd->balance_interval *= 2;
6335 }
6336
6337 goto out;
6338
6339 out_balanced:
6340 schedstat_inc(sd, lb_balanced[idle]);
6341
6342 sd->nr_balance_failed = 0;
6343
6344 out_one_pinned:
6345 /* tune up the balancing interval */
6346 if (((env.flags & LBF_ALL_PINNED) &&
6347 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6348 (sd->balance_interval < sd->max_interval))
6349 sd->balance_interval *= 2;
6350
6351 ld_moved = 0;
6352 out:
6353 return ld_moved;
6354 }
6355
6356 /*
6357 * idle_balance is called by schedule() if this_cpu is about to become
6358 * idle. Attempts to pull tasks from other CPUs.
6359 */
6360 void idle_balance(int this_cpu, struct rq *this_rq)
6361 {
6362 struct sched_domain *sd;
6363 int pulled_task = 0;
6364 unsigned long next_balance = jiffies + HZ;
6365 u64 curr_cost = 0;
6366
6367 this_rq->idle_stamp = rq_clock(this_rq);
6368
6369 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6370 return;
6371
6372 /*
6373 * Drop the rq->lock, but keep IRQ/preempt disabled.
6374 */
6375 raw_spin_unlock(&this_rq->lock);
6376
6377 update_blocked_averages(this_cpu);
6378 rcu_read_lock();
6379 for_each_domain(this_cpu, sd) {
6380 unsigned long interval;
6381 int continue_balancing = 1;
6382 u64 t0, domain_cost;
6383
6384 if (!(sd->flags & SD_LOAD_BALANCE))
6385 continue;
6386
6387 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6388 break;
6389
6390 if (sd->flags & SD_BALANCE_NEWIDLE) {
6391 t0 = sched_clock_cpu(this_cpu);
6392
6393 /* If we've pulled tasks over stop searching: */
6394 pulled_task = load_balance(this_cpu, this_rq,
6395 sd, CPU_NEWLY_IDLE,
6396 &continue_balancing);
6397
6398 domain_cost = sched_clock_cpu(this_cpu) - t0;
6399 if (domain_cost > sd->max_newidle_lb_cost)
6400 sd->max_newidle_lb_cost = domain_cost;
6401
6402 curr_cost += domain_cost;
6403 }
6404
6405 interval = msecs_to_jiffies(sd->balance_interval);
6406 if (time_after(next_balance, sd->last_balance + interval))
6407 next_balance = sd->last_balance + interval;
6408 if (pulled_task) {
6409 this_rq->idle_stamp = 0;
6410 break;
6411 }
6412 }
6413 rcu_read_unlock();
6414
6415 raw_spin_lock(&this_rq->lock);
6416
6417 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6418 /*
6419 * We are going idle. next_balance may be set based on
6420 * a busy processor. So reset next_balance.
6421 */
6422 this_rq->next_balance = next_balance;
6423 }
6424
6425 if (curr_cost > this_rq->max_idle_balance_cost)
6426 this_rq->max_idle_balance_cost = curr_cost;
6427 }
6428
6429 /*
6430 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6431 * running tasks off the busiest CPU onto idle CPUs. It requires at
6432 * least 1 task to be running on each physical CPU where possible, and
6433 * avoids physical / logical imbalances.
6434 */
6435 static int active_load_balance_cpu_stop(void *data)
6436 {
6437 struct rq *busiest_rq = data;
6438 int busiest_cpu = cpu_of(busiest_rq);
6439 int target_cpu = busiest_rq->push_cpu;
6440 struct rq *target_rq = cpu_rq(target_cpu);
6441 struct sched_domain *sd;
6442
6443 raw_spin_lock_irq(&busiest_rq->lock);
6444
6445 /* make sure the requested cpu hasn't gone down in the meantime */
6446 if (unlikely(busiest_cpu != smp_processor_id() ||
6447 !busiest_rq->active_balance))
6448 goto out_unlock;
6449
6450 /* Is there any task to move? */
6451 if (busiest_rq->nr_running <= 1)
6452 goto out_unlock;
6453
6454 /*
6455 * This condition is "impossible", if it occurs
6456 * we need to fix it. Originally reported by
6457 * Bjorn Helgaas on a 128-cpu setup.
6458 */
6459 BUG_ON(busiest_rq == target_rq);
6460
6461 /* move a task from busiest_rq to target_rq */
6462 double_lock_balance(busiest_rq, target_rq);
6463
6464 /* Search for an sd spanning us and the target CPU. */
6465 rcu_read_lock();
6466 for_each_domain(target_cpu, sd) {
6467 if ((sd->flags & SD_LOAD_BALANCE) &&
6468 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6469 break;
6470 }
6471
6472 if (likely(sd)) {
6473 struct lb_env env = {
6474 .sd = sd,
6475 .dst_cpu = target_cpu,
6476 .dst_rq = target_rq,
6477 .src_cpu = busiest_rq->cpu,
6478 .src_rq = busiest_rq,
6479 .idle = CPU_IDLE,
6480 };
6481
6482 schedstat_inc(sd, alb_count);
6483
6484 if (move_one_task(&env))
6485 schedstat_inc(sd, alb_pushed);
6486 else
6487 schedstat_inc(sd, alb_failed);
6488 }
6489 rcu_read_unlock();
6490 double_unlock_balance(busiest_rq, target_rq);
6491 out_unlock:
6492 busiest_rq->active_balance = 0;
6493 raw_spin_unlock_irq(&busiest_rq->lock);
6494 return 0;
6495 }
6496
6497 #ifdef CONFIG_NO_HZ_COMMON
6498 /*
6499 * idle load balancing details
6500 * - When one of the busy CPUs notice that there may be an idle rebalancing
6501 * needed, they will kick the idle load balancer, which then does idle
6502 * load balancing for all the idle CPUs.
6503 */
6504 static struct {
6505 cpumask_var_t idle_cpus_mask;
6506 atomic_t nr_cpus;
6507 unsigned long next_balance; /* in jiffy units */
6508 } nohz ____cacheline_aligned;
6509
6510 static inline int find_new_ilb(int call_cpu)
6511 {
6512 int ilb = cpumask_first(nohz.idle_cpus_mask);
6513
6514 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6515 return ilb;
6516
6517 return nr_cpu_ids;
6518 }
6519
6520 /*
6521 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6522 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6523 * CPU (if there is one).
6524 */
6525 static void nohz_balancer_kick(int cpu)
6526 {
6527 int ilb_cpu;
6528
6529 nohz.next_balance++;
6530
6531 ilb_cpu = find_new_ilb(cpu);
6532
6533 if (ilb_cpu >= nr_cpu_ids)
6534 return;
6535
6536 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
6537 return;
6538 /*
6539 * Use smp_send_reschedule() instead of resched_cpu().
6540 * This way we generate a sched IPI on the target cpu which
6541 * is idle. And the softirq performing nohz idle load balance
6542 * will be run before returning from the IPI.
6543 */
6544 smp_send_reschedule(ilb_cpu);
6545 return;
6546 }
6547
6548 static inline void nohz_balance_exit_idle(int cpu)
6549 {
6550 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6551 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6552 atomic_dec(&nohz.nr_cpus);
6553 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6554 }
6555 }
6556
6557 static inline void set_cpu_sd_state_busy(void)
6558 {
6559 struct sched_domain *sd;
6560
6561 rcu_read_lock();
6562 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
6563
6564 if (!sd || !sd->nohz_idle)
6565 goto unlock;
6566 sd->nohz_idle = 0;
6567
6568 for (; sd; sd = sd->parent)
6569 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
6570 unlock:
6571 rcu_read_unlock();
6572 }
6573
6574 void set_cpu_sd_state_idle(void)
6575 {
6576 struct sched_domain *sd;
6577
6578 rcu_read_lock();
6579 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
6580
6581 if (!sd || sd->nohz_idle)
6582 goto unlock;
6583 sd->nohz_idle = 1;
6584
6585 for (; sd; sd = sd->parent)
6586 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
6587 unlock:
6588 rcu_read_unlock();
6589 }
6590
6591 /*
6592 * This routine will record that the cpu is going idle with tick stopped.
6593 * This info will be used in performing idle load balancing in the future.
6594 */
6595 void nohz_balance_enter_idle(int cpu)
6596 {
6597 /*
6598 * If this cpu is going down, then nothing needs to be done.
6599 */
6600 if (!cpu_active(cpu))
6601 return;
6602
6603 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6604 return;
6605
6606 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6607 atomic_inc(&nohz.nr_cpus);
6608 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6609 }
6610
6611 static int sched_ilb_notifier(struct notifier_block *nfb,
6612 unsigned long action, void *hcpu)
6613 {
6614 switch (action & ~CPU_TASKS_FROZEN) {
6615 case CPU_DYING:
6616 nohz_balance_exit_idle(smp_processor_id());
6617 return NOTIFY_OK;
6618 default:
6619 return NOTIFY_DONE;
6620 }
6621 }
6622 #endif
6623
6624 static DEFINE_SPINLOCK(balancing);
6625
6626 /*
6627 * Scale the max load_balance interval with the number of CPUs in the system.
6628 * This trades load-balance latency on larger machines for less cross talk.
6629 */
6630 void update_max_interval(void)
6631 {
6632 max_load_balance_interval = HZ*num_online_cpus()/10;
6633 }
6634
6635 /*
6636 * It checks each scheduling domain to see if it is due to be balanced,
6637 * and initiates a balancing operation if so.
6638 *
6639 * Balancing parameters are set up in init_sched_domains.
6640 */
6641 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6642 {
6643 int continue_balancing = 1;
6644 struct rq *rq = cpu_rq(cpu);
6645 unsigned long interval;
6646 struct sched_domain *sd;
6647 /* Earliest time when we have to do rebalance again */
6648 unsigned long next_balance = jiffies + 60*HZ;
6649 int update_next_balance = 0;
6650 int need_serialize, need_decay = 0;
6651 u64 max_cost = 0;
6652
6653 update_blocked_averages(cpu);
6654
6655 rcu_read_lock();
6656 for_each_domain(cpu, sd) {
6657 /*
6658 * Decay the newidle max times here because this is a regular
6659 * visit to all the domains. Decay ~1% per second.
6660 */
6661 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6662 sd->max_newidle_lb_cost =
6663 (sd->max_newidle_lb_cost * 253) / 256;
6664 sd->next_decay_max_lb_cost = jiffies + HZ;
6665 need_decay = 1;
6666 }
6667 max_cost += sd->max_newidle_lb_cost;
6668
6669 if (!(sd->flags & SD_LOAD_BALANCE))
6670 continue;
6671
6672 /*
6673 * Stop the load balance at this level. There is another
6674 * CPU in our sched group which is doing load balancing more
6675 * actively.
6676 */
6677 if (!continue_balancing) {
6678 if (need_decay)
6679 continue;
6680 break;
6681 }
6682
6683 interval = sd->balance_interval;
6684 if (idle != CPU_IDLE)
6685 interval *= sd->busy_factor;
6686
6687 /* scale ms to jiffies */
6688 interval = msecs_to_jiffies(interval);
6689 interval = clamp(interval, 1UL, max_load_balance_interval);
6690
6691 need_serialize = sd->flags & SD_SERIALIZE;
6692
6693 if (need_serialize) {
6694 if (!spin_trylock(&balancing))
6695 goto out;
6696 }
6697
6698 if (time_after_eq(jiffies, sd->last_balance + interval)) {
6699 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
6700 /*
6701 * The LBF_DST_PINNED logic could have changed
6702 * env->dst_cpu, so we can't know our idle
6703 * state even if we migrated tasks. Update it.
6704 */
6705 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
6706 }
6707 sd->last_balance = jiffies;
6708 }
6709 if (need_serialize)
6710 spin_unlock(&balancing);
6711 out:
6712 if (time_after(next_balance, sd->last_balance + interval)) {
6713 next_balance = sd->last_balance + interval;
6714 update_next_balance = 1;
6715 }
6716 }
6717 if (need_decay) {
6718 /*
6719 * Ensure the rq-wide value also decays but keep it at a
6720 * reasonable floor to avoid funnies with rq->avg_idle.
6721 */
6722 rq->max_idle_balance_cost =
6723 max((u64)sysctl_sched_migration_cost, max_cost);
6724 }
6725 rcu_read_unlock();
6726
6727 /*
6728 * next_balance will be updated only when there is a need.
6729 * When the cpu is attached to null domain for ex, it will not be
6730 * updated.
6731 */
6732 if (likely(update_next_balance))
6733 rq->next_balance = next_balance;
6734 }
6735
6736 #ifdef CONFIG_NO_HZ_COMMON
6737 /*
6738 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
6739 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6740 */
6741 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6742 {
6743 struct rq *this_rq = cpu_rq(this_cpu);
6744 struct rq *rq;
6745 int balance_cpu;
6746
6747 if (idle != CPU_IDLE ||
6748 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6749 goto end;
6750
6751 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
6752 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
6753 continue;
6754
6755 /*
6756 * If this cpu gets work to do, stop the load balancing
6757 * work being done for other cpus. Next load
6758 * balancing owner will pick it up.
6759 */
6760 if (need_resched())
6761 break;
6762
6763 rq = cpu_rq(balance_cpu);
6764
6765 raw_spin_lock_irq(&rq->lock);
6766 update_rq_clock(rq);
6767 update_idle_cpu_load(rq);
6768 raw_spin_unlock_irq(&rq->lock);
6769
6770 rebalance_domains(balance_cpu, CPU_IDLE);
6771
6772 if (time_after(this_rq->next_balance, rq->next_balance))
6773 this_rq->next_balance = rq->next_balance;
6774 }
6775 nohz.next_balance = this_rq->next_balance;
6776 end:
6777 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
6778 }
6779
6780 /*
6781 * Current heuristic for kicking the idle load balancer in the presence
6782 * of an idle cpu is the system.
6783 * - This rq has more than one task.
6784 * - At any scheduler domain level, this cpu's scheduler group has multiple
6785 * busy cpu's exceeding the group's power.
6786 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6787 * domain span are idle.
6788 */
6789 static inline int nohz_kick_needed(struct rq *rq, int cpu)
6790 {
6791 unsigned long now = jiffies;
6792 struct sched_domain *sd;
6793
6794 if (unlikely(idle_cpu(cpu)))
6795 return 0;
6796
6797 /*
6798 * We may be recently in ticked or tickless idle mode. At the first
6799 * busy tick after returning from idle, we will update the busy stats.
6800 */
6801 set_cpu_sd_state_busy();
6802 nohz_balance_exit_idle(cpu);
6803
6804 /*
6805 * None are in tickless mode and hence no need for NOHZ idle load
6806 * balancing.
6807 */
6808 if (likely(!atomic_read(&nohz.nr_cpus)))
6809 return 0;
6810
6811 if (time_before(now, nohz.next_balance))
6812 return 0;
6813
6814 if (rq->nr_running >= 2)
6815 goto need_kick;
6816
6817 rcu_read_lock();
6818 for_each_domain(cpu, sd) {
6819 struct sched_group *sg = sd->groups;
6820 struct sched_group_power *sgp = sg->sgp;
6821 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
6822
6823 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
6824 goto need_kick_unlock;
6825
6826 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6827 && (cpumask_first_and(nohz.idle_cpus_mask,
6828 sched_domain_span(sd)) < cpu))
6829 goto need_kick_unlock;
6830
6831 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6832 break;
6833 }
6834 rcu_read_unlock();
6835 return 0;
6836
6837 need_kick_unlock:
6838 rcu_read_unlock();
6839 need_kick:
6840 return 1;
6841 }
6842 #else
6843 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6844 #endif
6845
6846 /*
6847 * run_rebalance_domains is triggered when needed from the scheduler tick.
6848 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
6849 */
6850 static void run_rebalance_domains(struct softirq_action *h)
6851 {
6852 int this_cpu = smp_processor_id();
6853 struct rq *this_rq = cpu_rq(this_cpu);
6854 enum cpu_idle_type idle = this_rq->idle_balance ?
6855 CPU_IDLE : CPU_NOT_IDLE;
6856
6857 rebalance_domains(this_cpu, idle);
6858
6859 /*
6860 * If this cpu has a pending nohz_balance_kick, then do the
6861 * balancing on behalf of the other idle cpus whose ticks are
6862 * stopped.
6863 */
6864 nohz_idle_balance(this_cpu, idle);
6865 }
6866
6867 static inline int on_null_domain(int cpu)
6868 {
6869 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
6870 }
6871
6872 /*
6873 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
6874 */
6875 void trigger_load_balance(struct rq *rq, int cpu)
6876 {
6877 /* Don't need to rebalance while attached to NULL domain */
6878 if (time_after_eq(jiffies, rq->next_balance) &&
6879 likely(!on_null_domain(cpu)))
6880 raise_softirq(SCHED_SOFTIRQ);
6881 #ifdef CONFIG_NO_HZ_COMMON
6882 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
6883 nohz_balancer_kick(cpu);
6884 #endif
6885 }
6886
6887 static void rq_online_fair(struct rq *rq)
6888 {
6889 update_sysctl();
6890 }
6891
6892 static void rq_offline_fair(struct rq *rq)
6893 {
6894 update_sysctl();
6895
6896 /* Ensure any throttled groups are reachable by pick_next_task */
6897 unthrottle_offline_cfs_rqs(rq);
6898 }
6899
6900 #endif /* CONFIG_SMP */
6901
6902 /*
6903 * scheduler tick hitting a task of our scheduling class:
6904 */
6905 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
6906 {
6907 struct cfs_rq *cfs_rq;
6908 struct sched_entity *se = &curr->se;
6909
6910 for_each_sched_entity(se) {
6911 cfs_rq = cfs_rq_of(se);
6912 entity_tick(cfs_rq, se, queued);
6913 }
6914
6915 if (numabalancing_enabled)
6916 task_tick_numa(rq, curr);
6917
6918 update_rq_runnable_avg(rq, 1);
6919 }
6920
6921 /*
6922 * called on fork with the child task as argument from the parent's context
6923 * - child not yet on the tasklist
6924 * - preemption disabled
6925 */
6926 static void task_fork_fair(struct task_struct *p)
6927 {
6928 struct cfs_rq *cfs_rq;
6929 struct sched_entity *se = &p->se, *curr;
6930 int this_cpu = smp_processor_id();
6931 struct rq *rq = this_rq();
6932 unsigned long flags;
6933
6934 raw_spin_lock_irqsave(&rq->lock, flags);
6935
6936 update_rq_clock(rq);
6937
6938 cfs_rq = task_cfs_rq(current);
6939 curr = cfs_rq->curr;
6940
6941 /*
6942 * Not only the cpu but also the task_group of the parent might have
6943 * been changed after parent->se.parent,cfs_rq were copied to
6944 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6945 * of child point to valid ones.
6946 */
6947 rcu_read_lock();
6948 __set_task_cpu(p, this_cpu);
6949 rcu_read_unlock();
6950
6951 update_curr(cfs_rq);
6952
6953 if (curr)
6954 se->vruntime = curr->vruntime;
6955 place_entity(cfs_rq, se, 1);
6956
6957 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
6958 /*
6959 * Upon rescheduling, sched_class::put_prev_task() will place
6960 * 'current' within the tree based on its new key value.
6961 */
6962 swap(curr->vruntime, se->vruntime);
6963 resched_task(rq->curr);
6964 }
6965
6966 se->vruntime -= cfs_rq->min_vruntime;
6967
6968 raw_spin_unlock_irqrestore(&rq->lock, flags);
6969 }
6970
6971 /*
6972 * Priority of the task has changed. Check to see if we preempt
6973 * the current task.
6974 */
6975 static void
6976 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
6977 {
6978 if (!p->se.on_rq)
6979 return;
6980
6981 /*
6982 * Reschedule if we are currently running on this runqueue and
6983 * our priority decreased, or if we are not currently running on
6984 * this runqueue and our priority is higher than the current's
6985 */
6986 if (rq->curr == p) {
6987 if (p->prio > oldprio)
6988 resched_task(rq->curr);
6989 } else
6990 check_preempt_curr(rq, p, 0);
6991 }
6992
6993 static void switched_from_fair(struct rq *rq, struct task_struct *p)
6994 {
6995 struct sched_entity *se = &p->se;
6996 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6997
6998 /*
6999 * Ensure the task's vruntime is normalized, so that when its
7000 * switched back to the fair class the enqueue_entity(.flags=0) will
7001 * do the right thing.
7002 *
7003 * If it was on_rq, then the dequeue_entity(.flags=0) will already
7004 * have normalized the vruntime, if it was !on_rq, then only when
7005 * the task is sleeping will it still have non-normalized vruntime.
7006 */
7007 if (!se->on_rq && p->state != TASK_RUNNING) {
7008 /*
7009 * Fix up our vruntime so that the current sleep doesn't
7010 * cause 'unlimited' sleep bonus.
7011 */
7012 place_entity(cfs_rq, se, 0);
7013 se->vruntime -= cfs_rq->min_vruntime;
7014 }
7015
7016 #ifdef CONFIG_SMP
7017 /*
7018 * Remove our load from contribution when we leave sched_fair
7019 * and ensure we don't carry in an old decay_count if we
7020 * switch back.
7021 */
7022 if (se->avg.decay_count) {
7023 __synchronize_entity_decay(se);
7024 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7025 }
7026 #endif
7027 }
7028
7029 /*
7030 * We switched to the sched_fair class.
7031 */
7032 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7033 {
7034 if (!p->se.on_rq)
7035 return;
7036
7037 /*
7038 * We were most likely switched from sched_rt, so
7039 * kick off the schedule if running, otherwise just see
7040 * if we can still preempt the current task.
7041 */
7042 if (rq->curr == p)
7043 resched_task(rq->curr);
7044 else
7045 check_preempt_curr(rq, p, 0);
7046 }
7047
7048 /* Account for a task changing its policy or group.
7049 *
7050 * This routine is mostly called to set cfs_rq->curr field when a task
7051 * migrates between groups/classes.
7052 */
7053 static void set_curr_task_fair(struct rq *rq)
7054 {
7055 struct sched_entity *se = &rq->curr->se;
7056
7057 for_each_sched_entity(se) {
7058 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7059
7060 set_next_entity(cfs_rq, se);
7061 /* ensure bandwidth has been allocated on our new cfs_rq */
7062 account_cfs_rq_runtime(cfs_rq, 0);
7063 }
7064 }
7065
7066 void init_cfs_rq(struct cfs_rq *cfs_rq)
7067 {
7068 cfs_rq->tasks_timeline = RB_ROOT;
7069 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7070 #ifndef CONFIG_64BIT
7071 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7072 #endif
7073 #ifdef CONFIG_SMP
7074 atomic64_set(&cfs_rq->decay_counter, 1);
7075 atomic_long_set(&cfs_rq->removed_load, 0);
7076 #endif
7077 }
7078
7079 #ifdef CONFIG_FAIR_GROUP_SCHED
7080 static void task_move_group_fair(struct task_struct *p, int on_rq)
7081 {
7082 struct cfs_rq *cfs_rq;
7083 /*
7084 * If the task was not on the rq at the time of this cgroup movement
7085 * it must have been asleep, sleeping tasks keep their ->vruntime
7086 * absolute on their old rq until wakeup (needed for the fair sleeper
7087 * bonus in place_entity()).
7088 *
7089 * If it was on the rq, we've just 'preempted' it, which does convert
7090 * ->vruntime to a relative base.
7091 *
7092 * Make sure both cases convert their relative position when migrating
7093 * to another cgroup's rq. This does somewhat interfere with the
7094 * fair sleeper stuff for the first placement, but who cares.
7095 */
7096 /*
7097 * When !on_rq, vruntime of the task has usually NOT been normalized.
7098 * But there are some cases where it has already been normalized:
7099 *
7100 * - Moving a forked child which is waiting for being woken up by
7101 * wake_up_new_task().
7102 * - Moving a task which has been woken up by try_to_wake_up() and
7103 * waiting for actually being woken up by sched_ttwu_pending().
7104 *
7105 * To prevent boost or penalty in the new cfs_rq caused by delta
7106 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7107 */
7108 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
7109 on_rq = 1;
7110
7111 if (!on_rq)
7112 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7113 set_task_rq(p, task_cpu(p));
7114 if (!on_rq) {
7115 cfs_rq = cfs_rq_of(&p->se);
7116 p->se.vruntime += cfs_rq->min_vruntime;
7117 #ifdef CONFIG_SMP
7118 /*
7119 * migrate_task_rq_fair() will have removed our previous
7120 * contribution, but we must synchronize for ongoing future
7121 * decay.
7122 */
7123 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7124 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7125 #endif
7126 }
7127 }
7128
7129 void free_fair_sched_group(struct task_group *tg)
7130 {
7131 int i;
7132
7133 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7134
7135 for_each_possible_cpu(i) {
7136 if (tg->cfs_rq)
7137 kfree(tg->cfs_rq[i]);
7138 if (tg->se)
7139 kfree(tg->se[i]);
7140 }
7141
7142 kfree(tg->cfs_rq);
7143 kfree(tg->se);
7144 }
7145
7146 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7147 {
7148 struct cfs_rq *cfs_rq;
7149 struct sched_entity *se;
7150 int i;
7151
7152 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7153 if (!tg->cfs_rq)
7154 goto err;
7155 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7156 if (!tg->se)
7157 goto err;
7158
7159 tg->shares = NICE_0_LOAD;
7160
7161 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7162
7163 for_each_possible_cpu(i) {
7164 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7165 GFP_KERNEL, cpu_to_node(i));
7166 if (!cfs_rq)
7167 goto err;
7168
7169 se = kzalloc_node(sizeof(struct sched_entity),
7170 GFP_KERNEL, cpu_to_node(i));
7171 if (!se)
7172 goto err_free_rq;
7173
7174 init_cfs_rq(cfs_rq);
7175 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7176 }
7177
7178 return 1;
7179
7180 err_free_rq:
7181 kfree(cfs_rq);
7182 err:
7183 return 0;
7184 }
7185
7186 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7187 {
7188 struct rq *rq = cpu_rq(cpu);
7189 unsigned long flags;
7190
7191 /*
7192 * Only empty task groups can be destroyed; so we can speculatively
7193 * check on_list without danger of it being re-added.
7194 */
7195 if (!tg->cfs_rq[cpu]->on_list)
7196 return;
7197
7198 raw_spin_lock_irqsave(&rq->lock, flags);
7199 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7200 raw_spin_unlock_irqrestore(&rq->lock, flags);
7201 }
7202
7203 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7204 struct sched_entity *se, int cpu,
7205 struct sched_entity *parent)
7206 {
7207 struct rq *rq = cpu_rq(cpu);
7208
7209 cfs_rq->tg = tg;
7210 cfs_rq->rq = rq;
7211 init_cfs_rq_runtime(cfs_rq);
7212
7213 tg->cfs_rq[cpu] = cfs_rq;
7214 tg->se[cpu] = se;
7215
7216 /* se could be NULL for root_task_group */
7217 if (!se)
7218 return;
7219
7220 if (!parent)
7221 se->cfs_rq = &rq->cfs;
7222 else
7223 se->cfs_rq = parent->my_q;
7224
7225 se->my_q = cfs_rq;
7226 update_load_set(&se->load, 0);
7227 se->parent = parent;
7228 }
7229
7230 static DEFINE_MUTEX(shares_mutex);
7231
7232 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7233 {
7234 int i;
7235 unsigned long flags;
7236
7237 /*
7238 * We can't change the weight of the root cgroup.
7239 */
7240 if (!tg->se[0])
7241 return -EINVAL;
7242
7243 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7244
7245 mutex_lock(&shares_mutex);
7246 if (tg->shares == shares)
7247 goto done;
7248
7249 tg->shares = shares;
7250 for_each_possible_cpu(i) {
7251 struct rq *rq = cpu_rq(i);
7252 struct sched_entity *se;
7253
7254 se = tg->se[i];
7255 /* Propagate contribution to hierarchy */
7256 raw_spin_lock_irqsave(&rq->lock, flags);
7257
7258 /* Possible calls to update_curr() need rq clock */
7259 update_rq_clock(rq);
7260 for_each_sched_entity(se)
7261 update_cfs_shares(group_cfs_rq(se));
7262 raw_spin_unlock_irqrestore(&rq->lock, flags);
7263 }
7264
7265 done:
7266 mutex_unlock(&shares_mutex);
7267 return 0;
7268 }
7269 #else /* CONFIG_FAIR_GROUP_SCHED */
7270
7271 void free_fair_sched_group(struct task_group *tg) { }
7272
7273 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7274 {
7275 return 1;
7276 }
7277
7278 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7279
7280 #endif /* CONFIG_FAIR_GROUP_SCHED */
7281
7282
7283 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7284 {
7285 struct sched_entity *se = &task->se;
7286 unsigned int rr_interval = 0;
7287
7288 /*
7289 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7290 * idle runqueue:
7291 */
7292 if (rq->cfs.load.weight)
7293 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7294
7295 return rr_interval;
7296 }
7297
7298 /*
7299 * All the scheduling class methods:
7300 */
7301 const struct sched_class fair_sched_class = {
7302 .next = &idle_sched_class,
7303 .enqueue_task = enqueue_task_fair,
7304 .dequeue_task = dequeue_task_fair,
7305 .yield_task = yield_task_fair,
7306 .yield_to_task = yield_to_task_fair,
7307
7308 .check_preempt_curr = check_preempt_wakeup,
7309
7310 .pick_next_task = pick_next_task_fair,
7311 .put_prev_task = put_prev_task_fair,
7312
7313 #ifdef CONFIG_SMP
7314 .select_task_rq = select_task_rq_fair,
7315 .migrate_task_rq = migrate_task_rq_fair,
7316
7317 .rq_online = rq_online_fair,
7318 .rq_offline = rq_offline_fair,
7319
7320 .task_waking = task_waking_fair,
7321 #endif
7322
7323 .set_curr_task = set_curr_task_fair,
7324 .task_tick = task_tick_fair,
7325 .task_fork = task_fork_fair,
7326
7327 .prio_changed = prio_changed_fair,
7328 .switched_from = switched_from_fair,
7329 .switched_to = switched_to_fair,
7330
7331 .get_rr_interval = get_rr_interval_fair,
7332
7333 #ifdef CONFIG_FAIR_GROUP_SCHED
7334 .task_move_group = task_move_group_fair,
7335 #endif
7336 };
7337
7338 #ifdef CONFIG_SCHED_DEBUG
7339 void print_cfs_stats(struct seq_file *m, int cpu)
7340 {
7341 struct cfs_rq *cfs_rq;
7342
7343 rcu_read_lock();
7344 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7345 print_cfs_rq(m, cpu, cfs_rq);
7346 rcu_read_unlock();
7347 }
7348 #endif
7349
7350 __init void init_sched_fair_class(void)
7351 {
7352 #ifdef CONFIG_SMP
7353 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7354
7355 #ifdef CONFIG_NO_HZ_COMMON
7356 nohz.next_balance = jiffies;
7357 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7358 cpu_notifier(sched_ilb_notifier, 0);
7359 #endif
7360 #endif /* SMP */
7361
7362 }