]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched/fair.c
69da576f7f487915e18f51983541a207a15fa0c5
[mirror_ubuntu-kernels.git] / kernel / sched / fair.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include "sched.h"
24
25 #include <trace/events/sched.h>
26
27 /*
28 * Targeted preemption latency for CPU-bound tasks:
29 *
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
34 *
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
37 *
38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39 */
40 unsigned int sysctl_sched_latency = 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
42
43 /*
44 * The initial- and re-scaling of tunables is configurable
45 *
46 * Options are:
47 *
48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 *
52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53 */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55
56 /*
57 * Minimal preemption granularity for CPU-bound tasks:
58 *
59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60 */
61 unsigned int sysctl_sched_min_granularity = 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
63
64 /*
65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66 */
67 static unsigned int sched_nr_latency = 8;
68
69 /*
70 * After fork, child runs first. If set to 0 (default) then
71 * parent will (try to) run first.
72 */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74
75 /*
76 * SCHED_OTHER wake-up granularity.
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
81 *
82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 */
84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
86
87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
88
89 int sched_thermal_decay_shift;
90 static int __init setup_sched_thermal_decay_shift(char *str)
91 {
92 int _shift = 0;
93
94 if (kstrtoint(str, 0, &_shift))
95 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
96
97 sched_thermal_decay_shift = clamp(_shift, 0, 10);
98 return 1;
99 }
100 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
101
102 #ifdef CONFIG_SMP
103 /*
104 * For asym packing, by default the lower numbered CPU has higher priority.
105 */
106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 return -cpu;
109 }
110
111 /*
112 * The margin used when comparing utilization with CPU capacity.
113 *
114 * (default: ~20%)
115 */
116 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
117
118 #endif
119
120 #ifdef CONFIG_CFS_BANDWIDTH
121 /*
122 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
123 * each time a cfs_rq requests quota.
124 *
125 * Note: in the case that the slice exceeds the runtime remaining (either due
126 * to consumption or the quota being specified to be smaller than the slice)
127 * we will always only issue the remaining available time.
128 *
129 * (default: 5 msec, units: microseconds)
130 */
131 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
132 #endif
133
134 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135 {
136 lw->weight += inc;
137 lw->inv_weight = 0;
138 }
139
140 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141 {
142 lw->weight -= dec;
143 lw->inv_weight = 0;
144 }
145
146 static inline void update_load_set(struct load_weight *lw, unsigned long w)
147 {
148 lw->weight = w;
149 lw->inv_weight = 0;
150 }
151
152 /*
153 * Increase the granularity value when there are more CPUs,
154 * because with more CPUs the 'effective latency' as visible
155 * to users decreases. But the relationship is not linear,
156 * so pick a second-best guess by going with the log2 of the
157 * number of CPUs.
158 *
159 * This idea comes from the SD scheduler of Con Kolivas:
160 */
161 static unsigned int get_update_sysctl_factor(void)
162 {
163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 unsigned int factor;
165
166 switch (sysctl_sched_tunable_scaling) {
167 case SCHED_TUNABLESCALING_NONE:
168 factor = 1;
169 break;
170 case SCHED_TUNABLESCALING_LINEAR:
171 factor = cpus;
172 break;
173 case SCHED_TUNABLESCALING_LOG:
174 default:
175 factor = 1 + ilog2(cpus);
176 break;
177 }
178
179 return factor;
180 }
181
182 static void update_sysctl(void)
183 {
184 unsigned int factor = get_update_sysctl_factor();
185
186 #define SET_SYSCTL(name) \
187 (sysctl_##name = (factor) * normalized_sysctl_##name)
188 SET_SYSCTL(sched_min_granularity);
189 SET_SYSCTL(sched_latency);
190 SET_SYSCTL(sched_wakeup_granularity);
191 #undef SET_SYSCTL
192 }
193
194 void __init sched_init_granularity(void)
195 {
196 update_sysctl();
197 }
198
199 #define WMULT_CONST (~0U)
200 #define WMULT_SHIFT 32
201
202 static void __update_inv_weight(struct load_weight *lw)
203 {
204 unsigned long w;
205
206 if (likely(lw->inv_weight))
207 return;
208
209 w = scale_load_down(lw->weight);
210
211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 lw->inv_weight = 1;
213 else if (unlikely(!w))
214 lw->inv_weight = WMULT_CONST;
215 else
216 lw->inv_weight = WMULT_CONST / w;
217 }
218
219 /*
220 * delta_exec * weight / lw.weight
221 * OR
222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223 *
224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225 * we're guaranteed shift stays positive because inv_weight is guaranteed to
226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227 *
228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229 * weight/lw.weight <= 1, and therefore our shift will also be positive.
230 */
231 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
232 {
233 u64 fact = scale_load_down(weight);
234 int shift = WMULT_SHIFT;
235
236 __update_inv_weight(lw);
237
238 if (unlikely(fact >> 32)) {
239 while (fact >> 32) {
240 fact >>= 1;
241 shift--;
242 }
243 }
244
245 fact = mul_u32_u32(fact, lw->inv_weight);
246
247 while (fact >> 32) {
248 fact >>= 1;
249 shift--;
250 }
251
252 return mul_u64_u32_shr(delta_exec, fact, shift);
253 }
254
255
256 const struct sched_class fair_sched_class;
257
258 /**************************************************************
259 * CFS operations on generic schedulable entities:
260 */
261
262 #ifdef CONFIG_FAIR_GROUP_SCHED
263 static inline struct task_struct *task_of(struct sched_entity *se)
264 {
265 SCHED_WARN_ON(!entity_is_task(se));
266 return container_of(se, struct task_struct, se);
267 }
268
269 /* Walk up scheduling entities hierarchy */
270 #define for_each_sched_entity(se) \
271 for (; se; se = se->parent)
272
273 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
274 {
275 return p->se.cfs_rq;
276 }
277
278 /* runqueue on which this entity is (to be) queued */
279 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
280 {
281 return se->cfs_rq;
282 }
283
284 /* runqueue "owned" by this group */
285 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
286 {
287 return grp->my_q;
288 }
289
290 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
291 {
292 if (!path)
293 return;
294
295 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
296 autogroup_path(cfs_rq->tg, path, len);
297 else if (cfs_rq && cfs_rq->tg->css.cgroup)
298 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
299 else
300 strlcpy(path, "(null)", len);
301 }
302
303 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
304 {
305 struct rq *rq = rq_of(cfs_rq);
306 int cpu = cpu_of(rq);
307
308 if (cfs_rq->on_list)
309 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
310
311 cfs_rq->on_list = 1;
312
313 /*
314 * Ensure we either appear before our parent (if already
315 * enqueued) or force our parent to appear after us when it is
316 * enqueued. The fact that we always enqueue bottom-up
317 * reduces this to two cases and a special case for the root
318 * cfs_rq. Furthermore, it also means that we will always reset
319 * tmp_alone_branch either when the branch is connected
320 * to a tree or when we reach the top of the tree
321 */
322 if (cfs_rq->tg->parent &&
323 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
324 /*
325 * If parent is already on the list, we add the child
326 * just before. Thanks to circular linked property of
327 * the list, this means to put the child at the tail
328 * of the list that starts by parent.
329 */
330 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
331 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
332 /*
333 * The branch is now connected to its tree so we can
334 * reset tmp_alone_branch to the beginning of the
335 * list.
336 */
337 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
338 return true;
339 }
340
341 if (!cfs_rq->tg->parent) {
342 /*
343 * cfs rq without parent should be put
344 * at the tail of the list.
345 */
346 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
347 &rq->leaf_cfs_rq_list);
348 /*
349 * We have reach the top of a tree so we can reset
350 * tmp_alone_branch to the beginning of the list.
351 */
352 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
353 return true;
354 }
355
356 /*
357 * The parent has not already been added so we want to
358 * make sure that it will be put after us.
359 * tmp_alone_branch points to the begin of the branch
360 * where we will add parent.
361 */
362 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
363 /*
364 * update tmp_alone_branch to points to the new begin
365 * of the branch
366 */
367 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
368 return false;
369 }
370
371 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
372 {
373 if (cfs_rq->on_list) {
374 struct rq *rq = rq_of(cfs_rq);
375
376 /*
377 * With cfs_rq being unthrottled/throttled during an enqueue,
378 * it can happen the tmp_alone_branch points the a leaf that
379 * we finally want to del. In this case, tmp_alone_branch moves
380 * to the prev element but it will point to rq->leaf_cfs_rq_list
381 * at the end of the enqueue.
382 */
383 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
384 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
385
386 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
387 cfs_rq->on_list = 0;
388 }
389 }
390
391 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
392 {
393 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
394 }
395
396 /* Iterate thr' all leaf cfs_rq's on a runqueue */
397 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
398 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
399 leaf_cfs_rq_list)
400
401 /* Do the two (enqueued) entities belong to the same group ? */
402 static inline struct cfs_rq *
403 is_same_group(struct sched_entity *se, struct sched_entity *pse)
404 {
405 if (se->cfs_rq == pse->cfs_rq)
406 return se->cfs_rq;
407
408 return NULL;
409 }
410
411 static inline struct sched_entity *parent_entity(struct sched_entity *se)
412 {
413 return se->parent;
414 }
415
416 static void
417 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
418 {
419 int se_depth, pse_depth;
420
421 /*
422 * preemption test can be made between sibling entities who are in the
423 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
424 * both tasks until we find their ancestors who are siblings of common
425 * parent.
426 */
427
428 /* First walk up until both entities are at same depth */
429 se_depth = (*se)->depth;
430 pse_depth = (*pse)->depth;
431
432 while (se_depth > pse_depth) {
433 se_depth--;
434 *se = parent_entity(*se);
435 }
436
437 while (pse_depth > se_depth) {
438 pse_depth--;
439 *pse = parent_entity(*pse);
440 }
441
442 while (!is_same_group(*se, *pse)) {
443 *se = parent_entity(*se);
444 *pse = parent_entity(*pse);
445 }
446 }
447
448 #else /* !CONFIG_FAIR_GROUP_SCHED */
449
450 static inline struct task_struct *task_of(struct sched_entity *se)
451 {
452 return container_of(se, struct task_struct, se);
453 }
454
455 #define for_each_sched_entity(se) \
456 for (; se; se = NULL)
457
458 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
459 {
460 return &task_rq(p)->cfs;
461 }
462
463 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
464 {
465 struct task_struct *p = task_of(se);
466 struct rq *rq = task_rq(p);
467
468 return &rq->cfs;
469 }
470
471 /* runqueue "owned" by this group */
472 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
473 {
474 return NULL;
475 }
476
477 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
478 {
479 if (path)
480 strlcpy(path, "(null)", len);
481 }
482
483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
484 {
485 return true;
486 }
487
488 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
489 {
490 }
491
492 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
493 {
494 }
495
496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
497 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
498
499 static inline struct sched_entity *parent_entity(struct sched_entity *se)
500 {
501 return NULL;
502 }
503
504 static inline void
505 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
506 {
507 }
508
509 #endif /* CONFIG_FAIR_GROUP_SCHED */
510
511 static __always_inline
512 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
513
514 /**************************************************************
515 * Scheduling class tree data structure manipulation methods:
516 */
517
518 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
519 {
520 s64 delta = (s64)(vruntime - max_vruntime);
521 if (delta > 0)
522 max_vruntime = vruntime;
523
524 return max_vruntime;
525 }
526
527 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
528 {
529 s64 delta = (s64)(vruntime - min_vruntime);
530 if (delta < 0)
531 min_vruntime = vruntime;
532
533 return min_vruntime;
534 }
535
536 static inline int entity_before(struct sched_entity *a,
537 struct sched_entity *b)
538 {
539 return (s64)(a->vruntime - b->vruntime) < 0;
540 }
541
542 static void update_min_vruntime(struct cfs_rq *cfs_rq)
543 {
544 struct sched_entity *curr = cfs_rq->curr;
545 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
546
547 u64 vruntime = cfs_rq->min_vruntime;
548
549 if (curr) {
550 if (curr->on_rq)
551 vruntime = curr->vruntime;
552 else
553 curr = NULL;
554 }
555
556 if (leftmost) { /* non-empty tree */
557 struct sched_entity *se;
558 se = rb_entry(leftmost, struct sched_entity, run_node);
559
560 if (!curr)
561 vruntime = se->vruntime;
562 else
563 vruntime = min_vruntime(vruntime, se->vruntime);
564 }
565
566 /* ensure we never gain time by being placed backwards. */
567 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
568 #ifndef CONFIG_64BIT
569 smp_wmb();
570 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
571 #endif
572 }
573
574 /*
575 * Enqueue an entity into the rb-tree:
576 */
577 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
578 {
579 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
580 struct rb_node *parent = NULL;
581 struct sched_entity *entry;
582 bool leftmost = true;
583
584 /*
585 * Find the right place in the rbtree:
586 */
587 while (*link) {
588 parent = *link;
589 entry = rb_entry(parent, struct sched_entity, run_node);
590 /*
591 * We dont care about collisions. Nodes with
592 * the same key stay together.
593 */
594 if (entity_before(se, entry)) {
595 link = &parent->rb_left;
596 } else {
597 link = &parent->rb_right;
598 leftmost = false;
599 }
600 }
601
602 rb_link_node(&se->run_node, parent, link);
603 rb_insert_color_cached(&se->run_node,
604 &cfs_rq->tasks_timeline, leftmost);
605 }
606
607 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
608 {
609 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
610 }
611
612 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
613 {
614 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
615
616 if (!left)
617 return NULL;
618
619 return rb_entry(left, struct sched_entity, run_node);
620 }
621
622 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
623 {
624 struct rb_node *next = rb_next(&se->run_node);
625
626 if (!next)
627 return NULL;
628
629 return rb_entry(next, struct sched_entity, run_node);
630 }
631
632 #ifdef CONFIG_SCHED_DEBUG
633 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
634 {
635 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
636
637 if (!last)
638 return NULL;
639
640 return rb_entry(last, struct sched_entity, run_node);
641 }
642
643 /**************************************************************
644 * Scheduling class statistics methods:
645 */
646
647 int sched_proc_update_handler(struct ctl_table *table, int write,
648 void *buffer, size_t *lenp, loff_t *ppos)
649 {
650 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
651 unsigned int factor = get_update_sysctl_factor();
652
653 if (ret || !write)
654 return ret;
655
656 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
657 sysctl_sched_min_granularity);
658
659 #define WRT_SYSCTL(name) \
660 (normalized_sysctl_##name = sysctl_##name / (factor))
661 WRT_SYSCTL(sched_min_granularity);
662 WRT_SYSCTL(sched_latency);
663 WRT_SYSCTL(sched_wakeup_granularity);
664 #undef WRT_SYSCTL
665
666 return 0;
667 }
668 #endif
669
670 /*
671 * delta /= w
672 */
673 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
674 {
675 if (unlikely(se->load.weight != NICE_0_LOAD))
676 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
677
678 return delta;
679 }
680
681 /*
682 * The idea is to set a period in which each task runs once.
683 *
684 * When there are too many tasks (sched_nr_latency) we have to stretch
685 * this period because otherwise the slices get too small.
686 *
687 * p = (nr <= nl) ? l : l*nr/nl
688 */
689 static u64 __sched_period(unsigned long nr_running)
690 {
691 if (unlikely(nr_running > sched_nr_latency))
692 return nr_running * sysctl_sched_min_granularity;
693 else
694 return sysctl_sched_latency;
695 }
696
697 /*
698 * We calculate the wall-time slice from the period by taking a part
699 * proportional to the weight.
700 *
701 * s = p*P[w/rw]
702 */
703 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
704 {
705 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
706
707 for_each_sched_entity(se) {
708 struct load_weight *load;
709 struct load_weight lw;
710
711 cfs_rq = cfs_rq_of(se);
712 load = &cfs_rq->load;
713
714 if (unlikely(!se->on_rq)) {
715 lw = cfs_rq->load;
716
717 update_load_add(&lw, se->load.weight);
718 load = &lw;
719 }
720 slice = __calc_delta(slice, se->load.weight, load);
721 }
722 return slice;
723 }
724
725 /*
726 * We calculate the vruntime slice of a to-be-inserted task.
727 *
728 * vs = s/w
729 */
730 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
731 {
732 return calc_delta_fair(sched_slice(cfs_rq, se), se);
733 }
734
735 #include "pelt.h"
736 #ifdef CONFIG_SMP
737
738 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
739 static unsigned long task_h_load(struct task_struct *p);
740 static unsigned long capacity_of(int cpu);
741
742 /* Give new sched_entity start runnable values to heavy its load in infant time */
743 void init_entity_runnable_average(struct sched_entity *se)
744 {
745 struct sched_avg *sa = &se->avg;
746
747 memset(sa, 0, sizeof(*sa));
748
749 /*
750 * Tasks are initialized with full load to be seen as heavy tasks until
751 * they get a chance to stabilize to their real load level.
752 * Group entities are initialized with zero load to reflect the fact that
753 * nothing has been attached to the task group yet.
754 */
755 if (entity_is_task(se))
756 sa->load_avg = scale_load_down(se->load.weight);
757
758 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
759 }
760
761 static void attach_entity_cfs_rq(struct sched_entity *se);
762
763 /*
764 * With new tasks being created, their initial util_avgs are extrapolated
765 * based on the cfs_rq's current util_avg:
766 *
767 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
768 *
769 * However, in many cases, the above util_avg does not give a desired
770 * value. Moreover, the sum of the util_avgs may be divergent, such
771 * as when the series is a harmonic series.
772 *
773 * To solve this problem, we also cap the util_avg of successive tasks to
774 * only 1/2 of the left utilization budget:
775 *
776 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
777 *
778 * where n denotes the nth task and cpu_scale the CPU capacity.
779 *
780 * For example, for a CPU with 1024 of capacity, a simplest series from
781 * the beginning would be like:
782 *
783 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
784 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
785 *
786 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
787 * if util_avg > util_avg_cap.
788 */
789 void post_init_entity_util_avg(struct task_struct *p)
790 {
791 struct sched_entity *se = &p->se;
792 struct cfs_rq *cfs_rq = cfs_rq_of(se);
793 struct sched_avg *sa = &se->avg;
794 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
795 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
796
797 if (cap > 0) {
798 if (cfs_rq->avg.util_avg != 0) {
799 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
800 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
801
802 if (sa->util_avg > cap)
803 sa->util_avg = cap;
804 } else {
805 sa->util_avg = cap;
806 }
807 }
808
809 sa->runnable_avg = cpu_scale;
810
811 if (p->sched_class != &fair_sched_class) {
812 /*
813 * For !fair tasks do:
814 *
815 update_cfs_rq_load_avg(now, cfs_rq);
816 attach_entity_load_avg(cfs_rq, se);
817 switched_from_fair(rq, p);
818 *
819 * such that the next switched_to_fair() has the
820 * expected state.
821 */
822 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
823 return;
824 }
825
826 attach_entity_cfs_rq(se);
827 }
828
829 #else /* !CONFIG_SMP */
830 void init_entity_runnable_average(struct sched_entity *se)
831 {
832 }
833 void post_init_entity_util_avg(struct task_struct *p)
834 {
835 }
836 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
837 {
838 }
839 #endif /* CONFIG_SMP */
840
841 /*
842 * Update the current task's runtime statistics.
843 */
844 static void update_curr(struct cfs_rq *cfs_rq)
845 {
846 struct sched_entity *curr = cfs_rq->curr;
847 u64 now = rq_clock_task(rq_of(cfs_rq));
848 u64 delta_exec;
849
850 if (unlikely(!curr))
851 return;
852
853 delta_exec = now - curr->exec_start;
854 if (unlikely((s64)delta_exec <= 0))
855 return;
856
857 curr->exec_start = now;
858
859 schedstat_set(curr->statistics.exec_max,
860 max(delta_exec, curr->statistics.exec_max));
861
862 curr->sum_exec_runtime += delta_exec;
863 schedstat_add(cfs_rq->exec_clock, delta_exec);
864
865 curr->vruntime += calc_delta_fair(delta_exec, curr);
866 update_min_vruntime(cfs_rq);
867
868 if (entity_is_task(curr)) {
869 struct task_struct *curtask = task_of(curr);
870
871 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
872 cgroup_account_cputime(curtask, delta_exec);
873 account_group_exec_runtime(curtask, delta_exec);
874 }
875
876 account_cfs_rq_runtime(cfs_rq, delta_exec);
877 }
878
879 static void update_curr_fair(struct rq *rq)
880 {
881 update_curr(cfs_rq_of(&rq->curr->se));
882 }
883
884 static inline void
885 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
886 {
887 u64 wait_start, prev_wait_start;
888
889 if (!schedstat_enabled())
890 return;
891
892 wait_start = rq_clock(rq_of(cfs_rq));
893 prev_wait_start = schedstat_val(se->statistics.wait_start);
894
895 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
896 likely(wait_start > prev_wait_start))
897 wait_start -= prev_wait_start;
898
899 __schedstat_set(se->statistics.wait_start, wait_start);
900 }
901
902 static inline void
903 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
904 {
905 struct task_struct *p;
906 u64 delta;
907
908 if (!schedstat_enabled())
909 return;
910
911 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
912
913 if (entity_is_task(se)) {
914 p = task_of(se);
915 if (task_on_rq_migrating(p)) {
916 /*
917 * Preserve migrating task's wait time so wait_start
918 * time stamp can be adjusted to accumulate wait time
919 * prior to migration.
920 */
921 __schedstat_set(se->statistics.wait_start, delta);
922 return;
923 }
924 trace_sched_stat_wait(p, delta);
925 }
926
927 __schedstat_set(se->statistics.wait_max,
928 max(schedstat_val(se->statistics.wait_max), delta));
929 __schedstat_inc(se->statistics.wait_count);
930 __schedstat_add(se->statistics.wait_sum, delta);
931 __schedstat_set(se->statistics.wait_start, 0);
932 }
933
934 static inline void
935 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
936 {
937 struct task_struct *tsk = NULL;
938 u64 sleep_start, block_start;
939
940 if (!schedstat_enabled())
941 return;
942
943 sleep_start = schedstat_val(se->statistics.sleep_start);
944 block_start = schedstat_val(se->statistics.block_start);
945
946 if (entity_is_task(se))
947 tsk = task_of(se);
948
949 if (sleep_start) {
950 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
951
952 if ((s64)delta < 0)
953 delta = 0;
954
955 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
956 __schedstat_set(se->statistics.sleep_max, delta);
957
958 __schedstat_set(se->statistics.sleep_start, 0);
959 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
960
961 if (tsk) {
962 account_scheduler_latency(tsk, delta >> 10, 1);
963 trace_sched_stat_sleep(tsk, delta);
964 }
965 }
966 if (block_start) {
967 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
968
969 if ((s64)delta < 0)
970 delta = 0;
971
972 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
973 __schedstat_set(se->statistics.block_max, delta);
974
975 __schedstat_set(se->statistics.block_start, 0);
976 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
977
978 if (tsk) {
979 if (tsk->in_iowait) {
980 __schedstat_add(se->statistics.iowait_sum, delta);
981 __schedstat_inc(se->statistics.iowait_count);
982 trace_sched_stat_iowait(tsk, delta);
983 }
984
985 trace_sched_stat_blocked(tsk, delta);
986
987 /*
988 * Blocking time is in units of nanosecs, so shift by
989 * 20 to get a milliseconds-range estimation of the
990 * amount of time that the task spent sleeping:
991 */
992 if (unlikely(prof_on == SLEEP_PROFILING)) {
993 profile_hits(SLEEP_PROFILING,
994 (void *)get_wchan(tsk),
995 delta >> 20);
996 }
997 account_scheduler_latency(tsk, delta >> 10, 0);
998 }
999 }
1000 }
1001
1002 /*
1003 * Task is being enqueued - update stats:
1004 */
1005 static inline void
1006 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1007 {
1008 if (!schedstat_enabled())
1009 return;
1010
1011 /*
1012 * Are we enqueueing a waiting task? (for current tasks
1013 * a dequeue/enqueue event is a NOP)
1014 */
1015 if (se != cfs_rq->curr)
1016 update_stats_wait_start(cfs_rq, se);
1017
1018 if (flags & ENQUEUE_WAKEUP)
1019 update_stats_enqueue_sleeper(cfs_rq, se);
1020 }
1021
1022 static inline void
1023 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1024 {
1025
1026 if (!schedstat_enabled())
1027 return;
1028
1029 /*
1030 * Mark the end of the wait period if dequeueing a
1031 * waiting task:
1032 */
1033 if (se != cfs_rq->curr)
1034 update_stats_wait_end(cfs_rq, se);
1035
1036 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1037 struct task_struct *tsk = task_of(se);
1038
1039 if (tsk->state & TASK_INTERRUPTIBLE)
1040 __schedstat_set(se->statistics.sleep_start,
1041 rq_clock(rq_of(cfs_rq)));
1042 if (tsk->state & TASK_UNINTERRUPTIBLE)
1043 __schedstat_set(se->statistics.block_start,
1044 rq_clock(rq_of(cfs_rq)));
1045 }
1046 }
1047
1048 /*
1049 * We are picking a new current task - update its stats:
1050 */
1051 static inline void
1052 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1053 {
1054 /*
1055 * We are starting a new run period:
1056 */
1057 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1058 }
1059
1060 /**************************************************
1061 * Scheduling class queueing methods:
1062 */
1063
1064 #ifdef CONFIG_NUMA_BALANCING
1065 /*
1066 * Approximate time to scan a full NUMA task in ms. The task scan period is
1067 * calculated based on the tasks virtual memory size and
1068 * numa_balancing_scan_size.
1069 */
1070 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1071 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1072
1073 /* Portion of address space to scan in MB */
1074 unsigned int sysctl_numa_balancing_scan_size = 256;
1075
1076 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1077 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1078
1079 struct numa_group {
1080 refcount_t refcount;
1081
1082 spinlock_t lock; /* nr_tasks, tasks */
1083 int nr_tasks;
1084 pid_t gid;
1085 int active_nodes;
1086
1087 struct rcu_head rcu;
1088 unsigned long total_faults;
1089 unsigned long max_faults_cpu;
1090 /*
1091 * Faults_cpu is used to decide whether memory should move
1092 * towards the CPU. As a consequence, these stats are weighted
1093 * more by CPU use than by memory faults.
1094 */
1095 unsigned long *faults_cpu;
1096 unsigned long faults[];
1097 };
1098
1099 /*
1100 * For functions that can be called in multiple contexts that permit reading
1101 * ->numa_group (see struct task_struct for locking rules).
1102 */
1103 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1104 {
1105 return rcu_dereference_check(p->numa_group, p == current ||
1106 (lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1107 }
1108
1109 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1110 {
1111 return rcu_dereference_protected(p->numa_group, p == current);
1112 }
1113
1114 static inline unsigned long group_faults_priv(struct numa_group *ng);
1115 static inline unsigned long group_faults_shared(struct numa_group *ng);
1116
1117 static unsigned int task_nr_scan_windows(struct task_struct *p)
1118 {
1119 unsigned long rss = 0;
1120 unsigned long nr_scan_pages;
1121
1122 /*
1123 * Calculations based on RSS as non-present and empty pages are skipped
1124 * by the PTE scanner and NUMA hinting faults should be trapped based
1125 * on resident pages
1126 */
1127 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1128 rss = get_mm_rss(p->mm);
1129 if (!rss)
1130 rss = nr_scan_pages;
1131
1132 rss = round_up(rss, nr_scan_pages);
1133 return rss / nr_scan_pages;
1134 }
1135
1136 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1137 #define MAX_SCAN_WINDOW 2560
1138
1139 static unsigned int task_scan_min(struct task_struct *p)
1140 {
1141 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1142 unsigned int scan, floor;
1143 unsigned int windows = 1;
1144
1145 if (scan_size < MAX_SCAN_WINDOW)
1146 windows = MAX_SCAN_WINDOW / scan_size;
1147 floor = 1000 / windows;
1148
1149 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1150 return max_t(unsigned int, floor, scan);
1151 }
1152
1153 static unsigned int task_scan_start(struct task_struct *p)
1154 {
1155 unsigned long smin = task_scan_min(p);
1156 unsigned long period = smin;
1157 struct numa_group *ng;
1158
1159 /* Scale the maximum scan period with the amount of shared memory. */
1160 rcu_read_lock();
1161 ng = rcu_dereference(p->numa_group);
1162 if (ng) {
1163 unsigned long shared = group_faults_shared(ng);
1164 unsigned long private = group_faults_priv(ng);
1165
1166 period *= refcount_read(&ng->refcount);
1167 period *= shared + 1;
1168 period /= private + shared + 1;
1169 }
1170 rcu_read_unlock();
1171
1172 return max(smin, period);
1173 }
1174
1175 static unsigned int task_scan_max(struct task_struct *p)
1176 {
1177 unsigned long smin = task_scan_min(p);
1178 unsigned long smax;
1179 struct numa_group *ng;
1180
1181 /* Watch for min being lower than max due to floor calculations */
1182 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1183
1184 /* Scale the maximum scan period with the amount of shared memory. */
1185 ng = deref_curr_numa_group(p);
1186 if (ng) {
1187 unsigned long shared = group_faults_shared(ng);
1188 unsigned long private = group_faults_priv(ng);
1189 unsigned long period = smax;
1190
1191 period *= refcount_read(&ng->refcount);
1192 period *= shared + 1;
1193 period /= private + shared + 1;
1194
1195 smax = max(smax, period);
1196 }
1197
1198 return max(smin, smax);
1199 }
1200
1201 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1202 {
1203 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1204 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1205 }
1206
1207 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1208 {
1209 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1210 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1211 }
1212
1213 /* Shared or private faults. */
1214 #define NR_NUMA_HINT_FAULT_TYPES 2
1215
1216 /* Memory and CPU locality */
1217 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1218
1219 /* Averaged statistics, and temporary buffers. */
1220 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1221
1222 pid_t task_numa_group_id(struct task_struct *p)
1223 {
1224 struct numa_group *ng;
1225 pid_t gid = 0;
1226
1227 rcu_read_lock();
1228 ng = rcu_dereference(p->numa_group);
1229 if (ng)
1230 gid = ng->gid;
1231 rcu_read_unlock();
1232
1233 return gid;
1234 }
1235
1236 /*
1237 * The averaged statistics, shared & private, memory & CPU,
1238 * occupy the first half of the array. The second half of the
1239 * array is for current counters, which are averaged into the
1240 * first set by task_numa_placement.
1241 */
1242 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1243 {
1244 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1245 }
1246
1247 static inline unsigned long task_faults(struct task_struct *p, int nid)
1248 {
1249 if (!p->numa_faults)
1250 return 0;
1251
1252 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1253 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1254 }
1255
1256 static inline unsigned long group_faults(struct task_struct *p, int nid)
1257 {
1258 struct numa_group *ng = deref_task_numa_group(p);
1259
1260 if (!ng)
1261 return 0;
1262
1263 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1264 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1265 }
1266
1267 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1268 {
1269 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1270 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1271 }
1272
1273 static inline unsigned long group_faults_priv(struct numa_group *ng)
1274 {
1275 unsigned long faults = 0;
1276 int node;
1277
1278 for_each_online_node(node) {
1279 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1280 }
1281
1282 return faults;
1283 }
1284
1285 static inline unsigned long group_faults_shared(struct numa_group *ng)
1286 {
1287 unsigned long faults = 0;
1288 int node;
1289
1290 for_each_online_node(node) {
1291 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1292 }
1293
1294 return faults;
1295 }
1296
1297 /*
1298 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1299 * considered part of a numa group's pseudo-interleaving set. Migrations
1300 * between these nodes are slowed down, to allow things to settle down.
1301 */
1302 #define ACTIVE_NODE_FRACTION 3
1303
1304 static bool numa_is_active_node(int nid, struct numa_group *ng)
1305 {
1306 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1307 }
1308
1309 /* Handle placement on systems where not all nodes are directly connected. */
1310 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1311 int maxdist, bool task)
1312 {
1313 unsigned long score = 0;
1314 int node;
1315
1316 /*
1317 * All nodes are directly connected, and the same distance
1318 * from each other. No need for fancy placement algorithms.
1319 */
1320 if (sched_numa_topology_type == NUMA_DIRECT)
1321 return 0;
1322
1323 /*
1324 * This code is called for each node, introducing N^2 complexity,
1325 * which should be ok given the number of nodes rarely exceeds 8.
1326 */
1327 for_each_online_node(node) {
1328 unsigned long faults;
1329 int dist = node_distance(nid, node);
1330
1331 /*
1332 * The furthest away nodes in the system are not interesting
1333 * for placement; nid was already counted.
1334 */
1335 if (dist == sched_max_numa_distance || node == nid)
1336 continue;
1337
1338 /*
1339 * On systems with a backplane NUMA topology, compare groups
1340 * of nodes, and move tasks towards the group with the most
1341 * memory accesses. When comparing two nodes at distance
1342 * "hoplimit", only nodes closer by than "hoplimit" are part
1343 * of each group. Skip other nodes.
1344 */
1345 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1346 dist >= maxdist)
1347 continue;
1348
1349 /* Add up the faults from nearby nodes. */
1350 if (task)
1351 faults = task_faults(p, node);
1352 else
1353 faults = group_faults(p, node);
1354
1355 /*
1356 * On systems with a glueless mesh NUMA topology, there are
1357 * no fixed "groups of nodes". Instead, nodes that are not
1358 * directly connected bounce traffic through intermediate
1359 * nodes; a numa_group can occupy any set of nodes.
1360 * The further away a node is, the less the faults count.
1361 * This seems to result in good task placement.
1362 */
1363 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1364 faults *= (sched_max_numa_distance - dist);
1365 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1366 }
1367
1368 score += faults;
1369 }
1370
1371 return score;
1372 }
1373
1374 /*
1375 * These return the fraction of accesses done by a particular task, or
1376 * task group, on a particular numa node. The group weight is given a
1377 * larger multiplier, in order to group tasks together that are almost
1378 * evenly spread out between numa nodes.
1379 */
1380 static inline unsigned long task_weight(struct task_struct *p, int nid,
1381 int dist)
1382 {
1383 unsigned long faults, total_faults;
1384
1385 if (!p->numa_faults)
1386 return 0;
1387
1388 total_faults = p->total_numa_faults;
1389
1390 if (!total_faults)
1391 return 0;
1392
1393 faults = task_faults(p, nid);
1394 faults += score_nearby_nodes(p, nid, dist, true);
1395
1396 return 1000 * faults / total_faults;
1397 }
1398
1399 static inline unsigned long group_weight(struct task_struct *p, int nid,
1400 int dist)
1401 {
1402 struct numa_group *ng = deref_task_numa_group(p);
1403 unsigned long faults, total_faults;
1404
1405 if (!ng)
1406 return 0;
1407
1408 total_faults = ng->total_faults;
1409
1410 if (!total_faults)
1411 return 0;
1412
1413 faults = group_faults(p, nid);
1414 faults += score_nearby_nodes(p, nid, dist, false);
1415
1416 return 1000 * faults / total_faults;
1417 }
1418
1419 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1420 int src_nid, int dst_cpu)
1421 {
1422 struct numa_group *ng = deref_curr_numa_group(p);
1423 int dst_nid = cpu_to_node(dst_cpu);
1424 int last_cpupid, this_cpupid;
1425
1426 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1427 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1428
1429 /*
1430 * Allow first faults or private faults to migrate immediately early in
1431 * the lifetime of a task. The magic number 4 is based on waiting for
1432 * two full passes of the "multi-stage node selection" test that is
1433 * executed below.
1434 */
1435 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1436 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1437 return true;
1438
1439 /*
1440 * Multi-stage node selection is used in conjunction with a periodic
1441 * migration fault to build a temporal task<->page relation. By using
1442 * a two-stage filter we remove short/unlikely relations.
1443 *
1444 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1445 * a task's usage of a particular page (n_p) per total usage of this
1446 * page (n_t) (in a given time-span) to a probability.
1447 *
1448 * Our periodic faults will sample this probability and getting the
1449 * same result twice in a row, given these samples are fully
1450 * independent, is then given by P(n)^2, provided our sample period
1451 * is sufficiently short compared to the usage pattern.
1452 *
1453 * This quadric squishes small probabilities, making it less likely we
1454 * act on an unlikely task<->page relation.
1455 */
1456 if (!cpupid_pid_unset(last_cpupid) &&
1457 cpupid_to_nid(last_cpupid) != dst_nid)
1458 return false;
1459
1460 /* Always allow migrate on private faults */
1461 if (cpupid_match_pid(p, last_cpupid))
1462 return true;
1463
1464 /* A shared fault, but p->numa_group has not been set up yet. */
1465 if (!ng)
1466 return true;
1467
1468 /*
1469 * Destination node is much more heavily used than the source
1470 * node? Allow migration.
1471 */
1472 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1473 ACTIVE_NODE_FRACTION)
1474 return true;
1475
1476 /*
1477 * Distribute memory according to CPU & memory use on each node,
1478 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1479 *
1480 * faults_cpu(dst) 3 faults_cpu(src)
1481 * --------------- * - > ---------------
1482 * faults_mem(dst) 4 faults_mem(src)
1483 */
1484 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1485 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1486 }
1487
1488 /*
1489 * 'numa_type' describes the node at the moment of load balancing.
1490 */
1491 enum numa_type {
1492 /* The node has spare capacity that can be used to run more tasks. */
1493 node_has_spare = 0,
1494 /*
1495 * The node is fully used and the tasks don't compete for more CPU
1496 * cycles. Nevertheless, some tasks might wait before running.
1497 */
1498 node_fully_busy,
1499 /*
1500 * The node is overloaded and can't provide expected CPU cycles to all
1501 * tasks.
1502 */
1503 node_overloaded
1504 };
1505
1506 /* Cached statistics for all CPUs within a node */
1507 struct numa_stats {
1508 unsigned long load;
1509 unsigned long util;
1510 /* Total compute capacity of CPUs on a node */
1511 unsigned long compute_capacity;
1512 unsigned int nr_running;
1513 unsigned int weight;
1514 enum numa_type node_type;
1515 int idle_cpu;
1516 };
1517
1518 static inline bool is_core_idle(int cpu)
1519 {
1520 #ifdef CONFIG_SCHED_SMT
1521 int sibling;
1522
1523 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1524 if (cpu == sibling)
1525 continue;
1526
1527 if (!idle_cpu(cpu))
1528 return false;
1529 }
1530 #endif
1531
1532 return true;
1533 }
1534
1535 struct task_numa_env {
1536 struct task_struct *p;
1537
1538 int src_cpu, src_nid;
1539 int dst_cpu, dst_nid;
1540
1541 struct numa_stats src_stats, dst_stats;
1542
1543 int imbalance_pct;
1544 int dist;
1545
1546 struct task_struct *best_task;
1547 long best_imp;
1548 int best_cpu;
1549 };
1550
1551 static unsigned long cpu_load(struct rq *rq);
1552 static unsigned long cpu_util(int cpu);
1553 static inline long adjust_numa_imbalance(int imbalance, int src_nr_running);
1554
1555 static inline enum
1556 numa_type numa_classify(unsigned int imbalance_pct,
1557 struct numa_stats *ns)
1558 {
1559 if ((ns->nr_running > ns->weight) &&
1560 ((ns->compute_capacity * 100) < (ns->util * imbalance_pct)))
1561 return node_overloaded;
1562
1563 if ((ns->nr_running < ns->weight) ||
1564 ((ns->compute_capacity * 100) > (ns->util * imbalance_pct)))
1565 return node_has_spare;
1566
1567 return node_fully_busy;
1568 }
1569
1570 #ifdef CONFIG_SCHED_SMT
1571 /* Forward declarations of select_idle_sibling helpers */
1572 static inline bool test_idle_cores(int cpu, bool def);
1573 static inline int numa_idle_core(int idle_core, int cpu)
1574 {
1575 if (!static_branch_likely(&sched_smt_present) ||
1576 idle_core >= 0 || !test_idle_cores(cpu, false))
1577 return idle_core;
1578
1579 /*
1580 * Prefer cores instead of packing HT siblings
1581 * and triggering future load balancing.
1582 */
1583 if (is_core_idle(cpu))
1584 idle_core = cpu;
1585
1586 return idle_core;
1587 }
1588 #else
1589 static inline int numa_idle_core(int idle_core, int cpu)
1590 {
1591 return idle_core;
1592 }
1593 #endif
1594
1595 /*
1596 * Gather all necessary information to make NUMA balancing placement
1597 * decisions that are compatible with standard load balancer. This
1598 * borrows code and logic from update_sg_lb_stats but sharing a
1599 * common implementation is impractical.
1600 */
1601 static void update_numa_stats(struct task_numa_env *env,
1602 struct numa_stats *ns, int nid,
1603 bool find_idle)
1604 {
1605 int cpu, idle_core = -1;
1606
1607 memset(ns, 0, sizeof(*ns));
1608 ns->idle_cpu = -1;
1609
1610 rcu_read_lock();
1611 for_each_cpu(cpu, cpumask_of_node(nid)) {
1612 struct rq *rq = cpu_rq(cpu);
1613
1614 ns->load += cpu_load(rq);
1615 ns->util += cpu_util(cpu);
1616 ns->nr_running += rq->cfs.h_nr_running;
1617 ns->compute_capacity += capacity_of(cpu);
1618
1619 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1620 if (READ_ONCE(rq->numa_migrate_on) ||
1621 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1622 continue;
1623
1624 if (ns->idle_cpu == -1)
1625 ns->idle_cpu = cpu;
1626
1627 idle_core = numa_idle_core(idle_core, cpu);
1628 }
1629 }
1630 rcu_read_unlock();
1631
1632 ns->weight = cpumask_weight(cpumask_of_node(nid));
1633
1634 ns->node_type = numa_classify(env->imbalance_pct, ns);
1635
1636 if (idle_core >= 0)
1637 ns->idle_cpu = idle_core;
1638 }
1639
1640 static void task_numa_assign(struct task_numa_env *env,
1641 struct task_struct *p, long imp)
1642 {
1643 struct rq *rq = cpu_rq(env->dst_cpu);
1644
1645 /* Check if run-queue part of active NUMA balance. */
1646 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1647 int cpu;
1648 int start = env->dst_cpu;
1649
1650 /* Find alternative idle CPU. */
1651 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1652 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1653 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1654 continue;
1655 }
1656
1657 env->dst_cpu = cpu;
1658 rq = cpu_rq(env->dst_cpu);
1659 if (!xchg(&rq->numa_migrate_on, 1))
1660 goto assign;
1661 }
1662
1663 /* Failed to find an alternative idle CPU */
1664 return;
1665 }
1666
1667 assign:
1668 /*
1669 * Clear previous best_cpu/rq numa-migrate flag, since task now
1670 * found a better CPU to move/swap.
1671 */
1672 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1673 rq = cpu_rq(env->best_cpu);
1674 WRITE_ONCE(rq->numa_migrate_on, 0);
1675 }
1676
1677 if (env->best_task)
1678 put_task_struct(env->best_task);
1679 if (p)
1680 get_task_struct(p);
1681
1682 env->best_task = p;
1683 env->best_imp = imp;
1684 env->best_cpu = env->dst_cpu;
1685 }
1686
1687 static bool load_too_imbalanced(long src_load, long dst_load,
1688 struct task_numa_env *env)
1689 {
1690 long imb, old_imb;
1691 long orig_src_load, orig_dst_load;
1692 long src_capacity, dst_capacity;
1693
1694 /*
1695 * The load is corrected for the CPU capacity available on each node.
1696 *
1697 * src_load dst_load
1698 * ------------ vs ---------
1699 * src_capacity dst_capacity
1700 */
1701 src_capacity = env->src_stats.compute_capacity;
1702 dst_capacity = env->dst_stats.compute_capacity;
1703
1704 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1705
1706 orig_src_load = env->src_stats.load;
1707 orig_dst_load = env->dst_stats.load;
1708
1709 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1710
1711 /* Would this change make things worse? */
1712 return (imb > old_imb);
1713 }
1714
1715 /*
1716 * Maximum NUMA importance can be 1998 (2*999);
1717 * SMALLIMP @ 30 would be close to 1998/64.
1718 * Used to deter task migration.
1719 */
1720 #define SMALLIMP 30
1721
1722 /*
1723 * This checks if the overall compute and NUMA accesses of the system would
1724 * be improved if the source tasks was migrated to the target dst_cpu taking
1725 * into account that it might be best if task running on the dst_cpu should
1726 * be exchanged with the source task
1727 */
1728 static bool task_numa_compare(struct task_numa_env *env,
1729 long taskimp, long groupimp, bool maymove)
1730 {
1731 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1732 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1733 long imp = p_ng ? groupimp : taskimp;
1734 struct task_struct *cur;
1735 long src_load, dst_load;
1736 int dist = env->dist;
1737 long moveimp = imp;
1738 long load;
1739 bool stopsearch = false;
1740
1741 if (READ_ONCE(dst_rq->numa_migrate_on))
1742 return false;
1743
1744 rcu_read_lock();
1745 cur = rcu_dereference(dst_rq->curr);
1746 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1747 cur = NULL;
1748
1749 /*
1750 * Because we have preemption enabled we can get migrated around and
1751 * end try selecting ourselves (current == env->p) as a swap candidate.
1752 */
1753 if (cur == env->p) {
1754 stopsearch = true;
1755 goto unlock;
1756 }
1757
1758 if (!cur) {
1759 if (maymove && moveimp >= env->best_imp)
1760 goto assign;
1761 else
1762 goto unlock;
1763 }
1764
1765 /* Skip this swap candidate if cannot move to the source cpu. */
1766 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1767 goto unlock;
1768
1769 /*
1770 * Skip this swap candidate if it is not moving to its preferred
1771 * node and the best task is.
1772 */
1773 if (env->best_task &&
1774 env->best_task->numa_preferred_nid == env->src_nid &&
1775 cur->numa_preferred_nid != env->src_nid) {
1776 goto unlock;
1777 }
1778
1779 /*
1780 * "imp" is the fault differential for the source task between the
1781 * source and destination node. Calculate the total differential for
1782 * the source task and potential destination task. The more negative
1783 * the value is, the more remote accesses that would be expected to
1784 * be incurred if the tasks were swapped.
1785 *
1786 * If dst and source tasks are in the same NUMA group, or not
1787 * in any group then look only at task weights.
1788 */
1789 cur_ng = rcu_dereference(cur->numa_group);
1790 if (cur_ng == p_ng) {
1791 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1792 task_weight(cur, env->dst_nid, dist);
1793 /*
1794 * Add some hysteresis to prevent swapping the
1795 * tasks within a group over tiny differences.
1796 */
1797 if (cur_ng)
1798 imp -= imp / 16;
1799 } else {
1800 /*
1801 * Compare the group weights. If a task is all by itself
1802 * (not part of a group), use the task weight instead.
1803 */
1804 if (cur_ng && p_ng)
1805 imp += group_weight(cur, env->src_nid, dist) -
1806 group_weight(cur, env->dst_nid, dist);
1807 else
1808 imp += task_weight(cur, env->src_nid, dist) -
1809 task_weight(cur, env->dst_nid, dist);
1810 }
1811
1812 /* Discourage picking a task already on its preferred node */
1813 if (cur->numa_preferred_nid == env->dst_nid)
1814 imp -= imp / 16;
1815
1816 /*
1817 * Encourage picking a task that moves to its preferred node.
1818 * This potentially makes imp larger than it's maximum of
1819 * 1998 (see SMALLIMP and task_weight for why) but in this
1820 * case, it does not matter.
1821 */
1822 if (cur->numa_preferred_nid == env->src_nid)
1823 imp += imp / 8;
1824
1825 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1826 imp = moveimp;
1827 cur = NULL;
1828 goto assign;
1829 }
1830
1831 /*
1832 * Prefer swapping with a task moving to its preferred node over a
1833 * task that is not.
1834 */
1835 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1836 env->best_task->numa_preferred_nid != env->src_nid) {
1837 goto assign;
1838 }
1839
1840 /*
1841 * If the NUMA importance is less than SMALLIMP,
1842 * task migration might only result in ping pong
1843 * of tasks and also hurt performance due to cache
1844 * misses.
1845 */
1846 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1847 goto unlock;
1848
1849 /*
1850 * In the overloaded case, try and keep the load balanced.
1851 */
1852 load = task_h_load(env->p) - task_h_load(cur);
1853 if (!load)
1854 goto assign;
1855
1856 dst_load = env->dst_stats.load + load;
1857 src_load = env->src_stats.load - load;
1858
1859 if (load_too_imbalanced(src_load, dst_load, env))
1860 goto unlock;
1861
1862 assign:
1863 /* Evaluate an idle CPU for a task numa move. */
1864 if (!cur) {
1865 int cpu = env->dst_stats.idle_cpu;
1866
1867 /* Nothing cached so current CPU went idle since the search. */
1868 if (cpu < 0)
1869 cpu = env->dst_cpu;
1870
1871 /*
1872 * If the CPU is no longer truly idle and the previous best CPU
1873 * is, keep using it.
1874 */
1875 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1876 idle_cpu(env->best_cpu)) {
1877 cpu = env->best_cpu;
1878 }
1879
1880 env->dst_cpu = cpu;
1881 }
1882
1883 task_numa_assign(env, cur, imp);
1884
1885 /*
1886 * If a move to idle is allowed because there is capacity or load
1887 * balance improves then stop the search. While a better swap
1888 * candidate may exist, a search is not free.
1889 */
1890 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1891 stopsearch = true;
1892
1893 /*
1894 * If a swap candidate must be identified and the current best task
1895 * moves its preferred node then stop the search.
1896 */
1897 if (!maymove && env->best_task &&
1898 env->best_task->numa_preferred_nid == env->src_nid) {
1899 stopsearch = true;
1900 }
1901 unlock:
1902 rcu_read_unlock();
1903
1904 return stopsearch;
1905 }
1906
1907 static void task_numa_find_cpu(struct task_numa_env *env,
1908 long taskimp, long groupimp)
1909 {
1910 bool maymove = false;
1911 int cpu;
1912
1913 /*
1914 * If dst node has spare capacity, then check if there is an
1915 * imbalance that would be overruled by the load balancer.
1916 */
1917 if (env->dst_stats.node_type == node_has_spare) {
1918 unsigned int imbalance;
1919 int src_running, dst_running;
1920
1921 /*
1922 * Would movement cause an imbalance? Note that if src has
1923 * more running tasks that the imbalance is ignored as the
1924 * move improves the imbalance from the perspective of the
1925 * CPU load balancer.
1926 * */
1927 src_running = env->src_stats.nr_running - 1;
1928 dst_running = env->dst_stats.nr_running + 1;
1929 imbalance = max(0, dst_running - src_running);
1930 imbalance = adjust_numa_imbalance(imbalance, src_running);
1931
1932 /* Use idle CPU if there is no imbalance */
1933 if (!imbalance) {
1934 maymove = true;
1935 if (env->dst_stats.idle_cpu >= 0) {
1936 env->dst_cpu = env->dst_stats.idle_cpu;
1937 task_numa_assign(env, NULL, 0);
1938 return;
1939 }
1940 }
1941 } else {
1942 long src_load, dst_load, load;
1943 /*
1944 * If the improvement from just moving env->p direction is better
1945 * than swapping tasks around, check if a move is possible.
1946 */
1947 load = task_h_load(env->p);
1948 dst_load = env->dst_stats.load + load;
1949 src_load = env->src_stats.load - load;
1950 maymove = !load_too_imbalanced(src_load, dst_load, env);
1951 }
1952
1953 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1954 /* Skip this CPU if the source task cannot migrate */
1955 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1956 continue;
1957
1958 env->dst_cpu = cpu;
1959 if (task_numa_compare(env, taskimp, groupimp, maymove))
1960 break;
1961 }
1962 }
1963
1964 static int task_numa_migrate(struct task_struct *p)
1965 {
1966 struct task_numa_env env = {
1967 .p = p,
1968
1969 .src_cpu = task_cpu(p),
1970 .src_nid = task_node(p),
1971
1972 .imbalance_pct = 112,
1973
1974 .best_task = NULL,
1975 .best_imp = 0,
1976 .best_cpu = -1,
1977 };
1978 unsigned long taskweight, groupweight;
1979 struct sched_domain *sd;
1980 long taskimp, groupimp;
1981 struct numa_group *ng;
1982 struct rq *best_rq;
1983 int nid, ret, dist;
1984
1985 /*
1986 * Pick the lowest SD_NUMA domain, as that would have the smallest
1987 * imbalance and would be the first to start moving tasks about.
1988 *
1989 * And we want to avoid any moving of tasks about, as that would create
1990 * random movement of tasks -- counter the numa conditions we're trying
1991 * to satisfy here.
1992 */
1993 rcu_read_lock();
1994 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1995 if (sd)
1996 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1997 rcu_read_unlock();
1998
1999 /*
2000 * Cpusets can break the scheduler domain tree into smaller
2001 * balance domains, some of which do not cross NUMA boundaries.
2002 * Tasks that are "trapped" in such domains cannot be migrated
2003 * elsewhere, so there is no point in (re)trying.
2004 */
2005 if (unlikely(!sd)) {
2006 sched_setnuma(p, task_node(p));
2007 return -EINVAL;
2008 }
2009
2010 env.dst_nid = p->numa_preferred_nid;
2011 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2012 taskweight = task_weight(p, env.src_nid, dist);
2013 groupweight = group_weight(p, env.src_nid, dist);
2014 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2015 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2016 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2017 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2018
2019 /* Try to find a spot on the preferred nid. */
2020 task_numa_find_cpu(&env, taskimp, groupimp);
2021
2022 /*
2023 * Look at other nodes in these cases:
2024 * - there is no space available on the preferred_nid
2025 * - the task is part of a numa_group that is interleaved across
2026 * multiple NUMA nodes; in order to better consolidate the group,
2027 * we need to check other locations.
2028 */
2029 ng = deref_curr_numa_group(p);
2030 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2031 for_each_online_node(nid) {
2032 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2033 continue;
2034
2035 dist = node_distance(env.src_nid, env.dst_nid);
2036 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2037 dist != env.dist) {
2038 taskweight = task_weight(p, env.src_nid, dist);
2039 groupweight = group_weight(p, env.src_nid, dist);
2040 }
2041
2042 /* Only consider nodes where both task and groups benefit */
2043 taskimp = task_weight(p, nid, dist) - taskweight;
2044 groupimp = group_weight(p, nid, dist) - groupweight;
2045 if (taskimp < 0 && groupimp < 0)
2046 continue;
2047
2048 env.dist = dist;
2049 env.dst_nid = nid;
2050 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2051 task_numa_find_cpu(&env, taskimp, groupimp);
2052 }
2053 }
2054
2055 /*
2056 * If the task is part of a workload that spans multiple NUMA nodes,
2057 * and is migrating into one of the workload's active nodes, remember
2058 * this node as the task's preferred numa node, so the workload can
2059 * settle down.
2060 * A task that migrated to a second choice node will be better off
2061 * trying for a better one later. Do not set the preferred node here.
2062 */
2063 if (ng) {
2064 if (env.best_cpu == -1)
2065 nid = env.src_nid;
2066 else
2067 nid = cpu_to_node(env.best_cpu);
2068
2069 if (nid != p->numa_preferred_nid)
2070 sched_setnuma(p, nid);
2071 }
2072
2073 /* No better CPU than the current one was found. */
2074 if (env.best_cpu == -1) {
2075 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2076 return -EAGAIN;
2077 }
2078
2079 best_rq = cpu_rq(env.best_cpu);
2080 if (env.best_task == NULL) {
2081 ret = migrate_task_to(p, env.best_cpu);
2082 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2083 if (ret != 0)
2084 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2085 return ret;
2086 }
2087
2088 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2089 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2090
2091 if (ret != 0)
2092 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2093 put_task_struct(env.best_task);
2094 return ret;
2095 }
2096
2097 /* Attempt to migrate a task to a CPU on the preferred node. */
2098 static void numa_migrate_preferred(struct task_struct *p)
2099 {
2100 unsigned long interval = HZ;
2101
2102 /* This task has no NUMA fault statistics yet */
2103 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2104 return;
2105
2106 /* Periodically retry migrating the task to the preferred node */
2107 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2108 p->numa_migrate_retry = jiffies + interval;
2109
2110 /* Success if task is already running on preferred CPU */
2111 if (task_node(p) == p->numa_preferred_nid)
2112 return;
2113
2114 /* Otherwise, try migrate to a CPU on the preferred node */
2115 task_numa_migrate(p);
2116 }
2117
2118 /*
2119 * Find out how many nodes on the workload is actively running on. Do this by
2120 * tracking the nodes from which NUMA hinting faults are triggered. This can
2121 * be different from the set of nodes where the workload's memory is currently
2122 * located.
2123 */
2124 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2125 {
2126 unsigned long faults, max_faults = 0;
2127 int nid, active_nodes = 0;
2128
2129 for_each_online_node(nid) {
2130 faults = group_faults_cpu(numa_group, nid);
2131 if (faults > max_faults)
2132 max_faults = faults;
2133 }
2134
2135 for_each_online_node(nid) {
2136 faults = group_faults_cpu(numa_group, nid);
2137 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2138 active_nodes++;
2139 }
2140
2141 numa_group->max_faults_cpu = max_faults;
2142 numa_group->active_nodes = active_nodes;
2143 }
2144
2145 /*
2146 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2147 * increments. The more local the fault statistics are, the higher the scan
2148 * period will be for the next scan window. If local/(local+remote) ratio is
2149 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2150 * the scan period will decrease. Aim for 70% local accesses.
2151 */
2152 #define NUMA_PERIOD_SLOTS 10
2153 #define NUMA_PERIOD_THRESHOLD 7
2154
2155 /*
2156 * Increase the scan period (slow down scanning) if the majority of
2157 * our memory is already on our local node, or if the majority of
2158 * the page accesses are shared with other processes.
2159 * Otherwise, decrease the scan period.
2160 */
2161 static void update_task_scan_period(struct task_struct *p,
2162 unsigned long shared, unsigned long private)
2163 {
2164 unsigned int period_slot;
2165 int lr_ratio, ps_ratio;
2166 int diff;
2167
2168 unsigned long remote = p->numa_faults_locality[0];
2169 unsigned long local = p->numa_faults_locality[1];
2170
2171 /*
2172 * If there were no record hinting faults then either the task is
2173 * completely idle or all activity is areas that are not of interest
2174 * to automatic numa balancing. Related to that, if there were failed
2175 * migration then it implies we are migrating too quickly or the local
2176 * node is overloaded. In either case, scan slower
2177 */
2178 if (local + shared == 0 || p->numa_faults_locality[2]) {
2179 p->numa_scan_period = min(p->numa_scan_period_max,
2180 p->numa_scan_period << 1);
2181
2182 p->mm->numa_next_scan = jiffies +
2183 msecs_to_jiffies(p->numa_scan_period);
2184
2185 return;
2186 }
2187
2188 /*
2189 * Prepare to scale scan period relative to the current period.
2190 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2191 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2192 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2193 */
2194 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2195 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2196 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2197
2198 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2199 /*
2200 * Most memory accesses are local. There is no need to
2201 * do fast NUMA scanning, since memory is already local.
2202 */
2203 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2204 if (!slot)
2205 slot = 1;
2206 diff = slot * period_slot;
2207 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2208 /*
2209 * Most memory accesses are shared with other tasks.
2210 * There is no point in continuing fast NUMA scanning,
2211 * since other tasks may just move the memory elsewhere.
2212 */
2213 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2214 if (!slot)
2215 slot = 1;
2216 diff = slot * period_slot;
2217 } else {
2218 /*
2219 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2220 * yet they are not on the local NUMA node. Speed up
2221 * NUMA scanning to get the memory moved over.
2222 */
2223 int ratio = max(lr_ratio, ps_ratio);
2224 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2225 }
2226
2227 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2228 task_scan_min(p), task_scan_max(p));
2229 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2230 }
2231
2232 /*
2233 * Get the fraction of time the task has been running since the last
2234 * NUMA placement cycle. The scheduler keeps similar statistics, but
2235 * decays those on a 32ms period, which is orders of magnitude off
2236 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2237 * stats only if the task is so new there are no NUMA statistics yet.
2238 */
2239 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2240 {
2241 u64 runtime, delta, now;
2242 /* Use the start of this time slice to avoid calculations. */
2243 now = p->se.exec_start;
2244 runtime = p->se.sum_exec_runtime;
2245
2246 if (p->last_task_numa_placement) {
2247 delta = runtime - p->last_sum_exec_runtime;
2248 *period = now - p->last_task_numa_placement;
2249
2250 /* Avoid time going backwards, prevent potential divide error: */
2251 if (unlikely((s64)*period < 0))
2252 *period = 0;
2253 } else {
2254 delta = p->se.avg.load_sum;
2255 *period = LOAD_AVG_MAX;
2256 }
2257
2258 p->last_sum_exec_runtime = runtime;
2259 p->last_task_numa_placement = now;
2260
2261 return delta;
2262 }
2263
2264 /*
2265 * Determine the preferred nid for a task in a numa_group. This needs to
2266 * be done in a way that produces consistent results with group_weight,
2267 * otherwise workloads might not converge.
2268 */
2269 static int preferred_group_nid(struct task_struct *p, int nid)
2270 {
2271 nodemask_t nodes;
2272 int dist;
2273
2274 /* Direct connections between all NUMA nodes. */
2275 if (sched_numa_topology_type == NUMA_DIRECT)
2276 return nid;
2277
2278 /*
2279 * On a system with glueless mesh NUMA topology, group_weight
2280 * scores nodes according to the number of NUMA hinting faults on
2281 * both the node itself, and on nearby nodes.
2282 */
2283 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2284 unsigned long score, max_score = 0;
2285 int node, max_node = nid;
2286
2287 dist = sched_max_numa_distance;
2288
2289 for_each_online_node(node) {
2290 score = group_weight(p, node, dist);
2291 if (score > max_score) {
2292 max_score = score;
2293 max_node = node;
2294 }
2295 }
2296 return max_node;
2297 }
2298
2299 /*
2300 * Finding the preferred nid in a system with NUMA backplane
2301 * interconnect topology is more involved. The goal is to locate
2302 * tasks from numa_groups near each other in the system, and
2303 * untangle workloads from different sides of the system. This requires
2304 * searching down the hierarchy of node groups, recursively searching
2305 * inside the highest scoring group of nodes. The nodemask tricks
2306 * keep the complexity of the search down.
2307 */
2308 nodes = node_online_map;
2309 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2310 unsigned long max_faults = 0;
2311 nodemask_t max_group = NODE_MASK_NONE;
2312 int a, b;
2313
2314 /* Are there nodes at this distance from each other? */
2315 if (!find_numa_distance(dist))
2316 continue;
2317
2318 for_each_node_mask(a, nodes) {
2319 unsigned long faults = 0;
2320 nodemask_t this_group;
2321 nodes_clear(this_group);
2322
2323 /* Sum group's NUMA faults; includes a==b case. */
2324 for_each_node_mask(b, nodes) {
2325 if (node_distance(a, b) < dist) {
2326 faults += group_faults(p, b);
2327 node_set(b, this_group);
2328 node_clear(b, nodes);
2329 }
2330 }
2331
2332 /* Remember the top group. */
2333 if (faults > max_faults) {
2334 max_faults = faults;
2335 max_group = this_group;
2336 /*
2337 * subtle: at the smallest distance there is
2338 * just one node left in each "group", the
2339 * winner is the preferred nid.
2340 */
2341 nid = a;
2342 }
2343 }
2344 /* Next round, evaluate the nodes within max_group. */
2345 if (!max_faults)
2346 break;
2347 nodes = max_group;
2348 }
2349 return nid;
2350 }
2351
2352 static void task_numa_placement(struct task_struct *p)
2353 {
2354 int seq, nid, max_nid = NUMA_NO_NODE;
2355 unsigned long max_faults = 0;
2356 unsigned long fault_types[2] = { 0, 0 };
2357 unsigned long total_faults;
2358 u64 runtime, period;
2359 spinlock_t *group_lock = NULL;
2360 struct numa_group *ng;
2361
2362 /*
2363 * The p->mm->numa_scan_seq field gets updated without
2364 * exclusive access. Use READ_ONCE() here to ensure
2365 * that the field is read in a single access:
2366 */
2367 seq = READ_ONCE(p->mm->numa_scan_seq);
2368 if (p->numa_scan_seq == seq)
2369 return;
2370 p->numa_scan_seq = seq;
2371 p->numa_scan_period_max = task_scan_max(p);
2372
2373 total_faults = p->numa_faults_locality[0] +
2374 p->numa_faults_locality[1];
2375 runtime = numa_get_avg_runtime(p, &period);
2376
2377 /* If the task is part of a group prevent parallel updates to group stats */
2378 ng = deref_curr_numa_group(p);
2379 if (ng) {
2380 group_lock = &ng->lock;
2381 spin_lock_irq(group_lock);
2382 }
2383
2384 /* Find the node with the highest number of faults */
2385 for_each_online_node(nid) {
2386 /* Keep track of the offsets in numa_faults array */
2387 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2388 unsigned long faults = 0, group_faults = 0;
2389 int priv;
2390
2391 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2392 long diff, f_diff, f_weight;
2393
2394 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2395 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2396 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2397 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2398
2399 /* Decay existing window, copy faults since last scan */
2400 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2401 fault_types[priv] += p->numa_faults[membuf_idx];
2402 p->numa_faults[membuf_idx] = 0;
2403
2404 /*
2405 * Normalize the faults_from, so all tasks in a group
2406 * count according to CPU use, instead of by the raw
2407 * number of faults. Tasks with little runtime have
2408 * little over-all impact on throughput, and thus their
2409 * faults are less important.
2410 */
2411 f_weight = div64_u64(runtime << 16, period + 1);
2412 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2413 (total_faults + 1);
2414 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2415 p->numa_faults[cpubuf_idx] = 0;
2416
2417 p->numa_faults[mem_idx] += diff;
2418 p->numa_faults[cpu_idx] += f_diff;
2419 faults += p->numa_faults[mem_idx];
2420 p->total_numa_faults += diff;
2421 if (ng) {
2422 /*
2423 * safe because we can only change our own group
2424 *
2425 * mem_idx represents the offset for a given
2426 * nid and priv in a specific region because it
2427 * is at the beginning of the numa_faults array.
2428 */
2429 ng->faults[mem_idx] += diff;
2430 ng->faults_cpu[mem_idx] += f_diff;
2431 ng->total_faults += diff;
2432 group_faults += ng->faults[mem_idx];
2433 }
2434 }
2435
2436 if (!ng) {
2437 if (faults > max_faults) {
2438 max_faults = faults;
2439 max_nid = nid;
2440 }
2441 } else if (group_faults > max_faults) {
2442 max_faults = group_faults;
2443 max_nid = nid;
2444 }
2445 }
2446
2447 if (ng) {
2448 numa_group_count_active_nodes(ng);
2449 spin_unlock_irq(group_lock);
2450 max_nid = preferred_group_nid(p, max_nid);
2451 }
2452
2453 if (max_faults) {
2454 /* Set the new preferred node */
2455 if (max_nid != p->numa_preferred_nid)
2456 sched_setnuma(p, max_nid);
2457 }
2458
2459 update_task_scan_period(p, fault_types[0], fault_types[1]);
2460 }
2461
2462 static inline int get_numa_group(struct numa_group *grp)
2463 {
2464 return refcount_inc_not_zero(&grp->refcount);
2465 }
2466
2467 static inline void put_numa_group(struct numa_group *grp)
2468 {
2469 if (refcount_dec_and_test(&grp->refcount))
2470 kfree_rcu(grp, rcu);
2471 }
2472
2473 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2474 int *priv)
2475 {
2476 struct numa_group *grp, *my_grp;
2477 struct task_struct *tsk;
2478 bool join = false;
2479 int cpu = cpupid_to_cpu(cpupid);
2480 int i;
2481
2482 if (unlikely(!deref_curr_numa_group(p))) {
2483 unsigned int size = sizeof(struct numa_group) +
2484 4*nr_node_ids*sizeof(unsigned long);
2485
2486 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2487 if (!grp)
2488 return;
2489
2490 refcount_set(&grp->refcount, 1);
2491 grp->active_nodes = 1;
2492 grp->max_faults_cpu = 0;
2493 spin_lock_init(&grp->lock);
2494 grp->gid = p->pid;
2495 /* Second half of the array tracks nids where faults happen */
2496 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2497 nr_node_ids;
2498
2499 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2500 grp->faults[i] = p->numa_faults[i];
2501
2502 grp->total_faults = p->total_numa_faults;
2503
2504 grp->nr_tasks++;
2505 rcu_assign_pointer(p->numa_group, grp);
2506 }
2507
2508 rcu_read_lock();
2509 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2510
2511 if (!cpupid_match_pid(tsk, cpupid))
2512 goto no_join;
2513
2514 grp = rcu_dereference(tsk->numa_group);
2515 if (!grp)
2516 goto no_join;
2517
2518 my_grp = deref_curr_numa_group(p);
2519 if (grp == my_grp)
2520 goto no_join;
2521
2522 /*
2523 * Only join the other group if its bigger; if we're the bigger group,
2524 * the other task will join us.
2525 */
2526 if (my_grp->nr_tasks > grp->nr_tasks)
2527 goto no_join;
2528
2529 /*
2530 * Tie-break on the grp address.
2531 */
2532 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2533 goto no_join;
2534
2535 /* Always join threads in the same process. */
2536 if (tsk->mm == current->mm)
2537 join = true;
2538
2539 /* Simple filter to avoid false positives due to PID collisions */
2540 if (flags & TNF_SHARED)
2541 join = true;
2542
2543 /* Update priv based on whether false sharing was detected */
2544 *priv = !join;
2545
2546 if (join && !get_numa_group(grp))
2547 goto no_join;
2548
2549 rcu_read_unlock();
2550
2551 if (!join)
2552 return;
2553
2554 BUG_ON(irqs_disabled());
2555 double_lock_irq(&my_grp->lock, &grp->lock);
2556
2557 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2558 my_grp->faults[i] -= p->numa_faults[i];
2559 grp->faults[i] += p->numa_faults[i];
2560 }
2561 my_grp->total_faults -= p->total_numa_faults;
2562 grp->total_faults += p->total_numa_faults;
2563
2564 my_grp->nr_tasks--;
2565 grp->nr_tasks++;
2566
2567 spin_unlock(&my_grp->lock);
2568 spin_unlock_irq(&grp->lock);
2569
2570 rcu_assign_pointer(p->numa_group, grp);
2571
2572 put_numa_group(my_grp);
2573 return;
2574
2575 no_join:
2576 rcu_read_unlock();
2577 return;
2578 }
2579
2580 /*
2581 * Get rid of NUMA staticstics associated with a task (either current or dead).
2582 * If @final is set, the task is dead and has reached refcount zero, so we can
2583 * safely free all relevant data structures. Otherwise, there might be
2584 * concurrent reads from places like load balancing and procfs, and we should
2585 * reset the data back to default state without freeing ->numa_faults.
2586 */
2587 void task_numa_free(struct task_struct *p, bool final)
2588 {
2589 /* safe: p either is current or is being freed by current */
2590 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2591 unsigned long *numa_faults = p->numa_faults;
2592 unsigned long flags;
2593 int i;
2594
2595 if (!numa_faults)
2596 return;
2597
2598 if (grp) {
2599 spin_lock_irqsave(&grp->lock, flags);
2600 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2601 grp->faults[i] -= p->numa_faults[i];
2602 grp->total_faults -= p->total_numa_faults;
2603
2604 grp->nr_tasks--;
2605 spin_unlock_irqrestore(&grp->lock, flags);
2606 RCU_INIT_POINTER(p->numa_group, NULL);
2607 put_numa_group(grp);
2608 }
2609
2610 if (final) {
2611 p->numa_faults = NULL;
2612 kfree(numa_faults);
2613 } else {
2614 p->total_numa_faults = 0;
2615 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2616 numa_faults[i] = 0;
2617 }
2618 }
2619
2620 /*
2621 * Got a PROT_NONE fault for a page on @node.
2622 */
2623 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2624 {
2625 struct task_struct *p = current;
2626 bool migrated = flags & TNF_MIGRATED;
2627 int cpu_node = task_node(current);
2628 int local = !!(flags & TNF_FAULT_LOCAL);
2629 struct numa_group *ng;
2630 int priv;
2631
2632 if (!static_branch_likely(&sched_numa_balancing))
2633 return;
2634
2635 /* for example, ksmd faulting in a user's mm */
2636 if (!p->mm)
2637 return;
2638
2639 /* Allocate buffer to track faults on a per-node basis */
2640 if (unlikely(!p->numa_faults)) {
2641 int size = sizeof(*p->numa_faults) *
2642 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2643
2644 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2645 if (!p->numa_faults)
2646 return;
2647
2648 p->total_numa_faults = 0;
2649 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2650 }
2651
2652 /*
2653 * First accesses are treated as private, otherwise consider accesses
2654 * to be private if the accessing pid has not changed
2655 */
2656 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2657 priv = 1;
2658 } else {
2659 priv = cpupid_match_pid(p, last_cpupid);
2660 if (!priv && !(flags & TNF_NO_GROUP))
2661 task_numa_group(p, last_cpupid, flags, &priv);
2662 }
2663
2664 /*
2665 * If a workload spans multiple NUMA nodes, a shared fault that
2666 * occurs wholly within the set of nodes that the workload is
2667 * actively using should be counted as local. This allows the
2668 * scan rate to slow down when a workload has settled down.
2669 */
2670 ng = deref_curr_numa_group(p);
2671 if (!priv && !local && ng && ng->active_nodes > 1 &&
2672 numa_is_active_node(cpu_node, ng) &&
2673 numa_is_active_node(mem_node, ng))
2674 local = 1;
2675
2676 /*
2677 * Retry to migrate task to preferred node periodically, in case it
2678 * previously failed, or the scheduler moved us.
2679 */
2680 if (time_after(jiffies, p->numa_migrate_retry)) {
2681 task_numa_placement(p);
2682 numa_migrate_preferred(p);
2683 }
2684
2685 if (migrated)
2686 p->numa_pages_migrated += pages;
2687 if (flags & TNF_MIGRATE_FAIL)
2688 p->numa_faults_locality[2] += pages;
2689
2690 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2691 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2692 p->numa_faults_locality[local] += pages;
2693 }
2694
2695 static void reset_ptenuma_scan(struct task_struct *p)
2696 {
2697 /*
2698 * We only did a read acquisition of the mmap sem, so
2699 * p->mm->numa_scan_seq is written to without exclusive access
2700 * and the update is not guaranteed to be atomic. That's not
2701 * much of an issue though, since this is just used for
2702 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2703 * expensive, to avoid any form of compiler optimizations:
2704 */
2705 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2706 p->mm->numa_scan_offset = 0;
2707 }
2708
2709 /*
2710 * The expensive part of numa migration is done from task_work context.
2711 * Triggered from task_tick_numa().
2712 */
2713 static void task_numa_work(struct callback_head *work)
2714 {
2715 unsigned long migrate, next_scan, now = jiffies;
2716 struct task_struct *p = current;
2717 struct mm_struct *mm = p->mm;
2718 u64 runtime = p->se.sum_exec_runtime;
2719 struct vm_area_struct *vma;
2720 unsigned long start, end;
2721 unsigned long nr_pte_updates = 0;
2722 long pages, virtpages;
2723
2724 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2725
2726 work->next = work;
2727 /*
2728 * Who cares about NUMA placement when they're dying.
2729 *
2730 * NOTE: make sure not to dereference p->mm before this check,
2731 * exit_task_work() happens _after_ exit_mm() so we could be called
2732 * without p->mm even though we still had it when we enqueued this
2733 * work.
2734 */
2735 if (p->flags & PF_EXITING)
2736 return;
2737
2738 if (!mm->numa_next_scan) {
2739 mm->numa_next_scan = now +
2740 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2741 }
2742
2743 /*
2744 * Enforce maximal scan/migration frequency..
2745 */
2746 migrate = mm->numa_next_scan;
2747 if (time_before(now, migrate))
2748 return;
2749
2750 if (p->numa_scan_period == 0) {
2751 p->numa_scan_period_max = task_scan_max(p);
2752 p->numa_scan_period = task_scan_start(p);
2753 }
2754
2755 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2756 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2757 return;
2758
2759 /*
2760 * Delay this task enough that another task of this mm will likely win
2761 * the next time around.
2762 */
2763 p->node_stamp += 2 * TICK_NSEC;
2764
2765 start = mm->numa_scan_offset;
2766 pages = sysctl_numa_balancing_scan_size;
2767 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2768 virtpages = pages * 8; /* Scan up to this much virtual space */
2769 if (!pages)
2770 return;
2771
2772
2773 if (!mmap_read_trylock(mm))
2774 return;
2775 vma = find_vma(mm, start);
2776 if (!vma) {
2777 reset_ptenuma_scan(p);
2778 start = 0;
2779 vma = mm->mmap;
2780 }
2781 for (; vma; vma = vma->vm_next) {
2782 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2783 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2784 continue;
2785 }
2786
2787 /*
2788 * Shared library pages mapped by multiple processes are not
2789 * migrated as it is expected they are cache replicated. Avoid
2790 * hinting faults in read-only file-backed mappings or the vdso
2791 * as migrating the pages will be of marginal benefit.
2792 */
2793 if (!vma->vm_mm ||
2794 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2795 continue;
2796
2797 /*
2798 * Skip inaccessible VMAs to avoid any confusion between
2799 * PROT_NONE and NUMA hinting ptes
2800 */
2801 if (!vma_is_accessible(vma))
2802 continue;
2803
2804 do {
2805 start = max(start, vma->vm_start);
2806 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2807 end = min(end, vma->vm_end);
2808 nr_pte_updates = change_prot_numa(vma, start, end);
2809
2810 /*
2811 * Try to scan sysctl_numa_balancing_size worth of
2812 * hpages that have at least one present PTE that
2813 * is not already pte-numa. If the VMA contains
2814 * areas that are unused or already full of prot_numa
2815 * PTEs, scan up to virtpages, to skip through those
2816 * areas faster.
2817 */
2818 if (nr_pte_updates)
2819 pages -= (end - start) >> PAGE_SHIFT;
2820 virtpages -= (end - start) >> PAGE_SHIFT;
2821
2822 start = end;
2823 if (pages <= 0 || virtpages <= 0)
2824 goto out;
2825
2826 cond_resched();
2827 } while (end != vma->vm_end);
2828 }
2829
2830 out:
2831 /*
2832 * It is possible to reach the end of the VMA list but the last few
2833 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2834 * would find the !migratable VMA on the next scan but not reset the
2835 * scanner to the start so check it now.
2836 */
2837 if (vma)
2838 mm->numa_scan_offset = start;
2839 else
2840 reset_ptenuma_scan(p);
2841 mmap_read_unlock(mm);
2842
2843 /*
2844 * Make sure tasks use at least 32x as much time to run other code
2845 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2846 * Usually update_task_scan_period slows down scanning enough; on an
2847 * overloaded system we need to limit overhead on a per task basis.
2848 */
2849 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2850 u64 diff = p->se.sum_exec_runtime - runtime;
2851 p->node_stamp += 32 * diff;
2852 }
2853 }
2854
2855 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2856 {
2857 int mm_users = 0;
2858 struct mm_struct *mm = p->mm;
2859
2860 if (mm) {
2861 mm_users = atomic_read(&mm->mm_users);
2862 if (mm_users == 1) {
2863 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2864 mm->numa_scan_seq = 0;
2865 }
2866 }
2867 p->node_stamp = 0;
2868 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2869 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2870 /* Protect against double add, see task_tick_numa and task_numa_work */
2871 p->numa_work.next = &p->numa_work;
2872 p->numa_faults = NULL;
2873 RCU_INIT_POINTER(p->numa_group, NULL);
2874 p->last_task_numa_placement = 0;
2875 p->last_sum_exec_runtime = 0;
2876
2877 init_task_work(&p->numa_work, task_numa_work);
2878
2879 /* New address space, reset the preferred nid */
2880 if (!(clone_flags & CLONE_VM)) {
2881 p->numa_preferred_nid = NUMA_NO_NODE;
2882 return;
2883 }
2884
2885 /*
2886 * New thread, keep existing numa_preferred_nid which should be copied
2887 * already by arch_dup_task_struct but stagger when scans start.
2888 */
2889 if (mm) {
2890 unsigned int delay;
2891
2892 delay = min_t(unsigned int, task_scan_max(current),
2893 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2894 delay += 2 * TICK_NSEC;
2895 p->node_stamp = delay;
2896 }
2897 }
2898
2899 /*
2900 * Drive the periodic memory faults..
2901 */
2902 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2903 {
2904 struct callback_head *work = &curr->numa_work;
2905 u64 period, now;
2906
2907 /*
2908 * We don't care about NUMA placement if we don't have memory.
2909 */
2910 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2911 return;
2912
2913 /*
2914 * Using runtime rather than walltime has the dual advantage that
2915 * we (mostly) drive the selection from busy threads and that the
2916 * task needs to have done some actual work before we bother with
2917 * NUMA placement.
2918 */
2919 now = curr->se.sum_exec_runtime;
2920 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2921
2922 if (now > curr->node_stamp + period) {
2923 if (!curr->node_stamp)
2924 curr->numa_scan_period = task_scan_start(curr);
2925 curr->node_stamp += period;
2926
2927 if (!time_before(jiffies, curr->mm->numa_next_scan))
2928 task_work_add(curr, work, true);
2929 }
2930 }
2931
2932 static void update_scan_period(struct task_struct *p, int new_cpu)
2933 {
2934 int src_nid = cpu_to_node(task_cpu(p));
2935 int dst_nid = cpu_to_node(new_cpu);
2936
2937 if (!static_branch_likely(&sched_numa_balancing))
2938 return;
2939
2940 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2941 return;
2942
2943 if (src_nid == dst_nid)
2944 return;
2945
2946 /*
2947 * Allow resets if faults have been trapped before one scan
2948 * has completed. This is most likely due to a new task that
2949 * is pulled cross-node due to wakeups or load balancing.
2950 */
2951 if (p->numa_scan_seq) {
2952 /*
2953 * Avoid scan adjustments if moving to the preferred
2954 * node or if the task was not previously running on
2955 * the preferred node.
2956 */
2957 if (dst_nid == p->numa_preferred_nid ||
2958 (p->numa_preferred_nid != NUMA_NO_NODE &&
2959 src_nid != p->numa_preferred_nid))
2960 return;
2961 }
2962
2963 p->numa_scan_period = task_scan_start(p);
2964 }
2965
2966 #else
2967 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2968 {
2969 }
2970
2971 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2972 {
2973 }
2974
2975 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2976 {
2977 }
2978
2979 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2980 {
2981 }
2982
2983 #endif /* CONFIG_NUMA_BALANCING */
2984
2985 static void
2986 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2987 {
2988 update_load_add(&cfs_rq->load, se->load.weight);
2989 #ifdef CONFIG_SMP
2990 if (entity_is_task(se)) {
2991 struct rq *rq = rq_of(cfs_rq);
2992
2993 account_numa_enqueue(rq, task_of(se));
2994 list_add(&se->group_node, &rq->cfs_tasks);
2995 }
2996 #endif
2997 cfs_rq->nr_running++;
2998 }
2999
3000 static void
3001 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3002 {
3003 update_load_sub(&cfs_rq->load, se->load.weight);
3004 #ifdef CONFIG_SMP
3005 if (entity_is_task(se)) {
3006 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3007 list_del_init(&se->group_node);
3008 }
3009 #endif
3010 cfs_rq->nr_running--;
3011 }
3012
3013 /*
3014 * Signed add and clamp on underflow.
3015 *
3016 * Explicitly do a load-store to ensure the intermediate value never hits
3017 * memory. This allows lockless observations without ever seeing the negative
3018 * values.
3019 */
3020 #define add_positive(_ptr, _val) do { \
3021 typeof(_ptr) ptr = (_ptr); \
3022 typeof(_val) val = (_val); \
3023 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3024 \
3025 res = var + val; \
3026 \
3027 if (val < 0 && res > var) \
3028 res = 0; \
3029 \
3030 WRITE_ONCE(*ptr, res); \
3031 } while (0)
3032
3033 /*
3034 * Unsigned subtract and clamp on underflow.
3035 *
3036 * Explicitly do a load-store to ensure the intermediate value never hits
3037 * memory. This allows lockless observations without ever seeing the negative
3038 * values.
3039 */
3040 #define sub_positive(_ptr, _val) do { \
3041 typeof(_ptr) ptr = (_ptr); \
3042 typeof(*ptr) val = (_val); \
3043 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3044 res = var - val; \
3045 if (res > var) \
3046 res = 0; \
3047 WRITE_ONCE(*ptr, res); \
3048 } while (0)
3049
3050 /*
3051 * Remove and clamp on negative, from a local variable.
3052 *
3053 * A variant of sub_positive(), which does not use explicit load-store
3054 * and is thus optimized for local variable updates.
3055 */
3056 #define lsub_positive(_ptr, _val) do { \
3057 typeof(_ptr) ptr = (_ptr); \
3058 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3059 } while (0)
3060
3061 #ifdef CONFIG_SMP
3062 static inline void
3063 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3064 {
3065 cfs_rq->avg.load_avg += se->avg.load_avg;
3066 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3067 }
3068
3069 static inline void
3070 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3071 {
3072 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3073 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3074 }
3075 #else
3076 static inline void
3077 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3078 static inline void
3079 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3080 #endif
3081
3082 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3083 unsigned long weight)
3084 {
3085 if (se->on_rq) {
3086 /* commit outstanding execution time */
3087 if (cfs_rq->curr == se)
3088 update_curr(cfs_rq);
3089 account_entity_dequeue(cfs_rq, se);
3090 }
3091 dequeue_load_avg(cfs_rq, se);
3092
3093 update_load_set(&se->load, weight);
3094
3095 #ifdef CONFIG_SMP
3096 do {
3097 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
3098
3099 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3100 } while (0);
3101 #endif
3102
3103 enqueue_load_avg(cfs_rq, se);
3104 if (se->on_rq)
3105 account_entity_enqueue(cfs_rq, se);
3106
3107 }
3108
3109 void reweight_task(struct task_struct *p, int prio)
3110 {
3111 struct sched_entity *se = &p->se;
3112 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3113 struct load_weight *load = &se->load;
3114 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3115
3116 reweight_entity(cfs_rq, se, weight);
3117 load->inv_weight = sched_prio_to_wmult[prio];
3118 }
3119
3120 #ifdef CONFIG_FAIR_GROUP_SCHED
3121 #ifdef CONFIG_SMP
3122 /*
3123 * All this does is approximate the hierarchical proportion which includes that
3124 * global sum we all love to hate.
3125 *
3126 * That is, the weight of a group entity, is the proportional share of the
3127 * group weight based on the group runqueue weights. That is:
3128 *
3129 * tg->weight * grq->load.weight
3130 * ge->load.weight = ----------------------------- (1)
3131 * \Sum grq->load.weight
3132 *
3133 * Now, because computing that sum is prohibitively expensive to compute (been
3134 * there, done that) we approximate it with this average stuff. The average
3135 * moves slower and therefore the approximation is cheaper and more stable.
3136 *
3137 * So instead of the above, we substitute:
3138 *
3139 * grq->load.weight -> grq->avg.load_avg (2)
3140 *
3141 * which yields the following:
3142 *
3143 * tg->weight * grq->avg.load_avg
3144 * ge->load.weight = ------------------------------ (3)
3145 * tg->load_avg
3146 *
3147 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3148 *
3149 * That is shares_avg, and it is right (given the approximation (2)).
3150 *
3151 * The problem with it is that because the average is slow -- it was designed
3152 * to be exactly that of course -- this leads to transients in boundary
3153 * conditions. In specific, the case where the group was idle and we start the
3154 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3155 * yielding bad latency etc..
3156 *
3157 * Now, in that special case (1) reduces to:
3158 *
3159 * tg->weight * grq->load.weight
3160 * ge->load.weight = ----------------------------- = tg->weight (4)
3161 * grp->load.weight
3162 *
3163 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3164 *
3165 * So what we do is modify our approximation (3) to approach (4) in the (near)
3166 * UP case, like:
3167 *
3168 * ge->load.weight =
3169 *
3170 * tg->weight * grq->load.weight
3171 * --------------------------------------------------- (5)
3172 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3173 *
3174 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3175 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3176 *
3177 *
3178 * tg->weight * grq->load.weight
3179 * ge->load.weight = ----------------------------- (6)
3180 * tg_load_avg'
3181 *
3182 * Where:
3183 *
3184 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3185 * max(grq->load.weight, grq->avg.load_avg)
3186 *
3187 * And that is shares_weight and is icky. In the (near) UP case it approaches
3188 * (4) while in the normal case it approaches (3). It consistently
3189 * overestimates the ge->load.weight and therefore:
3190 *
3191 * \Sum ge->load.weight >= tg->weight
3192 *
3193 * hence icky!
3194 */
3195 static long calc_group_shares(struct cfs_rq *cfs_rq)
3196 {
3197 long tg_weight, tg_shares, load, shares;
3198 struct task_group *tg = cfs_rq->tg;
3199
3200 tg_shares = READ_ONCE(tg->shares);
3201
3202 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3203
3204 tg_weight = atomic_long_read(&tg->load_avg);
3205
3206 /* Ensure tg_weight >= load */
3207 tg_weight -= cfs_rq->tg_load_avg_contrib;
3208 tg_weight += load;
3209
3210 shares = (tg_shares * load);
3211 if (tg_weight)
3212 shares /= tg_weight;
3213
3214 /*
3215 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3216 * of a group with small tg->shares value. It is a floor value which is
3217 * assigned as a minimum load.weight to the sched_entity representing
3218 * the group on a CPU.
3219 *
3220 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3221 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3222 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3223 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3224 * instead of 0.
3225 */
3226 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3227 }
3228 #endif /* CONFIG_SMP */
3229
3230 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3231
3232 /*
3233 * Recomputes the group entity based on the current state of its group
3234 * runqueue.
3235 */
3236 static void update_cfs_group(struct sched_entity *se)
3237 {
3238 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3239 long shares;
3240
3241 if (!gcfs_rq)
3242 return;
3243
3244 if (throttled_hierarchy(gcfs_rq))
3245 return;
3246
3247 #ifndef CONFIG_SMP
3248 shares = READ_ONCE(gcfs_rq->tg->shares);
3249
3250 if (likely(se->load.weight == shares))
3251 return;
3252 #else
3253 shares = calc_group_shares(gcfs_rq);
3254 #endif
3255
3256 reweight_entity(cfs_rq_of(se), se, shares);
3257 }
3258
3259 #else /* CONFIG_FAIR_GROUP_SCHED */
3260 static inline void update_cfs_group(struct sched_entity *se)
3261 {
3262 }
3263 #endif /* CONFIG_FAIR_GROUP_SCHED */
3264
3265 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3266 {
3267 struct rq *rq = rq_of(cfs_rq);
3268
3269 if (&rq->cfs == cfs_rq) {
3270 /*
3271 * There are a few boundary cases this might miss but it should
3272 * get called often enough that that should (hopefully) not be
3273 * a real problem.
3274 *
3275 * It will not get called when we go idle, because the idle
3276 * thread is a different class (!fair), nor will the utilization
3277 * number include things like RT tasks.
3278 *
3279 * As is, the util number is not freq-invariant (we'd have to
3280 * implement arch_scale_freq_capacity() for that).
3281 *
3282 * See cpu_util().
3283 */
3284 cpufreq_update_util(rq, flags);
3285 }
3286 }
3287
3288 #ifdef CONFIG_SMP
3289 #ifdef CONFIG_FAIR_GROUP_SCHED
3290 /**
3291 * update_tg_load_avg - update the tg's load avg
3292 * @cfs_rq: the cfs_rq whose avg changed
3293 * @force: update regardless of how small the difference
3294 *
3295 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3296 * However, because tg->load_avg is a global value there are performance
3297 * considerations.
3298 *
3299 * In order to avoid having to look at the other cfs_rq's, we use a
3300 * differential update where we store the last value we propagated. This in
3301 * turn allows skipping updates if the differential is 'small'.
3302 *
3303 * Updating tg's load_avg is necessary before update_cfs_share().
3304 */
3305 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3306 {
3307 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3308
3309 /*
3310 * No need to update load_avg for root_task_group as it is not used.
3311 */
3312 if (cfs_rq->tg == &root_task_group)
3313 return;
3314
3315 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3316 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3317 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3318 }
3319 }
3320
3321 /*
3322 * Called within set_task_rq() right before setting a task's CPU. The
3323 * caller only guarantees p->pi_lock is held; no other assumptions,
3324 * including the state of rq->lock, should be made.
3325 */
3326 void set_task_rq_fair(struct sched_entity *se,
3327 struct cfs_rq *prev, struct cfs_rq *next)
3328 {
3329 u64 p_last_update_time;
3330 u64 n_last_update_time;
3331
3332 if (!sched_feat(ATTACH_AGE_LOAD))
3333 return;
3334
3335 /*
3336 * We are supposed to update the task to "current" time, then its up to
3337 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3338 * getting what current time is, so simply throw away the out-of-date
3339 * time. This will result in the wakee task is less decayed, but giving
3340 * the wakee more load sounds not bad.
3341 */
3342 if (!(se->avg.last_update_time && prev))
3343 return;
3344
3345 #ifndef CONFIG_64BIT
3346 {
3347 u64 p_last_update_time_copy;
3348 u64 n_last_update_time_copy;
3349
3350 do {
3351 p_last_update_time_copy = prev->load_last_update_time_copy;
3352 n_last_update_time_copy = next->load_last_update_time_copy;
3353
3354 smp_rmb();
3355
3356 p_last_update_time = prev->avg.last_update_time;
3357 n_last_update_time = next->avg.last_update_time;
3358
3359 } while (p_last_update_time != p_last_update_time_copy ||
3360 n_last_update_time != n_last_update_time_copy);
3361 }
3362 #else
3363 p_last_update_time = prev->avg.last_update_time;
3364 n_last_update_time = next->avg.last_update_time;
3365 #endif
3366 __update_load_avg_blocked_se(p_last_update_time, se);
3367 se->avg.last_update_time = n_last_update_time;
3368 }
3369
3370
3371 /*
3372 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3373 * propagate its contribution. The key to this propagation is the invariant
3374 * that for each group:
3375 *
3376 * ge->avg == grq->avg (1)
3377 *
3378 * _IFF_ we look at the pure running and runnable sums. Because they
3379 * represent the very same entity, just at different points in the hierarchy.
3380 *
3381 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3382 * and simply copies the running/runnable sum over (but still wrong, because
3383 * the group entity and group rq do not have their PELT windows aligned).
3384 *
3385 * However, update_tg_cfs_load() is more complex. So we have:
3386 *
3387 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3388 *
3389 * And since, like util, the runnable part should be directly transferable,
3390 * the following would _appear_ to be the straight forward approach:
3391 *
3392 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3393 *
3394 * And per (1) we have:
3395 *
3396 * ge->avg.runnable_avg == grq->avg.runnable_avg
3397 *
3398 * Which gives:
3399 *
3400 * ge->load.weight * grq->avg.load_avg
3401 * ge->avg.load_avg = ----------------------------------- (4)
3402 * grq->load.weight
3403 *
3404 * Except that is wrong!
3405 *
3406 * Because while for entities historical weight is not important and we
3407 * really only care about our future and therefore can consider a pure
3408 * runnable sum, runqueues can NOT do this.
3409 *
3410 * We specifically want runqueues to have a load_avg that includes
3411 * historical weights. Those represent the blocked load, the load we expect
3412 * to (shortly) return to us. This only works by keeping the weights as
3413 * integral part of the sum. We therefore cannot decompose as per (3).
3414 *
3415 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3416 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3417 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3418 * runnable section of these tasks overlap (or not). If they were to perfectly
3419 * align the rq as a whole would be runnable 2/3 of the time. If however we
3420 * always have at least 1 runnable task, the rq as a whole is always runnable.
3421 *
3422 * So we'll have to approximate.. :/
3423 *
3424 * Given the constraint:
3425 *
3426 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3427 *
3428 * We can construct a rule that adds runnable to a rq by assuming minimal
3429 * overlap.
3430 *
3431 * On removal, we'll assume each task is equally runnable; which yields:
3432 *
3433 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3434 *
3435 * XXX: only do this for the part of runnable > running ?
3436 *
3437 */
3438
3439 static inline void
3440 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3441 {
3442 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3443 /*
3444 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3445 * See ___update_load_avg() for details.
3446 */
3447 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3448
3449 /* Nothing to update */
3450 if (!delta)
3451 return;
3452
3453 /* Set new sched_entity's utilization */
3454 se->avg.util_avg = gcfs_rq->avg.util_avg;
3455 se->avg.util_sum = se->avg.util_avg * divider;
3456
3457 /* Update parent cfs_rq utilization */
3458 add_positive(&cfs_rq->avg.util_avg, delta);
3459 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3460 }
3461
3462 static inline void
3463 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3464 {
3465 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3466 /*
3467 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3468 * See ___update_load_avg() for details.
3469 */
3470 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3471
3472 /* Nothing to update */
3473 if (!delta)
3474 return;
3475
3476 /* Set new sched_entity's runnable */
3477 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3478 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3479
3480 /* Update parent cfs_rq runnable */
3481 add_positive(&cfs_rq->avg.runnable_avg, delta);
3482 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3483 }
3484
3485 static inline void
3486 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3487 {
3488 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3489 unsigned long load_avg;
3490 u64 load_sum = 0;
3491 s64 delta_sum;
3492 u32 divider;
3493
3494 if (!runnable_sum)
3495 return;
3496
3497 gcfs_rq->prop_runnable_sum = 0;
3498
3499 /*
3500 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3501 * See ___update_load_avg() for details.
3502 */
3503 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3504
3505 if (runnable_sum >= 0) {
3506 /*
3507 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3508 * the CPU is saturated running == runnable.
3509 */
3510 runnable_sum += se->avg.load_sum;
3511 runnable_sum = min_t(long, runnable_sum, divider);
3512 } else {
3513 /*
3514 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3515 * assuming all tasks are equally runnable.
3516 */
3517 if (scale_load_down(gcfs_rq->load.weight)) {
3518 load_sum = div_s64(gcfs_rq->avg.load_sum,
3519 scale_load_down(gcfs_rq->load.weight));
3520 }
3521
3522 /* But make sure to not inflate se's runnable */
3523 runnable_sum = min(se->avg.load_sum, load_sum);
3524 }
3525
3526 /*
3527 * runnable_sum can't be lower than running_sum
3528 * Rescale running sum to be in the same range as runnable sum
3529 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3530 * runnable_sum is in [0 : LOAD_AVG_MAX]
3531 */
3532 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3533 runnable_sum = max(runnable_sum, running_sum);
3534
3535 load_sum = (s64)se_weight(se) * runnable_sum;
3536 load_avg = div_s64(load_sum, divider);
3537
3538 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3539 delta_avg = load_avg - se->avg.load_avg;
3540
3541 se->avg.load_sum = runnable_sum;
3542 se->avg.load_avg = load_avg;
3543 add_positive(&cfs_rq->avg.load_avg, delta_avg);
3544 add_positive(&cfs_rq->avg.load_sum, delta_sum);
3545 }
3546
3547 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3548 {
3549 cfs_rq->propagate = 1;
3550 cfs_rq->prop_runnable_sum += runnable_sum;
3551 }
3552
3553 /* Update task and its cfs_rq load average */
3554 static inline int propagate_entity_load_avg(struct sched_entity *se)
3555 {
3556 struct cfs_rq *cfs_rq, *gcfs_rq;
3557
3558 if (entity_is_task(se))
3559 return 0;
3560
3561 gcfs_rq = group_cfs_rq(se);
3562 if (!gcfs_rq->propagate)
3563 return 0;
3564
3565 gcfs_rq->propagate = 0;
3566
3567 cfs_rq = cfs_rq_of(se);
3568
3569 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3570
3571 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3572 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3573 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3574
3575 trace_pelt_cfs_tp(cfs_rq);
3576 trace_pelt_se_tp(se);
3577
3578 return 1;
3579 }
3580
3581 /*
3582 * Check if we need to update the load and the utilization of a blocked
3583 * group_entity:
3584 */
3585 static inline bool skip_blocked_update(struct sched_entity *se)
3586 {
3587 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3588
3589 /*
3590 * If sched_entity still have not zero load or utilization, we have to
3591 * decay it:
3592 */
3593 if (se->avg.load_avg || se->avg.util_avg)
3594 return false;
3595
3596 /*
3597 * If there is a pending propagation, we have to update the load and
3598 * the utilization of the sched_entity:
3599 */
3600 if (gcfs_rq->propagate)
3601 return false;
3602
3603 /*
3604 * Otherwise, the load and the utilization of the sched_entity is
3605 * already zero and there is no pending propagation, so it will be a
3606 * waste of time to try to decay it:
3607 */
3608 return true;
3609 }
3610
3611 #else /* CONFIG_FAIR_GROUP_SCHED */
3612
3613 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3614
3615 static inline int propagate_entity_load_avg(struct sched_entity *se)
3616 {
3617 return 0;
3618 }
3619
3620 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3621
3622 #endif /* CONFIG_FAIR_GROUP_SCHED */
3623
3624 /**
3625 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3626 * @now: current time, as per cfs_rq_clock_pelt()
3627 * @cfs_rq: cfs_rq to update
3628 *
3629 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3630 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3631 * post_init_entity_util_avg().
3632 *
3633 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3634 *
3635 * Returns true if the load decayed or we removed load.
3636 *
3637 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3638 * call update_tg_load_avg() when this function returns true.
3639 */
3640 static inline int
3641 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3642 {
3643 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3644 struct sched_avg *sa = &cfs_rq->avg;
3645 int decayed = 0;
3646
3647 if (cfs_rq->removed.nr) {
3648 unsigned long r;
3649 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3650
3651 raw_spin_lock(&cfs_rq->removed.lock);
3652 swap(cfs_rq->removed.util_avg, removed_util);
3653 swap(cfs_rq->removed.load_avg, removed_load);
3654 swap(cfs_rq->removed.runnable_avg, removed_runnable);
3655 cfs_rq->removed.nr = 0;
3656 raw_spin_unlock(&cfs_rq->removed.lock);
3657
3658 r = removed_load;
3659 sub_positive(&sa->load_avg, r);
3660 sub_positive(&sa->load_sum, r * divider);
3661
3662 r = removed_util;
3663 sub_positive(&sa->util_avg, r);
3664 sub_positive(&sa->util_sum, r * divider);
3665
3666 r = removed_runnable;
3667 sub_positive(&sa->runnable_avg, r);
3668 sub_positive(&sa->runnable_sum, r * divider);
3669
3670 /*
3671 * removed_runnable is the unweighted version of removed_load so we
3672 * can use it to estimate removed_load_sum.
3673 */
3674 add_tg_cfs_propagate(cfs_rq,
3675 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3676
3677 decayed = 1;
3678 }
3679
3680 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3681
3682 #ifndef CONFIG_64BIT
3683 smp_wmb();
3684 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3685 #endif
3686
3687 return decayed;
3688 }
3689
3690 /**
3691 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3692 * @cfs_rq: cfs_rq to attach to
3693 * @se: sched_entity to attach
3694 *
3695 * Must call update_cfs_rq_load_avg() before this, since we rely on
3696 * cfs_rq->avg.last_update_time being current.
3697 */
3698 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3699 {
3700 /*
3701 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3702 * See ___update_load_avg() for details.
3703 */
3704 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3705
3706 /*
3707 * When we attach the @se to the @cfs_rq, we must align the decay
3708 * window because without that, really weird and wonderful things can
3709 * happen.
3710 *
3711 * XXX illustrate
3712 */
3713 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3714 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3715
3716 /*
3717 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3718 * period_contrib. This isn't strictly correct, but since we're
3719 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3720 * _sum a little.
3721 */
3722 se->avg.util_sum = se->avg.util_avg * divider;
3723
3724 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3725
3726 se->avg.load_sum = divider;
3727 if (se_weight(se)) {
3728 se->avg.load_sum =
3729 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3730 }
3731
3732 enqueue_load_avg(cfs_rq, se);
3733 cfs_rq->avg.util_avg += se->avg.util_avg;
3734 cfs_rq->avg.util_sum += se->avg.util_sum;
3735 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3736 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3737
3738 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3739
3740 cfs_rq_util_change(cfs_rq, 0);
3741
3742 trace_pelt_cfs_tp(cfs_rq);
3743 }
3744
3745 /**
3746 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3747 * @cfs_rq: cfs_rq to detach from
3748 * @se: sched_entity to detach
3749 *
3750 * Must call update_cfs_rq_load_avg() before this, since we rely on
3751 * cfs_rq->avg.last_update_time being current.
3752 */
3753 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3754 {
3755 dequeue_load_avg(cfs_rq, se);
3756 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3757 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3758 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3759 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3760
3761 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3762
3763 cfs_rq_util_change(cfs_rq, 0);
3764
3765 trace_pelt_cfs_tp(cfs_rq);
3766 }
3767
3768 /*
3769 * Optional action to be done while updating the load average
3770 */
3771 #define UPDATE_TG 0x1
3772 #define SKIP_AGE_LOAD 0x2
3773 #define DO_ATTACH 0x4
3774
3775 /* Update task and its cfs_rq load average */
3776 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3777 {
3778 u64 now = cfs_rq_clock_pelt(cfs_rq);
3779 int decayed;
3780
3781 /*
3782 * Track task load average for carrying it to new CPU after migrated, and
3783 * track group sched_entity load average for task_h_load calc in migration
3784 */
3785 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3786 __update_load_avg_se(now, cfs_rq, se);
3787
3788 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3789 decayed |= propagate_entity_load_avg(se);
3790
3791 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3792
3793 /*
3794 * DO_ATTACH means we're here from enqueue_entity().
3795 * !last_update_time means we've passed through
3796 * migrate_task_rq_fair() indicating we migrated.
3797 *
3798 * IOW we're enqueueing a task on a new CPU.
3799 */
3800 attach_entity_load_avg(cfs_rq, se);
3801 update_tg_load_avg(cfs_rq, 0);
3802
3803 } else if (decayed) {
3804 cfs_rq_util_change(cfs_rq, 0);
3805
3806 if (flags & UPDATE_TG)
3807 update_tg_load_avg(cfs_rq, 0);
3808 }
3809 }
3810
3811 #ifndef CONFIG_64BIT
3812 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3813 {
3814 u64 last_update_time_copy;
3815 u64 last_update_time;
3816
3817 do {
3818 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3819 smp_rmb();
3820 last_update_time = cfs_rq->avg.last_update_time;
3821 } while (last_update_time != last_update_time_copy);
3822
3823 return last_update_time;
3824 }
3825 #else
3826 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3827 {
3828 return cfs_rq->avg.last_update_time;
3829 }
3830 #endif
3831
3832 /*
3833 * Synchronize entity load avg of dequeued entity without locking
3834 * the previous rq.
3835 */
3836 static void sync_entity_load_avg(struct sched_entity *se)
3837 {
3838 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3839 u64 last_update_time;
3840
3841 last_update_time = cfs_rq_last_update_time(cfs_rq);
3842 __update_load_avg_blocked_se(last_update_time, se);
3843 }
3844
3845 /*
3846 * Task first catches up with cfs_rq, and then subtract
3847 * itself from the cfs_rq (task must be off the queue now).
3848 */
3849 static void remove_entity_load_avg(struct sched_entity *se)
3850 {
3851 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3852 unsigned long flags;
3853
3854 /*
3855 * tasks cannot exit without having gone through wake_up_new_task() ->
3856 * post_init_entity_util_avg() which will have added things to the
3857 * cfs_rq, so we can remove unconditionally.
3858 */
3859
3860 sync_entity_load_avg(se);
3861
3862 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3863 ++cfs_rq->removed.nr;
3864 cfs_rq->removed.util_avg += se->avg.util_avg;
3865 cfs_rq->removed.load_avg += se->avg.load_avg;
3866 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
3867 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3868 }
3869
3870 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3871 {
3872 return cfs_rq->avg.runnable_avg;
3873 }
3874
3875 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3876 {
3877 return cfs_rq->avg.load_avg;
3878 }
3879
3880 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3881
3882 static inline unsigned long task_util(struct task_struct *p)
3883 {
3884 return READ_ONCE(p->se.avg.util_avg);
3885 }
3886
3887 static inline unsigned long _task_util_est(struct task_struct *p)
3888 {
3889 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3890
3891 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3892 }
3893
3894 static inline unsigned long task_util_est(struct task_struct *p)
3895 {
3896 return max(task_util(p), _task_util_est(p));
3897 }
3898
3899 #ifdef CONFIG_UCLAMP_TASK
3900 static inline unsigned long uclamp_task_util(struct task_struct *p)
3901 {
3902 return clamp(task_util_est(p),
3903 uclamp_eff_value(p, UCLAMP_MIN),
3904 uclamp_eff_value(p, UCLAMP_MAX));
3905 }
3906 #else
3907 static inline unsigned long uclamp_task_util(struct task_struct *p)
3908 {
3909 return task_util_est(p);
3910 }
3911 #endif
3912
3913 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3914 struct task_struct *p)
3915 {
3916 unsigned int enqueued;
3917
3918 if (!sched_feat(UTIL_EST))
3919 return;
3920
3921 /* Update root cfs_rq's estimated utilization */
3922 enqueued = cfs_rq->avg.util_est.enqueued;
3923 enqueued += _task_util_est(p);
3924 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3925 }
3926
3927 /*
3928 * Check if a (signed) value is within a specified (unsigned) margin,
3929 * based on the observation that:
3930 *
3931 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3932 *
3933 * NOTE: this only works when value + maring < INT_MAX.
3934 */
3935 static inline bool within_margin(int value, int margin)
3936 {
3937 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3938 }
3939
3940 static void
3941 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3942 {
3943 long last_ewma_diff;
3944 struct util_est ue;
3945 int cpu;
3946
3947 if (!sched_feat(UTIL_EST))
3948 return;
3949
3950 /* Update root cfs_rq's estimated utilization */
3951 ue.enqueued = cfs_rq->avg.util_est.enqueued;
3952 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3953 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3954
3955 /*
3956 * Skip update of task's estimated utilization when the task has not
3957 * yet completed an activation, e.g. being migrated.
3958 */
3959 if (!task_sleep)
3960 return;
3961
3962 /*
3963 * If the PELT values haven't changed since enqueue time,
3964 * skip the util_est update.
3965 */
3966 ue = p->se.avg.util_est;
3967 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3968 return;
3969
3970 /*
3971 * Reset EWMA on utilization increases, the moving average is used only
3972 * to smooth utilization decreases.
3973 */
3974 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3975 if (sched_feat(UTIL_EST_FASTUP)) {
3976 if (ue.ewma < ue.enqueued) {
3977 ue.ewma = ue.enqueued;
3978 goto done;
3979 }
3980 }
3981
3982 /*
3983 * Skip update of task's estimated utilization when its EWMA is
3984 * already ~1% close to its last activation value.
3985 */
3986 last_ewma_diff = ue.enqueued - ue.ewma;
3987 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3988 return;
3989
3990 /*
3991 * To avoid overestimation of actual task utilization, skip updates if
3992 * we cannot grant there is idle time in this CPU.
3993 */
3994 cpu = cpu_of(rq_of(cfs_rq));
3995 if (task_util(p) > capacity_orig_of(cpu))
3996 return;
3997
3998 /*
3999 * Update Task's estimated utilization
4000 *
4001 * When *p completes an activation we can consolidate another sample
4002 * of the task size. This is done by storing the current PELT value
4003 * as ue.enqueued and by using this value to update the Exponential
4004 * Weighted Moving Average (EWMA):
4005 *
4006 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4007 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4008 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4009 * = w * ( last_ewma_diff ) + ewma(t-1)
4010 * = w * (last_ewma_diff + ewma(t-1) / w)
4011 *
4012 * Where 'w' is the weight of new samples, which is configured to be
4013 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4014 */
4015 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4016 ue.ewma += last_ewma_diff;
4017 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4018 done:
4019 WRITE_ONCE(p->se.avg.util_est, ue);
4020 }
4021
4022 static inline int task_fits_capacity(struct task_struct *p, long capacity)
4023 {
4024 return fits_capacity(uclamp_task_util(p), capacity);
4025 }
4026
4027 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4028 {
4029 if (!static_branch_unlikely(&sched_asym_cpucapacity))
4030 return;
4031
4032 if (!p) {
4033 rq->misfit_task_load = 0;
4034 return;
4035 }
4036
4037 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4038 rq->misfit_task_load = 0;
4039 return;
4040 }
4041
4042 rq->misfit_task_load = task_h_load(p);
4043 }
4044
4045 #else /* CONFIG_SMP */
4046
4047 #define UPDATE_TG 0x0
4048 #define SKIP_AGE_LOAD 0x0
4049 #define DO_ATTACH 0x0
4050
4051 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4052 {
4053 cfs_rq_util_change(cfs_rq, 0);
4054 }
4055
4056 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4057
4058 static inline void
4059 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4060 static inline void
4061 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4062
4063 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4064 {
4065 return 0;
4066 }
4067
4068 static inline void
4069 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4070
4071 static inline void
4072 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
4073 bool task_sleep) {}
4074 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4075
4076 #endif /* CONFIG_SMP */
4077
4078 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4079 {
4080 #ifdef CONFIG_SCHED_DEBUG
4081 s64 d = se->vruntime - cfs_rq->min_vruntime;
4082
4083 if (d < 0)
4084 d = -d;
4085
4086 if (d > 3*sysctl_sched_latency)
4087 schedstat_inc(cfs_rq->nr_spread_over);
4088 #endif
4089 }
4090
4091 static void
4092 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4093 {
4094 u64 vruntime = cfs_rq->min_vruntime;
4095
4096 /*
4097 * The 'current' period is already promised to the current tasks,
4098 * however the extra weight of the new task will slow them down a
4099 * little, place the new task so that it fits in the slot that
4100 * stays open at the end.
4101 */
4102 if (initial && sched_feat(START_DEBIT))
4103 vruntime += sched_vslice(cfs_rq, se);
4104
4105 /* sleeps up to a single latency don't count. */
4106 if (!initial) {
4107 unsigned long thresh = sysctl_sched_latency;
4108
4109 /*
4110 * Halve their sleep time's effect, to allow
4111 * for a gentler effect of sleepers:
4112 */
4113 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4114 thresh >>= 1;
4115
4116 vruntime -= thresh;
4117 }
4118
4119 /* ensure we never gain time by being placed backwards. */
4120 se->vruntime = max_vruntime(se->vruntime, vruntime);
4121 }
4122
4123 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4124
4125 static inline void check_schedstat_required(void)
4126 {
4127 #ifdef CONFIG_SCHEDSTATS
4128 if (schedstat_enabled())
4129 return;
4130
4131 /* Force schedstat enabled if a dependent tracepoint is active */
4132 if (trace_sched_stat_wait_enabled() ||
4133 trace_sched_stat_sleep_enabled() ||
4134 trace_sched_stat_iowait_enabled() ||
4135 trace_sched_stat_blocked_enabled() ||
4136 trace_sched_stat_runtime_enabled()) {
4137 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4138 "stat_blocked and stat_runtime require the "
4139 "kernel parameter schedstats=enable or "
4140 "kernel.sched_schedstats=1\n");
4141 }
4142 #endif
4143 }
4144
4145 static inline bool cfs_bandwidth_used(void);
4146
4147 /*
4148 * MIGRATION
4149 *
4150 * dequeue
4151 * update_curr()
4152 * update_min_vruntime()
4153 * vruntime -= min_vruntime
4154 *
4155 * enqueue
4156 * update_curr()
4157 * update_min_vruntime()
4158 * vruntime += min_vruntime
4159 *
4160 * this way the vruntime transition between RQs is done when both
4161 * min_vruntime are up-to-date.
4162 *
4163 * WAKEUP (remote)
4164 *
4165 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4166 * vruntime -= min_vruntime
4167 *
4168 * enqueue
4169 * update_curr()
4170 * update_min_vruntime()
4171 * vruntime += min_vruntime
4172 *
4173 * this way we don't have the most up-to-date min_vruntime on the originating
4174 * CPU and an up-to-date min_vruntime on the destination CPU.
4175 */
4176
4177 static void
4178 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4179 {
4180 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4181 bool curr = cfs_rq->curr == se;
4182
4183 /*
4184 * If we're the current task, we must renormalise before calling
4185 * update_curr().
4186 */
4187 if (renorm && curr)
4188 se->vruntime += cfs_rq->min_vruntime;
4189
4190 update_curr(cfs_rq);
4191
4192 /*
4193 * Otherwise, renormalise after, such that we're placed at the current
4194 * moment in time, instead of some random moment in the past. Being
4195 * placed in the past could significantly boost this task to the
4196 * fairness detriment of existing tasks.
4197 */
4198 if (renorm && !curr)
4199 se->vruntime += cfs_rq->min_vruntime;
4200
4201 /*
4202 * When enqueuing a sched_entity, we must:
4203 * - Update loads to have both entity and cfs_rq synced with now.
4204 * - Add its load to cfs_rq->runnable_avg
4205 * - For group_entity, update its weight to reflect the new share of
4206 * its group cfs_rq
4207 * - Add its new weight to cfs_rq->load.weight
4208 */
4209 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4210 se_update_runnable(se);
4211 update_cfs_group(se);
4212 account_entity_enqueue(cfs_rq, se);
4213
4214 if (flags & ENQUEUE_WAKEUP)
4215 place_entity(cfs_rq, se, 0);
4216
4217 check_schedstat_required();
4218 update_stats_enqueue(cfs_rq, se, flags);
4219 check_spread(cfs_rq, se);
4220 if (!curr)
4221 __enqueue_entity(cfs_rq, se);
4222 se->on_rq = 1;
4223
4224 /*
4225 * When bandwidth control is enabled, cfs might have been removed
4226 * because of a parent been throttled but cfs->nr_running > 1. Try to
4227 * add it unconditionnally.
4228 */
4229 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4230 list_add_leaf_cfs_rq(cfs_rq);
4231
4232 if (cfs_rq->nr_running == 1)
4233 check_enqueue_throttle(cfs_rq);
4234 }
4235
4236 static void __clear_buddies_last(struct sched_entity *se)
4237 {
4238 for_each_sched_entity(se) {
4239 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4240 if (cfs_rq->last != se)
4241 break;
4242
4243 cfs_rq->last = NULL;
4244 }
4245 }
4246
4247 static void __clear_buddies_next(struct sched_entity *se)
4248 {
4249 for_each_sched_entity(se) {
4250 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4251 if (cfs_rq->next != se)
4252 break;
4253
4254 cfs_rq->next = NULL;
4255 }
4256 }
4257
4258 static void __clear_buddies_skip(struct sched_entity *se)
4259 {
4260 for_each_sched_entity(se) {
4261 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4262 if (cfs_rq->skip != se)
4263 break;
4264
4265 cfs_rq->skip = NULL;
4266 }
4267 }
4268
4269 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4270 {
4271 if (cfs_rq->last == se)
4272 __clear_buddies_last(se);
4273
4274 if (cfs_rq->next == se)
4275 __clear_buddies_next(se);
4276
4277 if (cfs_rq->skip == se)
4278 __clear_buddies_skip(se);
4279 }
4280
4281 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4282
4283 static void
4284 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4285 {
4286 /*
4287 * Update run-time statistics of the 'current'.
4288 */
4289 update_curr(cfs_rq);
4290
4291 /*
4292 * When dequeuing a sched_entity, we must:
4293 * - Update loads to have both entity and cfs_rq synced with now.
4294 * - Subtract its load from the cfs_rq->runnable_avg.
4295 * - Subtract its previous weight from cfs_rq->load.weight.
4296 * - For group entity, update its weight to reflect the new share
4297 * of its group cfs_rq.
4298 */
4299 update_load_avg(cfs_rq, se, UPDATE_TG);
4300 se_update_runnable(se);
4301
4302 update_stats_dequeue(cfs_rq, se, flags);
4303
4304 clear_buddies(cfs_rq, se);
4305
4306 if (se != cfs_rq->curr)
4307 __dequeue_entity(cfs_rq, se);
4308 se->on_rq = 0;
4309 account_entity_dequeue(cfs_rq, se);
4310
4311 /*
4312 * Normalize after update_curr(); which will also have moved
4313 * min_vruntime if @se is the one holding it back. But before doing
4314 * update_min_vruntime() again, which will discount @se's position and
4315 * can move min_vruntime forward still more.
4316 */
4317 if (!(flags & DEQUEUE_SLEEP))
4318 se->vruntime -= cfs_rq->min_vruntime;
4319
4320 /* return excess runtime on last dequeue */
4321 return_cfs_rq_runtime(cfs_rq);
4322
4323 update_cfs_group(se);
4324
4325 /*
4326 * Now advance min_vruntime if @se was the entity holding it back,
4327 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4328 * put back on, and if we advance min_vruntime, we'll be placed back
4329 * further than we started -- ie. we'll be penalized.
4330 */
4331 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4332 update_min_vruntime(cfs_rq);
4333 }
4334
4335 /*
4336 * Preempt the current task with a newly woken task if needed:
4337 */
4338 static void
4339 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4340 {
4341 unsigned long ideal_runtime, delta_exec;
4342 struct sched_entity *se;
4343 s64 delta;
4344
4345 ideal_runtime = sched_slice(cfs_rq, curr);
4346 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4347 if (delta_exec > ideal_runtime) {
4348 resched_curr(rq_of(cfs_rq));
4349 /*
4350 * The current task ran long enough, ensure it doesn't get
4351 * re-elected due to buddy favours.
4352 */
4353 clear_buddies(cfs_rq, curr);
4354 return;
4355 }
4356
4357 /*
4358 * Ensure that a task that missed wakeup preemption by a
4359 * narrow margin doesn't have to wait for a full slice.
4360 * This also mitigates buddy induced latencies under load.
4361 */
4362 if (delta_exec < sysctl_sched_min_granularity)
4363 return;
4364
4365 se = __pick_first_entity(cfs_rq);
4366 delta = curr->vruntime - se->vruntime;
4367
4368 if (delta < 0)
4369 return;
4370
4371 if (delta > ideal_runtime)
4372 resched_curr(rq_of(cfs_rq));
4373 }
4374
4375 static void
4376 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4377 {
4378 /* 'current' is not kept within the tree. */
4379 if (se->on_rq) {
4380 /*
4381 * Any task has to be enqueued before it get to execute on
4382 * a CPU. So account for the time it spent waiting on the
4383 * runqueue.
4384 */
4385 update_stats_wait_end(cfs_rq, se);
4386 __dequeue_entity(cfs_rq, se);
4387 update_load_avg(cfs_rq, se, UPDATE_TG);
4388 }
4389
4390 update_stats_curr_start(cfs_rq, se);
4391 cfs_rq->curr = se;
4392
4393 /*
4394 * Track our maximum slice length, if the CPU's load is at
4395 * least twice that of our own weight (i.e. dont track it
4396 * when there are only lesser-weight tasks around):
4397 */
4398 if (schedstat_enabled() &&
4399 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4400 schedstat_set(se->statistics.slice_max,
4401 max((u64)schedstat_val(se->statistics.slice_max),
4402 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4403 }
4404
4405 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4406 }
4407
4408 static int
4409 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4410
4411 /*
4412 * Pick the next process, keeping these things in mind, in this order:
4413 * 1) keep things fair between processes/task groups
4414 * 2) pick the "next" process, since someone really wants that to run
4415 * 3) pick the "last" process, for cache locality
4416 * 4) do not run the "skip" process, if something else is available
4417 */
4418 static struct sched_entity *
4419 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4420 {
4421 struct sched_entity *left = __pick_first_entity(cfs_rq);
4422 struct sched_entity *se;
4423
4424 /*
4425 * If curr is set we have to see if its left of the leftmost entity
4426 * still in the tree, provided there was anything in the tree at all.
4427 */
4428 if (!left || (curr && entity_before(curr, left)))
4429 left = curr;
4430
4431 se = left; /* ideally we run the leftmost entity */
4432
4433 /*
4434 * Avoid running the skip buddy, if running something else can
4435 * be done without getting too unfair.
4436 */
4437 if (cfs_rq->skip == se) {
4438 struct sched_entity *second;
4439
4440 if (se == curr) {
4441 second = __pick_first_entity(cfs_rq);
4442 } else {
4443 second = __pick_next_entity(se);
4444 if (!second || (curr && entity_before(curr, second)))
4445 second = curr;
4446 }
4447
4448 if (second && wakeup_preempt_entity(second, left) < 1)
4449 se = second;
4450 }
4451
4452 /*
4453 * Prefer last buddy, try to return the CPU to a preempted task.
4454 */
4455 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4456 se = cfs_rq->last;
4457
4458 /*
4459 * Someone really wants this to run. If it's not unfair, run it.
4460 */
4461 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4462 se = cfs_rq->next;
4463
4464 clear_buddies(cfs_rq, se);
4465
4466 return se;
4467 }
4468
4469 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4470
4471 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4472 {
4473 /*
4474 * If still on the runqueue then deactivate_task()
4475 * was not called and update_curr() has to be done:
4476 */
4477 if (prev->on_rq)
4478 update_curr(cfs_rq);
4479
4480 /* throttle cfs_rqs exceeding runtime */
4481 check_cfs_rq_runtime(cfs_rq);
4482
4483 check_spread(cfs_rq, prev);
4484
4485 if (prev->on_rq) {
4486 update_stats_wait_start(cfs_rq, prev);
4487 /* Put 'current' back into the tree. */
4488 __enqueue_entity(cfs_rq, prev);
4489 /* in !on_rq case, update occurred at dequeue */
4490 update_load_avg(cfs_rq, prev, 0);
4491 }
4492 cfs_rq->curr = NULL;
4493 }
4494
4495 static void
4496 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4497 {
4498 /*
4499 * Update run-time statistics of the 'current'.
4500 */
4501 update_curr(cfs_rq);
4502
4503 /*
4504 * Ensure that runnable average is periodically updated.
4505 */
4506 update_load_avg(cfs_rq, curr, UPDATE_TG);
4507 update_cfs_group(curr);
4508
4509 #ifdef CONFIG_SCHED_HRTICK
4510 /*
4511 * queued ticks are scheduled to match the slice, so don't bother
4512 * validating it and just reschedule.
4513 */
4514 if (queued) {
4515 resched_curr(rq_of(cfs_rq));
4516 return;
4517 }
4518 /*
4519 * don't let the period tick interfere with the hrtick preemption
4520 */
4521 if (!sched_feat(DOUBLE_TICK) &&
4522 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4523 return;
4524 #endif
4525
4526 if (cfs_rq->nr_running > 1)
4527 check_preempt_tick(cfs_rq, curr);
4528 }
4529
4530
4531 /**************************************************
4532 * CFS bandwidth control machinery
4533 */
4534
4535 #ifdef CONFIG_CFS_BANDWIDTH
4536
4537 #ifdef CONFIG_JUMP_LABEL
4538 static struct static_key __cfs_bandwidth_used;
4539
4540 static inline bool cfs_bandwidth_used(void)
4541 {
4542 return static_key_false(&__cfs_bandwidth_used);
4543 }
4544
4545 void cfs_bandwidth_usage_inc(void)
4546 {
4547 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4548 }
4549
4550 void cfs_bandwidth_usage_dec(void)
4551 {
4552 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4553 }
4554 #else /* CONFIG_JUMP_LABEL */
4555 static bool cfs_bandwidth_used(void)
4556 {
4557 return true;
4558 }
4559
4560 void cfs_bandwidth_usage_inc(void) {}
4561 void cfs_bandwidth_usage_dec(void) {}
4562 #endif /* CONFIG_JUMP_LABEL */
4563
4564 /*
4565 * default period for cfs group bandwidth.
4566 * default: 0.1s, units: nanoseconds
4567 */
4568 static inline u64 default_cfs_period(void)
4569 {
4570 return 100000000ULL;
4571 }
4572
4573 static inline u64 sched_cfs_bandwidth_slice(void)
4574 {
4575 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4576 }
4577
4578 /*
4579 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4580 * directly instead of rq->clock to avoid adding additional synchronization
4581 * around rq->lock.
4582 *
4583 * requires cfs_b->lock
4584 */
4585 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4586 {
4587 if (cfs_b->quota != RUNTIME_INF)
4588 cfs_b->runtime = cfs_b->quota;
4589 }
4590
4591 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4592 {
4593 return &tg->cfs_bandwidth;
4594 }
4595
4596 /* returns 0 on failure to allocate runtime */
4597 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4598 struct cfs_rq *cfs_rq, u64 target_runtime)
4599 {
4600 u64 min_amount, amount = 0;
4601
4602 lockdep_assert_held(&cfs_b->lock);
4603
4604 /* note: this is a positive sum as runtime_remaining <= 0 */
4605 min_amount = target_runtime - cfs_rq->runtime_remaining;
4606
4607 if (cfs_b->quota == RUNTIME_INF)
4608 amount = min_amount;
4609 else {
4610 start_cfs_bandwidth(cfs_b);
4611
4612 if (cfs_b->runtime > 0) {
4613 amount = min(cfs_b->runtime, min_amount);
4614 cfs_b->runtime -= amount;
4615 cfs_b->idle = 0;
4616 }
4617 }
4618
4619 cfs_rq->runtime_remaining += amount;
4620
4621 return cfs_rq->runtime_remaining > 0;
4622 }
4623
4624 /* returns 0 on failure to allocate runtime */
4625 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4626 {
4627 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4628 int ret;
4629
4630 raw_spin_lock(&cfs_b->lock);
4631 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4632 raw_spin_unlock(&cfs_b->lock);
4633
4634 return ret;
4635 }
4636
4637 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4638 {
4639 /* dock delta_exec before expiring quota (as it could span periods) */
4640 cfs_rq->runtime_remaining -= delta_exec;
4641
4642 if (likely(cfs_rq->runtime_remaining > 0))
4643 return;
4644
4645 if (cfs_rq->throttled)
4646 return;
4647 /*
4648 * if we're unable to extend our runtime we resched so that the active
4649 * hierarchy can be throttled
4650 */
4651 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4652 resched_curr(rq_of(cfs_rq));
4653 }
4654
4655 static __always_inline
4656 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4657 {
4658 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4659 return;
4660
4661 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4662 }
4663
4664 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4665 {
4666 return cfs_bandwidth_used() && cfs_rq->throttled;
4667 }
4668
4669 /* check whether cfs_rq, or any parent, is throttled */
4670 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4671 {
4672 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4673 }
4674
4675 /*
4676 * Ensure that neither of the group entities corresponding to src_cpu or
4677 * dest_cpu are members of a throttled hierarchy when performing group
4678 * load-balance operations.
4679 */
4680 static inline int throttled_lb_pair(struct task_group *tg,
4681 int src_cpu, int dest_cpu)
4682 {
4683 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4684
4685 src_cfs_rq = tg->cfs_rq[src_cpu];
4686 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4687
4688 return throttled_hierarchy(src_cfs_rq) ||
4689 throttled_hierarchy(dest_cfs_rq);
4690 }
4691
4692 static int tg_unthrottle_up(struct task_group *tg, void *data)
4693 {
4694 struct rq *rq = data;
4695 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4696
4697 cfs_rq->throttle_count--;
4698 if (!cfs_rq->throttle_count) {
4699 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4700 cfs_rq->throttled_clock_task;
4701
4702 /* Add cfs_rq with already running entity in the list */
4703 if (cfs_rq->nr_running >= 1)
4704 list_add_leaf_cfs_rq(cfs_rq);
4705 }
4706
4707 return 0;
4708 }
4709
4710 static int tg_throttle_down(struct task_group *tg, void *data)
4711 {
4712 struct rq *rq = data;
4713 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4714
4715 /* group is entering throttled state, stop time */
4716 if (!cfs_rq->throttle_count) {
4717 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4718 list_del_leaf_cfs_rq(cfs_rq);
4719 }
4720 cfs_rq->throttle_count++;
4721
4722 return 0;
4723 }
4724
4725 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4726 {
4727 struct rq *rq = rq_of(cfs_rq);
4728 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4729 struct sched_entity *se;
4730 long task_delta, idle_task_delta, dequeue = 1;
4731
4732 raw_spin_lock(&cfs_b->lock);
4733 /* This will start the period timer if necessary */
4734 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4735 /*
4736 * We have raced with bandwidth becoming available, and if we
4737 * actually throttled the timer might not unthrottle us for an
4738 * entire period. We additionally needed to make sure that any
4739 * subsequent check_cfs_rq_runtime calls agree not to throttle
4740 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4741 * for 1ns of runtime rather than just check cfs_b.
4742 */
4743 dequeue = 0;
4744 } else {
4745 list_add_tail_rcu(&cfs_rq->throttled_list,
4746 &cfs_b->throttled_cfs_rq);
4747 }
4748 raw_spin_unlock(&cfs_b->lock);
4749
4750 if (!dequeue)
4751 return false; /* Throttle no longer required. */
4752
4753 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4754
4755 /* freeze hierarchy runnable averages while throttled */
4756 rcu_read_lock();
4757 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4758 rcu_read_unlock();
4759
4760 task_delta = cfs_rq->h_nr_running;
4761 idle_task_delta = cfs_rq->idle_h_nr_running;
4762 for_each_sched_entity(se) {
4763 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4764 /* throttled entity or throttle-on-deactivate */
4765 if (!se->on_rq)
4766 break;
4767
4768 if (dequeue) {
4769 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4770 } else {
4771 update_load_avg(qcfs_rq, se, 0);
4772 se_update_runnable(se);
4773 }
4774
4775 qcfs_rq->h_nr_running -= task_delta;
4776 qcfs_rq->idle_h_nr_running -= idle_task_delta;
4777
4778 if (qcfs_rq->load.weight)
4779 dequeue = 0;
4780 }
4781
4782 if (!se)
4783 sub_nr_running(rq, task_delta);
4784
4785 /*
4786 * Note: distribution will already see us throttled via the
4787 * throttled-list. rq->lock protects completion.
4788 */
4789 cfs_rq->throttled = 1;
4790 cfs_rq->throttled_clock = rq_clock(rq);
4791 return true;
4792 }
4793
4794 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4795 {
4796 struct rq *rq = rq_of(cfs_rq);
4797 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4798 struct sched_entity *se;
4799 long task_delta, idle_task_delta;
4800
4801 se = cfs_rq->tg->se[cpu_of(rq)];
4802
4803 cfs_rq->throttled = 0;
4804
4805 update_rq_clock(rq);
4806
4807 raw_spin_lock(&cfs_b->lock);
4808 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4809 list_del_rcu(&cfs_rq->throttled_list);
4810 raw_spin_unlock(&cfs_b->lock);
4811
4812 /* update hierarchical throttle state */
4813 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4814
4815 if (!cfs_rq->load.weight)
4816 return;
4817
4818 task_delta = cfs_rq->h_nr_running;
4819 idle_task_delta = cfs_rq->idle_h_nr_running;
4820 for_each_sched_entity(se) {
4821 if (se->on_rq)
4822 break;
4823 cfs_rq = cfs_rq_of(se);
4824 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4825
4826 cfs_rq->h_nr_running += task_delta;
4827 cfs_rq->idle_h_nr_running += idle_task_delta;
4828
4829 /* end evaluation on encountering a throttled cfs_rq */
4830 if (cfs_rq_throttled(cfs_rq))
4831 goto unthrottle_throttle;
4832 }
4833
4834 for_each_sched_entity(se) {
4835 cfs_rq = cfs_rq_of(se);
4836
4837 update_load_avg(cfs_rq, se, UPDATE_TG);
4838 se_update_runnable(se);
4839
4840 cfs_rq->h_nr_running += task_delta;
4841 cfs_rq->idle_h_nr_running += idle_task_delta;
4842
4843
4844 /* end evaluation on encountering a throttled cfs_rq */
4845 if (cfs_rq_throttled(cfs_rq))
4846 goto unthrottle_throttle;
4847
4848 /*
4849 * One parent has been throttled and cfs_rq removed from the
4850 * list. Add it back to not break the leaf list.
4851 */
4852 if (throttled_hierarchy(cfs_rq))
4853 list_add_leaf_cfs_rq(cfs_rq);
4854 }
4855
4856 /* At this point se is NULL and we are at root level*/
4857 add_nr_running(rq, task_delta);
4858
4859 unthrottle_throttle:
4860 /*
4861 * The cfs_rq_throttled() breaks in the above iteration can result in
4862 * incomplete leaf list maintenance, resulting in triggering the
4863 * assertion below.
4864 */
4865 for_each_sched_entity(se) {
4866 cfs_rq = cfs_rq_of(se);
4867
4868 if (list_add_leaf_cfs_rq(cfs_rq))
4869 break;
4870 }
4871
4872 assert_list_leaf_cfs_rq(rq);
4873
4874 /* Determine whether we need to wake up potentially idle CPU: */
4875 if (rq->curr == rq->idle && rq->cfs.nr_running)
4876 resched_curr(rq);
4877 }
4878
4879 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
4880 {
4881 struct cfs_rq *cfs_rq;
4882 u64 runtime, remaining = 1;
4883
4884 rcu_read_lock();
4885 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4886 throttled_list) {
4887 struct rq *rq = rq_of(cfs_rq);
4888 struct rq_flags rf;
4889
4890 rq_lock_irqsave(rq, &rf);
4891 if (!cfs_rq_throttled(cfs_rq))
4892 goto next;
4893
4894 /* By the above check, this should never be true */
4895 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4896
4897 raw_spin_lock(&cfs_b->lock);
4898 runtime = -cfs_rq->runtime_remaining + 1;
4899 if (runtime > cfs_b->runtime)
4900 runtime = cfs_b->runtime;
4901 cfs_b->runtime -= runtime;
4902 remaining = cfs_b->runtime;
4903 raw_spin_unlock(&cfs_b->lock);
4904
4905 cfs_rq->runtime_remaining += runtime;
4906
4907 /* we check whether we're throttled above */
4908 if (cfs_rq->runtime_remaining > 0)
4909 unthrottle_cfs_rq(cfs_rq);
4910
4911 next:
4912 rq_unlock_irqrestore(rq, &rf);
4913
4914 if (!remaining)
4915 break;
4916 }
4917 rcu_read_unlock();
4918 }
4919
4920 /*
4921 * Responsible for refilling a task_group's bandwidth and unthrottling its
4922 * cfs_rqs as appropriate. If there has been no activity within the last
4923 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4924 * used to track this state.
4925 */
4926 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
4927 {
4928 int throttled;
4929
4930 /* no need to continue the timer with no bandwidth constraint */
4931 if (cfs_b->quota == RUNTIME_INF)
4932 goto out_deactivate;
4933
4934 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4935 cfs_b->nr_periods += overrun;
4936
4937 /*
4938 * idle depends on !throttled (for the case of a large deficit), and if
4939 * we're going inactive then everything else can be deferred
4940 */
4941 if (cfs_b->idle && !throttled)
4942 goto out_deactivate;
4943
4944 __refill_cfs_bandwidth_runtime(cfs_b);
4945
4946 if (!throttled) {
4947 /* mark as potentially idle for the upcoming period */
4948 cfs_b->idle = 1;
4949 return 0;
4950 }
4951
4952 /* account preceding periods in which throttling occurred */
4953 cfs_b->nr_throttled += overrun;
4954
4955 /*
4956 * This check is repeated as we release cfs_b->lock while we unthrottle.
4957 */
4958 while (throttled && cfs_b->runtime > 0) {
4959 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
4960 /* we can't nest cfs_b->lock while distributing bandwidth */
4961 distribute_cfs_runtime(cfs_b);
4962 raw_spin_lock_irqsave(&cfs_b->lock, flags);
4963
4964 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4965 }
4966
4967 /*
4968 * While we are ensured activity in the period following an
4969 * unthrottle, this also covers the case in which the new bandwidth is
4970 * insufficient to cover the existing bandwidth deficit. (Forcing the
4971 * timer to remain active while there are any throttled entities.)
4972 */
4973 cfs_b->idle = 0;
4974
4975 return 0;
4976
4977 out_deactivate:
4978 return 1;
4979 }
4980
4981 /* a cfs_rq won't donate quota below this amount */
4982 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4983 /* minimum remaining period time to redistribute slack quota */
4984 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4985 /* how long we wait to gather additional slack before distributing */
4986 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4987
4988 /*
4989 * Are we near the end of the current quota period?
4990 *
4991 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4992 * hrtimer base being cleared by hrtimer_start. In the case of
4993 * migrate_hrtimers, base is never cleared, so we are fine.
4994 */
4995 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4996 {
4997 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4998 u64 remaining;
4999
5000 /* if the call-back is running a quota refresh is already occurring */
5001 if (hrtimer_callback_running(refresh_timer))
5002 return 1;
5003
5004 /* is a quota refresh about to occur? */
5005 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5006 if (remaining < min_expire)
5007 return 1;
5008
5009 return 0;
5010 }
5011
5012 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5013 {
5014 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5015
5016 /* if there's a quota refresh soon don't bother with slack */
5017 if (runtime_refresh_within(cfs_b, min_left))
5018 return;
5019
5020 /* don't push forwards an existing deferred unthrottle */
5021 if (cfs_b->slack_started)
5022 return;
5023 cfs_b->slack_started = true;
5024
5025 hrtimer_start(&cfs_b->slack_timer,
5026 ns_to_ktime(cfs_bandwidth_slack_period),
5027 HRTIMER_MODE_REL);
5028 }
5029
5030 /* we know any runtime found here is valid as update_curr() precedes return */
5031 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5032 {
5033 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5034 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5035
5036 if (slack_runtime <= 0)
5037 return;
5038
5039 raw_spin_lock(&cfs_b->lock);
5040 if (cfs_b->quota != RUNTIME_INF) {
5041 cfs_b->runtime += slack_runtime;
5042
5043 /* we are under rq->lock, defer unthrottling using a timer */
5044 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5045 !list_empty(&cfs_b->throttled_cfs_rq))
5046 start_cfs_slack_bandwidth(cfs_b);
5047 }
5048 raw_spin_unlock(&cfs_b->lock);
5049
5050 /* even if it's not valid for return we don't want to try again */
5051 cfs_rq->runtime_remaining -= slack_runtime;
5052 }
5053
5054 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5055 {
5056 if (!cfs_bandwidth_used())
5057 return;
5058
5059 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5060 return;
5061
5062 __return_cfs_rq_runtime(cfs_rq);
5063 }
5064
5065 /*
5066 * This is done with a timer (instead of inline with bandwidth return) since
5067 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5068 */
5069 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5070 {
5071 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5072 unsigned long flags;
5073
5074 /* confirm we're still not at a refresh boundary */
5075 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5076 cfs_b->slack_started = false;
5077
5078 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5079 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5080 return;
5081 }
5082
5083 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5084 runtime = cfs_b->runtime;
5085
5086 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5087
5088 if (!runtime)
5089 return;
5090
5091 distribute_cfs_runtime(cfs_b);
5092
5093 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5094 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5095 }
5096
5097 /*
5098 * When a group wakes up we want to make sure that its quota is not already
5099 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5100 * runtime as update_curr() throttling can not not trigger until it's on-rq.
5101 */
5102 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5103 {
5104 if (!cfs_bandwidth_used())
5105 return;
5106
5107 /* an active group must be handled by the update_curr()->put() path */
5108 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5109 return;
5110
5111 /* ensure the group is not already throttled */
5112 if (cfs_rq_throttled(cfs_rq))
5113 return;
5114
5115 /* update runtime allocation */
5116 account_cfs_rq_runtime(cfs_rq, 0);
5117 if (cfs_rq->runtime_remaining <= 0)
5118 throttle_cfs_rq(cfs_rq);
5119 }
5120
5121 static void sync_throttle(struct task_group *tg, int cpu)
5122 {
5123 struct cfs_rq *pcfs_rq, *cfs_rq;
5124
5125 if (!cfs_bandwidth_used())
5126 return;
5127
5128 if (!tg->parent)
5129 return;
5130
5131 cfs_rq = tg->cfs_rq[cpu];
5132 pcfs_rq = tg->parent->cfs_rq[cpu];
5133
5134 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5135 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
5136 }
5137
5138 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5139 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5140 {
5141 if (!cfs_bandwidth_used())
5142 return false;
5143
5144 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5145 return false;
5146
5147 /*
5148 * it's possible for a throttled entity to be forced into a running
5149 * state (e.g. set_curr_task), in this case we're finished.
5150 */
5151 if (cfs_rq_throttled(cfs_rq))
5152 return true;
5153
5154 return throttle_cfs_rq(cfs_rq);
5155 }
5156
5157 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5158 {
5159 struct cfs_bandwidth *cfs_b =
5160 container_of(timer, struct cfs_bandwidth, slack_timer);
5161
5162 do_sched_cfs_slack_timer(cfs_b);
5163
5164 return HRTIMER_NORESTART;
5165 }
5166
5167 extern const u64 max_cfs_quota_period;
5168
5169 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5170 {
5171 struct cfs_bandwidth *cfs_b =
5172 container_of(timer, struct cfs_bandwidth, period_timer);
5173 unsigned long flags;
5174 int overrun;
5175 int idle = 0;
5176 int count = 0;
5177
5178 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5179 for (;;) {
5180 overrun = hrtimer_forward_now(timer, cfs_b->period);
5181 if (!overrun)
5182 break;
5183
5184 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5185
5186 if (++count > 3) {
5187 u64 new, old = ktime_to_ns(cfs_b->period);
5188
5189 /*
5190 * Grow period by a factor of 2 to avoid losing precision.
5191 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5192 * to fail.
5193 */
5194 new = old * 2;
5195 if (new < max_cfs_quota_period) {
5196 cfs_b->period = ns_to_ktime(new);
5197 cfs_b->quota *= 2;
5198
5199 pr_warn_ratelimited(
5200 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5201 smp_processor_id(),
5202 div_u64(new, NSEC_PER_USEC),
5203 div_u64(cfs_b->quota, NSEC_PER_USEC));
5204 } else {
5205 pr_warn_ratelimited(
5206 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5207 smp_processor_id(),
5208 div_u64(old, NSEC_PER_USEC),
5209 div_u64(cfs_b->quota, NSEC_PER_USEC));
5210 }
5211
5212 /* reset count so we don't come right back in here */
5213 count = 0;
5214 }
5215 }
5216 if (idle)
5217 cfs_b->period_active = 0;
5218 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5219
5220 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5221 }
5222
5223 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5224 {
5225 raw_spin_lock_init(&cfs_b->lock);
5226 cfs_b->runtime = 0;
5227 cfs_b->quota = RUNTIME_INF;
5228 cfs_b->period = ns_to_ktime(default_cfs_period());
5229
5230 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5231 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5232 cfs_b->period_timer.function = sched_cfs_period_timer;
5233 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5234 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5235 cfs_b->slack_started = false;
5236 }
5237
5238 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5239 {
5240 cfs_rq->runtime_enabled = 0;
5241 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5242 }
5243
5244 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5245 {
5246 lockdep_assert_held(&cfs_b->lock);
5247
5248 if (cfs_b->period_active)
5249 return;
5250
5251 cfs_b->period_active = 1;
5252 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5253 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5254 }
5255
5256 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5257 {
5258 /* init_cfs_bandwidth() was not called */
5259 if (!cfs_b->throttled_cfs_rq.next)
5260 return;
5261
5262 hrtimer_cancel(&cfs_b->period_timer);
5263 hrtimer_cancel(&cfs_b->slack_timer);
5264 }
5265
5266 /*
5267 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5268 *
5269 * The race is harmless, since modifying bandwidth settings of unhooked group
5270 * bits doesn't do much.
5271 */
5272
5273 /* cpu online calback */
5274 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5275 {
5276 struct task_group *tg;
5277
5278 lockdep_assert_held(&rq->lock);
5279
5280 rcu_read_lock();
5281 list_for_each_entry_rcu(tg, &task_groups, list) {
5282 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5283 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5284
5285 raw_spin_lock(&cfs_b->lock);
5286 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5287 raw_spin_unlock(&cfs_b->lock);
5288 }
5289 rcu_read_unlock();
5290 }
5291
5292 /* cpu offline callback */
5293 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5294 {
5295 struct task_group *tg;
5296
5297 lockdep_assert_held(&rq->lock);
5298
5299 rcu_read_lock();
5300 list_for_each_entry_rcu(tg, &task_groups, list) {
5301 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5302
5303 if (!cfs_rq->runtime_enabled)
5304 continue;
5305
5306 /*
5307 * clock_task is not advancing so we just need to make sure
5308 * there's some valid quota amount
5309 */
5310 cfs_rq->runtime_remaining = 1;
5311 /*
5312 * Offline rq is schedulable till CPU is completely disabled
5313 * in take_cpu_down(), so we prevent new cfs throttling here.
5314 */
5315 cfs_rq->runtime_enabled = 0;
5316
5317 if (cfs_rq_throttled(cfs_rq))
5318 unthrottle_cfs_rq(cfs_rq);
5319 }
5320 rcu_read_unlock();
5321 }
5322
5323 #else /* CONFIG_CFS_BANDWIDTH */
5324
5325 static inline bool cfs_bandwidth_used(void)
5326 {
5327 return false;
5328 }
5329
5330 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5331 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5332 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5333 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5334 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5335
5336 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5337 {
5338 return 0;
5339 }
5340
5341 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5342 {
5343 return 0;
5344 }
5345
5346 static inline int throttled_lb_pair(struct task_group *tg,
5347 int src_cpu, int dest_cpu)
5348 {
5349 return 0;
5350 }
5351
5352 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5353
5354 #ifdef CONFIG_FAIR_GROUP_SCHED
5355 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5356 #endif
5357
5358 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5359 {
5360 return NULL;
5361 }
5362 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5363 static inline void update_runtime_enabled(struct rq *rq) {}
5364 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5365
5366 #endif /* CONFIG_CFS_BANDWIDTH */
5367
5368 /**************************************************
5369 * CFS operations on tasks:
5370 */
5371
5372 #ifdef CONFIG_SCHED_HRTICK
5373 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5374 {
5375 struct sched_entity *se = &p->se;
5376 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5377
5378 SCHED_WARN_ON(task_rq(p) != rq);
5379
5380 if (rq->cfs.h_nr_running > 1) {
5381 u64 slice = sched_slice(cfs_rq, se);
5382 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5383 s64 delta = slice - ran;
5384
5385 if (delta < 0) {
5386 if (rq->curr == p)
5387 resched_curr(rq);
5388 return;
5389 }
5390 hrtick_start(rq, delta);
5391 }
5392 }
5393
5394 /*
5395 * called from enqueue/dequeue and updates the hrtick when the
5396 * current task is from our class and nr_running is low enough
5397 * to matter.
5398 */
5399 static void hrtick_update(struct rq *rq)
5400 {
5401 struct task_struct *curr = rq->curr;
5402
5403 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5404 return;
5405
5406 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5407 hrtick_start_fair(rq, curr);
5408 }
5409 #else /* !CONFIG_SCHED_HRTICK */
5410 static inline void
5411 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5412 {
5413 }
5414
5415 static inline void hrtick_update(struct rq *rq)
5416 {
5417 }
5418 #endif
5419
5420 #ifdef CONFIG_SMP
5421 static inline unsigned long cpu_util(int cpu);
5422
5423 static inline bool cpu_overutilized(int cpu)
5424 {
5425 return !fits_capacity(cpu_util(cpu), capacity_of(cpu));
5426 }
5427
5428 static inline void update_overutilized_status(struct rq *rq)
5429 {
5430 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5431 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5432 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5433 }
5434 }
5435 #else
5436 static inline void update_overutilized_status(struct rq *rq) { }
5437 #endif
5438
5439 /* Runqueue only has SCHED_IDLE tasks enqueued */
5440 static int sched_idle_rq(struct rq *rq)
5441 {
5442 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5443 rq->nr_running);
5444 }
5445
5446 #ifdef CONFIG_SMP
5447 static int sched_idle_cpu(int cpu)
5448 {
5449 return sched_idle_rq(cpu_rq(cpu));
5450 }
5451 #endif
5452
5453 /*
5454 * The enqueue_task method is called before nr_running is
5455 * increased. Here we update the fair scheduling stats and
5456 * then put the task into the rbtree:
5457 */
5458 static void
5459 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5460 {
5461 struct cfs_rq *cfs_rq;
5462 struct sched_entity *se = &p->se;
5463 int idle_h_nr_running = task_has_idle_policy(p);
5464
5465 /*
5466 * The code below (indirectly) updates schedutil which looks at
5467 * the cfs_rq utilization to select a frequency.
5468 * Let's add the task's estimated utilization to the cfs_rq's
5469 * estimated utilization, before we update schedutil.
5470 */
5471 util_est_enqueue(&rq->cfs, p);
5472
5473 /*
5474 * If in_iowait is set, the code below may not trigger any cpufreq
5475 * utilization updates, so do it here explicitly with the IOWAIT flag
5476 * passed.
5477 */
5478 if (p->in_iowait)
5479 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5480
5481 for_each_sched_entity(se) {
5482 if (se->on_rq)
5483 break;
5484 cfs_rq = cfs_rq_of(se);
5485 enqueue_entity(cfs_rq, se, flags);
5486
5487 cfs_rq->h_nr_running++;
5488 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5489
5490 /* end evaluation on encountering a throttled cfs_rq */
5491 if (cfs_rq_throttled(cfs_rq))
5492 goto enqueue_throttle;
5493
5494 flags = ENQUEUE_WAKEUP;
5495 }
5496
5497 for_each_sched_entity(se) {
5498 cfs_rq = cfs_rq_of(se);
5499
5500 update_load_avg(cfs_rq, se, UPDATE_TG);
5501 se_update_runnable(se);
5502 update_cfs_group(se);
5503
5504 cfs_rq->h_nr_running++;
5505 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5506
5507 /* end evaluation on encountering a throttled cfs_rq */
5508 if (cfs_rq_throttled(cfs_rq))
5509 goto enqueue_throttle;
5510
5511 /*
5512 * One parent has been throttled and cfs_rq removed from the
5513 * list. Add it back to not break the leaf list.
5514 */
5515 if (throttled_hierarchy(cfs_rq))
5516 list_add_leaf_cfs_rq(cfs_rq);
5517 }
5518
5519 /* At this point se is NULL and we are at root level*/
5520 add_nr_running(rq, 1);
5521
5522 /*
5523 * Since new tasks are assigned an initial util_avg equal to
5524 * half of the spare capacity of their CPU, tiny tasks have the
5525 * ability to cross the overutilized threshold, which will
5526 * result in the load balancer ruining all the task placement
5527 * done by EAS. As a way to mitigate that effect, do not account
5528 * for the first enqueue operation of new tasks during the
5529 * overutilized flag detection.
5530 *
5531 * A better way of solving this problem would be to wait for
5532 * the PELT signals of tasks to converge before taking them
5533 * into account, but that is not straightforward to implement,
5534 * and the following generally works well enough in practice.
5535 */
5536 if (flags & ENQUEUE_WAKEUP)
5537 update_overutilized_status(rq);
5538
5539 enqueue_throttle:
5540 if (cfs_bandwidth_used()) {
5541 /*
5542 * When bandwidth control is enabled; the cfs_rq_throttled()
5543 * breaks in the above iteration can result in incomplete
5544 * leaf list maintenance, resulting in triggering the assertion
5545 * below.
5546 */
5547 for_each_sched_entity(se) {
5548 cfs_rq = cfs_rq_of(se);
5549
5550 if (list_add_leaf_cfs_rq(cfs_rq))
5551 break;
5552 }
5553 }
5554
5555 assert_list_leaf_cfs_rq(rq);
5556
5557 hrtick_update(rq);
5558 }
5559
5560 static void set_next_buddy(struct sched_entity *se);
5561
5562 /*
5563 * The dequeue_task method is called before nr_running is
5564 * decreased. We remove the task from the rbtree and
5565 * update the fair scheduling stats:
5566 */
5567 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5568 {
5569 struct cfs_rq *cfs_rq;
5570 struct sched_entity *se = &p->se;
5571 int task_sleep = flags & DEQUEUE_SLEEP;
5572 int idle_h_nr_running = task_has_idle_policy(p);
5573 bool was_sched_idle = sched_idle_rq(rq);
5574
5575 for_each_sched_entity(se) {
5576 cfs_rq = cfs_rq_of(se);
5577 dequeue_entity(cfs_rq, se, flags);
5578
5579 cfs_rq->h_nr_running--;
5580 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5581
5582 /* end evaluation on encountering a throttled cfs_rq */
5583 if (cfs_rq_throttled(cfs_rq))
5584 goto dequeue_throttle;
5585
5586 /* Don't dequeue parent if it has other entities besides us */
5587 if (cfs_rq->load.weight) {
5588 /* Avoid re-evaluating load for this entity: */
5589 se = parent_entity(se);
5590 /*
5591 * Bias pick_next to pick a task from this cfs_rq, as
5592 * p is sleeping when it is within its sched_slice.
5593 */
5594 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5595 set_next_buddy(se);
5596 break;
5597 }
5598 flags |= DEQUEUE_SLEEP;
5599 }
5600
5601 for_each_sched_entity(se) {
5602 cfs_rq = cfs_rq_of(se);
5603
5604 update_load_avg(cfs_rq, se, UPDATE_TG);
5605 se_update_runnable(se);
5606 update_cfs_group(se);
5607
5608 cfs_rq->h_nr_running--;
5609 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5610
5611 /* end evaluation on encountering a throttled cfs_rq */
5612 if (cfs_rq_throttled(cfs_rq))
5613 goto dequeue_throttle;
5614
5615 }
5616
5617 dequeue_throttle:
5618 if (!se)
5619 sub_nr_running(rq, 1);
5620
5621 /* balance early to pull high priority tasks */
5622 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5623 rq->next_balance = jiffies;
5624
5625 util_est_dequeue(&rq->cfs, p, task_sleep);
5626 hrtick_update(rq);
5627 }
5628
5629 #ifdef CONFIG_SMP
5630
5631 /* Working cpumask for: load_balance, load_balance_newidle. */
5632 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5633 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5634
5635 #ifdef CONFIG_NO_HZ_COMMON
5636
5637 static struct {
5638 cpumask_var_t idle_cpus_mask;
5639 atomic_t nr_cpus;
5640 int has_blocked; /* Idle CPUS has blocked load */
5641 unsigned long next_balance; /* in jiffy units */
5642 unsigned long next_blocked; /* Next update of blocked load in jiffies */
5643 } nohz ____cacheline_aligned;
5644
5645 #endif /* CONFIG_NO_HZ_COMMON */
5646
5647 static unsigned long cpu_load(struct rq *rq)
5648 {
5649 return cfs_rq_load_avg(&rq->cfs);
5650 }
5651
5652 /*
5653 * cpu_load_without - compute CPU load without any contributions from *p
5654 * @cpu: the CPU which load is requested
5655 * @p: the task which load should be discounted
5656 *
5657 * The load of a CPU is defined by the load of tasks currently enqueued on that
5658 * CPU as well as tasks which are currently sleeping after an execution on that
5659 * CPU.
5660 *
5661 * This method returns the load of the specified CPU by discounting the load of
5662 * the specified task, whenever the task is currently contributing to the CPU
5663 * load.
5664 */
5665 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5666 {
5667 struct cfs_rq *cfs_rq;
5668 unsigned int load;
5669
5670 /* Task has no contribution or is new */
5671 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5672 return cpu_load(rq);
5673
5674 cfs_rq = &rq->cfs;
5675 load = READ_ONCE(cfs_rq->avg.load_avg);
5676
5677 /* Discount task's util from CPU's util */
5678 lsub_positive(&load, task_h_load(p));
5679
5680 return load;
5681 }
5682
5683 static unsigned long cpu_runnable(struct rq *rq)
5684 {
5685 return cfs_rq_runnable_avg(&rq->cfs);
5686 }
5687
5688 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5689 {
5690 struct cfs_rq *cfs_rq;
5691 unsigned int runnable;
5692
5693 /* Task has no contribution or is new */
5694 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5695 return cpu_runnable(rq);
5696
5697 cfs_rq = &rq->cfs;
5698 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5699
5700 /* Discount task's runnable from CPU's runnable */
5701 lsub_positive(&runnable, p->se.avg.runnable_avg);
5702
5703 return runnable;
5704 }
5705
5706 static unsigned long capacity_of(int cpu)
5707 {
5708 return cpu_rq(cpu)->cpu_capacity;
5709 }
5710
5711 static void record_wakee(struct task_struct *p)
5712 {
5713 /*
5714 * Only decay a single time; tasks that have less then 1 wakeup per
5715 * jiffy will not have built up many flips.
5716 */
5717 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5718 current->wakee_flips >>= 1;
5719 current->wakee_flip_decay_ts = jiffies;
5720 }
5721
5722 if (current->last_wakee != p) {
5723 current->last_wakee = p;
5724 current->wakee_flips++;
5725 }
5726 }
5727
5728 /*
5729 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5730 *
5731 * A waker of many should wake a different task than the one last awakened
5732 * at a frequency roughly N times higher than one of its wakees.
5733 *
5734 * In order to determine whether we should let the load spread vs consolidating
5735 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5736 * partner, and a factor of lls_size higher frequency in the other.
5737 *
5738 * With both conditions met, we can be relatively sure that the relationship is
5739 * non-monogamous, with partner count exceeding socket size.
5740 *
5741 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5742 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5743 * socket size.
5744 */
5745 static int wake_wide(struct task_struct *p)
5746 {
5747 unsigned int master = current->wakee_flips;
5748 unsigned int slave = p->wakee_flips;
5749 int factor = __this_cpu_read(sd_llc_size);
5750
5751 if (master < slave)
5752 swap(master, slave);
5753 if (slave < factor || master < slave * factor)
5754 return 0;
5755 return 1;
5756 }
5757
5758 /*
5759 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5760 * soonest. For the purpose of speed we only consider the waking and previous
5761 * CPU.
5762 *
5763 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5764 * cache-affine and is (or will be) idle.
5765 *
5766 * wake_affine_weight() - considers the weight to reflect the average
5767 * scheduling latency of the CPUs. This seems to work
5768 * for the overloaded case.
5769 */
5770 static int
5771 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5772 {
5773 /*
5774 * If this_cpu is idle, it implies the wakeup is from interrupt
5775 * context. Only allow the move if cache is shared. Otherwise an
5776 * interrupt intensive workload could force all tasks onto one
5777 * node depending on the IO topology or IRQ affinity settings.
5778 *
5779 * If the prev_cpu is idle and cache affine then avoid a migration.
5780 * There is no guarantee that the cache hot data from an interrupt
5781 * is more important than cache hot data on the prev_cpu and from
5782 * a cpufreq perspective, it's better to have higher utilisation
5783 * on one CPU.
5784 */
5785 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5786 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5787
5788 if (sync && cpu_rq(this_cpu)->nr_running == 1)
5789 return this_cpu;
5790
5791 return nr_cpumask_bits;
5792 }
5793
5794 static int
5795 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5796 int this_cpu, int prev_cpu, int sync)
5797 {
5798 s64 this_eff_load, prev_eff_load;
5799 unsigned long task_load;
5800
5801 this_eff_load = cpu_load(cpu_rq(this_cpu));
5802
5803 if (sync) {
5804 unsigned long current_load = task_h_load(current);
5805
5806 if (current_load > this_eff_load)
5807 return this_cpu;
5808
5809 this_eff_load -= current_load;
5810 }
5811
5812 task_load = task_h_load(p);
5813
5814 this_eff_load += task_load;
5815 if (sched_feat(WA_BIAS))
5816 this_eff_load *= 100;
5817 this_eff_load *= capacity_of(prev_cpu);
5818
5819 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
5820 prev_eff_load -= task_load;
5821 if (sched_feat(WA_BIAS))
5822 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5823 prev_eff_load *= capacity_of(this_cpu);
5824
5825 /*
5826 * If sync, adjust the weight of prev_eff_load such that if
5827 * prev_eff == this_eff that select_idle_sibling() will consider
5828 * stacking the wakee on top of the waker if no other CPU is
5829 * idle.
5830 */
5831 if (sync)
5832 prev_eff_load += 1;
5833
5834 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5835 }
5836
5837 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5838 int this_cpu, int prev_cpu, int sync)
5839 {
5840 int target = nr_cpumask_bits;
5841
5842 if (sched_feat(WA_IDLE))
5843 target = wake_affine_idle(this_cpu, prev_cpu, sync);
5844
5845 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5846 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5847
5848 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5849 if (target == nr_cpumask_bits)
5850 return prev_cpu;
5851
5852 schedstat_inc(sd->ttwu_move_affine);
5853 schedstat_inc(p->se.statistics.nr_wakeups_affine);
5854 return target;
5855 }
5856
5857 static struct sched_group *
5858 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
5859
5860 /*
5861 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5862 */
5863 static int
5864 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5865 {
5866 unsigned long load, min_load = ULONG_MAX;
5867 unsigned int min_exit_latency = UINT_MAX;
5868 u64 latest_idle_timestamp = 0;
5869 int least_loaded_cpu = this_cpu;
5870 int shallowest_idle_cpu = -1;
5871 int i;
5872
5873 /* Check if we have any choice: */
5874 if (group->group_weight == 1)
5875 return cpumask_first(sched_group_span(group));
5876
5877 /* Traverse only the allowed CPUs */
5878 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
5879 if (sched_idle_cpu(i))
5880 return i;
5881
5882 if (available_idle_cpu(i)) {
5883 struct rq *rq = cpu_rq(i);
5884 struct cpuidle_state *idle = idle_get_state(rq);
5885 if (idle && idle->exit_latency < min_exit_latency) {
5886 /*
5887 * We give priority to a CPU whose idle state
5888 * has the smallest exit latency irrespective
5889 * of any idle timestamp.
5890 */
5891 min_exit_latency = idle->exit_latency;
5892 latest_idle_timestamp = rq->idle_stamp;
5893 shallowest_idle_cpu = i;
5894 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5895 rq->idle_stamp > latest_idle_timestamp) {
5896 /*
5897 * If equal or no active idle state, then
5898 * the most recently idled CPU might have
5899 * a warmer cache.
5900 */
5901 latest_idle_timestamp = rq->idle_stamp;
5902 shallowest_idle_cpu = i;
5903 }
5904 } else if (shallowest_idle_cpu == -1) {
5905 load = cpu_load(cpu_rq(i));
5906 if (load < min_load) {
5907 min_load = load;
5908 least_loaded_cpu = i;
5909 }
5910 }
5911 }
5912
5913 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5914 }
5915
5916 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5917 int cpu, int prev_cpu, int sd_flag)
5918 {
5919 int new_cpu = cpu;
5920
5921 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
5922 return prev_cpu;
5923
5924 /*
5925 * We need task's util for cpu_util_without, sync it up to
5926 * prev_cpu's last_update_time.
5927 */
5928 if (!(sd_flag & SD_BALANCE_FORK))
5929 sync_entity_load_avg(&p->se);
5930
5931 while (sd) {
5932 struct sched_group *group;
5933 struct sched_domain *tmp;
5934 int weight;
5935
5936 if (!(sd->flags & sd_flag)) {
5937 sd = sd->child;
5938 continue;
5939 }
5940
5941 group = find_idlest_group(sd, p, cpu);
5942 if (!group) {
5943 sd = sd->child;
5944 continue;
5945 }
5946
5947 new_cpu = find_idlest_group_cpu(group, p, cpu);
5948 if (new_cpu == cpu) {
5949 /* Now try balancing at a lower domain level of 'cpu': */
5950 sd = sd->child;
5951 continue;
5952 }
5953
5954 /* Now try balancing at a lower domain level of 'new_cpu': */
5955 cpu = new_cpu;
5956 weight = sd->span_weight;
5957 sd = NULL;
5958 for_each_domain(cpu, tmp) {
5959 if (weight <= tmp->span_weight)
5960 break;
5961 if (tmp->flags & sd_flag)
5962 sd = tmp;
5963 }
5964 }
5965
5966 return new_cpu;
5967 }
5968
5969 #ifdef CONFIG_SCHED_SMT
5970 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5971 EXPORT_SYMBOL_GPL(sched_smt_present);
5972
5973 static inline void set_idle_cores(int cpu, int val)
5974 {
5975 struct sched_domain_shared *sds;
5976
5977 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5978 if (sds)
5979 WRITE_ONCE(sds->has_idle_cores, val);
5980 }
5981
5982 static inline bool test_idle_cores(int cpu, bool def)
5983 {
5984 struct sched_domain_shared *sds;
5985
5986 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5987 if (sds)
5988 return READ_ONCE(sds->has_idle_cores);
5989
5990 return def;
5991 }
5992
5993 /*
5994 * Scans the local SMT mask to see if the entire core is idle, and records this
5995 * information in sd_llc_shared->has_idle_cores.
5996 *
5997 * Since SMT siblings share all cache levels, inspecting this limited remote
5998 * state should be fairly cheap.
5999 */
6000 void __update_idle_core(struct rq *rq)
6001 {
6002 int core = cpu_of(rq);
6003 int cpu;
6004
6005 rcu_read_lock();
6006 if (test_idle_cores(core, true))
6007 goto unlock;
6008
6009 for_each_cpu(cpu, cpu_smt_mask(core)) {
6010 if (cpu == core)
6011 continue;
6012
6013 if (!available_idle_cpu(cpu))
6014 goto unlock;
6015 }
6016
6017 set_idle_cores(core, 1);
6018 unlock:
6019 rcu_read_unlock();
6020 }
6021
6022 /*
6023 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6024 * there are no idle cores left in the system; tracked through
6025 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6026 */
6027 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6028 {
6029 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6030 int core, cpu;
6031
6032 if (!static_branch_likely(&sched_smt_present))
6033 return -1;
6034
6035 if (!test_idle_cores(target, false))
6036 return -1;
6037
6038 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6039
6040 for_each_cpu_wrap(core, cpus, target) {
6041 bool idle = true;
6042
6043 for_each_cpu(cpu, cpu_smt_mask(core)) {
6044 if (!available_idle_cpu(cpu)) {
6045 idle = false;
6046 break;
6047 }
6048 }
6049 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6050
6051 if (idle)
6052 return core;
6053 }
6054
6055 /*
6056 * Failed to find an idle core; stop looking for one.
6057 */
6058 set_idle_cores(target, 0);
6059
6060 return -1;
6061 }
6062
6063 /*
6064 * Scan the local SMT mask for idle CPUs.
6065 */
6066 static int select_idle_smt(struct task_struct *p, int target)
6067 {
6068 int cpu;
6069
6070 if (!static_branch_likely(&sched_smt_present))
6071 return -1;
6072
6073 for_each_cpu(cpu, cpu_smt_mask(target)) {
6074 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6075 continue;
6076 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6077 return cpu;
6078 }
6079
6080 return -1;
6081 }
6082
6083 #else /* CONFIG_SCHED_SMT */
6084
6085 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6086 {
6087 return -1;
6088 }
6089
6090 static inline int select_idle_smt(struct task_struct *p, int target)
6091 {
6092 return -1;
6093 }
6094
6095 #endif /* CONFIG_SCHED_SMT */
6096
6097 /*
6098 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6099 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6100 * average idle time for this rq (as found in rq->avg_idle).
6101 */
6102 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6103 {
6104 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6105 struct sched_domain *this_sd;
6106 u64 avg_cost, avg_idle;
6107 u64 time;
6108 int this = smp_processor_id();
6109 int cpu, nr = INT_MAX;
6110
6111 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6112 if (!this_sd)
6113 return -1;
6114
6115 /*
6116 * Due to large variance we need a large fuzz factor; hackbench in
6117 * particularly is sensitive here.
6118 */
6119 avg_idle = this_rq()->avg_idle / 512;
6120 avg_cost = this_sd->avg_scan_cost + 1;
6121
6122 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6123 return -1;
6124
6125 if (sched_feat(SIS_PROP)) {
6126 u64 span_avg = sd->span_weight * avg_idle;
6127 if (span_avg > 4*avg_cost)
6128 nr = div_u64(span_avg, avg_cost);
6129 else
6130 nr = 4;
6131 }
6132
6133 time = cpu_clock(this);
6134
6135 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6136
6137 for_each_cpu_wrap(cpu, cpus, target) {
6138 if (!--nr)
6139 return -1;
6140 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6141 break;
6142 }
6143
6144 time = cpu_clock(this) - time;
6145 update_avg(&this_sd->avg_scan_cost, time);
6146
6147 return cpu;
6148 }
6149
6150 /*
6151 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6152 * the task fits. If no CPU is big enough, but there are idle ones, try to
6153 * maximize capacity.
6154 */
6155 static int
6156 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6157 {
6158 unsigned long best_cap = 0;
6159 int cpu, best_cpu = -1;
6160 struct cpumask *cpus;
6161
6162 sync_entity_load_avg(&p->se);
6163
6164 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6165 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6166
6167 for_each_cpu_wrap(cpu, cpus, target) {
6168 unsigned long cpu_cap = capacity_of(cpu);
6169
6170 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6171 continue;
6172 if (task_fits_capacity(p, cpu_cap))
6173 return cpu;
6174
6175 if (cpu_cap > best_cap) {
6176 best_cap = cpu_cap;
6177 best_cpu = cpu;
6178 }
6179 }
6180
6181 return best_cpu;
6182 }
6183
6184 /*
6185 * Try and locate an idle core/thread in the LLC cache domain.
6186 */
6187 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6188 {
6189 struct sched_domain *sd;
6190 int i, recent_used_cpu;
6191
6192 /*
6193 * For asymmetric CPU capacity systems, our domain of interest is
6194 * sd_asym_cpucapacity rather than sd_llc.
6195 */
6196 if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6197 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6198 /*
6199 * On an asymmetric CPU capacity system where an exclusive
6200 * cpuset defines a symmetric island (i.e. one unique
6201 * capacity_orig value through the cpuset), the key will be set
6202 * but the CPUs within that cpuset will not have a domain with
6203 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6204 * capacity path.
6205 */
6206 if (!sd)
6207 goto symmetric;
6208
6209 i = select_idle_capacity(p, sd, target);
6210 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6211 }
6212
6213 symmetric:
6214 if (available_idle_cpu(target) || sched_idle_cpu(target))
6215 return target;
6216
6217 /*
6218 * If the previous CPU is cache affine and idle, don't be stupid:
6219 */
6220 if (prev != target && cpus_share_cache(prev, target) &&
6221 (available_idle_cpu(prev) || sched_idle_cpu(prev)))
6222 return prev;
6223
6224 /*
6225 * Allow a per-cpu kthread to stack with the wakee if the
6226 * kworker thread and the tasks previous CPUs are the same.
6227 * The assumption is that the wakee queued work for the
6228 * per-cpu kthread that is now complete and the wakeup is
6229 * essentially a sync wakeup. An obvious example of this
6230 * pattern is IO completions.
6231 */
6232 if (is_per_cpu_kthread(current) &&
6233 prev == smp_processor_id() &&
6234 this_rq()->nr_running <= 1) {
6235 return prev;
6236 }
6237
6238 /* Check a recently used CPU as a potential idle candidate: */
6239 recent_used_cpu = p->recent_used_cpu;
6240 if (recent_used_cpu != prev &&
6241 recent_used_cpu != target &&
6242 cpus_share_cache(recent_used_cpu, target) &&
6243 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6244 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr)) {
6245 /*
6246 * Replace recent_used_cpu with prev as it is a potential
6247 * candidate for the next wake:
6248 */
6249 p->recent_used_cpu = prev;
6250 return recent_used_cpu;
6251 }
6252
6253 sd = rcu_dereference(per_cpu(sd_llc, target));
6254 if (!sd)
6255 return target;
6256
6257 i = select_idle_core(p, sd, target);
6258 if ((unsigned)i < nr_cpumask_bits)
6259 return i;
6260
6261 i = select_idle_cpu(p, sd, target);
6262 if ((unsigned)i < nr_cpumask_bits)
6263 return i;
6264
6265 i = select_idle_smt(p, target);
6266 if ((unsigned)i < nr_cpumask_bits)
6267 return i;
6268
6269 return target;
6270 }
6271
6272 /**
6273 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6274 * @cpu: the CPU to get the utilization of
6275 *
6276 * The unit of the return value must be the one of capacity so we can compare
6277 * the utilization with the capacity of the CPU that is available for CFS task
6278 * (ie cpu_capacity).
6279 *
6280 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6281 * recent utilization of currently non-runnable tasks on a CPU. It represents
6282 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6283 * capacity_orig is the cpu_capacity available at the highest frequency
6284 * (arch_scale_freq_capacity()).
6285 * The utilization of a CPU converges towards a sum equal to or less than the
6286 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6287 * the running time on this CPU scaled by capacity_curr.
6288 *
6289 * The estimated utilization of a CPU is defined to be the maximum between its
6290 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6291 * currently RUNNABLE on that CPU.
6292 * This allows to properly represent the expected utilization of a CPU which
6293 * has just got a big task running since a long sleep period. At the same time
6294 * however it preserves the benefits of the "blocked utilization" in
6295 * describing the potential for other tasks waking up on the same CPU.
6296 *
6297 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6298 * higher than capacity_orig because of unfortunate rounding in
6299 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6300 * the average stabilizes with the new running time. We need to check that the
6301 * utilization stays within the range of [0..capacity_orig] and cap it if
6302 * necessary. Without utilization capping, a group could be seen as overloaded
6303 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6304 * available capacity. We allow utilization to overshoot capacity_curr (but not
6305 * capacity_orig) as it useful for predicting the capacity required after task
6306 * migrations (scheduler-driven DVFS).
6307 *
6308 * Return: the (estimated) utilization for the specified CPU
6309 */
6310 static inline unsigned long cpu_util(int cpu)
6311 {
6312 struct cfs_rq *cfs_rq;
6313 unsigned int util;
6314
6315 cfs_rq = &cpu_rq(cpu)->cfs;
6316 util = READ_ONCE(cfs_rq->avg.util_avg);
6317
6318 if (sched_feat(UTIL_EST))
6319 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6320
6321 return min_t(unsigned long, util, capacity_orig_of(cpu));
6322 }
6323
6324 /*
6325 * cpu_util_without: compute cpu utilization without any contributions from *p
6326 * @cpu: the CPU which utilization is requested
6327 * @p: the task which utilization should be discounted
6328 *
6329 * The utilization of a CPU is defined by the utilization of tasks currently
6330 * enqueued on that CPU as well as tasks which are currently sleeping after an
6331 * execution on that CPU.
6332 *
6333 * This method returns the utilization of the specified CPU by discounting the
6334 * utilization of the specified task, whenever the task is currently
6335 * contributing to the CPU utilization.
6336 */
6337 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6338 {
6339 struct cfs_rq *cfs_rq;
6340 unsigned int util;
6341
6342 /* Task has no contribution or is new */
6343 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6344 return cpu_util(cpu);
6345
6346 cfs_rq = &cpu_rq(cpu)->cfs;
6347 util = READ_ONCE(cfs_rq->avg.util_avg);
6348
6349 /* Discount task's util from CPU's util */
6350 lsub_positive(&util, task_util(p));
6351
6352 /*
6353 * Covered cases:
6354 *
6355 * a) if *p is the only task sleeping on this CPU, then:
6356 * cpu_util (== task_util) > util_est (== 0)
6357 * and thus we return:
6358 * cpu_util_without = (cpu_util - task_util) = 0
6359 *
6360 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6361 * IDLE, then:
6362 * cpu_util >= task_util
6363 * cpu_util > util_est (== 0)
6364 * and thus we discount *p's blocked utilization to return:
6365 * cpu_util_without = (cpu_util - task_util) >= 0
6366 *
6367 * c) if other tasks are RUNNABLE on that CPU and
6368 * util_est > cpu_util
6369 * then we use util_est since it returns a more restrictive
6370 * estimation of the spare capacity on that CPU, by just
6371 * considering the expected utilization of tasks already
6372 * runnable on that CPU.
6373 *
6374 * Cases a) and b) are covered by the above code, while case c) is
6375 * covered by the following code when estimated utilization is
6376 * enabled.
6377 */
6378 if (sched_feat(UTIL_EST)) {
6379 unsigned int estimated =
6380 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6381
6382 /*
6383 * Despite the following checks we still have a small window
6384 * for a possible race, when an execl's select_task_rq_fair()
6385 * races with LB's detach_task():
6386 *
6387 * detach_task()
6388 * p->on_rq = TASK_ON_RQ_MIGRATING;
6389 * ---------------------------------- A
6390 * deactivate_task() \
6391 * dequeue_task() + RaceTime
6392 * util_est_dequeue() /
6393 * ---------------------------------- B
6394 *
6395 * The additional check on "current == p" it's required to
6396 * properly fix the execl regression and it helps in further
6397 * reducing the chances for the above race.
6398 */
6399 if (unlikely(task_on_rq_queued(p) || current == p))
6400 lsub_positive(&estimated, _task_util_est(p));
6401
6402 util = max(util, estimated);
6403 }
6404
6405 /*
6406 * Utilization (estimated) can exceed the CPU capacity, thus let's
6407 * clamp to the maximum CPU capacity to ensure consistency with
6408 * the cpu_util call.
6409 */
6410 return min_t(unsigned long, util, capacity_orig_of(cpu));
6411 }
6412
6413 /*
6414 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6415 * to @dst_cpu.
6416 */
6417 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6418 {
6419 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6420 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6421
6422 /*
6423 * If @p migrates from @cpu to another, remove its contribution. Or,
6424 * if @p migrates from another CPU to @cpu, add its contribution. In
6425 * the other cases, @cpu is not impacted by the migration, so the
6426 * util_avg should already be correct.
6427 */
6428 if (task_cpu(p) == cpu && dst_cpu != cpu)
6429 sub_positive(&util, task_util(p));
6430 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6431 util += task_util(p);
6432
6433 if (sched_feat(UTIL_EST)) {
6434 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6435
6436 /*
6437 * During wake-up, the task isn't enqueued yet and doesn't
6438 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6439 * so just add it (if needed) to "simulate" what will be
6440 * cpu_util() after the task has been enqueued.
6441 */
6442 if (dst_cpu == cpu)
6443 util_est += _task_util_est(p);
6444
6445 util = max(util, util_est);
6446 }
6447
6448 return min(util, capacity_orig_of(cpu));
6449 }
6450
6451 /*
6452 * compute_energy(): Estimates the energy that @pd would consume if @p was
6453 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6454 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6455 * to compute what would be the energy if we decided to actually migrate that
6456 * task.
6457 */
6458 static long
6459 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6460 {
6461 struct cpumask *pd_mask = perf_domain_span(pd);
6462 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6463 unsigned long max_util = 0, sum_util = 0;
6464 int cpu;
6465
6466 /*
6467 * The capacity state of CPUs of the current rd can be driven by CPUs
6468 * of another rd if they belong to the same pd. So, account for the
6469 * utilization of these CPUs too by masking pd with cpu_online_mask
6470 * instead of the rd span.
6471 *
6472 * If an entire pd is outside of the current rd, it will not appear in
6473 * its pd list and will not be accounted by compute_energy().
6474 */
6475 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6476 unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6477 struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6478
6479 /*
6480 * Busy time computation: utilization clamping is not
6481 * required since the ratio (sum_util / cpu_capacity)
6482 * is already enough to scale the EM reported power
6483 * consumption at the (eventually clamped) cpu_capacity.
6484 */
6485 sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6486 ENERGY_UTIL, NULL);
6487
6488 /*
6489 * Performance domain frequency: utilization clamping
6490 * must be considered since it affects the selection
6491 * of the performance domain frequency.
6492 * NOTE: in case RT tasks are running, by default the
6493 * FREQUENCY_UTIL's utilization can be max OPP.
6494 */
6495 cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6496 FREQUENCY_UTIL, tsk);
6497 max_util = max(max_util, cpu_util);
6498 }
6499
6500 return em_pd_energy(pd->em_pd, max_util, sum_util);
6501 }
6502
6503 /*
6504 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6505 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6506 * spare capacity in each performance domain and uses it as a potential
6507 * candidate to execute the task. Then, it uses the Energy Model to figure
6508 * out which of the CPU candidates is the most energy-efficient.
6509 *
6510 * The rationale for this heuristic is as follows. In a performance domain,
6511 * all the most energy efficient CPU candidates (according to the Energy
6512 * Model) are those for which we'll request a low frequency. When there are
6513 * several CPUs for which the frequency request will be the same, we don't
6514 * have enough data to break the tie between them, because the Energy Model
6515 * only includes active power costs. With this model, if we assume that
6516 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6517 * the maximum spare capacity in a performance domain is guaranteed to be among
6518 * the best candidates of the performance domain.
6519 *
6520 * In practice, it could be preferable from an energy standpoint to pack
6521 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6522 * but that could also hurt our chances to go cluster idle, and we have no
6523 * ways to tell with the current Energy Model if this is actually a good
6524 * idea or not. So, find_energy_efficient_cpu() basically favors
6525 * cluster-packing, and spreading inside a cluster. That should at least be
6526 * a good thing for latency, and this is consistent with the idea that most
6527 * of the energy savings of EAS come from the asymmetry of the system, and
6528 * not so much from breaking the tie between identical CPUs. That's also the
6529 * reason why EAS is enabled in the topology code only for systems where
6530 * SD_ASYM_CPUCAPACITY is set.
6531 *
6532 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6533 * they don't have any useful utilization data yet and it's not possible to
6534 * forecast their impact on energy consumption. Consequently, they will be
6535 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6536 * to be energy-inefficient in some use-cases. The alternative would be to
6537 * bias new tasks towards specific types of CPUs first, or to try to infer
6538 * their util_avg from the parent task, but those heuristics could hurt
6539 * other use-cases too. So, until someone finds a better way to solve this,
6540 * let's keep things simple by re-using the existing slow path.
6541 */
6542 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6543 {
6544 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6545 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6546 unsigned long cpu_cap, util, base_energy = 0;
6547 int cpu, best_energy_cpu = prev_cpu;
6548 struct sched_domain *sd;
6549 struct perf_domain *pd;
6550
6551 rcu_read_lock();
6552 pd = rcu_dereference(rd->pd);
6553 if (!pd || READ_ONCE(rd->overutilized))
6554 goto fail;
6555
6556 /*
6557 * Energy-aware wake-up happens on the lowest sched_domain starting
6558 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6559 */
6560 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6561 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6562 sd = sd->parent;
6563 if (!sd)
6564 goto fail;
6565
6566 sync_entity_load_avg(&p->se);
6567 if (!task_util_est(p))
6568 goto unlock;
6569
6570 for (; pd; pd = pd->next) {
6571 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6572 unsigned long base_energy_pd;
6573 int max_spare_cap_cpu = -1;
6574
6575 /* Compute the 'base' energy of the pd, without @p */
6576 base_energy_pd = compute_energy(p, -1, pd);
6577 base_energy += base_energy_pd;
6578
6579 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6580 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6581 continue;
6582
6583 util = cpu_util_next(cpu, p, cpu);
6584 cpu_cap = capacity_of(cpu);
6585 spare_cap = cpu_cap - util;
6586
6587 /*
6588 * Skip CPUs that cannot satisfy the capacity request.
6589 * IOW, placing the task there would make the CPU
6590 * overutilized. Take uclamp into account to see how
6591 * much capacity we can get out of the CPU; this is
6592 * aligned with schedutil_cpu_util().
6593 */
6594 util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6595 if (!fits_capacity(util, cpu_cap))
6596 continue;
6597
6598 /* Always use prev_cpu as a candidate. */
6599 if (cpu == prev_cpu) {
6600 prev_delta = compute_energy(p, prev_cpu, pd);
6601 prev_delta -= base_energy_pd;
6602 best_delta = min(best_delta, prev_delta);
6603 }
6604
6605 /*
6606 * Find the CPU with the maximum spare capacity in
6607 * the performance domain
6608 */
6609 if (spare_cap > max_spare_cap) {
6610 max_spare_cap = spare_cap;
6611 max_spare_cap_cpu = cpu;
6612 }
6613 }
6614
6615 /* Evaluate the energy impact of using this CPU. */
6616 if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
6617 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6618 cur_delta -= base_energy_pd;
6619 if (cur_delta < best_delta) {
6620 best_delta = cur_delta;
6621 best_energy_cpu = max_spare_cap_cpu;
6622 }
6623 }
6624 }
6625 unlock:
6626 rcu_read_unlock();
6627
6628 /*
6629 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6630 * least 6% of the energy used by prev_cpu.
6631 */
6632 if (prev_delta == ULONG_MAX)
6633 return best_energy_cpu;
6634
6635 if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6636 return best_energy_cpu;
6637
6638 return prev_cpu;
6639
6640 fail:
6641 rcu_read_unlock();
6642
6643 return -1;
6644 }
6645
6646 /*
6647 * select_task_rq_fair: Select target runqueue for the waking task in domains
6648 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6649 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6650 *
6651 * Balances load by selecting the idlest CPU in the idlest group, or under
6652 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6653 *
6654 * Returns the target CPU number.
6655 *
6656 * preempt must be disabled.
6657 */
6658 static int
6659 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6660 {
6661 struct sched_domain *tmp, *sd = NULL;
6662 int cpu = smp_processor_id();
6663 int new_cpu = prev_cpu;
6664 int want_affine = 0;
6665 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6666
6667 if (sd_flag & SD_BALANCE_WAKE) {
6668 record_wakee(p);
6669
6670 if (sched_energy_enabled()) {
6671 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6672 if (new_cpu >= 0)
6673 return new_cpu;
6674 new_cpu = prev_cpu;
6675 }
6676
6677 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6678 }
6679
6680 rcu_read_lock();
6681 for_each_domain(cpu, tmp) {
6682 /*
6683 * If both 'cpu' and 'prev_cpu' are part of this domain,
6684 * cpu is a valid SD_WAKE_AFFINE target.
6685 */
6686 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6687 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6688 if (cpu != prev_cpu)
6689 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6690
6691 sd = NULL; /* Prefer wake_affine over balance flags */
6692 break;
6693 }
6694
6695 if (tmp->flags & sd_flag)
6696 sd = tmp;
6697 else if (!want_affine)
6698 break;
6699 }
6700
6701 if (unlikely(sd)) {
6702 /* Slow path */
6703 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6704 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6705 /* Fast path */
6706
6707 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6708
6709 if (want_affine)
6710 current->recent_used_cpu = cpu;
6711 }
6712 rcu_read_unlock();
6713
6714 return new_cpu;
6715 }
6716
6717 static void detach_entity_cfs_rq(struct sched_entity *se);
6718
6719 /*
6720 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6721 * cfs_rq_of(p) references at time of call are still valid and identify the
6722 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6723 */
6724 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6725 {
6726 /*
6727 * As blocked tasks retain absolute vruntime the migration needs to
6728 * deal with this by subtracting the old and adding the new
6729 * min_vruntime -- the latter is done by enqueue_entity() when placing
6730 * the task on the new runqueue.
6731 */
6732 if (p->state == TASK_WAKING) {
6733 struct sched_entity *se = &p->se;
6734 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6735 u64 min_vruntime;
6736
6737 #ifndef CONFIG_64BIT
6738 u64 min_vruntime_copy;
6739
6740 do {
6741 min_vruntime_copy = cfs_rq->min_vruntime_copy;
6742 smp_rmb();
6743 min_vruntime = cfs_rq->min_vruntime;
6744 } while (min_vruntime != min_vruntime_copy);
6745 #else
6746 min_vruntime = cfs_rq->min_vruntime;
6747 #endif
6748
6749 se->vruntime -= min_vruntime;
6750 }
6751
6752 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6753 /*
6754 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6755 * rq->lock and can modify state directly.
6756 */
6757 lockdep_assert_held(&task_rq(p)->lock);
6758 detach_entity_cfs_rq(&p->se);
6759
6760 } else {
6761 /*
6762 * We are supposed to update the task to "current" time, then
6763 * its up to date and ready to go to new CPU/cfs_rq. But we
6764 * have difficulty in getting what current time is, so simply
6765 * throw away the out-of-date time. This will result in the
6766 * wakee task is less decayed, but giving the wakee more load
6767 * sounds not bad.
6768 */
6769 remove_entity_load_avg(&p->se);
6770 }
6771
6772 /* Tell new CPU we are migrated */
6773 p->se.avg.last_update_time = 0;
6774
6775 /* We have migrated, no longer consider this task hot */
6776 p->se.exec_start = 0;
6777
6778 update_scan_period(p, new_cpu);
6779 }
6780
6781 static void task_dead_fair(struct task_struct *p)
6782 {
6783 remove_entity_load_avg(&p->se);
6784 }
6785
6786 static int
6787 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6788 {
6789 if (rq->nr_running)
6790 return 1;
6791
6792 return newidle_balance(rq, rf) != 0;
6793 }
6794 #endif /* CONFIG_SMP */
6795
6796 static unsigned long wakeup_gran(struct sched_entity *se)
6797 {
6798 unsigned long gran = sysctl_sched_wakeup_granularity;
6799
6800 /*
6801 * Since its curr running now, convert the gran from real-time
6802 * to virtual-time in his units.
6803 *
6804 * By using 'se' instead of 'curr' we penalize light tasks, so
6805 * they get preempted easier. That is, if 'se' < 'curr' then
6806 * the resulting gran will be larger, therefore penalizing the
6807 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6808 * be smaller, again penalizing the lighter task.
6809 *
6810 * This is especially important for buddies when the leftmost
6811 * task is higher priority than the buddy.
6812 */
6813 return calc_delta_fair(gran, se);
6814 }
6815
6816 /*
6817 * Should 'se' preempt 'curr'.
6818 *
6819 * |s1
6820 * |s2
6821 * |s3
6822 * g
6823 * |<--->|c
6824 *
6825 * w(c, s1) = -1
6826 * w(c, s2) = 0
6827 * w(c, s3) = 1
6828 *
6829 */
6830 static int
6831 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6832 {
6833 s64 gran, vdiff = curr->vruntime - se->vruntime;
6834
6835 if (vdiff <= 0)
6836 return -1;
6837
6838 gran = wakeup_gran(se);
6839 if (vdiff > gran)
6840 return 1;
6841
6842 return 0;
6843 }
6844
6845 static void set_last_buddy(struct sched_entity *se)
6846 {
6847 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6848 return;
6849
6850 for_each_sched_entity(se) {
6851 if (SCHED_WARN_ON(!se->on_rq))
6852 return;
6853 cfs_rq_of(se)->last = se;
6854 }
6855 }
6856
6857 static void set_next_buddy(struct sched_entity *se)
6858 {
6859 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6860 return;
6861
6862 for_each_sched_entity(se) {
6863 if (SCHED_WARN_ON(!se->on_rq))
6864 return;
6865 cfs_rq_of(se)->next = se;
6866 }
6867 }
6868
6869 static void set_skip_buddy(struct sched_entity *se)
6870 {
6871 for_each_sched_entity(se)
6872 cfs_rq_of(se)->skip = se;
6873 }
6874
6875 /*
6876 * Preempt the current task with a newly woken task if needed:
6877 */
6878 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6879 {
6880 struct task_struct *curr = rq->curr;
6881 struct sched_entity *se = &curr->se, *pse = &p->se;
6882 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6883 int scale = cfs_rq->nr_running >= sched_nr_latency;
6884 int next_buddy_marked = 0;
6885
6886 if (unlikely(se == pse))
6887 return;
6888
6889 /*
6890 * This is possible from callers such as attach_tasks(), in which we
6891 * unconditionally check_prempt_curr() after an enqueue (which may have
6892 * lead to a throttle). This both saves work and prevents false
6893 * next-buddy nomination below.
6894 */
6895 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6896 return;
6897
6898 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6899 set_next_buddy(pse);
6900 next_buddy_marked = 1;
6901 }
6902
6903 /*
6904 * We can come here with TIF_NEED_RESCHED already set from new task
6905 * wake up path.
6906 *
6907 * Note: this also catches the edge-case of curr being in a throttled
6908 * group (e.g. via set_curr_task), since update_curr() (in the
6909 * enqueue of curr) will have resulted in resched being set. This
6910 * prevents us from potentially nominating it as a false LAST_BUDDY
6911 * below.
6912 */
6913 if (test_tsk_need_resched(curr))
6914 return;
6915
6916 /* Idle tasks are by definition preempted by non-idle tasks. */
6917 if (unlikely(task_has_idle_policy(curr)) &&
6918 likely(!task_has_idle_policy(p)))
6919 goto preempt;
6920
6921 /*
6922 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6923 * is driven by the tick):
6924 */
6925 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6926 return;
6927
6928 find_matching_se(&se, &pse);
6929 update_curr(cfs_rq_of(se));
6930 BUG_ON(!pse);
6931 if (wakeup_preempt_entity(se, pse) == 1) {
6932 /*
6933 * Bias pick_next to pick the sched entity that is
6934 * triggering this preemption.
6935 */
6936 if (!next_buddy_marked)
6937 set_next_buddy(pse);
6938 goto preempt;
6939 }
6940
6941 return;
6942
6943 preempt:
6944 resched_curr(rq);
6945 /*
6946 * Only set the backward buddy when the current task is still
6947 * on the rq. This can happen when a wakeup gets interleaved
6948 * with schedule on the ->pre_schedule() or idle_balance()
6949 * point, either of which can * drop the rq lock.
6950 *
6951 * Also, during early boot the idle thread is in the fair class,
6952 * for obvious reasons its a bad idea to schedule back to it.
6953 */
6954 if (unlikely(!se->on_rq || curr == rq->idle))
6955 return;
6956
6957 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6958 set_last_buddy(se);
6959 }
6960
6961 struct task_struct *
6962 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6963 {
6964 struct cfs_rq *cfs_rq = &rq->cfs;
6965 struct sched_entity *se;
6966 struct task_struct *p;
6967 int new_tasks;
6968
6969 again:
6970 if (!sched_fair_runnable(rq))
6971 goto idle;
6972
6973 #ifdef CONFIG_FAIR_GROUP_SCHED
6974 if (!prev || prev->sched_class != &fair_sched_class)
6975 goto simple;
6976
6977 /*
6978 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6979 * likely that a next task is from the same cgroup as the current.
6980 *
6981 * Therefore attempt to avoid putting and setting the entire cgroup
6982 * hierarchy, only change the part that actually changes.
6983 */
6984
6985 do {
6986 struct sched_entity *curr = cfs_rq->curr;
6987
6988 /*
6989 * Since we got here without doing put_prev_entity() we also
6990 * have to consider cfs_rq->curr. If it is still a runnable
6991 * entity, update_curr() will update its vruntime, otherwise
6992 * forget we've ever seen it.
6993 */
6994 if (curr) {
6995 if (curr->on_rq)
6996 update_curr(cfs_rq);
6997 else
6998 curr = NULL;
6999
7000 /*
7001 * This call to check_cfs_rq_runtime() will do the
7002 * throttle and dequeue its entity in the parent(s).
7003 * Therefore the nr_running test will indeed
7004 * be correct.
7005 */
7006 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7007 cfs_rq = &rq->cfs;
7008
7009 if (!cfs_rq->nr_running)
7010 goto idle;
7011
7012 goto simple;
7013 }
7014 }
7015
7016 se = pick_next_entity(cfs_rq, curr);
7017 cfs_rq = group_cfs_rq(se);
7018 } while (cfs_rq);
7019
7020 p = task_of(se);
7021
7022 /*
7023 * Since we haven't yet done put_prev_entity and if the selected task
7024 * is a different task than we started out with, try and touch the
7025 * least amount of cfs_rqs.
7026 */
7027 if (prev != p) {
7028 struct sched_entity *pse = &prev->se;
7029
7030 while (!(cfs_rq = is_same_group(se, pse))) {
7031 int se_depth = se->depth;
7032 int pse_depth = pse->depth;
7033
7034 if (se_depth <= pse_depth) {
7035 put_prev_entity(cfs_rq_of(pse), pse);
7036 pse = parent_entity(pse);
7037 }
7038 if (se_depth >= pse_depth) {
7039 set_next_entity(cfs_rq_of(se), se);
7040 se = parent_entity(se);
7041 }
7042 }
7043
7044 put_prev_entity(cfs_rq, pse);
7045 set_next_entity(cfs_rq, se);
7046 }
7047
7048 goto done;
7049 simple:
7050 #endif
7051 if (prev)
7052 put_prev_task(rq, prev);
7053
7054 do {
7055 se = pick_next_entity(cfs_rq, NULL);
7056 set_next_entity(cfs_rq, se);
7057 cfs_rq = group_cfs_rq(se);
7058 } while (cfs_rq);
7059
7060 p = task_of(se);
7061
7062 done: __maybe_unused;
7063 #ifdef CONFIG_SMP
7064 /*
7065 * Move the next running task to the front of
7066 * the list, so our cfs_tasks list becomes MRU
7067 * one.
7068 */
7069 list_move(&p->se.group_node, &rq->cfs_tasks);
7070 #endif
7071
7072 if (hrtick_enabled(rq))
7073 hrtick_start_fair(rq, p);
7074
7075 update_misfit_status(p, rq);
7076
7077 return p;
7078
7079 idle:
7080 if (!rf)
7081 return NULL;
7082
7083 new_tasks = newidle_balance(rq, rf);
7084
7085 /*
7086 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7087 * possible for any higher priority task to appear. In that case we
7088 * must re-start the pick_next_entity() loop.
7089 */
7090 if (new_tasks < 0)
7091 return RETRY_TASK;
7092
7093 if (new_tasks > 0)
7094 goto again;
7095
7096 /*
7097 * rq is about to be idle, check if we need to update the
7098 * lost_idle_time of clock_pelt
7099 */
7100 update_idle_rq_clock_pelt(rq);
7101
7102 return NULL;
7103 }
7104
7105 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7106 {
7107 return pick_next_task_fair(rq, NULL, NULL);
7108 }
7109
7110 /*
7111 * Account for a descheduled task:
7112 */
7113 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7114 {
7115 struct sched_entity *se = &prev->se;
7116 struct cfs_rq *cfs_rq;
7117
7118 for_each_sched_entity(se) {
7119 cfs_rq = cfs_rq_of(se);
7120 put_prev_entity(cfs_rq, se);
7121 }
7122 }
7123
7124 /*
7125 * sched_yield() is very simple
7126 *
7127 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7128 */
7129 static void yield_task_fair(struct rq *rq)
7130 {
7131 struct task_struct *curr = rq->curr;
7132 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7133 struct sched_entity *se = &curr->se;
7134
7135 /*
7136 * Are we the only task in the tree?
7137 */
7138 if (unlikely(rq->nr_running == 1))
7139 return;
7140
7141 clear_buddies(cfs_rq, se);
7142
7143 if (curr->policy != SCHED_BATCH) {
7144 update_rq_clock(rq);
7145 /*
7146 * Update run-time statistics of the 'current'.
7147 */
7148 update_curr(cfs_rq);
7149 /*
7150 * Tell update_rq_clock() that we've just updated,
7151 * so we don't do microscopic update in schedule()
7152 * and double the fastpath cost.
7153 */
7154 rq_clock_skip_update(rq);
7155 }
7156
7157 set_skip_buddy(se);
7158 }
7159
7160 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7161 {
7162 struct sched_entity *se = &p->se;
7163
7164 /* throttled hierarchies are not runnable */
7165 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7166 return false;
7167
7168 /* Tell the scheduler that we'd really like pse to run next. */
7169 set_next_buddy(se);
7170
7171 yield_task_fair(rq);
7172
7173 return true;
7174 }
7175
7176 #ifdef CONFIG_SMP
7177 /**************************************************
7178 * Fair scheduling class load-balancing methods.
7179 *
7180 * BASICS
7181 *
7182 * The purpose of load-balancing is to achieve the same basic fairness the
7183 * per-CPU scheduler provides, namely provide a proportional amount of compute
7184 * time to each task. This is expressed in the following equation:
7185 *
7186 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7187 *
7188 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7189 * W_i,0 is defined as:
7190 *
7191 * W_i,0 = \Sum_j w_i,j (2)
7192 *
7193 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7194 * is derived from the nice value as per sched_prio_to_weight[].
7195 *
7196 * The weight average is an exponential decay average of the instantaneous
7197 * weight:
7198 *
7199 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7200 *
7201 * C_i is the compute capacity of CPU i, typically it is the
7202 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7203 * can also include other factors [XXX].
7204 *
7205 * To achieve this balance we define a measure of imbalance which follows
7206 * directly from (1):
7207 *
7208 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7209 *
7210 * We them move tasks around to minimize the imbalance. In the continuous
7211 * function space it is obvious this converges, in the discrete case we get
7212 * a few fun cases generally called infeasible weight scenarios.
7213 *
7214 * [XXX expand on:
7215 * - infeasible weights;
7216 * - local vs global optima in the discrete case. ]
7217 *
7218 *
7219 * SCHED DOMAINS
7220 *
7221 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7222 * for all i,j solution, we create a tree of CPUs that follows the hardware
7223 * topology where each level pairs two lower groups (or better). This results
7224 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7225 * tree to only the first of the previous level and we decrease the frequency
7226 * of load-balance at each level inv. proportional to the number of CPUs in
7227 * the groups.
7228 *
7229 * This yields:
7230 *
7231 * log_2 n 1 n
7232 * \Sum { --- * --- * 2^i } = O(n) (5)
7233 * i = 0 2^i 2^i
7234 * `- size of each group
7235 * | | `- number of CPUs doing load-balance
7236 * | `- freq
7237 * `- sum over all levels
7238 *
7239 * Coupled with a limit on how many tasks we can migrate every balance pass,
7240 * this makes (5) the runtime complexity of the balancer.
7241 *
7242 * An important property here is that each CPU is still (indirectly) connected
7243 * to every other CPU in at most O(log n) steps:
7244 *
7245 * The adjacency matrix of the resulting graph is given by:
7246 *
7247 * log_2 n
7248 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7249 * k = 0
7250 *
7251 * And you'll find that:
7252 *
7253 * A^(log_2 n)_i,j != 0 for all i,j (7)
7254 *
7255 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7256 * The task movement gives a factor of O(m), giving a convergence complexity
7257 * of:
7258 *
7259 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7260 *
7261 *
7262 * WORK CONSERVING
7263 *
7264 * In order to avoid CPUs going idle while there's still work to do, new idle
7265 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7266 * tree itself instead of relying on other CPUs to bring it work.
7267 *
7268 * This adds some complexity to both (5) and (8) but it reduces the total idle
7269 * time.
7270 *
7271 * [XXX more?]
7272 *
7273 *
7274 * CGROUPS
7275 *
7276 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7277 *
7278 * s_k,i
7279 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7280 * S_k
7281 *
7282 * Where
7283 *
7284 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7285 *
7286 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7287 *
7288 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7289 * property.
7290 *
7291 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7292 * rewrite all of this once again.]
7293 */
7294
7295 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7296
7297 enum fbq_type { regular, remote, all };
7298
7299 /*
7300 * 'group_type' describes the group of CPUs at the moment of load balancing.
7301 *
7302 * The enum is ordered by pulling priority, with the group with lowest priority
7303 * first so the group_type can simply be compared when selecting the busiest
7304 * group. See update_sd_pick_busiest().
7305 */
7306 enum group_type {
7307 /* The group has spare capacity that can be used to run more tasks. */
7308 group_has_spare = 0,
7309 /*
7310 * The group is fully used and the tasks don't compete for more CPU
7311 * cycles. Nevertheless, some tasks might wait before running.
7312 */
7313 group_fully_busy,
7314 /*
7315 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7316 * and must be migrated to a more powerful CPU.
7317 */
7318 group_misfit_task,
7319 /*
7320 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7321 * and the task should be migrated to it instead of running on the
7322 * current CPU.
7323 */
7324 group_asym_packing,
7325 /*
7326 * The tasks' affinity constraints previously prevented the scheduler
7327 * from balancing the load across the system.
7328 */
7329 group_imbalanced,
7330 /*
7331 * The CPU is overloaded and can't provide expected CPU cycles to all
7332 * tasks.
7333 */
7334 group_overloaded
7335 };
7336
7337 enum migration_type {
7338 migrate_load = 0,
7339 migrate_util,
7340 migrate_task,
7341 migrate_misfit
7342 };
7343
7344 #define LBF_ALL_PINNED 0x01
7345 #define LBF_NEED_BREAK 0x02
7346 #define LBF_DST_PINNED 0x04
7347 #define LBF_SOME_PINNED 0x08
7348 #define LBF_NOHZ_STATS 0x10
7349 #define LBF_NOHZ_AGAIN 0x20
7350
7351 struct lb_env {
7352 struct sched_domain *sd;
7353
7354 struct rq *src_rq;
7355 int src_cpu;
7356
7357 int dst_cpu;
7358 struct rq *dst_rq;
7359
7360 struct cpumask *dst_grpmask;
7361 int new_dst_cpu;
7362 enum cpu_idle_type idle;
7363 long imbalance;
7364 /* The set of CPUs under consideration for load-balancing */
7365 struct cpumask *cpus;
7366
7367 unsigned int flags;
7368
7369 unsigned int loop;
7370 unsigned int loop_break;
7371 unsigned int loop_max;
7372
7373 enum fbq_type fbq_type;
7374 enum migration_type migration_type;
7375 struct list_head tasks;
7376 };
7377
7378 /*
7379 * Is this task likely cache-hot:
7380 */
7381 static int task_hot(struct task_struct *p, struct lb_env *env)
7382 {
7383 s64 delta;
7384
7385 lockdep_assert_held(&env->src_rq->lock);
7386
7387 if (p->sched_class != &fair_sched_class)
7388 return 0;
7389
7390 if (unlikely(task_has_idle_policy(p)))
7391 return 0;
7392
7393 /*
7394 * Buddy candidates are cache hot:
7395 */
7396 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7397 (&p->se == cfs_rq_of(&p->se)->next ||
7398 &p->se == cfs_rq_of(&p->se)->last))
7399 return 1;
7400
7401 if (sysctl_sched_migration_cost == -1)
7402 return 1;
7403 if (sysctl_sched_migration_cost == 0)
7404 return 0;
7405
7406 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7407
7408 return delta < (s64)sysctl_sched_migration_cost;
7409 }
7410
7411 #ifdef CONFIG_NUMA_BALANCING
7412 /*
7413 * Returns 1, if task migration degrades locality
7414 * Returns 0, if task migration improves locality i.e migration preferred.
7415 * Returns -1, if task migration is not affected by locality.
7416 */
7417 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7418 {
7419 struct numa_group *numa_group = rcu_dereference(p->numa_group);
7420 unsigned long src_weight, dst_weight;
7421 int src_nid, dst_nid, dist;
7422
7423 if (!static_branch_likely(&sched_numa_balancing))
7424 return -1;
7425
7426 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7427 return -1;
7428
7429 src_nid = cpu_to_node(env->src_cpu);
7430 dst_nid = cpu_to_node(env->dst_cpu);
7431
7432 if (src_nid == dst_nid)
7433 return -1;
7434
7435 /* Migrating away from the preferred node is always bad. */
7436 if (src_nid == p->numa_preferred_nid) {
7437 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7438 return 1;
7439 else
7440 return -1;
7441 }
7442
7443 /* Encourage migration to the preferred node. */
7444 if (dst_nid == p->numa_preferred_nid)
7445 return 0;
7446
7447 /* Leaving a core idle is often worse than degrading locality. */
7448 if (env->idle == CPU_IDLE)
7449 return -1;
7450
7451 dist = node_distance(src_nid, dst_nid);
7452 if (numa_group) {
7453 src_weight = group_weight(p, src_nid, dist);
7454 dst_weight = group_weight(p, dst_nid, dist);
7455 } else {
7456 src_weight = task_weight(p, src_nid, dist);
7457 dst_weight = task_weight(p, dst_nid, dist);
7458 }
7459
7460 return dst_weight < src_weight;
7461 }
7462
7463 #else
7464 static inline int migrate_degrades_locality(struct task_struct *p,
7465 struct lb_env *env)
7466 {
7467 return -1;
7468 }
7469 #endif
7470
7471 /*
7472 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7473 */
7474 static
7475 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7476 {
7477 int tsk_cache_hot;
7478
7479 lockdep_assert_held(&env->src_rq->lock);
7480
7481 /*
7482 * We do not migrate tasks that are:
7483 * 1) throttled_lb_pair, or
7484 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7485 * 3) running (obviously), or
7486 * 4) are cache-hot on their current CPU.
7487 */
7488 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7489 return 0;
7490
7491 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7492 int cpu;
7493
7494 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7495
7496 env->flags |= LBF_SOME_PINNED;
7497
7498 /*
7499 * Remember if this task can be migrated to any other CPU in
7500 * our sched_group. We may want to revisit it if we couldn't
7501 * meet load balance goals by pulling other tasks on src_cpu.
7502 *
7503 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7504 * already computed one in current iteration.
7505 */
7506 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7507 return 0;
7508
7509 /* Prevent to re-select dst_cpu via env's CPUs: */
7510 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7511 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7512 env->flags |= LBF_DST_PINNED;
7513 env->new_dst_cpu = cpu;
7514 break;
7515 }
7516 }
7517
7518 return 0;
7519 }
7520
7521 /* Record that we found atleast one task that could run on dst_cpu */
7522 env->flags &= ~LBF_ALL_PINNED;
7523
7524 if (task_running(env->src_rq, p)) {
7525 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7526 return 0;
7527 }
7528
7529 /*
7530 * Aggressive migration if:
7531 * 1) destination numa is preferred
7532 * 2) task is cache cold, or
7533 * 3) too many balance attempts have failed.
7534 */
7535 tsk_cache_hot = migrate_degrades_locality(p, env);
7536 if (tsk_cache_hot == -1)
7537 tsk_cache_hot = task_hot(p, env);
7538
7539 if (tsk_cache_hot <= 0 ||
7540 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7541 if (tsk_cache_hot == 1) {
7542 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7543 schedstat_inc(p->se.statistics.nr_forced_migrations);
7544 }
7545 return 1;
7546 }
7547
7548 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7549 return 0;
7550 }
7551
7552 /*
7553 * detach_task() -- detach the task for the migration specified in env
7554 */
7555 static void detach_task(struct task_struct *p, struct lb_env *env)
7556 {
7557 lockdep_assert_held(&env->src_rq->lock);
7558
7559 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7560 set_task_cpu(p, env->dst_cpu);
7561 }
7562
7563 /*
7564 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7565 * part of active balancing operations within "domain".
7566 *
7567 * Returns a task if successful and NULL otherwise.
7568 */
7569 static struct task_struct *detach_one_task(struct lb_env *env)
7570 {
7571 struct task_struct *p;
7572
7573 lockdep_assert_held(&env->src_rq->lock);
7574
7575 list_for_each_entry_reverse(p,
7576 &env->src_rq->cfs_tasks, se.group_node) {
7577 if (!can_migrate_task(p, env))
7578 continue;
7579
7580 detach_task(p, env);
7581
7582 /*
7583 * Right now, this is only the second place where
7584 * lb_gained[env->idle] is updated (other is detach_tasks)
7585 * so we can safely collect stats here rather than
7586 * inside detach_tasks().
7587 */
7588 schedstat_inc(env->sd->lb_gained[env->idle]);
7589 return p;
7590 }
7591 return NULL;
7592 }
7593
7594 static const unsigned int sched_nr_migrate_break = 32;
7595
7596 /*
7597 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7598 * busiest_rq, as part of a balancing operation within domain "sd".
7599 *
7600 * Returns number of detached tasks if successful and 0 otherwise.
7601 */
7602 static int detach_tasks(struct lb_env *env)
7603 {
7604 struct list_head *tasks = &env->src_rq->cfs_tasks;
7605 unsigned long util, load;
7606 struct task_struct *p;
7607 int detached = 0;
7608
7609 lockdep_assert_held(&env->src_rq->lock);
7610
7611 if (env->imbalance <= 0)
7612 return 0;
7613
7614 while (!list_empty(tasks)) {
7615 /*
7616 * We don't want to steal all, otherwise we may be treated likewise,
7617 * which could at worst lead to a livelock crash.
7618 */
7619 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7620 break;
7621
7622 p = list_last_entry(tasks, struct task_struct, se.group_node);
7623
7624 env->loop++;
7625 /* We've more or less seen every task there is, call it quits */
7626 if (env->loop > env->loop_max)
7627 break;
7628
7629 /* take a breather every nr_migrate tasks */
7630 if (env->loop > env->loop_break) {
7631 env->loop_break += sched_nr_migrate_break;
7632 env->flags |= LBF_NEED_BREAK;
7633 break;
7634 }
7635
7636 if (!can_migrate_task(p, env))
7637 goto next;
7638
7639 switch (env->migration_type) {
7640 case migrate_load:
7641 load = task_h_load(p);
7642
7643 if (sched_feat(LB_MIN) &&
7644 load < 16 && !env->sd->nr_balance_failed)
7645 goto next;
7646
7647 /*
7648 * Make sure that we don't migrate too much load.
7649 * Nevertheless, let relax the constraint if
7650 * scheduler fails to find a good waiting task to
7651 * migrate.
7652 */
7653 if (load/2 > env->imbalance &&
7654 env->sd->nr_balance_failed <= env->sd->cache_nice_tries)
7655 goto next;
7656
7657 env->imbalance -= load;
7658 break;
7659
7660 case migrate_util:
7661 util = task_util_est(p);
7662
7663 if (util > env->imbalance)
7664 goto next;
7665
7666 env->imbalance -= util;
7667 break;
7668
7669 case migrate_task:
7670 env->imbalance--;
7671 break;
7672
7673 case migrate_misfit:
7674 /* This is not a misfit task */
7675 if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7676 goto next;
7677
7678 env->imbalance = 0;
7679 break;
7680 }
7681
7682 detach_task(p, env);
7683 list_add(&p->se.group_node, &env->tasks);
7684
7685 detached++;
7686
7687 #ifdef CONFIG_PREEMPTION
7688 /*
7689 * NEWIDLE balancing is a source of latency, so preemptible
7690 * kernels will stop after the first task is detached to minimize
7691 * the critical section.
7692 */
7693 if (env->idle == CPU_NEWLY_IDLE)
7694 break;
7695 #endif
7696
7697 /*
7698 * We only want to steal up to the prescribed amount of
7699 * load/util/tasks.
7700 */
7701 if (env->imbalance <= 0)
7702 break;
7703
7704 continue;
7705 next:
7706 list_move(&p->se.group_node, tasks);
7707 }
7708
7709 /*
7710 * Right now, this is one of only two places we collect this stat
7711 * so we can safely collect detach_one_task() stats here rather
7712 * than inside detach_one_task().
7713 */
7714 schedstat_add(env->sd->lb_gained[env->idle], detached);
7715
7716 return detached;
7717 }
7718
7719 /*
7720 * attach_task() -- attach the task detached by detach_task() to its new rq.
7721 */
7722 static void attach_task(struct rq *rq, struct task_struct *p)
7723 {
7724 lockdep_assert_held(&rq->lock);
7725
7726 BUG_ON(task_rq(p) != rq);
7727 activate_task(rq, p, ENQUEUE_NOCLOCK);
7728 check_preempt_curr(rq, p, 0);
7729 }
7730
7731 /*
7732 * attach_one_task() -- attaches the task returned from detach_one_task() to
7733 * its new rq.
7734 */
7735 static void attach_one_task(struct rq *rq, struct task_struct *p)
7736 {
7737 struct rq_flags rf;
7738
7739 rq_lock(rq, &rf);
7740 update_rq_clock(rq);
7741 attach_task(rq, p);
7742 rq_unlock(rq, &rf);
7743 }
7744
7745 /*
7746 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7747 * new rq.
7748 */
7749 static void attach_tasks(struct lb_env *env)
7750 {
7751 struct list_head *tasks = &env->tasks;
7752 struct task_struct *p;
7753 struct rq_flags rf;
7754
7755 rq_lock(env->dst_rq, &rf);
7756 update_rq_clock(env->dst_rq);
7757
7758 while (!list_empty(tasks)) {
7759 p = list_first_entry(tasks, struct task_struct, se.group_node);
7760 list_del_init(&p->se.group_node);
7761
7762 attach_task(env->dst_rq, p);
7763 }
7764
7765 rq_unlock(env->dst_rq, &rf);
7766 }
7767
7768 #ifdef CONFIG_NO_HZ_COMMON
7769 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7770 {
7771 if (cfs_rq->avg.load_avg)
7772 return true;
7773
7774 if (cfs_rq->avg.util_avg)
7775 return true;
7776
7777 return false;
7778 }
7779
7780 static inline bool others_have_blocked(struct rq *rq)
7781 {
7782 if (READ_ONCE(rq->avg_rt.util_avg))
7783 return true;
7784
7785 if (READ_ONCE(rq->avg_dl.util_avg))
7786 return true;
7787
7788 if (thermal_load_avg(rq))
7789 return true;
7790
7791 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7792 if (READ_ONCE(rq->avg_irq.util_avg))
7793 return true;
7794 #endif
7795
7796 return false;
7797 }
7798
7799 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
7800 {
7801 rq->last_blocked_load_update_tick = jiffies;
7802
7803 if (!has_blocked)
7804 rq->has_blocked_load = 0;
7805 }
7806 #else
7807 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
7808 static inline bool others_have_blocked(struct rq *rq) { return false; }
7809 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
7810 #endif
7811
7812 static bool __update_blocked_others(struct rq *rq, bool *done)
7813 {
7814 const struct sched_class *curr_class;
7815 u64 now = rq_clock_pelt(rq);
7816 unsigned long thermal_pressure;
7817 bool decayed;
7818
7819 /*
7820 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
7821 * DL and IRQ signals have been updated before updating CFS.
7822 */
7823 curr_class = rq->curr->sched_class;
7824
7825 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
7826
7827 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
7828 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
7829 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
7830 update_irq_load_avg(rq, 0);
7831
7832 if (others_have_blocked(rq))
7833 *done = false;
7834
7835 return decayed;
7836 }
7837
7838 #ifdef CONFIG_FAIR_GROUP_SCHED
7839
7840 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7841 {
7842 if (cfs_rq->load.weight)
7843 return false;
7844
7845 if (cfs_rq->avg.load_sum)
7846 return false;
7847
7848 if (cfs_rq->avg.util_sum)
7849 return false;
7850
7851 if (cfs_rq->avg.runnable_sum)
7852 return false;
7853
7854 return true;
7855 }
7856
7857 static bool __update_blocked_fair(struct rq *rq, bool *done)
7858 {
7859 struct cfs_rq *cfs_rq, *pos;
7860 bool decayed = false;
7861 int cpu = cpu_of(rq);
7862
7863 /*
7864 * Iterates the task_group tree in a bottom up fashion, see
7865 * list_add_leaf_cfs_rq() for details.
7866 */
7867 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7868 struct sched_entity *se;
7869
7870 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
7871 update_tg_load_avg(cfs_rq, 0);
7872
7873 if (cfs_rq == &rq->cfs)
7874 decayed = true;
7875 }
7876
7877 /* Propagate pending load changes to the parent, if any: */
7878 se = cfs_rq->tg->se[cpu];
7879 if (se && !skip_blocked_update(se))
7880 update_load_avg(cfs_rq_of(se), se, 0);
7881
7882 /*
7883 * There can be a lot of idle CPU cgroups. Don't let fully
7884 * decayed cfs_rqs linger on the list.
7885 */
7886 if (cfs_rq_is_decayed(cfs_rq))
7887 list_del_leaf_cfs_rq(cfs_rq);
7888
7889 /* Don't need periodic decay once load/util_avg are null */
7890 if (cfs_rq_has_blocked(cfs_rq))
7891 *done = false;
7892 }
7893
7894 return decayed;
7895 }
7896
7897 /*
7898 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7899 * This needs to be done in a top-down fashion because the load of a child
7900 * group is a fraction of its parents load.
7901 */
7902 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7903 {
7904 struct rq *rq = rq_of(cfs_rq);
7905 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7906 unsigned long now = jiffies;
7907 unsigned long load;
7908
7909 if (cfs_rq->last_h_load_update == now)
7910 return;
7911
7912 WRITE_ONCE(cfs_rq->h_load_next, NULL);
7913 for_each_sched_entity(se) {
7914 cfs_rq = cfs_rq_of(se);
7915 WRITE_ONCE(cfs_rq->h_load_next, se);
7916 if (cfs_rq->last_h_load_update == now)
7917 break;
7918 }
7919
7920 if (!se) {
7921 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7922 cfs_rq->last_h_load_update = now;
7923 }
7924
7925 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
7926 load = cfs_rq->h_load;
7927 load = div64_ul(load * se->avg.load_avg,
7928 cfs_rq_load_avg(cfs_rq) + 1);
7929 cfs_rq = group_cfs_rq(se);
7930 cfs_rq->h_load = load;
7931 cfs_rq->last_h_load_update = now;
7932 }
7933 }
7934
7935 static unsigned long task_h_load(struct task_struct *p)
7936 {
7937 struct cfs_rq *cfs_rq = task_cfs_rq(p);
7938
7939 update_cfs_rq_h_load(cfs_rq);
7940 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7941 cfs_rq_load_avg(cfs_rq) + 1);
7942 }
7943 #else
7944 static bool __update_blocked_fair(struct rq *rq, bool *done)
7945 {
7946 struct cfs_rq *cfs_rq = &rq->cfs;
7947 bool decayed;
7948
7949 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
7950 if (cfs_rq_has_blocked(cfs_rq))
7951 *done = false;
7952
7953 return decayed;
7954 }
7955
7956 static unsigned long task_h_load(struct task_struct *p)
7957 {
7958 return p->se.avg.load_avg;
7959 }
7960 #endif
7961
7962 static void update_blocked_averages(int cpu)
7963 {
7964 bool decayed = false, done = true;
7965 struct rq *rq = cpu_rq(cpu);
7966 struct rq_flags rf;
7967
7968 rq_lock_irqsave(rq, &rf);
7969 update_rq_clock(rq);
7970
7971 decayed |= __update_blocked_others(rq, &done);
7972 decayed |= __update_blocked_fair(rq, &done);
7973
7974 update_blocked_load_status(rq, !done);
7975 if (decayed)
7976 cpufreq_update_util(rq, 0);
7977 rq_unlock_irqrestore(rq, &rf);
7978 }
7979
7980 /********** Helpers for find_busiest_group ************************/
7981
7982 /*
7983 * sg_lb_stats - stats of a sched_group required for load_balancing
7984 */
7985 struct sg_lb_stats {
7986 unsigned long avg_load; /*Avg load across the CPUs of the group */
7987 unsigned long group_load; /* Total load over the CPUs of the group */
7988 unsigned long group_capacity;
7989 unsigned long group_util; /* Total utilization over the CPUs of the group */
7990 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
7991 unsigned int sum_nr_running; /* Nr of tasks running in the group */
7992 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
7993 unsigned int idle_cpus;
7994 unsigned int group_weight;
7995 enum group_type group_type;
7996 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
7997 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7998 #ifdef CONFIG_NUMA_BALANCING
7999 unsigned int nr_numa_running;
8000 unsigned int nr_preferred_running;
8001 #endif
8002 };
8003
8004 /*
8005 * sd_lb_stats - Structure to store the statistics of a sched_domain
8006 * during load balancing.
8007 */
8008 struct sd_lb_stats {
8009 struct sched_group *busiest; /* Busiest group in this sd */
8010 struct sched_group *local; /* Local group in this sd */
8011 unsigned long total_load; /* Total load of all groups in sd */
8012 unsigned long total_capacity; /* Total capacity of all groups in sd */
8013 unsigned long avg_load; /* Average load across all groups in sd */
8014 unsigned int prefer_sibling; /* tasks should go to sibling first */
8015
8016 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8017 struct sg_lb_stats local_stat; /* Statistics of the local group */
8018 };
8019
8020 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8021 {
8022 /*
8023 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8024 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8025 * We must however set busiest_stat::group_type and
8026 * busiest_stat::idle_cpus to the worst busiest group because
8027 * update_sd_pick_busiest() reads these before assignment.
8028 */
8029 *sds = (struct sd_lb_stats){
8030 .busiest = NULL,
8031 .local = NULL,
8032 .total_load = 0UL,
8033 .total_capacity = 0UL,
8034 .busiest_stat = {
8035 .idle_cpus = UINT_MAX,
8036 .group_type = group_has_spare,
8037 },
8038 };
8039 }
8040
8041 static unsigned long scale_rt_capacity(int cpu)
8042 {
8043 struct rq *rq = cpu_rq(cpu);
8044 unsigned long max = arch_scale_cpu_capacity(cpu);
8045 unsigned long used, free;
8046 unsigned long irq;
8047
8048 irq = cpu_util_irq(rq);
8049
8050 if (unlikely(irq >= max))
8051 return 1;
8052
8053 /*
8054 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8055 * (running and not running) with weights 0 and 1024 respectively.
8056 * avg_thermal.load_avg tracks thermal pressure and the weighted
8057 * average uses the actual delta max capacity(load).
8058 */
8059 used = READ_ONCE(rq->avg_rt.util_avg);
8060 used += READ_ONCE(rq->avg_dl.util_avg);
8061 used += thermal_load_avg(rq);
8062
8063 if (unlikely(used >= max))
8064 return 1;
8065
8066 free = max - used;
8067
8068 return scale_irq_capacity(free, irq, max);
8069 }
8070
8071 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8072 {
8073 unsigned long capacity = scale_rt_capacity(cpu);
8074 struct sched_group *sdg = sd->groups;
8075
8076 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8077
8078 if (!capacity)
8079 capacity = 1;
8080
8081 cpu_rq(cpu)->cpu_capacity = capacity;
8082 sdg->sgc->capacity = capacity;
8083 sdg->sgc->min_capacity = capacity;
8084 sdg->sgc->max_capacity = capacity;
8085 }
8086
8087 void update_group_capacity(struct sched_domain *sd, int cpu)
8088 {
8089 struct sched_domain *child = sd->child;
8090 struct sched_group *group, *sdg = sd->groups;
8091 unsigned long capacity, min_capacity, max_capacity;
8092 unsigned long interval;
8093
8094 interval = msecs_to_jiffies(sd->balance_interval);
8095 interval = clamp(interval, 1UL, max_load_balance_interval);
8096 sdg->sgc->next_update = jiffies + interval;
8097
8098 if (!child) {
8099 update_cpu_capacity(sd, cpu);
8100 return;
8101 }
8102
8103 capacity = 0;
8104 min_capacity = ULONG_MAX;
8105 max_capacity = 0;
8106
8107 if (child->flags & SD_OVERLAP) {
8108 /*
8109 * SD_OVERLAP domains cannot assume that child groups
8110 * span the current group.
8111 */
8112
8113 for_each_cpu(cpu, sched_group_span(sdg)) {
8114 unsigned long cpu_cap = capacity_of(cpu);
8115
8116 capacity += cpu_cap;
8117 min_capacity = min(cpu_cap, min_capacity);
8118 max_capacity = max(cpu_cap, max_capacity);
8119 }
8120 } else {
8121 /*
8122 * !SD_OVERLAP domains can assume that child groups
8123 * span the current group.
8124 */
8125
8126 group = child->groups;
8127 do {
8128 struct sched_group_capacity *sgc = group->sgc;
8129
8130 capacity += sgc->capacity;
8131 min_capacity = min(sgc->min_capacity, min_capacity);
8132 max_capacity = max(sgc->max_capacity, max_capacity);
8133 group = group->next;
8134 } while (group != child->groups);
8135 }
8136
8137 sdg->sgc->capacity = capacity;
8138 sdg->sgc->min_capacity = min_capacity;
8139 sdg->sgc->max_capacity = max_capacity;
8140 }
8141
8142 /*
8143 * Check whether the capacity of the rq has been noticeably reduced by side
8144 * activity. The imbalance_pct is used for the threshold.
8145 * Return true is the capacity is reduced
8146 */
8147 static inline int
8148 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8149 {
8150 return ((rq->cpu_capacity * sd->imbalance_pct) <
8151 (rq->cpu_capacity_orig * 100));
8152 }
8153
8154 /*
8155 * Check whether a rq has a misfit task and if it looks like we can actually
8156 * help that task: we can migrate the task to a CPU of higher capacity, or
8157 * the task's current CPU is heavily pressured.
8158 */
8159 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8160 {
8161 return rq->misfit_task_load &&
8162 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8163 check_cpu_capacity(rq, sd));
8164 }
8165
8166 /*
8167 * Group imbalance indicates (and tries to solve) the problem where balancing
8168 * groups is inadequate due to ->cpus_ptr constraints.
8169 *
8170 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8171 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8172 * Something like:
8173 *
8174 * { 0 1 2 3 } { 4 5 6 7 }
8175 * * * * *
8176 *
8177 * If we were to balance group-wise we'd place two tasks in the first group and
8178 * two tasks in the second group. Clearly this is undesired as it will overload
8179 * cpu 3 and leave one of the CPUs in the second group unused.
8180 *
8181 * The current solution to this issue is detecting the skew in the first group
8182 * by noticing the lower domain failed to reach balance and had difficulty
8183 * moving tasks due to affinity constraints.
8184 *
8185 * When this is so detected; this group becomes a candidate for busiest; see
8186 * update_sd_pick_busiest(). And calculate_imbalance() and
8187 * find_busiest_group() avoid some of the usual balance conditions to allow it
8188 * to create an effective group imbalance.
8189 *
8190 * This is a somewhat tricky proposition since the next run might not find the
8191 * group imbalance and decide the groups need to be balanced again. A most
8192 * subtle and fragile situation.
8193 */
8194
8195 static inline int sg_imbalanced(struct sched_group *group)
8196 {
8197 return group->sgc->imbalance;
8198 }
8199
8200 /*
8201 * group_has_capacity returns true if the group has spare capacity that could
8202 * be used by some tasks.
8203 * We consider that a group has spare capacity if the * number of task is
8204 * smaller than the number of CPUs or if the utilization is lower than the
8205 * available capacity for CFS tasks.
8206 * For the latter, we use a threshold to stabilize the state, to take into
8207 * account the variance of the tasks' load and to return true if the available
8208 * capacity in meaningful for the load balancer.
8209 * As an example, an available capacity of 1% can appear but it doesn't make
8210 * any benefit for the load balance.
8211 */
8212 static inline bool
8213 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8214 {
8215 if (sgs->sum_nr_running < sgs->group_weight)
8216 return true;
8217
8218 if ((sgs->group_capacity * imbalance_pct) <
8219 (sgs->group_runnable * 100))
8220 return false;
8221
8222 if ((sgs->group_capacity * 100) >
8223 (sgs->group_util * imbalance_pct))
8224 return true;
8225
8226 return false;
8227 }
8228
8229 /*
8230 * group_is_overloaded returns true if the group has more tasks than it can
8231 * handle.
8232 * group_is_overloaded is not equals to !group_has_capacity because a group
8233 * with the exact right number of tasks, has no more spare capacity but is not
8234 * overloaded so both group_has_capacity and group_is_overloaded return
8235 * false.
8236 */
8237 static inline bool
8238 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8239 {
8240 if (sgs->sum_nr_running <= sgs->group_weight)
8241 return false;
8242
8243 if ((sgs->group_capacity * 100) <
8244 (sgs->group_util * imbalance_pct))
8245 return true;
8246
8247 if ((sgs->group_capacity * imbalance_pct) <
8248 (sgs->group_runnable * 100))
8249 return true;
8250
8251 return false;
8252 }
8253
8254 /*
8255 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8256 * per-CPU capacity than sched_group ref.
8257 */
8258 static inline bool
8259 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8260 {
8261 return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8262 }
8263
8264 /*
8265 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8266 * per-CPU capacity_orig than sched_group ref.
8267 */
8268 static inline bool
8269 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8270 {
8271 return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
8272 }
8273
8274 static inline enum
8275 group_type group_classify(unsigned int imbalance_pct,
8276 struct sched_group *group,
8277 struct sg_lb_stats *sgs)
8278 {
8279 if (group_is_overloaded(imbalance_pct, sgs))
8280 return group_overloaded;
8281
8282 if (sg_imbalanced(group))
8283 return group_imbalanced;
8284
8285 if (sgs->group_asym_packing)
8286 return group_asym_packing;
8287
8288 if (sgs->group_misfit_task_load)
8289 return group_misfit_task;
8290
8291 if (!group_has_capacity(imbalance_pct, sgs))
8292 return group_fully_busy;
8293
8294 return group_has_spare;
8295 }
8296
8297 static bool update_nohz_stats(struct rq *rq, bool force)
8298 {
8299 #ifdef CONFIG_NO_HZ_COMMON
8300 unsigned int cpu = rq->cpu;
8301
8302 if (!rq->has_blocked_load)
8303 return false;
8304
8305 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8306 return false;
8307
8308 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8309 return true;
8310
8311 update_blocked_averages(cpu);
8312
8313 return rq->has_blocked_load;
8314 #else
8315 return false;
8316 #endif
8317 }
8318
8319 /**
8320 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8321 * @env: The load balancing environment.
8322 * @group: sched_group whose statistics are to be updated.
8323 * @sgs: variable to hold the statistics for this group.
8324 * @sg_status: Holds flag indicating the status of the sched_group
8325 */
8326 static inline void update_sg_lb_stats(struct lb_env *env,
8327 struct sched_group *group,
8328 struct sg_lb_stats *sgs,
8329 int *sg_status)
8330 {
8331 int i, nr_running, local_group;
8332
8333 memset(sgs, 0, sizeof(*sgs));
8334
8335 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8336
8337 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8338 struct rq *rq = cpu_rq(i);
8339
8340 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8341 env->flags |= LBF_NOHZ_AGAIN;
8342
8343 sgs->group_load += cpu_load(rq);
8344 sgs->group_util += cpu_util(i);
8345 sgs->group_runnable += cpu_runnable(rq);
8346 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8347
8348 nr_running = rq->nr_running;
8349 sgs->sum_nr_running += nr_running;
8350
8351 if (nr_running > 1)
8352 *sg_status |= SG_OVERLOAD;
8353
8354 if (cpu_overutilized(i))
8355 *sg_status |= SG_OVERUTILIZED;
8356
8357 #ifdef CONFIG_NUMA_BALANCING
8358 sgs->nr_numa_running += rq->nr_numa_running;
8359 sgs->nr_preferred_running += rq->nr_preferred_running;
8360 #endif
8361 /*
8362 * No need to call idle_cpu() if nr_running is not 0
8363 */
8364 if (!nr_running && idle_cpu(i)) {
8365 sgs->idle_cpus++;
8366 /* Idle cpu can't have misfit task */
8367 continue;
8368 }
8369
8370 if (local_group)
8371 continue;
8372
8373 /* Check for a misfit task on the cpu */
8374 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8375 sgs->group_misfit_task_load < rq->misfit_task_load) {
8376 sgs->group_misfit_task_load = rq->misfit_task_load;
8377 *sg_status |= SG_OVERLOAD;
8378 }
8379 }
8380
8381 /* Check if dst CPU is idle and preferred to this group */
8382 if (env->sd->flags & SD_ASYM_PACKING &&
8383 env->idle != CPU_NOT_IDLE &&
8384 sgs->sum_h_nr_running &&
8385 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
8386 sgs->group_asym_packing = 1;
8387 }
8388
8389 sgs->group_capacity = group->sgc->capacity;
8390
8391 sgs->group_weight = group->group_weight;
8392
8393 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8394
8395 /* Computing avg_load makes sense only when group is overloaded */
8396 if (sgs->group_type == group_overloaded)
8397 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8398 sgs->group_capacity;
8399 }
8400
8401 /**
8402 * update_sd_pick_busiest - return 1 on busiest group
8403 * @env: The load balancing environment.
8404 * @sds: sched_domain statistics
8405 * @sg: sched_group candidate to be checked for being the busiest
8406 * @sgs: sched_group statistics
8407 *
8408 * Determine if @sg is a busier group than the previously selected
8409 * busiest group.
8410 *
8411 * Return: %true if @sg is a busier group than the previously selected
8412 * busiest group. %false otherwise.
8413 */
8414 static bool update_sd_pick_busiest(struct lb_env *env,
8415 struct sd_lb_stats *sds,
8416 struct sched_group *sg,
8417 struct sg_lb_stats *sgs)
8418 {
8419 struct sg_lb_stats *busiest = &sds->busiest_stat;
8420
8421 /* Make sure that there is at least one task to pull */
8422 if (!sgs->sum_h_nr_running)
8423 return false;
8424
8425 /*
8426 * Don't try to pull misfit tasks we can't help.
8427 * We can use max_capacity here as reduction in capacity on some
8428 * CPUs in the group should either be possible to resolve
8429 * internally or be covered by avg_load imbalance (eventually).
8430 */
8431 if (sgs->group_type == group_misfit_task &&
8432 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8433 sds->local_stat.group_type != group_has_spare))
8434 return false;
8435
8436 if (sgs->group_type > busiest->group_type)
8437 return true;
8438
8439 if (sgs->group_type < busiest->group_type)
8440 return false;
8441
8442 /*
8443 * The candidate and the current busiest group are the same type of
8444 * group. Let check which one is the busiest according to the type.
8445 */
8446
8447 switch (sgs->group_type) {
8448 case group_overloaded:
8449 /* Select the overloaded group with highest avg_load. */
8450 if (sgs->avg_load <= busiest->avg_load)
8451 return false;
8452 break;
8453
8454 case group_imbalanced:
8455 /*
8456 * Select the 1st imbalanced group as we don't have any way to
8457 * choose one more than another.
8458 */
8459 return false;
8460
8461 case group_asym_packing:
8462 /* Prefer to move from lowest priority CPU's work */
8463 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8464 return false;
8465 break;
8466
8467 case group_misfit_task:
8468 /*
8469 * If we have more than one misfit sg go with the biggest
8470 * misfit.
8471 */
8472 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8473 return false;
8474 break;
8475
8476 case group_fully_busy:
8477 /*
8478 * Select the fully busy group with highest avg_load. In
8479 * theory, there is no need to pull task from such kind of
8480 * group because tasks have all compute capacity that they need
8481 * but we can still improve the overall throughput by reducing
8482 * contention when accessing shared HW resources.
8483 *
8484 * XXX for now avg_load is not computed and always 0 so we
8485 * select the 1st one.
8486 */
8487 if (sgs->avg_load <= busiest->avg_load)
8488 return false;
8489 break;
8490
8491 case group_has_spare:
8492 /*
8493 * Select not overloaded group with lowest number of idle cpus
8494 * and highest number of running tasks. We could also compare
8495 * the spare capacity which is more stable but it can end up
8496 * that the group has less spare capacity but finally more idle
8497 * CPUs which means less opportunity to pull tasks.
8498 */
8499 if (sgs->idle_cpus > busiest->idle_cpus)
8500 return false;
8501 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8502 (sgs->sum_nr_running <= busiest->sum_nr_running))
8503 return false;
8504
8505 break;
8506 }
8507
8508 /*
8509 * Candidate sg has no more than one task per CPU and has higher
8510 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8511 * throughput. Maximize throughput, power/energy consequences are not
8512 * considered.
8513 */
8514 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8515 (sgs->group_type <= group_fully_busy) &&
8516 (group_smaller_min_cpu_capacity(sds->local, sg)))
8517 return false;
8518
8519 return true;
8520 }
8521
8522 #ifdef CONFIG_NUMA_BALANCING
8523 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8524 {
8525 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8526 return regular;
8527 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8528 return remote;
8529 return all;
8530 }
8531
8532 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8533 {
8534 if (rq->nr_running > rq->nr_numa_running)
8535 return regular;
8536 if (rq->nr_running > rq->nr_preferred_running)
8537 return remote;
8538 return all;
8539 }
8540 #else
8541 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8542 {
8543 return all;
8544 }
8545
8546 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8547 {
8548 return regular;
8549 }
8550 #endif /* CONFIG_NUMA_BALANCING */
8551
8552
8553 struct sg_lb_stats;
8554
8555 /*
8556 * task_running_on_cpu - return 1 if @p is running on @cpu.
8557 */
8558
8559 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8560 {
8561 /* Task has no contribution or is new */
8562 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8563 return 0;
8564
8565 if (task_on_rq_queued(p))
8566 return 1;
8567
8568 return 0;
8569 }
8570
8571 /**
8572 * idle_cpu_without - would a given CPU be idle without p ?
8573 * @cpu: the processor on which idleness is tested.
8574 * @p: task which should be ignored.
8575 *
8576 * Return: 1 if the CPU would be idle. 0 otherwise.
8577 */
8578 static int idle_cpu_without(int cpu, struct task_struct *p)
8579 {
8580 struct rq *rq = cpu_rq(cpu);
8581
8582 if (rq->curr != rq->idle && rq->curr != p)
8583 return 0;
8584
8585 /*
8586 * rq->nr_running can't be used but an updated version without the
8587 * impact of p on cpu must be used instead. The updated nr_running
8588 * be computed and tested before calling idle_cpu_without().
8589 */
8590
8591 #ifdef CONFIG_SMP
8592 if (rq->ttwu_pending)
8593 return 0;
8594 #endif
8595
8596 return 1;
8597 }
8598
8599 /*
8600 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8601 * @sd: The sched_domain level to look for idlest group.
8602 * @group: sched_group whose statistics are to be updated.
8603 * @sgs: variable to hold the statistics for this group.
8604 * @p: The task for which we look for the idlest group/CPU.
8605 */
8606 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8607 struct sched_group *group,
8608 struct sg_lb_stats *sgs,
8609 struct task_struct *p)
8610 {
8611 int i, nr_running;
8612
8613 memset(sgs, 0, sizeof(*sgs));
8614
8615 for_each_cpu(i, sched_group_span(group)) {
8616 struct rq *rq = cpu_rq(i);
8617 unsigned int local;
8618
8619 sgs->group_load += cpu_load_without(rq, p);
8620 sgs->group_util += cpu_util_without(i, p);
8621 sgs->group_runnable += cpu_runnable_without(rq, p);
8622 local = task_running_on_cpu(i, p);
8623 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8624
8625 nr_running = rq->nr_running - local;
8626 sgs->sum_nr_running += nr_running;
8627
8628 /*
8629 * No need to call idle_cpu_without() if nr_running is not 0
8630 */
8631 if (!nr_running && idle_cpu_without(i, p))
8632 sgs->idle_cpus++;
8633
8634 }
8635
8636 /* Check if task fits in the group */
8637 if (sd->flags & SD_ASYM_CPUCAPACITY &&
8638 !task_fits_capacity(p, group->sgc->max_capacity)) {
8639 sgs->group_misfit_task_load = 1;
8640 }
8641
8642 sgs->group_capacity = group->sgc->capacity;
8643
8644 sgs->group_weight = group->group_weight;
8645
8646 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8647
8648 /*
8649 * Computing avg_load makes sense only when group is fully busy or
8650 * overloaded
8651 */
8652 if (sgs->group_type == group_fully_busy ||
8653 sgs->group_type == group_overloaded)
8654 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8655 sgs->group_capacity;
8656 }
8657
8658 static bool update_pick_idlest(struct sched_group *idlest,
8659 struct sg_lb_stats *idlest_sgs,
8660 struct sched_group *group,
8661 struct sg_lb_stats *sgs)
8662 {
8663 if (sgs->group_type < idlest_sgs->group_type)
8664 return true;
8665
8666 if (sgs->group_type > idlest_sgs->group_type)
8667 return false;
8668
8669 /*
8670 * The candidate and the current idlest group are the same type of
8671 * group. Let check which one is the idlest according to the type.
8672 */
8673
8674 switch (sgs->group_type) {
8675 case group_overloaded:
8676 case group_fully_busy:
8677 /* Select the group with lowest avg_load. */
8678 if (idlest_sgs->avg_load <= sgs->avg_load)
8679 return false;
8680 break;
8681
8682 case group_imbalanced:
8683 case group_asym_packing:
8684 /* Those types are not used in the slow wakeup path */
8685 return false;
8686
8687 case group_misfit_task:
8688 /* Select group with the highest max capacity */
8689 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
8690 return false;
8691 break;
8692
8693 case group_has_spare:
8694 /* Select group with most idle CPUs */
8695 if (idlest_sgs->idle_cpus >= sgs->idle_cpus)
8696 return false;
8697 break;
8698 }
8699
8700 return true;
8701 }
8702
8703 /*
8704 * find_idlest_group() finds and returns the least busy CPU group within the
8705 * domain.
8706 *
8707 * Assumes p is allowed on at least one CPU in sd.
8708 */
8709 static struct sched_group *
8710 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
8711 {
8712 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
8713 struct sg_lb_stats local_sgs, tmp_sgs;
8714 struct sg_lb_stats *sgs;
8715 unsigned long imbalance;
8716 struct sg_lb_stats idlest_sgs = {
8717 .avg_load = UINT_MAX,
8718 .group_type = group_overloaded,
8719 };
8720
8721 imbalance = scale_load_down(NICE_0_LOAD) *
8722 (sd->imbalance_pct-100) / 100;
8723
8724 do {
8725 int local_group;
8726
8727 /* Skip over this group if it has no CPUs allowed */
8728 if (!cpumask_intersects(sched_group_span(group),
8729 p->cpus_ptr))
8730 continue;
8731
8732 local_group = cpumask_test_cpu(this_cpu,
8733 sched_group_span(group));
8734
8735 if (local_group) {
8736 sgs = &local_sgs;
8737 local = group;
8738 } else {
8739 sgs = &tmp_sgs;
8740 }
8741
8742 update_sg_wakeup_stats(sd, group, sgs, p);
8743
8744 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
8745 idlest = group;
8746 idlest_sgs = *sgs;
8747 }
8748
8749 } while (group = group->next, group != sd->groups);
8750
8751
8752 /* There is no idlest group to push tasks to */
8753 if (!idlest)
8754 return NULL;
8755
8756 /* The local group has been skipped because of CPU affinity */
8757 if (!local)
8758 return idlest;
8759
8760 /*
8761 * If the local group is idler than the selected idlest group
8762 * don't try and push the task.
8763 */
8764 if (local_sgs.group_type < idlest_sgs.group_type)
8765 return NULL;
8766
8767 /*
8768 * If the local group is busier than the selected idlest group
8769 * try and push the task.
8770 */
8771 if (local_sgs.group_type > idlest_sgs.group_type)
8772 return idlest;
8773
8774 switch (local_sgs.group_type) {
8775 case group_overloaded:
8776 case group_fully_busy:
8777 /*
8778 * When comparing groups across NUMA domains, it's possible for
8779 * the local domain to be very lightly loaded relative to the
8780 * remote domains but "imbalance" skews the comparison making
8781 * remote CPUs look much more favourable. When considering
8782 * cross-domain, add imbalance to the load on the remote node
8783 * and consider staying local.
8784 */
8785
8786 if ((sd->flags & SD_NUMA) &&
8787 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
8788 return NULL;
8789
8790 /*
8791 * If the local group is less loaded than the selected
8792 * idlest group don't try and push any tasks.
8793 */
8794 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
8795 return NULL;
8796
8797 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
8798 return NULL;
8799 break;
8800
8801 case group_imbalanced:
8802 case group_asym_packing:
8803 /* Those type are not used in the slow wakeup path */
8804 return NULL;
8805
8806 case group_misfit_task:
8807 /* Select group with the highest max capacity */
8808 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
8809 return NULL;
8810 break;
8811
8812 case group_has_spare:
8813 if (sd->flags & SD_NUMA) {
8814 #ifdef CONFIG_NUMA_BALANCING
8815 int idlest_cpu;
8816 /*
8817 * If there is spare capacity at NUMA, try to select
8818 * the preferred node
8819 */
8820 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
8821 return NULL;
8822
8823 idlest_cpu = cpumask_first(sched_group_span(idlest));
8824 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
8825 return idlest;
8826 #endif
8827 /*
8828 * Otherwise, keep the task on this node to stay close
8829 * its wakeup source and improve locality. If there is
8830 * a real need of migration, periodic load balance will
8831 * take care of it.
8832 */
8833 if (local_sgs.idle_cpus)
8834 return NULL;
8835 }
8836
8837 /*
8838 * Select group with highest number of idle CPUs. We could also
8839 * compare the utilization which is more stable but it can end
8840 * up that the group has less spare capacity but finally more
8841 * idle CPUs which means more opportunity to run task.
8842 */
8843 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
8844 return NULL;
8845 break;
8846 }
8847
8848 return idlest;
8849 }
8850
8851 /**
8852 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8853 * @env: The load balancing environment.
8854 * @sds: variable to hold the statistics for this sched_domain.
8855 */
8856
8857 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8858 {
8859 struct sched_domain *child = env->sd->child;
8860 struct sched_group *sg = env->sd->groups;
8861 struct sg_lb_stats *local = &sds->local_stat;
8862 struct sg_lb_stats tmp_sgs;
8863 int sg_status = 0;
8864
8865 #ifdef CONFIG_NO_HZ_COMMON
8866 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8867 env->flags |= LBF_NOHZ_STATS;
8868 #endif
8869
8870 do {
8871 struct sg_lb_stats *sgs = &tmp_sgs;
8872 int local_group;
8873
8874 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8875 if (local_group) {
8876 sds->local = sg;
8877 sgs = local;
8878
8879 if (env->idle != CPU_NEWLY_IDLE ||
8880 time_after_eq(jiffies, sg->sgc->next_update))
8881 update_group_capacity(env->sd, env->dst_cpu);
8882 }
8883
8884 update_sg_lb_stats(env, sg, sgs, &sg_status);
8885
8886 if (local_group)
8887 goto next_group;
8888
8889
8890 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8891 sds->busiest = sg;
8892 sds->busiest_stat = *sgs;
8893 }
8894
8895 next_group:
8896 /* Now, start updating sd_lb_stats */
8897 sds->total_load += sgs->group_load;
8898 sds->total_capacity += sgs->group_capacity;
8899
8900 sg = sg->next;
8901 } while (sg != env->sd->groups);
8902
8903 /* Tag domain that child domain prefers tasks go to siblings first */
8904 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8905
8906 #ifdef CONFIG_NO_HZ_COMMON
8907 if ((env->flags & LBF_NOHZ_AGAIN) &&
8908 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8909
8910 WRITE_ONCE(nohz.next_blocked,
8911 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8912 }
8913 #endif
8914
8915 if (env->sd->flags & SD_NUMA)
8916 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8917
8918 if (!env->sd->parent) {
8919 struct root_domain *rd = env->dst_rq->rd;
8920
8921 /* update overload indicator if we are at root domain */
8922 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8923
8924 /* Update over-utilization (tipping point, U >= 0) indicator */
8925 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8926 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
8927 } else if (sg_status & SG_OVERUTILIZED) {
8928 struct root_domain *rd = env->dst_rq->rd;
8929
8930 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
8931 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
8932 }
8933 }
8934
8935 static inline long adjust_numa_imbalance(int imbalance, int src_nr_running)
8936 {
8937 unsigned int imbalance_min;
8938
8939 /*
8940 * Allow a small imbalance based on a simple pair of communicating
8941 * tasks that remain local when the source domain is almost idle.
8942 */
8943 imbalance_min = 2;
8944 if (src_nr_running <= imbalance_min)
8945 return 0;
8946
8947 return imbalance;
8948 }
8949
8950 /**
8951 * calculate_imbalance - Calculate the amount of imbalance present within the
8952 * groups of a given sched_domain during load balance.
8953 * @env: load balance environment
8954 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8955 */
8956 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8957 {
8958 struct sg_lb_stats *local, *busiest;
8959
8960 local = &sds->local_stat;
8961 busiest = &sds->busiest_stat;
8962
8963 if (busiest->group_type == group_misfit_task) {
8964 /* Set imbalance to allow misfit tasks to be balanced. */
8965 env->migration_type = migrate_misfit;
8966 env->imbalance = 1;
8967 return;
8968 }
8969
8970 if (busiest->group_type == group_asym_packing) {
8971 /*
8972 * In case of asym capacity, we will try to migrate all load to
8973 * the preferred CPU.
8974 */
8975 env->migration_type = migrate_task;
8976 env->imbalance = busiest->sum_h_nr_running;
8977 return;
8978 }
8979
8980 if (busiest->group_type == group_imbalanced) {
8981 /*
8982 * In the group_imb case we cannot rely on group-wide averages
8983 * to ensure CPU-load equilibrium, try to move any task to fix
8984 * the imbalance. The next load balance will take care of
8985 * balancing back the system.
8986 */
8987 env->migration_type = migrate_task;
8988 env->imbalance = 1;
8989 return;
8990 }
8991
8992 /*
8993 * Try to use spare capacity of local group without overloading it or
8994 * emptying busiest.
8995 */
8996 if (local->group_type == group_has_spare) {
8997 if (busiest->group_type > group_fully_busy) {
8998 /*
8999 * If busiest is overloaded, try to fill spare
9000 * capacity. This might end up creating spare capacity
9001 * in busiest or busiest still being overloaded but
9002 * there is no simple way to directly compute the
9003 * amount of load to migrate in order to balance the
9004 * system.
9005 */
9006 env->migration_type = migrate_util;
9007 env->imbalance = max(local->group_capacity, local->group_util) -
9008 local->group_util;
9009
9010 /*
9011 * In some cases, the group's utilization is max or even
9012 * higher than capacity because of migrations but the
9013 * local CPU is (newly) idle. There is at least one
9014 * waiting task in this overloaded busiest group. Let's
9015 * try to pull it.
9016 */
9017 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9018 env->migration_type = migrate_task;
9019 env->imbalance = 1;
9020 }
9021
9022 return;
9023 }
9024
9025 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9026 unsigned int nr_diff = busiest->sum_nr_running;
9027 /*
9028 * When prefer sibling, evenly spread running tasks on
9029 * groups.
9030 */
9031 env->migration_type = migrate_task;
9032 lsub_positive(&nr_diff, local->sum_nr_running);
9033 env->imbalance = nr_diff >> 1;
9034 } else {
9035
9036 /*
9037 * If there is no overload, we just want to even the number of
9038 * idle cpus.
9039 */
9040 env->migration_type = migrate_task;
9041 env->imbalance = max_t(long, 0, (local->idle_cpus -
9042 busiest->idle_cpus) >> 1);
9043 }
9044
9045 /* Consider allowing a small imbalance between NUMA groups */
9046 if (env->sd->flags & SD_NUMA)
9047 env->imbalance = adjust_numa_imbalance(env->imbalance,
9048 busiest->sum_nr_running);
9049
9050 return;
9051 }
9052
9053 /*
9054 * Local is fully busy but has to take more load to relieve the
9055 * busiest group
9056 */
9057 if (local->group_type < group_overloaded) {
9058 /*
9059 * Local will become overloaded so the avg_load metrics are
9060 * finally needed.
9061 */
9062
9063 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9064 local->group_capacity;
9065
9066 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9067 sds->total_capacity;
9068 /*
9069 * If the local group is more loaded than the selected
9070 * busiest group don't try to pull any tasks.
9071 */
9072 if (local->avg_load >= busiest->avg_load) {
9073 env->imbalance = 0;
9074 return;
9075 }
9076 }
9077
9078 /*
9079 * Both group are or will become overloaded and we're trying to get all
9080 * the CPUs to the average_load, so we don't want to push ourselves
9081 * above the average load, nor do we wish to reduce the max loaded CPU
9082 * below the average load. At the same time, we also don't want to
9083 * reduce the group load below the group capacity. Thus we look for
9084 * the minimum possible imbalance.
9085 */
9086 env->migration_type = migrate_load;
9087 env->imbalance = min(
9088 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9089 (sds->avg_load - local->avg_load) * local->group_capacity
9090 ) / SCHED_CAPACITY_SCALE;
9091 }
9092
9093 /******* find_busiest_group() helpers end here *********************/
9094
9095 /*
9096 * Decision matrix according to the local and busiest group type:
9097 *
9098 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9099 * has_spare nr_idle balanced N/A N/A balanced balanced
9100 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9101 * misfit_task force N/A N/A N/A force force
9102 * asym_packing force force N/A N/A force force
9103 * imbalanced force force N/A N/A force force
9104 * overloaded force force N/A N/A force avg_load
9105 *
9106 * N/A : Not Applicable because already filtered while updating
9107 * statistics.
9108 * balanced : The system is balanced for these 2 groups.
9109 * force : Calculate the imbalance as load migration is probably needed.
9110 * avg_load : Only if imbalance is significant enough.
9111 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9112 * different in groups.
9113 */
9114
9115 /**
9116 * find_busiest_group - Returns the busiest group within the sched_domain
9117 * if there is an imbalance.
9118 *
9119 * Also calculates the amount of runnable load which should be moved
9120 * to restore balance.
9121 *
9122 * @env: The load balancing environment.
9123 *
9124 * Return: - The busiest group if imbalance exists.
9125 */
9126 static struct sched_group *find_busiest_group(struct lb_env *env)
9127 {
9128 struct sg_lb_stats *local, *busiest;
9129 struct sd_lb_stats sds;
9130
9131 init_sd_lb_stats(&sds);
9132
9133 /*
9134 * Compute the various statistics relevant for load balancing at
9135 * this level.
9136 */
9137 update_sd_lb_stats(env, &sds);
9138
9139 if (sched_energy_enabled()) {
9140 struct root_domain *rd = env->dst_rq->rd;
9141
9142 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9143 goto out_balanced;
9144 }
9145
9146 local = &sds.local_stat;
9147 busiest = &sds.busiest_stat;
9148
9149 /* There is no busy sibling group to pull tasks from */
9150 if (!sds.busiest)
9151 goto out_balanced;
9152
9153 /* Misfit tasks should be dealt with regardless of the avg load */
9154 if (busiest->group_type == group_misfit_task)
9155 goto force_balance;
9156
9157 /* ASYM feature bypasses nice load balance check */
9158 if (busiest->group_type == group_asym_packing)
9159 goto force_balance;
9160
9161 /*
9162 * If the busiest group is imbalanced the below checks don't
9163 * work because they assume all things are equal, which typically
9164 * isn't true due to cpus_ptr constraints and the like.
9165 */
9166 if (busiest->group_type == group_imbalanced)
9167 goto force_balance;
9168
9169 /*
9170 * If the local group is busier than the selected busiest group
9171 * don't try and pull any tasks.
9172 */
9173 if (local->group_type > busiest->group_type)
9174 goto out_balanced;
9175
9176 /*
9177 * When groups are overloaded, use the avg_load to ensure fairness
9178 * between tasks.
9179 */
9180 if (local->group_type == group_overloaded) {
9181 /*
9182 * If the local group is more loaded than the selected
9183 * busiest group don't try to pull any tasks.
9184 */
9185 if (local->avg_load >= busiest->avg_load)
9186 goto out_balanced;
9187
9188 /* XXX broken for overlapping NUMA groups */
9189 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9190 sds.total_capacity;
9191
9192 /*
9193 * Don't pull any tasks if this group is already above the
9194 * domain average load.
9195 */
9196 if (local->avg_load >= sds.avg_load)
9197 goto out_balanced;
9198
9199 /*
9200 * If the busiest group is more loaded, use imbalance_pct to be
9201 * conservative.
9202 */
9203 if (100 * busiest->avg_load <=
9204 env->sd->imbalance_pct * local->avg_load)
9205 goto out_balanced;
9206 }
9207
9208 /* Try to move all excess tasks to child's sibling domain */
9209 if (sds.prefer_sibling && local->group_type == group_has_spare &&
9210 busiest->sum_nr_running > local->sum_nr_running + 1)
9211 goto force_balance;
9212
9213 if (busiest->group_type != group_overloaded) {
9214 if (env->idle == CPU_NOT_IDLE)
9215 /*
9216 * If the busiest group is not overloaded (and as a
9217 * result the local one too) but this CPU is already
9218 * busy, let another idle CPU try to pull task.
9219 */
9220 goto out_balanced;
9221
9222 if (busiest->group_weight > 1 &&
9223 local->idle_cpus <= (busiest->idle_cpus + 1))
9224 /*
9225 * If the busiest group is not overloaded
9226 * and there is no imbalance between this and busiest
9227 * group wrt idle CPUs, it is balanced. The imbalance
9228 * becomes significant if the diff is greater than 1
9229 * otherwise we might end up to just move the imbalance
9230 * on another group. Of course this applies only if
9231 * there is more than 1 CPU per group.
9232 */
9233 goto out_balanced;
9234
9235 if (busiest->sum_h_nr_running == 1)
9236 /*
9237 * busiest doesn't have any tasks waiting to run
9238 */
9239 goto out_balanced;
9240 }
9241
9242 force_balance:
9243 /* Looks like there is an imbalance. Compute it */
9244 calculate_imbalance(env, &sds);
9245 return env->imbalance ? sds.busiest : NULL;
9246
9247 out_balanced:
9248 env->imbalance = 0;
9249 return NULL;
9250 }
9251
9252 /*
9253 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9254 */
9255 static struct rq *find_busiest_queue(struct lb_env *env,
9256 struct sched_group *group)
9257 {
9258 struct rq *busiest = NULL, *rq;
9259 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9260 unsigned int busiest_nr = 0;
9261 int i;
9262
9263 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9264 unsigned long capacity, load, util;
9265 unsigned int nr_running;
9266 enum fbq_type rt;
9267
9268 rq = cpu_rq(i);
9269 rt = fbq_classify_rq(rq);
9270
9271 /*
9272 * We classify groups/runqueues into three groups:
9273 * - regular: there are !numa tasks
9274 * - remote: there are numa tasks that run on the 'wrong' node
9275 * - all: there is no distinction
9276 *
9277 * In order to avoid migrating ideally placed numa tasks,
9278 * ignore those when there's better options.
9279 *
9280 * If we ignore the actual busiest queue to migrate another
9281 * task, the next balance pass can still reduce the busiest
9282 * queue by moving tasks around inside the node.
9283 *
9284 * If we cannot move enough load due to this classification
9285 * the next pass will adjust the group classification and
9286 * allow migration of more tasks.
9287 *
9288 * Both cases only affect the total convergence complexity.
9289 */
9290 if (rt > env->fbq_type)
9291 continue;
9292
9293 capacity = capacity_of(i);
9294 nr_running = rq->cfs.h_nr_running;
9295
9296 /*
9297 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9298 * eventually lead to active_balancing high->low capacity.
9299 * Higher per-CPU capacity is considered better than balancing
9300 * average load.
9301 */
9302 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9303 capacity_of(env->dst_cpu) < capacity &&
9304 nr_running == 1)
9305 continue;
9306
9307 switch (env->migration_type) {
9308 case migrate_load:
9309 /*
9310 * When comparing with load imbalance, use cpu_load()
9311 * which is not scaled with the CPU capacity.
9312 */
9313 load = cpu_load(rq);
9314
9315 if (nr_running == 1 && load > env->imbalance &&
9316 !check_cpu_capacity(rq, env->sd))
9317 break;
9318
9319 /*
9320 * For the load comparisons with the other CPUs,
9321 * consider the cpu_load() scaled with the CPU
9322 * capacity, so that the load can be moved away
9323 * from the CPU that is potentially running at a
9324 * lower capacity.
9325 *
9326 * Thus we're looking for max(load_i / capacity_i),
9327 * crosswise multiplication to rid ourselves of the
9328 * division works out to:
9329 * load_i * capacity_j > load_j * capacity_i;
9330 * where j is our previous maximum.
9331 */
9332 if (load * busiest_capacity > busiest_load * capacity) {
9333 busiest_load = load;
9334 busiest_capacity = capacity;
9335 busiest = rq;
9336 }
9337 break;
9338
9339 case migrate_util:
9340 util = cpu_util(cpu_of(rq));
9341
9342 /*
9343 * Don't try to pull utilization from a CPU with one
9344 * running task. Whatever its utilization, we will fail
9345 * detach the task.
9346 */
9347 if (nr_running <= 1)
9348 continue;
9349
9350 if (busiest_util < util) {
9351 busiest_util = util;
9352 busiest = rq;
9353 }
9354 break;
9355
9356 case migrate_task:
9357 if (busiest_nr < nr_running) {
9358 busiest_nr = nr_running;
9359 busiest = rq;
9360 }
9361 break;
9362
9363 case migrate_misfit:
9364 /*
9365 * For ASYM_CPUCAPACITY domains with misfit tasks we
9366 * simply seek the "biggest" misfit task.
9367 */
9368 if (rq->misfit_task_load > busiest_load) {
9369 busiest_load = rq->misfit_task_load;
9370 busiest = rq;
9371 }
9372
9373 break;
9374
9375 }
9376 }
9377
9378 return busiest;
9379 }
9380
9381 /*
9382 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9383 * so long as it is large enough.
9384 */
9385 #define MAX_PINNED_INTERVAL 512
9386
9387 static inline bool
9388 asym_active_balance(struct lb_env *env)
9389 {
9390 /*
9391 * ASYM_PACKING needs to force migrate tasks from busy but
9392 * lower priority CPUs in order to pack all tasks in the
9393 * highest priority CPUs.
9394 */
9395 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9396 sched_asym_prefer(env->dst_cpu, env->src_cpu);
9397 }
9398
9399 static inline bool
9400 voluntary_active_balance(struct lb_env *env)
9401 {
9402 struct sched_domain *sd = env->sd;
9403
9404 if (asym_active_balance(env))
9405 return 1;
9406
9407 /*
9408 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9409 * It's worth migrating the task if the src_cpu's capacity is reduced
9410 * because of other sched_class or IRQs if more capacity stays
9411 * available on dst_cpu.
9412 */
9413 if ((env->idle != CPU_NOT_IDLE) &&
9414 (env->src_rq->cfs.h_nr_running == 1)) {
9415 if ((check_cpu_capacity(env->src_rq, sd)) &&
9416 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9417 return 1;
9418 }
9419
9420 if (env->migration_type == migrate_misfit)
9421 return 1;
9422
9423 return 0;
9424 }
9425
9426 static int need_active_balance(struct lb_env *env)
9427 {
9428 struct sched_domain *sd = env->sd;
9429
9430 if (voluntary_active_balance(env))
9431 return 1;
9432
9433 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
9434 }
9435
9436 static int active_load_balance_cpu_stop(void *data);
9437
9438 static int should_we_balance(struct lb_env *env)
9439 {
9440 struct sched_group *sg = env->sd->groups;
9441 int cpu;
9442
9443 /*
9444 * Ensure the balancing environment is consistent; can happen
9445 * when the softirq triggers 'during' hotplug.
9446 */
9447 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9448 return 0;
9449
9450 /*
9451 * In the newly idle case, we will allow all the CPUs
9452 * to do the newly idle load balance.
9453 */
9454 if (env->idle == CPU_NEWLY_IDLE)
9455 return 1;
9456
9457 /* Try to find first idle CPU */
9458 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9459 if (!idle_cpu(cpu))
9460 continue;
9461
9462 /* Are we the first idle CPU? */
9463 return cpu == env->dst_cpu;
9464 }
9465
9466 /* Are we the first CPU of this group ? */
9467 return group_balance_cpu(sg) == env->dst_cpu;
9468 }
9469
9470 /*
9471 * Check this_cpu to ensure it is balanced within domain. Attempt to move
9472 * tasks if there is an imbalance.
9473 */
9474 static int load_balance(int this_cpu, struct rq *this_rq,
9475 struct sched_domain *sd, enum cpu_idle_type idle,
9476 int *continue_balancing)
9477 {
9478 int ld_moved, cur_ld_moved, active_balance = 0;
9479 struct sched_domain *sd_parent = sd->parent;
9480 struct sched_group *group;
9481 struct rq *busiest;
9482 struct rq_flags rf;
9483 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9484
9485 struct lb_env env = {
9486 .sd = sd,
9487 .dst_cpu = this_cpu,
9488 .dst_rq = this_rq,
9489 .dst_grpmask = sched_group_span(sd->groups),
9490 .idle = idle,
9491 .loop_break = sched_nr_migrate_break,
9492 .cpus = cpus,
9493 .fbq_type = all,
9494 .tasks = LIST_HEAD_INIT(env.tasks),
9495 };
9496
9497 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9498
9499 schedstat_inc(sd->lb_count[idle]);
9500
9501 redo:
9502 if (!should_we_balance(&env)) {
9503 *continue_balancing = 0;
9504 goto out_balanced;
9505 }
9506
9507 group = find_busiest_group(&env);
9508 if (!group) {
9509 schedstat_inc(sd->lb_nobusyg[idle]);
9510 goto out_balanced;
9511 }
9512
9513 busiest = find_busiest_queue(&env, group);
9514 if (!busiest) {
9515 schedstat_inc(sd->lb_nobusyq[idle]);
9516 goto out_balanced;
9517 }
9518
9519 BUG_ON(busiest == env.dst_rq);
9520
9521 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9522
9523 env.src_cpu = busiest->cpu;
9524 env.src_rq = busiest;
9525
9526 ld_moved = 0;
9527 if (busiest->nr_running > 1) {
9528 /*
9529 * Attempt to move tasks. If find_busiest_group has found
9530 * an imbalance but busiest->nr_running <= 1, the group is
9531 * still unbalanced. ld_moved simply stays zero, so it is
9532 * correctly treated as an imbalance.
9533 */
9534 env.flags |= LBF_ALL_PINNED;
9535 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
9536
9537 more_balance:
9538 rq_lock_irqsave(busiest, &rf);
9539 update_rq_clock(busiest);
9540
9541 /*
9542 * cur_ld_moved - load moved in current iteration
9543 * ld_moved - cumulative load moved across iterations
9544 */
9545 cur_ld_moved = detach_tasks(&env);
9546
9547 /*
9548 * We've detached some tasks from busiest_rq. Every
9549 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9550 * unlock busiest->lock, and we are able to be sure
9551 * that nobody can manipulate the tasks in parallel.
9552 * See task_rq_lock() family for the details.
9553 */
9554
9555 rq_unlock(busiest, &rf);
9556
9557 if (cur_ld_moved) {
9558 attach_tasks(&env);
9559 ld_moved += cur_ld_moved;
9560 }
9561
9562 local_irq_restore(rf.flags);
9563
9564 if (env.flags & LBF_NEED_BREAK) {
9565 env.flags &= ~LBF_NEED_BREAK;
9566 goto more_balance;
9567 }
9568
9569 /*
9570 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9571 * us and move them to an alternate dst_cpu in our sched_group
9572 * where they can run. The upper limit on how many times we
9573 * iterate on same src_cpu is dependent on number of CPUs in our
9574 * sched_group.
9575 *
9576 * This changes load balance semantics a bit on who can move
9577 * load to a given_cpu. In addition to the given_cpu itself
9578 * (or a ilb_cpu acting on its behalf where given_cpu is
9579 * nohz-idle), we now have balance_cpu in a position to move
9580 * load to given_cpu. In rare situations, this may cause
9581 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9582 * _independently_ and at _same_ time to move some load to
9583 * given_cpu) causing exceess load to be moved to given_cpu.
9584 * This however should not happen so much in practice and
9585 * moreover subsequent load balance cycles should correct the
9586 * excess load moved.
9587 */
9588 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9589
9590 /* Prevent to re-select dst_cpu via env's CPUs */
9591 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
9592
9593 env.dst_rq = cpu_rq(env.new_dst_cpu);
9594 env.dst_cpu = env.new_dst_cpu;
9595 env.flags &= ~LBF_DST_PINNED;
9596 env.loop = 0;
9597 env.loop_break = sched_nr_migrate_break;
9598
9599 /*
9600 * Go back to "more_balance" rather than "redo" since we
9601 * need to continue with same src_cpu.
9602 */
9603 goto more_balance;
9604 }
9605
9606 /*
9607 * We failed to reach balance because of affinity.
9608 */
9609 if (sd_parent) {
9610 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9611
9612 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9613 *group_imbalance = 1;
9614 }
9615
9616 /* All tasks on this runqueue were pinned by CPU affinity */
9617 if (unlikely(env.flags & LBF_ALL_PINNED)) {
9618 __cpumask_clear_cpu(cpu_of(busiest), cpus);
9619 /*
9620 * Attempting to continue load balancing at the current
9621 * sched_domain level only makes sense if there are
9622 * active CPUs remaining as possible busiest CPUs to
9623 * pull load from which are not contained within the
9624 * destination group that is receiving any migrated
9625 * load.
9626 */
9627 if (!cpumask_subset(cpus, env.dst_grpmask)) {
9628 env.loop = 0;
9629 env.loop_break = sched_nr_migrate_break;
9630 goto redo;
9631 }
9632 goto out_all_pinned;
9633 }
9634 }
9635
9636 if (!ld_moved) {
9637 schedstat_inc(sd->lb_failed[idle]);
9638 /*
9639 * Increment the failure counter only on periodic balance.
9640 * We do not want newidle balance, which can be very
9641 * frequent, pollute the failure counter causing
9642 * excessive cache_hot migrations and active balances.
9643 */
9644 if (idle != CPU_NEWLY_IDLE)
9645 sd->nr_balance_failed++;
9646
9647 if (need_active_balance(&env)) {
9648 unsigned long flags;
9649
9650 raw_spin_lock_irqsave(&busiest->lock, flags);
9651
9652 /*
9653 * Don't kick the active_load_balance_cpu_stop,
9654 * if the curr task on busiest CPU can't be
9655 * moved to this_cpu:
9656 */
9657 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
9658 raw_spin_unlock_irqrestore(&busiest->lock,
9659 flags);
9660 env.flags |= LBF_ALL_PINNED;
9661 goto out_one_pinned;
9662 }
9663
9664 /*
9665 * ->active_balance synchronizes accesses to
9666 * ->active_balance_work. Once set, it's cleared
9667 * only after active load balance is finished.
9668 */
9669 if (!busiest->active_balance) {
9670 busiest->active_balance = 1;
9671 busiest->push_cpu = this_cpu;
9672 active_balance = 1;
9673 }
9674 raw_spin_unlock_irqrestore(&busiest->lock, flags);
9675
9676 if (active_balance) {
9677 stop_one_cpu_nowait(cpu_of(busiest),
9678 active_load_balance_cpu_stop, busiest,
9679 &busiest->active_balance_work);
9680 }
9681
9682 /* We've kicked active balancing, force task migration. */
9683 sd->nr_balance_failed = sd->cache_nice_tries+1;
9684 }
9685 } else
9686 sd->nr_balance_failed = 0;
9687
9688 if (likely(!active_balance) || voluntary_active_balance(&env)) {
9689 /* We were unbalanced, so reset the balancing interval */
9690 sd->balance_interval = sd->min_interval;
9691 } else {
9692 /*
9693 * If we've begun active balancing, start to back off. This
9694 * case may not be covered by the all_pinned logic if there
9695 * is only 1 task on the busy runqueue (because we don't call
9696 * detach_tasks).
9697 */
9698 if (sd->balance_interval < sd->max_interval)
9699 sd->balance_interval *= 2;
9700 }
9701
9702 goto out;
9703
9704 out_balanced:
9705 /*
9706 * We reach balance although we may have faced some affinity
9707 * constraints. Clear the imbalance flag only if other tasks got
9708 * a chance to move and fix the imbalance.
9709 */
9710 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
9711 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9712
9713 if (*group_imbalance)
9714 *group_imbalance = 0;
9715 }
9716
9717 out_all_pinned:
9718 /*
9719 * We reach balance because all tasks are pinned at this level so
9720 * we can't migrate them. Let the imbalance flag set so parent level
9721 * can try to migrate them.
9722 */
9723 schedstat_inc(sd->lb_balanced[idle]);
9724
9725 sd->nr_balance_failed = 0;
9726
9727 out_one_pinned:
9728 ld_moved = 0;
9729
9730 /*
9731 * newidle_balance() disregards balance intervals, so we could
9732 * repeatedly reach this code, which would lead to balance_interval
9733 * skyrocketting in a short amount of time. Skip the balance_interval
9734 * increase logic to avoid that.
9735 */
9736 if (env.idle == CPU_NEWLY_IDLE)
9737 goto out;
9738
9739 /* tune up the balancing interval */
9740 if ((env.flags & LBF_ALL_PINNED &&
9741 sd->balance_interval < MAX_PINNED_INTERVAL) ||
9742 sd->balance_interval < sd->max_interval)
9743 sd->balance_interval *= 2;
9744 out:
9745 return ld_moved;
9746 }
9747
9748 static inline unsigned long
9749 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9750 {
9751 unsigned long interval = sd->balance_interval;
9752
9753 if (cpu_busy)
9754 interval *= sd->busy_factor;
9755
9756 /* scale ms to jiffies */
9757 interval = msecs_to_jiffies(interval);
9758 interval = clamp(interval, 1UL, max_load_balance_interval);
9759
9760 return interval;
9761 }
9762
9763 static inline void
9764 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9765 {
9766 unsigned long interval, next;
9767
9768 /* used by idle balance, so cpu_busy = 0 */
9769 interval = get_sd_balance_interval(sd, 0);
9770 next = sd->last_balance + interval;
9771
9772 if (time_after(*next_balance, next))
9773 *next_balance = next;
9774 }
9775
9776 /*
9777 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9778 * running tasks off the busiest CPU onto idle CPUs. It requires at
9779 * least 1 task to be running on each physical CPU where possible, and
9780 * avoids physical / logical imbalances.
9781 */
9782 static int active_load_balance_cpu_stop(void *data)
9783 {
9784 struct rq *busiest_rq = data;
9785 int busiest_cpu = cpu_of(busiest_rq);
9786 int target_cpu = busiest_rq->push_cpu;
9787 struct rq *target_rq = cpu_rq(target_cpu);
9788 struct sched_domain *sd;
9789 struct task_struct *p = NULL;
9790 struct rq_flags rf;
9791
9792 rq_lock_irq(busiest_rq, &rf);
9793 /*
9794 * Between queueing the stop-work and running it is a hole in which
9795 * CPUs can become inactive. We should not move tasks from or to
9796 * inactive CPUs.
9797 */
9798 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9799 goto out_unlock;
9800
9801 /* Make sure the requested CPU hasn't gone down in the meantime: */
9802 if (unlikely(busiest_cpu != smp_processor_id() ||
9803 !busiest_rq->active_balance))
9804 goto out_unlock;
9805
9806 /* Is there any task to move? */
9807 if (busiest_rq->nr_running <= 1)
9808 goto out_unlock;
9809
9810 /*
9811 * This condition is "impossible", if it occurs
9812 * we need to fix it. Originally reported by
9813 * Bjorn Helgaas on a 128-CPU setup.
9814 */
9815 BUG_ON(busiest_rq == target_rq);
9816
9817 /* Search for an sd spanning us and the target CPU. */
9818 rcu_read_lock();
9819 for_each_domain(target_cpu, sd) {
9820 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9821 break;
9822 }
9823
9824 if (likely(sd)) {
9825 struct lb_env env = {
9826 .sd = sd,
9827 .dst_cpu = target_cpu,
9828 .dst_rq = target_rq,
9829 .src_cpu = busiest_rq->cpu,
9830 .src_rq = busiest_rq,
9831 .idle = CPU_IDLE,
9832 /*
9833 * can_migrate_task() doesn't need to compute new_dst_cpu
9834 * for active balancing. Since we have CPU_IDLE, but no
9835 * @dst_grpmask we need to make that test go away with lying
9836 * about DST_PINNED.
9837 */
9838 .flags = LBF_DST_PINNED,
9839 };
9840
9841 schedstat_inc(sd->alb_count);
9842 update_rq_clock(busiest_rq);
9843
9844 p = detach_one_task(&env);
9845 if (p) {
9846 schedstat_inc(sd->alb_pushed);
9847 /* Active balancing done, reset the failure counter. */
9848 sd->nr_balance_failed = 0;
9849 } else {
9850 schedstat_inc(sd->alb_failed);
9851 }
9852 }
9853 rcu_read_unlock();
9854 out_unlock:
9855 busiest_rq->active_balance = 0;
9856 rq_unlock(busiest_rq, &rf);
9857
9858 if (p)
9859 attach_one_task(target_rq, p);
9860
9861 local_irq_enable();
9862
9863 return 0;
9864 }
9865
9866 static DEFINE_SPINLOCK(balancing);
9867
9868 /*
9869 * Scale the max load_balance interval with the number of CPUs in the system.
9870 * This trades load-balance latency on larger machines for less cross talk.
9871 */
9872 void update_max_interval(void)
9873 {
9874 max_load_balance_interval = HZ*num_online_cpus()/10;
9875 }
9876
9877 /*
9878 * It checks each scheduling domain to see if it is due to be balanced,
9879 * and initiates a balancing operation if so.
9880 *
9881 * Balancing parameters are set up in init_sched_domains.
9882 */
9883 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9884 {
9885 int continue_balancing = 1;
9886 int cpu = rq->cpu;
9887 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9888 unsigned long interval;
9889 struct sched_domain *sd;
9890 /* Earliest time when we have to do rebalance again */
9891 unsigned long next_balance = jiffies + 60*HZ;
9892 int update_next_balance = 0;
9893 int need_serialize, need_decay = 0;
9894 u64 max_cost = 0;
9895
9896 rcu_read_lock();
9897 for_each_domain(cpu, sd) {
9898 /*
9899 * Decay the newidle max times here because this is a regular
9900 * visit to all the domains. Decay ~1% per second.
9901 */
9902 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9903 sd->max_newidle_lb_cost =
9904 (sd->max_newidle_lb_cost * 253) / 256;
9905 sd->next_decay_max_lb_cost = jiffies + HZ;
9906 need_decay = 1;
9907 }
9908 max_cost += sd->max_newidle_lb_cost;
9909
9910 /*
9911 * Stop the load balance at this level. There is another
9912 * CPU in our sched group which is doing load balancing more
9913 * actively.
9914 */
9915 if (!continue_balancing) {
9916 if (need_decay)
9917 continue;
9918 break;
9919 }
9920
9921 interval = get_sd_balance_interval(sd, busy);
9922
9923 need_serialize = sd->flags & SD_SERIALIZE;
9924 if (need_serialize) {
9925 if (!spin_trylock(&balancing))
9926 goto out;
9927 }
9928
9929 if (time_after_eq(jiffies, sd->last_balance + interval)) {
9930 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9931 /*
9932 * The LBF_DST_PINNED logic could have changed
9933 * env->dst_cpu, so we can't know our idle
9934 * state even if we migrated tasks. Update it.
9935 */
9936 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9937 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
9938 }
9939 sd->last_balance = jiffies;
9940 interval = get_sd_balance_interval(sd, busy);
9941 }
9942 if (need_serialize)
9943 spin_unlock(&balancing);
9944 out:
9945 if (time_after(next_balance, sd->last_balance + interval)) {
9946 next_balance = sd->last_balance + interval;
9947 update_next_balance = 1;
9948 }
9949 }
9950 if (need_decay) {
9951 /*
9952 * Ensure the rq-wide value also decays but keep it at a
9953 * reasonable floor to avoid funnies with rq->avg_idle.
9954 */
9955 rq->max_idle_balance_cost =
9956 max((u64)sysctl_sched_migration_cost, max_cost);
9957 }
9958 rcu_read_unlock();
9959
9960 /*
9961 * next_balance will be updated only when there is a need.
9962 * When the cpu is attached to null domain for ex, it will not be
9963 * updated.
9964 */
9965 if (likely(update_next_balance)) {
9966 rq->next_balance = next_balance;
9967
9968 #ifdef CONFIG_NO_HZ_COMMON
9969 /*
9970 * If this CPU has been elected to perform the nohz idle
9971 * balance. Other idle CPUs have already rebalanced with
9972 * nohz_idle_balance() and nohz.next_balance has been
9973 * updated accordingly. This CPU is now running the idle load
9974 * balance for itself and we need to update the
9975 * nohz.next_balance accordingly.
9976 */
9977 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9978 nohz.next_balance = rq->next_balance;
9979 #endif
9980 }
9981 }
9982
9983 static inline int on_null_domain(struct rq *rq)
9984 {
9985 return unlikely(!rcu_dereference_sched(rq->sd));
9986 }
9987
9988 #ifdef CONFIG_NO_HZ_COMMON
9989 /*
9990 * idle load balancing details
9991 * - When one of the busy CPUs notice that there may be an idle rebalancing
9992 * needed, they will kick the idle load balancer, which then does idle
9993 * load balancing for all the idle CPUs.
9994 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
9995 * anywhere yet.
9996 */
9997
9998 static inline int find_new_ilb(void)
9999 {
10000 int ilb;
10001
10002 for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10003 housekeeping_cpumask(HK_FLAG_MISC)) {
10004 if (idle_cpu(ilb))
10005 return ilb;
10006 }
10007
10008 return nr_cpu_ids;
10009 }
10010
10011 /*
10012 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10013 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10014 */
10015 static void kick_ilb(unsigned int flags)
10016 {
10017 int ilb_cpu;
10018
10019 nohz.next_balance++;
10020
10021 ilb_cpu = find_new_ilb();
10022
10023 if (ilb_cpu >= nr_cpu_ids)
10024 return;
10025
10026 /*
10027 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10028 * the first flag owns it; cleared by nohz_csd_func().
10029 */
10030 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10031 if (flags & NOHZ_KICK_MASK)
10032 return;
10033
10034 /*
10035 * This way we generate an IPI on the target CPU which
10036 * is idle. And the softirq performing nohz idle load balance
10037 * will be run before returning from the IPI.
10038 */
10039 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10040 }
10041
10042 /*
10043 * Current decision point for kicking the idle load balancer in the presence
10044 * of idle CPUs in the system.
10045 */
10046 static void nohz_balancer_kick(struct rq *rq)
10047 {
10048 unsigned long now = jiffies;
10049 struct sched_domain_shared *sds;
10050 struct sched_domain *sd;
10051 int nr_busy, i, cpu = rq->cpu;
10052 unsigned int flags = 0;
10053
10054 if (unlikely(rq->idle_balance))
10055 return;
10056
10057 /*
10058 * We may be recently in ticked or tickless idle mode. At the first
10059 * busy tick after returning from idle, we will update the busy stats.
10060 */
10061 nohz_balance_exit_idle(rq);
10062
10063 /*
10064 * None are in tickless mode and hence no need for NOHZ idle load
10065 * balancing.
10066 */
10067 if (likely(!atomic_read(&nohz.nr_cpus)))
10068 return;
10069
10070 if (READ_ONCE(nohz.has_blocked) &&
10071 time_after(now, READ_ONCE(nohz.next_blocked)))
10072 flags = NOHZ_STATS_KICK;
10073
10074 if (time_before(now, nohz.next_balance))
10075 goto out;
10076
10077 if (rq->nr_running >= 2) {
10078 flags = NOHZ_KICK_MASK;
10079 goto out;
10080 }
10081
10082 rcu_read_lock();
10083
10084 sd = rcu_dereference(rq->sd);
10085 if (sd) {
10086 /*
10087 * If there's a CFS task and the current CPU has reduced
10088 * capacity; kick the ILB to see if there's a better CPU to run
10089 * on.
10090 */
10091 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10092 flags = NOHZ_KICK_MASK;
10093 goto unlock;
10094 }
10095 }
10096
10097 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10098 if (sd) {
10099 /*
10100 * When ASYM_PACKING; see if there's a more preferred CPU
10101 * currently idle; in which case, kick the ILB to move tasks
10102 * around.
10103 */
10104 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10105 if (sched_asym_prefer(i, cpu)) {
10106 flags = NOHZ_KICK_MASK;
10107 goto unlock;
10108 }
10109 }
10110 }
10111
10112 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10113 if (sd) {
10114 /*
10115 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10116 * to run the misfit task on.
10117 */
10118 if (check_misfit_status(rq, sd)) {
10119 flags = NOHZ_KICK_MASK;
10120 goto unlock;
10121 }
10122
10123 /*
10124 * For asymmetric systems, we do not want to nicely balance
10125 * cache use, instead we want to embrace asymmetry and only
10126 * ensure tasks have enough CPU capacity.
10127 *
10128 * Skip the LLC logic because it's not relevant in that case.
10129 */
10130 goto unlock;
10131 }
10132
10133 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10134 if (sds) {
10135 /*
10136 * If there is an imbalance between LLC domains (IOW we could
10137 * increase the overall cache use), we need some less-loaded LLC
10138 * domain to pull some load. Likewise, we may need to spread
10139 * load within the current LLC domain (e.g. packed SMT cores but
10140 * other CPUs are idle). We can't really know from here how busy
10141 * the others are - so just get a nohz balance going if it looks
10142 * like this LLC domain has tasks we could move.
10143 */
10144 nr_busy = atomic_read(&sds->nr_busy_cpus);
10145 if (nr_busy > 1) {
10146 flags = NOHZ_KICK_MASK;
10147 goto unlock;
10148 }
10149 }
10150 unlock:
10151 rcu_read_unlock();
10152 out:
10153 if (flags)
10154 kick_ilb(flags);
10155 }
10156
10157 static void set_cpu_sd_state_busy(int cpu)
10158 {
10159 struct sched_domain *sd;
10160
10161 rcu_read_lock();
10162 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10163
10164 if (!sd || !sd->nohz_idle)
10165 goto unlock;
10166 sd->nohz_idle = 0;
10167
10168 atomic_inc(&sd->shared->nr_busy_cpus);
10169 unlock:
10170 rcu_read_unlock();
10171 }
10172
10173 void nohz_balance_exit_idle(struct rq *rq)
10174 {
10175 SCHED_WARN_ON(rq != this_rq());
10176
10177 if (likely(!rq->nohz_tick_stopped))
10178 return;
10179
10180 rq->nohz_tick_stopped = 0;
10181 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10182 atomic_dec(&nohz.nr_cpus);
10183
10184 set_cpu_sd_state_busy(rq->cpu);
10185 }
10186
10187 static void set_cpu_sd_state_idle(int cpu)
10188 {
10189 struct sched_domain *sd;
10190
10191 rcu_read_lock();
10192 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10193
10194 if (!sd || sd->nohz_idle)
10195 goto unlock;
10196 sd->nohz_idle = 1;
10197
10198 atomic_dec(&sd->shared->nr_busy_cpus);
10199 unlock:
10200 rcu_read_unlock();
10201 }
10202
10203 /*
10204 * This routine will record that the CPU is going idle with tick stopped.
10205 * This info will be used in performing idle load balancing in the future.
10206 */
10207 void nohz_balance_enter_idle(int cpu)
10208 {
10209 struct rq *rq = cpu_rq(cpu);
10210
10211 SCHED_WARN_ON(cpu != smp_processor_id());
10212
10213 /* If this CPU is going down, then nothing needs to be done: */
10214 if (!cpu_active(cpu))
10215 return;
10216
10217 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10218 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10219 return;
10220
10221 /*
10222 * Can be set safely without rq->lock held
10223 * If a clear happens, it will have evaluated last additions because
10224 * rq->lock is held during the check and the clear
10225 */
10226 rq->has_blocked_load = 1;
10227
10228 /*
10229 * The tick is still stopped but load could have been added in the
10230 * meantime. We set the nohz.has_blocked flag to trig a check of the
10231 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10232 * of nohz.has_blocked can only happen after checking the new load
10233 */
10234 if (rq->nohz_tick_stopped)
10235 goto out;
10236
10237 /* If we're a completely isolated CPU, we don't play: */
10238 if (on_null_domain(rq))
10239 return;
10240
10241 rq->nohz_tick_stopped = 1;
10242
10243 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10244 atomic_inc(&nohz.nr_cpus);
10245
10246 /*
10247 * Ensures that if nohz_idle_balance() fails to observe our
10248 * @idle_cpus_mask store, it must observe the @has_blocked
10249 * store.
10250 */
10251 smp_mb__after_atomic();
10252
10253 set_cpu_sd_state_idle(cpu);
10254
10255 out:
10256 /*
10257 * Each time a cpu enter idle, we assume that it has blocked load and
10258 * enable the periodic update of the load of idle cpus
10259 */
10260 WRITE_ONCE(nohz.has_blocked, 1);
10261 }
10262
10263 /*
10264 * Internal function that runs load balance for all idle cpus. The load balance
10265 * can be a simple update of blocked load or a complete load balance with
10266 * tasks movement depending of flags.
10267 * The function returns false if the loop has stopped before running
10268 * through all idle CPUs.
10269 */
10270 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10271 enum cpu_idle_type idle)
10272 {
10273 /* Earliest time when we have to do rebalance again */
10274 unsigned long now = jiffies;
10275 unsigned long next_balance = now + 60*HZ;
10276 bool has_blocked_load = false;
10277 int update_next_balance = 0;
10278 int this_cpu = this_rq->cpu;
10279 int balance_cpu;
10280 int ret = false;
10281 struct rq *rq;
10282
10283 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10284
10285 /*
10286 * We assume there will be no idle load after this update and clear
10287 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10288 * set the has_blocked flag and trig another update of idle load.
10289 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10290 * setting the flag, we are sure to not clear the state and not
10291 * check the load of an idle cpu.
10292 */
10293 WRITE_ONCE(nohz.has_blocked, 0);
10294
10295 /*
10296 * Ensures that if we miss the CPU, we must see the has_blocked
10297 * store from nohz_balance_enter_idle().
10298 */
10299 smp_mb();
10300
10301 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
10302 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
10303 continue;
10304
10305 /*
10306 * If this CPU gets work to do, stop the load balancing
10307 * work being done for other CPUs. Next load
10308 * balancing owner will pick it up.
10309 */
10310 if (need_resched()) {
10311 has_blocked_load = true;
10312 goto abort;
10313 }
10314
10315 rq = cpu_rq(balance_cpu);
10316
10317 has_blocked_load |= update_nohz_stats(rq, true);
10318
10319 /*
10320 * If time for next balance is due,
10321 * do the balance.
10322 */
10323 if (time_after_eq(jiffies, rq->next_balance)) {
10324 struct rq_flags rf;
10325
10326 rq_lock_irqsave(rq, &rf);
10327 update_rq_clock(rq);
10328 rq_unlock_irqrestore(rq, &rf);
10329
10330 if (flags & NOHZ_BALANCE_KICK)
10331 rebalance_domains(rq, CPU_IDLE);
10332 }
10333
10334 if (time_after(next_balance, rq->next_balance)) {
10335 next_balance = rq->next_balance;
10336 update_next_balance = 1;
10337 }
10338 }
10339
10340 /* Newly idle CPU doesn't need an update */
10341 if (idle != CPU_NEWLY_IDLE) {
10342 update_blocked_averages(this_cpu);
10343 has_blocked_load |= this_rq->has_blocked_load;
10344 }
10345
10346 if (flags & NOHZ_BALANCE_KICK)
10347 rebalance_domains(this_rq, CPU_IDLE);
10348
10349 WRITE_ONCE(nohz.next_blocked,
10350 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10351
10352 /* The full idle balance loop has been done */
10353 ret = true;
10354
10355 abort:
10356 /* There is still blocked load, enable periodic update */
10357 if (has_blocked_load)
10358 WRITE_ONCE(nohz.has_blocked, 1);
10359
10360 /*
10361 * next_balance will be updated only when there is a need.
10362 * When the CPU is attached to null domain for ex, it will not be
10363 * updated.
10364 */
10365 if (likely(update_next_balance))
10366 nohz.next_balance = next_balance;
10367
10368 return ret;
10369 }
10370
10371 /*
10372 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10373 * rebalancing for all the cpus for whom scheduler ticks are stopped.
10374 */
10375 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10376 {
10377 unsigned int flags = this_rq->nohz_idle_balance;
10378
10379 if (!flags)
10380 return false;
10381
10382 this_rq->nohz_idle_balance = 0;
10383
10384 if (idle != CPU_IDLE)
10385 return false;
10386
10387 _nohz_idle_balance(this_rq, flags, idle);
10388
10389 return true;
10390 }
10391
10392 static void nohz_newidle_balance(struct rq *this_rq)
10393 {
10394 int this_cpu = this_rq->cpu;
10395
10396 /*
10397 * This CPU doesn't want to be disturbed by scheduler
10398 * housekeeping
10399 */
10400 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
10401 return;
10402
10403 /* Will wake up very soon. No time for doing anything else*/
10404 if (this_rq->avg_idle < sysctl_sched_migration_cost)
10405 return;
10406
10407 /* Don't need to update blocked load of idle CPUs*/
10408 if (!READ_ONCE(nohz.has_blocked) ||
10409 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10410 return;
10411
10412 raw_spin_unlock(&this_rq->lock);
10413 /*
10414 * This CPU is going to be idle and blocked load of idle CPUs
10415 * need to be updated. Run the ilb locally as it is a good
10416 * candidate for ilb instead of waking up another idle CPU.
10417 * Kick an normal ilb if we failed to do the update.
10418 */
10419 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
10420 kick_ilb(NOHZ_STATS_KICK);
10421 raw_spin_lock(&this_rq->lock);
10422 }
10423
10424 #else /* !CONFIG_NO_HZ_COMMON */
10425 static inline void nohz_balancer_kick(struct rq *rq) { }
10426
10427 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10428 {
10429 return false;
10430 }
10431
10432 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10433 #endif /* CONFIG_NO_HZ_COMMON */
10434
10435 /*
10436 * idle_balance is called by schedule() if this_cpu is about to become
10437 * idle. Attempts to pull tasks from other CPUs.
10438 *
10439 * Returns:
10440 * < 0 - we released the lock and there are !fair tasks present
10441 * 0 - failed, no new tasks
10442 * > 0 - success, new (fair) tasks present
10443 */
10444 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10445 {
10446 unsigned long next_balance = jiffies + HZ;
10447 int this_cpu = this_rq->cpu;
10448 struct sched_domain *sd;
10449 int pulled_task = 0;
10450 u64 curr_cost = 0;
10451
10452 update_misfit_status(NULL, this_rq);
10453 /*
10454 * We must set idle_stamp _before_ calling idle_balance(), such that we
10455 * measure the duration of idle_balance() as idle time.
10456 */
10457 this_rq->idle_stamp = rq_clock(this_rq);
10458
10459 /*
10460 * Do not pull tasks towards !active CPUs...
10461 */
10462 if (!cpu_active(this_cpu))
10463 return 0;
10464
10465 /*
10466 * This is OK, because current is on_cpu, which avoids it being picked
10467 * for load-balance and preemption/IRQs are still disabled avoiding
10468 * further scheduler activity on it and we're being very careful to
10469 * re-start the picking loop.
10470 */
10471 rq_unpin_lock(this_rq, rf);
10472
10473 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10474 !READ_ONCE(this_rq->rd->overload)) {
10475
10476 rcu_read_lock();
10477 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10478 if (sd)
10479 update_next_balance(sd, &next_balance);
10480 rcu_read_unlock();
10481
10482 nohz_newidle_balance(this_rq);
10483
10484 goto out;
10485 }
10486
10487 raw_spin_unlock(&this_rq->lock);
10488
10489 update_blocked_averages(this_cpu);
10490 rcu_read_lock();
10491 for_each_domain(this_cpu, sd) {
10492 int continue_balancing = 1;
10493 u64 t0, domain_cost;
10494
10495 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10496 update_next_balance(sd, &next_balance);
10497 break;
10498 }
10499
10500 if (sd->flags & SD_BALANCE_NEWIDLE) {
10501 t0 = sched_clock_cpu(this_cpu);
10502
10503 pulled_task = load_balance(this_cpu, this_rq,
10504 sd, CPU_NEWLY_IDLE,
10505 &continue_balancing);
10506
10507 domain_cost = sched_clock_cpu(this_cpu) - t0;
10508 if (domain_cost > sd->max_newidle_lb_cost)
10509 sd->max_newidle_lb_cost = domain_cost;
10510
10511 curr_cost += domain_cost;
10512 }
10513
10514 update_next_balance(sd, &next_balance);
10515
10516 /*
10517 * Stop searching for tasks to pull if there are
10518 * now runnable tasks on this rq.
10519 */
10520 if (pulled_task || this_rq->nr_running > 0)
10521 break;
10522 }
10523 rcu_read_unlock();
10524
10525 raw_spin_lock(&this_rq->lock);
10526
10527 if (curr_cost > this_rq->max_idle_balance_cost)
10528 this_rq->max_idle_balance_cost = curr_cost;
10529
10530 out:
10531 /*
10532 * While browsing the domains, we released the rq lock, a task could
10533 * have been enqueued in the meantime. Since we're not going idle,
10534 * pretend we pulled a task.
10535 */
10536 if (this_rq->cfs.h_nr_running && !pulled_task)
10537 pulled_task = 1;
10538
10539 /* Move the next balance forward */
10540 if (time_after(this_rq->next_balance, next_balance))
10541 this_rq->next_balance = next_balance;
10542
10543 /* Is there a task of a high priority class? */
10544 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10545 pulled_task = -1;
10546
10547 if (pulled_task)
10548 this_rq->idle_stamp = 0;
10549
10550 rq_repin_lock(this_rq, rf);
10551
10552 return pulled_task;
10553 }
10554
10555 /*
10556 * run_rebalance_domains is triggered when needed from the scheduler tick.
10557 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10558 */
10559 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10560 {
10561 struct rq *this_rq = this_rq();
10562 enum cpu_idle_type idle = this_rq->idle_balance ?
10563 CPU_IDLE : CPU_NOT_IDLE;
10564
10565 /*
10566 * If this CPU has a pending nohz_balance_kick, then do the
10567 * balancing on behalf of the other idle CPUs whose ticks are
10568 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10569 * give the idle CPUs a chance to load balance. Else we may
10570 * load balance only within the local sched_domain hierarchy
10571 * and abort nohz_idle_balance altogether if we pull some load.
10572 */
10573 if (nohz_idle_balance(this_rq, idle))
10574 return;
10575
10576 /* normal load balance */
10577 update_blocked_averages(this_rq->cpu);
10578 rebalance_domains(this_rq, idle);
10579 }
10580
10581 /*
10582 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10583 */
10584 void trigger_load_balance(struct rq *rq)
10585 {
10586 /* Don't need to rebalance while attached to NULL domain */
10587 if (unlikely(on_null_domain(rq)))
10588 return;
10589
10590 if (time_after_eq(jiffies, rq->next_balance))
10591 raise_softirq(SCHED_SOFTIRQ);
10592
10593 nohz_balancer_kick(rq);
10594 }
10595
10596 static void rq_online_fair(struct rq *rq)
10597 {
10598 update_sysctl();
10599
10600 update_runtime_enabled(rq);
10601 }
10602
10603 static void rq_offline_fair(struct rq *rq)
10604 {
10605 update_sysctl();
10606
10607 /* Ensure any throttled groups are reachable by pick_next_task */
10608 unthrottle_offline_cfs_rqs(rq);
10609 }
10610
10611 #endif /* CONFIG_SMP */
10612
10613 /*
10614 * scheduler tick hitting a task of our scheduling class.
10615 *
10616 * NOTE: This function can be called remotely by the tick offload that
10617 * goes along full dynticks. Therefore no local assumption can be made
10618 * and everything must be accessed through the @rq and @curr passed in
10619 * parameters.
10620 */
10621 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10622 {
10623 struct cfs_rq *cfs_rq;
10624 struct sched_entity *se = &curr->se;
10625
10626 for_each_sched_entity(se) {
10627 cfs_rq = cfs_rq_of(se);
10628 entity_tick(cfs_rq, se, queued);
10629 }
10630
10631 if (static_branch_unlikely(&sched_numa_balancing))
10632 task_tick_numa(rq, curr);
10633
10634 update_misfit_status(curr, rq);
10635 update_overutilized_status(task_rq(curr));
10636 }
10637
10638 /*
10639 * called on fork with the child task as argument from the parent's context
10640 * - child not yet on the tasklist
10641 * - preemption disabled
10642 */
10643 static void task_fork_fair(struct task_struct *p)
10644 {
10645 struct cfs_rq *cfs_rq;
10646 struct sched_entity *se = &p->se, *curr;
10647 struct rq *rq = this_rq();
10648 struct rq_flags rf;
10649
10650 rq_lock(rq, &rf);
10651 update_rq_clock(rq);
10652
10653 cfs_rq = task_cfs_rq(current);
10654 curr = cfs_rq->curr;
10655 if (curr) {
10656 update_curr(cfs_rq);
10657 se->vruntime = curr->vruntime;
10658 }
10659 place_entity(cfs_rq, se, 1);
10660
10661 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10662 /*
10663 * Upon rescheduling, sched_class::put_prev_task() will place
10664 * 'current' within the tree based on its new key value.
10665 */
10666 swap(curr->vruntime, se->vruntime);
10667 resched_curr(rq);
10668 }
10669
10670 se->vruntime -= cfs_rq->min_vruntime;
10671 rq_unlock(rq, &rf);
10672 }
10673
10674 /*
10675 * Priority of the task has changed. Check to see if we preempt
10676 * the current task.
10677 */
10678 static void
10679 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10680 {
10681 if (!task_on_rq_queued(p))
10682 return;
10683
10684 if (rq->cfs.nr_running == 1)
10685 return;
10686
10687 /*
10688 * Reschedule if we are currently running on this runqueue and
10689 * our priority decreased, or if we are not currently running on
10690 * this runqueue and our priority is higher than the current's
10691 */
10692 if (rq->curr == p) {
10693 if (p->prio > oldprio)
10694 resched_curr(rq);
10695 } else
10696 check_preempt_curr(rq, p, 0);
10697 }
10698
10699 static inline bool vruntime_normalized(struct task_struct *p)
10700 {
10701 struct sched_entity *se = &p->se;
10702
10703 /*
10704 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10705 * the dequeue_entity(.flags=0) will already have normalized the
10706 * vruntime.
10707 */
10708 if (p->on_rq)
10709 return true;
10710
10711 /*
10712 * When !on_rq, vruntime of the task has usually NOT been normalized.
10713 * But there are some cases where it has already been normalized:
10714 *
10715 * - A forked child which is waiting for being woken up by
10716 * wake_up_new_task().
10717 * - A task which has been woken up by try_to_wake_up() and
10718 * waiting for actually being woken up by sched_ttwu_pending().
10719 */
10720 if (!se->sum_exec_runtime ||
10721 (p->state == TASK_WAKING && p->sched_remote_wakeup))
10722 return true;
10723
10724 return false;
10725 }
10726
10727 #ifdef CONFIG_FAIR_GROUP_SCHED
10728 /*
10729 * Propagate the changes of the sched_entity across the tg tree to make it
10730 * visible to the root
10731 */
10732 static void propagate_entity_cfs_rq(struct sched_entity *se)
10733 {
10734 struct cfs_rq *cfs_rq;
10735
10736 /* Start to propagate at parent */
10737 se = se->parent;
10738
10739 for_each_sched_entity(se) {
10740 cfs_rq = cfs_rq_of(se);
10741
10742 if (cfs_rq_throttled(cfs_rq))
10743 break;
10744
10745 update_load_avg(cfs_rq, se, UPDATE_TG);
10746 }
10747 }
10748 #else
10749 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10750 #endif
10751
10752 static void detach_entity_cfs_rq(struct sched_entity *se)
10753 {
10754 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10755
10756 /* Catch up with the cfs_rq and remove our load when we leave */
10757 update_load_avg(cfs_rq, se, 0);
10758 detach_entity_load_avg(cfs_rq, se);
10759 update_tg_load_avg(cfs_rq, false);
10760 propagate_entity_cfs_rq(se);
10761 }
10762
10763 static void attach_entity_cfs_rq(struct sched_entity *se)
10764 {
10765 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10766
10767 #ifdef CONFIG_FAIR_GROUP_SCHED
10768 /*
10769 * Since the real-depth could have been changed (only FAIR
10770 * class maintain depth value), reset depth properly.
10771 */
10772 se->depth = se->parent ? se->parent->depth + 1 : 0;
10773 #endif
10774
10775 /* Synchronize entity with its cfs_rq */
10776 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10777 attach_entity_load_avg(cfs_rq, se);
10778 update_tg_load_avg(cfs_rq, false);
10779 propagate_entity_cfs_rq(se);
10780 }
10781
10782 static void detach_task_cfs_rq(struct task_struct *p)
10783 {
10784 struct sched_entity *se = &p->se;
10785 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10786
10787 if (!vruntime_normalized(p)) {
10788 /*
10789 * Fix up our vruntime so that the current sleep doesn't
10790 * cause 'unlimited' sleep bonus.
10791 */
10792 place_entity(cfs_rq, se, 0);
10793 se->vruntime -= cfs_rq->min_vruntime;
10794 }
10795
10796 detach_entity_cfs_rq(se);
10797 }
10798
10799 static void attach_task_cfs_rq(struct task_struct *p)
10800 {
10801 struct sched_entity *se = &p->se;
10802 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10803
10804 attach_entity_cfs_rq(se);
10805
10806 if (!vruntime_normalized(p))
10807 se->vruntime += cfs_rq->min_vruntime;
10808 }
10809
10810 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10811 {
10812 detach_task_cfs_rq(p);
10813 }
10814
10815 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10816 {
10817 attach_task_cfs_rq(p);
10818
10819 if (task_on_rq_queued(p)) {
10820 /*
10821 * We were most likely switched from sched_rt, so
10822 * kick off the schedule if running, otherwise just see
10823 * if we can still preempt the current task.
10824 */
10825 if (rq->curr == p)
10826 resched_curr(rq);
10827 else
10828 check_preempt_curr(rq, p, 0);
10829 }
10830 }
10831
10832 /* Account for a task changing its policy or group.
10833 *
10834 * This routine is mostly called to set cfs_rq->curr field when a task
10835 * migrates between groups/classes.
10836 */
10837 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
10838 {
10839 struct sched_entity *se = &p->se;
10840
10841 #ifdef CONFIG_SMP
10842 if (task_on_rq_queued(p)) {
10843 /*
10844 * Move the next running task to the front of the list, so our
10845 * cfs_tasks list becomes MRU one.
10846 */
10847 list_move(&se->group_node, &rq->cfs_tasks);
10848 }
10849 #endif
10850
10851 for_each_sched_entity(se) {
10852 struct cfs_rq *cfs_rq = cfs_rq_of(se);
10853
10854 set_next_entity(cfs_rq, se);
10855 /* ensure bandwidth has been allocated on our new cfs_rq */
10856 account_cfs_rq_runtime(cfs_rq, 0);
10857 }
10858 }
10859
10860 void init_cfs_rq(struct cfs_rq *cfs_rq)
10861 {
10862 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10863 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10864 #ifndef CONFIG_64BIT
10865 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10866 #endif
10867 #ifdef CONFIG_SMP
10868 raw_spin_lock_init(&cfs_rq->removed.lock);
10869 #endif
10870 }
10871
10872 #ifdef CONFIG_FAIR_GROUP_SCHED
10873 static void task_set_group_fair(struct task_struct *p)
10874 {
10875 struct sched_entity *se = &p->se;
10876
10877 set_task_rq(p, task_cpu(p));
10878 se->depth = se->parent ? se->parent->depth + 1 : 0;
10879 }
10880
10881 static void task_move_group_fair(struct task_struct *p)
10882 {
10883 detach_task_cfs_rq(p);
10884 set_task_rq(p, task_cpu(p));
10885
10886 #ifdef CONFIG_SMP
10887 /* Tell se's cfs_rq has been changed -- migrated */
10888 p->se.avg.last_update_time = 0;
10889 #endif
10890 attach_task_cfs_rq(p);
10891 }
10892
10893 static void task_change_group_fair(struct task_struct *p, int type)
10894 {
10895 switch (type) {
10896 case TASK_SET_GROUP:
10897 task_set_group_fair(p);
10898 break;
10899
10900 case TASK_MOVE_GROUP:
10901 task_move_group_fair(p);
10902 break;
10903 }
10904 }
10905
10906 void free_fair_sched_group(struct task_group *tg)
10907 {
10908 int i;
10909
10910 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10911
10912 for_each_possible_cpu(i) {
10913 if (tg->cfs_rq)
10914 kfree(tg->cfs_rq[i]);
10915 if (tg->se)
10916 kfree(tg->se[i]);
10917 }
10918
10919 kfree(tg->cfs_rq);
10920 kfree(tg->se);
10921 }
10922
10923 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10924 {
10925 struct sched_entity *se;
10926 struct cfs_rq *cfs_rq;
10927 int i;
10928
10929 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10930 if (!tg->cfs_rq)
10931 goto err;
10932 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10933 if (!tg->se)
10934 goto err;
10935
10936 tg->shares = NICE_0_LOAD;
10937
10938 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10939
10940 for_each_possible_cpu(i) {
10941 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10942 GFP_KERNEL, cpu_to_node(i));
10943 if (!cfs_rq)
10944 goto err;
10945
10946 se = kzalloc_node(sizeof(struct sched_entity),
10947 GFP_KERNEL, cpu_to_node(i));
10948 if (!se)
10949 goto err_free_rq;
10950
10951 init_cfs_rq(cfs_rq);
10952 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10953 init_entity_runnable_average(se);
10954 }
10955
10956 return 1;
10957
10958 err_free_rq:
10959 kfree(cfs_rq);
10960 err:
10961 return 0;
10962 }
10963
10964 void online_fair_sched_group(struct task_group *tg)
10965 {
10966 struct sched_entity *se;
10967 struct rq_flags rf;
10968 struct rq *rq;
10969 int i;
10970
10971 for_each_possible_cpu(i) {
10972 rq = cpu_rq(i);
10973 se = tg->se[i];
10974 rq_lock_irq(rq, &rf);
10975 update_rq_clock(rq);
10976 attach_entity_cfs_rq(se);
10977 sync_throttle(tg, i);
10978 rq_unlock_irq(rq, &rf);
10979 }
10980 }
10981
10982 void unregister_fair_sched_group(struct task_group *tg)
10983 {
10984 unsigned long flags;
10985 struct rq *rq;
10986 int cpu;
10987
10988 for_each_possible_cpu(cpu) {
10989 if (tg->se[cpu])
10990 remove_entity_load_avg(tg->se[cpu]);
10991
10992 /*
10993 * Only empty task groups can be destroyed; so we can speculatively
10994 * check on_list without danger of it being re-added.
10995 */
10996 if (!tg->cfs_rq[cpu]->on_list)
10997 continue;
10998
10999 rq = cpu_rq(cpu);
11000
11001 raw_spin_lock_irqsave(&rq->lock, flags);
11002 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11003 raw_spin_unlock_irqrestore(&rq->lock, flags);
11004 }
11005 }
11006
11007 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11008 struct sched_entity *se, int cpu,
11009 struct sched_entity *parent)
11010 {
11011 struct rq *rq = cpu_rq(cpu);
11012
11013 cfs_rq->tg = tg;
11014 cfs_rq->rq = rq;
11015 init_cfs_rq_runtime(cfs_rq);
11016
11017 tg->cfs_rq[cpu] = cfs_rq;
11018 tg->se[cpu] = se;
11019
11020 /* se could be NULL for root_task_group */
11021 if (!se)
11022 return;
11023
11024 if (!parent) {
11025 se->cfs_rq = &rq->cfs;
11026 se->depth = 0;
11027 } else {
11028 se->cfs_rq = parent->my_q;
11029 se->depth = parent->depth + 1;
11030 }
11031
11032 se->my_q = cfs_rq;
11033 /* guarantee group entities always have weight */
11034 update_load_set(&se->load, NICE_0_LOAD);
11035 se->parent = parent;
11036 }
11037
11038 static DEFINE_MUTEX(shares_mutex);
11039
11040 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11041 {
11042 int i;
11043
11044 /*
11045 * We can't change the weight of the root cgroup.
11046 */
11047 if (!tg->se[0])
11048 return -EINVAL;
11049
11050 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11051
11052 mutex_lock(&shares_mutex);
11053 if (tg->shares == shares)
11054 goto done;
11055
11056 tg->shares = shares;
11057 for_each_possible_cpu(i) {
11058 struct rq *rq = cpu_rq(i);
11059 struct sched_entity *se = tg->se[i];
11060 struct rq_flags rf;
11061
11062 /* Propagate contribution to hierarchy */
11063 rq_lock_irqsave(rq, &rf);
11064 update_rq_clock(rq);
11065 for_each_sched_entity(se) {
11066 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11067 update_cfs_group(se);
11068 }
11069 rq_unlock_irqrestore(rq, &rf);
11070 }
11071
11072 done:
11073 mutex_unlock(&shares_mutex);
11074 return 0;
11075 }
11076 #else /* CONFIG_FAIR_GROUP_SCHED */
11077
11078 void free_fair_sched_group(struct task_group *tg) { }
11079
11080 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11081 {
11082 return 1;
11083 }
11084
11085 void online_fair_sched_group(struct task_group *tg) { }
11086
11087 void unregister_fair_sched_group(struct task_group *tg) { }
11088
11089 #endif /* CONFIG_FAIR_GROUP_SCHED */
11090
11091
11092 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11093 {
11094 struct sched_entity *se = &task->se;
11095 unsigned int rr_interval = 0;
11096
11097 /*
11098 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11099 * idle runqueue:
11100 */
11101 if (rq->cfs.load.weight)
11102 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11103
11104 return rr_interval;
11105 }
11106
11107 /*
11108 * All the scheduling class methods:
11109 */
11110 const struct sched_class fair_sched_class = {
11111 .next = &idle_sched_class,
11112 .enqueue_task = enqueue_task_fair,
11113 .dequeue_task = dequeue_task_fair,
11114 .yield_task = yield_task_fair,
11115 .yield_to_task = yield_to_task_fair,
11116
11117 .check_preempt_curr = check_preempt_wakeup,
11118
11119 .pick_next_task = __pick_next_task_fair,
11120 .put_prev_task = put_prev_task_fair,
11121 .set_next_task = set_next_task_fair,
11122
11123 #ifdef CONFIG_SMP
11124 .balance = balance_fair,
11125 .select_task_rq = select_task_rq_fair,
11126 .migrate_task_rq = migrate_task_rq_fair,
11127
11128 .rq_online = rq_online_fair,
11129 .rq_offline = rq_offline_fair,
11130
11131 .task_dead = task_dead_fair,
11132 .set_cpus_allowed = set_cpus_allowed_common,
11133 #endif
11134
11135 .task_tick = task_tick_fair,
11136 .task_fork = task_fork_fair,
11137
11138 .prio_changed = prio_changed_fair,
11139 .switched_from = switched_from_fair,
11140 .switched_to = switched_to_fair,
11141
11142 .get_rr_interval = get_rr_interval_fair,
11143
11144 .update_curr = update_curr_fair,
11145
11146 #ifdef CONFIG_FAIR_GROUP_SCHED
11147 .task_change_group = task_change_group_fair,
11148 #endif
11149
11150 #ifdef CONFIG_UCLAMP_TASK
11151 .uclamp_enabled = 1,
11152 #endif
11153 };
11154
11155 #ifdef CONFIG_SCHED_DEBUG
11156 void print_cfs_stats(struct seq_file *m, int cpu)
11157 {
11158 struct cfs_rq *cfs_rq, *pos;
11159
11160 rcu_read_lock();
11161 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11162 print_cfs_rq(m, cpu, cfs_rq);
11163 rcu_read_unlock();
11164 }
11165
11166 #ifdef CONFIG_NUMA_BALANCING
11167 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11168 {
11169 int node;
11170 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11171 struct numa_group *ng;
11172
11173 rcu_read_lock();
11174 ng = rcu_dereference(p->numa_group);
11175 for_each_online_node(node) {
11176 if (p->numa_faults) {
11177 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11178 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11179 }
11180 if (ng) {
11181 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11182 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11183 }
11184 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11185 }
11186 rcu_read_unlock();
11187 }
11188 #endif /* CONFIG_NUMA_BALANCING */
11189 #endif /* CONFIG_SCHED_DEBUG */
11190
11191 __init void init_sched_fair_class(void)
11192 {
11193 #ifdef CONFIG_SMP
11194 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11195
11196 #ifdef CONFIG_NO_HZ_COMMON
11197 nohz.next_balance = jiffies;
11198 nohz.next_blocked = jiffies;
11199 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11200 #endif
11201 #endif /* SMP */
11202
11203 }
11204
11205 /*
11206 * Helper functions to facilitate extracting info from tracepoints.
11207 */
11208
11209 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
11210 {
11211 #ifdef CONFIG_SMP
11212 return cfs_rq ? &cfs_rq->avg : NULL;
11213 #else
11214 return NULL;
11215 #endif
11216 }
11217 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
11218
11219 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
11220 {
11221 if (!cfs_rq) {
11222 if (str)
11223 strlcpy(str, "(null)", len);
11224 else
11225 return NULL;
11226 }
11227
11228 cfs_rq_tg_path(cfs_rq, str, len);
11229 return str;
11230 }
11231 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
11232
11233 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
11234 {
11235 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
11236 }
11237 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
11238
11239 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
11240 {
11241 #ifdef CONFIG_SMP
11242 return rq ? &rq->avg_rt : NULL;
11243 #else
11244 return NULL;
11245 #endif
11246 }
11247 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
11248
11249 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
11250 {
11251 #ifdef CONFIG_SMP
11252 return rq ? &rq->avg_dl : NULL;
11253 #else
11254 return NULL;
11255 #endif
11256 }
11257 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
11258
11259 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
11260 {
11261 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
11262 return rq ? &rq->avg_irq : NULL;
11263 #else
11264 return NULL;
11265 #endif
11266 }
11267 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
11268
11269 int sched_trace_rq_cpu(struct rq *rq)
11270 {
11271 return rq ? cpu_of(rq) : -1;
11272 }
11273 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
11274
11275 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
11276 {
11277 #ifdef CONFIG_SMP
11278 return rd ? rd->span : NULL;
11279 #else
11280 return NULL;
11281 #endif
11282 }
11283 EXPORT_SYMBOL_GPL(sched_trace_rd_span);