]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched/fair.c
sched: Add wrapper for checking task_struct::on_rq
[mirror_ubuntu-artful-kernel.git] / kernel / sched / fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/slab.h>
27 #include <linux/profile.h>
28 #include <linux/interrupt.h>
29 #include <linux/mempolicy.h>
30 #include <linux/migrate.h>
31 #include <linux/task_work.h>
32
33 #include <trace/events/sched.h>
34
35 #include "sched.h"
36
37 /*
38 * Targeted preemption latency for CPU-bound tasks:
39 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
40 *
41 * NOTE: this latency value is not the same as the concept of
42 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
45 *
46 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
48 */
49 unsigned int sysctl_sched_latency = 6000000ULL;
50 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
51
52 /*
53 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61 enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64 /*
65 * Minimal preemption granularity for CPU-bound tasks:
66 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 */
68 unsigned int sysctl_sched_min_granularity = 750000ULL;
69 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
70
71 /*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
74 static unsigned int sched_nr_latency = 8;
75
76 /*
77 * After fork, child runs first. If set to 0 (default) then
78 * parent will (try to) run first.
79 */
80 unsigned int sysctl_sched_child_runs_first __read_mostly;
81
82 /*
83 * SCHED_OTHER wake-up granularity.
84 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
90 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
91 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
92
93 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
95 /*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
102 #ifdef CONFIG_CFS_BANDWIDTH
103 /*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114 #endif
115
116 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117 {
118 lw->weight += inc;
119 lw->inv_weight = 0;
120 }
121
122 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123 {
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126 }
127
128 static inline void update_load_set(struct load_weight *lw, unsigned long w)
129 {
130 lw->weight = w;
131 lw->inv_weight = 0;
132 }
133
134 /*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143 static int get_update_sysctl_factor(void)
144 {
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162 }
163
164 static void update_sysctl(void)
165 {
166 unsigned int factor = get_update_sysctl_factor();
167
168 #define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173 #undef SET_SYSCTL
174 }
175
176 void sched_init_granularity(void)
177 {
178 update_sysctl();
179 }
180
181 #define WMULT_CONST (~0U)
182 #define WMULT_SHIFT 32
183
184 static void __update_inv_weight(struct load_weight *lw)
185 {
186 unsigned long w;
187
188 if (likely(lw->inv_weight))
189 return;
190
191 w = scale_load_down(lw->weight);
192
193 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
194 lw->inv_weight = 1;
195 else if (unlikely(!w))
196 lw->inv_weight = WMULT_CONST;
197 else
198 lw->inv_weight = WMULT_CONST / w;
199 }
200
201 /*
202 * delta_exec * weight / lw.weight
203 * OR
204 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
205 *
206 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
207 * we're guaranteed shift stays positive because inv_weight is guaranteed to
208 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
209 *
210 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
211 * weight/lw.weight <= 1, and therefore our shift will also be positive.
212 */
213 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
214 {
215 u64 fact = scale_load_down(weight);
216 int shift = WMULT_SHIFT;
217
218 __update_inv_weight(lw);
219
220 if (unlikely(fact >> 32)) {
221 while (fact >> 32) {
222 fact >>= 1;
223 shift--;
224 }
225 }
226
227 /* hint to use a 32x32->64 mul */
228 fact = (u64)(u32)fact * lw->inv_weight;
229
230 while (fact >> 32) {
231 fact >>= 1;
232 shift--;
233 }
234
235 return mul_u64_u32_shr(delta_exec, fact, shift);
236 }
237
238
239 const struct sched_class fair_sched_class;
240
241 /**************************************************************
242 * CFS operations on generic schedulable entities:
243 */
244
245 #ifdef CONFIG_FAIR_GROUP_SCHED
246
247 /* cpu runqueue to which this cfs_rq is attached */
248 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
249 {
250 return cfs_rq->rq;
251 }
252
253 /* An entity is a task if it doesn't "own" a runqueue */
254 #define entity_is_task(se) (!se->my_q)
255
256 static inline struct task_struct *task_of(struct sched_entity *se)
257 {
258 #ifdef CONFIG_SCHED_DEBUG
259 WARN_ON_ONCE(!entity_is_task(se));
260 #endif
261 return container_of(se, struct task_struct, se);
262 }
263
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 for (; se; se = se->parent)
267
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269 {
270 return p->se.cfs_rq;
271 }
272
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275 {
276 return se->cfs_rq;
277 }
278
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281 {
282 return grp->my_q;
283 }
284
285 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
286 int force_update);
287
288 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
289 {
290 if (!cfs_rq->on_list) {
291 /*
292 * Ensure we either appear before our parent (if already
293 * enqueued) or force our parent to appear after us when it is
294 * enqueued. The fact that we always enqueue bottom-up
295 * reduces this to two cases.
296 */
297 if (cfs_rq->tg->parent &&
298 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
299 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
300 &rq_of(cfs_rq)->leaf_cfs_rq_list);
301 } else {
302 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
303 &rq_of(cfs_rq)->leaf_cfs_rq_list);
304 }
305
306 cfs_rq->on_list = 1;
307 /* We should have no load, but we need to update last_decay. */
308 update_cfs_rq_blocked_load(cfs_rq, 0);
309 }
310 }
311
312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
313 {
314 if (cfs_rq->on_list) {
315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
316 cfs_rq->on_list = 0;
317 }
318 }
319
320 /* Iterate thr' all leaf cfs_rq's on a runqueue */
321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
323
324 /* Do the two (enqueued) entities belong to the same group ? */
325 static inline struct cfs_rq *
326 is_same_group(struct sched_entity *se, struct sched_entity *pse)
327 {
328 if (se->cfs_rq == pse->cfs_rq)
329 return se->cfs_rq;
330
331 return NULL;
332 }
333
334 static inline struct sched_entity *parent_entity(struct sched_entity *se)
335 {
336 return se->parent;
337 }
338
339 static void
340 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
341 {
342 int se_depth, pse_depth;
343
344 /*
345 * preemption test can be made between sibling entities who are in the
346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
347 * both tasks until we find their ancestors who are siblings of common
348 * parent.
349 */
350
351 /* First walk up until both entities are at same depth */
352 se_depth = (*se)->depth;
353 pse_depth = (*pse)->depth;
354
355 while (se_depth > pse_depth) {
356 se_depth--;
357 *se = parent_entity(*se);
358 }
359
360 while (pse_depth > se_depth) {
361 pse_depth--;
362 *pse = parent_entity(*pse);
363 }
364
365 while (!is_same_group(*se, *pse)) {
366 *se = parent_entity(*se);
367 *pse = parent_entity(*pse);
368 }
369 }
370
371 #else /* !CONFIG_FAIR_GROUP_SCHED */
372
373 static inline struct task_struct *task_of(struct sched_entity *se)
374 {
375 return container_of(se, struct task_struct, se);
376 }
377
378 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
379 {
380 return container_of(cfs_rq, struct rq, cfs);
381 }
382
383 #define entity_is_task(se) 1
384
385 #define for_each_sched_entity(se) \
386 for (; se; se = NULL)
387
388 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
389 {
390 return &task_rq(p)->cfs;
391 }
392
393 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
394 {
395 struct task_struct *p = task_of(se);
396 struct rq *rq = task_rq(p);
397
398 return &rq->cfs;
399 }
400
401 /* runqueue "owned" by this group */
402 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
403 {
404 return NULL;
405 }
406
407 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
408 {
409 }
410
411 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
412 {
413 }
414
415 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
417
418 static inline struct sched_entity *parent_entity(struct sched_entity *se)
419 {
420 return NULL;
421 }
422
423 static inline void
424 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425 {
426 }
427
428 #endif /* CONFIG_FAIR_GROUP_SCHED */
429
430 static __always_inline
431 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
432
433 /**************************************************************
434 * Scheduling class tree data structure manipulation methods:
435 */
436
437 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
438 {
439 s64 delta = (s64)(vruntime - max_vruntime);
440 if (delta > 0)
441 max_vruntime = vruntime;
442
443 return max_vruntime;
444 }
445
446 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
447 {
448 s64 delta = (s64)(vruntime - min_vruntime);
449 if (delta < 0)
450 min_vruntime = vruntime;
451
452 return min_vruntime;
453 }
454
455 static inline int entity_before(struct sched_entity *a,
456 struct sched_entity *b)
457 {
458 return (s64)(a->vruntime - b->vruntime) < 0;
459 }
460
461 static void update_min_vruntime(struct cfs_rq *cfs_rq)
462 {
463 u64 vruntime = cfs_rq->min_vruntime;
464
465 if (cfs_rq->curr)
466 vruntime = cfs_rq->curr->vruntime;
467
468 if (cfs_rq->rb_leftmost) {
469 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
470 struct sched_entity,
471 run_node);
472
473 if (!cfs_rq->curr)
474 vruntime = se->vruntime;
475 else
476 vruntime = min_vruntime(vruntime, se->vruntime);
477 }
478
479 /* ensure we never gain time by being placed backwards. */
480 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
481 #ifndef CONFIG_64BIT
482 smp_wmb();
483 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
484 #endif
485 }
486
487 /*
488 * Enqueue an entity into the rb-tree:
489 */
490 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
491 {
492 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
493 struct rb_node *parent = NULL;
494 struct sched_entity *entry;
495 int leftmost = 1;
496
497 /*
498 * Find the right place in the rbtree:
499 */
500 while (*link) {
501 parent = *link;
502 entry = rb_entry(parent, struct sched_entity, run_node);
503 /*
504 * We dont care about collisions. Nodes with
505 * the same key stay together.
506 */
507 if (entity_before(se, entry)) {
508 link = &parent->rb_left;
509 } else {
510 link = &parent->rb_right;
511 leftmost = 0;
512 }
513 }
514
515 /*
516 * Maintain a cache of leftmost tree entries (it is frequently
517 * used):
518 */
519 if (leftmost)
520 cfs_rq->rb_leftmost = &se->run_node;
521
522 rb_link_node(&se->run_node, parent, link);
523 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
524 }
525
526 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
527 {
528 if (cfs_rq->rb_leftmost == &se->run_node) {
529 struct rb_node *next_node;
530
531 next_node = rb_next(&se->run_node);
532 cfs_rq->rb_leftmost = next_node;
533 }
534
535 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
536 }
537
538 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
539 {
540 struct rb_node *left = cfs_rq->rb_leftmost;
541
542 if (!left)
543 return NULL;
544
545 return rb_entry(left, struct sched_entity, run_node);
546 }
547
548 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
549 {
550 struct rb_node *next = rb_next(&se->run_node);
551
552 if (!next)
553 return NULL;
554
555 return rb_entry(next, struct sched_entity, run_node);
556 }
557
558 #ifdef CONFIG_SCHED_DEBUG
559 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
560 {
561 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
562
563 if (!last)
564 return NULL;
565
566 return rb_entry(last, struct sched_entity, run_node);
567 }
568
569 /**************************************************************
570 * Scheduling class statistics methods:
571 */
572
573 int sched_proc_update_handler(struct ctl_table *table, int write,
574 void __user *buffer, size_t *lenp,
575 loff_t *ppos)
576 {
577 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
578 int factor = get_update_sysctl_factor();
579
580 if (ret || !write)
581 return ret;
582
583 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
584 sysctl_sched_min_granularity);
585
586 #define WRT_SYSCTL(name) \
587 (normalized_sysctl_##name = sysctl_##name / (factor))
588 WRT_SYSCTL(sched_min_granularity);
589 WRT_SYSCTL(sched_latency);
590 WRT_SYSCTL(sched_wakeup_granularity);
591 #undef WRT_SYSCTL
592
593 return 0;
594 }
595 #endif
596
597 /*
598 * delta /= w
599 */
600 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
601 {
602 if (unlikely(se->load.weight != NICE_0_LOAD))
603 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
604
605 return delta;
606 }
607
608 /*
609 * The idea is to set a period in which each task runs once.
610 *
611 * When there are too many tasks (sched_nr_latency) we have to stretch
612 * this period because otherwise the slices get too small.
613 *
614 * p = (nr <= nl) ? l : l*nr/nl
615 */
616 static u64 __sched_period(unsigned long nr_running)
617 {
618 u64 period = sysctl_sched_latency;
619 unsigned long nr_latency = sched_nr_latency;
620
621 if (unlikely(nr_running > nr_latency)) {
622 period = sysctl_sched_min_granularity;
623 period *= nr_running;
624 }
625
626 return period;
627 }
628
629 /*
630 * We calculate the wall-time slice from the period by taking a part
631 * proportional to the weight.
632 *
633 * s = p*P[w/rw]
634 */
635 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
636 {
637 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
638
639 for_each_sched_entity(se) {
640 struct load_weight *load;
641 struct load_weight lw;
642
643 cfs_rq = cfs_rq_of(se);
644 load = &cfs_rq->load;
645
646 if (unlikely(!se->on_rq)) {
647 lw = cfs_rq->load;
648
649 update_load_add(&lw, se->load.weight);
650 load = &lw;
651 }
652 slice = __calc_delta(slice, se->load.weight, load);
653 }
654 return slice;
655 }
656
657 /*
658 * We calculate the vruntime slice of a to-be-inserted task.
659 *
660 * vs = s/w
661 */
662 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
663 {
664 return calc_delta_fair(sched_slice(cfs_rq, se), se);
665 }
666
667 #ifdef CONFIG_SMP
668 static unsigned long task_h_load(struct task_struct *p);
669
670 static inline void __update_task_entity_contrib(struct sched_entity *se);
671
672 /* Give new task start runnable values to heavy its load in infant time */
673 void init_task_runnable_average(struct task_struct *p)
674 {
675 u32 slice;
676
677 p->se.avg.decay_count = 0;
678 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
679 p->se.avg.runnable_avg_sum = slice;
680 p->se.avg.runnable_avg_period = slice;
681 __update_task_entity_contrib(&p->se);
682 }
683 #else
684 void init_task_runnable_average(struct task_struct *p)
685 {
686 }
687 #endif
688
689 /*
690 * Update the current task's runtime statistics.
691 */
692 static void update_curr(struct cfs_rq *cfs_rq)
693 {
694 struct sched_entity *curr = cfs_rq->curr;
695 u64 now = rq_clock_task(rq_of(cfs_rq));
696 u64 delta_exec;
697
698 if (unlikely(!curr))
699 return;
700
701 delta_exec = now - curr->exec_start;
702 if (unlikely((s64)delta_exec <= 0))
703 return;
704
705 curr->exec_start = now;
706
707 schedstat_set(curr->statistics.exec_max,
708 max(delta_exec, curr->statistics.exec_max));
709
710 curr->sum_exec_runtime += delta_exec;
711 schedstat_add(cfs_rq, exec_clock, delta_exec);
712
713 curr->vruntime += calc_delta_fair(delta_exec, curr);
714 update_min_vruntime(cfs_rq);
715
716 if (entity_is_task(curr)) {
717 struct task_struct *curtask = task_of(curr);
718
719 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
720 cpuacct_charge(curtask, delta_exec);
721 account_group_exec_runtime(curtask, delta_exec);
722 }
723
724 account_cfs_rq_runtime(cfs_rq, delta_exec);
725 }
726
727 static inline void
728 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
729 {
730 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
731 }
732
733 /*
734 * Task is being enqueued - update stats:
735 */
736 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 /*
739 * Are we enqueueing a waiting task? (for current tasks
740 * a dequeue/enqueue event is a NOP)
741 */
742 if (se != cfs_rq->curr)
743 update_stats_wait_start(cfs_rq, se);
744 }
745
746 static void
747 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
748 {
749 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
750 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
751 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
752 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
753 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
754 #ifdef CONFIG_SCHEDSTATS
755 if (entity_is_task(se)) {
756 trace_sched_stat_wait(task_of(se),
757 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
758 }
759 #endif
760 schedstat_set(se->statistics.wait_start, 0);
761 }
762
763 static inline void
764 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
765 {
766 /*
767 * Mark the end of the wait period if dequeueing a
768 * waiting task:
769 */
770 if (se != cfs_rq->curr)
771 update_stats_wait_end(cfs_rq, se);
772 }
773
774 /*
775 * We are picking a new current task - update its stats:
776 */
777 static inline void
778 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
779 {
780 /*
781 * We are starting a new run period:
782 */
783 se->exec_start = rq_clock_task(rq_of(cfs_rq));
784 }
785
786 /**************************************************
787 * Scheduling class queueing methods:
788 */
789
790 #ifdef CONFIG_NUMA_BALANCING
791 /*
792 * Approximate time to scan a full NUMA task in ms. The task scan period is
793 * calculated based on the tasks virtual memory size and
794 * numa_balancing_scan_size.
795 */
796 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
797 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
798
799 /* Portion of address space to scan in MB */
800 unsigned int sysctl_numa_balancing_scan_size = 256;
801
802 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
803 unsigned int sysctl_numa_balancing_scan_delay = 1000;
804
805 static unsigned int task_nr_scan_windows(struct task_struct *p)
806 {
807 unsigned long rss = 0;
808 unsigned long nr_scan_pages;
809
810 /*
811 * Calculations based on RSS as non-present and empty pages are skipped
812 * by the PTE scanner and NUMA hinting faults should be trapped based
813 * on resident pages
814 */
815 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
816 rss = get_mm_rss(p->mm);
817 if (!rss)
818 rss = nr_scan_pages;
819
820 rss = round_up(rss, nr_scan_pages);
821 return rss / nr_scan_pages;
822 }
823
824 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
825 #define MAX_SCAN_WINDOW 2560
826
827 static unsigned int task_scan_min(struct task_struct *p)
828 {
829 unsigned int scan, floor;
830 unsigned int windows = 1;
831
832 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
833 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
834 floor = 1000 / windows;
835
836 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
837 return max_t(unsigned int, floor, scan);
838 }
839
840 static unsigned int task_scan_max(struct task_struct *p)
841 {
842 unsigned int smin = task_scan_min(p);
843 unsigned int smax;
844
845 /* Watch for min being lower than max due to floor calculations */
846 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
847 return max(smin, smax);
848 }
849
850 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
851 {
852 rq->nr_numa_running += (p->numa_preferred_nid != -1);
853 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
854 }
855
856 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
857 {
858 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
859 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
860 }
861
862 struct numa_group {
863 atomic_t refcount;
864
865 spinlock_t lock; /* nr_tasks, tasks */
866 int nr_tasks;
867 pid_t gid;
868 struct list_head task_list;
869
870 struct rcu_head rcu;
871 nodemask_t active_nodes;
872 unsigned long total_faults;
873 /*
874 * Faults_cpu is used to decide whether memory should move
875 * towards the CPU. As a consequence, these stats are weighted
876 * more by CPU use than by memory faults.
877 */
878 unsigned long *faults_cpu;
879 unsigned long faults[0];
880 };
881
882 /* Shared or private faults. */
883 #define NR_NUMA_HINT_FAULT_TYPES 2
884
885 /* Memory and CPU locality */
886 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
887
888 /* Averaged statistics, and temporary buffers. */
889 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
890
891 pid_t task_numa_group_id(struct task_struct *p)
892 {
893 return p->numa_group ? p->numa_group->gid : 0;
894 }
895
896 static inline int task_faults_idx(int nid, int priv)
897 {
898 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
899 }
900
901 static inline unsigned long task_faults(struct task_struct *p, int nid)
902 {
903 if (!p->numa_faults_memory)
904 return 0;
905
906 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
907 p->numa_faults_memory[task_faults_idx(nid, 1)];
908 }
909
910 static inline unsigned long group_faults(struct task_struct *p, int nid)
911 {
912 if (!p->numa_group)
913 return 0;
914
915 return p->numa_group->faults[task_faults_idx(nid, 0)] +
916 p->numa_group->faults[task_faults_idx(nid, 1)];
917 }
918
919 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
920 {
921 return group->faults_cpu[task_faults_idx(nid, 0)] +
922 group->faults_cpu[task_faults_idx(nid, 1)];
923 }
924
925 /*
926 * These return the fraction of accesses done by a particular task, or
927 * task group, on a particular numa node. The group weight is given a
928 * larger multiplier, in order to group tasks together that are almost
929 * evenly spread out between numa nodes.
930 */
931 static inline unsigned long task_weight(struct task_struct *p, int nid)
932 {
933 unsigned long total_faults;
934
935 if (!p->numa_faults_memory)
936 return 0;
937
938 total_faults = p->total_numa_faults;
939
940 if (!total_faults)
941 return 0;
942
943 return 1000 * task_faults(p, nid) / total_faults;
944 }
945
946 static inline unsigned long group_weight(struct task_struct *p, int nid)
947 {
948 if (!p->numa_group || !p->numa_group->total_faults)
949 return 0;
950
951 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
952 }
953
954 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
955 int src_nid, int dst_cpu)
956 {
957 struct numa_group *ng = p->numa_group;
958 int dst_nid = cpu_to_node(dst_cpu);
959 int last_cpupid, this_cpupid;
960
961 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
962
963 /*
964 * Multi-stage node selection is used in conjunction with a periodic
965 * migration fault to build a temporal task<->page relation. By using
966 * a two-stage filter we remove short/unlikely relations.
967 *
968 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
969 * a task's usage of a particular page (n_p) per total usage of this
970 * page (n_t) (in a given time-span) to a probability.
971 *
972 * Our periodic faults will sample this probability and getting the
973 * same result twice in a row, given these samples are fully
974 * independent, is then given by P(n)^2, provided our sample period
975 * is sufficiently short compared to the usage pattern.
976 *
977 * This quadric squishes small probabilities, making it less likely we
978 * act on an unlikely task<->page relation.
979 */
980 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
981 if (!cpupid_pid_unset(last_cpupid) &&
982 cpupid_to_nid(last_cpupid) != dst_nid)
983 return false;
984
985 /* Always allow migrate on private faults */
986 if (cpupid_match_pid(p, last_cpupid))
987 return true;
988
989 /* A shared fault, but p->numa_group has not been set up yet. */
990 if (!ng)
991 return true;
992
993 /*
994 * Do not migrate if the destination is not a node that
995 * is actively used by this numa group.
996 */
997 if (!node_isset(dst_nid, ng->active_nodes))
998 return false;
999
1000 /*
1001 * Source is a node that is not actively used by this
1002 * numa group, while the destination is. Migrate.
1003 */
1004 if (!node_isset(src_nid, ng->active_nodes))
1005 return true;
1006
1007 /*
1008 * Both source and destination are nodes in active
1009 * use by this numa group. Maximize memory bandwidth
1010 * by migrating from more heavily used groups, to less
1011 * heavily used ones, spreading the load around.
1012 * Use a 1/4 hysteresis to avoid spurious page movement.
1013 */
1014 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1015 }
1016
1017 static unsigned long weighted_cpuload(const int cpu);
1018 static unsigned long source_load(int cpu, int type);
1019 static unsigned long target_load(int cpu, int type);
1020 static unsigned long capacity_of(int cpu);
1021 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1022
1023 /* Cached statistics for all CPUs within a node */
1024 struct numa_stats {
1025 unsigned long nr_running;
1026 unsigned long load;
1027
1028 /* Total compute capacity of CPUs on a node */
1029 unsigned long compute_capacity;
1030
1031 /* Approximate capacity in terms of runnable tasks on a node */
1032 unsigned long task_capacity;
1033 int has_free_capacity;
1034 };
1035
1036 /*
1037 * XXX borrowed from update_sg_lb_stats
1038 */
1039 static void update_numa_stats(struct numa_stats *ns, int nid)
1040 {
1041 int smt, cpu, cpus = 0;
1042 unsigned long capacity;
1043
1044 memset(ns, 0, sizeof(*ns));
1045 for_each_cpu(cpu, cpumask_of_node(nid)) {
1046 struct rq *rq = cpu_rq(cpu);
1047
1048 ns->nr_running += rq->nr_running;
1049 ns->load += weighted_cpuload(cpu);
1050 ns->compute_capacity += capacity_of(cpu);
1051
1052 cpus++;
1053 }
1054
1055 /*
1056 * If we raced with hotplug and there are no CPUs left in our mask
1057 * the @ns structure is NULL'ed and task_numa_compare() will
1058 * not find this node attractive.
1059 *
1060 * We'll either bail at !has_free_capacity, or we'll detect a huge
1061 * imbalance and bail there.
1062 */
1063 if (!cpus)
1064 return;
1065
1066 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1067 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1068 capacity = cpus / smt; /* cores */
1069
1070 ns->task_capacity = min_t(unsigned, capacity,
1071 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1072 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1073 }
1074
1075 struct task_numa_env {
1076 struct task_struct *p;
1077
1078 int src_cpu, src_nid;
1079 int dst_cpu, dst_nid;
1080
1081 struct numa_stats src_stats, dst_stats;
1082
1083 int imbalance_pct;
1084
1085 struct task_struct *best_task;
1086 long best_imp;
1087 int best_cpu;
1088 };
1089
1090 static void task_numa_assign(struct task_numa_env *env,
1091 struct task_struct *p, long imp)
1092 {
1093 if (env->best_task)
1094 put_task_struct(env->best_task);
1095 if (p)
1096 get_task_struct(p);
1097
1098 env->best_task = p;
1099 env->best_imp = imp;
1100 env->best_cpu = env->dst_cpu;
1101 }
1102
1103 static bool load_too_imbalanced(long src_load, long dst_load,
1104 struct task_numa_env *env)
1105 {
1106 long imb, old_imb;
1107 long orig_src_load, orig_dst_load;
1108 long src_capacity, dst_capacity;
1109
1110 /*
1111 * The load is corrected for the CPU capacity available on each node.
1112 *
1113 * src_load dst_load
1114 * ------------ vs ---------
1115 * src_capacity dst_capacity
1116 */
1117 src_capacity = env->src_stats.compute_capacity;
1118 dst_capacity = env->dst_stats.compute_capacity;
1119
1120 /* We care about the slope of the imbalance, not the direction. */
1121 if (dst_load < src_load)
1122 swap(dst_load, src_load);
1123
1124 /* Is the difference below the threshold? */
1125 imb = dst_load * src_capacity * 100 -
1126 src_load * dst_capacity * env->imbalance_pct;
1127 if (imb <= 0)
1128 return false;
1129
1130 /*
1131 * The imbalance is above the allowed threshold.
1132 * Compare it with the old imbalance.
1133 */
1134 orig_src_load = env->src_stats.load;
1135 orig_dst_load = env->dst_stats.load;
1136
1137 if (orig_dst_load < orig_src_load)
1138 swap(orig_dst_load, orig_src_load);
1139
1140 old_imb = orig_dst_load * src_capacity * 100 -
1141 orig_src_load * dst_capacity * env->imbalance_pct;
1142
1143 /* Would this change make things worse? */
1144 return (imb > old_imb);
1145 }
1146
1147 /*
1148 * This checks if the overall compute and NUMA accesses of the system would
1149 * be improved if the source tasks was migrated to the target dst_cpu taking
1150 * into account that it might be best if task running on the dst_cpu should
1151 * be exchanged with the source task
1152 */
1153 static void task_numa_compare(struct task_numa_env *env,
1154 long taskimp, long groupimp)
1155 {
1156 struct rq *src_rq = cpu_rq(env->src_cpu);
1157 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1158 struct task_struct *cur;
1159 long src_load, dst_load;
1160 long load;
1161 long imp = env->p->numa_group ? groupimp : taskimp;
1162 long moveimp = imp;
1163
1164 rcu_read_lock();
1165 cur = ACCESS_ONCE(dst_rq->curr);
1166 if (cur->pid == 0) /* idle */
1167 cur = NULL;
1168
1169 /*
1170 * "imp" is the fault differential for the source task between the
1171 * source and destination node. Calculate the total differential for
1172 * the source task and potential destination task. The more negative
1173 * the value is, the more rmeote accesses that would be expected to
1174 * be incurred if the tasks were swapped.
1175 */
1176 if (cur) {
1177 /* Skip this swap candidate if cannot move to the source cpu */
1178 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1179 goto unlock;
1180
1181 /*
1182 * If dst and source tasks are in the same NUMA group, or not
1183 * in any group then look only at task weights.
1184 */
1185 if (cur->numa_group == env->p->numa_group) {
1186 imp = taskimp + task_weight(cur, env->src_nid) -
1187 task_weight(cur, env->dst_nid);
1188 /*
1189 * Add some hysteresis to prevent swapping the
1190 * tasks within a group over tiny differences.
1191 */
1192 if (cur->numa_group)
1193 imp -= imp/16;
1194 } else {
1195 /*
1196 * Compare the group weights. If a task is all by
1197 * itself (not part of a group), use the task weight
1198 * instead.
1199 */
1200 if (cur->numa_group)
1201 imp += group_weight(cur, env->src_nid) -
1202 group_weight(cur, env->dst_nid);
1203 else
1204 imp += task_weight(cur, env->src_nid) -
1205 task_weight(cur, env->dst_nid);
1206 }
1207 }
1208
1209 if (imp <= env->best_imp && moveimp <= env->best_imp)
1210 goto unlock;
1211
1212 if (!cur) {
1213 /* Is there capacity at our destination? */
1214 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1215 !env->dst_stats.has_free_capacity)
1216 goto unlock;
1217
1218 goto balance;
1219 }
1220
1221 /* Balance doesn't matter much if we're running a task per cpu */
1222 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1223 dst_rq->nr_running == 1)
1224 goto assign;
1225
1226 /*
1227 * In the overloaded case, try and keep the load balanced.
1228 */
1229 balance:
1230 load = task_h_load(env->p);
1231 dst_load = env->dst_stats.load + load;
1232 src_load = env->src_stats.load - load;
1233
1234 if (moveimp > imp && moveimp > env->best_imp) {
1235 /*
1236 * If the improvement from just moving env->p direction is
1237 * better than swapping tasks around, check if a move is
1238 * possible. Store a slightly smaller score than moveimp,
1239 * so an actually idle CPU will win.
1240 */
1241 if (!load_too_imbalanced(src_load, dst_load, env)) {
1242 imp = moveimp - 1;
1243 cur = NULL;
1244 goto assign;
1245 }
1246 }
1247
1248 if (imp <= env->best_imp)
1249 goto unlock;
1250
1251 if (cur) {
1252 load = task_h_load(cur);
1253 dst_load -= load;
1254 src_load += load;
1255 }
1256
1257 if (load_too_imbalanced(src_load, dst_load, env))
1258 goto unlock;
1259
1260 assign:
1261 task_numa_assign(env, cur, imp);
1262 unlock:
1263 rcu_read_unlock();
1264 }
1265
1266 static void task_numa_find_cpu(struct task_numa_env *env,
1267 long taskimp, long groupimp)
1268 {
1269 int cpu;
1270
1271 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1272 /* Skip this CPU if the source task cannot migrate */
1273 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1274 continue;
1275
1276 env->dst_cpu = cpu;
1277 task_numa_compare(env, taskimp, groupimp);
1278 }
1279 }
1280
1281 static int task_numa_migrate(struct task_struct *p)
1282 {
1283 struct task_numa_env env = {
1284 .p = p,
1285
1286 .src_cpu = task_cpu(p),
1287 .src_nid = task_node(p),
1288
1289 .imbalance_pct = 112,
1290
1291 .best_task = NULL,
1292 .best_imp = 0,
1293 .best_cpu = -1
1294 };
1295 struct sched_domain *sd;
1296 unsigned long taskweight, groupweight;
1297 int nid, ret;
1298 long taskimp, groupimp;
1299
1300 /*
1301 * Pick the lowest SD_NUMA domain, as that would have the smallest
1302 * imbalance and would be the first to start moving tasks about.
1303 *
1304 * And we want to avoid any moving of tasks about, as that would create
1305 * random movement of tasks -- counter the numa conditions we're trying
1306 * to satisfy here.
1307 */
1308 rcu_read_lock();
1309 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1310 if (sd)
1311 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1312 rcu_read_unlock();
1313
1314 /*
1315 * Cpusets can break the scheduler domain tree into smaller
1316 * balance domains, some of which do not cross NUMA boundaries.
1317 * Tasks that are "trapped" in such domains cannot be migrated
1318 * elsewhere, so there is no point in (re)trying.
1319 */
1320 if (unlikely(!sd)) {
1321 p->numa_preferred_nid = task_node(p);
1322 return -EINVAL;
1323 }
1324
1325 taskweight = task_weight(p, env.src_nid);
1326 groupweight = group_weight(p, env.src_nid);
1327 update_numa_stats(&env.src_stats, env.src_nid);
1328 env.dst_nid = p->numa_preferred_nid;
1329 taskimp = task_weight(p, env.dst_nid) - taskweight;
1330 groupimp = group_weight(p, env.dst_nid) - groupweight;
1331 update_numa_stats(&env.dst_stats, env.dst_nid);
1332
1333 /* Try to find a spot on the preferred nid. */
1334 task_numa_find_cpu(&env, taskimp, groupimp);
1335
1336 /* No space available on the preferred nid. Look elsewhere. */
1337 if (env.best_cpu == -1) {
1338 for_each_online_node(nid) {
1339 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1340 continue;
1341
1342 /* Only consider nodes where both task and groups benefit */
1343 taskimp = task_weight(p, nid) - taskweight;
1344 groupimp = group_weight(p, nid) - groupweight;
1345 if (taskimp < 0 && groupimp < 0)
1346 continue;
1347
1348 env.dst_nid = nid;
1349 update_numa_stats(&env.dst_stats, env.dst_nid);
1350 task_numa_find_cpu(&env, taskimp, groupimp);
1351 }
1352 }
1353
1354 /*
1355 * If the task is part of a workload that spans multiple NUMA nodes,
1356 * and is migrating into one of the workload's active nodes, remember
1357 * this node as the task's preferred numa node, so the workload can
1358 * settle down.
1359 * A task that migrated to a second choice node will be better off
1360 * trying for a better one later. Do not set the preferred node here.
1361 */
1362 if (p->numa_group) {
1363 if (env.best_cpu == -1)
1364 nid = env.src_nid;
1365 else
1366 nid = env.dst_nid;
1367
1368 if (node_isset(nid, p->numa_group->active_nodes))
1369 sched_setnuma(p, env.dst_nid);
1370 }
1371
1372 /* No better CPU than the current one was found. */
1373 if (env.best_cpu == -1)
1374 return -EAGAIN;
1375
1376 /*
1377 * Reset the scan period if the task is being rescheduled on an
1378 * alternative node to recheck if the tasks is now properly placed.
1379 */
1380 p->numa_scan_period = task_scan_min(p);
1381
1382 if (env.best_task == NULL) {
1383 ret = migrate_task_to(p, env.best_cpu);
1384 if (ret != 0)
1385 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1386 return ret;
1387 }
1388
1389 ret = migrate_swap(p, env.best_task);
1390 if (ret != 0)
1391 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1392 put_task_struct(env.best_task);
1393 return ret;
1394 }
1395
1396 /* Attempt to migrate a task to a CPU on the preferred node. */
1397 static void numa_migrate_preferred(struct task_struct *p)
1398 {
1399 unsigned long interval = HZ;
1400
1401 /* This task has no NUMA fault statistics yet */
1402 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1403 return;
1404
1405 /* Periodically retry migrating the task to the preferred node */
1406 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1407 p->numa_migrate_retry = jiffies + interval;
1408
1409 /* Success if task is already running on preferred CPU */
1410 if (task_node(p) == p->numa_preferred_nid)
1411 return;
1412
1413 /* Otherwise, try migrate to a CPU on the preferred node */
1414 task_numa_migrate(p);
1415 }
1416
1417 /*
1418 * Find the nodes on which the workload is actively running. We do this by
1419 * tracking the nodes from which NUMA hinting faults are triggered. This can
1420 * be different from the set of nodes where the workload's memory is currently
1421 * located.
1422 *
1423 * The bitmask is used to make smarter decisions on when to do NUMA page
1424 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1425 * are added when they cause over 6/16 of the maximum number of faults, but
1426 * only removed when they drop below 3/16.
1427 */
1428 static void update_numa_active_node_mask(struct numa_group *numa_group)
1429 {
1430 unsigned long faults, max_faults = 0;
1431 int nid;
1432
1433 for_each_online_node(nid) {
1434 faults = group_faults_cpu(numa_group, nid);
1435 if (faults > max_faults)
1436 max_faults = faults;
1437 }
1438
1439 for_each_online_node(nid) {
1440 faults = group_faults_cpu(numa_group, nid);
1441 if (!node_isset(nid, numa_group->active_nodes)) {
1442 if (faults > max_faults * 6 / 16)
1443 node_set(nid, numa_group->active_nodes);
1444 } else if (faults < max_faults * 3 / 16)
1445 node_clear(nid, numa_group->active_nodes);
1446 }
1447 }
1448
1449 /*
1450 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1451 * increments. The more local the fault statistics are, the higher the scan
1452 * period will be for the next scan window. If local/(local+remote) ratio is
1453 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1454 * the scan period will decrease. Aim for 70% local accesses.
1455 */
1456 #define NUMA_PERIOD_SLOTS 10
1457 #define NUMA_PERIOD_THRESHOLD 7
1458
1459 /*
1460 * Increase the scan period (slow down scanning) if the majority of
1461 * our memory is already on our local node, or if the majority of
1462 * the page accesses are shared with other processes.
1463 * Otherwise, decrease the scan period.
1464 */
1465 static void update_task_scan_period(struct task_struct *p,
1466 unsigned long shared, unsigned long private)
1467 {
1468 unsigned int period_slot;
1469 int ratio;
1470 int diff;
1471
1472 unsigned long remote = p->numa_faults_locality[0];
1473 unsigned long local = p->numa_faults_locality[1];
1474
1475 /*
1476 * If there were no record hinting faults then either the task is
1477 * completely idle or all activity is areas that are not of interest
1478 * to automatic numa balancing. Scan slower
1479 */
1480 if (local + shared == 0) {
1481 p->numa_scan_period = min(p->numa_scan_period_max,
1482 p->numa_scan_period << 1);
1483
1484 p->mm->numa_next_scan = jiffies +
1485 msecs_to_jiffies(p->numa_scan_period);
1486
1487 return;
1488 }
1489
1490 /*
1491 * Prepare to scale scan period relative to the current period.
1492 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1493 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1494 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1495 */
1496 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1497 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1498 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1499 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1500 if (!slot)
1501 slot = 1;
1502 diff = slot * period_slot;
1503 } else {
1504 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1505
1506 /*
1507 * Scale scan rate increases based on sharing. There is an
1508 * inverse relationship between the degree of sharing and
1509 * the adjustment made to the scanning period. Broadly
1510 * speaking the intent is that there is little point
1511 * scanning faster if shared accesses dominate as it may
1512 * simply bounce migrations uselessly
1513 */
1514 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1515 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1516 }
1517
1518 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1519 task_scan_min(p), task_scan_max(p));
1520 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1521 }
1522
1523 /*
1524 * Get the fraction of time the task has been running since the last
1525 * NUMA placement cycle. The scheduler keeps similar statistics, but
1526 * decays those on a 32ms period, which is orders of magnitude off
1527 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1528 * stats only if the task is so new there are no NUMA statistics yet.
1529 */
1530 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1531 {
1532 u64 runtime, delta, now;
1533 /* Use the start of this time slice to avoid calculations. */
1534 now = p->se.exec_start;
1535 runtime = p->se.sum_exec_runtime;
1536
1537 if (p->last_task_numa_placement) {
1538 delta = runtime - p->last_sum_exec_runtime;
1539 *period = now - p->last_task_numa_placement;
1540 } else {
1541 delta = p->se.avg.runnable_avg_sum;
1542 *period = p->se.avg.runnable_avg_period;
1543 }
1544
1545 p->last_sum_exec_runtime = runtime;
1546 p->last_task_numa_placement = now;
1547
1548 return delta;
1549 }
1550
1551 static void task_numa_placement(struct task_struct *p)
1552 {
1553 int seq, nid, max_nid = -1, max_group_nid = -1;
1554 unsigned long max_faults = 0, max_group_faults = 0;
1555 unsigned long fault_types[2] = { 0, 0 };
1556 unsigned long total_faults;
1557 u64 runtime, period;
1558 spinlock_t *group_lock = NULL;
1559
1560 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1561 if (p->numa_scan_seq == seq)
1562 return;
1563 p->numa_scan_seq = seq;
1564 p->numa_scan_period_max = task_scan_max(p);
1565
1566 total_faults = p->numa_faults_locality[0] +
1567 p->numa_faults_locality[1];
1568 runtime = numa_get_avg_runtime(p, &period);
1569
1570 /* If the task is part of a group prevent parallel updates to group stats */
1571 if (p->numa_group) {
1572 group_lock = &p->numa_group->lock;
1573 spin_lock_irq(group_lock);
1574 }
1575
1576 /* Find the node with the highest number of faults */
1577 for_each_online_node(nid) {
1578 unsigned long faults = 0, group_faults = 0;
1579 int priv, i;
1580
1581 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1582 long diff, f_diff, f_weight;
1583
1584 i = task_faults_idx(nid, priv);
1585
1586 /* Decay existing window, copy faults since last scan */
1587 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1588 fault_types[priv] += p->numa_faults_buffer_memory[i];
1589 p->numa_faults_buffer_memory[i] = 0;
1590
1591 /*
1592 * Normalize the faults_from, so all tasks in a group
1593 * count according to CPU use, instead of by the raw
1594 * number of faults. Tasks with little runtime have
1595 * little over-all impact on throughput, and thus their
1596 * faults are less important.
1597 */
1598 f_weight = div64_u64(runtime << 16, period + 1);
1599 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1600 (total_faults + 1);
1601 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1602 p->numa_faults_buffer_cpu[i] = 0;
1603
1604 p->numa_faults_memory[i] += diff;
1605 p->numa_faults_cpu[i] += f_diff;
1606 faults += p->numa_faults_memory[i];
1607 p->total_numa_faults += diff;
1608 if (p->numa_group) {
1609 /* safe because we can only change our own group */
1610 p->numa_group->faults[i] += diff;
1611 p->numa_group->faults_cpu[i] += f_diff;
1612 p->numa_group->total_faults += diff;
1613 group_faults += p->numa_group->faults[i];
1614 }
1615 }
1616
1617 if (faults > max_faults) {
1618 max_faults = faults;
1619 max_nid = nid;
1620 }
1621
1622 if (group_faults > max_group_faults) {
1623 max_group_faults = group_faults;
1624 max_group_nid = nid;
1625 }
1626 }
1627
1628 update_task_scan_period(p, fault_types[0], fault_types[1]);
1629
1630 if (p->numa_group) {
1631 update_numa_active_node_mask(p->numa_group);
1632 spin_unlock_irq(group_lock);
1633 max_nid = max_group_nid;
1634 }
1635
1636 if (max_faults) {
1637 /* Set the new preferred node */
1638 if (max_nid != p->numa_preferred_nid)
1639 sched_setnuma(p, max_nid);
1640
1641 if (task_node(p) != p->numa_preferred_nid)
1642 numa_migrate_preferred(p);
1643 }
1644 }
1645
1646 static inline int get_numa_group(struct numa_group *grp)
1647 {
1648 return atomic_inc_not_zero(&grp->refcount);
1649 }
1650
1651 static inline void put_numa_group(struct numa_group *grp)
1652 {
1653 if (atomic_dec_and_test(&grp->refcount))
1654 kfree_rcu(grp, rcu);
1655 }
1656
1657 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1658 int *priv)
1659 {
1660 struct numa_group *grp, *my_grp;
1661 struct task_struct *tsk;
1662 bool join = false;
1663 int cpu = cpupid_to_cpu(cpupid);
1664 int i;
1665
1666 if (unlikely(!p->numa_group)) {
1667 unsigned int size = sizeof(struct numa_group) +
1668 4*nr_node_ids*sizeof(unsigned long);
1669
1670 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1671 if (!grp)
1672 return;
1673
1674 atomic_set(&grp->refcount, 1);
1675 spin_lock_init(&grp->lock);
1676 INIT_LIST_HEAD(&grp->task_list);
1677 grp->gid = p->pid;
1678 /* Second half of the array tracks nids where faults happen */
1679 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1680 nr_node_ids;
1681
1682 node_set(task_node(current), grp->active_nodes);
1683
1684 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1685 grp->faults[i] = p->numa_faults_memory[i];
1686
1687 grp->total_faults = p->total_numa_faults;
1688
1689 list_add(&p->numa_entry, &grp->task_list);
1690 grp->nr_tasks++;
1691 rcu_assign_pointer(p->numa_group, grp);
1692 }
1693
1694 rcu_read_lock();
1695 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1696
1697 if (!cpupid_match_pid(tsk, cpupid))
1698 goto no_join;
1699
1700 grp = rcu_dereference(tsk->numa_group);
1701 if (!grp)
1702 goto no_join;
1703
1704 my_grp = p->numa_group;
1705 if (grp == my_grp)
1706 goto no_join;
1707
1708 /*
1709 * Only join the other group if its bigger; if we're the bigger group,
1710 * the other task will join us.
1711 */
1712 if (my_grp->nr_tasks > grp->nr_tasks)
1713 goto no_join;
1714
1715 /*
1716 * Tie-break on the grp address.
1717 */
1718 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1719 goto no_join;
1720
1721 /* Always join threads in the same process. */
1722 if (tsk->mm == current->mm)
1723 join = true;
1724
1725 /* Simple filter to avoid false positives due to PID collisions */
1726 if (flags & TNF_SHARED)
1727 join = true;
1728
1729 /* Update priv based on whether false sharing was detected */
1730 *priv = !join;
1731
1732 if (join && !get_numa_group(grp))
1733 goto no_join;
1734
1735 rcu_read_unlock();
1736
1737 if (!join)
1738 return;
1739
1740 BUG_ON(irqs_disabled());
1741 double_lock_irq(&my_grp->lock, &grp->lock);
1742
1743 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1744 my_grp->faults[i] -= p->numa_faults_memory[i];
1745 grp->faults[i] += p->numa_faults_memory[i];
1746 }
1747 my_grp->total_faults -= p->total_numa_faults;
1748 grp->total_faults += p->total_numa_faults;
1749
1750 list_move(&p->numa_entry, &grp->task_list);
1751 my_grp->nr_tasks--;
1752 grp->nr_tasks++;
1753
1754 spin_unlock(&my_grp->lock);
1755 spin_unlock_irq(&grp->lock);
1756
1757 rcu_assign_pointer(p->numa_group, grp);
1758
1759 put_numa_group(my_grp);
1760 return;
1761
1762 no_join:
1763 rcu_read_unlock();
1764 return;
1765 }
1766
1767 void task_numa_free(struct task_struct *p)
1768 {
1769 struct numa_group *grp = p->numa_group;
1770 void *numa_faults = p->numa_faults_memory;
1771 unsigned long flags;
1772 int i;
1773
1774 if (grp) {
1775 spin_lock_irqsave(&grp->lock, flags);
1776 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1777 grp->faults[i] -= p->numa_faults_memory[i];
1778 grp->total_faults -= p->total_numa_faults;
1779
1780 list_del(&p->numa_entry);
1781 grp->nr_tasks--;
1782 spin_unlock_irqrestore(&grp->lock, flags);
1783 rcu_assign_pointer(p->numa_group, NULL);
1784 put_numa_group(grp);
1785 }
1786
1787 p->numa_faults_memory = NULL;
1788 p->numa_faults_buffer_memory = NULL;
1789 p->numa_faults_cpu= NULL;
1790 p->numa_faults_buffer_cpu = NULL;
1791 kfree(numa_faults);
1792 }
1793
1794 /*
1795 * Got a PROT_NONE fault for a page on @node.
1796 */
1797 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1798 {
1799 struct task_struct *p = current;
1800 bool migrated = flags & TNF_MIGRATED;
1801 int cpu_node = task_node(current);
1802 int local = !!(flags & TNF_FAULT_LOCAL);
1803 int priv;
1804
1805 if (!numabalancing_enabled)
1806 return;
1807
1808 /* for example, ksmd faulting in a user's mm */
1809 if (!p->mm)
1810 return;
1811
1812 /* Do not worry about placement if exiting */
1813 if (p->state == TASK_DEAD)
1814 return;
1815
1816 /* Allocate buffer to track faults on a per-node basis */
1817 if (unlikely(!p->numa_faults_memory)) {
1818 int size = sizeof(*p->numa_faults_memory) *
1819 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1820
1821 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1822 if (!p->numa_faults_memory)
1823 return;
1824
1825 BUG_ON(p->numa_faults_buffer_memory);
1826 /*
1827 * The averaged statistics, shared & private, memory & cpu,
1828 * occupy the first half of the array. The second half of the
1829 * array is for current counters, which are averaged into the
1830 * first set by task_numa_placement.
1831 */
1832 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1833 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1834 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1835 p->total_numa_faults = 0;
1836 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1837 }
1838
1839 /*
1840 * First accesses are treated as private, otherwise consider accesses
1841 * to be private if the accessing pid has not changed
1842 */
1843 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1844 priv = 1;
1845 } else {
1846 priv = cpupid_match_pid(p, last_cpupid);
1847 if (!priv && !(flags & TNF_NO_GROUP))
1848 task_numa_group(p, last_cpupid, flags, &priv);
1849 }
1850
1851 /*
1852 * If a workload spans multiple NUMA nodes, a shared fault that
1853 * occurs wholly within the set of nodes that the workload is
1854 * actively using should be counted as local. This allows the
1855 * scan rate to slow down when a workload has settled down.
1856 */
1857 if (!priv && !local && p->numa_group &&
1858 node_isset(cpu_node, p->numa_group->active_nodes) &&
1859 node_isset(mem_node, p->numa_group->active_nodes))
1860 local = 1;
1861
1862 task_numa_placement(p);
1863
1864 /*
1865 * Retry task to preferred node migration periodically, in case it
1866 * case it previously failed, or the scheduler moved us.
1867 */
1868 if (time_after(jiffies, p->numa_migrate_retry))
1869 numa_migrate_preferred(p);
1870
1871 if (migrated)
1872 p->numa_pages_migrated += pages;
1873
1874 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1875 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1876 p->numa_faults_locality[local] += pages;
1877 }
1878
1879 static void reset_ptenuma_scan(struct task_struct *p)
1880 {
1881 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1882 p->mm->numa_scan_offset = 0;
1883 }
1884
1885 /*
1886 * The expensive part of numa migration is done from task_work context.
1887 * Triggered from task_tick_numa().
1888 */
1889 void task_numa_work(struct callback_head *work)
1890 {
1891 unsigned long migrate, next_scan, now = jiffies;
1892 struct task_struct *p = current;
1893 struct mm_struct *mm = p->mm;
1894 struct vm_area_struct *vma;
1895 unsigned long start, end;
1896 unsigned long nr_pte_updates = 0;
1897 long pages;
1898
1899 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1900
1901 work->next = work; /* protect against double add */
1902 /*
1903 * Who cares about NUMA placement when they're dying.
1904 *
1905 * NOTE: make sure not to dereference p->mm before this check,
1906 * exit_task_work() happens _after_ exit_mm() so we could be called
1907 * without p->mm even though we still had it when we enqueued this
1908 * work.
1909 */
1910 if (p->flags & PF_EXITING)
1911 return;
1912
1913 if (!mm->numa_next_scan) {
1914 mm->numa_next_scan = now +
1915 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1916 }
1917
1918 /*
1919 * Enforce maximal scan/migration frequency..
1920 */
1921 migrate = mm->numa_next_scan;
1922 if (time_before(now, migrate))
1923 return;
1924
1925 if (p->numa_scan_period == 0) {
1926 p->numa_scan_period_max = task_scan_max(p);
1927 p->numa_scan_period = task_scan_min(p);
1928 }
1929
1930 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1931 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1932 return;
1933
1934 /*
1935 * Delay this task enough that another task of this mm will likely win
1936 * the next time around.
1937 */
1938 p->node_stamp += 2 * TICK_NSEC;
1939
1940 start = mm->numa_scan_offset;
1941 pages = sysctl_numa_balancing_scan_size;
1942 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1943 if (!pages)
1944 return;
1945
1946 down_read(&mm->mmap_sem);
1947 vma = find_vma(mm, start);
1948 if (!vma) {
1949 reset_ptenuma_scan(p);
1950 start = 0;
1951 vma = mm->mmap;
1952 }
1953 for (; vma; vma = vma->vm_next) {
1954 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
1955 continue;
1956
1957 /*
1958 * Shared library pages mapped by multiple processes are not
1959 * migrated as it is expected they are cache replicated. Avoid
1960 * hinting faults in read-only file-backed mappings or the vdso
1961 * as migrating the pages will be of marginal benefit.
1962 */
1963 if (!vma->vm_mm ||
1964 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1965 continue;
1966
1967 /*
1968 * Skip inaccessible VMAs to avoid any confusion between
1969 * PROT_NONE and NUMA hinting ptes
1970 */
1971 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
1972 continue;
1973
1974 do {
1975 start = max(start, vma->vm_start);
1976 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1977 end = min(end, vma->vm_end);
1978 nr_pte_updates += change_prot_numa(vma, start, end);
1979
1980 /*
1981 * Scan sysctl_numa_balancing_scan_size but ensure that
1982 * at least one PTE is updated so that unused virtual
1983 * address space is quickly skipped.
1984 */
1985 if (nr_pte_updates)
1986 pages -= (end - start) >> PAGE_SHIFT;
1987
1988 start = end;
1989 if (pages <= 0)
1990 goto out;
1991
1992 cond_resched();
1993 } while (end != vma->vm_end);
1994 }
1995
1996 out:
1997 /*
1998 * It is possible to reach the end of the VMA list but the last few
1999 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2000 * would find the !migratable VMA on the next scan but not reset the
2001 * scanner to the start so check it now.
2002 */
2003 if (vma)
2004 mm->numa_scan_offset = start;
2005 else
2006 reset_ptenuma_scan(p);
2007 up_read(&mm->mmap_sem);
2008 }
2009
2010 /*
2011 * Drive the periodic memory faults..
2012 */
2013 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2014 {
2015 struct callback_head *work = &curr->numa_work;
2016 u64 period, now;
2017
2018 /*
2019 * We don't care about NUMA placement if we don't have memory.
2020 */
2021 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2022 return;
2023
2024 /*
2025 * Using runtime rather than walltime has the dual advantage that
2026 * we (mostly) drive the selection from busy threads and that the
2027 * task needs to have done some actual work before we bother with
2028 * NUMA placement.
2029 */
2030 now = curr->se.sum_exec_runtime;
2031 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2032
2033 if (now - curr->node_stamp > period) {
2034 if (!curr->node_stamp)
2035 curr->numa_scan_period = task_scan_min(curr);
2036 curr->node_stamp += period;
2037
2038 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2039 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2040 task_work_add(curr, work, true);
2041 }
2042 }
2043 }
2044 #else
2045 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2046 {
2047 }
2048
2049 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2050 {
2051 }
2052
2053 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2054 {
2055 }
2056 #endif /* CONFIG_NUMA_BALANCING */
2057
2058 static void
2059 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2060 {
2061 update_load_add(&cfs_rq->load, se->load.weight);
2062 if (!parent_entity(se))
2063 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2064 #ifdef CONFIG_SMP
2065 if (entity_is_task(se)) {
2066 struct rq *rq = rq_of(cfs_rq);
2067
2068 account_numa_enqueue(rq, task_of(se));
2069 list_add(&se->group_node, &rq->cfs_tasks);
2070 }
2071 #endif
2072 cfs_rq->nr_running++;
2073 }
2074
2075 static void
2076 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2077 {
2078 update_load_sub(&cfs_rq->load, se->load.weight);
2079 if (!parent_entity(se))
2080 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2081 if (entity_is_task(se)) {
2082 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2083 list_del_init(&se->group_node);
2084 }
2085 cfs_rq->nr_running--;
2086 }
2087
2088 #ifdef CONFIG_FAIR_GROUP_SCHED
2089 # ifdef CONFIG_SMP
2090 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2091 {
2092 long tg_weight;
2093
2094 /*
2095 * Use this CPU's actual weight instead of the last load_contribution
2096 * to gain a more accurate current total weight. See
2097 * update_cfs_rq_load_contribution().
2098 */
2099 tg_weight = atomic_long_read(&tg->load_avg);
2100 tg_weight -= cfs_rq->tg_load_contrib;
2101 tg_weight += cfs_rq->load.weight;
2102
2103 return tg_weight;
2104 }
2105
2106 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2107 {
2108 long tg_weight, load, shares;
2109
2110 tg_weight = calc_tg_weight(tg, cfs_rq);
2111 load = cfs_rq->load.weight;
2112
2113 shares = (tg->shares * load);
2114 if (tg_weight)
2115 shares /= tg_weight;
2116
2117 if (shares < MIN_SHARES)
2118 shares = MIN_SHARES;
2119 if (shares > tg->shares)
2120 shares = tg->shares;
2121
2122 return shares;
2123 }
2124 # else /* CONFIG_SMP */
2125 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2126 {
2127 return tg->shares;
2128 }
2129 # endif /* CONFIG_SMP */
2130 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2131 unsigned long weight)
2132 {
2133 if (se->on_rq) {
2134 /* commit outstanding execution time */
2135 if (cfs_rq->curr == se)
2136 update_curr(cfs_rq);
2137 account_entity_dequeue(cfs_rq, se);
2138 }
2139
2140 update_load_set(&se->load, weight);
2141
2142 if (se->on_rq)
2143 account_entity_enqueue(cfs_rq, se);
2144 }
2145
2146 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2147
2148 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2149 {
2150 struct task_group *tg;
2151 struct sched_entity *se;
2152 long shares;
2153
2154 tg = cfs_rq->tg;
2155 se = tg->se[cpu_of(rq_of(cfs_rq))];
2156 if (!se || throttled_hierarchy(cfs_rq))
2157 return;
2158 #ifndef CONFIG_SMP
2159 if (likely(se->load.weight == tg->shares))
2160 return;
2161 #endif
2162 shares = calc_cfs_shares(cfs_rq, tg);
2163
2164 reweight_entity(cfs_rq_of(se), se, shares);
2165 }
2166 #else /* CONFIG_FAIR_GROUP_SCHED */
2167 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2168 {
2169 }
2170 #endif /* CONFIG_FAIR_GROUP_SCHED */
2171
2172 #ifdef CONFIG_SMP
2173 /*
2174 * We choose a half-life close to 1 scheduling period.
2175 * Note: The tables below are dependent on this value.
2176 */
2177 #define LOAD_AVG_PERIOD 32
2178 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2179 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2180
2181 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2182 static const u32 runnable_avg_yN_inv[] = {
2183 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2184 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2185 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2186 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2187 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2188 0x85aac367, 0x82cd8698,
2189 };
2190
2191 /*
2192 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2193 * over-estimates when re-combining.
2194 */
2195 static const u32 runnable_avg_yN_sum[] = {
2196 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2197 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2198 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2199 };
2200
2201 /*
2202 * Approximate:
2203 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2204 */
2205 static __always_inline u64 decay_load(u64 val, u64 n)
2206 {
2207 unsigned int local_n;
2208
2209 if (!n)
2210 return val;
2211 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2212 return 0;
2213
2214 /* after bounds checking we can collapse to 32-bit */
2215 local_n = n;
2216
2217 /*
2218 * As y^PERIOD = 1/2, we can combine
2219 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
2220 * With a look-up table which covers k^n (n<PERIOD)
2221 *
2222 * To achieve constant time decay_load.
2223 */
2224 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2225 val >>= local_n / LOAD_AVG_PERIOD;
2226 local_n %= LOAD_AVG_PERIOD;
2227 }
2228
2229 val *= runnable_avg_yN_inv[local_n];
2230 /* We don't use SRR here since we always want to round down. */
2231 return val >> 32;
2232 }
2233
2234 /*
2235 * For updates fully spanning n periods, the contribution to runnable
2236 * average will be: \Sum 1024*y^n
2237 *
2238 * We can compute this reasonably efficiently by combining:
2239 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2240 */
2241 static u32 __compute_runnable_contrib(u64 n)
2242 {
2243 u32 contrib = 0;
2244
2245 if (likely(n <= LOAD_AVG_PERIOD))
2246 return runnable_avg_yN_sum[n];
2247 else if (unlikely(n >= LOAD_AVG_MAX_N))
2248 return LOAD_AVG_MAX;
2249
2250 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2251 do {
2252 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2253 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2254
2255 n -= LOAD_AVG_PERIOD;
2256 } while (n > LOAD_AVG_PERIOD);
2257
2258 contrib = decay_load(contrib, n);
2259 return contrib + runnable_avg_yN_sum[n];
2260 }
2261
2262 /*
2263 * We can represent the historical contribution to runnable average as the
2264 * coefficients of a geometric series. To do this we sub-divide our runnable
2265 * history into segments of approximately 1ms (1024us); label the segment that
2266 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2267 *
2268 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2269 * p0 p1 p2
2270 * (now) (~1ms ago) (~2ms ago)
2271 *
2272 * Let u_i denote the fraction of p_i that the entity was runnable.
2273 *
2274 * We then designate the fractions u_i as our co-efficients, yielding the
2275 * following representation of historical load:
2276 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2277 *
2278 * We choose y based on the with of a reasonably scheduling period, fixing:
2279 * y^32 = 0.5
2280 *
2281 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2282 * approximately half as much as the contribution to load within the last ms
2283 * (u_0).
2284 *
2285 * When a period "rolls over" and we have new u_0`, multiplying the previous
2286 * sum again by y is sufficient to update:
2287 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2288 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2289 */
2290 static __always_inline int __update_entity_runnable_avg(u64 now,
2291 struct sched_avg *sa,
2292 int runnable)
2293 {
2294 u64 delta, periods;
2295 u32 runnable_contrib;
2296 int delta_w, decayed = 0;
2297
2298 delta = now - sa->last_runnable_update;
2299 /*
2300 * This should only happen when time goes backwards, which it
2301 * unfortunately does during sched clock init when we swap over to TSC.
2302 */
2303 if ((s64)delta < 0) {
2304 sa->last_runnable_update = now;
2305 return 0;
2306 }
2307
2308 /*
2309 * Use 1024ns as the unit of measurement since it's a reasonable
2310 * approximation of 1us and fast to compute.
2311 */
2312 delta >>= 10;
2313 if (!delta)
2314 return 0;
2315 sa->last_runnable_update = now;
2316
2317 /* delta_w is the amount already accumulated against our next period */
2318 delta_w = sa->runnable_avg_period % 1024;
2319 if (delta + delta_w >= 1024) {
2320 /* period roll-over */
2321 decayed = 1;
2322
2323 /*
2324 * Now that we know we're crossing a period boundary, figure
2325 * out how much from delta we need to complete the current
2326 * period and accrue it.
2327 */
2328 delta_w = 1024 - delta_w;
2329 if (runnable)
2330 sa->runnable_avg_sum += delta_w;
2331 sa->runnable_avg_period += delta_w;
2332
2333 delta -= delta_w;
2334
2335 /* Figure out how many additional periods this update spans */
2336 periods = delta / 1024;
2337 delta %= 1024;
2338
2339 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2340 periods + 1);
2341 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2342 periods + 1);
2343
2344 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2345 runnable_contrib = __compute_runnable_contrib(periods);
2346 if (runnable)
2347 sa->runnable_avg_sum += runnable_contrib;
2348 sa->runnable_avg_period += runnable_contrib;
2349 }
2350
2351 /* Remainder of delta accrued against u_0` */
2352 if (runnable)
2353 sa->runnable_avg_sum += delta;
2354 sa->runnable_avg_period += delta;
2355
2356 return decayed;
2357 }
2358
2359 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2360 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2361 {
2362 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2363 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2364
2365 decays -= se->avg.decay_count;
2366 if (!decays)
2367 return 0;
2368
2369 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2370 se->avg.decay_count = 0;
2371
2372 return decays;
2373 }
2374
2375 #ifdef CONFIG_FAIR_GROUP_SCHED
2376 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2377 int force_update)
2378 {
2379 struct task_group *tg = cfs_rq->tg;
2380 long tg_contrib;
2381
2382 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2383 tg_contrib -= cfs_rq->tg_load_contrib;
2384
2385 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2386 atomic_long_add(tg_contrib, &tg->load_avg);
2387 cfs_rq->tg_load_contrib += tg_contrib;
2388 }
2389 }
2390
2391 /*
2392 * Aggregate cfs_rq runnable averages into an equivalent task_group
2393 * representation for computing load contributions.
2394 */
2395 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2396 struct cfs_rq *cfs_rq)
2397 {
2398 struct task_group *tg = cfs_rq->tg;
2399 long contrib;
2400
2401 /* The fraction of a cpu used by this cfs_rq */
2402 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2403 sa->runnable_avg_period + 1);
2404 contrib -= cfs_rq->tg_runnable_contrib;
2405
2406 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2407 atomic_add(contrib, &tg->runnable_avg);
2408 cfs_rq->tg_runnable_contrib += contrib;
2409 }
2410 }
2411
2412 static inline void __update_group_entity_contrib(struct sched_entity *se)
2413 {
2414 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2415 struct task_group *tg = cfs_rq->tg;
2416 int runnable_avg;
2417
2418 u64 contrib;
2419
2420 contrib = cfs_rq->tg_load_contrib * tg->shares;
2421 se->avg.load_avg_contrib = div_u64(contrib,
2422 atomic_long_read(&tg->load_avg) + 1);
2423
2424 /*
2425 * For group entities we need to compute a correction term in the case
2426 * that they are consuming <1 cpu so that we would contribute the same
2427 * load as a task of equal weight.
2428 *
2429 * Explicitly co-ordinating this measurement would be expensive, but
2430 * fortunately the sum of each cpus contribution forms a usable
2431 * lower-bound on the true value.
2432 *
2433 * Consider the aggregate of 2 contributions. Either they are disjoint
2434 * (and the sum represents true value) or they are disjoint and we are
2435 * understating by the aggregate of their overlap.
2436 *
2437 * Extending this to N cpus, for a given overlap, the maximum amount we
2438 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2439 * cpus that overlap for this interval and w_i is the interval width.
2440 *
2441 * On a small machine; the first term is well-bounded which bounds the
2442 * total error since w_i is a subset of the period. Whereas on a
2443 * larger machine, while this first term can be larger, if w_i is the
2444 * of consequential size guaranteed to see n_i*w_i quickly converge to
2445 * our upper bound of 1-cpu.
2446 */
2447 runnable_avg = atomic_read(&tg->runnable_avg);
2448 if (runnable_avg < NICE_0_LOAD) {
2449 se->avg.load_avg_contrib *= runnable_avg;
2450 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2451 }
2452 }
2453
2454 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2455 {
2456 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2457 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
2458 }
2459 #else /* CONFIG_FAIR_GROUP_SCHED */
2460 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2461 int force_update) {}
2462 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2463 struct cfs_rq *cfs_rq) {}
2464 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2465 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2466 #endif /* CONFIG_FAIR_GROUP_SCHED */
2467
2468 static inline void __update_task_entity_contrib(struct sched_entity *se)
2469 {
2470 u32 contrib;
2471
2472 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2473 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2474 contrib /= (se->avg.runnable_avg_period + 1);
2475 se->avg.load_avg_contrib = scale_load(contrib);
2476 }
2477
2478 /* Compute the current contribution to load_avg by se, return any delta */
2479 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2480 {
2481 long old_contrib = se->avg.load_avg_contrib;
2482
2483 if (entity_is_task(se)) {
2484 __update_task_entity_contrib(se);
2485 } else {
2486 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2487 __update_group_entity_contrib(se);
2488 }
2489
2490 return se->avg.load_avg_contrib - old_contrib;
2491 }
2492
2493 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2494 long load_contrib)
2495 {
2496 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2497 cfs_rq->blocked_load_avg -= load_contrib;
2498 else
2499 cfs_rq->blocked_load_avg = 0;
2500 }
2501
2502 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2503
2504 /* Update a sched_entity's runnable average */
2505 static inline void update_entity_load_avg(struct sched_entity *se,
2506 int update_cfs_rq)
2507 {
2508 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2509 long contrib_delta;
2510 u64 now;
2511
2512 /*
2513 * For a group entity we need to use their owned cfs_rq_clock_task() in
2514 * case they are the parent of a throttled hierarchy.
2515 */
2516 if (entity_is_task(se))
2517 now = cfs_rq_clock_task(cfs_rq);
2518 else
2519 now = cfs_rq_clock_task(group_cfs_rq(se));
2520
2521 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2522 return;
2523
2524 contrib_delta = __update_entity_load_avg_contrib(se);
2525
2526 if (!update_cfs_rq)
2527 return;
2528
2529 if (se->on_rq)
2530 cfs_rq->runnable_load_avg += contrib_delta;
2531 else
2532 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2533 }
2534
2535 /*
2536 * Decay the load contributed by all blocked children and account this so that
2537 * their contribution may appropriately discounted when they wake up.
2538 */
2539 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2540 {
2541 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2542 u64 decays;
2543
2544 decays = now - cfs_rq->last_decay;
2545 if (!decays && !force_update)
2546 return;
2547
2548 if (atomic_long_read(&cfs_rq->removed_load)) {
2549 unsigned long removed_load;
2550 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2551 subtract_blocked_load_contrib(cfs_rq, removed_load);
2552 }
2553
2554 if (decays) {
2555 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2556 decays);
2557 atomic64_add(decays, &cfs_rq->decay_counter);
2558 cfs_rq->last_decay = now;
2559 }
2560
2561 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2562 }
2563
2564 /* Add the load generated by se into cfs_rq's child load-average */
2565 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2566 struct sched_entity *se,
2567 int wakeup)
2568 {
2569 /*
2570 * We track migrations using entity decay_count <= 0, on a wake-up
2571 * migration we use a negative decay count to track the remote decays
2572 * accumulated while sleeping.
2573 *
2574 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2575 * are seen by enqueue_entity_load_avg() as a migration with an already
2576 * constructed load_avg_contrib.
2577 */
2578 if (unlikely(se->avg.decay_count <= 0)) {
2579 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2580 if (se->avg.decay_count) {
2581 /*
2582 * In a wake-up migration we have to approximate the
2583 * time sleeping. This is because we can't synchronize
2584 * clock_task between the two cpus, and it is not
2585 * guaranteed to be read-safe. Instead, we can
2586 * approximate this using our carried decays, which are
2587 * explicitly atomically readable.
2588 */
2589 se->avg.last_runnable_update -= (-se->avg.decay_count)
2590 << 20;
2591 update_entity_load_avg(se, 0);
2592 /* Indicate that we're now synchronized and on-rq */
2593 se->avg.decay_count = 0;
2594 }
2595 wakeup = 0;
2596 } else {
2597 __synchronize_entity_decay(se);
2598 }
2599
2600 /* migrated tasks did not contribute to our blocked load */
2601 if (wakeup) {
2602 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2603 update_entity_load_avg(se, 0);
2604 }
2605
2606 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2607 /* we force update consideration on load-balancer moves */
2608 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2609 }
2610
2611 /*
2612 * Remove se's load from this cfs_rq child load-average, if the entity is
2613 * transitioning to a blocked state we track its projected decay using
2614 * blocked_load_avg.
2615 */
2616 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2617 struct sched_entity *se,
2618 int sleep)
2619 {
2620 update_entity_load_avg(se, 1);
2621 /* we force update consideration on load-balancer moves */
2622 update_cfs_rq_blocked_load(cfs_rq, !sleep);
2623
2624 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2625 if (sleep) {
2626 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2627 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2628 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
2629 }
2630
2631 /*
2632 * Update the rq's load with the elapsed running time before entering
2633 * idle. if the last scheduled task is not a CFS task, idle_enter will
2634 * be the only way to update the runnable statistic.
2635 */
2636 void idle_enter_fair(struct rq *this_rq)
2637 {
2638 update_rq_runnable_avg(this_rq, 1);
2639 }
2640
2641 /*
2642 * Update the rq's load with the elapsed idle time before a task is
2643 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2644 * be the only way to update the runnable statistic.
2645 */
2646 void idle_exit_fair(struct rq *this_rq)
2647 {
2648 update_rq_runnable_avg(this_rq, 0);
2649 }
2650
2651 static int idle_balance(struct rq *this_rq);
2652
2653 #else /* CONFIG_SMP */
2654
2655 static inline void update_entity_load_avg(struct sched_entity *se,
2656 int update_cfs_rq) {}
2657 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2658 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2659 struct sched_entity *se,
2660 int wakeup) {}
2661 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2662 struct sched_entity *se,
2663 int sleep) {}
2664 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2665 int force_update) {}
2666
2667 static inline int idle_balance(struct rq *rq)
2668 {
2669 return 0;
2670 }
2671
2672 #endif /* CONFIG_SMP */
2673
2674 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2675 {
2676 #ifdef CONFIG_SCHEDSTATS
2677 struct task_struct *tsk = NULL;
2678
2679 if (entity_is_task(se))
2680 tsk = task_of(se);
2681
2682 if (se->statistics.sleep_start) {
2683 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2684
2685 if ((s64)delta < 0)
2686 delta = 0;
2687
2688 if (unlikely(delta > se->statistics.sleep_max))
2689 se->statistics.sleep_max = delta;
2690
2691 se->statistics.sleep_start = 0;
2692 se->statistics.sum_sleep_runtime += delta;
2693
2694 if (tsk) {
2695 account_scheduler_latency(tsk, delta >> 10, 1);
2696 trace_sched_stat_sleep(tsk, delta);
2697 }
2698 }
2699 if (se->statistics.block_start) {
2700 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2701
2702 if ((s64)delta < 0)
2703 delta = 0;
2704
2705 if (unlikely(delta > se->statistics.block_max))
2706 se->statistics.block_max = delta;
2707
2708 se->statistics.block_start = 0;
2709 se->statistics.sum_sleep_runtime += delta;
2710
2711 if (tsk) {
2712 if (tsk->in_iowait) {
2713 se->statistics.iowait_sum += delta;
2714 se->statistics.iowait_count++;
2715 trace_sched_stat_iowait(tsk, delta);
2716 }
2717
2718 trace_sched_stat_blocked(tsk, delta);
2719
2720 /*
2721 * Blocking time is in units of nanosecs, so shift by
2722 * 20 to get a milliseconds-range estimation of the
2723 * amount of time that the task spent sleeping:
2724 */
2725 if (unlikely(prof_on == SLEEP_PROFILING)) {
2726 profile_hits(SLEEP_PROFILING,
2727 (void *)get_wchan(tsk),
2728 delta >> 20);
2729 }
2730 account_scheduler_latency(tsk, delta >> 10, 0);
2731 }
2732 }
2733 #endif
2734 }
2735
2736 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2737 {
2738 #ifdef CONFIG_SCHED_DEBUG
2739 s64 d = se->vruntime - cfs_rq->min_vruntime;
2740
2741 if (d < 0)
2742 d = -d;
2743
2744 if (d > 3*sysctl_sched_latency)
2745 schedstat_inc(cfs_rq, nr_spread_over);
2746 #endif
2747 }
2748
2749 static void
2750 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2751 {
2752 u64 vruntime = cfs_rq->min_vruntime;
2753
2754 /*
2755 * The 'current' period is already promised to the current tasks,
2756 * however the extra weight of the new task will slow them down a
2757 * little, place the new task so that it fits in the slot that
2758 * stays open at the end.
2759 */
2760 if (initial && sched_feat(START_DEBIT))
2761 vruntime += sched_vslice(cfs_rq, se);
2762
2763 /* sleeps up to a single latency don't count. */
2764 if (!initial) {
2765 unsigned long thresh = sysctl_sched_latency;
2766
2767 /*
2768 * Halve their sleep time's effect, to allow
2769 * for a gentler effect of sleepers:
2770 */
2771 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2772 thresh >>= 1;
2773
2774 vruntime -= thresh;
2775 }
2776
2777 /* ensure we never gain time by being placed backwards. */
2778 se->vruntime = max_vruntime(se->vruntime, vruntime);
2779 }
2780
2781 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2782
2783 static void
2784 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2785 {
2786 /*
2787 * Update the normalized vruntime before updating min_vruntime
2788 * through calling update_curr().
2789 */
2790 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2791 se->vruntime += cfs_rq->min_vruntime;
2792
2793 /*
2794 * Update run-time statistics of the 'current'.
2795 */
2796 update_curr(cfs_rq);
2797 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2798 account_entity_enqueue(cfs_rq, se);
2799 update_cfs_shares(cfs_rq);
2800
2801 if (flags & ENQUEUE_WAKEUP) {
2802 place_entity(cfs_rq, se, 0);
2803 enqueue_sleeper(cfs_rq, se);
2804 }
2805
2806 update_stats_enqueue(cfs_rq, se);
2807 check_spread(cfs_rq, se);
2808 if (se != cfs_rq->curr)
2809 __enqueue_entity(cfs_rq, se);
2810 se->on_rq = 1;
2811
2812 if (cfs_rq->nr_running == 1) {
2813 list_add_leaf_cfs_rq(cfs_rq);
2814 check_enqueue_throttle(cfs_rq);
2815 }
2816 }
2817
2818 static void __clear_buddies_last(struct sched_entity *se)
2819 {
2820 for_each_sched_entity(se) {
2821 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2822 if (cfs_rq->last != se)
2823 break;
2824
2825 cfs_rq->last = NULL;
2826 }
2827 }
2828
2829 static void __clear_buddies_next(struct sched_entity *se)
2830 {
2831 for_each_sched_entity(se) {
2832 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2833 if (cfs_rq->next != se)
2834 break;
2835
2836 cfs_rq->next = NULL;
2837 }
2838 }
2839
2840 static void __clear_buddies_skip(struct sched_entity *se)
2841 {
2842 for_each_sched_entity(se) {
2843 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2844 if (cfs_rq->skip != se)
2845 break;
2846
2847 cfs_rq->skip = NULL;
2848 }
2849 }
2850
2851 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2852 {
2853 if (cfs_rq->last == se)
2854 __clear_buddies_last(se);
2855
2856 if (cfs_rq->next == se)
2857 __clear_buddies_next(se);
2858
2859 if (cfs_rq->skip == se)
2860 __clear_buddies_skip(se);
2861 }
2862
2863 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2864
2865 static void
2866 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2867 {
2868 /*
2869 * Update run-time statistics of the 'current'.
2870 */
2871 update_curr(cfs_rq);
2872 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2873
2874 update_stats_dequeue(cfs_rq, se);
2875 if (flags & DEQUEUE_SLEEP) {
2876 #ifdef CONFIG_SCHEDSTATS
2877 if (entity_is_task(se)) {
2878 struct task_struct *tsk = task_of(se);
2879
2880 if (tsk->state & TASK_INTERRUPTIBLE)
2881 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2882 if (tsk->state & TASK_UNINTERRUPTIBLE)
2883 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2884 }
2885 #endif
2886 }
2887
2888 clear_buddies(cfs_rq, se);
2889
2890 if (se != cfs_rq->curr)
2891 __dequeue_entity(cfs_rq, se);
2892 se->on_rq = 0;
2893 account_entity_dequeue(cfs_rq, se);
2894
2895 /*
2896 * Normalize the entity after updating the min_vruntime because the
2897 * update can refer to the ->curr item and we need to reflect this
2898 * movement in our normalized position.
2899 */
2900 if (!(flags & DEQUEUE_SLEEP))
2901 se->vruntime -= cfs_rq->min_vruntime;
2902
2903 /* return excess runtime on last dequeue */
2904 return_cfs_rq_runtime(cfs_rq);
2905
2906 update_min_vruntime(cfs_rq);
2907 update_cfs_shares(cfs_rq);
2908 }
2909
2910 /*
2911 * Preempt the current task with a newly woken task if needed:
2912 */
2913 static void
2914 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2915 {
2916 unsigned long ideal_runtime, delta_exec;
2917 struct sched_entity *se;
2918 s64 delta;
2919
2920 ideal_runtime = sched_slice(cfs_rq, curr);
2921 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2922 if (delta_exec > ideal_runtime) {
2923 resched_curr(rq_of(cfs_rq));
2924 /*
2925 * The current task ran long enough, ensure it doesn't get
2926 * re-elected due to buddy favours.
2927 */
2928 clear_buddies(cfs_rq, curr);
2929 return;
2930 }
2931
2932 /*
2933 * Ensure that a task that missed wakeup preemption by a
2934 * narrow margin doesn't have to wait for a full slice.
2935 * This also mitigates buddy induced latencies under load.
2936 */
2937 if (delta_exec < sysctl_sched_min_granularity)
2938 return;
2939
2940 se = __pick_first_entity(cfs_rq);
2941 delta = curr->vruntime - se->vruntime;
2942
2943 if (delta < 0)
2944 return;
2945
2946 if (delta > ideal_runtime)
2947 resched_curr(rq_of(cfs_rq));
2948 }
2949
2950 static void
2951 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2952 {
2953 /* 'current' is not kept within the tree. */
2954 if (se->on_rq) {
2955 /*
2956 * Any task has to be enqueued before it get to execute on
2957 * a CPU. So account for the time it spent waiting on the
2958 * runqueue.
2959 */
2960 update_stats_wait_end(cfs_rq, se);
2961 __dequeue_entity(cfs_rq, se);
2962 }
2963
2964 update_stats_curr_start(cfs_rq, se);
2965 cfs_rq->curr = se;
2966 #ifdef CONFIG_SCHEDSTATS
2967 /*
2968 * Track our maximum slice length, if the CPU's load is at
2969 * least twice that of our own weight (i.e. dont track it
2970 * when there are only lesser-weight tasks around):
2971 */
2972 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
2973 se->statistics.slice_max = max(se->statistics.slice_max,
2974 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2975 }
2976 #endif
2977 se->prev_sum_exec_runtime = se->sum_exec_runtime;
2978 }
2979
2980 static int
2981 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2982
2983 /*
2984 * Pick the next process, keeping these things in mind, in this order:
2985 * 1) keep things fair between processes/task groups
2986 * 2) pick the "next" process, since someone really wants that to run
2987 * 3) pick the "last" process, for cache locality
2988 * 4) do not run the "skip" process, if something else is available
2989 */
2990 static struct sched_entity *
2991 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2992 {
2993 struct sched_entity *left = __pick_first_entity(cfs_rq);
2994 struct sched_entity *se;
2995
2996 /*
2997 * If curr is set we have to see if its left of the leftmost entity
2998 * still in the tree, provided there was anything in the tree at all.
2999 */
3000 if (!left || (curr && entity_before(curr, left)))
3001 left = curr;
3002
3003 se = left; /* ideally we run the leftmost entity */
3004
3005 /*
3006 * Avoid running the skip buddy, if running something else can
3007 * be done without getting too unfair.
3008 */
3009 if (cfs_rq->skip == se) {
3010 struct sched_entity *second;
3011
3012 if (se == curr) {
3013 second = __pick_first_entity(cfs_rq);
3014 } else {
3015 second = __pick_next_entity(se);
3016 if (!second || (curr && entity_before(curr, second)))
3017 second = curr;
3018 }
3019
3020 if (second && wakeup_preempt_entity(second, left) < 1)
3021 se = second;
3022 }
3023
3024 /*
3025 * Prefer last buddy, try to return the CPU to a preempted task.
3026 */
3027 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3028 se = cfs_rq->last;
3029
3030 /*
3031 * Someone really wants this to run. If it's not unfair, run it.
3032 */
3033 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3034 se = cfs_rq->next;
3035
3036 clear_buddies(cfs_rq, se);
3037
3038 return se;
3039 }
3040
3041 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3042
3043 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3044 {
3045 /*
3046 * If still on the runqueue then deactivate_task()
3047 * was not called and update_curr() has to be done:
3048 */
3049 if (prev->on_rq)
3050 update_curr(cfs_rq);
3051
3052 /* throttle cfs_rqs exceeding runtime */
3053 check_cfs_rq_runtime(cfs_rq);
3054
3055 check_spread(cfs_rq, prev);
3056 if (prev->on_rq) {
3057 update_stats_wait_start(cfs_rq, prev);
3058 /* Put 'current' back into the tree. */
3059 __enqueue_entity(cfs_rq, prev);
3060 /* in !on_rq case, update occurred at dequeue */
3061 update_entity_load_avg(prev, 1);
3062 }
3063 cfs_rq->curr = NULL;
3064 }
3065
3066 static void
3067 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3068 {
3069 /*
3070 * Update run-time statistics of the 'current'.
3071 */
3072 update_curr(cfs_rq);
3073
3074 /*
3075 * Ensure that runnable average is periodically updated.
3076 */
3077 update_entity_load_avg(curr, 1);
3078 update_cfs_rq_blocked_load(cfs_rq, 1);
3079 update_cfs_shares(cfs_rq);
3080
3081 #ifdef CONFIG_SCHED_HRTICK
3082 /*
3083 * queued ticks are scheduled to match the slice, so don't bother
3084 * validating it and just reschedule.
3085 */
3086 if (queued) {
3087 resched_curr(rq_of(cfs_rq));
3088 return;
3089 }
3090 /*
3091 * don't let the period tick interfere with the hrtick preemption
3092 */
3093 if (!sched_feat(DOUBLE_TICK) &&
3094 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3095 return;
3096 #endif
3097
3098 if (cfs_rq->nr_running > 1)
3099 check_preempt_tick(cfs_rq, curr);
3100 }
3101
3102
3103 /**************************************************
3104 * CFS bandwidth control machinery
3105 */
3106
3107 #ifdef CONFIG_CFS_BANDWIDTH
3108
3109 #ifdef HAVE_JUMP_LABEL
3110 static struct static_key __cfs_bandwidth_used;
3111
3112 static inline bool cfs_bandwidth_used(void)
3113 {
3114 return static_key_false(&__cfs_bandwidth_used);
3115 }
3116
3117 void cfs_bandwidth_usage_inc(void)
3118 {
3119 static_key_slow_inc(&__cfs_bandwidth_used);
3120 }
3121
3122 void cfs_bandwidth_usage_dec(void)
3123 {
3124 static_key_slow_dec(&__cfs_bandwidth_used);
3125 }
3126 #else /* HAVE_JUMP_LABEL */
3127 static bool cfs_bandwidth_used(void)
3128 {
3129 return true;
3130 }
3131
3132 void cfs_bandwidth_usage_inc(void) {}
3133 void cfs_bandwidth_usage_dec(void) {}
3134 #endif /* HAVE_JUMP_LABEL */
3135
3136 /*
3137 * default period for cfs group bandwidth.
3138 * default: 0.1s, units: nanoseconds
3139 */
3140 static inline u64 default_cfs_period(void)
3141 {
3142 return 100000000ULL;
3143 }
3144
3145 static inline u64 sched_cfs_bandwidth_slice(void)
3146 {
3147 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3148 }
3149
3150 /*
3151 * Replenish runtime according to assigned quota and update expiration time.
3152 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3153 * additional synchronization around rq->lock.
3154 *
3155 * requires cfs_b->lock
3156 */
3157 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3158 {
3159 u64 now;
3160
3161 if (cfs_b->quota == RUNTIME_INF)
3162 return;
3163
3164 now = sched_clock_cpu(smp_processor_id());
3165 cfs_b->runtime = cfs_b->quota;
3166 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3167 }
3168
3169 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3170 {
3171 return &tg->cfs_bandwidth;
3172 }
3173
3174 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3175 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3176 {
3177 if (unlikely(cfs_rq->throttle_count))
3178 return cfs_rq->throttled_clock_task;
3179
3180 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3181 }
3182
3183 /* returns 0 on failure to allocate runtime */
3184 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3185 {
3186 struct task_group *tg = cfs_rq->tg;
3187 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3188 u64 amount = 0, min_amount, expires;
3189
3190 /* note: this is a positive sum as runtime_remaining <= 0 */
3191 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3192
3193 raw_spin_lock(&cfs_b->lock);
3194 if (cfs_b->quota == RUNTIME_INF)
3195 amount = min_amount;
3196 else {
3197 /*
3198 * If the bandwidth pool has become inactive, then at least one
3199 * period must have elapsed since the last consumption.
3200 * Refresh the global state and ensure bandwidth timer becomes
3201 * active.
3202 */
3203 if (!cfs_b->timer_active) {
3204 __refill_cfs_bandwidth_runtime(cfs_b);
3205 __start_cfs_bandwidth(cfs_b, false);
3206 }
3207
3208 if (cfs_b->runtime > 0) {
3209 amount = min(cfs_b->runtime, min_amount);
3210 cfs_b->runtime -= amount;
3211 cfs_b->idle = 0;
3212 }
3213 }
3214 expires = cfs_b->runtime_expires;
3215 raw_spin_unlock(&cfs_b->lock);
3216
3217 cfs_rq->runtime_remaining += amount;
3218 /*
3219 * we may have advanced our local expiration to account for allowed
3220 * spread between our sched_clock and the one on which runtime was
3221 * issued.
3222 */
3223 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3224 cfs_rq->runtime_expires = expires;
3225
3226 return cfs_rq->runtime_remaining > 0;
3227 }
3228
3229 /*
3230 * Note: This depends on the synchronization provided by sched_clock and the
3231 * fact that rq->clock snapshots this value.
3232 */
3233 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3234 {
3235 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3236
3237 /* if the deadline is ahead of our clock, nothing to do */
3238 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3239 return;
3240
3241 if (cfs_rq->runtime_remaining < 0)
3242 return;
3243
3244 /*
3245 * If the local deadline has passed we have to consider the
3246 * possibility that our sched_clock is 'fast' and the global deadline
3247 * has not truly expired.
3248 *
3249 * Fortunately we can check determine whether this the case by checking
3250 * whether the global deadline has advanced. It is valid to compare
3251 * cfs_b->runtime_expires without any locks since we only care about
3252 * exact equality, so a partial write will still work.
3253 */
3254
3255 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3256 /* extend local deadline, drift is bounded above by 2 ticks */
3257 cfs_rq->runtime_expires += TICK_NSEC;
3258 } else {
3259 /* global deadline is ahead, expiration has passed */
3260 cfs_rq->runtime_remaining = 0;
3261 }
3262 }
3263
3264 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3265 {
3266 /* dock delta_exec before expiring quota (as it could span periods) */
3267 cfs_rq->runtime_remaining -= delta_exec;
3268 expire_cfs_rq_runtime(cfs_rq);
3269
3270 if (likely(cfs_rq->runtime_remaining > 0))
3271 return;
3272
3273 /*
3274 * if we're unable to extend our runtime we resched so that the active
3275 * hierarchy can be throttled
3276 */
3277 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3278 resched_curr(rq_of(cfs_rq));
3279 }
3280
3281 static __always_inline
3282 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3283 {
3284 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3285 return;
3286
3287 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3288 }
3289
3290 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3291 {
3292 return cfs_bandwidth_used() && cfs_rq->throttled;
3293 }
3294
3295 /* check whether cfs_rq, or any parent, is throttled */
3296 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3297 {
3298 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3299 }
3300
3301 /*
3302 * Ensure that neither of the group entities corresponding to src_cpu or
3303 * dest_cpu are members of a throttled hierarchy when performing group
3304 * load-balance operations.
3305 */
3306 static inline int throttled_lb_pair(struct task_group *tg,
3307 int src_cpu, int dest_cpu)
3308 {
3309 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3310
3311 src_cfs_rq = tg->cfs_rq[src_cpu];
3312 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3313
3314 return throttled_hierarchy(src_cfs_rq) ||
3315 throttled_hierarchy(dest_cfs_rq);
3316 }
3317
3318 /* updated child weight may affect parent so we have to do this bottom up */
3319 static int tg_unthrottle_up(struct task_group *tg, void *data)
3320 {
3321 struct rq *rq = data;
3322 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3323
3324 cfs_rq->throttle_count--;
3325 #ifdef CONFIG_SMP
3326 if (!cfs_rq->throttle_count) {
3327 /* adjust cfs_rq_clock_task() */
3328 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3329 cfs_rq->throttled_clock_task;
3330 }
3331 #endif
3332
3333 return 0;
3334 }
3335
3336 static int tg_throttle_down(struct task_group *tg, void *data)
3337 {
3338 struct rq *rq = data;
3339 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3340
3341 /* group is entering throttled state, stop time */
3342 if (!cfs_rq->throttle_count)
3343 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3344 cfs_rq->throttle_count++;
3345
3346 return 0;
3347 }
3348
3349 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3350 {
3351 struct rq *rq = rq_of(cfs_rq);
3352 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3353 struct sched_entity *se;
3354 long task_delta, dequeue = 1;
3355
3356 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3357
3358 /* freeze hierarchy runnable averages while throttled */
3359 rcu_read_lock();
3360 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3361 rcu_read_unlock();
3362
3363 task_delta = cfs_rq->h_nr_running;
3364 for_each_sched_entity(se) {
3365 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3366 /* throttled entity or throttle-on-deactivate */
3367 if (!se->on_rq)
3368 break;
3369
3370 if (dequeue)
3371 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3372 qcfs_rq->h_nr_running -= task_delta;
3373
3374 if (qcfs_rq->load.weight)
3375 dequeue = 0;
3376 }
3377
3378 if (!se)
3379 sub_nr_running(rq, task_delta);
3380
3381 cfs_rq->throttled = 1;
3382 cfs_rq->throttled_clock = rq_clock(rq);
3383 raw_spin_lock(&cfs_b->lock);
3384 /*
3385 * Add to the _head_ of the list, so that an already-started
3386 * distribute_cfs_runtime will not see us
3387 */
3388 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3389 if (!cfs_b->timer_active)
3390 __start_cfs_bandwidth(cfs_b, false);
3391 raw_spin_unlock(&cfs_b->lock);
3392 }
3393
3394 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3395 {
3396 struct rq *rq = rq_of(cfs_rq);
3397 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3398 struct sched_entity *se;
3399 int enqueue = 1;
3400 long task_delta;
3401
3402 se = cfs_rq->tg->se[cpu_of(rq)];
3403
3404 cfs_rq->throttled = 0;
3405
3406 update_rq_clock(rq);
3407
3408 raw_spin_lock(&cfs_b->lock);
3409 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3410 list_del_rcu(&cfs_rq->throttled_list);
3411 raw_spin_unlock(&cfs_b->lock);
3412
3413 /* update hierarchical throttle state */
3414 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3415
3416 if (!cfs_rq->load.weight)
3417 return;
3418
3419 task_delta = cfs_rq->h_nr_running;
3420 for_each_sched_entity(se) {
3421 if (se->on_rq)
3422 enqueue = 0;
3423
3424 cfs_rq = cfs_rq_of(se);
3425 if (enqueue)
3426 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3427 cfs_rq->h_nr_running += task_delta;
3428
3429 if (cfs_rq_throttled(cfs_rq))
3430 break;
3431 }
3432
3433 if (!se)
3434 add_nr_running(rq, task_delta);
3435
3436 /* determine whether we need to wake up potentially idle cpu */
3437 if (rq->curr == rq->idle && rq->cfs.nr_running)
3438 resched_curr(rq);
3439 }
3440
3441 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3442 u64 remaining, u64 expires)
3443 {
3444 struct cfs_rq *cfs_rq;
3445 u64 runtime;
3446 u64 starting_runtime = remaining;
3447
3448 rcu_read_lock();
3449 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3450 throttled_list) {
3451 struct rq *rq = rq_of(cfs_rq);
3452
3453 raw_spin_lock(&rq->lock);
3454 if (!cfs_rq_throttled(cfs_rq))
3455 goto next;
3456
3457 runtime = -cfs_rq->runtime_remaining + 1;
3458 if (runtime > remaining)
3459 runtime = remaining;
3460 remaining -= runtime;
3461
3462 cfs_rq->runtime_remaining += runtime;
3463 cfs_rq->runtime_expires = expires;
3464
3465 /* we check whether we're throttled above */
3466 if (cfs_rq->runtime_remaining > 0)
3467 unthrottle_cfs_rq(cfs_rq);
3468
3469 next:
3470 raw_spin_unlock(&rq->lock);
3471
3472 if (!remaining)
3473 break;
3474 }
3475 rcu_read_unlock();
3476
3477 return starting_runtime - remaining;
3478 }
3479
3480 /*
3481 * Responsible for refilling a task_group's bandwidth and unthrottling its
3482 * cfs_rqs as appropriate. If there has been no activity within the last
3483 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3484 * used to track this state.
3485 */
3486 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3487 {
3488 u64 runtime, runtime_expires;
3489 int throttled;
3490
3491 /* no need to continue the timer with no bandwidth constraint */
3492 if (cfs_b->quota == RUNTIME_INF)
3493 goto out_deactivate;
3494
3495 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3496 cfs_b->nr_periods += overrun;
3497
3498 /*
3499 * idle depends on !throttled (for the case of a large deficit), and if
3500 * we're going inactive then everything else can be deferred
3501 */
3502 if (cfs_b->idle && !throttled)
3503 goto out_deactivate;
3504
3505 /*
3506 * if we have relooped after returning idle once, we need to update our
3507 * status as actually running, so that other cpus doing
3508 * __start_cfs_bandwidth will stop trying to cancel us.
3509 */
3510 cfs_b->timer_active = 1;
3511
3512 __refill_cfs_bandwidth_runtime(cfs_b);
3513
3514 if (!throttled) {
3515 /* mark as potentially idle for the upcoming period */
3516 cfs_b->idle = 1;
3517 return 0;
3518 }
3519
3520 /* account preceding periods in which throttling occurred */
3521 cfs_b->nr_throttled += overrun;
3522
3523 runtime_expires = cfs_b->runtime_expires;
3524
3525 /*
3526 * This check is repeated as we are holding onto the new bandwidth while
3527 * we unthrottle. This can potentially race with an unthrottled group
3528 * trying to acquire new bandwidth from the global pool. This can result
3529 * in us over-using our runtime if it is all used during this loop, but
3530 * only by limited amounts in that extreme case.
3531 */
3532 while (throttled && cfs_b->runtime > 0) {
3533 runtime = cfs_b->runtime;
3534 raw_spin_unlock(&cfs_b->lock);
3535 /* we can't nest cfs_b->lock while distributing bandwidth */
3536 runtime = distribute_cfs_runtime(cfs_b, runtime,
3537 runtime_expires);
3538 raw_spin_lock(&cfs_b->lock);
3539
3540 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3541
3542 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3543 }
3544
3545 /*
3546 * While we are ensured activity in the period following an
3547 * unthrottle, this also covers the case in which the new bandwidth is
3548 * insufficient to cover the existing bandwidth deficit. (Forcing the
3549 * timer to remain active while there are any throttled entities.)
3550 */
3551 cfs_b->idle = 0;
3552
3553 return 0;
3554
3555 out_deactivate:
3556 cfs_b->timer_active = 0;
3557 return 1;
3558 }
3559
3560 /* a cfs_rq won't donate quota below this amount */
3561 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3562 /* minimum remaining period time to redistribute slack quota */
3563 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3564 /* how long we wait to gather additional slack before distributing */
3565 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3566
3567 /*
3568 * Are we near the end of the current quota period?
3569 *
3570 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3571 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3572 * migrate_hrtimers, base is never cleared, so we are fine.
3573 */
3574 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3575 {
3576 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3577 u64 remaining;
3578
3579 /* if the call-back is running a quota refresh is already occurring */
3580 if (hrtimer_callback_running(refresh_timer))
3581 return 1;
3582
3583 /* is a quota refresh about to occur? */
3584 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3585 if (remaining < min_expire)
3586 return 1;
3587
3588 return 0;
3589 }
3590
3591 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3592 {
3593 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3594
3595 /* if there's a quota refresh soon don't bother with slack */
3596 if (runtime_refresh_within(cfs_b, min_left))
3597 return;
3598
3599 start_bandwidth_timer(&cfs_b->slack_timer,
3600 ns_to_ktime(cfs_bandwidth_slack_period));
3601 }
3602
3603 /* we know any runtime found here is valid as update_curr() precedes return */
3604 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3605 {
3606 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3607 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3608
3609 if (slack_runtime <= 0)
3610 return;
3611
3612 raw_spin_lock(&cfs_b->lock);
3613 if (cfs_b->quota != RUNTIME_INF &&
3614 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3615 cfs_b->runtime += slack_runtime;
3616
3617 /* we are under rq->lock, defer unthrottling using a timer */
3618 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3619 !list_empty(&cfs_b->throttled_cfs_rq))
3620 start_cfs_slack_bandwidth(cfs_b);
3621 }
3622 raw_spin_unlock(&cfs_b->lock);
3623
3624 /* even if it's not valid for return we don't want to try again */
3625 cfs_rq->runtime_remaining -= slack_runtime;
3626 }
3627
3628 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3629 {
3630 if (!cfs_bandwidth_used())
3631 return;
3632
3633 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3634 return;
3635
3636 __return_cfs_rq_runtime(cfs_rq);
3637 }
3638
3639 /*
3640 * This is done with a timer (instead of inline with bandwidth return) since
3641 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3642 */
3643 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3644 {
3645 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3646 u64 expires;
3647
3648 /* confirm we're still not at a refresh boundary */
3649 raw_spin_lock(&cfs_b->lock);
3650 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3651 raw_spin_unlock(&cfs_b->lock);
3652 return;
3653 }
3654
3655 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3656 runtime = cfs_b->runtime;
3657
3658 expires = cfs_b->runtime_expires;
3659 raw_spin_unlock(&cfs_b->lock);
3660
3661 if (!runtime)
3662 return;
3663
3664 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3665
3666 raw_spin_lock(&cfs_b->lock);
3667 if (expires == cfs_b->runtime_expires)
3668 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3669 raw_spin_unlock(&cfs_b->lock);
3670 }
3671
3672 /*
3673 * When a group wakes up we want to make sure that its quota is not already
3674 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3675 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3676 */
3677 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3678 {
3679 if (!cfs_bandwidth_used())
3680 return;
3681
3682 /* an active group must be handled by the update_curr()->put() path */
3683 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3684 return;
3685
3686 /* ensure the group is not already throttled */
3687 if (cfs_rq_throttled(cfs_rq))
3688 return;
3689
3690 /* update runtime allocation */
3691 account_cfs_rq_runtime(cfs_rq, 0);
3692 if (cfs_rq->runtime_remaining <= 0)
3693 throttle_cfs_rq(cfs_rq);
3694 }
3695
3696 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3697 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3698 {
3699 if (!cfs_bandwidth_used())
3700 return false;
3701
3702 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3703 return false;
3704
3705 /*
3706 * it's possible for a throttled entity to be forced into a running
3707 * state (e.g. set_curr_task), in this case we're finished.
3708 */
3709 if (cfs_rq_throttled(cfs_rq))
3710 return true;
3711
3712 throttle_cfs_rq(cfs_rq);
3713 return true;
3714 }
3715
3716 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3717 {
3718 struct cfs_bandwidth *cfs_b =
3719 container_of(timer, struct cfs_bandwidth, slack_timer);
3720 do_sched_cfs_slack_timer(cfs_b);
3721
3722 return HRTIMER_NORESTART;
3723 }
3724
3725 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3726 {
3727 struct cfs_bandwidth *cfs_b =
3728 container_of(timer, struct cfs_bandwidth, period_timer);
3729 ktime_t now;
3730 int overrun;
3731 int idle = 0;
3732
3733 raw_spin_lock(&cfs_b->lock);
3734 for (;;) {
3735 now = hrtimer_cb_get_time(timer);
3736 overrun = hrtimer_forward(timer, now, cfs_b->period);
3737
3738 if (!overrun)
3739 break;
3740
3741 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3742 }
3743 raw_spin_unlock(&cfs_b->lock);
3744
3745 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3746 }
3747
3748 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3749 {
3750 raw_spin_lock_init(&cfs_b->lock);
3751 cfs_b->runtime = 0;
3752 cfs_b->quota = RUNTIME_INF;
3753 cfs_b->period = ns_to_ktime(default_cfs_period());
3754
3755 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3756 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3757 cfs_b->period_timer.function = sched_cfs_period_timer;
3758 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3759 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3760 }
3761
3762 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3763 {
3764 cfs_rq->runtime_enabled = 0;
3765 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3766 }
3767
3768 /* requires cfs_b->lock, may release to reprogram timer */
3769 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3770 {
3771 /*
3772 * The timer may be active because we're trying to set a new bandwidth
3773 * period or because we're racing with the tear-down path
3774 * (timer_active==0 becomes visible before the hrtimer call-back
3775 * terminates). In either case we ensure that it's re-programmed
3776 */
3777 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3778 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3779 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3780 raw_spin_unlock(&cfs_b->lock);
3781 cpu_relax();
3782 raw_spin_lock(&cfs_b->lock);
3783 /* if someone else restarted the timer then we're done */
3784 if (!force && cfs_b->timer_active)
3785 return;
3786 }
3787
3788 cfs_b->timer_active = 1;
3789 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3790 }
3791
3792 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3793 {
3794 hrtimer_cancel(&cfs_b->period_timer);
3795 hrtimer_cancel(&cfs_b->slack_timer);
3796 }
3797
3798 static void __maybe_unused update_runtime_enabled(struct rq *rq)
3799 {
3800 struct cfs_rq *cfs_rq;
3801
3802 for_each_leaf_cfs_rq(rq, cfs_rq) {
3803 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3804
3805 raw_spin_lock(&cfs_b->lock);
3806 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3807 raw_spin_unlock(&cfs_b->lock);
3808 }
3809 }
3810
3811 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3812 {
3813 struct cfs_rq *cfs_rq;
3814
3815 for_each_leaf_cfs_rq(rq, cfs_rq) {
3816 if (!cfs_rq->runtime_enabled)
3817 continue;
3818
3819 /*
3820 * clock_task is not advancing so we just need to make sure
3821 * there's some valid quota amount
3822 */
3823 cfs_rq->runtime_remaining = 1;
3824 /*
3825 * Offline rq is schedulable till cpu is completely disabled
3826 * in take_cpu_down(), so we prevent new cfs throttling here.
3827 */
3828 cfs_rq->runtime_enabled = 0;
3829
3830 if (cfs_rq_throttled(cfs_rq))
3831 unthrottle_cfs_rq(cfs_rq);
3832 }
3833 }
3834
3835 #else /* CONFIG_CFS_BANDWIDTH */
3836 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3837 {
3838 return rq_clock_task(rq_of(cfs_rq));
3839 }
3840
3841 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3842 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3843 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3844 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3845
3846 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3847 {
3848 return 0;
3849 }
3850
3851 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3852 {
3853 return 0;
3854 }
3855
3856 static inline int throttled_lb_pair(struct task_group *tg,
3857 int src_cpu, int dest_cpu)
3858 {
3859 return 0;
3860 }
3861
3862 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3863
3864 #ifdef CONFIG_FAIR_GROUP_SCHED
3865 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3866 #endif
3867
3868 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3869 {
3870 return NULL;
3871 }
3872 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3873 static inline void update_runtime_enabled(struct rq *rq) {}
3874 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3875
3876 #endif /* CONFIG_CFS_BANDWIDTH */
3877
3878 /**************************************************
3879 * CFS operations on tasks:
3880 */
3881
3882 #ifdef CONFIG_SCHED_HRTICK
3883 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3884 {
3885 struct sched_entity *se = &p->se;
3886 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3887
3888 WARN_ON(task_rq(p) != rq);
3889
3890 if (cfs_rq->nr_running > 1) {
3891 u64 slice = sched_slice(cfs_rq, se);
3892 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3893 s64 delta = slice - ran;
3894
3895 if (delta < 0) {
3896 if (rq->curr == p)
3897 resched_curr(rq);
3898 return;
3899 }
3900
3901 /*
3902 * Don't schedule slices shorter than 10000ns, that just
3903 * doesn't make sense. Rely on vruntime for fairness.
3904 */
3905 if (rq->curr != p)
3906 delta = max_t(s64, 10000LL, delta);
3907
3908 hrtick_start(rq, delta);
3909 }
3910 }
3911
3912 /*
3913 * called from enqueue/dequeue and updates the hrtick when the
3914 * current task is from our class and nr_running is low enough
3915 * to matter.
3916 */
3917 static void hrtick_update(struct rq *rq)
3918 {
3919 struct task_struct *curr = rq->curr;
3920
3921 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3922 return;
3923
3924 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3925 hrtick_start_fair(rq, curr);
3926 }
3927 #else /* !CONFIG_SCHED_HRTICK */
3928 static inline void
3929 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3930 {
3931 }
3932
3933 static inline void hrtick_update(struct rq *rq)
3934 {
3935 }
3936 #endif
3937
3938 /*
3939 * The enqueue_task method is called before nr_running is
3940 * increased. Here we update the fair scheduling stats and
3941 * then put the task into the rbtree:
3942 */
3943 static void
3944 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3945 {
3946 struct cfs_rq *cfs_rq;
3947 struct sched_entity *se = &p->se;
3948
3949 for_each_sched_entity(se) {
3950 if (se->on_rq)
3951 break;
3952 cfs_rq = cfs_rq_of(se);
3953 enqueue_entity(cfs_rq, se, flags);
3954
3955 /*
3956 * end evaluation on encountering a throttled cfs_rq
3957 *
3958 * note: in the case of encountering a throttled cfs_rq we will
3959 * post the final h_nr_running increment below.
3960 */
3961 if (cfs_rq_throttled(cfs_rq))
3962 break;
3963 cfs_rq->h_nr_running++;
3964
3965 flags = ENQUEUE_WAKEUP;
3966 }
3967
3968 for_each_sched_entity(se) {
3969 cfs_rq = cfs_rq_of(se);
3970 cfs_rq->h_nr_running++;
3971
3972 if (cfs_rq_throttled(cfs_rq))
3973 break;
3974
3975 update_cfs_shares(cfs_rq);
3976 update_entity_load_avg(se, 1);
3977 }
3978
3979 if (!se) {
3980 update_rq_runnable_avg(rq, rq->nr_running);
3981 add_nr_running(rq, 1);
3982 }
3983 hrtick_update(rq);
3984 }
3985
3986 static void set_next_buddy(struct sched_entity *se);
3987
3988 /*
3989 * The dequeue_task method is called before nr_running is
3990 * decreased. We remove the task from the rbtree and
3991 * update the fair scheduling stats:
3992 */
3993 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3994 {
3995 struct cfs_rq *cfs_rq;
3996 struct sched_entity *se = &p->se;
3997 int task_sleep = flags & DEQUEUE_SLEEP;
3998
3999 for_each_sched_entity(se) {
4000 cfs_rq = cfs_rq_of(se);
4001 dequeue_entity(cfs_rq, se, flags);
4002
4003 /*
4004 * end evaluation on encountering a throttled cfs_rq
4005 *
4006 * note: in the case of encountering a throttled cfs_rq we will
4007 * post the final h_nr_running decrement below.
4008 */
4009 if (cfs_rq_throttled(cfs_rq))
4010 break;
4011 cfs_rq->h_nr_running--;
4012
4013 /* Don't dequeue parent if it has other entities besides us */
4014 if (cfs_rq->load.weight) {
4015 /*
4016 * Bias pick_next to pick a task from this cfs_rq, as
4017 * p is sleeping when it is within its sched_slice.
4018 */
4019 if (task_sleep && parent_entity(se))
4020 set_next_buddy(parent_entity(se));
4021
4022 /* avoid re-evaluating load for this entity */
4023 se = parent_entity(se);
4024 break;
4025 }
4026 flags |= DEQUEUE_SLEEP;
4027 }
4028
4029 for_each_sched_entity(se) {
4030 cfs_rq = cfs_rq_of(se);
4031 cfs_rq->h_nr_running--;
4032
4033 if (cfs_rq_throttled(cfs_rq))
4034 break;
4035
4036 update_cfs_shares(cfs_rq);
4037 update_entity_load_avg(se, 1);
4038 }
4039
4040 if (!se) {
4041 sub_nr_running(rq, 1);
4042 update_rq_runnable_avg(rq, 1);
4043 }
4044 hrtick_update(rq);
4045 }
4046
4047 #ifdef CONFIG_SMP
4048 /* Used instead of source_load when we know the type == 0 */
4049 static unsigned long weighted_cpuload(const int cpu)
4050 {
4051 return cpu_rq(cpu)->cfs.runnable_load_avg;
4052 }
4053
4054 /*
4055 * Return a low guess at the load of a migration-source cpu weighted
4056 * according to the scheduling class and "nice" value.
4057 *
4058 * We want to under-estimate the load of migration sources, to
4059 * balance conservatively.
4060 */
4061 static unsigned long source_load(int cpu, int type)
4062 {
4063 struct rq *rq = cpu_rq(cpu);
4064 unsigned long total = weighted_cpuload(cpu);
4065
4066 if (type == 0 || !sched_feat(LB_BIAS))
4067 return total;
4068
4069 return min(rq->cpu_load[type-1], total);
4070 }
4071
4072 /*
4073 * Return a high guess at the load of a migration-target cpu weighted
4074 * according to the scheduling class and "nice" value.
4075 */
4076 static unsigned long target_load(int cpu, int type)
4077 {
4078 struct rq *rq = cpu_rq(cpu);
4079 unsigned long total = weighted_cpuload(cpu);
4080
4081 if (type == 0 || !sched_feat(LB_BIAS))
4082 return total;
4083
4084 return max(rq->cpu_load[type-1], total);
4085 }
4086
4087 static unsigned long capacity_of(int cpu)
4088 {
4089 return cpu_rq(cpu)->cpu_capacity;
4090 }
4091
4092 static unsigned long cpu_avg_load_per_task(int cpu)
4093 {
4094 struct rq *rq = cpu_rq(cpu);
4095 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
4096 unsigned long load_avg = rq->cfs.runnable_load_avg;
4097
4098 if (nr_running)
4099 return load_avg / nr_running;
4100
4101 return 0;
4102 }
4103
4104 static void record_wakee(struct task_struct *p)
4105 {
4106 /*
4107 * Rough decay (wiping) for cost saving, don't worry
4108 * about the boundary, really active task won't care
4109 * about the loss.
4110 */
4111 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4112 current->wakee_flips >>= 1;
4113 current->wakee_flip_decay_ts = jiffies;
4114 }
4115
4116 if (current->last_wakee != p) {
4117 current->last_wakee = p;
4118 current->wakee_flips++;
4119 }
4120 }
4121
4122 static void task_waking_fair(struct task_struct *p)
4123 {
4124 struct sched_entity *se = &p->se;
4125 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4126 u64 min_vruntime;
4127
4128 #ifndef CONFIG_64BIT
4129 u64 min_vruntime_copy;
4130
4131 do {
4132 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4133 smp_rmb();
4134 min_vruntime = cfs_rq->min_vruntime;
4135 } while (min_vruntime != min_vruntime_copy);
4136 #else
4137 min_vruntime = cfs_rq->min_vruntime;
4138 #endif
4139
4140 se->vruntime -= min_vruntime;
4141 record_wakee(p);
4142 }
4143
4144 #ifdef CONFIG_FAIR_GROUP_SCHED
4145 /*
4146 * effective_load() calculates the load change as seen from the root_task_group
4147 *
4148 * Adding load to a group doesn't make a group heavier, but can cause movement
4149 * of group shares between cpus. Assuming the shares were perfectly aligned one
4150 * can calculate the shift in shares.
4151 *
4152 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4153 * on this @cpu and results in a total addition (subtraction) of @wg to the
4154 * total group weight.
4155 *
4156 * Given a runqueue weight distribution (rw_i) we can compute a shares
4157 * distribution (s_i) using:
4158 *
4159 * s_i = rw_i / \Sum rw_j (1)
4160 *
4161 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4162 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4163 * shares distribution (s_i):
4164 *
4165 * rw_i = { 2, 4, 1, 0 }
4166 * s_i = { 2/7, 4/7, 1/7, 0 }
4167 *
4168 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4169 * task used to run on and the CPU the waker is running on), we need to
4170 * compute the effect of waking a task on either CPU and, in case of a sync
4171 * wakeup, compute the effect of the current task going to sleep.
4172 *
4173 * So for a change of @wl to the local @cpu with an overall group weight change
4174 * of @wl we can compute the new shares distribution (s'_i) using:
4175 *
4176 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4177 *
4178 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4179 * differences in waking a task to CPU 0. The additional task changes the
4180 * weight and shares distributions like:
4181 *
4182 * rw'_i = { 3, 4, 1, 0 }
4183 * s'_i = { 3/8, 4/8, 1/8, 0 }
4184 *
4185 * We can then compute the difference in effective weight by using:
4186 *
4187 * dw_i = S * (s'_i - s_i) (3)
4188 *
4189 * Where 'S' is the group weight as seen by its parent.
4190 *
4191 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4192 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4193 * 4/7) times the weight of the group.
4194 */
4195 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4196 {
4197 struct sched_entity *se = tg->se[cpu];
4198
4199 if (!tg->parent) /* the trivial, non-cgroup case */
4200 return wl;
4201
4202 for_each_sched_entity(se) {
4203 long w, W;
4204
4205 tg = se->my_q->tg;
4206
4207 /*
4208 * W = @wg + \Sum rw_j
4209 */
4210 W = wg + calc_tg_weight(tg, se->my_q);
4211
4212 /*
4213 * w = rw_i + @wl
4214 */
4215 w = se->my_q->load.weight + wl;
4216
4217 /*
4218 * wl = S * s'_i; see (2)
4219 */
4220 if (W > 0 && w < W)
4221 wl = (w * tg->shares) / W;
4222 else
4223 wl = tg->shares;
4224
4225 /*
4226 * Per the above, wl is the new se->load.weight value; since
4227 * those are clipped to [MIN_SHARES, ...) do so now. See
4228 * calc_cfs_shares().
4229 */
4230 if (wl < MIN_SHARES)
4231 wl = MIN_SHARES;
4232
4233 /*
4234 * wl = dw_i = S * (s'_i - s_i); see (3)
4235 */
4236 wl -= se->load.weight;
4237
4238 /*
4239 * Recursively apply this logic to all parent groups to compute
4240 * the final effective load change on the root group. Since
4241 * only the @tg group gets extra weight, all parent groups can
4242 * only redistribute existing shares. @wl is the shift in shares
4243 * resulting from this level per the above.
4244 */
4245 wg = 0;
4246 }
4247
4248 return wl;
4249 }
4250 #else
4251
4252 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4253 {
4254 return wl;
4255 }
4256
4257 #endif
4258
4259 static int wake_wide(struct task_struct *p)
4260 {
4261 int factor = this_cpu_read(sd_llc_size);
4262
4263 /*
4264 * Yeah, it's the switching-frequency, could means many wakee or
4265 * rapidly switch, use factor here will just help to automatically
4266 * adjust the loose-degree, so bigger node will lead to more pull.
4267 */
4268 if (p->wakee_flips > factor) {
4269 /*
4270 * wakee is somewhat hot, it needs certain amount of cpu
4271 * resource, so if waker is far more hot, prefer to leave
4272 * it alone.
4273 */
4274 if (current->wakee_flips > (factor * p->wakee_flips))
4275 return 1;
4276 }
4277
4278 return 0;
4279 }
4280
4281 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4282 {
4283 s64 this_load, load;
4284 int idx, this_cpu, prev_cpu;
4285 unsigned long tl_per_task;
4286 struct task_group *tg;
4287 unsigned long weight;
4288 int balanced;
4289
4290 /*
4291 * If we wake multiple tasks be careful to not bounce
4292 * ourselves around too much.
4293 */
4294 if (wake_wide(p))
4295 return 0;
4296
4297 idx = sd->wake_idx;
4298 this_cpu = smp_processor_id();
4299 prev_cpu = task_cpu(p);
4300 load = source_load(prev_cpu, idx);
4301 this_load = target_load(this_cpu, idx);
4302
4303 /*
4304 * If sync wakeup then subtract the (maximum possible)
4305 * effect of the currently running task from the load
4306 * of the current CPU:
4307 */
4308 if (sync) {
4309 tg = task_group(current);
4310 weight = current->se.load.weight;
4311
4312 this_load += effective_load(tg, this_cpu, -weight, -weight);
4313 load += effective_load(tg, prev_cpu, 0, -weight);
4314 }
4315
4316 tg = task_group(p);
4317 weight = p->se.load.weight;
4318
4319 /*
4320 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4321 * due to the sync cause above having dropped this_load to 0, we'll
4322 * always have an imbalance, but there's really nothing you can do
4323 * about that, so that's good too.
4324 *
4325 * Otherwise check if either cpus are near enough in load to allow this
4326 * task to be woken on this_cpu.
4327 */
4328 if (this_load > 0) {
4329 s64 this_eff_load, prev_eff_load;
4330
4331 this_eff_load = 100;
4332 this_eff_load *= capacity_of(prev_cpu);
4333 this_eff_load *= this_load +
4334 effective_load(tg, this_cpu, weight, weight);
4335
4336 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4337 prev_eff_load *= capacity_of(this_cpu);
4338 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4339
4340 balanced = this_eff_load <= prev_eff_load;
4341 } else
4342 balanced = true;
4343
4344 /*
4345 * If the currently running task will sleep within
4346 * a reasonable amount of time then attract this newly
4347 * woken task:
4348 */
4349 if (sync && balanced)
4350 return 1;
4351
4352 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4353 tl_per_task = cpu_avg_load_per_task(this_cpu);
4354
4355 if (balanced ||
4356 (this_load <= load &&
4357 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
4358 /*
4359 * This domain has SD_WAKE_AFFINE and
4360 * p is cache cold in this domain, and
4361 * there is no bad imbalance.
4362 */
4363 schedstat_inc(sd, ttwu_move_affine);
4364 schedstat_inc(p, se.statistics.nr_wakeups_affine);
4365
4366 return 1;
4367 }
4368 return 0;
4369 }
4370
4371 /*
4372 * find_idlest_group finds and returns the least busy CPU group within the
4373 * domain.
4374 */
4375 static struct sched_group *
4376 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4377 int this_cpu, int sd_flag)
4378 {
4379 struct sched_group *idlest = NULL, *group = sd->groups;
4380 unsigned long min_load = ULONG_MAX, this_load = 0;
4381 int load_idx = sd->forkexec_idx;
4382 int imbalance = 100 + (sd->imbalance_pct-100)/2;
4383
4384 if (sd_flag & SD_BALANCE_WAKE)
4385 load_idx = sd->wake_idx;
4386
4387 do {
4388 unsigned long load, avg_load;
4389 int local_group;
4390 int i;
4391
4392 /* Skip over this group if it has no CPUs allowed */
4393 if (!cpumask_intersects(sched_group_cpus(group),
4394 tsk_cpus_allowed(p)))
4395 continue;
4396
4397 local_group = cpumask_test_cpu(this_cpu,
4398 sched_group_cpus(group));
4399
4400 /* Tally up the load of all CPUs in the group */
4401 avg_load = 0;
4402
4403 for_each_cpu(i, sched_group_cpus(group)) {
4404 /* Bias balancing toward cpus of our domain */
4405 if (local_group)
4406 load = source_load(i, load_idx);
4407 else
4408 load = target_load(i, load_idx);
4409
4410 avg_load += load;
4411 }
4412
4413 /* Adjust by relative CPU capacity of the group */
4414 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4415
4416 if (local_group) {
4417 this_load = avg_load;
4418 } else if (avg_load < min_load) {
4419 min_load = avg_load;
4420 idlest = group;
4421 }
4422 } while (group = group->next, group != sd->groups);
4423
4424 if (!idlest || 100*this_load < imbalance*min_load)
4425 return NULL;
4426 return idlest;
4427 }
4428
4429 /*
4430 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4431 */
4432 static int
4433 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4434 {
4435 unsigned long load, min_load = ULONG_MAX;
4436 int idlest = -1;
4437 int i;
4438
4439 /* Traverse only the allowed CPUs */
4440 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4441 load = weighted_cpuload(i);
4442
4443 if (load < min_load || (load == min_load && i == this_cpu)) {
4444 min_load = load;
4445 idlest = i;
4446 }
4447 }
4448
4449 return idlest;
4450 }
4451
4452 /*
4453 * Try and locate an idle CPU in the sched_domain.
4454 */
4455 static int select_idle_sibling(struct task_struct *p, int target)
4456 {
4457 struct sched_domain *sd;
4458 struct sched_group *sg;
4459 int i = task_cpu(p);
4460
4461 if (idle_cpu(target))
4462 return target;
4463
4464 /*
4465 * If the prevous cpu is cache affine and idle, don't be stupid.
4466 */
4467 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4468 return i;
4469
4470 /*
4471 * Otherwise, iterate the domains and find an elegible idle cpu.
4472 */
4473 sd = rcu_dereference(per_cpu(sd_llc, target));
4474 for_each_lower_domain(sd) {
4475 sg = sd->groups;
4476 do {
4477 if (!cpumask_intersects(sched_group_cpus(sg),
4478 tsk_cpus_allowed(p)))
4479 goto next;
4480
4481 for_each_cpu(i, sched_group_cpus(sg)) {
4482 if (i == target || !idle_cpu(i))
4483 goto next;
4484 }
4485
4486 target = cpumask_first_and(sched_group_cpus(sg),
4487 tsk_cpus_allowed(p));
4488 goto done;
4489 next:
4490 sg = sg->next;
4491 } while (sg != sd->groups);
4492 }
4493 done:
4494 return target;
4495 }
4496
4497 /*
4498 * select_task_rq_fair: Select target runqueue for the waking task in domains
4499 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4500 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4501 *
4502 * Balances load by selecting the idlest cpu in the idlest group, or under
4503 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4504 *
4505 * Returns the target cpu number.
4506 *
4507 * preempt must be disabled.
4508 */
4509 static int
4510 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4511 {
4512 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4513 int cpu = smp_processor_id();
4514 int new_cpu = cpu;
4515 int want_affine = 0;
4516 int sync = wake_flags & WF_SYNC;
4517
4518 if (p->nr_cpus_allowed == 1)
4519 return prev_cpu;
4520
4521 if (sd_flag & SD_BALANCE_WAKE) {
4522 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
4523 want_affine = 1;
4524 new_cpu = prev_cpu;
4525 }
4526
4527 rcu_read_lock();
4528 for_each_domain(cpu, tmp) {
4529 if (!(tmp->flags & SD_LOAD_BALANCE))
4530 continue;
4531
4532 /*
4533 * If both cpu and prev_cpu are part of this domain,
4534 * cpu is a valid SD_WAKE_AFFINE target.
4535 */
4536 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4537 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4538 affine_sd = tmp;
4539 break;
4540 }
4541
4542 if (tmp->flags & sd_flag)
4543 sd = tmp;
4544 }
4545
4546 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4547 prev_cpu = cpu;
4548
4549 if (sd_flag & SD_BALANCE_WAKE) {
4550 new_cpu = select_idle_sibling(p, prev_cpu);
4551 goto unlock;
4552 }
4553
4554 while (sd) {
4555 struct sched_group *group;
4556 int weight;
4557
4558 if (!(sd->flags & sd_flag)) {
4559 sd = sd->child;
4560 continue;
4561 }
4562
4563 group = find_idlest_group(sd, p, cpu, sd_flag);
4564 if (!group) {
4565 sd = sd->child;
4566 continue;
4567 }
4568
4569 new_cpu = find_idlest_cpu(group, p, cpu);
4570 if (new_cpu == -1 || new_cpu == cpu) {
4571 /* Now try balancing at a lower domain level of cpu */
4572 sd = sd->child;
4573 continue;
4574 }
4575
4576 /* Now try balancing at a lower domain level of new_cpu */
4577 cpu = new_cpu;
4578 weight = sd->span_weight;
4579 sd = NULL;
4580 for_each_domain(cpu, tmp) {
4581 if (weight <= tmp->span_weight)
4582 break;
4583 if (tmp->flags & sd_flag)
4584 sd = tmp;
4585 }
4586 /* while loop will break here if sd == NULL */
4587 }
4588 unlock:
4589 rcu_read_unlock();
4590
4591 return new_cpu;
4592 }
4593
4594 /*
4595 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4596 * cfs_rq_of(p) references at time of call are still valid and identify the
4597 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4598 * other assumptions, including the state of rq->lock, should be made.
4599 */
4600 static void
4601 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4602 {
4603 struct sched_entity *se = &p->se;
4604 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4605
4606 /*
4607 * Load tracking: accumulate removed load so that it can be processed
4608 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4609 * to blocked load iff they have a positive decay-count. It can never
4610 * be negative here since on-rq tasks have decay-count == 0.
4611 */
4612 if (se->avg.decay_count) {
4613 se->avg.decay_count = -__synchronize_entity_decay(se);
4614 atomic_long_add(se->avg.load_avg_contrib,
4615 &cfs_rq->removed_load);
4616 }
4617
4618 /* We have migrated, no longer consider this task hot */
4619 se->exec_start = 0;
4620 }
4621 #endif /* CONFIG_SMP */
4622
4623 static unsigned long
4624 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4625 {
4626 unsigned long gran = sysctl_sched_wakeup_granularity;
4627
4628 /*
4629 * Since its curr running now, convert the gran from real-time
4630 * to virtual-time in his units.
4631 *
4632 * By using 'se' instead of 'curr' we penalize light tasks, so
4633 * they get preempted easier. That is, if 'se' < 'curr' then
4634 * the resulting gran will be larger, therefore penalizing the
4635 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4636 * be smaller, again penalizing the lighter task.
4637 *
4638 * This is especially important for buddies when the leftmost
4639 * task is higher priority than the buddy.
4640 */
4641 return calc_delta_fair(gran, se);
4642 }
4643
4644 /*
4645 * Should 'se' preempt 'curr'.
4646 *
4647 * |s1
4648 * |s2
4649 * |s3
4650 * g
4651 * |<--->|c
4652 *
4653 * w(c, s1) = -1
4654 * w(c, s2) = 0
4655 * w(c, s3) = 1
4656 *
4657 */
4658 static int
4659 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4660 {
4661 s64 gran, vdiff = curr->vruntime - se->vruntime;
4662
4663 if (vdiff <= 0)
4664 return -1;
4665
4666 gran = wakeup_gran(curr, se);
4667 if (vdiff > gran)
4668 return 1;
4669
4670 return 0;
4671 }
4672
4673 static void set_last_buddy(struct sched_entity *se)
4674 {
4675 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4676 return;
4677
4678 for_each_sched_entity(se)
4679 cfs_rq_of(se)->last = se;
4680 }
4681
4682 static void set_next_buddy(struct sched_entity *se)
4683 {
4684 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4685 return;
4686
4687 for_each_sched_entity(se)
4688 cfs_rq_of(se)->next = se;
4689 }
4690
4691 static void set_skip_buddy(struct sched_entity *se)
4692 {
4693 for_each_sched_entity(se)
4694 cfs_rq_of(se)->skip = se;
4695 }
4696
4697 /*
4698 * Preempt the current task with a newly woken task if needed:
4699 */
4700 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4701 {
4702 struct task_struct *curr = rq->curr;
4703 struct sched_entity *se = &curr->se, *pse = &p->se;
4704 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4705 int scale = cfs_rq->nr_running >= sched_nr_latency;
4706 int next_buddy_marked = 0;
4707
4708 if (unlikely(se == pse))
4709 return;
4710
4711 /*
4712 * This is possible from callers such as move_task(), in which we
4713 * unconditionally check_prempt_curr() after an enqueue (which may have
4714 * lead to a throttle). This both saves work and prevents false
4715 * next-buddy nomination below.
4716 */
4717 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4718 return;
4719
4720 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4721 set_next_buddy(pse);
4722 next_buddy_marked = 1;
4723 }
4724
4725 /*
4726 * We can come here with TIF_NEED_RESCHED already set from new task
4727 * wake up path.
4728 *
4729 * Note: this also catches the edge-case of curr being in a throttled
4730 * group (e.g. via set_curr_task), since update_curr() (in the
4731 * enqueue of curr) will have resulted in resched being set. This
4732 * prevents us from potentially nominating it as a false LAST_BUDDY
4733 * below.
4734 */
4735 if (test_tsk_need_resched(curr))
4736 return;
4737
4738 /* Idle tasks are by definition preempted by non-idle tasks. */
4739 if (unlikely(curr->policy == SCHED_IDLE) &&
4740 likely(p->policy != SCHED_IDLE))
4741 goto preempt;
4742
4743 /*
4744 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4745 * is driven by the tick):
4746 */
4747 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4748 return;
4749
4750 find_matching_se(&se, &pse);
4751 update_curr(cfs_rq_of(se));
4752 BUG_ON(!pse);
4753 if (wakeup_preempt_entity(se, pse) == 1) {
4754 /*
4755 * Bias pick_next to pick the sched entity that is
4756 * triggering this preemption.
4757 */
4758 if (!next_buddy_marked)
4759 set_next_buddy(pse);
4760 goto preempt;
4761 }
4762
4763 return;
4764
4765 preempt:
4766 resched_curr(rq);
4767 /*
4768 * Only set the backward buddy when the current task is still
4769 * on the rq. This can happen when a wakeup gets interleaved
4770 * with schedule on the ->pre_schedule() or idle_balance()
4771 * point, either of which can * drop the rq lock.
4772 *
4773 * Also, during early boot the idle thread is in the fair class,
4774 * for obvious reasons its a bad idea to schedule back to it.
4775 */
4776 if (unlikely(!se->on_rq || curr == rq->idle))
4777 return;
4778
4779 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4780 set_last_buddy(se);
4781 }
4782
4783 static struct task_struct *
4784 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4785 {
4786 struct cfs_rq *cfs_rq = &rq->cfs;
4787 struct sched_entity *se;
4788 struct task_struct *p;
4789 int new_tasks;
4790
4791 again:
4792 #ifdef CONFIG_FAIR_GROUP_SCHED
4793 if (!cfs_rq->nr_running)
4794 goto idle;
4795
4796 if (prev->sched_class != &fair_sched_class)
4797 goto simple;
4798
4799 /*
4800 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4801 * likely that a next task is from the same cgroup as the current.
4802 *
4803 * Therefore attempt to avoid putting and setting the entire cgroup
4804 * hierarchy, only change the part that actually changes.
4805 */
4806
4807 do {
4808 struct sched_entity *curr = cfs_rq->curr;
4809
4810 /*
4811 * Since we got here without doing put_prev_entity() we also
4812 * have to consider cfs_rq->curr. If it is still a runnable
4813 * entity, update_curr() will update its vruntime, otherwise
4814 * forget we've ever seen it.
4815 */
4816 if (curr && curr->on_rq)
4817 update_curr(cfs_rq);
4818 else
4819 curr = NULL;
4820
4821 /*
4822 * This call to check_cfs_rq_runtime() will do the throttle and
4823 * dequeue its entity in the parent(s). Therefore the 'simple'
4824 * nr_running test will indeed be correct.
4825 */
4826 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4827 goto simple;
4828
4829 se = pick_next_entity(cfs_rq, curr);
4830 cfs_rq = group_cfs_rq(se);
4831 } while (cfs_rq);
4832
4833 p = task_of(se);
4834
4835 /*
4836 * Since we haven't yet done put_prev_entity and if the selected task
4837 * is a different task than we started out with, try and touch the
4838 * least amount of cfs_rqs.
4839 */
4840 if (prev != p) {
4841 struct sched_entity *pse = &prev->se;
4842
4843 while (!(cfs_rq = is_same_group(se, pse))) {
4844 int se_depth = se->depth;
4845 int pse_depth = pse->depth;
4846
4847 if (se_depth <= pse_depth) {
4848 put_prev_entity(cfs_rq_of(pse), pse);
4849 pse = parent_entity(pse);
4850 }
4851 if (se_depth >= pse_depth) {
4852 set_next_entity(cfs_rq_of(se), se);
4853 se = parent_entity(se);
4854 }
4855 }
4856
4857 put_prev_entity(cfs_rq, pse);
4858 set_next_entity(cfs_rq, se);
4859 }
4860
4861 if (hrtick_enabled(rq))
4862 hrtick_start_fair(rq, p);
4863
4864 return p;
4865 simple:
4866 cfs_rq = &rq->cfs;
4867 #endif
4868
4869 if (!cfs_rq->nr_running)
4870 goto idle;
4871
4872 put_prev_task(rq, prev);
4873
4874 do {
4875 se = pick_next_entity(cfs_rq, NULL);
4876 set_next_entity(cfs_rq, se);
4877 cfs_rq = group_cfs_rq(se);
4878 } while (cfs_rq);
4879
4880 p = task_of(se);
4881
4882 if (hrtick_enabled(rq))
4883 hrtick_start_fair(rq, p);
4884
4885 return p;
4886
4887 idle:
4888 new_tasks = idle_balance(rq);
4889 /*
4890 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4891 * possible for any higher priority task to appear. In that case we
4892 * must re-start the pick_next_entity() loop.
4893 */
4894 if (new_tasks < 0)
4895 return RETRY_TASK;
4896
4897 if (new_tasks > 0)
4898 goto again;
4899
4900 return NULL;
4901 }
4902
4903 /*
4904 * Account for a descheduled task:
4905 */
4906 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4907 {
4908 struct sched_entity *se = &prev->se;
4909 struct cfs_rq *cfs_rq;
4910
4911 for_each_sched_entity(se) {
4912 cfs_rq = cfs_rq_of(se);
4913 put_prev_entity(cfs_rq, se);
4914 }
4915 }
4916
4917 /*
4918 * sched_yield() is very simple
4919 *
4920 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4921 */
4922 static void yield_task_fair(struct rq *rq)
4923 {
4924 struct task_struct *curr = rq->curr;
4925 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4926 struct sched_entity *se = &curr->se;
4927
4928 /*
4929 * Are we the only task in the tree?
4930 */
4931 if (unlikely(rq->nr_running == 1))
4932 return;
4933
4934 clear_buddies(cfs_rq, se);
4935
4936 if (curr->policy != SCHED_BATCH) {
4937 update_rq_clock(rq);
4938 /*
4939 * Update run-time statistics of the 'current'.
4940 */
4941 update_curr(cfs_rq);
4942 /*
4943 * Tell update_rq_clock() that we've just updated,
4944 * so we don't do microscopic update in schedule()
4945 * and double the fastpath cost.
4946 */
4947 rq->skip_clock_update = 1;
4948 }
4949
4950 set_skip_buddy(se);
4951 }
4952
4953 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4954 {
4955 struct sched_entity *se = &p->se;
4956
4957 /* throttled hierarchies are not runnable */
4958 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4959 return false;
4960
4961 /* Tell the scheduler that we'd really like pse to run next. */
4962 set_next_buddy(se);
4963
4964 yield_task_fair(rq);
4965
4966 return true;
4967 }
4968
4969 #ifdef CONFIG_SMP
4970 /**************************************************
4971 * Fair scheduling class load-balancing methods.
4972 *
4973 * BASICS
4974 *
4975 * The purpose of load-balancing is to achieve the same basic fairness the
4976 * per-cpu scheduler provides, namely provide a proportional amount of compute
4977 * time to each task. This is expressed in the following equation:
4978 *
4979 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4980 *
4981 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4982 * W_i,0 is defined as:
4983 *
4984 * W_i,0 = \Sum_j w_i,j (2)
4985 *
4986 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4987 * is derived from the nice value as per prio_to_weight[].
4988 *
4989 * The weight average is an exponential decay average of the instantaneous
4990 * weight:
4991 *
4992 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4993 *
4994 * C_i is the compute capacity of cpu i, typically it is the
4995 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4996 * can also include other factors [XXX].
4997 *
4998 * To achieve this balance we define a measure of imbalance which follows
4999 * directly from (1):
5000 *
5001 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
5002 *
5003 * We them move tasks around to minimize the imbalance. In the continuous
5004 * function space it is obvious this converges, in the discrete case we get
5005 * a few fun cases generally called infeasible weight scenarios.
5006 *
5007 * [XXX expand on:
5008 * - infeasible weights;
5009 * - local vs global optima in the discrete case. ]
5010 *
5011 *
5012 * SCHED DOMAINS
5013 *
5014 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5015 * for all i,j solution, we create a tree of cpus that follows the hardware
5016 * topology where each level pairs two lower groups (or better). This results
5017 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5018 * tree to only the first of the previous level and we decrease the frequency
5019 * of load-balance at each level inv. proportional to the number of cpus in
5020 * the groups.
5021 *
5022 * This yields:
5023 *
5024 * log_2 n 1 n
5025 * \Sum { --- * --- * 2^i } = O(n) (5)
5026 * i = 0 2^i 2^i
5027 * `- size of each group
5028 * | | `- number of cpus doing load-balance
5029 * | `- freq
5030 * `- sum over all levels
5031 *
5032 * Coupled with a limit on how many tasks we can migrate every balance pass,
5033 * this makes (5) the runtime complexity of the balancer.
5034 *
5035 * An important property here is that each CPU is still (indirectly) connected
5036 * to every other cpu in at most O(log n) steps:
5037 *
5038 * The adjacency matrix of the resulting graph is given by:
5039 *
5040 * log_2 n
5041 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5042 * k = 0
5043 *
5044 * And you'll find that:
5045 *
5046 * A^(log_2 n)_i,j != 0 for all i,j (7)
5047 *
5048 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5049 * The task movement gives a factor of O(m), giving a convergence complexity
5050 * of:
5051 *
5052 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5053 *
5054 *
5055 * WORK CONSERVING
5056 *
5057 * In order to avoid CPUs going idle while there's still work to do, new idle
5058 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5059 * tree itself instead of relying on other CPUs to bring it work.
5060 *
5061 * This adds some complexity to both (5) and (8) but it reduces the total idle
5062 * time.
5063 *
5064 * [XXX more?]
5065 *
5066 *
5067 * CGROUPS
5068 *
5069 * Cgroups make a horror show out of (2), instead of a simple sum we get:
5070 *
5071 * s_k,i
5072 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
5073 * S_k
5074 *
5075 * Where
5076 *
5077 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
5078 *
5079 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5080 *
5081 * The big problem is S_k, its a global sum needed to compute a local (W_i)
5082 * property.
5083 *
5084 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5085 * rewrite all of this once again.]
5086 */
5087
5088 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5089
5090 enum fbq_type { regular, remote, all };
5091
5092 #define LBF_ALL_PINNED 0x01
5093 #define LBF_NEED_BREAK 0x02
5094 #define LBF_DST_PINNED 0x04
5095 #define LBF_SOME_PINNED 0x08
5096
5097 struct lb_env {
5098 struct sched_domain *sd;
5099
5100 struct rq *src_rq;
5101 int src_cpu;
5102
5103 int dst_cpu;
5104 struct rq *dst_rq;
5105
5106 struct cpumask *dst_grpmask;
5107 int new_dst_cpu;
5108 enum cpu_idle_type idle;
5109 long imbalance;
5110 /* The set of CPUs under consideration for load-balancing */
5111 struct cpumask *cpus;
5112
5113 unsigned int flags;
5114
5115 unsigned int loop;
5116 unsigned int loop_break;
5117 unsigned int loop_max;
5118
5119 enum fbq_type fbq_type;
5120 };
5121
5122 /*
5123 * move_task - move a task from one runqueue to another runqueue.
5124 * Both runqueues must be locked.
5125 */
5126 static void move_task(struct task_struct *p, struct lb_env *env)
5127 {
5128 deactivate_task(env->src_rq, p, 0);
5129 set_task_cpu(p, env->dst_cpu);
5130 activate_task(env->dst_rq, p, 0);
5131 check_preempt_curr(env->dst_rq, p, 0);
5132 }
5133
5134 /*
5135 * Is this task likely cache-hot:
5136 */
5137 static int task_hot(struct task_struct *p, struct lb_env *env)
5138 {
5139 s64 delta;
5140
5141 if (p->sched_class != &fair_sched_class)
5142 return 0;
5143
5144 if (unlikely(p->policy == SCHED_IDLE))
5145 return 0;
5146
5147 /*
5148 * Buddy candidates are cache hot:
5149 */
5150 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5151 (&p->se == cfs_rq_of(&p->se)->next ||
5152 &p->se == cfs_rq_of(&p->se)->last))
5153 return 1;
5154
5155 if (sysctl_sched_migration_cost == -1)
5156 return 1;
5157 if (sysctl_sched_migration_cost == 0)
5158 return 0;
5159
5160 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5161
5162 return delta < (s64)sysctl_sched_migration_cost;
5163 }
5164
5165 #ifdef CONFIG_NUMA_BALANCING
5166 /* Returns true if the destination node has incurred more faults */
5167 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5168 {
5169 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5170 int src_nid, dst_nid;
5171
5172 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5173 !(env->sd->flags & SD_NUMA)) {
5174 return false;
5175 }
5176
5177 src_nid = cpu_to_node(env->src_cpu);
5178 dst_nid = cpu_to_node(env->dst_cpu);
5179
5180 if (src_nid == dst_nid)
5181 return false;
5182
5183 if (numa_group) {
5184 /* Task is already in the group's interleave set. */
5185 if (node_isset(src_nid, numa_group->active_nodes))
5186 return false;
5187
5188 /* Task is moving into the group's interleave set. */
5189 if (node_isset(dst_nid, numa_group->active_nodes))
5190 return true;
5191
5192 return group_faults(p, dst_nid) > group_faults(p, src_nid);
5193 }
5194
5195 /* Encourage migration to the preferred node. */
5196 if (dst_nid == p->numa_preferred_nid)
5197 return true;
5198
5199 return task_faults(p, dst_nid) > task_faults(p, src_nid);
5200 }
5201
5202
5203 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5204 {
5205 struct numa_group *numa_group = rcu_dereference(p->numa_group);
5206 int src_nid, dst_nid;
5207
5208 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5209 return false;
5210
5211 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5212 return false;
5213
5214 src_nid = cpu_to_node(env->src_cpu);
5215 dst_nid = cpu_to_node(env->dst_cpu);
5216
5217 if (src_nid == dst_nid)
5218 return false;
5219
5220 if (numa_group) {
5221 /* Task is moving within/into the group's interleave set. */
5222 if (node_isset(dst_nid, numa_group->active_nodes))
5223 return false;
5224
5225 /* Task is moving out of the group's interleave set. */
5226 if (node_isset(src_nid, numa_group->active_nodes))
5227 return true;
5228
5229 return group_faults(p, dst_nid) < group_faults(p, src_nid);
5230 }
5231
5232 /* Migrating away from the preferred node is always bad. */
5233 if (src_nid == p->numa_preferred_nid)
5234 return true;
5235
5236 return task_faults(p, dst_nid) < task_faults(p, src_nid);
5237 }
5238
5239 #else
5240 static inline bool migrate_improves_locality(struct task_struct *p,
5241 struct lb_env *env)
5242 {
5243 return false;
5244 }
5245
5246 static inline bool migrate_degrades_locality(struct task_struct *p,
5247 struct lb_env *env)
5248 {
5249 return false;
5250 }
5251 #endif
5252
5253 /*
5254 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5255 */
5256 static
5257 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5258 {
5259 int tsk_cache_hot = 0;
5260 /*
5261 * We do not migrate tasks that are:
5262 * 1) throttled_lb_pair, or
5263 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5264 * 3) running (obviously), or
5265 * 4) are cache-hot on their current CPU.
5266 */
5267 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5268 return 0;
5269
5270 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5271 int cpu;
5272
5273 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5274
5275 env->flags |= LBF_SOME_PINNED;
5276
5277 /*
5278 * Remember if this task can be migrated to any other cpu in
5279 * our sched_group. We may want to revisit it if we couldn't
5280 * meet load balance goals by pulling other tasks on src_cpu.
5281 *
5282 * Also avoid computing new_dst_cpu if we have already computed
5283 * one in current iteration.
5284 */
5285 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5286 return 0;
5287
5288 /* Prevent to re-select dst_cpu via env's cpus */
5289 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5290 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5291 env->flags |= LBF_DST_PINNED;
5292 env->new_dst_cpu = cpu;
5293 break;
5294 }
5295 }
5296
5297 return 0;
5298 }
5299
5300 /* Record that we found atleast one task that could run on dst_cpu */
5301 env->flags &= ~LBF_ALL_PINNED;
5302
5303 if (task_running(env->src_rq, p)) {
5304 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5305 return 0;
5306 }
5307
5308 /*
5309 * Aggressive migration if:
5310 * 1) destination numa is preferred
5311 * 2) task is cache cold, or
5312 * 3) too many balance attempts have failed.
5313 */
5314 tsk_cache_hot = task_hot(p, env);
5315 if (!tsk_cache_hot)
5316 tsk_cache_hot = migrate_degrades_locality(p, env);
5317
5318 if (migrate_improves_locality(p, env)) {
5319 #ifdef CONFIG_SCHEDSTATS
5320 if (tsk_cache_hot) {
5321 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5322 schedstat_inc(p, se.statistics.nr_forced_migrations);
5323 }
5324 #endif
5325 return 1;
5326 }
5327
5328 if (!tsk_cache_hot ||
5329 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5330
5331 if (tsk_cache_hot) {
5332 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5333 schedstat_inc(p, se.statistics.nr_forced_migrations);
5334 }
5335
5336 return 1;
5337 }
5338
5339 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5340 return 0;
5341 }
5342
5343 /*
5344 * move_one_task tries to move exactly one task from busiest to this_rq, as
5345 * part of active balancing operations within "domain".
5346 * Returns 1 if successful and 0 otherwise.
5347 *
5348 * Called with both runqueues locked.
5349 */
5350 static int move_one_task(struct lb_env *env)
5351 {
5352 struct task_struct *p, *n;
5353
5354 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5355 if (!can_migrate_task(p, env))
5356 continue;
5357
5358 move_task(p, env);
5359 /*
5360 * Right now, this is only the second place move_task()
5361 * is called, so we can safely collect move_task()
5362 * stats here rather than inside move_task().
5363 */
5364 schedstat_inc(env->sd, lb_gained[env->idle]);
5365 return 1;
5366 }
5367 return 0;
5368 }
5369
5370 static const unsigned int sched_nr_migrate_break = 32;
5371
5372 /*
5373 * move_tasks tries to move up to imbalance weighted load from busiest to
5374 * this_rq, as part of a balancing operation within domain "sd".
5375 * Returns 1 if successful and 0 otherwise.
5376 *
5377 * Called with both runqueues locked.
5378 */
5379 static int move_tasks(struct lb_env *env)
5380 {
5381 struct list_head *tasks = &env->src_rq->cfs_tasks;
5382 struct task_struct *p;
5383 unsigned long load;
5384 int pulled = 0;
5385
5386 if (env->imbalance <= 0)
5387 return 0;
5388
5389 while (!list_empty(tasks)) {
5390 p = list_first_entry(tasks, struct task_struct, se.group_node);
5391
5392 env->loop++;
5393 /* We've more or less seen every task there is, call it quits */
5394 if (env->loop > env->loop_max)
5395 break;
5396
5397 /* take a breather every nr_migrate tasks */
5398 if (env->loop > env->loop_break) {
5399 env->loop_break += sched_nr_migrate_break;
5400 env->flags |= LBF_NEED_BREAK;
5401 break;
5402 }
5403
5404 if (!can_migrate_task(p, env))
5405 goto next;
5406
5407 load = task_h_load(p);
5408
5409 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5410 goto next;
5411
5412 if ((load / 2) > env->imbalance)
5413 goto next;
5414
5415 move_task(p, env);
5416 pulled++;
5417 env->imbalance -= load;
5418
5419 #ifdef CONFIG_PREEMPT
5420 /*
5421 * NEWIDLE balancing is a source of latency, so preemptible
5422 * kernels will stop after the first task is pulled to minimize
5423 * the critical section.
5424 */
5425 if (env->idle == CPU_NEWLY_IDLE)
5426 break;
5427 #endif
5428
5429 /*
5430 * We only want to steal up to the prescribed amount of
5431 * weighted load.
5432 */
5433 if (env->imbalance <= 0)
5434 break;
5435
5436 continue;
5437 next:
5438 list_move_tail(&p->se.group_node, tasks);
5439 }
5440
5441 /*
5442 * Right now, this is one of only two places move_task() is called,
5443 * so we can safely collect move_task() stats here rather than
5444 * inside move_task().
5445 */
5446 schedstat_add(env->sd, lb_gained[env->idle], pulled);
5447
5448 return pulled;
5449 }
5450
5451 #ifdef CONFIG_FAIR_GROUP_SCHED
5452 /*
5453 * update tg->load_weight by folding this cpu's load_avg
5454 */
5455 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5456 {
5457 struct sched_entity *se = tg->se[cpu];
5458 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5459
5460 /* throttled entities do not contribute to load */
5461 if (throttled_hierarchy(cfs_rq))
5462 return;
5463
5464 update_cfs_rq_blocked_load(cfs_rq, 1);
5465
5466 if (se) {
5467 update_entity_load_avg(se, 1);
5468 /*
5469 * We pivot on our runnable average having decayed to zero for
5470 * list removal. This generally implies that all our children
5471 * have also been removed (modulo rounding error or bandwidth
5472 * control); however, such cases are rare and we can fix these
5473 * at enqueue.
5474 *
5475 * TODO: fix up out-of-order children on enqueue.
5476 */
5477 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5478 list_del_leaf_cfs_rq(cfs_rq);
5479 } else {
5480 struct rq *rq = rq_of(cfs_rq);
5481 update_rq_runnable_avg(rq, rq->nr_running);
5482 }
5483 }
5484
5485 static void update_blocked_averages(int cpu)
5486 {
5487 struct rq *rq = cpu_rq(cpu);
5488 struct cfs_rq *cfs_rq;
5489 unsigned long flags;
5490
5491 raw_spin_lock_irqsave(&rq->lock, flags);
5492 update_rq_clock(rq);
5493 /*
5494 * Iterates the task_group tree in a bottom up fashion, see
5495 * list_add_leaf_cfs_rq() for details.
5496 */
5497 for_each_leaf_cfs_rq(rq, cfs_rq) {
5498 /*
5499 * Note: We may want to consider periodically releasing
5500 * rq->lock about these updates so that creating many task
5501 * groups does not result in continually extending hold time.
5502 */
5503 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5504 }
5505
5506 raw_spin_unlock_irqrestore(&rq->lock, flags);
5507 }
5508
5509 /*
5510 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5511 * This needs to be done in a top-down fashion because the load of a child
5512 * group is a fraction of its parents load.
5513 */
5514 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5515 {
5516 struct rq *rq = rq_of(cfs_rq);
5517 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5518 unsigned long now = jiffies;
5519 unsigned long load;
5520
5521 if (cfs_rq->last_h_load_update == now)
5522 return;
5523
5524 cfs_rq->h_load_next = NULL;
5525 for_each_sched_entity(se) {
5526 cfs_rq = cfs_rq_of(se);
5527 cfs_rq->h_load_next = se;
5528 if (cfs_rq->last_h_load_update == now)
5529 break;
5530 }
5531
5532 if (!se) {
5533 cfs_rq->h_load = cfs_rq->runnable_load_avg;
5534 cfs_rq->last_h_load_update = now;
5535 }
5536
5537 while ((se = cfs_rq->h_load_next) != NULL) {
5538 load = cfs_rq->h_load;
5539 load = div64_ul(load * se->avg.load_avg_contrib,
5540 cfs_rq->runnable_load_avg + 1);
5541 cfs_rq = group_cfs_rq(se);
5542 cfs_rq->h_load = load;
5543 cfs_rq->last_h_load_update = now;
5544 }
5545 }
5546
5547 static unsigned long task_h_load(struct task_struct *p)
5548 {
5549 struct cfs_rq *cfs_rq = task_cfs_rq(p);
5550
5551 update_cfs_rq_h_load(cfs_rq);
5552 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5553 cfs_rq->runnable_load_avg + 1);
5554 }
5555 #else
5556 static inline void update_blocked_averages(int cpu)
5557 {
5558 }
5559
5560 static unsigned long task_h_load(struct task_struct *p)
5561 {
5562 return p->se.avg.load_avg_contrib;
5563 }
5564 #endif
5565
5566 /********** Helpers for find_busiest_group ************************/
5567
5568 enum group_type {
5569 group_other = 0,
5570 group_imbalanced,
5571 group_overloaded,
5572 };
5573
5574 /*
5575 * sg_lb_stats - stats of a sched_group required for load_balancing
5576 */
5577 struct sg_lb_stats {
5578 unsigned long avg_load; /*Avg load across the CPUs of the group */
5579 unsigned long group_load; /* Total load over the CPUs of the group */
5580 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5581 unsigned long load_per_task;
5582 unsigned long group_capacity;
5583 unsigned int sum_nr_running; /* Nr tasks running in the group */
5584 unsigned int group_capacity_factor;
5585 unsigned int idle_cpus;
5586 unsigned int group_weight;
5587 enum group_type group_type;
5588 int group_has_free_capacity;
5589 #ifdef CONFIG_NUMA_BALANCING
5590 unsigned int nr_numa_running;
5591 unsigned int nr_preferred_running;
5592 #endif
5593 };
5594
5595 /*
5596 * sd_lb_stats - Structure to store the statistics of a sched_domain
5597 * during load balancing.
5598 */
5599 struct sd_lb_stats {
5600 struct sched_group *busiest; /* Busiest group in this sd */
5601 struct sched_group *local; /* Local group in this sd */
5602 unsigned long total_load; /* Total load of all groups in sd */
5603 unsigned long total_capacity; /* Total capacity of all groups in sd */
5604 unsigned long avg_load; /* Average load across all groups in sd */
5605
5606 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5607 struct sg_lb_stats local_stat; /* Statistics of the local group */
5608 };
5609
5610 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5611 {
5612 /*
5613 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5614 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5615 * We must however clear busiest_stat::avg_load because
5616 * update_sd_pick_busiest() reads this before assignment.
5617 */
5618 *sds = (struct sd_lb_stats){
5619 .busiest = NULL,
5620 .local = NULL,
5621 .total_load = 0UL,
5622 .total_capacity = 0UL,
5623 .busiest_stat = {
5624 .avg_load = 0UL,
5625 .sum_nr_running = 0,
5626 .group_type = group_other,
5627 },
5628 };
5629 }
5630
5631 /**
5632 * get_sd_load_idx - Obtain the load index for a given sched domain.
5633 * @sd: The sched_domain whose load_idx is to be obtained.
5634 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5635 *
5636 * Return: The load index.
5637 */
5638 static inline int get_sd_load_idx(struct sched_domain *sd,
5639 enum cpu_idle_type idle)
5640 {
5641 int load_idx;
5642
5643 switch (idle) {
5644 case CPU_NOT_IDLE:
5645 load_idx = sd->busy_idx;
5646 break;
5647
5648 case CPU_NEWLY_IDLE:
5649 load_idx = sd->newidle_idx;
5650 break;
5651 default:
5652 load_idx = sd->idle_idx;
5653 break;
5654 }
5655
5656 return load_idx;
5657 }
5658
5659 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5660 {
5661 return SCHED_CAPACITY_SCALE;
5662 }
5663
5664 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5665 {
5666 return default_scale_capacity(sd, cpu);
5667 }
5668
5669 static unsigned long default_scale_smt_capacity(struct sched_domain *sd, int cpu)
5670 {
5671 unsigned long weight = sd->span_weight;
5672 unsigned long smt_gain = sd->smt_gain;
5673
5674 smt_gain /= weight;
5675
5676 return smt_gain;
5677 }
5678
5679 unsigned long __weak arch_scale_smt_capacity(struct sched_domain *sd, int cpu)
5680 {
5681 return default_scale_smt_capacity(sd, cpu);
5682 }
5683
5684 static unsigned long scale_rt_capacity(int cpu)
5685 {
5686 struct rq *rq = cpu_rq(cpu);
5687 u64 total, available, age_stamp, avg;
5688 s64 delta;
5689
5690 /*
5691 * Since we're reading these variables without serialization make sure
5692 * we read them once before doing sanity checks on them.
5693 */
5694 age_stamp = ACCESS_ONCE(rq->age_stamp);
5695 avg = ACCESS_ONCE(rq->rt_avg);
5696
5697 delta = rq_clock(rq) - age_stamp;
5698 if (unlikely(delta < 0))
5699 delta = 0;
5700
5701 total = sched_avg_period() + delta;
5702
5703 if (unlikely(total < avg)) {
5704 /* Ensures that capacity won't end up being negative */
5705 available = 0;
5706 } else {
5707 available = total - avg;
5708 }
5709
5710 if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5711 total = SCHED_CAPACITY_SCALE;
5712
5713 total >>= SCHED_CAPACITY_SHIFT;
5714
5715 return div_u64(available, total);
5716 }
5717
5718 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5719 {
5720 unsigned long weight = sd->span_weight;
5721 unsigned long capacity = SCHED_CAPACITY_SCALE;
5722 struct sched_group *sdg = sd->groups;
5723
5724 if ((sd->flags & SD_SHARE_CPUCAPACITY) && weight > 1) {
5725 if (sched_feat(ARCH_CAPACITY))
5726 capacity *= arch_scale_smt_capacity(sd, cpu);
5727 else
5728 capacity *= default_scale_smt_capacity(sd, cpu);
5729
5730 capacity >>= SCHED_CAPACITY_SHIFT;
5731 }
5732
5733 sdg->sgc->capacity_orig = capacity;
5734
5735 if (sched_feat(ARCH_CAPACITY))
5736 capacity *= arch_scale_freq_capacity(sd, cpu);
5737 else
5738 capacity *= default_scale_capacity(sd, cpu);
5739
5740 capacity >>= SCHED_CAPACITY_SHIFT;
5741
5742 capacity *= scale_rt_capacity(cpu);
5743 capacity >>= SCHED_CAPACITY_SHIFT;
5744
5745 if (!capacity)
5746 capacity = 1;
5747
5748 cpu_rq(cpu)->cpu_capacity = capacity;
5749 sdg->sgc->capacity = capacity;
5750 }
5751
5752 void update_group_capacity(struct sched_domain *sd, int cpu)
5753 {
5754 struct sched_domain *child = sd->child;
5755 struct sched_group *group, *sdg = sd->groups;
5756 unsigned long capacity, capacity_orig;
5757 unsigned long interval;
5758
5759 interval = msecs_to_jiffies(sd->balance_interval);
5760 interval = clamp(interval, 1UL, max_load_balance_interval);
5761 sdg->sgc->next_update = jiffies + interval;
5762
5763 if (!child) {
5764 update_cpu_capacity(sd, cpu);
5765 return;
5766 }
5767
5768 capacity_orig = capacity = 0;
5769
5770 if (child->flags & SD_OVERLAP) {
5771 /*
5772 * SD_OVERLAP domains cannot assume that child groups
5773 * span the current group.
5774 */
5775
5776 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5777 struct sched_group_capacity *sgc;
5778 struct rq *rq = cpu_rq(cpu);
5779
5780 /*
5781 * build_sched_domains() -> init_sched_groups_capacity()
5782 * gets here before we've attached the domains to the
5783 * runqueues.
5784 *
5785 * Use capacity_of(), which is set irrespective of domains
5786 * in update_cpu_capacity().
5787 *
5788 * This avoids capacity/capacity_orig from being 0 and
5789 * causing divide-by-zero issues on boot.
5790 *
5791 * Runtime updates will correct capacity_orig.
5792 */
5793 if (unlikely(!rq->sd)) {
5794 capacity_orig += capacity_of(cpu);
5795 capacity += capacity_of(cpu);
5796 continue;
5797 }
5798
5799 sgc = rq->sd->groups->sgc;
5800 capacity_orig += sgc->capacity_orig;
5801 capacity += sgc->capacity;
5802 }
5803 } else {
5804 /*
5805 * !SD_OVERLAP domains can assume that child groups
5806 * span the current group.
5807 */
5808
5809 group = child->groups;
5810 do {
5811 capacity_orig += group->sgc->capacity_orig;
5812 capacity += group->sgc->capacity;
5813 group = group->next;
5814 } while (group != child->groups);
5815 }
5816
5817 sdg->sgc->capacity_orig = capacity_orig;
5818 sdg->sgc->capacity = capacity;
5819 }
5820
5821 /*
5822 * Try and fix up capacity for tiny siblings, this is needed when
5823 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5824 * which on its own isn't powerful enough.
5825 *
5826 * See update_sd_pick_busiest() and check_asym_packing().
5827 */
5828 static inline int
5829 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5830 {
5831 /*
5832 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
5833 */
5834 if (!(sd->flags & SD_SHARE_CPUCAPACITY))
5835 return 0;
5836
5837 /*
5838 * If ~90% of the cpu_capacity is still there, we're good.
5839 */
5840 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
5841 return 1;
5842
5843 return 0;
5844 }
5845
5846 /*
5847 * Group imbalance indicates (and tries to solve) the problem where balancing
5848 * groups is inadequate due to tsk_cpus_allowed() constraints.
5849 *
5850 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5851 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5852 * Something like:
5853 *
5854 * { 0 1 2 3 } { 4 5 6 7 }
5855 * * * * *
5856 *
5857 * If we were to balance group-wise we'd place two tasks in the first group and
5858 * two tasks in the second group. Clearly this is undesired as it will overload
5859 * cpu 3 and leave one of the cpus in the second group unused.
5860 *
5861 * The current solution to this issue is detecting the skew in the first group
5862 * by noticing the lower domain failed to reach balance and had difficulty
5863 * moving tasks due to affinity constraints.
5864 *
5865 * When this is so detected; this group becomes a candidate for busiest; see
5866 * update_sd_pick_busiest(). And calculate_imbalance() and
5867 * find_busiest_group() avoid some of the usual balance conditions to allow it
5868 * to create an effective group imbalance.
5869 *
5870 * This is a somewhat tricky proposition since the next run might not find the
5871 * group imbalance and decide the groups need to be balanced again. A most
5872 * subtle and fragile situation.
5873 */
5874
5875 static inline int sg_imbalanced(struct sched_group *group)
5876 {
5877 return group->sgc->imbalance;
5878 }
5879
5880 /*
5881 * Compute the group capacity factor.
5882 *
5883 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
5884 * first dividing out the smt factor and computing the actual number of cores
5885 * and limit unit capacity with that.
5886 */
5887 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
5888 {
5889 unsigned int capacity_factor, smt, cpus;
5890 unsigned int capacity, capacity_orig;
5891
5892 capacity = group->sgc->capacity;
5893 capacity_orig = group->sgc->capacity_orig;
5894 cpus = group->group_weight;
5895
5896 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
5897 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
5898 capacity_factor = cpus / smt; /* cores */
5899
5900 capacity_factor = min_t(unsigned,
5901 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
5902 if (!capacity_factor)
5903 capacity_factor = fix_small_capacity(env->sd, group);
5904
5905 return capacity_factor;
5906 }
5907
5908 static enum group_type
5909 group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
5910 {
5911 if (sgs->sum_nr_running > sgs->group_capacity_factor)
5912 return group_overloaded;
5913
5914 if (sg_imbalanced(group))
5915 return group_imbalanced;
5916
5917 return group_other;
5918 }
5919
5920 /**
5921 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5922 * @env: The load balancing environment.
5923 * @group: sched_group whose statistics are to be updated.
5924 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5925 * @local_group: Does group contain this_cpu.
5926 * @sgs: variable to hold the statistics for this group.
5927 * @overload: Indicate more than one runnable task for any CPU.
5928 */
5929 static inline void update_sg_lb_stats(struct lb_env *env,
5930 struct sched_group *group, int load_idx,
5931 int local_group, struct sg_lb_stats *sgs,
5932 bool *overload)
5933 {
5934 unsigned long load;
5935 int i;
5936
5937 memset(sgs, 0, sizeof(*sgs));
5938
5939 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
5940 struct rq *rq = cpu_rq(i);
5941
5942 /* Bias balancing toward cpus of our domain */
5943 if (local_group)
5944 load = target_load(i, load_idx);
5945 else
5946 load = source_load(i, load_idx);
5947
5948 sgs->group_load += load;
5949 sgs->sum_nr_running += rq->nr_running;
5950
5951 if (rq->nr_running > 1)
5952 *overload = true;
5953
5954 #ifdef CONFIG_NUMA_BALANCING
5955 sgs->nr_numa_running += rq->nr_numa_running;
5956 sgs->nr_preferred_running += rq->nr_preferred_running;
5957 #endif
5958 sgs->sum_weighted_load += weighted_cpuload(i);
5959 if (idle_cpu(i))
5960 sgs->idle_cpus++;
5961 }
5962
5963 /* Adjust by relative CPU capacity of the group */
5964 sgs->group_capacity = group->sgc->capacity;
5965 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
5966
5967 if (sgs->sum_nr_running)
5968 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
5969
5970 sgs->group_weight = group->group_weight;
5971 sgs->group_capacity_factor = sg_capacity_factor(env, group);
5972 sgs->group_type = group_classify(group, sgs);
5973
5974 if (sgs->group_capacity_factor > sgs->sum_nr_running)
5975 sgs->group_has_free_capacity = 1;
5976 }
5977
5978 /**
5979 * update_sd_pick_busiest - return 1 on busiest group
5980 * @env: The load balancing environment.
5981 * @sds: sched_domain statistics
5982 * @sg: sched_group candidate to be checked for being the busiest
5983 * @sgs: sched_group statistics
5984 *
5985 * Determine if @sg is a busier group than the previously selected
5986 * busiest group.
5987 *
5988 * Return: %true if @sg is a busier group than the previously selected
5989 * busiest group. %false otherwise.
5990 */
5991 static bool update_sd_pick_busiest(struct lb_env *env,
5992 struct sd_lb_stats *sds,
5993 struct sched_group *sg,
5994 struct sg_lb_stats *sgs)
5995 {
5996 struct sg_lb_stats *busiest = &sds->busiest_stat;
5997
5998 if (sgs->group_type > busiest->group_type)
5999 return true;
6000
6001 if (sgs->group_type < busiest->group_type)
6002 return false;
6003
6004 if (sgs->avg_load <= busiest->avg_load)
6005 return false;
6006
6007 /* This is the busiest node in its class. */
6008 if (!(env->sd->flags & SD_ASYM_PACKING))
6009 return true;
6010
6011 /*
6012 * ASYM_PACKING needs to move all the work to the lowest
6013 * numbered CPUs in the group, therefore mark all groups
6014 * higher than ourself as busy.
6015 */
6016 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6017 if (!sds->busiest)
6018 return true;
6019
6020 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6021 return true;
6022 }
6023
6024 return false;
6025 }
6026
6027 #ifdef CONFIG_NUMA_BALANCING
6028 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6029 {
6030 if (sgs->sum_nr_running > sgs->nr_numa_running)
6031 return regular;
6032 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6033 return remote;
6034 return all;
6035 }
6036
6037 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6038 {
6039 if (rq->nr_running > rq->nr_numa_running)
6040 return regular;
6041 if (rq->nr_running > rq->nr_preferred_running)
6042 return remote;
6043 return all;
6044 }
6045 #else
6046 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6047 {
6048 return all;
6049 }
6050
6051 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6052 {
6053 return regular;
6054 }
6055 #endif /* CONFIG_NUMA_BALANCING */
6056
6057 /**
6058 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6059 * @env: The load balancing environment.
6060 * @sds: variable to hold the statistics for this sched_domain.
6061 */
6062 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6063 {
6064 struct sched_domain *child = env->sd->child;
6065 struct sched_group *sg = env->sd->groups;
6066 struct sg_lb_stats tmp_sgs;
6067 int load_idx, prefer_sibling = 0;
6068 bool overload = false;
6069
6070 if (child && child->flags & SD_PREFER_SIBLING)
6071 prefer_sibling = 1;
6072
6073 load_idx = get_sd_load_idx(env->sd, env->idle);
6074
6075 do {
6076 struct sg_lb_stats *sgs = &tmp_sgs;
6077 int local_group;
6078
6079 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6080 if (local_group) {
6081 sds->local = sg;
6082 sgs = &sds->local_stat;
6083
6084 if (env->idle != CPU_NEWLY_IDLE ||
6085 time_after_eq(jiffies, sg->sgc->next_update))
6086 update_group_capacity(env->sd, env->dst_cpu);
6087 }
6088
6089 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6090 &overload);
6091
6092 if (local_group)
6093 goto next_group;
6094
6095 /*
6096 * In case the child domain prefers tasks go to siblings
6097 * first, lower the sg capacity factor to one so that we'll try
6098 * and move all the excess tasks away. We lower the capacity
6099 * of a group only if the local group has the capacity to fit
6100 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6101 * extra check prevents the case where you always pull from the
6102 * heaviest group when it is already under-utilized (possible
6103 * with a large weight task outweighs the tasks on the system).
6104 */
6105 if (prefer_sibling && sds->local &&
6106 sds->local_stat.group_has_free_capacity)
6107 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6108
6109 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6110 sds->busiest = sg;
6111 sds->busiest_stat = *sgs;
6112 }
6113
6114 next_group:
6115 /* Now, start updating sd_lb_stats */
6116 sds->total_load += sgs->group_load;
6117 sds->total_capacity += sgs->group_capacity;
6118
6119 sg = sg->next;
6120 } while (sg != env->sd->groups);
6121
6122 if (env->sd->flags & SD_NUMA)
6123 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6124
6125 if (!env->sd->parent) {
6126 /* update overload indicator if we are at root domain */
6127 if (env->dst_rq->rd->overload != overload)
6128 env->dst_rq->rd->overload = overload;
6129 }
6130
6131 }
6132
6133 /**
6134 * check_asym_packing - Check to see if the group is packed into the
6135 * sched doman.
6136 *
6137 * This is primarily intended to used at the sibling level. Some
6138 * cores like POWER7 prefer to use lower numbered SMT threads. In the
6139 * case of POWER7, it can move to lower SMT modes only when higher
6140 * threads are idle. When in lower SMT modes, the threads will
6141 * perform better since they share less core resources. Hence when we
6142 * have idle threads, we want them to be the higher ones.
6143 *
6144 * This packing function is run on idle threads. It checks to see if
6145 * the busiest CPU in this domain (core in the P7 case) has a higher
6146 * CPU number than the packing function is being run on. Here we are
6147 * assuming lower CPU number will be equivalent to lower a SMT thread
6148 * number.
6149 *
6150 * Return: 1 when packing is required and a task should be moved to
6151 * this CPU. The amount of the imbalance is returned in *imbalance.
6152 *
6153 * @env: The load balancing environment.
6154 * @sds: Statistics of the sched_domain which is to be packed
6155 */
6156 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6157 {
6158 int busiest_cpu;
6159
6160 if (!(env->sd->flags & SD_ASYM_PACKING))
6161 return 0;
6162
6163 if (!sds->busiest)
6164 return 0;
6165
6166 busiest_cpu = group_first_cpu(sds->busiest);
6167 if (env->dst_cpu > busiest_cpu)
6168 return 0;
6169
6170 env->imbalance = DIV_ROUND_CLOSEST(
6171 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6172 SCHED_CAPACITY_SCALE);
6173
6174 return 1;
6175 }
6176
6177 /**
6178 * fix_small_imbalance - Calculate the minor imbalance that exists
6179 * amongst the groups of a sched_domain, during
6180 * load balancing.
6181 * @env: The load balancing environment.
6182 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6183 */
6184 static inline
6185 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6186 {
6187 unsigned long tmp, capa_now = 0, capa_move = 0;
6188 unsigned int imbn = 2;
6189 unsigned long scaled_busy_load_per_task;
6190 struct sg_lb_stats *local, *busiest;
6191
6192 local = &sds->local_stat;
6193 busiest = &sds->busiest_stat;
6194
6195 if (!local->sum_nr_running)
6196 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6197 else if (busiest->load_per_task > local->load_per_task)
6198 imbn = 1;
6199
6200 scaled_busy_load_per_task =
6201 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6202 busiest->group_capacity;
6203
6204 if (busiest->avg_load + scaled_busy_load_per_task >=
6205 local->avg_load + (scaled_busy_load_per_task * imbn)) {
6206 env->imbalance = busiest->load_per_task;
6207 return;
6208 }
6209
6210 /*
6211 * OK, we don't have enough imbalance to justify moving tasks,
6212 * however we may be able to increase total CPU capacity used by
6213 * moving them.
6214 */
6215
6216 capa_now += busiest->group_capacity *
6217 min(busiest->load_per_task, busiest->avg_load);
6218 capa_now += local->group_capacity *
6219 min(local->load_per_task, local->avg_load);
6220 capa_now /= SCHED_CAPACITY_SCALE;
6221
6222 /* Amount of load we'd subtract */
6223 if (busiest->avg_load > scaled_busy_load_per_task) {
6224 capa_move += busiest->group_capacity *
6225 min(busiest->load_per_task,
6226 busiest->avg_load - scaled_busy_load_per_task);
6227 }
6228
6229 /* Amount of load we'd add */
6230 if (busiest->avg_load * busiest->group_capacity <
6231 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6232 tmp = (busiest->avg_load * busiest->group_capacity) /
6233 local->group_capacity;
6234 } else {
6235 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6236 local->group_capacity;
6237 }
6238 capa_move += local->group_capacity *
6239 min(local->load_per_task, local->avg_load + tmp);
6240 capa_move /= SCHED_CAPACITY_SCALE;
6241
6242 /* Move if we gain throughput */
6243 if (capa_move > capa_now)
6244 env->imbalance = busiest->load_per_task;
6245 }
6246
6247 /**
6248 * calculate_imbalance - Calculate the amount of imbalance present within the
6249 * groups of a given sched_domain during load balance.
6250 * @env: load balance environment
6251 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6252 */
6253 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6254 {
6255 unsigned long max_pull, load_above_capacity = ~0UL;
6256 struct sg_lb_stats *local, *busiest;
6257
6258 local = &sds->local_stat;
6259 busiest = &sds->busiest_stat;
6260
6261 if (busiest->group_type == group_imbalanced) {
6262 /*
6263 * In the group_imb case we cannot rely on group-wide averages
6264 * to ensure cpu-load equilibrium, look at wider averages. XXX
6265 */
6266 busiest->load_per_task =
6267 min(busiest->load_per_task, sds->avg_load);
6268 }
6269
6270 /*
6271 * In the presence of smp nice balancing, certain scenarios can have
6272 * max load less than avg load(as we skip the groups at or below
6273 * its cpu_capacity, while calculating max_load..)
6274 */
6275 if (busiest->avg_load <= sds->avg_load ||
6276 local->avg_load >= sds->avg_load) {
6277 env->imbalance = 0;
6278 return fix_small_imbalance(env, sds);
6279 }
6280
6281 /*
6282 * If there aren't any idle cpus, avoid creating some.
6283 */
6284 if (busiest->group_type == group_overloaded &&
6285 local->group_type == group_overloaded) {
6286 load_above_capacity =
6287 (busiest->sum_nr_running - busiest->group_capacity_factor);
6288
6289 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6290 load_above_capacity /= busiest->group_capacity;
6291 }
6292
6293 /*
6294 * We're trying to get all the cpus to the average_load, so we don't
6295 * want to push ourselves above the average load, nor do we wish to
6296 * reduce the max loaded cpu below the average load. At the same time,
6297 * we also don't want to reduce the group load below the group capacity
6298 * (so that we can implement power-savings policies etc). Thus we look
6299 * for the minimum possible imbalance.
6300 */
6301 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6302
6303 /* How much load to actually move to equalise the imbalance */
6304 env->imbalance = min(
6305 max_pull * busiest->group_capacity,
6306 (sds->avg_load - local->avg_load) * local->group_capacity
6307 ) / SCHED_CAPACITY_SCALE;
6308
6309 /*
6310 * if *imbalance is less than the average load per runnable task
6311 * there is no guarantee that any tasks will be moved so we'll have
6312 * a think about bumping its value to force at least one task to be
6313 * moved
6314 */
6315 if (env->imbalance < busiest->load_per_task)
6316 return fix_small_imbalance(env, sds);
6317 }
6318
6319 /******* find_busiest_group() helpers end here *********************/
6320
6321 /**
6322 * find_busiest_group - Returns the busiest group within the sched_domain
6323 * if there is an imbalance. If there isn't an imbalance, and
6324 * the user has opted for power-savings, it returns a group whose
6325 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6326 * such a group exists.
6327 *
6328 * Also calculates the amount of weighted load which should be moved
6329 * to restore balance.
6330 *
6331 * @env: The load balancing environment.
6332 *
6333 * Return: - The busiest group if imbalance exists.
6334 * - If no imbalance and user has opted for power-savings balance,
6335 * return the least loaded group whose CPUs can be
6336 * put to idle by rebalancing its tasks onto our group.
6337 */
6338 static struct sched_group *find_busiest_group(struct lb_env *env)
6339 {
6340 struct sg_lb_stats *local, *busiest;
6341 struct sd_lb_stats sds;
6342
6343 init_sd_lb_stats(&sds);
6344
6345 /*
6346 * Compute the various statistics relavent for load balancing at
6347 * this level.
6348 */
6349 update_sd_lb_stats(env, &sds);
6350 local = &sds.local_stat;
6351 busiest = &sds.busiest_stat;
6352
6353 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6354 check_asym_packing(env, &sds))
6355 return sds.busiest;
6356
6357 /* There is no busy sibling group to pull tasks from */
6358 if (!sds.busiest || busiest->sum_nr_running == 0)
6359 goto out_balanced;
6360
6361 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6362 / sds.total_capacity;
6363
6364 /*
6365 * If the busiest group is imbalanced the below checks don't
6366 * work because they assume all things are equal, which typically
6367 * isn't true due to cpus_allowed constraints and the like.
6368 */
6369 if (busiest->group_type == group_imbalanced)
6370 goto force_balance;
6371
6372 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6373 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6374 !busiest->group_has_free_capacity)
6375 goto force_balance;
6376
6377 /*
6378 * If the local group is more busy than the selected busiest group
6379 * don't try and pull any tasks.
6380 */
6381 if (local->avg_load >= busiest->avg_load)
6382 goto out_balanced;
6383
6384 /*
6385 * Don't pull any tasks if this group is already above the domain
6386 * average load.
6387 */
6388 if (local->avg_load >= sds.avg_load)
6389 goto out_balanced;
6390
6391 if (env->idle == CPU_IDLE) {
6392 /*
6393 * This cpu is idle. If the busiest group load doesn't
6394 * have more tasks than the number of available cpu's and
6395 * there is no imbalance between this and busiest group
6396 * wrt to idle cpu's, it is balanced.
6397 */
6398 if ((local->idle_cpus < busiest->idle_cpus) &&
6399 busiest->sum_nr_running <= busiest->group_weight)
6400 goto out_balanced;
6401 } else {
6402 /*
6403 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6404 * imbalance_pct to be conservative.
6405 */
6406 if (100 * busiest->avg_load <=
6407 env->sd->imbalance_pct * local->avg_load)
6408 goto out_balanced;
6409 }
6410
6411 force_balance:
6412 /* Looks like there is an imbalance. Compute it */
6413 calculate_imbalance(env, &sds);
6414 return sds.busiest;
6415
6416 out_balanced:
6417 env->imbalance = 0;
6418 return NULL;
6419 }
6420
6421 /*
6422 * find_busiest_queue - find the busiest runqueue among the cpus in group.
6423 */
6424 static struct rq *find_busiest_queue(struct lb_env *env,
6425 struct sched_group *group)
6426 {
6427 struct rq *busiest = NULL, *rq;
6428 unsigned long busiest_load = 0, busiest_capacity = 1;
6429 int i;
6430
6431 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6432 unsigned long capacity, capacity_factor, wl;
6433 enum fbq_type rt;
6434
6435 rq = cpu_rq(i);
6436 rt = fbq_classify_rq(rq);
6437
6438 /*
6439 * We classify groups/runqueues into three groups:
6440 * - regular: there are !numa tasks
6441 * - remote: there are numa tasks that run on the 'wrong' node
6442 * - all: there is no distinction
6443 *
6444 * In order to avoid migrating ideally placed numa tasks,
6445 * ignore those when there's better options.
6446 *
6447 * If we ignore the actual busiest queue to migrate another
6448 * task, the next balance pass can still reduce the busiest
6449 * queue by moving tasks around inside the node.
6450 *
6451 * If we cannot move enough load due to this classification
6452 * the next pass will adjust the group classification and
6453 * allow migration of more tasks.
6454 *
6455 * Both cases only affect the total convergence complexity.
6456 */
6457 if (rt > env->fbq_type)
6458 continue;
6459
6460 capacity = capacity_of(i);
6461 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6462 if (!capacity_factor)
6463 capacity_factor = fix_small_capacity(env->sd, group);
6464
6465 wl = weighted_cpuload(i);
6466
6467 /*
6468 * When comparing with imbalance, use weighted_cpuload()
6469 * which is not scaled with the cpu capacity.
6470 */
6471 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6472 continue;
6473
6474 /*
6475 * For the load comparisons with the other cpu's, consider
6476 * the weighted_cpuload() scaled with the cpu capacity, so
6477 * that the load can be moved away from the cpu that is
6478 * potentially running at a lower capacity.
6479 *
6480 * Thus we're looking for max(wl_i / capacity_i), crosswise
6481 * multiplication to rid ourselves of the division works out
6482 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
6483 * our previous maximum.
6484 */
6485 if (wl * busiest_capacity > busiest_load * capacity) {
6486 busiest_load = wl;
6487 busiest_capacity = capacity;
6488 busiest = rq;
6489 }
6490 }
6491
6492 return busiest;
6493 }
6494
6495 /*
6496 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6497 * so long as it is large enough.
6498 */
6499 #define MAX_PINNED_INTERVAL 512
6500
6501 /* Working cpumask for load_balance and load_balance_newidle. */
6502 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6503
6504 static int need_active_balance(struct lb_env *env)
6505 {
6506 struct sched_domain *sd = env->sd;
6507
6508 if (env->idle == CPU_NEWLY_IDLE) {
6509
6510 /*
6511 * ASYM_PACKING needs to force migrate tasks from busy but
6512 * higher numbered CPUs in order to pack all tasks in the
6513 * lowest numbered CPUs.
6514 */
6515 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6516 return 1;
6517 }
6518
6519 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6520 }
6521
6522 static int active_load_balance_cpu_stop(void *data);
6523
6524 static int should_we_balance(struct lb_env *env)
6525 {
6526 struct sched_group *sg = env->sd->groups;
6527 struct cpumask *sg_cpus, *sg_mask;
6528 int cpu, balance_cpu = -1;
6529
6530 /*
6531 * In the newly idle case, we will allow all the cpu's
6532 * to do the newly idle load balance.
6533 */
6534 if (env->idle == CPU_NEWLY_IDLE)
6535 return 1;
6536
6537 sg_cpus = sched_group_cpus(sg);
6538 sg_mask = sched_group_mask(sg);
6539 /* Try to find first idle cpu */
6540 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6541 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6542 continue;
6543
6544 balance_cpu = cpu;
6545 break;
6546 }
6547
6548 if (balance_cpu == -1)
6549 balance_cpu = group_balance_cpu(sg);
6550
6551 /*
6552 * First idle cpu or the first cpu(busiest) in this sched group
6553 * is eligible for doing load balancing at this and above domains.
6554 */
6555 return balance_cpu == env->dst_cpu;
6556 }
6557
6558 /*
6559 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6560 * tasks if there is an imbalance.
6561 */
6562 static int load_balance(int this_cpu, struct rq *this_rq,
6563 struct sched_domain *sd, enum cpu_idle_type idle,
6564 int *continue_balancing)
6565 {
6566 int ld_moved, cur_ld_moved, active_balance = 0;
6567 struct sched_domain *sd_parent = sd->parent;
6568 struct sched_group *group;
6569 struct rq *busiest;
6570 unsigned long flags;
6571 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
6572
6573 struct lb_env env = {
6574 .sd = sd,
6575 .dst_cpu = this_cpu,
6576 .dst_rq = this_rq,
6577 .dst_grpmask = sched_group_cpus(sd->groups),
6578 .idle = idle,
6579 .loop_break = sched_nr_migrate_break,
6580 .cpus = cpus,
6581 .fbq_type = all,
6582 };
6583
6584 /*
6585 * For NEWLY_IDLE load_balancing, we don't need to consider
6586 * other cpus in our group
6587 */
6588 if (idle == CPU_NEWLY_IDLE)
6589 env.dst_grpmask = NULL;
6590
6591 cpumask_copy(cpus, cpu_active_mask);
6592
6593 schedstat_inc(sd, lb_count[idle]);
6594
6595 redo:
6596 if (!should_we_balance(&env)) {
6597 *continue_balancing = 0;
6598 goto out_balanced;
6599 }
6600
6601 group = find_busiest_group(&env);
6602 if (!group) {
6603 schedstat_inc(sd, lb_nobusyg[idle]);
6604 goto out_balanced;
6605 }
6606
6607 busiest = find_busiest_queue(&env, group);
6608 if (!busiest) {
6609 schedstat_inc(sd, lb_nobusyq[idle]);
6610 goto out_balanced;
6611 }
6612
6613 BUG_ON(busiest == env.dst_rq);
6614
6615 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6616
6617 ld_moved = 0;
6618 if (busiest->nr_running > 1) {
6619 /*
6620 * Attempt to move tasks. If find_busiest_group has found
6621 * an imbalance but busiest->nr_running <= 1, the group is
6622 * still unbalanced. ld_moved simply stays zero, so it is
6623 * correctly treated as an imbalance.
6624 */
6625 env.flags |= LBF_ALL_PINNED;
6626 env.src_cpu = busiest->cpu;
6627 env.src_rq = busiest;
6628 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
6629
6630 more_balance:
6631 local_irq_save(flags);
6632 double_rq_lock(env.dst_rq, busiest);
6633
6634 /*
6635 * cur_ld_moved - load moved in current iteration
6636 * ld_moved - cumulative load moved across iterations
6637 */
6638 cur_ld_moved = move_tasks(&env);
6639 ld_moved += cur_ld_moved;
6640 double_rq_unlock(env.dst_rq, busiest);
6641 local_irq_restore(flags);
6642
6643 /*
6644 * some other cpu did the load balance for us.
6645 */
6646 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6647 resched_cpu(env.dst_cpu);
6648
6649 if (env.flags & LBF_NEED_BREAK) {
6650 env.flags &= ~LBF_NEED_BREAK;
6651 goto more_balance;
6652 }
6653
6654 /*
6655 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6656 * us and move them to an alternate dst_cpu in our sched_group
6657 * where they can run. The upper limit on how many times we
6658 * iterate on same src_cpu is dependent on number of cpus in our
6659 * sched_group.
6660 *
6661 * This changes load balance semantics a bit on who can move
6662 * load to a given_cpu. In addition to the given_cpu itself
6663 * (or a ilb_cpu acting on its behalf where given_cpu is
6664 * nohz-idle), we now have balance_cpu in a position to move
6665 * load to given_cpu. In rare situations, this may cause
6666 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6667 * _independently_ and at _same_ time to move some load to
6668 * given_cpu) causing exceess load to be moved to given_cpu.
6669 * This however should not happen so much in practice and
6670 * moreover subsequent load balance cycles should correct the
6671 * excess load moved.
6672 */
6673 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6674
6675 /* Prevent to re-select dst_cpu via env's cpus */
6676 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6677
6678 env.dst_rq = cpu_rq(env.new_dst_cpu);
6679 env.dst_cpu = env.new_dst_cpu;
6680 env.flags &= ~LBF_DST_PINNED;
6681 env.loop = 0;
6682 env.loop_break = sched_nr_migrate_break;
6683
6684 /*
6685 * Go back to "more_balance" rather than "redo" since we
6686 * need to continue with same src_cpu.
6687 */
6688 goto more_balance;
6689 }
6690
6691 /*
6692 * We failed to reach balance because of affinity.
6693 */
6694 if (sd_parent) {
6695 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6696
6697 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6698 *group_imbalance = 1;
6699 } else if (*group_imbalance)
6700 *group_imbalance = 0;
6701 }
6702
6703 /* All tasks on this runqueue were pinned by CPU affinity */
6704 if (unlikely(env.flags & LBF_ALL_PINNED)) {
6705 cpumask_clear_cpu(cpu_of(busiest), cpus);
6706 if (!cpumask_empty(cpus)) {
6707 env.loop = 0;
6708 env.loop_break = sched_nr_migrate_break;
6709 goto redo;
6710 }
6711 goto out_balanced;
6712 }
6713 }
6714
6715 if (!ld_moved) {
6716 schedstat_inc(sd, lb_failed[idle]);
6717 /*
6718 * Increment the failure counter only on periodic balance.
6719 * We do not want newidle balance, which can be very
6720 * frequent, pollute the failure counter causing
6721 * excessive cache_hot migrations and active balances.
6722 */
6723 if (idle != CPU_NEWLY_IDLE)
6724 sd->nr_balance_failed++;
6725
6726 if (need_active_balance(&env)) {
6727 raw_spin_lock_irqsave(&busiest->lock, flags);
6728
6729 /* don't kick the active_load_balance_cpu_stop,
6730 * if the curr task on busiest cpu can't be
6731 * moved to this_cpu
6732 */
6733 if (!cpumask_test_cpu(this_cpu,
6734 tsk_cpus_allowed(busiest->curr))) {
6735 raw_spin_unlock_irqrestore(&busiest->lock,
6736 flags);
6737 env.flags |= LBF_ALL_PINNED;
6738 goto out_one_pinned;
6739 }
6740
6741 /*
6742 * ->active_balance synchronizes accesses to
6743 * ->active_balance_work. Once set, it's cleared
6744 * only after active load balance is finished.
6745 */
6746 if (!busiest->active_balance) {
6747 busiest->active_balance = 1;
6748 busiest->push_cpu = this_cpu;
6749 active_balance = 1;
6750 }
6751 raw_spin_unlock_irqrestore(&busiest->lock, flags);
6752
6753 if (active_balance) {
6754 stop_one_cpu_nowait(cpu_of(busiest),
6755 active_load_balance_cpu_stop, busiest,
6756 &busiest->active_balance_work);
6757 }
6758
6759 /*
6760 * We've kicked active balancing, reset the failure
6761 * counter.
6762 */
6763 sd->nr_balance_failed = sd->cache_nice_tries+1;
6764 }
6765 } else
6766 sd->nr_balance_failed = 0;
6767
6768 if (likely(!active_balance)) {
6769 /* We were unbalanced, so reset the balancing interval */
6770 sd->balance_interval = sd->min_interval;
6771 } else {
6772 /*
6773 * If we've begun active balancing, start to back off. This
6774 * case may not be covered by the all_pinned logic if there
6775 * is only 1 task on the busy runqueue (because we don't call
6776 * move_tasks).
6777 */
6778 if (sd->balance_interval < sd->max_interval)
6779 sd->balance_interval *= 2;
6780 }
6781
6782 goto out;
6783
6784 out_balanced:
6785 schedstat_inc(sd, lb_balanced[idle]);
6786
6787 sd->nr_balance_failed = 0;
6788
6789 out_one_pinned:
6790 /* tune up the balancing interval */
6791 if (((env.flags & LBF_ALL_PINNED) &&
6792 sd->balance_interval < MAX_PINNED_INTERVAL) ||
6793 (sd->balance_interval < sd->max_interval))
6794 sd->balance_interval *= 2;
6795
6796 ld_moved = 0;
6797 out:
6798 return ld_moved;
6799 }
6800
6801 static inline unsigned long
6802 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6803 {
6804 unsigned long interval = sd->balance_interval;
6805
6806 if (cpu_busy)
6807 interval *= sd->busy_factor;
6808
6809 /* scale ms to jiffies */
6810 interval = msecs_to_jiffies(interval);
6811 interval = clamp(interval, 1UL, max_load_balance_interval);
6812
6813 return interval;
6814 }
6815
6816 static inline void
6817 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6818 {
6819 unsigned long interval, next;
6820
6821 interval = get_sd_balance_interval(sd, cpu_busy);
6822 next = sd->last_balance + interval;
6823
6824 if (time_after(*next_balance, next))
6825 *next_balance = next;
6826 }
6827
6828 /*
6829 * idle_balance is called by schedule() if this_cpu is about to become
6830 * idle. Attempts to pull tasks from other CPUs.
6831 */
6832 static int idle_balance(struct rq *this_rq)
6833 {
6834 unsigned long next_balance = jiffies + HZ;
6835 int this_cpu = this_rq->cpu;
6836 struct sched_domain *sd;
6837 int pulled_task = 0;
6838 u64 curr_cost = 0;
6839
6840 idle_enter_fair(this_rq);
6841
6842 /*
6843 * We must set idle_stamp _before_ calling idle_balance(), such that we
6844 * measure the duration of idle_balance() as idle time.
6845 */
6846 this_rq->idle_stamp = rq_clock(this_rq);
6847
6848 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6849 !this_rq->rd->overload) {
6850 rcu_read_lock();
6851 sd = rcu_dereference_check_sched_domain(this_rq->sd);
6852 if (sd)
6853 update_next_balance(sd, 0, &next_balance);
6854 rcu_read_unlock();
6855
6856 goto out;
6857 }
6858
6859 /*
6860 * Drop the rq->lock, but keep IRQ/preempt disabled.
6861 */
6862 raw_spin_unlock(&this_rq->lock);
6863
6864 update_blocked_averages(this_cpu);
6865 rcu_read_lock();
6866 for_each_domain(this_cpu, sd) {
6867 int continue_balancing = 1;
6868 u64 t0, domain_cost;
6869
6870 if (!(sd->flags & SD_LOAD_BALANCE))
6871 continue;
6872
6873 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6874 update_next_balance(sd, 0, &next_balance);
6875 break;
6876 }
6877
6878 if (sd->flags & SD_BALANCE_NEWIDLE) {
6879 t0 = sched_clock_cpu(this_cpu);
6880
6881 pulled_task = load_balance(this_cpu, this_rq,
6882 sd, CPU_NEWLY_IDLE,
6883 &continue_balancing);
6884
6885 domain_cost = sched_clock_cpu(this_cpu) - t0;
6886 if (domain_cost > sd->max_newidle_lb_cost)
6887 sd->max_newidle_lb_cost = domain_cost;
6888
6889 curr_cost += domain_cost;
6890 }
6891
6892 update_next_balance(sd, 0, &next_balance);
6893
6894 /*
6895 * Stop searching for tasks to pull if there are
6896 * now runnable tasks on this rq.
6897 */
6898 if (pulled_task || this_rq->nr_running > 0)
6899 break;
6900 }
6901 rcu_read_unlock();
6902
6903 raw_spin_lock(&this_rq->lock);
6904
6905 if (curr_cost > this_rq->max_idle_balance_cost)
6906 this_rq->max_idle_balance_cost = curr_cost;
6907
6908 /*
6909 * While browsing the domains, we released the rq lock, a task could
6910 * have been enqueued in the meantime. Since we're not going idle,
6911 * pretend we pulled a task.
6912 */
6913 if (this_rq->cfs.h_nr_running && !pulled_task)
6914 pulled_task = 1;
6915
6916 out:
6917 /* Move the next balance forward */
6918 if (time_after(this_rq->next_balance, next_balance))
6919 this_rq->next_balance = next_balance;
6920
6921 /* Is there a task of a high priority class? */
6922 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
6923 pulled_task = -1;
6924
6925 if (pulled_task) {
6926 idle_exit_fair(this_rq);
6927 this_rq->idle_stamp = 0;
6928 }
6929
6930 return pulled_task;
6931 }
6932
6933 /*
6934 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6935 * running tasks off the busiest CPU onto idle CPUs. It requires at
6936 * least 1 task to be running on each physical CPU where possible, and
6937 * avoids physical / logical imbalances.
6938 */
6939 static int active_load_balance_cpu_stop(void *data)
6940 {
6941 struct rq *busiest_rq = data;
6942 int busiest_cpu = cpu_of(busiest_rq);
6943 int target_cpu = busiest_rq->push_cpu;
6944 struct rq *target_rq = cpu_rq(target_cpu);
6945 struct sched_domain *sd;
6946
6947 raw_spin_lock_irq(&busiest_rq->lock);
6948
6949 /* make sure the requested cpu hasn't gone down in the meantime */
6950 if (unlikely(busiest_cpu != smp_processor_id() ||
6951 !busiest_rq->active_balance))
6952 goto out_unlock;
6953
6954 /* Is there any task to move? */
6955 if (busiest_rq->nr_running <= 1)
6956 goto out_unlock;
6957
6958 /*
6959 * This condition is "impossible", if it occurs
6960 * we need to fix it. Originally reported by
6961 * Bjorn Helgaas on a 128-cpu setup.
6962 */
6963 BUG_ON(busiest_rq == target_rq);
6964
6965 /* move a task from busiest_rq to target_rq */
6966 double_lock_balance(busiest_rq, target_rq);
6967
6968 /* Search for an sd spanning us and the target CPU. */
6969 rcu_read_lock();
6970 for_each_domain(target_cpu, sd) {
6971 if ((sd->flags & SD_LOAD_BALANCE) &&
6972 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6973 break;
6974 }
6975
6976 if (likely(sd)) {
6977 struct lb_env env = {
6978 .sd = sd,
6979 .dst_cpu = target_cpu,
6980 .dst_rq = target_rq,
6981 .src_cpu = busiest_rq->cpu,
6982 .src_rq = busiest_rq,
6983 .idle = CPU_IDLE,
6984 };
6985
6986 schedstat_inc(sd, alb_count);
6987
6988 if (move_one_task(&env))
6989 schedstat_inc(sd, alb_pushed);
6990 else
6991 schedstat_inc(sd, alb_failed);
6992 }
6993 rcu_read_unlock();
6994 double_unlock_balance(busiest_rq, target_rq);
6995 out_unlock:
6996 busiest_rq->active_balance = 0;
6997 raw_spin_unlock_irq(&busiest_rq->lock);
6998 return 0;
6999 }
7000
7001 static inline int on_null_domain(struct rq *rq)
7002 {
7003 return unlikely(!rcu_dereference_sched(rq->sd));
7004 }
7005
7006 #ifdef CONFIG_NO_HZ_COMMON
7007 /*
7008 * idle load balancing details
7009 * - When one of the busy CPUs notice that there may be an idle rebalancing
7010 * needed, they will kick the idle load balancer, which then does idle
7011 * load balancing for all the idle CPUs.
7012 */
7013 static struct {
7014 cpumask_var_t idle_cpus_mask;
7015 atomic_t nr_cpus;
7016 unsigned long next_balance; /* in jiffy units */
7017 } nohz ____cacheline_aligned;
7018
7019 static inline int find_new_ilb(void)
7020 {
7021 int ilb = cpumask_first(nohz.idle_cpus_mask);
7022
7023 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7024 return ilb;
7025
7026 return nr_cpu_ids;
7027 }
7028
7029 /*
7030 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7031 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7032 * CPU (if there is one).
7033 */
7034 static void nohz_balancer_kick(void)
7035 {
7036 int ilb_cpu;
7037
7038 nohz.next_balance++;
7039
7040 ilb_cpu = find_new_ilb();
7041
7042 if (ilb_cpu >= nr_cpu_ids)
7043 return;
7044
7045 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7046 return;
7047 /*
7048 * Use smp_send_reschedule() instead of resched_cpu().
7049 * This way we generate a sched IPI on the target cpu which
7050 * is idle. And the softirq performing nohz idle load balance
7051 * will be run before returning from the IPI.
7052 */
7053 smp_send_reschedule(ilb_cpu);
7054 return;
7055 }
7056
7057 static inline void nohz_balance_exit_idle(int cpu)
7058 {
7059 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7060 /*
7061 * Completely isolated CPUs don't ever set, so we must test.
7062 */
7063 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7064 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7065 atomic_dec(&nohz.nr_cpus);
7066 }
7067 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7068 }
7069 }
7070
7071 static inline void set_cpu_sd_state_busy(void)
7072 {
7073 struct sched_domain *sd;
7074 int cpu = smp_processor_id();
7075
7076 rcu_read_lock();
7077 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7078
7079 if (!sd || !sd->nohz_idle)
7080 goto unlock;
7081 sd->nohz_idle = 0;
7082
7083 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7084 unlock:
7085 rcu_read_unlock();
7086 }
7087
7088 void set_cpu_sd_state_idle(void)
7089 {
7090 struct sched_domain *sd;
7091 int cpu = smp_processor_id();
7092
7093 rcu_read_lock();
7094 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7095
7096 if (!sd || sd->nohz_idle)
7097 goto unlock;
7098 sd->nohz_idle = 1;
7099
7100 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7101 unlock:
7102 rcu_read_unlock();
7103 }
7104
7105 /*
7106 * This routine will record that the cpu is going idle with tick stopped.
7107 * This info will be used in performing idle load balancing in the future.
7108 */
7109 void nohz_balance_enter_idle(int cpu)
7110 {
7111 /*
7112 * If this cpu is going down, then nothing needs to be done.
7113 */
7114 if (!cpu_active(cpu))
7115 return;
7116
7117 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7118 return;
7119
7120 /*
7121 * If we're a completely isolated CPU, we don't play.
7122 */
7123 if (on_null_domain(cpu_rq(cpu)))
7124 return;
7125
7126 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7127 atomic_inc(&nohz.nr_cpus);
7128 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7129 }
7130
7131 static int sched_ilb_notifier(struct notifier_block *nfb,
7132 unsigned long action, void *hcpu)
7133 {
7134 switch (action & ~CPU_TASKS_FROZEN) {
7135 case CPU_DYING:
7136 nohz_balance_exit_idle(smp_processor_id());
7137 return NOTIFY_OK;
7138 default:
7139 return NOTIFY_DONE;
7140 }
7141 }
7142 #endif
7143
7144 static DEFINE_SPINLOCK(balancing);
7145
7146 /*
7147 * Scale the max load_balance interval with the number of CPUs in the system.
7148 * This trades load-balance latency on larger machines for less cross talk.
7149 */
7150 void update_max_interval(void)
7151 {
7152 max_load_balance_interval = HZ*num_online_cpus()/10;
7153 }
7154
7155 /*
7156 * It checks each scheduling domain to see if it is due to be balanced,
7157 * and initiates a balancing operation if so.
7158 *
7159 * Balancing parameters are set up in init_sched_domains.
7160 */
7161 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7162 {
7163 int continue_balancing = 1;
7164 int cpu = rq->cpu;
7165 unsigned long interval;
7166 struct sched_domain *sd;
7167 /* Earliest time when we have to do rebalance again */
7168 unsigned long next_balance = jiffies + 60*HZ;
7169 int update_next_balance = 0;
7170 int need_serialize, need_decay = 0;
7171 u64 max_cost = 0;
7172
7173 update_blocked_averages(cpu);
7174
7175 rcu_read_lock();
7176 for_each_domain(cpu, sd) {
7177 /*
7178 * Decay the newidle max times here because this is a regular
7179 * visit to all the domains. Decay ~1% per second.
7180 */
7181 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7182 sd->max_newidle_lb_cost =
7183 (sd->max_newidle_lb_cost * 253) / 256;
7184 sd->next_decay_max_lb_cost = jiffies + HZ;
7185 need_decay = 1;
7186 }
7187 max_cost += sd->max_newidle_lb_cost;
7188
7189 if (!(sd->flags & SD_LOAD_BALANCE))
7190 continue;
7191
7192 /*
7193 * Stop the load balance at this level. There is another
7194 * CPU in our sched group which is doing load balancing more
7195 * actively.
7196 */
7197 if (!continue_balancing) {
7198 if (need_decay)
7199 continue;
7200 break;
7201 }
7202
7203 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7204
7205 need_serialize = sd->flags & SD_SERIALIZE;
7206 if (need_serialize) {
7207 if (!spin_trylock(&balancing))
7208 goto out;
7209 }
7210
7211 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7212 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7213 /*
7214 * The LBF_DST_PINNED logic could have changed
7215 * env->dst_cpu, so we can't know our idle
7216 * state even if we migrated tasks. Update it.
7217 */
7218 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7219 }
7220 sd->last_balance = jiffies;
7221 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7222 }
7223 if (need_serialize)
7224 spin_unlock(&balancing);
7225 out:
7226 if (time_after(next_balance, sd->last_balance + interval)) {
7227 next_balance = sd->last_balance + interval;
7228 update_next_balance = 1;
7229 }
7230 }
7231 if (need_decay) {
7232 /*
7233 * Ensure the rq-wide value also decays but keep it at a
7234 * reasonable floor to avoid funnies with rq->avg_idle.
7235 */
7236 rq->max_idle_balance_cost =
7237 max((u64)sysctl_sched_migration_cost, max_cost);
7238 }
7239 rcu_read_unlock();
7240
7241 /*
7242 * next_balance will be updated only when there is a need.
7243 * When the cpu is attached to null domain for ex, it will not be
7244 * updated.
7245 */
7246 if (likely(update_next_balance))
7247 rq->next_balance = next_balance;
7248 }
7249
7250 #ifdef CONFIG_NO_HZ_COMMON
7251 /*
7252 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7253 * rebalancing for all the cpus for whom scheduler ticks are stopped.
7254 */
7255 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7256 {
7257 int this_cpu = this_rq->cpu;
7258 struct rq *rq;
7259 int balance_cpu;
7260
7261 if (idle != CPU_IDLE ||
7262 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7263 goto end;
7264
7265 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7266 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7267 continue;
7268
7269 /*
7270 * If this cpu gets work to do, stop the load balancing
7271 * work being done for other cpus. Next load
7272 * balancing owner will pick it up.
7273 */
7274 if (need_resched())
7275 break;
7276
7277 rq = cpu_rq(balance_cpu);
7278
7279 /*
7280 * If time for next balance is due,
7281 * do the balance.
7282 */
7283 if (time_after_eq(jiffies, rq->next_balance)) {
7284 raw_spin_lock_irq(&rq->lock);
7285 update_rq_clock(rq);
7286 update_idle_cpu_load(rq);
7287 raw_spin_unlock_irq(&rq->lock);
7288 rebalance_domains(rq, CPU_IDLE);
7289 }
7290
7291 if (time_after(this_rq->next_balance, rq->next_balance))
7292 this_rq->next_balance = rq->next_balance;
7293 }
7294 nohz.next_balance = this_rq->next_balance;
7295 end:
7296 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7297 }
7298
7299 /*
7300 * Current heuristic for kicking the idle load balancer in the presence
7301 * of an idle cpu is the system.
7302 * - This rq has more than one task.
7303 * - At any scheduler domain level, this cpu's scheduler group has multiple
7304 * busy cpu's exceeding the group's capacity.
7305 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7306 * domain span are idle.
7307 */
7308 static inline int nohz_kick_needed(struct rq *rq)
7309 {
7310 unsigned long now = jiffies;
7311 struct sched_domain *sd;
7312 struct sched_group_capacity *sgc;
7313 int nr_busy, cpu = rq->cpu;
7314
7315 if (unlikely(rq->idle_balance))
7316 return 0;
7317
7318 /*
7319 * We may be recently in ticked or tickless idle mode. At the first
7320 * busy tick after returning from idle, we will update the busy stats.
7321 */
7322 set_cpu_sd_state_busy();
7323 nohz_balance_exit_idle(cpu);
7324
7325 /*
7326 * None are in tickless mode and hence no need for NOHZ idle load
7327 * balancing.
7328 */
7329 if (likely(!atomic_read(&nohz.nr_cpus)))
7330 return 0;
7331
7332 if (time_before(now, nohz.next_balance))
7333 return 0;
7334
7335 if (rq->nr_running >= 2)
7336 goto need_kick;
7337
7338 rcu_read_lock();
7339 sd = rcu_dereference(per_cpu(sd_busy, cpu));
7340
7341 if (sd) {
7342 sgc = sd->groups->sgc;
7343 nr_busy = atomic_read(&sgc->nr_busy_cpus);
7344
7345 if (nr_busy > 1)
7346 goto need_kick_unlock;
7347 }
7348
7349 sd = rcu_dereference(per_cpu(sd_asym, cpu));
7350
7351 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7352 sched_domain_span(sd)) < cpu))
7353 goto need_kick_unlock;
7354
7355 rcu_read_unlock();
7356 return 0;
7357
7358 need_kick_unlock:
7359 rcu_read_unlock();
7360 need_kick:
7361 return 1;
7362 }
7363 #else
7364 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7365 #endif
7366
7367 /*
7368 * run_rebalance_domains is triggered when needed from the scheduler tick.
7369 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7370 */
7371 static void run_rebalance_domains(struct softirq_action *h)
7372 {
7373 struct rq *this_rq = this_rq();
7374 enum cpu_idle_type idle = this_rq->idle_balance ?
7375 CPU_IDLE : CPU_NOT_IDLE;
7376
7377 rebalance_domains(this_rq, idle);
7378
7379 /*
7380 * If this cpu has a pending nohz_balance_kick, then do the
7381 * balancing on behalf of the other idle cpus whose ticks are
7382 * stopped.
7383 */
7384 nohz_idle_balance(this_rq, idle);
7385 }
7386
7387 /*
7388 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7389 */
7390 void trigger_load_balance(struct rq *rq)
7391 {
7392 /* Don't need to rebalance while attached to NULL domain */
7393 if (unlikely(on_null_domain(rq)))
7394 return;
7395
7396 if (time_after_eq(jiffies, rq->next_balance))
7397 raise_softirq(SCHED_SOFTIRQ);
7398 #ifdef CONFIG_NO_HZ_COMMON
7399 if (nohz_kick_needed(rq))
7400 nohz_balancer_kick();
7401 #endif
7402 }
7403
7404 static void rq_online_fair(struct rq *rq)
7405 {
7406 update_sysctl();
7407
7408 update_runtime_enabled(rq);
7409 }
7410
7411 static void rq_offline_fair(struct rq *rq)
7412 {
7413 update_sysctl();
7414
7415 /* Ensure any throttled groups are reachable by pick_next_task */
7416 unthrottle_offline_cfs_rqs(rq);
7417 }
7418
7419 #endif /* CONFIG_SMP */
7420
7421 /*
7422 * scheduler tick hitting a task of our scheduling class:
7423 */
7424 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7425 {
7426 struct cfs_rq *cfs_rq;
7427 struct sched_entity *se = &curr->se;
7428
7429 for_each_sched_entity(se) {
7430 cfs_rq = cfs_rq_of(se);
7431 entity_tick(cfs_rq, se, queued);
7432 }
7433
7434 if (numabalancing_enabled)
7435 task_tick_numa(rq, curr);
7436
7437 update_rq_runnable_avg(rq, 1);
7438 }
7439
7440 /*
7441 * called on fork with the child task as argument from the parent's context
7442 * - child not yet on the tasklist
7443 * - preemption disabled
7444 */
7445 static void task_fork_fair(struct task_struct *p)
7446 {
7447 struct cfs_rq *cfs_rq;
7448 struct sched_entity *se = &p->se, *curr;
7449 int this_cpu = smp_processor_id();
7450 struct rq *rq = this_rq();
7451 unsigned long flags;
7452
7453 raw_spin_lock_irqsave(&rq->lock, flags);
7454
7455 update_rq_clock(rq);
7456
7457 cfs_rq = task_cfs_rq(current);
7458 curr = cfs_rq->curr;
7459
7460 /*
7461 * Not only the cpu but also the task_group of the parent might have
7462 * been changed after parent->se.parent,cfs_rq were copied to
7463 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7464 * of child point to valid ones.
7465 */
7466 rcu_read_lock();
7467 __set_task_cpu(p, this_cpu);
7468 rcu_read_unlock();
7469
7470 update_curr(cfs_rq);
7471
7472 if (curr)
7473 se->vruntime = curr->vruntime;
7474 place_entity(cfs_rq, se, 1);
7475
7476 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7477 /*
7478 * Upon rescheduling, sched_class::put_prev_task() will place
7479 * 'current' within the tree based on its new key value.
7480 */
7481 swap(curr->vruntime, se->vruntime);
7482 resched_curr(rq);
7483 }
7484
7485 se->vruntime -= cfs_rq->min_vruntime;
7486
7487 raw_spin_unlock_irqrestore(&rq->lock, flags);
7488 }
7489
7490 /*
7491 * Priority of the task has changed. Check to see if we preempt
7492 * the current task.
7493 */
7494 static void
7495 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7496 {
7497 if (!task_on_rq_queued(p))
7498 return;
7499
7500 /*
7501 * Reschedule if we are currently running on this runqueue and
7502 * our priority decreased, or if we are not currently running on
7503 * this runqueue and our priority is higher than the current's
7504 */
7505 if (rq->curr == p) {
7506 if (p->prio > oldprio)
7507 resched_curr(rq);
7508 } else
7509 check_preempt_curr(rq, p, 0);
7510 }
7511
7512 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7513 {
7514 struct sched_entity *se = &p->se;
7515 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7516
7517 /*
7518 * Ensure the task's vruntime is normalized, so that when it's
7519 * switched back to the fair class the enqueue_entity(.flags=0) will
7520 * do the right thing.
7521 *
7522 * If it's queued, then the dequeue_entity(.flags=0) will already
7523 * have normalized the vruntime, if it's !queued, then only when
7524 * the task is sleeping will it still have non-normalized vruntime.
7525 */
7526 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7527 /*
7528 * Fix up our vruntime so that the current sleep doesn't
7529 * cause 'unlimited' sleep bonus.
7530 */
7531 place_entity(cfs_rq, se, 0);
7532 se->vruntime -= cfs_rq->min_vruntime;
7533 }
7534
7535 #ifdef CONFIG_SMP
7536 /*
7537 * Remove our load from contribution when we leave sched_fair
7538 * and ensure we don't carry in an old decay_count if we
7539 * switch back.
7540 */
7541 if (se->avg.decay_count) {
7542 __synchronize_entity_decay(se);
7543 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7544 }
7545 #endif
7546 }
7547
7548 /*
7549 * We switched to the sched_fair class.
7550 */
7551 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7552 {
7553 #ifdef CONFIG_FAIR_GROUP_SCHED
7554 struct sched_entity *se = &p->se;
7555 /*
7556 * Since the real-depth could have been changed (only FAIR
7557 * class maintain depth value), reset depth properly.
7558 */
7559 se->depth = se->parent ? se->parent->depth + 1 : 0;
7560 #endif
7561 if (!task_on_rq_queued(p))
7562 return;
7563
7564 /*
7565 * We were most likely switched from sched_rt, so
7566 * kick off the schedule if running, otherwise just see
7567 * if we can still preempt the current task.
7568 */
7569 if (rq->curr == p)
7570 resched_curr(rq);
7571 else
7572 check_preempt_curr(rq, p, 0);
7573 }
7574
7575 /* Account for a task changing its policy or group.
7576 *
7577 * This routine is mostly called to set cfs_rq->curr field when a task
7578 * migrates between groups/classes.
7579 */
7580 static void set_curr_task_fair(struct rq *rq)
7581 {
7582 struct sched_entity *se = &rq->curr->se;
7583
7584 for_each_sched_entity(se) {
7585 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7586
7587 set_next_entity(cfs_rq, se);
7588 /* ensure bandwidth has been allocated on our new cfs_rq */
7589 account_cfs_rq_runtime(cfs_rq, 0);
7590 }
7591 }
7592
7593 void init_cfs_rq(struct cfs_rq *cfs_rq)
7594 {
7595 cfs_rq->tasks_timeline = RB_ROOT;
7596 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7597 #ifndef CONFIG_64BIT
7598 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7599 #endif
7600 #ifdef CONFIG_SMP
7601 atomic64_set(&cfs_rq->decay_counter, 1);
7602 atomic_long_set(&cfs_rq->removed_load, 0);
7603 #endif
7604 }
7605
7606 #ifdef CONFIG_FAIR_GROUP_SCHED
7607 static void task_move_group_fair(struct task_struct *p, int queued)
7608 {
7609 struct sched_entity *se = &p->se;
7610 struct cfs_rq *cfs_rq;
7611
7612 /*
7613 * If the task was not on the rq at the time of this cgroup movement
7614 * it must have been asleep, sleeping tasks keep their ->vruntime
7615 * absolute on their old rq until wakeup (needed for the fair sleeper
7616 * bonus in place_entity()).
7617 *
7618 * If it was on the rq, we've just 'preempted' it, which does convert
7619 * ->vruntime to a relative base.
7620 *
7621 * Make sure both cases convert their relative position when migrating
7622 * to another cgroup's rq. This does somewhat interfere with the
7623 * fair sleeper stuff for the first placement, but who cares.
7624 */
7625 /*
7626 * When !queued, vruntime of the task has usually NOT been normalized.
7627 * But there are some cases where it has already been normalized:
7628 *
7629 * - Moving a forked child which is waiting for being woken up by
7630 * wake_up_new_task().
7631 * - Moving a task which has been woken up by try_to_wake_up() and
7632 * waiting for actually being woken up by sched_ttwu_pending().
7633 *
7634 * To prevent boost or penalty in the new cfs_rq caused by delta
7635 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7636 */
7637 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7638 queued = 1;
7639
7640 if (!queued)
7641 se->vruntime -= cfs_rq_of(se)->min_vruntime;
7642 set_task_rq(p, task_cpu(p));
7643 se->depth = se->parent ? se->parent->depth + 1 : 0;
7644 if (!queued) {
7645 cfs_rq = cfs_rq_of(se);
7646 se->vruntime += cfs_rq->min_vruntime;
7647 #ifdef CONFIG_SMP
7648 /*
7649 * migrate_task_rq_fair() will have removed our previous
7650 * contribution, but we must synchronize for ongoing future
7651 * decay.
7652 */
7653 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7654 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7655 #endif
7656 }
7657 }
7658
7659 void free_fair_sched_group(struct task_group *tg)
7660 {
7661 int i;
7662
7663 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7664
7665 for_each_possible_cpu(i) {
7666 if (tg->cfs_rq)
7667 kfree(tg->cfs_rq[i]);
7668 if (tg->se)
7669 kfree(tg->se[i]);
7670 }
7671
7672 kfree(tg->cfs_rq);
7673 kfree(tg->se);
7674 }
7675
7676 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7677 {
7678 struct cfs_rq *cfs_rq;
7679 struct sched_entity *se;
7680 int i;
7681
7682 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7683 if (!tg->cfs_rq)
7684 goto err;
7685 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7686 if (!tg->se)
7687 goto err;
7688
7689 tg->shares = NICE_0_LOAD;
7690
7691 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7692
7693 for_each_possible_cpu(i) {
7694 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7695 GFP_KERNEL, cpu_to_node(i));
7696 if (!cfs_rq)
7697 goto err;
7698
7699 se = kzalloc_node(sizeof(struct sched_entity),
7700 GFP_KERNEL, cpu_to_node(i));
7701 if (!se)
7702 goto err_free_rq;
7703
7704 init_cfs_rq(cfs_rq);
7705 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7706 }
7707
7708 return 1;
7709
7710 err_free_rq:
7711 kfree(cfs_rq);
7712 err:
7713 return 0;
7714 }
7715
7716 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7717 {
7718 struct rq *rq = cpu_rq(cpu);
7719 unsigned long flags;
7720
7721 /*
7722 * Only empty task groups can be destroyed; so we can speculatively
7723 * check on_list without danger of it being re-added.
7724 */
7725 if (!tg->cfs_rq[cpu]->on_list)
7726 return;
7727
7728 raw_spin_lock_irqsave(&rq->lock, flags);
7729 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7730 raw_spin_unlock_irqrestore(&rq->lock, flags);
7731 }
7732
7733 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7734 struct sched_entity *se, int cpu,
7735 struct sched_entity *parent)
7736 {
7737 struct rq *rq = cpu_rq(cpu);
7738
7739 cfs_rq->tg = tg;
7740 cfs_rq->rq = rq;
7741 init_cfs_rq_runtime(cfs_rq);
7742
7743 tg->cfs_rq[cpu] = cfs_rq;
7744 tg->se[cpu] = se;
7745
7746 /* se could be NULL for root_task_group */
7747 if (!se)
7748 return;
7749
7750 if (!parent) {
7751 se->cfs_rq = &rq->cfs;
7752 se->depth = 0;
7753 } else {
7754 se->cfs_rq = parent->my_q;
7755 se->depth = parent->depth + 1;
7756 }
7757
7758 se->my_q = cfs_rq;
7759 /* guarantee group entities always have weight */
7760 update_load_set(&se->load, NICE_0_LOAD);
7761 se->parent = parent;
7762 }
7763
7764 static DEFINE_MUTEX(shares_mutex);
7765
7766 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7767 {
7768 int i;
7769 unsigned long flags;
7770
7771 /*
7772 * We can't change the weight of the root cgroup.
7773 */
7774 if (!tg->se[0])
7775 return -EINVAL;
7776
7777 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7778
7779 mutex_lock(&shares_mutex);
7780 if (tg->shares == shares)
7781 goto done;
7782
7783 tg->shares = shares;
7784 for_each_possible_cpu(i) {
7785 struct rq *rq = cpu_rq(i);
7786 struct sched_entity *se;
7787
7788 se = tg->se[i];
7789 /* Propagate contribution to hierarchy */
7790 raw_spin_lock_irqsave(&rq->lock, flags);
7791
7792 /* Possible calls to update_curr() need rq clock */
7793 update_rq_clock(rq);
7794 for_each_sched_entity(se)
7795 update_cfs_shares(group_cfs_rq(se));
7796 raw_spin_unlock_irqrestore(&rq->lock, flags);
7797 }
7798
7799 done:
7800 mutex_unlock(&shares_mutex);
7801 return 0;
7802 }
7803 #else /* CONFIG_FAIR_GROUP_SCHED */
7804
7805 void free_fair_sched_group(struct task_group *tg) { }
7806
7807 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7808 {
7809 return 1;
7810 }
7811
7812 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7813
7814 #endif /* CONFIG_FAIR_GROUP_SCHED */
7815
7816
7817 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7818 {
7819 struct sched_entity *se = &task->se;
7820 unsigned int rr_interval = 0;
7821
7822 /*
7823 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7824 * idle runqueue:
7825 */
7826 if (rq->cfs.load.weight)
7827 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7828
7829 return rr_interval;
7830 }
7831
7832 /*
7833 * All the scheduling class methods:
7834 */
7835 const struct sched_class fair_sched_class = {
7836 .next = &idle_sched_class,
7837 .enqueue_task = enqueue_task_fair,
7838 .dequeue_task = dequeue_task_fair,
7839 .yield_task = yield_task_fair,
7840 .yield_to_task = yield_to_task_fair,
7841
7842 .check_preempt_curr = check_preempt_wakeup,
7843
7844 .pick_next_task = pick_next_task_fair,
7845 .put_prev_task = put_prev_task_fair,
7846
7847 #ifdef CONFIG_SMP
7848 .select_task_rq = select_task_rq_fair,
7849 .migrate_task_rq = migrate_task_rq_fair,
7850
7851 .rq_online = rq_online_fair,
7852 .rq_offline = rq_offline_fair,
7853
7854 .task_waking = task_waking_fair,
7855 #endif
7856
7857 .set_curr_task = set_curr_task_fair,
7858 .task_tick = task_tick_fair,
7859 .task_fork = task_fork_fair,
7860
7861 .prio_changed = prio_changed_fair,
7862 .switched_from = switched_from_fair,
7863 .switched_to = switched_to_fair,
7864
7865 .get_rr_interval = get_rr_interval_fair,
7866
7867 #ifdef CONFIG_FAIR_GROUP_SCHED
7868 .task_move_group = task_move_group_fair,
7869 #endif
7870 };
7871
7872 #ifdef CONFIG_SCHED_DEBUG
7873 void print_cfs_stats(struct seq_file *m, int cpu)
7874 {
7875 struct cfs_rq *cfs_rq;
7876
7877 rcu_read_lock();
7878 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7879 print_cfs_rq(m, cpu, cfs_rq);
7880 rcu_read_unlock();
7881 }
7882 #endif
7883
7884 __init void init_sched_fair_class(void)
7885 {
7886 #ifdef CONFIG_SMP
7887 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7888
7889 #ifdef CONFIG_NO_HZ_COMMON
7890 nohz.next_balance = jiffies;
7891 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7892 cpu_notifier(sched_ilb_notifier, 0);
7893 #endif
7894 #endif /* SMP */
7895
7896 }