]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/sched/fair.c
6691e28fa3da01cd4ee6581b6b11741dc2c8e16c
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched / fair.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include "sched.h"
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 *
28 * NOTE: this latency value is not the same as the concept of
29 * 'timeslice length' - timeslices in CFS are of variable length
30 * and have no persistent notion like in traditional, time-slice
31 * based scheduling concepts.
32 *
33 * (to see the precise effective timeslice length of your workload,
34 * run vmstat and monitor the context-switches (cs) field)
35 *
36 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
37 */
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40
41 /*
42 * The initial- and re-scaling of tunables is configurable
43 *
44 * Options are:
45 *
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 *
50 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
51 */
52 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
53
54 /*
55 * Minimal preemption granularity for CPU-bound tasks:
56 *
57 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58 */
59 unsigned int sysctl_sched_min_granularity = 750000ULL;
60 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
61
62 /*
63 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
64 */
65 static unsigned int sched_nr_latency = 8;
66
67 /*
68 * After fork, child runs first. If set to 0 (default) then
69 * parent will (try to) run first.
70 */
71 unsigned int sysctl_sched_child_runs_first __read_mostly;
72
73 /*
74 * SCHED_OTHER wake-up granularity.
75 *
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
79 *
80 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
81 */
82 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
83 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
84
85 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
86
87 int sched_thermal_decay_shift;
88 static int __init setup_sched_thermal_decay_shift(char *str)
89 {
90 int _shift = 0;
91
92 if (kstrtoint(str, 0, &_shift))
93 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
94
95 sched_thermal_decay_shift = clamp(_shift, 0, 10);
96 return 1;
97 }
98 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
99
100 #ifdef CONFIG_SMP
101 /*
102 * For asym packing, by default the lower numbered CPU has higher priority.
103 */
104 int __weak arch_asym_cpu_priority(int cpu)
105 {
106 return -cpu;
107 }
108
109 /*
110 * The margin used when comparing utilization with CPU capacity.
111 *
112 * (default: ~20%)
113 */
114 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
115
116 #endif
117
118 #ifdef CONFIG_CFS_BANDWIDTH
119 /*
120 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
121 * each time a cfs_rq requests quota.
122 *
123 * Note: in the case that the slice exceeds the runtime remaining (either due
124 * to consumption or the quota being specified to be smaller than the slice)
125 * we will always only issue the remaining available time.
126 *
127 * (default: 5 msec, units: microseconds)
128 */
129 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
130 #endif
131
132 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
133 {
134 lw->weight += inc;
135 lw->inv_weight = 0;
136 }
137
138 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
139 {
140 lw->weight -= dec;
141 lw->inv_weight = 0;
142 }
143
144 static inline void update_load_set(struct load_weight *lw, unsigned long w)
145 {
146 lw->weight = w;
147 lw->inv_weight = 0;
148 }
149
150 /*
151 * Increase the granularity value when there are more CPUs,
152 * because with more CPUs the 'effective latency' as visible
153 * to users decreases. But the relationship is not linear,
154 * so pick a second-best guess by going with the log2 of the
155 * number of CPUs.
156 *
157 * This idea comes from the SD scheduler of Con Kolivas:
158 */
159 static unsigned int get_update_sysctl_factor(void)
160 {
161 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
162 unsigned int factor;
163
164 switch (sysctl_sched_tunable_scaling) {
165 case SCHED_TUNABLESCALING_NONE:
166 factor = 1;
167 break;
168 case SCHED_TUNABLESCALING_LINEAR:
169 factor = cpus;
170 break;
171 case SCHED_TUNABLESCALING_LOG:
172 default:
173 factor = 1 + ilog2(cpus);
174 break;
175 }
176
177 return factor;
178 }
179
180 static void update_sysctl(void)
181 {
182 unsigned int factor = get_update_sysctl_factor();
183
184 #define SET_SYSCTL(name) \
185 (sysctl_##name = (factor) * normalized_sysctl_##name)
186 SET_SYSCTL(sched_min_granularity);
187 SET_SYSCTL(sched_latency);
188 SET_SYSCTL(sched_wakeup_granularity);
189 #undef SET_SYSCTL
190 }
191
192 void __init sched_init_granularity(void)
193 {
194 update_sysctl();
195 }
196
197 #define WMULT_CONST (~0U)
198 #define WMULT_SHIFT 32
199
200 static void __update_inv_weight(struct load_weight *lw)
201 {
202 unsigned long w;
203
204 if (likely(lw->inv_weight))
205 return;
206
207 w = scale_load_down(lw->weight);
208
209 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
210 lw->inv_weight = 1;
211 else if (unlikely(!w))
212 lw->inv_weight = WMULT_CONST;
213 else
214 lw->inv_weight = WMULT_CONST / w;
215 }
216
217 /*
218 * delta_exec * weight / lw.weight
219 * OR
220 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
221 *
222 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
223 * we're guaranteed shift stays positive because inv_weight is guaranteed to
224 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
225 *
226 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
227 * weight/lw.weight <= 1, and therefore our shift will also be positive.
228 */
229 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
230 {
231 u64 fact = scale_load_down(weight);
232 int shift = WMULT_SHIFT;
233
234 __update_inv_weight(lw);
235
236 if (unlikely(fact >> 32)) {
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
240 }
241 }
242
243 fact = mul_u32_u32(fact, lw->inv_weight);
244
245 while (fact >> 32) {
246 fact >>= 1;
247 shift--;
248 }
249
250 return mul_u64_u32_shr(delta_exec, fact, shift);
251 }
252
253
254 const struct sched_class fair_sched_class;
255
256 /**************************************************************
257 * CFS operations on generic schedulable entities:
258 */
259
260 #ifdef CONFIG_FAIR_GROUP_SCHED
261 static inline struct task_struct *task_of(struct sched_entity *se)
262 {
263 SCHED_WARN_ON(!entity_is_task(se));
264 return container_of(se, struct task_struct, se);
265 }
266
267 /* Walk up scheduling entities hierarchy */
268 #define for_each_sched_entity(se) \
269 for (; se; se = se->parent)
270
271 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
272 {
273 return p->se.cfs_rq;
274 }
275
276 /* runqueue on which this entity is (to be) queued */
277 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
278 {
279 return se->cfs_rq;
280 }
281
282 /* runqueue "owned" by this group */
283 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
284 {
285 return grp->my_q;
286 }
287
288 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
289 {
290 if (!path)
291 return;
292
293 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
294 autogroup_path(cfs_rq->tg, path, len);
295 else if (cfs_rq && cfs_rq->tg->css.cgroup)
296 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
297 else
298 strlcpy(path, "(null)", len);
299 }
300
301 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302 {
303 struct rq *rq = rq_of(cfs_rq);
304 int cpu = cpu_of(rq);
305
306 if (cfs_rq->on_list)
307 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
308
309 cfs_rq->on_list = 1;
310
311 /*
312 * Ensure we either appear before our parent (if already
313 * enqueued) or force our parent to appear after us when it is
314 * enqueued. The fact that we always enqueue bottom-up
315 * reduces this to two cases and a special case for the root
316 * cfs_rq. Furthermore, it also means that we will always reset
317 * tmp_alone_branch either when the branch is connected
318 * to a tree or when we reach the top of the tree
319 */
320 if (cfs_rq->tg->parent &&
321 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
322 /*
323 * If parent is already on the list, we add the child
324 * just before. Thanks to circular linked property of
325 * the list, this means to put the child at the tail
326 * of the list that starts by parent.
327 */
328 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
329 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
330 /*
331 * The branch is now connected to its tree so we can
332 * reset tmp_alone_branch to the beginning of the
333 * list.
334 */
335 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
336 return true;
337 }
338
339 if (!cfs_rq->tg->parent) {
340 /*
341 * cfs rq without parent should be put
342 * at the tail of the list.
343 */
344 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
345 &rq->leaf_cfs_rq_list);
346 /*
347 * We have reach the top of a tree so we can reset
348 * tmp_alone_branch to the beginning of the list.
349 */
350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
351 return true;
352 }
353
354 /*
355 * The parent has not already been added so we want to
356 * make sure that it will be put after us.
357 * tmp_alone_branch points to the begin of the branch
358 * where we will add parent.
359 */
360 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
361 /*
362 * update tmp_alone_branch to points to the new begin
363 * of the branch
364 */
365 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
366 return false;
367 }
368
369 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
370 {
371 if (cfs_rq->on_list) {
372 struct rq *rq = rq_of(cfs_rq);
373
374 /*
375 * With cfs_rq being unthrottled/throttled during an enqueue,
376 * it can happen the tmp_alone_branch points the a leaf that
377 * we finally want to del. In this case, tmp_alone_branch moves
378 * to the prev element but it will point to rq->leaf_cfs_rq_list
379 * at the end of the enqueue.
380 */
381 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
382 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
383
384 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
385 cfs_rq->on_list = 0;
386 }
387 }
388
389 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
390 {
391 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
392 }
393
394 /* Iterate thr' all leaf cfs_rq's on a runqueue */
395 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
396 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
397 leaf_cfs_rq_list)
398
399 /* Do the two (enqueued) entities belong to the same group ? */
400 static inline struct cfs_rq *
401 is_same_group(struct sched_entity *se, struct sched_entity *pse)
402 {
403 if (se->cfs_rq == pse->cfs_rq)
404 return se->cfs_rq;
405
406 return NULL;
407 }
408
409 static inline struct sched_entity *parent_entity(struct sched_entity *se)
410 {
411 return se->parent;
412 }
413
414 static void
415 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
416 {
417 int se_depth, pse_depth;
418
419 /*
420 * preemption test can be made between sibling entities who are in the
421 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
422 * both tasks until we find their ancestors who are siblings of common
423 * parent.
424 */
425
426 /* First walk up until both entities are at same depth */
427 se_depth = (*se)->depth;
428 pse_depth = (*pse)->depth;
429
430 while (se_depth > pse_depth) {
431 se_depth--;
432 *se = parent_entity(*se);
433 }
434
435 while (pse_depth > se_depth) {
436 pse_depth--;
437 *pse = parent_entity(*pse);
438 }
439
440 while (!is_same_group(*se, *pse)) {
441 *se = parent_entity(*se);
442 *pse = parent_entity(*pse);
443 }
444 }
445
446 #else /* !CONFIG_FAIR_GROUP_SCHED */
447
448 static inline struct task_struct *task_of(struct sched_entity *se)
449 {
450 return container_of(se, struct task_struct, se);
451 }
452
453 #define for_each_sched_entity(se) \
454 for (; se; se = NULL)
455
456 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
457 {
458 return &task_rq(p)->cfs;
459 }
460
461 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
462 {
463 struct task_struct *p = task_of(se);
464 struct rq *rq = task_rq(p);
465
466 return &rq->cfs;
467 }
468
469 /* runqueue "owned" by this group */
470 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
471 {
472 return NULL;
473 }
474
475 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
476 {
477 if (path)
478 strlcpy(path, "(null)", len);
479 }
480
481 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482 {
483 return true;
484 }
485
486 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
487 {
488 }
489
490 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
491 {
492 }
493
494 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
495 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
496
497 static inline struct sched_entity *parent_entity(struct sched_entity *se)
498 {
499 return NULL;
500 }
501
502 static inline void
503 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
504 {
505 }
506
507 #endif /* CONFIG_FAIR_GROUP_SCHED */
508
509 static __always_inline
510 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
511
512 /**************************************************************
513 * Scheduling class tree data structure manipulation methods:
514 */
515
516 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
517 {
518 s64 delta = (s64)(vruntime - max_vruntime);
519 if (delta > 0)
520 max_vruntime = vruntime;
521
522 return max_vruntime;
523 }
524
525 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
526 {
527 s64 delta = (s64)(vruntime - min_vruntime);
528 if (delta < 0)
529 min_vruntime = vruntime;
530
531 return min_vruntime;
532 }
533
534 static inline int entity_before(struct sched_entity *a,
535 struct sched_entity *b)
536 {
537 return (s64)(a->vruntime - b->vruntime) < 0;
538 }
539
540 static void update_min_vruntime(struct cfs_rq *cfs_rq)
541 {
542 struct sched_entity *curr = cfs_rq->curr;
543 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
544
545 u64 vruntime = cfs_rq->min_vruntime;
546
547 if (curr) {
548 if (curr->on_rq)
549 vruntime = curr->vruntime;
550 else
551 curr = NULL;
552 }
553
554 if (leftmost) { /* non-empty tree */
555 struct sched_entity *se;
556 se = rb_entry(leftmost, struct sched_entity, run_node);
557
558 if (!curr)
559 vruntime = se->vruntime;
560 else
561 vruntime = min_vruntime(vruntime, se->vruntime);
562 }
563
564 /* ensure we never gain time by being placed backwards. */
565 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
566 #ifndef CONFIG_64BIT
567 smp_wmb();
568 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
569 #endif
570 }
571
572 /*
573 * Enqueue an entity into the rb-tree:
574 */
575 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
576 {
577 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
578 struct rb_node *parent = NULL;
579 struct sched_entity *entry;
580 bool leftmost = true;
581
582 /*
583 * Find the right place in the rbtree:
584 */
585 while (*link) {
586 parent = *link;
587 entry = rb_entry(parent, struct sched_entity, run_node);
588 /*
589 * We dont care about collisions. Nodes with
590 * the same key stay together.
591 */
592 if (entity_before(se, entry)) {
593 link = &parent->rb_left;
594 } else {
595 link = &parent->rb_right;
596 leftmost = false;
597 }
598 }
599
600 rb_link_node(&se->run_node, parent, link);
601 rb_insert_color_cached(&se->run_node,
602 &cfs_rq->tasks_timeline, leftmost);
603 }
604
605 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
606 {
607 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
608 }
609
610 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
611 {
612 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
613
614 if (!left)
615 return NULL;
616
617 return rb_entry(left, struct sched_entity, run_node);
618 }
619
620 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
621 {
622 struct rb_node *next = rb_next(&se->run_node);
623
624 if (!next)
625 return NULL;
626
627 return rb_entry(next, struct sched_entity, run_node);
628 }
629
630 #ifdef CONFIG_SCHED_DEBUG
631 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
632 {
633 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
634
635 if (!last)
636 return NULL;
637
638 return rb_entry(last, struct sched_entity, run_node);
639 }
640
641 /**************************************************************
642 * Scheduling class statistics methods:
643 */
644
645 int sched_proc_update_handler(struct ctl_table *table, int write,
646 void *buffer, size_t *lenp, loff_t *ppos)
647 {
648 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
649 unsigned int factor = get_update_sysctl_factor();
650
651 if (ret || !write)
652 return ret;
653
654 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
655 sysctl_sched_min_granularity);
656
657 #define WRT_SYSCTL(name) \
658 (normalized_sysctl_##name = sysctl_##name / (factor))
659 WRT_SYSCTL(sched_min_granularity);
660 WRT_SYSCTL(sched_latency);
661 WRT_SYSCTL(sched_wakeup_granularity);
662 #undef WRT_SYSCTL
663
664 return 0;
665 }
666 #endif
667
668 /*
669 * delta /= w
670 */
671 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
672 {
673 if (unlikely(se->load.weight != NICE_0_LOAD))
674 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
675
676 return delta;
677 }
678
679 /*
680 * The idea is to set a period in which each task runs once.
681 *
682 * When there are too many tasks (sched_nr_latency) we have to stretch
683 * this period because otherwise the slices get too small.
684 *
685 * p = (nr <= nl) ? l : l*nr/nl
686 */
687 static u64 __sched_period(unsigned long nr_running)
688 {
689 if (unlikely(nr_running > sched_nr_latency))
690 return nr_running * sysctl_sched_min_granularity;
691 else
692 return sysctl_sched_latency;
693 }
694
695 /*
696 * We calculate the wall-time slice from the period by taking a part
697 * proportional to the weight.
698 *
699 * s = p*P[w/rw]
700 */
701 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
702 {
703 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
704
705 for_each_sched_entity(se) {
706 struct load_weight *load;
707 struct load_weight lw;
708
709 cfs_rq = cfs_rq_of(se);
710 load = &cfs_rq->load;
711
712 if (unlikely(!se->on_rq)) {
713 lw = cfs_rq->load;
714
715 update_load_add(&lw, se->load.weight);
716 load = &lw;
717 }
718 slice = __calc_delta(slice, se->load.weight, load);
719 }
720 return slice;
721 }
722
723 /*
724 * We calculate the vruntime slice of a to-be-inserted task.
725 *
726 * vs = s/w
727 */
728 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
729 {
730 return calc_delta_fair(sched_slice(cfs_rq, se), se);
731 }
732
733 #include "pelt.h"
734 #ifdef CONFIG_SMP
735
736 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
737 static unsigned long task_h_load(struct task_struct *p);
738 static unsigned long capacity_of(int cpu);
739
740 /* Give new sched_entity start runnable values to heavy its load in infant time */
741 void init_entity_runnable_average(struct sched_entity *se)
742 {
743 struct sched_avg *sa = &se->avg;
744
745 memset(sa, 0, sizeof(*sa));
746
747 /*
748 * Tasks are initialized with full load to be seen as heavy tasks until
749 * they get a chance to stabilize to their real load level.
750 * Group entities are initialized with zero load to reflect the fact that
751 * nothing has been attached to the task group yet.
752 */
753 if (entity_is_task(se))
754 sa->load_avg = scale_load_down(se->load.weight);
755
756 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
757 }
758
759 static void attach_entity_cfs_rq(struct sched_entity *se);
760
761 /*
762 * With new tasks being created, their initial util_avgs are extrapolated
763 * based on the cfs_rq's current util_avg:
764 *
765 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
766 *
767 * However, in many cases, the above util_avg does not give a desired
768 * value. Moreover, the sum of the util_avgs may be divergent, such
769 * as when the series is a harmonic series.
770 *
771 * To solve this problem, we also cap the util_avg of successive tasks to
772 * only 1/2 of the left utilization budget:
773 *
774 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
775 *
776 * where n denotes the nth task and cpu_scale the CPU capacity.
777 *
778 * For example, for a CPU with 1024 of capacity, a simplest series from
779 * the beginning would be like:
780 *
781 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
782 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
783 *
784 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
785 * if util_avg > util_avg_cap.
786 */
787 void post_init_entity_util_avg(struct task_struct *p)
788 {
789 struct sched_entity *se = &p->se;
790 struct cfs_rq *cfs_rq = cfs_rq_of(se);
791 struct sched_avg *sa = &se->avg;
792 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
793 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
794
795 if (cap > 0) {
796 if (cfs_rq->avg.util_avg != 0) {
797 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
798 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
799
800 if (sa->util_avg > cap)
801 sa->util_avg = cap;
802 } else {
803 sa->util_avg = cap;
804 }
805 }
806
807 sa->runnable_avg = sa->util_avg;
808
809 if (p->sched_class != &fair_sched_class) {
810 /*
811 * For !fair tasks do:
812 *
813 update_cfs_rq_load_avg(now, cfs_rq);
814 attach_entity_load_avg(cfs_rq, se);
815 switched_from_fair(rq, p);
816 *
817 * such that the next switched_to_fair() has the
818 * expected state.
819 */
820 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
821 return;
822 }
823
824 attach_entity_cfs_rq(se);
825 }
826
827 #else /* !CONFIG_SMP */
828 void init_entity_runnable_average(struct sched_entity *se)
829 {
830 }
831 void post_init_entity_util_avg(struct task_struct *p)
832 {
833 }
834 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
835 {
836 }
837 #endif /* CONFIG_SMP */
838
839 /*
840 * Update the current task's runtime statistics.
841 */
842 static void update_curr(struct cfs_rq *cfs_rq)
843 {
844 struct sched_entity *curr = cfs_rq->curr;
845 u64 now = rq_clock_task(rq_of(cfs_rq));
846 u64 delta_exec;
847
848 if (unlikely(!curr))
849 return;
850
851 delta_exec = now - curr->exec_start;
852 if (unlikely((s64)delta_exec <= 0))
853 return;
854
855 curr->exec_start = now;
856
857 schedstat_set(curr->statistics.exec_max,
858 max(delta_exec, curr->statistics.exec_max));
859
860 curr->sum_exec_runtime += delta_exec;
861 schedstat_add(cfs_rq->exec_clock, delta_exec);
862
863 curr->vruntime += calc_delta_fair(delta_exec, curr);
864 update_min_vruntime(cfs_rq);
865
866 if (entity_is_task(curr)) {
867 struct task_struct *curtask = task_of(curr);
868
869 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
870 cgroup_account_cputime(curtask, delta_exec);
871 account_group_exec_runtime(curtask, delta_exec);
872 }
873
874 account_cfs_rq_runtime(cfs_rq, delta_exec);
875 }
876
877 static void update_curr_fair(struct rq *rq)
878 {
879 update_curr(cfs_rq_of(&rq->curr->se));
880 }
881
882 static inline void
883 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
884 {
885 u64 wait_start, prev_wait_start;
886
887 if (!schedstat_enabled())
888 return;
889
890 wait_start = rq_clock(rq_of(cfs_rq));
891 prev_wait_start = schedstat_val(se->statistics.wait_start);
892
893 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
894 likely(wait_start > prev_wait_start))
895 wait_start -= prev_wait_start;
896
897 __schedstat_set(se->statistics.wait_start, wait_start);
898 }
899
900 static inline void
901 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
902 {
903 struct task_struct *p;
904 u64 delta;
905
906 if (!schedstat_enabled())
907 return;
908
909 /*
910 * When the sched_schedstat changes from 0 to 1, some sched se
911 * maybe already in the runqueue, the se->statistics.wait_start
912 * will be 0.So it will let the delta wrong. We need to avoid this
913 * scenario.
914 */
915 if (unlikely(!schedstat_val(se->statistics.wait_start)))
916 return;
917
918 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
919
920 if (entity_is_task(se)) {
921 p = task_of(se);
922 if (task_on_rq_migrating(p)) {
923 /*
924 * Preserve migrating task's wait time so wait_start
925 * time stamp can be adjusted to accumulate wait time
926 * prior to migration.
927 */
928 __schedstat_set(se->statistics.wait_start, delta);
929 return;
930 }
931 trace_sched_stat_wait(p, delta);
932 }
933
934 __schedstat_set(se->statistics.wait_max,
935 max(schedstat_val(se->statistics.wait_max), delta));
936 __schedstat_inc(se->statistics.wait_count);
937 __schedstat_add(se->statistics.wait_sum, delta);
938 __schedstat_set(se->statistics.wait_start, 0);
939 }
940
941 static inline void
942 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
943 {
944 struct task_struct *tsk = NULL;
945 u64 sleep_start, block_start;
946
947 if (!schedstat_enabled())
948 return;
949
950 sleep_start = schedstat_val(se->statistics.sleep_start);
951 block_start = schedstat_val(se->statistics.block_start);
952
953 if (entity_is_task(se))
954 tsk = task_of(se);
955
956 if (sleep_start) {
957 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
958
959 if ((s64)delta < 0)
960 delta = 0;
961
962 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
963 __schedstat_set(se->statistics.sleep_max, delta);
964
965 __schedstat_set(se->statistics.sleep_start, 0);
966 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
967
968 if (tsk) {
969 account_scheduler_latency(tsk, delta >> 10, 1);
970 trace_sched_stat_sleep(tsk, delta);
971 }
972 }
973 if (block_start) {
974 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
975
976 if ((s64)delta < 0)
977 delta = 0;
978
979 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
980 __schedstat_set(se->statistics.block_max, delta);
981
982 __schedstat_set(se->statistics.block_start, 0);
983 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
984
985 if (tsk) {
986 if (tsk->in_iowait) {
987 __schedstat_add(se->statistics.iowait_sum, delta);
988 __schedstat_inc(se->statistics.iowait_count);
989 trace_sched_stat_iowait(tsk, delta);
990 }
991
992 trace_sched_stat_blocked(tsk, delta);
993
994 /*
995 * Blocking time is in units of nanosecs, so shift by
996 * 20 to get a milliseconds-range estimation of the
997 * amount of time that the task spent sleeping:
998 */
999 if (unlikely(prof_on == SLEEP_PROFILING)) {
1000 profile_hits(SLEEP_PROFILING,
1001 (void *)get_wchan(tsk),
1002 delta >> 20);
1003 }
1004 account_scheduler_latency(tsk, delta >> 10, 0);
1005 }
1006 }
1007 }
1008
1009 /*
1010 * Task is being enqueued - update stats:
1011 */
1012 static inline void
1013 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1014 {
1015 if (!schedstat_enabled())
1016 return;
1017
1018 /*
1019 * Are we enqueueing a waiting task? (for current tasks
1020 * a dequeue/enqueue event is a NOP)
1021 */
1022 if (se != cfs_rq->curr)
1023 update_stats_wait_start(cfs_rq, se);
1024
1025 if (flags & ENQUEUE_WAKEUP)
1026 update_stats_enqueue_sleeper(cfs_rq, se);
1027 }
1028
1029 static inline void
1030 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1031 {
1032
1033 if (!schedstat_enabled())
1034 return;
1035
1036 /*
1037 * Mark the end of the wait period if dequeueing a
1038 * waiting task:
1039 */
1040 if (se != cfs_rq->curr)
1041 update_stats_wait_end(cfs_rq, se);
1042
1043 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1044 struct task_struct *tsk = task_of(se);
1045
1046 if (tsk->state & TASK_INTERRUPTIBLE)
1047 __schedstat_set(se->statistics.sleep_start,
1048 rq_clock(rq_of(cfs_rq)));
1049 if (tsk->state & TASK_UNINTERRUPTIBLE)
1050 __schedstat_set(se->statistics.block_start,
1051 rq_clock(rq_of(cfs_rq)));
1052 }
1053 }
1054
1055 /*
1056 * We are picking a new current task - update its stats:
1057 */
1058 static inline void
1059 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1060 {
1061 /*
1062 * We are starting a new run period:
1063 */
1064 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1065 }
1066
1067 /**************************************************
1068 * Scheduling class queueing methods:
1069 */
1070
1071 #ifdef CONFIG_NUMA_BALANCING
1072 /*
1073 * Approximate time to scan a full NUMA task in ms. The task scan period is
1074 * calculated based on the tasks virtual memory size and
1075 * numa_balancing_scan_size.
1076 */
1077 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1078 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1079
1080 /* Portion of address space to scan in MB */
1081 unsigned int sysctl_numa_balancing_scan_size = 256;
1082
1083 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1084 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1085
1086 struct numa_group {
1087 refcount_t refcount;
1088
1089 spinlock_t lock; /* nr_tasks, tasks */
1090 int nr_tasks;
1091 pid_t gid;
1092 int active_nodes;
1093
1094 struct rcu_head rcu;
1095 unsigned long total_faults;
1096 unsigned long max_faults_cpu;
1097 /*
1098 * Faults_cpu is used to decide whether memory should move
1099 * towards the CPU. As a consequence, these stats are weighted
1100 * more by CPU use than by memory faults.
1101 */
1102 unsigned long *faults_cpu;
1103 unsigned long faults[];
1104 };
1105
1106 /*
1107 * For functions that can be called in multiple contexts that permit reading
1108 * ->numa_group (see struct task_struct for locking rules).
1109 */
1110 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1111 {
1112 return rcu_dereference_check(p->numa_group, p == current ||
1113 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1114 }
1115
1116 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1117 {
1118 return rcu_dereference_protected(p->numa_group, p == current);
1119 }
1120
1121 static inline unsigned long group_faults_priv(struct numa_group *ng);
1122 static inline unsigned long group_faults_shared(struct numa_group *ng);
1123
1124 static unsigned int task_nr_scan_windows(struct task_struct *p)
1125 {
1126 unsigned long rss = 0;
1127 unsigned long nr_scan_pages;
1128
1129 /*
1130 * Calculations based on RSS as non-present and empty pages are skipped
1131 * by the PTE scanner and NUMA hinting faults should be trapped based
1132 * on resident pages
1133 */
1134 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1135 rss = get_mm_rss(p->mm);
1136 if (!rss)
1137 rss = nr_scan_pages;
1138
1139 rss = round_up(rss, nr_scan_pages);
1140 return rss / nr_scan_pages;
1141 }
1142
1143 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1144 #define MAX_SCAN_WINDOW 2560
1145
1146 static unsigned int task_scan_min(struct task_struct *p)
1147 {
1148 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1149 unsigned int scan, floor;
1150 unsigned int windows = 1;
1151
1152 if (scan_size < MAX_SCAN_WINDOW)
1153 windows = MAX_SCAN_WINDOW / scan_size;
1154 floor = 1000 / windows;
1155
1156 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1157 return max_t(unsigned int, floor, scan);
1158 }
1159
1160 static unsigned int task_scan_start(struct task_struct *p)
1161 {
1162 unsigned long smin = task_scan_min(p);
1163 unsigned long period = smin;
1164 struct numa_group *ng;
1165
1166 /* Scale the maximum scan period with the amount of shared memory. */
1167 rcu_read_lock();
1168 ng = rcu_dereference(p->numa_group);
1169 if (ng) {
1170 unsigned long shared = group_faults_shared(ng);
1171 unsigned long private = group_faults_priv(ng);
1172
1173 period *= refcount_read(&ng->refcount);
1174 period *= shared + 1;
1175 period /= private + shared + 1;
1176 }
1177 rcu_read_unlock();
1178
1179 return max(smin, period);
1180 }
1181
1182 static unsigned int task_scan_max(struct task_struct *p)
1183 {
1184 unsigned long smin = task_scan_min(p);
1185 unsigned long smax;
1186 struct numa_group *ng;
1187
1188 /* Watch for min being lower than max due to floor calculations */
1189 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1190
1191 /* Scale the maximum scan period with the amount of shared memory. */
1192 ng = deref_curr_numa_group(p);
1193 if (ng) {
1194 unsigned long shared = group_faults_shared(ng);
1195 unsigned long private = group_faults_priv(ng);
1196 unsigned long period = smax;
1197
1198 period *= refcount_read(&ng->refcount);
1199 period *= shared + 1;
1200 period /= private + shared + 1;
1201
1202 smax = max(smax, period);
1203 }
1204
1205 return max(smin, smax);
1206 }
1207
1208 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1209 {
1210 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1211 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1212 }
1213
1214 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1215 {
1216 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1217 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1218 }
1219
1220 /* Shared or private faults. */
1221 #define NR_NUMA_HINT_FAULT_TYPES 2
1222
1223 /* Memory and CPU locality */
1224 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1225
1226 /* Averaged statistics, and temporary buffers. */
1227 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1228
1229 pid_t task_numa_group_id(struct task_struct *p)
1230 {
1231 struct numa_group *ng;
1232 pid_t gid = 0;
1233
1234 rcu_read_lock();
1235 ng = rcu_dereference(p->numa_group);
1236 if (ng)
1237 gid = ng->gid;
1238 rcu_read_unlock();
1239
1240 return gid;
1241 }
1242
1243 /*
1244 * The averaged statistics, shared & private, memory & CPU,
1245 * occupy the first half of the array. The second half of the
1246 * array is for current counters, which are averaged into the
1247 * first set by task_numa_placement.
1248 */
1249 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1250 {
1251 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1252 }
1253
1254 static inline unsigned long task_faults(struct task_struct *p, int nid)
1255 {
1256 if (!p->numa_faults)
1257 return 0;
1258
1259 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1260 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1261 }
1262
1263 static inline unsigned long group_faults(struct task_struct *p, int nid)
1264 {
1265 struct numa_group *ng = deref_task_numa_group(p);
1266
1267 if (!ng)
1268 return 0;
1269
1270 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1271 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1272 }
1273
1274 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1275 {
1276 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1277 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1278 }
1279
1280 static inline unsigned long group_faults_priv(struct numa_group *ng)
1281 {
1282 unsigned long faults = 0;
1283 int node;
1284
1285 for_each_online_node(node) {
1286 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1287 }
1288
1289 return faults;
1290 }
1291
1292 static inline unsigned long group_faults_shared(struct numa_group *ng)
1293 {
1294 unsigned long faults = 0;
1295 int node;
1296
1297 for_each_online_node(node) {
1298 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1299 }
1300
1301 return faults;
1302 }
1303
1304 /*
1305 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1306 * considered part of a numa group's pseudo-interleaving set. Migrations
1307 * between these nodes are slowed down, to allow things to settle down.
1308 */
1309 #define ACTIVE_NODE_FRACTION 3
1310
1311 static bool numa_is_active_node(int nid, struct numa_group *ng)
1312 {
1313 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1314 }
1315
1316 /* Handle placement on systems where not all nodes are directly connected. */
1317 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1318 int maxdist, bool task)
1319 {
1320 unsigned long score = 0;
1321 int node;
1322
1323 /*
1324 * All nodes are directly connected, and the same distance
1325 * from each other. No need for fancy placement algorithms.
1326 */
1327 if (sched_numa_topology_type == NUMA_DIRECT)
1328 return 0;
1329
1330 /*
1331 * This code is called for each node, introducing N^2 complexity,
1332 * which should be ok given the number of nodes rarely exceeds 8.
1333 */
1334 for_each_online_node(node) {
1335 unsigned long faults;
1336 int dist = node_distance(nid, node);
1337
1338 /*
1339 * The furthest away nodes in the system are not interesting
1340 * for placement; nid was already counted.
1341 */
1342 if (dist == sched_max_numa_distance || node == nid)
1343 continue;
1344
1345 /*
1346 * On systems with a backplane NUMA topology, compare groups
1347 * of nodes, and move tasks towards the group with the most
1348 * memory accesses. When comparing two nodes at distance
1349 * "hoplimit", only nodes closer by than "hoplimit" are part
1350 * of each group. Skip other nodes.
1351 */
1352 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1353 dist >= maxdist)
1354 continue;
1355
1356 /* Add up the faults from nearby nodes. */
1357 if (task)
1358 faults = task_faults(p, node);
1359 else
1360 faults = group_faults(p, node);
1361
1362 /*
1363 * On systems with a glueless mesh NUMA topology, there are
1364 * no fixed "groups of nodes". Instead, nodes that are not
1365 * directly connected bounce traffic through intermediate
1366 * nodes; a numa_group can occupy any set of nodes.
1367 * The further away a node is, the less the faults count.
1368 * This seems to result in good task placement.
1369 */
1370 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1371 faults *= (sched_max_numa_distance - dist);
1372 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1373 }
1374
1375 score += faults;
1376 }
1377
1378 return score;
1379 }
1380
1381 /*
1382 * These return the fraction of accesses done by a particular task, or
1383 * task group, on a particular numa node. The group weight is given a
1384 * larger multiplier, in order to group tasks together that are almost
1385 * evenly spread out between numa nodes.
1386 */
1387 static inline unsigned long task_weight(struct task_struct *p, int nid,
1388 int dist)
1389 {
1390 unsigned long faults, total_faults;
1391
1392 if (!p->numa_faults)
1393 return 0;
1394
1395 total_faults = p->total_numa_faults;
1396
1397 if (!total_faults)
1398 return 0;
1399
1400 faults = task_faults(p, nid);
1401 faults += score_nearby_nodes(p, nid, dist, true);
1402
1403 return 1000 * faults / total_faults;
1404 }
1405
1406 static inline unsigned long group_weight(struct task_struct *p, int nid,
1407 int dist)
1408 {
1409 struct numa_group *ng = deref_task_numa_group(p);
1410 unsigned long faults, total_faults;
1411
1412 if (!ng)
1413 return 0;
1414
1415 total_faults = ng->total_faults;
1416
1417 if (!total_faults)
1418 return 0;
1419
1420 faults = group_faults(p, nid);
1421 faults += score_nearby_nodes(p, nid, dist, false);
1422
1423 return 1000 * faults / total_faults;
1424 }
1425
1426 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1427 int src_nid, int dst_cpu)
1428 {
1429 struct numa_group *ng = deref_curr_numa_group(p);
1430 int dst_nid = cpu_to_node(dst_cpu);
1431 int last_cpupid, this_cpupid;
1432
1433 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1434 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1435
1436 /*
1437 * Allow first faults or private faults to migrate immediately early in
1438 * the lifetime of a task. The magic number 4 is based on waiting for
1439 * two full passes of the "multi-stage node selection" test that is
1440 * executed below.
1441 */
1442 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1443 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1444 return true;
1445
1446 /*
1447 * Multi-stage node selection is used in conjunction with a periodic
1448 * migration fault to build a temporal task<->page relation. By using
1449 * a two-stage filter we remove short/unlikely relations.
1450 *
1451 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1452 * a task's usage of a particular page (n_p) per total usage of this
1453 * page (n_t) (in a given time-span) to a probability.
1454 *
1455 * Our periodic faults will sample this probability and getting the
1456 * same result twice in a row, given these samples are fully
1457 * independent, is then given by P(n)^2, provided our sample period
1458 * is sufficiently short compared to the usage pattern.
1459 *
1460 * This quadric squishes small probabilities, making it less likely we
1461 * act on an unlikely task<->page relation.
1462 */
1463 if (!cpupid_pid_unset(last_cpupid) &&
1464 cpupid_to_nid(last_cpupid) != dst_nid)
1465 return false;
1466
1467 /* Always allow migrate on private faults */
1468 if (cpupid_match_pid(p, last_cpupid))
1469 return true;
1470
1471 /* A shared fault, but p->numa_group has not been set up yet. */
1472 if (!ng)
1473 return true;
1474
1475 /*
1476 * Destination node is much more heavily used than the source
1477 * node? Allow migration.
1478 */
1479 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1480 ACTIVE_NODE_FRACTION)
1481 return true;
1482
1483 /*
1484 * Distribute memory according to CPU & memory use on each node,
1485 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1486 *
1487 * faults_cpu(dst) 3 faults_cpu(src)
1488 * --------------- * - > ---------------
1489 * faults_mem(dst) 4 faults_mem(src)
1490 */
1491 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1492 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1493 }
1494
1495 /*
1496 * 'numa_type' describes the node at the moment of load balancing.
1497 */
1498 enum numa_type {
1499 /* The node has spare capacity that can be used to run more tasks. */
1500 node_has_spare = 0,
1501 /*
1502 * The node is fully used and the tasks don't compete for more CPU
1503 * cycles. Nevertheless, some tasks might wait before running.
1504 */
1505 node_fully_busy,
1506 /*
1507 * The node is overloaded and can't provide expected CPU cycles to all
1508 * tasks.
1509 */
1510 node_overloaded
1511 };
1512
1513 /* Cached statistics for all CPUs within a node */
1514 struct numa_stats {
1515 unsigned long load;
1516 unsigned long runnable;
1517 unsigned long util;
1518 /* Total compute capacity of CPUs on a node */
1519 unsigned long compute_capacity;
1520 unsigned int nr_running;
1521 unsigned int weight;
1522 enum numa_type node_type;
1523 int idle_cpu;
1524 };
1525
1526 static inline bool is_core_idle(int cpu)
1527 {
1528 #ifdef CONFIG_SCHED_SMT
1529 int sibling;
1530
1531 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1532 if (cpu == sibling)
1533 continue;
1534
1535 if (!idle_cpu(cpu))
1536 return false;
1537 }
1538 #endif
1539
1540 return true;
1541 }
1542
1543 struct task_numa_env {
1544 struct task_struct *p;
1545
1546 int src_cpu, src_nid;
1547 int dst_cpu, dst_nid;
1548
1549 struct numa_stats src_stats, dst_stats;
1550
1551 int imbalance_pct;
1552 int dist;
1553
1554 struct task_struct *best_task;
1555 long best_imp;
1556 int best_cpu;
1557 };
1558
1559 static unsigned long cpu_load(struct rq *rq);
1560 static unsigned long cpu_runnable(struct rq *rq);
1561 static unsigned long cpu_util(int cpu);
1562 static inline long adjust_numa_imbalance(int imbalance, int nr_running);
1563
1564 static inline enum
1565 numa_type numa_classify(unsigned int imbalance_pct,
1566 struct numa_stats *ns)
1567 {
1568 if ((ns->nr_running > ns->weight) &&
1569 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1570 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1571 return node_overloaded;
1572
1573 if ((ns->nr_running < ns->weight) ||
1574 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1575 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1576 return node_has_spare;
1577
1578 return node_fully_busy;
1579 }
1580
1581 #ifdef CONFIG_SCHED_SMT
1582 /* Forward declarations of select_idle_sibling helpers */
1583 static inline bool test_idle_cores(int cpu, bool def);
1584 static inline int numa_idle_core(int idle_core, int cpu)
1585 {
1586 if (!static_branch_likely(&sched_smt_present) ||
1587 idle_core >= 0 || !test_idle_cores(cpu, false))
1588 return idle_core;
1589
1590 /*
1591 * Prefer cores instead of packing HT siblings
1592 * and triggering future load balancing.
1593 */
1594 if (is_core_idle(cpu))
1595 idle_core = cpu;
1596
1597 return idle_core;
1598 }
1599 #else
1600 static inline int numa_idle_core(int idle_core, int cpu)
1601 {
1602 return idle_core;
1603 }
1604 #endif
1605
1606 /*
1607 * Gather all necessary information to make NUMA balancing placement
1608 * decisions that are compatible with standard load balancer. This
1609 * borrows code and logic from update_sg_lb_stats but sharing a
1610 * common implementation is impractical.
1611 */
1612 static void update_numa_stats(struct task_numa_env *env,
1613 struct numa_stats *ns, int nid,
1614 bool find_idle)
1615 {
1616 int cpu, idle_core = -1;
1617
1618 memset(ns, 0, sizeof(*ns));
1619 ns->idle_cpu = -1;
1620
1621 rcu_read_lock();
1622 for_each_cpu(cpu, cpumask_of_node(nid)) {
1623 struct rq *rq = cpu_rq(cpu);
1624
1625 ns->load += cpu_load(rq);
1626 ns->runnable += cpu_runnable(rq);
1627 ns->util += cpu_util(cpu);
1628 ns->nr_running += rq->cfs.h_nr_running;
1629 ns->compute_capacity += capacity_of(cpu);
1630
1631 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1632 if (READ_ONCE(rq->numa_migrate_on) ||
1633 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1634 continue;
1635
1636 if (ns->idle_cpu == -1)
1637 ns->idle_cpu = cpu;
1638
1639 idle_core = numa_idle_core(idle_core, cpu);
1640 }
1641 }
1642 rcu_read_unlock();
1643
1644 ns->weight = cpumask_weight(cpumask_of_node(nid));
1645
1646 ns->node_type = numa_classify(env->imbalance_pct, ns);
1647
1648 if (idle_core >= 0)
1649 ns->idle_cpu = idle_core;
1650 }
1651
1652 static void task_numa_assign(struct task_numa_env *env,
1653 struct task_struct *p, long imp)
1654 {
1655 struct rq *rq = cpu_rq(env->dst_cpu);
1656
1657 /* Check if run-queue part of active NUMA balance. */
1658 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1659 int cpu;
1660 int start = env->dst_cpu;
1661
1662 /* Find alternative idle CPU. */
1663 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1664 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1665 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1666 continue;
1667 }
1668
1669 env->dst_cpu = cpu;
1670 rq = cpu_rq(env->dst_cpu);
1671 if (!xchg(&rq->numa_migrate_on, 1))
1672 goto assign;
1673 }
1674
1675 /* Failed to find an alternative idle CPU */
1676 return;
1677 }
1678
1679 assign:
1680 /*
1681 * Clear previous best_cpu/rq numa-migrate flag, since task now
1682 * found a better CPU to move/swap.
1683 */
1684 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1685 rq = cpu_rq(env->best_cpu);
1686 WRITE_ONCE(rq->numa_migrate_on, 0);
1687 }
1688
1689 if (env->best_task)
1690 put_task_struct(env->best_task);
1691 if (p)
1692 get_task_struct(p);
1693
1694 env->best_task = p;
1695 env->best_imp = imp;
1696 env->best_cpu = env->dst_cpu;
1697 }
1698
1699 static bool load_too_imbalanced(long src_load, long dst_load,
1700 struct task_numa_env *env)
1701 {
1702 long imb, old_imb;
1703 long orig_src_load, orig_dst_load;
1704 long src_capacity, dst_capacity;
1705
1706 /*
1707 * The load is corrected for the CPU capacity available on each node.
1708 *
1709 * src_load dst_load
1710 * ------------ vs ---------
1711 * src_capacity dst_capacity
1712 */
1713 src_capacity = env->src_stats.compute_capacity;
1714 dst_capacity = env->dst_stats.compute_capacity;
1715
1716 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1717
1718 orig_src_load = env->src_stats.load;
1719 orig_dst_load = env->dst_stats.load;
1720
1721 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1722
1723 /* Would this change make things worse? */
1724 return (imb > old_imb);
1725 }
1726
1727 /*
1728 * Maximum NUMA importance can be 1998 (2*999);
1729 * SMALLIMP @ 30 would be close to 1998/64.
1730 * Used to deter task migration.
1731 */
1732 #define SMALLIMP 30
1733
1734 /*
1735 * This checks if the overall compute and NUMA accesses of the system would
1736 * be improved if the source tasks was migrated to the target dst_cpu taking
1737 * into account that it might be best if task running on the dst_cpu should
1738 * be exchanged with the source task
1739 */
1740 static bool task_numa_compare(struct task_numa_env *env,
1741 long taskimp, long groupimp, bool maymove)
1742 {
1743 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1744 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1745 long imp = p_ng ? groupimp : taskimp;
1746 struct task_struct *cur;
1747 long src_load, dst_load;
1748 int dist = env->dist;
1749 long moveimp = imp;
1750 long load;
1751 bool stopsearch = false;
1752
1753 if (READ_ONCE(dst_rq->numa_migrate_on))
1754 return false;
1755
1756 rcu_read_lock();
1757 cur = rcu_dereference(dst_rq->curr);
1758 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1759 cur = NULL;
1760
1761 /*
1762 * Because we have preemption enabled we can get migrated around and
1763 * end try selecting ourselves (current == env->p) as a swap candidate.
1764 */
1765 if (cur == env->p) {
1766 stopsearch = true;
1767 goto unlock;
1768 }
1769
1770 if (!cur) {
1771 if (maymove && moveimp >= env->best_imp)
1772 goto assign;
1773 else
1774 goto unlock;
1775 }
1776
1777 /* Skip this swap candidate if cannot move to the source cpu. */
1778 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1779 goto unlock;
1780
1781 /*
1782 * Skip this swap candidate if it is not moving to its preferred
1783 * node and the best task is.
1784 */
1785 if (env->best_task &&
1786 env->best_task->numa_preferred_nid == env->src_nid &&
1787 cur->numa_preferred_nid != env->src_nid) {
1788 goto unlock;
1789 }
1790
1791 /*
1792 * "imp" is the fault differential for the source task between the
1793 * source and destination node. Calculate the total differential for
1794 * the source task and potential destination task. The more negative
1795 * the value is, the more remote accesses that would be expected to
1796 * be incurred if the tasks were swapped.
1797 *
1798 * If dst and source tasks are in the same NUMA group, or not
1799 * in any group then look only at task weights.
1800 */
1801 cur_ng = rcu_dereference(cur->numa_group);
1802 if (cur_ng == p_ng) {
1803 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1804 task_weight(cur, env->dst_nid, dist);
1805 /*
1806 * Add some hysteresis to prevent swapping the
1807 * tasks within a group over tiny differences.
1808 */
1809 if (cur_ng)
1810 imp -= imp / 16;
1811 } else {
1812 /*
1813 * Compare the group weights. If a task is all by itself
1814 * (not part of a group), use the task weight instead.
1815 */
1816 if (cur_ng && p_ng)
1817 imp += group_weight(cur, env->src_nid, dist) -
1818 group_weight(cur, env->dst_nid, dist);
1819 else
1820 imp += task_weight(cur, env->src_nid, dist) -
1821 task_weight(cur, env->dst_nid, dist);
1822 }
1823
1824 /* Discourage picking a task already on its preferred node */
1825 if (cur->numa_preferred_nid == env->dst_nid)
1826 imp -= imp / 16;
1827
1828 /*
1829 * Encourage picking a task that moves to its preferred node.
1830 * This potentially makes imp larger than it's maximum of
1831 * 1998 (see SMALLIMP and task_weight for why) but in this
1832 * case, it does not matter.
1833 */
1834 if (cur->numa_preferred_nid == env->src_nid)
1835 imp += imp / 8;
1836
1837 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1838 imp = moveimp;
1839 cur = NULL;
1840 goto assign;
1841 }
1842
1843 /*
1844 * Prefer swapping with a task moving to its preferred node over a
1845 * task that is not.
1846 */
1847 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1848 env->best_task->numa_preferred_nid != env->src_nid) {
1849 goto assign;
1850 }
1851
1852 /*
1853 * If the NUMA importance is less than SMALLIMP,
1854 * task migration might only result in ping pong
1855 * of tasks and also hurt performance due to cache
1856 * misses.
1857 */
1858 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1859 goto unlock;
1860
1861 /*
1862 * In the overloaded case, try and keep the load balanced.
1863 */
1864 load = task_h_load(env->p) - task_h_load(cur);
1865 if (!load)
1866 goto assign;
1867
1868 dst_load = env->dst_stats.load + load;
1869 src_load = env->src_stats.load - load;
1870
1871 if (load_too_imbalanced(src_load, dst_load, env))
1872 goto unlock;
1873
1874 assign:
1875 /* Evaluate an idle CPU for a task numa move. */
1876 if (!cur) {
1877 int cpu = env->dst_stats.idle_cpu;
1878
1879 /* Nothing cached so current CPU went idle since the search. */
1880 if (cpu < 0)
1881 cpu = env->dst_cpu;
1882
1883 /*
1884 * If the CPU is no longer truly idle and the previous best CPU
1885 * is, keep using it.
1886 */
1887 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1888 idle_cpu(env->best_cpu)) {
1889 cpu = env->best_cpu;
1890 }
1891
1892 env->dst_cpu = cpu;
1893 }
1894
1895 task_numa_assign(env, cur, imp);
1896
1897 /*
1898 * If a move to idle is allowed because there is capacity or load
1899 * balance improves then stop the search. While a better swap
1900 * candidate may exist, a search is not free.
1901 */
1902 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1903 stopsearch = true;
1904
1905 /*
1906 * If a swap candidate must be identified and the current best task
1907 * moves its preferred node then stop the search.
1908 */
1909 if (!maymove && env->best_task &&
1910 env->best_task->numa_preferred_nid == env->src_nid) {
1911 stopsearch = true;
1912 }
1913 unlock:
1914 rcu_read_unlock();
1915
1916 return stopsearch;
1917 }
1918
1919 static void task_numa_find_cpu(struct task_numa_env *env,
1920 long taskimp, long groupimp)
1921 {
1922 bool maymove = false;
1923 int cpu;
1924
1925 /*
1926 * If dst node has spare capacity, then check if there is an
1927 * imbalance that would be overruled by the load balancer.
1928 */
1929 if (env->dst_stats.node_type == node_has_spare) {
1930 unsigned int imbalance;
1931 int src_running, dst_running;
1932
1933 /*
1934 * Would movement cause an imbalance? Note that if src has
1935 * more running tasks that the imbalance is ignored as the
1936 * move improves the imbalance from the perspective of the
1937 * CPU load balancer.
1938 * */
1939 src_running = env->src_stats.nr_running - 1;
1940 dst_running = env->dst_stats.nr_running + 1;
1941 imbalance = max(0, dst_running - src_running);
1942 imbalance = adjust_numa_imbalance(imbalance, dst_running);
1943
1944 /* Use idle CPU if there is no imbalance */
1945 if (!imbalance) {
1946 maymove = true;
1947 if (env->dst_stats.idle_cpu >= 0) {
1948 env->dst_cpu = env->dst_stats.idle_cpu;
1949 task_numa_assign(env, NULL, 0);
1950 return;
1951 }
1952 }
1953 } else {
1954 long src_load, dst_load, load;
1955 /*
1956 * If the improvement from just moving env->p direction is better
1957 * than swapping tasks around, check if a move is possible.
1958 */
1959 load = task_h_load(env->p);
1960 dst_load = env->dst_stats.load + load;
1961 src_load = env->src_stats.load - load;
1962 maymove = !load_too_imbalanced(src_load, dst_load, env);
1963 }
1964
1965 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1966 /* Skip this CPU if the source task cannot migrate */
1967 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1968 continue;
1969
1970 env->dst_cpu = cpu;
1971 if (task_numa_compare(env, taskimp, groupimp, maymove))
1972 break;
1973 }
1974 }
1975
1976 static int task_numa_migrate(struct task_struct *p)
1977 {
1978 struct task_numa_env env = {
1979 .p = p,
1980
1981 .src_cpu = task_cpu(p),
1982 .src_nid = task_node(p),
1983
1984 .imbalance_pct = 112,
1985
1986 .best_task = NULL,
1987 .best_imp = 0,
1988 .best_cpu = -1,
1989 };
1990 unsigned long taskweight, groupweight;
1991 struct sched_domain *sd;
1992 long taskimp, groupimp;
1993 struct numa_group *ng;
1994 struct rq *best_rq;
1995 int nid, ret, dist;
1996
1997 /*
1998 * Pick the lowest SD_NUMA domain, as that would have the smallest
1999 * imbalance and would be the first to start moving tasks about.
2000 *
2001 * And we want to avoid any moving of tasks about, as that would create
2002 * random movement of tasks -- counter the numa conditions we're trying
2003 * to satisfy here.
2004 */
2005 rcu_read_lock();
2006 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2007 if (sd)
2008 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2009 rcu_read_unlock();
2010
2011 /*
2012 * Cpusets can break the scheduler domain tree into smaller
2013 * balance domains, some of which do not cross NUMA boundaries.
2014 * Tasks that are "trapped" in such domains cannot be migrated
2015 * elsewhere, so there is no point in (re)trying.
2016 */
2017 if (unlikely(!sd)) {
2018 sched_setnuma(p, task_node(p));
2019 return -EINVAL;
2020 }
2021
2022 env.dst_nid = p->numa_preferred_nid;
2023 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2024 taskweight = task_weight(p, env.src_nid, dist);
2025 groupweight = group_weight(p, env.src_nid, dist);
2026 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2027 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2028 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2029 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2030
2031 /* Try to find a spot on the preferred nid. */
2032 task_numa_find_cpu(&env, taskimp, groupimp);
2033
2034 /*
2035 * Look at other nodes in these cases:
2036 * - there is no space available on the preferred_nid
2037 * - the task is part of a numa_group that is interleaved across
2038 * multiple NUMA nodes; in order to better consolidate the group,
2039 * we need to check other locations.
2040 */
2041 ng = deref_curr_numa_group(p);
2042 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2043 for_each_online_node(nid) {
2044 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2045 continue;
2046
2047 dist = node_distance(env.src_nid, env.dst_nid);
2048 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2049 dist != env.dist) {
2050 taskweight = task_weight(p, env.src_nid, dist);
2051 groupweight = group_weight(p, env.src_nid, dist);
2052 }
2053
2054 /* Only consider nodes where both task and groups benefit */
2055 taskimp = task_weight(p, nid, dist) - taskweight;
2056 groupimp = group_weight(p, nid, dist) - groupweight;
2057 if (taskimp < 0 && groupimp < 0)
2058 continue;
2059
2060 env.dist = dist;
2061 env.dst_nid = nid;
2062 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2063 task_numa_find_cpu(&env, taskimp, groupimp);
2064 }
2065 }
2066
2067 /*
2068 * If the task is part of a workload that spans multiple NUMA nodes,
2069 * and is migrating into one of the workload's active nodes, remember
2070 * this node as the task's preferred numa node, so the workload can
2071 * settle down.
2072 * A task that migrated to a second choice node will be better off
2073 * trying for a better one later. Do not set the preferred node here.
2074 */
2075 if (ng) {
2076 if (env.best_cpu == -1)
2077 nid = env.src_nid;
2078 else
2079 nid = cpu_to_node(env.best_cpu);
2080
2081 if (nid != p->numa_preferred_nid)
2082 sched_setnuma(p, nid);
2083 }
2084
2085 /* No better CPU than the current one was found. */
2086 if (env.best_cpu == -1) {
2087 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2088 return -EAGAIN;
2089 }
2090
2091 best_rq = cpu_rq(env.best_cpu);
2092 if (env.best_task == NULL) {
2093 ret = migrate_task_to(p, env.best_cpu);
2094 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2095 if (ret != 0)
2096 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2097 return ret;
2098 }
2099
2100 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2101 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2102
2103 if (ret != 0)
2104 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2105 put_task_struct(env.best_task);
2106 return ret;
2107 }
2108
2109 /* Attempt to migrate a task to a CPU on the preferred node. */
2110 static void numa_migrate_preferred(struct task_struct *p)
2111 {
2112 unsigned long interval = HZ;
2113
2114 /* This task has no NUMA fault statistics yet */
2115 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2116 return;
2117
2118 /* Periodically retry migrating the task to the preferred node */
2119 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2120 p->numa_migrate_retry = jiffies + interval;
2121
2122 /* Success if task is already running on preferred CPU */
2123 if (task_node(p) == p->numa_preferred_nid)
2124 return;
2125
2126 /* Otherwise, try migrate to a CPU on the preferred node */
2127 task_numa_migrate(p);
2128 }
2129
2130 /*
2131 * Find out how many nodes on the workload is actively running on. Do this by
2132 * tracking the nodes from which NUMA hinting faults are triggered. This can
2133 * be different from the set of nodes where the workload's memory is currently
2134 * located.
2135 */
2136 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2137 {
2138 unsigned long faults, max_faults = 0;
2139 int nid, active_nodes = 0;
2140
2141 for_each_online_node(nid) {
2142 faults = group_faults_cpu(numa_group, nid);
2143 if (faults > max_faults)
2144 max_faults = faults;
2145 }
2146
2147 for_each_online_node(nid) {
2148 faults = group_faults_cpu(numa_group, nid);
2149 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2150 active_nodes++;
2151 }
2152
2153 numa_group->max_faults_cpu = max_faults;
2154 numa_group->active_nodes = active_nodes;
2155 }
2156
2157 /*
2158 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2159 * increments. The more local the fault statistics are, the higher the scan
2160 * period will be for the next scan window. If local/(local+remote) ratio is
2161 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2162 * the scan period will decrease. Aim for 70% local accesses.
2163 */
2164 #define NUMA_PERIOD_SLOTS 10
2165 #define NUMA_PERIOD_THRESHOLD 7
2166
2167 /*
2168 * Increase the scan period (slow down scanning) if the majority of
2169 * our memory is already on our local node, or if the majority of
2170 * the page accesses are shared with other processes.
2171 * Otherwise, decrease the scan period.
2172 */
2173 static void update_task_scan_period(struct task_struct *p,
2174 unsigned long shared, unsigned long private)
2175 {
2176 unsigned int period_slot;
2177 int lr_ratio, ps_ratio;
2178 int diff;
2179
2180 unsigned long remote = p->numa_faults_locality[0];
2181 unsigned long local = p->numa_faults_locality[1];
2182
2183 /*
2184 * If there were no record hinting faults then either the task is
2185 * completely idle or all activity is areas that are not of interest
2186 * to automatic numa balancing. Related to that, if there were failed
2187 * migration then it implies we are migrating too quickly or the local
2188 * node is overloaded. In either case, scan slower
2189 */
2190 if (local + shared == 0 || p->numa_faults_locality[2]) {
2191 p->numa_scan_period = min(p->numa_scan_period_max,
2192 p->numa_scan_period << 1);
2193
2194 p->mm->numa_next_scan = jiffies +
2195 msecs_to_jiffies(p->numa_scan_period);
2196
2197 return;
2198 }
2199
2200 /*
2201 * Prepare to scale scan period relative to the current period.
2202 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2203 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2204 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2205 */
2206 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2207 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2208 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2209
2210 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2211 /*
2212 * Most memory accesses are local. There is no need to
2213 * do fast NUMA scanning, since memory is already local.
2214 */
2215 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2216 if (!slot)
2217 slot = 1;
2218 diff = slot * period_slot;
2219 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2220 /*
2221 * Most memory accesses are shared with other tasks.
2222 * There is no point in continuing fast NUMA scanning,
2223 * since other tasks may just move the memory elsewhere.
2224 */
2225 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2226 if (!slot)
2227 slot = 1;
2228 diff = slot * period_slot;
2229 } else {
2230 /*
2231 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2232 * yet they are not on the local NUMA node. Speed up
2233 * NUMA scanning to get the memory moved over.
2234 */
2235 int ratio = max(lr_ratio, ps_ratio);
2236 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2237 }
2238
2239 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2240 task_scan_min(p), task_scan_max(p));
2241 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2242 }
2243
2244 /*
2245 * Get the fraction of time the task has been running since the last
2246 * NUMA placement cycle. The scheduler keeps similar statistics, but
2247 * decays those on a 32ms period, which is orders of magnitude off
2248 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2249 * stats only if the task is so new there are no NUMA statistics yet.
2250 */
2251 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2252 {
2253 u64 runtime, delta, now;
2254 /* Use the start of this time slice to avoid calculations. */
2255 now = p->se.exec_start;
2256 runtime = p->se.sum_exec_runtime;
2257
2258 if (p->last_task_numa_placement) {
2259 delta = runtime - p->last_sum_exec_runtime;
2260 *period = now - p->last_task_numa_placement;
2261
2262 /* Avoid time going backwards, prevent potential divide error: */
2263 if (unlikely((s64)*period < 0))
2264 *period = 0;
2265 } else {
2266 delta = p->se.avg.load_sum;
2267 *period = LOAD_AVG_MAX;
2268 }
2269
2270 p->last_sum_exec_runtime = runtime;
2271 p->last_task_numa_placement = now;
2272
2273 return delta;
2274 }
2275
2276 /*
2277 * Determine the preferred nid for a task in a numa_group. This needs to
2278 * be done in a way that produces consistent results with group_weight,
2279 * otherwise workloads might not converge.
2280 */
2281 static int preferred_group_nid(struct task_struct *p, int nid)
2282 {
2283 nodemask_t nodes;
2284 int dist;
2285
2286 /* Direct connections between all NUMA nodes. */
2287 if (sched_numa_topology_type == NUMA_DIRECT)
2288 return nid;
2289
2290 /*
2291 * On a system with glueless mesh NUMA topology, group_weight
2292 * scores nodes according to the number of NUMA hinting faults on
2293 * both the node itself, and on nearby nodes.
2294 */
2295 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2296 unsigned long score, max_score = 0;
2297 int node, max_node = nid;
2298
2299 dist = sched_max_numa_distance;
2300
2301 for_each_online_node(node) {
2302 score = group_weight(p, node, dist);
2303 if (score > max_score) {
2304 max_score = score;
2305 max_node = node;
2306 }
2307 }
2308 return max_node;
2309 }
2310
2311 /*
2312 * Finding the preferred nid in a system with NUMA backplane
2313 * interconnect topology is more involved. The goal is to locate
2314 * tasks from numa_groups near each other in the system, and
2315 * untangle workloads from different sides of the system. This requires
2316 * searching down the hierarchy of node groups, recursively searching
2317 * inside the highest scoring group of nodes. The nodemask tricks
2318 * keep the complexity of the search down.
2319 */
2320 nodes = node_online_map;
2321 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2322 unsigned long max_faults = 0;
2323 nodemask_t max_group = NODE_MASK_NONE;
2324 int a, b;
2325
2326 /* Are there nodes at this distance from each other? */
2327 if (!find_numa_distance(dist))
2328 continue;
2329
2330 for_each_node_mask(a, nodes) {
2331 unsigned long faults = 0;
2332 nodemask_t this_group;
2333 nodes_clear(this_group);
2334
2335 /* Sum group's NUMA faults; includes a==b case. */
2336 for_each_node_mask(b, nodes) {
2337 if (node_distance(a, b) < dist) {
2338 faults += group_faults(p, b);
2339 node_set(b, this_group);
2340 node_clear(b, nodes);
2341 }
2342 }
2343
2344 /* Remember the top group. */
2345 if (faults > max_faults) {
2346 max_faults = faults;
2347 max_group = this_group;
2348 /*
2349 * subtle: at the smallest distance there is
2350 * just one node left in each "group", the
2351 * winner is the preferred nid.
2352 */
2353 nid = a;
2354 }
2355 }
2356 /* Next round, evaluate the nodes within max_group. */
2357 if (!max_faults)
2358 break;
2359 nodes = max_group;
2360 }
2361 return nid;
2362 }
2363
2364 static void task_numa_placement(struct task_struct *p)
2365 {
2366 int seq, nid, max_nid = NUMA_NO_NODE;
2367 unsigned long max_faults = 0;
2368 unsigned long fault_types[2] = { 0, 0 };
2369 unsigned long total_faults;
2370 u64 runtime, period;
2371 spinlock_t *group_lock = NULL;
2372 struct numa_group *ng;
2373
2374 /*
2375 * The p->mm->numa_scan_seq field gets updated without
2376 * exclusive access. Use READ_ONCE() here to ensure
2377 * that the field is read in a single access:
2378 */
2379 seq = READ_ONCE(p->mm->numa_scan_seq);
2380 if (p->numa_scan_seq == seq)
2381 return;
2382 p->numa_scan_seq = seq;
2383 p->numa_scan_period_max = task_scan_max(p);
2384
2385 total_faults = p->numa_faults_locality[0] +
2386 p->numa_faults_locality[1];
2387 runtime = numa_get_avg_runtime(p, &period);
2388
2389 /* If the task is part of a group prevent parallel updates to group stats */
2390 ng = deref_curr_numa_group(p);
2391 if (ng) {
2392 group_lock = &ng->lock;
2393 spin_lock_irq(group_lock);
2394 }
2395
2396 /* Find the node with the highest number of faults */
2397 for_each_online_node(nid) {
2398 /* Keep track of the offsets in numa_faults array */
2399 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2400 unsigned long faults = 0, group_faults = 0;
2401 int priv;
2402
2403 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2404 long diff, f_diff, f_weight;
2405
2406 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2407 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2408 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2409 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2410
2411 /* Decay existing window, copy faults since last scan */
2412 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2413 fault_types[priv] += p->numa_faults[membuf_idx];
2414 p->numa_faults[membuf_idx] = 0;
2415
2416 /*
2417 * Normalize the faults_from, so all tasks in a group
2418 * count according to CPU use, instead of by the raw
2419 * number of faults. Tasks with little runtime have
2420 * little over-all impact on throughput, and thus their
2421 * faults are less important.
2422 */
2423 f_weight = div64_u64(runtime << 16, period + 1);
2424 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2425 (total_faults + 1);
2426 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2427 p->numa_faults[cpubuf_idx] = 0;
2428
2429 p->numa_faults[mem_idx] += diff;
2430 p->numa_faults[cpu_idx] += f_diff;
2431 faults += p->numa_faults[mem_idx];
2432 p->total_numa_faults += diff;
2433 if (ng) {
2434 /*
2435 * safe because we can only change our own group
2436 *
2437 * mem_idx represents the offset for a given
2438 * nid and priv in a specific region because it
2439 * is at the beginning of the numa_faults array.
2440 */
2441 ng->faults[mem_idx] += diff;
2442 ng->faults_cpu[mem_idx] += f_diff;
2443 ng->total_faults += diff;
2444 group_faults += ng->faults[mem_idx];
2445 }
2446 }
2447
2448 if (!ng) {
2449 if (faults > max_faults) {
2450 max_faults = faults;
2451 max_nid = nid;
2452 }
2453 } else if (group_faults > max_faults) {
2454 max_faults = group_faults;
2455 max_nid = nid;
2456 }
2457 }
2458
2459 if (ng) {
2460 numa_group_count_active_nodes(ng);
2461 spin_unlock_irq(group_lock);
2462 max_nid = preferred_group_nid(p, max_nid);
2463 }
2464
2465 if (max_faults) {
2466 /* Set the new preferred node */
2467 if (max_nid != p->numa_preferred_nid)
2468 sched_setnuma(p, max_nid);
2469 }
2470
2471 update_task_scan_period(p, fault_types[0], fault_types[1]);
2472 }
2473
2474 static inline int get_numa_group(struct numa_group *grp)
2475 {
2476 return refcount_inc_not_zero(&grp->refcount);
2477 }
2478
2479 static inline void put_numa_group(struct numa_group *grp)
2480 {
2481 if (refcount_dec_and_test(&grp->refcount))
2482 kfree_rcu(grp, rcu);
2483 }
2484
2485 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2486 int *priv)
2487 {
2488 struct numa_group *grp, *my_grp;
2489 struct task_struct *tsk;
2490 bool join = false;
2491 int cpu = cpupid_to_cpu(cpupid);
2492 int i;
2493
2494 if (unlikely(!deref_curr_numa_group(p))) {
2495 unsigned int size = sizeof(struct numa_group) +
2496 4*nr_node_ids*sizeof(unsigned long);
2497
2498 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2499 if (!grp)
2500 return;
2501
2502 refcount_set(&grp->refcount, 1);
2503 grp->active_nodes = 1;
2504 grp->max_faults_cpu = 0;
2505 spin_lock_init(&grp->lock);
2506 grp->gid = p->pid;
2507 /* Second half of the array tracks nids where faults happen */
2508 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2509 nr_node_ids;
2510
2511 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2512 grp->faults[i] = p->numa_faults[i];
2513
2514 grp->total_faults = p->total_numa_faults;
2515
2516 grp->nr_tasks++;
2517 rcu_assign_pointer(p->numa_group, grp);
2518 }
2519
2520 rcu_read_lock();
2521 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2522
2523 if (!cpupid_match_pid(tsk, cpupid))
2524 goto no_join;
2525
2526 grp = rcu_dereference(tsk->numa_group);
2527 if (!grp)
2528 goto no_join;
2529
2530 my_grp = deref_curr_numa_group(p);
2531 if (grp == my_grp)
2532 goto no_join;
2533
2534 /*
2535 * Only join the other group if its bigger; if we're the bigger group,
2536 * the other task will join us.
2537 */
2538 if (my_grp->nr_tasks > grp->nr_tasks)
2539 goto no_join;
2540
2541 /*
2542 * Tie-break on the grp address.
2543 */
2544 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2545 goto no_join;
2546
2547 /* Always join threads in the same process. */
2548 if (tsk->mm == current->mm)
2549 join = true;
2550
2551 /* Simple filter to avoid false positives due to PID collisions */
2552 if (flags & TNF_SHARED)
2553 join = true;
2554
2555 /* Update priv based on whether false sharing was detected */
2556 *priv = !join;
2557
2558 if (join && !get_numa_group(grp))
2559 goto no_join;
2560
2561 rcu_read_unlock();
2562
2563 if (!join)
2564 return;
2565
2566 BUG_ON(irqs_disabled());
2567 double_lock_irq(&my_grp->lock, &grp->lock);
2568
2569 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2570 my_grp->faults[i] -= p->numa_faults[i];
2571 grp->faults[i] += p->numa_faults[i];
2572 }
2573 my_grp->total_faults -= p->total_numa_faults;
2574 grp->total_faults += p->total_numa_faults;
2575
2576 my_grp->nr_tasks--;
2577 grp->nr_tasks++;
2578
2579 spin_unlock(&my_grp->lock);
2580 spin_unlock_irq(&grp->lock);
2581
2582 rcu_assign_pointer(p->numa_group, grp);
2583
2584 put_numa_group(my_grp);
2585 return;
2586
2587 no_join:
2588 rcu_read_unlock();
2589 return;
2590 }
2591
2592 /*
2593 * Get rid of NUMA staticstics associated with a task (either current or dead).
2594 * If @final is set, the task is dead and has reached refcount zero, so we can
2595 * safely free all relevant data structures. Otherwise, there might be
2596 * concurrent reads from places like load balancing and procfs, and we should
2597 * reset the data back to default state without freeing ->numa_faults.
2598 */
2599 void task_numa_free(struct task_struct *p, bool final)
2600 {
2601 /* safe: p either is current or is being freed by current */
2602 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2603 unsigned long *numa_faults = p->numa_faults;
2604 unsigned long flags;
2605 int i;
2606
2607 if (!numa_faults)
2608 return;
2609
2610 if (grp) {
2611 spin_lock_irqsave(&grp->lock, flags);
2612 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2613 grp->faults[i] -= p->numa_faults[i];
2614 grp->total_faults -= p->total_numa_faults;
2615
2616 grp->nr_tasks--;
2617 spin_unlock_irqrestore(&grp->lock, flags);
2618 RCU_INIT_POINTER(p->numa_group, NULL);
2619 put_numa_group(grp);
2620 }
2621
2622 if (final) {
2623 p->numa_faults = NULL;
2624 kfree(numa_faults);
2625 } else {
2626 p->total_numa_faults = 0;
2627 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2628 numa_faults[i] = 0;
2629 }
2630 }
2631
2632 /*
2633 * Got a PROT_NONE fault for a page on @node.
2634 */
2635 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2636 {
2637 struct task_struct *p = current;
2638 bool migrated = flags & TNF_MIGRATED;
2639 int cpu_node = task_node(current);
2640 int local = !!(flags & TNF_FAULT_LOCAL);
2641 struct numa_group *ng;
2642 int priv;
2643
2644 if (!static_branch_likely(&sched_numa_balancing))
2645 return;
2646
2647 /* for example, ksmd faulting in a user's mm */
2648 if (!p->mm)
2649 return;
2650
2651 /* Allocate buffer to track faults on a per-node basis */
2652 if (unlikely(!p->numa_faults)) {
2653 int size = sizeof(*p->numa_faults) *
2654 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2655
2656 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2657 if (!p->numa_faults)
2658 return;
2659
2660 p->total_numa_faults = 0;
2661 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2662 }
2663
2664 /*
2665 * First accesses are treated as private, otherwise consider accesses
2666 * to be private if the accessing pid has not changed
2667 */
2668 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2669 priv = 1;
2670 } else {
2671 priv = cpupid_match_pid(p, last_cpupid);
2672 if (!priv && !(flags & TNF_NO_GROUP))
2673 task_numa_group(p, last_cpupid, flags, &priv);
2674 }
2675
2676 /*
2677 * If a workload spans multiple NUMA nodes, a shared fault that
2678 * occurs wholly within the set of nodes that the workload is
2679 * actively using should be counted as local. This allows the
2680 * scan rate to slow down when a workload has settled down.
2681 */
2682 ng = deref_curr_numa_group(p);
2683 if (!priv && !local && ng && ng->active_nodes > 1 &&
2684 numa_is_active_node(cpu_node, ng) &&
2685 numa_is_active_node(mem_node, ng))
2686 local = 1;
2687
2688 /*
2689 * Retry to migrate task to preferred node periodically, in case it
2690 * previously failed, or the scheduler moved us.
2691 */
2692 if (time_after(jiffies, p->numa_migrate_retry)) {
2693 task_numa_placement(p);
2694 numa_migrate_preferred(p);
2695 }
2696
2697 if (migrated)
2698 p->numa_pages_migrated += pages;
2699 if (flags & TNF_MIGRATE_FAIL)
2700 p->numa_faults_locality[2] += pages;
2701
2702 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2703 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2704 p->numa_faults_locality[local] += pages;
2705 }
2706
2707 static void reset_ptenuma_scan(struct task_struct *p)
2708 {
2709 /*
2710 * We only did a read acquisition of the mmap sem, so
2711 * p->mm->numa_scan_seq is written to without exclusive access
2712 * and the update is not guaranteed to be atomic. That's not
2713 * much of an issue though, since this is just used for
2714 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2715 * expensive, to avoid any form of compiler optimizations:
2716 */
2717 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2718 p->mm->numa_scan_offset = 0;
2719 }
2720
2721 /*
2722 * The expensive part of numa migration is done from task_work context.
2723 * Triggered from task_tick_numa().
2724 */
2725 static void task_numa_work(struct callback_head *work)
2726 {
2727 unsigned long migrate, next_scan, now = jiffies;
2728 struct task_struct *p = current;
2729 struct mm_struct *mm = p->mm;
2730 u64 runtime = p->se.sum_exec_runtime;
2731 struct vm_area_struct *vma;
2732 unsigned long start, end;
2733 unsigned long nr_pte_updates = 0;
2734 long pages, virtpages;
2735
2736 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2737
2738 work->next = work;
2739 /*
2740 * Who cares about NUMA placement when they're dying.
2741 *
2742 * NOTE: make sure not to dereference p->mm before this check,
2743 * exit_task_work() happens _after_ exit_mm() so we could be called
2744 * without p->mm even though we still had it when we enqueued this
2745 * work.
2746 */
2747 if (p->flags & PF_EXITING)
2748 return;
2749
2750 if (!mm->numa_next_scan) {
2751 mm->numa_next_scan = now +
2752 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2753 }
2754
2755 /*
2756 * Enforce maximal scan/migration frequency..
2757 */
2758 migrate = mm->numa_next_scan;
2759 if (time_before(now, migrate))
2760 return;
2761
2762 if (p->numa_scan_period == 0) {
2763 p->numa_scan_period_max = task_scan_max(p);
2764 p->numa_scan_period = task_scan_start(p);
2765 }
2766
2767 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2768 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2769 return;
2770
2771 /*
2772 * Delay this task enough that another task of this mm will likely win
2773 * the next time around.
2774 */
2775 p->node_stamp += 2 * TICK_NSEC;
2776
2777 start = mm->numa_scan_offset;
2778 pages = sysctl_numa_balancing_scan_size;
2779 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2780 virtpages = pages * 8; /* Scan up to this much virtual space */
2781 if (!pages)
2782 return;
2783
2784
2785 if (!mmap_read_trylock(mm))
2786 return;
2787 vma = find_vma(mm, start);
2788 if (!vma) {
2789 reset_ptenuma_scan(p);
2790 start = 0;
2791 vma = mm->mmap;
2792 }
2793 for (; vma; vma = vma->vm_next) {
2794 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2795 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2796 continue;
2797 }
2798
2799 /*
2800 * Shared library pages mapped by multiple processes are not
2801 * migrated as it is expected they are cache replicated. Avoid
2802 * hinting faults in read-only file-backed mappings or the vdso
2803 * as migrating the pages will be of marginal benefit.
2804 */
2805 if (!vma->vm_mm ||
2806 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2807 continue;
2808
2809 /*
2810 * Skip inaccessible VMAs to avoid any confusion between
2811 * PROT_NONE and NUMA hinting ptes
2812 */
2813 if (!vma_is_accessible(vma))
2814 continue;
2815
2816 do {
2817 start = max(start, vma->vm_start);
2818 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2819 end = min(end, vma->vm_end);
2820 nr_pte_updates = change_prot_numa(vma, start, end);
2821
2822 /*
2823 * Try to scan sysctl_numa_balancing_size worth of
2824 * hpages that have at least one present PTE that
2825 * is not already pte-numa. If the VMA contains
2826 * areas that are unused or already full of prot_numa
2827 * PTEs, scan up to virtpages, to skip through those
2828 * areas faster.
2829 */
2830 if (nr_pte_updates)
2831 pages -= (end - start) >> PAGE_SHIFT;
2832 virtpages -= (end - start) >> PAGE_SHIFT;
2833
2834 start = end;
2835 if (pages <= 0 || virtpages <= 0)
2836 goto out;
2837
2838 cond_resched();
2839 } while (end != vma->vm_end);
2840 }
2841
2842 out:
2843 /*
2844 * It is possible to reach the end of the VMA list but the last few
2845 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2846 * would find the !migratable VMA on the next scan but not reset the
2847 * scanner to the start so check it now.
2848 */
2849 if (vma)
2850 mm->numa_scan_offset = start;
2851 else
2852 reset_ptenuma_scan(p);
2853 mmap_read_unlock(mm);
2854
2855 /*
2856 * Make sure tasks use at least 32x as much time to run other code
2857 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2858 * Usually update_task_scan_period slows down scanning enough; on an
2859 * overloaded system we need to limit overhead on a per task basis.
2860 */
2861 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2862 u64 diff = p->se.sum_exec_runtime - runtime;
2863 p->node_stamp += 32 * diff;
2864 }
2865 }
2866
2867 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2868 {
2869 int mm_users = 0;
2870 struct mm_struct *mm = p->mm;
2871
2872 if (mm) {
2873 mm_users = atomic_read(&mm->mm_users);
2874 if (mm_users == 1) {
2875 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2876 mm->numa_scan_seq = 0;
2877 }
2878 }
2879 p->node_stamp = 0;
2880 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2881 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2882 /* Protect against double add, see task_tick_numa and task_numa_work */
2883 p->numa_work.next = &p->numa_work;
2884 p->numa_faults = NULL;
2885 RCU_INIT_POINTER(p->numa_group, NULL);
2886 p->last_task_numa_placement = 0;
2887 p->last_sum_exec_runtime = 0;
2888
2889 init_task_work(&p->numa_work, task_numa_work);
2890
2891 /* New address space, reset the preferred nid */
2892 if (!(clone_flags & CLONE_VM)) {
2893 p->numa_preferred_nid = NUMA_NO_NODE;
2894 return;
2895 }
2896
2897 /*
2898 * New thread, keep existing numa_preferred_nid which should be copied
2899 * already by arch_dup_task_struct but stagger when scans start.
2900 */
2901 if (mm) {
2902 unsigned int delay;
2903
2904 delay = min_t(unsigned int, task_scan_max(current),
2905 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2906 delay += 2 * TICK_NSEC;
2907 p->node_stamp = delay;
2908 }
2909 }
2910
2911 /*
2912 * Drive the periodic memory faults..
2913 */
2914 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2915 {
2916 struct callback_head *work = &curr->numa_work;
2917 u64 period, now;
2918
2919 /*
2920 * We don't care about NUMA placement if we don't have memory.
2921 */
2922 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2923 return;
2924
2925 /*
2926 * Using runtime rather than walltime has the dual advantage that
2927 * we (mostly) drive the selection from busy threads and that the
2928 * task needs to have done some actual work before we bother with
2929 * NUMA placement.
2930 */
2931 now = curr->se.sum_exec_runtime;
2932 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2933
2934 if (now > curr->node_stamp + period) {
2935 if (!curr->node_stamp)
2936 curr->numa_scan_period = task_scan_start(curr);
2937 curr->node_stamp += period;
2938
2939 if (!time_before(jiffies, curr->mm->numa_next_scan))
2940 task_work_add(curr, work, TWA_RESUME);
2941 }
2942 }
2943
2944 static void update_scan_period(struct task_struct *p, int new_cpu)
2945 {
2946 int src_nid = cpu_to_node(task_cpu(p));
2947 int dst_nid = cpu_to_node(new_cpu);
2948
2949 if (!static_branch_likely(&sched_numa_balancing))
2950 return;
2951
2952 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2953 return;
2954
2955 if (src_nid == dst_nid)
2956 return;
2957
2958 /*
2959 * Allow resets if faults have been trapped before one scan
2960 * has completed. This is most likely due to a new task that
2961 * is pulled cross-node due to wakeups or load balancing.
2962 */
2963 if (p->numa_scan_seq) {
2964 /*
2965 * Avoid scan adjustments if moving to the preferred
2966 * node or if the task was not previously running on
2967 * the preferred node.
2968 */
2969 if (dst_nid == p->numa_preferred_nid ||
2970 (p->numa_preferred_nid != NUMA_NO_NODE &&
2971 src_nid != p->numa_preferred_nid))
2972 return;
2973 }
2974
2975 p->numa_scan_period = task_scan_start(p);
2976 }
2977
2978 #else
2979 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2980 {
2981 }
2982
2983 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2984 {
2985 }
2986
2987 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2988 {
2989 }
2990
2991 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2992 {
2993 }
2994
2995 #endif /* CONFIG_NUMA_BALANCING */
2996
2997 static void
2998 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2999 {
3000 update_load_add(&cfs_rq->load, se->load.weight);
3001 #ifdef CONFIG_SMP
3002 if (entity_is_task(se)) {
3003 struct rq *rq = rq_of(cfs_rq);
3004
3005 account_numa_enqueue(rq, task_of(se));
3006 list_add(&se->group_node, &rq->cfs_tasks);
3007 }
3008 #endif
3009 cfs_rq->nr_running++;
3010 }
3011
3012 static void
3013 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3014 {
3015 update_load_sub(&cfs_rq->load, se->load.weight);
3016 #ifdef CONFIG_SMP
3017 if (entity_is_task(se)) {
3018 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3019 list_del_init(&se->group_node);
3020 }
3021 #endif
3022 cfs_rq->nr_running--;
3023 }
3024
3025 /*
3026 * Signed add and clamp on underflow.
3027 *
3028 * Explicitly do a load-store to ensure the intermediate value never hits
3029 * memory. This allows lockless observations without ever seeing the negative
3030 * values.
3031 */
3032 #define add_positive(_ptr, _val) do { \
3033 typeof(_ptr) ptr = (_ptr); \
3034 typeof(_val) val = (_val); \
3035 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3036 \
3037 res = var + val; \
3038 \
3039 if (val < 0 && res > var) \
3040 res = 0; \
3041 \
3042 WRITE_ONCE(*ptr, res); \
3043 } while (0)
3044
3045 /*
3046 * Unsigned subtract and clamp on underflow.
3047 *
3048 * Explicitly do a load-store to ensure the intermediate value never hits
3049 * memory. This allows lockless observations without ever seeing the negative
3050 * values.
3051 */
3052 #define sub_positive(_ptr, _val) do { \
3053 typeof(_ptr) ptr = (_ptr); \
3054 typeof(*ptr) val = (_val); \
3055 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3056 res = var - val; \
3057 if (res > var) \
3058 res = 0; \
3059 WRITE_ONCE(*ptr, res); \
3060 } while (0)
3061
3062 /*
3063 * Remove and clamp on negative, from a local variable.
3064 *
3065 * A variant of sub_positive(), which does not use explicit load-store
3066 * and is thus optimized for local variable updates.
3067 */
3068 #define lsub_positive(_ptr, _val) do { \
3069 typeof(_ptr) ptr = (_ptr); \
3070 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3071 } while (0)
3072
3073 #ifdef CONFIG_SMP
3074 static inline void
3075 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3076 {
3077 cfs_rq->avg.load_avg += se->avg.load_avg;
3078 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3079 }
3080
3081 static inline void
3082 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3083 {
3084 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3085 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3086 }
3087 #else
3088 static inline void
3089 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3090 static inline void
3091 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3092 #endif
3093
3094 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3095 unsigned long weight)
3096 {
3097 if (se->on_rq) {
3098 /* commit outstanding execution time */
3099 if (cfs_rq->curr == se)
3100 update_curr(cfs_rq);
3101 update_load_sub(&cfs_rq->load, se->load.weight);
3102 }
3103 dequeue_load_avg(cfs_rq, se);
3104
3105 update_load_set(&se->load, weight);
3106
3107 #ifdef CONFIG_SMP
3108 do {
3109 u32 divider = get_pelt_divider(&se->avg);
3110
3111 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3112 } while (0);
3113 #endif
3114
3115 enqueue_load_avg(cfs_rq, se);
3116 if (se->on_rq)
3117 update_load_add(&cfs_rq->load, se->load.weight);
3118
3119 }
3120
3121 void reweight_task(struct task_struct *p, int prio)
3122 {
3123 struct sched_entity *se = &p->se;
3124 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3125 struct load_weight *load = &se->load;
3126 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3127
3128 reweight_entity(cfs_rq, se, weight);
3129 load->inv_weight = sched_prio_to_wmult[prio];
3130 }
3131
3132 #ifdef CONFIG_FAIR_GROUP_SCHED
3133 #ifdef CONFIG_SMP
3134 /*
3135 * All this does is approximate the hierarchical proportion which includes that
3136 * global sum we all love to hate.
3137 *
3138 * That is, the weight of a group entity, is the proportional share of the
3139 * group weight based on the group runqueue weights. That is:
3140 *
3141 * tg->weight * grq->load.weight
3142 * ge->load.weight = ----------------------------- (1)
3143 * \Sum grq->load.weight
3144 *
3145 * Now, because computing that sum is prohibitively expensive to compute (been
3146 * there, done that) we approximate it with this average stuff. The average
3147 * moves slower and therefore the approximation is cheaper and more stable.
3148 *
3149 * So instead of the above, we substitute:
3150 *
3151 * grq->load.weight -> grq->avg.load_avg (2)
3152 *
3153 * which yields the following:
3154 *
3155 * tg->weight * grq->avg.load_avg
3156 * ge->load.weight = ------------------------------ (3)
3157 * tg->load_avg
3158 *
3159 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3160 *
3161 * That is shares_avg, and it is right (given the approximation (2)).
3162 *
3163 * The problem with it is that because the average is slow -- it was designed
3164 * to be exactly that of course -- this leads to transients in boundary
3165 * conditions. In specific, the case where the group was idle and we start the
3166 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3167 * yielding bad latency etc..
3168 *
3169 * Now, in that special case (1) reduces to:
3170 *
3171 * tg->weight * grq->load.weight
3172 * ge->load.weight = ----------------------------- = tg->weight (4)
3173 * grp->load.weight
3174 *
3175 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3176 *
3177 * So what we do is modify our approximation (3) to approach (4) in the (near)
3178 * UP case, like:
3179 *
3180 * ge->load.weight =
3181 *
3182 * tg->weight * grq->load.weight
3183 * --------------------------------------------------- (5)
3184 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3185 *
3186 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3187 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3188 *
3189 *
3190 * tg->weight * grq->load.weight
3191 * ge->load.weight = ----------------------------- (6)
3192 * tg_load_avg'
3193 *
3194 * Where:
3195 *
3196 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3197 * max(grq->load.weight, grq->avg.load_avg)
3198 *
3199 * And that is shares_weight and is icky. In the (near) UP case it approaches
3200 * (4) while in the normal case it approaches (3). It consistently
3201 * overestimates the ge->load.weight and therefore:
3202 *
3203 * \Sum ge->load.weight >= tg->weight
3204 *
3205 * hence icky!
3206 */
3207 static long calc_group_shares(struct cfs_rq *cfs_rq)
3208 {
3209 long tg_weight, tg_shares, load, shares;
3210 struct task_group *tg = cfs_rq->tg;
3211
3212 tg_shares = READ_ONCE(tg->shares);
3213
3214 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3215
3216 tg_weight = atomic_long_read(&tg->load_avg);
3217
3218 /* Ensure tg_weight >= load */
3219 tg_weight -= cfs_rq->tg_load_avg_contrib;
3220 tg_weight += load;
3221
3222 shares = (tg_shares * load);
3223 if (tg_weight)
3224 shares /= tg_weight;
3225
3226 /*
3227 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3228 * of a group with small tg->shares value. It is a floor value which is
3229 * assigned as a minimum load.weight to the sched_entity representing
3230 * the group on a CPU.
3231 *
3232 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3233 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3234 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3235 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3236 * instead of 0.
3237 */
3238 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3239 }
3240 #endif /* CONFIG_SMP */
3241
3242 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3243
3244 /*
3245 * Recomputes the group entity based on the current state of its group
3246 * runqueue.
3247 */
3248 static void update_cfs_group(struct sched_entity *se)
3249 {
3250 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3251 long shares;
3252
3253 if (!gcfs_rq)
3254 return;
3255
3256 if (throttled_hierarchy(gcfs_rq))
3257 return;
3258
3259 #ifndef CONFIG_SMP
3260 shares = READ_ONCE(gcfs_rq->tg->shares);
3261
3262 if (likely(se->load.weight == shares))
3263 return;
3264 #else
3265 shares = calc_group_shares(gcfs_rq);
3266 #endif
3267
3268 reweight_entity(cfs_rq_of(se), se, shares);
3269 }
3270
3271 #else /* CONFIG_FAIR_GROUP_SCHED */
3272 static inline void update_cfs_group(struct sched_entity *se)
3273 {
3274 }
3275 #endif /* CONFIG_FAIR_GROUP_SCHED */
3276
3277 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3278 {
3279 struct rq *rq = rq_of(cfs_rq);
3280
3281 if (&rq->cfs == cfs_rq) {
3282 /*
3283 * There are a few boundary cases this might miss but it should
3284 * get called often enough that that should (hopefully) not be
3285 * a real problem.
3286 *
3287 * It will not get called when we go idle, because the idle
3288 * thread is a different class (!fair), nor will the utilization
3289 * number include things like RT tasks.
3290 *
3291 * As is, the util number is not freq-invariant (we'd have to
3292 * implement arch_scale_freq_capacity() for that).
3293 *
3294 * See cpu_util().
3295 */
3296 cpufreq_update_util(rq, flags);
3297 }
3298 }
3299
3300 #ifdef CONFIG_SMP
3301 #ifdef CONFIG_FAIR_GROUP_SCHED
3302 /**
3303 * update_tg_load_avg - update the tg's load avg
3304 * @cfs_rq: the cfs_rq whose avg changed
3305 *
3306 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3307 * However, because tg->load_avg is a global value there are performance
3308 * considerations.
3309 *
3310 * In order to avoid having to look at the other cfs_rq's, we use a
3311 * differential update where we store the last value we propagated. This in
3312 * turn allows skipping updates if the differential is 'small'.
3313 *
3314 * Updating tg's load_avg is necessary before update_cfs_share().
3315 */
3316 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3317 {
3318 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3319
3320 /*
3321 * No need to update load_avg for root_task_group as it is not used.
3322 */
3323 if (cfs_rq->tg == &root_task_group)
3324 return;
3325
3326 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3327 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3328 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3329 }
3330 }
3331
3332 /*
3333 * Called within set_task_rq() right before setting a task's CPU. The
3334 * caller only guarantees p->pi_lock is held; no other assumptions,
3335 * including the state of rq->lock, should be made.
3336 */
3337 void set_task_rq_fair(struct sched_entity *se,
3338 struct cfs_rq *prev, struct cfs_rq *next)
3339 {
3340 u64 p_last_update_time;
3341 u64 n_last_update_time;
3342
3343 if (!sched_feat(ATTACH_AGE_LOAD))
3344 return;
3345
3346 /*
3347 * We are supposed to update the task to "current" time, then its up to
3348 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3349 * getting what current time is, so simply throw away the out-of-date
3350 * time. This will result in the wakee task is less decayed, but giving
3351 * the wakee more load sounds not bad.
3352 */
3353 if (!(se->avg.last_update_time && prev))
3354 return;
3355
3356 #ifndef CONFIG_64BIT
3357 {
3358 u64 p_last_update_time_copy;
3359 u64 n_last_update_time_copy;
3360
3361 do {
3362 p_last_update_time_copy = prev->load_last_update_time_copy;
3363 n_last_update_time_copy = next->load_last_update_time_copy;
3364
3365 smp_rmb();
3366
3367 p_last_update_time = prev->avg.last_update_time;
3368 n_last_update_time = next->avg.last_update_time;
3369
3370 } while (p_last_update_time != p_last_update_time_copy ||
3371 n_last_update_time != n_last_update_time_copy);
3372 }
3373 #else
3374 p_last_update_time = prev->avg.last_update_time;
3375 n_last_update_time = next->avg.last_update_time;
3376 #endif
3377 __update_load_avg_blocked_se(p_last_update_time, se);
3378 se->avg.last_update_time = n_last_update_time;
3379 }
3380
3381
3382 /*
3383 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3384 * propagate its contribution. The key to this propagation is the invariant
3385 * that for each group:
3386 *
3387 * ge->avg == grq->avg (1)
3388 *
3389 * _IFF_ we look at the pure running and runnable sums. Because they
3390 * represent the very same entity, just at different points in the hierarchy.
3391 *
3392 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3393 * and simply copies the running/runnable sum over (but still wrong, because
3394 * the group entity and group rq do not have their PELT windows aligned).
3395 *
3396 * However, update_tg_cfs_load() is more complex. So we have:
3397 *
3398 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3399 *
3400 * And since, like util, the runnable part should be directly transferable,
3401 * the following would _appear_ to be the straight forward approach:
3402 *
3403 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3404 *
3405 * And per (1) we have:
3406 *
3407 * ge->avg.runnable_avg == grq->avg.runnable_avg
3408 *
3409 * Which gives:
3410 *
3411 * ge->load.weight * grq->avg.load_avg
3412 * ge->avg.load_avg = ----------------------------------- (4)
3413 * grq->load.weight
3414 *
3415 * Except that is wrong!
3416 *
3417 * Because while for entities historical weight is not important and we
3418 * really only care about our future and therefore can consider a pure
3419 * runnable sum, runqueues can NOT do this.
3420 *
3421 * We specifically want runqueues to have a load_avg that includes
3422 * historical weights. Those represent the blocked load, the load we expect
3423 * to (shortly) return to us. This only works by keeping the weights as
3424 * integral part of the sum. We therefore cannot decompose as per (3).
3425 *
3426 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3427 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3428 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3429 * runnable section of these tasks overlap (or not). If they were to perfectly
3430 * align the rq as a whole would be runnable 2/3 of the time. If however we
3431 * always have at least 1 runnable task, the rq as a whole is always runnable.
3432 *
3433 * So we'll have to approximate.. :/
3434 *
3435 * Given the constraint:
3436 *
3437 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3438 *
3439 * We can construct a rule that adds runnable to a rq by assuming minimal
3440 * overlap.
3441 *
3442 * On removal, we'll assume each task is equally runnable; which yields:
3443 *
3444 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3445 *
3446 * XXX: only do this for the part of runnable > running ?
3447 *
3448 */
3449
3450 static inline void
3451 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3452 {
3453 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3454 u32 divider;
3455
3456 /* Nothing to update */
3457 if (!delta)
3458 return;
3459
3460 /*
3461 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3462 * See ___update_load_avg() for details.
3463 */
3464 divider = get_pelt_divider(&cfs_rq->avg);
3465
3466 /* Set new sched_entity's utilization */
3467 se->avg.util_avg = gcfs_rq->avg.util_avg;
3468 se->avg.util_sum = se->avg.util_avg * divider;
3469
3470 /* Update parent cfs_rq utilization */
3471 add_positive(&cfs_rq->avg.util_avg, delta);
3472 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3473 }
3474
3475 static inline void
3476 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3477 {
3478 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3479 u32 divider;
3480
3481 /* Nothing to update */
3482 if (!delta)
3483 return;
3484
3485 /*
3486 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3487 * See ___update_load_avg() for details.
3488 */
3489 divider = get_pelt_divider(&cfs_rq->avg);
3490
3491 /* Set new sched_entity's runnable */
3492 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3493 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3494
3495 /* Update parent cfs_rq runnable */
3496 add_positive(&cfs_rq->avg.runnable_avg, delta);
3497 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3498 }
3499
3500 static inline void
3501 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3502 {
3503 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3504 unsigned long load_avg;
3505 u64 load_sum = 0;
3506 s64 delta_sum;
3507 u32 divider;
3508
3509 if (!runnable_sum)
3510 return;
3511
3512 gcfs_rq->prop_runnable_sum = 0;
3513
3514 /*
3515 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3516 * See ___update_load_avg() for details.
3517 */
3518 divider = get_pelt_divider(&cfs_rq->avg);
3519
3520 if (runnable_sum >= 0) {
3521 /*
3522 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3523 * the CPU is saturated running == runnable.
3524 */
3525 runnable_sum += se->avg.load_sum;
3526 runnable_sum = min_t(long, runnable_sum, divider);
3527 } else {
3528 /*
3529 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3530 * assuming all tasks are equally runnable.
3531 */
3532 if (scale_load_down(gcfs_rq->load.weight)) {
3533 load_sum = div_s64(gcfs_rq->avg.load_sum,
3534 scale_load_down(gcfs_rq->load.weight));
3535 }
3536
3537 /* But make sure to not inflate se's runnable */
3538 runnable_sum = min(se->avg.load_sum, load_sum);
3539 }
3540
3541 /*
3542 * runnable_sum can't be lower than running_sum
3543 * Rescale running sum to be in the same range as runnable sum
3544 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3545 * runnable_sum is in [0 : LOAD_AVG_MAX]
3546 */
3547 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3548 runnable_sum = max(runnable_sum, running_sum);
3549
3550 load_sum = (s64)se_weight(se) * runnable_sum;
3551 load_avg = div_s64(load_sum, divider);
3552
3553 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3554 delta_avg = load_avg - se->avg.load_avg;
3555
3556 se->avg.load_sum = runnable_sum;
3557 se->avg.load_avg = load_avg;
3558 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3559 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3560 }
3561
3562 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3563 {
3564 cfs_rq->propagate = 1;
3565 cfs_rq->prop_runnable_sum += runnable_sum;
3566 }
3567
3568 /* Update task and its cfs_rq load average */
3569 static inline int propagate_entity_load_avg(struct sched_entity *se)
3570 {
3571 struct cfs_rq *cfs_rq, *gcfs_rq;
3572
3573 if (entity_is_task(se))
3574 return 0;
3575
3576 gcfs_rq = group_cfs_rq(se);
3577 if (!gcfs_rq->propagate)
3578 return 0;
3579
3580 gcfs_rq->propagate = 0;
3581
3582 cfs_rq = cfs_rq_of(se);
3583
3584 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3585
3586 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3587 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3588 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3589
3590 trace_pelt_cfs_tp(cfs_rq);
3591 trace_pelt_se_tp(se);
3592
3593 return 1;
3594 }
3595
3596 /*
3597 * Check if we need to update the load and the utilization of a blocked
3598 * group_entity:
3599 */
3600 static inline bool skip_blocked_update(struct sched_entity *se)
3601 {
3602 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3603
3604 /*
3605 * If sched_entity still have not zero load or utilization, we have to
3606 * decay it:
3607 */
3608 if (se->avg.load_avg || se->avg.util_avg)
3609 return false;
3610
3611 /*
3612 * If there is a pending propagation, we have to update the load and
3613 * the utilization of the sched_entity:
3614 */
3615 if (gcfs_rq->propagate)
3616 return false;
3617
3618 /*
3619 * Otherwise, the load and the utilization of the sched_entity is
3620 * already zero and there is no pending propagation, so it will be a
3621 * waste of time to try to decay it:
3622 */
3623 return true;
3624 }
3625
3626 #else /* CONFIG_FAIR_GROUP_SCHED */
3627
3628 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3629
3630 static inline int propagate_entity_load_avg(struct sched_entity *se)
3631 {
3632 return 0;
3633 }
3634
3635 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3636
3637 #endif /* CONFIG_FAIR_GROUP_SCHED */
3638
3639 /**
3640 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3641 * @now: current time, as per cfs_rq_clock_pelt()
3642 * @cfs_rq: cfs_rq to update
3643 *
3644 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3645 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3646 * post_init_entity_util_avg().
3647 *
3648 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3649 *
3650 * Returns true if the load decayed or we removed load.
3651 *
3652 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3653 * call update_tg_load_avg() when this function returns true.
3654 */
3655 static inline int
3656 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3657 {
3658 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3659 struct sched_avg *sa = &cfs_rq->avg;
3660 int decayed = 0;
3661
3662 if (cfs_rq->removed.nr) {
3663 unsigned long r;
3664 u32 divider = get_pelt_divider(&cfs_rq->avg);
3665
3666 raw_spin_lock(&cfs_rq->removed.lock);
3667 swap(cfs_rq->removed.util_avg, removed_util);
3668 swap(cfs_rq->removed.load_avg, removed_load);
3669 swap(cfs_rq->removed.runnable_avg, removed_runnable);
3670 cfs_rq->removed.nr = 0;
3671 raw_spin_unlock(&cfs_rq->removed.lock);
3672
3673 r = removed_load;
3674 sub_positive(&sa->load_avg, r);
3675 sub_positive(&sa->load_sum, r * divider);
3676
3677 r = removed_util;
3678 sub_positive(&sa->util_avg, r);
3679 sub_positive(&sa->util_sum, r * divider);
3680
3681 r = removed_runnable;
3682 sub_positive(&sa->runnable_avg, r);
3683 sub_positive(&sa->runnable_sum, r * divider);
3684
3685 /*
3686 * removed_runnable is the unweighted version of removed_load so we
3687 * can use it to estimate removed_load_sum.
3688 */
3689 add_tg_cfs_propagate(cfs_rq,
3690 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3691
3692 decayed = 1;
3693 }
3694
3695 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3696
3697 #ifndef CONFIG_64BIT
3698 smp_wmb();
3699 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3700 #endif
3701
3702 return decayed;
3703 }
3704
3705 /**
3706 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3707 * @cfs_rq: cfs_rq to attach to
3708 * @se: sched_entity to attach
3709 *
3710 * Must call update_cfs_rq_load_avg() before this, since we rely on
3711 * cfs_rq->avg.last_update_time being current.
3712 */
3713 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3714 {
3715 /*
3716 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3717 * See ___update_load_avg() for details.
3718 */
3719 u32 divider = get_pelt_divider(&cfs_rq->avg);
3720
3721 /*
3722 * When we attach the @se to the @cfs_rq, we must align the decay
3723 * window because without that, really weird and wonderful things can
3724 * happen.
3725 *
3726 * XXX illustrate
3727 */
3728 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3729 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3730
3731 /*
3732 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3733 * period_contrib. This isn't strictly correct, but since we're
3734 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3735 * _sum a little.
3736 */
3737 se->avg.util_sum = se->avg.util_avg * divider;
3738
3739 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3740
3741 se->avg.load_sum = divider;
3742 if (se_weight(se)) {
3743 se->avg.load_sum =
3744 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3745 }
3746
3747 enqueue_load_avg(cfs_rq, se);
3748 cfs_rq->avg.util_avg += se->avg.util_avg;
3749 cfs_rq->avg.util_sum += se->avg.util_sum;
3750 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3751 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3752
3753 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3754
3755 cfs_rq_util_change(cfs_rq, 0);
3756
3757 trace_pelt_cfs_tp(cfs_rq);
3758 }
3759
3760 /**
3761 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3762 * @cfs_rq: cfs_rq to detach from
3763 * @se: sched_entity to detach
3764 *
3765 * Must call update_cfs_rq_load_avg() before this, since we rely on
3766 * cfs_rq->avg.last_update_time being current.
3767 */
3768 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3769 {
3770 dequeue_load_avg(cfs_rq, se);
3771 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3772 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3773 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3774 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3775
3776 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3777
3778 cfs_rq_util_change(cfs_rq, 0);
3779
3780 trace_pelt_cfs_tp(cfs_rq);
3781 }
3782
3783 /*
3784 * Optional action to be done while updating the load average
3785 */
3786 #define UPDATE_TG 0x1
3787 #define SKIP_AGE_LOAD 0x2
3788 #define DO_ATTACH 0x4
3789
3790 /* Update task and its cfs_rq load average */
3791 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3792 {
3793 u64 now = cfs_rq_clock_pelt(cfs_rq);
3794 int decayed;
3795
3796 /*
3797 * Track task load average for carrying it to new CPU after migrated, and
3798 * track group sched_entity load average for task_h_load calc in migration
3799 */
3800 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3801 __update_load_avg_se(now, cfs_rq, se);
3802
3803 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3804 decayed |= propagate_entity_load_avg(se);
3805
3806 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3807
3808 /*
3809 * DO_ATTACH means we're here from enqueue_entity().
3810 * !last_update_time means we've passed through
3811 * migrate_task_rq_fair() indicating we migrated.
3812 *
3813 * IOW we're enqueueing a task on a new CPU.
3814 */
3815 attach_entity_load_avg(cfs_rq, se);
3816 update_tg_load_avg(cfs_rq);
3817
3818 } else if (decayed) {
3819 cfs_rq_util_change(cfs_rq, 0);
3820
3821 if (flags & UPDATE_TG)
3822 update_tg_load_avg(cfs_rq);
3823 }
3824 }
3825
3826 #ifndef CONFIG_64BIT
3827 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3828 {
3829 u64 last_update_time_copy;
3830 u64 last_update_time;
3831
3832 do {
3833 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3834 smp_rmb();
3835 last_update_time = cfs_rq->avg.last_update_time;
3836 } while (last_update_time != last_update_time_copy);
3837
3838 return last_update_time;
3839 }
3840 #else
3841 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3842 {
3843 return cfs_rq->avg.last_update_time;
3844 }
3845 #endif
3846
3847 /*
3848 * Synchronize entity load avg of dequeued entity without locking
3849 * the previous rq.
3850 */
3851 static void sync_entity_load_avg(struct sched_entity *se)
3852 {
3853 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3854 u64 last_update_time;
3855
3856 last_update_time = cfs_rq_last_update_time(cfs_rq);
3857 __update_load_avg_blocked_se(last_update_time, se);
3858 }
3859
3860 /*
3861 * Task first catches up with cfs_rq, and then subtract
3862 * itself from the cfs_rq (task must be off the queue now).
3863 */
3864 static void remove_entity_load_avg(struct sched_entity *se)
3865 {
3866 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3867 unsigned long flags;
3868
3869 /*
3870 * tasks cannot exit without having gone through wake_up_new_task() ->
3871 * post_init_entity_util_avg() which will have added things to the
3872 * cfs_rq, so we can remove unconditionally.
3873 */
3874
3875 sync_entity_load_avg(se);
3876
3877 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3878 ++cfs_rq->removed.nr;
3879 cfs_rq->removed.util_avg += se->avg.util_avg;
3880 cfs_rq->removed.load_avg += se->avg.load_avg;
3881 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
3882 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3883 }
3884
3885 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3886 {
3887 return cfs_rq->avg.runnable_avg;
3888 }
3889
3890 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3891 {
3892 return cfs_rq->avg.load_avg;
3893 }
3894
3895 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3896
3897 static inline unsigned long task_util(struct task_struct *p)
3898 {
3899 return READ_ONCE(p->se.avg.util_avg);
3900 }
3901
3902 static inline unsigned long _task_util_est(struct task_struct *p)
3903 {
3904 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3905
3906 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3907 }
3908
3909 static inline unsigned long task_util_est(struct task_struct *p)
3910 {
3911 return max(task_util(p), _task_util_est(p));
3912 }
3913
3914 #ifdef CONFIG_UCLAMP_TASK
3915 static inline unsigned long uclamp_task_util(struct task_struct *p)
3916 {
3917 return clamp(task_util_est(p),
3918 uclamp_eff_value(p, UCLAMP_MIN),
3919 uclamp_eff_value(p, UCLAMP_MAX));
3920 }
3921 #else
3922 static inline unsigned long uclamp_task_util(struct task_struct *p)
3923 {
3924 return task_util_est(p);
3925 }
3926 #endif
3927
3928 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3929 struct task_struct *p)
3930 {
3931 unsigned int enqueued;
3932
3933 if (!sched_feat(UTIL_EST))
3934 return;
3935
3936 /* Update root cfs_rq's estimated utilization */
3937 enqueued = cfs_rq->avg.util_est.enqueued;
3938 enqueued += _task_util_est(p);
3939 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3940
3941 trace_sched_util_est_cfs_tp(cfs_rq);
3942 }
3943
3944 /*
3945 * Check if a (signed) value is within a specified (unsigned) margin,
3946 * based on the observation that:
3947 *
3948 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3949 *
3950 * NOTE: this only works when value + maring < INT_MAX.
3951 */
3952 static inline bool within_margin(int value, int margin)
3953 {
3954 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3955 }
3956
3957 static void
3958 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3959 {
3960 long last_ewma_diff;
3961 struct util_est ue;
3962 int cpu;
3963
3964 if (!sched_feat(UTIL_EST))
3965 return;
3966
3967 /* Update root cfs_rq's estimated utilization */
3968 ue.enqueued = cfs_rq->avg.util_est.enqueued;
3969 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3970 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3971
3972 trace_sched_util_est_cfs_tp(cfs_rq);
3973
3974 /*
3975 * Skip update of task's estimated utilization when the task has not
3976 * yet completed an activation, e.g. being migrated.
3977 */
3978 if (!task_sleep)
3979 return;
3980
3981 /*
3982 * If the PELT values haven't changed since enqueue time,
3983 * skip the util_est update.
3984 */
3985 ue = p->se.avg.util_est;
3986 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3987 return;
3988
3989 /*
3990 * Reset EWMA on utilization increases, the moving average is used only
3991 * to smooth utilization decreases.
3992 */
3993 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3994 if (sched_feat(UTIL_EST_FASTUP)) {
3995 if (ue.ewma < ue.enqueued) {
3996 ue.ewma = ue.enqueued;
3997 goto done;
3998 }
3999 }
4000
4001 /*
4002 * Skip update of task's estimated utilization when its EWMA is
4003 * already ~1% close to its last activation value.
4004 */
4005 last_ewma_diff = ue.enqueued - ue.ewma;
4006 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
4007 return;
4008
4009 /*
4010 * To avoid overestimation of actual task utilization, skip updates if
4011 * we cannot grant there is idle time in this CPU.
4012 */
4013 cpu = cpu_of(rq_of(cfs_rq));
4014 if (task_util(p) > capacity_orig_of(cpu))
4015 return;
4016
4017 /*
4018 * Update Task's estimated utilization
4019 *
4020 * When *p completes an activation we can consolidate another sample
4021 * of the task size. This is done by storing the current PELT value
4022 * as ue.enqueued and by using this value to update the Exponential
4023 * Weighted Moving Average (EWMA):
4024 *
4025 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4026 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4027 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4028 * = w * ( last_ewma_diff ) + ewma(t-1)
4029 * = w * (last_ewma_diff + ewma(t-1) / w)
4030 *
4031 * Where 'w' is the weight of new samples, which is configured to be
4032 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4033 */
4034 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4035 ue.ewma += last_ewma_diff;
4036 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4037 done:
4038 WRITE_ONCE(p->se.avg.util_est, ue);
4039
4040 trace_sched_util_est_se_tp(&p->se);
4041 }
4042
4043 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4044 {
4045 return fits_capacity(uclamp_task_util(p), capacity);
4046 }
4047
4048 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4049 {
4050 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4051 return;
4052
4053 if (!p) {
4054 rq->misfit_task_load = 0;
4055 return;
4056 }
4057
4058 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4059 rq->misfit_task_load = 0;
4060 return;
4061 }
4062
4063 /*
4064 * Make sure that misfit_task_load will not be null even if
4065 * task_h_load() returns 0.
4066 */
4067 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4068 }
4069
4070 #else /* CONFIG_SMP */
4071
4072 #define UPDATE_TG 0x0
4073 #define SKIP_AGE_LOAD 0x0
4074 #define DO_ATTACH 0x0
4075
4076 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4077 {
4078 cfs_rq_util_change(cfs_rq, 0);
4079 }
4080
4081 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4082
4083 static inline void
4084 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4085 static inline void
4086 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4087
4088 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4089 {
4090 return 0;
4091 }
4092
4093 static inline void
4094 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4095
4096 static inline void
4097 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4098 bool task_sleep) {}
4099 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4100
4101 #endif /* CONFIG_SMP */
4102
4103 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4104 {
4105 #ifdef CONFIG_SCHED_DEBUG
4106 s64 d = se->vruntime - cfs_rq->min_vruntime;
4107
4108 if (d < 0)
4109 d = -d;
4110
4111 if (d > 3*sysctl_sched_latency)
4112 schedstat_inc(cfs_rq->nr_spread_over);
4113 #endif
4114 }
4115
4116 static void
4117 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4118 {
4119 u64 vruntime = cfs_rq->min_vruntime;
4120
4121 /*
4122 * The 'current' period is already promised to the current tasks,
4123 * however the extra weight of the new task will slow them down a
4124 * little, place the new task so that it fits in the slot that
4125 * stays open at the end.
4126 */
4127 if (initial && sched_feat(START_DEBIT))
4128 vruntime += sched_vslice(cfs_rq, se);
4129
4130 /* sleeps up to a single latency don't count. */
4131 if (!initial) {
4132 unsigned long thresh = sysctl_sched_latency;
4133
4134 /*
4135 * Halve their sleep time's effect, to allow
4136 * for a gentler effect of sleepers:
4137 */
4138 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4139 thresh >>= 1;
4140
4141 vruntime -= thresh;
4142 }
4143
4144 /* ensure we never gain time by being placed backwards. */
4145 se->vruntime = max_vruntime(se->vruntime, vruntime);
4146 }
4147
4148 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4149
4150 static inline void check_schedstat_required(void)
4151 {
4152 #ifdef CONFIG_SCHEDSTATS
4153 if (schedstat_enabled())
4154 return;
4155
4156 /* Force schedstat enabled if a dependent tracepoint is active */
4157 if (trace_sched_stat_wait_enabled() ||
4158 trace_sched_stat_sleep_enabled() ||
4159 trace_sched_stat_iowait_enabled() ||
4160 trace_sched_stat_blocked_enabled() ||
4161 trace_sched_stat_runtime_enabled()) {
4162 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4163 "stat_blocked and stat_runtime require the "
4164 "kernel parameter schedstats=enable or "
4165 "kernel.sched_schedstats=1\n");
4166 }
4167 #endif
4168 }
4169
4170 static inline bool cfs_bandwidth_used(void);
4171
4172 /*
4173 * MIGRATION
4174 *
4175 * dequeue
4176 * update_curr()
4177 * update_min_vruntime()
4178 * vruntime -= min_vruntime
4179 *
4180 * enqueue
4181 * update_curr()
4182 * update_min_vruntime()
4183 * vruntime += min_vruntime
4184 *
4185 * this way the vruntime transition between RQs is done when both
4186 * min_vruntime are up-to-date.
4187 *
4188 * WAKEUP (remote)
4189 *
4190 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4191 * vruntime -= min_vruntime
4192 *
4193 * enqueue
4194 * update_curr()
4195 * update_min_vruntime()
4196 * vruntime += min_vruntime
4197 *
4198 * this way we don't have the most up-to-date min_vruntime on the originating
4199 * CPU and an up-to-date min_vruntime on the destination CPU.
4200 */
4201
4202 static void
4203 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4204 {
4205 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4206 bool curr = cfs_rq->curr == se;
4207
4208 /*
4209 * If we're the current task, we must renormalise before calling
4210 * update_curr().
4211 */
4212 if (renorm && curr)
4213 se->vruntime += cfs_rq->min_vruntime;
4214
4215 update_curr(cfs_rq);
4216
4217 /*
4218 * Otherwise, renormalise after, such that we're placed at the current
4219 * moment in time, instead of some random moment in the past. Being
4220 * placed in the past could significantly boost this task to the
4221 * fairness detriment of existing tasks.
4222 */
4223 if (renorm && !curr)
4224 se->vruntime += cfs_rq->min_vruntime;
4225
4226 /*
4227 * When enqueuing a sched_entity, we must:
4228 * - Update loads to have both entity and cfs_rq synced with now.
4229 * - Add its load to cfs_rq->runnable_avg
4230 * - For group_entity, update its weight to reflect the new share of
4231 * its group cfs_rq
4232 * - Add its new weight to cfs_rq->load.weight
4233 */
4234 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4235 se_update_runnable(se);
4236 update_cfs_group(se);
4237 account_entity_enqueue(cfs_rq, se);
4238
4239 if (flags & ENQUEUE_WAKEUP)
4240 place_entity(cfs_rq, se, 0);
4241
4242 check_schedstat_required();
4243 update_stats_enqueue(cfs_rq, se, flags);
4244 check_spread(cfs_rq, se);
4245 if (!curr)
4246 __enqueue_entity(cfs_rq, se);
4247 se->on_rq = 1;
4248
4249 /*
4250 * When bandwidth control is enabled, cfs might have been removed
4251 * because of a parent been throttled but cfs->nr_running > 1. Try to
4252 * add it unconditionnally.
4253 */
4254 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4255 list_add_leaf_cfs_rq(cfs_rq);
4256
4257 if (cfs_rq->nr_running == 1)
4258 check_enqueue_throttle(cfs_rq);
4259 }
4260
4261 static void __clear_buddies_last(struct sched_entity *se)
4262 {
4263 for_each_sched_entity(se) {
4264 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4265 if (cfs_rq->last != se)
4266 break;
4267
4268 cfs_rq->last = NULL;
4269 }
4270 }
4271
4272 static void __clear_buddies_next(struct sched_entity *se)
4273 {
4274 for_each_sched_entity(se) {
4275 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4276 if (cfs_rq->next != se)
4277 break;
4278
4279 cfs_rq->next = NULL;
4280 }
4281 }
4282
4283 static void __clear_buddies_skip(struct sched_entity *se)
4284 {
4285 for_each_sched_entity(se) {
4286 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4287 if (cfs_rq->skip != se)
4288 break;
4289
4290 cfs_rq->skip = NULL;
4291 }
4292 }
4293
4294 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4295 {
4296 if (cfs_rq->last == se)
4297 __clear_buddies_last(se);
4298
4299 if (cfs_rq->next == se)
4300 __clear_buddies_next(se);
4301
4302 if (cfs_rq->skip == se)
4303 __clear_buddies_skip(se);
4304 }
4305
4306 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4307
4308 static void
4309 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4310 {
4311 /*
4312 * Update run-time statistics of the 'current'.
4313 */
4314 update_curr(cfs_rq);
4315
4316 /*
4317 * When dequeuing a sched_entity, we must:
4318 * - Update loads to have both entity and cfs_rq synced with now.
4319 * - Subtract its load from the cfs_rq->runnable_avg.
4320 * - Subtract its previous weight from cfs_rq->load.weight.
4321 * - For group entity, update its weight to reflect the new share
4322 * of its group cfs_rq.
4323 */
4324 update_load_avg(cfs_rq, se, UPDATE_TG);
4325 se_update_runnable(se);
4326
4327 update_stats_dequeue(cfs_rq, se, flags);
4328
4329 clear_buddies(cfs_rq, se);
4330
4331 if (se != cfs_rq->curr)
4332 __dequeue_entity(cfs_rq, se);
4333 se->on_rq = 0;
4334 account_entity_dequeue(cfs_rq, se);
4335
4336 /*
4337 * Normalize after update_curr(); which will also have moved
4338 * min_vruntime if @se is the one holding it back. But before doing
4339 * update_min_vruntime() again, which will discount @se's position and
4340 * can move min_vruntime forward still more.
4341 */
4342 if (!(flags & DEQUEUE_SLEEP))
4343 se->vruntime -= cfs_rq->min_vruntime;
4344
4345 /* return excess runtime on last dequeue */
4346 return_cfs_rq_runtime(cfs_rq);
4347
4348 update_cfs_group(se);
4349
4350 /*
4351 * Now advance min_vruntime if @se was the entity holding it back,
4352 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4353 * put back on, and if we advance min_vruntime, we'll be placed back
4354 * further than we started -- ie. we'll be penalized.
4355 */
4356 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4357 update_min_vruntime(cfs_rq);
4358 }
4359
4360 /*
4361 * Preempt the current task with a newly woken task if needed:
4362 */
4363 static void
4364 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4365 {
4366 unsigned long ideal_runtime, delta_exec;
4367 struct sched_entity *se;
4368 s64 delta;
4369
4370 ideal_runtime = sched_slice(cfs_rq, curr);
4371 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4372 if (delta_exec > ideal_runtime) {
4373 resched_curr(rq_of(cfs_rq));
4374 /*
4375 * The current task ran long enough, ensure it doesn't get
4376 * re-elected due to buddy favours.
4377 */
4378 clear_buddies(cfs_rq, curr);
4379 return;
4380 }
4381
4382 /*
4383 * Ensure that a task that missed wakeup preemption by a
4384 * narrow margin doesn't have to wait for a full slice.
4385 * This also mitigates buddy induced latencies under load.
4386 */
4387 if (delta_exec < sysctl_sched_min_granularity)
4388 return;
4389
4390 se = __pick_first_entity(cfs_rq);
4391 delta = curr->vruntime - se->vruntime;
4392
4393 if (delta < 0)
4394 return;
4395
4396 if (delta > ideal_runtime)
4397 resched_curr(rq_of(cfs_rq));
4398 }
4399
4400 static void
4401 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4402 {
4403 /* 'current' is not kept within the tree. */
4404 if (se->on_rq) {
4405 /*
4406 * Any task has to be enqueued before it get to execute on
4407 * a CPU. So account for the time it spent waiting on the
4408 * runqueue.
4409 */
4410 update_stats_wait_end(cfs_rq, se);
4411 __dequeue_entity(cfs_rq, se);
4412 update_load_avg(cfs_rq, se, UPDATE_TG);
4413 }
4414
4415 update_stats_curr_start(cfs_rq, se);
4416 cfs_rq->curr = se;
4417
4418 /*
4419 * Track our maximum slice length, if the CPU's load is at
4420 * least twice that of our own weight (i.e. dont track it
4421 * when there are only lesser-weight tasks around):
4422 */
4423 if (schedstat_enabled() &&
4424 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4425 schedstat_set(se->statistics.slice_max,
4426 max((u64)schedstat_val(se->statistics.slice_max),
4427 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4428 }
4429
4430 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4431 }
4432
4433 static int
4434 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4435
4436 /*
4437 * Pick the next process, keeping these things in mind, in this order:
4438 * 1) keep things fair between processes/task groups
4439 * 2) pick the "next" process, since someone really wants that to run
4440 * 3) pick the "last" process, for cache locality
4441 * 4) do not run the "skip" process, if something else is available
4442 */
4443 static struct sched_entity *
4444 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4445 {
4446 struct sched_entity *left = __pick_first_entity(cfs_rq);
4447 struct sched_entity *se;
4448
4449 /*
4450 * If curr is set we have to see if its left of the leftmost entity
4451 * still in the tree, provided there was anything in the tree at all.
4452 */
4453 if (!left || (curr && entity_before(curr, left)))
4454 left = curr;
4455
4456 se = left; /* ideally we run the leftmost entity */
4457
4458 /*
4459 * Avoid running the skip buddy, if running something else can
4460 * be done without getting too unfair.
4461 */
4462 if (cfs_rq->skip == se) {
4463 struct sched_entity *second;
4464
4465 if (se == curr) {
4466 second = __pick_first_entity(cfs_rq);
4467 } else {
4468 second = __pick_next_entity(se);
4469 if (!second || (curr && entity_before(curr, second)))
4470 second = curr;
4471 }
4472
4473 if (second && wakeup_preempt_entity(second, left) < 1)
4474 se = second;
4475 }
4476
4477 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4478 /*
4479 * Someone really wants this to run. If it's not unfair, run it.
4480 */
4481 se = cfs_rq->next;
4482 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4483 /*
4484 * Prefer last buddy, try to return the CPU to a preempted task.
4485 */
4486 se = cfs_rq->last;
4487 }
4488
4489 clear_buddies(cfs_rq, se);
4490
4491 return se;
4492 }
4493
4494 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4495
4496 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4497 {
4498 /*
4499 * If still on the runqueue then deactivate_task()
4500 * was not called and update_curr() has to be done:
4501 */
4502 if (prev->on_rq)
4503 update_curr(cfs_rq);
4504
4505 /* throttle cfs_rqs exceeding runtime */
4506 check_cfs_rq_runtime(cfs_rq);
4507
4508 check_spread(cfs_rq, prev);
4509
4510 if (prev->on_rq) {
4511 update_stats_wait_start(cfs_rq, prev);
4512 /* Put 'current' back into the tree. */
4513 __enqueue_entity(cfs_rq, prev);
4514 /* in !on_rq case, update occurred at dequeue */
4515 update_load_avg(cfs_rq, prev, 0);
4516 }
4517 cfs_rq->curr = NULL;
4518 }
4519
4520 static void
4521 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4522 {
4523 /*
4524 * Update run-time statistics of the 'current'.
4525 */
4526 update_curr(cfs_rq);
4527
4528 /*
4529 * Ensure that runnable average is periodically updated.
4530 */
4531 update_load_avg(cfs_rq, curr, UPDATE_TG);
4532 update_cfs_group(curr);
4533
4534 #ifdef CONFIG_SCHED_HRTICK
4535 /*
4536 * queued ticks are scheduled to match the slice, so don't bother
4537 * validating it and just reschedule.
4538 */
4539 if (queued) {
4540 resched_curr(rq_of(cfs_rq));
4541 return;
4542 }
4543 /*
4544 * don't let the period tick interfere with the hrtick preemption
4545 */
4546 if (!sched_feat(DOUBLE_TICK) &&
4547 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4548 return;
4549 #endif
4550
4551 if (cfs_rq->nr_running > 1)
4552 check_preempt_tick(cfs_rq, curr);
4553 }
4554
4555
4556 /**************************************************
4557 * CFS bandwidth control machinery
4558 */
4559
4560 #ifdef CONFIG_CFS_BANDWIDTH
4561
4562 #ifdef CONFIG_JUMP_LABEL
4563 static struct static_key __cfs_bandwidth_used;
4564
4565 static inline bool cfs_bandwidth_used(void)
4566 {
4567 return static_key_false(&__cfs_bandwidth_used);
4568 }
4569
4570 void cfs_bandwidth_usage_inc(void)
4571 {
4572 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4573 }
4574
4575 void cfs_bandwidth_usage_dec(void)
4576 {
4577 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4578 }
4579 #else /* CONFIG_JUMP_LABEL */
4580 static bool cfs_bandwidth_used(void)
4581 {
4582 return true;
4583 }
4584
4585 void cfs_bandwidth_usage_inc(void) {}
4586 void cfs_bandwidth_usage_dec(void) {}
4587 #endif /* CONFIG_JUMP_LABEL */
4588
4589 /*
4590 * default period for cfs group bandwidth.
4591 * default: 0.1s, units: nanoseconds
4592 */
4593 static inline u64 default_cfs_period(void)
4594 {
4595 return 100000000ULL;
4596 }
4597
4598 static inline u64 sched_cfs_bandwidth_slice(void)
4599 {
4600 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4601 }
4602
4603 /*
4604 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4605 * directly instead of rq->clock to avoid adding additional synchronization
4606 * around rq->lock.
4607 *
4608 * requires cfs_b->lock
4609 */
4610 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4611 {
4612 if (cfs_b->quota != RUNTIME_INF)
4613 cfs_b->runtime = cfs_b->quota;
4614 }
4615
4616 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4617 {
4618 return &tg->cfs_bandwidth;
4619 }
4620
4621 /* returns 0 on failure to allocate runtime */
4622 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4623 struct cfs_rq *cfs_rq, u64 target_runtime)
4624 {
4625 u64 min_amount, amount = 0;
4626
4627 lockdep_assert_held(&cfs_b->lock);
4628
4629 /* note: this is a positive sum as runtime_remaining <= 0 */
4630 min_amount = target_runtime - cfs_rq->runtime_remaining;
4631
4632 if (cfs_b->quota == RUNTIME_INF)
4633 amount = min_amount;
4634 else {
4635 start_cfs_bandwidth(cfs_b);
4636
4637 if (cfs_b->runtime > 0) {
4638 amount = min(cfs_b->runtime, min_amount);
4639 cfs_b->runtime -= amount;
4640 cfs_b->idle = 0;
4641 }
4642 }
4643
4644 cfs_rq->runtime_remaining += amount;
4645
4646 return cfs_rq->runtime_remaining > 0;
4647 }
4648
4649 /* returns 0 on failure to allocate runtime */
4650 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4651 {
4652 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4653 int ret;
4654
4655 raw_spin_lock(&cfs_b->lock);
4656 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4657 raw_spin_unlock(&cfs_b->lock);
4658
4659 return ret;
4660 }
4661
4662 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4663 {
4664 /* dock delta_exec before expiring quota (as it could span periods) */
4665 cfs_rq->runtime_remaining -= delta_exec;
4666
4667 if (likely(cfs_rq->runtime_remaining > 0))
4668 return;
4669
4670 if (cfs_rq->throttled)
4671 return;
4672 /*
4673 * if we're unable to extend our runtime we resched so that the active
4674 * hierarchy can be throttled
4675 */
4676 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4677 resched_curr(rq_of(cfs_rq));
4678 }
4679
4680 static __always_inline
4681 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4682 {
4683 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4684 return;
4685
4686 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4687 }
4688
4689 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4690 {
4691 return cfs_bandwidth_used() && cfs_rq->throttled;
4692 }
4693
4694 /* check whether cfs_rq, or any parent, is throttled */
4695 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4696 {
4697 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4698 }
4699
4700 /*
4701 * Ensure that neither of the group entities corresponding to src_cpu or
4702 * dest_cpu are members of a throttled hierarchy when performing group
4703 * load-balance operations.
4704 */
4705 static inline int throttled_lb_pair(struct task_group *tg,
4706 int src_cpu, int dest_cpu)
4707 {
4708 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4709
4710 src_cfs_rq = tg->cfs_rq[src_cpu];
4711 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4712
4713 return throttled_hierarchy(src_cfs_rq) ||
4714 throttled_hierarchy(dest_cfs_rq);
4715 }
4716
4717 static int tg_unthrottle_up(struct task_group *tg, void *data)
4718 {
4719 struct rq *rq = data;
4720 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4721
4722 cfs_rq->throttle_count--;
4723 if (!cfs_rq->throttle_count) {
4724 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4725 cfs_rq->throttled_clock_task;
4726
4727 /* Add cfs_rq with already running entity in the list */
4728 if (cfs_rq->nr_running >= 1)
4729 list_add_leaf_cfs_rq(cfs_rq);
4730 }
4731
4732 return 0;
4733 }
4734
4735 static int tg_throttle_down(struct task_group *tg, void *data)
4736 {
4737 struct rq *rq = data;
4738 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4739
4740 /* group is entering throttled state, stop time */
4741 if (!cfs_rq->throttle_count) {
4742 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4743 list_del_leaf_cfs_rq(cfs_rq);
4744 }
4745 cfs_rq->throttle_count++;
4746
4747 return 0;
4748 }
4749
4750 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4751 {
4752 struct rq *rq = rq_of(cfs_rq);
4753 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4754 struct sched_entity *se;
4755 long task_delta, idle_task_delta, dequeue = 1;
4756
4757 raw_spin_lock(&cfs_b->lock);
4758 /* This will start the period timer if necessary */
4759 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4760 /*
4761 * We have raced with bandwidth becoming available, and if we
4762 * actually throttled the timer might not unthrottle us for an
4763 * entire period. We additionally needed to make sure that any
4764 * subsequent check_cfs_rq_runtime calls agree not to throttle
4765 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4766 * for 1ns of runtime rather than just check cfs_b.
4767 */
4768 dequeue = 0;
4769 } else {
4770 list_add_tail_rcu(&cfs_rq->throttled_list,
4771 &cfs_b->throttled_cfs_rq);
4772 }
4773 raw_spin_unlock(&cfs_b->lock);
4774
4775 if (!dequeue)
4776 return false; /* Throttle no longer required. */
4777
4778 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4779
4780 /* freeze hierarchy runnable averages while throttled */
4781 rcu_read_lock();
4782 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4783 rcu_read_unlock();
4784
4785 task_delta = cfs_rq->h_nr_running;
4786 idle_task_delta = cfs_rq->idle_h_nr_running;
4787 for_each_sched_entity(se) {
4788 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4789 /* throttled entity or throttle-on-deactivate */
4790 if (!se->on_rq)
4791 goto done;
4792
4793 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4794
4795 qcfs_rq->h_nr_running -= task_delta;
4796 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4797
4798 if (qcfs_rq->load.weight) {
4799 /* Avoid re-evaluating load for this entity: */
4800 se = parent_entity(se);
4801 break;
4802 }
4803 }
4804
4805 for_each_sched_entity(se) {
4806 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4807 /* throttled entity or throttle-on-deactivate */
4808 if (!se->on_rq)
4809 goto done;
4810
4811 update_load_avg(qcfs_rq, se, 0);
4812 se_update_runnable(se);
4813
4814 qcfs_rq->h_nr_running -= task_delta;
4815 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4816 }
4817
4818 /* At this point se is NULL and we are at root level*/
4819 sub_nr_running(rq, task_delta);
4820
4821 done:
4822 /*
4823 * Note: distribution will already see us throttled via the
4824 * throttled-list. rq->lock protects completion.
4825 */
4826 cfs_rq->throttled = 1;
4827 cfs_rq->throttled_clock = rq_clock(rq);
4828 return true;
4829 }
4830
4831 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4832 {
4833 struct rq *rq = rq_of(cfs_rq);
4834 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4835 struct sched_entity *se;
4836 long task_delta, idle_task_delta;
4837
4838 se = cfs_rq->tg->se[cpu_of(rq)];
4839
4840 cfs_rq->throttled = 0;
4841
4842 update_rq_clock(rq);
4843
4844 raw_spin_lock(&cfs_b->lock);
4845 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4846 list_del_rcu(&cfs_rq->throttled_list);
4847 raw_spin_unlock(&cfs_b->lock);
4848
4849 /* update hierarchical throttle state */
4850 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4851
4852 if (!cfs_rq->load.weight)
4853 return;
4854
4855 task_delta = cfs_rq->h_nr_running;
4856 idle_task_delta = cfs_rq->idle_h_nr_running;
4857 for_each_sched_entity(se) {
4858 if (se->on_rq)
4859 break;
4860 cfs_rq = cfs_rq_of(se);
4861 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4862
4863 cfs_rq->h_nr_running += task_delta;
4864 cfs_rq->idle_h_nr_running += idle_task_delta;
4865
4866 /* end evaluation on encountering a throttled cfs_rq */
4867 if (cfs_rq_throttled(cfs_rq))
4868 goto unthrottle_throttle;
4869 }
4870
4871 for_each_sched_entity(se) {
4872 cfs_rq = cfs_rq_of(se);
4873
4874 update_load_avg(cfs_rq, se, UPDATE_TG);
4875 se_update_runnable(se);
4876
4877 cfs_rq->h_nr_running += task_delta;
4878 cfs_rq->idle_h_nr_running += idle_task_delta;
4879
4880
4881 /* end evaluation on encountering a throttled cfs_rq */
4882 if (cfs_rq_throttled(cfs_rq))
4883 goto unthrottle_throttle;
4884
4885 /*
4886 * One parent has been throttled and cfs_rq removed from the
4887 * list. Add it back to not break the leaf list.
4888 */
4889 if (throttled_hierarchy(cfs_rq))
4890 list_add_leaf_cfs_rq(cfs_rq);
4891 }
4892
4893 /* At this point se is NULL and we are at root level*/
4894 add_nr_running(rq, task_delta);
4895
4896 unthrottle_throttle:
4897 /*
4898 * The cfs_rq_throttled() breaks in the above iteration can result in
4899 * incomplete leaf list maintenance, resulting in triggering the
4900 * assertion below.
4901 */
4902 for_each_sched_entity(se) {
4903 cfs_rq = cfs_rq_of(se);
4904
4905 if (list_add_leaf_cfs_rq(cfs_rq))
4906 break;
4907 }
4908
4909 assert_list_leaf_cfs_rq(rq);
4910
4911 /* Determine whether we need to wake up potentially idle CPU: */
4912 if (rq->curr == rq->idle && rq->cfs.nr_running)
4913 resched_curr(rq);
4914 }
4915
4916 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4917 {
4918 struct cfs_rq *cfs_rq;
4919 u64 runtime, remaining = 1;
4920
4921 rcu_read_lock();
4922 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4923 throttled_list) {
4924 struct rq *rq = rq_of(cfs_rq);
4925 struct rq_flags rf;
4926
4927 rq_lock_irqsave(rq, &rf);
4928 if (!cfs_rq_throttled(cfs_rq))
4929 goto next;
4930
4931 /* By the above check, this should never be true */
4932 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4933
4934 raw_spin_lock(&cfs_b->lock);
4935 runtime = -cfs_rq->runtime_remaining + 1;
4936 if (runtime > cfs_b->runtime)
4937 runtime = cfs_b->runtime;
4938 cfs_b->runtime -= runtime;
4939 remaining = cfs_b->runtime;
4940 raw_spin_unlock(&cfs_b->lock);
4941
4942 cfs_rq->runtime_remaining += runtime;
4943
4944 /* we check whether we're throttled above */
4945 if (cfs_rq->runtime_remaining > 0)
4946 unthrottle_cfs_rq(cfs_rq);
4947
4948 next:
4949 rq_unlock_irqrestore(rq, &rf);
4950
4951 if (!remaining)
4952 break;
4953 }
4954 rcu_read_unlock();
4955 }
4956
4957 /*
4958 * Responsible for refilling a task_group's bandwidth and unthrottling its
4959 * cfs_rqs as appropriate. If there has been no activity within the last
4960 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4961 * used to track this state.
4962 */
4963 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4964 {
4965 int throttled;
4966
4967 /* no need to continue the timer with no bandwidth constraint */
4968 if (cfs_b->quota == RUNTIME_INF)
4969 goto out_deactivate;
4970
4971 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4972 cfs_b->nr_periods += overrun;
4973
4974 /*
4975 * idle depends on !throttled (for the case of a large deficit), and if
4976 * we're going inactive then everything else can be deferred
4977 */
4978 if (cfs_b->idle && !throttled)
4979 goto out_deactivate;
4980
4981 __refill_cfs_bandwidth_runtime(cfs_b);
4982
4983 if (!throttled) {
4984 /* mark as potentially idle for the upcoming period */
4985 cfs_b->idle = 1;
4986 return 0;
4987 }
4988
4989 /* account preceding periods in which throttling occurred */
4990 cfs_b->nr_throttled += overrun;
4991
4992 /*
4993 * This check is repeated as we release cfs_b->lock while we unthrottle.
4994 */
4995 while (throttled && cfs_b->runtime > 0) {
4996 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4997 /* we can't nest cfs_b->lock while distributing bandwidth */
4998 distribute_cfs_runtime(cfs_b);
4999 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5000
5001 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5002 }
5003
5004 /*
5005 * While we are ensured activity in the period following an
5006 * unthrottle, this also covers the case in which the new bandwidth is
5007 * insufficient to cover the existing bandwidth deficit. (Forcing the
5008 * timer to remain active while there are any throttled entities.)
5009 */
5010 cfs_b->idle = 0;
5011
5012 return 0;
5013
5014 out_deactivate:
5015 return 1;
5016 }
5017
5018 /* a cfs_rq won't donate quota below this amount */
5019 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5020 /* minimum remaining period time to redistribute slack quota */
5021 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5022 /* how long we wait to gather additional slack before distributing */
5023 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5024
5025 /*
5026 * Are we near the end of the current quota period?
5027 *
5028 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5029 * hrtimer base being cleared by hrtimer_start. In the case of
5030 * migrate_hrtimers, base is never cleared, so we are fine.
5031 */
5032 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5033 {
5034 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5035 u64 remaining;
5036
5037 /* if the call-back is running a quota refresh is already occurring */
5038 if (hrtimer_callback_running(refresh_timer))
5039 return 1;
5040
5041 /* is a quota refresh about to occur? */
5042 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5043 if (remaining < min_expire)
5044 return 1;
5045
5046 return 0;
5047 }
5048
5049 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5050 {
5051 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5052
5053 /* if there's a quota refresh soon don't bother with slack */
5054 if (runtime_refresh_within(cfs_b, min_left))
5055 return;
5056
5057 /* don't push forwards an existing deferred unthrottle */
5058 if (cfs_b->slack_started)
5059 return;
5060 cfs_b->slack_started = true;
5061
5062 hrtimer_start(&cfs_b->slack_timer,
5063 ns_to_ktime(cfs_bandwidth_slack_period),
5064 HRTIMER_MODE_REL);
5065 }
5066
5067 /* we know any runtime found here is valid as update_curr() precedes return */
5068 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5069 {
5070 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5071 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5072
5073 if (slack_runtime <= 0)
5074 return;
5075
5076 raw_spin_lock(&cfs_b->lock);
5077 if (cfs_b->quota != RUNTIME_INF) {
5078 cfs_b->runtime += slack_runtime;
5079
5080 /* we are under rq->lock, defer unthrottling using a timer */
5081 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5082 !list_empty(&cfs_b->throttled_cfs_rq))
5083 start_cfs_slack_bandwidth(cfs_b);
5084 }
5085 raw_spin_unlock(&cfs_b->lock);
5086
5087 /* even if it's not valid for return we don't want to try again */
5088 cfs_rq->runtime_remaining -= slack_runtime;
5089 }
5090
5091 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5092 {
5093 if (!cfs_bandwidth_used())
5094 return;
5095
5096 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5097 return;
5098
5099 __return_cfs_rq_runtime(cfs_rq);
5100 }
5101
5102 /*
5103 * This is done with a timer (instead of inline with bandwidth return) since
5104 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5105 */
5106 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5107 {
5108 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5109 unsigned long flags;
5110
5111 /* confirm we're still not at a refresh boundary */
5112 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5113 cfs_b->slack_started = false;
5114
5115 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5116 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5117 return;
5118 }
5119
5120 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5121 runtime = cfs_b->runtime;
5122
5123 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5124
5125 if (!runtime)
5126 return;
5127
5128 distribute_cfs_runtime(cfs_b);
5129 }
5130
5131 /*
5132 * When a group wakes up we want to make sure that its quota is not already
5133 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5134 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5135 */
5136 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5137 {
5138 if (!cfs_bandwidth_used())
5139 return;
5140
5141 /* an active group must be handled by the update_curr()->put() path */
5142 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5143 return;
5144
5145 /* ensure the group is not already throttled */
5146 if (cfs_rq_throttled(cfs_rq))
5147 return;
5148
5149 /* update runtime allocation */
5150 account_cfs_rq_runtime(cfs_rq, 0);
5151 if (cfs_rq->runtime_remaining <= 0)
5152 throttle_cfs_rq(cfs_rq);
5153 }
5154
5155 static void sync_throttle(struct task_group *tg, int cpu)
5156 {
5157 struct cfs_rq *pcfs_rq, *cfs_rq;
5158
5159 if (!cfs_bandwidth_used())
5160 return;
5161
5162 if (!tg->parent)
5163 return;
5164
5165 cfs_rq = tg->cfs_rq[cpu];
5166 pcfs_rq = tg->parent->cfs_rq[cpu];
5167
5168 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5169 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5170 }
5171
5172 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5173 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5174 {
5175 if (!cfs_bandwidth_used())
5176 return false;
5177
5178 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5179 return false;
5180
5181 /*
5182 * it's possible for a throttled entity to be forced into a running
5183 * state (e.g. set_curr_task), in this case we're finished.
5184 */
5185 if (cfs_rq_throttled(cfs_rq))
5186 return true;
5187
5188 return throttle_cfs_rq(cfs_rq);
5189 }
5190
5191 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5192 {
5193 struct cfs_bandwidth *cfs_b =
5194 container_of(timer, struct cfs_bandwidth, slack_timer);
5195
5196 do_sched_cfs_slack_timer(cfs_b);
5197
5198 return HRTIMER_NORESTART;
5199 }
5200
5201 extern const u64 max_cfs_quota_period;
5202
5203 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5204 {
5205 struct cfs_bandwidth *cfs_b =
5206 container_of(timer, struct cfs_bandwidth, period_timer);
5207 unsigned long flags;
5208 int overrun;
5209 int idle = 0;
5210 int count = 0;
5211
5212 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5213 for (;;) {
5214 overrun = hrtimer_forward_now(timer, cfs_b->period);
5215 if (!overrun)
5216 break;
5217
5218 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5219
5220 if (++count > 3) {
5221 u64 new, old = ktime_to_ns(cfs_b->period);
5222
5223 /*
5224 * Grow period by a factor of 2 to avoid losing precision.
5225 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5226 * to fail.
5227 */
5228 new = old * 2;
5229 if (new < max_cfs_quota_period) {
5230 cfs_b->period = ns_to_ktime(new);
5231 cfs_b->quota *= 2;
5232
5233 pr_warn_ratelimited(
5234 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5235 smp_processor_id(),
5236 div_u64(new, NSEC_PER_USEC),
5237 div_u64(cfs_b->quota, NSEC_PER_USEC));
5238 } else {
5239 pr_warn_ratelimited(
5240 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5241 smp_processor_id(),
5242 div_u64(old, NSEC_PER_USEC),
5243 div_u64(cfs_b->quota, NSEC_PER_USEC));
5244 }
5245
5246 /* reset count so we don't come right back in here */
5247 count = 0;
5248 }
5249 }
5250 if (idle)
5251 cfs_b->period_active = 0;
5252 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5253
5254 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5255 }
5256
5257 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5258 {
5259 raw_spin_lock_init(&cfs_b->lock);
5260 cfs_b->runtime = 0;
5261 cfs_b->quota = RUNTIME_INF;
5262 cfs_b->period = ns_to_ktime(default_cfs_period());
5263
5264 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5265 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5266 cfs_b->period_timer.function = sched_cfs_period_timer;
5267 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5268 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5269 cfs_b->slack_started = false;
5270 }
5271
5272 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5273 {
5274 cfs_rq->runtime_enabled = 0;
5275 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5276 }
5277
5278 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5279 {
5280 lockdep_assert_held(&cfs_b->lock);
5281
5282 if (cfs_b->period_active)
5283 return;
5284
5285 cfs_b->period_active = 1;
5286 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5287 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5288 }
5289
5290 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5291 {
5292 /* init_cfs_bandwidth() was not called */
5293 if (!cfs_b->throttled_cfs_rq.next)
5294 return;
5295
5296 hrtimer_cancel(&cfs_b->period_timer);
5297 hrtimer_cancel(&cfs_b->slack_timer);
5298 }
5299
5300 /*
5301 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5302 *
5303 * The race is harmless, since modifying bandwidth settings of unhooked group
5304 * bits doesn't do much.
5305 */
5306
5307 /* cpu online calback */
5308 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5309 {
5310 struct task_group *tg;
5311
5312 lockdep_assert_held(&rq->lock);
5313
5314 rcu_read_lock();
5315 list_for_each_entry_rcu(tg, &task_groups, list) {
5316 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5317 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5318
5319 raw_spin_lock(&cfs_b->lock);
5320 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5321 raw_spin_unlock(&cfs_b->lock);
5322 }
5323 rcu_read_unlock();
5324 }
5325
5326 /* cpu offline callback */
5327 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5328 {
5329 struct task_group *tg;
5330
5331 lockdep_assert_held(&rq->lock);
5332
5333 rcu_read_lock();
5334 list_for_each_entry_rcu(tg, &task_groups, list) {
5335 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5336
5337 if (!cfs_rq->runtime_enabled)
5338 continue;
5339
5340 /*
5341 * clock_task is not advancing so we just need to make sure
5342 * there's some valid quota amount
5343 */
5344 cfs_rq->runtime_remaining = 1;
5345 /*
5346 * Offline rq is schedulable till CPU is completely disabled
5347 * in take_cpu_down(), so we prevent new cfs throttling here.
5348 */
5349 cfs_rq->runtime_enabled = 0;
5350
5351 if (cfs_rq_throttled(cfs_rq))
5352 unthrottle_cfs_rq(cfs_rq);
5353 }
5354 rcu_read_unlock();
5355 }
5356
5357 #else /* CONFIG_CFS_BANDWIDTH */
5358
5359 static inline bool cfs_bandwidth_used(void)
5360 {
5361 return false;
5362 }
5363
5364 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5365 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5366 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5367 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5368 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5369
5370 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5371 {
5372 return 0;
5373 }
5374
5375 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5376 {
5377 return 0;
5378 }
5379
5380 static inline int throttled_lb_pair(struct task_group *tg,
5381 int src_cpu, int dest_cpu)
5382 {
5383 return 0;
5384 }
5385
5386 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5387
5388 #ifdef CONFIG_FAIR_GROUP_SCHED
5389 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5390 #endif
5391
5392 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5393 {
5394 return NULL;
5395 }
5396 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5397 static inline void update_runtime_enabled(struct rq *rq) {}
5398 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5399
5400 #endif /* CONFIG_CFS_BANDWIDTH */
5401
5402 /**************************************************
5403 * CFS operations on tasks:
5404 */
5405
5406 #ifdef CONFIG_SCHED_HRTICK
5407 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5408 {
5409 struct sched_entity *se = &p->se;
5410 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5411
5412 SCHED_WARN_ON(task_rq(p) != rq);
5413
5414 if (rq->cfs.h_nr_running > 1) {
5415 u64 slice = sched_slice(cfs_rq, se);
5416 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5417 s64 delta = slice - ran;
5418
5419 if (delta < 0) {
5420 if (rq->curr == p)
5421 resched_curr(rq);
5422 return;
5423 }
5424 hrtick_start(rq, delta);
5425 }
5426 }
5427
5428 /*
5429 * called from enqueue/dequeue and updates the hrtick when the
5430 * current task is from our class and nr_running is low enough
5431 * to matter.
5432 */
5433 static void hrtick_update(struct rq *rq)
5434 {
5435 struct task_struct *curr = rq->curr;
5436
5437 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5438 return;
5439
5440 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5441 hrtick_start_fair(rq, curr);
5442 }
5443 #else /* !CONFIG_SCHED_HRTICK */
5444 static inline void
5445 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5446 {
5447 }
5448
5449 static inline void hrtick_update(struct rq *rq)
5450 {
5451 }
5452 #endif
5453
5454 #ifdef CONFIG_SMP
5455 static inline unsigned long cpu_util(int cpu);
5456
5457 static inline bool cpu_overutilized(int cpu)
5458 {
5459 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5460 }
5461
5462 static inline void update_overutilized_status(struct rq *rq)
5463 {
5464 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5465 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5466 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5467 }
5468 }
5469 #else
5470 static inline void update_overutilized_status(struct rq *rq) { }
5471 #endif
5472
5473 /* Runqueue only has SCHED_IDLE tasks enqueued */
5474 static int sched_idle_rq(struct rq *rq)
5475 {
5476 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5477 rq->nr_running);
5478 }
5479
5480 #ifdef CONFIG_SMP
5481 static int sched_idle_cpu(int cpu)
5482 {
5483 return sched_idle_rq(cpu_rq(cpu));
5484 }
5485 #endif
5486
5487 /*
5488 * The enqueue_task method is called before nr_running is
5489 * increased. Here we update the fair scheduling stats and
5490 * then put the task into the rbtree:
5491 */
5492 static void
5493 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5494 {
5495 struct cfs_rq *cfs_rq;
5496 struct sched_entity *se = &p->se;
5497 int idle_h_nr_running = task_has_idle_policy(p);
5498
5499 /*
5500 * The code below (indirectly) updates schedutil which looks at
5501 * the cfs_rq utilization to select a frequency.
5502 * Let's add the task's estimated utilization to the cfs_rq's
5503 * estimated utilization, before we update schedutil.
5504 */
5505 util_est_enqueue(&rq->cfs, p);
5506
5507 /*
5508 * If in_iowait is set, the code below may not trigger any cpufreq
5509 * utilization updates, so do it here explicitly with the IOWAIT flag
5510 * passed.
5511 */
5512 if (p->in_iowait)
5513 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5514
5515 for_each_sched_entity(se) {
5516 if (se->on_rq)
5517 break;
5518 cfs_rq = cfs_rq_of(se);
5519 enqueue_entity(cfs_rq, se, flags);
5520
5521 cfs_rq->h_nr_running++;
5522 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5523
5524 /* end evaluation on encountering a throttled cfs_rq */
5525 if (cfs_rq_throttled(cfs_rq))
5526 goto enqueue_throttle;
5527
5528 flags = ENQUEUE_WAKEUP;
5529 }
5530
5531 for_each_sched_entity(se) {
5532 cfs_rq = cfs_rq_of(se);
5533
5534 update_load_avg(cfs_rq, se, UPDATE_TG);
5535 se_update_runnable(se);
5536 update_cfs_group(se);
5537
5538 cfs_rq->h_nr_running++;
5539 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5540
5541 /* end evaluation on encountering a throttled cfs_rq */
5542 if (cfs_rq_throttled(cfs_rq))
5543 goto enqueue_throttle;
5544
5545 /*
5546 * One parent has been throttled and cfs_rq removed from the
5547 * list. Add it back to not break the leaf list.
5548 */
5549 if (throttled_hierarchy(cfs_rq))
5550 list_add_leaf_cfs_rq(cfs_rq);
5551 }
5552
5553 /* At this point se is NULL and we are at root level*/
5554 add_nr_running(rq, 1);
5555
5556 /*
5557 * Since new tasks are assigned an initial util_avg equal to
5558 * half of the spare capacity of their CPU, tiny tasks have the
5559 * ability to cross the overutilized threshold, which will
5560 * result in the load balancer ruining all the task placement
5561 * done by EAS. As a way to mitigate that effect, do not account
5562 * for the first enqueue operation of new tasks during the
5563 * overutilized flag detection.
5564 *
5565 * A better way of solving this problem would be to wait for
5566 * the PELT signals of tasks to converge before taking them
5567 * into account, but that is not straightforward to implement,
5568 * and the following generally works well enough in practice.
5569 */
5570 if (flags & ENQUEUE_WAKEUP)
5571 update_overutilized_status(rq);
5572
5573 enqueue_throttle:
5574 if (cfs_bandwidth_used()) {
5575 /*
5576 * When bandwidth control is enabled; the cfs_rq_throttled()
5577 * breaks in the above iteration can result in incomplete
5578 * leaf list maintenance, resulting in triggering the assertion
5579 * below.
5580 */
5581 for_each_sched_entity(se) {
5582 cfs_rq = cfs_rq_of(se);
5583
5584 if (list_add_leaf_cfs_rq(cfs_rq))
5585 break;
5586 }
5587 }
5588
5589 assert_list_leaf_cfs_rq(rq);
5590
5591 hrtick_update(rq);
5592 }
5593
5594 static void set_next_buddy(struct sched_entity *se);
5595
5596 /*
5597 * The dequeue_task method is called before nr_running is
5598 * decreased. We remove the task from the rbtree and
5599 * update the fair scheduling stats:
5600 */
5601 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5602 {
5603 struct cfs_rq *cfs_rq;
5604 struct sched_entity *se = &p->se;
5605 int task_sleep = flags & DEQUEUE_SLEEP;
5606 int idle_h_nr_running = task_has_idle_policy(p);
5607 bool was_sched_idle = sched_idle_rq(rq);
5608
5609 for_each_sched_entity(se) {
5610 cfs_rq = cfs_rq_of(se);
5611 dequeue_entity(cfs_rq, se, flags);
5612
5613 cfs_rq->h_nr_running--;
5614 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5615
5616 /* end evaluation on encountering a throttled cfs_rq */
5617 if (cfs_rq_throttled(cfs_rq))
5618 goto dequeue_throttle;
5619
5620 /* Don't dequeue parent if it has other entities besides us */
5621 if (cfs_rq->load.weight) {
5622 /* Avoid re-evaluating load for this entity: */
5623 se = parent_entity(se);
5624 /*
5625 * Bias pick_next to pick a task from this cfs_rq, as
5626 * p is sleeping when it is within its sched_slice.
5627 */
5628 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5629 set_next_buddy(se);
5630 break;
5631 }
5632 flags |= DEQUEUE_SLEEP;
5633 }
5634
5635 for_each_sched_entity(se) {
5636 cfs_rq = cfs_rq_of(se);
5637
5638 update_load_avg(cfs_rq, se, UPDATE_TG);
5639 se_update_runnable(se);
5640 update_cfs_group(se);
5641
5642 cfs_rq->h_nr_running--;
5643 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5644
5645 /* end evaluation on encountering a throttled cfs_rq */
5646 if (cfs_rq_throttled(cfs_rq))
5647 goto dequeue_throttle;
5648
5649 }
5650
5651 /* At this point se is NULL and we are at root level*/
5652 sub_nr_running(rq, 1);
5653
5654 /* balance early to pull high priority tasks */
5655 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5656 rq->next_balance = jiffies;
5657
5658 dequeue_throttle:
5659 util_est_dequeue(&rq->cfs, p, task_sleep);
5660 hrtick_update(rq);
5661 }
5662
5663 #ifdef CONFIG_SMP
5664
5665 /* Working cpumask for: load_balance, load_balance_newidle. */
5666 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5667 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5668
5669 #ifdef CONFIG_NO_HZ_COMMON
5670
5671 static struct {
5672 cpumask_var_t idle_cpus_mask;
5673 atomic_t nr_cpus;
5674 int has_blocked; /* Idle CPUS has blocked load */
5675 unsigned long next_balance; /* in jiffy units */
5676 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5677 } nohz ____cacheline_aligned;
5678
5679 #endif /* CONFIG_NO_HZ_COMMON */
5680
5681 static unsigned long cpu_load(struct rq *rq)
5682 {
5683 return cfs_rq_load_avg(&rq->cfs);
5684 }
5685
5686 /*
5687 * cpu_load_without - compute CPU load without any contributions from *p
5688 * @cpu: the CPU which load is requested
5689 * @p: the task which load should be discounted
5690 *
5691 * The load of a CPU is defined by the load of tasks currently enqueued on that
5692 * CPU as well as tasks which are currently sleeping after an execution on that
5693 * CPU.
5694 *
5695 * This method returns the load of the specified CPU by discounting the load of
5696 * the specified task, whenever the task is currently contributing to the CPU
5697 * load.
5698 */
5699 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5700 {
5701 struct cfs_rq *cfs_rq;
5702 unsigned int load;
5703
5704 /* Task has no contribution or is new */
5705 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5706 return cpu_load(rq);
5707
5708 cfs_rq = &rq->cfs;
5709 load = READ_ONCE(cfs_rq->avg.load_avg);
5710
5711 /* Discount task's util from CPU's util */
5712 lsub_positive(&load, task_h_load(p));
5713
5714 return load;
5715 }
5716
5717 static unsigned long cpu_runnable(struct rq *rq)
5718 {
5719 return cfs_rq_runnable_avg(&rq->cfs);
5720 }
5721
5722 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5723 {
5724 struct cfs_rq *cfs_rq;
5725 unsigned int runnable;
5726
5727 /* Task has no contribution or is new */
5728 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5729 return cpu_runnable(rq);
5730
5731 cfs_rq = &rq->cfs;
5732 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5733
5734 /* Discount task's runnable from CPU's runnable */
5735 lsub_positive(&runnable, p->se.avg.runnable_avg);
5736
5737 return runnable;
5738 }
5739
5740 static unsigned long capacity_of(int cpu)
5741 {
5742 return cpu_rq(cpu)->cpu_capacity;
5743 }
5744
5745 static void record_wakee(struct task_struct *p)
5746 {
5747 /*
5748 * Only decay a single time; tasks that have less then 1 wakeup per
5749 * jiffy will not have built up many flips.
5750 */
5751 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5752 current->wakee_flips >>= 1;
5753 current->wakee_flip_decay_ts = jiffies;
5754 }
5755
5756 if (current->last_wakee != p) {
5757 current->last_wakee = p;
5758 current->wakee_flips++;
5759 }
5760 }
5761
5762 /*
5763 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5764 *
5765 * A waker of many should wake a different task than the one last awakened
5766 * at a frequency roughly N times higher than one of its wakees.
5767 *
5768 * In order to determine whether we should let the load spread vs consolidating
5769 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5770 * partner, and a factor of lls_size higher frequency in the other.
5771 *
5772 * With both conditions met, we can be relatively sure that the relationship is
5773 * non-monogamous, with partner count exceeding socket size.
5774 *
5775 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5776 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5777 * socket size.
5778 */
5779 static int wake_wide(struct task_struct *p)
5780 {
5781 unsigned int master = current->wakee_flips;
5782 unsigned int slave = p->wakee_flips;
5783 int factor = __this_cpu_read(sd_llc_size);
5784
5785 if (master < slave)
5786 swap(master, slave);
5787 if (slave < factor || master < slave * factor)
5788 return 0;
5789 return 1;
5790 }
5791
5792 /*
5793 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5794 * soonest. For the purpose of speed we only consider the waking and previous
5795 * CPU.
5796 *
5797 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5798 * cache-affine and is (or will be) idle.
5799 *
5800 * wake_affine_weight() - considers the weight to reflect the average
5801 * scheduling latency of the CPUs. This seems to work
5802 * for the overloaded case.
5803 */
5804 static int
5805 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5806 {
5807 /*
5808 * If this_cpu is idle, it implies the wakeup is from interrupt
5809 * context. Only allow the move if cache is shared. Otherwise an
5810 * interrupt intensive workload could force all tasks onto one
5811 * node depending on the IO topology or IRQ affinity settings.
5812 *
5813 * If the prev_cpu is idle and cache affine then avoid a migration.
5814 * There is no guarantee that the cache hot data from an interrupt
5815 * is more important than cache hot data on the prev_cpu and from
5816 * a cpufreq perspective, it's better to have higher utilisation
5817 * on one CPU.
5818 */
5819 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5820 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5821
5822 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5823 return this_cpu;
5824
5825 if (available_idle_cpu(prev_cpu))
5826 return prev_cpu;
5827
5828 return nr_cpumask_bits;
5829 }
5830
5831 static int
5832 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5833 int this_cpu, int prev_cpu, int sync)
5834 {
5835 s64 this_eff_load, prev_eff_load;
5836 unsigned long task_load;
5837
5838 this_eff_load = cpu_load(cpu_rq(this_cpu));
5839
5840 if (sync) {
5841 unsigned long current_load = task_h_load(current);
5842
5843 if (current_load > this_eff_load)
5844 return this_cpu;
5845
5846 this_eff_load -= current_load;
5847 }
5848
5849 task_load = task_h_load(p);
5850
5851 this_eff_load += task_load;
5852 if (sched_feat(WA_BIAS))
5853 this_eff_load *= 100;
5854 this_eff_load *= capacity_of(prev_cpu);
5855
5856 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5857 prev_eff_load -= task_load;
5858 if (sched_feat(WA_BIAS))
5859 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5860 prev_eff_load *= capacity_of(this_cpu);
5861
5862 /*
5863 * If sync, adjust the weight of prev_eff_load such that if
5864 * prev_eff == this_eff that select_idle_sibling() will consider
5865 * stacking the wakee on top of the waker if no other CPU is
5866 * idle.
5867 */
5868 if (sync)
5869 prev_eff_load += 1;
5870
5871 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5872 }
5873
5874 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5875 int this_cpu, int prev_cpu, int sync)
5876 {
5877 int target = nr_cpumask_bits;
5878
5879 if (sched_feat(WA_IDLE))
5880 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5881
5882 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5883 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5884
5885 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5886 if (target == nr_cpumask_bits)
5887 return prev_cpu;
5888
5889 schedstat_inc(sd->ttwu_move_affine);
5890 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5891 return target;
5892 }
5893
5894 static struct sched_group *
5895 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5896
5897 /*
5898 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5899 */
5900 static int
5901 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5902 {
5903 unsigned long load, min_load = ULONG_MAX;
5904 unsigned int min_exit_latency = UINT_MAX;
5905 u64 latest_idle_timestamp = 0;
5906 int least_loaded_cpu = this_cpu;
5907 int shallowest_idle_cpu = -1;
5908 int i;
5909
5910 /* Check if we have any choice: */
5911 if (group->group_weight == 1)
5912 return cpumask_first(sched_group_span(group));
5913
5914 /* Traverse only the allowed CPUs */
5915 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5916 if (sched_idle_cpu(i))
5917 return i;
5918
5919 if (available_idle_cpu(i)) {
5920 struct rq *rq = cpu_rq(i);
5921 struct cpuidle_state *idle = idle_get_state(rq);
5922 if (idle && idle->exit_latency < min_exit_latency) {
5923 /*
5924 * We give priority to a CPU whose idle state
5925 * has the smallest exit latency irrespective
5926 * of any idle timestamp.
5927 */
5928 min_exit_latency = idle->exit_latency;
5929 latest_idle_timestamp = rq->idle_stamp;
5930 shallowest_idle_cpu = i;
5931 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5932 rq->idle_stamp > latest_idle_timestamp) {
5933 /*
5934 * If equal or no active idle state, then
5935 * the most recently idled CPU might have
5936 * a warmer cache.
5937 */
5938 latest_idle_timestamp = rq->idle_stamp;
5939 shallowest_idle_cpu = i;
5940 }
5941 } else if (shallowest_idle_cpu == -1) {
5942 load = cpu_load(cpu_rq(i));
5943 if (load < min_load) {
5944 min_load = load;
5945 least_loaded_cpu = i;
5946 }
5947 }
5948 }
5949
5950 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5951 }
5952
5953 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5954 int cpu, int prev_cpu, int sd_flag)
5955 {
5956 int new_cpu = cpu;
5957
5958 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5959 return prev_cpu;
5960
5961 /*
5962 * We need task's util for cpu_util_without, sync it up to
5963 * prev_cpu's last_update_time.
5964 */
5965 if (!(sd_flag & SD_BALANCE_FORK))
5966 sync_entity_load_avg(&p->se);
5967
5968 while (sd) {
5969 struct sched_group *group;
5970 struct sched_domain *tmp;
5971 int weight;
5972
5973 if (!(sd->flags & sd_flag)) {
5974 sd = sd->child;
5975 continue;
5976 }
5977
5978 group = find_idlest_group(sd, p, cpu);
5979 if (!group) {
5980 sd = sd->child;
5981 continue;
5982 }
5983
5984 new_cpu = find_idlest_group_cpu(group, p, cpu);
5985 if (new_cpu == cpu) {
5986 /* Now try balancing at a lower domain level of 'cpu': */
5987 sd = sd->child;
5988 continue;
5989 }
5990
5991 /* Now try balancing at a lower domain level of 'new_cpu': */
5992 cpu = new_cpu;
5993 weight = sd->span_weight;
5994 sd = NULL;
5995 for_each_domain(cpu, tmp) {
5996 if (weight <= tmp->span_weight)
5997 break;
5998 if (tmp->flags & sd_flag)
5999 sd = tmp;
6000 }
6001 }
6002
6003 return new_cpu;
6004 }
6005
6006 #ifdef CONFIG_SCHED_SMT
6007 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6008 EXPORT_SYMBOL_GPL(sched_smt_present);
6009
6010 static inline void set_idle_cores(int cpu, int val)
6011 {
6012 struct sched_domain_shared *sds;
6013
6014 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6015 if (sds)
6016 WRITE_ONCE(sds->has_idle_cores, val);
6017 }
6018
6019 static inline bool test_idle_cores(int cpu, bool def)
6020 {
6021 struct sched_domain_shared *sds;
6022
6023 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6024 if (sds)
6025 return READ_ONCE(sds->has_idle_cores);
6026
6027 return def;
6028 }
6029
6030 /*
6031 * Scans the local SMT mask to see if the entire core is idle, and records this
6032 * information in sd_llc_shared->has_idle_cores.
6033 *
6034 * Since SMT siblings share all cache levels, inspecting this limited remote
6035 * state should be fairly cheap.
6036 */
6037 void __update_idle_core(struct rq *rq)
6038 {
6039 int core = cpu_of(rq);
6040 int cpu;
6041
6042 rcu_read_lock();
6043 if (test_idle_cores(core, true))
6044 goto unlock;
6045
6046 for_each_cpu(cpu, cpu_smt_mask(core)) {
6047 if (cpu == core)
6048 continue;
6049
6050 if (!available_idle_cpu(cpu))
6051 goto unlock;
6052 }
6053
6054 set_idle_cores(core, 1);
6055 unlock:
6056 rcu_read_unlock();
6057 }
6058
6059 /*
6060 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6061 * there are no idle cores left in the system; tracked through
6062 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6063 */
6064 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6065 {
6066 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6067 int core, cpu;
6068
6069 if (!static_branch_likely(&sched_smt_present))
6070 return -1;
6071
6072 if (!test_idle_cores(target, false))
6073 return -1;
6074
6075 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6076
6077 for_each_cpu_wrap(core, cpus, target) {
6078 bool idle = true;
6079
6080 for_each_cpu(cpu, cpu_smt_mask(core)) {
6081 if (!available_idle_cpu(cpu)) {
6082 idle = false;
6083 break;
6084 }
6085 }
6086 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6087
6088 if (idle)
6089 return core;
6090 }
6091
6092 /*
6093 * Failed to find an idle core; stop looking for one.
6094 */
6095 set_idle_cores(target, 0);
6096
6097 return -1;
6098 }
6099
6100 /*
6101 * Scan the local SMT mask for idle CPUs.
6102 */
6103 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6104 {
6105 int cpu;
6106
6107 if (!static_branch_likely(&sched_smt_present))
6108 return -1;
6109
6110 for_each_cpu(cpu, cpu_smt_mask(target)) {
6111 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6112 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6113 continue;
6114 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6115 return cpu;
6116 }
6117
6118 return -1;
6119 }
6120
6121 #else /* CONFIG_SCHED_SMT */
6122
6123 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6124 {
6125 return -1;
6126 }
6127
6128 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6129 {
6130 return -1;
6131 }
6132
6133 #endif /* CONFIG_SCHED_SMT */
6134
6135 /*
6136 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6137 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6138 * average idle time for this rq (as found in rq->avg_idle).
6139 */
6140 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6141 {
6142 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6143 struct sched_domain *this_sd;
6144 u64 avg_cost, avg_idle;
6145 u64 time;
6146 int this = smp_processor_id();
6147 int cpu, nr = INT_MAX;
6148
6149 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6150 if (!this_sd)
6151 return -1;
6152
6153 /*
6154 * Due to large variance we need a large fuzz factor; hackbench in
6155 * particularly is sensitive here.
6156 */
6157 avg_idle = this_rq()->avg_idle / 512;
6158 avg_cost = this_sd->avg_scan_cost + 1;
6159
6160 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6161 return -1;
6162
6163 if (sched_feat(SIS_PROP)) {
6164 u64 span_avg = sd->span_weight * avg_idle;
6165 if (span_avg > 4*avg_cost)
6166 nr = div_u64(span_avg, avg_cost);
6167 else
6168 nr = 4;
6169 }
6170
6171 time = cpu_clock(this);
6172
6173 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6174
6175 for_each_cpu_wrap(cpu, cpus, target) {
6176 if (!--nr)
6177 return -1;
6178 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6179 break;
6180 }
6181
6182 time = cpu_clock(this) - time;
6183 update_avg(&this_sd->avg_scan_cost, time);
6184
6185 return cpu;
6186 }
6187
6188 /*
6189 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6190 * the task fits. If no CPU is big enough, but there are idle ones, try to
6191 * maximize capacity.
6192 */
6193 static int
6194 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6195 {
6196 unsigned long best_cap = 0;
6197 int cpu, best_cpu = -1;
6198 struct cpumask *cpus;
6199
6200 sync_entity_load_avg(&p->se);
6201
6202 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6203 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6204
6205 for_each_cpu_wrap(cpu, cpus, target) {
6206 unsigned long cpu_cap = capacity_of(cpu);
6207
6208 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6209 continue;
6210 if (task_fits_capacity(p, cpu_cap))
6211 return cpu;
6212
6213 if (cpu_cap > best_cap) {
6214 best_cap = cpu_cap;
6215 best_cpu = cpu;
6216 }
6217 }
6218
6219 return best_cpu;
6220 }
6221
6222 /*
6223 * Try and locate an idle core/thread in the LLC cache domain.
6224 */
6225 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6226 {
6227 struct sched_domain *sd;
6228 int i, recent_used_cpu;
6229
6230 /*
6231 * For asymmetric CPU capacity systems, our domain of interest is
6232 * sd_asym_cpucapacity rather than sd_llc.
6233 */
6234 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6235 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6236 /*
6237 * On an asymmetric CPU capacity system where an exclusive
6238 * cpuset defines a symmetric island (i.e. one unique
6239 * capacity_orig value through the cpuset), the key will be set
6240 * but the CPUs within that cpuset will not have a domain with
6241 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6242 * capacity path.
6243 */
6244 if (!sd)
6245 goto symmetric;
6246
6247 i = select_idle_capacity(p, sd, target);
6248 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6249 }
6250
6251 symmetric:
6252 if (available_idle_cpu(target) || sched_idle_cpu(target))
6253 return target;
6254
6255 /*
6256 * If the previous CPU is cache affine and idle, don't be stupid:
6257 */
6258 if (prev != target && cpus_share_cache(prev, target) &&
6259 (available_idle_cpu(prev) || sched_idle_cpu(prev)))
6260 return prev;
6261
6262 /*
6263 * Allow a per-cpu kthread to stack with the wakee if the
6264 * kworker thread and the tasks previous CPUs are the same.
6265 * The assumption is that the wakee queued work for the
6266 * per-cpu kthread that is now complete and the wakeup is
6267 * essentially a sync wakeup. An obvious example of this
6268 * pattern is IO completions.
6269 */
6270 if (is_per_cpu_kthread(current) &&
6271 prev == smp_processor_id() &&
6272 this_rq()->nr_running <= 1) {
6273 return prev;
6274 }
6275
6276 /* Check a recently used CPU as a potential idle candidate: */
6277 recent_used_cpu = p->recent_used_cpu;
6278 if (recent_used_cpu != prev &&
6279 recent_used_cpu != target &&
6280 cpus_share_cache(recent_used_cpu, target) &&
6281 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6282 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
6283 /*
6284 * Replace recent_used_cpu with prev as it is a potential
6285 * candidate for the next wake:
6286 */
6287 p->recent_used_cpu = prev;
6288 return recent_used_cpu;
6289 }
6290
6291 sd = rcu_dereference(per_cpu(sd_llc, target));
6292 if (!sd)
6293 return target;
6294
6295 i = select_idle_core(p, sd, target);
6296 if ((unsigned)i < nr_cpumask_bits)
6297 return i;
6298
6299 i = select_idle_cpu(p, sd, target);
6300 if ((unsigned)i < nr_cpumask_bits)
6301 return i;
6302
6303 i = select_idle_smt(p, sd, target);
6304 if ((unsigned)i < nr_cpumask_bits)
6305 return i;
6306
6307 return target;
6308 }
6309
6310 /**
6311 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6312 * @cpu: the CPU to get the utilization of
6313 *
6314 * The unit of the return value must be the one of capacity so we can compare
6315 * the utilization with the capacity of the CPU that is available for CFS task
6316 * (ie cpu_capacity).
6317 *
6318 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6319 * recent utilization of currently non-runnable tasks on a CPU. It represents
6320 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6321 * capacity_orig is the cpu_capacity available at the highest frequency
6322 * (arch_scale_freq_capacity()).
6323 * The utilization of a CPU converges towards a sum equal to or less than the
6324 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6325 * the running time on this CPU scaled by capacity_curr.
6326 *
6327 * The estimated utilization of a CPU is defined to be the maximum between its
6328 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6329 * currently RUNNABLE on that CPU.
6330 * This allows to properly represent the expected utilization of a CPU which
6331 * has just got a big task running since a long sleep period. At the same time
6332 * however it preserves the benefits of the "blocked utilization" in
6333 * describing the potential for other tasks waking up on the same CPU.
6334 *
6335 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6336 * higher than capacity_orig because of unfortunate rounding in
6337 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6338 * the average stabilizes with the new running time. We need to check that the
6339 * utilization stays within the range of [0..capacity_orig] and cap it if
6340 * necessary. Without utilization capping, a group could be seen as overloaded
6341 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6342 * available capacity. We allow utilization to overshoot capacity_curr (but not
6343 * capacity_orig) as it useful for predicting the capacity required after task
6344 * migrations (scheduler-driven DVFS).
6345 *
6346 * Return: the (estimated) utilization for the specified CPU
6347 */
6348 static inline unsigned long cpu_util(int cpu)
6349 {
6350 struct cfs_rq *cfs_rq;
6351 unsigned int util;
6352
6353 cfs_rq = &cpu_rq(cpu)->cfs;
6354 util = READ_ONCE(cfs_rq->avg.util_avg);
6355
6356 if (sched_feat(UTIL_EST))
6357 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6358
6359 return min_t(unsigned long, util, capacity_orig_of(cpu));
6360 }
6361
6362 /*
6363 * cpu_util_without: compute cpu utilization without any contributions from *p
6364 * @cpu: the CPU which utilization is requested
6365 * @p: the task which utilization should be discounted
6366 *
6367 * The utilization of a CPU is defined by the utilization of tasks currently
6368 * enqueued on that CPU as well as tasks which are currently sleeping after an
6369 * execution on that CPU.
6370 *
6371 * This method returns the utilization of the specified CPU by discounting the
6372 * utilization of the specified task, whenever the task is currently
6373 * contributing to the CPU utilization.
6374 */
6375 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6376 {
6377 struct cfs_rq *cfs_rq;
6378 unsigned int util;
6379
6380 /* Task has no contribution or is new */
6381 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6382 return cpu_util(cpu);
6383
6384 cfs_rq = &cpu_rq(cpu)->cfs;
6385 util = READ_ONCE(cfs_rq->avg.util_avg);
6386
6387 /* Discount task's util from CPU's util */
6388 lsub_positive(&util, task_util(p));
6389
6390 /*
6391 * Covered cases:
6392 *
6393 * a) if *p is the only task sleeping on this CPU, then:
6394 * cpu_util (== task_util) > util_est (== 0)
6395 * and thus we return:
6396 * cpu_util_without = (cpu_util - task_util) = 0
6397 *
6398 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6399 * IDLE, then:
6400 * cpu_util >= task_util
6401 * cpu_util > util_est (== 0)
6402 * and thus we discount *p's blocked utilization to return:
6403 * cpu_util_without = (cpu_util - task_util) >= 0
6404 *
6405 * c) if other tasks are RUNNABLE on that CPU and
6406 * util_est > cpu_util
6407 * then we use util_est since it returns a more restrictive
6408 * estimation of the spare capacity on that CPU, by just
6409 * considering the expected utilization of tasks already
6410 * runnable on that CPU.
6411 *
6412 * Cases a) and b) are covered by the above code, while case c) is
6413 * covered by the following code when estimated utilization is
6414 * enabled.
6415 */
6416 if (sched_feat(UTIL_EST)) {
6417 unsigned int estimated =
6418 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6419
6420 /*
6421 * Despite the following checks we still have a small window
6422 * for a possible race, when an execl's select_task_rq_fair()
6423 * races with LB's detach_task():
6424 *
6425 * detach_task()
6426 * p->on_rq = TASK_ON_RQ_MIGRATING;
6427 * ---------------------------------- A
6428 * deactivate_task() \
6429 * dequeue_task() + RaceTime
6430 * util_est_dequeue() /
6431 * ---------------------------------- B
6432 *
6433 * The additional check on "current == p" it's required to
6434 * properly fix the execl regression and it helps in further
6435 * reducing the chances for the above race.
6436 */
6437 if (unlikely(task_on_rq_queued(p) || current == p))
6438 lsub_positive(&estimated, _task_util_est(p));
6439
6440 util = max(util, estimated);
6441 }
6442
6443 /*
6444 * Utilization (estimated) can exceed the CPU capacity, thus let's
6445 * clamp to the maximum CPU capacity to ensure consistency with
6446 * the cpu_util call.
6447 */
6448 return min_t(unsigned long, util, capacity_orig_of(cpu));
6449 }
6450
6451 /*
6452 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6453 * to @dst_cpu.
6454 */
6455 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6456 {
6457 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6458 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6459
6460 /*
6461 * If @p migrates from @cpu to another, remove its contribution. Or,
6462 * if @p migrates from another CPU to @cpu, add its contribution. In
6463 * the other cases, @cpu is not impacted by the migration, so the
6464 * util_avg should already be correct.
6465 */
6466 if (task_cpu(p) == cpu && dst_cpu != cpu)
6467 sub_positive(&util, task_util(p));
6468 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6469 util += task_util(p);
6470
6471 if (sched_feat(UTIL_EST)) {
6472 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6473
6474 /*
6475 * During wake-up, the task isn't enqueued yet and doesn't
6476 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6477 * so just add it (if needed) to "simulate" what will be
6478 * cpu_util() after the task has been enqueued.
6479 */
6480 if (dst_cpu == cpu)
6481 util_est += _task_util_est(p);
6482
6483 util = max(util, util_est);
6484 }
6485
6486 return min(util, capacity_orig_of(cpu));
6487 }
6488
6489 /*
6490 * compute_energy(): Estimates the energy that @pd would consume if @p was
6491 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6492 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6493 * to compute what would be the energy if we decided to actually migrate that
6494 * task.
6495 */
6496 static long
6497 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6498 {
6499 struct cpumask *pd_mask = perf_domain_span(pd);
6500 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6501 unsigned long max_util = 0, sum_util = 0;
6502 int cpu;
6503
6504 /*
6505 * The capacity state of CPUs of the current rd can be driven by CPUs
6506 * of another rd if they belong to the same pd. So, account for the
6507 * utilization of these CPUs too by masking pd with cpu_online_mask
6508 * instead of the rd span.
6509 *
6510 * If an entire pd is outside of the current rd, it will not appear in
6511 * its pd list and will not be accounted by compute_energy().
6512 */
6513 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6514 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6515 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6516
6517 /*
6518 * Busy time computation: utilization clamping is not
6519 * required since the ratio (sum_util / cpu_capacity)
6520 * is already enough to scale the EM reported power
6521 * consumption at the (eventually clamped) cpu_capacity.
6522 */
6523 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6524 ENERGY_UTIL, NULL);
6525
6526 /*
6527 * Performance domain frequency: utilization clamping
6528 * must be considered since it affects the selection
6529 * of the performance domain frequency.
6530 * NOTE: in case RT tasks are running, by default the
6531 * FREQUENCY_UTIL's utilization can be max OPP.
6532 */
6533 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6534 FREQUENCY_UTIL, tsk);
6535 max_util = max(max_util, cpu_util);
6536 }
6537
6538 return em_cpu_energy(pd->em_pd, max_util, sum_util);
6539 }
6540
6541 /*
6542 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6543 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6544 * spare capacity in each performance domain and uses it as a potential
6545 * candidate to execute the task. Then, it uses the Energy Model to figure
6546 * out which of the CPU candidates is the most energy-efficient.
6547 *
6548 * The rationale for this heuristic is as follows. In a performance domain,
6549 * all the most energy efficient CPU candidates (according to the Energy
6550 * Model) are those for which we'll request a low frequency. When there are
6551 * several CPUs for which the frequency request will be the same, we don't
6552 * have enough data to break the tie between them, because the Energy Model
6553 * only includes active power costs. With this model, if we assume that
6554 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6555 * the maximum spare capacity in a performance domain is guaranteed to be among
6556 * the best candidates of the performance domain.
6557 *
6558 * In practice, it could be preferable from an energy standpoint to pack
6559 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6560 * but that could also hurt our chances to go cluster idle, and we have no
6561 * ways to tell with the current Energy Model if this is actually a good
6562 * idea or not. So, find_energy_efficient_cpu() basically favors
6563 * cluster-packing, and spreading inside a cluster. That should at least be
6564 * a good thing for latency, and this is consistent with the idea that most
6565 * of the energy savings of EAS come from the asymmetry of the system, and
6566 * not so much from breaking the tie between identical CPUs. That's also the
6567 * reason why EAS is enabled in the topology code only for systems where
6568 * SD_ASYM_CPUCAPACITY is set.
6569 *
6570 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6571 * they don't have any useful utilization data yet and it's not possible to
6572 * forecast their impact on energy consumption. Consequently, they will be
6573 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6574 * to be energy-inefficient in some use-cases. The alternative would be to
6575 * bias new tasks towards specific types of CPUs first, or to try to infer
6576 * their util_avg from the parent task, but those heuristics could hurt
6577 * other use-cases too. So, until someone finds a better way to solve this,
6578 * let's keep things simple by re-using the existing slow path.
6579 */
6580 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6581 {
6582 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6583 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6584 unsigned long cpu_cap, util, base_energy = 0;
6585 int cpu, best_energy_cpu = prev_cpu;
6586 struct sched_domain *sd;
6587 struct perf_domain *pd;
6588
6589 rcu_read_lock();
6590 pd = rcu_dereference(rd->pd);
6591 if (!pd || READ_ONCE(rd->overutilized))
6592 goto fail;
6593
6594 /*
6595 * Energy-aware wake-up happens on the lowest sched_domain starting
6596 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6597 */
6598 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6599 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6600 sd = sd->parent;
6601 if (!sd)
6602 goto fail;
6603
6604 sync_entity_load_avg(&p->se);
6605 if (!task_util_est(p))
6606 goto unlock;
6607
6608 for (; pd; pd = pd->next) {
6609 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6610 unsigned long base_energy_pd;
6611 int max_spare_cap_cpu = -1;
6612
6613 /* Compute the 'base' energy of the pd, without @p */
6614 base_energy_pd = compute_energy(p, -1, pd);
6615 base_energy += base_energy_pd;
6616
6617 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6618 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6619 continue;
6620
6621 util = cpu_util_next(cpu, p, cpu);
6622 cpu_cap = capacity_of(cpu);
6623 spare_cap = cpu_cap;
6624 lsub_positive(&spare_cap, util);
6625
6626 /*
6627 * Skip CPUs that cannot satisfy the capacity request.
6628 * IOW, placing the task there would make the CPU
6629 * overutilized. Take uclamp into account to see how
6630 * much capacity we can get out of the CPU; this is
6631 * aligned with schedutil_cpu_util().
6632 */
6633 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6634 if (!fits_capacity(util, cpu_cap))
6635 continue;
6636
6637 /* Always use prev_cpu as a candidate. */
6638 if (cpu == prev_cpu) {
6639 prev_delta = compute_energy(p, prev_cpu, pd);
6640 prev_delta -= base_energy_pd;
6641 best_delta = min(best_delta, prev_delta);
6642 }
6643
6644 /*
6645 * Find the CPU with the maximum spare capacity in
6646 * the performance domain
6647 */
6648 if (spare_cap > max_spare_cap) {
6649 max_spare_cap = spare_cap;
6650 max_spare_cap_cpu = cpu;
6651 }
6652 }
6653
6654 /* Evaluate the energy impact of using this CPU. */
6655 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6656 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6657 cur_delta -= base_energy_pd;
6658 if (cur_delta < best_delta) {
6659 best_delta = cur_delta;
6660 best_energy_cpu = max_spare_cap_cpu;
6661 }
6662 }
6663 }
6664 unlock:
6665 rcu_read_unlock();
6666
6667 /*
6668 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6669 * least 6% of the energy used by prev_cpu.
6670 */
6671 if (prev_delta == ULONG_MAX)
6672 return best_energy_cpu;
6673
6674 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6675 return best_energy_cpu;
6676
6677 return prev_cpu;
6678
6679 fail:
6680 rcu_read_unlock();
6681
6682 return -1;
6683 }
6684
6685 /*
6686 * select_task_rq_fair: Select target runqueue for the waking task in domains
6687 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6688 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6689 *
6690 * Balances load by selecting the idlest CPU in the idlest group, or under
6691 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6692 *
6693 * Returns the target CPU number.
6694 *
6695 * preempt must be disabled.
6696 */
6697 static int
6698 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6699 {
6700 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6701 struct sched_domain *tmp, *sd = NULL;
6702 int cpu = smp_processor_id();
6703 int new_cpu = prev_cpu;
6704 int want_affine = 0;
6705 /* SD_flags and WF_flags share the first nibble */
6706 int sd_flag = wake_flags & 0xF;
6707
6708 if (wake_flags & WF_TTWU) {
6709 record_wakee(p);
6710
6711 if (sched_energy_enabled()) {
6712 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6713 if (new_cpu >= 0)
6714 return new_cpu;
6715 new_cpu = prev_cpu;
6716 }
6717
6718 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6719 }
6720
6721 rcu_read_lock();
6722 for_each_domain(cpu, tmp) {
6723 /*
6724 * If both 'cpu' and 'prev_cpu' are part of this domain,
6725 * cpu is a valid SD_WAKE_AFFINE target.
6726 */
6727 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6728 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6729 if (cpu != prev_cpu)
6730 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6731
6732 sd = NULL; /* Prefer wake_affine over balance flags */
6733 break;
6734 }
6735
6736 if (tmp->flags & sd_flag)
6737 sd = tmp;
6738 else if (!want_affine)
6739 break;
6740 }
6741
6742 if (unlikely(sd)) {
6743 /* Slow path */
6744 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6745 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
6746 /* Fast path */
6747 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6748
6749 if (want_affine)
6750 current->recent_used_cpu = cpu;
6751 }
6752 rcu_read_unlock();
6753
6754 return new_cpu;
6755 }
6756
6757 static void detach_entity_cfs_rq(struct sched_entity *se);
6758
6759 /*
6760 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6761 * cfs_rq_of(p) references at time of call are still valid and identify the
6762 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6763 */
6764 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6765 {
6766 /*
6767 * As blocked tasks retain absolute vruntime the migration needs to
6768 * deal with this by subtracting the old and adding the new
6769 * min_vruntime -- the latter is done by enqueue_entity() when placing
6770 * the task on the new runqueue.
6771 */
6772 if (p->state == TASK_WAKING) {
6773 struct sched_entity *se = &p->se;
6774 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6775 u64 min_vruntime;
6776
6777 #ifndef CONFIG_64BIT
6778 u64 min_vruntime_copy;
6779
6780 do {
6781 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6782 smp_rmb();
6783 min_vruntime = cfs_rq->min_vruntime;
6784 } while (min_vruntime != min_vruntime_copy);
6785 #else
6786 min_vruntime = cfs_rq->min_vruntime;
6787 #endif
6788
6789 se->vruntime -= min_vruntime;
6790 }
6791
6792 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6793 /*
6794 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6795 * rq->lock and can modify state directly.
6796 */
6797 lockdep_assert_held(&task_rq(p)->lock);
6798 detach_entity_cfs_rq(&p->se);
6799
6800 } else {
6801 /*
6802 * We are supposed to update the task to "current" time, then
6803 * its up to date and ready to go to new CPU/cfs_rq. But we
6804 * have difficulty in getting what current time is, so simply
6805 * throw away the out-of-date time. This will result in the
6806 * wakee task is less decayed, but giving the wakee more load
6807 * sounds not bad.
6808 */
6809 remove_entity_load_avg(&p->se);
6810 }
6811
6812 /* Tell new CPU we are migrated */
6813 p->se.avg.last_update_time = 0;
6814
6815 /* We have migrated, no longer consider this task hot */
6816 p->se.exec_start = 0;
6817
6818 update_scan_period(p, new_cpu);
6819 }
6820
6821 static void task_dead_fair(struct task_struct *p)
6822 {
6823 remove_entity_load_avg(&p->se);
6824 }
6825
6826 static int
6827 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6828 {
6829 if (rq->nr_running)
6830 return 1;
6831
6832 return newidle_balance(rq, rf) != 0;
6833 }
6834 #endif /* CONFIG_SMP */
6835
6836 static unsigned long wakeup_gran(struct sched_entity *se)
6837 {
6838 unsigned long gran = sysctl_sched_wakeup_granularity;
6839
6840 /*
6841 * Since its curr running now, convert the gran from real-time
6842 * to virtual-time in his units.
6843 *
6844 * By using 'se' instead of 'curr' we penalize light tasks, so
6845 * they get preempted easier. That is, if 'se' < 'curr' then
6846 * the resulting gran will be larger, therefore penalizing the
6847 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6848 * be smaller, again penalizing the lighter task.
6849 *
6850 * This is especially important for buddies when the leftmost
6851 * task is higher priority than the buddy.
6852 */
6853 return calc_delta_fair(gran, se);
6854 }
6855
6856 /*
6857 * Should 'se' preempt 'curr'.
6858 *
6859 * |s1
6860 * |s2
6861 * |s3
6862 * g
6863 * |<--->|c
6864 *
6865 * w(c, s1) = -1
6866 * w(c, s2) = 0
6867 * w(c, s3) = 1
6868 *
6869 */
6870 static int
6871 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6872 {
6873 s64 gran, vdiff = curr->vruntime - se->vruntime;
6874
6875 if (vdiff <= 0)
6876 return -1;
6877
6878 gran = wakeup_gran(se);
6879 if (vdiff > gran)
6880 return 1;
6881
6882 return 0;
6883 }
6884
6885 static void set_last_buddy(struct sched_entity *se)
6886 {
6887 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6888 return;
6889
6890 for_each_sched_entity(se) {
6891 if (SCHED_WARN_ON(!se->on_rq))
6892 return;
6893 cfs_rq_of(se)->last = se;
6894 }
6895 }
6896
6897 static void set_next_buddy(struct sched_entity *se)
6898 {
6899 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6900 return;
6901
6902 for_each_sched_entity(se) {
6903 if (SCHED_WARN_ON(!se->on_rq))
6904 return;
6905 cfs_rq_of(se)->next = se;
6906 }
6907 }
6908
6909 static void set_skip_buddy(struct sched_entity *se)
6910 {
6911 for_each_sched_entity(se)
6912 cfs_rq_of(se)->skip = se;
6913 }
6914
6915 /*
6916 * Preempt the current task with a newly woken task if needed:
6917 */
6918 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6919 {
6920 struct task_struct *curr = rq->curr;
6921 struct sched_entity *se = &curr->se, *pse = &p->se;
6922 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6923 int scale = cfs_rq->nr_running >= sched_nr_latency;
6924 int next_buddy_marked = 0;
6925
6926 if (unlikely(se == pse))
6927 return;
6928
6929 /*
6930 * This is possible from callers such as attach_tasks(), in which we
6931 * unconditionally check_prempt_curr() after an enqueue (which may have
6932 * lead to a throttle). This both saves work and prevents false
6933 * next-buddy nomination below.
6934 */
6935 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6936 return;
6937
6938 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6939 set_next_buddy(pse);
6940 next_buddy_marked = 1;
6941 }
6942
6943 /*
6944 * We can come here with TIF_NEED_RESCHED already set from new task
6945 * wake up path.
6946 *
6947 * Note: this also catches the edge-case of curr being in a throttled
6948 * group (e.g. via set_curr_task), since update_curr() (in the
6949 * enqueue of curr) will have resulted in resched being set. This
6950 * prevents us from potentially nominating it as a false LAST_BUDDY
6951 * below.
6952 */
6953 if (test_tsk_need_resched(curr))
6954 return;
6955
6956 /* Idle tasks are by definition preempted by non-idle tasks. */
6957 if (unlikely(task_has_idle_policy(curr)) &&
6958 likely(!task_has_idle_policy(p)))
6959 goto preempt;
6960
6961 /*
6962 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6963 * is driven by the tick):
6964 */
6965 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6966 return;
6967
6968 find_matching_se(&se, &pse);
6969 update_curr(cfs_rq_of(se));
6970 BUG_ON(!pse);
6971 if (wakeup_preempt_entity(se, pse) == 1) {
6972 /*
6973 * Bias pick_next to pick the sched entity that is
6974 * triggering this preemption.
6975 */
6976 if (!next_buddy_marked)
6977 set_next_buddy(pse);
6978 goto preempt;
6979 }
6980
6981 return;
6982
6983 preempt:
6984 resched_curr(rq);
6985 /*
6986 * Only set the backward buddy when the current task is still
6987 * on the rq. This can happen when a wakeup gets interleaved
6988 * with schedule on the ->pre_schedule() or idle_balance()
6989 * point, either of which can * drop the rq lock.
6990 *
6991 * Also, during early boot the idle thread is in the fair class,
6992 * for obvious reasons its a bad idea to schedule back to it.
6993 */
6994 if (unlikely(!se->on_rq || curr == rq->idle))
6995 return;
6996
6997 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6998 set_last_buddy(se);
6999 }
7000
7001 struct task_struct *
7002 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7003 {
7004 struct cfs_rq *cfs_rq = &rq->cfs;
7005 struct sched_entity *se;
7006 struct task_struct *p;
7007 int new_tasks;
7008
7009 again:
7010 if (!sched_fair_runnable(rq))
7011 goto idle;
7012
7013 #ifdef CONFIG_FAIR_GROUP_SCHED
7014 if (!prev || prev->sched_class != &fair_sched_class)
7015 goto simple;
7016
7017 /*
7018 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7019 * likely that a next task is from the same cgroup as the current.
7020 *
7021 * Therefore attempt to avoid putting and setting the entire cgroup
7022 * hierarchy, only change the part that actually changes.
7023 */
7024
7025 do {
7026 struct sched_entity *curr = cfs_rq->curr;
7027
7028 /*
7029 * Since we got here without doing put_prev_entity() we also
7030 * have to consider cfs_rq->curr. If it is still a runnable
7031 * entity, update_curr() will update its vruntime, otherwise
7032 * forget we've ever seen it.
7033 */
7034 if (curr) {
7035 if (curr->on_rq)
7036 update_curr(cfs_rq);
7037 else
7038 curr = NULL;
7039
7040 /*
7041 * This call to check_cfs_rq_runtime() will do the
7042 * throttle and dequeue its entity in the parent(s).
7043 * Therefore the nr_running test will indeed
7044 * be correct.
7045 */
7046 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7047 cfs_rq = &rq->cfs;
7048
7049 if (!cfs_rq->nr_running)
7050 goto idle;
7051
7052 goto simple;
7053 }
7054 }
7055
7056 se = pick_next_entity(cfs_rq, curr);
7057 cfs_rq = group_cfs_rq(se);
7058 } while (cfs_rq);
7059
7060 p = task_of(se);
7061
7062 /*
7063 * Since we haven't yet done put_prev_entity and if the selected task
7064 * is a different task than we started out with, try and touch the
7065 * least amount of cfs_rqs.
7066 */
7067 if (prev != p) {
7068 struct sched_entity *pse = &prev->se;
7069
7070 while (!(cfs_rq = is_same_group(se, pse))) {
7071 int se_depth = se->depth;
7072 int pse_depth = pse->depth;
7073
7074 if (se_depth <= pse_depth) {
7075 put_prev_entity(cfs_rq_of(pse), pse);
7076 pse = parent_entity(pse);
7077 }
7078 if (se_depth >= pse_depth) {
7079 set_next_entity(cfs_rq_of(se), se);
7080 se = parent_entity(se);
7081 }
7082 }
7083
7084 put_prev_entity(cfs_rq, pse);
7085 set_next_entity(cfs_rq, se);
7086 }
7087
7088 goto done;
7089 simple:
7090 #endif
7091 if (prev)
7092 put_prev_task(rq, prev);
7093
7094 do {
7095 se = pick_next_entity(cfs_rq, NULL);
7096 set_next_entity(cfs_rq, se);
7097 cfs_rq = group_cfs_rq(se);
7098 } while (cfs_rq);
7099
7100 p = task_of(se);
7101
7102 done: __maybe_unused;
7103 #ifdef CONFIG_SMP
7104 /*
7105 * Move the next running task to the front of
7106 * the list, so our cfs_tasks list becomes MRU
7107 * one.
7108 */
7109 list_move(&p->se.group_node, &rq->cfs_tasks);
7110 #endif
7111
7112 if (hrtick_enabled(rq))
7113 hrtick_start_fair(rq, p);
7114
7115 update_misfit_status(p, rq);
7116
7117 return p;
7118
7119 idle:
7120 if (!rf)
7121 return NULL;
7122
7123 new_tasks = newidle_balance(rq, rf);
7124
7125 /*
7126 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7127 * possible for any higher priority task to appear. In that case we
7128 * must re-start the pick_next_entity() loop.
7129 */
7130 if (new_tasks < 0)
7131 return RETRY_TASK;
7132
7133 if (new_tasks > 0)
7134 goto again;
7135
7136 /*
7137 * rq is about to be idle, check if we need to update the
7138 * lost_idle_time of clock_pelt
7139 */
7140 update_idle_rq_clock_pelt(rq);
7141
7142 return NULL;
7143 }
7144
7145 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7146 {
7147 return pick_next_task_fair(rq, NULL, NULL);
7148 }
7149
7150 /*
7151 * Account for a descheduled task:
7152 */
7153 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7154 {
7155 struct sched_entity *se = &prev->se;
7156 struct cfs_rq *cfs_rq;
7157
7158 for_each_sched_entity(se) {
7159 cfs_rq = cfs_rq_of(se);
7160 put_prev_entity(cfs_rq, se);
7161 }
7162 }
7163
7164 /*
7165 * sched_yield() is very simple
7166 *
7167 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7168 */
7169 static void yield_task_fair(struct rq *rq)
7170 {
7171 struct task_struct *curr = rq->curr;
7172 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7173 struct sched_entity *se = &curr->se;
7174
7175 /*
7176 * Are we the only task in the tree?
7177 */
7178 if (unlikely(rq->nr_running == 1))
7179 return;
7180
7181 clear_buddies(cfs_rq, se);
7182
7183 if (curr->policy != SCHED_BATCH) {
7184 update_rq_clock(rq);
7185 /*
7186 * Update run-time statistics of the 'current'.
7187 */
7188 update_curr(cfs_rq);
7189 /*
7190 * Tell update_rq_clock() that we've just updated,
7191 * so we don't do microscopic update in schedule()
7192 * and double the fastpath cost.
7193 */
7194 rq_clock_skip_update(rq);
7195 }
7196
7197 set_skip_buddy(se);
7198 }
7199
7200 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7201 {
7202 struct sched_entity *se = &p->se;
7203
7204 /* throttled hierarchies are not runnable */
7205 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7206 return false;
7207
7208 /* Tell the scheduler that we'd really like pse to run next. */
7209 set_next_buddy(se);
7210
7211 yield_task_fair(rq);
7212
7213 return true;
7214 }
7215
7216 #ifdef CONFIG_SMP
7217 /**************************************************
7218 * Fair scheduling class load-balancing methods.
7219 *
7220 * BASICS
7221 *
7222 * The purpose of load-balancing is to achieve the same basic fairness the
7223 * per-CPU scheduler provides, namely provide a proportional amount of compute
7224 * time to each task. This is expressed in the following equation:
7225 *
7226 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7227 *
7228 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7229 * W_i,0 is defined as:
7230 *
7231 * W_i,0 = \Sum_j w_i,j (2)
7232 *
7233 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7234 * is derived from the nice value as per sched_prio_to_weight[].
7235 *
7236 * The weight average is an exponential decay average of the instantaneous
7237 * weight:
7238 *
7239 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7240 *
7241 * C_i is the compute capacity of CPU i, typically it is the
7242 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7243 * can also include other factors [XXX].
7244 *
7245 * To achieve this balance we define a measure of imbalance which follows
7246 * directly from (1):
7247 *
7248 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7249 *
7250 * We them move tasks around to minimize the imbalance. In the continuous
7251 * function space it is obvious this converges, in the discrete case we get
7252 * a few fun cases generally called infeasible weight scenarios.
7253 *
7254 * [XXX expand on:
7255 * - infeasible weights;
7256 * - local vs global optima in the discrete case. ]
7257 *
7258 *
7259 * SCHED DOMAINS
7260 *
7261 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7262 * for all i,j solution, we create a tree of CPUs that follows the hardware
7263 * topology where each level pairs two lower groups (or better). This results
7264 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7265 * tree to only the first of the previous level and we decrease the frequency
7266 * of load-balance at each level inv. proportional to the number of CPUs in
7267 * the groups.
7268 *
7269 * This yields:
7270 *
7271 * log_2 n 1 n
7272 * \Sum { --- * --- * 2^i } = O(n) (5)
7273 * i = 0 2^i 2^i
7274 * `- size of each group
7275 * | | `- number of CPUs doing load-balance
7276 * | `- freq
7277 * `- sum over all levels
7278 *
7279 * Coupled with a limit on how many tasks we can migrate every balance pass,
7280 * this makes (5) the runtime complexity of the balancer.
7281 *
7282 * An important property here is that each CPU is still (indirectly) connected
7283 * to every other CPU in at most O(log n) steps:
7284 *
7285 * The adjacency matrix of the resulting graph is given by:
7286 *
7287 * log_2 n
7288 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7289 * k = 0
7290 *
7291 * And you'll find that:
7292 *
7293 * A^(log_2 n)_i,j != 0 for all i,j (7)
7294 *
7295 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7296 * The task movement gives a factor of O(m), giving a convergence complexity
7297 * of:
7298 *
7299 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7300 *
7301 *
7302 * WORK CONSERVING
7303 *
7304 * In order to avoid CPUs going idle while there's still work to do, new idle
7305 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7306 * tree itself instead of relying on other CPUs to bring it work.
7307 *
7308 * This adds some complexity to both (5) and (8) but it reduces the total idle
7309 * time.
7310 *
7311 * [XXX more?]
7312 *
7313 *
7314 * CGROUPS
7315 *
7316 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7317 *
7318 * s_k,i
7319 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7320 * S_k
7321 *
7322 * Where
7323 *
7324 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7325 *
7326 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7327 *
7328 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7329 * property.
7330 *
7331 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7332 * rewrite all of this once again.]
7333 */
7334
7335 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7336
7337 enum fbq_type { regular, remote, all };
7338
7339 /*
7340 * 'group_type' describes the group of CPUs at the moment of load balancing.
7341 *
7342 * The enum is ordered by pulling priority, with the group with lowest priority
7343 * first so the group_type can simply be compared when selecting the busiest
7344 * group. See update_sd_pick_busiest().
7345 */
7346 enum group_type {
7347 /* The group has spare capacity that can be used to run more tasks. */
7348 group_has_spare = 0,
7349 /*
7350 * The group is fully used and the tasks don't compete for more CPU
7351 * cycles. Nevertheless, some tasks might wait before running.
7352 */
7353 group_fully_busy,
7354 /*
7355 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7356 * and must be migrated to a more powerful CPU.
7357 */
7358 group_misfit_task,
7359 /*
7360 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7361 * and the task should be migrated to it instead of running on the
7362 * current CPU.
7363 */
7364 group_asym_packing,
7365 /*
7366 * The tasks' affinity constraints previously prevented the scheduler
7367 * from balancing the load across the system.
7368 */
7369 group_imbalanced,
7370 /*
7371 * The CPU is overloaded and can't provide expected CPU cycles to all
7372 * tasks.
7373 */
7374 group_overloaded
7375 };
7376
7377 enum migration_type {
7378 migrate_load = 0,
7379 migrate_util,
7380 migrate_task,
7381 migrate_misfit
7382 };
7383
7384 #define LBF_ALL_PINNED 0x01
7385 #define LBF_NEED_BREAK 0x02
7386 #define LBF_DST_PINNED 0x04
7387 #define LBF_SOME_PINNED 0x08
7388 #define LBF_NOHZ_STATS 0x10
7389 #define LBF_NOHZ_AGAIN 0x20
7390
7391 struct lb_env {
7392 struct sched_domain *sd;
7393
7394 struct rq *src_rq;
7395 int src_cpu;
7396
7397 int dst_cpu;
7398 struct rq *dst_rq;
7399
7400 struct cpumask *dst_grpmask;
7401 int new_dst_cpu;
7402 enum cpu_idle_type idle;
7403 long imbalance;
7404 /* The set of CPUs under consideration for load-balancing */
7405 struct cpumask *cpus;
7406
7407 unsigned int flags;
7408
7409 unsigned int loop;
7410 unsigned int loop_break;
7411 unsigned int loop_max;
7412
7413 enum fbq_type fbq_type;
7414 enum migration_type migration_type;
7415 struct list_head tasks;
7416 };
7417
7418 /*
7419 * Is this task likely cache-hot:
7420 */
7421 static int task_hot(struct task_struct *p, struct lb_env *env)
7422 {
7423 s64 delta;
7424
7425 lockdep_assert_held(&env->src_rq->lock);
7426
7427 if (p->sched_class != &fair_sched_class)
7428 return 0;
7429
7430 if (unlikely(task_has_idle_policy(p)))
7431 return 0;
7432
7433 /* SMT siblings share cache */
7434 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7435 return 0;
7436
7437 /*
7438 * Buddy candidates are cache hot:
7439 */
7440 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7441 (&p->se == cfs_rq_of(&p->se)->next ||
7442 &p->se == cfs_rq_of(&p->se)->last))
7443 return 1;
7444
7445 if (sysctl_sched_migration_cost == -1)
7446 return 1;
7447 if (sysctl_sched_migration_cost == 0)
7448 return 0;
7449
7450 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7451
7452 return delta < (s64)sysctl_sched_migration_cost;
7453 }
7454
7455 #ifdef CONFIG_NUMA_BALANCING
7456 /*
7457 * Returns 1, if task migration degrades locality
7458 * Returns 0, if task migration improves locality i.e migration preferred.
7459 * Returns -1, if task migration is not affected by locality.
7460 */
7461 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7462 {
7463 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7464 unsigned long src_weight, dst_weight;
7465 int src_nid, dst_nid, dist;
7466
7467 if (!static_branch_likely(&sched_numa_balancing))
7468 return -1;
7469
7470 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7471 return -1;
7472
7473 src_nid = cpu_to_node(env->src_cpu);
7474 dst_nid = cpu_to_node(env->dst_cpu);
7475
7476 if (src_nid == dst_nid)
7477 return -1;
7478
7479 /* Migrating away from the preferred node is always bad. */
7480 if (src_nid == p->numa_preferred_nid) {
7481 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7482 return 1;
7483 else
7484 return -1;
7485 }
7486
7487 /* Encourage migration to the preferred node. */
7488 if (dst_nid == p->numa_preferred_nid)
7489 return 0;
7490
7491 /* Leaving a core idle is often worse than degrading locality. */
7492 if (env->idle == CPU_IDLE)
7493 return -1;
7494
7495 dist = node_distance(src_nid, dst_nid);
7496 if (numa_group) {
7497 src_weight = group_weight(p, src_nid, dist);
7498 dst_weight = group_weight(p, dst_nid, dist);
7499 } else {
7500 src_weight = task_weight(p, src_nid, dist);
7501 dst_weight = task_weight(p, dst_nid, dist);
7502 }
7503
7504 return dst_weight < src_weight;
7505 }
7506
7507 #else
7508 static inline int migrate_degrades_locality(struct task_struct *p,
7509 struct lb_env *env)
7510 {
7511 return -1;
7512 }
7513 #endif
7514
7515 /*
7516 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7517 */
7518 static
7519 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7520 {
7521 int tsk_cache_hot;
7522
7523 lockdep_assert_held(&env->src_rq->lock);
7524
7525 /*
7526 * We do not migrate tasks that are:
7527 * 1) throttled_lb_pair, or
7528 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7529 * 3) running (obviously), or
7530 * 4) are cache-hot on their current CPU.
7531 */
7532 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7533 return 0;
7534
7535 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7536 int cpu;
7537
7538 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7539
7540 env->flags |= LBF_SOME_PINNED;
7541
7542 /*
7543 * Remember if this task can be migrated to any other CPU in
7544 * our sched_group. We may want to revisit it if we couldn't
7545 * meet load balance goals by pulling other tasks on src_cpu.
7546 *
7547 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7548 * already computed one in current iteration.
7549 */
7550 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7551 return 0;
7552
7553 /* Prevent to re-select dst_cpu via env's CPUs: */
7554 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7555 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7556 env->flags |= LBF_DST_PINNED;
7557 env->new_dst_cpu = cpu;
7558 break;
7559 }
7560 }
7561
7562 return 0;
7563 }
7564
7565 /* Record that we found atleast one task that could run on dst_cpu */
7566 env->flags &= ~LBF_ALL_PINNED;
7567
7568 if (task_running(env->src_rq, p)) {
7569 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7570 return 0;
7571 }
7572
7573 /*
7574 * Aggressive migration if:
7575 * 1) destination numa is preferred
7576 * 2) task is cache cold, or
7577 * 3) too many balance attempts have failed.
7578 */
7579 tsk_cache_hot = migrate_degrades_locality(p, env);
7580 if (tsk_cache_hot == -1)
7581 tsk_cache_hot = task_hot(p, env);
7582
7583 if (tsk_cache_hot <= 0 ||
7584 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7585 if (tsk_cache_hot == 1) {
7586 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7587 schedstat_inc(p->se.statistics.nr_forced_migrations);
7588 }
7589 return 1;
7590 }
7591
7592 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7593 return 0;
7594 }
7595
7596 /*
7597 * detach_task() -- detach the task for the migration specified in env
7598 */
7599 static void detach_task(struct task_struct *p, struct lb_env *env)
7600 {
7601 lockdep_assert_held(&env->src_rq->lock);
7602
7603 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7604 set_task_cpu(p, env->dst_cpu);
7605 }
7606
7607 /*
7608 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7609 * part of active balancing operations within "domain".
7610 *
7611 * Returns a task if successful and NULL otherwise.
7612 */
7613 static struct task_struct *detach_one_task(struct lb_env *env)
7614 {
7615 struct task_struct *p;
7616
7617 lockdep_assert_held(&env->src_rq->lock);
7618
7619 list_for_each_entry_reverse(p,
7620 &env->src_rq->cfs_tasks, se.group_node) {
7621 if (!can_migrate_task(p, env))
7622 continue;
7623
7624 detach_task(p, env);
7625
7626 /*
7627 * Right now, this is only the second place where
7628 * lb_gained[env->idle] is updated (other is detach_tasks)
7629 * so we can safely collect stats here rather than
7630 * inside detach_tasks().
7631 */
7632 schedstat_inc(env->sd->lb_gained[env->idle]);
7633 return p;
7634 }
7635 return NULL;
7636 }
7637
7638 static const unsigned int sched_nr_migrate_break = 32;
7639
7640 /*
7641 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7642 * busiest_rq, as part of a balancing operation within domain "sd".
7643 *
7644 * Returns number of detached tasks if successful and 0 otherwise.
7645 */
7646 static int detach_tasks(struct lb_env *env)
7647 {
7648 struct list_head *tasks = &env->src_rq->cfs_tasks;
7649 unsigned long util, load;
7650 struct task_struct *p;
7651 int detached = 0;
7652
7653 lockdep_assert_held(&env->src_rq->lock);
7654
7655 if (env->imbalance <= 0)
7656 return 0;
7657
7658 while (!list_empty(tasks)) {
7659 /*
7660 * We don't want to steal all, otherwise we may be treated likewise,
7661 * which could at worst lead to a livelock crash.
7662 */
7663 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7664 break;
7665
7666 p = list_last_entry(tasks, struct task_struct, se.group_node);
7667
7668 env->loop++;
7669 /* We've more or less seen every task there is, call it quits */
7670 if (env->loop > env->loop_max)
7671 break;
7672
7673 /* take a breather every nr_migrate tasks */
7674 if (env->loop > env->loop_break) {
7675 env->loop_break += sched_nr_migrate_break;
7676 env->flags |= LBF_NEED_BREAK;
7677 break;
7678 }
7679
7680 if (!can_migrate_task(p, env))
7681 goto next;
7682
7683 switch (env->migration_type) {
7684 case migrate_load:
7685 /*
7686 * Depending of the number of CPUs and tasks and the
7687 * cgroup hierarchy, task_h_load() can return a null
7688 * value. Make sure that env->imbalance decreases
7689 * otherwise detach_tasks() will stop only after
7690 * detaching up to loop_max tasks.
7691 */
7692 load = max_t(unsigned long, task_h_load(p), 1);
7693
7694 if (sched_feat(LB_MIN) &&
7695 load < 16 && !env->sd->nr_balance_failed)
7696 goto next;
7697
7698 /*
7699 * Make sure that we don't migrate too much load.
7700 * Nevertheless, let relax the constraint if
7701 * scheduler fails to find a good waiting task to
7702 * migrate.
7703 */
7704
7705 if ((load >> env->sd->nr_balance_failed) > env->imbalance)
7706 goto next;
7707
7708 env->imbalance -= load;
7709 break;
7710
7711 case migrate_util:
7712 util = task_util_est(p);
7713
7714 if (util > env->imbalance)
7715 goto next;
7716
7717 env->imbalance -= util;
7718 break;
7719
7720 case migrate_task:
7721 env->imbalance--;
7722 break;
7723
7724 case migrate_misfit:
7725 /* This is not a misfit task */
7726 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7727 goto next;
7728
7729 env->imbalance = 0;
7730 break;
7731 }
7732
7733 detach_task(p, env);
7734 list_add(&p->se.group_node, &env->tasks);
7735
7736 detached++;
7737
7738 #ifdef CONFIG_PREEMPTION
7739 /*
7740 * NEWIDLE balancing is a source of latency, so preemptible
7741 * kernels will stop after the first task is detached to minimize
7742 * the critical section.
7743 */
7744 if (env->idle == CPU_NEWLY_IDLE)
7745 break;
7746 #endif
7747
7748 /*
7749 * We only want to steal up to the prescribed amount of
7750 * load/util/tasks.
7751 */
7752 if (env->imbalance <= 0)
7753 break;
7754
7755 continue;
7756 next:
7757 list_move(&p->se.group_node, tasks);
7758 }
7759
7760 /*
7761 * Right now, this is one of only two places we collect this stat
7762 * so we can safely collect detach_one_task() stats here rather
7763 * than inside detach_one_task().
7764 */
7765 schedstat_add(env->sd->lb_gained[env->idle], detached);
7766
7767 return detached;
7768 }
7769
7770 /*
7771 * attach_task() -- attach the task detached by detach_task() to its new rq.
7772 */
7773 static void attach_task(struct rq *rq, struct task_struct *p)
7774 {
7775 lockdep_assert_held(&rq->lock);
7776
7777 BUG_ON(task_rq(p) != rq);
7778 activate_task(rq, p, ENQUEUE_NOCLOCK);
7779 check_preempt_curr(rq, p, 0);
7780 }
7781
7782 /*
7783 * attach_one_task() -- attaches the task returned from detach_one_task() to
7784 * its new rq.
7785 */
7786 static void attach_one_task(struct rq *rq, struct task_struct *p)
7787 {
7788 struct rq_flags rf;
7789
7790 rq_lock(rq, &rf);
7791 update_rq_clock(rq);
7792 attach_task(rq, p);
7793 rq_unlock(rq, &rf);
7794 }
7795
7796 /*
7797 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7798 * new rq.
7799 */
7800 static void attach_tasks(struct lb_env *env)
7801 {
7802 struct list_head *tasks = &env->tasks;
7803 struct task_struct *p;
7804 struct rq_flags rf;
7805
7806 rq_lock(env->dst_rq, &rf);
7807 update_rq_clock(env->dst_rq);
7808
7809 while (!list_empty(tasks)) {
7810 p = list_first_entry(tasks, struct task_struct, se.group_node);
7811 list_del_init(&p->se.group_node);
7812
7813 attach_task(env->dst_rq, p);
7814 }
7815
7816 rq_unlock(env->dst_rq, &rf);
7817 }
7818
7819 #ifdef CONFIG_NO_HZ_COMMON
7820 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7821 {
7822 if (cfs_rq->avg.load_avg)
7823 return true;
7824
7825 if (cfs_rq->avg.util_avg)
7826 return true;
7827
7828 return false;
7829 }
7830
7831 static inline bool others_have_blocked(struct rq *rq)
7832 {
7833 if (READ_ONCE(rq->avg_rt.util_avg))
7834 return true;
7835
7836 if (READ_ONCE(rq->avg_dl.util_avg))
7837 return true;
7838
7839 if (thermal_load_avg(rq))
7840 return true;
7841
7842 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7843 if (READ_ONCE(rq->avg_irq.util_avg))
7844 return true;
7845 #endif
7846
7847 return false;
7848 }
7849
7850 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7851 {
7852 rq->last_blocked_load_update_tick = jiffies;
7853
7854 if (!has_blocked)
7855 rq->has_blocked_load = 0;
7856 }
7857 #else
7858 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7859 static inline bool others_have_blocked(struct rq *rq) { return false; }
7860 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7861 #endif
7862
7863 static bool __update_blocked_others(struct rq *rq, bool *done)
7864 {
7865 const struct sched_class *curr_class;
7866 u64 now = rq_clock_pelt(rq);
7867 unsigned long thermal_pressure;
7868 bool decayed;
7869
7870 /*
7871 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7872 * DL and IRQ signals have been updated before updating CFS.
7873 */
7874 curr_class = rq->curr->sched_class;
7875
7876 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7877
7878 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7879 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7880 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
7881 update_irq_load_avg(rq, 0);
7882
7883 if (others_have_blocked(rq))
7884 *done = false;
7885
7886 return decayed;
7887 }
7888
7889 #ifdef CONFIG_FAIR_GROUP_SCHED
7890
7891 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7892 {
7893 if (cfs_rq->load.weight)
7894 return false;
7895
7896 if (cfs_rq->avg.load_sum)
7897 return false;
7898
7899 if (cfs_rq->avg.util_sum)
7900 return false;
7901
7902 if (cfs_rq->avg.runnable_sum)
7903 return false;
7904
7905 return true;
7906 }
7907
7908 static bool __update_blocked_fair(struct rq *rq, bool *done)
7909 {
7910 struct cfs_rq *cfs_rq, *pos;
7911 bool decayed = false;
7912 int cpu = cpu_of(rq);
7913
7914 /*
7915 * Iterates the task_group tree in a bottom up fashion, see
7916 * list_add_leaf_cfs_rq() for details.
7917 */
7918 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7919 struct sched_entity *se;
7920
7921 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
7922 update_tg_load_avg(cfs_rq);
7923
7924 if (cfs_rq == &rq->cfs)
7925 decayed = true;
7926 }
7927
7928 /* Propagate pending load changes to the parent, if any: */
7929 se = cfs_rq->tg->se[cpu];
7930 if (se && !skip_blocked_update(se))
7931 update_load_avg(cfs_rq_of(se), se, 0);
7932
7933 /*
7934 * There can be a lot of idle CPU cgroups. Don't let fully
7935 * decayed cfs_rqs linger on the list.
7936 */
7937 if (cfs_rq_is_decayed(cfs_rq))
7938 list_del_leaf_cfs_rq(cfs_rq);
7939
7940 /* Don't need periodic decay once load/util_avg are null */
7941 if (cfs_rq_has_blocked(cfs_rq))
7942 *done = false;
7943 }
7944
7945 return decayed;
7946 }
7947
7948 /*
7949 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7950 * This needs to be done in a top-down fashion because the load of a child
7951 * group is a fraction of its parents load.
7952 */
7953 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7954 {
7955 struct rq *rq = rq_of(cfs_rq);
7956 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7957 unsigned long now = jiffies;
7958 unsigned long load;
7959
7960 if (cfs_rq->last_h_load_update == now)
7961 return;
7962
7963 WRITE_ONCE(cfs_rq->h_load_next, NULL);
7964 for_each_sched_entity(se) {
7965 cfs_rq = cfs_rq_of(se);
7966 WRITE_ONCE(cfs_rq->h_load_next, se);
7967 if (cfs_rq->last_h_load_update == now)
7968 break;
7969 }
7970
7971 if (!se) {
7972 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7973 cfs_rq->last_h_load_update = now;
7974 }
7975
7976 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7977 load = cfs_rq->h_load;
7978 load = div64_ul(load * se->avg.load_avg,
7979 cfs_rq_load_avg(cfs_rq) + 1);
7980 cfs_rq = group_cfs_rq(se);
7981 cfs_rq->h_load = load;
7982 cfs_rq->last_h_load_update = now;
7983 }
7984 }
7985
7986 static unsigned long task_h_load(struct task_struct *p)
7987 {
7988 struct cfs_rq *cfs_rq = task_cfs_rq(p);
7989
7990 update_cfs_rq_h_load(cfs_rq);
7991 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7992 cfs_rq_load_avg(cfs_rq) + 1);
7993 }
7994 #else
7995 static bool __update_blocked_fair(struct rq *rq, bool *done)
7996 {
7997 struct cfs_rq *cfs_rq = &rq->cfs;
7998 bool decayed;
7999
8000 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8001 if (cfs_rq_has_blocked(cfs_rq))
8002 *done = false;
8003
8004 return decayed;
8005 }
8006
8007 static unsigned long task_h_load(struct task_struct *p)
8008 {
8009 return p->se.avg.load_avg;
8010 }
8011 #endif
8012
8013 static void update_blocked_averages(int cpu)
8014 {
8015 bool decayed = false, done = true;
8016 struct rq *rq = cpu_rq(cpu);
8017 struct rq_flags rf;
8018
8019 rq_lock_irqsave(rq, &rf);
8020 update_rq_clock(rq);
8021
8022 decayed |= __update_blocked_others(rq, &done);
8023 decayed |= __update_blocked_fair(rq, &done);
8024
8025 update_blocked_load_status(rq, !done);
8026 if (decayed)
8027 cpufreq_update_util(rq, 0);
8028 rq_unlock_irqrestore(rq, &rf);
8029 }
8030
8031 /********** Helpers for find_busiest_group ************************/
8032
8033 /*
8034 * sg_lb_stats - stats of a sched_group required for load_balancing
8035 */
8036 struct sg_lb_stats {
8037 unsigned long avg_load; /*Avg load across the CPUs of the group */
8038 unsigned long group_load; /* Total load over the CPUs of the group */
8039 unsigned long group_capacity;
8040 unsigned long group_util; /* Total utilization over the CPUs of the group */
8041 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8042 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8043 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8044 unsigned int idle_cpus;
8045 unsigned int group_weight;
8046 enum group_type group_type;
8047 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8048 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8049 #ifdef CONFIG_NUMA_BALANCING
8050 unsigned int nr_numa_running;
8051 unsigned int nr_preferred_running;
8052 #endif
8053 };
8054
8055 /*
8056 * sd_lb_stats - Structure to store the statistics of a sched_domain
8057 * during load balancing.
8058 */
8059 struct sd_lb_stats {
8060 struct sched_group *busiest; /* Busiest group in this sd */
8061 struct sched_group *local; /* Local group in this sd */
8062 unsigned long total_load; /* Total load of all groups in sd */
8063 unsigned long total_capacity; /* Total capacity of all groups in sd */
8064 unsigned long avg_load; /* Average load across all groups in sd */
8065 unsigned int prefer_sibling; /* tasks should go to sibling first */
8066
8067 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8068 struct sg_lb_stats local_stat; /* Statistics of the local group */
8069 };
8070
8071 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8072 {
8073 /*
8074 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8075 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8076 * We must however set busiest_stat::group_type and
8077 * busiest_stat::idle_cpus to the worst busiest group because
8078 * update_sd_pick_busiest() reads these before assignment.
8079 */
8080 *sds = (struct sd_lb_stats){
8081 .busiest = NULL,
8082 .local = NULL,
8083 .total_load = 0UL,
8084 .total_capacity = 0UL,
8085 .busiest_stat = {
8086 .idle_cpus = UINT_MAX,
8087 .group_type = group_has_spare,
8088 },
8089 };
8090 }
8091
8092 static unsigned long scale_rt_capacity(int cpu)
8093 {
8094 struct rq *rq = cpu_rq(cpu);
8095 unsigned long max = arch_scale_cpu_capacity(cpu);
8096 unsigned long used, free;
8097 unsigned long irq;
8098
8099 irq = cpu_util_irq(rq);
8100
8101 if (unlikely(irq >= max))
8102 return 1;
8103
8104 /*
8105 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8106 * (running and not running) with weights 0 and 1024 respectively.
8107 * avg_thermal.load_avg tracks thermal pressure and the weighted
8108 * average uses the actual delta max capacity(load).
8109 */
8110 used = READ_ONCE(rq->avg_rt.util_avg);
8111 used += READ_ONCE(rq->avg_dl.util_avg);
8112 used += thermal_load_avg(rq);
8113
8114 if (unlikely(used >= max))
8115 return 1;
8116
8117 free = max - used;
8118
8119 return scale_irq_capacity(free, irq, max);
8120 }
8121
8122 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8123 {
8124 unsigned long capacity = scale_rt_capacity(cpu);
8125 struct sched_group *sdg = sd->groups;
8126
8127 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8128
8129 if (!capacity)
8130 capacity = 1;
8131
8132 cpu_rq(cpu)->cpu_capacity = capacity;
8133 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8134
8135 sdg->sgc->capacity = capacity;
8136 sdg->sgc->min_capacity = capacity;
8137 sdg->sgc->max_capacity = capacity;
8138 }
8139
8140 void update_group_capacity(struct sched_domain *sd, int cpu)
8141 {
8142 struct sched_domain *child = sd->child;
8143 struct sched_group *group, *sdg = sd->groups;
8144 unsigned long capacity, min_capacity, max_capacity;
8145 unsigned long interval;
8146
8147 interval = msecs_to_jiffies(sd->balance_interval);
8148 interval = clamp(interval, 1UL, max_load_balance_interval);
8149 sdg->sgc->next_update = jiffies + interval;
8150
8151 if (!child) {
8152 update_cpu_capacity(sd, cpu);
8153 return;
8154 }
8155
8156 capacity = 0;
8157 min_capacity = ULONG_MAX;
8158 max_capacity = 0;
8159
8160 if (child->flags & SD_OVERLAP) {
8161 /*
8162 * SD_OVERLAP domains cannot assume that child groups
8163 * span the current group.
8164 */
8165
8166 for_each_cpu(cpu, sched_group_span(sdg)) {
8167 unsigned long cpu_cap = capacity_of(cpu);
8168
8169 capacity += cpu_cap;
8170 min_capacity = min(cpu_cap, min_capacity);
8171 max_capacity = max(cpu_cap, max_capacity);
8172 }
8173 } else {
8174 /*
8175 * !SD_OVERLAP domains can assume that child groups
8176 * span the current group.
8177 */
8178
8179 group = child->groups;
8180 do {
8181 struct sched_group_capacity *sgc = group->sgc;
8182
8183 capacity += sgc->capacity;
8184 min_capacity = min(sgc->min_capacity, min_capacity);
8185 max_capacity = max(sgc->max_capacity, max_capacity);
8186 group = group->next;
8187 } while (group != child->groups);
8188 }
8189
8190 sdg->sgc->capacity = capacity;
8191 sdg->sgc->min_capacity = min_capacity;
8192 sdg->sgc->max_capacity = max_capacity;
8193 }
8194
8195 /*
8196 * Check whether the capacity of the rq has been noticeably reduced by side
8197 * activity. The imbalance_pct is used for the threshold.
8198 * Return true is the capacity is reduced
8199 */
8200 static inline int
8201 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8202 {
8203 return ((rq->cpu_capacity * sd->imbalance_pct) <
8204 (rq->cpu_capacity_orig * 100));
8205 }
8206
8207 /*
8208 * Check whether a rq has a misfit task and if it looks like we can actually
8209 * help that task: we can migrate the task to a CPU of higher capacity, or
8210 * the task's current CPU is heavily pressured.
8211 */
8212 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8213 {
8214 return rq->misfit_task_load &&
8215 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8216 check_cpu_capacity(rq, sd));
8217 }
8218
8219 /*
8220 * Group imbalance indicates (and tries to solve) the problem where balancing
8221 * groups is inadequate due to ->cpus_ptr constraints.
8222 *
8223 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8224 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8225 * Something like:
8226 *
8227 * { 0 1 2 3 } { 4 5 6 7 }
8228 * * * * *
8229 *
8230 * If we were to balance group-wise we'd place two tasks in the first group and
8231 * two tasks in the second group. Clearly this is undesired as it will overload
8232 * cpu 3 and leave one of the CPUs in the second group unused.
8233 *
8234 * The current solution to this issue is detecting the skew in the first group
8235 * by noticing the lower domain failed to reach balance and had difficulty
8236 * moving tasks due to affinity constraints.
8237 *
8238 * When this is so detected; this group becomes a candidate for busiest; see
8239 * update_sd_pick_busiest(). And calculate_imbalance() and
8240 * find_busiest_group() avoid some of the usual balance conditions to allow it
8241 * to create an effective group imbalance.
8242 *
8243 * This is a somewhat tricky proposition since the next run might not find the
8244 * group imbalance and decide the groups need to be balanced again. A most
8245 * subtle and fragile situation.
8246 */
8247
8248 static inline int sg_imbalanced(struct sched_group *group)
8249 {
8250 return group->sgc->imbalance;
8251 }
8252
8253 /*
8254 * group_has_capacity returns true if the group has spare capacity that could
8255 * be used by some tasks.
8256 * We consider that a group has spare capacity if the * number of task is
8257 * smaller than the number of CPUs or if the utilization is lower than the
8258 * available capacity for CFS tasks.
8259 * For the latter, we use a threshold to stabilize the state, to take into
8260 * account the variance of the tasks' load and to return true if the available
8261 * capacity in meaningful for the load balancer.
8262 * As an example, an available capacity of 1% can appear but it doesn't make
8263 * any benefit for the load balance.
8264 */
8265 static inline bool
8266 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8267 {
8268 if (sgs->sum_nr_running < sgs->group_weight)
8269 return true;
8270
8271 if ((sgs->group_capacity * imbalance_pct) <
8272 (sgs->group_runnable * 100))
8273 return false;
8274
8275 if ((sgs->group_capacity * 100) >
8276 (sgs->group_util * imbalance_pct))
8277 return true;
8278
8279 return false;
8280 }
8281
8282 /*
8283 * group_is_overloaded returns true if the group has more tasks than it can
8284 * handle.
8285 * group_is_overloaded is not equals to !group_has_capacity because a group
8286 * with the exact right number of tasks, has no more spare capacity but is not
8287 * overloaded so both group_has_capacity and group_is_overloaded return
8288 * false.
8289 */
8290 static inline bool
8291 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8292 {
8293 if (sgs->sum_nr_running <= sgs->group_weight)
8294 return false;
8295
8296 if ((sgs->group_capacity * 100) <
8297 (sgs->group_util * imbalance_pct))
8298 return true;
8299
8300 if ((sgs->group_capacity * imbalance_pct) <
8301 (sgs->group_runnable * 100))
8302 return true;
8303
8304 return false;
8305 }
8306
8307 /*
8308 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8309 * per-CPU capacity than sched_group ref.
8310 */
8311 static inline bool
8312 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8313 {
8314 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8315 }
8316
8317 /*
8318 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8319 * per-CPU capacity_orig than sched_group ref.
8320 */
8321 static inline bool
8322 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8323 {
8324 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
8325 }
8326
8327 static inline enum
8328 group_type group_classify(unsigned int imbalance_pct,
8329 struct sched_group *group,
8330 struct sg_lb_stats *sgs)
8331 {
8332 if (group_is_overloaded(imbalance_pct, sgs))
8333 return group_overloaded;
8334
8335 if (sg_imbalanced(group))
8336 return group_imbalanced;
8337
8338 if (sgs->group_asym_packing)
8339 return group_asym_packing;
8340
8341 if (sgs->group_misfit_task_load)
8342 return group_misfit_task;
8343
8344 if (!group_has_capacity(imbalance_pct, sgs))
8345 return group_fully_busy;
8346
8347 return group_has_spare;
8348 }
8349
8350 static bool update_nohz_stats(struct rq *rq, bool force)
8351 {
8352 #ifdef CONFIG_NO_HZ_COMMON
8353 unsigned int cpu = rq->cpu;
8354
8355 if (!rq->has_blocked_load)
8356 return false;
8357
8358 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8359 return false;
8360
8361 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8362 return true;
8363
8364 update_blocked_averages(cpu);
8365
8366 return rq->has_blocked_load;
8367 #else
8368 return false;
8369 #endif
8370 }
8371
8372 /**
8373 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8374 * @env: The load balancing environment.
8375 * @group: sched_group whose statistics are to be updated.
8376 * @sgs: variable to hold the statistics for this group.
8377 * @sg_status: Holds flag indicating the status of the sched_group
8378 */
8379 static inline void update_sg_lb_stats(struct lb_env *env,
8380 struct sched_group *group,
8381 struct sg_lb_stats *sgs,
8382 int *sg_status)
8383 {
8384 int i, nr_running, local_group;
8385
8386 memset(sgs, 0, sizeof(*sgs));
8387
8388 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8389
8390 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8391 struct rq *rq = cpu_rq(i);
8392
8393 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8394 env->flags |= LBF_NOHZ_AGAIN;
8395
8396 sgs->group_load += cpu_load(rq);
8397 sgs->group_util += cpu_util(i);
8398 sgs->group_runnable += cpu_runnable(rq);
8399 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8400
8401 nr_running = rq->nr_running;
8402 sgs->sum_nr_running += nr_running;
8403
8404 if (nr_running > 1)
8405 *sg_status |= SG_OVERLOAD;
8406
8407 if (cpu_overutilized(i))
8408 *sg_status |= SG_OVERUTILIZED;
8409
8410 #ifdef CONFIG_NUMA_BALANCING
8411 sgs->nr_numa_running += rq->nr_numa_running;
8412 sgs->nr_preferred_running += rq->nr_preferred_running;
8413 #endif
8414 /*
8415 * No need to call idle_cpu() if nr_running is not 0
8416 */
8417 if (!nr_running && idle_cpu(i)) {
8418 sgs->idle_cpus++;
8419 /* Idle cpu can't have misfit task */
8420 continue;
8421 }
8422
8423 if (local_group)
8424 continue;
8425
8426 /* Check for a misfit task on the cpu */
8427 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8428 sgs->group_misfit_task_load < rq->misfit_task_load) {
8429 sgs->group_misfit_task_load = rq->misfit_task_load;
8430 *sg_status |= SG_OVERLOAD;
8431 }
8432 }
8433
8434 /* Check if dst CPU is idle and preferred to this group */
8435 if (env->sd->flags & SD_ASYM_PACKING &&
8436 env->idle != CPU_NOT_IDLE &&
8437 sgs->sum_h_nr_running &&
8438 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8439 sgs->group_asym_packing = 1;
8440 }
8441
8442 sgs->group_capacity = group->sgc->capacity;
8443
8444 sgs->group_weight = group->group_weight;
8445
8446 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8447
8448 /* Computing avg_load makes sense only when group is overloaded */
8449 if (sgs->group_type == group_overloaded)
8450 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8451 sgs->group_capacity;
8452 }
8453
8454 /**
8455 * update_sd_pick_busiest - return 1 on busiest group
8456 * @env: The load balancing environment.
8457 * @sds: sched_domain statistics
8458 * @sg: sched_group candidate to be checked for being the busiest
8459 * @sgs: sched_group statistics
8460 *
8461 * Determine if @sg is a busier group than the previously selected
8462 * busiest group.
8463 *
8464 * Return: %true if @sg is a busier group than the previously selected
8465 * busiest group. %false otherwise.
8466 */
8467 static bool update_sd_pick_busiest(struct lb_env *env,
8468 struct sd_lb_stats *sds,
8469 struct sched_group *sg,
8470 struct sg_lb_stats *sgs)
8471 {
8472 struct sg_lb_stats *busiest = &sds->busiest_stat;
8473
8474 /* Make sure that there is at least one task to pull */
8475 if (!sgs->sum_h_nr_running)
8476 return false;
8477
8478 /*
8479 * Don't try to pull misfit tasks we can't help.
8480 * We can use max_capacity here as reduction in capacity on some
8481 * CPUs in the group should either be possible to resolve
8482 * internally or be covered by avg_load imbalance (eventually).
8483 */
8484 if (sgs->group_type == group_misfit_task &&
8485 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8486 sds->local_stat.group_type != group_has_spare))
8487 return false;
8488
8489 if (sgs->group_type > busiest->group_type)
8490 return true;
8491
8492 if (sgs->group_type < busiest->group_type)
8493 return false;
8494
8495 /*
8496 * The candidate and the current busiest group are the same type of
8497 * group. Let check which one is the busiest according to the type.
8498 */
8499
8500 switch (sgs->group_type) {
8501 case group_overloaded:
8502 /* Select the overloaded group with highest avg_load. */
8503 if (sgs->avg_load <= busiest->avg_load)
8504 return false;
8505 break;
8506
8507 case group_imbalanced:
8508 /*
8509 * Select the 1st imbalanced group as we don't have any way to
8510 * choose one more than another.
8511 */
8512 return false;
8513
8514 case group_asym_packing:
8515 /* Prefer to move from lowest priority CPU's work */
8516 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8517 return false;
8518 break;
8519
8520 case group_misfit_task:
8521 /*
8522 * If we have more than one misfit sg go with the biggest
8523 * misfit.
8524 */
8525 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8526 return false;
8527 break;
8528
8529 case group_fully_busy:
8530 /*
8531 * Select the fully busy group with highest avg_load. In
8532 * theory, there is no need to pull task from such kind of
8533 * group because tasks have all compute capacity that they need
8534 * but we can still improve the overall throughput by reducing
8535 * contention when accessing shared HW resources.
8536 *
8537 * XXX for now avg_load is not computed and always 0 so we
8538 * select the 1st one.
8539 */
8540 if (sgs->avg_load <= busiest->avg_load)
8541 return false;
8542 break;
8543
8544 case group_has_spare:
8545 /*
8546 * Select not overloaded group with lowest number of idle cpus
8547 * and highest number of running tasks. We could also compare
8548 * the spare capacity which is more stable but it can end up
8549 * that the group has less spare capacity but finally more idle
8550 * CPUs which means less opportunity to pull tasks.
8551 */
8552 if (sgs->idle_cpus > busiest->idle_cpus)
8553 return false;
8554 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8555 (sgs->sum_nr_running <= busiest->sum_nr_running))
8556 return false;
8557
8558 break;
8559 }
8560
8561 /*
8562 * Candidate sg has no more than one task per CPU and has higher
8563 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8564 * throughput. Maximize throughput, power/energy consequences are not
8565 * considered.
8566 */
8567 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8568 (sgs->group_type <= group_fully_busy) &&
8569 (group_smaller_min_cpu_capacity(sds->local, sg)))
8570 return false;
8571
8572 return true;
8573 }
8574
8575 #ifdef CONFIG_NUMA_BALANCING
8576 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8577 {
8578 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8579 return regular;
8580 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8581 return remote;
8582 return all;
8583 }
8584
8585 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8586 {
8587 if (rq->nr_running > rq->nr_numa_running)
8588 return regular;
8589 if (rq->nr_running > rq->nr_preferred_running)
8590 return remote;
8591 return all;
8592 }
8593 #else
8594 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8595 {
8596 return all;
8597 }
8598
8599 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8600 {
8601 return regular;
8602 }
8603 #endif /* CONFIG_NUMA_BALANCING */
8604
8605
8606 struct sg_lb_stats;
8607
8608 /*
8609 * task_running_on_cpu - return 1 if @p is running on @cpu.
8610 */
8611
8612 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8613 {
8614 /* Task has no contribution or is new */
8615 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8616 return 0;
8617
8618 if (task_on_rq_queued(p))
8619 return 1;
8620
8621 return 0;
8622 }
8623
8624 /**
8625 * idle_cpu_without - would a given CPU be idle without p ?
8626 * @cpu: the processor on which idleness is tested.
8627 * @p: task which should be ignored.
8628 *
8629 * Return: 1 if the CPU would be idle. 0 otherwise.
8630 */
8631 static int idle_cpu_without(int cpu, struct task_struct *p)
8632 {
8633 struct rq *rq = cpu_rq(cpu);
8634
8635 if (rq->curr != rq->idle && rq->curr != p)
8636 return 0;
8637
8638 /*
8639 * rq->nr_running can't be used but an updated version without the
8640 * impact of p on cpu must be used instead. The updated nr_running
8641 * be computed and tested before calling idle_cpu_without().
8642 */
8643
8644 #ifdef CONFIG_SMP
8645 if (rq->ttwu_pending)
8646 return 0;
8647 #endif
8648
8649 return 1;
8650 }
8651
8652 /*
8653 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8654 * @sd: The sched_domain level to look for idlest group.
8655 * @group: sched_group whose statistics are to be updated.
8656 * @sgs: variable to hold the statistics for this group.
8657 * @p: The task for which we look for the idlest group/CPU.
8658 */
8659 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8660 struct sched_group *group,
8661 struct sg_lb_stats *sgs,
8662 struct task_struct *p)
8663 {
8664 int i, nr_running;
8665
8666 memset(sgs, 0, sizeof(*sgs));
8667
8668 for_each_cpu(i, sched_group_span(group)) {
8669 struct rq *rq = cpu_rq(i);
8670 unsigned int local;
8671
8672 sgs->group_load += cpu_load_without(rq, p);
8673 sgs->group_util += cpu_util_without(i, p);
8674 sgs->group_runnable += cpu_runnable_without(rq, p);
8675 local = task_running_on_cpu(i, p);
8676 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8677
8678 nr_running = rq->nr_running - local;
8679 sgs->sum_nr_running += nr_running;
8680
8681 /*
8682 * No need to call idle_cpu_without() if nr_running is not 0
8683 */
8684 if (!nr_running && idle_cpu_without(i, p))
8685 sgs->idle_cpus++;
8686
8687 }
8688
8689 /* Check if task fits in the group */
8690 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8691 !task_fits_capacity(p, group->sgc->max_capacity)) {
8692 sgs->group_misfit_task_load = 1;
8693 }
8694
8695 sgs->group_capacity = group->sgc->capacity;
8696
8697 sgs->group_weight = group->group_weight;
8698
8699 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8700
8701 /*
8702 * Computing avg_load makes sense only when group is fully busy or
8703 * overloaded
8704 */
8705 if (sgs->group_type == group_fully_busy ||
8706 sgs->group_type == group_overloaded)
8707 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8708 sgs->group_capacity;
8709 }
8710
8711 static bool update_pick_idlest(struct sched_group *idlest,
8712 struct sg_lb_stats *idlest_sgs,
8713 struct sched_group *group,
8714 struct sg_lb_stats *sgs)
8715 {
8716 if (sgs->group_type < idlest_sgs->group_type)
8717 return true;
8718
8719 if (sgs->group_type > idlest_sgs->group_type)
8720 return false;
8721
8722 /*
8723 * The candidate and the current idlest group are the same type of
8724 * group. Let check which one is the idlest according to the type.
8725 */
8726
8727 switch (sgs->group_type) {
8728 case group_overloaded:
8729 case group_fully_busy:
8730 /* Select the group with lowest avg_load. */
8731 if (idlest_sgs->avg_load <= sgs->avg_load)
8732 return false;
8733 break;
8734
8735 case group_imbalanced:
8736 case group_asym_packing:
8737 /* Those types are not used in the slow wakeup path */
8738 return false;
8739
8740 case group_misfit_task:
8741 /* Select group with the highest max capacity */
8742 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8743 return false;
8744 break;
8745
8746 case group_has_spare:
8747 /* Select group with most idle CPUs */
8748 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
8749 return false;
8750
8751 /* Select group with lowest group_util */
8752 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
8753 idlest_sgs->group_util <= sgs->group_util)
8754 return false;
8755
8756 break;
8757 }
8758
8759 return true;
8760 }
8761
8762 /*
8763 * find_idlest_group() finds and returns the least busy CPU group within the
8764 * domain.
8765 *
8766 * Assumes p is allowed on at least one CPU in sd.
8767 */
8768 static struct sched_group *
8769 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8770 {
8771 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8772 struct sg_lb_stats local_sgs, tmp_sgs;
8773 struct sg_lb_stats *sgs;
8774 unsigned long imbalance;
8775 struct sg_lb_stats idlest_sgs = {
8776 .avg_load = UINT_MAX,
8777 .group_type = group_overloaded,
8778 };
8779
8780 imbalance = scale_load_down(NICE_0_LOAD) *
8781 (sd->imbalance_pct-100) / 100;
8782
8783 do {
8784 int local_group;
8785
8786 /* Skip over this group if it has no CPUs allowed */
8787 if (!cpumask_intersects(sched_group_span(group),
8788 p->cpus_ptr))
8789 continue;
8790
8791 local_group = cpumask_test_cpu(this_cpu,
8792 sched_group_span(group));
8793
8794 if (local_group) {
8795 sgs = &local_sgs;
8796 local = group;
8797 } else {
8798 sgs = &tmp_sgs;
8799 }
8800
8801 update_sg_wakeup_stats(sd, group, sgs, p);
8802
8803 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8804 idlest = group;
8805 idlest_sgs = *sgs;
8806 }
8807
8808 } while (group = group->next, group != sd->groups);
8809
8810
8811 /* There is no idlest group to push tasks to */
8812 if (!idlest)
8813 return NULL;
8814
8815 /* The local group has been skipped because of CPU affinity */
8816 if (!local)
8817 return idlest;
8818
8819 /*
8820 * If the local group is idler than the selected idlest group
8821 * don't try and push the task.
8822 */
8823 if (local_sgs.group_type < idlest_sgs.group_type)
8824 return NULL;
8825
8826 /*
8827 * If the local group is busier than the selected idlest group
8828 * try and push the task.
8829 */
8830 if (local_sgs.group_type > idlest_sgs.group_type)
8831 return idlest;
8832
8833 switch (local_sgs.group_type) {
8834 case group_overloaded:
8835 case group_fully_busy:
8836 /*
8837 * When comparing groups across NUMA domains, it's possible for
8838 * the local domain to be very lightly loaded relative to the
8839 * remote domains but "imbalance" skews the comparison making
8840 * remote CPUs look much more favourable. When considering
8841 * cross-domain, add imbalance to the load on the remote node
8842 * and consider staying local.
8843 */
8844
8845 if ((sd->flags & SD_NUMA) &&
8846 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8847 return NULL;
8848
8849 /*
8850 * If the local group is less loaded than the selected
8851 * idlest group don't try and push any tasks.
8852 */
8853 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8854 return NULL;
8855
8856 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8857 return NULL;
8858 break;
8859
8860 case group_imbalanced:
8861 case group_asym_packing:
8862 /* Those type are not used in the slow wakeup path */
8863 return NULL;
8864
8865 case group_misfit_task:
8866 /* Select group with the highest max capacity */
8867 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8868 return NULL;
8869 break;
8870
8871 case group_has_spare:
8872 if (sd->flags & SD_NUMA) {
8873 #ifdef CONFIG_NUMA_BALANCING
8874 int idlest_cpu;
8875 /*
8876 * If there is spare capacity at NUMA, try to select
8877 * the preferred node
8878 */
8879 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8880 return NULL;
8881
8882 idlest_cpu = cpumask_first(sched_group_span(idlest));
8883 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8884 return idlest;
8885 #endif
8886 /*
8887 * Otherwise, keep the task on this node to stay close
8888 * its wakeup source and improve locality. If there is
8889 * a real need of migration, periodic load balance will
8890 * take care of it.
8891 */
8892 if (local_sgs.idle_cpus)
8893 return NULL;
8894 }
8895
8896 /*
8897 * Select group with highest number of idle CPUs. We could also
8898 * compare the utilization which is more stable but it can end
8899 * up that the group has less spare capacity but finally more
8900 * idle CPUs which means more opportunity to run task.
8901 */
8902 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8903 return NULL;
8904 break;
8905 }
8906
8907 return idlest;
8908 }
8909
8910 /**
8911 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8912 * @env: The load balancing environment.
8913 * @sds: variable to hold the statistics for this sched_domain.
8914 */
8915
8916 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8917 {
8918 struct sched_domain *child = env->sd->child;
8919 struct sched_group *sg = env->sd->groups;
8920 struct sg_lb_stats *local = &sds->local_stat;
8921 struct sg_lb_stats tmp_sgs;
8922 int sg_status = 0;
8923
8924 #ifdef CONFIG_NO_HZ_COMMON
8925 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8926 env->flags |= LBF_NOHZ_STATS;
8927 #endif
8928
8929 do {
8930 struct sg_lb_stats *sgs = &tmp_sgs;
8931 int local_group;
8932
8933 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8934 if (local_group) {
8935 sds->local = sg;
8936 sgs = local;
8937
8938 if (env->idle != CPU_NEWLY_IDLE ||
8939 time_after_eq(jiffies, sg->sgc->next_update))
8940 update_group_capacity(env->sd, env->dst_cpu);
8941 }
8942
8943 update_sg_lb_stats(env, sg, sgs, &sg_status);
8944
8945 if (local_group)
8946 goto next_group;
8947
8948
8949 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8950 sds->busiest = sg;
8951 sds->busiest_stat = *sgs;
8952 }
8953
8954 next_group:
8955 /* Now, start updating sd_lb_stats */
8956 sds->total_load += sgs->group_load;
8957 sds->total_capacity += sgs->group_capacity;
8958
8959 sg = sg->next;
8960 } while (sg != env->sd->groups);
8961
8962 /* Tag domain that child domain prefers tasks go to siblings first */
8963 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8964
8965 #ifdef CONFIG_NO_HZ_COMMON
8966 if ((env->flags & LBF_NOHZ_AGAIN) &&
8967 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8968
8969 WRITE_ONCE(nohz.next_blocked,
8970 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8971 }
8972 #endif
8973
8974 if (env->sd->flags & SD_NUMA)
8975 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8976
8977 if (!env->sd->parent) {
8978 struct root_domain *rd = env->dst_rq->rd;
8979
8980 /* update overload indicator if we are at root domain */
8981 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8982
8983 /* Update over-utilization (tipping point, U >= 0) indicator */
8984 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8985 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
8986 } else if (sg_status & SG_OVERUTILIZED) {
8987 struct root_domain *rd = env->dst_rq->rd;
8988
8989 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8990 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
8991 }
8992 }
8993
8994 static inline long adjust_numa_imbalance(int imbalance, int nr_running)
8995 {
8996 unsigned int imbalance_min;
8997
8998 /*
8999 * Allow a small imbalance based on a simple pair of communicating
9000 * tasks that remain local when the source domain is almost idle.
9001 */
9002 imbalance_min = 2;
9003 if (nr_running <= imbalance_min)
9004 return 0;
9005
9006 return imbalance;
9007 }
9008
9009 /**
9010 * calculate_imbalance - Calculate the amount of imbalance present within the
9011 * groups of a given sched_domain during load balance.
9012 * @env: load balance environment
9013 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9014 */
9015 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9016 {
9017 struct sg_lb_stats *local, *busiest;
9018
9019 local = &sds->local_stat;
9020 busiest = &sds->busiest_stat;
9021
9022 if (busiest->group_type == group_misfit_task) {
9023 /* Set imbalance to allow misfit tasks to be balanced. */
9024 env->migration_type = migrate_misfit;
9025 env->imbalance = 1;
9026 return;
9027 }
9028
9029 if (busiest->group_type == group_asym_packing) {
9030 /*
9031 * In case of asym capacity, we will try to migrate all load to
9032 * the preferred CPU.
9033 */
9034 env->migration_type = migrate_task;
9035 env->imbalance = busiest->sum_h_nr_running;
9036 return;
9037 }
9038
9039 if (busiest->group_type == group_imbalanced) {
9040 /*
9041 * In the group_imb case we cannot rely on group-wide averages
9042 * to ensure CPU-load equilibrium, try to move any task to fix
9043 * the imbalance. The next load balance will take care of
9044 * balancing back the system.
9045 */
9046 env->migration_type = migrate_task;
9047 env->imbalance = 1;
9048 return;
9049 }
9050
9051 /*
9052 * Try to use spare capacity of local group without overloading it or
9053 * emptying busiest.
9054 */
9055 if (local->group_type == group_has_spare) {
9056 if (busiest->group_type > group_fully_busy) {
9057 /*
9058 * If busiest is overloaded, try to fill spare
9059 * capacity. This might end up creating spare capacity
9060 * in busiest or busiest still being overloaded but
9061 * there is no simple way to directly compute the
9062 * amount of load to migrate in order to balance the
9063 * system.
9064 */
9065 env->migration_type = migrate_util;
9066 env->imbalance = max(local->group_capacity, local->group_util) -
9067 local->group_util;
9068
9069 /*
9070 * In some cases, the group's utilization is max or even
9071 * higher than capacity because of migrations but the
9072 * local CPU is (newly) idle. There is at least one
9073 * waiting task in this overloaded busiest group. Let's
9074 * try to pull it.
9075 */
9076 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9077 env->migration_type = migrate_task;
9078 env->imbalance = 1;
9079 }
9080
9081 return;
9082 }
9083
9084 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9085 unsigned int nr_diff = busiest->sum_nr_running;
9086 /*
9087 * When prefer sibling, evenly spread running tasks on
9088 * groups.
9089 */
9090 env->migration_type = migrate_task;
9091 lsub_positive(&nr_diff, local->sum_nr_running);
9092 env->imbalance = nr_diff >> 1;
9093 } else {
9094
9095 /*
9096 * If there is no overload, we just want to even the number of
9097 * idle cpus.
9098 */
9099 env->migration_type = migrate_task;
9100 env->imbalance = max_t(long, 0, (local->idle_cpus -
9101 busiest->idle_cpus) >> 1);
9102 }
9103
9104 /* Consider allowing a small imbalance between NUMA groups */
9105 if (env->sd->flags & SD_NUMA)
9106 env->imbalance = adjust_numa_imbalance(env->imbalance,
9107 busiest->sum_nr_running);
9108
9109 return;
9110 }
9111
9112 /*
9113 * Local is fully busy but has to take more load to relieve the
9114 * busiest group
9115 */
9116 if (local->group_type < group_overloaded) {
9117 /*
9118 * Local will become overloaded so the avg_load metrics are
9119 * finally needed.
9120 */
9121
9122 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9123 local->group_capacity;
9124
9125 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9126 sds->total_capacity;
9127 /*
9128 * If the local group is more loaded than the selected
9129 * busiest group don't try to pull any tasks.
9130 */
9131 if (local->avg_load >= busiest->avg_load) {
9132 env->imbalance = 0;
9133 return;
9134 }
9135 }
9136
9137 /*
9138 * Both group are or will become overloaded and we're trying to get all
9139 * the CPUs to the average_load, so we don't want to push ourselves
9140 * above the average load, nor do we wish to reduce the max loaded CPU
9141 * below the average load. At the same time, we also don't want to
9142 * reduce the group load below the group capacity. Thus we look for
9143 * the minimum possible imbalance.
9144 */
9145 env->migration_type = migrate_load;
9146 env->imbalance = min(
9147 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9148 (sds->avg_load - local->avg_load) * local->group_capacity
9149 ) / SCHED_CAPACITY_SCALE;
9150 }
9151
9152 /******* find_busiest_group() helpers end here *********************/
9153
9154 /*
9155 * Decision matrix according to the local and busiest group type:
9156 *
9157 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9158 * has_spare nr_idle balanced N/A N/A balanced balanced
9159 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9160 * misfit_task force N/A N/A N/A force force
9161 * asym_packing force force N/A N/A force force
9162 * imbalanced force force N/A N/A force force
9163 * overloaded force force N/A N/A force avg_load
9164 *
9165 * N/A : Not Applicable because already filtered while updating
9166 * statistics.
9167 * balanced : The system is balanced for these 2 groups.
9168 * force : Calculate the imbalance as load migration is probably needed.
9169 * avg_load : Only if imbalance is significant enough.
9170 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9171 * different in groups.
9172 */
9173
9174 /**
9175 * find_busiest_group - Returns the busiest group within the sched_domain
9176 * if there is an imbalance.
9177 *
9178 * Also calculates the amount of runnable load which should be moved
9179 * to restore balance.
9180 *
9181 * @env: The load balancing environment.
9182 *
9183 * Return: - The busiest group if imbalance exists.
9184 */
9185 static struct sched_group *find_busiest_group(struct lb_env *env)
9186 {
9187 struct sg_lb_stats *local, *busiest;
9188 struct sd_lb_stats sds;
9189
9190 init_sd_lb_stats(&sds);
9191
9192 /*
9193 * Compute the various statistics relevant for load balancing at
9194 * this level.
9195 */
9196 update_sd_lb_stats(env, &sds);
9197
9198 if (sched_energy_enabled()) {
9199 struct root_domain *rd = env->dst_rq->rd;
9200
9201 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9202 goto out_balanced;
9203 }
9204
9205 local = &sds.local_stat;
9206 busiest = &sds.busiest_stat;
9207
9208 /* There is no busy sibling group to pull tasks from */
9209 if (!sds.busiest)
9210 goto out_balanced;
9211
9212 /* Misfit tasks should be dealt with regardless of the avg load */
9213 if (busiest->group_type == group_misfit_task)
9214 goto force_balance;
9215
9216 /* ASYM feature bypasses nice load balance check */
9217 if (busiest->group_type == group_asym_packing)
9218 goto force_balance;
9219
9220 /*
9221 * If the busiest group is imbalanced the below checks don't
9222 * work because they assume all things are equal, which typically
9223 * isn't true due to cpus_ptr constraints and the like.
9224 */
9225 if (busiest->group_type == group_imbalanced)
9226 goto force_balance;
9227
9228 /*
9229 * If the local group is busier than the selected busiest group
9230 * don't try and pull any tasks.
9231 */
9232 if (local->group_type > busiest->group_type)
9233 goto out_balanced;
9234
9235 /*
9236 * When groups are overloaded, use the avg_load to ensure fairness
9237 * between tasks.
9238 */
9239 if (local->group_type == group_overloaded) {
9240 /*
9241 * If the local group is more loaded than the selected
9242 * busiest group don't try to pull any tasks.
9243 */
9244 if (local->avg_load >= busiest->avg_load)
9245 goto out_balanced;
9246
9247 /* XXX broken for overlapping NUMA groups */
9248 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9249 sds.total_capacity;
9250
9251 /*
9252 * Don't pull any tasks if this group is already above the
9253 * domain average load.
9254 */
9255 if (local->avg_load >= sds.avg_load)
9256 goto out_balanced;
9257
9258 /*
9259 * If the busiest group is more loaded, use imbalance_pct to be
9260 * conservative.
9261 */
9262 if (100 * busiest->avg_load <=
9263 env->sd->imbalance_pct * local->avg_load)
9264 goto out_balanced;
9265 }
9266
9267 /* Try to move all excess tasks to child's sibling domain */
9268 if (sds.prefer_sibling && local->group_type == group_has_spare &&
9269 busiest->sum_nr_running > local->sum_nr_running + 1)
9270 goto force_balance;
9271
9272 if (busiest->group_type != group_overloaded) {
9273 if (env->idle == CPU_NOT_IDLE)
9274 /*
9275 * If the busiest group is not overloaded (and as a
9276 * result the local one too) but this CPU is already
9277 * busy, let another idle CPU try to pull task.
9278 */
9279 goto out_balanced;
9280
9281 if (busiest->group_weight > 1 &&
9282 local->idle_cpus <= (busiest->idle_cpus + 1))
9283 /*
9284 * If the busiest group is not overloaded
9285 * and there is no imbalance between this and busiest
9286 * group wrt idle CPUs, it is balanced. The imbalance
9287 * becomes significant if the diff is greater than 1
9288 * otherwise we might end up to just move the imbalance
9289 * on another group. Of course this applies only if
9290 * there is more than 1 CPU per group.
9291 */
9292 goto out_balanced;
9293
9294 if (busiest->sum_h_nr_running == 1)
9295 /*
9296 * busiest doesn't have any tasks waiting to run
9297 */
9298 goto out_balanced;
9299 }
9300
9301 force_balance:
9302 /* Looks like there is an imbalance. Compute it */
9303 calculate_imbalance(env, &sds);
9304 return env->imbalance ? sds.busiest : NULL;
9305
9306 out_balanced:
9307 env->imbalance = 0;
9308 return NULL;
9309 }
9310
9311 /*
9312 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9313 */
9314 static struct rq *find_busiest_queue(struct lb_env *env,
9315 struct sched_group *group)
9316 {
9317 struct rq *busiest = NULL, *rq;
9318 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9319 unsigned int busiest_nr = 0;
9320 int i;
9321
9322 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9323 unsigned long capacity, load, util;
9324 unsigned int nr_running;
9325 enum fbq_type rt;
9326
9327 rq = cpu_rq(i);
9328 rt = fbq_classify_rq(rq);
9329
9330 /*
9331 * We classify groups/runqueues into three groups:
9332 * - regular: there are !numa tasks
9333 * - remote: there are numa tasks that run on the 'wrong' node
9334 * - all: there is no distinction
9335 *
9336 * In order to avoid migrating ideally placed numa tasks,
9337 * ignore those when there's better options.
9338 *
9339 * If we ignore the actual busiest queue to migrate another
9340 * task, the next balance pass can still reduce the busiest
9341 * queue by moving tasks around inside the node.
9342 *
9343 * If we cannot move enough load due to this classification
9344 * the next pass will adjust the group classification and
9345 * allow migration of more tasks.
9346 *
9347 * Both cases only affect the total convergence complexity.
9348 */
9349 if (rt > env->fbq_type)
9350 continue;
9351
9352 capacity = capacity_of(i);
9353 nr_running = rq->cfs.h_nr_running;
9354
9355 /*
9356 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9357 * eventually lead to active_balancing high->low capacity.
9358 * Higher per-CPU capacity is considered better than balancing
9359 * average load.
9360 */
9361 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9362 capacity_of(env->dst_cpu) < capacity &&
9363 nr_running == 1)
9364 continue;
9365
9366 switch (env->migration_type) {
9367 case migrate_load:
9368 /*
9369 * When comparing with load imbalance, use cpu_load()
9370 * which is not scaled with the CPU capacity.
9371 */
9372 load = cpu_load(rq);
9373
9374 if (nr_running == 1 && load > env->imbalance &&
9375 !check_cpu_capacity(rq, env->sd))
9376 break;
9377
9378 /*
9379 * For the load comparisons with the other CPUs,
9380 * consider the cpu_load() scaled with the CPU
9381 * capacity, so that the load can be moved away
9382 * from the CPU that is potentially running at a
9383 * lower capacity.
9384 *
9385 * Thus we're looking for max(load_i / capacity_i),
9386 * crosswise multiplication to rid ourselves of the
9387 * division works out to:
9388 * load_i * capacity_j > load_j * capacity_i;
9389 * where j is our previous maximum.
9390 */
9391 if (load * busiest_capacity > busiest_load * capacity) {
9392 busiest_load = load;
9393 busiest_capacity = capacity;
9394 busiest = rq;
9395 }
9396 break;
9397
9398 case migrate_util:
9399 util = cpu_util(cpu_of(rq));
9400
9401 /*
9402 * Don't try to pull utilization from a CPU with one
9403 * running task. Whatever its utilization, we will fail
9404 * detach the task.
9405 */
9406 if (nr_running <= 1)
9407 continue;
9408
9409 if (busiest_util < util) {
9410 busiest_util = util;
9411 busiest = rq;
9412 }
9413 break;
9414
9415 case migrate_task:
9416 if (busiest_nr < nr_running) {
9417 busiest_nr = nr_running;
9418 busiest = rq;
9419 }
9420 break;
9421
9422 case migrate_misfit:
9423 /*
9424 * For ASYM_CPUCAPACITY domains with misfit tasks we
9425 * simply seek the "biggest" misfit task.
9426 */
9427 if (rq->misfit_task_load > busiest_load) {
9428 busiest_load = rq->misfit_task_load;
9429 busiest = rq;
9430 }
9431
9432 break;
9433
9434 }
9435 }
9436
9437 return busiest;
9438 }
9439
9440 /*
9441 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9442 * so long as it is large enough.
9443 */
9444 #define MAX_PINNED_INTERVAL 512
9445
9446 static inline bool
9447 asym_active_balance(struct lb_env *env)
9448 {
9449 /*
9450 * ASYM_PACKING needs to force migrate tasks from busy but
9451 * lower priority CPUs in order to pack all tasks in the
9452 * highest priority CPUs.
9453 */
9454 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9455 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9456 }
9457
9458 static inline bool
9459 voluntary_active_balance(struct lb_env *env)
9460 {
9461 struct sched_domain *sd = env->sd;
9462
9463 if (asym_active_balance(env))
9464 return 1;
9465
9466 /*
9467 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9468 * It's worth migrating the task if the src_cpu's capacity is reduced
9469 * because of other sched_class or IRQs if more capacity stays
9470 * available on dst_cpu.
9471 */
9472 if ((env->idle != CPU_NOT_IDLE) &&
9473 (env->src_rq->cfs.h_nr_running == 1)) {
9474 if ((check_cpu_capacity(env->src_rq, sd)) &&
9475 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9476 return 1;
9477 }
9478
9479 if (env->migration_type == migrate_misfit)
9480 return 1;
9481
9482 return 0;
9483 }
9484
9485 static int need_active_balance(struct lb_env *env)
9486 {
9487 struct sched_domain *sd = env->sd;
9488
9489 if (voluntary_active_balance(env))
9490 return 1;
9491
9492 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9493 }
9494
9495 static int active_load_balance_cpu_stop(void *data);
9496
9497 static int should_we_balance(struct lb_env *env)
9498 {
9499 struct sched_group *sg = env->sd->groups;
9500 int cpu;
9501
9502 /*
9503 * Ensure the balancing environment is consistent; can happen
9504 * when the softirq triggers 'during' hotplug.
9505 */
9506 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9507 return 0;
9508
9509 /*
9510 * In the newly idle case, we will allow all the CPUs
9511 * to do the newly idle load balance.
9512 */
9513 if (env->idle == CPU_NEWLY_IDLE)
9514 return 1;
9515
9516 /* Try to find first idle CPU */
9517 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9518 if (!idle_cpu(cpu))
9519 continue;
9520
9521 /* Are we the first idle CPU? */
9522 return cpu == env->dst_cpu;
9523 }
9524
9525 /* Are we the first CPU of this group ? */
9526 return group_balance_cpu(sg) == env->dst_cpu;
9527 }
9528
9529 /*
9530 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9531 * tasks if there is an imbalance.
9532 */
9533 static int load_balance(int this_cpu, struct rq *this_rq,
9534 struct sched_domain *sd, enum cpu_idle_type idle,
9535 int *continue_balancing)
9536 {
9537 int ld_moved, cur_ld_moved, active_balance = 0;
9538 struct sched_domain *sd_parent = sd->parent;
9539 struct sched_group *group;
9540 struct rq *busiest;
9541 struct rq_flags rf;
9542 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9543
9544 struct lb_env env = {
9545 .sd = sd,
9546 .dst_cpu = this_cpu,
9547 .dst_rq = this_rq,
9548 .dst_grpmask = sched_group_span(sd->groups),
9549 .idle = idle,
9550 .loop_break = sched_nr_migrate_break,
9551 .cpus = cpus,
9552 .fbq_type = all,
9553 .tasks = LIST_HEAD_INIT(env.tasks),
9554 };
9555
9556 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9557
9558 schedstat_inc(sd->lb_count[idle]);
9559
9560 redo:
9561 if (!should_we_balance(&env)) {
9562 *continue_balancing = 0;
9563 goto out_balanced;
9564 }
9565
9566 group = find_busiest_group(&env);
9567 if (!group) {
9568 schedstat_inc(sd->lb_nobusyg[idle]);
9569 goto out_balanced;
9570 }
9571
9572 busiest = find_busiest_queue(&env, group);
9573 if (!busiest) {
9574 schedstat_inc(sd->lb_nobusyq[idle]);
9575 goto out_balanced;
9576 }
9577
9578 BUG_ON(busiest == env.dst_rq);
9579
9580 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9581
9582 env.src_cpu = busiest->cpu;
9583 env.src_rq = busiest;
9584
9585 ld_moved = 0;
9586 if (busiest->nr_running > 1) {
9587 /*
9588 * Attempt to move tasks. If find_busiest_group has found
9589 * an imbalance but busiest->nr_running <= 1, the group is
9590 * still unbalanced. ld_moved simply stays zero, so it is
9591 * correctly treated as an imbalance.
9592 */
9593 env.flags |= LBF_ALL_PINNED;
9594 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
9595
9596 more_balance:
9597 rq_lock_irqsave(busiest, &rf);
9598 update_rq_clock(busiest);
9599
9600 /*
9601 * cur_ld_moved - load moved in current iteration
9602 * ld_moved - cumulative load moved across iterations
9603 */
9604 cur_ld_moved = detach_tasks(&env);
9605
9606 /*
9607 * We've detached some tasks from busiest_rq. Every
9608 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9609 * unlock busiest->lock, and we are able to be sure
9610 * that nobody can manipulate the tasks in parallel.
9611 * See task_rq_lock() family for the details.
9612 */
9613
9614 rq_unlock(busiest, &rf);
9615
9616 if (cur_ld_moved) {
9617 attach_tasks(&env);
9618 ld_moved += cur_ld_moved;
9619 }
9620
9621 local_irq_restore(rf.flags);
9622
9623 if (env.flags & LBF_NEED_BREAK) {
9624 env.flags &= ~LBF_NEED_BREAK;
9625 goto more_balance;
9626 }
9627
9628 /*
9629 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9630 * us and move them to an alternate dst_cpu in our sched_group
9631 * where they can run. The upper limit on how many times we
9632 * iterate on same src_cpu is dependent on number of CPUs in our
9633 * sched_group.
9634 *
9635 * This changes load balance semantics a bit on who can move
9636 * load to a given_cpu. In addition to the given_cpu itself
9637 * (or a ilb_cpu acting on its behalf where given_cpu is
9638 * nohz-idle), we now have balance_cpu in a position to move
9639 * load to given_cpu. In rare situations, this may cause
9640 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9641 * _independently_ and at _same_ time to move some load to
9642 * given_cpu) causing exceess load to be moved to given_cpu.
9643 * This however should not happen so much in practice and
9644 * moreover subsequent load balance cycles should correct the
9645 * excess load moved.
9646 */
9647 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9648
9649 /* Prevent to re-select dst_cpu via env's CPUs */
9650 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9651
9652 env.dst_rq = cpu_rq(env.new_dst_cpu);
9653 env.dst_cpu = env.new_dst_cpu;
9654 env.flags &= ~LBF_DST_PINNED;
9655 env.loop = 0;
9656 env.loop_break = sched_nr_migrate_break;
9657
9658 /*
9659 * Go back to "more_balance" rather than "redo" since we
9660 * need to continue with same src_cpu.
9661 */
9662 goto more_balance;
9663 }
9664
9665 /*
9666 * We failed to reach balance because of affinity.
9667 */
9668 if (sd_parent) {
9669 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9670
9671 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9672 *group_imbalance = 1;
9673 }
9674
9675 /* All tasks on this runqueue were pinned by CPU affinity */
9676 if (unlikely(env.flags & LBF_ALL_PINNED)) {
9677 __cpumask_clear_cpu(cpu_of(busiest), cpus);
9678 /*
9679 * Attempting to continue load balancing at the current
9680 * sched_domain level only makes sense if there are
9681 * active CPUs remaining as possible busiest CPUs to
9682 * pull load from which are not contained within the
9683 * destination group that is receiving any migrated
9684 * load.
9685 */
9686 if (!cpumask_subset(cpus, env.dst_grpmask)) {
9687 env.loop = 0;
9688 env.loop_break = sched_nr_migrate_break;
9689 goto redo;
9690 }
9691 goto out_all_pinned;
9692 }
9693 }
9694
9695 if (!ld_moved) {
9696 schedstat_inc(sd->lb_failed[idle]);
9697 /*
9698 * Increment the failure counter only on periodic balance.
9699 * We do not want newidle balance, which can be very
9700 * frequent, pollute the failure counter causing
9701 * excessive cache_hot migrations and active balances.
9702 */
9703 if (idle != CPU_NEWLY_IDLE)
9704 sd->nr_balance_failed++;
9705
9706 if (need_active_balance(&env)) {
9707 unsigned long flags;
9708
9709 raw_spin_lock_irqsave(&busiest->lock, flags);
9710
9711 /*
9712 * Don't kick the active_load_balance_cpu_stop,
9713 * if the curr task on busiest CPU can't be
9714 * moved to this_cpu:
9715 */
9716 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9717 raw_spin_unlock_irqrestore(&busiest->lock,
9718 flags);
9719 env.flags |= LBF_ALL_PINNED;
9720 goto out_one_pinned;
9721 }
9722
9723 /*
9724 * ->active_balance synchronizes accesses to
9725 * ->active_balance_work. Once set, it's cleared
9726 * only after active load balance is finished.
9727 */
9728 if (!busiest->active_balance) {
9729 busiest->active_balance = 1;
9730 busiest->push_cpu = this_cpu;
9731 active_balance = 1;
9732 }
9733 raw_spin_unlock_irqrestore(&busiest->lock, flags);
9734
9735 if (active_balance) {
9736 stop_one_cpu_nowait(cpu_of(busiest),
9737 active_load_balance_cpu_stop, busiest,
9738 &busiest->active_balance_work);
9739 }
9740
9741 /* We've kicked active balancing, force task migration. */
9742 sd->nr_balance_failed = sd->cache_nice_tries+1;
9743 }
9744 } else
9745 sd->nr_balance_failed = 0;
9746
9747 if (likely(!active_balance) || voluntary_active_balance(&env)) {
9748 /* We were unbalanced, so reset the balancing interval */
9749 sd->balance_interval = sd->min_interval;
9750 } else {
9751 /*
9752 * If we've begun active balancing, start to back off. This
9753 * case may not be covered by the all_pinned logic if there
9754 * is only 1 task on the busy runqueue (because we don't call
9755 * detach_tasks).
9756 */
9757 if (sd->balance_interval < sd->max_interval)
9758 sd->balance_interval *= 2;
9759 }
9760
9761 goto out;
9762
9763 out_balanced:
9764 /*
9765 * We reach balance although we may have faced some affinity
9766 * constraints. Clear the imbalance flag only if other tasks got
9767 * a chance to move and fix the imbalance.
9768 */
9769 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9770 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9771
9772 if (*group_imbalance)
9773 *group_imbalance = 0;
9774 }
9775
9776 out_all_pinned:
9777 /*
9778 * We reach balance because all tasks are pinned at this level so
9779 * we can't migrate them. Let the imbalance flag set so parent level
9780 * can try to migrate them.
9781 */
9782 schedstat_inc(sd->lb_balanced[idle]);
9783
9784 sd->nr_balance_failed = 0;
9785
9786 out_one_pinned:
9787 ld_moved = 0;
9788
9789 /*
9790 * newidle_balance() disregards balance intervals, so we could
9791 * repeatedly reach this code, which would lead to balance_interval
9792 * skyrocketting in a short amount of time. Skip the balance_interval
9793 * increase logic to avoid that.
9794 */
9795 if (env.idle == CPU_NEWLY_IDLE)
9796 goto out;
9797
9798 /* tune up the balancing interval */
9799 if ((env.flags & LBF_ALL_PINNED &&
9800 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9801 sd->balance_interval < sd->max_interval)
9802 sd->balance_interval *= 2;
9803 out:
9804 return ld_moved;
9805 }
9806
9807 static inline unsigned long
9808 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9809 {
9810 unsigned long interval = sd->balance_interval;
9811
9812 if (cpu_busy)
9813 interval *= sd->busy_factor;
9814
9815 /* scale ms to jiffies */
9816 interval = msecs_to_jiffies(interval);
9817
9818 /*
9819 * Reduce likelihood of busy balancing at higher domains racing with
9820 * balancing at lower domains by preventing their balancing periods
9821 * from being multiples of each other.
9822 */
9823 if (cpu_busy)
9824 interval -= 1;
9825
9826 interval = clamp(interval, 1UL, max_load_balance_interval);
9827
9828 return interval;
9829 }
9830
9831 static inline void
9832 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9833 {
9834 unsigned long interval, next;
9835
9836 /* used by idle balance, so cpu_busy = 0 */
9837 interval = get_sd_balance_interval(sd, 0);
9838 next = sd->last_balance + interval;
9839
9840 if (time_after(*next_balance, next))
9841 *next_balance = next;
9842 }
9843
9844 /*
9845 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9846 * running tasks off the busiest CPU onto idle CPUs. It requires at
9847 * least 1 task to be running on each physical CPU where possible, and
9848 * avoids physical / logical imbalances.
9849 */
9850 static int active_load_balance_cpu_stop(void *data)
9851 {
9852 struct rq *busiest_rq = data;
9853 int busiest_cpu = cpu_of(busiest_rq);
9854 int target_cpu = busiest_rq->push_cpu;
9855 struct rq *target_rq = cpu_rq(target_cpu);
9856 struct sched_domain *sd;
9857 struct task_struct *p = NULL;
9858 struct rq_flags rf;
9859
9860 rq_lock_irq(busiest_rq, &rf);
9861 /*
9862 * Between queueing the stop-work and running it is a hole in which
9863 * CPUs can become inactive. We should not move tasks from or to
9864 * inactive CPUs.
9865 */
9866 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9867 goto out_unlock;
9868
9869 /* Make sure the requested CPU hasn't gone down in the meantime: */
9870 if (unlikely(busiest_cpu != smp_processor_id() ||
9871 !busiest_rq->active_balance))
9872 goto out_unlock;
9873
9874 /* Is there any task to move? */
9875 if (busiest_rq->nr_running <= 1)
9876 goto out_unlock;
9877
9878 /*
9879 * This condition is "impossible", if it occurs
9880 * we need to fix it. Originally reported by
9881 * Bjorn Helgaas on a 128-CPU setup.
9882 */
9883 BUG_ON(busiest_rq == target_rq);
9884
9885 /* Search for an sd spanning us and the target CPU. */
9886 rcu_read_lock();
9887 for_each_domain(target_cpu, sd) {
9888 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9889 break;
9890 }
9891
9892 if (likely(sd)) {
9893 struct lb_env env = {
9894 .sd = sd,
9895 .dst_cpu = target_cpu,
9896 .dst_rq = target_rq,
9897 .src_cpu = busiest_rq->cpu,
9898 .src_rq = busiest_rq,
9899 .idle = CPU_IDLE,
9900 /*
9901 * can_migrate_task() doesn't need to compute new_dst_cpu
9902 * for active balancing. Since we have CPU_IDLE, but no
9903 * @dst_grpmask we need to make that test go away with lying
9904 * about DST_PINNED.
9905 */
9906 .flags = LBF_DST_PINNED,
9907 };
9908
9909 schedstat_inc(sd->alb_count);
9910 update_rq_clock(busiest_rq);
9911
9912 p = detach_one_task(&env);
9913 if (p) {
9914 schedstat_inc(sd->alb_pushed);
9915 /* Active balancing done, reset the failure counter. */
9916 sd->nr_balance_failed = 0;
9917 } else {
9918 schedstat_inc(sd->alb_failed);
9919 }
9920 }
9921 rcu_read_unlock();
9922 out_unlock:
9923 busiest_rq->active_balance = 0;
9924 rq_unlock(busiest_rq, &rf);
9925
9926 if (p)
9927 attach_one_task(target_rq, p);
9928
9929 local_irq_enable();
9930
9931 return 0;
9932 }
9933
9934 static DEFINE_SPINLOCK(balancing);
9935
9936 /*
9937 * Scale the max load_balance interval with the number of CPUs in the system.
9938 * This trades load-balance latency on larger machines for less cross talk.
9939 */
9940 void update_max_interval(void)
9941 {
9942 max_load_balance_interval = HZ*num_online_cpus()/10;
9943 }
9944
9945 /*
9946 * It checks each scheduling domain to see if it is due to be balanced,
9947 * and initiates a balancing operation if so.
9948 *
9949 * Balancing parameters are set up in init_sched_domains.
9950 */
9951 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9952 {
9953 int continue_balancing = 1;
9954 int cpu = rq->cpu;
9955 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9956 unsigned long interval;
9957 struct sched_domain *sd;
9958 /* Earliest time when we have to do rebalance again */
9959 unsigned long next_balance = jiffies + 60*HZ;
9960 int update_next_balance = 0;
9961 int need_serialize, need_decay = 0;
9962 u64 max_cost = 0;
9963
9964 rcu_read_lock();
9965 for_each_domain(cpu, sd) {
9966 /*
9967 * Decay the newidle max times here because this is a regular
9968 * visit to all the domains. Decay ~1% per second.
9969 */
9970 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9971 sd->max_newidle_lb_cost =
9972 (sd->max_newidle_lb_cost * 253) / 256;
9973 sd->next_decay_max_lb_cost = jiffies + HZ;
9974 need_decay = 1;
9975 }
9976 max_cost += sd->max_newidle_lb_cost;
9977
9978 /*
9979 * Stop the load balance at this level. There is another
9980 * CPU in our sched group which is doing load balancing more
9981 * actively.
9982 */
9983 if (!continue_balancing) {
9984 if (need_decay)
9985 continue;
9986 break;
9987 }
9988
9989 interval = get_sd_balance_interval(sd, busy);
9990
9991 need_serialize = sd->flags & SD_SERIALIZE;
9992 if (need_serialize) {
9993 if (!spin_trylock(&balancing))
9994 goto out;
9995 }
9996
9997 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9998 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9999 /*
10000 * The LBF_DST_PINNED logic could have changed
10001 * env->dst_cpu, so we can't know our idle
10002 * state even if we migrated tasks. Update it.
10003 */
10004 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10005 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10006 }
10007 sd->last_balance = jiffies;
10008 interval = get_sd_balance_interval(sd, busy);
10009 }
10010 if (need_serialize)
10011 spin_unlock(&balancing);
10012 out:
10013 if (time_after(next_balance, sd->last_balance + interval)) {
10014 next_balance = sd->last_balance + interval;
10015 update_next_balance = 1;
10016 }
10017 }
10018 if (need_decay) {
10019 /*
10020 * Ensure the rq-wide value also decays but keep it at a
10021 * reasonable floor to avoid funnies with rq->avg_idle.
10022 */
10023 rq->max_idle_balance_cost =
10024 max((u64)sysctl_sched_migration_cost, max_cost);
10025 }
10026 rcu_read_unlock();
10027
10028 /*
10029 * next_balance will be updated only when there is a need.
10030 * When the cpu is attached to null domain for ex, it will not be
10031 * updated.
10032 */
10033 if (likely(update_next_balance)) {
10034 rq->next_balance = next_balance;
10035
10036 #ifdef CONFIG_NO_HZ_COMMON
10037 /*
10038 * If this CPU has been elected to perform the nohz idle
10039 * balance. Other idle CPUs have already rebalanced with
10040 * nohz_idle_balance() and nohz.next_balance has been
10041 * updated accordingly. This CPU is now running the idle load
10042 * balance for itself and we need to update the
10043 * nohz.next_balance accordingly.
10044 */
10045 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
10046 nohz.next_balance = rq->next_balance;
10047 #endif
10048 }
10049 }
10050
10051 static inline int on_null_domain(struct rq *rq)
10052 {
10053 return unlikely(!rcu_dereference_sched(rq->sd));
10054 }
10055
10056 #ifdef CONFIG_NO_HZ_COMMON
10057 /*
10058 * idle load balancing details
10059 * - When one of the busy CPUs notice that there may be an idle rebalancing
10060 * needed, they will kick the idle load balancer, which then does idle
10061 * load balancing for all the idle CPUs.
10062 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10063 * anywhere yet.
10064 */
10065
10066 static inline int find_new_ilb(void)
10067 {
10068 int ilb;
10069
10070 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10071 housekeeping_cpumask(HK_FLAG_MISC)) {
10072
10073 if (ilb == smp_processor_id())
10074 continue;
10075
10076 if (idle_cpu(ilb))
10077 return ilb;
10078 }
10079
10080 return nr_cpu_ids;
10081 }
10082
10083 /*
10084 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10085 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10086 */
10087 static void kick_ilb(unsigned int flags)
10088 {
10089 int ilb_cpu;
10090
10091 /*
10092 * Increase nohz.next_balance only when if full ilb is triggered but
10093 * not if we only update stats.
10094 */
10095 if (flags & NOHZ_BALANCE_KICK)
10096 nohz.next_balance = jiffies+1;
10097
10098 ilb_cpu = find_new_ilb();
10099
10100 if (ilb_cpu >= nr_cpu_ids)
10101 return;
10102
10103 /*
10104 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10105 * the first flag owns it; cleared by nohz_csd_func().
10106 */
10107 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10108 if (flags & NOHZ_KICK_MASK)
10109 return;
10110
10111 /*
10112 * This way we generate an IPI on the target CPU which
10113 * is idle. And the softirq performing nohz idle load balance
10114 * will be run before returning from the IPI.
10115 */
10116 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10117 }
10118
10119 /*
10120 * Current decision point for kicking the idle load balancer in the presence
10121 * of idle CPUs in the system.
10122 */
10123 static void nohz_balancer_kick(struct rq *rq)
10124 {
10125 unsigned long now = jiffies;
10126 struct sched_domain_shared *sds;
10127 struct sched_domain *sd;
10128 int nr_busy, i, cpu = rq->cpu;
10129 unsigned int flags = 0;
10130
10131 if (unlikely(rq->idle_balance))
10132 return;
10133
10134 /*
10135 * We may be recently in ticked or tickless idle mode. At the first
10136 * busy tick after returning from idle, we will update the busy stats.
10137 */
10138 nohz_balance_exit_idle(rq);
10139
10140 /*
10141 * None are in tickless mode and hence no need for NOHZ idle load
10142 * balancing.
10143 */
10144 if (likely(!atomic_read(&nohz.nr_cpus)))
10145 return;
10146
10147 if (READ_ONCE(nohz.has_blocked) &&
10148 time_after(now, READ_ONCE(nohz.next_blocked)))
10149 flags = NOHZ_STATS_KICK;
10150
10151 if (time_before(now, nohz.next_balance))
10152 goto out;
10153
10154 if (rq->nr_running >= 2) {
10155 flags = NOHZ_KICK_MASK;
10156 goto out;
10157 }
10158
10159 rcu_read_lock();
10160
10161 sd = rcu_dereference(rq->sd);
10162 if (sd) {
10163 /*
10164 * If there's a CFS task and the current CPU has reduced
10165 * capacity; kick the ILB to see if there's a better CPU to run
10166 * on.
10167 */
10168 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10169 flags = NOHZ_KICK_MASK;
10170 goto unlock;
10171 }
10172 }
10173
10174 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10175 if (sd) {
10176 /*
10177 * When ASYM_PACKING; see if there's a more preferred CPU
10178 * currently idle; in which case, kick the ILB to move tasks
10179 * around.
10180 */
10181 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10182 if (sched_asym_prefer(i, cpu)) {
10183 flags = NOHZ_KICK_MASK;
10184 goto unlock;
10185 }
10186 }
10187 }
10188
10189 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10190 if (sd) {
10191 /*
10192 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10193 * to run the misfit task on.
10194 */
10195 if (check_misfit_status(rq, sd)) {
10196 flags = NOHZ_KICK_MASK;
10197 goto unlock;
10198 }
10199
10200 /*
10201 * For asymmetric systems, we do not want to nicely balance
10202 * cache use, instead we want to embrace asymmetry and only
10203 * ensure tasks have enough CPU capacity.
10204 *
10205 * Skip the LLC logic because it's not relevant in that case.
10206 */
10207 goto unlock;
10208 }
10209
10210 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10211 if (sds) {
10212 /*
10213 * If there is an imbalance between LLC domains (IOW we could
10214 * increase the overall cache use), we need some less-loaded LLC
10215 * domain to pull some load. Likewise, we may need to spread
10216 * load within the current LLC domain (e.g. packed SMT cores but
10217 * other CPUs are idle). We can't really know from here how busy
10218 * the others are - so just get a nohz balance going if it looks
10219 * like this LLC domain has tasks we could move.
10220 */
10221 nr_busy = atomic_read(&sds->nr_busy_cpus);
10222 if (nr_busy > 1) {
10223 flags = NOHZ_KICK_MASK;
10224 goto unlock;
10225 }
10226 }
10227 unlock:
10228 rcu_read_unlock();
10229 out:
10230 if (flags)
10231 kick_ilb(flags);
10232 }
10233
10234 static void set_cpu_sd_state_busy(int cpu)
10235 {
10236 struct sched_domain *sd;
10237
10238 rcu_read_lock();
10239 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10240
10241 if (!sd || !sd->nohz_idle)
10242 goto unlock;
10243 sd->nohz_idle = 0;
10244
10245 atomic_inc(&sd->shared->nr_busy_cpus);
10246 unlock:
10247 rcu_read_unlock();
10248 }
10249
10250 void nohz_balance_exit_idle(struct rq *rq)
10251 {
10252 SCHED_WARN_ON(rq != this_rq());
10253
10254 if (likely(!rq->nohz_tick_stopped))
10255 return;
10256
10257 rq->nohz_tick_stopped = 0;
10258 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10259 atomic_dec(&nohz.nr_cpus);
10260
10261 set_cpu_sd_state_busy(rq->cpu);
10262 }
10263
10264 static void set_cpu_sd_state_idle(int cpu)
10265 {
10266 struct sched_domain *sd;
10267
10268 rcu_read_lock();
10269 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10270
10271 if (!sd || sd->nohz_idle)
10272 goto unlock;
10273 sd->nohz_idle = 1;
10274
10275 atomic_dec(&sd->shared->nr_busy_cpus);
10276 unlock:
10277 rcu_read_unlock();
10278 }
10279
10280 /*
10281 * This routine will record that the CPU is going idle with tick stopped.
10282 * This info will be used in performing idle load balancing in the future.
10283 */
10284 void nohz_balance_enter_idle(int cpu)
10285 {
10286 struct rq *rq = cpu_rq(cpu);
10287
10288 SCHED_WARN_ON(cpu != smp_processor_id());
10289
10290 /* If this CPU is going down, then nothing needs to be done: */
10291 if (!cpu_active(cpu))
10292 return;
10293
10294 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10295 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10296 return;
10297
10298 /*
10299 * Can be set safely without rq->lock held
10300 * If a clear happens, it will have evaluated last additions because
10301 * rq->lock is held during the check and the clear
10302 */
10303 rq->has_blocked_load = 1;
10304
10305 /*
10306 * The tick is still stopped but load could have been added in the
10307 * meantime. We set the nohz.has_blocked flag to trig a check of the
10308 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10309 * of nohz.has_blocked can only happen after checking the new load
10310 */
10311 if (rq->nohz_tick_stopped)
10312 goto out;
10313
10314 /* If we're a completely isolated CPU, we don't play: */
10315 if (on_null_domain(rq))
10316 return;
10317
10318 rq->nohz_tick_stopped = 1;
10319
10320 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10321 atomic_inc(&nohz.nr_cpus);
10322
10323 /*
10324 * Ensures that if nohz_idle_balance() fails to observe our
10325 * @idle_cpus_mask store, it must observe the @has_blocked
10326 * store.
10327 */
10328 smp_mb__after_atomic();
10329
10330 set_cpu_sd_state_idle(cpu);
10331
10332 out:
10333 /*
10334 * Each time a cpu enter idle, we assume that it has blocked load and
10335 * enable the periodic update of the load of idle cpus
10336 */
10337 WRITE_ONCE(nohz.has_blocked, 1);
10338 }
10339
10340 /*
10341 * Internal function that runs load balance for all idle cpus. The load balance
10342 * can be a simple update of blocked load or a complete load balance with
10343 * tasks movement depending of flags.
10344 * The function returns false if the loop has stopped before running
10345 * through all idle CPUs.
10346 */
10347 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10348 enum cpu_idle_type idle)
10349 {
10350 /* Earliest time when we have to do rebalance again */
10351 unsigned long now = jiffies;
10352 unsigned long next_balance = now + 60*HZ;
10353 bool has_blocked_load = false;
10354 int update_next_balance = 0;
10355 int this_cpu = this_rq->cpu;
10356 int balance_cpu;
10357 int ret = false;
10358 struct rq *rq;
10359
10360 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10361
10362 /*
10363 * We assume there will be no idle load after this update and clear
10364 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10365 * set the has_blocked flag and trig another update of idle load.
10366 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10367 * setting the flag, we are sure to not clear the state and not
10368 * check the load of an idle cpu.
10369 */
10370 WRITE_ONCE(nohz.has_blocked, 0);
10371
10372 /*
10373 * Ensures that if we miss the CPU, we must see the has_blocked
10374 * store from nohz_balance_enter_idle().
10375 */
10376 smp_mb();
10377
10378 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
10379 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
10380 continue;
10381
10382 /*
10383 * If this CPU gets work to do, stop the load balancing
10384 * work being done for other CPUs. Next load
10385 * balancing owner will pick it up.
10386 */
10387 if (need_resched()) {
10388 has_blocked_load = true;
10389 goto abort;
10390 }
10391
10392 rq = cpu_rq(balance_cpu);
10393
10394 has_blocked_load |= update_nohz_stats(rq, true);
10395
10396 /*
10397 * If time for next balance is due,
10398 * do the balance.
10399 */
10400 if (time_after_eq(jiffies, rq->next_balance)) {
10401 struct rq_flags rf;
10402
10403 rq_lock_irqsave(rq, &rf);
10404 update_rq_clock(rq);
10405 rq_unlock_irqrestore(rq, &rf);
10406
10407 if (flags & NOHZ_BALANCE_KICK)
10408 rebalance_domains(rq, CPU_IDLE);
10409 }
10410
10411 if (time_after(next_balance, rq->next_balance)) {
10412 next_balance = rq->next_balance;
10413 update_next_balance = 1;
10414 }
10415 }
10416
10417 /*
10418 * next_balance will be updated only when there is a need.
10419 * When the CPU is attached to null domain for ex, it will not be
10420 * updated.
10421 */
10422 if (likely(update_next_balance))
10423 nohz.next_balance = next_balance;
10424
10425 /* Newly idle CPU doesn't need an update */
10426 if (idle != CPU_NEWLY_IDLE) {
10427 update_blocked_averages(this_cpu);
10428 has_blocked_load |= this_rq->has_blocked_load;
10429 }
10430
10431 if (flags & NOHZ_BALANCE_KICK)
10432 rebalance_domains(this_rq, CPU_IDLE);
10433
10434 WRITE_ONCE(nohz.next_blocked,
10435 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10436
10437 /* The full idle balance loop has been done */
10438 ret = true;
10439
10440 abort:
10441 /* There is still blocked load, enable periodic update */
10442 if (has_blocked_load)
10443 WRITE_ONCE(nohz.has_blocked, 1);
10444
10445 return ret;
10446 }
10447
10448 /*
10449 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10450 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10451 */
10452 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10453 {
10454 unsigned int flags = this_rq->nohz_idle_balance;
10455
10456 if (!flags)
10457 return false;
10458
10459 this_rq->nohz_idle_balance = 0;
10460
10461 if (idle != CPU_IDLE)
10462 return false;
10463
10464 _nohz_idle_balance(this_rq, flags, idle);
10465
10466 return true;
10467 }
10468
10469 static void nohz_newidle_balance(struct rq *this_rq)
10470 {
10471 int this_cpu = this_rq->cpu;
10472
10473 /*
10474 * This CPU doesn't want to be disturbed by scheduler
10475 * housekeeping
10476 */
10477 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10478 return;
10479
10480 /* Will wake up very soon. No time for doing anything else*/
10481 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10482 return;
10483
10484 /* Don't need to update blocked load of idle CPUs*/
10485 if (!READ_ONCE(nohz.has_blocked) ||
10486 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10487 return;
10488
10489 raw_spin_unlock(&this_rq->lock);
10490 /*
10491 * This CPU is going to be idle and blocked load of idle CPUs
10492 * need to be updated. Run the ilb locally as it is a good
10493 * candidate for ilb instead of waking up another idle CPU.
10494 * Kick an normal ilb if we failed to do the update.
10495 */
10496 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10497 kick_ilb(NOHZ_STATS_KICK);
10498 raw_spin_lock(&this_rq->lock);
10499 }
10500
10501 #else /* !CONFIG_NO_HZ_COMMON */
10502 static inline void nohz_balancer_kick(struct rq *rq) { }
10503
10504 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10505 {
10506 return false;
10507 }
10508
10509 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10510 #endif /* CONFIG_NO_HZ_COMMON */
10511
10512 /*
10513 * idle_balance is called by schedule() if this_cpu is about to become
10514 * idle. Attempts to pull tasks from other CPUs.
10515 *
10516 * Returns:
10517 * < 0 - we released the lock and there are !fair tasks present
10518 * 0 - failed, no new tasks
10519 * > 0 - success, new (fair) tasks present
10520 */
10521 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10522 {
10523 unsigned long next_balance = jiffies + HZ;
10524 int this_cpu = this_rq->cpu;
10525 struct sched_domain *sd;
10526 int pulled_task = 0;
10527 u64 curr_cost = 0;
10528
10529 update_misfit_status(NULL, this_rq);
10530 /*
10531 * We must set idle_stamp _before_ calling idle_balance(), such that we
10532 * measure the duration of idle_balance() as idle time.
10533 */
10534 this_rq->idle_stamp = rq_clock(this_rq);
10535
10536 /*
10537 * Do not pull tasks towards !active CPUs...
10538 */
10539 if (!cpu_active(this_cpu))
10540 return 0;
10541
10542 /*
10543 * This is OK, because current is on_cpu, which avoids it being picked
10544 * for load-balance and preemption/IRQs are still disabled avoiding
10545 * further scheduler activity on it and we're being very careful to
10546 * re-start the picking loop.
10547 */
10548 rq_unpin_lock(this_rq, rf);
10549
10550 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10551 !READ_ONCE(this_rq->rd->overload)) {
10552
10553 rcu_read_lock();
10554 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10555 if (sd)
10556 update_next_balance(sd, &next_balance);
10557 rcu_read_unlock();
10558
10559 nohz_newidle_balance(this_rq);
10560
10561 goto out;
10562 }
10563
10564 raw_spin_unlock(&this_rq->lock);
10565
10566 update_blocked_averages(this_cpu);
10567 rcu_read_lock();
10568 for_each_domain(this_cpu, sd) {
10569 int continue_balancing = 1;
10570 u64 t0, domain_cost;
10571
10572 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10573 update_next_balance(sd, &next_balance);
10574 break;
10575 }
10576
10577 if (sd->flags & SD_BALANCE_NEWIDLE) {
10578 t0 = sched_clock_cpu(this_cpu);
10579
10580 pulled_task = load_balance(this_cpu, this_rq,
10581 sd, CPU_NEWLY_IDLE,
10582 &continue_balancing);
10583
10584 domain_cost = sched_clock_cpu(this_cpu) - t0;
10585 if (domain_cost > sd->max_newidle_lb_cost)
10586 sd->max_newidle_lb_cost = domain_cost;
10587
10588 curr_cost += domain_cost;
10589 }
10590
10591 update_next_balance(sd, &next_balance);
10592
10593 /*
10594 * Stop searching for tasks to pull if there are
10595 * now runnable tasks on this rq.
10596 */
10597 if (pulled_task || this_rq->nr_running > 0)
10598 break;
10599 }
10600 rcu_read_unlock();
10601
10602 raw_spin_lock(&this_rq->lock);
10603
10604 if (curr_cost > this_rq->max_idle_balance_cost)
10605 this_rq->max_idle_balance_cost = curr_cost;
10606
10607 out:
10608 /*
10609 * While browsing the domains, we released the rq lock, a task could
10610 * have been enqueued in the meantime. Since we're not going idle,
10611 * pretend we pulled a task.
10612 */
10613 if (this_rq->cfs.h_nr_running && !pulled_task)
10614 pulled_task = 1;
10615
10616 /* Move the next balance forward */
10617 if (time_after(this_rq->next_balance, next_balance))
10618 this_rq->next_balance = next_balance;
10619
10620 /* Is there a task of a high priority class? */
10621 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10622 pulled_task = -1;
10623
10624 if (pulled_task)
10625 this_rq->idle_stamp = 0;
10626
10627 rq_repin_lock(this_rq, rf);
10628
10629 return pulled_task;
10630 }
10631
10632 /*
10633 * run_rebalance_domains is triggered when needed from the scheduler tick.
10634 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10635 */
10636 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10637 {
10638 struct rq *this_rq = this_rq();
10639 enum cpu_idle_type idle = this_rq->idle_balance ?
10640 CPU_IDLE : CPU_NOT_IDLE;
10641
10642 /*
10643 * If this CPU has a pending nohz_balance_kick, then do the
10644 * balancing on behalf of the other idle CPUs whose ticks are
10645 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10646 * give the idle CPUs a chance to load balance. Else we may
10647 * load balance only within the local sched_domain hierarchy
10648 * and abort nohz_idle_balance altogether if we pull some load.
10649 */
10650 if (nohz_idle_balance(this_rq, idle))
10651 return;
10652
10653 /* normal load balance */
10654 update_blocked_averages(this_rq->cpu);
10655 rebalance_domains(this_rq, idle);
10656 }
10657
10658 /*
10659 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10660 */
10661 void trigger_load_balance(struct rq *rq)
10662 {
10663 /* Don't need to rebalance while attached to NULL domain */
10664 if (unlikely(on_null_domain(rq)))
10665 return;
10666
10667 if (time_after_eq(jiffies, rq->next_balance))
10668 raise_softirq(SCHED_SOFTIRQ);
10669
10670 nohz_balancer_kick(rq);
10671 }
10672
10673 static void rq_online_fair(struct rq *rq)
10674 {
10675 update_sysctl();
10676
10677 update_runtime_enabled(rq);
10678 }
10679
10680 static void rq_offline_fair(struct rq *rq)
10681 {
10682 update_sysctl();
10683
10684 /* Ensure any throttled groups are reachable by pick_next_task */
10685 unthrottle_offline_cfs_rqs(rq);
10686 }
10687
10688 #endif /* CONFIG_SMP */
10689
10690 /*
10691 * scheduler tick hitting a task of our scheduling class.
10692 *
10693 * NOTE: This function can be called remotely by the tick offload that
10694 * goes along full dynticks. Therefore no local assumption can be made
10695 * and everything must be accessed through the @rq and @curr passed in
10696 * parameters.
10697 */
10698 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10699 {
10700 struct cfs_rq *cfs_rq;
10701 struct sched_entity *se = &curr->se;
10702
10703 for_each_sched_entity(se) {
10704 cfs_rq = cfs_rq_of(se);
10705 entity_tick(cfs_rq, se, queued);
10706 }
10707
10708 if (static_branch_unlikely(&sched_numa_balancing))
10709 task_tick_numa(rq, curr);
10710
10711 update_misfit_status(curr, rq);
10712 update_overutilized_status(task_rq(curr));
10713 }
10714
10715 /*
10716 * called on fork with the child task as argument from the parent's context
10717 * - child not yet on the tasklist
10718 * - preemption disabled
10719 */
10720 static void task_fork_fair(struct task_struct *p)
10721 {
10722 struct cfs_rq *cfs_rq;
10723 struct sched_entity *se = &p->se, *curr;
10724 struct rq *rq = this_rq();
10725 struct rq_flags rf;
10726
10727 rq_lock(rq, &rf);
10728 update_rq_clock(rq);
10729
10730 cfs_rq = task_cfs_rq(current);
10731 curr = cfs_rq->curr;
10732 if (curr) {
10733 update_curr(cfs_rq);
10734 se->vruntime = curr->vruntime;
10735 }
10736 place_entity(cfs_rq, se, 1);
10737
10738 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10739 /*
10740 * Upon rescheduling, sched_class::put_prev_task() will place
10741 * 'current' within the tree based on its new key value.
10742 */
10743 swap(curr->vruntime, se->vruntime);
10744 resched_curr(rq);
10745 }
10746
10747 se->vruntime -= cfs_rq->min_vruntime;
10748 rq_unlock(rq, &rf);
10749 }
10750
10751 /*
10752 * Priority of the task has changed. Check to see if we preempt
10753 * the current task.
10754 */
10755 static void
10756 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10757 {
10758 if (!task_on_rq_queued(p))
10759 return;
10760
10761 if (rq->cfs.nr_running == 1)
10762 return;
10763
10764 /*
10765 * Reschedule if we are currently running on this runqueue and
10766 * our priority decreased, or if we are not currently running on
10767 * this runqueue and our priority is higher than the current's
10768 */
10769 if (rq->curr == p) {
10770 if (p->prio > oldprio)
10771 resched_curr(rq);
10772 } else
10773 check_preempt_curr(rq, p, 0);
10774 }
10775
10776 static inline bool vruntime_normalized(struct task_struct *p)
10777 {
10778 struct sched_entity *se = &p->se;
10779
10780 /*
10781 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10782 * the dequeue_entity(.flags=0) will already have normalized the
10783 * vruntime.
10784 */
10785 if (p->on_rq)
10786 return true;
10787
10788 /*
10789 * When !on_rq, vruntime of the task has usually NOT been normalized.
10790 * But there are some cases where it has already been normalized:
10791 *
10792 * - A forked child which is waiting for being woken up by
10793 * wake_up_new_task().
10794 * - A task which has been woken up by try_to_wake_up() and
10795 * waiting for actually being woken up by sched_ttwu_pending().
10796 */
10797 if (!se->sum_exec_runtime ||
10798 (p->state == TASK_WAKING && p->sched_remote_wakeup))
10799 return true;
10800
10801 return false;
10802 }
10803
10804 #ifdef CONFIG_FAIR_GROUP_SCHED
10805 /*
10806 * Propagate the changes of the sched_entity across the tg tree to make it
10807 * visible to the root
10808 */
10809 static void propagate_entity_cfs_rq(struct sched_entity *se)
10810 {
10811 struct cfs_rq *cfs_rq;
10812
10813 /* Start to propagate at parent */
10814 se = se->parent;
10815
10816 for_each_sched_entity(se) {
10817 cfs_rq = cfs_rq_of(se);
10818
10819 if (cfs_rq_throttled(cfs_rq))
10820 break;
10821
10822 update_load_avg(cfs_rq, se, UPDATE_TG);
10823 }
10824 }
10825 #else
10826 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10827 #endif
10828
10829 static void detach_entity_cfs_rq(struct sched_entity *se)
10830 {
10831 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10832
10833 /* Catch up with the cfs_rq and remove our load when we leave */
10834 update_load_avg(cfs_rq, se, 0);
10835 detach_entity_load_avg(cfs_rq, se);
10836 update_tg_load_avg(cfs_rq);
10837 propagate_entity_cfs_rq(se);
10838 }
10839
10840 static void attach_entity_cfs_rq(struct sched_entity *se)
10841 {
10842 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10843
10844 #ifdef CONFIG_FAIR_GROUP_SCHED
10845 /*
10846 * Since the real-depth could have been changed (only FAIR
10847 * class maintain depth value), reset depth properly.
10848 */
10849 se->depth = se->parent ? se->parent->depth + 1 : 0;
10850 #endif
10851
10852 /* Synchronize entity with its cfs_rq */
10853 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10854 attach_entity_load_avg(cfs_rq, se);
10855 update_tg_load_avg(cfs_rq);
10856 propagate_entity_cfs_rq(se);
10857 }
10858
10859 static void detach_task_cfs_rq(struct task_struct *p)
10860 {
10861 struct sched_entity *se = &p->se;
10862 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10863
10864 if (!vruntime_normalized(p)) {
10865 /*
10866 * Fix up our vruntime so that the current sleep doesn't
10867 * cause 'unlimited' sleep bonus.
10868 */
10869 place_entity(cfs_rq, se, 0);
10870 se->vruntime -= cfs_rq->min_vruntime;
10871 }
10872
10873 detach_entity_cfs_rq(se);
10874 }
10875
10876 static void attach_task_cfs_rq(struct task_struct *p)
10877 {
10878 struct sched_entity *se = &p->se;
10879 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10880
10881 attach_entity_cfs_rq(se);
10882
10883 if (!vruntime_normalized(p))
10884 se->vruntime += cfs_rq->min_vruntime;
10885 }
10886
10887 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10888 {
10889 detach_task_cfs_rq(p);
10890 }
10891
10892 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10893 {
10894 attach_task_cfs_rq(p);
10895
10896 if (task_on_rq_queued(p)) {
10897 /*
10898 * We were most likely switched from sched_rt, so
10899 * kick off the schedule if running, otherwise just see
10900 * if we can still preempt the current task.
10901 */
10902 if (rq->curr == p)
10903 resched_curr(rq);
10904 else
10905 check_preempt_curr(rq, p, 0);
10906 }
10907 }
10908
10909 /* Account for a task changing its policy or group.
10910 *
10911 * This routine is mostly called to set cfs_rq->curr field when a task
10912 * migrates between groups/classes.
10913 */
10914 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10915 {
10916 struct sched_entity *se = &p->se;
10917
10918 #ifdef CONFIG_SMP
10919 if (task_on_rq_queued(p)) {
10920 /*
10921 * Move the next running task to the front of the list, so our
10922 * cfs_tasks list becomes MRU one.
10923 */
10924 list_move(&se->group_node, &rq->cfs_tasks);
10925 }
10926 #endif
10927
10928 for_each_sched_entity(se) {
10929 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10930
10931 set_next_entity(cfs_rq, se);
10932 /* ensure bandwidth has been allocated on our new cfs_rq */
10933 account_cfs_rq_runtime(cfs_rq, 0);
10934 }
10935 }
10936
10937 void init_cfs_rq(struct cfs_rq *cfs_rq)
10938 {
10939 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10940 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10941 #ifndef CONFIG_64BIT
10942 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10943 #endif
10944 #ifdef CONFIG_SMP
10945 raw_spin_lock_init(&cfs_rq->removed.lock);
10946 #endif
10947 }
10948
10949 #ifdef CONFIG_FAIR_GROUP_SCHED
10950 static void task_set_group_fair(struct task_struct *p)
10951 {
10952 struct sched_entity *se = &p->se;
10953
10954 set_task_rq(p, task_cpu(p));
10955 se->depth = se->parent ? se->parent->depth + 1 : 0;
10956 }
10957
10958 static void task_move_group_fair(struct task_struct *p)
10959 {
10960 detach_task_cfs_rq(p);
10961 set_task_rq(p, task_cpu(p));
10962
10963 #ifdef CONFIG_SMP
10964 /* Tell se's cfs_rq has been changed -- migrated */
10965 p->se.avg.last_update_time = 0;
10966 #endif
10967 attach_task_cfs_rq(p);
10968 }
10969
10970 static void task_change_group_fair(struct task_struct *p, int type)
10971 {
10972 switch (type) {
10973 case TASK_SET_GROUP:
10974 task_set_group_fair(p);
10975 break;
10976
10977 case TASK_MOVE_GROUP:
10978 task_move_group_fair(p);
10979 break;
10980 }
10981 }
10982
10983 void free_fair_sched_group(struct task_group *tg)
10984 {
10985 int i;
10986
10987 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10988
10989 for_each_possible_cpu(i) {
10990 if (tg->cfs_rq)
10991 kfree(tg->cfs_rq[i]);
10992 if (tg->se)
10993 kfree(tg->se[i]);
10994 }
10995
10996 kfree(tg->cfs_rq);
10997 kfree(tg->se);
10998 }
10999
11000 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11001 {
11002 struct sched_entity *se;
11003 struct cfs_rq *cfs_rq;
11004 int i;
11005
11006 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11007 if (!tg->cfs_rq)
11008 goto err;
11009 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11010 if (!tg->se)
11011 goto err;
11012
11013 tg->shares = NICE_0_LOAD;
11014
11015 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11016
11017 for_each_possible_cpu(i) {
11018 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11019 GFP_KERNEL, cpu_to_node(i));
11020 if (!cfs_rq)
11021 goto err;
11022
11023 se = kzalloc_node(sizeof(struct sched_entity),
11024 GFP_KERNEL, cpu_to_node(i));
11025 if (!se)
11026 goto err_free_rq;
11027
11028 init_cfs_rq(cfs_rq);
11029 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11030 init_entity_runnable_average(se);
11031 }
11032
11033 return 1;
11034
11035 err_free_rq:
11036 kfree(cfs_rq);
11037 err:
11038 return 0;
11039 }
11040
11041 void online_fair_sched_group(struct task_group *tg)
11042 {
11043 struct sched_entity *se;
11044 struct rq_flags rf;
11045 struct rq *rq;
11046 int i;
11047
11048 for_each_possible_cpu(i) {
11049 rq = cpu_rq(i);
11050 se = tg->se[i];
11051 rq_lock_irq(rq, &rf);
11052 update_rq_clock(rq);
11053 attach_entity_cfs_rq(se);
11054 sync_throttle(tg, i);
11055 rq_unlock_irq(rq, &rf);
11056 }
11057 }
11058
11059 void unregister_fair_sched_group(struct task_group *tg)
11060 {
11061 unsigned long flags;
11062 struct rq *rq;
11063 int cpu;
11064
11065 for_each_possible_cpu(cpu) {
11066 if (tg->se[cpu])
11067 remove_entity_load_avg(tg->se[cpu]);
11068
11069 /*
11070 * Only empty task groups can be destroyed; so we can speculatively
11071 * check on_list without danger of it being re-added.
11072 */
11073 if (!tg->cfs_rq[cpu]->on_list)
11074 continue;
11075
11076 rq = cpu_rq(cpu);
11077
11078 raw_spin_lock_irqsave(&rq->lock, flags);
11079 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11080 raw_spin_unlock_irqrestore(&rq->lock, flags);
11081 }
11082 }
11083
11084 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11085 struct sched_entity *se, int cpu,
11086 struct sched_entity *parent)
11087 {
11088 struct rq *rq = cpu_rq(cpu);
11089
11090 cfs_rq->tg = tg;
11091 cfs_rq->rq = rq;
11092 init_cfs_rq_runtime(cfs_rq);
11093
11094 tg->cfs_rq[cpu] = cfs_rq;
11095 tg->se[cpu] = se;
11096
11097 /* se could be NULL for root_task_group */
11098 if (!se)
11099 return;
11100
11101 if (!parent) {
11102 se->cfs_rq = &rq->cfs;
11103 se->depth = 0;
11104 } else {
11105 se->cfs_rq = parent->my_q;
11106 se->depth = parent->depth + 1;
11107 }
11108
11109 se->my_q = cfs_rq;
11110 /* guarantee group entities always have weight */
11111 update_load_set(&se->load, NICE_0_LOAD);
11112 se->parent = parent;
11113 }
11114
11115 static DEFINE_MUTEX(shares_mutex);
11116
11117 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11118 {
11119 int i;
11120
11121 /*
11122 * We can't change the weight of the root cgroup.
11123 */
11124 if (!tg->se[0])
11125 return -EINVAL;
11126
11127 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11128
11129 mutex_lock(&shares_mutex);
11130 if (tg->shares == shares)
11131 goto done;
11132
11133 tg->shares = shares;
11134 for_each_possible_cpu(i) {
11135 struct rq *rq = cpu_rq(i);
11136 struct sched_entity *se = tg->se[i];
11137 struct rq_flags rf;
11138
11139 /* Propagate contribution to hierarchy */
11140 rq_lock_irqsave(rq, &rf);
11141 update_rq_clock(rq);
11142 for_each_sched_entity(se) {
11143 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11144 update_cfs_group(se);
11145 }
11146 rq_unlock_irqrestore(rq, &rf);
11147 }
11148
11149 done:
11150 mutex_unlock(&shares_mutex);
11151 return 0;
11152 }
11153 #else /* CONFIG_FAIR_GROUP_SCHED */
11154
11155 void free_fair_sched_group(struct task_group *tg) { }
11156
11157 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11158 {
11159 return 1;
11160 }
11161
11162 void online_fair_sched_group(struct task_group *tg) { }
11163
11164 void unregister_fair_sched_group(struct task_group *tg) { }
11165
11166 #endif /* CONFIG_FAIR_GROUP_SCHED */
11167
11168
11169 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11170 {
11171 struct sched_entity *se = &task->se;
11172 unsigned int rr_interval = 0;
11173
11174 /*
11175 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11176 * idle runqueue:
11177 */
11178 if (rq->cfs.load.weight)
11179 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11180
11181 return rr_interval;
11182 }
11183
11184 /*
11185 * All the scheduling class methods:
11186 */
11187 DEFINE_SCHED_CLASS(fair) = {
11188
11189 .enqueue_task = enqueue_task_fair,
11190 .dequeue_task = dequeue_task_fair,
11191 .yield_task = yield_task_fair,
11192 .yield_to_task = yield_to_task_fair,
11193
11194 .check_preempt_curr = check_preempt_wakeup,
11195
11196 .pick_next_task = __pick_next_task_fair,
11197 .put_prev_task = put_prev_task_fair,
11198 .set_next_task = set_next_task_fair,
11199
11200 #ifdef CONFIG_SMP
11201 .balance = balance_fair,
11202 .select_task_rq = select_task_rq_fair,
11203 .migrate_task_rq = migrate_task_rq_fair,
11204
11205 .rq_online = rq_online_fair,
11206 .rq_offline = rq_offline_fair,
11207
11208 .task_dead = task_dead_fair,
11209 .set_cpus_allowed = set_cpus_allowed_common,
11210 #endif
11211
11212 .task_tick = task_tick_fair,
11213 .task_fork = task_fork_fair,
11214
11215 .prio_changed = prio_changed_fair,
11216 .switched_from = switched_from_fair,
11217 .switched_to = switched_to_fair,
11218
11219 .get_rr_interval = get_rr_interval_fair,
11220
11221 .update_curr = update_curr_fair,
11222
11223 #ifdef CONFIG_FAIR_GROUP_SCHED
11224 .task_change_group = task_change_group_fair,
11225 #endif
11226
11227 #ifdef CONFIG_UCLAMP_TASK
11228 .uclamp_enabled = 1,
11229 #endif
11230 };
11231
11232 #ifdef CONFIG_SCHED_DEBUG
11233 void print_cfs_stats(struct seq_file *m, int cpu)
11234 {
11235 struct cfs_rq *cfs_rq, *pos;
11236
11237 rcu_read_lock();
11238 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11239 print_cfs_rq(m, cpu, cfs_rq);
11240 rcu_read_unlock();
11241 }
11242
11243 #ifdef CONFIG_NUMA_BALANCING
11244 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11245 {
11246 int node;
11247 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11248 struct numa_group *ng;
11249
11250 rcu_read_lock();
11251 ng = rcu_dereference(p->numa_group);
11252 for_each_online_node(node) {
11253 if (p->numa_faults) {
11254 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11255 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11256 }
11257 if (ng) {
11258 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11259 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11260 }
11261 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11262 }
11263 rcu_read_unlock();
11264 }
11265 #endif /* CONFIG_NUMA_BALANCING */
11266 #endif /* CONFIG_SCHED_DEBUG */
11267
11268 __init void init_sched_fair_class(void)
11269 {
11270 #ifdef CONFIG_SMP
11271 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11272
11273 #ifdef CONFIG_NO_HZ_COMMON
11274 nohz.next_balance = jiffies;
11275 nohz.next_blocked = jiffies;
11276 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11277 #endif
11278 #endif /* SMP */
11279
11280 }
11281
11282 /*
11283 * Helper functions to facilitate extracting info from tracepoints.
11284 */
11285
11286 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11287 {
11288 #ifdef CONFIG_SMP
11289 return cfs_rq ? &cfs_rq->avg : NULL;
11290 #else
11291 return NULL;
11292 #endif
11293 }
11294 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11295
11296 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11297 {
11298 if (!cfs_rq) {
11299 if (str)
11300 strlcpy(str, "(null)", len);
11301 else
11302 return NULL;
11303 }
11304
11305 cfs_rq_tg_path(cfs_rq, str, len);
11306 return str;
11307 }
11308 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11309
11310 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11311 {
11312 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11313 }
11314 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11315
11316 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11317 {
11318 #ifdef CONFIG_SMP
11319 return rq ? &rq->avg_rt : NULL;
11320 #else
11321 return NULL;
11322 #endif
11323 }
11324 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11325
11326 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11327 {
11328 #ifdef CONFIG_SMP
11329 return rq ? &rq->avg_dl : NULL;
11330 #else
11331 return NULL;
11332 #endif
11333 }
11334 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11335
11336 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11337 {
11338 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11339 return rq ? &rq->avg_irq : NULL;
11340 #else
11341 return NULL;
11342 #endif
11343 }
11344 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11345
11346 int sched_trace_rq_cpu(struct rq *rq)
11347 {
11348 return rq ? cpu_of(rq) : -1;
11349 }
11350 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11351
11352 int sched_trace_rq_cpu_capacity(struct rq *rq)
11353 {
11354 return rq ?
11355 #ifdef CONFIG_SMP
11356 rq->cpu_capacity
11357 #else
11358 SCHED_CAPACITY_SCALE
11359 #endif
11360 : -1;
11361 }
11362 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
11363
11364 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11365 {
11366 #ifdef CONFIG_SMP
11367 return rd ? rd->span : NULL;
11368 #else
11369 return NULL;
11370 #endif
11371 }
11372 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
11373
11374 int sched_trace_rq_nr_running(struct rq *rq)
11375 {
11376 return rq ? rq->nr_running : -1;
11377 }
11378 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);