]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched/fair.c
sched/fair: Disable runtime_enabled on dying rq
[mirror_ubuntu-bionic-kernel.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 lw->weight += inc;
119 lw->inv_weight = 0;
120 }
121
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126 }
127
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 lw->weight = w;
131 lw->inv_weight = 0;
132 }
133
134 /*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143 static int get_update_sysctl_factor(void)
144 {
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162 }
163
164 static void update_sysctl(void)
165 {
166 unsigned int factor = get_update_sysctl_factor();
167
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175
176 void sched_init_granularity(void)
177 {
178 update_sysctl();
179 }
180
181 #define WMULT_CONST (~0U)
182 #define WMULT_SHIFT 32
183
184 static void __update_inv_weight(struct load_weight *lw)
185 {
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199 }
200
201 /*
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212 */
213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214 {
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
217
218 __update_inv_weight(lw);
219
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
225 }
226
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
229
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
234
235 return mul_u64_u32_shr(delta_exec, fact, shift);
236 }
237
238
239 const struct sched_class fair_sched_class;
240
241 /**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
245 #ifdef CONFIG_FAIR_GROUP_SCHED
246
247 /* cpu runqueue to which this cfs_rq is attached */
248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249 {
250 return cfs_rq->rq;
251 }
252
253 /* An entity is a task if it doesn't "own" a runqueue */
254 #define entity_is_task(se) (!se->my_q)
255
256 static inline struct task_struct *task_of(struct sched_entity *se)
257 {
258 #ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260 #endif
261 return container_of(se, struct task_struct, se);
262 }
263
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269 {
270 return p->se.cfs_rq;
271 }
272
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275 {
276 return se->cfs_rq;
277 }
278
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281 {
282 return grp->my_q;
283 }
284
285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
287
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289 {
290 if (!cfs_rq->on_list) {
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
304 }
305
306 cfs_rq->on_list = 1;
307 /* We should have no load, but we need to update last_decay. */
308 update_cfs_rq_blocked_load(cfs_rq, 0);
309 }
310 }
311
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313 {
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318 }
319
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324 /* Do the two (enqueued) entities belong to the same group ? */
325 static inline struct cfs_rq *
326 is_same_group(struct sched_entity *se, struct sched_entity *pse)
327 {
328 if (se->cfs_rq == pse->cfs_rq)
329 return se->cfs_rq;
330
331 return NULL;
332 }
333
334 static inline struct sched_entity *parent_entity(struct sched_entity *se)
335 {
336 return se->parent;
337 }
338
339 static void
340 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341 {
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369 }
370
371 #else /* !CONFIG_FAIR_GROUP_SCHED */
372
373 static inline struct task_struct *task_of(struct sched_entity *se)
374 {
375 return container_of(se, struct task_struct, se);
376 }
377
378 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379 {
380 return container_of(cfs_rq, struct rq, cfs);
381 }
382
383 #define entity_is_task(se) 1
384
385 #define for_each_sched_entity(se) \
386 for (; se; se = NULL)
387
388 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
389 {
390 return &task_rq(p)->cfs;
391 }
392
393 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394 {
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399 }
400
401 /* runqueue "owned" by this group */
402 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403 {
404 return NULL;
405 }
406
407 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410
411 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412 {
413 }
414
415 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
418 static inline struct sched_entity *parent_entity(struct sched_entity *se)
419 {
420 return NULL;
421 }
422
423 static inline void
424 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425 {
426 }
427
428 #endif /* CONFIG_FAIR_GROUP_SCHED */
429
430 static __always_inline
431 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
432
433 /**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
437 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
438 {
439 s64 delta = (s64)(vruntime - max_vruntime);
440 if (delta > 0)
441 max_vruntime = vruntime;
442
443 return max_vruntime;
444 }
445
446 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
447 {
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453 }
454
455 static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457 {
458 return (s64)(a->vruntime - b->vruntime) < 0;
459 }
460
461 static void update_min_vruntime(struct cfs_rq *cfs_rq)
462 {
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
473 if (!cfs_rq->curr)
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
479 /* ensure we never gain time by being placed backwards. */
480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
481 #ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484 #endif
485 }
486
487 /*
488 * Enqueue an entity into the rb-tree:
489 */
490 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
491 {
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
507 if (entity_before(se, entry)) {
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
519 if (leftmost)
520 cfs_rq->rb_leftmost = &se->run_node;
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
524 }
525
526 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
527 {
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
533 }
534
535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
536 }
537
538 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
539 {
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
546 }
547
548 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549 {
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556 }
557
558 #ifdef CONFIG_SCHED_DEBUG
559 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
560 {
561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
562
563 if (!last)
564 return NULL;
565
566 return rb_entry(last, struct sched_entity, run_node);
567 }
568
569 /**************************************************************
570 * Scheduling class statistics methods:
571 */
572
573 int sched_proc_update_handler(struct ctl_table *table, int write,
574 void __user *buffer, size_t *lenp,
575 loff_t *ppos)
576 {
577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
578 int factor = get_update_sysctl_factor();
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
586 #define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
591 #undef WRT_SYSCTL
592
593 return 0;
594 }
595 #endif
596
597 /*
598 * delta /= w
599 */
600 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
601 {
602 if (unlikely(se->load.weight != NICE_0_LOAD))
603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
604
605 return delta;
606 }
607
608 /*
609 * The idea is to set a period in which each task runs once.
610 *
611 * When there are too many tasks (sched_nr_latency) we have to stretch
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
616 static u64 __sched_period(unsigned long nr_running)
617 {
618 u64 period = sysctl_sched_latency;
619 unsigned long nr_latency = sched_nr_latency;
620
621 if (unlikely(nr_running > nr_latency)) {
622 period = sysctl_sched_min_granularity;
623 period *= nr_running;
624 }
625
626 return period;
627 }
628
629 /*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
633 * s = p*P[w/rw]
634 */
635 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
636 {
637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
638
639 for_each_sched_entity(se) {
640 struct load_weight *load;
641 struct load_weight lw;
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
645
646 if (unlikely(!se->on_rq)) {
647 lw = cfs_rq->load;
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
652 slice = __calc_delta(slice, se->load.weight, load);
653 }
654 return slice;
655 }
656
657 /*
658 * We calculate the vruntime slice of a to-be-inserted task.
659 *
660 * vs = s/w
661 */
662 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
663 {
664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
665 }
666
667 #ifdef CONFIG_SMP
668 static unsigned long task_h_load(struct task_struct *p);
669
670 static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672 /* Give new task start runnable values to heavy its load in infant time */
673 void init_task_runnable_average(struct task_struct *p)
674 {
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682 }
683 #else
684 void init_task_runnable_average(struct task_struct *p)
685 {
686 }
687 #endif
688
689 /*
690 * Update the current task's runtime statistics.
691 */
692 static void update_curr(struct cfs_rq *cfs_rq)
693 {
694 struct sched_entity *curr = cfs_rq->curr;
695 u64 now = rq_clock_task(rq_of(cfs_rq));
696 u64 delta_exec;
697
698 if (unlikely(!curr))
699 return;
700
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
703 return;
704
705 curr->exec_start = now;
706
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
720 cpuacct_charge(curtask, delta_exec);
721 account_group_exec_runtime(curtask, delta_exec);
722 }
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
725 }
726
727 static inline void
728 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
729 {
730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
731 }
732
733 /*
734 * Task is being enqueued - update stats:
735 */
736 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
742 if (se != cfs_rq->curr)
743 update_stats_wait_start(cfs_rq, se);
744 }
745
746 static void
747 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
748 {
749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
754 #ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
758 }
759 #endif
760 schedstat_set(se->statistics.wait_start, 0);
761 }
762
763 static inline void
764 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
765 {
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
770 if (se != cfs_rq->curr)
771 update_stats_wait_end(cfs_rq, se);
772 }
773
774 /*
775 * We are picking a new current task - update its stats:
776 */
777 static inline void
778 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 {
780 /*
781 * We are starting a new run period:
782 */
783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
784 }
785
786 /**************************************************
787 * Scheduling class queueing methods:
788 */
789
790 #ifdef CONFIG_NUMA_BALANCING
791 /*
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
795 */
796 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
798
799 /* Portion of address space to scan in MB */
800 unsigned int sysctl_numa_balancing_scan_size = 256;
801
802 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803 unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
805 static unsigned int task_nr_scan_windows(struct task_struct *p)
806 {
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822 }
823
824 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825 #define MAX_SCAN_WINDOW 2560
826
827 static unsigned int task_scan_min(struct task_struct *p)
828 {
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838 }
839
840 static unsigned int task_scan_max(struct task_struct *p)
841 {
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848 }
849
850 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851 {
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854 }
855
856 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857 {
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860 }
861
862 struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
867 pid_t gid;
868 struct list_head task_list;
869
870 struct rcu_head rcu;
871 nodemask_t active_nodes;
872 unsigned long total_faults;
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
878 unsigned long *faults_cpu;
879 unsigned long faults[0];
880 };
881
882 /* Shared or private faults. */
883 #define NR_NUMA_HINT_FAULT_TYPES 2
884
885 /* Memory and CPU locality */
886 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888 /* Averaged statistics, and temporary buffers. */
889 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
891 pid_t task_numa_group_id(struct task_struct *p)
892 {
893 return p->numa_group ? p->numa_group->gid : 0;
894 }
895
896 static inline int task_faults_idx(int nid, int priv)
897 {
898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
899 }
900
901 static inline unsigned long task_faults(struct task_struct *p, int nid)
902 {
903 if (!p->numa_faults_memory)
904 return 0;
905
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
908 }
909
910 static inline unsigned long group_faults(struct task_struct *p, int nid)
911 {
912 if (!p->numa_group)
913 return 0;
914
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
917 }
918
919 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920 {
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923 }
924
925 /*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931 static inline unsigned long task_weight(struct task_struct *p, int nid)
932 {
933 unsigned long total_faults;
934
935 if (!p->numa_faults_memory)
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944 }
945
946 static inline unsigned long group_weight(struct task_struct *p, int nid)
947 {
948 if (!p->numa_group || !p->numa_group->total_faults)
949 return 0;
950
951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
952 }
953
954 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956 {
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015 }
1016
1017 static unsigned long weighted_cpuload(const int cpu);
1018 static unsigned long source_load(int cpu, int type);
1019 static unsigned long target_load(int cpu, int type);
1020 static unsigned long capacity_of(int cpu);
1021 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
1023 /* Cached statistics for all CPUs within a node */
1024 struct numa_stats {
1025 unsigned long nr_running;
1026 unsigned long load;
1027
1028 /* Total compute capacity of CPUs on a node */
1029 unsigned long compute_capacity;
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
1032 unsigned long task_capacity;
1033 int has_free_capacity;
1034 };
1035
1036 /*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039 static void update_numa_stats(struct numa_stats *ns, int nid)
1040 {
1041 int cpu, cpus = 0;
1042
1043 memset(ns, 0, sizeof(*ns));
1044 for_each_cpu(cpu, cpumask_of_node(nid)) {
1045 struct rq *rq = cpu_rq(cpu);
1046
1047 ns->nr_running += rq->nr_running;
1048 ns->load += weighted_cpuload(cpu);
1049 ns->compute_capacity += capacity_of(cpu);
1050
1051 cpus++;
1052 }
1053
1054 /*
1055 * If we raced with hotplug and there are no CPUs left in our mask
1056 * the @ns structure is NULL'ed and task_numa_compare() will
1057 * not find this node attractive.
1058 *
1059 * We'll either bail at !has_free_capacity, or we'll detect a huge
1060 * imbalance and bail there.
1061 */
1062 if (!cpus)
1063 return;
1064
1065 ns->task_capacity =
1066 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE);
1067 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1068 }
1069
1070 struct task_numa_env {
1071 struct task_struct *p;
1072
1073 int src_cpu, src_nid;
1074 int dst_cpu, dst_nid;
1075
1076 struct numa_stats src_stats, dst_stats;
1077
1078 int imbalance_pct;
1079
1080 struct task_struct *best_task;
1081 long best_imp;
1082 int best_cpu;
1083 };
1084
1085 static void task_numa_assign(struct task_numa_env *env,
1086 struct task_struct *p, long imp)
1087 {
1088 if (env->best_task)
1089 put_task_struct(env->best_task);
1090 if (p)
1091 get_task_struct(p);
1092
1093 env->best_task = p;
1094 env->best_imp = imp;
1095 env->best_cpu = env->dst_cpu;
1096 }
1097
1098 static bool load_too_imbalanced(long src_load, long dst_load,
1099 struct task_numa_env *env)
1100 {
1101 long imb, old_imb;
1102 long orig_src_load, orig_dst_load;
1103 long src_capacity, dst_capacity;
1104
1105 /*
1106 * The load is corrected for the CPU capacity available on each node.
1107 *
1108 * src_load dst_load
1109 * ------------ vs ---------
1110 * src_capacity dst_capacity
1111 */
1112 src_capacity = env->src_stats.compute_capacity;
1113 dst_capacity = env->dst_stats.compute_capacity;
1114
1115 /* We care about the slope of the imbalance, not the direction. */
1116 if (dst_load < src_load)
1117 swap(dst_load, src_load);
1118
1119 /* Is the difference below the threshold? */
1120 imb = dst_load * src_capacity * 100 -
1121 src_load * dst_capacity * env->imbalance_pct;
1122 if (imb <= 0)
1123 return false;
1124
1125 /*
1126 * The imbalance is above the allowed threshold.
1127 * Compare it with the old imbalance.
1128 */
1129 orig_src_load = env->src_stats.load;
1130 orig_dst_load = env->dst_stats.load;
1131
1132 if (orig_dst_load < orig_src_load)
1133 swap(orig_dst_load, orig_src_load);
1134
1135 old_imb = orig_dst_load * src_capacity * 100 -
1136 orig_src_load * dst_capacity * env->imbalance_pct;
1137
1138 /* Would this change make things worse? */
1139 return (imb > old_imb);
1140 }
1141
1142 /*
1143 * This checks if the overall compute and NUMA accesses of the system would
1144 * be improved if the source tasks was migrated to the target dst_cpu taking
1145 * into account that it might be best if task running on the dst_cpu should
1146 * be exchanged with the source task
1147 */
1148 static void task_numa_compare(struct task_numa_env *env,
1149 long taskimp, long groupimp)
1150 {
1151 struct rq *src_rq = cpu_rq(env->src_cpu);
1152 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1153 struct task_struct *cur;
1154 struct task_group *tg;
1155 long src_load, dst_load;
1156 long load;
1157 long imp = env->p->numa_group ? groupimp : taskimp;
1158 long moveimp = imp;
1159
1160 rcu_read_lock();
1161 cur = ACCESS_ONCE(dst_rq->curr);
1162 if (cur->pid == 0) /* idle */
1163 cur = NULL;
1164
1165 /*
1166 * "imp" is the fault differential for the source task between the
1167 * source and destination node. Calculate the total differential for
1168 * the source task and potential destination task. The more negative
1169 * the value is, the more rmeote accesses that would be expected to
1170 * be incurred if the tasks were swapped.
1171 */
1172 if (cur) {
1173 /* Skip this swap candidate if cannot move to the source cpu */
1174 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1175 goto unlock;
1176
1177 /*
1178 * If dst and source tasks are in the same NUMA group, or not
1179 * in any group then look only at task weights.
1180 */
1181 if (cur->numa_group == env->p->numa_group) {
1182 imp = taskimp + task_weight(cur, env->src_nid) -
1183 task_weight(cur, env->dst_nid);
1184 /*
1185 * Add some hysteresis to prevent swapping the
1186 * tasks within a group over tiny differences.
1187 */
1188 if (cur->numa_group)
1189 imp -= imp/16;
1190 } else {
1191 /*
1192 * Compare the group weights. If a task is all by
1193 * itself (not part of a group), use the task weight
1194 * instead.
1195 */
1196 if (cur->numa_group)
1197 imp += group_weight(cur, env->src_nid) -
1198 group_weight(cur, env->dst_nid);
1199 else
1200 imp += task_weight(cur, env->src_nid) -
1201 task_weight(cur, env->dst_nid);
1202 }
1203 }
1204
1205 if (imp <= env->best_imp && moveimp <= env->best_imp)
1206 goto unlock;
1207
1208 if (!cur) {
1209 /* Is there capacity at our destination? */
1210 if (env->src_stats.has_free_capacity &&
1211 !env->dst_stats.has_free_capacity)
1212 goto unlock;
1213
1214 goto balance;
1215 }
1216
1217 /* Balance doesn't matter much if we're running a task per cpu */
1218 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1219 dst_rq->nr_running == 1)
1220 goto assign;
1221
1222 /*
1223 * In the overloaded case, try and keep the load balanced.
1224 */
1225 balance:
1226 src_load = env->src_stats.load;
1227 dst_load = env->dst_stats.load;
1228
1229 /* Calculate the effect of moving env->p from src to dst. */
1230 load = env->p->se.load.weight;
1231 tg = task_group(env->p);
1232 src_load += effective_load(tg, env->src_cpu, -load, -load);
1233 dst_load += effective_load(tg, env->dst_cpu, load, load);
1234
1235 if (moveimp > imp && moveimp > env->best_imp) {
1236 /*
1237 * If the improvement from just moving env->p direction is
1238 * better than swapping tasks around, check if a move is
1239 * possible. Store a slightly smaller score than moveimp,
1240 * so an actually idle CPU will win.
1241 */
1242 if (!load_too_imbalanced(src_load, dst_load, env)) {
1243 imp = moveimp - 1;
1244 cur = NULL;
1245 goto assign;
1246 }
1247 }
1248
1249 if (imp <= env->best_imp)
1250 goto unlock;
1251
1252 if (cur) {
1253 /* Cur moves in the opposite direction. */
1254 load = cur->se.load.weight;
1255 tg = task_group(cur);
1256 src_load += effective_load(tg, env->src_cpu, load, load);
1257 dst_load += effective_load(tg, env->dst_cpu, -load, -load);
1258 }
1259
1260 if (load_too_imbalanced(src_load, dst_load, env))
1261 goto unlock;
1262
1263 assign:
1264 task_numa_assign(env, cur, imp);
1265 unlock:
1266 rcu_read_unlock();
1267 }
1268
1269 static void task_numa_find_cpu(struct task_numa_env *env,
1270 long taskimp, long groupimp)
1271 {
1272 int cpu;
1273
1274 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1275 /* Skip this CPU if the source task cannot migrate */
1276 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1277 continue;
1278
1279 env->dst_cpu = cpu;
1280 task_numa_compare(env, taskimp, groupimp);
1281 }
1282 }
1283
1284 static int task_numa_migrate(struct task_struct *p)
1285 {
1286 struct task_numa_env env = {
1287 .p = p,
1288
1289 .src_cpu = task_cpu(p),
1290 .src_nid = task_node(p),
1291
1292 .imbalance_pct = 112,
1293
1294 .best_task = NULL,
1295 .best_imp = 0,
1296 .best_cpu = -1
1297 };
1298 struct sched_domain *sd;
1299 unsigned long taskweight, groupweight;
1300 int nid, ret;
1301 long taskimp, groupimp;
1302
1303 /*
1304 * Pick the lowest SD_NUMA domain, as that would have the smallest
1305 * imbalance and would be the first to start moving tasks about.
1306 *
1307 * And we want to avoid any moving of tasks about, as that would create
1308 * random movement of tasks -- counter the numa conditions we're trying
1309 * to satisfy here.
1310 */
1311 rcu_read_lock();
1312 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1313 if (sd)
1314 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1315 rcu_read_unlock();
1316
1317 /*
1318 * Cpusets can break the scheduler domain tree into smaller
1319 * balance domains, some of which do not cross NUMA boundaries.
1320 * Tasks that are "trapped" in such domains cannot be migrated
1321 * elsewhere, so there is no point in (re)trying.
1322 */
1323 if (unlikely(!sd)) {
1324 p->numa_preferred_nid = task_node(p);
1325 return -EINVAL;
1326 }
1327
1328 taskweight = task_weight(p, env.src_nid);
1329 groupweight = group_weight(p, env.src_nid);
1330 update_numa_stats(&env.src_stats, env.src_nid);
1331 env.dst_nid = p->numa_preferred_nid;
1332 taskimp = task_weight(p, env.dst_nid) - taskweight;
1333 groupimp = group_weight(p, env.dst_nid) - groupweight;
1334 update_numa_stats(&env.dst_stats, env.dst_nid);
1335
1336 /* Try to find a spot on the preferred nid. */
1337 task_numa_find_cpu(&env, taskimp, groupimp);
1338
1339 /* No space available on the preferred nid. Look elsewhere. */
1340 if (env.best_cpu == -1) {
1341 for_each_online_node(nid) {
1342 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1343 continue;
1344
1345 /* Only consider nodes where both task and groups benefit */
1346 taskimp = task_weight(p, nid) - taskweight;
1347 groupimp = group_weight(p, nid) - groupweight;
1348 if (taskimp < 0 && groupimp < 0)
1349 continue;
1350
1351 env.dst_nid = nid;
1352 update_numa_stats(&env.dst_stats, env.dst_nid);
1353 task_numa_find_cpu(&env, taskimp, groupimp);
1354 }
1355 }
1356
1357 /*
1358 * If the task is part of a workload that spans multiple NUMA nodes,
1359 * and is migrating into one of the workload's active nodes, remember
1360 * this node as the task's preferred numa node, so the workload can
1361 * settle down.
1362 * A task that migrated to a second choice node will be better off
1363 * trying for a better one later. Do not set the preferred node here.
1364 */
1365 if (p->numa_group) {
1366 if (env.best_cpu == -1)
1367 nid = env.src_nid;
1368 else
1369 nid = env.dst_nid;
1370
1371 if (node_isset(nid, p->numa_group->active_nodes))
1372 sched_setnuma(p, env.dst_nid);
1373 }
1374
1375 /* No better CPU than the current one was found. */
1376 if (env.best_cpu == -1)
1377 return -EAGAIN;
1378
1379 /*
1380 * Reset the scan period if the task is being rescheduled on an
1381 * alternative node to recheck if the tasks is now properly placed.
1382 */
1383 p->numa_scan_period = task_scan_min(p);
1384
1385 if (env.best_task == NULL) {
1386 ret = migrate_task_to(p, env.best_cpu);
1387 if (ret != 0)
1388 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1389 return ret;
1390 }
1391
1392 ret = migrate_swap(p, env.best_task);
1393 if (ret != 0)
1394 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1395 put_task_struct(env.best_task);
1396 return ret;
1397 }
1398
1399 /* Attempt to migrate a task to a CPU on the preferred node. */
1400 static void numa_migrate_preferred(struct task_struct *p)
1401 {
1402 unsigned long interval = HZ;
1403
1404 /* This task has no NUMA fault statistics yet */
1405 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1406 return;
1407
1408 /* Periodically retry migrating the task to the preferred node */
1409 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1410 p->numa_migrate_retry = jiffies + interval;
1411
1412 /* Success if task is already running on preferred CPU */
1413 if (task_node(p) == p->numa_preferred_nid)
1414 return;
1415
1416 /* Otherwise, try migrate to a CPU on the preferred node */
1417 task_numa_migrate(p);
1418 }
1419
1420 /*
1421 * Find the nodes on which the workload is actively running. We do this by
1422 * tracking the nodes from which NUMA hinting faults are triggered. This can
1423 * be different from the set of nodes where the workload's memory is currently
1424 * located.
1425 *
1426 * The bitmask is used to make smarter decisions on when to do NUMA page
1427 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1428 * are added when they cause over 6/16 of the maximum number of faults, but
1429 * only removed when they drop below 3/16.
1430 */
1431 static void update_numa_active_node_mask(struct numa_group *numa_group)
1432 {
1433 unsigned long faults, max_faults = 0;
1434 int nid;
1435
1436 for_each_online_node(nid) {
1437 faults = group_faults_cpu(numa_group, nid);
1438 if (faults > max_faults)
1439 max_faults = faults;
1440 }
1441
1442 for_each_online_node(nid) {
1443 faults = group_faults_cpu(numa_group, nid);
1444 if (!node_isset(nid, numa_group->active_nodes)) {
1445 if (faults > max_faults * 6 / 16)
1446 node_set(nid, numa_group->active_nodes);
1447 } else if (faults < max_faults * 3 / 16)
1448 node_clear(nid, numa_group->active_nodes);
1449 }
1450 }
1451
1452 /*
1453 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1454 * increments. The more local the fault statistics are, the higher the scan
1455 * period will be for the next scan window. If local/(local+remote) ratio is
1456 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1457 * the scan period will decrease. Aim for 70% local accesses.
1458 */
1459 #define NUMA_PERIOD_SLOTS 10
1460 #define NUMA_PERIOD_THRESHOLD 7
1461
1462 /*
1463 * Increase the scan period (slow down scanning) if the majority of
1464 * our memory is already on our local node, or if the majority of
1465 * the page accesses are shared with other processes.
1466 * Otherwise, decrease the scan period.
1467 */
1468 static void update_task_scan_period(struct task_struct *p,
1469 unsigned long shared, unsigned long private)
1470 {
1471 unsigned int period_slot;
1472 int ratio;
1473 int diff;
1474
1475 unsigned long remote = p->numa_faults_locality[0];
1476 unsigned long local = p->numa_faults_locality[1];
1477
1478 /*
1479 * If there were no record hinting faults then either the task is
1480 * completely idle or all activity is areas that are not of interest
1481 * to automatic numa balancing. Scan slower
1482 */
1483 if (local + shared == 0) {
1484 p->numa_scan_period = min(p->numa_scan_period_max,
1485 p->numa_scan_period << 1);
1486
1487 p->mm->numa_next_scan = jiffies +
1488 msecs_to_jiffies(p->numa_scan_period);
1489
1490 return;
1491 }
1492
1493 /*
1494 * Prepare to scale scan period relative to the current period.
1495 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1496 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1497 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1498 */
1499 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1500 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1501 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1502 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1503 if (!slot)
1504 slot = 1;
1505 diff = slot * period_slot;
1506 } else {
1507 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1508
1509 /*
1510 * Scale scan rate increases based on sharing. There is an
1511 * inverse relationship between the degree of sharing and
1512 * the adjustment made to the scanning period. Broadly
1513 * speaking the intent is that there is little point
1514 * scanning faster if shared accesses dominate as it may
1515 * simply bounce migrations uselessly
1516 */
1517 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1518 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1519 }
1520
1521 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1522 task_scan_min(p), task_scan_max(p));
1523 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1524 }
1525
1526 /*
1527 * Get the fraction of time the task has been running since the last
1528 * NUMA placement cycle. The scheduler keeps similar statistics, but
1529 * decays those on a 32ms period, which is orders of magnitude off
1530 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1531 * stats only if the task is so new there are no NUMA statistics yet.
1532 */
1533 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1534 {
1535 u64 runtime, delta, now;
1536 /* Use the start of this time slice to avoid calculations. */
1537 now = p->se.exec_start;
1538 runtime = p->se.sum_exec_runtime;
1539
1540 if (p->last_task_numa_placement) {
1541 delta = runtime - p->last_sum_exec_runtime;
1542 *period = now - p->last_task_numa_placement;
1543 } else {
1544 delta = p->se.avg.runnable_avg_sum;
1545 *period = p->se.avg.runnable_avg_period;
1546 }
1547
1548 p->last_sum_exec_runtime = runtime;
1549 p->last_task_numa_placement = now;
1550
1551 return delta;
1552 }
1553
1554 static void task_numa_placement(struct task_struct *p)
1555 {
1556 int seq, nid, max_nid = -1, max_group_nid = -1;
1557 unsigned long max_faults = 0, max_group_faults = 0;
1558 unsigned long fault_types[2] = { 0, 0 };
1559 unsigned long total_faults;
1560 u64 runtime, period;
1561 spinlock_t *group_lock = NULL;
1562
1563 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1564 if (p->numa_scan_seq == seq)
1565 return;
1566 p->numa_scan_seq = seq;
1567 p->numa_scan_period_max = task_scan_max(p);
1568
1569 total_faults = p->numa_faults_locality[0] +
1570 p->numa_faults_locality[1];
1571 runtime = numa_get_avg_runtime(p, &period);
1572
1573 /* If the task is part of a group prevent parallel updates to group stats */
1574 if (p->numa_group) {
1575 group_lock = &p->numa_group->lock;
1576 spin_lock_irq(group_lock);
1577 }
1578
1579 /* Find the node with the highest number of faults */
1580 for_each_online_node(nid) {
1581 unsigned long faults = 0, group_faults = 0;
1582 int priv, i;
1583
1584 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1585 long diff, f_diff, f_weight;
1586
1587 i = task_faults_idx(nid, priv);
1588
1589 /* Decay existing window, copy faults since last scan */
1590 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1591 fault_types[priv] += p->numa_faults_buffer_memory[i];
1592 p->numa_faults_buffer_memory[i] = 0;
1593
1594 /*
1595 * Normalize the faults_from, so all tasks in a group
1596 * count according to CPU use, instead of by the raw
1597 * number of faults. Tasks with little runtime have
1598 * little over-all impact on throughput, and thus their
1599 * faults are less important.
1600 */
1601 f_weight = div64_u64(runtime << 16, period + 1);
1602 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1603 (total_faults + 1);
1604 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1605 p->numa_faults_buffer_cpu[i] = 0;
1606
1607 p->numa_faults_memory[i] += diff;
1608 p->numa_faults_cpu[i] += f_diff;
1609 faults += p->numa_faults_memory[i];
1610 p->total_numa_faults += diff;
1611 if (p->numa_group) {
1612 /* safe because we can only change our own group */
1613 p->numa_group->faults[i] += diff;
1614 p->numa_group->faults_cpu[i] += f_diff;
1615 p->numa_group->total_faults += diff;
1616 group_faults += p->numa_group->faults[i];
1617 }
1618 }
1619
1620 if (faults > max_faults) {
1621 max_faults = faults;
1622 max_nid = nid;
1623 }
1624
1625 if (group_faults > max_group_faults) {
1626 max_group_faults = group_faults;
1627 max_group_nid = nid;
1628 }
1629 }
1630
1631 update_task_scan_period(p, fault_types[0], fault_types[1]);
1632
1633 if (p->numa_group) {
1634 update_numa_active_node_mask(p->numa_group);
1635 spin_unlock_irq(group_lock);
1636 max_nid = max_group_nid;
1637 }
1638
1639 if (max_faults) {
1640 /* Set the new preferred node */
1641 if (max_nid != p->numa_preferred_nid)
1642 sched_setnuma(p, max_nid);
1643
1644 if (task_node(p) != p->numa_preferred_nid)
1645 numa_migrate_preferred(p);
1646 }
1647 }
1648
1649 static inline int get_numa_group(struct numa_group *grp)
1650 {
1651 return atomic_inc_not_zero(&grp->refcount);
1652 }
1653
1654 static inline void put_numa_group(struct numa_group *grp)
1655 {
1656 if (atomic_dec_and_test(&grp->refcount))
1657 kfree_rcu(grp, rcu);
1658 }
1659
1660 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1661 int *priv)
1662 {
1663 struct numa_group *grp, *my_grp;
1664 struct task_struct *tsk;
1665 bool join = false;
1666 int cpu = cpupid_to_cpu(cpupid);
1667 int i;
1668
1669 if (unlikely(!p->numa_group)) {
1670 unsigned int size = sizeof(struct numa_group) +
1671 4*nr_node_ids*sizeof(unsigned long);
1672
1673 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1674 if (!grp)
1675 return;
1676
1677 atomic_set(&grp->refcount, 1);
1678 spin_lock_init(&grp->lock);
1679 INIT_LIST_HEAD(&grp->task_list);
1680 grp->gid = p->pid;
1681 /* Second half of the array tracks nids where faults happen */
1682 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1683 nr_node_ids;
1684
1685 node_set(task_node(current), grp->active_nodes);
1686
1687 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1688 grp->faults[i] = p->numa_faults_memory[i];
1689
1690 grp->total_faults = p->total_numa_faults;
1691
1692 list_add(&p->numa_entry, &grp->task_list);
1693 grp->nr_tasks++;
1694 rcu_assign_pointer(p->numa_group, grp);
1695 }
1696
1697 rcu_read_lock();
1698 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1699
1700 if (!cpupid_match_pid(tsk, cpupid))
1701 goto no_join;
1702
1703 grp = rcu_dereference(tsk->numa_group);
1704 if (!grp)
1705 goto no_join;
1706
1707 my_grp = p->numa_group;
1708 if (grp == my_grp)
1709 goto no_join;
1710
1711 /*
1712 * Only join the other group if its bigger; if we're the bigger group,
1713 * the other task will join us.
1714 */
1715 if (my_grp->nr_tasks > grp->nr_tasks)
1716 goto no_join;
1717
1718 /*
1719 * Tie-break on the grp address.
1720 */
1721 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1722 goto no_join;
1723
1724 /* Always join threads in the same process. */
1725 if (tsk->mm == current->mm)
1726 join = true;
1727
1728 /* Simple filter to avoid false positives due to PID collisions */
1729 if (flags & TNF_SHARED)
1730 join = true;
1731
1732 /* Update priv based on whether false sharing was detected */
1733 *priv = !join;
1734
1735 if (join && !get_numa_group(grp))
1736 goto no_join;
1737
1738 rcu_read_unlock();
1739
1740 if (!join)
1741 return;
1742
1743 BUG_ON(irqs_disabled());
1744 double_lock_irq(&my_grp->lock, &grp->lock);
1745
1746 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1747 my_grp->faults[i] -= p->numa_faults_memory[i];
1748 grp->faults[i] += p->numa_faults_memory[i];
1749 }
1750 my_grp->total_faults -= p->total_numa_faults;
1751 grp->total_faults += p->total_numa_faults;
1752
1753 list_move(&p->numa_entry, &grp->task_list);
1754 my_grp->nr_tasks--;
1755 grp->nr_tasks++;
1756
1757 spin_unlock(&my_grp->lock);
1758 spin_unlock_irq(&grp->lock);
1759
1760 rcu_assign_pointer(p->numa_group, grp);
1761
1762 put_numa_group(my_grp);
1763 return;
1764
1765 no_join:
1766 rcu_read_unlock();
1767 return;
1768 }
1769
1770 void task_numa_free(struct task_struct *p)
1771 {
1772 struct numa_group *grp = p->numa_group;
1773 void *numa_faults = p->numa_faults_memory;
1774 unsigned long flags;
1775 int i;
1776
1777 if (grp) {
1778 spin_lock_irqsave(&grp->lock, flags);
1779 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1780 grp->faults[i] -= p->numa_faults_memory[i];
1781 grp->total_faults -= p->total_numa_faults;
1782
1783 list_del(&p->numa_entry);
1784 grp->nr_tasks--;
1785 spin_unlock_irqrestore(&grp->lock, flags);
1786 rcu_assign_pointer(p->numa_group, NULL);
1787 put_numa_group(grp);
1788 }
1789
1790 p->numa_faults_memory = NULL;
1791 p->numa_faults_buffer_memory = NULL;
1792 p->numa_faults_cpu= NULL;
1793 p->numa_faults_buffer_cpu = NULL;
1794 kfree(numa_faults);
1795 }
1796
1797 /*
1798 * Got a PROT_NONE fault for a page on @node.
1799 */
1800 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1801 {
1802 struct task_struct *p = current;
1803 bool migrated = flags & TNF_MIGRATED;
1804 int cpu_node = task_node(current);
1805 int local = !!(flags & TNF_FAULT_LOCAL);
1806 int priv;
1807
1808 if (!numabalancing_enabled)
1809 return;
1810
1811 /* for example, ksmd faulting in a user's mm */
1812 if (!p->mm)
1813 return;
1814
1815 /* Do not worry about placement if exiting */
1816 if (p->state == TASK_DEAD)
1817 return;
1818
1819 /* Allocate buffer to track faults on a per-node basis */
1820 if (unlikely(!p->numa_faults_memory)) {
1821 int size = sizeof(*p->numa_faults_memory) *
1822 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1823
1824 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1825 if (!p->numa_faults_memory)
1826 return;
1827
1828 BUG_ON(p->numa_faults_buffer_memory);
1829 /*
1830 * The averaged statistics, shared & private, memory & cpu,
1831 * occupy the first half of the array. The second half of the
1832 * array is for current counters, which are averaged into the
1833 * first set by task_numa_placement.
1834 */
1835 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1836 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1837 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1838 p->total_numa_faults = 0;
1839 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1840 }
1841
1842 /*
1843 * First accesses are treated as private, otherwise consider accesses
1844 * to be private if the accessing pid has not changed
1845 */
1846 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1847 priv = 1;
1848 } else {
1849 priv = cpupid_match_pid(p, last_cpupid);
1850 if (!priv && !(flags & TNF_NO_GROUP))
1851 task_numa_group(p, last_cpupid, flags, &priv);
1852 }
1853
1854 /*
1855 * If a workload spans multiple NUMA nodes, a shared fault that
1856 * occurs wholly within the set of nodes that the workload is
1857 * actively using should be counted as local. This allows the
1858 * scan rate to slow down when a workload has settled down.
1859 */
1860 if (!priv && !local && p->numa_group &&
1861 node_isset(cpu_node, p->numa_group->active_nodes) &&
1862 node_isset(mem_node, p->numa_group->active_nodes))
1863 local = 1;
1864
1865 task_numa_placement(p);
1866
1867 /*
1868 * Retry task to preferred node migration periodically, in case it
1869 * case it previously failed, or the scheduler moved us.
1870 */
1871 if (time_after(jiffies, p->numa_migrate_retry))
1872 numa_migrate_preferred(p);
1873
1874 if (migrated)
1875 p->numa_pages_migrated += pages;
1876
1877 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1878 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1879 p->numa_faults_locality[local] += pages;
1880 }
1881
1882 static void reset_ptenuma_scan(struct task_struct *p)
1883 {
1884 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1885 p->mm->numa_scan_offset = 0;
1886 }
1887
1888 /*
1889 * The expensive part of numa migration is done from task_work context.
1890 * Triggered from task_tick_numa().
1891 */
1892 void task_numa_work(struct callback_head *work)
1893 {
1894 unsigned long migrate, next_scan, now = jiffies;
1895 struct task_struct *p = current;
1896 struct mm_struct *mm = p->mm;
1897 struct vm_area_struct *vma;
1898 unsigned long start, end;
1899 unsigned long nr_pte_updates = 0;
1900 long pages;
1901
1902 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1903
1904 work->next = work; /* protect against double add */
1905 /*
1906 * Who cares about NUMA placement when they're dying.
1907 *
1908 * NOTE: make sure not to dereference p->mm before this check,
1909 * exit_task_work() happens _after_ exit_mm() so we could be called
1910 * without p->mm even though we still had it when we enqueued this
1911 * work.
1912 */
1913 if (p->flags & PF_EXITING)
1914 return;
1915
1916 if (!mm->numa_next_scan) {
1917 mm->numa_next_scan = now +
1918 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1919 }
1920
1921 /*
1922 * Enforce maximal scan/migration frequency..
1923 */
1924 migrate = mm->numa_next_scan;
1925 if (time_before(now, migrate))
1926 return;
1927
1928 if (p->numa_scan_period == 0) {
1929 p->numa_scan_period_max = task_scan_max(p);
1930 p->numa_scan_period = task_scan_min(p);
1931 }
1932
1933 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1934 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1935 return;
1936
1937 /*
1938 * Delay this task enough that another task of this mm will likely win
1939 * the next time around.
1940 */
1941 p->node_stamp += 2 * TICK_NSEC;
1942
1943 start = mm->numa_scan_offset;
1944 pages = sysctl_numa_balancing_scan_size;
1945 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1946 if (!pages)
1947 return;
1948
1949 down_read(&mm->mmap_sem);
1950 vma = find_vma(mm, start);
1951 if (!vma) {
1952 reset_ptenuma_scan(p);
1953 start = 0;
1954 vma = mm->mmap;
1955 }
1956 for (; vma; vma = vma->vm_next) {
1957 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1958 continue;
1959
1960 /*
1961 * Shared library pages mapped by multiple processes are not
1962 * migrated as it is expected they are cache replicated. Avoid
1963 * hinting faults in read-only file-backed mappings or the vdso
1964 * as migrating the pages will be of marginal benefit.
1965 */
1966 if (!vma->vm_mm ||
1967 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1968 continue;
1969
1970 /*
1971 * Skip inaccessible VMAs to avoid any confusion between
1972 * PROT_NONE and NUMA hinting ptes
1973 */
1974 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1975 continue;
1976
1977 do {
1978 start = max(start, vma->vm_start);
1979 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1980 end = min(end, vma->vm_end);
1981 nr_pte_updates += change_prot_numa(vma, start, end);
1982
1983 /*
1984 * Scan sysctl_numa_balancing_scan_size but ensure that
1985 * at least one PTE is updated so that unused virtual
1986 * address space is quickly skipped.
1987 */
1988 if (nr_pte_updates)
1989 pages -= (end - start) >> PAGE_SHIFT;
1990
1991 start = end;
1992 if (pages <= 0)
1993 goto out;
1994
1995 cond_resched();
1996 } while (end != vma->vm_end);
1997 }
1998
1999 out:
2000 /*
2001 * It is possible to reach the end of the VMA list but the last few
2002 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2003 * would find the !migratable VMA on the next scan but not reset the
2004 * scanner to the start so check it now.
2005 */
2006 if (vma)
2007 mm->numa_scan_offset = start;
2008 else
2009 reset_ptenuma_scan(p);
2010 up_read(&mm->mmap_sem);
2011 }
2012
2013 /*
2014 * Drive the periodic memory faults..
2015 */
2016 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2017 {
2018 struct callback_head *work = &curr->numa_work;
2019 u64 period, now;
2020
2021 /*
2022 * We don't care about NUMA placement if we don't have memory.
2023 */
2024 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2025 return;
2026
2027 /*
2028 * Using runtime rather than walltime has the dual advantage that
2029 * we (mostly) drive the selection from busy threads and that the
2030 * task needs to have done some actual work before we bother with
2031 * NUMA placement.
2032 */
2033 now = curr->se.sum_exec_runtime;
2034 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2035
2036 if (now - curr->node_stamp > period) {
2037 if (!curr->node_stamp)
2038 curr->numa_scan_period = task_scan_min(curr);
2039 curr->node_stamp += period;
2040
2041 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2042 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2043 task_work_add(curr, work, true);
2044 }
2045 }
2046 }
2047 #else
2048 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2049 {
2050 }
2051
2052 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2053 {
2054 }
2055
2056 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2057 {
2058 }
2059 #endif /* CONFIG_NUMA_BALANCING */
2060
2061 static void
2062 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2063 {
2064 update_load_add(&cfs_rq->load, se->load.weight);
2065 if (!parent_entity(se))
2066 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2067 #ifdef CONFIG_SMP
2068 if (entity_is_task(se)) {
2069 struct rq *rq = rq_of(cfs_rq);
2070
2071 account_numa_enqueue(rq, task_of(se));
2072 list_add(&se->group_node, &rq->cfs_tasks);
2073 }
2074 #endif
2075 cfs_rq->nr_running++;
2076 }
2077
2078 static void
2079 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2080 {
2081 update_load_sub(&cfs_rq->load, se->load.weight);
2082 if (!parent_entity(se))
2083 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2084 if (entity_is_task(se)) {
2085 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2086 list_del_init(&se->group_node);
2087 }
2088 cfs_rq->nr_running--;
2089 }
2090
2091 #ifdef CONFIG_FAIR_GROUP_SCHED
2092 # ifdef CONFIG_SMP
2093 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2094 {
2095 long tg_weight;
2096
2097 /*
2098 * Use this CPU's actual weight instead of the last load_contribution
2099 * to gain a more accurate current total weight. See
2100 * update_cfs_rq_load_contribution().
2101 */
2102 tg_weight = atomic_long_read(&tg->load_avg);
2103 tg_weight -= cfs_rq->tg_load_contrib;
2104 tg_weight += cfs_rq->load.weight;
2105
2106 return tg_weight;
2107 }
2108
2109 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2110 {
2111 long tg_weight, load, shares;
2112
2113 tg_weight = calc_tg_weight(tg, cfs_rq);
2114 load = cfs_rq->load.weight;
2115
2116 shares = (tg->shares * load);
2117 if (tg_weight)
2118 shares /= tg_weight;
2119
2120 if (shares < MIN_SHARES)
2121 shares = MIN_SHARES;
2122 if (shares > tg->shares)
2123 shares = tg->shares;
2124
2125 return shares;
2126 }
2127 # else /* CONFIG_SMP */
2128 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2129 {
2130 return tg->shares;
2131 }
2132 # endif /* CONFIG_SMP */
2133 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2134 unsigned long weight)
2135 {
2136 if (se->on_rq) {
2137 /* commit outstanding execution time */
2138 if (cfs_rq->curr == se)
2139 update_curr(cfs_rq);
2140 account_entity_dequeue(cfs_rq, se);
2141 }
2142
2143 update_load_set(&se->load, weight);
2144
2145 if (se->on_rq)
2146 account_entity_enqueue(cfs_rq, se);
2147 }
2148
2149 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2150
2151 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2152 {
2153 struct task_group *tg;
2154 struct sched_entity *se;
2155 long shares;
2156
2157 tg = cfs_rq->tg;
2158 se = tg->se[cpu_of(rq_of(cfs_rq))];
2159 if (!se || throttled_hierarchy(cfs_rq))
2160 return;
2161 #ifndef CONFIG_SMP
2162 if (likely(se->load.weight == tg->shares))
2163 return;
2164 #endif
2165 shares = calc_cfs_shares(cfs_rq, tg);
2166
2167 reweight_entity(cfs_rq_of(se), se, shares);
2168 }
2169 #else /* CONFIG_FAIR_GROUP_SCHED */
2170 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2171 {
2172 }
2173 #endif /* CONFIG_FAIR_GROUP_SCHED */
2174
2175 #ifdef CONFIG_SMP
2176 /*
2177 * We choose a half-life close to 1 scheduling period.
2178 * Note: The tables below are dependent on this value.
2179 */
2180 #define LOAD_AVG_PERIOD 32
2181 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2182 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2183
2184 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2185 static const u32 runnable_avg_yN_inv[] = {
2186 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2187 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2188 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2189 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2190 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2191 0x85aac367, 0x82cd8698,
2192 };
2193
2194 /*
2195 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2196 * over-estimates when re-combining.
2197 */
2198 static const u32 runnable_avg_yN_sum[] = {
2199 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2200 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2201 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2202 };
2203
2204 /*
2205 * Approximate:
2206 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2207 */
2208 static __always_inline u64 decay_load(u64 val, u64 n)
2209 {
2210 unsigned int local_n;
2211
2212 if (!n)
2213 return val;
2214 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2215 return 0;
2216
2217 /* after bounds checking we can collapse to 32-bit */
2218 local_n = n;
2219
2220 /*
2221 * As y^PERIOD = 1/2, we can combine
2222 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2223 * With a look-up table which covers k^n (n<PERIOD)
2224 *
2225 * To achieve constant time decay_load.
2226 */
2227 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2228 val >>= local_n / LOAD_AVG_PERIOD;
2229 local_n %= LOAD_AVG_PERIOD;
2230 }
2231
2232 val *= runnable_avg_yN_inv[local_n];
2233 /* We don't use SRR here since we always want to round down. */
2234 return val >> 32;
2235 }
2236
2237 /*
2238 * For updates fully spanning n periods, the contribution to runnable
2239 * average will be: \Sum 1024*y^n
2240 *
2241 * We can compute this reasonably efficiently by combining:
2242 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2243 */
2244 static u32 __compute_runnable_contrib(u64 n)
2245 {
2246 u32 contrib = 0;
2247
2248 if (likely(n <= LOAD_AVG_PERIOD))
2249 return runnable_avg_yN_sum[n];
2250 else if (unlikely(n >= LOAD_AVG_MAX_N))
2251 return LOAD_AVG_MAX;
2252
2253 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2254 do {
2255 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2256 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2257
2258 n -= LOAD_AVG_PERIOD;
2259 } while (n > LOAD_AVG_PERIOD);
2260
2261 contrib = decay_load(contrib, n);
2262 return contrib + runnable_avg_yN_sum[n];
2263 }
2264
2265 /*
2266 * We can represent the historical contribution to runnable average as the
2267 * coefficients of a geometric series. To do this we sub-divide our runnable
2268 * history into segments of approximately 1ms (1024us); label the segment that
2269 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2270 *
2271 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2272 * p0 p1 p2
2273 * (now) (~1ms ago) (~2ms ago)
2274 *
2275 * Let u_i denote the fraction of p_i that the entity was runnable.
2276 *
2277 * We then designate the fractions u_i as our co-efficients, yielding the
2278 * following representation of historical load:
2279 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2280 *
2281 * We choose y based on the with of a reasonably scheduling period, fixing:
2282 * y^32 = 0.5
2283 *
2284 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2285 * approximately half as much as the contribution to load within the last ms
2286 * (u_0).
2287 *
2288 * When a period "rolls over" and we have new u_0`, multiplying the previous
2289 * sum again by y is sufficient to update:
2290 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2291 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2292 */
2293 static __always_inline int __update_entity_runnable_avg(u64 now,
2294 struct sched_avg *sa,
2295 int runnable)
2296 {
2297 u64 delta, periods;
2298 u32 runnable_contrib;
2299 int delta_w, decayed = 0;
2300
2301 delta = now - sa->last_runnable_update;
2302 /*
2303 * This should only happen when time goes backwards, which it
2304 * unfortunately does during sched clock init when we swap over to TSC.
2305 */
2306 if ((s64)delta < 0) {
2307 sa->last_runnable_update = now;
2308 return 0;
2309 }
2310
2311 /*
2312 * Use 1024ns as the unit of measurement since it's a reasonable
2313 * approximation of 1us and fast to compute.
2314 */
2315 delta >>= 10;
2316 if (!delta)
2317 return 0;
2318 sa->last_runnable_update = now;
2319
2320 /* delta_w is the amount already accumulated against our next period */
2321 delta_w = sa->runnable_avg_period % 1024;
2322 if (delta + delta_w >= 1024) {
2323 /* period roll-over */
2324 decayed = 1;
2325
2326 /*
2327 * Now that we know we're crossing a period boundary, figure
2328 * out how much from delta we need to complete the current
2329 * period and accrue it.
2330 */
2331 delta_w = 1024 - delta_w;
2332 if (runnable)
2333 sa->runnable_avg_sum += delta_w;
2334 sa->runnable_avg_period += delta_w;
2335
2336 delta -= delta_w;
2337
2338 /* Figure out how many additional periods this update spans */
2339 periods = delta / 1024;
2340 delta %= 1024;
2341
2342 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2343 periods + 1);
2344 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2345 periods + 1);
2346
2347 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2348 runnable_contrib = __compute_runnable_contrib(periods);
2349 if (runnable)
2350 sa->runnable_avg_sum += runnable_contrib;
2351 sa->runnable_avg_period += runnable_contrib;
2352 }
2353
2354 /* Remainder of delta accrued against u_0` */
2355 if (runnable)
2356 sa->runnable_avg_sum += delta;
2357 sa->runnable_avg_period += delta;
2358
2359 return decayed;
2360 }
2361
2362 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2363 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2364 {
2365 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2366 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2367
2368 decays -= se->avg.decay_count;
2369 if (!decays)
2370 return 0;
2371
2372 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2373 se->avg.decay_count = 0;
2374
2375 return decays;
2376 }
2377
2378 #ifdef CONFIG_FAIR_GROUP_SCHED
2379 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2380 int force_update)
2381 {
2382 struct task_group *tg = cfs_rq->tg;
2383 long tg_contrib;
2384
2385 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2386 tg_contrib -= cfs_rq->tg_load_contrib;
2387
2388 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2389 atomic_long_add(tg_contrib, &tg->load_avg);
2390 cfs_rq->tg_load_contrib += tg_contrib;
2391 }
2392 }
2393
2394 /*
2395 * Aggregate cfs_rq runnable averages into an equivalent task_group
2396 * representation for computing load contributions.
2397 */
2398 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2399 struct cfs_rq *cfs_rq)
2400 {
2401 struct task_group *tg = cfs_rq->tg;
2402 long contrib;
2403
2404 /* The fraction of a cpu used by this cfs_rq */
2405 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2406 sa->runnable_avg_period + 1);
2407 contrib -= cfs_rq->tg_runnable_contrib;
2408
2409 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2410 atomic_add(contrib, &tg->runnable_avg);
2411 cfs_rq->tg_runnable_contrib += contrib;
2412 }
2413 }
2414
2415 static inline void __update_group_entity_contrib(struct sched_entity *se)
2416 {
2417 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2418 struct task_group *tg = cfs_rq->tg;
2419 int runnable_avg;
2420
2421 u64 contrib;
2422
2423 contrib = cfs_rq->tg_load_contrib * tg->shares;
2424 se->avg.load_avg_contrib = div_u64(contrib,
2425 atomic_long_read(&tg->load_avg) + 1);
2426
2427 /*
2428 * For group entities we need to compute a correction term in the case
2429 * that they are consuming <1 cpu so that we would contribute the same
2430 * load as a task of equal weight.
2431 *
2432 * Explicitly co-ordinating this measurement would be expensive, but
2433 * fortunately the sum of each cpus contribution forms a usable
2434 * lower-bound on the true value.
2435 *
2436 * Consider the aggregate of 2 contributions. Either they are disjoint
2437 * (and the sum represents true value) or they are disjoint and we are
2438 * understating by the aggregate of their overlap.
2439 *
2440 * Extending this to N cpus, for a given overlap, the maximum amount we
2441 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2442 * cpus that overlap for this interval and w_i is the interval width.
2443 *
2444 * On a small machine; the first term is well-bounded which bounds the
2445 * total error since w_i is a subset of the period. Whereas on a
2446 * larger machine, while this first term can be larger, if w_i is the
2447 * of consequential size guaranteed to see n_i*w_i quickly converge to
2448 * our upper bound of 1-cpu.
2449 */
2450 runnable_avg = atomic_read(&tg->runnable_avg);
2451 if (runnable_avg < NICE_0_LOAD) {
2452 se->avg.load_avg_contrib *= runnable_avg;
2453 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2454 }
2455 }
2456
2457 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2458 {
2459 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2460 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2461 }
2462 #else /* CONFIG_FAIR_GROUP_SCHED */
2463 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2464 int force_update) {}
2465 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2466 struct cfs_rq *cfs_rq) {}
2467 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2468 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2469 #endif /* CONFIG_FAIR_GROUP_SCHED */
2470
2471 static inline void __update_task_entity_contrib(struct sched_entity *se)
2472 {
2473 u32 contrib;
2474
2475 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2476 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2477 contrib /= (se->avg.runnable_avg_period + 1);
2478 se->avg.load_avg_contrib = scale_load(contrib);
2479 }
2480
2481 /* Compute the current contribution to load_avg by se, return any delta */
2482 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2483 {
2484 long old_contrib = se->avg.load_avg_contrib;
2485
2486 if (entity_is_task(se)) {
2487 __update_task_entity_contrib(se);
2488 } else {
2489 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2490 __update_group_entity_contrib(se);
2491 }
2492
2493 return se->avg.load_avg_contrib - old_contrib;
2494 }
2495
2496 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2497 long load_contrib)
2498 {
2499 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2500 cfs_rq->blocked_load_avg -= load_contrib;
2501 else
2502 cfs_rq->blocked_load_avg = 0;
2503 }
2504
2505 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2506
2507 /* Update a sched_entity's runnable average */
2508 static inline void update_entity_load_avg(struct sched_entity *se,
2509 int update_cfs_rq)
2510 {
2511 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2512 long contrib_delta;
2513 u64 now;
2514
2515 /*
2516 * For a group entity we need to use their owned cfs_rq_clock_task() in
2517 * case they are the parent of a throttled hierarchy.
2518 */
2519 if (entity_is_task(se))
2520 now = cfs_rq_clock_task(cfs_rq);
2521 else
2522 now = cfs_rq_clock_task(group_cfs_rq(se));
2523
2524 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2525 return;
2526
2527 contrib_delta = __update_entity_load_avg_contrib(se);
2528
2529 if (!update_cfs_rq)
2530 return;
2531
2532 if (se->on_rq)
2533 cfs_rq->runnable_load_avg += contrib_delta;
2534 else
2535 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2536 }
2537
2538 /*
2539 * Decay the load contributed by all blocked children and account this so that
2540 * their contribution may appropriately discounted when they wake up.
2541 */
2542 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2543 {
2544 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2545 u64 decays;
2546
2547 decays = now - cfs_rq->last_decay;
2548 if (!decays && !force_update)
2549 return;
2550
2551 if (atomic_long_read(&cfs_rq->removed_load)) {
2552 unsigned long removed_load;
2553 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2554 subtract_blocked_load_contrib(cfs_rq, removed_load);
2555 }
2556
2557 if (decays) {
2558 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2559 decays);
2560 atomic64_add(decays, &cfs_rq->decay_counter);
2561 cfs_rq->last_decay = now;
2562 }
2563
2564 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2565 }
2566
2567 /* Add the load generated by se into cfs_rq's child load-average */
2568 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2569 struct sched_entity *se,
2570 int wakeup)
2571 {
2572 /*
2573 * We track migrations using entity decay_count <= 0, on a wake-up
2574 * migration we use a negative decay count to track the remote decays
2575 * accumulated while sleeping.
2576 *
2577 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2578 * are seen by enqueue_entity_load_avg() as a migration with an already
2579 * constructed load_avg_contrib.
2580 */
2581 if (unlikely(se->avg.decay_count <= 0)) {
2582 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2583 if (se->avg.decay_count) {
2584 /*
2585 * In a wake-up migration we have to approximate the
2586 * time sleeping. This is because we can't synchronize
2587 * clock_task between the two cpus, and it is not
2588 * guaranteed to be read-safe. Instead, we can
2589 * approximate this using our carried decays, which are
2590 * explicitly atomically readable.
2591 */
2592 se->avg.last_runnable_update -= (-se->avg.decay_count)
2593 << 20;
2594 update_entity_load_avg(se, 0);
2595 /* Indicate that we're now synchronized and on-rq */
2596 se->avg.decay_count = 0;
2597 }
2598 wakeup = 0;
2599 } else {
2600 __synchronize_entity_decay(se);
2601 }
2602
2603 /* migrated tasks did not contribute to our blocked load */
2604 if (wakeup) {
2605 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2606 update_entity_load_avg(se, 0);
2607 }
2608
2609 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2610 /* we force update consideration on load-balancer moves */
2611 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2612 }
2613
2614 /*
2615 * Remove se's load from this cfs_rq child load-average, if the entity is
2616 * transitioning to a blocked state we track its projected decay using
2617 * blocked_load_avg.
2618 */
2619 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2620 struct sched_entity *se,
2621 int sleep)
2622 {
2623 update_entity_load_avg(se, 1);
2624 /* we force update consideration on load-balancer moves */
2625 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2626
2627 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2628 if (sleep) {
2629 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2630 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2631 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2632 }
2633
2634 /*
2635 * Update the rq's load with the elapsed running time before entering
2636 * idle. if the last scheduled task is not a CFS task, idle_enter will
2637 * be the only way to update the runnable statistic.
2638 */
2639 void idle_enter_fair(struct rq *this_rq)
2640 {
2641 update_rq_runnable_avg(this_rq, 1);
2642 }
2643
2644 /*
2645 * Update the rq's load with the elapsed idle time before a task is
2646 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2647 * be the only way to update the runnable statistic.
2648 */
2649 void idle_exit_fair(struct rq *this_rq)
2650 {
2651 update_rq_runnable_avg(this_rq, 0);
2652 }
2653
2654 static int idle_balance(struct rq *this_rq);
2655
2656 #else /* CONFIG_SMP */
2657
2658 static inline void update_entity_load_avg(struct sched_entity *se,
2659 int update_cfs_rq) {}
2660 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2661 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2662 struct sched_entity *se,
2663 int wakeup) {}
2664 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2665 struct sched_entity *se,
2666 int sleep) {}
2667 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2668 int force_update) {}
2669
2670 static inline int idle_balance(struct rq *rq)
2671 {
2672 return 0;
2673 }
2674
2675 #endif /* CONFIG_SMP */
2676
2677 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2678 {
2679 #ifdef CONFIG_SCHEDSTATS
2680 struct task_struct *tsk = NULL;
2681
2682 if (entity_is_task(se))
2683 tsk = task_of(se);
2684
2685 if (se->statistics.sleep_start) {
2686 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2687
2688 if ((s64)delta < 0)
2689 delta = 0;
2690
2691 if (unlikely(delta > se->statistics.sleep_max))
2692 se->statistics.sleep_max = delta;
2693
2694 se->statistics.sleep_start = 0;
2695 se->statistics.sum_sleep_runtime += delta;
2696
2697 if (tsk) {
2698 account_scheduler_latency(tsk, delta >> 10, 1);
2699 trace_sched_stat_sleep(tsk, delta);
2700 }
2701 }
2702 if (se->statistics.block_start) {
2703 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2704
2705 if ((s64)delta < 0)
2706 delta = 0;
2707
2708 if (unlikely(delta > se->statistics.block_max))
2709 se->statistics.block_max = delta;
2710
2711 se->statistics.block_start = 0;
2712 se->statistics.sum_sleep_runtime += delta;
2713
2714 if (tsk) {
2715 if (tsk->in_iowait) {
2716 se->statistics.iowait_sum += delta;
2717 se->statistics.iowait_count++;
2718 trace_sched_stat_iowait(tsk, delta);
2719 }
2720
2721 trace_sched_stat_blocked(tsk, delta);
2722
2723 /*
2724 * Blocking time is in units of nanosecs, so shift by
2725 * 20 to get a milliseconds-range estimation of the
2726 * amount of time that the task spent sleeping:
2727 */
2728 if (unlikely(prof_on == SLEEP_PROFILING)) {
2729 profile_hits(SLEEP_PROFILING,
2730 (void *)get_wchan(tsk),
2731 delta >> 20);
2732 }
2733 account_scheduler_latency(tsk, delta >> 10, 0);
2734 }
2735 }
2736 #endif
2737 }
2738
2739 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2740 {
2741 #ifdef CONFIG_SCHED_DEBUG
2742 s64 d = se->vruntime - cfs_rq->min_vruntime;
2743
2744 if (d < 0)
2745 d = -d;
2746
2747 if (d > 3*sysctl_sched_latency)
2748 schedstat_inc(cfs_rq, nr_spread_over);
2749 #endif
2750 }
2751
2752 static void
2753 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2754 {
2755 u64 vruntime = cfs_rq->min_vruntime;
2756
2757 /*
2758 * The 'current' period is already promised to the current tasks,
2759 * however the extra weight of the new task will slow them down a
2760 * little, place the new task so that it fits in the slot that
2761 * stays open at the end.
2762 */
2763 if (initial && sched_feat(START_DEBIT))
2764 vruntime += sched_vslice(cfs_rq, se);
2765
2766 /* sleeps up to a single latency don't count. */
2767 if (!initial) {
2768 unsigned long thresh = sysctl_sched_latency;
2769
2770 /*
2771 * Halve their sleep time's effect, to allow
2772 * for a gentler effect of sleepers:
2773 */
2774 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2775 thresh >>= 1;
2776
2777 vruntime -= thresh;
2778 }
2779
2780 /* ensure we never gain time by being placed backwards. */
2781 se->vruntime = max_vruntime(se->vruntime, vruntime);
2782 }
2783
2784 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2785
2786 static void
2787 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2788 {
2789 /*
2790 * Update the normalized vruntime before updating min_vruntime
2791 * through calling update_curr().
2792 */
2793 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2794 se->vruntime += cfs_rq->min_vruntime;
2795
2796 /*
2797 * Update run-time statistics of the 'current'.
2798 */
2799 update_curr(cfs_rq);
2800 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2801 account_entity_enqueue(cfs_rq, se);
2802 update_cfs_shares(cfs_rq);
2803
2804 if (flags & ENQUEUE_WAKEUP) {
2805 place_entity(cfs_rq, se, 0);
2806 enqueue_sleeper(cfs_rq, se);
2807 }
2808
2809 update_stats_enqueue(cfs_rq, se);
2810 check_spread(cfs_rq, se);
2811 if (se != cfs_rq->curr)
2812 __enqueue_entity(cfs_rq, se);
2813 se->on_rq = 1;
2814
2815 if (cfs_rq->nr_running == 1) {
2816 list_add_leaf_cfs_rq(cfs_rq);
2817 check_enqueue_throttle(cfs_rq);
2818 }
2819 }
2820
2821 static void __clear_buddies_last(struct sched_entity *se)
2822 {
2823 for_each_sched_entity(se) {
2824 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2825 if (cfs_rq->last != se)
2826 break;
2827
2828 cfs_rq->last = NULL;
2829 }
2830 }
2831
2832 static void __clear_buddies_next(struct sched_entity *se)
2833 {
2834 for_each_sched_entity(se) {
2835 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2836 if (cfs_rq->next != se)
2837 break;
2838
2839 cfs_rq->next = NULL;
2840 }
2841 }
2842
2843 static void __clear_buddies_skip(struct sched_entity *se)
2844 {
2845 for_each_sched_entity(se) {
2846 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2847 if (cfs_rq->skip != se)
2848 break;
2849
2850 cfs_rq->skip = NULL;
2851 }
2852 }
2853
2854 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2855 {
2856 if (cfs_rq->last == se)
2857 __clear_buddies_last(se);
2858
2859 if (cfs_rq->next == se)
2860 __clear_buddies_next(se);
2861
2862 if (cfs_rq->skip == se)
2863 __clear_buddies_skip(se);
2864 }
2865
2866 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2867
2868 static void
2869 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2870 {
2871 /*
2872 * Update run-time statistics of the 'current'.
2873 */
2874 update_curr(cfs_rq);
2875 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2876
2877 update_stats_dequeue(cfs_rq, se);
2878 if (flags & DEQUEUE_SLEEP) {
2879 #ifdef CONFIG_SCHEDSTATS
2880 if (entity_is_task(se)) {
2881 struct task_struct *tsk = task_of(se);
2882
2883 if (tsk->state & TASK_INTERRUPTIBLE)
2884 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2885 if (tsk->state & TASK_UNINTERRUPTIBLE)
2886 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2887 }
2888 #endif
2889 }
2890
2891 clear_buddies(cfs_rq, se);
2892
2893 if (se != cfs_rq->curr)
2894 __dequeue_entity(cfs_rq, se);
2895 se->on_rq = 0;
2896 account_entity_dequeue(cfs_rq, se);
2897
2898 /*
2899 * Normalize the entity after updating the min_vruntime because the
2900 * update can refer to the ->curr item and we need to reflect this
2901 * movement in our normalized position.
2902 */
2903 if (!(flags & DEQUEUE_SLEEP))
2904 se->vruntime -= cfs_rq->min_vruntime;
2905
2906 /* return excess runtime on last dequeue */
2907 return_cfs_rq_runtime(cfs_rq);
2908
2909 update_min_vruntime(cfs_rq);
2910 update_cfs_shares(cfs_rq);
2911 }
2912
2913 /*
2914 * Preempt the current task with a newly woken task if needed:
2915 */
2916 static void
2917 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2918 {
2919 unsigned long ideal_runtime, delta_exec;
2920 struct sched_entity *se;
2921 s64 delta;
2922
2923 ideal_runtime = sched_slice(cfs_rq, curr);
2924 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2925 if (delta_exec > ideal_runtime) {
2926 resched_task(rq_of(cfs_rq)->curr);
2927 /*
2928 * The current task ran long enough, ensure it doesn't get
2929 * re-elected due to buddy favours.
2930 */
2931 clear_buddies(cfs_rq, curr);
2932 return;
2933 }
2934
2935 /*
2936 * Ensure that a task that missed wakeup preemption by a
2937 * narrow margin doesn't have to wait for a full slice.
2938 * This also mitigates buddy induced latencies under load.
2939 */
2940 if (delta_exec < sysctl_sched_min_granularity)
2941 return;
2942
2943 se = __pick_first_entity(cfs_rq);
2944 delta = curr->vruntime - se->vruntime;
2945
2946 if (delta < 0)
2947 return;
2948
2949 if (delta > ideal_runtime)
2950 resched_task(rq_of(cfs_rq)->curr);
2951 }
2952
2953 static void
2954 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2955 {
2956 /* 'current' is not kept within the tree. */
2957 if (se->on_rq) {
2958 /*
2959 * Any task has to be enqueued before it get to execute on
2960 * a CPU. So account for the time it spent waiting on the
2961 * runqueue.
2962 */
2963 update_stats_wait_end(cfs_rq, se);
2964 __dequeue_entity(cfs_rq, se);
2965 }
2966
2967 update_stats_curr_start(cfs_rq, se);
2968 cfs_rq->curr = se;
2969 #ifdef CONFIG_SCHEDSTATS
2970 /*
2971 * Track our maximum slice length, if the CPU's load is at
2972 * least twice that of our own weight (i.e. dont track it
2973 * when there are only lesser-weight tasks around):
2974 */
2975 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2976 se->statistics.slice_max = max(se->statistics.slice_max,
2977 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2978 }
2979 #endif
2980 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2981 }
2982
2983 static int
2984 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2985
2986 /*
2987 * Pick the next process, keeping these things in mind, in this order:
2988 * 1) keep things fair between processes/task groups
2989 * 2) pick the "next" process, since someone really wants that to run
2990 * 3) pick the "last" process, for cache locality
2991 * 4) do not run the "skip" process, if something else is available
2992 */
2993 static struct sched_entity *
2994 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2995 {
2996 struct sched_entity *left = __pick_first_entity(cfs_rq);
2997 struct sched_entity *se;
2998
2999 /*
3000 * If curr is set we have to see if its left of the leftmost entity
3001 * still in the tree, provided there was anything in the tree at all.
3002 */
3003 if (!left || (curr && entity_before(curr, left)))
3004 left = curr;
3005
3006 se = left; /* ideally we run the leftmost entity */
3007
3008 /*
3009 * Avoid running the skip buddy, if running something else can
3010 * be done without getting too unfair.
3011 */
3012 if (cfs_rq->skip == se) {
3013 struct sched_entity *second;
3014
3015 if (se == curr) {
3016 second = __pick_first_entity(cfs_rq);
3017 } else {
3018 second = __pick_next_entity(se);
3019 if (!second || (curr && entity_before(curr, second)))
3020 second = curr;
3021 }
3022
3023 if (second && wakeup_preempt_entity(second, left) < 1)
3024 se = second;
3025 }
3026
3027 /*
3028 * Prefer last buddy, try to return the CPU to a preempted task.
3029 */
3030 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3031 se = cfs_rq->last;
3032
3033 /*
3034 * Someone really wants this to run. If it's not unfair, run it.
3035 */
3036 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3037 se = cfs_rq->next;
3038
3039 clear_buddies(cfs_rq, se);
3040
3041 return se;
3042 }
3043
3044 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3045
3046 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3047 {
3048 /*
3049 * If still on the runqueue then deactivate_task()
3050 * was not called and update_curr() has to be done:
3051 */
3052 if (prev->on_rq)
3053 update_curr(cfs_rq);
3054
3055 /* throttle cfs_rqs exceeding runtime */
3056 check_cfs_rq_runtime(cfs_rq);
3057
3058 check_spread(cfs_rq, prev);
3059 if (prev->on_rq) {
3060 update_stats_wait_start(cfs_rq, prev);
3061 /* Put 'current' back into the tree. */
3062 __enqueue_entity(cfs_rq, prev);
3063 /* in !on_rq case, update occurred at dequeue */
3064 update_entity_load_avg(prev, 1);
3065 }
3066 cfs_rq->curr = NULL;
3067 }
3068
3069 static void
3070 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3071 {
3072 /*
3073 * Update run-time statistics of the 'current'.
3074 */
3075 update_curr(cfs_rq);
3076
3077 /*
3078 * Ensure that runnable average is periodically updated.
3079 */
3080 update_entity_load_avg(curr, 1);
3081 update_cfs_rq_blocked_load(cfs_rq, 1);
3082 update_cfs_shares(cfs_rq);
3083
3084 #ifdef CONFIG_SCHED_HRTICK
3085 /*
3086 * queued ticks are scheduled to match the slice, so don't bother
3087 * validating it and just reschedule.
3088 */
3089 if (queued) {
3090 resched_task(rq_of(cfs_rq)->curr);
3091 return;
3092 }
3093 /*
3094 * don't let the period tick interfere with the hrtick preemption
3095 */
3096 if (!sched_feat(DOUBLE_TICK) &&
3097 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3098 return;
3099 #endif
3100
3101 if (cfs_rq->nr_running > 1)
3102 check_preempt_tick(cfs_rq, curr);
3103 }
3104
3105
3106 /**************************************************
3107 * CFS bandwidth control machinery
3108 */
3109
3110 #ifdef CONFIG_CFS_BANDWIDTH
3111
3112 #ifdef HAVE_JUMP_LABEL
3113 static struct static_key __cfs_bandwidth_used;
3114
3115 static inline bool cfs_bandwidth_used(void)
3116 {
3117 return static_key_false(&__cfs_bandwidth_used);
3118 }
3119
3120 void cfs_bandwidth_usage_inc(void)
3121 {
3122 static_key_slow_inc(&__cfs_bandwidth_used);
3123 }
3124
3125 void cfs_bandwidth_usage_dec(void)
3126 {
3127 static_key_slow_dec(&__cfs_bandwidth_used);
3128 }
3129 #else /* HAVE_JUMP_LABEL */
3130 static bool cfs_bandwidth_used(void)
3131 {
3132 return true;
3133 }
3134
3135 void cfs_bandwidth_usage_inc(void) {}
3136 void cfs_bandwidth_usage_dec(void) {}
3137 #endif /* HAVE_JUMP_LABEL */
3138
3139 /*
3140 * default period for cfs group bandwidth.
3141 * default: 0.1s, units: nanoseconds
3142 */
3143 static inline u64 default_cfs_period(void)
3144 {
3145 return 100000000ULL;
3146 }
3147
3148 static inline u64 sched_cfs_bandwidth_slice(void)
3149 {
3150 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3151 }
3152
3153 /*
3154 * Replenish runtime according to assigned quota and update expiration time.
3155 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3156 * additional synchronization around rq->lock.
3157 *
3158 * requires cfs_b->lock
3159 */
3160 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3161 {
3162 u64 now;
3163
3164 if (cfs_b->quota == RUNTIME_INF)
3165 return;
3166
3167 now = sched_clock_cpu(smp_processor_id());
3168 cfs_b->runtime = cfs_b->quota;
3169 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3170 }
3171
3172 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3173 {
3174 return &tg->cfs_bandwidth;
3175 }
3176
3177 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3178 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3179 {
3180 if (unlikely(cfs_rq->throttle_count))
3181 return cfs_rq->throttled_clock_task;
3182
3183 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3184 }
3185
3186 /* returns 0 on failure to allocate runtime */
3187 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3188 {
3189 struct task_group *tg = cfs_rq->tg;
3190 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3191 u64 amount = 0, min_amount, expires;
3192
3193 /* note: this is a positive sum as runtime_remaining <= 0 */
3194 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3195
3196 raw_spin_lock(&cfs_b->lock);
3197 if (cfs_b->quota == RUNTIME_INF)
3198 amount = min_amount;
3199 else {
3200 /*
3201 * If the bandwidth pool has become inactive, then at least one
3202 * period must have elapsed since the last consumption.
3203 * Refresh the global state and ensure bandwidth timer becomes
3204 * active.
3205 */
3206 if (!cfs_b->timer_active) {
3207 __refill_cfs_bandwidth_runtime(cfs_b);
3208 __start_cfs_bandwidth(cfs_b, false);
3209 }
3210
3211 if (cfs_b->runtime > 0) {
3212 amount = min(cfs_b->runtime, min_amount);
3213 cfs_b->runtime -= amount;
3214 cfs_b->idle = 0;
3215 }
3216 }
3217 expires = cfs_b->runtime_expires;
3218 raw_spin_unlock(&cfs_b->lock);
3219
3220 cfs_rq->runtime_remaining += amount;
3221 /*
3222 * we may have advanced our local expiration to account for allowed
3223 * spread between our sched_clock and the one on which runtime was
3224 * issued.
3225 */
3226 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3227 cfs_rq->runtime_expires = expires;
3228
3229 return cfs_rq->runtime_remaining > 0;
3230 }
3231
3232 /*
3233 * Note: This depends on the synchronization provided by sched_clock and the
3234 * fact that rq->clock snapshots this value.
3235 */
3236 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3237 {
3238 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3239
3240 /* if the deadline is ahead of our clock, nothing to do */
3241 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3242 return;
3243
3244 if (cfs_rq->runtime_remaining < 0)
3245 return;
3246
3247 /*
3248 * If the local deadline has passed we have to consider the
3249 * possibility that our sched_clock is 'fast' and the global deadline
3250 * has not truly expired.
3251 *
3252 * Fortunately we can check determine whether this the case by checking
3253 * whether the global deadline has advanced. It is valid to compare
3254 * cfs_b->runtime_expires without any locks since we only care about
3255 * exact equality, so a partial write will still work.
3256 */
3257
3258 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3259 /* extend local deadline, drift is bounded above by 2 ticks */
3260 cfs_rq->runtime_expires += TICK_NSEC;
3261 } else {
3262 /* global deadline is ahead, expiration has passed */
3263 cfs_rq->runtime_remaining = 0;
3264 }
3265 }
3266
3267 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3268 {
3269 /* dock delta_exec before expiring quota (as it could span periods) */
3270 cfs_rq->runtime_remaining -= delta_exec;
3271 expire_cfs_rq_runtime(cfs_rq);
3272
3273 if (likely(cfs_rq->runtime_remaining > 0))
3274 return;
3275
3276 /*
3277 * if we're unable to extend our runtime we resched so that the active
3278 * hierarchy can be throttled
3279 */
3280 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3281 resched_task(rq_of(cfs_rq)->curr);
3282 }
3283
3284 static __always_inline
3285 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3286 {
3287 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3288 return;
3289
3290 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3291 }
3292
3293 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3294 {
3295 return cfs_bandwidth_used() && cfs_rq->throttled;
3296 }
3297
3298 /* check whether cfs_rq, or any parent, is throttled */
3299 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3300 {
3301 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3302 }
3303
3304 /*
3305 * Ensure that neither of the group entities corresponding to src_cpu or
3306 * dest_cpu are members of a throttled hierarchy when performing group
3307 * load-balance operations.
3308 */
3309 static inline int throttled_lb_pair(struct task_group *tg,
3310 int src_cpu, int dest_cpu)
3311 {
3312 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3313
3314 src_cfs_rq = tg->cfs_rq[src_cpu];
3315 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3316
3317 return throttled_hierarchy(src_cfs_rq) ||
3318 throttled_hierarchy(dest_cfs_rq);
3319 }
3320
3321 /* updated child weight may affect parent so we have to do this bottom up */
3322 static int tg_unthrottle_up(struct task_group *tg, void *data)
3323 {
3324 struct rq *rq = data;
3325 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3326
3327 cfs_rq->throttle_count--;
3328 #ifdef CONFIG_SMP
3329 if (!cfs_rq->throttle_count) {
3330 /* adjust cfs_rq_clock_task() */
3331 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3332 cfs_rq->throttled_clock_task;
3333 }
3334 #endif
3335
3336 return 0;
3337 }
3338
3339 static int tg_throttle_down(struct task_group *tg, void *data)
3340 {
3341 struct rq *rq = data;
3342 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3343
3344 /* group is entering throttled state, stop time */
3345 if (!cfs_rq->throttle_count)
3346 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3347 cfs_rq->throttle_count++;
3348
3349 return 0;
3350 }
3351
3352 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3353 {
3354 struct rq *rq = rq_of(cfs_rq);
3355 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3356 struct sched_entity *se;
3357 long task_delta, dequeue = 1;
3358
3359 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3360
3361 /* freeze hierarchy runnable averages while throttled */
3362 rcu_read_lock();
3363 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3364 rcu_read_unlock();
3365
3366 task_delta = cfs_rq->h_nr_running;
3367 for_each_sched_entity(se) {
3368 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3369 /* throttled entity or throttle-on-deactivate */
3370 if (!se->on_rq)
3371 break;
3372
3373 if (dequeue)
3374 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3375 qcfs_rq->h_nr_running -= task_delta;
3376
3377 if (qcfs_rq->load.weight)
3378 dequeue = 0;
3379 }
3380
3381 if (!se)
3382 sub_nr_running(rq, task_delta);
3383
3384 cfs_rq->throttled = 1;
3385 cfs_rq->throttled_clock = rq_clock(rq);
3386 raw_spin_lock(&cfs_b->lock);
3387 /*
3388 * Add to the _head_ of the list, so that an already-started
3389 * distribute_cfs_runtime will not see us
3390 */
3391 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3392 if (!cfs_b->timer_active)
3393 __start_cfs_bandwidth(cfs_b, false);
3394 raw_spin_unlock(&cfs_b->lock);
3395 }
3396
3397 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3398 {
3399 struct rq *rq = rq_of(cfs_rq);
3400 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3401 struct sched_entity *se;
3402 int enqueue = 1;
3403 long task_delta;
3404
3405 se = cfs_rq->tg->se[cpu_of(rq)];
3406
3407 cfs_rq->throttled = 0;
3408
3409 update_rq_clock(rq);
3410
3411 raw_spin_lock(&cfs_b->lock);
3412 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3413 list_del_rcu(&cfs_rq->throttled_list);
3414 raw_spin_unlock(&cfs_b->lock);
3415
3416 /* update hierarchical throttle state */
3417 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3418
3419 if (!cfs_rq->load.weight)
3420 return;
3421
3422 task_delta = cfs_rq->h_nr_running;
3423 for_each_sched_entity(se) {
3424 if (se->on_rq)
3425 enqueue = 0;
3426
3427 cfs_rq = cfs_rq_of(se);
3428 if (enqueue)
3429 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3430 cfs_rq->h_nr_running += task_delta;
3431
3432 if (cfs_rq_throttled(cfs_rq))
3433 break;
3434 }
3435
3436 if (!se)
3437 add_nr_running(rq, task_delta);
3438
3439 /* determine whether we need to wake up potentially idle cpu */
3440 if (rq->curr == rq->idle && rq->cfs.nr_running)
3441 resched_task(rq->curr);
3442 }
3443
3444 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3445 u64 remaining, u64 expires)
3446 {
3447 struct cfs_rq *cfs_rq;
3448 u64 runtime;
3449 u64 starting_runtime = remaining;
3450
3451 rcu_read_lock();
3452 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3453 throttled_list) {
3454 struct rq *rq = rq_of(cfs_rq);
3455
3456 raw_spin_lock(&rq->lock);
3457 if (!cfs_rq_throttled(cfs_rq))
3458 goto next;
3459
3460 runtime = -cfs_rq->runtime_remaining + 1;
3461 if (runtime > remaining)
3462 runtime = remaining;
3463 remaining -= runtime;
3464
3465 cfs_rq->runtime_remaining += runtime;
3466 cfs_rq->runtime_expires = expires;
3467
3468 /* we check whether we're throttled above */
3469 if (cfs_rq->runtime_remaining > 0)
3470 unthrottle_cfs_rq(cfs_rq);
3471
3472 next:
3473 raw_spin_unlock(&rq->lock);
3474
3475 if (!remaining)
3476 break;
3477 }
3478 rcu_read_unlock();
3479
3480 return starting_runtime - remaining;
3481 }
3482
3483 /*
3484 * Responsible for refilling a task_group's bandwidth and unthrottling its
3485 * cfs_rqs as appropriate. If there has been no activity within the last
3486 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3487 * used to track this state.
3488 */
3489 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3490 {
3491 u64 runtime, runtime_expires;
3492 int throttled;
3493
3494 /* no need to continue the timer with no bandwidth constraint */
3495 if (cfs_b->quota == RUNTIME_INF)
3496 goto out_deactivate;
3497
3498 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3499 cfs_b->nr_periods += overrun;
3500
3501 /*
3502 * idle depends on !throttled (for the case of a large deficit), and if
3503 * we're going inactive then everything else can be deferred
3504 */
3505 if (cfs_b->idle && !throttled)
3506 goto out_deactivate;
3507
3508 /*
3509 * if we have relooped after returning idle once, we need to update our
3510 * status as actually running, so that other cpus doing
3511 * __start_cfs_bandwidth will stop trying to cancel us.
3512 */
3513 cfs_b->timer_active = 1;
3514
3515 __refill_cfs_bandwidth_runtime(cfs_b);
3516
3517 if (!throttled) {
3518 /* mark as potentially idle for the upcoming period */
3519 cfs_b->idle = 1;
3520 return 0;
3521 }
3522
3523 /* account preceding periods in which throttling occurred */
3524 cfs_b->nr_throttled += overrun;
3525
3526 runtime_expires = cfs_b->runtime_expires;
3527
3528 /*
3529 * This check is repeated as we are holding onto the new bandwidth while
3530 * we unthrottle. This can potentially race with an unthrottled group
3531 * trying to acquire new bandwidth from the global pool. This can result
3532 * in us over-using our runtime if it is all used during this loop, but
3533 * only by limited amounts in that extreme case.
3534 */
3535 while (throttled && cfs_b->runtime > 0) {
3536 runtime = cfs_b->runtime;
3537 raw_spin_unlock(&cfs_b->lock);
3538 /* we can't nest cfs_b->lock while distributing bandwidth */
3539 runtime = distribute_cfs_runtime(cfs_b, runtime,
3540 runtime_expires);
3541 raw_spin_lock(&cfs_b->lock);
3542
3543 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3544
3545 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3546 }
3547
3548 /*
3549 * While we are ensured activity in the period following an
3550 * unthrottle, this also covers the case in which the new bandwidth is
3551 * insufficient to cover the existing bandwidth deficit. (Forcing the
3552 * timer to remain active while there are any throttled entities.)
3553 */
3554 cfs_b->idle = 0;
3555
3556 return 0;
3557
3558 out_deactivate:
3559 cfs_b->timer_active = 0;
3560 return 1;
3561 }
3562
3563 /* a cfs_rq won't donate quota below this amount */
3564 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3565 /* minimum remaining period time to redistribute slack quota */
3566 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3567 /* how long we wait to gather additional slack before distributing */
3568 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3569
3570 /*
3571 * Are we near the end of the current quota period?
3572 *
3573 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3574 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3575 * migrate_hrtimers, base is never cleared, so we are fine.
3576 */
3577 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3578 {
3579 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3580 u64 remaining;
3581
3582 /* if the call-back is running a quota refresh is already occurring */
3583 if (hrtimer_callback_running(refresh_timer))
3584 return 1;
3585
3586 /* is a quota refresh about to occur? */
3587 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3588 if (remaining < min_expire)
3589 return 1;
3590
3591 return 0;
3592 }
3593
3594 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3595 {
3596 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3597
3598 /* if there's a quota refresh soon don't bother with slack */
3599 if (runtime_refresh_within(cfs_b, min_left))
3600 return;
3601
3602 start_bandwidth_timer(&cfs_b->slack_timer,
3603 ns_to_ktime(cfs_bandwidth_slack_period));
3604 }
3605
3606 /* we know any runtime found here is valid as update_curr() precedes return */
3607 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3608 {
3609 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3610 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3611
3612 if (slack_runtime <= 0)
3613 return;
3614
3615 raw_spin_lock(&cfs_b->lock);
3616 if (cfs_b->quota != RUNTIME_INF &&
3617 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3618 cfs_b->runtime += slack_runtime;
3619
3620 /* we are under rq->lock, defer unthrottling using a timer */
3621 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3622 !list_empty(&cfs_b->throttled_cfs_rq))
3623 start_cfs_slack_bandwidth(cfs_b);
3624 }
3625 raw_spin_unlock(&cfs_b->lock);
3626
3627 /* even if it's not valid for return we don't want to try again */
3628 cfs_rq->runtime_remaining -= slack_runtime;
3629 }
3630
3631 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3632 {
3633 if (!cfs_bandwidth_used())
3634 return;
3635
3636 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3637 return;
3638
3639 __return_cfs_rq_runtime(cfs_rq);
3640 }
3641
3642 /*
3643 * This is done with a timer (instead of inline with bandwidth return) since
3644 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3645 */
3646 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3647 {
3648 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3649 u64 expires;
3650
3651 /* confirm we're still not at a refresh boundary */
3652 raw_spin_lock(&cfs_b->lock);
3653 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3654 raw_spin_unlock(&cfs_b->lock);
3655 return;
3656 }
3657
3658 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3659 runtime = cfs_b->runtime;
3660
3661 expires = cfs_b->runtime_expires;
3662 raw_spin_unlock(&cfs_b->lock);
3663
3664 if (!runtime)
3665 return;
3666
3667 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3668
3669 raw_spin_lock(&cfs_b->lock);
3670 if (expires == cfs_b->runtime_expires)
3671 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3672 raw_spin_unlock(&cfs_b->lock);
3673 }
3674
3675 /*
3676 * When a group wakes up we want to make sure that its quota is not already
3677 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3678 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3679 */
3680 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3681 {
3682 if (!cfs_bandwidth_used())
3683 return;
3684
3685 /* an active group must be handled by the update_curr()->put() path */
3686 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3687 return;
3688
3689 /* ensure the group is not already throttled */
3690 if (cfs_rq_throttled(cfs_rq))
3691 return;
3692
3693 /* update runtime allocation */
3694 account_cfs_rq_runtime(cfs_rq, 0);
3695 if (cfs_rq->runtime_remaining <= 0)
3696 throttle_cfs_rq(cfs_rq);
3697 }
3698
3699 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3700 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3701 {
3702 if (!cfs_bandwidth_used())
3703 return false;
3704
3705 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3706 return false;
3707
3708 /*
3709 * it's possible for a throttled entity to be forced into a running
3710 * state (e.g. set_curr_task), in this case we're finished.
3711 */
3712 if (cfs_rq_throttled(cfs_rq))
3713 return true;
3714
3715 throttle_cfs_rq(cfs_rq);
3716 return true;
3717 }
3718
3719 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3720 {
3721 struct cfs_bandwidth *cfs_b =
3722 container_of(timer, struct cfs_bandwidth, slack_timer);
3723 do_sched_cfs_slack_timer(cfs_b);
3724
3725 return HRTIMER_NORESTART;
3726 }
3727
3728 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3729 {
3730 struct cfs_bandwidth *cfs_b =
3731 container_of(timer, struct cfs_bandwidth, period_timer);
3732 ktime_t now;
3733 int overrun;
3734 int idle = 0;
3735
3736 raw_spin_lock(&cfs_b->lock);
3737 for (;;) {
3738 now = hrtimer_cb_get_time(timer);
3739 overrun = hrtimer_forward(timer, now, cfs_b->period);
3740
3741 if (!overrun)
3742 break;
3743
3744 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3745 }
3746 raw_spin_unlock(&cfs_b->lock);
3747
3748 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3749 }
3750
3751 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3752 {
3753 raw_spin_lock_init(&cfs_b->lock);
3754 cfs_b->runtime = 0;
3755 cfs_b->quota = RUNTIME_INF;
3756 cfs_b->period = ns_to_ktime(default_cfs_period());
3757
3758 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3759 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3760 cfs_b->period_timer.function = sched_cfs_period_timer;
3761 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3762 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3763 }
3764
3765 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3766 {
3767 cfs_rq->runtime_enabled = 0;
3768 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3769 }
3770
3771 /* requires cfs_b->lock, may release to reprogram timer */
3772 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3773 {
3774 /*
3775 * The timer may be active because we're trying to set a new bandwidth
3776 * period or because we're racing with the tear-down path
3777 * (timer_active==0 becomes visible before the hrtimer call-back
3778 * terminates). In either case we ensure that it's re-programmed
3779 */
3780 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3781 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3782 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3783 raw_spin_unlock(&cfs_b->lock);
3784 cpu_relax();
3785 raw_spin_lock(&cfs_b->lock);
3786 /* if someone else restarted the timer then we're done */
3787 if (!force && cfs_b->timer_active)
3788 return;
3789 }
3790
3791 cfs_b->timer_active = 1;
3792 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3793 }
3794
3795 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3796 {
3797 hrtimer_cancel(&cfs_b->period_timer);
3798 hrtimer_cancel(&cfs_b->slack_timer);
3799 }
3800
3801 static void __maybe_unused update_runtime_enabled(struct rq *rq)
3802 {
3803 struct cfs_rq *cfs_rq;
3804
3805 for_each_leaf_cfs_rq(rq, cfs_rq) {
3806 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3807
3808 raw_spin_lock(&cfs_b->lock);
3809 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3810 raw_spin_unlock(&cfs_b->lock);
3811 }
3812 }
3813
3814 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3815 {
3816 struct cfs_rq *cfs_rq;
3817
3818 for_each_leaf_cfs_rq(rq, cfs_rq) {
3819 if (!cfs_rq->runtime_enabled)
3820 continue;
3821
3822 /*
3823 * clock_task is not advancing so we just need to make sure
3824 * there's some valid quota amount
3825 */
3826 cfs_rq->runtime_remaining = 1;
3827 /*
3828 * Offline rq is schedulable till cpu is completely disabled
3829 * in take_cpu_down(), so we prevent new cfs throttling here.
3830 */
3831 cfs_rq->runtime_enabled = 0;
3832
3833 if (cfs_rq_throttled(cfs_rq))
3834 unthrottle_cfs_rq(cfs_rq);
3835 }
3836 }
3837
3838 #else /* CONFIG_CFS_BANDWIDTH */
3839 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3840 {
3841 return rq_clock_task(rq_of(cfs_rq));
3842 }
3843
3844 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3845 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3846 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3847 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3848
3849 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3850 {
3851 return 0;
3852 }
3853
3854 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3855 {
3856 return 0;
3857 }
3858
3859 static inline int throttled_lb_pair(struct task_group *tg,
3860 int src_cpu, int dest_cpu)
3861 {
3862 return 0;
3863 }
3864
3865 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3866
3867 #ifdef CONFIG_FAIR_GROUP_SCHED
3868 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3869 #endif
3870
3871 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3872 {
3873 return NULL;
3874 }
3875 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3876 static inline void update_runtime_enabled(struct rq *rq) {}
3877 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3878
3879 #endif /* CONFIG_CFS_BANDWIDTH */
3880
3881 /**************************************************
3882 * CFS operations on tasks:
3883 */
3884
3885 #ifdef CONFIG_SCHED_HRTICK
3886 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3887 {
3888 struct sched_entity *se = &p->se;
3889 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3890
3891 WARN_ON(task_rq(p) != rq);
3892
3893 if (cfs_rq->nr_running > 1) {
3894 u64 slice = sched_slice(cfs_rq, se);
3895 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3896 s64 delta = slice - ran;
3897
3898 if (delta < 0) {
3899 if (rq->curr == p)
3900 resched_task(p);
3901 return;
3902 }
3903
3904 /*
3905 * Don't schedule slices shorter than 10000ns, that just
3906 * doesn't make sense. Rely on vruntime for fairness.
3907 */
3908 if (rq->curr != p)
3909 delta = max_t(s64, 10000LL, delta);
3910
3911 hrtick_start(rq, delta);
3912 }
3913 }
3914
3915 /*
3916 * called from enqueue/dequeue and updates the hrtick when the
3917 * current task is from our class and nr_running is low enough
3918 * to matter.
3919 */
3920 static void hrtick_update(struct rq *rq)
3921 {
3922 struct task_struct *curr = rq->curr;
3923
3924 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3925 return;
3926
3927 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3928 hrtick_start_fair(rq, curr);
3929 }
3930 #else /* !CONFIG_SCHED_HRTICK */
3931 static inline void
3932 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3933 {
3934 }
3935
3936 static inline void hrtick_update(struct rq *rq)
3937 {
3938 }
3939 #endif
3940
3941 /*
3942 * The enqueue_task method is called before nr_running is
3943 * increased. Here we update the fair scheduling stats and
3944 * then put the task into the rbtree:
3945 */
3946 static void
3947 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3948 {
3949 struct cfs_rq *cfs_rq;
3950 struct sched_entity *se = &p->se;
3951
3952 for_each_sched_entity(se) {
3953 if (se->on_rq)
3954 break;
3955 cfs_rq = cfs_rq_of(se);
3956 enqueue_entity(cfs_rq, se, flags);
3957
3958 /*
3959 * end evaluation on encountering a throttled cfs_rq
3960 *
3961 * note: in the case of encountering a throttled cfs_rq we will
3962 * post the final h_nr_running increment below.
3963 */
3964 if (cfs_rq_throttled(cfs_rq))
3965 break;
3966 cfs_rq->h_nr_running++;
3967
3968 flags = ENQUEUE_WAKEUP;
3969 }
3970
3971 for_each_sched_entity(se) {
3972 cfs_rq = cfs_rq_of(se);
3973 cfs_rq->h_nr_running++;
3974
3975 if (cfs_rq_throttled(cfs_rq))
3976 break;
3977
3978 update_cfs_shares(cfs_rq);
3979 update_entity_load_avg(se, 1);
3980 }
3981
3982 if (!se) {
3983 update_rq_runnable_avg(rq, rq->nr_running);
3984 add_nr_running(rq, 1);
3985 }
3986 hrtick_update(rq);
3987 }
3988
3989 static void set_next_buddy(struct sched_entity *se);
3990
3991 /*
3992 * The dequeue_task method is called before nr_running is
3993 * decreased. We remove the task from the rbtree and
3994 * update the fair scheduling stats:
3995 */
3996 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3997 {
3998 struct cfs_rq *cfs_rq;
3999 struct sched_entity *se = &p->se;
4000 int task_sleep = flags & DEQUEUE_SLEEP;
4001
4002 for_each_sched_entity(se) {
4003 cfs_rq = cfs_rq_of(se);
4004 dequeue_entity(cfs_rq, se, flags);
4005
4006 /*
4007 * end evaluation on encountering a throttled cfs_rq
4008 *
4009 * note: in the case of encountering a throttled cfs_rq we will
4010 * post the final h_nr_running decrement below.
4011 */
4012 if (cfs_rq_throttled(cfs_rq))
4013 break;
4014 cfs_rq->h_nr_running--;
4015
4016 /* Don't dequeue parent if it has other entities besides us */
4017 if (cfs_rq->load.weight) {
4018 /*
4019 * Bias pick_next to pick a task from this cfs_rq, as
4020 * p is sleeping when it is within its sched_slice.
4021 */
4022 if (task_sleep && parent_entity(se))
4023 set_next_buddy(parent_entity(se));
4024
4025 /* avoid re-evaluating load for this entity */
4026 se = parent_entity(se);
4027 break;
4028 }
4029 flags |= DEQUEUE_SLEEP;
4030 }
4031
4032 for_each_sched_entity(se) {
4033 cfs_rq = cfs_rq_of(se);
4034 cfs_rq->h_nr_running--;
4035
4036 if (cfs_rq_throttled(cfs_rq))
4037 break;
4038
4039 update_cfs_shares(cfs_rq);
4040 update_entity_load_avg(se, 1);
4041 }
4042
4043 if (!se) {
4044 sub_nr_running(rq, 1);
4045 update_rq_runnable_avg(rq, 1);
4046 }
4047 hrtick_update(rq);
4048 }
4049
4050 #ifdef CONFIG_SMP
4051 /* Used instead of source_load when we know the type == 0 */
4052 static unsigned long weighted_cpuload(const int cpu)
4053 {
4054 return cpu_rq(cpu)->cfs.runnable_load_avg;
4055 }
4056
4057 /*
4058 * Return a low guess at the load of a migration-source cpu weighted
4059 * according to the scheduling class and "nice" value.
4060 *
4061 * We want to under-estimate the load of migration sources, to
4062 * balance conservatively.
4063 */
4064 static unsigned long source_load(int cpu, int type)
4065 {
4066 struct rq *rq = cpu_rq(cpu);
4067 unsigned long total = weighted_cpuload(cpu);
4068
4069 if (type == 0 || !sched_feat(LB_BIAS))
4070 return total;
4071
4072 return min(rq->cpu_load[type-1], total);
4073 }
4074
4075 /*
4076 * Return a high guess at the load of a migration-target cpu weighted
4077 * according to the scheduling class and "nice" value.
4078 */
4079 static unsigned long target_load(int cpu, int type)
4080 {
4081 struct rq *rq = cpu_rq(cpu);
4082 unsigned long total = weighted_cpuload(cpu);
4083
4084 if (type == 0 || !sched_feat(LB_BIAS))
4085 return total;
4086
4087 return max(rq->cpu_load[type-1], total);
4088 }
4089
4090 static unsigned long capacity_of(int cpu)
4091 {
4092 return cpu_rq(cpu)->cpu_capacity;
4093 }
4094
4095 static unsigned long cpu_avg_load_per_task(int cpu)
4096 {
4097 struct rq *rq = cpu_rq(cpu);
4098 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
4099 unsigned long load_avg = rq->cfs.runnable_load_avg;
4100
4101 if (nr_running)
4102 return load_avg / nr_running;
4103
4104 return 0;
4105 }
4106
4107 static void record_wakee(struct task_struct *p)
4108 {
4109 /*
4110 * Rough decay (wiping) for cost saving, don't worry
4111 * about the boundary, really active task won't care
4112 * about the loss.
4113 */
4114 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4115 current->wakee_flips >>= 1;
4116 current->wakee_flip_decay_ts = jiffies;
4117 }
4118
4119 if (current->last_wakee != p) {
4120 current->last_wakee = p;
4121 current->wakee_flips++;
4122 }
4123 }
4124
4125 static void task_waking_fair(struct task_struct *p)
4126 {
4127 struct sched_entity *se = &p->se;
4128 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4129 u64 min_vruntime;
4130
4131 #ifndef CONFIG_64BIT
4132 u64 min_vruntime_copy;
4133
4134 do {
4135 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4136 smp_rmb();
4137 min_vruntime = cfs_rq->min_vruntime;
4138 } while (min_vruntime != min_vruntime_copy);
4139 #else
4140 min_vruntime = cfs_rq->min_vruntime;
4141 #endif
4142
4143 se->vruntime -= min_vruntime;
4144 record_wakee(p);
4145 }
4146
4147 #ifdef CONFIG_FAIR_GROUP_SCHED
4148 /*
4149 * effective_load() calculates the load change as seen from the root_task_group
4150 *
4151 * Adding load to a group doesn't make a group heavier, but can cause movement
4152 * of group shares between cpus. Assuming the shares were perfectly aligned one
4153 * can calculate the shift in shares.
4154 *
4155 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4156 * on this @cpu and results in a total addition (subtraction) of @wg to the
4157 * total group weight.
4158 *
4159 * Given a runqueue weight distribution (rw_i) we can compute a shares
4160 * distribution (s_i) using:
4161 *
4162 * s_i = rw_i / \Sum rw_j (1)
4163 *
4164 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4165 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4166 * shares distribution (s_i):
4167 *
4168 * rw_i = { 2, 4, 1, 0 }
4169 * s_i = { 2/7, 4/7, 1/7, 0 }
4170 *
4171 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4172 * task used to run on and the CPU the waker is running on), we need to
4173 * compute the effect of waking a task on either CPU and, in case of a sync
4174 * wakeup, compute the effect of the current task going to sleep.
4175 *
4176 * So for a change of @wl to the local @cpu with an overall group weight change
4177 * of @wl we can compute the new shares distribution (s'_i) using:
4178 *
4179 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4180 *
4181 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4182 * differences in waking a task to CPU 0. The additional task changes the
4183 * weight and shares distributions like:
4184 *
4185 * rw'_i = { 3, 4, 1, 0 }
4186 * s'_i = { 3/8, 4/8, 1/8, 0 }
4187 *
4188 * We can then compute the difference in effective weight by using:
4189 *
4190 * dw_i = S * (s'_i - s_i) (3)
4191 *
4192 * Where 'S' is the group weight as seen by its parent.
4193 *
4194 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4195 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4196 * 4/7) times the weight of the group.
4197 */
4198 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4199 {
4200 struct sched_entity *se = tg->se[cpu];
4201
4202 if (!tg->parent) /* the trivial, non-cgroup case */
4203 return wl;
4204
4205 for_each_sched_entity(se) {
4206 long w, W;
4207
4208 tg = se->my_q->tg;
4209
4210 /*
4211 * W = @wg + \Sum rw_j
4212 */
4213 W = wg + calc_tg_weight(tg, se->my_q);
4214
4215 /*
4216 * w = rw_i + @wl
4217 */
4218 w = se->my_q->load.weight + wl;
4219
4220 /*
4221 * wl = S * s'_i; see (2)
4222 */
4223 if (W > 0 && w < W)
4224 wl = (w * tg->shares) / W;
4225 else
4226 wl = tg->shares;
4227
4228 /*
4229 * Per the above, wl is the new se->load.weight value; since
4230 * those are clipped to [MIN_SHARES, ...) do so now. See
4231 * calc_cfs_shares().
4232 */
4233 if (wl < MIN_SHARES)
4234 wl = MIN_SHARES;
4235
4236 /*
4237 * wl = dw_i = S * (s'_i - s_i); see (3)
4238 */
4239 wl -= se->load.weight;
4240
4241 /*
4242 * Recursively apply this logic to all parent groups to compute
4243 * the final effective load change on the root group. Since
4244 * only the @tg group gets extra weight, all parent groups can
4245 * only redistribute existing shares. @wl is the shift in shares
4246 * resulting from this level per the above.
4247 */
4248 wg = 0;
4249 }
4250
4251 return wl;
4252 }
4253 #else
4254
4255 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4256 {
4257 return wl;
4258 }
4259
4260 #endif
4261
4262 static int wake_wide(struct task_struct *p)
4263 {
4264 int factor = this_cpu_read(sd_llc_size);
4265
4266 /*
4267 * Yeah, it's the switching-frequency, could means many wakee or
4268 * rapidly switch, use factor here will just help to automatically
4269 * adjust the loose-degree, so bigger node will lead to more pull.
4270 */
4271 if (p->wakee_flips > factor) {
4272 /*
4273 * wakee is somewhat hot, it needs certain amount of cpu
4274 * resource, so if waker is far more hot, prefer to leave
4275 * it alone.
4276 */
4277 if (current->wakee_flips > (factor * p->wakee_flips))
4278 return 1;
4279 }
4280
4281 return 0;
4282 }
4283
4284 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4285 {
4286 s64 this_load, load;
4287 int idx, this_cpu, prev_cpu;
4288 unsigned long tl_per_task;
4289 struct task_group *tg;
4290 unsigned long weight;
4291 int balanced;
4292
4293 /*
4294 * If we wake multiple tasks be careful to not bounce
4295 * ourselves around too much.
4296 */
4297 if (wake_wide(p))
4298 return 0;
4299
4300 idx = sd->wake_idx;
4301 this_cpu = smp_processor_id();
4302 prev_cpu = task_cpu(p);
4303 load = source_load(prev_cpu, idx);
4304 this_load = target_load(this_cpu, idx);
4305
4306 /*
4307 * If sync wakeup then subtract the (maximum possible)
4308 * effect of the currently running task from the load
4309 * of the current CPU:
4310 */
4311 if (sync) {
4312 tg = task_group(current);
4313 weight = current->se.load.weight;
4314
4315 this_load += effective_load(tg, this_cpu, -weight, -weight);
4316 load += effective_load(tg, prev_cpu, 0, -weight);
4317 }
4318
4319 tg = task_group(p);
4320 weight = p->se.load.weight;
4321
4322 /*
4323 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4324 * due to the sync cause above having dropped this_load to 0, we'll
4325 * always have an imbalance, but there's really nothing you can do
4326 * about that, so that's good too.
4327 *
4328 * Otherwise check if either cpus are near enough in load to allow this
4329 * task to be woken on this_cpu.
4330 */
4331 if (this_load > 0) {
4332 s64 this_eff_load, prev_eff_load;
4333
4334 this_eff_load = 100;
4335 this_eff_load *= capacity_of(prev_cpu);
4336 this_eff_load *= this_load +
4337 effective_load(tg, this_cpu, weight, weight);
4338
4339 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4340 prev_eff_load *= capacity_of(this_cpu);
4341 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4342
4343 balanced = this_eff_load <= prev_eff_load;
4344 } else
4345 balanced = true;
4346
4347 /*
4348 * If the currently running task will sleep within
4349 * a reasonable amount of time then attract this newly
4350 * woken task:
4351 */
4352 if (sync && balanced)
4353 return 1;
4354
4355 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4356 tl_per_task = cpu_avg_load_per_task(this_cpu);
4357
4358 if (balanced ||
4359 (this_load <= load &&
4360 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4361 /*
4362 * This domain has SD_WAKE_AFFINE and
4363 * p is cache cold in this domain, and
4364 * there is no bad imbalance.
4365 */
4366 schedstat_inc(sd, ttwu_move_affine);
4367 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4368
4369 return 1;
4370 }
4371 return 0;
4372 }
4373
4374 /*
4375 * find_idlest_group finds and returns the least busy CPU group within the
4376 * domain.
4377 */
4378 static struct sched_group *
4379 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4380 int this_cpu, int sd_flag)
4381 {
4382 struct sched_group *idlest = NULL, *group = sd->groups;
4383 unsigned long min_load = ULONG_MAX, this_load = 0;
4384 int load_idx = sd->forkexec_idx;
4385 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4386
4387 if (sd_flag & SD_BALANCE_WAKE)
4388 load_idx = sd->wake_idx;
4389
4390 do {
4391 unsigned long load, avg_load;
4392 int local_group;
4393 int i;
4394
4395 /* Skip over this group if it has no CPUs allowed */
4396 if (!cpumask_intersects(sched_group_cpus(group),
4397 tsk_cpus_allowed(p)))
4398 continue;
4399
4400 local_group = cpumask_test_cpu(this_cpu,
4401 sched_group_cpus(group));
4402
4403 /* Tally up the load of all CPUs in the group */
4404 avg_load = 0;
4405
4406 for_each_cpu(i, sched_group_cpus(group)) {
4407 /* Bias balancing toward cpus of our domain */
4408 if (local_group)
4409 load = source_load(i, load_idx);
4410 else
4411 load = target_load(i, load_idx);
4412
4413 avg_load += load;
4414 }
4415
4416 /* Adjust by relative CPU capacity of the group */
4417 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4418
4419 if (local_group) {
4420 this_load = avg_load;
4421 } else if (avg_load < min_load) {
4422 min_load = avg_load;
4423 idlest = group;
4424 }
4425 } while (group = group->next, group != sd->groups);
4426
4427 if (!idlest || 100*this_load < imbalance*min_load)
4428 return NULL;
4429 return idlest;
4430 }
4431
4432 /*
4433 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4434 */
4435 static int
4436 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4437 {
4438 unsigned long load, min_load = ULONG_MAX;
4439 int idlest = -1;
4440 int i;
4441
4442 /* Traverse only the allowed CPUs */
4443 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4444 load = weighted_cpuload(i);
4445
4446 if (load < min_load || (load == min_load && i == this_cpu)) {
4447 min_load = load;
4448 idlest = i;
4449 }
4450 }
4451
4452 return idlest;
4453 }
4454
4455 /*
4456 * Try and locate an idle CPU in the sched_domain.
4457 */
4458 static int select_idle_sibling(struct task_struct *p, int target)
4459 {
4460 struct sched_domain *sd;
4461 struct sched_group *sg;
4462 int i = task_cpu(p);
4463
4464 if (idle_cpu(target))
4465 return target;
4466
4467 /*
4468 * If the prevous cpu is cache affine and idle, don't be stupid.
4469 */
4470 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4471 return i;
4472
4473 /*
4474 * Otherwise, iterate the domains and find an elegible idle cpu.
4475 */
4476 sd = rcu_dereference(per_cpu(sd_llc, target));
4477 for_each_lower_domain(sd) {
4478 sg = sd->groups;
4479 do {
4480 if (!cpumask_intersects(sched_group_cpus(sg),
4481 tsk_cpus_allowed(p)))
4482 goto next;
4483
4484 for_each_cpu(i, sched_group_cpus(sg)) {
4485 if (i == target || !idle_cpu(i))
4486 goto next;
4487 }
4488
4489 target = cpumask_first_and(sched_group_cpus(sg),
4490 tsk_cpus_allowed(p));
4491 goto done;
4492 next:
4493 sg = sg->next;
4494 } while (sg != sd->groups);
4495 }
4496 done:
4497 return target;
4498 }
4499
4500 /*
4501 * select_task_rq_fair: Select target runqueue for the waking task in domains
4502 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4503 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4504 *
4505 * Balances load by selecting the idlest cpu in the idlest group, or under
4506 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4507 *
4508 * Returns the target cpu number.
4509 *
4510 * preempt must be disabled.
4511 */
4512 static int
4513 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4514 {
4515 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4516 int cpu = smp_processor_id();
4517 int new_cpu = cpu;
4518 int want_affine = 0;
4519 int sync = wake_flags & WF_SYNC;
4520
4521 if (p->nr_cpus_allowed == 1)
4522 return prev_cpu;
4523
4524 if (sd_flag & SD_BALANCE_WAKE) {
4525 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4526 want_affine = 1;
4527 new_cpu = prev_cpu;
4528 }
4529
4530 rcu_read_lock();
4531 for_each_domain(cpu, tmp) {
4532 if (!(tmp->flags & SD_LOAD_BALANCE))
4533 continue;
4534
4535 /*
4536 * If both cpu and prev_cpu are part of this domain,
4537 * cpu is a valid SD_WAKE_AFFINE target.
4538 */
4539 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4540 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4541 affine_sd = tmp;
4542 break;
4543 }
4544
4545 if (tmp->flags & sd_flag)
4546 sd = tmp;
4547 }
4548
4549 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4550 prev_cpu = cpu;
4551
4552 if (sd_flag & SD_BALANCE_WAKE) {
4553 new_cpu = select_idle_sibling(p, prev_cpu);
4554 goto unlock;
4555 }
4556
4557 while (sd) {
4558 struct sched_group *group;
4559 int weight;
4560
4561 if (!(sd->flags & sd_flag)) {
4562 sd = sd->child;
4563 continue;
4564 }
4565
4566 group = find_idlest_group(sd, p, cpu, sd_flag);
4567 if (!group) {
4568 sd = sd->child;
4569 continue;
4570 }
4571
4572 new_cpu = find_idlest_cpu(group, p, cpu);
4573 if (new_cpu == -1 || new_cpu == cpu) {
4574 /* Now try balancing at a lower domain level of cpu */
4575 sd = sd->child;
4576 continue;
4577 }
4578
4579 /* Now try balancing at a lower domain level of new_cpu */
4580 cpu = new_cpu;
4581 weight = sd->span_weight;
4582 sd = NULL;
4583 for_each_domain(cpu, tmp) {
4584 if (weight <= tmp->span_weight)
4585 break;
4586 if (tmp->flags & sd_flag)
4587 sd = tmp;
4588 }
4589 /* while loop will break here if sd == NULL */
4590 }
4591 unlock:
4592 rcu_read_unlock();
4593
4594 return new_cpu;
4595 }
4596
4597 /*
4598 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4599 * cfs_rq_of(p) references at time of call are still valid and identify the
4600 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4601 * other assumptions, including the state of rq->lock, should be made.
4602 */
4603 static void
4604 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4605 {
4606 struct sched_entity *se = &p->se;
4607 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4608
4609 /*
4610 * Load tracking: accumulate removed load so that it can be processed
4611 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4612 * to blocked load iff they have a positive decay-count. It can never
4613 * be negative here since on-rq tasks have decay-count == 0.
4614 */
4615 if (se->avg.decay_count) {
4616 se->avg.decay_count = -__synchronize_entity_decay(se);
4617 atomic_long_add(se->avg.load_avg_contrib,
4618 &cfs_rq->removed_load);
4619 }
4620
4621 /* We have migrated, no longer consider this task hot */
4622 se->exec_start = 0;
4623 }
4624 #endif /* CONFIG_SMP */
4625
4626 static unsigned long
4627 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4628 {
4629 unsigned long gran = sysctl_sched_wakeup_granularity;
4630
4631 /*
4632 * Since its curr running now, convert the gran from real-time
4633 * to virtual-time in his units.
4634 *
4635 * By using 'se' instead of 'curr' we penalize light tasks, so
4636 * they get preempted easier. That is, if 'se' < 'curr' then
4637 * the resulting gran will be larger, therefore penalizing the
4638 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4639 * be smaller, again penalizing the lighter task.
4640 *
4641 * This is especially important for buddies when the leftmost
4642 * task is higher priority than the buddy.
4643 */
4644 return calc_delta_fair(gran, se);
4645 }
4646
4647 /*
4648 * Should 'se' preempt 'curr'.
4649 *
4650 * |s1
4651 * |s2
4652 * |s3
4653 * g
4654 * |<--->|c
4655 *
4656 * w(c, s1) = -1
4657 * w(c, s2) = 0
4658 * w(c, s3) = 1
4659 *
4660 */
4661 static int
4662 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4663 {
4664 s64 gran, vdiff = curr->vruntime - se->vruntime;
4665
4666 if (vdiff <= 0)
4667 return -1;
4668
4669 gran = wakeup_gran(curr, se);
4670 if (vdiff > gran)
4671 return 1;
4672
4673 return 0;
4674 }
4675
4676 static void set_last_buddy(struct sched_entity *se)
4677 {
4678 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4679 return;
4680
4681 for_each_sched_entity(se)
4682 cfs_rq_of(se)->last = se;
4683 }
4684
4685 static void set_next_buddy(struct sched_entity *se)
4686 {
4687 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4688 return;
4689
4690 for_each_sched_entity(se)
4691 cfs_rq_of(se)->next = se;
4692 }
4693
4694 static void set_skip_buddy(struct sched_entity *se)
4695 {
4696 for_each_sched_entity(se)
4697 cfs_rq_of(se)->skip = se;
4698 }
4699
4700 /*
4701 * Preempt the current task with a newly woken task if needed:
4702 */
4703 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4704 {
4705 struct task_struct *curr = rq->curr;
4706 struct sched_entity *se = &curr->se, *pse = &p->se;
4707 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4708 int scale = cfs_rq->nr_running >= sched_nr_latency;
4709 int next_buddy_marked = 0;
4710
4711 if (unlikely(se == pse))
4712 return;
4713
4714 /*
4715 * This is possible from callers such as move_task(), in which we
4716 * unconditionally check_prempt_curr() after an enqueue (which may have
4717 * lead to a throttle). This both saves work and prevents false
4718 * next-buddy nomination below.
4719 */
4720 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4721 return;
4722
4723 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4724 set_next_buddy(pse);
4725 next_buddy_marked = 1;
4726 }
4727
4728 /*
4729 * We can come here with TIF_NEED_RESCHED already set from new task
4730 * wake up path.
4731 *
4732 * Note: this also catches the edge-case of curr being in a throttled
4733 * group (e.g. via set_curr_task), since update_curr() (in the
4734 * enqueue of curr) will have resulted in resched being set. This
4735 * prevents us from potentially nominating it as a false LAST_BUDDY
4736 * below.
4737 */
4738 if (test_tsk_need_resched(curr))
4739 return;
4740
4741 /* Idle tasks are by definition preempted by non-idle tasks. */
4742 if (unlikely(curr->policy == SCHED_IDLE) &&
4743 likely(p->policy != SCHED_IDLE))
4744 goto preempt;
4745
4746 /*
4747 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4748 * is driven by the tick):
4749 */
4750 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4751 return;
4752
4753 find_matching_se(&se, &pse);
4754 update_curr(cfs_rq_of(se));
4755 BUG_ON(!pse);
4756 if (wakeup_preempt_entity(se, pse) == 1) {
4757 /*
4758 * Bias pick_next to pick the sched entity that is
4759 * triggering this preemption.
4760 */
4761 if (!next_buddy_marked)
4762 set_next_buddy(pse);
4763 goto preempt;
4764 }
4765
4766 return;
4767
4768 preempt:
4769 resched_task(curr);
4770 /*
4771 * Only set the backward buddy when the current task is still
4772 * on the rq. This can happen when a wakeup gets interleaved
4773 * with schedule on the ->pre_schedule() or idle_balance()
4774 * point, either of which can * drop the rq lock.
4775 *
4776 * Also, during early boot the idle thread is in the fair class,
4777 * for obvious reasons its a bad idea to schedule back to it.
4778 */
4779 if (unlikely(!se->on_rq || curr == rq->idle))
4780 return;
4781
4782 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4783 set_last_buddy(se);
4784 }
4785
4786 static struct task_struct *
4787 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4788 {
4789 struct cfs_rq *cfs_rq = &rq->cfs;
4790 struct sched_entity *se;
4791 struct task_struct *p;
4792 int new_tasks;
4793
4794 again:
4795 #ifdef CONFIG_FAIR_GROUP_SCHED
4796 if (!cfs_rq->nr_running)
4797 goto idle;
4798
4799 if (prev->sched_class != &fair_sched_class)
4800 goto simple;
4801
4802 /*
4803 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4804 * likely that a next task is from the same cgroup as the current.
4805 *
4806 * Therefore attempt to avoid putting and setting the entire cgroup
4807 * hierarchy, only change the part that actually changes.
4808 */
4809
4810 do {
4811 struct sched_entity *curr = cfs_rq->curr;
4812
4813 /*
4814 * Since we got here without doing put_prev_entity() we also
4815 * have to consider cfs_rq->curr. If it is still a runnable
4816 * entity, update_curr() will update its vruntime, otherwise
4817 * forget we've ever seen it.
4818 */
4819 if (curr && curr->on_rq)
4820 update_curr(cfs_rq);
4821 else
4822 curr = NULL;
4823
4824 /*
4825 * This call to check_cfs_rq_runtime() will do the throttle and
4826 * dequeue its entity in the parent(s). Therefore the 'simple'
4827 * nr_running test will indeed be correct.
4828 */
4829 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4830 goto simple;
4831
4832 se = pick_next_entity(cfs_rq, curr);
4833 cfs_rq = group_cfs_rq(se);
4834 } while (cfs_rq);
4835
4836 p = task_of(se);
4837
4838 /*
4839 * Since we haven't yet done put_prev_entity and if the selected task
4840 * is a different task than we started out with, try and touch the
4841 * least amount of cfs_rqs.
4842 */
4843 if (prev != p) {
4844 struct sched_entity *pse = &prev->se;
4845
4846 while (!(cfs_rq = is_same_group(se, pse))) {
4847 int se_depth = se->depth;
4848 int pse_depth = pse->depth;
4849
4850 if (se_depth <= pse_depth) {
4851 put_prev_entity(cfs_rq_of(pse), pse);
4852 pse = parent_entity(pse);
4853 }
4854 if (se_depth >= pse_depth) {
4855 set_next_entity(cfs_rq_of(se), se);
4856 se = parent_entity(se);
4857 }
4858 }
4859
4860 put_prev_entity(cfs_rq, pse);
4861 set_next_entity(cfs_rq, se);
4862 }
4863
4864 if (hrtick_enabled(rq))
4865 hrtick_start_fair(rq, p);
4866
4867 return p;
4868 simple:
4869 cfs_rq = &rq->cfs;
4870 #endif
4871
4872 if (!cfs_rq->nr_running)
4873 goto idle;
4874
4875 put_prev_task(rq, prev);
4876
4877 do {
4878 se = pick_next_entity(cfs_rq, NULL);
4879 set_next_entity(cfs_rq, se);
4880 cfs_rq = group_cfs_rq(se);
4881 } while (cfs_rq);
4882
4883 p = task_of(se);
4884
4885 if (hrtick_enabled(rq))
4886 hrtick_start_fair(rq, p);
4887
4888 return p;
4889
4890 idle:
4891 new_tasks = idle_balance(rq);
4892 /*
4893 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4894 * possible for any higher priority task to appear. In that case we
4895 * must re-start the pick_next_entity() loop.
4896 */
4897 if (new_tasks < 0)
4898 return RETRY_TASK;
4899
4900 if (new_tasks > 0)
4901 goto again;
4902
4903 return NULL;
4904 }
4905
4906 /*
4907 * Account for a descheduled task:
4908 */
4909 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4910 {
4911 struct sched_entity *se = &prev->se;
4912 struct cfs_rq *cfs_rq;
4913
4914 for_each_sched_entity(se) {
4915 cfs_rq = cfs_rq_of(se);
4916 put_prev_entity(cfs_rq, se);
4917 }
4918 }
4919
4920 /*
4921 * sched_yield() is very simple
4922 *
4923 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4924 */
4925 static void yield_task_fair(struct rq *rq)
4926 {
4927 struct task_struct *curr = rq->curr;
4928 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4929 struct sched_entity *se = &curr->se;
4930
4931 /*
4932 * Are we the only task in the tree?
4933 */
4934 if (unlikely(rq->nr_running == 1))
4935 return;
4936
4937 clear_buddies(cfs_rq, se);
4938
4939 if (curr->policy != SCHED_BATCH) {
4940 update_rq_clock(rq);
4941 /*
4942 * Update run-time statistics of the 'current'.
4943 */
4944 update_curr(cfs_rq);
4945 /*
4946 * Tell update_rq_clock() that we've just updated,
4947 * so we don't do microscopic update in schedule()
4948 * and double the fastpath cost.
4949 */
4950 rq->skip_clock_update = 1;
4951 }
4952
4953 set_skip_buddy(se);
4954 }
4955
4956 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4957 {
4958 struct sched_entity *se = &p->se;
4959
4960 /* throttled hierarchies are not runnable */
4961 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4962 return false;
4963
4964 /* Tell the scheduler that we'd really like pse to run next. */
4965 set_next_buddy(se);
4966
4967 yield_task_fair(rq);
4968
4969 return true;
4970 }
4971
4972 #ifdef CONFIG_SMP
4973 /**************************************************
4974 * Fair scheduling class load-balancing methods.
4975 *
4976 * BASICS
4977 *
4978 * The purpose of load-balancing is to achieve the same basic fairness the
4979 * per-cpu scheduler provides, namely provide a proportional amount of compute
4980 * time to each task. This is expressed in the following equation:
4981 *
4982 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4983 *
4984 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4985 * W_i,0 is defined as:
4986 *
4987 * W_i,0 = \Sum_j w_i,j (2)
4988 *
4989 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4990 * is derived from the nice value as per prio_to_weight[].
4991 *
4992 * The weight average is an exponential decay average of the instantaneous
4993 * weight:
4994 *
4995 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4996 *
4997 * C_i is the compute capacity of cpu i, typically it is the
4998 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4999 * can also include other factors [XXX].
5000 *
5001 * To achieve this balance we define a measure of imbalance which follows
5002 * directly from (1):
5003 *
5004 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5005 *
5006 * We them move tasks around to minimize the imbalance. In the continuous
5007 * function space it is obvious this converges, in the discrete case we get
5008 * a few fun cases generally called infeasible weight scenarios.
5009 *
5010 * [XXX expand on:
5011 * - infeasible weights;
5012 * - local vs global optima in the discrete case. ]
5013 *
5014 *
5015 * SCHED DOMAINS
5016 *
5017 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5018 * for all i,j solution, we create a tree of cpus that follows the hardware
5019 * topology where each level pairs two lower groups (or better). This results
5020 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5021 * tree to only the first of the previous level and we decrease the frequency
5022 * of load-balance at each level inv. proportional to the number of cpus in
5023 * the groups.
5024 *
5025 * This yields:
5026 *
5027 * log_2 n 1 n
5028 * \Sum { --- * --- * 2^i } = O(n) (5)
5029 * i = 0 2^i 2^i
5030 * `- size of each group
5031 * | | `- number of cpus doing load-balance
5032 * | `- freq
5033 * `- sum over all levels
5034 *
5035 * Coupled with a limit on how many tasks we can migrate every balance pass,
5036 * this makes (5) the runtime complexity of the balancer.
5037 *
5038 * An important property here is that each CPU is still (indirectly) connected
5039 * to every other cpu in at most O(log n) steps:
5040 *
5041 * The adjacency matrix of the resulting graph is given by:
5042 *
5043 * log_2 n
5044 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5045 * k = 0
5046 *
5047 * And you'll find that:
5048 *
5049 * A^(log_2 n)_i,j != 0 for all i,j (7)
5050 *
5051 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5052 * The task movement gives a factor of O(m), giving a convergence complexity
5053 * of:
5054 *
5055 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5056 *
5057 *
5058 * WORK CONSERVING
5059 *
5060 * In order to avoid CPUs going idle while there's still work to do, new idle
5061 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5062 * tree itself instead of relying on other CPUs to bring it work.
5063 *
5064 * This adds some complexity to both (5) and (8) but it reduces the total idle
5065 * time.
5066 *
5067 * [XXX more?]
5068 *
5069 *
5070 * CGROUPS
5071 *
5072 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5073 *
5074 * s_k,i
5075 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5076 * S_k
5077 *
5078 * Where
5079 *
5080 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5081 *
5082 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5083 *
5084 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5085 * property.
5086 *
5087 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5088 * rewrite all of this once again.]
5089 */
5090
5091 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5092
5093 enum fbq_type { regular, remote, all };
5094
5095 #define LBF_ALL_PINNED 0x01
5096 #define LBF_NEED_BREAK 0x02
5097 #define LBF_DST_PINNED 0x04
5098 #define LBF_SOME_PINNED 0x08
5099
5100 struct lb_env {
5101 struct sched_domain *sd;
5102
5103 struct rq *src_rq;
5104 int src_cpu;
5105
5106 int dst_cpu;
5107 struct rq *dst_rq;
5108
5109 struct cpumask *dst_grpmask;
5110 int new_dst_cpu;
5111 enum cpu_idle_type idle;
5112 long imbalance;
5113 /* The set of CPUs under consideration for load-balancing */
5114 struct cpumask *cpus;
5115
5116 unsigned int flags;
5117
5118 unsigned int loop;
5119 unsigned int loop_break;
5120 unsigned int loop_max;
5121
5122 enum fbq_type fbq_type;
5123 };
5124
5125 /*
5126 * move_task - move a task from one runqueue to another runqueue.
5127 * Both runqueues must be locked.
5128 */
5129 static void move_task(struct task_struct *p, struct lb_env *env)
5130 {
5131 deactivate_task(env->src_rq, p, 0);
5132 set_task_cpu(p, env->dst_cpu);
5133 activate_task(env->dst_rq, p, 0);
5134 check_preempt_curr(env->dst_rq, p, 0);
5135 }
5136
5137 /*
5138 * Is this task likely cache-hot:
5139 */
5140 static int task_hot(struct task_struct *p, struct lb_env *env)
5141 {
5142 s64 delta;
5143
5144 if (p->sched_class != &fair_sched_class)
5145 return 0;
5146
5147 if (unlikely(p->policy == SCHED_IDLE))
5148 return 0;
5149
5150 /*
5151 * Buddy candidates are cache hot:
5152 */
5153 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5154 (&p->se == cfs_rq_of(&p->se)->next ||
5155 &p->se == cfs_rq_of(&p->se)->last))
5156 return 1;
5157
5158 if (sysctl_sched_migration_cost == -1)
5159 return 1;
5160 if (sysctl_sched_migration_cost == 0)
5161 return 0;
5162
5163 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5164
5165 return delta < (s64)sysctl_sched_migration_cost;
5166 }
5167
5168 #ifdef CONFIG_NUMA_BALANCING
5169 /* Returns true if the destination node has incurred more faults */
5170 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5171 {
5172 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5173 int src_nid, dst_nid;
5174
5175 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5176 !(env->sd->flags & SD_NUMA)) {
5177 return false;
5178 }
5179
5180 src_nid = cpu_to_node(env->src_cpu);
5181 dst_nid = cpu_to_node(env->dst_cpu);
5182
5183 if (src_nid == dst_nid)
5184 return false;
5185
5186 if (numa_group) {
5187 /* Task is already in the group's interleave set. */
5188 if (node_isset(src_nid, numa_group->active_nodes))
5189 return false;
5190
5191 /* Task is moving into the group's interleave set. */
5192 if (node_isset(dst_nid, numa_group->active_nodes))
5193 return true;
5194
5195 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5196 }
5197
5198 /* Encourage migration to the preferred node. */
5199 if (dst_nid == p->numa_preferred_nid)
5200 return true;
5201
5202 return task_faults(p, dst_nid) > task_faults(p, src_nid);
5203 }
5204
5205
5206 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5207 {
5208 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5209 int src_nid, dst_nid;
5210
5211 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5212 return false;
5213
5214 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5215 return false;
5216
5217 src_nid = cpu_to_node(env->src_cpu);
5218 dst_nid = cpu_to_node(env->dst_cpu);
5219
5220 if (src_nid == dst_nid)
5221 return false;
5222
5223 if (numa_group) {
5224 /* Task is moving within/into the group's interleave set. */
5225 if (node_isset(dst_nid, numa_group->active_nodes))
5226 return false;
5227
5228 /* Task is moving out of the group's interleave set. */
5229 if (node_isset(src_nid, numa_group->active_nodes))
5230 return true;
5231
5232 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5233 }
5234
5235 /* Migrating away from the preferred node is always bad. */
5236 if (src_nid == p->numa_preferred_nid)
5237 return true;
5238
5239 return task_faults(p, dst_nid) < task_faults(p, src_nid);
5240 }
5241
5242 #else
5243 static inline bool migrate_improves_locality(struct task_struct *p,
5244 struct lb_env *env)
5245 {
5246 return false;
5247 }
5248
5249 static inline bool migrate_degrades_locality(struct task_struct *p,
5250 struct lb_env *env)
5251 {
5252 return false;
5253 }
5254 #endif
5255
5256 /*
5257 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5258 */
5259 static
5260 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5261 {
5262 int tsk_cache_hot = 0;
5263 /*
5264 * We do not migrate tasks that are:
5265 * 1) throttled_lb_pair, or
5266 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5267 * 3) running (obviously), or
5268 * 4) are cache-hot on their current CPU.
5269 */
5270 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5271 return 0;
5272
5273 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5274 int cpu;
5275
5276 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5277
5278 env->flags |= LBF_SOME_PINNED;
5279
5280 /*
5281 * Remember if this task can be migrated to any other cpu in
5282 * our sched_group. We may want to revisit it if we couldn't
5283 * meet load balance goals by pulling other tasks on src_cpu.
5284 *
5285 * Also avoid computing new_dst_cpu if we have already computed
5286 * one in current iteration.
5287 */
5288 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5289 return 0;
5290
5291 /* Prevent to re-select dst_cpu via env's cpus */
5292 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5293 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5294 env->flags |= LBF_DST_PINNED;
5295 env->new_dst_cpu = cpu;
5296 break;
5297 }
5298 }
5299
5300 return 0;
5301 }
5302
5303 /* Record that we found atleast one task that could run on dst_cpu */
5304 env->flags &= ~LBF_ALL_PINNED;
5305
5306 if (task_running(env->src_rq, p)) {
5307 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5308 return 0;
5309 }
5310
5311 /*
5312 * Aggressive migration if:
5313 * 1) destination numa is preferred
5314 * 2) task is cache cold, or
5315 * 3) too many balance attempts have failed.
5316 */
5317 tsk_cache_hot = task_hot(p, env);
5318 if (!tsk_cache_hot)
5319 tsk_cache_hot = migrate_degrades_locality(p, env);
5320
5321 if (migrate_improves_locality(p, env)) {
5322 #ifdef CONFIG_SCHEDSTATS
5323 if (tsk_cache_hot) {
5324 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5325 schedstat_inc(p, se.statistics.nr_forced_migrations);
5326 }
5327 #endif
5328 return 1;
5329 }
5330
5331 if (!tsk_cache_hot ||
5332 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5333
5334 if (tsk_cache_hot) {
5335 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5336 schedstat_inc(p, se.statistics.nr_forced_migrations);
5337 }
5338
5339 return 1;
5340 }
5341
5342 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5343 return 0;
5344 }
5345
5346 /*
5347 * move_one_task tries to move exactly one task from busiest to this_rq, as
5348 * part of active balancing operations within "domain".
5349 * Returns 1 if successful and 0 otherwise.
5350 *
5351 * Called with both runqueues locked.
5352 */
5353 static int move_one_task(struct lb_env *env)
5354 {
5355 struct task_struct *p, *n;
5356
5357 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5358 if (!can_migrate_task(p, env))
5359 continue;
5360
5361 move_task(p, env);
5362 /*
5363 * Right now, this is only the second place move_task()
5364 * is called, so we can safely collect move_task()
5365 * stats here rather than inside move_task().
5366 */
5367 schedstat_inc(env->sd, lb_gained[env->idle]);
5368 return 1;
5369 }
5370 return 0;
5371 }
5372
5373 static const unsigned int sched_nr_migrate_break = 32;
5374
5375 /*
5376 * move_tasks tries to move up to imbalance weighted load from busiest to
5377 * this_rq, as part of a balancing operation within domain "sd".
5378 * Returns 1 if successful and 0 otherwise.
5379 *
5380 * Called with both runqueues locked.
5381 */
5382 static int move_tasks(struct lb_env *env)
5383 {
5384 struct list_head *tasks = &env->src_rq->cfs_tasks;
5385 struct task_struct *p;
5386 unsigned long load;
5387 int pulled = 0;
5388
5389 if (env->imbalance <= 0)
5390 return 0;
5391
5392 while (!list_empty(tasks)) {
5393 p = list_first_entry(tasks, struct task_struct, se.group_node);
5394
5395 env->loop++;
5396 /* We've more or less seen every task there is, call it quits */
5397 if (env->loop > env->loop_max)
5398 break;
5399
5400 /* take a breather every nr_migrate tasks */
5401 if (env->loop > env->loop_break) {
5402 env->loop_break += sched_nr_migrate_break;
5403 env->flags |= LBF_NEED_BREAK;
5404 break;
5405 }
5406
5407 if (!can_migrate_task(p, env))
5408 goto next;
5409
5410 load = task_h_load(p);
5411
5412 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5413 goto next;
5414
5415 if ((load / 2) > env->imbalance)
5416 goto next;
5417
5418 move_task(p, env);
5419 pulled++;
5420 env->imbalance -= load;
5421
5422 #ifdef CONFIG_PREEMPT
5423 /*
5424 * NEWIDLE balancing is a source of latency, so preemptible
5425 * kernels will stop after the first task is pulled to minimize
5426 * the critical section.
5427 */
5428 if (env->idle == CPU_NEWLY_IDLE)
5429 break;
5430 #endif
5431
5432 /*
5433 * We only want to steal up to the prescribed amount of
5434 * weighted load.
5435 */
5436 if (env->imbalance <= 0)
5437 break;
5438
5439 continue;
5440 next:
5441 list_move_tail(&p->se.group_node, tasks);
5442 }
5443
5444 /*
5445 * Right now, this is one of only two places move_task() is called,
5446 * so we can safely collect move_task() stats here rather than
5447 * inside move_task().
5448 */
5449 schedstat_add(env->sd, lb_gained[env->idle], pulled);
5450
5451 return pulled;
5452 }
5453
5454 #ifdef CONFIG_FAIR_GROUP_SCHED
5455 /*
5456 * update tg->load_weight by folding this cpu's load_avg
5457 */
5458 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5459 {
5460 struct sched_entity *se = tg->se[cpu];
5461 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5462
5463 /* throttled entities do not contribute to load */
5464 if (throttled_hierarchy(cfs_rq))
5465 return;
5466
5467 update_cfs_rq_blocked_load(cfs_rq, 1);
5468
5469 if (se) {
5470 update_entity_load_avg(se, 1);
5471 /*
5472 * We pivot on our runnable average having decayed to zero for
5473 * list removal. This generally implies that all our children
5474 * have also been removed (modulo rounding error or bandwidth
5475 * control); however, such cases are rare and we can fix these
5476 * at enqueue.
5477 *
5478 * TODO: fix up out-of-order children on enqueue.
5479 */
5480 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5481 list_del_leaf_cfs_rq(cfs_rq);
5482 } else {
5483 struct rq *rq = rq_of(cfs_rq);
5484 update_rq_runnable_avg(rq, rq->nr_running);
5485 }
5486 }
5487
5488 static void update_blocked_averages(int cpu)
5489 {
5490 struct rq *rq = cpu_rq(cpu);
5491 struct cfs_rq *cfs_rq;
5492 unsigned long flags;
5493
5494 raw_spin_lock_irqsave(&rq->lock, flags);
5495 update_rq_clock(rq);
5496 /*
5497 * Iterates the task_group tree in a bottom up fashion, see
5498 * list_add_leaf_cfs_rq() for details.
5499 */
5500 for_each_leaf_cfs_rq(rq, cfs_rq) {
5501 /*
5502 * Note: We may want to consider periodically releasing
5503 * rq->lock about these updates so that creating many task
5504 * groups does not result in continually extending hold time.
5505 */
5506 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5507 }
5508
5509 raw_spin_unlock_irqrestore(&rq->lock, flags);
5510 }
5511
5512 /*
5513 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5514 * This needs to be done in a top-down fashion because the load of a child
5515 * group is a fraction of its parents load.
5516 */
5517 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5518 {
5519 struct rq *rq = rq_of(cfs_rq);
5520 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5521 unsigned long now = jiffies;
5522 unsigned long load;
5523
5524 if (cfs_rq->last_h_load_update == now)
5525 return;
5526
5527 cfs_rq->h_load_next = NULL;
5528 for_each_sched_entity(se) {
5529 cfs_rq = cfs_rq_of(se);
5530 cfs_rq->h_load_next = se;
5531 if (cfs_rq->last_h_load_update == now)
5532 break;
5533 }
5534
5535 if (!se) {
5536 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5537 cfs_rq->last_h_load_update = now;
5538 }
5539
5540 while ((se = cfs_rq->h_load_next) != NULL) {
5541 load = cfs_rq->h_load;
5542 load = div64_ul(load * se->avg.load_avg_contrib,
5543 cfs_rq->runnable_load_avg + 1);
5544 cfs_rq = group_cfs_rq(se);
5545 cfs_rq->h_load = load;
5546 cfs_rq->last_h_load_update = now;
5547 }
5548 }
5549
5550 static unsigned long task_h_load(struct task_struct *p)
5551 {
5552 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5553
5554 update_cfs_rq_h_load(cfs_rq);
5555 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5556 cfs_rq->runnable_load_avg + 1);
5557 }
5558 #else
5559 static inline void update_blocked_averages(int cpu)
5560 {
5561 }
5562
5563 static unsigned long task_h_load(struct task_struct *p)
5564 {
5565 return p->se.avg.load_avg_contrib;
5566 }
5567 #endif
5568
5569 /********** Helpers for find_busiest_group ************************/
5570 /*
5571 * sg_lb_stats - stats of a sched_group required for load_balancing
5572 */
5573 struct sg_lb_stats {
5574 unsigned long avg_load; /*Avg load across the CPUs of the group */
5575 unsigned long group_load; /* Total load over the CPUs of the group */
5576 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5577 unsigned long load_per_task;
5578 unsigned long group_capacity;
5579 unsigned int sum_nr_running; /* Nr tasks running in the group */
5580 unsigned int group_capacity_factor;
5581 unsigned int idle_cpus;
5582 unsigned int group_weight;
5583 int group_imb; /* Is there an imbalance in the group ? */
5584 int group_has_free_capacity;
5585 #ifdef CONFIG_NUMA_BALANCING
5586 unsigned int nr_numa_running;
5587 unsigned int nr_preferred_running;
5588 #endif
5589 };
5590
5591 /*
5592 * sd_lb_stats - Structure to store the statistics of a sched_domain
5593 * during load balancing.
5594 */
5595 struct sd_lb_stats {
5596 struct sched_group *busiest; /* Busiest group in this sd */
5597 struct sched_group *local; /* Local group in this sd */
5598 unsigned long total_load; /* Total load of all groups in sd */
5599 unsigned long total_capacity; /* Total capacity of all groups in sd */
5600 unsigned long avg_load; /* Average load across all groups in sd */
5601
5602 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5603 struct sg_lb_stats local_stat; /* Statistics of the local group */
5604 };
5605
5606 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5607 {
5608 /*
5609 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5610 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5611 * We must however clear busiest_stat::avg_load because
5612 * update_sd_pick_busiest() reads this before assignment.
5613 */
5614 *sds = (struct sd_lb_stats){
5615 .busiest = NULL,
5616 .local = NULL,
5617 .total_load = 0UL,
5618 .total_capacity = 0UL,
5619 .busiest_stat = {
5620 .avg_load = 0UL,
5621 },
5622 };
5623 }
5624
5625 /**
5626 * get_sd_load_idx - Obtain the load index for a given sched domain.
5627 * @sd: The sched_domain whose load_idx is to be obtained.
5628 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5629 *
5630 * Return: The load index.
5631 */
5632 static inline int get_sd_load_idx(struct sched_domain *sd,
5633 enum cpu_idle_type idle)
5634 {
5635 int load_idx;
5636
5637 switch (idle) {
5638 case CPU_NOT_IDLE:
5639 load_idx = sd->busy_idx;
5640 break;
5641
5642 case CPU_NEWLY_IDLE:
5643 load_idx = sd->newidle_idx;
5644 break;
5645 default:
5646 load_idx = sd->idle_idx;
5647 break;
5648 }
5649
5650 return load_idx;
5651 }
5652
5653 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5654 {
5655 return SCHED_CAPACITY_SCALE;
5656 }
5657
5658 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5659 {
5660 return default_scale_capacity(sd, cpu);
5661 }
5662
5663 static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu)
5664 {
5665 unsigned long weight = sd->span_weight;
5666 unsigned long smt_gain = sd->smt_gain;
5667
5668 smt_gain /= weight;
5669
5670 return smt_gain;
5671 }
5672
5673 unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu)
5674 {
5675 return default_scale_smt_capacity(sd, cpu);
5676 }
5677
5678 static unsigned long scale_rt_capacity(int cpu)
5679 {
5680 struct rq *rq = cpu_rq(cpu);
5681 u64 total, available, age_stamp, avg;
5682 s64 delta;
5683
5684 /*
5685 * Since we're reading these variables without serialization make sure
5686 * we read them once before doing sanity checks on them.
5687 */
5688 age_stamp = ACCESS_ONCE(rq->age_stamp);
5689 avg = ACCESS_ONCE(rq->rt_avg);
5690
5691 delta = rq_clock(rq) - age_stamp;
5692 if (unlikely(delta < 0))
5693 delta = 0;
5694
5695 total = sched_avg_period() + delta;
5696
5697 if (unlikely(total < avg)) {
5698 /* Ensures that capacity won't end up being negative */
5699 available = 0;
5700 } else {
5701 available = total - avg;
5702 }
5703
5704 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5705 total = SCHED_CAPACITY_SCALE;
5706
5707 total >>= SCHED_CAPACITY_SHIFT;
5708
5709 return div_u64(available, total);
5710 }
5711
5712 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5713 {
5714 unsigned long weight = sd->span_weight;
5715 unsigned long capacity = SCHED_CAPACITY_SCALE;
5716 struct sched_group *sdg = sd->groups;
5717
5718 if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) {
5719 if (sched_feat(ARCH_CAPACITY))
5720 capacity *= arch_scale_smt_capacity(sd, cpu);
5721 else
5722 capacity *= default_scale_smt_capacity(sd, cpu);
5723
5724 capacity >>= SCHED_CAPACITY_SHIFT;
5725 }
5726
5727 sdg->sgc->capacity_orig = capacity;
5728
5729 if (sched_feat(ARCH_CAPACITY))
5730 capacity *= arch_scale_freq_capacity(sd, cpu);
5731 else
5732 capacity *= default_scale_capacity(sd, cpu);
5733
5734 capacity >>= SCHED_CAPACITY_SHIFT;
5735
5736 capacity *= scale_rt_capacity(cpu);
5737 capacity >>= SCHED_CAPACITY_SHIFT;
5738
5739 if (!capacity)
5740 capacity = 1;
5741
5742 cpu_rq(cpu)->cpu_capacity = capacity;
5743 sdg->sgc->capacity = capacity;
5744 }
5745
5746 void update_group_capacity(struct sched_domain *sd, int cpu)
5747 {
5748 struct sched_domain *child = sd->child;
5749 struct sched_group *group, *sdg = sd->groups;
5750 unsigned long capacity, capacity_orig;
5751 unsigned long interval;
5752
5753 interval = msecs_to_jiffies(sd->balance_interval);
5754 interval = clamp(interval, 1UL, max_load_balance_interval);
5755 sdg->sgc->next_update = jiffies + interval;
5756
5757 if (!child) {
5758 update_cpu_capacity(sd, cpu);
5759 return;
5760 }
5761
5762 capacity_orig = capacity = 0;
5763
5764 if (child->flags & SD_OVERLAP) {
5765 /*
5766 * SD_OVERLAP domains cannot assume that child groups
5767 * span the current group.
5768 */
5769
5770 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5771 struct sched_group_capacity *sgc;
5772 struct rq *rq = cpu_rq(cpu);
5773
5774 /*
5775 * build_sched_domains() -> init_sched_groups_capacity()
5776 * gets here before we've attached the domains to the
5777 * runqueues.
5778 *
5779 * Use capacity_of(), which is set irrespective of domains
5780 * in update_cpu_capacity().
5781 *
5782 * This avoids capacity/capacity_orig from being 0 and
5783 * causing divide-by-zero issues on boot.
5784 *
5785 * Runtime updates will correct capacity_orig.
5786 */
5787 if (unlikely(!rq->sd)) {
5788 capacity_orig += capacity_of(cpu);
5789 capacity += capacity_of(cpu);
5790 continue;
5791 }
5792
5793 sgc = rq->sd->groups->sgc;
5794 capacity_orig += sgc->capacity_orig;
5795 capacity += sgc->capacity;
5796 }
5797 } else {
5798 /*
5799 * !SD_OVERLAP domains can assume that child groups
5800 * span the current group.
5801 */
5802
5803 group = child->groups;
5804 do {
5805 capacity_orig += group->sgc->capacity_orig;
5806 capacity += group->sgc->capacity;
5807 group = group->next;
5808 } while (group != child->groups);
5809 }
5810
5811 sdg->sgc->capacity_orig = capacity_orig;
5812 sdg->sgc->capacity = capacity;
5813 }
5814
5815 /*
5816 * Try and fix up capacity for tiny siblings, this is needed when
5817 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5818 * which on its own isn't powerful enough.
5819 *
5820 * See update_sd_pick_busiest() and check_asym_packing().
5821 */
5822 static inline int
5823 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5824 {
5825 /*
5826 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
5827 */
5828 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
5829 return 0;
5830
5831 /*
5832 * If ~90% of the cpu_capacity is still there, we're good.
5833 */
5834 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
5835 return 1;
5836
5837 return 0;
5838 }
5839
5840 /*
5841 * Group imbalance indicates (and tries to solve) the problem where balancing
5842 * groups is inadequate due to tsk_cpus_allowed() constraints.
5843 *
5844 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5845 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5846 * Something like:
5847 *
5848 * { 0 1 2 3 } { 4 5 6 7 }
5849 * * * * *
5850 *
5851 * If we were to balance group-wise we'd place two tasks in the first group and
5852 * two tasks in the second group. Clearly this is undesired as it will overload
5853 * cpu 3 and leave one of the cpus in the second group unused.
5854 *
5855 * The current solution to this issue is detecting the skew in the first group
5856 * by noticing the lower domain failed to reach balance and had difficulty
5857 * moving tasks due to affinity constraints.
5858 *
5859 * When this is so detected; this group becomes a candidate for busiest; see
5860 * update_sd_pick_busiest(). And calculate_imbalance() and
5861 * find_busiest_group() avoid some of the usual balance conditions to allow it
5862 * to create an effective group imbalance.
5863 *
5864 * This is a somewhat tricky proposition since the next run might not find the
5865 * group imbalance and decide the groups need to be balanced again. A most
5866 * subtle and fragile situation.
5867 */
5868
5869 static inline int sg_imbalanced(struct sched_group *group)
5870 {
5871 return group->sgc->imbalance;
5872 }
5873
5874 /*
5875 * Compute the group capacity factor.
5876 *
5877 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
5878 * first dividing out the smt factor and computing the actual number of cores
5879 * and limit unit capacity with that.
5880 */
5881 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
5882 {
5883 unsigned int capacity_factor, smt, cpus;
5884 unsigned int capacity, capacity_orig;
5885
5886 capacity = group->sgc->capacity;
5887 capacity_orig = group->sgc->capacity_orig;
5888 cpus = group->group_weight;
5889
5890 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
5891 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
5892 capacity_factor = cpus / smt; /* cores */
5893
5894 capacity_factor = min_t(unsigned,
5895 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
5896 if (!capacity_factor)
5897 capacity_factor = fix_small_capacity(env->sd, group);
5898
5899 return capacity_factor;
5900 }
5901
5902 /**
5903 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5904 * @env: The load balancing environment.
5905 * @group: sched_group whose statistics are to be updated.
5906 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5907 * @local_group: Does group contain this_cpu.
5908 * @sgs: variable to hold the statistics for this group.
5909 */
5910 static inline void update_sg_lb_stats(struct lb_env *env,
5911 struct sched_group *group, int load_idx,
5912 int local_group, struct sg_lb_stats *sgs,
5913 bool *overload)
5914 {
5915 unsigned long load;
5916 int i;
5917
5918 memset(sgs, 0, sizeof(*sgs));
5919
5920 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5921 struct rq *rq = cpu_rq(i);
5922
5923 /* Bias balancing toward cpus of our domain */
5924 if (local_group)
5925 load = target_load(i, load_idx);
5926 else
5927 load = source_load(i, load_idx);
5928
5929 sgs->group_load += load;
5930 sgs->sum_nr_running += rq->nr_running;
5931
5932 if (rq->nr_running > 1)
5933 *overload = true;
5934
5935 #ifdef CONFIG_NUMA_BALANCING
5936 sgs->nr_numa_running += rq->nr_numa_running;
5937 sgs->nr_preferred_running += rq->nr_preferred_running;
5938 #endif
5939 sgs->sum_weighted_load += weighted_cpuload(i);
5940 if (idle_cpu(i))
5941 sgs->idle_cpus++;
5942 }
5943
5944 /* Adjust by relative CPU capacity of the group */
5945 sgs->group_capacity = group->sgc->capacity;
5946 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
5947
5948 if (sgs->sum_nr_running)
5949 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5950
5951 sgs->group_weight = group->group_weight;
5952
5953 sgs->group_imb = sg_imbalanced(group);
5954 sgs->group_capacity_factor = sg_capacity_factor(env, group);
5955
5956 if (sgs->group_capacity_factor > sgs->sum_nr_running)
5957 sgs->group_has_free_capacity = 1;
5958 }
5959
5960 /**
5961 * update_sd_pick_busiest - return 1 on busiest group
5962 * @env: The load balancing environment.
5963 * @sds: sched_domain statistics
5964 * @sg: sched_group candidate to be checked for being the busiest
5965 * @sgs: sched_group statistics
5966 *
5967 * Determine if @sg is a busier group than the previously selected
5968 * busiest group.
5969 *
5970 * Return: %true if @sg is a busier group than the previously selected
5971 * busiest group. %false otherwise.
5972 */
5973 static bool update_sd_pick_busiest(struct lb_env *env,
5974 struct sd_lb_stats *sds,
5975 struct sched_group *sg,
5976 struct sg_lb_stats *sgs)
5977 {
5978 if (sgs->avg_load <= sds->busiest_stat.avg_load)
5979 return false;
5980
5981 if (sgs->sum_nr_running > sgs->group_capacity_factor)
5982 return true;
5983
5984 if (sgs->group_imb)
5985 return true;
5986
5987 /*
5988 * ASYM_PACKING needs to move all the work to the lowest
5989 * numbered CPUs in the group, therefore mark all groups
5990 * higher than ourself as busy.
5991 */
5992 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5993 env->dst_cpu < group_first_cpu(sg)) {
5994 if (!sds->busiest)
5995 return true;
5996
5997 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5998 return true;
5999 }
6000
6001 return false;
6002 }
6003
6004 #ifdef CONFIG_NUMA_BALANCING
6005 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6006 {
6007 if (sgs->sum_nr_running > sgs->nr_numa_running)
6008 return regular;
6009 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6010 return remote;
6011 return all;
6012 }
6013
6014 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6015 {
6016 if (rq->nr_running > rq->nr_numa_running)
6017 return regular;
6018 if (rq->nr_running > rq->nr_preferred_running)
6019 return remote;
6020 return all;
6021 }
6022 #else
6023 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6024 {
6025 return all;
6026 }
6027
6028 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6029 {
6030 return regular;
6031 }
6032 #endif /* CONFIG_NUMA_BALANCING */
6033
6034 /**
6035 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6036 * @env: The load balancing environment.
6037 * @sds: variable to hold the statistics for this sched_domain.
6038 */
6039 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6040 {
6041 struct sched_domain *child = env->sd->child;
6042 struct sched_group *sg = env->sd->groups;
6043 struct sg_lb_stats tmp_sgs;
6044 int load_idx, prefer_sibling = 0;
6045 bool overload = false;
6046
6047 if (child && child->flags & SD_PREFER_SIBLING)
6048 prefer_sibling = 1;
6049
6050 load_idx = get_sd_load_idx(env->sd, env->idle);
6051
6052 do {
6053 struct sg_lb_stats *sgs = &tmp_sgs;
6054 int local_group;
6055
6056 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6057 if (local_group) {
6058 sds->local = sg;
6059 sgs = &sds->local_stat;
6060
6061 if (env->idle != CPU_NEWLY_IDLE ||
6062 time_after_eq(jiffies, sg->sgc->next_update))
6063 update_group_capacity(env->sd, env->dst_cpu);
6064 }
6065
6066 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6067 &overload);
6068
6069 if (local_group)
6070 goto next_group;
6071
6072 /*
6073 * In case the child domain prefers tasks go to siblings
6074 * first, lower the sg capacity factor to one so that we'll try
6075 * and move all the excess tasks away. We lower the capacity
6076 * of a group only if the local group has the capacity to fit
6077 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6078 * extra check prevents the case where you always pull from the
6079 * heaviest group when it is already under-utilized (possible
6080 * with a large weight task outweighs the tasks on the system).
6081 */
6082 if (prefer_sibling && sds->local &&
6083 sds->local_stat.group_has_free_capacity)
6084 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6085
6086 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6087 sds->busiest = sg;
6088 sds->busiest_stat = *sgs;
6089 }
6090
6091 next_group:
6092 /* Now, start updating sd_lb_stats */
6093 sds->total_load += sgs->group_load;
6094 sds->total_capacity += sgs->group_capacity;
6095
6096 sg = sg->next;
6097 } while (sg != env->sd->groups);
6098
6099 if (env->sd->flags & SD_NUMA)
6100 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6101
6102 if (!env->sd->parent) {
6103 /* update overload indicator if we are at root domain */
6104 if (env->dst_rq->rd->overload != overload)
6105 env->dst_rq->rd->overload = overload;
6106 }
6107
6108 }
6109
6110 /**
6111 * check_asym_packing - Check to see if the group is packed into the
6112 * sched doman.
6113 *
6114 * This is primarily intended to used at the sibling level. Some
6115 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6116 * case of POWER7, it can move to lower SMT modes only when higher
6117 * threads are idle. When in lower SMT modes, the threads will
6118 * perform better since they share less core resources. Hence when we
6119 * have idle threads, we want them to be the higher ones.
6120 *
6121 * This packing function is run on idle threads. It checks to see if
6122 * the busiest CPU in this domain (core in the P7 case) has a higher
6123 * CPU number than the packing function is being run on. Here we are
6124 * assuming lower CPU number will be equivalent to lower a SMT thread
6125 * number.
6126 *
6127 * Return: 1 when packing is required and a task should be moved to
6128 * this CPU. The amount of the imbalance is returned in *imbalance.
6129 *
6130 * @env: The load balancing environment.
6131 * @sds: Statistics of the sched_domain which is to be packed
6132 */
6133 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6134 {
6135 int busiest_cpu;
6136
6137 if (!(env->sd->flags & SD_ASYM_PACKING))
6138 return 0;
6139
6140 if (!sds->busiest)
6141 return 0;
6142
6143 busiest_cpu = group_first_cpu(sds->busiest);
6144 if (env->dst_cpu > busiest_cpu)
6145 return 0;
6146
6147 env->imbalance = DIV_ROUND_CLOSEST(
6148 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6149 SCHED_CAPACITY_SCALE);
6150
6151 return 1;
6152 }
6153
6154 /**
6155 * fix_small_imbalance - Calculate the minor imbalance that exists
6156 * amongst the groups of a sched_domain, during
6157 * load balancing.
6158 * @env: The load balancing environment.
6159 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6160 */
6161 static inline
6162 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6163 {
6164 unsigned long tmp, capa_now = 0, capa_move = 0;
6165 unsigned int imbn = 2;
6166 unsigned long scaled_busy_load_per_task;
6167 struct sg_lb_stats *local, *busiest;
6168
6169 local = &sds->local_stat;
6170 busiest = &sds->busiest_stat;
6171
6172 if (!local->sum_nr_running)
6173 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6174 else if (busiest->load_per_task > local->load_per_task)
6175 imbn = 1;
6176
6177 scaled_busy_load_per_task =
6178 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6179 busiest->group_capacity;
6180
6181 if (busiest->avg_load + scaled_busy_load_per_task >=
6182 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6183 env->imbalance = busiest->load_per_task;
6184 return;
6185 }
6186
6187 /*
6188 * OK, we don't have enough imbalance to justify moving tasks,
6189 * however we may be able to increase total CPU capacity used by
6190 * moving them.
6191 */
6192
6193 capa_now += busiest->group_capacity *
6194 min(busiest->load_per_task, busiest->avg_load);
6195 capa_now += local->group_capacity *
6196 min(local->load_per_task, local->avg_load);
6197 capa_now /= SCHED_CAPACITY_SCALE;
6198
6199 /* Amount of load we'd subtract */
6200 if (busiest->avg_load > scaled_busy_load_per_task) {
6201 capa_move += busiest->group_capacity *
6202 min(busiest->load_per_task,
6203 busiest->avg_load - scaled_busy_load_per_task);
6204 }
6205
6206 /* Amount of load we'd add */
6207 if (busiest->avg_load * busiest->group_capacity <
6208 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6209 tmp = (busiest->avg_load * busiest->group_capacity) /
6210 local->group_capacity;
6211 } else {
6212 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6213 local->group_capacity;
6214 }
6215 capa_move += local->group_capacity *
6216 min(local->load_per_task, local->avg_load + tmp);
6217 capa_move /= SCHED_CAPACITY_SCALE;
6218
6219 /* Move if we gain throughput */
6220 if (capa_move > capa_now)
6221 env->imbalance = busiest->load_per_task;
6222 }
6223
6224 /**
6225 * calculate_imbalance - Calculate the amount of imbalance present within the
6226 * groups of a given sched_domain during load balance.
6227 * @env: load balance environment
6228 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6229 */
6230 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6231 {
6232 unsigned long max_pull, load_above_capacity = ~0UL;
6233 struct sg_lb_stats *local, *busiest;
6234
6235 local = &sds->local_stat;
6236 busiest = &sds->busiest_stat;
6237
6238 if (busiest->group_imb) {
6239 /*
6240 * In the group_imb case we cannot rely on group-wide averages
6241 * to ensure cpu-load equilibrium, look at wider averages. XXX
6242 */
6243 busiest->load_per_task =
6244 min(busiest->load_per_task, sds->avg_load);
6245 }
6246
6247 /*
6248 * In the presence of smp nice balancing, certain scenarios can have
6249 * max load less than avg load(as we skip the groups at or below
6250 * its cpu_capacity, while calculating max_load..)
6251 */
6252 if (busiest->avg_load <= sds->avg_load ||
6253 local->avg_load >= sds->avg_load) {
6254 env->imbalance = 0;
6255 return fix_small_imbalance(env, sds);
6256 }
6257
6258 if (!busiest->group_imb) {
6259 /*
6260 * Don't want to pull so many tasks that a group would go idle.
6261 * Except of course for the group_imb case, since then we might
6262 * have to drop below capacity to reach cpu-load equilibrium.
6263 */
6264 load_above_capacity =
6265 (busiest->sum_nr_running - busiest->group_capacity_factor);
6266
6267 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6268 load_above_capacity /= busiest->group_capacity;
6269 }
6270
6271 /*
6272 * We're trying to get all the cpus to the average_load, so we don't
6273 * want to push ourselves above the average load, nor do we wish to
6274 * reduce the max loaded cpu below the average load. At the same time,
6275 * we also don't want to reduce the group load below the group capacity
6276 * (so that we can implement power-savings policies etc). Thus we look
6277 * for the minimum possible imbalance.
6278 */
6279 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6280
6281 /* How much load to actually move to equalise the imbalance */
6282 env->imbalance = min(
6283 max_pull * busiest->group_capacity,
6284 (sds->avg_load - local->avg_load) * local->group_capacity
6285 ) / SCHED_CAPACITY_SCALE;
6286
6287 /*
6288 * if *imbalance is less than the average load per runnable task
6289 * there is no guarantee that any tasks will be moved so we'll have
6290 * a think about bumping its value to force at least one task to be
6291 * moved
6292 */
6293 if (env->imbalance < busiest->load_per_task)
6294 return fix_small_imbalance(env, sds);
6295 }
6296
6297 /******* find_busiest_group() helpers end here *********************/
6298
6299 /**
6300 * find_busiest_group - Returns the busiest group within the sched_domain
6301 * if there is an imbalance. If there isn't an imbalance, and
6302 * the user has opted for power-savings, it returns a group whose
6303 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6304 * such a group exists.
6305 *
6306 * Also calculates the amount of weighted load which should be moved
6307 * to restore balance.
6308 *
6309 * @env: The load balancing environment.
6310 *
6311 * Return: - The busiest group if imbalance exists.
6312 * - If no imbalance and user has opted for power-savings balance,
6313 * return the least loaded group whose CPUs can be
6314 * put to idle by rebalancing its tasks onto our group.
6315 */
6316 static struct sched_group *find_busiest_group(struct lb_env *env)
6317 {
6318 struct sg_lb_stats *local, *busiest;
6319 struct sd_lb_stats sds;
6320
6321 init_sd_lb_stats(&sds);
6322
6323 /*
6324 * Compute the various statistics relavent for load balancing at
6325 * this level.
6326 */
6327 update_sd_lb_stats(env, &sds);
6328 local = &sds.local_stat;
6329 busiest = &sds.busiest_stat;
6330
6331 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6332 check_asym_packing(env, &sds))
6333 return sds.busiest;
6334
6335 /* There is no busy sibling group to pull tasks from */
6336 if (!sds.busiest || busiest->sum_nr_running == 0)
6337 goto out_balanced;
6338
6339 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6340 / sds.total_capacity;
6341
6342 /*
6343 * If the busiest group is imbalanced the below checks don't
6344 * work because they assume all things are equal, which typically
6345 * isn't true due to cpus_allowed constraints and the like.
6346 */
6347 if (busiest->group_imb)
6348 goto force_balance;
6349
6350 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6351 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6352 !busiest->group_has_free_capacity)
6353 goto force_balance;
6354
6355 /*
6356 * If the local group is more busy than the selected busiest group
6357 * don't try and pull any tasks.
6358 */
6359 if (local->avg_load >= busiest->avg_load)
6360 goto out_balanced;
6361
6362 /*
6363 * Don't pull any tasks if this group is already above the domain
6364 * average load.
6365 */
6366 if (local->avg_load >= sds.avg_load)
6367 goto out_balanced;
6368
6369 if (env->idle == CPU_IDLE) {
6370 /*
6371 * This cpu is idle. If the busiest group load doesn't
6372 * have more tasks than the number of available cpu's and
6373 * there is no imbalance between this and busiest group
6374 * wrt to idle cpu's, it is balanced.
6375 */
6376 if ((local->idle_cpus < busiest->idle_cpus) &&
6377 busiest->sum_nr_running <= busiest->group_weight)
6378 goto out_balanced;
6379 } else {
6380 /*
6381 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6382 * imbalance_pct to be conservative.
6383 */
6384 if (100 * busiest->avg_load <=
6385 env->sd->imbalance_pct * local->avg_load)
6386 goto out_balanced;
6387 }
6388
6389 force_balance:
6390 /* Looks like there is an imbalance. Compute it */
6391 calculate_imbalance(env, &sds);
6392 return sds.busiest;
6393
6394 out_balanced:
6395 env->imbalance = 0;
6396 return NULL;
6397 }
6398
6399 /*
6400 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6401 */
6402 static struct rq *find_busiest_queue(struct lb_env *env,
6403 struct sched_group *group)
6404 {
6405 struct rq *busiest = NULL, *rq;
6406 unsigned long busiest_load = 0, busiest_capacity = 1;
6407 int i;
6408
6409 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6410 unsigned long capacity, capacity_factor, wl;
6411 enum fbq_type rt;
6412
6413 rq = cpu_rq(i);
6414 rt = fbq_classify_rq(rq);
6415
6416 /*
6417 * We classify groups/runqueues into three groups:
6418 * - regular: there are !numa tasks
6419 * - remote: there are numa tasks that run on the 'wrong' node
6420 * - all: there is no distinction
6421 *
6422 * In order to avoid migrating ideally placed numa tasks,
6423 * ignore those when there's better options.
6424 *
6425 * If we ignore the actual busiest queue to migrate another
6426 * task, the next balance pass can still reduce the busiest
6427 * queue by moving tasks around inside the node.
6428 *
6429 * If we cannot move enough load due to this classification
6430 * the next pass will adjust the group classification and
6431 * allow migration of more tasks.
6432 *
6433 * Both cases only affect the total convergence complexity.
6434 */
6435 if (rt > env->fbq_type)
6436 continue;
6437
6438 capacity = capacity_of(i);
6439 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6440 if (!capacity_factor)
6441 capacity_factor = fix_small_capacity(env->sd, group);
6442
6443 wl = weighted_cpuload(i);
6444
6445 /*
6446 * When comparing with imbalance, use weighted_cpuload()
6447 * which is not scaled with the cpu capacity.
6448 */
6449 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6450 continue;
6451
6452 /*
6453 * For the load comparisons with the other cpu's, consider
6454 * the weighted_cpuload() scaled with the cpu capacity, so
6455 * that the load can be moved away from the cpu that is
6456 * potentially running at a lower capacity.
6457 *
6458 * Thus we're looking for max(wl_i / capacity_i), crosswise
6459 * multiplication to rid ourselves of the division works out
6460 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6461 * our previous maximum.
6462 */
6463 if (wl * busiest_capacity > busiest_load * capacity) {
6464 busiest_load = wl;
6465 busiest_capacity = capacity;
6466 busiest = rq;
6467 }
6468 }
6469
6470 return busiest;
6471 }
6472
6473 /*
6474 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6475 * so long as it is large enough.
6476 */
6477 #define MAX_PINNED_INTERVAL 512
6478
6479 /* Working cpumask for load_balance and load_balance_newidle. */
6480 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6481
6482 static int need_active_balance(struct lb_env *env)
6483 {
6484 struct sched_domain *sd = env->sd;
6485
6486 if (env->idle == CPU_NEWLY_IDLE) {
6487
6488 /*
6489 * ASYM_PACKING needs to force migrate tasks from busy but
6490 * higher numbered CPUs in order to pack all tasks in the
6491 * lowest numbered CPUs.
6492 */
6493 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6494 return 1;
6495 }
6496
6497 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6498 }
6499
6500 static int active_load_balance_cpu_stop(void *data);
6501
6502 static int should_we_balance(struct lb_env *env)
6503 {
6504 struct sched_group *sg = env->sd->groups;
6505 struct cpumask *sg_cpus, *sg_mask;
6506 int cpu, balance_cpu = -1;
6507
6508 /*
6509 * In the newly idle case, we will allow all the cpu's
6510 * to do the newly idle load balance.
6511 */
6512 if (env->idle == CPU_NEWLY_IDLE)
6513 return 1;
6514
6515 sg_cpus = sched_group_cpus(sg);
6516 sg_mask = sched_group_mask(sg);
6517 /* Try to find first idle cpu */
6518 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6519 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6520 continue;
6521
6522 balance_cpu = cpu;
6523 break;
6524 }
6525
6526 if (balance_cpu == -1)
6527 balance_cpu = group_balance_cpu(sg);
6528
6529 /*
6530 * First idle cpu or the first cpu(busiest) in this sched group
6531 * is eligible for doing load balancing at this and above domains.
6532 */
6533 return balance_cpu == env->dst_cpu;
6534 }
6535
6536 /*
6537 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6538 * tasks if there is an imbalance.
6539 */
6540 static int load_balance(int this_cpu, struct rq *this_rq,
6541 struct sched_domain *sd, enum cpu_idle_type idle,
6542 int *continue_balancing)
6543 {
6544 int ld_moved, cur_ld_moved, active_balance = 0;
6545 struct sched_domain *sd_parent = sd->parent;
6546 struct sched_group *group;
6547 struct rq *busiest;
6548 unsigned long flags;
6549 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6550
6551 struct lb_env env = {
6552 .sd = sd,
6553 .dst_cpu = this_cpu,
6554 .dst_rq = this_rq,
6555 .dst_grpmask = sched_group_cpus(sd->groups),
6556 .idle = idle,
6557 .loop_break = sched_nr_migrate_break,
6558 .cpus = cpus,
6559 .fbq_type = all,
6560 };
6561
6562 /*
6563 * For NEWLY_IDLE load_balancing, we don't need to consider
6564 * other cpus in our group
6565 */
6566 if (idle == CPU_NEWLY_IDLE)
6567 env.dst_grpmask = NULL;
6568
6569 cpumask_copy(cpus, cpu_active_mask);
6570
6571 schedstat_inc(sd, lb_count[idle]);
6572
6573 redo:
6574 if (!should_we_balance(&env)) {
6575 *continue_balancing = 0;
6576 goto out_balanced;
6577 }
6578
6579 group = find_busiest_group(&env);
6580 if (!group) {
6581 schedstat_inc(sd, lb_nobusyg[idle]);
6582 goto out_balanced;
6583 }
6584
6585 busiest = find_busiest_queue(&env, group);
6586 if (!busiest) {
6587 schedstat_inc(sd, lb_nobusyq[idle]);
6588 goto out_balanced;
6589 }
6590
6591 BUG_ON(busiest == env.dst_rq);
6592
6593 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6594
6595 ld_moved = 0;
6596 if (busiest->nr_running > 1) {
6597 /*
6598 * Attempt to move tasks. If find_busiest_group has found
6599 * an imbalance but busiest->nr_running <= 1, the group is
6600 * still unbalanced. ld_moved simply stays zero, so it is
6601 * correctly treated as an imbalance.
6602 */
6603 env.flags |= LBF_ALL_PINNED;
6604 env.src_cpu = busiest->cpu;
6605 env.src_rq = busiest;
6606 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6607
6608 more_balance:
6609 local_irq_save(flags);
6610 double_rq_lock(env.dst_rq, busiest);
6611
6612 /*
6613 * cur_ld_moved - load moved in current iteration
6614 * ld_moved - cumulative load moved across iterations
6615 */
6616 cur_ld_moved = move_tasks(&env);
6617 ld_moved += cur_ld_moved;
6618 double_rq_unlock(env.dst_rq, busiest);
6619 local_irq_restore(flags);
6620
6621 /*
6622 * some other cpu did the load balance for us.
6623 */
6624 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6625 resched_cpu(env.dst_cpu);
6626
6627 if (env.flags & LBF_NEED_BREAK) {
6628 env.flags &= ~LBF_NEED_BREAK;
6629 goto more_balance;
6630 }
6631
6632 /*
6633 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6634 * us and move them to an alternate dst_cpu in our sched_group
6635 * where they can run. The upper limit on how many times we
6636 * iterate on same src_cpu is dependent on number of cpus in our
6637 * sched_group.
6638 *
6639 * This changes load balance semantics a bit on who can move
6640 * load to a given_cpu. In addition to the given_cpu itself
6641 * (or a ilb_cpu acting on its behalf where given_cpu is
6642 * nohz-idle), we now have balance_cpu in a position to move
6643 * load to given_cpu. In rare situations, this may cause
6644 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6645 * _independently_ and at _same_ time to move some load to
6646 * given_cpu) causing exceess load to be moved to given_cpu.
6647 * This however should not happen so much in practice and
6648 * moreover subsequent load balance cycles should correct the
6649 * excess load moved.
6650 */
6651 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6652
6653 /* Prevent to re-select dst_cpu via env's cpus */
6654 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6655
6656 env.dst_rq = cpu_rq(env.new_dst_cpu);
6657 env.dst_cpu = env.new_dst_cpu;
6658 env.flags &= ~LBF_DST_PINNED;
6659 env.loop = 0;
6660 env.loop_break = sched_nr_migrate_break;
6661
6662 /*
6663 * Go back to "more_balance" rather than "redo" since we
6664 * need to continue with same src_cpu.
6665 */
6666 goto more_balance;
6667 }
6668
6669 /*
6670 * We failed to reach balance because of affinity.
6671 */
6672 if (sd_parent) {
6673 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6674
6675 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6676 *group_imbalance = 1;
6677 } else if (*group_imbalance)
6678 *group_imbalance = 0;
6679 }
6680
6681 /* All tasks on this runqueue were pinned by CPU affinity */
6682 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6683 cpumask_clear_cpu(cpu_of(busiest), cpus);
6684 if (!cpumask_empty(cpus)) {
6685 env.loop = 0;
6686 env.loop_break = sched_nr_migrate_break;
6687 goto redo;
6688 }
6689 goto out_balanced;
6690 }
6691 }
6692
6693 if (!ld_moved) {
6694 schedstat_inc(sd, lb_failed[idle]);
6695 /*
6696 * Increment the failure counter only on periodic balance.
6697 * We do not want newidle balance, which can be very
6698 * frequent, pollute the failure counter causing
6699 * excessive cache_hot migrations and active balances.
6700 */
6701 if (idle != CPU_NEWLY_IDLE)
6702 sd->nr_balance_failed++;
6703
6704 if (need_active_balance(&env)) {
6705 raw_spin_lock_irqsave(&busiest->lock, flags);
6706
6707 /* don't kick the active_load_balance_cpu_stop,
6708 * if the curr task on busiest cpu can't be
6709 * moved to this_cpu
6710 */
6711 if (!cpumask_test_cpu(this_cpu,
6712 tsk_cpus_allowed(busiest->curr))) {
6713 raw_spin_unlock_irqrestore(&busiest->lock,
6714 flags);
6715 env.flags |= LBF_ALL_PINNED;
6716 goto out_one_pinned;
6717 }
6718
6719 /*
6720 * ->active_balance synchronizes accesses to
6721 * ->active_balance_work. Once set, it's cleared
6722 * only after active load balance is finished.
6723 */
6724 if (!busiest->active_balance) {
6725 busiest->active_balance = 1;
6726 busiest->push_cpu = this_cpu;
6727 active_balance = 1;
6728 }
6729 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6730
6731 if (active_balance) {
6732 stop_one_cpu_nowait(cpu_of(busiest),
6733 active_load_balance_cpu_stop, busiest,
6734 &busiest->active_balance_work);
6735 }
6736
6737 /*
6738 * We've kicked active balancing, reset the failure
6739 * counter.
6740 */
6741 sd->nr_balance_failed = sd->cache_nice_tries+1;
6742 }
6743 } else
6744 sd->nr_balance_failed = 0;
6745
6746 if (likely(!active_balance)) {
6747 /* We were unbalanced, so reset the balancing interval */
6748 sd->balance_interval = sd->min_interval;
6749 } else {
6750 /*
6751 * If we've begun active balancing, start to back off. This
6752 * case may not be covered by the all_pinned logic if there
6753 * is only 1 task on the busy runqueue (because we don't call
6754 * move_tasks).
6755 */
6756 if (sd->balance_interval < sd->max_interval)
6757 sd->balance_interval *= 2;
6758 }
6759
6760 goto out;
6761
6762 out_balanced:
6763 schedstat_inc(sd, lb_balanced[idle]);
6764
6765 sd->nr_balance_failed = 0;
6766
6767 out_one_pinned:
6768 /* tune up the balancing interval */
6769 if (((env.flags & LBF_ALL_PINNED) &&
6770 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6771 (sd->balance_interval < sd->max_interval))
6772 sd->balance_interval *= 2;
6773
6774 ld_moved = 0;
6775 out:
6776 return ld_moved;
6777 }
6778
6779 static inline unsigned long
6780 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6781 {
6782 unsigned long interval = sd->balance_interval;
6783
6784 if (cpu_busy)
6785 interval *= sd->busy_factor;
6786
6787 /* scale ms to jiffies */
6788 interval = msecs_to_jiffies(interval);
6789 interval = clamp(interval, 1UL, max_load_balance_interval);
6790
6791 return interval;
6792 }
6793
6794 static inline void
6795 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6796 {
6797 unsigned long interval, next;
6798
6799 interval = get_sd_balance_interval(sd, cpu_busy);
6800 next = sd->last_balance + interval;
6801
6802 if (time_after(*next_balance, next))
6803 *next_balance = next;
6804 }
6805
6806 /*
6807 * idle_balance is called by schedule() if this_cpu is about to become
6808 * idle. Attempts to pull tasks from other CPUs.
6809 */
6810 static int idle_balance(struct rq *this_rq)
6811 {
6812 unsigned long next_balance = jiffies + HZ;
6813 int this_cpu = this_rq->cpu;
6814 struct sched_domain *sd;
6815 int pulled_task = 0;
6816 u64 curr_cost = 0;
6817
6818 idle_enter_fair(this_rq);
6819
6820 /*
6821 * We must set idle_stamp _before_ calling idle_balance(), such that we
6822 * measure the duration of idle_balance() as idle time.
6823 */
6824 this_rq->idle_stamp = rq_clock(this_rq);
6825
6826 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6827 !this_rq->rd->overload) {
6828 rcu_read_lock();
6829 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6830 if (sd)
6831 update_next_balance(sd, 0, &next_balance);
6832 rcu_read_unlock();
6833
6834 goto out;
6835 }
6836
6837 /*
6838 * Drop the rq->lock, but keep IRQ/preempt disabled.
6839 */
6840 raw_spin_unlock(&this_rq->lock);
6841
6842 update_blocked_averages(this_cpu);
6843 rcu_read_lock();
6844 for_each_domain(this_cpu, sd) {
6845 int continue_balancing = 1;
6846 u64 t0, domain_cost;
6847
6848 if (!(sd->flags & SD_LOAD_BALANCE))
6849 continue;
6850
6851 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6852 update_next_balance(sd, 0, &next_balance);
6853 break;
6854 }
6855
6856 if (sd->flags & SD_BALANCE_NEWIDLE) {
6857 t0 = sched_clock_cpu(this_cpu);
6858
6859 pulled_task = load_balance(this_cpu, this_rq,
6860 sd, CPU_NEWLY_IDLE,
6861 &continue_balancing);
6862
6863 domain_cost = sched_clock_cpu(this_cpu) - t0;
6864 if (domain_cost > sd->max_newidle_lb_cost)
6865 sd->max_newidle_lb_cost = domain_cost;
6866
6867 curr_cost += domain_cost;
6868 }
6869
6870 update_next_balance(sd, 0, &next_balance);
6871
6872 /*
6873 * Stop searching for tasks to pull if there are
6874 * now runnable tasks on this rq.
6875 */
6876 if (pulled_task || this_rq->nr_running > 0)
6877 break;
6878 }
6879 rcu_read_unlock();
6880
6881 raw_spin_lock(&this_rq->lock);
6882
6883 if (curr_cost > this_rq->max_idle_balance_cost)
6884 this_rq->max_idle_balance_cost = curr_cost;
6885
6886 /*
6887 * While browsing the domains, we released the rq lock, a task could
6888 * have been enqueued in the meantime. Since we're not going idle,
6889 * pretend we pulled a task.
6890 */
6891 if (this_rq->cfs.h_nr_running && !pulled_task)
6892 pulled_task = 1;
6893
6894 out:
6895 /* Move the next balance forward */
6896 if (time_after(this_rq->next_balance, next_balance))
6897 this_rq->next_balance = next_balance;
6898
6899 /* Is there a task of a high priority class? */
6900 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
6901 pulled_task = -1;
6902
6903 if (pulled_task) {
6904 idle_exit_fair(this_rq);
6905 this_rq->idle_stamp = 0;
6906 }
6907
6908 return pulled_task;
6909 }
6910
6911 /*
6912 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6913 * running tasks off the busiest CPU onto idle CPUs. It requires at
6914 * least 1 task to be running on each physical CPU where possible, and
6915 * avoids physical / logical imbalances.
6916 */
6917 static int active_load_balance_cpu_stop(void *data)
6918 {
6919 struct rq *busiest_rq = data;
6920 int busiest_cpu = cpu_of(busiest_rq);
6921 int target_cpu = busiest_rq->push_cpu;
6922 struct rq *target_rq = cpu_rq(target_cpu);
6923 struct sched_domain *sd;
6924
6925 raw_spin_lock_irq(&busiest_rq->lock);
6926
6927 /* make sure the requested cpu hasn't gone down in the meantime */
6928 if (unlikely(busiest_cpu != smp_processor_id() ||
6929 !busiest_rq->active_balance))
6930 goto out_unlock;
6931
6932 /* Is there any task to move? */
6933 if (busiest_rq->nr_running <= 1)
6934 goto out_unlock;
6935
6936 /*
6937 * This condition is "impossible", if it occurs
6938 * we need to fix it. Originally reported by
6939 * Bjorn Helgaas on a 128-cpu setup.
6940 */
6941 BUG_ON(busiest_rq == target_rq);
6942
6943 /* move a task from busiest_rq to target_rq */
6944 double_lock_balance(busiest_rq, target_rq);
6945
6946 /* Search for an sd spanning us and the target CPU. */
6947 rcu_read_lock();
6948 for_each_domain(target_cpu, sd) {
6949 if ((sd->flags & SD_LOAD_BALANCE) &&
6950 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6951 break;
6952 }
6953
6954 if (likely(sd)) {
6955 struct lb_env env = {
6956 .sd = sd,
6957 .dst_cpu = target_cpu,
6958 .dst_rq = target_rq,
6959 .src_cpu = busiest_rq->cpu,
6960 .src_rq = busiest_rq,
6961 .idle = CPU_IDLE,
6962 };
6963
6964 schedstat_inc(sd, alb_count);
6965
6966 if (move_one_task(&env))
6967 schedstat_inc(sd, alb_pushed);
6968 else
6969 schedstat_inc(sd, alb_failed);
6970 }
6971 rcu_read_unlock();
6972 double_unlock_balance(busiest_rq, target_rq);
6973 out_unlock:
6974 busiest_rq->active_balance = 0;
6975 raw_spin_unlock_irq(&busiest_rq->lock);
6976 return 0;
6977 }
6978
6979 static inline int on_null_domain(struct rq *rq)
6980 {
6981 return unlikely(!rcu_dereference_sched(rq->sd));
6982 }
6983
6984 #ifdef CONFIG_NO_HZ_COMMON
6985 /*
6986 * idle load balancing details
6987 * - When one of the busy CPUs notice that there may be an idle rebalancing
6988 * needed, they will kick the idle load balancer, which then does idle
6989 * load balancing for all the idle CPUs.
6990 */
6991 static struct {
6992 cpumask_var_t idle_cpus_mask;
6993 atomic_t nr_cpus;
6994 unsigned long next_balance; /* in jiffy units */
6995 } nohz ____cacheline_aligned;
6996
6997 static inline int find_new_ilb(void)
6998 {
6999 int ilb = cpumask_first(nohz.idle_cpus_mask);
7000
7001 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7002 return ilb;
7003
7004 return nr_cpu_ids;
7005 }
7006
7007 /*
7008 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7009 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7010 * CPU (if there is one).
7011 */
7012 static void nohz_balancer_kick(void)
7013 {
7014 int ilb_cpu;
7015
7016 nohz.next_balance++;
7017
7018 ilb_cpu = find_new_ilb();
7019
7020 if (ilb_cpu >= nr_cpu_ids)
7021 return;
7022
7023 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7024 return;
7025 /*
7026 * Use smp_send_reschedule() instead of resched_cpu().
7027 * This way we generate a sched IPI on the target cpu which
7028 * is idle. And the softirq performing nohz idle load balance
7029 * will be run before returning from the IPI.
7030 */
7031 smp_send_reschedule(ilb_cpu);
7032 return;
7033 }
7034
7035 static inline void nohz_balance_exit_idle(int cpu)
7036 {
7037 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7038 /*
7039 * Completely isolated CPUs don't ever set, so we must test.
7040 */
7041 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7042 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7043 atomic_dec(&nohz.nr_cpus);
7044 }
7045 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7046 }
7047 }
7048
7049 static inline void set_cpu_sd_state_busy(void)
7050 {
7051 struct sched_domain *sd;
7052 int cpu = smp_processor_id();
7053
7054 rcu_read_lock();
7055 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7056
7057 if (!sd || !sd->nohz_idle)
7058 goto unlock;
7059 sd->nohz_idle = 0;
7060
7061 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7062 unlock:
7063 rcu_read_unlock();
7064 }
7065
7066 void set_cpu_sd_state_idle(void)
7067 {
7068 struct sched_domain *sd;
7069 int cpu = smp_processor_id();
7070
7071 rcu_read_lock();
7072 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7073
7074 if (!sd || sd->nohz_idle)
7075 goto unlock;
7076 sd->nohz_idle = 1;
7077
7078 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7079 unlock:
7080 rcu_read_unlock();
7081 }
7082
7083 /*
7084 * This routine will record that the cpu is going idle with tick stopped.
7085 * This info will be used in performing idle load balancing in the future.
7086 */
7087 void nohz_balance_enter_idle(int cpu)
7088 {
7089 /*
7090 * If this cpu is going down, then nothing needs to be done.
7091 */
7092 if (!cpu_active(cpu))
7093 return;
7094
7095 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7096 return;
7097
7098 /*
7099 * If we're a completely isolated CPU, we don't play.
7100 */
7101 if (on_null_domain(cpu_rq(cpu)))
7102 return;
7103
7104 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7105 atomic_inc(&nohz.nr_cpus);
7106 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7107 }
7108
7109 static int sched_ilb_notifier(struct notifier_block *nfb,
7110 unsigned long action, void *hcpu)
7111 {
7112 switch (action & ~CPU_TASKS_FROZEN) {
7113 case CPU_DYING:
7114 nohz_balance_exit_idle(smp_processor_id());
7115 return NOTIFY_OK;
7116 default:
7117 return NOTIFY_DONE;
7118 }
7119 }
7120 #endif
7121
7122 static DEFINE_SPINLOCK(balancing);
7123
7124 /*
7125 * Scale the max load_balance interval with the number of CPUs in the system.
7126 * This trades load-balance latency on larger machines for less cross talk.
7127 */
7128 void update_max_interval(void)
7129 {
7130 max_load_balance_interval = HZ*num_online_cpus()/10;
7131 }
7132
7133 /*
7134 * It checks each scheduling domain to see if it is due to be balanced,
7135 * and initiates a balancing operation if so.
7136 *
7137 * Balancing parameters are set up in init_sched_domains.
7138 */
7139 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7140 {
7141 int continue_balancing = 1;
7142 int cpu = rq->cpu;
7143 unsigned long interval;
7144 struct sched_domain *sd;
7145 /* Earliest time when we have to do rebalance again */
7146 unsigned long next_balance = jiffies + 60*HZ;
7147 int update_next_balance = 0;
7148 int need_serialize, need_decay = 0;
7149 u64 max_cost = 0;
7150
7151 update_blocked_averages(cpu);
7152
7153 rcu_read_lock();
7154 for_each_domain(cpu, sd) {
7155 /*
7156 * Decay the newidle max times here because this is a regular
7157 * visit to all the domains. Decay ~1% per second.
7158 */
7159 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7160 sd->max_newidle_lb_cost =
7161 (sd->max_newidle_lb_cost * 253) / 256;
7162 sd->next_decay_max_lb_cost = jiffies + HZ;
7163 need_decay = 1;
7164 }
7165 max_cost += sd->max_newidle_lb_cost;
7166
7167 if (!(sd->flags & SD_LOAD_BALANCE))
7168 continue;
7169
7170 /*
7171 * Stop the load balance at this level. There is another
7172 * CPU in our sched group which is doing load balancing more
7173 * actively.
7174 */
7175 if (!continue_balancing) {
7176 if (need_decay)
7177 continue;
7178 break;
7179 }
7180
7181 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7182
7183 need_serialize = sd->flags & SD_SERIALIZE;
7184 if (need_serialize) {
7185 if (!spin_trylock(&balancing))
7186 goto out;
7187 }
7188
7189 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7190 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7191 /*
7192 * The LBF_DST_PINNED logic could have changed
7193 * env->dst_cpu, so we can't know our idle
7194 * state even if we migrated tasks. Update it.
7195 */
7196 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7197 }
7198 sd->last_balance = jiffies;
7199 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7200 }
7201 if (need_serialize)
7202 spin_unlock(&balancing);
7203 out:
7204 if (time_after(next_balance, sd->last_balance + interval)) {
7205 next_balance = sd->last_balance + interval;
7206 update_next_balance = 1;
7207 }
7208 }
7209 if (need_decay) {
7210 /*
7211 * Ensure the rq-wide value also decays but keep it at a
7212 * reasonable floor to avoid funnies with rq->avg_idle.
7213 */
7214 rq->max_idle_balance_cost =
7215 max((u64)sysctl_sched_migration_cost, max_cost);
7216 }
7217 rcu_read_unlock();
7218
7219 /*
7220 * next_balance will be updated only when there is a need.
7221 * When the cpu is attached to null domain for ex, it will not be
7222 * updated.
7223 */
7224 if (likely(update_next_balance))
7225 rq->next_balance = next_balance;
7226 }
7227
7228 #ifdef CONFIG_NO_HZ_COMMON
7229 /*
7230 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7231 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7232 */
7233 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7234 {
7235 int this_cpu = this_rq->cpu;
7236 struct rq *rq;
7237 int balance_cpu;
7238
7239 if (idle != CPU_IDLE ||
7240 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7241 goto end;
7242
7243 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7244 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7245 continue;
7246
7247 /*
7248 * If this cpu gets work to do, stop the load balancing
7249 * work being done for other cpus. Next load
7250 * balancing owner will pick it up.
7251 */
7252 if (need_resched())
7253 break;
7254
7255 rq = cpu_rq(balance_cpu);
7256
7257 /*
7258 * If time for next balance is due,
7259 * do the balance.
7260 */
7261 if (time_after_eq(jiffies, rq->next_balance)) {
7262 raw_spin_lock_irq(&rq->lock);
7263 update_rq_clock(rq);
7264 update_idle_cpu_load(rq);
7265 raw_spin_unlock_irq(&rq->lock);
7266 rebalance_domains(rq, CPU_IDLE);
7267 }
7268
7269 if (time_after(this_rq->next_balance, rq->next_balance))
7270 this_rq->next_balance = rq->next_balance;
7271 }
7272 nohz.next_balance = this_rq->next_balance;
7273 end:
7274 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7275 }
7276
7277 /*
7278 * Current heuristic for kicking the idle load balancer in the presence
7279 * of an idle cpu is the system.
7280 * - This rq has more than one task.
7281 * - At any scheduler domain level, this cpu's scheduler group has multiple
7282 * busy cpu's exceeding the group's capacity.
7283 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7284 * domain span are idle.
7285 */
7286 static inline int nohz_kick_needed(struct rq *rq)
7287 {
7288 unsigned long now = jiffies;
7289 struct sched_domain *sd;
7290 struct sched_group_capacity *sgc;
7291 int nr_busy, cpu = rq->cpu;
7292
7293 if (unlikely(rq->idle_balance))
7294 return 0;
7295
7296 /*
7297 * We may be recently in ticked or tickless idle mode. At the first
7298 * busy tick after returning from idle, we will update the busy stats.
7299 */
7300 set_cpu_sd_state_busy();
7301 nohz_balance_exit_idle(cpu);
7302
7303 /*
7304 * None are in tickless mode and hence no need for NOHZ idle load
7305 * balancing.
7306 */
7307 if (likely(!atomic_read(&nohz.nr_cpus)))
7308 return 0;
7309
7310 if (time_before(now, nohz.next_balance))
7311 return 0;
7312
7313 if (rq->nr_running >= 2)
7314 goto need_kick;
7315
7316 rcu_read_lock();
7317 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7318
7319 if (sd) {
7320 sgc = sd->groups->sgc;
7321 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7322
7323 if (nr_busy > 1)
7324 goto need_kick_unlock;
7325 }
7326
7327 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7328
7329 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7330 sched_domain_span(sd)) < cpu))
7331 goto need_kick_unlock;
7332
7333 rcu_read_unlock();
7334 return 0;
7335
7336 need_kick_unlock:
7337 rcu_read_unlock();
7338 need_kick:
7339 return 1;
7340 }
7341 #else
7342 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7343 #endif
7344
7345 /*
7346 * run_rebalance_domains is triggered when needed from the scheduler tick.
7347 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7348 */
7349 static void run_rebalance_domains(struct softirq_action *h)
7350 {
7351 struct rq *this_rq = this_rq();
7352 enum cpu_idle_type idle = this_rq->idle_balance ?
7353 CPU_IDLE : CPU_NOT_IDLE;
7354
7355 rebalance_domains(this_rq, idle);
7356
7357 /*
7358 * If this cpu has a pending nohz_balance_kick, then do the
7359 * balancing on behalf of the other idle cpus whose ticks are
7360 * stopped.
7361 */
7362 nohz_idle_balance(this_rq, idle);
7363 }
7364
7365 /*
7366 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7367 */
7368 void trigger_load_balance(struct rq *rq)
7369 {
7370 /* Don't need to rebalance while attached to NULL domain */
7371 if (unlikely(on_null_domain(rq)))
7372 return;
7373
7374 if (time_after_eq(jiffies, rq->next_balance))
7375 raise_softirq(SCHED_SOFTIRQ);
7376 #ifdef CONFIG_NO_HZ_COMMON
7377 if (nohz_kick_needed(rq))
7378 nohz_balancer_kick();
7379 #endif
7380 }
7381
7382 static void rq_online_fair(struct rq *rq)
7383 {
7384 update_sysctl();
7385
7386 update_runtime_enabled(rq);
7387 }
7388
7389 static void rq_offline_fair(struct rq *rq)
7390 {
7391 update_sysctl();
7392
7393 /* Ensure any throttled groups are reachable by pick_next_task */
7394 unthrottle_offline_cfs_rqs(rq);
7395 }
7396
7397 #endif /* CONFIG_SMP */
7398
7399 /*
7400 * scheduler tick hitting a task of our scheduling class:
7401 */
7402 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7403 {
7404 struct cfs_rq *cfs_rq;
7405 struct sched_entity *se = &curr->se;
7406
7407 for_each_sched_entity(se) {
7408 cfs_rq = cfs_rq_of(se);
7409 entity_tick(cfs_rq, se, queued);
7410 }
7411
7412 if (numabalancing_enabled)
7413 task_tick_numa(rq, curr);
7414
7415 update_rq_runnable_avg(rq, 1);
7416 }
7417
7418 /*
7419 * called on fork with the child task as argument from the parent's context
7420 * - child not yet on the tasklist
7421 * - preemption disabled
7422 */
7423 static void task_fork_fair(struct task_struct *p)
7424 {
7425 struct cfs_rq *cfs_rq;
7426 struct sched_entity *se = &p->se, *curr;
7427 int this_cpu = smp_processor_id();
7428 struct rq *rq = this_rq();
7429 unsigned long flags;
7430
7431 raw_spin_lock_irqsave(&rq->lock, flags);
7432
7433 update_rq_clock(rq);
7434
7435 cfs_rq = task_cfs_rq(current);
7436 curr = cfs_rq->curr;
7437
7438 /*
7439 * Not only the cpu but also the task_group of the parent might have
7440 * been changed after parent->se.parent,cfs_rq were copied to
7441 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7442 * of child point to valid ones.
7443 */
7444 rcu_read_lock();
7445 __set_task_cpu(p, this_cpu);
7446 rcu_read_unlock();
7447
7448 update_curr(cfs_rq);
7449
7450 if (curr)
7451 se->vruntime = curr->vruntime;
7452 place_entity(cfs_rq, se, 1);
7453
7454 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7455 /*
7456 * Upon rescheduling, sched_class::put_prev_task() will place
7457 * 'current' within the tree based on its new key value.
7458 */
7459 swap(curr->vruntime, se->vruntime);
7460 resched_task(rq->curr);
7461 }
7462
7463 se->vruntime -= cfs_rq->min_vruntime;
7464
7465 raw_spin_unlock_irqrestore(&rq->lock, flags);
7466 }
7467
7468 /*
7469 * Priority of the task has changed. Check to see if we preempt
7470 * the current task.
7471 */
7472 static void
7473 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7474 {
7475 if (!p->se.on_rq)
7476 return;
7477
7478 /*
7479 * Reschedule if we are currently running on this runqueue and
7480 * our priority decreased, or if we are not currently running on
7481 * this runqueue and our priority is higher than the current's
7482 */
7483 if (rq->curr == p) {
7484 if (p->prio > oldprio)
7485 resched_task(rq->curr);
7486 } else
7487 check_preempt_curr(rq, p, 0);
7488 }
7489
7490 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7491 {
7492 struct sched_entity *se = &p->se;
7493 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7494
7495 /*
7496 * Ensure the task's vruntime is normalized, so that when it's
7497 * switched back to the fair class the enqueue_entity(.flags=0) will
7498 * do the right thing.
7499 *
7500 * If it's on_rq, then the dequeue_entity(.flags=0) will already
7501 * have normalized the vruntime, if it's !on_rq, then only when
7502 * the task is sleeping will it still have non-normalized vruntime.
7503 */
7504 if (!p->on_rq && p->state != TASK_RUNNING) {
7505 /*
7506 * Fix up our vruntime so that the current sleep doesn't
7507 * cause 'unlimited' sleep bonus.
7508 */
7509 place_entity(cfs_rq, se, 0);
7510 se->vruntime -= cfs_rq->min_vruntime;
7511 }
7512
7513 #ifdef CONFIG_SMP
7514 /*
7515 * Remove our load from contribution when we leave sched_fair
7516 * and ensure we don't carry in an old decay_count if we
7517 * switch back.
7518 */
7519 if (se->avg.decay_count) {
7520 __synchronize_entity_decay(se);
7521 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7522 }
7523 #endif
7524 }
7525
7526 /*
7527 * We switched to the sched_fair class.
7528 */
7529 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7530 {
7531 struct sched_entity *se = &p->se;
7532 #ifdef CONFIG_FAIR_GROUP_SCHED
7533 /*
7534 * Since the real-depth could have been changed (only FAIR
7535 * class maintain depth value), reset depth properly.
7536 */
7537 se->depth = se->parent ? se->parent->depth + 1 : 0;
7538 #endif
7539 if (!se->on_rq)
7540 return;
7541
7542 /*
7543 * We were most likely switched from sched_rt, so
7544 * kick off the schedule if running, otherwise just see
7545 * if we can still preempt the current task.
7546 */
7547 if (rq->curr == p)
7548 resched_task(rq->curr);
7549 else
7550 check_preempt_curr(rq, p, 0);
7551 }
7552
7553 /* Account for a task changing its policy or group.
7554 *
7555 * This routine is mostly called to set cfs_rq->curr field when a task
7556 * migrates between groups/classes.
7557 */
7558 static void set_curr_task_fair(struct rq *rq)
7559 {
7560 struct sched_entity *se = &rq->curr->se;
7561
7562 for_each_sched_entity(se) {
7563 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7564
7565 set_next_entity(cfs_rq, se);
7566 /* ensure bandwidth has been allocated on our new cfs_rq */
7567 account_cfs_rq_runtime(cfs_rq, 0);
7568 }
7569 }
7570
7571 void init_cfs_rq(struct cfs_rq *cfs_rq)
7572 {
7573 cfs_rq->tasks_timeline = RB_ROOT;
7574 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7575 #ifndef CONFIG_64BIT
7576 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7577 #endif
7578 #ifdef CONFIG_SMP
7579 atomic64_set(&cfs_rq->decay_counter, 1);
7580 atomic_long_set(&cfs_rq->removed_load, 0);
7581 #endif
7582 }
7583
7584 #ifdef CONFIG_FAIR_GROUP_SCHED
7585 static void task_move_group_fair(struct task_struct *p, int on_rq)
7586 {
7587 struct sched_entity *se = &p->se;
7588 struct cfs_rq *cfs_rq;
7589
7590 /*
7591 * If the task was not on the rq at the time of this cgroup movement
7592 * it must have been asleep, sleeping tasks keep their ->vruntime
7593 * absolute on their old rq until wakeup (needed for the fair sleeper
7594 * bonus in place_entity()).
7595 *
7596 * If it was on the rq, we've just 'preempted' it, which does convert
7597 * ->vruntime to a relative base.
7598 *
7599 * Make sure both cases convert their relative position when migrating
7600 * to another cgroup's rq. This does somewhat interfere with the
7601 * fair sleeper stuff for the first placement, but who cares.
7602 */
7603 /*
7604 * When !on_rq, vruntime of the task has usually NOT been normalized.
7605 * But there are some cases where it has already been normalized:
7606 *
7607 * - Moving a forked child which is waiting for being woken up by
7608 * wake_up_new_task().
7609 * - Moving a task which has been woken up by try_to_wake_up() and
7610 * waiting for actually being woken up by sched_ttwu_pending().
7611 *
7612 * To prevent boost or penalty in the new cfs_rq caused by delta
7613 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7614 */
7615 if (!on_rq && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7616 on_rq = 1;
7617
7618 if (!on_rq)
7619 se->vruntime -= cfs_rq_of(se)->min_vruntime;
7620 set_task_rq(p, task_cpu(p));
7621 se->depth = se->parent ? se->parent->depth + 1 : 0;
7622 if (!on_rq) {
7623 cfs_rq = cfs_rq_of(se);
7624 se->vruntime += cfs_rq->min_vruntime;
7625 #ifdef CONFIG_SMP
7626 /*
7627 * migrate_task_rq_fair() will have removed our previous
7628 * contribution, but we must synchronize for ongoing future
7629 * decay.
7630 */
7631 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7632 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7633 #endif
7634 }
7635 }
7636
7637 void free_fair_sched_group(struct task_group *tg)
7638 {
7639 int i;
7640
7641 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7642
7643 for_each_possible_cpu(i) {
7644 if (tg->cfs_rq)
7645 kfree(tg->cfs_rq[i]);
7646 if (tg->se)
7647 kfree(tg->se[i]);
7648 }
7649
7650 kfree(tg->cfs_rq);
7651 kfree(tg->se);
7652 }
7653
7654 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7655 {
7656 struct cfs_rq *cfs_rq;
7657 struct sched_entity *se;
7658 int i;
7659
7660 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7661 if (!tg->cfs_rq)
7662 goto err;
7663 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7664 if (!tg->se)
7665 goto err;
7666
7667 tg->shares = NICE_0_LOAD;
7668
7669 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7670
7671 for_each_possible_cpu(i) {
7672 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7673 GFP_KERNEL, cpu_to_node(i));
7674 if (!cfs_rq)
7675 goto err;
7676
7677 se = kzalloc_node(sizeof(struct sched_entity),
7678 GFP_KERNEL, cpu_to_node(i));
7679 if (!se)
7680 goto err_free_rq;
7681
7682 init_cfs_rq(cfs_rq);
7683 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7684 }
7685
7686 return 1;
7687
7688 err_free_rq:
7689 kfree(cfs_rq);
7690 err:
7691 return 0;
7692 }
7693
7694 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7695 {
7696 struct rq *rq = cpu_rq(cpu);
7697 unsigned long flags;
7698
7699 /*
7700 * Only empty task groups can be destroyed; so we can speculatively
7701 * check on_list without danger of it being re-added.
7702 */
7703 if (!tg->cfs_rq[cpu]->on_list)
7704 return;
7705
7706 raw_spin_lock_irqsave(&rq->lock, flags);
7707 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7708 raw_spin_unlock_irqrestore(&rq->lock, flags);
7709 }
7710
7711 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7712 struct sched_entity *se, int cpu,
7713 struct sched_entity *parent)
7714 {
7715 struct rq *rq = cpu_rq(cpu);
7716
7717 cfs_rq->tg = tg;
7718 cfs_rq->rq = rq;
7719 init_cfs_rq_runtime(cfs_rq);
7720
7721 tg->cfs_rq[cpu] = cfs_rq;
7722 tg->se[cpu] = se;
7723
7724 /* se could be NULL for root_task_group */
7725 if (!se)
7726 return;
7727
7728 if (!parent) {
7729 se->cfs_rq = &rq->cfs;
7730 se->depth = 0;
7731 } else {
7732 se->cfs_rq = parent->my_q;
7733 se->depth = parent->depth + 1;
7734 }
7735
7736 se->my_q = cfs_rq;
7737 /* guarantee group entities always have weight */
7738 update_load_set(&se->load, NICE_0_LOAD);
7739 se->parent = parent;
7740 }
7741
7742 static DEFINE_MUTEX(shares_mutex);
7743
7744 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7745 {
7746 int i;
7747 unsigned long flags;
7748
7749 /*
7750 * We can't change the weight of the root cgroup.
7751 */
7752 if (!tg->se[0])
7753 return -EINVAL;
7754
7755 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7756
7757 mutex_lock(&shares_mutex);
7758 if (tg->shares == shares)
7759 goto done;
7760
7761 tg->shares = shares;
7762 for_each_possible_cpu(i) {
7763 struct rq *rq = cpu_rq(i);
7764 struct sched_entity *se;
7765
7766 se = tg->se[i];
7767 /* Propagate contribution to hierarchy */
7768 raw_spin_lock_irqsave(&rq->lock, flags);
7769
7770 /* Possible calls to update_curr() need rq clock */
7771 update_rq_clock(rq);
7772 for_each_sched_entity(se)
7773 update_cfs_shares(group_cfs_rq(se));
7774 raw_spin_unlock_irqrestore(&rq->lock, flags);
7775 }
7776
7777 done:
7778 mutex_unlock(&shares_mutex);
7779 return 0;
7780 }
7781 #else /* CONFIG_FAIR_GROUP_SCHED */
7782
7783 void free_fair_sched_group(struct task_group *tg) { }
7784
7785 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7786 {
7787 return 1;
7788 }
7789
7790 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7791
7792 #endif /* CONFIG_FAIR_GROUP_SCHED */
7793
7794
7795 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7796 {
7797 struct sched_entity *se = &task->se;
7798 unsigned int rr_interval = 0;
7799
7800 /*
7801 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7802 * idle runqueue:
7803 */
7804 if (rq->cfs.load.weight)
7805 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7806
7807 return rr_interval;
7808 }
7809
7810 /*
7811 * All the scheduling class methods:
7812 */
7813 const struct sched_class fair_sched_class = {
7814 .next = &idle_sched_class,
7815 .enqueue_task = enqueue_task_fair,
7816 .dequeue_task = dequeue_task_fair,
7817 .yield_task = yield_task_fair,
7818 .yield_to_task = yield_to_task_fair,
7819
7820 .check_preempt_curr = check_preempt_wakeup,
7821
7822 .pick_next_task = pick_next_task_fair,
7823 .put_prev_task = put_prev_task_fair,
7824
7825 #ifdef CONFIG_SMP
7826 .select_task_rq = select_task_rq_fair,
7827 .migrate_task_rq = migrate_task_rq_fair,
7828
7829 .rq_online = rq_online_fair,
7830 .rq_offline = rq_offline_fair,
7831
7832 .task_waking = task_waking_fair,
7833 #endif
7834
7835 .set_curr_task = set_curr_task_fair,
7836 .task_tick = task_tick_fair,
7837 .task_fork = task_fork_fair,
7838
7839 .prio_changed = prio_changed_fair,
7840 .switched_from = switched_from_fair,
7841 .switched_to = switched_to_fair,
7842
7843 .get_rr_interval = get_rr_interval_fair,
7844
7845 #ifdef CONFIG_FAIR_GROUP_SCHED
7846 .task_move_group = task_move_group_fair,
7847 #endif
7848 };
7849
7850 #ifdef CONFIG_SCHED_DEBUG
7851 void print_cfs_stats(struct seq_file *m, int cpu)
7852 {
7853 struct cfs_rq *cfs_rq;
7854
7855 rcu_read_lock();
7856 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7857 print_cfs_rq(m, cpu, cfs_rq);
7858 rcu_read_unlock();
7859 }
7860 #endif
7861
7862 __init void init_sched_fair_class(void)
7863 {
7864 #ifdef CONFIG_SMP
7865 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7866
7867 #ifdef CONFIG_NO_HZ_COMMON
7868 nohz.next_balance = jiffies;
7869 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7870 cpu_notifier(sched_ilb_notifier, 0);
7871 #endif
7872 #endif /* SMP */
7873
7874 }